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RESUMO 

 

Os espaços urbanos são compostos, majoritariamente, por objetos de pequena 

dimensão e com relações complexas entre si, de modo que para a classificação do 

seu solo é exigido imageamento de alta resolução. Entretanto, os métodos tradicionais 

de extração de informações em imagens de alta resolução, sejam de nível aéreo ou 

orbital, ainda apresentam algumas limitações. A fotoanálise acrescida da vetorização 

em tela, embora seja o método mais adotado para a extração de informações urbanas 

em imagens de alta resolução, pode ter a sua aplicação prejudicada por objetos com 

contornos complexos, pela subjetividade da interpretação do analista e pelo tempo de 

trabalho demandado para grandes áreas. Ademais, os métodos tradicionais de 

classificação de imagens digitais, embora reduzam ou eliminem os problemas da 

fotoanálise, também apresentam limitações para a classificação do solo urbano com 

imagem de alta resolução, devido à informação espectral contida nessas imagens não 

ser suficiente para discriminar os alvos. Esse problema pode ser contornado utilizando 

camadas auxiliares com atributos de diferentes fontes, os quais viabilizam a 

discriminação de classes espectralmente semelhantes. Diante do exposto, este 

trabalho propõe uma análise conjunta de imagens aéreas, modelos do terreno e 

imagens provenientes de operações aritméticas, para o reconhecimento de padrões 

nos dados e classificação do solo urbano. Para a realização dos experimentos, nos 

softwares QGIS e SPRING, foram utilizados Modelo Digital do Terreno, Modelo Digital 

de Elevação, bandas espectrais de ortofoto com GSD de 8cm e imagem de 

intensidade. O desenvolvimento da pesquisa teve início com a aquisição de amostras 

de classes, a partir da qual iniciou-se o reconhecimento de padrões nos dados para a 

definição de limiares. Foram investigadas as razões de bandas S1 e S2 e os índices 

de vegetação GLI, VARI, RGBVI e GRVI, cujas equações utilizam apenas as bandas 

do visível. Os principais resultados apontaram que: i) a variável intensidade pode 

revelar propriedades hídricas que subsidiem estudos mais específicos de composição 

da água; ii) as aritméticas de bandas na faixa do visível, quando aplicadas às imagens 

de alta resolução, além de realçarem a vegetação, servem para identificar alguns tipos 

de telhados; iii) as operações S1, GLI e RGBVI são potenciais para classificação da 

cobertura vegetacional urbana; iv) as operações VARI e GRVI são potenciais para a 

classificação da cobertura edificacional do tipo telhado de cerâmica, sem fazer 

distinção quanto ao seu estado de conservação; v) a variável altimetria é potencial 



para discriminar classes que possuem respostas espectrais semelhantes; vi) a 

classificação por máxima verossimilhança, quando aplicada em recortes com classes 

de sutis variações espectrais, viabiliza a discriminação dessas classes. Por fim, foram 

classificadas dez classes de alvos, a saber: cobertura vegetacional de baixo porte, 

cobertura vegetacional de médio porte, cobertura vegetacional de grande porte, 

telhado cinza claro, telhado cinza escuro, telhado de cerâmica vermelho, telhado de 

cerâmica marrom, solo exposto, cobertura hídrica e cobertura pavimentada. 

 

Palavras-chave: Classificação de imagens. Solo urbano. Aritmética de bandas. 

Altimetria. 

 

  



ABSTRACT 

 

Urban spaces are mostly composed of small objects and with complex 

relationships with each other, so that the classification of your soil requires high 

resolution imaging. However, traditional methods of extracting information from high 

resolution images, whether aerial or orbital, still have some limitations. Photoanalysis 

plus vectorization on screen, although it is the most adopted method for the extraction 

of urban information in high resolution images, may have its application impaired by 

objects with complex contours, by the subjectivity of the analyst's interpretation and by 

the time required for work for large areas. In addition, traditional methods of classifying 

digital images, although they reduce or eliminate the problems of photoanalysis, also 

present limitations for the classification of urban soil with high-resolution images, due 

to the spectral information contained in these images not being sufficient to 

discriminate targets. This problem can be overcome by using auxiliary layers with 

attributes from different sources, which enable the discrimination of spectrally similar 

classes. Given the above, this work proposes a joint analysis of aerial images, terrain 

models and images from arithmetic operations, for the recognition of patterns in the 

data and classification of urban soil. In order to carry out the experiments, using the 

QGIS and SPRING software, Digital Terrain Model, Digital Elevation Model, orthophoto 

spectral bands with 8 cm GSD and intensity image were used. The development of the 

research started with the acquisition of samples of classes, from which the recognition 

of patterns in the data for the definition of thresholds began. The S1 and S2 band ratios 

and the GLI, VARI, RGBVI and GRVI vegetation indices were investigated, whose 

equations use only the visible bands. The main results showed that: i) the intensity 

variable can reveal water properties that support more specific studies of water 

composition; ii) the band arithmetic in the visible range, when applied to high resolution 

images, in addition to enhancing vegetation, serve to identify some types of roofs; iii) 

operations S1, GLI and RGBVI are potential for classifying urban vegetation cover; iv) 

the VARI and GRVI operations are potential for the classification of the building cover 

of the ceramic roof type, without making any distinction regarding its state of 

conservation; v) the altimetry variable is potential to discriminate classes that have 

similar spectral responses; vi) the classification by maximum likelihood, when applied 

to cuttings with classes of subtle spectral variations, enables the discrimination of these 

classes. Finally, ten target classes were classified, namely: low vegetation cover, 



medium vegetation cover, large vegetation cover, light gray roof, dark gray roof, red 

ceramic roof, brown ceramic roof, soil exposed, water cover and paved cover. 

 

Keywords: Image classification. Urban soil. Band arithmetic. Altimetry. 
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1 INTRODUÇÃO 

 

 Os fenômenos urbanos têm impacto de longo alcance nas sociedades e 

ambientes localizados além dos limites da cidade. Informações precisas e oportunas 

sobre os ambientes urbanos são essenciais para entender os padrões e a dinâmica 

da cobertura da terra, subsidiar a tomada de decisão sobre o território e viabilizar 

pesquisas de cunho local e global (RUIZ, GUASSELLI & CATEN, 2017; LIU et al., 

2018). 

Devido à pequena dimensão das suas feições, os ambientes urbanos exigem 

imageamento de alta resolução para o seu mapeamento. Entretanto, os métodos 

tradicionais de extração de informações em imagens de alta resolução, sejam de nível 

aéreo ou orbital, ainda apresentam algumas limitações (MYINT et al., 2011). 

Os principais fatores que dificultam o mapeamento urbano são: i) a pequena 

dimensão das feições e a sua disposição complexa no espaço; ii) a diversidade de 

materiais de que são compostos os objetos e as suas semelhanças espectrais; iii) as 

regiões de sombra e oclusão em imagens aéreas e; iv) a constante dinâmica territorial. 

Esses fatores exigem uma combinação de imageamento de alta resolução e 

mecanismos potenciais de atualização cartográfica, dentre eles os métodos de 

processamento de imagens digitais. 

Segundo Pinho et al. (2012), a identificação de mudanças na cobertura e no 

uso da terra subsidia o planejamento e gerenciamento urbano. Essas informações 

podem ser usadas, por exemplo, para planejar mudanças nos sistemas de transporte 

público em áreas onde o número de arranha-céus está aumentando rapidamente. Tais 

mudanças podem ser avaliadas usando análises multitemporais de mapas de uso e 

cobertura da terra intraurbanos, que exigem dados continuamente atualizados, 

detalhados e precisos. O avanço de tecnologias de imageamento de alta resolução, 

seja em nível aéreo ou orbital, tem demandado técnicas mais robustas de 

processamento de imagens, de modo a possibilitar mapeamentos automáticos ou 

semiautomáticos e viabilizar, em menor tempo e custo, a atualização espacial dos 

fenômenos urbanos. 

A fotoanálise e a vetorização em tela ainda são os métodos mais utilizados em 

mapeamentos urbanos. Entretanto, três fatores principais agregam deficiências a 

esses métodos, são eles: i) objetos unidos entre si e/ou com contorno complexo, a 

exemplo da vegetação, cujo delineamento por parte do analista apresenta alto nível 
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de dificuldade; ii) a área de conhecimento do analista e a área estudada podem 

interferir no processo de extração da informação, de modo que dois analistas podem 

chegar a resultados distintos;  iii) grandes áreas demandam muito tempo de trabalho, 

o que pode inviabilizar determinados projetos e retardar a atualização cartográfica. 

Sob uma nova perspectiva, a classificação de imagens digitais surgiu como 

fomento à automatização do processo de extração de informações das imagens, 

eliminando a subjetividade da interpretação humana e reduzindo o esforço de trabalho 

do analista (MENESES & ALMEIDA, 2012). Entretanto, a informação espectral 

utilizada nos métodos tradicionais de classificação não é suficiente para categorizar 

os pixels urbanos integrantes de imagem de alta resolução (ARAKI, 2005). 

A classificação pixel a pixel obtida pelos métodos convencionais do 

Paralelepípedo, Distância Mínima, Máxima Verossimilhança e também a classificação 

obtida por regiões como é o caso do ISOSEG e Battacharya, avaliam as classes como 

agrupamentos de mesma característica espectral, em uma representação 

bidimensional, e isso não é suficiente para a discriminação das feições urbanas (LU 

& WENG, 2007; MYINT et al., 2011; MENESES & ALMEIDA, 2012). Esse problema 

pode ser contornado utilizando camadas auxiliares com atributos de diferentes fontes, 

os quais viabilizam a discriminação de classes espectralmente semelhantes. 

A informação altimétrica proveninete do Light Detection and Ranging (LIDAR) 

e as operações aritméticas com bandas (razão de bandas e índices de vegetação) 

são exemplos de camadas auxiliares que podem contribuir para a classificação de 

espaços urbanos. 

A informação altimétrica pode resolver questões como: i) perda de informação 

devido à oclusão; ii) mistura espectral entre classes de alvos, a exemplo de áreas 

pavimentadas e coberturas edificacionais de concreto, que possuem respostas 

espectrais semelhantes, mas alturas distintas; iii) segmentar classes em categorias 

mais específicas, a exemplo da vegetação, que pode ser categorizada em função do 

seu ciclo de vida ou em função da sua espécie, a depender da altura. 

Com relação às operações aritméticas com bandas, essas incrementam 

informação ao processo de discriminação das classes de alvos, uma vez que 

consistem em nova camada de dados e podem realçar determinados objetos. Essas 

operações podem solucionar ou auxiliar uma das etapas de maior complexidade do 

mapeamento urbano, a saber, a classificação da vegetação. Por estarem, na maioria 

das vezes, misturadas com outras classes de alvos ou sobrepostas a essas, e 
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possuírem forma irregular, a vegetação é de difícil extração por vetorização em tela 

ou por classificação convencional utilizando apenas a informação espectral original. 

Diante do exposto, este trabalho propõe uma análise conjunta de imagens 

aéreas, modelos do terreno e imagens provenientes de operações aritméticas, para o 

reconhecimento de padrões nos dados e classificação do solo urbano. Para a 

realização dos experimentos foi escolhida uma área com boa representatividade de 

alvos urbanos, a saber: edificações com diferentes coberturas, áreas pavimentadas, 

vegetação de diversos tipos e portes, solo exposto e corpos d’água. Vale salientar 

que, diferente da maioria das pesquisas, que utilizam as bandas do infravermelho para 

o estudo da vegetação, neste trabalho as operações utilizam apenas as bandas do 

visível, o que viabiliza a reprodução da metodologia em diferentes áreas de estudo e 

com imagens de diferentes sensores, a exemplo das imagens de Veículos Aéreos não 

Tripulados e drones, às quais ainda têm seus usos limitados devido à falta de métodos 

de processamento de imagens que explorem todas as suas potencialidades. 

