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Abstract

This thesis deals with the concept of fermion-soliton interactions. In the very be-
ginning, we provide a historical background on how solitons were discovered and how
they led to other solutions with similar features in many branches of physics. Then
we study the main solitonic models in 1+1 dimensions and discuss some important re-
sults concerning these types of models, including Derrick theorem stating that there is
no stable soliton solution for Lagrangians with only scalar fields in spatial dimensions
above 2. Besides that, we present some solitonic models in higher dimensions, e.g. mag-
netic monopoles and vortices. We also study instantons which are soliton solutions on
a Euclidean spacetime and compare the formalism of instantons for tunneling processes
in quantum mechanics with the corresponding one in Yang-Mills theory. Moreover, we
present the formalism of fermions interacting with solitons as background fields, as well as
some essential mathematical tools including Stationary Phase Approximation, Grassman
numbers, Path Integral formalism. We also investigate one of the most important con-
sequences of the interaction, the so-called Casimir Energy induced in systems containing
non-trivial background fields such as solitons, using the phase shift method. Finally, we
study a nonlinear interaction of a fermion field with a solitonic solution called compaction
and compare the results with the known limiting cases in literature.

Keywords: Casimir energy. Solitons. Quantum Field Theory. Fermion soliton interaction.
Dirac equation



Resumo

Nessa dissertação nós lidamos com o conceito de interações entre férmions e solitons.
Inicialmente apresentamos um ponto de vista histórico de como solitons foram descober-
tos e como eles levaram a outras soluções com características semelhantes em diferentes
áreas da física. Em seguida estudamos os principais modelos de sólitons em 1 + 1 dimen-
sões e discutimos alguns resultados importantes relacionados a esses modelos, incluindo
o teorema de Derrick que garante que não existem soluções tipo sóliton estáveis em La-
grangeanas de apenas campos escalares em dimensão maior que 2. Além disso, apresen-
tamos alguns modelos de sólitons em dimensões maiores, e.g. monopolos magnéticos e
vórtices. Também estudamos instantons, que são soluções tipo sóliton em espaço-tempo
Euclidiano e comparamos o formalismo de instantons para processos de tunelamento em
mecânica quântica com esse mesmo formalismo para o caso de teoria de Yang-Mills. Além
do que foi citado, apresentamos o formalismo de interação de fermions com campos de
sóliton como background assim como com algumas ferramentas matemáticas essenciais
includindo Aproximação de Fase Estacionária, números de Grassman e formalismo de in-
tegral de caminho. Também investigamos uma das consequencias mais importantes desse
tipo de interação, a chamada Energia de Casimir, induzida em sistemas contendo campos
de fundo com topologia não trivial como sólitons, para isso usamos o método da diferença
de fase. Finalmente, estudamos a interação não linear de um campo fermiônico com o
campo de um sóliton chamado compacton e comparamos nossos resultados com alguns
casos limitantes presentes na literatura.

Palavras-chave: Energia de Casimir. Sólitons. Teoria Quântica de Campos. Interação
férmion-sóliton. Equação de Dirac
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1 Introduction: Solitons and how they
manifest in nature

In this thesis we present a contained discussion regarding solitons in quantum field
theory (QFT). But first we should introduce the concept of soliton, how it is related with
QFT, when it first appeared and what makes it so special. The first person who noticed
and tried to study a soliton was John Scott Russel in August 1834 [2]. An engineer that
became amazed when he first observed what emerged from the motion of a boat that
had been drawn through a channel, a solitary well-behaved, round and stable wave [3].
It captivated the attention of J.S.Russel. Later he conducted experiments investigating
the shape of the wave and some interesting properties such as the very small damping
observed.

After J.S.Russel’s discovery of such phenomenon some mathematical approach started
to be developed [4, 5, 6]. But the most important contribution and still studied today
is due to Korteweg and de Vries (1895) [6] who first formulated a non-linear partial
differential equation whose solution possesses the same features as observed by J. S.
Russel. It is worthhwhile to outline how Korteweg and de Vries (KdV) first formulated
this expression. First they considered an incompressible and irrotational fluid together
with the inviscid Euler equation for fluid dynamics and appropriate boundary conditions.
Second they have expanded the components of the velocity vector and considered only
first approximation of the solution. That is why the KdV equation gives soliton solutions
in shallow water, where the wavelength is much larger than the depth of the water [6].

Their calculations yield to the following equation:

∂η

∂t
− 3

2

√
g

H

∂

∂x

(
1

2
η2 +

2

3
αη +

1

3
σ
∂2η

∂x2

)
= 0 (1.1)

knowing η is the elevation above the equilibrium level, σ = 1
3
H3 − TH

ρg
where H is the

height of the water (relative distance from the surface to the bottom of the reservoir), T is
the surface tension term, ρ is the density of the water, g is the gravitational acceleration, α
is a small parameter when compared to H, coming from the shallow water approximation
of the solutions.

We can try to find a solution in a reference frame that travels with velocity v, for
doing so we suppose a solution such that η(x−vt) with the following boundary conditions
η(x → ±∞) = 0. These steps are part of the process to find the famous solution due to
Korteweg and de Vries, for the KdV soliton:

η (x) = a sech2

(√
a

4σ
x

)
(1.2)
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with σ positive and a the amplitude of the wave
Korteweg and de Vries also derived the velocity of the propagating steady wave [2]:

c =
√
gh
(

1 +
α

2H

)
(1.3)

Those were the main contributions of Korteweg and de Vries, such contributions that
changed the way physicists look at non-linearity in nature.

More recent investigations about KdV equation envolve mKdV (modified Korteweg
de Vries) equation, supersymmetric KdV equation [7, 8] and more. Actually further
investigation in the KdV equation after its discovery provided insight in several methods
for understanding integrability of many physical systems, among these techniques are
inverse scattering transform and LAX pairs [9]. There is actually other solutions for the
KdV equation besides the solitonic one, the interested reader can see [10].

Nowdays we can see that Korteweg, de Vries, Russel, and others (Rayleigh, Boussi-
nesq..), started creating a huge field of study, the study of soliton theory. This type of
structure appears in many unrelated fields in physics, in many different dimensions and
different contexts. We cite three more examples to convince the reader.

In 1955 in Los Alamos, Enrico Fermi, John Pasta and Stan Ulam were looking for an
interesting problem, suitable for investigation in one of the first computers MANIAC 1
[11]. And there was an open problem at that time. The question was, why solids have
finite heat conductivity? Some years before, Debye in 1914 proposed a conjecture, he
thought that in a model of a solid that consists of many masses attached to each other
by springs, the anhamornicity would have an important role in the finiteness of the heat
conductivity [12]. He argued that if the Hook’s law is the force acting on each spring
and if the initial condition of the problem is all energy localized in the lowest mode then
the evolution in time of the configuration leads to the energy being carried freely along
the independent fundamental normal modes of the configuration. Moreover, he thought,
if there is a weak non-linearity then the normal modes of the previous configuration
will be mixed and the energy supposed to be transmitted between these fundamental
modes and eventually the system will reach thermal equilibrium [13]. The relaxation time
of this initial configuration will be intrinsically connected with the diffusion coefficient.
Motivated by this conjecture, Fermi, Pasta, Ulan and Tsingou (FPUT) started studying
the one dimensional analog problem. They supposed a nonlinear force as the following:

F = k
(
x+ αx2

)
(1.4)

Where k is the Hook’s constant for the linear case and α is a parameter to control
the strength of the nonlinearity, x is the displacement from the equilibrium length of the
spring.

FPU supposed as initial condition a smooth state in which all energy was in the lowest
mode of the corresponding linear problem. They expected to confirm Debye hypothesis
but they found a different result. The energy were distributed across the whole system, but
for a sufficiently large number of time steps the system went back to the initial condition.
This was an astonishing result and showed them that the equipartition of energy was not
guaranteed when non-linearity is present. After that people started realizing that many
interesting solutions could arise from non-linear systems. But this is what we should
expect, nature is essentially non-linear!

Another interesting example is the huge vortex in Jupiter’s atmosphere [14], called
Jupiter’s Great Red Spot (JGRS for short), a single stable vortex that has already been
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observed without significant changes for about 300 years [15]. Jupiter is the most massive
planet in our solar system, being composed mainly of helium and hidrogen. Small quan-
tities of methane and amonia are also present. But Jupiter’s Red Spot was something
that always drawn attention and puzzled astronomers for many years. This great tornado
lives in the Jupiter’s atmosphere, almost fixed in its latitude but sometimes varying in its
longitude. Nowadays the best explanation for the generation of the JGRS relies mainly on
three facts, the rapid rotation velocity of Jupiter’s atmosphere, the nearly dissipationless
atmosphere and the strong shearing east-west winds [14]. The different wind velocities
are responsable for making this structure stable compensating viscosity and momentum
losses. Despite the argument presented above, some authors [16] stress that it does not
rule out the possibility that the solid core of Jupiter can play a role in the formation
of the JGRS. The vortex can be modeled by what is called Rossby soliton [17]. This
type of soliton is also known as planetary waves and is formed at the atmosphere or
oceans of a rotating planet. If the depth of the atmosphere or ocean does not depend on
the geographical coordinates then the Rossby waves are generated mainly by the spatial
inhomogeneities of the Coriollis force [18].

Another interesting example of a soliton model that today still plays an important
role in high energy and condensed matter physics is the Skyrme [19] model. The skyrme
model arose in the context of quantum chromodynamics where people were trying to study
low energy hadrons. Hadrons are composite particles formed by two or more quarks.
Skyrmions are solutions from a proposed Lagrangian that effectively describe the system
of interest. In their case the theory was simplified in a way that the proposed Lagrangian
refers to meson fields (quark anti-quark pair) and baryons (made of three quarks) would
arise as soliton solutions of the equations of motion [20]

L =
F 2
π

16
Tr
[
∂µU∂µU

†]+
1

32e2
Tr
[
(∂µU)U †, (∂νU)U †

]2 (1.5)

Here Fπ is the pion decay constant and U is a unitary 2× 2 matrix.
Initial considerations were made concerning only one baryon system and after that

two baryons and further collections with many baryons were investigated.
There is a very famous ansatz to solve this equation. The ansatz is called "hedgehog"

solution, and plugging it in equations of motion gives a non-linear equation for F(r). These
equations cannot be solved analytically, but we can use numerical techniques to solve it.
The ansatz has the following form

U = exp(iF (r)~τ · r̂) (1.6)

with ~τ Isospin Pauli matrices and F (r) a function of the radial variable only.
This ansatz is a good trial in order to solve the equations of motion but unfortunately
breaks Lorentz invariance. Further investigation was made in order to fix this and other
issues. Eventualy the Skyrme model became a good effective model in certain cases and
even today further investigations of QCD have been made based on the Skyrme’s initial
approach [21]. Besides that, a similar model not in 3 + 1 (3 dimensions in space and 1 in
time ) but in 2 + 1 dimension, regarding the first Skyrme model is currently investigated,
it is called baby Skyrme model (the name comes from the fact that it is a planar analogue
of the first model ) and is of great interest in condensed matter physics [20? ]. One final,
but not less important example on how non-trivial topology creates interesting physics is
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cosmic string. The theory of cosmic strings was first introduced by Kibble [22]. These
objects were supposed to be formed in the early Universe, when the Universe passed
through a series of phase transitions. People usually refer to these topological defects as
evidence for the occurrence of the big bang, not only cosmic strings but other topological
defects arise due to non-trivial topological properties of the system in the same way that
happens to solitons.

In the 80’s, cosmic strings were really good candidates to explain the formation of
galaxies in our Universe [23]. But this idea was put aside since no evidence was found
for the predicted contributions of cosmic strings in the CMB radiation. After some time
people realized that these entities could also arise in the context of string theory. Besides
the similar name, these two things are completely different stories. String theory is a
theoretical model that suppose all elementary particles are generated as excitations of
different vibrating modes of tiny little strings, such strings are the size of the Planck scale
[24]. What happens is that for certain cases in string theory these tiny strings can turn
into what is called cosmic superstrings, those are the historical cosmic strings.

Then, detection of cosmic strings could also confirm important signatures of string
theory. The thing is, until now no experimental evidence of this structures was found
[25]. 1

Those were some examples of how solitons manifest in nature. In the following chap-
ters throughout this thesis, we provide a detailed discussion about others types of solitons
and how they interact with fermions. In chapter 2 we talk about instantons, monopoles,
kinks and SG-solitons. In chapter 3 we discuss interaction of solitons with fermions and
as a particular example we study the interactions in 1+1 dimensions. In chapter 4 we
discuss Casimir energy and Levinson theorem and in the final chapter we present new re-
sults regarding interaction of solitons with fermions in 1+1 dimensions where our soliton
possesses a compact profile. We discuss and compare our results with previous works in
literature.

1Particularly in ”http : //www.damtp.cam.ac.uk/research/gr/public/cshome.html” one can find
small movies of numerical simulations showing the evolution of the density of cosmic strings in the
universe together with a pedagogic material on the subject
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2 Solitons

2.1 Solitons in scalar field theories

We start our discussion with a very simple Lagrangian, and we are mainly concerned
with the static localised solutions arising from the potential involved rather than other
solutions of the equation of motion. It means that the potentials we are considering must
possess, at least two minima in order to admit a non-trivial solution connecting these two
minima. As discussed briefly in the introduction this solution is a non-dissipative (static)
solution with finite energy. First, we consider the general form for the Lagrangian of a
real scalar field in 1 + 1 dimensions as:

L =
1

2
∂µφ∂

µφ− V (φ) (2.1)

where the φ(x, t) is a scalar field and µ = 0, 1 labels spatial and time coordinates.
If we want to look for solutions with the properties described above we need to consider

fields that do not diverge as x → ∞. We expect φ(x → ±∞) → ±φ0 where φ0 is some
constant. We find the following equation of motion after applying the E-L equation:

∂µ

(
∂L
∂∂µφ

)
=
∂L
∂φ

∂µ∂
µφ = −∂V

∂φ

(2.2)

We are using the metric signature diag(1,−1) which leads to(
∂2

∂t2
− ∂2

∂x2

)
φ(x, t) = −∂V

∂φ
(2.3)

and assuming also ∂φ
∂t

= 0.
We can perform a smart trick to solve this equation, multiply both sides by dφ

dx
, as

d2φ

dx2

dφ

dx
=
dV (φ)

dφ

dφ

dx
(2.4)

The left hand side of this equality can be rewritten as a total derivative, and the right
hand side as a derivative of the potential but with respect to the x variable. Then we
obtain

d

dx

1

2

(
dφ

dx

)2

=
dV

dx
(2.5)
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Integrating both sides, gives:

1

2

(
dφ

dx

)2

= V (φ) + C (2.6)

We should assume here C = 0. This is due to the fact that the solutions should possess
finite energy. Note that if we want E =

∫∞
−∞ dx

(
1
2
(dφ
dx

)2 + V (φ)
)
to be finite, any con-

stant of integration different from zero in this step would yield an infinite kinectic term
contribution to the energy.

We can integrate again to obtain:

dφ

dx
= ±

√
2V (φ)∫ φ(x)

φ(x0)

dφ
′ 1√

2V (φ′)
=

∫ x

x0

dx

x− x0 = ±
∫ φ(x)

φ(x0)

dφ
′ 1√

2V (φ′)

(2.7)

After computing the integral we only invert the function to get our solution for φ(x).

2.1.1 BPS (Bogomol’nyi-Prasad-Sommerfield) condition
Now, we are able to compute the total energy. After finding an expression for φ one

can plug φ(x) in the expression for the energy density and integrate it to find the total
energy of the static solution as

E =

∫ (
1

2

(
dφ

dx

)2

+ V (φ)

)
dx (2.8)

But even without any information about φ, one can look at (2.8) and perform a smart
manipulation of terms that will lead us to the same result we have found before. Knowing(

1√
2

dφ

dx
∓
√
V (φ)

)2

=
1

2

(
dφ

dx

)2

∓
√

2
dφ

dx

√
V (φ) + V (φ) (2.9)

One can rewrite the energy in the form

E =

∫ (
1

2

(
dφ

dx

)2

+ V (φ)

)
dx

=

∫ ((
1√
2

dφ

dx
±
√
V (φ)

)2

± dφ

dx

√
2V (φ)

)
dx

(2.10)

Note that this integral is always larger than E =
∫∞
−∞

(
dφ
dx

√
2V (φ)

)
dx, due to the fact
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that the first term is always non-negative. That is

E ≥
∫ (

dφ

dx

√
2V (φ)

)
dx (2.11)

The quantity in the right hand side of the inequality is called BPS energy. If we want to
have a solution that extremizes the energy functional, that is a minimum energy solution,
we should agree with the condition that the first term in parenthesis should vanish, this
leading to:

1√
2

dφ

dx
=
√
V (2.12)

which is the same result we obtained before. If we find a solution satisfying this equation,
our solution has an energy given by:

EBPS = 2

∫ ∞
−∞

V (φ)dx (2.13)

We have obtained the same equation of motion from two distinct approaches but as
we might see in the future BPS approach is very powerful. Other systems do not allow
us to rewrite the equations as we did in (2.4). The BPS approach is more general and
can reduce, in many cases e.g monopoles in Yang-Mills theory, our second order equation
of motion in first order equations of motion. For some systems this means solving analy-
tycally a problem that for a second order differential equation it was impossible. Besides
that, the BPS energy only depends on the assymptotic behavior of the fields and is related
to the topological charge of it, not depending on peculiarities of spatial dependence [26].
Actually sometimes relevant information about the system can only be extracted using
BPS inequality approach [27].

2.1.2 λφ4 potential and kink solution
It is instructive if we start discussing a specific model to see how useful the tools that

we have developed so far can be.
Let us study the well-known λφ4 potential, which has the specific profile:

V (φ) =
λ

4

(
φ2 − m2

λ

)2

(2.14)

where, λ is the strength of the self-interaction of the scalar field and m is proportional to
the "mass" of our field1. We can see the potential depicted in Figure 2.1.
Using (2.14) expression in (2.7) we have:

x− x0 = ±
√

4

λ

∫ φ(x)

φ(x0)

dφ
′(

φ′2 − m2

λ

) (2.15)

1Just as a reminder, since the beginning we are working with natural units ~ = c = 1.
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Figure 2.1. Plot of our potential for m2

λ
= 5

Solving the integral and inverting the function we obtain :

φ(x) = ± m√
λ

tanh(
m√

2
(x− x0)) (2.16)

The solution with the + sign is the kink and the solution with the − sign is the anti-kink.
The x0 term is a constant of integration that dictates the center of the soliton. We can
choose x0 = 0 to obtain what is in Fig. 2.2.