Este estudo justifica-se pela necessidade de métodos que viabilizem o 

mapeamento automático ou semiautomático de área urbanas, utilizando imagens de 

alta resolução provenientes de sensores que imageiam apenas as bandas do espectro 

visível. Isso porque a realidade majoritária dos municípios brasileiros é de 

negligenciamento com o mapeamento urbano. A complexidade em se extrair 

informações urbanas de imagens de alta resolução é um problema que faz com que 

muitas bases cartográficas municipais não contemplem a totalidade do território, se 

restringindo a informações concernentes apenas à cobrança de impostos. Visto isso, 

é almejado o desenvolvimento de métodos que possibilitem o mapeamento urbano 

sistematizado, de modo a subsidiar a tomada de decisão sobre o território. 
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2 OBJETIVOS 

 

Esta seção apresenta os objetivos desta pesquisa. 

 

2.1 OBJETIVO GERAL 

 

Gerar uma classificação da cobertura do solo urbano utilizando informações 

espectrais e altimétricas, razão de bandas e índices de vegetação. 

 

2.2 OBJETIVOS ESPECÍFICOS 

 

• Utilizar aritmética de bandas na faixa do visível para discriminar sutis variações 

de reflectância entre os alvos de interesse;  

• Utilizar a informação altimétrica para separar classes espectralmente 

semelhantes; 

• Comparar os resultados da classificação utilizando camadas auxiliares com os 

resultados das classificações supervisionadas pelos métodos de Distância 

Euclidiana e Máxima Verossimilhança. 
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3 REFERENCIAL TEÓRICO 

 

Esta seção apresenta o referencial teórico utilizado como embasamento para 

o desenvolvimento desta pesquisa. 

 

3.1 COMPORTAMENTO ESPECTRAL DOS ALVOS URBANOS 

 

 Diversos trabalhos apontam para as dificuldades encontradas na utilização de 

dados de imageamento no estudo e mapeamento de áreas urbanas. Quanto maior a 

resolução espacial, maior o nível de detalhamento que se pode extrair da imagem, 

entretanto, esta não é uma tarefa fácil. Os espaços urbanos são compostos por 

diferentes materiais, com respostas espectrais muitas vezes semelhantes, o que 

dificulta o reconhecimento de padrões para a definição de limiares entre classes.  

 Durán (2014) realizou um estudo da resposta espectral de alvos urbanos com 

espectroscopia de reflectância e imagens de alta resolução espacial, utilizando a 

técnica de mapeamento espectral SAM (Spectral Angle Mapper) e a reamostragem 

das curvas espectrais utilizando as funções de resposta espectral dos sensores 

GeoEye-1 e HRG-1/SPOT 5. Os resultados mostraram que: i) em alguns casos a 

diferença entre alvos foi devida à pequenas diferenças de magnitude nos valores de 

reflectância; ii) as medições de campo foram realizadas com um espectrorradiômetro  

cuja faixa espectral atinge o visível e parcialmente o infravermervelho próximo, sendo 

isto um fator limitante na análise de alvos com feições características no infravermelho 

de ondas curtas; iii) objetos com cobertura colorida mostram uma resposta espectral 

associada a tinta e não ao material base; iv) objetos como telhas de cerâmica 

vermelha, estradas de terra e quadras de saibro preservam as propriedades de 

reflectância do material base; v) objetos fabricados com concreto, telhas de amianto, 

telhas shingle, asfalto, brita, calçamentos de rochas tipo paralelepípedo e irregulares 

preto, telha de aço e zinco, sempre que não possuam alguma camada de tinta na 

superfície, apresentam feições espectrais sem variações definidas que causam 

confusão no momento da classificação; vi) as ações do intemperismo sobre os alvos 

urbanos afetam a resposta espectral dos materiais; vii) a técnica SAM com algumas 

limitações possibilitou a identificação de alvos urbanos com exatidão maior a 50%. 

 Em Ribeiro, Fonseca e Kux (2011) foi avaliado o potencial das imagens do 

sensor WorldView-II para o mapeamento da cobertura do solo em uma área urbana  
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na Região Metropolitana de São Paulo, usando o InterIMAGE. Dentre as principais 

conclusões estão: i) as classes de cobertura vegetacional rasteira e arbórea 

mostraram resultados espectralmente muito semelhantes, podendo ser separadas por 

índices  de vegetação ou por medidas texturais; ii) foram observadas confusões 

espectrais entre vegetação rasteira e solo exposto, provavelmente devido a baixa 

concentração hídrica da vegetação; iii)  o solo exposto teve resultado semelhante ao 

do telhado de cerâmica; iv) a classe vegetação arbórea apresentou confusão com a 

classe sombra, o que se deve principalmente ao fato de regiões identificadas como 

sombra serem realçadas na banda do infravermelho próximo, por se tratarem de 

vegetação; v) As maiores confusões com a classe telha metálica ocorreram com as 

classes de materiais de cobertura acinzentadas, especialmente com as classes  

cobertura em cimento claro e médio, isso se deve ao fato dos alvos metálicos serem 

constituídos de diferentes metais, com cores diferentes, geometrias diferentes (planos 

ou curvos), e consequentemente, respostas espectrais diferentes. 

 

3.2 PRINCÍPIOS DA CLASSIFICAÇÃO DE IMAGENS DIGITAIS 

 

A classificação digital de imagens possibilita a atribuição de um significado real 

ao pixel. Quando esta operação é realizada para todos os pixels em uma determinada 

área, o resultado é um mapa temático com a distribuição geográfica de temas. A 

classificação pode ser supervisionada, quando o analista poderá definir áreas 

amostrais das classes contidas na imagem, ou não supervisionada, quando o analista 

não tem informações relativas à área imageada, sendo as classes definidas 

automaticamente pelo próprio algoritmo de classificação (IBRAHIN, 2014). Existe 

ainda a possibilidade de dividir os métodos de classificação segundo outros critérios 

em: classificação paramétrica e não-paramétrica, classificação espectral e espacial e 

classificação por pixel ou por regiões. 

A maioria dos classificadores realiza a classificação por pixel, utilizando somente 

a informação espectral de cada pixel para encontrar regiões homogêneas, a partir de 

medições de distâncias ou de probabilidades de um pixel pertencer a uma 

determinada classe. Na classificação por regiões um agrupamento de pixels é usado 

como unidade de classificação e influencia o processo de decisão (MENEZES & 

ALMEIDA, 2012; PRUDENTE et al 2017; LU & WENG, 2007). 
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A classificação não supervisionada realizada antes da classificação 

supervisionada pode ser vista como uma etapa importante para o reconhecimento de 

padrões espectrais. Entretanto, cuidados especiais devem ser tomados quanto à 

obtenção do número de classes de pixels, a saber: o número de classes espectrais 

ser maior que o de classes do terreno, havendo necessidade da realização de um 

reagrupamento; o número de classes espectrais ser muito menor que o de classes no 

terreno, caracterizando-se a existência de alvos com características espectrais 

semelhantes e mostrando a necessidade de se utilizar outras formas de 

discriminações para as classes (FRANÇA et al., 2012). 

 

3.3 MÉTODOS TRADICIONAIS DE CLASSIFICAÇÃO 

 

Esta seção discrimina os métodos tradicionais de classificação utilizados nesta 

pesquisa, a saber: Método da Distância Euclidiana e Método da Máxima 

Verossimilhança. 

 

3.3.1  Método da Distância Euclidiana 

 

O método de classificação por distância Euclidiana, também chamado de 

método de classificação por distância mínima, é um procedimento de classificação 

supervisionada, que utiliza a distância euclidiana (Equação 1) para associar um pixel 

a uma determinada classe. No treinamento supervisionado, definem-se os 

agrupamentos que representam as classes. Na classificação, cada pixel será 

incorporado a um agrupamento, através da análise da medida de similaridade de 

distância Euclidiana (CAMARA et al., 1996).  

𝐷 (𝑥, 𝑛)  =  √𝑥𝑖 −  𝑚𝑖 

Onde, 

𝑥𝑖  = pixel candidato 

𝑚𝑖 = média das bandas 

𝑛 = número de bandas espectrais 

 

(1) 
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A Figura 1 ilustra a medida da distância pelas linhas entre o pixel candidato e 

as médias de três classes. O classificador compara a distância Euclidiana de cada 

pixel à média de cada agrupamento. O pixel candidato é designado à classe com 

média mais próxima, isto é, à classe que apresenta a menor distância Euclidiana. 

 

Figura 1 - Ilustração da classificação pelo método da Distância Euclidiana. 

 

Fonte: Menezes e Almeida (2012). 

 

Segundo Menezes e Almeida (2012), o método de classificação por distância 

euclidiana apresenta uma série de vantagens e desvantagens. Para os autores as 

vantagens são: i) todos os pixels encontrarão uma média à qual estarão 

espectralmente mais próximos, e assim, não existirão pixels não classificados; ii) é a 

regra de decisão mais rápida depois do paralelepípedo. Enquanto que no tocante as 

devantagens, eles apontam: i) pixels que deveriam permanecer não-classificados, isto 

é, eles não estão espectralmente próximos a nenhuma amostra dentro de limites 

razoáveis, serão classificados; ii) o método não considera a variabilidade espacial da 

classe. 

 

3.3.2 Método da Máxima Verossimilhança 

 

Segundo CAMARA et  al. (1996),  a classificação de imagens pelo método da 

máxima verossimilhança considera a ponderação das distâncias entre as médias dos 

níveis digitais das classes, utilizando parâmetros estatísticos. Para que a classificação 

por este método seja precisa o suficiente, é necessário um número razoavelmente 

elevado de pixels, para cada conjunto de treinamento, os quais definem o diagrama 
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de dispersão das classes e suas distribuições de probabilidade, considerando a 

distribuição de probabilidade normal para cada classe de treinamento. 

Na Figura 2 apresentam-se duas classes (1 e 2) com distribuição de 

probabilidade distintas. Estas distribuições de probabilidade representam a 

probabilidade de um pixel pertencer, respectivamente, à classe 1 ou à classe 2, 

dependendo da posição do pixel em relação à esta distribuição. 

Um pixel contido na região onde as duas curvas se sobrepõem tem igual 

probabilidade de pertencer à classe 1 e à classe 2. Nessa situação se estabelece um 

critério de decisão em função de limiares (limite de decisão). A Figura 2 ilustra um 

limite de decisão de uma classificação, no ponto onde as duas curvas se cruzam, de 

tal modo que um pixel localizado na região pontilhada, apesar de pertencer a uma 

zona de mistura espectral, será classificado como classe 1. O limiar fornece ao usuário 

a possibilidade de variar o rigor da classificação. Quanto menor o limiar, mais rigorosa 

será a classificação (MENEZES & ALMEIDA, 2012). 

 

 

 

 

 

 

 

Fonte: Camara et al. (1996). 

Segundo Menezes e Almeida (2012), o método de classificação por distância 

euclidiana apresenta uma série de vantagens e desvantagens. No que refere às 

vantagens, os autores apontam: i) é mais eficiente que o método por distância mínima, 

pois as classes de treinamento são utilizadas para estimar a forma da distribuição dos 

pixels contidos em cada classe no espaço de n bandas, como também a localização 

do centro de cada classe; ii) Possibilidade de variar o rigor da classificação, mediante 

o estabelecimento de limiares. Já no tocante as desvantagens, os autores apontam: 

Figura 2 - Ilustração da definição de limiar na classificação por máxima verossimilhança. 
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i) o uso desse classificador exige que as áreas de amostragem das classes de 

treinamento tenham uma grande quantidade de pixels, da ordem de centenas; ii) o 

resultado pode ser insatisfatório caso haja uma dispersão dos pixels em uma classe 

de treinamento. 

 

3.4 DESAFIOS NA CLASSIFICAÇÃO DE IMAGENS DE ALTA RESOLUÇÃO 

ESPACIAL 

 

As imagens de alta resolução são muito utilizadas no mapeamento do uso e 

ocupação do solo. Entretanto, os métodos convencionais de classificação, em áreas 

urbanas, podem apresentar resultados não satisfatórios, devido à alta 

heterogeneidade e complexidade destas áreas. Logo, vêm sendo desenvolvidos 

métodos automáticos e semiautomáticos de extração de informações sobre a 

cobertura da terra, que melhoram os resultados dos métodos tradicionais e reduzem 

significativamente o tempo de processamento dos dados e, por conseguinte, reduzem 

os recursos financeiros durante o processo de produção cartográfica (ARAKI, 2005; 

LIU & XIA, 2010; ARAÚJO & LUCHIARI, 2016; SANTIAGO & SILVA, 2018). 

Como a imagem possui informação bidimensional de algo que é tridimensional, 

nem sempre o processo de classificação atende à realidade do local. Nas imagens de 

alta resolução, efeitos de sombra e do terreno podem gerar erros na categorização 

dos objetos. Deste modo, faz-se necessário incorporar dados auxiliares, não 

espectrais, à classificação para que se obtenha um resultado mais refinado e que 

represente melhor a superfície imageada (SILVA, CANDEIAS e TAVARES JUNIOR, 

2010). 

Segundo Santos et al. (2011), os métodos convencionais de extração de 

informações a partir de imagens de satélite baseiam-se em abordagens pixel a pixel. 

Entretanto, o aumento da resolução dos sensores digitais levou ao surgimento de 

novos paradigmas de classificação, que pretendem replicar a identificação dos objetos 

da imagem de forma análoga a interpretação realizada pelo cérebro humano. Esta 

nova abordagem se deve ao fato da utilização de classificadores ao nível do pixel, 

fazendo uso apenas da informação espectral, ter se revelado ineficaz na extração de 

informações em imagens de muito alta resolução. 
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3.5 NOVAS PERSPECTIVAS NA CLASSIFICAÇÃO DE IMAGENS DE ALTA 

RESOLUÇÃO ESPACIAL 

 

Nesta seção é feita uma análise da modernização dos métodos de classificação 

de imagens de alta resolução. 

 

3.5.1 Camadas Auxiliares  

 

Nesta seção são apresentadas as camadas auxiliares utilizadas no 

desenvolvimento desta pesquisa. 

 

3.5.1.1 Informação Altimétrica do LIDAR 

 

Dados auxiliares de altimetria podem contribuir na classificação, pois 

incorporam uma diferenciação dos alvos pelas suas alturas e resgatam a informação 

tridimensional para a imagem digital (SILVA e ARAKI, 2015; OLIVEIRA, 2016). Sendo 

assim, uma tecnologia que pode auxiliar no mapeamento de alta resolução ao 

contribuir para o aprimoramento da classificação de imagens digitais é o Laser 

Scanner Aerotransportado (LSA), mundialmente conhecido como LIDAR (Light 

Detection and Ranging). 

O LIDAR é um sistema de sensoriamento remoto ativo aerotransportado com 

funcionamento baseado na utilização de um pulso de laser que é emitido em direção 

ao terreno para a obtenção de coordenadas tridimensionais de pontos sobre uma 

superfície (BALTSAVIAS, 1999). Consiste em uma das mais modernas técnicas para 

coleta de dados tridimensionais e se difere dos métodos tradicionais de levantamento, 

dentre outros motivos, pelo pequeno tamanho dos equipamentos que o compõem, 

pela alta velocidade com que ocorre a varredura e pelo elevado número de pontos 

levantados. O seu produto consiste em uma nuvem de pontos com coordenadas 

tridimensionais. Além destas, cada ponto medido retorna também informações do 

nível de intensidade do alvo refletido, o que permite a geração de imagens de 

composição entre estas camadas de informação, que facilitam a interpretação e 

visualização das feições do terreno (CAVALCANTI, 2016). 

A maioria dos sistemas LIDAR disponíveis no mercado utiliza o mesmo princípio, 

a saber: uma aeronave sobrevoa uma região e o equipamento laser efetua uma 
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varredura no chão em direção perpendicular à direção do voo, determinando a 

distância ao terreno, sendo esta distância calculada em função do tempo exigido pelo 

raio laser para ir e voltar do equipamento até o terreno, na velocidade da luz 

(MACHADO, 2006). 

Os componentes básicos do sistema LIDAR são os seguintes: Sensor Laser, 

composto pela fonte do pulso laser; sistema ótico de transmissão e recepção do pulso 

laser; Unidade de Medição Inercial denominada IMU (Inertial Measure Unit); receptor 

GPS (Global Position System); Computadores de bordo com programas para 

gerenciamento de todo o sistema; Unidade de armazenamento dos dados brutos 

provenientes do GPS, do IMU e das medições laser. Além destes, é importante 

salientar a necessidade de um GPS de base para que os dados do laser sejam pós 

processados e corrigidos em relação ao referencial adotado para o mapeamento 

(SLOBODA, 2005). A Figura 3 demonstra esses componentes. 

Figura 3 - Componentes básicos de um sistema LSA. 

 

Fonte: Kersting et al. (2005). 

Ao se propagarem no ar, formando um determinado diâmetro, os pulsos emitidos 

pelo laser apresentam uma característica de divergência. A área de cobertura de cada 

pulso emitido pelo LSA varia de acordo com a altitude e é possível que uma porção 

do mesmo pulso laser encontre um ou mais objetos antes de atingir o solo. No primeiro 

pulso tem-se a reflexão do nível mais elevado e no último pulso tem-se a reflexão 

correspondente ao nível do solo, sendo ambos os retornos registrados pelo sistema 
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LSA. De posse desses dois tipos de informação é possível obter diferentes modelos 

digitais (ARAKI, 2005). A Figura 4 ilustra o processo de reflexão. 

Figura 4 - Processo de reflexão do pulso de laser. 

 

Fonte: Araki (2005). 

O conjunto de dados oriundos do LSA pode ser tratado como dados vetoriais ou 

transformados em raster para serem processados como uma grade regular. A 

segunda opção é geralmente mais adotada devida à redução significativa na 

quantidade de dados de modo a facilitar o armazenamento e o processamento 

(CENTENO & MITISHITA, 2007). 

De acordo com Botelho e Centeno (2005), a altimetria adquirida pelo laser 

scanner pode ser incluída no processo de classificação de imagens digitais, 

diferenciando os objetos de mesmo comportamento espectral localizados em 

diferentes elevações, tornando-se assim uma informação auxiliar interessante nesse 

processo. 

 

3.5.1.2  Razão de Bandas 

 

 Segundo Menezes e Almeida (2012), no processo de extração de informações 

em imagens de sensores multiespectrais, quando há o interesse de discriminar sutis 

variações de reflectância de alvos específicos, como um tipo de litologia, solo, ou tipos 

de vegetação, buscam-se mecanismos que destaquem, exclusivamente, as 

propriedades daquele tipo de alvo, em detrimento a todos os outros presentes na 

imagem. A operação utilizada para esta finalidade é a razão de bandas, a qual se 

tornou uma das mais úteis técnicas de transformação de imagem. 
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 Segundo Araújo e Mello (2010), a operação razão de bandas demonstrou 

eficiência em estudos geoambientais de caracterização, intervenção e recuperação 

de áreas degradadas. De acordo com os autores, a razão de bandas possibilita o 

mapeamento de detalhes, mesmo em imagens de alta resolução, pois possibilitam a 

resolução de semelhanças espectrais. 

 Como os valores das operações de razão de bandas e índices de vegetação 

resultam em números pequenos e fracionários, para fins de exposição da imagem no 

monitor de vídeo eles devem ser multiplicados por um valor escalar (𝒂) para recolocá-

los ou expandi-los para o intervalo 0 a 255 de uma imagem de 8 bits. Uma constante 

(𝒃) é somada aos valores reescalonados para apenas obter um deslocamento (offset) 

do histograma para uma posição mais central entre 0 a 255, a fim de possibilitar um 

equilíbrio no realce da imagem (MENEZES & ALMEIDA, 2012). Neste trabalho, após 

realizados vários testes, foi utilizado “𝒂” igual a 10 e “𝒃” igual a 50, os quais resultaram 

em um aspecto visual considerado bom para os experimentos. Vale salientar que nas 

equações 2 a 7, Blue representa a faixa do azul, Green representa a faixa do verde e 

Red representa a faixa do vermelho. 

 Neste trabalho foram realizadas as razões de bandas denominadas de S1 

(Equação 2) e S2 (Equação 3). 

 

𝑺𝟏 =  𝒂 (
𝑮𝒓𝒆𝒆𝒏

𝑩𝒍𝒖𝒆
) + 𝒃 

𝑺𝟐 =  𝒂 (
𝑹𝒆𝒅

𝑩𝒍𝒖𝒆
) + 𝒃 

 Onde, 

𝑎 = 10 

𝑏 = 50 

3.5.1.3 Índices de Vegetação 

 

Diversos índices de vegetação têm sido propostos e investigados na literatura 

com o objetivo de inspecionar as propriedades espectrais da vegetação, em especial 

nas regiões do visível e do infravermelho próximo. Esses índices exploram parâmetros 

biofísicos da cobertura vegetal, a exemplo de biomassa e índice de área foliar, além 

(3) 

(2) 
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de minimizarem efeitos de geometria de aquisição, iluminação da cena e declividade 

da superfície (PONZONI & SHIMABUKURO, 2007). 

Neste trabalho foi realizado um levantamento bibliográfico de quatro índices 

que utilizam as bandas do visível, foram eles: i) Green-Red Vegetation Index (GRVI); 

ii) Gren Leaf Index (GLI); iii) Visible Atmospherically Resistant (VARI); iv) Red Green 

Blue Vegetation Index (RGBVI). 

 A Equação 4 apresenta o índice de vegetação Green-Red Vegetation Index 

(GRVI), o qual teve alguns de seus resultados mais relevantes  investigados em  

Tucker (1979), Falkowsk et. al. (2005) e Motohka et al. (2010). 

𝑮𝑹𝑽𝑰 =  𝒂 [
(𝑮𝒓𝒆𝒆𝒏−𝑹𝒆𝒅)

(𝑮𝒓𝒆𝒆𝒏+𝑹𝒆𝒅)
] + 𝒃 

 As Equações 5 e 6 apresentam, respectivamente, os índices de vegetação 

Gren Leaf Index (GLI) e Visible Atmospherically Resistant (VARI). Alguns de seus 

resultados foram explorados em Louhaichi, Borman e Johnson (2001), Gitelson et al. 

(2002) e Hunt et al. (2013). 

𝑮𝑳𝑰 =  𝒂 [
(𝟐∗𝑮𝒓𝒆𝒆𝒏−𝑹𝒆𝒅−𝑩𝒍𝒖𝒆)

(𝟐∗𝑮𝒓𝒆𝒆𝒏+𝑹𝒆𝒅+𝑩𝒍𝒖𝒆)
] + 𝒃 

𝑽𝑨𝑹𝑰 =  𝒂 [
(𝑮𝒓𝒆𝒆𝒏−𝑹𝒆𝒅)

(𝑮𝒓𝒆𝒆𝒏+𝑹𝒆𝒅−𝑩𝒍𝒖𝒆)
] + 𝒃 

 A Equação 7 apresenta o índice de vegetação Red Green Blue Vegetation 

Index (RGBVI), o qual teve alguns de seus resultados investigados em  Bendig et al. 

(2015)  e Lussen et al. (2018).  

𝑹𝑮𝑩𝑽𝑰 =  𝒂 [
((𝑮𝒓𝒆𝒆𝒏𝟐− −(𝑩𝒍𝒖𝒆∗𝑹𝒆𝒅))

((𝑮𝒓𝒆𝒆𝒏𝟐− +(𝑩𝒍𝒖𝒆∗𝑹𝒆𝒅))
] + 𝒃 

Os experimentos descritos demonstram a utilização dos índices de vegetação, 

na faixa do visível, em estudos de realce da vegetação e análise de suas 

propriedades. Este trabalho analisa a possibilidade do mapeamento da vegetação 

intraurbana e de outras feições urbanas que sejam realçadas, utilizando índices de 

vegetação na faixa do visível, assim como a utilização de um desses índices como 

camada auxiliar no processo de classificação por mineração de dados. 

  

(4) 

(5) 

(6) 

(7) 
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3.5.2 Modernização dos Métodos 

 

Novos métodos de classificação de imagens têm surgido para atender a 

demanda por mapeamentos automatizados e detalhados da cobertura do solo urbano. 

Dentre os métodos, há aqueles que fazem uso de camadas auxiliares, de diferentes 

fontes, para o reconhecimento de padrões de classes intraurbanas, visto que a 

informação espectral não é suficiente para a discretização dessas classes. Muitos 

desses métodos modernos também fazem uso de abordagens por regiões, em 

substituição às abordagens por pixels. 