Figure 2.2. Plot of soliton solution for m2

λ
= 5 and m = 1

2.1.3 Stability equation
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We can study the dynamical stability of the soliton if we suppose a small pertubation
on the soliton field. We suppose φ(x, t) = φs(x)+η(x, t), where φs(x) is the static solution
of the equation of motion, which means we can expand V (φ) as:

V (φs + η) = V

∣∣∣∣
φs

+
∂V

∂φ

∣∣∣∣
φs

η + . . . (2.17)

We are supposing that a small pertubation acts on our solution. Therefore, we consider
up to a linear term in η in the above expansion.
We can consider a periodic pertubation in the form

η =
∑
n

ηn(x)cos(ωnt) (2.18)

resulting in:

∂µ∂
µφ(x, t) +

∂V

∂φ
=
∂2φ

∂t2
− ∂2φ

∂x2
+
∂V (φ)

∂φ

= −
∑
n

ηn cos (ωnt)ω
2
n −

∑
n

(
d2ηn
dx2

)
cos (ωnt) +

∂2V

∂φ2

∣∣∣∣
φs

ηn

= 0

(2.19)

We obtain an eigenvalue equation for each ηn(
− d2

dx2
+
∂2V (φ)

∂φ2

∣∣∣∣
φs

)
ηn = ω2

nηn (2.20)

For the λφ4 potential we obtain:(
− d2

dx2
+m2

(
−4 + 3 sech2

(
mx√

2

)))
ηn = ω2

nηn (2.21)

If we perform a change of variables as z = mx√
2
, we find the following equation:(

−1

2

d2

dz2
−
(
3 tanh2 z − 1

))
ηn =

1

m
ω2
nηn (2.22)

This is similar to a Schrödinger equation where the potential envolved belongs to a family
of Pösch-Teller potentials. The bound state solutions are:

η0 =
1

cosh2 (z)
, η1 =

sinh z

cosh2 (z)
(2.23)

For n ≥ 2 we have continuum states2 [28]. These η0 and η1 are bound modes of
the kink solution with respective eigenvalues ω0 = 0 and ω2 = 3

2
m2. The mode with η1

can be excited whenever the kink is perturbed, an example is the collision of two kinks,
2This particular case solved analytically can be found in chapter 12 of the citted reference
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where kinetic energy can be interchanged and these modes excited. The η0 mode is a
consequence of the translational symmetry of our solution, which means that our solution
can be centered at any point in space without changing its internal energy.

2.1.4 Some topological properties
Now, since solitons usually have a non-trivial topology, we can imagine some topological

concepts will be useful in characterizing these structures. Topological charge plays an
important role here. The main reason to define this quantity is to classify our solutions.
We will see shortly that different topological charges label topologically different maps.
These maps are grouped in homotopy sectors (classes). If two different maps can be con-
tinuously deformed in each other they belong to the same homotopy class. Usually these
mappings connect the internal space of fields we are working with and the real physical
space of space-time coordinates. Soon these concepts will be clear. For now is sufficient
for us to understand the following example. In one dimension it is readily intuitive and
tell us the solutions that belong to each homotopy sector. These sectors are responsible
for separating different topological solutions, which means that one topological solution
from a sector labeled by topological charge Q = 1 cannot be deformed into a solution be-
longing to a topological sector labeled by Q = 0 or Q 6= 1. We will discuss more examples
regarding this subject in the future.
In one dimension we define the topological charge as:

Q =
1

2π

∫ ∞
−∞

εµ0∂µφ(x)

=
1

2π
(φ(∞)− φ(−∞))

(2.24)

The fields with non-trivial topology have Q 6= 0.
One could associate the topological charge with the topological current given by:

jµ =
1

2π
εµν∂νφ(x) (2.25)

through Q =
∫∞
−∞ j

0 and ∂µjµν = 0.

2.1.5 Sine-Gordon soliton

This model was first introduced in [29] when studying surfaces with constant negative
curvature in 1862. It was rediscovered independently by Frenkel and Kontorova in 1939
when studying dislocations in crystals [30]. This potential is a more interesting case since
it has analogy with a very interesting topic in physics today, duality.
This model has the following potential:

V (φ) =
m4

λ

(
1− cos

(√
λ

m
φ

))
(2.26)
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From the beginning it is easy to see how this system is different from the first one.
Note that here we have an infinite set of minima and in the first one we had only two
minima.
Again, replacing the potential in equation (2.7), we can find our finite energy static
solution:

x− x0 = ±
∫ φ(x)

φ(x0)

dφ
′ 1√

2m4

λ

(
1− cos (

√
λ
m
φ′)
) (2.27)

Where we have chosen φ(x → ∞) → 2πm√
λ

and φ(x → −∞) → 0 for φ(x) to be single
valued.

Solving the integral and inverting the function we find:

φ(x) = ±4

√
λ

m
arctan(em(x−x0)) (2.28)

with + sign describing a SG-kink solution and − sign an SG-anti-kink3 solution. The
propagation of an SG-soliton can be pictured as in Fig.2.3.
It can also be obtained from the following equation of motion, that gives the name to the
model:

∂µ∂
µφ+

m3

√
λ

sin

(√
λ

m
φ

)
= 0 (2.29)

with the following boundary conditions φ(x→∞) = φ(x→ −∞) + 2πm√
λ

to be consisted
with our previous choice and ∂φ

∂t
= 0.

Not only isolated kinks and anti-kinks are solutions to this model, there is also the
so-called "breather" solution, which is a composition of kink and anti-kink solutions.
If we perform the following change of variables x̄ = mx, t̄ = mt and φ̄ =

√
λ
m
φ in our

equation of motion we can check that:

φ̄v(x̄, t̄) = 4 arctan

(
sinh(vt̄/

√
1 + v2)

v cosh(x̄/
√

1 + v2)

)
(2.30)

Is one of the solutions of (2.29), where v = iu. One of the first works studying the
complete solutions of this equation is [31]. This is a moving soliton, the appearance of
the u term is due to a Lorentz-boost, that is, replacing the x dependence in the solutions
from (2.29) with (x− ut)/

√
1− u2, where u is the velocity of the moving soliton.

This model possesses also other interesting features, namely its duality with the mas-
sive Thirring model, discovered by S. Coleman in [32]. Duality in physics happens when
we have the same mathematical model describing two distinct physical phenomena. The
Sine-Gordon Lagrangian is a suitable model to describe non-linear interaction between
fermions:

L = ψ̄(i/∂ −m)ψ − g

2
jµj

µ (2.31)

3Usually in literature people use the word "kink" to name any soliton in 1 + 1 dimensions. In this
thesis we choose to call the solutions of the SG equations of motion "SG-kink" and "SG-anti-kink" and
the solution of the λφ4 model simply "kink".
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Figure 2.3. Set of pendulums supporting propagation of a sine-gordon soliton. This row
of pendulums hang from a rod and are coupled by torsion springs

where jµ = ψ̄γµψ and γµ are the gamma matrices4.
The following correspondence is what make the two models equivalent:

• kink ↔ ψ, fermion

• anti-kink ↔ ψ̄, anti-fermion

• boson φ, ↔ ψ-ψ̄, fermion anti-fermion pair

• topological charge ↔ fermion number

This model describing fermions coupled non-linearly is known as the Thirring model
[33]. The duality between these two systems is an interesting feature. One can find how
the coupling constants of the two systems are related. It turns out that the weak coupling
regime of one of the theories is the strong coupling of the other (the coupling constants
are inversely proportional to each other). Studying this one dimensional system can give
us useful insight concerning strong coupling regime of non-linear interacting fermions in
(1+1)-dimensions. Actually some authors investigated experimentally this model in the
context of optical lattices [34].

2.1.6 Derrick’s Theorem

Dealing with fields in 1+1 dimensions sometimes reveals really interesting physics but
more realistic systems would require models in higher dimensions. The Derrick’s theorem

4More information about these models can be found in the reference citted and therein or in the notes
of Hugo Laurell "A summary on Solitons in quantum field theory".
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introduce severe constraints as we try to complete this task, it states that theories with
only scalar fields cannot admit soliton solutions in (D + 1) systems if D ≥ 3.
Let us suppose we have the following Lagrangian:

L =
1

2
(∂µ~φ)(∂µ~φ)− V (~φ) (2.32)

where ~φ is a scalar field in D dimensions, that is: ~φ(x, t) = (φ1(x, t) . . . , φD(x, t)). If we
look at the equations of motion in the static case we reach:

∇2~φ =
∂V (~φ)

∂φ
(2.33)

Naturally we can also calculate the Hamiltonian of our system:

H =
1

2

∫
dDx

(
(∇~φ)2 + V (~φ)

)
= V1 + V2 (2.34)

where

V1 =
1

2

∫
dDx(∇~φ)2, V2 =

1

2

∫
dDx(V (~φ)) (2.35)

The solution given by the equation of motion above is of course an extremum of the energy
functional H, δH=0.

We can analogously define a ~φλ field such as ~φλ = ~φ(λx) and it will lead to:

Hλ =

∫
dDx(λ2−DV1 + λ−DV2) (2.36)

Note that ~φλ=1 = ~φ(x). It is easy to be convinced that if ~φ (solution) of the equation
of motion is an extremum of the hamiltonian H it is also an extremum of Hλ. Then we
calculate the functional derivative of Hλ and evaluate δHλ

δλ
|λ=1 = 0, resulting in:

δHλ

δλ

∣∣∣∣
λ=1

= (2−D)V1 −DV2 = 0 (2.37)

We clearly see that for D=2 we must have V (~φλ=1) = 0. That is, if our potential has
a discrete number of minima our solution for ~φλ=1 is trivial. But if the potential has
a continuum minima5, then ~φλ=1 can have an x dependence but it’s dynamics will be
constrained to the minima of V .
For the case where D > 2 we must have V1 = V2 = 0 and of course this is a trivial
solution. That is why higher dimensional systems with only scalar fields involved do not
support solitons. Aware of this people started to look for soliton solutions in models of
scalar fields coupled to other fields, for instance gauge fields. The following topic is an
example of an interesting structure found after considering this approach. But first we
introduce another approach following historical derivation of this entity.

5such as the vortex potential depicted in Fig.2.9
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2.2 Monopoles

During last centuries people were amazed by magnetism. After the discovery of pos-
itive and negative electric charges researchers started wondering about the existence of
magnetic charges as fundamental constituents of the magnetic force. This assertion was
proved wrong after the discovery of the electron that is the fundamental "magnet" gen-
erating the magnetic field of all materials. But in 1931 Dirac made his effort to not let this
ideia on magnetic charges (magnetic monopoles) die [35]. He came up with a discussion
for the existence of magnetic monopoles that actually justified the discrete character of
the electric charge. It brought back the interest of physicists on studying this structures.
Despite the development of this field over the years, not a single magnetic charge (or
magnetic monopole) was detected. But why study magnetic monopoles if they were never
detected? Well, nowadays its importance relies on the fact that monopoles are expected
to exist in some GUT’S (Grand Unified Theories)6 and from the data we collect about
the abscence of this monopoles we can put constraints on GUT models.

The Dirac investigation of magnetic monopoles starts with a very simple reasoning.
First we recall the Maxwell’s equation for a point-like charge localized in the origin of
a coordinate system. Maxwell’s equation defined in the R3 − {0, 0, 0} domain has the
following form:

∇ · ~E = 0 (2.38)
∇× ~E = 0 (2.39)
∇ · ~B = 0 (2.40)
∇× ~B = 0 (2.41)

With our fields being ~E = qr̂/r2 since we are suposing the charge at rest, gives ~B = 0.
This set of equations probably made Dirac think that Maxwell’s equation also support
solutions as ~B = gr̂/r2 and ~E = 0, where g is a ’magnetic charge’. It turns out that these
equations for ~B and ~E actually satisfy Maxwell’s equation.
We should also try to find the corresponding potential field for this new solution of the
Maxwell’s equation.

∇× ~B = 0 (2.42)
∇ · ~B = 0 (2.43)

Since the R3−{0, 0, 0} is simply connected and we have (2.42), we can say that there
is a potential V such that ∇V = ~B. We can agree that this potential is V = −g/r. But
we will find a richest physics if we try to find a vector potential for the field ~B such as
∇ × ~A = ~B as we usually consider for the magnetic field. In the near future this gauge
vector field will play a key role in describing the quantum version of this discussion.
Another set of interesting details includes the second equation for the magnetic field (2.43)
and our domain. It is temptating to say that since we have (2.43) and the fact that the
domain is simply connected, we have sufficient conditions to guarantee the existence of a
vector potential such that ~∇× ~A = ~B, due to the divergence theorem. We will see that

6Those are theories in particle physics that at sufficiently high energies, describe weak force, strong
force and electromagnetism, with a single model.
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Figure 2.4. Magnetic charge placed in the center of a coordinate system

it is not true. To convince the reader, let us suppose that ~A, (∇ × ~A = g
r2 r̂) does exist

and let us try to calculate the flux of a point magnetic charge localized at the origin of a
coordinate system. We suppose a spherical shell S, with upper hemisphere S+ and lower
hemisphere S− and surface vector oriented in the direction of the radial coordinate as
depicted in Fig. 2.4, then:

∫ ∫
∇× ~A · d~S =

∫ ∫
g/r2 · r2 sin(θ)drdθ

= g

∫ ∫
sin θdrdθ

= 4πg

(2.44)

We can perform the same calculation using Stoke’s theorem:

∫ ∫
∇× ~A · d~S =

∫ ∫
S+

∇× ~A · d~S +

∫ ∫
S−
∇× ~A · d~S

=

∫
C+

~A · d~l +

∫
C−

~A · d~l

=

∫
C+

~A · d~l −
∫
C+

~A · d~l

= 0

(2.45)

where the C curve is the equator of this spherical shell oriented counter clockwise.
As we can see, those are not consistent results and then, makes no sense agree that the
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supposed vector potential ~A exists. Actually the conditions for a vector potential to exist
in the domain we are working with are required by a theorem stating that:

1. ~B must have ∇ · ~B = 0

2. The subset, U , in which ~B is defined must possess a trivial second homotopy group
π2(U) = 0

But what does π2(U) = 0 mean?
It means we can define a 2-dimensional sphere inside an open subset U and all points

enclosed by this sphere are elements of U. It is the 3 dimensional version of what we say is
a simply connected subset (π1(U) = 0). But as we can see, the set we have been working
with does not possess π2(U) = 0. It means that we cannot define a vector potential as
we desired. But there is actually a way we can contour this problem. Let us define a
subset U1 such that U1 = R3 − {z|z ≥ 0} and let us define U2 = R3 − {z|z ≤ 0}. U1 and
U2 are useful because we can see that U = U1 ∩ U2 and we have π2(U1) = π2(U2) = 0
for each region separately. With these we are allowed to define a vector potential in
each subset separately, then we can check that the following potentials below 7 satisfy
our requirements. Note that the value of the potential for each independent region is
different, as it should be, otherwise we would be able to define ~A in R− {0, 0, 0}, which
contradicts what was concluded before. Then the vector potential can be defined in the
following form, first computed by T.T Wu and C.N Yang in [37]

~A+ =
g

r sin θ
(1− cos θ) θ̂ (2.46)

~A− = − g

r sin θ
(1 + cos θ) θ̂ (2.47)

We can see that we satisfy all the conditions, and of course ∇× ~A = ~B. But why is
this result interesting? Despite that for classical electromagnetism where ~A and V fields
are just auxiliary fields, in quantum mechanics this fields play an important role and we
see that they cannot be thought anymore as just "mathematical tools". The Aharanov-
Bohm effect [38] is a perfect example of this. Hence our non-relativistic quantum theory of
electromagnetic interaction should include ~A in the Hamiltonian, consequently our wave
function will depend on ~A. Besides that, since ~A is a vector field such that ∇× ~A = ~B,
a change in ~A as ~A→ ~A+∇Ω should not change the wave function ψ more than adding
a phase to it. That is for ~A → ~A +∇Ω we should have ψ → eiqΩψ. Now let us suppose
again that we are dealing with a magnetic charge at the origin of a coordinate system, at
rest, and this charge is interacting with an electric charge q passing nearby as depicted in
Fig. 2.5. The wave function will depend on ~A and since physically there is no difference
between the electric charge being below z = 0 plane or above z = 0 plane (what separate
our U1 and U2 domains) it means that the wave functions ψ+ consequent of ~A+ and ψ−
consequent of ~A− should be the same in the intersection U1 ∩ U2. Actually one can see
that A+ − A− = ∇(2gθ) and the wave functions should be related as ψ+ = ψ−e

iq2gθ in
this region. Note also that the (r, φ, θ) = (0, π

2
, θ) circle is included in U1 ∩U2 and as well

as the rest of the domain the wave functions ψ+ and ψ− should be single valued. This
means that a change in the angle θ by θ → θ + 2π must reproduce ψ+(θ) = ψ+(θ + 2π).
Then, our conclusion is:

7One can find a complete derivation of these expressions in [36].
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Figure 2.5. Diagram of a classical electron charge interacting with the field of a magnetic
monopole. ~J is the total momentum of the configuration, accounting mechanical and
electromagnetic contributions. This problem was first solved, long ago by Poincaré in
1896 [39].

leading to
ψ+ = e(iq2gθ)ψ− = eiq2g(θ+2π)ψ− (2.48)

4qgπ = 2πn

qg =
n

2

(2.49)

If monopoles exist, this result expresses the first explanation to the well-known fact
that the electric charge is discrete. That is, if Dirac’s monopoles exist then its charge can
be computed using the above expression.

For a mathematically detailed investigation of the topic check [40].

2.2.1 ’t Hooft Polyakov Monopole
Another system from where monopole solutions also arises is the Georgi-Glashow

Model. A system where the Yang-Mills Lagrangian is coupled to a triplet scalar field.
This scalar field is called Higgs field, because it follows the Higgs mechanism of symmetry
breaking. Gerard ’t Hooft and A. Polyakov have found, independently, monopole solution
in this model [41, 42, 43]. The Georgi-Glashow Lagrangian is gauge invariant and possesses
SU(2) symmetry. It means that it is invariant under the following transformations:

(LaAaµ)bc → Ubd

[
LaAaµ +

i

g
I∂µ

] (
U−1

)
ec
, φa(x, t)→ [U(x, t)]ab φ

b(x, t) (2.50)

where

U(x, t) = exp(−iLaθa(x, t)) (2.51)
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The parameters θa(x, t) characterize the SU(2) group transformation and La are the gen-
erators of the group symmetry, (La)bc = iεabc.
The proposed Lagrangian by Georgi and Glashow is given by:

L = −1

4
F a
µνF

aµν +
1

2
Dµ(φa)Dµ(φa)− V (φ) (2.52)

where

F a
µν = ∂µA

a
ν − ∂νAaµ + gεabcAbµA

c
ν , Dµ(φa) = ∂µφ

a + gεabcAbµφ
c (2.53)

with a, b, c = 1, 2, 3.
The potential is the typical Higgs potential:

V (φ) = λ(φaφa − ν2)2/4 (2.54)

Calculating the equations of motion associated with the Aaν and φa fields, one finds

DνF
aµν = eεabcφbDνφc (2.55)

(DµDµ)φa = −λφa(φbφb − ν2) (2.56)

The energy of the system, for the static case, is the following:

E =

∫
d3x

(
1

4
F a
µνF

aµν +
1

2
(Diφ

a)(Diφ
a) +

1

4
λ(φaφa − ν2)2

)
(2.57)

with

Eai = −F a0i, Bai = −1

2
εijkF a

jk (2.58)

where Eai and Bai are the electric and magnetic fields, respectively. It is clear that
E ≥ 0. In order to have equality we should have Dµ(φa) = V (φa) = Aai = 0 and
φaφa = ν2.

If we want to look for finite energy configurations the fields have to satisfy the follow-
ing constraints: r

3
2Diφ → 0, |φ|2 → ν2 as r → ∞. The first constraint is just related to

the fact that we expect our derivative of the field to fall faster than Diφ
a ∝ 1

r3/2 otherwise
this term in the energy functional diverges. The last constraint is straightforward but we
still stress that the condition is only upon the absolute value of the triplet. The φa field
is free to point any direction in the internal space.
We can define the vacuum of the theory as:

MH =
{
~φ : V (~φ) = 0

}
(2.59)

In this case the space is defined by the two-sphere
∑

a φ
aφa = ν2.
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Finite energy configuration does not need to lie in the Higgs field for any value of
φa(x). Actually only for ~φ(r →∞) at infinity our triplet field should be degenerate with
all possible configurations of ~φ = (φ1, φ2, φ3) lying on a sphere and with absolute value
|φ| = ν. Then we can say that there is a map between the vacuum MH = S2

∞ and S2
phy,

meaning:

~φ : S2
∞ → S2

phy (2.60)

S2
phys is the physical space, the space defined by the coordinates xµ = (ct, x1, x2, x3).