 Segundo Santiago e Silva (2018), uma forma de realizar a classificação digital 

de imagens é utilizando abordagem por regiões, método que está sendo utilizado em 

imagens de alta resolução, em áreas urbanas, como uma alternativa ao método de 

classificação por pixel, na tentativa de melhorar os resultados. Os autores utilizaram 

os métodos máquina de vetores suporte (support vector machine - SVM) e distância 

estocástica mínima (stochastic minimum distance – SMD), e comprovaram que estes 

métodos produzem melhores resultados que o método de máxima verossimilhança, 

que possui abordagem por pixel. 

 Segundo Ruiz, Guasselli e Caten (2017), uma alternativa para coletar imagens 

com alta resolução espacial é o uso de câmaras não métricas acopladas a Veículos 

Aéreos Não Tripulados (VANT). Em contrapartida, as imagens com resolução espacial 

submétrica coletadas por essa tecnologia possuem alta variabilidade espectral, o que 

dificulta a classificação da cobertura da terra. A redução da variabilidade espectral 

dessas imagens pode ser alcançada a partir da Análise de Imagens Baseada em 

Objetos (Object-Based Image Analysis - OBIA). Dito isso, os autores desenvolveram 

uma classificação por árvore de decisão e análise baseada em objetos, utilizando 

ortoimagem e Modelo Digital de Elevação, e concluíram que os métodos são 

promissores para a classificação de imagens de alta resolução. 

 Segundo Araújo e Luchiari (2016), a OBIA significa um avanço em relação às 

abordagens de classificações tradicionais baseadas no pixel, uma vez que 

necessariamente pressupõe a existência de uma rede semântica vinculada ao 

processo de interpretação da imagem, aproximando aos processos cognitivos 

humanos. Dito isso, os autores elaboraram um mapa de cobertura da terra intraurbana 

com base em análise baseada em objetos, utilizando imagens do sensor imagens do 
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sensor WorldView-II,  para investigar as inferências sobre o uso do solo na cidade de 

Marília/SP. 
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4 METODOLOGIA 

 

Esta seção descreve a área de estudo escolhida para a realização dos 

experimentos, o material utilizado durante a pesquisa e o detalhamento dos métodos 

desenvolvidos. 

 

4.1 ÁREA TESTE 

 

A área teste (Figura 5) está localizada nas margens do riacho Parnamirim, em 

Recife, Pernambuco, e consiste em uma parcela do Setor de Sustentabilidade 

Ambiental 2 (SSA2) de número 43, cujos limites e mecanismos de compensação 

foram definidos pela Lei nº 18.111, de 12 de janeiro de 2015. A Lei foi criada com o 

objetivo de aumentar a regulação de questões ambientais e integrar a pauta de 

educação ambiental do município. 

Os SSA2 foram delimitados em função da área e do raio de influência de 

parques e praças com área maior que 600m2. A lei prevê que empreendimentos 

construídos no entorno desses locais ou em ruas que deem acesso a eles, criem 

"áreas de amortecimento", as quais são constituídas por uma faixa com vegetação, 

entre a calçada e o muro da construção. 

Os fatores que justificaram a escolha da área teste foram: i) a área estar 

contemplada por uma medida de desenvolvimento sustentável, para o qual o 

monitoramento do uso e cobertura do solo é imprescindível; ii) a área possuir 

diversidade de feições urbanas, fato este que viabiliza a metodologia adotada. 
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Fonte: A autora (2020). 

Figura 5 – Área teste 
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4.2 MATERIAL 

 

Esta seção apresenta o detalhamento do material utilizado durante a pesquisa.  

 

4.2.1 Dados raster 

 

Os dados raster utilizados para o desenvolvimento desta pesquisa pertencem 

ao acervo cartográfico da prefeitura da cidade do Recife e foram disponibilizados 

mediante ofício prévio e posterior retirada no órgão. O material é oriundo de um projeto 

financiado pela prefeitura, realizado no ano de 2013 e intitulado: “Serviços de 

Engenharia para Cobertura Aerofotogramétrica, Perfilamento a Laser 

Aerotransportado, com Obtenção de Polígonos 2D, 3D e Restituição 

Estereofotogramétrica”. Os dados disponibilizados foram: ortofotos com GSD de 8 

centímetros, Modelos Digitais do Terreno, Modelos Digitais de Elevação e imagens de 

intensidade. As articulações referentes à área de estudo são 81-80-05, 81-81-00, 81-

90-05 e 81-91-00. O mosaico de cada tipo de dado pode ser visto nas Figuras 6,7 e 

8. 

 

 

 

 

 

 

 

Fonte: Prefeitura do Recife (2019). 

  

Figura 6 – Bandas espectrais da ortofoto. 

a) Banda  1. b) Banda  2. c) Banda  3. 
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Fonte: Prefeitura do Recife (2019). 

 

 

 

 

 

 

 

 

 

Fonte: Prefeitura do Recife (2019). 

 

4.2.2 Softwares 

 

O processamento das imagens foi realizado nos softwares QGIS e SPRING. O 

software QGIS é um Sistema de Informação Geográfica (SIG) de código aberto 

licenciado segundo a Licença Pública Geral GNU. Trata-se de um projeto oficial da 

Figura 7 – Imagem de intensidade. 

Figura 8 – Modelos do terreno. 

 

 

a) MDT. b) MDE. 
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Open Source Geospatial Foundation (OSGeo). Seu funcionamento é compatível com 

os sistemas Linux, Unix, Mac OSX, Windows e Android, suportando inúmeros 

formatos de vetores, rasters, bases de dados e funcionalidades. O software SPRING 

é um Sistema de Informação Geográfica (SIG) no estado-da-arte com funções de 

processamento de imagens, análise espacial, modelagem numérica de terreno e 

consulta a bancos de dados espaciais. É um projeto do Instituto Nacional de 

Pesquisas Espaciais (INPE). 

Para a análise estatística dos dados e geração dos gráficos foi utilizado o 

software Microsoft Office Excel. 

 

4.3 EXPERIMENTOS 

 

Para o alcance dos resultados, uma série de experimentos foi realizada, a qual 

é apresentada nesta seção. 

 

4.3.1 Análise da Área de Estudo e Definição dos Níveis de Classificação 

 

A área de estudo deste trabalho consiste em um típico cenário urbano não 

planejado, contendo feições que são comuns em boa parte das cidades brasileiras, 

tanto no quesito existência, como no quesito ordenação. Existem telhados compostos 

por diferentes materiais e com ordenação arbitrária, vegetação de diferentes portes e 

com diferentes agrupamentos dentro e fora de lotes residenciais, áreas pavimentadas 

públicas e privadas e pequenos trechos de água e solo exposto. Além dos 

componentes móveis, como automóveis e sombras, os quais são comuns em imagens 

de alta resolução e interferem no mapeamento automático ou semiautomático, pois 

suas respostas espectrais se confundem com as de outros objetos. 

 Estabelecido o panorama da área, iniciou-se o processo de discretização, 

particionando as classes em componentes de menor complexidade, as quais foram 

chamadas de níveis, como pode ser visto na Figura 9.  
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Fonte: A autora (2020). 

CENÁRIO URBANO

ÁREAS 
CONSTRUÍDAS

COBERTURA 
EDIFICACIONAL

TELHADO CINZA

CLARO/NOVO

ESCURO/ENVELHECIDO

TELHADO DE 
CERÂMICA

VERMELHO/NOVO

MARROM/ENVELHECIDO
COBERTURA 

PAVIMENTADA

ÁREAS NÃO 
CONSTRUÍDAS

COBERTURA 
VEGETACIONAL

DE PEQUENO PORTE (0,0 a 0,5m)

DE MÉDIO PORTE (0,5 a 3,0m)

DE GRANDE PORTE (3 a 21,0m)
COBERTURA 

HÍDRICA

SOLO EXPOSTO

Figura 9 - Níveis de Classificação. 
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No nível 1, tem-se a separação entre áreas construídas e não construídas, as 

quais são significativamente mais amalgamadas em contextos urbanos, a exemplo 

das áreas verdes que circundam e permeiam as quadras residenciais. 

No nível 2, a classe de áreas construídas foi subdividida em cobertura 

edificacional e cobertura pavimentada, enquanto que a classe de áreas não 

construídas foi subdividida em cobertura vegetacional, cobertura hídrica e solo 

exposto. Neste nível, além das áreas de mistura espectral, comuns em imagens de 

alta resolução, tem-se um agravante a mais, a saber, a grande semelhança espectral 

entre as coberturas pavimentada e edificacional. Uma alternativa é utilizar a 

informação altimétrica para diferenciá-las. 

No nível 3 dividiu-se a cobertura edificacional em telhado cinza e telhado de 

cerâmica, e a cobertura vegetacional em pequeno, médio e grande porte. 

No nível 4, a classe telhado foi subdividida em função do estado de 

conservação. A classe telhado cinza foi subdividida em claro/novo e 

escuro/envelhecido, e a classe telhado de cerâmica foi subdividida em vermelho/novo 

e marrom/ envelhecido. 

 

4.3.2 Aquisição das Amostras de Classes e Análise das Variáveis 

 

A coleta de amostras aconteceu de forma pontual, em quantidade e em aspecto 

que melhor representassem as classes definidas do nível 2 de classificação. 

Conforme visto na Figura 9, nesse nível de classificação as diferenças intraclasses, 

como tipos de telhado e vegetação, não são consideradas. A quantidade de pontos 

levantados foi 220 de cobertura eificacional, 60 de cobertura hídrica, 200 de cobertura 

pavimentada, 150 de cobertura vegetacional e 100 de solo exposto. A Figura 10 

mostra a distribuição desses pontos. 
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Cada ponto teve seu valor espectral, de altimetria e de intensidade coletado. 

De posse desses dados, calculou-se o desvio padrão e analisou-se o contraste 

intraclasse referente a cada atributo. O contraste intraclasse diz respeito às variações 

de respostas dentro de cada classe definida, induzindo a uma fragmentação da classe 

em função de determinada variável. 

 

Fonte: A autora (2019). 

 

4.3.3 Realização da Aritmética de Bandas e Análise dos Intervalos Espectrais 

 

Nesta etapa do trabalho foi realizado um levantamento bibliográfico de 

operações aritméticas e índices que utilizam as bandas do visível. Essa seleção deve-

se ao fato de que as imagens utilizadas possuem apenas a faixa do visível. Foram 

selecionados cinco índices de vegetação - GRVI, GLI, VARI, RGBVI e CI - e duas 

razões de bandas - S1 e S2 - para a realização dos experimentos. 

Figura 10 - Distribuição das amostras de pontos. 



42 
 

 Após a realização das operações aritméticas, cada ponto teve o seu respectivo 

valor coletado nas imagens geradas. Isso possibilitou a identificação dos mínimos e 

máximos de cada classe e, por conseguinte, a identificação de intervalos com 

univocidade espectral, ou seja, intervalos com pixels pertencentes a uma única classe. 

Esses intervalos foram definidos da seguinte forma: i) plotagem dos valores de 

mínimos e máximos em uma superfície de unidades de medida linear; ii) traçado de 

circunferências com centro posicionado na média amostral de cada classe e diâmetro 

igual à amplitude do intervalo; iii) identificação de intervalos onde havia sobreposição 

de circunferências, ou seja, mistura espectral; iv) identificação de intervalos onde não 

havia sobreposição de circunferências, ou seja, univocidade espectral. Vale salientar 

que nenhuma circunferência ficou totalmente contida no intervalo de univocidade 

espectral. 

 Para que os valores definidores de um intervalo sejam potenciais na extração 

de determinada feição, não basta que os seus pixels sejam pertencentes a uma única 

classe (univocidade espectral), mas também que as frequências dentro do intervalo 

sejam as maiores. Logo, não adiantaria conhecer um intervalo onde só existem pixels 

de vegetação, mas em baixa ocorrência (frequência), estando o restante dos pixels 

de vegetação em um intervalo de mistura espectral com outras classes de alvos. 

 

4.3.4 Reclassificação do Resultado da Aritmética de Bandas para a Forma 

Binária 

 

Uma vez conhecidos os intervalos com univocidade espectral, optou-se por 

reclassificar as imagens, oriundas da aritmética de bandas, para a forma binária. Essa 

reclassificação reduz a complexidade da imagem e elimina o contraste intraclasse à 

medida que atribui um valor único para todos os pixels contidos dentro do intervalo 

definido. Nesse processo os pixels passam a compor duas regiões, são elas: i) a 

região definida pelo intervalo de pixels com univocidade espectral; ii) a região com 

todos os demais pixels. 