This mapping is characterized by an integer that counts the winding of one S2
∞ around the

S2
phys and it is exactly the topological charge8. This integers label mathematical objects

called homotopy sectors, as cited before. For our studied model the relevant homotopy
group is π2(S2) = Z (since we are dealing with maps of the sphere on itself). This result
π2(S2) = Z means that we have as many homotopy sectors as integers when mapping
S2 → S2 .

If one tries to deform one map from the sector Q = 1 into a map from the sector Q = 2
will realize that it is impossible.

The topological charge is defined as the integral of the zero-th component of the
following topological current [44]

kµ =
1

8π
εµνρσεabc∂

νφ̂a∂ρφ̂b∂σφ̂c (2.61)

with

φ̂a =
φa

|φ|
, where |φ| =

√∑
a

φaφa (2.62)

Thus, the topological charge should be calculated as follows

Q =

∫
k0d

3x (2.63)

But how is this related to monopoles? Let us take a look at the Maxwell’s equations
written in terms of the field strengh tensor

∂νF
µν = 4πjν ,

1

2
εµνρσ∂

νF ρσ = 0 (2.64)

With the assumptions made in (2.58) we can see that the last equation results in:

∇ · ~B = 0, ∇× ~E = −∂
~B

∂t
(2.65)

8A mapping with Q = 1 can be pictured as a piece of paper wrapping a sphere once. A Q = 2 mapping
can be pictured as a bag wrapping a sphere once, but when it closes in the top one can twist this bag
and turn it inside out in order to redo the same procedure. In the end the bag had wrapped the same
sphere twice.
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As happens with the equation ∇ · ~E = ρ/ε0 when integrated it results in the total
electric charge of the system. The same does not happen with ∇· ~B = 0, when integrated
it results in 0. That is the reason we say there is no magnetic charge in the universe. Based
on the Dirac’s reasoning presented in the very first discussion of this topic we assume that
if there were magnetic charges (let us call it m) one should expect that

∫
∇ · ~Bd3x = m,

now with ∇ · ~B 6= 0 being equivalent to some sort of density of magnetic charges.
We will show that conventional electromagnetism is embedded in the model we are

working with and we will derive a similar equation to (2.65) regarding the magnetic field.
In order to achieve this ’t Hooft proposed a gauge invariant version of the electromagnetic
field tensor in this theory, given by

Fµν = φ̂aF a
µν −

1

g
εabcφ̂a(Dµφ̂b)(Dνφ̂c) (2.66)

where in the case of φa = (0, 0, 1) we get:

F µν = ∂µA
3
ν − ∂νA3

µ (2.67)

This way we regain our conventional electromagnetic theory. The reason why ’t Hooft
have proposed such field strenght is the fact that, calculating the derivative of its dual
field 1

2
εµνρσF

ρσ we obtain exactly the topological charge defined above. That happens in
the case where we chose the field φa = (0, 0, 1) recovering the Maxwell’s equations, now
supporting magnetic monopoles!
We start with

1

2
εµνρσ∂

νF ρσ =
1

2g
εµνρσεabc∂

νφ̂a∂ρφ̂b∂σφ̂c (2.68)

Using (2.58) we obtain:

1

2
ε0νρσ∂

νF ρσ =
1

2g
ε0νρσεabc∂

0φ̂a∂ρφ̂b∂σφ̂c (2.69)

1

2
(2∂1F 23 + 2∂2F 31 + 2∂3F 12) =

4π

g
k0 (2.70)

∇ · ~B =
4π

g
k0 (2.71)

Integrating both sides, gives∫
∇ · ~Bd3x =

∫
4π

g
k0d

3x = Q/g = m (2.72)

where Q is the topological charge.
’t Hooft and Polyakov have proposed an ansatz with Q = 1 in order to obtain an explicit
solution for the equations of motion

φa = δia(x
i/r)F (r), Aai (x) = εaij(x

j/r)W (r), Aa0 = 0 (2.73)
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we will be looking for static solutions, where r ≡ |x|. ’t Hooft and Polyakov ansatz is
subjected to the following boundary conditions:

F (r)→ ν, W (r)→ 1

gr
(2.74)

as r →∞, yielding to the following equations of motion

r2
d2K(r)

dr2
= K(r)(K2(r)− 1) +H2(r)K(r), r2

d2H(r)

dr2
= 2H(r)K2(r) (2.75)

where

H(r) = grF (r), K(r) = 1− grW (r) (2.76)

The numerical solution of these equations are discussed in [36].

2.2.2 Bogomoln’yi bound, Prasad and Sommerfield solutions
From the ansatz we presented above we find differential equations for W (r) and F (r)

that are not analytically solvable. However Bogomoln’yi, Prasad and Sommerfield (with
the requirement that λ→ 0, with ν and g fixed) have found very simple solutions
They have found:

K(r) =
rgν

sinh(gνr)
, H(r) =

rgν

tanh(gνr)− 1
(2.77)

Besides λ→ 0 condition, it is important to keep in mind that the authors have used the
same boundary conditions considered by ’t Hooft and Polyakov. Moreover, Bogomoln’yi
also found other interesting properties in this model in the case where there is no Higgs
potential (λ → 0). The discussions proposed by Bogomoln’yi includes solutions of the
equation of motion with any topological charge.
Let us take a look at the energy functional of the model:

E =

∫
d3x

(
1

4
F a
ijF

aij +
1

2
(Diφ

a)(Diφ
a)

)
(2.78)

Remember that in the beginning in the one dimensional case we have found a lower bound
for the energy (2.11) and obtained a condition for the energy to be finite in an approach
that did not depend on (2.7). Here a very similar strategy is considered:
Let us rewrite the energy functional as:

E =

∫
d3x

(
1

4
(F a

ij − εijkDkφ
a)2 +

1

2
εijk(Dkφ

a)F a
ij

)
(2.79)
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with

E ≥
∫
d3x

(
1

2
εijk(Dkφ

a)F a
ij

)
= EBPS (2.80)

To find the lowest energy solution, EBPS, we have to assume that the first term in (2.79)
must vanish resulting in the following equation9

F a
ij = εijkDkφ

a (2.81)

But for this to work, the second term should be positive and always present no matter
which φa we are considering. We can calculate this term as

∫
d3x

1

2
εijkF

a
ijDkφ

a =

∫
d3x∂k(

1

2
εijkF

a
ijφ

a) =

∮
S2

dσk(
1

2
εkijF

a
ijφ

a) (2.82)

Using

Dµ
1

2
εµνρσF a

ρσ = 0 (2.83)

A small comment on how to obtain the first equality is that, choosing ν = 0 in (2.83), we
will get 1

2
Dkε

ikjF a
ij = 0 to realize that:∫

d3x
1

2
εijkF

a
ijDkφ

a =

∫
d3x

1

2
εijkDk(F

a
ijφ

a) (2.84)

and comparing

εikjDk(F
a
ijφ

a) = εikj∂k(F
a
ijφ

a) + εikjεabcAbkF
c
ijφ

c (2.85)

εikjF a
ijDk(φ

a) = εikjF a
ij∂k(φ

a) + F a
ijε

ikjεabcAbkφ
c (2.86)

We note that, since F a
ij and φa are contracting in εikjF a

ij∂k(φ
a), we can choose the dummy

indices as a → c, that is, we conclude that the last term in each equation is the same.
With this we prove the first equality in (2.81).
If we also consider the the gauge invariant electromagnetic field tensor defined earlier,
with the boundary conditions:

Bk =
1

2
εkijFij →

(
1

2ν

)
εkijF

a
ijφ

a, ν

∮
S2

dσkBk = 4πmν = 4π
Q

g
ν (2.87)

then 4πQ
g
ν is the mass of our monopole. Then we can rewrite the total energy of our

9Understanding the approach we have used to derive (2.11) and counting the indices of the terms in
the first parenthesis one can agree with (2.79).
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system as:

E =
4πQν

g
+

∫
d3x

∑
i,j,a

1

4

(
F a
i,j − εijkDkφ

a
)2 (2.88)

Where of course we can see that this energy is minimised when we have (2.81).

2.2.3 The connection between the Dirac and ’t Hooft Polyakov Monopoles
The first monopole solution was found by Dirac in the Maxwell’s equations themselves.

For a long time its quantum version was an interesting explanation for the quantization
of the electric charge. Besides Dirac approach we saw that monopole solutions also arise
in Yang-Mills theory, particularly in the Georgi-Glashow model. The interesting fact is
that, even though these two solutions were found in different scenarios they share some
similarities. First it starts with the fact that the classical Dirac monopole has a point-like
structure, while in the ’t Hooft-Polyakov case it has an internal structure. By studying the
numerical solutions found by Prasad and Sommerfeld, one can see that the monopole field
reach its assymptotic value rather fast, which means that outside a characteristic distance
the Higgs field reaches its vacua. From this solutions one can actually estimate the size of
monopole’s core Rc. In this sense it is possible to show that at large distances ( r >> Rc )
the classical Dirac monopole is a good approximation to the ’t Hooft Polyakov monopole
because in this regime the SU(2) symmetry is broken into U(1) what is conventional
electromagnetism [36]. In the cited reference and therein one can find also discussions
regarding topological similarities between the two models and how the homotopy sectors
defined by the mappings S2

∞ → S2
phys are related to the gauge field invariance on the the

Dirac’s monopole case.

2.3 Instantons

Historically instanton solutions were first obtained by Polyakov et.al [45] when in-
vestigating Yang-Mills theory looking for non-trivial topological solutions motivated by
the discovery of the ’t Hooft Polyakov monopole. As solitons, instantons are topological
solutions connecting two distinct vacua. Based on this we introduce the subject in a less
conventional way and we also study for the case of (1+1) dimensions. We start revisiting
some potentials in quantum mechanics, now from a different point of view, and try to
understand how instantons arise when tunneling is a possibility in these potentials. After
that we relate periodic potentials in quantum mechanics to the QCD vacua.
Instantons are solitons that arise in the Euclidian version of theories we studied before.
That is, t→ it

d2s = c2d2t− d2x→ c2dt2 + d2x (2.89)

we will adopt c = 1.
We start our approach with the following Hamiltonian system

H =
p2

2
+ V (x) (2.90)
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Let us suppose V (x) is a symmetric potential (V (x) = V (−x)).

Figure 2.6. Symmetric potential

In our treatment x(t) is a field depending only on time. Since we will focus on finite
energy solutions, it means ε→ 0 as x→∞, ε is the energy density, it is easy to obtain10

dx

dt
=
√

2V (2.91)

we can note that the action of the proposed Hamiltonian is

S =

∫ t

t0

(
1

2

(
dx

dt

)2

+ V (x)

)
dt

=

∫ a

−a
dx
√

2V

(2.92)

Another thing to note is that in a case where we are very close to x = a (large t) we can
expand V (x) around a and use (2.91) to obtain

dx

dt
≈ ω(a− x) (2.93)

where ω2 = ∂2V
∂x2 |x=a. Here we have used that V (a) = ∂V

∂x
|x=a = 0. If we solve for x we see

that x ∝ e−ωT which tell us that the characteristic size of the instanton is 1
ω
, then our

conclusion is that our instanton solution is localized. Note that in our consideration we
have chose the minus sign in ±

√
2V , otherwise we would get a wrong approximation.

So far, what was presented concerns the classical version of this system. An interesting
discussion can be made if we quantize this model around a and −a.
We will be interested in using an Euclidean version [46] of the path integral formalism to
calculate approximately the energy spectrum of the system, we will rely on the following
relation:

〈xf | e−HT/~ |xi〉 = N

∫
D [x] e−S/~ (2.94)

10Note that since we are working with t→ it a minus sign contribution arises from the time derivatives
in the Hamilton-Jacobi equations of motion.
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after inserting the completness relation for the Hamiltonian eigenstates one obtain

〈xf |e−HT/~|xi〉 =
∑
n

e−EnT/~ 〈xf |n〉 〈n|xi〉 (2.95)

We can see that, for large T , an approximation to the first order will give us the energy
of the lowest lying wave function. In the right hand side this is the same as calculating
the Stationary Phase Approximation (SPA) 11 of our functional integral. For doing so we
should expand the action around the classical solution of the equation of motion, in this
case our instanton.
We expand the action as

S = S(xcl)+

∫
δS

δx(t1)
δx(t1)dt1+

1

2

∫
dt1

∫
dt2

δ2S

δx(t1)δx(t2)
δx(t1)δx(t2)dt1dt2+. . . (2.96)

to obtain

N
∫
D[δx]e−S = N e−S0

(
Det

[
−1

2

δ2S

δx2

])− 1
2

(2.97)

note that in our expansion the term with first variation in the action vanishes since it
is our equation of motion, but the term of zero-th order is present S0 = S(xcl). After
quantizing the system around each vacuum we can calculate the following quantities.

〈−a|e−HT/~|a〉 , 〈a|e−HT/~|a〉 (2.98)

where e−HT/~ is the time evolution operator. These terms are exactly the tunneling am-
plitudes. But rather than calculating this directly with (2.97) we will present a more
simple approach. For the harmonic oscillator (single well) problem the result is known to
be [46]

〈a|e−HT/~|a〉HO =
( ω
π~

) 1
2
e−ωT/2 (2.99)

for the double well, just for convenience we will assume that the result is such that

〈−a|e−HT/~|a〉 =
( ω
π~

) 1
2
e−ωT/2K (2.100)

At the end of the section we will present considerations on how to calculate this tricky
K term. This is only true if we are considering T smaller than the lifetime of the tunneling
process, for T larger than that we should take into account multi-instanton configurations
connecting the vacua. That is due to sucessive tunneling processes.

We should also pay attention to another delicate feature of our system. We know that
in the stationary phase approximation we compute a gaussian integral that is related to
the determinant of the operator which is the second functional derivative of the action.

11The formalism of path integral will be briefly introduced in the next chapter
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If we have a zero mode among the eigenvalues of this operator it means we are in trouble
since the determinant appears in the denominator and is equal to the product of all eigen-
values. This result leads to a divergence12 that we should contour. Generally zero modes
arise in systems that possess translational symmetry, that is, the solution of our equation
of motion is free to be centered at any point in space. This is exactly the kind of problem
we have here and with which we should be careful. If one calculate the eigenfunctions
of the operator in (2.97) one should write a general solution to this differential operator as

x =
∑
n

cnxn (2.101)

where x0 is the zero mode with eigenvalue ε0 = 0 and amplitude c0.
Since this eigenfunction has translational symmetry if we perform an infinitesimal shift
on its center t0 → t0 + dt0 this must be proportional to an infinitesimal change in the
amplitude c0, that is dc0 ∝ dt0.
And the contribution to the functional integral of this zero mode should be computed as

∫ T/2

−T/2

e−
dc0ε0c

2
0

2

√
2π

=

∫ T/2

−T/2

dc0√
2π

(2.102)

This is exactly the integral present in 2.94, but note that since ε0 = 0 the c0 term does not
contribute as a gaussian integral, and this is the divergent term. We should then factor
out this integral in t0 variable in order to have K well defined. We will see shortly how
to deal with this integral∫

D[δx]e−S = e−S0

( ω
π~

) 1
2
e−ωT/2K

∫ T/2

−T/2
dt0 (2.103)

So our K term is now, such that we have factored out the contribution from the zero mode
from the path integral. The proportionality constant relating dc0 and dt0 is included in
K.

Then, as we said, for large T we would expect that not only one instanton would
interpolate the two vacua, but a string of instanton and anti-instanton consecutive pairs
where the distance of instantons-anti-instanton pair is way larger than the characteristic
size of the single solutions 1

ω
that is, 1

ω
<< |ti − tj|. This scenario can be pictured as:

We can think in this as a string of instantons interpolating a and −a and we can
calculate the transition amplitude of a tunneling process between these two vacua. Based
on what we presented before we can agree that this result should be 13 [46]

〈±a| e−HT/~ |a〉 = e
−S0n

~

√
ω

π~
e−

ωT
2 Kn

∫ T
2

−T
2

dt1

∫ t1

−T
2

dt2 . . .

∫ tn−1

−T
2

dtn (2.104)

Note that in this approximation the action of the multi-instanton solution can be ap-
proximated as S ≈ S0n since they are widely separated. Considering the instantons to be
distributed each centered at a discrete tn − tn−1 interval, the zero mode contributions of

12In our case we integrate with respect to the interval [−T
2 ,

T
2 ], but as large as our T the better is our

approximation and in the limit T →∞ this divergence can’t be ignored
13Chapter 7 of "Aspects of Symmetry. "Check also the lecture notes of Prof. Kazama "Instantons in

quantum mechanics"
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Figure 2.7. Multi-instanton solution connecting the two vacua. One first instanton with
a vacuum at x(−T

2
) is connected to an anti-instanton which is connected to another

instanton and this process is repeated untill the last solution is connected to x(T
2
). This is

a numerical representation of the Multi-instanton solution with a large separation between
instantons, this means that the characteristic instanton "size" is too small compared to
the interval T .

each instanton to the path integral results in∫ T
2

−T
2

dt1

∫ t1

−T
2

dt2 . . .

∫ tn−1

−T
2

dtn =
T n

n!
(2.105)

where −T
2
< t1 . . . < tn−1 <

T
2
. Fig. 2.8 is a simple example in order to understand the

result in (2.105).

If we sum the contribution of every possible n instantons to our potential we obtain:

〈−a| e−HT/~ |a〉 =

√
ω

~π
e−

ωT
2

∑
odd n

(Ke−
S0
~ T )n

n!
[1 +O(~)] (2.106)

This sum includes all contributions of strings of odd number of instantons connecting
a and −a. It supports only odd number of instantons since we must connect different
minima. These solutions corresponds to back and forth tunneling processes between
minima of the potential [46]. If we want to compute contributions of multi-instanton
solutions connecting the same minimum, for example −a and −a, we must have an even
number of instantons.

〈−a| e−HT/~ |−a〉 =

√
ω

~π
e−

ωT
2

∑
even n

(Ke−
S0
~ T )n

n!
[1 +O(~)] (2.107)

Comparing this with the previous similar equation we see that our result for the lowest
energy level approximation is:
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Figure 2.8. We can imagine a n = 2 example in order to understand how this result is
possible. We integrate

∫ T/2
−T/2

∫ t1
−T/2 dt2dt1, by shadowing the region of integration is easy

to see that T 2

2
. The result stated above is just a generalization of this example.

E± =
~ω
2
± ~Ke−

S0
~ (2.108)

We can make the same investigation regarding periodic potentials. In that case our in-
stantons can be summed in any way we want it does not need to be like the previous case
where we alternated between instantons and anti instantons, in this context

〈l|e−HT |m〉 =
∑
N+

∑
N−

δN+−N−−(m−l)(KTe
−S0)N++N−

N+!N−!
(2.109)

we can use the trick of rewriting a Kronecker delta in the following form:

δab =

∫ 2π

0

dθ

2π
eiθ(a−b) (2.110)

and also conveniently insert unity (1 = eiθe−iθ) in the expression

〈l|e−HT |m〉 =

∫ 2π

0

dθ

2π
e−iθ(m−l)

 ∞∑
N+=0

(
e−S0KTe−iθ

)N+

N+!

 ∞∑
N−=0

(
e−S0KTeiθ

)N−
N−!


=

1

2π

∫ 2π

0

dθeiθ(m−l) exp[2KT cos(θ) exp(−S0)]

(2.111)
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resulting in the following formula for the spectrum

E(θ) =
1

2
~ω − 2KT cos θe−S0/~ (2.112)

The system possess negative ground state energy, as it should be, tunneling is the fa-
vorable choice for the system rather than staying in the E = ~ω

2
state. The interesting fact

is that this same derivation holds in the context of QCD vacua, although it is not widely
accepted. The tunneling processes happens between asymptotic values of the gluonic field
(such field describes particles in QCD called gluons), leading to instantons solutions. In
this context, the θ parameter can be measured and nowadays the most strong constraint
in this term is θ < 10−9 [47], that is, pragmatically θ = 0. This implies that CP symmetry
is broken [48]. This CP symmetry is just the combination of charge conjugation symmetry
and parity symmetry, it changes θ to −θ. So far no one knows any physical process that
justify why this value of θ is so small, this is called the Strong CP problem.
As we promised we should discuss briefly how to compute K. It arise from

N
(
Det

[
−1

2

δ2S

δx2

])− 1
2

(2.113)

Computing this term will lead to

N
(
Det

[
−1

2

δ2S

δx2

])− 1
2

=
(
Det

[
−∂2

t + V
′′
(xcl)

])− 1
2 (2.114)

A common procedure to calculate this determinant is to rewrite it as(
Det

[
−∂2

t + V
′′
(xcl)

])− 1
2

= (S0/2π~)
1
2

[
Det(−∂2

t + ω2)
]− 1

2

×
∣∣∣∣ Det(−∂2

t + ω2)

Det′(−∂2
t + V ′′(xcl)

∣∣∣∣ 1
2

(2.115)

where the (S0/2π~)
1
2 factor appearing in the expression is the proportionality term be-

tween dc0 and dt0 discussed when regarding the zero mode present in (2.113). And Det′

means that we are not considering the zero mode when computing the determinant. It
happens that

N
[
Det(−∂2

t + ω2)
]

=

(
ω

π~

)
e−ωT/2 (2.116)

then we conclude that

K = (S0/2π~)
1
2

∣∣∣∣ Det(−∂2
t + ω2)

Det′(−∂2
t + V ′′(xcl))

∣∣∣∣ 1
2

(2.117)

This procedure is important because the determinant in the denominator possess a con-
tinuum spectrum of eigenvalues that need to be normalized. In the end the resulting
ration can be computed and it is finite. In the references cited in this section one can find
detailed derivation of this ratio.
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2.4 Vortices

They were first discovered in superconductivity with the work of Abrikosov studying
type two superconductors, [49]. After that theirs relativistic counter part was introduced
by [50] in the context of high energy physics. They were first motivated by the work of
Veneziano [51] that showed that string like solutions are also likely to model hadronic
matter. They tried to generalize the Abrikosov vortex found in superconductivity to
the relativistic case, coupling the gauge field of the theory to a complex scalar field, via
U(1) group. They showed that there is a link between the approximated solutions of the
proposed Lagrangian and the Nambu dual string. This model is known as Maxwell-Higgs
model14.

2.4.1 Maxwell-Higgs Model

The Lagrangian in 3 + 1 dimensions we will be working with is:

L = −1

4
FµνF

µν +Dµφ(Dµφ)∗ − U(φ, φ∗) (2.118)

where Fµν is the faraday tensor

Fµν = ∂µAν − ∂νAµ (2.119)

And Dµ is the covariant derivative defined in the following way:

Dµφ = ∂µφ+ iAµφ (2.120)

The potential term in the Lagrangian is of Higgs type given by the following expression:

U(φ, φ∗) =
λ

4
(|φ|2 − ν2)2 (2.121)

We can use the Euler Lagrange equation for the fields φ, φ∗ and Aµ to get respectively
the following equations of motion:

DµD
µφ+

∂U

∂φ∗
= 0

DµD
µφ∗ +

∂U

∂φ
= 0

∂µF
µν = Jν

(2.122)

The conserved current interacting with the U(1) gauge field is given by

Jν = ie [φ∗(Dνφ)− φ(Dνφ)∗] (2.123)
14Other models and new perspectives on vortex research can be found in the up to date notes of

B.Malomed, "Vortices: Old results new perspectives"
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Figure 2.9. U(φ, φ∗) potential

« Fulfilling the conservation condition ∂νJν = 0.
The Faraday tensor components are −F i0 = Ei and −F ij = 1

2
εijkBk. Since vortices

are usually static solutions in 2 + 1 dimensions we choose only −F12 = Bz ≡ B com-
ponent to survive. We will look for solutions with cylindrical symmetry, similar to the
Abrikosov vortex solution, meaning that there is a non-vanishing magnetic field only in
the z-direction, Bz.

We plan to search for static solutions, that is ∂0Aµ = ∂0φ = 0. For convenience we
also redefine our fields as:

Aµ = (A0,− ~A) = (ϕ,− ~A)

∂µF
µ0 = ∂µ

(
∂µA0 − ∂0Aµ

)
= ∇2ϕ

= −J0 = ie
[
φ∗(∂0φ− iA0φ) + φ(∂0φ+ iA0φ)

] (2.124)

We get to the following equation for the A0 = ϕ field :

∇2ϕ = −2e2|φ|2ϕ (2.125)

We take advantage of the symmetry of the problem and suppose an Ansatz for solving
the equation in the form

~A = − 1

er
(a(r)− n)θ̂ = A(r)θ̂

φ = νg(r)einθ
(2.126)

with the boundary conditions as: a(r → 0) → n, g(r → 0) → 0, a(r → ∞) → 0,
g(r → ∞) → 1, here of course ν is such that |φ(x → ∞)| → ν. These boundary
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conditions guarantee that the vortex fields go to zero at infinity and the solutions carry
finite energy.
Consider the equation of motion appeared in (2.122)

DµD
µφ+

∂U

∂φ∗
= 0 (2.127)

Now plugging our ansatz also into the equation for the φ field, (2.125) we get:

−g′′ − g
′

r
+
a2

r2
g +

λ2ν2

2
(g2 − 1) = 0 (2.128)

And also from ∂µF
µν = +Jν we obtain

d2a

dr2
− 1

r

da

dr
= 2e2ν2g2a (2.129)

Solving these two equations above we determine the vortex solutions. Usually these
equations are not analytically solvable, or at least, any analytical solutions were found.
Some approximations based on the aforementioned boundary conditions can be performed
to have a guess in the behavior of the solutions, as carefully done by [50], for example.

2.4.2 Chern-Simons Vortices

Another interesting theory regarding vortices, is called Chern-Simons theory. The
interesting fact about this theory is that from the very beginning, at the level of the La-
grangian, there is a topological term present, called chern-simons term. The Lagrangian
of this theory is written as follows:

LCS = Dµφ(Dµφ)∗ +
κ

2
εµνρAµ∂νAρ − V (|φ|) (2.130)

where κ is called Chern-Simons term, it will contribute to a non-trivial topology of the
system. The potential here can be any that supports a symmetry breaking process. In
particular it can be V (|φ|) = 1

κ2 |φ|2(|φ|2 − ν2)2.
This theory possesses many applications ranging from coupling of dynamical matter fields
to gravity models in 2 + 1 dimensions. A well known success of this theory and its devel-
opments came when people realized it could be used to model and explain the quantum
hall effect. This effect happens in devices where we can have a two dimensional gas of
electrons subjected to a strong magnetic field. The previous classical hall condutance is
now quantized in the form:

σxy =
e2

h
ν (2.131)

where ν is an integer or fractional number, characterizing the integer quantum hall effect or
fractionl quantum hall effect. It is a huge subject to dive into and some related interesting
subjects can be found in [52] for example15.

15Also in the well written lectures of Steven M. Girvin on quantum hall effect and Gerard Dune on
Chern-Simons theory both lectures prepared to the Les Houches Summer School. Chern-Simons Dynamics
and the quantum hall effect A.P Balachandran
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3 Solitons interacting with fermions

3.1 Path integral formalism

After this chapter we will have learnt how solitons interact with fermions. In order
to get there we need to introduce some tools, the first tool is path integral formalism,
with this formalism we will obtain the energy spectrum of the interaction. Not only
this, our fermions interacts with quantum solitons and this quantization procedure will
be discussed as well. The last but not less important tool we will present is the formalism
of Grassman numbers, essential when it comes to the path integral description of such
unique entities as fermions.
We start with path integrals method, this subject is generally introduced in the context
of quantum mechanics and after that generalized to the context of quantum field theory.
It is a formulation first introduced by Dirac [53] and after developed by Feynman [54]
to include the probability amplitude of all possible contributions of all possible paths a
particle can undergo between two points in space and time.

Figure 3.1. Different paths a quantum particle can undergo between two points

We introduce it as:

K(xi, xf , yi, yf ) =

∫ ∞∏
N ′=1

dxN ′ΨN ′ (x, y) (3.1)

where K(xf , yf , xi, yi) is the transition probability amplitude of a particle leaving position
(xi, yi) and reaching position (xf , yf ).
This expression is obtained from the following thought experiment. One can first imagine
the double-slit experiment where an electron in order to leave point A and reach point B
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Figure 3.2. This is a diagram of what would happen if we took the first double slit
experiment and generalize it to an infinite number of slits and screens.

must pass either through one slit or the other of a given screen, realizing that we can take
any number of slits for a single screen and also any number of screens (as it is pictured
in Fig. (3.2)) we can make the numbers of screen and slits arbitrarily large. Ψ11,Ψ12 and
Ψ1n are the probability transition amplitude density through first (second or n-th) slit of
the first screen. We take the the limit of screens and slits to infinity and we compute the
expression for the final amplitude (above) following probability theory rules. For each
screen we should sum all slit amplitude densities since each slit constitutes a possible
choice as a path the particle can undertake. For each screen we should take the product
of the resulting amplitude explained before since go through each screen is an independent
event.
That is

Ψ = lim
n→∞

(Ψ11 + . . .Ψ1n)× . . . (Ψn1 + . . .Ψnn) (3.2)

But this approach will only be valuable if find an specific form of the resulting wave
function. We need to be based on some properties the resulting transition amplitude
should follow, namely linear property of adding paths and we should be able to recover
the classical results when we go to the limit of ~→ 0
For this we suppose that Ψ should be dependent on the action of the model S(x, y) that
is something which is uniquely determined for each path and linear when adding paths.
For this reason we generally suppose Ψ =

∑
γ e

iS(γ)/~, where γ is a given curve or path
"chosen" by the particle. The ~ factor is introduced to enable us to use the so-called
SPA (stationary phase approximation) method when taking the classical limit ~→ 0. As
we considered before we need to sum over all possible paths, which means that for the
continuous limit:

K =

∫
D[q]eiS(q,q̇)/~ (3.3)

actually
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〈qb|exp(−iHT/~)|qa〉 =

∫
D [q] exp(

i

~
S(q, q̇)) (3.4)

where |qa〉 and |qb〉 are initial and final states from a quantum system respectively and
e−iHT/~ is the time evolution operator that dictates the time dynamics of the wave packet.
In order to prove this relation one might suppose that, rather than going from |qa〉 state
directly to |qb〉 state, the particle departures from |qa〉 and reaches |q1〉 state after time
T/N = ε. Then, it leaves |q1〉 towards |q2〉 after time 2T/N . We successively do that in
small steps until we reach |qb〉, N is the number of steps we suppose to divide our time
interval. At the end, we take the limit N →∞ to obtain what is in the right hand side.
With this approach we reach that∫

D[q] = lim
N→∞

∫ ∞
−∞

N−1∏
i=1

dxi
A(N)

(3.5)

which is called the measure of our path integral.
From this result we can proceed as following:∑

n

〈qb|φn〉 〈φn|qa〉 exp(−iEnT/~) =

∫
D [q] exp(

i

~
S(q, q̇)) (3.6)

that is, we have inserted the completness relation for the eigenstates of the hamiltonian
in the expression in the left hand side. After that, we can take the following clever step:

∫ ∞
−∞

dqo

∫
D [q] exp(

i

~
S(q, q̇)) =

∫ ∞
−∞

∑
n

〈q0|φn〉 〈φn|q0〉 exp(−iEnT/~)dqo

=
∑
n

exp (−iEnT/~)

= Tr
(
e−iHT/~

)
(3.7)

we consider |qa〉 = |qb〉 = |q0〉 and integrate q0. We redefine the measure to include the q0

integration in the symbol
∫
D[q0].

From the regime of quantum theory we will jump to the regime of quantum field theory
(we do not derive it here but the result also holds for QFT). Now our Hamiltonian and
action both depend on fields and no longer on canonical coordinates:∫

Dq0 [φ(q)] exp(
i

~
S[φ, ∂µφ]) = Tr

(
e−iHT/~

)
(3.8)

This result will be of great value for us in finding the spectrum of systems we will study,
in the next sections. We calculate the path integral and try to write the left hand side as
similar as possible to the right hand side, in order to match terms and find an expression
for the energy.

For this thesis we have chosen a short and concise motivation concerning path integral
formalism. Besides that there is a myriad of material about this subject applying this
approach in several physical examples and with deep discussions regarding this approach.
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3.2 Quantizing soliton fields

3.2.1 Some main concepts
This section is of great importance to understand fundamental features about the top-

ics that will be discussed further. For a pedagogical purpose we start proposing a system
and we compare its classical and quantum features in order to understand the quantum
behaviour of soliton solutions.
To start let us propose the following equation of motion:

d2x/dt2 = −dV/dx (3.9)

where we are choosing m = 1. Our potential has the following profile.

Figure 3.3. Asymmetric potential example

We can see that the static solutions of our system are x = a, x = b, x = c, where
x = a and x = c are stable solutions (d2V/dx2 > 0) and x = b is an unstable solution
d2V/dx2 < 0. In order to try an approximate solution for x (t) we can expand V (x)
around these extrema. Let us first try to expand it around x = a.

V (x) = V (a) +
1

2
ω2(x− a)2 +

1

3!
ξ3(x− a)3 +

1

4!
ξ4(x− a)4 + . . . (3.10)

note that V (a) is a minimum and dV (a)
dx

should naturally vanish. Here we have also defined
d2V (x)
dx2 |x=a = ω2 and diV (x)

dxi
|x=a = ξi

Our first assumption is that these higher derivatives of the potential are small enough for
us to consider the following equation of motion a good approximation to our problem

d2x/dt2 ≈ −ω2 (x− a) (3.11)

We know that this is our old good friend, the harmonic oscillator, with the additional
detail that it gives oscillating around x = a. As one knows, the energy spectrum and the
solution to the above equation are given by
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Ea
cl = V (a) + ω2A2 (3.12)

x (t) = A cos(ωt+ ∆) (3.13)

where A and ∆ are to be determined depending on the boundary conditions.
The quantum version of this problem is dictated by the following Hamiltonian:

Ĥψ (x) = Eψ (x) (3.14)

where the eigenfunction ψ (x) is the representation in the |x〉 basis of the hamiltonian
eigenstate |n〉, that is 〈x|n〉 = ψ (x).(

P̂ 2

2m
+ V (X̂)

)
|n〉 = En |n〉 (3.15)

Again we can expand our potential around one of its minima and try to find an expression
for the energy spectrum. We are allowed to perform the following Taylor expansion of the
operator V (X̂) around x = a.

V (X̂) =
∑
i

f i

i!
(x− a)i (3.16)

where f i = diV (X̂x)
dxi

|x=a and 〈n| f i |n〉 = λi.
We are interested in those satisfying the condition λi>2 〈(x− a)i〉 << ω2 〈(x− a)2〉.
ω2 = 〈n| d

2V (X̂x)
dx2 |x=a |n〉. This assumption is called "weak coupling approximation" [55].

With this assumption, very similar to the classical case we can already agree that this
problem will also resembles the harmonic oscillator but in the quantum regime. And we
know already how to find its energy spectrum what leads us to the conclusion that the
total energy of our quantum system is:

Ea
n = V (a) + ~ω(n+

1

2
) +O (λi) (3.17)

Note: that despite the fact the we have founded a solution around the minima of the
potential, 〈x|n〉 = ψ(x) is not a static solution, because we cannot tell exactly its momen-
tum and position due to the Heisenberg’s uncertanty principle 1. But we know for sure,
that the expectation value of the position operator with respect to the ground state2 is:

〈0|X̂|0〉 =

∫
ψ∗0 (x)xψ0 (x) ≈ a+O (λi) (3.18)

We can see that the energy of the ground state is given by

Ea
0 = V (a) +

~ω
2

(3.19)

1∆x ·∆p ≥ ~
2

2We can find an expression for the ground state solving the differential equation arising from the
condition 〈x| a |0〉 = 0.



47

The same reasoning can be adapted to the discussion regarding the other minimun in
x = c. And based on the arguments presented above, we can conclude that:

Ec
n = V (c) + ~ω

(
n+

1

2

)
+O (λi) (3.20)

with its ground state energy given by:

Ec
0 = V (c) +

~ω
2

(3.21)

note that although the two cases x = a and x = c are minima of the system, x = c is only
a local minimum with an energy Ec

0 bigger than Ea
0 for this reason we say that Ea

0 is the
"true vacuum" of the theory.
In this subsection we have discussed some main concepts regarding how we can construct
an analogy between a classical and quantum versions of the same system. Now, we
should proceed to the delicate task of quantizing static soliton solutions. In the following
discussions we will deal with fields in quantum field theory, that naturally possesses infinite
degrees of freedom. We cannot interpret the solutions of our equations of motion as
quantum particles as we usually do with non-relativistic quantum mechanics. So our
interpretations between this quantum-classical analogy changes a little, but we will present
additional mathematical tools that will help us to achieve our goal in obtaining a quantum
version of a soliton.

3.2.2 An example: Quantizing the kink static solution
Now, let us start with the following Lagrangian for the scalar field φ (x, t):

L =

∫
dx

[
1

2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂x

)2

− λ

4

(
φ2 − m2

λ

)2
]

(3.22)

here λ is the self-coupling constant in the λφ4 potential, U (φ) = λ
4

(
φ2 − m2

λ

)2

, and m is
proportional to the mass of the soliton present in this model.
Just for convenience we define:

V (φ) ≡
∫ [

1

2

(
∂φ

∂x

)2

+
λ

4

(
φ2 − m2

λ

)2
]
dx (3.23)

We are dealing with static solutions, ∂φ
∂t

= 0. Naturally, we use the Euler-Lagrange equa-
tion to obtain the equation of motion of the system,

δV (φ)

δφ(x)
= −∂

2φ

∂x2
−m2φ+ λφ3 = 0 (3.24)

This equation has four solutions, two are trivial ones φ (x) = m√
λ

= φ1, φ (x) = − m√
λ

= φ2

and the third and forth ones are non-trivial solutions φ (x) = ± m√
λ

tanh
(
m√

2
(x− x0)

)
=

φ±k. The soliton φk is called kink solution and φ−k is called anti-kink solution.
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Our potential is a quartic symmetric potential, which means that the two trivial vacua
possess the same potential energy V (φ1) = V (φ2) = 0. So, as we did earlier, we pick
up one of the vacua and perform our analysis. Due to the symmetry of the potential if
instead of choosing φ1 we choose φ2 we would obtain the same result.

Hence, let us choose φ1 and in the same fashion as before, expand V (φ) around this
vacuum. Just as a reminder, V (φ) in this discussion is now a functional, and we perform
a functional Taylor expansion:

V (φ̃) = V (φ1) +

∫
δV

δφ(x1)

∣∣∣∣
φ1

φ̃(x1)dx1 +

∫ ∫
1

2

δ2V

δφ(x1)φ(x2)

∣∣∣∣
φ1

φ̃(x1)φ̃(x2)dx1dx2 + . . .