A reclassificação para a forma binária possibilita a transformação da imagem 

binária para vetor. É desta forma que a informação sobre determinada classe de alvo 

compõe uma base cartográfica municipal, de modo que ela possa ser visualizada e 

analisada em conjunto com as demais informações espaciais do território. Também é 

em vetor que a informação pode ser quantificada. 
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4.3.4 Inserção da Informação Altimétrica no Processo de Classificação 

 

A informação altimétrica foi inserida nos contextos em que a informação 

espectral, original ou oriunda da aritmética de bandas, não foi suficiente pra discernir 

as classes de alvos. 

 A inserção da informação altimétrica teve início no processo de classificação 

da cobertura hídrica, visto que o corpo d´água presente na área de estudo, devido ao 

seu alto nível de poluição, apresentou as mais variadas respostas espectrais, estando 

inseridas em regiões de mistura espectral com as outras classes de alvos. Para a 

classificação da cobertura hídrica em função da altimetria foram definidos dois 

limiares, um para o Modelo Digital de Elevação e outro para o Modelo Digital do 

Terreno, e realizados testes para averiguar qual dos dois apresentam melhor potencial 

de classificação da cobertura hídrica. 

 Outra situação em que foi preciso a utilização da altimetria como delimitadora 

de classes foi na separação de cobertura pavimentada e telhado cinza, visto que 

esses possuem grande semelhança espectral, sendo necessário outro atributo que os 

diferencie. Neste caso foi utilizado o Modelo Digital de Elevação, uma vez que é a 

altura desses objetos que os diferem. 

 

4.3.5 Classificação Supervisionada por Distância Euclidiana e por Máxima 

Verossimilhança 

 

 Em algumas situações foram utilizadas classificações supervisionadas por 

Distância Euclidiana e por Máxima Verossimilhança. Esses algoritmos, quando 

unicamente utilizados para a classificação da cobertura do solo urbano utilizando 

imagens de alta resolução, apresentam sérias deficiências e têm os seus resultados 

invalidados. 

 A estratégia utilizada neste trabalho foi realizar, quando outra medida não era 

possível, a classificação por trechos da área de estudo utilizando Máxima 

Verossimilhança. Isso foi possível através de recortes da ortofoto, reduzindo a área 

de estudo a pequenas regiões com no máximo três classes de alvos e com respostas 

espectrais semelhantes. Exemplos deste procedimento são: i) recorte (da ortofoto) de 

telhados de cerâmica e classificação – por Máxima Verossimilhança – de telhado de 



44 
 

cerâmica vermelho e telhado de cerâmica marrom; ii) recorte (da ortofoto) de cobertura 

pavimentada unida à solo exposto e separação dessas classes de alvos por 

classificação por Máxima Verossimilhança. 

 

4.3.6 Validação dos Intervalos de Univocidade Espectral  

 

Para a validação dos intervalos de univocidade espectral definidos a partir da 

amostra de pontos, foi utilizada uma ortofoto com GSD de 45 cm oriunda de um voo 

fotogramétrico ocorrido no município de Macaparana, em Pernambuco, conforme 

ilustra a Figura 11. A escolha desta área se justifica pela existência de material raster 

utilizado em pesquisa anterior a esta. 

 Para a validação dos intervalos foram realizadas as aritméticas de bandas que 

obtiveram bons resultados na área de estudo deste trabalho. Para isso foram 

utilizados os mesmo valores de ganho e offset. Após a execução da aritmética, as 

imagens foram reclassificadas para a forma binária e transformadas para vetor. 

Figura 11 – Área teste para a validação dos intervalos de univocidade espectral. 

Fonte: A autora (2020). 
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5 RESULTADOS E DISCUSSÕES 

 

Nesta seção são apresentados os resultados obtidos durante o 

desenvolvimento desta pesquisa, assim como as discussões acerca dos referidos 

resultados. 

 

5.1 ANÁLISE DO CONTRASTE INTRACLASSE NAS PROPRIEDADES 

ESPECTRAIS, ALTIMÉTRICAS E DE INTENSIDADE 

 

A Tabela 1 apresenta os valores de desvio padrão nas variáveis altura, 

intensidade e bandas espectrais, para as classes de cobertura edificacional, cobertura 

hídrica, cobertura pavimentada, cobertura vegetacional e solo exposto. A análise do 

contraste é importante para identificar quais variáveis podem ser utilizadas para 

resolver questões de mistura espectral e quais variáveis aumentam a mistura 

espectral. Esses valores são representados nos gráficos 1, 2, 3, 4 e 5, de modo a 

facilitar a interpretação. Vale salientar que todos os gráficos foram gerados com os 

mesmos parâmetros de formatação, de modo a manter a proporcionalidade real dos 

dados. 

Tabela 1 - Desvio padrão das variáveis altura, intensidade e bandas espectrais. 

CLASSES ALTURA INTENSIDADE B3 (RED) B2 (GREEN) B1 (BLUE) 

COBERTURA EDFICACIONAL 6,94 43,19 43,22 58,65 58,14 

COBERTURA HÍDRICA 0,21 74,70 4,94 5,22 4,03 

COBERTURA PAVIMENTADA 0,52 25,52 28,40 25,84 21,38 

COBERTURA VEGETACIONAL 4,92 40,35 25,79 26,15 17,61 

SOLO EXPOSTO 0,37 20,54 12,42 12,43 13,81 

Fonte: A autora (2020) 

O Gráfico 1 mostra que a cobertura edificacional possui pequeno contraste de 

altura, o que indica que na área de estudo as alturas das edificações não sofrem 

grandes variações. Referente à intensidade, esta possui contraste semelhante ao da 

banda 3 da ortofoto. Nas bandas 1 e 2, a cobertura edificacional possui contrastes 

equiparados. 
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Gráfico 1 - Contraste intraclasse da cobertura edificacional. 

 

 

 

 

 

 

 

Fonte: A autora (2020). 

No Gráfico 2, ganha destaque o alto contraste de intensidade da cobertura 

hídrica, provavelmente devido à composição da água poluída. Com relação à altura e 

às bandas espectrais, a cobertura hídrica possui contrastes equiparados.  

 

 

 

 

 

 

 

 

Fonte: A autora (2020). 

 

O Gráfico 3 mostra que a cobertura pavimentada possui contrastes 

equiparados em todas as variáveis, com exceção da altura, a qual possui baixo 

contraste, indicando a não existência de viadutos na área de estudo. 
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Gráfico 2 - Contraste intraclasse da cobertura hídrica. 
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Fonte: A autora (2019). 

No Gráfico 4 pode ser visto que as variáveis altura, intensidade e bandas 

espectrais, apresentam baixo contraste na classe de solo exposto, o que indica que a 

referida classe não é passível de segregação em função dos atributos analisados.  

 

 

 

 

 

 

 

Fonte: A autora (2020). 

O Gráfico 5 mostra que a cobertura vegetacional apresenta o maior contraste 

na variável intensidade, indicando que essa propriedade, a depender do padrão, pode 

ser utilizada para segmentar subclasses de vegetação. As bandas espectrais também 

apresentam alto contraste, porém, se a referida classe de alvo possuir semelhanças 
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Gráfico 3 - Contraste intraclasse da cobertura pavimentada. 

 

Gráfico 4 - Contraste intraclasse do solo exposto. 
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espectrais com outras classes, esse alto contraste não será potencial para a 

segmentação da classe de cobertura vegetacional.  

 

 

 

 

 

 

 

 

Fonte: A autora (2020). 

 

5.2 RAZÃO DE BANDAS E ÍNDICES DE VEGETAÇÃO 

 

Nesta seção são apresentados, especificamente, os resultados referentes às 

operações aritméticas realizadas com as bandas espectrais da imagem aérea 

ortorretificada. 

 

5.2.1 Resultados das Operações Aritméticas  

 

As Figuras 12 e 13 apresentam, respectivamente, os resultados das razões de 

bandas e dos índices de vegetação. Consegue-se enxergar, previamente, três tipos 

de fenômenos acontecendo em imagens diferentes, são eles: i) imagem segmentada 

em cobertura vegetacional e outros; ii) imagem segmentada em (cobertura 

vegetacional + parcela da cobertura edificacional) e outros; iii) imagem segmentada 

em cobertura vegetacional, parcela de cobertura edificacional e outros. 
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Gráfico 5 - Contraste intraclasse da cobertura vegetacional. 
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Figura 12 - Razão de bandas. 

Fonte: A autora (2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2020). 

a) S1. 
b) S2. 

a) GLI. b) VARI. 

c) RGBVI. d) GRVI. 

Figura 13 - Índices de vegetação. 
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5.2.2 Contraste Intraclasse 

 

 Os Gráficos 6, 7, 8, 9 e 10, apresentam o contraste intraclasse nas operações 

aritméticas S1, S2, VARI, RGBVI, GRVI E GLI, para as classes cobertura edificacional, 

cobertura hídrica, cobertura pavimentada, solo exposto e cobertura vegetacional, 

respectivamente. Com eles pode-se fazer uma analise de quais índices apresentam 

um maior grau de uniformização e quais índices apresentam um maior grau de 

contraste intraclasse. 

 Vale salientar que o alto contraste intraclasse significa que o índice é potencial 

para subdivisões da respectiva classe em classes menores. Esse mesmo índice 

também pode ser potencial para a extração da respectiva classe, pois o contraste 

pode ser removido na reclassificação para a forma binária. 

O Gráfico 6, de cobertura edificacional, mostra que os índices S2 e VARI 

possuem maior potencialidade de subdivisão da cobertura edificacional, uma vez que 

possuem o mais alto contraste intraclasse. Enquanto que os índices S1 e GLI 

apresentam a cobertura edificacional mais uniformizada. 

Gráfico 6 - Contraste intraclasse da cobertura edificacional nos índices de vegetação. 
 

 

Fonte: A autora (2020). 

Os Gráficos 7,8 e 9, de cobertura hídrica, cobertura pavimentada e solo 

exposto, mostram que, para todos os índices, os alvos foram uniformizados, devido 
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ao baixo contraste intraclasse. As mesmas classes sofreram um acréscimo de 

contraste intraclasse nos índices S1 e S2. 

Gráfico 7 - Contraste intraclasse da cobertura hídrica nos índices de vegetação. 

 

Fonte: A autora (2020) 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2020). 
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Gráfico 8 - Contraste intraclasse da cobertura edificacional nos índices de vegetação. 
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Fonte: A autora (2020). 

O Gráfico 10, de cobertura vegetacional, mostra a alta discrepância de 

contraste intraclasse dos índices S1 e S2 para com os demais índices. O RGBVI 

apresenta o terceiro maior contraste intraclasse, enquanto VARI, CI, GRVI e GLI são 

equiparados. 

Gráfico 10 - Contraste intraclasse da cobertura vegetacional nos índices de vegetação. 

 

Fonte: A autora (2020). 
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Gráfico 9 - Contraste intraclasse do solo exposto nos índices de vegetação. 
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 5.2.3 Dispersão dos Pontos Amostrais 

 

Os gráficos de dispersão dos pontos amostrais permitem uma análise mais 

pormenorizada do que acontece com as classes de alvos nos índices de vegetação, 

pois permitem a apreciação conjunta dos contrastes intraclasse e interclasse. Neles 

podemos observar quais classes se misturam e quais classes se sobressaem, 

espectralmente. 

Vale salientar que os gráficos dos índices S1 (Gráfico 11) e S2 (Gráfico 14) 

tiveram valores de mínimo e máximo, para os eixos horizontal e vertical, diferentes 

dos demais gráficos, para melhor adequar as curvas às áreas dos gráficos. 

Os Gráficos 11, 12 e 13, dos índices S1, RGBVI e GLI, respectivamente, 

apresentaram o melhor contraste interclasse entre a cobertura vegetacional e as 

demais classes. 

Percebe-se que, apesar do alto contraste intraclasse da cobertura vegetacional 

no índice S1 (Gráfico 11), este índice demonstra um alto potencial de definição de 

limiar entre áreas de vegetação e áreas que não possuem vegetação. Com relação 

às outras classes, o índice S1 possui alto grau de mistura espectral. 