(3.25)
where φ̃ is the variation in the field φ̃ = φ(x, t) − φ1, and φ1 is the trivial solution

present in the equations of motion. Our terms in the expansion will be:

∫
δV

δφ(x1)

∣∣∣∣
φ1

φ̃(x1)dx1 =

∫ [
∂V

∂φ(x1)

∣∣∣∣
φ1

φ̃(x1) +
∂V

∂∂x1φ(x1)

∣∣∣∣
φ1

∂x1φ̃(x1)

]
dx (3.26)

we can use integration by parts and since the surface term vanishes we obtain our well
known Euler-Lagrange equation and after evaluating it in the classical solution we obtain
zero, as expected expected.
To calculate 1

2
δ2V
δφ2 we need to know that:

1

2

∫ ∫
δ2V

δφ(x1)δφ(x2)

∣∣∣∣
φ1

φ̃(x1)φ̃(x2)dx1dx2 =

∫ ∫
dx1dx2

[
∂2V

∂φ(x1)∂φ(x2)

∣∣∣∣
φ1

φ̃(x1)φ̃(x2) +

2
∂2V

∂∂x1φ(x1)∂φ(x2)

∣∣∣∣
φ1

∂x1φ̃(x1)φ̃(x2) +
∂2V

∂∂x1φ(x1)∂∂x2φ(x2)

∣∣∣∣
φ1

∂x1φ̃(x1)∂x2φ̃(x2)

(3.27)

performing the calculations and remembering ∂
∂φ(x2)

φ(x1) = δ(x1 − x2), we can conclude
that only first and second terms contribute. As a result we have

1

2

∫ ∫
δ2V

δφ(x1)δφ(x2)

∣∣∣∣
φ1

˜φ(x1) ˜φ(x2)dx1dx2 =
1

2

(
− ∂2

∂x2
−m2 + 3λφ2

1

)
(3.28)

We know that V (φ1) = 0, and we know also that the first derivative in the expansion
is our equation of motion, what leads to δV

δφ
|φ1φ̃ = 0. With this we can conclude that the

contribution for our expansion starts with second order in the derivative. Analogously we
can calculate the higher contributions to the expansion. If we remember how we defined
(3.23) we can finally obtain:

V
(
φ̃
)

=

∫ [
−1

2
φ̃
∂2φ̃

∂x
− 1

2
m2φ̃2 +

3

2
λφ2

1φ̃
2

]
dx+ λ

∫ [
φ1φ̃

3 +
1

4
φ̃4

]
dx (3.29)

Substituing φ1 = m√
λ
, we get:

V =

∫
dx
φ̃

2

(
− ∂2

∂x2
+ 2m2

)
φ̃+m

√
λ

∫
φ̃3dx+

λ

4

∫
φ̃4dx (3.30)
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again, if we consider that our coupling constant is small (weak coupling approximation)
the approximated expression is given by the first term.

Now let us put together everything we have. We have expanded V around a classical
solution. As a result, the action now takes the following form:

S =

∫
Ldt =

∫ ∫ [
1

2
(∂tφ)2 − 1

2
φ̃(x)

(
− ∂2

∂x2
+ 2m2

)
φ̃(x)

]
dtdx−

∫
V (φ1)dt (3.31)

Since our expansion of V is around the static solution, that is φ̃(x) = φ − φ1, we have
∂tφ̃ = ∂tφ(x). By using integration by parts, we obtain

S =

∫
Ldt =

1

2

∫ ∫ [
−φ̃(x)∂2

t φ̃(x)− φ̃(x)

(
− ∂2

∂x2
+ 2m2

)
φ̃(x)

]
dtdx−

∫
V (φ1)dt

(3.32)

which can be written in the following form

S =

∫
Ldt =

1

2

∫ ∫
φ̃(x)

[
− ∂2

∂t2
−
(
− ∂2

∂x2
+ 2m2

)]
φ̃(x)dtdx−

∫
V (φ1)dt (3.33)

separating the classical part contribution of the integral, we have

Tr
(
e−iHT/~

)
= e

i
~V (φ1)

∫
D[φ̃]exp

[
− i

2~
δφ(x1)

δ2S

δφ(x1)δφ(x2)
δφ(x1)

]
(3.34)

And the result of the last integral is:

Tr
(
e−iHT/~

)
= const× e

i
~V (φ1)

[
Det

(
− ∂2

∂t2
+

∂2

∂x2
− 2m2

)]− 1
2

(3.35)

In order to calculate this determinant we assume our variation has the form, φ̃(x, t) =
ηn(t)eiknx, which gives

˜φ(x)

[
− ∂2

∂t2
−
(
− ∂2

∂x2
+ 2m2

)]
˜φ(x) = ηn(t)

[
− ∂2

∂t2
− ω2

n

]
ηn(t) (3.36)

where ωn are the eigenvalues of the following operator:(
− ∂2

∂x2
+ 2m2

)
ξn(x) = ω2

nξn(x) (3.37)

with eigenfunctions ξn(x) = 1
L1/2 e

iknx. The L parameter originates from the box normal-
ization procedure.

What we have done here is nothing but finding the eigenmodes of the pertubation
in φ(x). Our problem now is broken into a set of independent harmonic oscillators. We
simply need to compute:

Det

[
− ∂2

∂t2
− ω2

n

]
(3.38)
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which is the single quantum harmonic oscillator problem. 3

After computing this and plugging it in the action we can rearrange terms to obtain
the following expression for the spectrum:

E{Nn} = ~
∑
n

(
Nn +

1

2

)(
k2
n + 2m2

)1/2
+ O(λ) (3.39)

Here, Nn represents the number of quanta present in each n mode, each of them with
momentum given by ~kn. The momentum ~kn arises from the boundary conditions of
box normalization performed to solve the equations of motion for ξn(x).

Our lowest energy value is obtained when there is no quanta present:

E0 =
1

2
~
∑
n

(
k2
n + 2m2

)1/2
+ O(λ) (3.40)

We say that the quantum states are constructed around φ1, the "vacuum sector" and
postulate that there is a state with energy E0, |0〉.

As we discussed above in the non-relativistic quantum example we can calculate the
expectation value of the quantized scalar field φ with respect to this ground state given
by:

〈0|φ(x, t)|0〉 = φ1 + O(λ) (3.41)

It is easy to convince the reader that the same approach where we expand V around
φ2 leads to the same spectrum. The only difference is the expectation value 〈0|φ2 |0〉 =
φ2 +O (λ).

After second quantization the field now describes particles. The particles arising from
the quantisation of this trivial solutions are sometimes called mesons.

Acquainted with all of this let us start now by quantizing the soliton solution of our
system:

φK(x) = (m/
√
λ) tanh[mx/

√
2] (3.42)

Our expansion of the functional potential remains the same. The only difference is
the fact that now, φ̃ = φ(x, t)− φK = φ(x, t)− (m/

√
λ) tanh[mx/

√
2].

The resulting potential then is:

V [φ] =V [φK ] +

∫
dx

1

2
φ̃(x)

(
− ∂2

∂x2
−m2 + 3λφ2

K

)
φ̃(x)

+ λ

∫
dx

(
φK φ̃(x)3 +

1

4
φ̃(x)4

) (3.43)

Again, considering the potential up to zeroth order in λ we get the following equation of
motion [

− ∂2

∂x2
−m2 + 3m2 tanh2

(
mx√

2

)]
φ̃n(x) = ω2

nφ̃n(x) (3.44)

3To calculate this result one should take care of divergencies and sometimes depending, on the ap-
proach, this calculation can be tricky. We reference the interested reader chapter 6 of [55] for a complete
derivation of this result and also the well-written notes of Ricardo Rattazzi on "Path integral approach
in Quantum Mechanics". Further in this section we will follow a very similar approach to derive another
result.
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the result of this equation was found analytically in [28] after performing a change of
variable, z = mx√

2
. More recently an independent derivation was proposed by [56].

Then, the result is:

ω2
0 = 0 with φ̃0(z) = 1/ cosh2 z

ω2
1 = 3

2
m2 with φ̃1(z) = sinh z/ cosh2 z

(3.45)

those are followed by continuous levels that for convenience we represent here as:

ω2
q = m2

(
1

2
q2 + 2

)
(3.46)

with q being any real number.
Hence, the energy is given by

Ec = V (φc) + ~
∞∑
n=0

(
Nn +

1

2

)
ωn (3.47)

including the continuum spectrum. Actually the energy do not carry any contribution
from the n = 0 mode, since it is associated with the eigenvalue ω2

0 = 0 and as we know it
does not tell anything about the vibrational normal modes of this low order approximation.
Since with ω0 = 0 there is no vibration at all, it is like the "spring constant" of the
harmonic approximation vanishes. This is why it does not make sense to include this
mode in our results. Further attempt to include higher order contributions to the energy
expression regarding the n = 0 mode leads to divergences, confirming our point expressed
here. Here we will not dive into this particular case. Then our final result, inlcuding the
contributions from the discrete and continuous parte of the potential, at zero-th order in
λ is

E =
2
√

2m3

3λ
+

(
N1 +

1

2

)
~
√

3

2
m+m~

∑
qn

(
Nqn +

1

2

)(
1

2
q2

n + 2

)1/2

(3.48)

There are, some considerations that need to be discussed.

• The lowest energy of this spectrum, {Nn} = 0, is interpreted as the ground state
energy of the quantum kink. It is the ground state energy of the "kink sector". Just
as a reminder, it is not the vacuum of this theory. The vacuum of this theory was
built around the φ = φ1 solution.

• The first excited state with only N1 6= 0 tells us the energy of the excited state of
the quantum kink.

• The cases in which Nq 6= 0, are interpreted in a different manner though. These
states are actually thought as the scattering states of the mesons, such scattering
induced by the presence of the kink. We can be convinced about it with a more
carefull discussion of this case. We have written ωq as ωq = m

√(
1
2
q2 + 2

)
then we

can agree that the scattered meson carries an energy of ~ωq = m~
√

(1
2
q2 + 2) we
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can think of the term m~q√
2

as the kinetic energy of the meson and m
√

2 as its rest
mass. Furthermore, the eigenfunctions of the operator above are given by [28]

φ̃q(z) = eiqz
(
3 tanh2 z − 1− q2 − 3iq tanh z

)
(3.49)

Taking the limit when z →∞ we realize that tanh z → 1 and we can write it as:

eiqz
(
2− q2 − 3iq

)
= ei(qz±

1
2
δ(q)) (3.50)

Taking logarithm of both sides of the above equation we find that the phase is equal
to:

δ(q) = ∓2 tan−1 (3q/2− q2) (3.51)

meaning

φ̃q(z) −→
z→±∞

exp

[
i

(
qz ± 1

2
δ(q)

)]
(3.52)

Then, now it seems we have clear concepts and many tools to understand a bit more about
quantum solitons. In the following section we digress a little from the physics to introduce
a more sophisticated mathematical machinery that will enable us include fermions in the
path integral formalism.

Besides this approach, some authors also investigate the quantization of supersym-
metric solitons. This investigation can give remarkable insights on how to understand
quantum chromodynamics and some gauge theories. The whole point is that for these
supersymmetric theories a BPS sector may exist and important information can be ex-
ctracted even considering the strong coupling regime of this theories. The following ref-
erence investigate this subject regarding kinks, vortices and monopoles[27].

3.3 Grassman algebra

Up to this point the discussion of the semiclassical methods in this book was made only
regarding bosonic fields. These fields follow some fundamental commutation relations
that are of major importance in the discussion of their quantization. For Fermi fields
one needs to work with anticommutaion relations instead. This change brings more than
only a negative sign, it enables us to start calling these fermion fields, Grassman fields,
following Grassman algebra.
Now imagine one have an operator a0, such that {a0, a0} = 0 which implies that a2

0 = 0
and of course a3

0 = a2
0a0 = a4

0 = a3
0a0... = 0. Hence, there are only two elements of this

set that are independent functions (a0)0 = 1 and a0. In the same fashion we can define a
set of N operators as {a1, ..., aN} with the following requirement:

{ai, aj} = 0 (3.53)
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for any i, j = 1, . . . , N.

This gives linearly independent functions:

1

a1, a2, ..., aN

a1a2, a1a3, ..., a1aN
...

aNa1, ..., aNaN−1

...

...

a1a2...aN .

together, these 2N independent functions span a 2N dimensional space which we call GN .
It defines a Grassman algebra, where any element of this algebra can be expressed as
finite sum:

f(a1, ..., aN) = f 0 +
∑
i

f 1
i ai +

∑
i,j

f 2
i,jaiaj + ...

∑
i,...,z

fNi,...,za1...az (3.54)

where f 0...fNi,...,z are ordinary commuting c-numbers. Note that under the antisymmetry
of the operator aiaj this decomposition is not unique.

A calculus, both differential and integral, can be developed in this algebra but not
with the standard interpretation from the calculus of c-numbers. The integral defined in
this context is not the area under some curve and the derivative is not the slope of that
curve. Since we are dealing with operators, they do not vary continuously, but we can
take advantage of the same symbology to define derivatives and integrals of c-numbers,
together with some extra component which we explain below.
Let us start with definition of derivative in this algebra. We define

∂ai
∂aj

= δij (3.55)

For example we can try to compute

∂

∂a2

a1a2a3 (3.56)

Since the operators anti commute {ai, aj} = 0, in this case we just need to anticommute
the a2 operator untill it reaches to the far left and use the definition of the derivative:

∂

∂a2

a1a2a3 = −a1a3 (3.57)

Similar to derivatives we can define integrals of these operators in the Grassman alge-
bra. We define this integrals as just functionals that associate a Grassman number to a
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c-number. We just want this integrals to possesses two properties, linearity and transla-
tional symmetry

∫
f(a)da =

∫
f(a+ b)da∫

[αf(a) + βh(a)] da = α

∫
f(a)da+ β

∫
h(a)da

(3.58)

We start postulating two integrals that match both requirements

∫
ada = 1,

∫
1da = 0 (3.59)

Now, if we consider two operators a1, a2 that generating G2 we can define a double inte-
gral. This algebra is generated by the following elements, 1, a1, a2, a1a2. To be consistent
with the one dimensional integrals we calculated, we should agree with the following results

∫ ∫
a2da2da1 =

∫
1da1 = 0∫ ∫

a1da2da1 = −
∫ ∫

(a1da1) da2 = −
∫

1da2 = 0∫ ∫
1da1da2 = 0∫ ∫
a1a2da1da2 = −

∫
a1

∫
(a2da2) da1 = −1

which means that when performing an integral of Grassman numbers only the following
terms contribute: ∫

da1 . . . dana1 . . . an = (−1)P (3.60)

where P is the number of permutations needed. If there is a function f(a1 . . . an) that
can be expanded in terms of the generators of the algebra we can say that∫

f(a1 . . . an)da1 . . . dan =∫ (
f 0 +

∑
i

f 1
i ai +

∑
i,j

f 2
i,jaiaj + ...

∑
i,...,z

fni,...,za1...az

)
da1 . . . dan

(3.61)

and this function contributes to the integral with only the last term:∫ (∑
i,...,z

fni,...,za1...az

)
da1 . . . dan = −

∑
i,...,z

εi,...,zf
n
i,...,z (3.62)

It is useful also if we study how a linear change of variables affect the integral
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Suppose first a set of generators da1 . . . dan where we do the following transformation
of variables bi = Bijaj where every element of Bij is a c-number.
If the b operators are equally good basis to span GN , then of course, {ai, aj} = {bi, bj} = 0
We get to the conclusion that:∫

da1 . . . dan(a1 . . . an) =

∫
db1 . . . dbn(b1 . . . bn) = 1 (3.63)

We can see that bi = Bijaj it meas (B−1)jibi = aj where there is an implicit sum∑
i(B

−1)jibi = aj. Consequently a1 . . . an = [
∑

i(B
−1)1ibi] [

∑
i(B

−1)2ibi] . . . [
∑

i(B
−1)nibi]

but since only terms that match da1 . . . dan that contributes, we then obtain

a1 . . . an =
∑
i,j,k

εi,j,k(B
−1)1i(B

−1)2j(B
−1)3kb1 . . . bn

a1 . . . an = (Det(B))−1b1 . . . bn

(3.64)

where Det(B) is the determinant of the transformation. Then we should have:

da1 . . . dan = (Det(B))db1 . . . dbn (3.65)

for the integration in b variable to hold.
An instructive example of what we have learnt untill here is the following integral:∫

da1da2e
−λa1a2 (3.66)

If we expand it in terms of the operators of the basis, remembering that the only terms
contributing are a1a2 terms: ∫

da1da2(1− λa1a2) (3.67)

We finally obtain that: ∫
da1da2e

−λa1a2 = λ (3.68)

A more complete material on the subject can be found in the references [57, 58]

3.4 Path integral for the Dirac field

Here we use also the stationary phase approximation but regarding fermionic fields. We
take advantage of the Grassman algebra formalism developed before in this task. It turns
out that we obtain an exact result rather than just an approximation.
After we introduced Grassmam numbers we can evaluate the generalized path integral for
Fermionic fields.

Tr(e−iHT ) = N

∫ ∫
D(Ψ†)D(Ψ)eiS(Ψ†,Ψ) (3.69)
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We choose to work with natural units, ~ = 1.
As we did for the bosonic case, is instructive for us evaluate the following integral that
will appear many times in our considerations:

Tr(e−iHT ) = N

∫ ∫
D(Ψ†)D(Ψ)ei

∫
dxdtΨ†ÂΨ (3.70)

where Â is also an operator as we considered in the last section.
Thanks to the the Grassman number formalism we discussed previously one can ex-

pand Ψ in the following way:

Ψ =
∞∑
i

ϕi(x, t)ai, Ψ† =
∞∑
j

ϕ∗j(x, t)āj (3.71)

where the integration measure is∫ ∫
D[Ψ†]D[Ψ] =

∫ ∏
i

idāidai (3.72)

In this expansion we assume there is infinity number of of operators (a1, · · · , an, · · · , ā1,
· · · , ān, · · · ). It is important to stress that the coefficients multiplying a and ā are c-
numbers and not spinors, besides that in the expression for the measure we have i =√
−1.Because of the nature of the coefficients in 3.71, these Ψ and Ψ† are called classic

Dirac fields.
These coefficients obey orthogonality condition:∫ ∫

ϕ∗jϕidxdt = δij (3.73)

We are considering Â a differential operator, we can say it acts on the expansion coeffi-
cients as Âϕi = Aijϕj.
Then our integral is:

N

∫ ∫
D[Ψ†]D[Ψ]eiΨ

†AΨ = N

∫ ∏
i

(idāidai)e
∫ ∫

dxdtiΨ†AΨ

= N

∫ ∏
i

(idāidai)e
iāiAijaj

= NDet(Â)

(3.74)

Note how different this result is compared to the Bosonic case. We here have a factor of

Det(Â) in the numerator while in the previous case it was
√
Det(Ô) in the denominator.

It will play an essential role when we study the interaction of kinks and fermions in the
following sections.
The expansion chosen in Ψ is only with the intention of justifying the result above. We
could have expanded in the canonical way where rather than c-numbers there would be
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spinors. In this case the calculations would be much more difficult than what was pre-
sented, but should recover the same result.
Let us now take the tools we developed up to this point to calculate the energy of the free
fermion solution of the Dirac equation.
We start with the Lagrangian that dictates the equation of motion:

L = Ψ̄(i/∂ −m)Ψ (3.75)

Taking the variation with respect to Ψ̄, we obtain

(iγµ∂µ −m)Ψ = 0 (3.76)

where here γ0 = β =

(
I 0
0 −I

)
, αi = βγi remembering that we are in 3 + 1 dimensions.