Fonte: A autora (2020). 
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Gráfico 11 - Dispersão dos pontos no índice S1. 
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Os Gráficos 12 e 13 mostram que os índices RGBVI e GLI realçam uma parcela 

da cobertura vegetacional, com pixels mais claros, e uma parcela da cobertura 

edificacional, com pixels mais escuros. Nesses índices, a cobertura hídrica e o solo 

exposto possuem alto grau de mistura espectral. 

Fonte: A autora (2020). 

Fonte: A autora (2020). 

Fonte: A autora (2020) 
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Gráfico 12 - Dispersão dos pontos no índice RGBVI. 

Gráfico 13 - Dispersão dos pontos no índice GLI. 
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O Gráfico 14 mostra que há poucas regiões com univocidade espectral no 

índice S2 e que a parte da vegetação que se sobressai possui baixas frequências, 

logo, são poucos os pixels realçados. Nota-se também um alto grau de correlação 

entre uma parcela da cobertura edificacional e grande parte da cobertura 

vegetacional. 

Fonte: A autora (2019). 

Os Gráficos 15 e 17 demonstram que os índices VARI e GRVI não são 

potenciais para a identificação da vegetação intraurbana, visto que grande parte dos 

pixels de cobertura vegetacional possuem valores semelhantes aos das outras 

classes, gerando grande mistura espectral. Entretanto, nos três índices, uma parcela 

da cobertura edificacional, com frequências baixas e médias, é realçada. No índice CI 

essa parcela edificacional apresenta pixels claros e nos índices VARI e GRVI, pixels 

escuros. 
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Gráfico 14 - Dispersão dos pontos no índice S2. 
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Fonte: A autora (2020). 

Fonte: A autora (2020). 

 

5.2.4 Zonas de Mistura Espectral e Zonas de Univocidade Espectral 

 

As Tabelas 2 e 3 apresentam os intervalos das zonas de univocidade espectral 

de cobertura edificacional e cobertura vegetacional, respectivamente. 
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Gráfico 15 - Dispersão dos pontos no índice VARI. 

Gráfico 16 - Dispersão dos pontos no índice GRVI. 
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Tabela 2 - Zonas de univocidade espectral de cobertura edificacional. 

 

 

 

 

Fonte: A autora (2020). 

Tabela 3 - Zonas de univocidade espectral de cobertura vegetacional. 

Fonte: A autora (2020). 

 

5.2.5 Reclassificação da Aritmética de Bandas para a Forma Binária 

 

As Figuras 14 E 15 mostram os resultados da reclassificação para a forma 

binária utilizando os limiares das zonas de univocidade espectral de cobertura 

vegetacional, cujos limites estão descritos da Tabela 3. A razão de bandas S1 e os 

índices de vegetação GLI e RGBVI tiveram quase que a totalidade dos pixels de 

cobertura vegetacional contidos no intervalo de univocidade, o que indica que poucos 

pixels da referida classe estão em zona de mistura espectral. Em contrapartida, a 

razão de bandas S2 e os índices GRVI e VARI, tiveram poucas áreas de vegetação 

detectadas. 

  

OPERAÇÃO ARITMÉTICA MÍNIMO MÁXIMO 

VARI 44,1 48,39 

GRVI 47,15 49,06 

OPERAÇÃO ARITMÉTICA MÍNIMO MÁXIMO 

S1 61,591 90,65 

S2 67,981 90,65 

VARI 50,531 51,3 

CI 49,25 49,78 

RGBVI 50,111 56,05 

GRVI 50,221 50,75 

GLI 50,051 52,32 
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Fonte: A autora (2020). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2019). 

Figura 15 - Índices reclassificados para a forma binária. 

Figura 14 - Razão de bandas reclassificada para a forma binária como limiar de vegetação. 

 

a) S1. b) S2. 

a) GLI b) VARI 

a) GLI b) VARI 

c) RGBVI d) GRVI 

a) S1. b) S2. 
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5.2.6 Validação dos Intervalos de Univocidade Espectral 

 

 As Figuras 16 e 17 apresentam os resultados da aplicação, na área teste de 

Macaparana, dos limiares de univocidade espectral de cobertura vegetacional e 

edificacional, respectivamente. Para esse propósito, foram realizadas as operações 

aritméticas, seguidas das reclassificações para a forma binária e transformação de 

rasters para vetor. Na Figura 16 é possível notar que a operação RGBVI classifica um 

número maior de pixels como sendo de cobertura vegetacional, seguida do GLI e S1. 

Na Figura 17 é possível notar que a operação GRVI classifica um número maior de 

pixels como sendo de cobertura edificacional do tipo telhado de cerâmica. 

Como a ortofoto de Macaparana tem resolução inferior à ortofoto de Recife, 

algumas confusões espectrais ocorreram de forma mais acentuada, a exemplo de 

pixels de telhado de cerâmica classificados como cobertura vegetacional, em especial 

nas operações RGVI e GLI. Com relação à cobertura edificacional do tipo telhado de 

cerâmica, a operação VARI não classificou telhados ou partes de telhados com tons 

mais escuros. Esse tipo de validação serve para elencar as operações em função da 

veracidade com a realidade terrestre, uma vez que na área de estudo em Recife os 

resultados se mostraram muito semelhantes. 
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Figura 16 - Teste dos limiares espectrais de cobertura vegetacional em outra área de 
estudo. 

OPERAÇÃO ARITMÉTICA 

TRANSFORMAÇÃO DE RASTER PARA VETOR 

APÓS RECLASSIFICAÇÃO PARA A FORMA BINÁRIA 

a) S1. b) RGBVI. c) GLI. 

Fonte: A autora (2020). 
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b) VARI. a) RGVI. 

OPERAÇÃO ARITMÉTICA 

TRANSFORMAÇÃO DE RASTER PARA VETOR APÓS 

RECLASSIFICAÇÃO PARA A FORMA BINÁRIA 

Figura 17 - Teste dos limiares espectrais de cobertura edificacional em outra área de 
estudo. 

Fonte: A autora (2020). 
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5.2.7 Classificação da Cobertura do Solo Urbano 

 

Esta seção apresenta os resultados finais desta pesquisa, desde a rede 

semântica para a discriminação das classes, até a classificação de cada objeto 

definido nos níveis de classificação. 

 

5.2.7.1 Rede Semântica para a Discriminação das Classes 

 

 O processo de classificação do solo urbano seguiu a ordem estabelecida pela 

rede semântica apresentada nas Figura 18 e 19. O termo propriedade refere-se ao 

atributo utilizado para a discriminação das classes. Vale salientar que atributos iguais 

foram utilizados em diferentes fontes, a saber: i) a resposta espectral proveniente das 

ortofotos e a resposta proveniente das operações aritméticas; ii) a informação 

altimétrica proveniente do MDT e a informação altimétrica proveniente no MDE. 

Nesta etapa do trabalho, foram imprescindíveis as ferramentas de 

geoprocessamento e de gerenciamento de dados vetoriais e raster, dentre as quais 

pode-se destacar: diferença simétrica entre vetores, recorte de raster por máscara, 

divisão de camada vetorial e reclassificação de raster.  Essas ferramentas 

possibilitaram que cada objeto classificado fosse retirado do contexto e não 

influenciasse as classificações a posteriori, e isso, além dos dados auxiliares, também 

viabilizou a classificação do solo, em especial quando foi realizada a classificação por 

máxima verossimilhança por trechos, sendo reduzida a variabilidade espectral 

presente na cena inteira. 
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Figura 18 - Rede semântica para a discriminação das classes urbanas (parte 1). 

Fonte: A autora (2020). 
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Fonte: A autora (2020). 

 

5.2.7.2 Cobertura Vegetacional 

 

A propriedade utilizada na classificação da cobertura vegetacional foi a 

resposta proveniente da aritmética de bandas. A Figura 20 mostra o resultado da 

transformação de raster para vetor da razão de bandas S1 e dos índices de vegetação 

GLI e RGBVI, os quais demonstraram potencial para a classificação da vegetação 

intraurbana. Com a sobreposição na imagem área ortorretificada e fazendo uma 

análise visual global dos resultados, pode-se perceber que além de semelhantes, S1, 

GLI e RGBVI, quando submetidos à reclassificação para a forma binária com o uso 

dos intervalos de univocidade espectral de cobertura vegetacional, conseguiram 

classificar as mais altas frequências de vegetação. 

Para analisar a diferença em termos quantitativos, a Tabela 4 contém as áreas, 

em metros quadrados, da cobertura vegetacional na razão de bandas S1 e nos índices 

GLI e RGBVI. Nota-se que a diferença entre RGBVI e GLI é significativamente menor 

que a diferença entre ambos os índices e S1. 
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Figura 19 - Rede semântica para a discriminação das classes urbanas (parte 2). 
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Fonte: A autora (2020). 

Tabela 4 - Área da cobertura vegetacional. 

 

 

Fonte: A autora (2020). 

Para analisar no detalhe as diferenças entre S1, GLI e RGBVI, foram feitos dois 

recortes na área de estudo. A Figura 21 apresenta um trecho da área de estudo onde 

há vegetação de diferentes alturas, inclusive partes de vegetação rasteira, o que 

ocasionaria dúvidas no analista, caso o método de extração fosse fotoanálise seguida 

OPERAÇÃO ÁREA (m2) 

S1 3502,88 

GLI 4367,77 

RGBVI 4428,13 

 

a) S1. 

b) GLI. 

c) RGBVI.  

Figura 20 - Classificação da cobertura vegetacional. 
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de vetorização em tela. A Figura confirma o que mostra a Tabela 4: que S1 considera 

uma quantidade menor de pixels como sendo de vegetação.  Também notamos que 

RGBVI e GLI classificaram a maior parte da vegetação rasteira, se comparados com 

S1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2020). 

A Figura 22 apresenta um recorte de uma área com vegetação de porte maior 

e mais densa, para analisarmos as diferenças entre S1, GLI e RGBVI. Nota-se mais 

uma vez que S1 classifica menos pixels, de modo que a área de vegetação apresenta-

se mais fragmentada que nos índices GLI e RGBVI. 

  

Figura 21 - Recorte 1 para análise da classificação da vegetação. 

 

a) S1. 

b) GLI. 

b) RGBVI. 
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Fonte: A autora (2020). 

Em função da altimetria proveniente do MDE pode-se classificar a cobertura 

vegetacional em subclasses, a saber: i) vegetação de pequeno porte; ii) vegetação de médio 

porte e; iii) vegetação de grande porte. A classificação pode ser vista na Figura 23. 

  

a) S1. 

b) GLI. 

c) RGBVI. 

Figura 22 - Recorte 2 para a análise da classificação da vegetação. 
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Fonte: A autora (2020). 

 

5.2.7.3 Cobertura Hídrica 

 

A cobertura hídrica da área de estudo desse trabalho consiste em um trecho do Riacho 

Parnamirim, um dos afluentes da margem esquerda do Rio Capibaribe no bairro de 

Casa Forte em Recife.  Ao longo dos anos esse riacho vem sofrendo muitas agressões 

ambientais deixando-o em situação crítica de poluição. Por se apresentar como uma 

massa escura e poluída, a resposta espectral dessa água encontra-se numa região 

de mistura espectral com as outras classes de alvos, inviabilizando a sua classificação 

em função da informação espectral contida nas ortofotos ou provenientes da 

aritmética de bandas. 

 Diante disso, criou-se a alternativa de classificação da cobertura hídrica em 

função da informação altimétrica. Foram realizados testes com o Modelo Digital do 

Terreno e com o Modelo Digital de Elevação, cujos resultados podem ser vistos nas 

Figuras 24 e 25, respectivamente. 

  

Figura 23 – Classificação da vegetação em função da altura. 
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Figura 24 - Classificação da cobertura hídrica em função do MDE. 

 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2020). 

Figura 25 - Classificação da cobertura hídrica em função do MDT. 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2020). 

  

Sobreposição da vegetação na água 

Região de sombra 
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A informação altimétrica proveniente do MDT apresentou maior potencial de 

classificação da cobertura hídrica. A classificação com o MDE apresentou região de 

confusão altimétrica com sombra e teve o contorno interrompido devido a 

sobreposição da vegetação, fatores que tornaram a classificação deficiente. 