And, we can write the fermionic path integral as:

Tr(e−iHT ) = N

∫ ∫
D [Ψ† ]D [Ψ] ei

∫
Ψ̄(/∂−m)Ψ (3.77)

here N is a normalization constant, we are also denoting Ψ̄ = Ψ†γ0. Our differential
operator now is:

Â = (+i
∂

∂t
+ i~α · ~∇−mβ) (3.78)

It means that we need to find the eigenvalues of the differential operator above if we plan
to evaluate

Tr(e−iHT ) = NDet(Â) (3.79)

We call the reader’s attention to a minor point that should be emphasized in this calcu-
lation. Note that this result is for the case where the Ψ and Ψ† fields are operators. But
the operator Â acts on the space of the Dirac spinors where Ψ→ ψ and ψ is ψ(x, t) is a
four component spinor where each component is a c-number.
Going further, we need to solve the following eigenvalue problem:(

i
∂

∂t
+ i~α · ~∇−mβ

)
ψ(x, t) = λiψ(x, t) (3.80)

The solutions are well-known plane waves [59], one more time these eigenfunctions were
box normalized :

ψ(x, t) =
1

L3/2
ei(

~k~x−wt)u(w, k) (3.81)

Inserting this in the eigenvalue equation above we reach the eigenvalue equation:

Det(w − i~α~∇−mβ − λ) = 0 (3.82)
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With the results of Bjorken and Drell [59] the possible values of λ are :

λk = w ±
√
k2 +m2 (3.83)

Note that there are four values of energy, each 2 fold degenerate. Then our expression is:

Tr(e−iHT ) = N
∏
w,k

(w + εk)
2(w − εk)2 (3.84)

where εk =
√
k2 +m2.

To solve the differential equation we need to set some boundary conditions. The al-
lowed values of k follows kL = 2πn given kn = 2πn/L. Then after box normalization we
take L→∞. To find the allowed values of w we need a less intuitive condition. Usually
we choose the function to be periodic, when we are dealing with bosons φ(x, 0) = φ(x, T ).
However, for dealing with fermions we should impose anti-periodicity ψ(x, 0) = −ψ(x, T )
conditions, which gives wnT = (2n+ 1)π (for more details check [55])
Looking carefully at each term, we realize that:

∞∏
n=−∞

(εk − wn)2 =
∞∏

n=−∞

(εk + wn)2 (3.85)

meaning

Tr(e−iHT ) = N
∏
k

(
∞∏
−∞

(εk + wn)4

)

= N
∏
k

(
∞∏
−∞

(wn)4(1 + εk/wn)4

)

= N
∏
k

∞∏
−∞

(
(2n+ 1)π

T

)4(
1 +

εkT

(2n+ 1)π

)4

(3.86)

We can conveniently choose N
∏

k

∏
w

(
(2n+1)π

T

)4

to be N
∏

k

∏
w

(
(2n+1)π

T

)4

=
∏

k(2)4,
since N is arbitrary. The rest can be simplified to

∞∏
n=−∞

(
1 +

εkT

(2n+ 1)π

)
=
∞∏
n=0

(
1− ε2kT

2

(2n+ 1)2π2

)
= cos

(
εkT

2

)
(3.87)

where we have used the result in [60] , eq. (1.413.3). Putting the results together we have

∏
k

(
2 cos(

εkT

2
)

)4

=
∏
k

(
ei
εkT

2 + e−i
εkT

2

)4

=
∏
k

(
ei
εkT

2

)4 (
1 + e−iεkT

)4 (3.88)
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which leads to

Tr(e−iHT ) =
∏
k

(ei
εkT

2 )4
(
1 + e−iεkT

)4

=
∏
k

(ei2εkT )
∏
k

∑
{nk}

(
4

nk

)
e−iεkTnk


= (ei2

∑
k εkT )

∑
{nk}

[∏
k

(
4

nk

)]
e−i

∑
k εkTnk


(3.89)

where in the final expression the product is limited only to the terms in square brackets
, finally we end up with:

Tr(e−iHT ) =
∑
{nk}

D({nk}) exp

[
−iT

∑
k

(−2εk + nkεk)

]
(3.90)

where D({nk}) =
∏

k

(
4

nk

)
. To get to this we should manipulate the exponentials in

such a way to factorize the term −iT , whats is left of it is our total energy. This energy
spectrum of the free Dirac field is

E{nk} =
∑
k

(−2εk + nkεk) (3.91)

Of course as one can see this spectrum is divergent. It counts for the Dirac sea, so it
should naturally be. The vacuum is where there is no states excited, i.e. nk = 0, giving

E0 = −
∑
k

2εk (3.92)

This is interpreted as the "fully filled negative energy sea" . This E0 can be removed by
normal ordering or by adding it to the Lagrangian.

3.5 Fermion soliton interaction and the possibility of soliton charge 1
2

3.5.1 General theory of solitons interacting with fermions
In this subsection we take advantage of the mathematical formalism developed for bosonic
and fermionic fields to understand what happens when solitons interact with fermions.

First, based on the quantization of the kink we performed before we can start devel-
oping some ideas. Our approach is based on the discussion of Jackiw and Rebbi [61],
regarding solitons states.

Again we have the same Lagrangian as before and we assume ~ = 1:

L =

∫
dx

[
1

2

(
∂φ

∂t

)2

− 1

2

(
∂φ

∂x

)2

+
1

2
m2φ2 − λ

4
φ4 − m4

4λ

]
(3.93)
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As discussed previously our quantum theory of the bosonic Lagrangian possesses not
only the vacuum sector and a multi meson sector as mentioned, but also possesses a kink
sector where in our Hilbert space is described by the following states, that spans the whole
kink sector:

• The states |P 〉, where only the first mode of the kink energy is excited, and we
interpreted as our quantum soliton particle, carrying an energy: E =

√
M2 + P 2

with momentum P and mass M .

• The kink excited state |P∗〉 carrying energy: E =
√
M∗2 + P with momentum P

and mass M∗.

• The scattering states |P, k1 . . . kn〉, that are the states created by excitations of the
continuum part of the energy spectrum and k1 . . . kn are the assimptotic momenta
of the mesons scattered.

• The scattering states of the excited soliton state |P∗, k1 . . . kn〉 where again k1 . . . kn
are the assymptotic momenta of the mesons scattered.

• The mass of the kink is considered constant in this weak coupling approximation
up to O(λ) order.

Let us start our discussion about fermion soliton interaction supposing the following La-
grangean, with a Yukawa type interaction:

L =
1

2
∂µφ∂µφ− U (φ) + Ψ̄(iγµ∂µ −m)Ψ + gΨ̄Ψφ (3.94)

where U(φ) = λ
4
(φ2 − m2

λ
)2. From the results we developed before we know we can write:

Tr
[
e−iHt

]
= N

∫
D [φ]

∫
D[Ψ†]D [Ψ] ei(Sint+Sφ+SΨ) (3.95)

We know already how to integrate the contribution to the action that comes from the
fermion field. We just need to note this time that there is a background field that differs
from the spectrum found before:

Âφ = i
∂

∂t
+ i~α · ~∇− β (m− gφ(x, t)) (3.96)

We need to find the eigenvalues of this operator. It means that we need to solve the
following eigenvalue equation:(

i
∂

∂t
− i~α · ∇+ β(m− gφ(x))

)
f(x) = εrf(x) (3.97)

that is similar to what was solved before. Then we need only to identify the corresponding
terms to find the result. We have

NDetAφc =
∑
{nr}

(
C̃e−iT [

∑
r(−εr+nrεr)]

)
(3.98)
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where C̃ =
∏

k

(
2

nk

)
. Hence, we obtain:

Tr[e−
iHt
~ ] =

∫
D [φ] eiSφ+lnNDet(Aφ) (3.99)

Just for convenience we define Seff = Sφ − i ln(NDet(Aφ)). At this step we could use
the stationary phase approximation but it is very difficult to calculate the result.4 We
can use an already known calculation to evaluate the trace of the hamiltonian. Since we
consider the weak coupling approximation we can approximate the extremum of Seff by
the extremum of Sφ that is φcl, and this is an already known result.
Therefore, our final expression is nothing more than

Tr
[
e−iHt

]
= eiS[φcl]NDet(Aφcl)∆0 (3.100)

where ∆0

∆0 =

∫ ∫
dtdx exp

(
i

2
y

(
∂2S

∂φ2

) ∣∣∣∣
φcl

y

)
(3.101)

with y = φ − φcl, knowing φcl is the soliton solution arising from the potential U(φ) in
the absence of the fermionic field.

Following the same steps we discussed before, we obtain

∆0 =
∑
{Np}

exp

{
−iT

[
∞∑
p=0

(
Np +

1

2

)
ωp

]}
(3.102)

where ω2
p are the eigenvalues of the operator

(
−∇2 + d2U

dx2

∣∣
φcl

)
Collecting all these terms we end up with:

E{Np,nr} = Ecl(φcl) + ~

(
∞∑
r

(−εr + nrεr)

)
+ ~

(
∞∑
p=0

(Np +
1

2
)ωp

)
(3.103)

the above result is divergent and counter terms need to be added to the expression to
have a finite energy.

In spite of the fact that the soliton energy has a divergent term there is a contribution
to the energy (due to the interaction with the fermion field) that comes exactly from the
zero point energy of the filled sea.
Also, compare the middle term with the term for the spectrum of the free particle. Here
nr can only assume values nr = 1, 2. Back there in the calculation of (3.98) our operator
eigenvalues are εr and not εk as in the previous case. In the former case we do not have
the degeneracy present in the second case we have.
Apart from the path integral formalism we could also look at this system from the point

4A more complete discussion about it can be found in Rajaraman [55], chapter 9
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of view of the canonical operator formalism
Our fields now are promoted to operators and if there is no zero mode our fields can be
expanded as:

Φ(x, t) = φcl(x) +
∑
r

(
ar
e−itωr√

2ωr
ηr(x) + a†r

eitωr√
2ωr

η?r(x)

)
(3.104)

We do the same with fermion fields, and expand it in the presence of the soliton solution,
where f (±)

r are solutions of the single particle Dirac equation for positive and negative
energy respectively:

Ψ(x, t) =
∑
r

(
bre
−iεrtf (+)

r (x) + d†re
iεrtf (−)

r (x)
)

(3.105)

We can define a normal ordered current operator as

jµ =
1

2

[
Ψ†, γ0γµΨ

]
(3.106)

This current is defined this way because the canonical expression of the current leads to
well-known divergencies due to the vacuum of the Dirac field, mentioned in the previous
section.
the mean value of the charge with respect to the quantum soliton ground state is

〈P |Q |P 〉 = 〈P | 1
2

∫
(Ψ†Ψ−ΨΨ†) |P 〉 dx (3.107)

= 〈P | (
∑
r

(b†rbr − d†rdr)) |P 〉 = 0 (3.108)

since br |P 〉 = dr |P 〉 = 0.

These states |P 〉 are the same as defined and explained previously, the vacuum state
of the soliton sector

3.5.2 Solitons with fermionic charge 1
2

In this chapter we have quantized solitons and have introduced the path integral formal-
ism for fermions together with the main features of fermion-soliton interaction as tools
to understand the following considerations. Starting with the non-trivial result obtained
by Jackiw and Rebbi in their proeminent work [61]. They have shown how solitons can
acquire fermion number by interacting with fermions ( valuable discussions can also be
found in [62])). It starts with the following Lagrangian:

L(x, t) =
1

2
(∂µφ)2 − 1

2

(
φ2 − 1

)2
+ Ψ(iγµ∂µ)Ψ + gΨΨφ (3.109)

the same as (3.94) but choosing m = 0 and λ = 1 in where Ψ (x, t) is a (1+1) fermionic
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field that is a spinor with two components fr =

(
ur(x, t)
vr(x, t)

)
, u(x, t) and v(x, t) c-numbers.

The γµ are gamma matrices which are poportional to Pauli matrices in 1+1 dimensions.
We use the representation γ1 = σ1, γ

0 = iσ3 here.
We can find the equation of motion for the φ field, free of the interaction with the fermion
field and in the static case:

d2φ

dx2
− ∂U(φ)

∂φ
= 0 (3.110)

From this equation we find the classical static soliton solution:

φ±k = ± tanh(x) (3.111)

And for the two components spinor field we have the following set of coupled equations

(
−∂x + gφk εr

εr ∂x + gφk

)(
ur
vr

)
= 0 (3.112)

An interesting feature of the system arise when we study the bound states of this
model. The fermionic bound energy spectrum 5, is as follows where εr < g

ε2r = 2gr − r2 (3.113)

This result is not easy to be obtained. Once decoupled, this set of equations can be solved
and its eigenfunctions written in terms of hypergeometric functions. Imposing the right
boundary conditions we obtain (3.113), r can be any integer up to r < g. With this we
see directly that there is a bound state with zero energy, such bound state called zero
mode. If εr 6= 0 then we have always a pair of energy εr and −εr for each r. Energy
always appear in pairs, if fr with energy εr is a solution to the equations of motion, it
means that Cf ∗r is also a solution and possesses energy −εr. In particular, note that the
zero state is not degenerate. Then we conclude that, Cf ∗0 = f0 that is, the state is it self
conjugate! Now, if we want to expand the Dirac spinor as before, again in the presence
of the soliton, we should separate the zero mode

Ψ(x, t) = b0f0(x) +
∑
r>1

(
bre
−iεrtf (+)

r (x) + d+
r eiεrtf (−)

r (x)
)

(3.114)

through the same procedure we can define a normal ordered current and calculate the
charge induced in the soliton when interacting with the fermion field.
The creation and anihilation operators in (3.114) follows

{b0, b
†
0} = 1, {b0, br} = {b0, dr} = 0 (3.115)

5The equations arising for this model are the same as the Schrödinger equation for the potential
g2 tanh2(x) ± g sech2(x). The discussion on how to find the bound states for this and other potentials
can be found in [28].
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We can define the normal ordered current operator as in [59], to avoid divergences:

jµ =
1

2

[
Ψ†, γ0γµΨ

]
(3.116)

resulting in

Q =
1

2

∫ (
Ψ†Ψ−ΨΨ†

)
dx

= b†0b0 −
1

2
+
∑
r

(
b†rbr − d†rdr

) (3.117)

And since br |P,−〉 = dr |P,−〉 = b0 |P,−〉 = 0 it implies that

〈P,−|Q|P,−〉 = −1

2
(3.118)

The |P,−〉 is the state where no zero mode is excited. The states |P,−〉 and |P,+〉 can
be related by:

|P,+〉 = b†0 |P,−〉 (3.119)

We also calculate the mean value of the fermion number operator with respect to the
|P,+〉 state to obtain:

〈P,+|Q |P,+〉 =
1

2

∫ (
Ψ†Ψ−ΨΨ†

)
〈Q〉 = +

1

2

(3.120)

It is possible to show that these states are self conjugate of each other.
There is also investigation regarding the interaction of solitons and fermions in higher

dimensions, e.g monopoles, vortices, instantons among others [63, 64, 65]. A particular
example is the investigation of coupling between the so-called skyrmion and fermions. A
skyrmion is a soliton introduced first by Skyrme in (3+1) dimensions that can effectively
describe baryons in the limit of a large color number. The 2+1 analogue of this structure
is known as the baby skyrmion model and arises in many contexts in condensed matter
physics. The following paper examines how fermions couple to this structures as well as
the consequences of this interaction [66].

3.6 Adiabatic and non-adiabatic methods

In this section we present and explain more recent results regarding fermion soliton inter-
action. First we start with presenting the adiabatic method developed by Goldstone and
Wilczek [67]. This method consists of calculating background fields evolving adiabatically



65

from the trivial topological regime to the non-trivial topological regime and its contribu-
tion to the fermionic vacuum polarization. The integral of the zero-th component of the
induced current due to the presence of soliton is exactly the fermionic charge acquired by
the soliton. Their work also showed that Jackiw and Rebbi’s result was only a particular
case among all possible values that the fermion number of a soliton can assume. Actually,
it can be any real number. The method can be summarized as follows:
Let us first study the following Lagrangian with two bosonic fields

L = ψ̄
(
i/∂ − g

(
φ1 + iγ5φ2

))
ψ (3.121)

This Lagrangian is invariant under chiral transformations

φ1 → φ1 cos θ + φ2 sin θ

φ2 → −φ1 sin θ + φ2 cos θ

ψ → eiγ
5θ/2ψ

(3.122)

to make this invariance more explicit we write

φ1 + iγ5φ2 = ρeiγ
5θ

ψ = e−iγ
5θ/2χ

(3.123)

where ρ =
√
φ2

1(x) + φ2
2(x), Vµ = −1

2
∂µθ, θ = tan−1 (φ2

φ1
) and χ is the spinorial com-

ponent of the transformed ψ.
Including an additional source term L = −ψ̄γµψJµ, this yields to:

L = χ̄(i/∂ − gρ− /V γ5 − /J)χ (3.124)

This procedure of adding a source term is commonly used in the steps to calculate the
induced current [68]. Then if we calculate the transition amplitude of this Lagrangian us-
ing path integral formalism and integrate over the Grassman fields (as we did previously)
we obtain:

G = NDet[i/∂ − gρ− /V γ5 − /J ] (3.125)

we can use an important identity valid for any matrix M as

Det(M) = exp[tr(ln(M))] (3.126)

Then we get

Det(i/∂ − gρ− /V γ5 − /J) = exp[tr(ln(i/∂ − gρ− /V γ5 − /J))] (3.127)

And consider ρ to be constant ρ ≈ ρ0, we can call ρ̄ = gρ0 so we can perform the following
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ln(i/∂ − ρ̄− /V γ5 − /J) = ln
[
(i/∂ − ρ̄

)
(1− Sf ( /V γ5 + /J))] (3.128)

= ln
[
(i/∂ − ρ̄

)
] + ln[(1− Sf ( /V γ5 + /J))] (3.129)

where Sf is the fermion propagator. This condition over ρ(x) is necessary since we want
to expand the logarithmic function in terms of the x variable, otherwise we would have
to consider derivatives of ρ(x) making even harder our computation of this determinant
[68].
The first term of (3.129) can be absorbed in the normalization constant N , we will be
interested in the second contribution of (3.129) that leads to

G = N exp [Γ1] , Γ1(J) = −iT r[ln(1− SF ( /V γ5 + /J)] (3.130)

where

Tr =

∫
d2x

∫
d2k

(2π)2
(3.131)

And Sf = 1
/k−ρ̄ . This Γ1 term is the one-loop effective action which can be expanded as

Γ1 = i
∞∑
n=1

1

n
Tr(Sf ( /V γ

5 + /J))n (3.132)

Then we can look again to the expression in (3.130) now having the following form

G = N e
∫
d2x

∫
d2k

(2π)2
ln(1−SF ( /V γ5+/J)) (3.133)

and we can interpet the integrand of
∫
d2x as an effective local Lagrangian, which means

Γ1 =

∫
d2xLeff = Seff (3.134)

This is the contribution to the fermionic induced current at one loop level. We will also
consider only first order contribution to the induced current, linear in Jµ so we can use
the following result to compute the first contribution to the induced current

〈jµeff〉 = −δSeff
δJµ

(3.135)

where Seff is the effective action. The fermion propagator in (3.132) is given by

SF =
1

/k − ρ̄
=

/k + ρ̄

k2 − ρ̄2 + iη
(3.136)