 

5.2.7.4 Cobertura Edificacional 

 

A classificação da cobertura edificacional (Figura 26) ocorreu em diferentes 

etapas e com atributos de diferentes fontes. Primeiramente foram classificados os 

telhados de cerâmica de modo geral, sem haver distinção quanto às nuances de cor 

proveniente dos diferentes estados de conservação dos telhados. Nessa primeira 

etapa foi utilizado o resultado da aritmética de bandas. 

 Na segunda etapa foi gerado um polígono contendo cobertura pavimentada,  

cobertura edificacional cinza e solo exposto. Isso foi possível realizando-se a 

operação de diferença simétrica entre o perímetro da área de estudo e o shapefile 

resultante da união dos shapefiles de cobertura vegetacional, cobertura hídrica, 

cobertura edificacional de cerâmica e solo exposto. De posse do polígono contendo 

cobertura pavimentada e cobertura edificacional cinza, pôde-se separar essa duas 

classes de alvos em função de suas altimetrias. 

Na terceira etapa foram feitos dois recortes na ortofoto: i) telhado cerâmica; ii) 

telhado cinza. Em ambos os recortes foram realizadas a classificação supervisionada 

por Máxima Verossimilhança, possibilitando as subdivisões em classes mais 

específicas, a saber: i) telhado cerâmica vermelho e telhado cerâmica marrom; ii) 

Telhado cinza claro e telhado cinza escuro. 
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Fonte: A autora (2020). 

 

5.2.7.5 Cobertura Pavimentada e Solo Exposto 

 

 Como dito no item 5.2.7.3, gerou-se um shapefile correspondente à região de 

cobertura pavimentada, cobertura edificacional cinza e solo exposto. A cobertura 

edificacional cinza foi extraída em função da informação altimétrica, restando a 

cobertura pavimentada e o solo exposto. 

 Devido à sedimentos nas regiões de solo exposto da área de estudo desse 

trabalho, a resposta espectral do referido alvo apresenta-se muito semelhante à 

1 

2 

3 

Figura 26 - Níveis de classificação da cobertura edificacional. 
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resposta espectral da cobertura pavimentada. Diante disso, foi realizado um recorte 

da ortofoto, utilizando o shapefile corresponde à apenas essas duas classes de alvos, 

de modo que todas as outras classes tenham sido excluídas da imagem. Após isso foi 

realizada a classificação por Máxima verossimilhança e, como o recorte diminuiu a 

complexidade da imagem, o resultado foi a delimitação de solo exposto e cobertura 

pavimentada em função de suas respostas espectrais, como apresentado na Figura 

27. 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2020). 

 

5.2.7.6 Resultado da Classificação Utilizando Camadas Auxiliares 

 

A Figura 28 apresenta o resultado da classificação utilizando informações 

espectrais e altimétricas, provenientes de imagens aéreas, produtos LIDAR, razões 

de bandas e índices de vegetação.  Foram classificadas dez classes de objetos, a 

saber: cobertura vegetacional de pequeno porte, cobertura vegetacional de médio 

porte, cobertura vegetacional de grande porte, telhado cinza claro, telhado cinza 

escuro, telhado de cerâmica vermelho, telhado de cerâmica marrom, solo exposto, 

cobertura hídrica e cobertura pavimentada.  

Figura 27 - Classificação da cobertura pavimentada e do solo exposto. 
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Fonte: A autora (2020). 

 

5.2.7.7 Classificação pelos Métodos Distância Euclidiana e Máxima Verossimilhança 

 

Para a realização das classificações por Distância Euclidiana (Figura 29) e por 

máxima verossimilhança (Figura 30), foram coletadas amostras de oito classes de 

alvos, a saber: cobertura vegetacional, solo exposto, telhados de cerâmica vermelho, 

telhado de cerâmica marrom, telhado cinza claro, telhado cinza escuro, cobertura 

hídrica e cobertura pavimentada. 

  

Figura 28 - Classificação da cobertura do solo urbano utilizando camadas auxiliares. 
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Fonte: A autora (2020). 

  

Figura 29 - Classificação por distância euclidiana. 



76 
 

Figura 30 – Classificação por Máxima Verossimilhança. 

 

Fonte: A autora (2020). 

 É possível notar uma grande fragmentação da área de estudo na classificação 

por Distância Euclidiana, inviabilizando a definição de classes contínuas. Na 

classificação por Máxima verossimilhança, embora a fragmentação seja menor, foram 

classificadas várias regiões de sombra como pertencentes à classe do objeto que está 

sombreando. 

 Para ter conhecimento da acurácia das classificações, foram analisadas as 

suas matrizes de erros. Essas matrizes expressam a concordância entre a imagem 

classificada (linhas) e o conjunto de amostras de referência (colunas). Os valores da 

diagonal principal da matriz correspondem ao número de pixels que foram 

corretamente classificados, enquanto os demais valores correspondem às confusões 

espectrais entre classes.  
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 A Tabela 5 apresenta a matriz de erros da classificação por distância 

euclidiana. As confusões espectrais mais significativas foram entre as classes: i) 

telhado cinza escuro e solo exposto; ii) telhado cinza escuro e cobertura pavimentada; 

iii) solo exposto e cobertura pavimentada; iv) cobertura vegetacional e telhado de 

cerâmica marrom; v) cobertura pavimentada e cobertura hídrica.  

Tabela 5 - Matriz de erros da classificação por distância euclidiana. 
 

1 2 3 4 5 6 7 8 
Soma 

linhas 

1 9583 0 0 0 0 0 0 0 9583 

2 0 7645 0 0 1944 0 0 918 10507 

3 0 0 7290 0 2 0 0 0 7292 

4 0 0 151 11230 0 9 0 0 11390 

5 52 102 0 0 7724 0 0 893 8771 

6 0 122 536 1069 0 29786 5642 0 37155 

7 0 13 0 0 0 0 8490 0 8503 

8 23 11262 0 0 8459 0 1461 3653 24858 

Soma colunas 9658 19144 7977 12299 18129 29795 15593 5464 118059 

(1) Telhado cinza claro; (2) telhado cinza escuro; (3) telhado cerâmica vermelho; (4) 

telhado cerâmica marrom; (5) solo exposto; (6) cobertura vegetacional; (7)cobertura 

hídrica; (8) cobertura pavimentada. 

Fonte: A autora (2020). 

A Tabela 6 apresenta a matriz de erros da classificação por máxima 

verossimilhança. As confusões espectrais mais significativas foram entre as classes 

telhado cinza escuro e cobertura pavimentada. 
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Tabela 6 - Matriz de erros da classificação por máxima verossimilhança. 
 

1 2 3 4 5 6 7 8 
Soma 

linhas 

1 9575 7 0 0 0 0 0 1 9583 

2 0 8722 0 0 0 0 0 1785 10507 

3 0 0 7288 4 0 0 0 0 7292 

4 0 0 0 11387 0 3 0 0 11390 

5 0 0 0 0 8722 0 0 49 8771 

6 0 0 0 0 1 37118 31 5 37155 

7 0 0 0 0 0 42 8423 38 8503 

8 1 1553 0 0 48 11 10 23235 24858 

Soma colunas 9576 10282 7288 11391 8771 37174 8464 25113 118059 

(1) Telhado cinza claro; (2) telhado cinza escuro; (3) telhado cerâmica vermelho; (4) 

telhado cerâmica marrom; (5) solo exposto; (6) cobertura vegetacional; 

(7)cobertura hídrica; (8) cobertura pavimentada. 

Fonte: A autora (2020). 
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6 CONCLUSÕES E RECOMENDAÇÕES 

 

 As informações espectrais presentes nas imagens de alta resolução não são 

suficientes para o reconhecimento de padrões capazes de definir limiares entre 

classes de alvos urbanos. As semelhanças espectrais ou as diferenças sutis são 

fatores que inviabilizam os métodos de classificação que utilizam apenas os valores 

dos pixels contidos nas bandas espectrais dos diferentes sensores. Logo, a 

discriminação dos alvos urbanos requer a utilização de camadas auxiliares no 

processo de classificação. 

 Nesta pesquisa foram estudadas as contribuições do comportamento espectral, 

altimétrico e de intensidade, provenientes de bandas espectrais de imagens aéreas, 

razões de bandas, índices de vegetação e produtos LIDAR, para a classificação do 

solo urbano.  Os principais resultados apontaram que: i) a variável intensidade pode 

revelar propriedades hídricas que subsidiem estudos mais específicos de composição 

da água; ii) a aritmética de bandas na faixa do visível, quando aplicada à imagens de 

alta resolução, além de realçarem a vegetação servem para identificar alguns tipos de 

telhados; iii) as operações S1, GLI e RGBVI são potenciais para classificação da 

cobertura vegetacional urbana; iv) as operações VARI e GRVI são potenciais para a 

classificação da cobertura edificacional do tipo telhado de cerâmica, sem fazer 

distinção quano ao seu estado de conservação; v) a variável altimetria é potencial para 

discriminar classes que possuem respostas espectrais semelhantes; vi) a 

classificação por máxima verossimilhança, quando aplicada em recortes com classes 

de sutis variações espectrais, viabiliza a discriminação dessas classes. 

 O uso de camadas auxiliares viabiliza a classificação do solo urbano e, por 

conseguinte, a atualização cartográfica municipal. A modernização dos métodos de 

imageamento tem exigido novos métodos de processamento de imagens, que 

integrem atributos de diferentes fontes e discrimine de modo mais eficaz a diversidade 

de alvos presentes em contextos urbanos, de modo a subsidiar a tomada de decisão 

sobre o território. 

 Por fim, recomenda-se que outros tipos de classes de alvos sejam abrangidos 

em estudos de reconhecimento de padrões utilizando propriedades de diferentes 

fontes, assim como foram utilizadas nesta pesquisa. Isso porque os cenários urbanos 

costumam ter grande variabilidade de objetos, fato este que demanda estudos 

especializados por grupos de classes, visto que o estudo integral das paisagens 



80 
 

urbanas agregaria alta complexidade. Um exemplo de classe de alvo a ser investigada 

de forma isolada é a de telhado verde, comum na cidade do Recife devido à Lei 

Municipal 18.112/2015, que obriga qualquer prédio com mais de quatro pavimentos a 

ter telhado verde. A classificação desse tipo de telhado encontra limitações quanto a 

sua resposta espectral e altura, pois essas propriedades podem ser iguais ou 

semelhantes às das árvores intraurbanas, devendo-se recorrer a uma terceira 

propriedade para separar essas duas classes de alvos. 
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APÊNDICE A – PARÂMETROS DO GRÁFICO DE DISPERSÃO DOS PONTOS NO 

ÍNDICE S1 

Tabela 1A – Parâmetros básicos para o gráfico de dispersão dos pontos no índice S1 

PARÂMETROS  EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

Mínimo 55,50 58,80 53,44 57,23 56,60 

Máximo 61,59 59,73 60,94 90,65 60,21 

Média 59,83 59,47 59,69 66,31 58,98 

Tamanho (n) 220,00 60,00 200,00 150,00 100,00 

Est. Classes 14,83 7,75 14,14 12,25 10,00 

Classes 14,00 7,00 14,00 12,00 10,00 

Incremento 0,44 0,13 0,54 2,78 0,36 

Desvio Padrão 0,67 0,20 0,57 6,02 0,83 

Fonte: A autora (2020). 

Tabela 2A – Valores de corte para o gráfico de dispersão dos pontos no índice S1 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

55,94 58,93 53,97 60,02 56,96 

56,37 59,07 54,51 62,80 57,32 

56,81 59,20 55,05 65,59 57,68 

57,24 59,33 55,58 68,37 58,04 

57,68 59,46 56,12 71,16 58,41 

58,11 59,60 56,65 73,94 58,77 

58,55 59,73 57,19 76,72 59,13 

58,98   57,73 79,51 59,49 

59,42   58,26 82,29 59,85 

59,85   58,80 85,08 60,21 

60,29   59,33 87,86   

60,72   59,87 90,65   

61,16   60,41     

61,59   60,94     

Fonte: A autora (2020). 