If we look at (3.132) up to the second term in the expansion we see that

Γ1 =
i

2

(
Tr[Sf ( /V γ

5)Sf /J ] + Tr[Sf (/J)Sf ( /V γ
5)]
)

(3.137)
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These will be the first terms to contribute to our current, others are either high order in
Jµ or possess null trace.
Using cyclic property of the trace one obtains:

Γ1 = iT r
/k + ρ̄

k2 − ρ̄2 + iη
/V γ5

/k + ρ̄

k2 − ρ̄2 + iη
/J (3.138)

where one can calculate each trace separately and use the following identities for the
gamma matrices in 1+1-dimension

Trγνγλγ5 = −2ενλ, T rγµγνγσγλγ5 = 2
(
−gµνεσλ + gµσενλ + gνσελµ

)
(3.139)

which gives

L1 = 2iεµν
∫

d2k

(2π)2

1

(k2 − ρ̄2 + iη)2

(
ρ̄2VµJν

−k · V kµJν + k2VµJν + k · V Jµkν
) (3.140)

Note that the last three terms have at least k2 in the integrand and if we change coordi-
nates to polar coordinates we obtain ≈

∫∞
0

drr3

r4+ρ̄2 = ln(r4 + ρ̄2)|∞0 . This characterizes a UV
divergence which needs to be properly regularized. We choose the dimensional regulariza-
tion procedure, where we suppose those integrals to be performed in d = 2− ε dimensions
where ε is an infinitesimal parameter. After computing the integrals we should take the
limit ε→ 0.
We use two common integral results∫

ddk

(2π)d
ρ̄2

(k2 − ρ̄2 + iη)n
= i

(−1)n

(4π)d/2
Γ(n− d/2)

Γ(n)

ρ̄2

(ρ̄2 − iη)n−d/2
(3.141)

∫
ddk

(2π)d
kµkνgνµ

(k2 − ρ̄2 + iη)n
=
i

2

(−1)n−1

(4π)d/2
Γ(n− 1− d/2)

Γ(n)

gµνgνµ

(ρ̄2 − iη)n−1−d/2

=
i

2

(−1)n−1

(4π)d/2
Γ(n− 1− d/2)

Γ(n)

2

(ρ̄2 − iη)n−1−d/2

(3.142)

after taking the limit ε→ 0 we have

L1 =
1

π
εµνJµVν (3.143)

As we said before, our main goal is to compute the induced current as in (3.135). Using
the result above we get

〈jνeff〉 = − 1

π
εµνVν =

1

2π
εµν∂νθ =

1

2π
εµν∂ν tan−1

(
φ2

φ1

)
(3.144)

and integrating the zero-th component of the induced current gives us the associated
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charge in the following

〈Q〉 =

∫ ∞
−∞

1

2π
∂x tan−1

(
φ2

φ1

)
dx (3.145)

If we consider the massive case of this theory, we set φ1 = m
g

and assume that the
soliton reaches its vacua as x→ ±∞ and φ2 → ±ν. We simple get to:

〈Q〉 =
1

π
tan−1

(νg
m

)
(3.146)

Taking the limit m→ 0 we obtain

〈Q〉 = ±1

2
(3.147)

We obtain different signs for the charge depending on how we take the limit m→ 0±.
All of this discussion is regarding to a linear coupling between soliton field and fermions,
one can study a non-linear coupling, for example in the form

L = gψ̄eiγ5θψ (3.148)

Following the same steps discussed above we can conclude that the expectation value of
the probability current operator is:

〈jµ〉 =
1

2π
εµν∂νθ (3.149)

which yields to

〈Q〉 =
1

2π
∆θ (3.150)

Note that the soliton with 0 ≤ θ ≤ π has charge 〈Q〉 = +1
2
and the soliton in the interval

0 ≤ θ ≤ 2π
3

has 〈Q〉 = +1
3
. In this fashion one can create a soliton with any real fermion

number in this non-linear model!
This model was first introduced in [69]. The non-linear model is also present in different
investigations regarding condensed matter physics, including investigations in topological
superconductivity [70].
This is the known Adiabatic contribution to the soliton fermion number. It is called
adiabatic because it does not depend on the profile of the scalar fields but only its vacua.
The only requirement is that the fields shown slowly vary in space.

Another approach first introduced by Mackenzie and Wilczek [71] study how back-
ground fields that do not satisfy the conditions imposed by Goldstone and Wilczek can
also contribute to the soliton fermionic number. We start with the following Lagrangian:

L = ψ̄(iγµ∂µ −m1 −m2e
iγ5φ(x))ψ (3.151)

We consider the case of what is called infinitely thin soliton. Let us suppose m1 = 0,
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m2 = m, and the background soliton field in the form

φ (x) = α
x

|x|
(3.152)

It possesses one discontinuity at x = 0. Our attempt is to expand the soliton field in terms
of the soliton Hamiltonian eigenstates. Just as always the coeficients of this expansion is
the creation and anihilation operators of particles in the solitonic eigenstates of energy.
Expanding the fermion number in terms of these creation and anihilation operators can
show from where the contributions to the fractional fermion number are coming.
Now we outline the steps cited above for writing the number operator in terms of creation
and anihilation of fermionic operators. For the free fermion fields we can write:

ψ (x) =

∫ ∞
−∞

dp

2π

[
bpup (x) + d†pvp (x)

]
= eχb (x) +

∫ ∞
0

dp

2π

∑
j=+,−

[
ajbµ

j
b (x) + cj†b ν

j
b (x)

] (3.153)

We can use the anticommutation relations and the orthonormality conditions to write
some of the operators in term of the others. Because of knowing how the number opera-
tor is defined N = b†pbp−d†pdp we write bp and dp as functions of χb, ajp, cjp operators which
gives

N = e†e+ aj†p a
j
p − cj†p cjp + 〈νj†p |νjp〉 − 〈v

j†
k |v

j
k〉 (3.154)

where
∫

dp
2π

and
∑

j=+,− are implicit.

Note that the term 〈νj†p |νjp〉 − 〈v
j†
k |v

j
k〉 in the fermion number is equal to N = −∆θ

2π
which

is the adiabatic contribution, after the soliton has been already built up. Thus, we have

N = e†e+ aj†p a
j
p − cj†p cjp −

∆θ

2π
(3.155)

leading to

〈N〉 = −∆θ

2π
(3.156)

We need to discuss a little the consequences of this result. Imagine a soliton being created
infinitely slowly from the ground state. Consider the following regimes

When 0 < α < π
2
the state constructed adiabatically is the ground state (E=0) and

is natural to accept that since the soliton is constructed adiabatically, then fluctuations
in the induced current must be very small. This garantees that the Dirac sky and bound
states remains empty and we obtain only the adiabatic contribution to the charge. Taking
the expectation value of the number operator, gives 〈N〉 = 0 + 0 + 0− ∆Θ

2π

When the parameter α = π
2
, the adiabatic state is the ground state. Besides that, the

bound state and the ground state possess the same energy E = 0! In fact, now there are
two ground states, one for each value of 〈N〉 = ±1

2
(this is exactly what we calculated

above in the formalism of path integral). The ground state charge with the empty bound
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state possesses 〈N〉 = −1
2
and with filled bound state possesses charge 〈N〉 = 1

2
. The

adiabatic state is the ground state with charge 〈N〉 = −1
2

When π
2
< α < π the state constructed adiabatically is no longer the ground state,

since the bound state has negative energy. For this reason the adiabatic state (3.156) and
the ground state (〈N〉 = 1 + 0− 0− ∆Θ

2π
) charge differ by 1.

When α = π something really interesting happens. In this case the energy spectrum
must be identical to the case α = 0 and it really is since the bound state goes into the
sea and our adiabatic state has charge given by eq. (3.156). Since after α = π

2
our

ground state and adiabatic state differ in charge by 1 this time the same happens and the
charge of our ground state should be 〈N〉 = 0, as there is no soliton. It means that for a
topological charge of ∆Θ

2π
= 1 the soliton is transparent to the fermions.

Figure 3.4. The bound state energies as a function of the parameter α of the soliton
studied in [28]
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4 Casimir energy and Levinson’s theo-
rem

4.1 Casimir energy

4.1.1 Historical introduction
After London formulated his theory of force between atoms in colloids [72], finding that it
is proportional to F ∝ 1

r6 , with r being the distance between atoms, experiments showed
that is was only valid for small r. As r increases the force seems to fall faster than
London’s result. The first guess researchers had at that moment relied on the retarded
effect of the electromagnetic field, based on the transition frequency between atoms that
had the order of magnitude of r/c, where such effects start to become relevant. Casimir
and Polder worked on the suposition and performed all lenghty QED calculations. They
have found that for large distances, F ∝ 1

r7 [73]. After this, Casimir came to discuss with
Bohr the results he had obtained. Bohr gave the hint on try to look at the zero point
energy of the configuration in order to simplify the computations. Casimir realized that
considering changes in the zero point energy lead to the same result he had obtained with
Polder. In the following year Casimir have published his seminal paper [74] where he
compute the change in the vacuum energy due to the presence of two neutral conducting
plates and presented what became kwnon as Casimir Force and Casimir Effect.

The approach of Casimir was to calculate the difference in the spectrum of electro-
magnetic field as the following:

H =
2∑

α=1

∑
k

(
a†αkaαk +

1

2

)
ωk~ (4.1)

where α and k are respectively the polarization and the momentum of the electromagnetic
field. For a zero number of photons emitted we have the vacuum energy of the electro-
magnetic field1:

H0 =
∑
α

∑
αk

ωk~
2

(4.2)

1Clearly this result diverges and need a proper renormalization. A very good discussion on this details
can be found in [75]
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When this free electromagnetic field is constrained to the boundary conditions imposed
by the two parallel plates, we have

n̂× ~E = 0, n̂ · ~B = 0 (4.3)

These conditions naturally change the allowed values of frequency for the field, which
yields to the Casimir energy

ECasimir =

[∑
α

∑
k

ω
′

k~
2
−
∑
α

∑
k

ωk~
2

]
(4.4)

where in the subraction the summations are well regularized. ω′k denotes the new allowed
values for the zero point frequency in accordance with the boundary conditions in (4.3).

4.1.2 Casimir energy for fermion-soliton system
The Casimir energy is non-zero whenever some physical processes change the free energy
spectrum of the fields envolved. In the case of Hendrik Casimir it was the parallel plates
but it could have been a background field such as a soliton field [76].
In the case of a non-trivial background field, like a soliton, the change in the energy spec-
trum of our system is exactly:

ECasimir = 〈Ω|H|Ω〉 − 〈0|Hfree|0〉 (4.5)

where the hamiltonian is:

H =

∫ ∞
−∞

(ψ†Hψ)dx (4.6)

and H the our one-particle hamiltonian.
Gousheh and Mobilia [77] have demonstrated that the fermion solution in the presence of
a background field is complete, which means that we can expand our fermion field as the
following.

ψ(x, t) =

∫ +∞

−∞

dk

2π

[
bkuk(x, t) + d†kvk(x, t)

]
=

∫ +∞

0

dp

2π

{∑
j=±

[
ajpµ

j
p(x, t) + cj†p ν

j
p(x, t)

]
+

∑
i

[
eiχ1bi(x, t) + f †i χ2bi(x, t)

]}
where ajp(cjp) are the creation (annihilation) operators associated with µjp(ν

j
p), positive

(negative) eigenfunctions of the electron field in the presence of the background. The sec-
ond term counts for the creation(annihilation) operators of bound states, f †i (ei). χ1bi and
χ2bi are respectively the positive and negative energy bound states. We will see shortly
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how the separation of bound states in this form is useful.

We obtain:

H =

∫ ∞
−∞

dx

∫ ∞
−∞

{
dp

2π

∑
j=±

[
ajpµ

j
p(x, t) + cj†p ν

j
p(x, t)

]
+
∑
i

[
eiχ1bi(x, t) + f †i χ2bi(x, t)

]}

×
∫ ∞

0

{
dq

2π

∑
n=±

[√
q2 +m2anqµ

n
q (x, t)−

√
q2 +m2cn†q ν

n
q (x, t)

]
+
∑
l

[
El+
boundelχ1bl(x, t) + El−

boundf
†
l χ2bl(x, t)

]}
(4.7)

When we calculate the expectation value of the Hamiltonian with respect to the vac-
uum in the presence of the background field, only terms with annihilation operator on
the left or creation operator on the right survive. This leads us to:

〈Ω|H|Ω〉 =

∫
dx

∫
dp

2π

∑
j=±

(−
√
p2 +M2)νj†p ν

j
p

+

∫
dx
∑
i

Ei−
boundχ

†
2bi

(x, t)χ2bi(x, t)

(4.8)

where we have used

cjpc
m†
q + cm†q cjp = δmjδpq

fif
†
l + f †l fi = δil

(4.9)

And the casimir energy can be obtained in the following form

ECasimir = 〈Ω|H|Ω〉 − 〈0|Hfree|0〉

=

∫
dx

∫
dp

2π

∑
j=±

(−
√
p2 +M2)νj†p ν

j
p +

∫
dx
∑
i

E−iboundχ
†
2bi

(x, t)χ2bi(x, t)

−
∫ ∞
−∞

dx

∫ ∞
−∞

dk

2π
(−
√
k2 +M2)v†kvk

(4.10)

what is important to note is that our system possesses charge conjugation symmetry,
which means that we could have obtained the Casimir energy by summing symmetrically
over all modes, positive and negative frequency ones, and at the end multiply by 1

2
. The

two terms that are not related to the bound states can be written as the difference be-
tween the continuum states densities of the sea in the presence and the absence of the
background field.
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Now we can explicitly compute the Casimir energy, using the phase shift method [62]:

ECasimir =
∑
i

Ei,sea
bound −

∫ +∞

0

dk
√
k2 +M2 (ρsea(k)− ρsea

0 (k)) +
M

2
(4.11)

where

ρsea(k) =

∫ ∞
−∞

dxν†jp ν
j
p, ρsea0 (k) =

∫ ∞
−∞

dxv†pvp (4.12)

The first term in this expression is what is left after integrating the normalized bound
states eigenfunctions. The second term comes from the difference between densities of
states in the continuum with and without the presence of soliton. The last term came
from the contribution from the half bound state already present in the sea in the absence
of the soliton [78, 79]. With this expression we can use a well known result from quantum
mechanics to relate the difference in densities of continuum states to the phase shift of
the scattering2.

ρ(k)− ρ0(k) =
1

π

dδ(k)

dk
(4.13)

Substituing this result in our expression we obtain:

∫ +∞

0

dk
√
k2 +M2 (ρsea(k)− ρsea

0 (k)) =

∫ ∞
0

dk

π

√
k2 +M2

(
dδ(k)

dk

)
(4.14)

We can add a zero term to avoid the divergence obtained from the surface term as∫
dk

π

√
k2 +M2

(
dδ(k)

dk

)
=

∫
dk

π

√
k2 +M2

(
d

dk
(δ(k)− δ(∞))

)
(4.15)

Our final expression for this term is:

∫ +∞

0

dk
√
k2 +M2 (ρsea(k)− ρsea

0 (k))

=−
∫ +∞

0

dk

π

k√
k2 +M2

(δsea(k)− δsea(∞))− 1

π
M (δsea(0)− δsea(∞)) . (4.16)

Finally the Casimir energy is given by:

ECasimir = +
∑
i

Ei,sea
bound +

∫ +∞

0

dk

π

k√
k2 +M2

(δsea(k)− δsea(∞)) +

1

π
M (δsea(0)− δsea(∞)) +

M

2

(4.17)

2We will provide a simple proof of this expression, shortly
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4.2 Levinson’s theorem

4.2.1 Levinson’s theorem, simple presentation
The following presentation is an attempt to derive Levinson’s theorem in the most in-
tuitive way relying on a one-dimensional quantum mechanics approach3. We start our
discussion with the one dimensional general potential V (x).

Figure 4.1. General potential of range R.4

Let us consider first, a particle that is traveling towards a localized potential with range
R as the one depicted in the Fig. 4.1. We also suppose a wall in x = 0 position. In this
example may induce bound states and a positive denumerable energy spectrum. For this
to happen we need to introduce also a second wall at distance L from the origin. This
last wall acts as a regulator, to make our positive energy eigenstates to be countable5.
After finding the wave function we remove this wall.
Solving the static Schrödinger equation in the region where V = 0, we have:

(
− ~2

2m

d2

dx2

)
ψ(x) = Eψ (4.18)

(4.19)

which has the general solution

ψ(x) = A sin kx+B cos kx (4.20)
3One should also check MIT opencourses "Levinson’s theorem, part II"
5The procedure we are employing is called box normalization. For L being finite what we have is a

discrete set of states, that is a countabele set. When we take L→∞ we expect the states to be countable
as well.
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With the appropriate boundary conditions

ψ(0) = 0,
dψ(x)

dx

∣∣∣∣
x=0

= A (4.21)

we obtain :

ψ(x) = A sin kx (4.22)

We also impose that ψ(L) = A sin kL = 0 then we can set the possible values of k, that
is k = nπ

L

If we now look at an infinitesimal variation in k we conclude that dn = L/πdk when
V (x) 6= 0, after our solution being scattered by the potential in the large x limit, we
obtain

ψ(x) ≈ A sin (kx+ δ) (4.23)

where δ is a phase acquired by the initial wave function after the scattering process
The condition ψ(L) = 0 implies kL+ δ = nπ and an infinitesimal change in k yields:

dkL+
dδ(k)

dk
dk = dn

′
π (4.24)

now, one can calculate the difference between these two cases:

1

π

dδ(k)

dk
dk = (dn

′ − dn) (4.25)

integrating both sides gives

1

π
(δ(0)− δ(∞)) = Nb (4.26)

where Nb is the number of bound states.
This simple derivation of the Levinson’s theorem is just a pedagogical strategy to help us
understand better the result. A more complete and rigorous derivation of this result in one
dimension can be found in [62]. It was first introduced by [80] regarding the Schrödinger
equation with a spherically symmetric potential and the zero angular momentum bound
states. Later, some authors also studied this result in different cases, to cite few of them
[81, 82], including cases with spin 1

2
fermions scattering.

We also present a simple derivation of what we have used in (4.13) with this same
example. We start with the same wave function after being scattered by the soliton as in
(4.23) with same boundary conditions (4.21). Imposing the boundary condition on ψk(L)
we obtain:

knL+ δ(kn) = nπ (4.27)
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Figure 4.2. States from the continuum "peeling off" into the discrete part of the spectrum.

We can write this condition for consecutive values of n and calculate the difference be-
tween expressions, as

knL+ δ(kn) = nπ, kn+1L+ δ(kn+1) = (n+ 1)π (4.28)

subtracting the two expression gives

(kn+1 − kn)
L

π
+ (δ(kn+1)− δ(kn))

1

π
= 1 (4.29)

One can realize that (kn+1−kn) starts to get smaller as L→∞. The limit L→∞ means
we are reaching continuum and if we divide our expression by (kn+1 − kn) we obtain:

L

π
+

(
dδ(k)

dk

)
1

π
=

1

(kn+1 − kn)
(4.30)

The term in the right hand side is exactly the density of continuum states after being
scattered by the soliton. As L → ∞ we see that this density is becoming infinity. If
we actually compare it with the free case, the difference between the results is finite and
given by6:

ρ(k)− ρ0(k) =
1

π

dδ(k)

dk
(4.31)

6A more rigorous derivation of this result can be found in [62]
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where ρ and ρ0 are respectively the density of states in the presence and abscence of
the potential. As we showed in our discussion about Casimir energy, this expression is a
key result if one wants to compute this energy using the phase shift procedure.