Tabela 3A – Valores de frequência para o gráfico de dispersão dos pontos no índice S1 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

1,00 1,00 1,00 10,00 3,00 

1,00 2,00 0,00 28,00 4,00 

0,00 4,00 0,00 49,00 3,00 

0,00 5,00 0,00 31,00 7,00 

0,00 11,00 0,00 12,00 3,00 

0,00 16,00 0,00 4,00 6,00 

1,00 21,00 0,00 6,00 17,00 

5,00   0,00 2,00 30,00 

41,00   0,00 2,00 20,00 

63,00   2,00 2,00 7,00 

71,00   28,00 3,00   

19,00   90,00 1,00   

10,00   76,00     

8,00   3,00     

Fonte: A autora (2020). 
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APÊNDICE B – PARÂMETROS DO GRÁFICO DE DISPERSÃO DOS PONTOS NO 

ÍNDICE S2 

Tabela 1B – Parâmetros básicos para o gráfico de dispersão dos pontos no índice S2 

PARÂMETROS  EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

Mínimo 56,33 58,60 53,59 57,02 60,80 

Máximo 67,98 59,71 61,95 90,65 64,00 

Média 61,88 59,32 60,12 65,97 61,91 

Tamanho (n) 220,00 60,00 200,00 150,00 100,00 

Est. Classes 14,83 7,75 14,14 12,25 10,00 

Classes 14,00 7,00 14,00 12,00 10,00 

Incremento 0,83 0,16 0,60 2,80 0,32 

Desvio Padrão 2,54 0,19 0,68 5,93 0,71 

Fonte: A autora (2020). 

Tabela 2B – Valores de corte para o gráfico de dispersão dos pontos no índice S2 

CORTE 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

57,17 58,76 54,19 59,82 61,12 

58,00 58,92 54,79 62,63 61,44 

58,83 59,08 55,38 65,43 61,76 

59,66 59,24 55,98 68,23 62,08 

60,49 59,40 56,58 71,03 62,40 

61,33 59,56 57,17 73,83 62,72 

62,16 59,71 57,77 76,64 63,04 

62,99   58,37 79,44 63,36 

63,82   58,97 82,24 63,68 

64,65   59,56 85,04 64,00 

65,48   60,16 87,84   

66,32   60,76 90,65   

67,15   61,35     

67,98   61,95     

Fonte: A autora (2020). 

Tabela 3B – Valores de frequência para o gráfico de dispersão dos pontos no índice S2 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

1,00 1,00 1,00 10,00 5,00 

0,00 0,00 0,00 27,00 21,00 

2,00 5,00 0,00 50,00 31,00 

26,00 8,00 0,00 33,00 17,00 

63,00 25,00 0,00 12,00 3,00 

45,00 16,00 0,00 5,00 6,00 

12,00 5,00 0,00 3,00 7,00 

2,00   0,00 2,00 6,00 

7,00   0,00 2,00 2,00 

14,00   24,00 2,00 2,00 

24,00   73,00 3,00   

8,00   83,00 1,00   

8,00   17,00     

8,00   2,00     

Fonte: A autora (2020). 
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APÊNDICE C – PARÂMETROS DO GRÁFICO DE DISPERSÃO DOS PONTOS NO 

ÍNDICE VARI 

Tabela 1C – Parâmetros básicos para o gráfico de dispersão dos pontos no índice VARI 

PARÂMETROS  EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

Mínimo 44,10 49,79 49,20 48,39 48,82 

Máximo 50,47 50,43 50,53 51,30 49,53 

Média 48,53 50,17 49,58 50,16 49,22 

Tamanho (n) 220,00 60,00 200,00 150,00 100,00 

Est. Classes 14,83 7,75 14,14 12,25 10,00 

Classes 14,00 7,00 14,00 12,00 10,00 

Incremento 0,45 0,09 0,09 0,24 0,07 

Desvio Padrão 1,56 0,13 0,19 0,50 0,13 

Fonte: A autora (2020). 

Tabela 2C – Valores de corte para o gráfico de dispersão dos pontos no índice VARI 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

44,56 49,88 49,29 48,63 48,89 

45,01 49,98 49,39 48,87 48,96 

45,47 50,07 49,48 49,11 49,03 

45,92 50,16 49,58 49,36 49,10 

46,38 50,25 49,67 49,60 49,17 

46,83 50,34 49,77 49,84 49,24 

47,29 50,43 49,86 50,08 49,31 

47,74   49,96 50,33 49,38 

48,20   50,05 50,57 49,45 

48,65   50,15 50,81 49,53 

49,11   50,24 51,05   

49,56   50,34 51,30   

50,01   50,43     

50,47   50,53     

Fonte: A autora (2020). 

Tabela 3C – Valores de frequência para o gráfico de dispersão dos pontos no índice VARI 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

1,00 1,00 6,00 1,00 1,00 

0,00 2,00 16,00 1,00 1,00 

1,00 6,00 42,00 4,00 8,00 

8,00 18,00 49,00 5,00 10,00 

20,00 21,00 31,00 7,00 13,00 

21,00 7,00 24,00 14,00 22,00 

17,00 5,00 22,00 32,00 27,00 

6,00   4,00 28,00 8,00 

6,00   1,00 25,00 6,00 

6,00   3,00 21,00 4,00 

9,00   1,00 10,00   

41,00   0,00 2,00   

58,00   0,00     

26,00   1,00     

Fonte: A autora (2020). 
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APÊNDICE D – PARÂMETROS DO GRÁFICO DE DISPERSÃO DOS PONTOS NO 

ÍNDICE RGBVI 

Tabela 1D – Parâmetros básicos para o gráfico de dispersão dos pontos no índice RGBVI 

PARÂMETROS  EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

Mínimo 45,72 49,45 44,95 48,53 49,63 

Máximo 50,11 50,05 50,01 56,05 50,64 

Média 49,06 49,81 49,62 52,18 49,99 

Tamanho (n) 220,00 60,00 200,00 150,00 100,00 

Est. Classes 14,83 7,75 14,14 12,25 10,00 

Classes 14,00 7,00 14,00 12,00 10,00 

Incremento 0,31 0,09 0,36 0,63 0,10 

Desvio Padrão 0,98 0,14 0,37 1,52 0,26 

Fonte: A autora (2020). 

Tabela 2D – Valores de corte para o gráfico de dispersão dos pontos no índice RGBVI 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

46,03 49,54 45,31 49,16 49,73 

46,34 49,62 45,67 49,79 49,83 

46,66 49,71 46,03 50,41 49,93 

46,97 49,80 46,40 51,04 50,03 

47,28 49,88 46,76 51,67 50,13 

47,60 49,97 47,12 52,29 50,23 

47,91 50,05 47,48 52,92 50,33 

48,23   47,84 53,54 50,43 

48,54   48,20 54,17 50,53 

48,85   48,56 54,80 50,64 

49,17   48,93 55,42   

49,48   49,29 56,05   

49,79   49,65     

50,11   50,01     

Fonte: A autora (2020). 

Tabela 3D – Valores de frequência para o gráfico de dispersão dos pontos no índice RGBVI 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

1,00 2,00 1,00 2,00 6,00 

0,00 8,00 0,00 6,00 29,00 

1,00 3,00 0,00 10,00 25,00 

2,00 7,00 0,00 14,00 11,00 

8,00 20,00 0,00 23,00 5,00 

17,00 16,00 0,00 29,00 4,00 

9,00 4,00 0,00 25,00 2,00 

13,00   0,00 17,00 6,00 

14,00   0,00 6,00 9,00 

11,00   0,00 9,00 3,00 

14,00   0,00 4,00   

17,00   3,00 5,00   

41,00   85,00     

72,00   111,00     

Fonte: A autora (2020). 
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APÊNDICE E – PARÂMETROS DO GRÁFICO DE DISPERSÃO DOS PONTOS NO 

ÍNDICE GRVI 

Tabela 1E – Parâmetros básicos para o gráfico de dispersão dos pontos no índice GRVI 

PARÂMETROS  EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

Mínimo 47,15 49,90 49,56 49,06 49,34 

Máximo 50,22 50,20 50,07 50,75 49,75 

Média 49,16 50,08 49,79 50,11 49,56 

Tamanho (n) 220,00 60,00 200,00 150,00 100,00 

Est. Classes 14,83 7,75 14,14 12,25 10,00 

Classes 14,00 7,00 14,00 12,00 10,00 

Incremento 0,22 0,04 0,04 0,14 0,04 

Desvio Padrão 0,92 0,06 0,09 0,32 0,08 

Fonte: A autora (2020). 

Tabela 2E – Valores de corte para o gráfico de dispersão dos pontos no índice GRVI 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

47,37 49,94 49,60 49,20 49,38 

47,59 49,99 49,63 49,34 49,42 

47,81 50,03 49,67 49,48 49,46 

48,03 50,07 49,71 49,62 49,50 

48,25 50,12 49,74 49,76 49,54 

48,46 50,16 49,78 49,91 49,59 

48,68 50,20 49,82 50,05 49,63 

48,90   49,85 50,19 49,67 

49,12   49,89 50,33 49,71 

49,34   49,93 50,47 49,75 

49,56   49,96 50,61   

49,78   50,00 50,75   

50,00   50,03     

50,22   50,07     

Fonte: A autora (2020). 

Tabela 3E – Valores de frequência para o gráfico de dispersão dos pontos no índice GRVI 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

3,00 1,00 2,00 1,00 1,00 

5,00 2,00 3,00 2,00 1,00 

20,00 6,00 6,00 4,00 9,00 

20,00 18,00 23,00 4,00 10,00 

18,00 22,00 33,00 7,00 23,00 

2,00 6,00 38,00 15,00 16,00 

4,00 5,00 27,00 29,00 26,00 

4,00   21,00 26,00 5,00 

4,00   14,00 27,00 7,00 

6,00   16,00 17,00 2,00 

9,00   10,00 13,00   

44,00   2,00 5,00   

45,00   1,00     

36,00   4,00     

Fonte: A autora (2020). 
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APÊNDICE F – PARÂMETROS DO GRÁFICO DE DISPERSÃO DOS PONTOS NO 

ÍNDICE GLI 

Tabela 1F – Parâmetros básicos para o gráfico de dispersão dos pontos no índice GLI 

PARÂMETROS  EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

Mínimo 47,75 49,72 46,72 49,19 49,79 

Máximo 50,05 50,02 49,99 52,32 50,28 

Média 49,49 49,90 49,81 50,97 49,97 

Tamanho (n) 220,00 60,00 200,00 150,00 100,00 

Est. Classes 14,83 7,75 14,14 12,25 10,00 

Classes 14,00 7,00 14,00 12,00 10,00 

Incremento 0,16 0,04 0,23 0,26 0,05 

Desvio Padrão 0,54 0,07 0,23 0,65 0,12 

Fonte: A autora (2020). 

Tabela 2F – Valores de corte para o gráfico de dispersão dos pontos no índice GLI 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

47,91 49,76 46,95 49,45 49,84 

48,08 49,81 47,18 49,71 49,89 

48,24 49,85 47,42 49,97 49,94 

48,41 49,89 47,65 50,23 49,99 

48,57 49,94 47,88 50,49 50,04 

48,74 49,98 48,12 50,76 50,08 

48,90 50,02 48,35 51,02 50,13 

49,07   48,59 51,28 50,18 

49,23   48,82 51,54 50,23 

49,39   49,05 51,80 50,28 

49,56   49,29 52,06   

49,72   49,52 52,32   

49,89   49,75     

50,05   49,99     

Fonte: A autora (2020). 

Tabela 3F – Valores de frequência para o gráfico de dispersão dos pontos no índice GLI 

EDIFICAÇÃO ÁGUA PAVIMENTAÇÃO VEGETAÇÃO SOLO 

1,00 2,00 1,00 2,00 6,00 

1,00 7,00 0,00 4,00 20,00 

0,00 3,00 0,00 4,00 25,00 

4,00 7,00 0,00 10,00 17,00 

10,00 21,00 0,00 13,00 8,00 

16,00 16,00 0,00 25,00 5,00 

11,00 4,00 0,00 19,00 1,00 

16,00   0,00 26,00 11,00 

10,00   0,00 23,00 6,00 

9,00   0,00 8,00 1,00 

10,00   0,00 7,00   

17,00   0,00 9,00   

40,00   35,00     

75,00   164,00     

 
Fonte: A autora (2020). 