4.2.2 Levinson theorem and fermion-soliton interaction
We start with presenting following the lagrangian

L = ψ̄(x, t)
(
i/∂ −meiγ5φ(x)

)
ψ(x, t) (4.32)

In this model we are considering a fermion field coupled to a soliton where the soliton
is too massive to "feel" the presence of the fermion field. Therefore, we only take into
account the effect on of the fermion due to the presence of the soliton. We are using a
representation of the Dirac matrices such that γ0 = σ1, γ

1 = iσ3, γ
5 = σ2, where σ1,2,3 are

the Pauli matrices.
The field φ is a static field depending only on the position and constructed in the conve-
nient way:

φ(x) =


−θ0 for x ≤ −l,
µx for − l ≤ x ≤ l,

+θ0 for l ≤ x

(4.33)

This is the so-called SESM (Simple Exactly Solvable Model) [77]. Here µ = dφ(x)
dx
|x=0

and φ(x → ±∞) = ±θ0 .This picewise field was first proposed by [77]. This proposed
field has the advantage of enabling the system to be solved exactly. Furthermore, it
showed to be a very didactic way of understanding also the Levinson theorem for a Dirac
field coupled to a soliton in 1 spatial dimension .
If we suppose the following form for the Dirac field

ψ (x, t) = e−iEt
(
ψ1 + iψ2

ψ1 − iψ2

)
= e−iEt

(
ξ1

ξ2

)
, (4.34)

we obtain the equation of motion in term of the components of the field

(∂2
x ∓ iφ

′
∂x + E2 −m2 + φ

′
E)ξ1,2 = 0 (4.35)

The equations of motion for the case of the scattering states are

ξ0(x) =



a0

(
ime−i

θ0
2

(E + k)ei
θ0
2

)
eik(x+l) + b0

(
ime−i

θ0
2

(E − k)e
iθ0
2

)
e−ik(x+l) for x ≤ −l,

e0

(
(k1 + E)i

xµ
2

−ime−ixµ2

)
e
−ixζ

2 + f0

(
imei

xµ
2

(k1 + E)e−
ixµ
2

)
ei
xζ
2 for − l ≤ x ≤ l,

c0

(
(E − k)e

iθ0
2

−ime
−iθ0

2

)
eik(x−l) for l ≤ x,

(4.36)
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Our approach is to calculate the S-matrix components. We realize that there are dis-
tinct S-matrix coefficients for each component of the spinor field. It means that there
are two phase shifts and we need to introduce a procedure to associate these two phases
to a unique phase which is in agreement with Levinson’s theorem. The S-matrix can be
calculated as [83]

S = −i m

E + k

c0

a0

e−2ikl

(
eiφl

e−iφl

)
∝ eiδ(k)

(
1

1

)
(4.37)

where the proportionality factor is the transmition coefficient that is not of our interest
in this considerations. In [83] the procedure to find the proper δ(k) in agreement with
the Levinson’s theorem is proposed:

δ(k) =
1

2
(δup(k) + δdown(k)) (4.38)

where δup and δdown are respectively the up and down components of the S-matrix coeffi-
cient. The phase shift of these scattering states possess the following limits, as reported
by [83]

δskysea (k) =


(2n+1)π

2
for k →∞ (considering no threshold states)

nπ for k →∞, (considering threshold states)
±θ0 for k → 0 (always)

(4.39)

To obtain this we should separate the real and imaginary part of (4.37) in order to com-
pute its complex argument (if z is complex number arg(z) = atan−1( Imz

Rez
)). We do it for

each spinor component, and proceed as in (4.38) to take the limits of interest . We can
also write the difference in total phase shift as:

∆δ = ∆δsea + ∆δsky = [δsea(0)− δsea(∞)] +
[
δsky(0)− δsky(∞)

]
(4.40)

resulting in

∆δ =

(
N +

Nt

2

)
π (4.41)

where Nt is the number of threshold bound states in the presence of the background
field. This threshold bound state can be understood as the following. As the strength
of the potential increases (increasing θ0) there is a threshold value of parameter that
separates bound and continuum states. For this value of parameter the wave function is
not normalizable, that is, it cannot be normalizable as a bound state neither as a free
state [83]. A particular feature of this system is the presence of such states even in the
absence of the background field. Then to write (4.41) properly we should subtract these
states from the ∆δ expression.
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∆δ =

(
N +

Nt

2
− N0

2

)
π (4.42)

Hence N0 is the number of half-bound states in the absence of the soliton and N is the
number of half-bound states in the presence of the soliton. In [83], the authors discusses
about the Levinson’s theorem including this threshold bound state in the computation
of ∆δ. They show that the proposed expression in (4.38) is in agreement with the above
equation. To get to this conclusion investigations were made concerning the energy spec-
trum of the bound states, for different values of θ0 and µ parameters. To get full details
on this discussion check the cited reference.

Up to now we have only discussed about the weak form of Levinson’s theorem. It
relates the value of phase shift for k → 0 and k → ∞ with the number of bound states.
But there is a strong form of this theorem that relates the value of the entering bound
states and exiting bound states in the spectrum as the strength of the potential increases,
for each boundary separately [84].
We can write it as:

δ(0) = (Nexit −Nenter)π, δ(∞) = (Nenter −Nexit)π (4.43)

This result also holds for each of the continua separately.
Finally we can see that the difference in the phase shift giving rise to Casimir energy can
be rewritten in the following form with the help of the Levinson theorem:

ECasimir = +
∑
i

Ei,sea
bound +

∫ +∞

0

dk

π

k√
k2 +M2

(δsea(k)− δsea(∞)) +

M(N +
Nt

2
−
N0
t

2
) +

M

2

(4.44)

It is instructive to discuss a practical example and how Levinson’s theorem agrees with
the bound spectrum of the model.

We take for example the model we have been discussing, given by (4.32) and (4.33)
The result shown in Fig.4.3 is the spectrum of bound states formed by the interaction

of the fermion field with the soliton field. This result is similar to what was obtained in
[71] considering an infinitely thin soliton.

The spectrum where µ = 10 is actually very interesting since we have, in the interval
0 < θ0 < 2π, a bound state that "peels off" from the Dirac sky into the discrete part of
the spectrum and after that "sinks" into the Dirac sea.

We study the bound spectrum for the case where µ = 10 and θ0 = π. We obtain the
number of induced bound states by directly counting them from the spectrum but also
indirectly from information extracted from the phase shift. We have discussed already
the following expression:

∆δ ≡ [δsky(0)− δsky(∞)] + [δsea(0)− δsea(∞)] =

(
N +

Nt

2
− N0

t

2

)
π, (4.45)
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Figure 4.3. Bound state spectrum for µ = 10 and θ0 = π.

Figure 4.4. Phase shifts for the SESM model.

If we take a look at Fig.4.3 we see that for θ0 = π there are two bound states. We also have
two initial threshold bound states or half-bound states7 (N t

0 = 2, these are always present)
in the absence of the background field, but zero threshold state induced by the soliton
(N t = 0)8. Then the right hand side of (5.40) results in ∆δ = π. In order to compare
this with the left hand side we should calculate the phase shifts induced in the fermion
field after being scattered by the soliton, with the same parameters µ = 10, θ0 = π. We
have calculated this in Fig.4.4. With the phase shift one can compute the left hand side

7This is present particularly in unidimensional and bidimensional systems [85]
8To have an induced half-bound state it would be necessary to have a bound state being formed exactly

at θ0 = π which is not our case, but is what happens for θ0 = 0.88π
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of (5.40). Which results in

∆δ ≡ [δsky(0)− δsky(∞)] + [δsea(0)− δsea(∞)] (4.46)
= [(1.5− 1) + (−0.5− (−1))]π = π (4.47)

Of course the results from both sides must match. Another example for a different
value of parameters can be calculated. Let us choose θ0 = 0.8π and µ = 10. We also
check that our results are consistent.

[0.5− 0.8− 0.5 + 0.8]π = (1 + 0− 1) π = 0 (4.48)

There is also the strong form of Levinson’s theorem [78]. In this case the number of
bound states entering or leaving is what is associated with the phase shift, in the limits
k →∞ and k → 0.

δ(0) = (Nexit −Nenter) π, δ(∞) = (Nenter −Nexit) π. (4.49)

This form of the result also works for each continua separately and computes the
number of entering and exiting states from the continua. Let us also elaborate an example

Consider again θ0 = π, µ = 10. This leads to δ(0) = (2− 1
2
) which is in agreement with

Fig.4.39. Where, for the positive energy spectrum we have δsky(0) =
(
N sky

exit −N
sky
enter

)
π =

(1− 1
2
)π = 1

2
π10

Unfortunately this counting procedure only works for δ(0), it cannot be done for δ(∞)
case, check [84] and references therein.

4.2.3 Concluding remarks
The Casimir Energy, as we have demonstrated, can be non-zero when there is a topo-

logically non-trivial background field in the configuration of the system. Casimir energy
computations are present in many branches of soliton physics. For example, the Casimir
energy contributes to the lowest order quantum correction to the mass of the soliton [55]
and also make possible the study of the stability of the configuration for the coupled fields,
[78]. Many authors also investigate the contribution of the Casimir Energy in the mass of
the soliton in models concerning supersymmetric solitons [86, 87].Besdies that, Casimir
effects are also present in models in quantum field theory that resembles QCD and QED
in lower dimensions [88].

9The number of bound states exiting the in continuum is computed counting the number of continuum
states that have "peeled off" from the Dirac sky into the region −1 ≤ E

m ≤ 1. In the case we have
considered between 0 < θ0 < π there are two continuum states entering into the discrete part of the
spectrum.

10The half terms appearing are due to the half bound states
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5 New results

5.1 The Model

The model we have studied is based on a coupling dictated by the following Lagrangian:

Lf = ψ̄ (x, t)
(
iγµ∂µ −Meiφ(x)γ5

)
ψ (x, t) . (5.1)

This type of interaction is given by the well known chiral non-linear sigma model, the
φ (x) field is a pseudoscalar, which means that this background field changes its sign under
spatial coordinate inversion. But, together with the γ5 Dirac matrix we guarantee that our
system possesses parity symmetry. This is an interesting symmetry present in the model.
The presence of this symmetry in our Lagrangian means that the Hamiltonian commutes
with the parity operator and the eigenstates of the hamiltonian are also eigenstates of the
parity operator.
If we consider separately the eigenvector with positive and negative parity we can write
the time-independent Hamiltonian equation as:

Hψ± = E±ψ± (5.2)

Therefore, Pψ± (x) = ±ψ± (x). Meaning that

[P,H]ψ+ (x) = PHψ+ (x)−HPψ+ (x)

= PE+ψ+ (x)−Hψ+ (x)

= E+ψ+ (x)− E+ψ+ (x)

= 0

(5.3)

As mentioned before, this implies that eigenvectors of the parity operator are also eigen-
vectors of the Hamiltonian and other than working in the x interval [−∞,+∞] we can
start working with [0,+∞]. But in order to take advantage of this symmetry we must
find our parity operator, we proceed as following
We take the Dirac equation

(iγµ∂µ −Meiγ
5φ)ψ = 0 (5.4)

and factor out the time dependent part of the wave function as

ψ = ψe−iEt (5.5)
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We rewrite (5.4) and multiply it by Pγ0

Pγ0
(
γ0E + iγi∂i −Meiγ

5φ
)
ψ = 0 (5.6)

We obtain

P (iγ0γi∂i −Mγ0eiγ
5φ)ψ = −EPψ (5.7)

The system have parity symmetry, it means that Pψ is also a solution of the Dirac equa-
tion. If we write (5.4) for Pψ we obtain

(−iγ0γi∂i −Mγ0e−iγ
5φ(−x))Pψ = −EPψ (5.8)

Then if we compare (5.8) and (5.27) we conclude

Pγ0γi = −γ0γiP, Pγ0eiφγ
5

= γ0e−iφγ
5

P (5.9)

We can look to the last condition and rewrite eiγ5φ as

Pγ0(cosφ+ iγ5 sinφ) = γ0(cosφ− iγ5 sinφ)P (5.10)

in order to obtain

Pγ0 = γ0P, Pγ0γ5 = −γ0γ5P (5.11)

to find that, P must be

P = γ0 (5.12)

In the next section we will use the parity operator to set our boundary conditions for the
parity states.
Besides that we assume that the background field is a solution of the equation of motion
arising from the given Lagrangian:

Lb =
1

2
(∂µφ (x))2 − µ2

2θ4n
0

(
φ2n (x)− θ2n

0

)2 (5.13)

where µ = dφ(x)
dx

∣∣
x=0

, φ (±∞) = ±θ0 and n belongs to the set of natural numbers. The
solutions of the equations of motion dictated by this potential are called compactons1.
We plot some numerical solutions for different values of n in Fig. 5.1

1We use this name here, because as n increases we see our soliton getting more "compact" that is, the
soliton acquires finite span.
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Hence the complete Lagrangian of our model has the following form:

L = Lb + Lf (5.14)

The type of interacting present in Lf is called chiral non-linear σ model (ChNLM). It
was first proposed by Feza Gürsey [69] when studying the symmetries of strong and weak
interactions.

There are other classes of non-linear sigma models (NLσM) and those has been widely
studied. With investigations in cosmology [89], particle physics [69], string theory [90],
condensed matter physics [55] and other fields. Particularly, in particle physics, ChNLM
models are present in the theory of Skyrmions [91] and chiral bag models which are
important theories to describe low energy QCD [92].

There are also, investigations applying ChNLMmodels to describe the one dimensional
version of topological superconductivity [70]. Based on the rich physics this model has
provided and also following the investigations in the literature on fermion soliton interac-
tions [78, 93, 77] we consider the model described by the Lagrangian in (5.1). The profile
of the prescribed soliton is also of great interest. The model we are studying here, with
a free n parameter, is also an interesting one compared to previous works [93, 78, 77].
It actually interpolates the SESM profile for the background field and the kink one as
we change n. This is interesting because it enables us to investigate the properties of
both models when increasing n. Particularly, we are interested in the behavior of the
Casimir energy for each parity channel. Investigations reported an oscillating behavior of
the Casimir energy for the SESM model, see for example Fig. 5 of [93].
Our goal is also to study how this behavior changes as we start with the kink model
(n = 1) and increase n toward the SESM model (n→∞). This will help us understand
this unique oscillatory behavior of Ecasimir, for each parity channel.

In summary this 1 + 1 dimensional model presents the more fundamental physical
properties arising from the coupling of solitons with fermions. Such properties can be of
great importance in enlightening future investigations of such kind of couplings in higher
dimensional systems. Throughout this work we compare our results with previous results
cited earlier [78, 93], for the limiting cases n = 1, n→∞.

5.2 Equations of motion

The precise way of solving the equations of motion for this coupled system is to write the
complete Lagrangian of the problem and solve the equations dynamically, which is too
complicated. In fact, we perform some simplifications. In the same fashion as the authors
of [77], we are interested only in the effect on the fermion field due to the exsitence of
the soliton. This means that we solve first the equations of motion arising from Lb and
assume φ to be a background field in Lf . This approach is chosen since the mass of the
soliton is supposed to be much bigger than the mass of the fermion field (weak coupling
regime) which means that the pertubation induced in the soliton due to the presence of
the fermion is almost negligible.

Since our system is not analytically solvable we need to use a numerical method to
find the solutions of the following equation of motion for the fermion field. Following the
literature we choose the representation to be γ0 = σ1, γ

1 = iσ3, γ
5 = γ0γ5 = σ2.

iσ1∂tψ − σ3∂xψ −M [cosφ(x) + iσ2 sinφ(x)]ψ = 0 (5.15)
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Figure 5.1. Different profiles of solitons arising from (5.13) for several n. We have used
µ = 10 and θ0 = π

where ψ is a two component spinor in the form

ψ =

(
ψ1

ψ2

)
(5.16)

Following literature we define new variables:

ψ (x, t) = e−iEtψ (x) = e−iEt
(
ψ1 + iψ2

ψ1 − iψ2

)
= e−iEt

(
ξ1

ξ2

)
= ξ(x, t) (5.17)

which leads us to the following equations of motion

(
i∂x − E iMeiφ(x)

−iMe−iφ(x) −i∂x − E

)(
ξ1

ξ2

)
=

(
0

0

)
(5.18)

For computational purposes we write explicitly the real and imaginary parts of each com-
ponent of the spinor field as: (

ξ1

ξ2

)
=

(
y1 + iy2

y3 + iy4

)
(5.19)

Besides that we work with the dimensionless parameters in the equation of motion using
the mass of the fermion as the reference scale considering xµ → Mxµ, ψ → ψ√

M
, φ → φ,

E → E√
M
, which gives:
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y
′

1 + cosφ (x) y3 − Ey2 − sinφ (x) y4 = 0 (5.20)

y
′

2 + cosφ (x) y4 + Ey1 + sinφ (x) y3 = 0 (5.21)

y
′

3 + cosφ (x) y1 + Ey4 + sinφ (x) y2 = 0 (5.22)

y
′

4 + cosφ (x) y2 − Ey3 − sinφ (x) y1 = 0 (5.23)

At this point we take advantage of the Runge Kutta Fehlberg method of order 5 to
find the bound states of the system. We proceed as following: After rescaling the en-
ergy with the fermion mass, it can assume any real value in the interval [−1, 1]. The
method of solving these equations is based on choosing the lowest bound value of the
energy (E = −1) to solve the coupled equations of motion and with small steps raise
the energy value until it reaches E = 1. For each value of energy we assert to solve the
equations of motion we obtain y1, y2, y3, y4 and for each step of the numerical algorithm
we calculate sum = y2

1 +y2
2 +y2

3 +y2
4 which is our numerical way of determining which are

the normalizable solutions. To clearly see the values of energy for which we obtain nor-
malizable solutions we plot ln (sum) versus E, check Fig. (5.4). The deep valleys present
in the graphic profile are the values for which our sum variable "converge". Those are the
eigenvalues of energy. This method was first adapted by A.Mohammadi and A.Amado in
a previous work.

Figure 5.2. Example of the algorithm used for finding the bound state energies. For this
example we choose µ = 10, θ0 = π, n = 1 and the valleys are centered at E = −0.628000
and E = 0.910000. We have calculated these eigenvalues for each parity, positive (pp)
and negative (np), of the eigenstates.

We solve the spectrum of energy as a function of µ and θ0 parameters. We repeat the
procedure explained above for each value of these parameters to obtain the bound energy
spectrum shown in Fig. 5.4 and Fig. 5.5
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Figure 5.3. In the left graph we have the profile of the soliton for n = 1 fixed µ = 10 and
θ0 = 0.5π, π, 1.5π in solid, dashed and dotdashed lines respectively. In the right graph we
have the profile of the soliton n = 1 for fixed θ0 = π and µ = 1, 5, 10 in solid, dashed and
dotdashed line respectively.

In order to solve these equations of motion we have used boundary conditions determined
by the parity symmetry of our system. After the transformation (5.17) we obtain the
following representation for the Dirac matrices, γ0 = −σ2, γ

1 = iσ1, γ
5 = γ0γ1 = −σ3

Where we can say that
Pξ±(x, t) = ±ξ±(x, t) (5.24)

If we have ξ+ =

(
f(x)

g(x)

)
, this should satisfy

−σ2

(
f(−x)

g(−x)

)
=

(
f(x)

g(x)

)
(5.25)

and if we evaluate f(x) and g(x) at x = 0(
0 i
−i 0

)(
f(0)

g(0)

)
=

(
f(0)

g(0)

)
(5.26)

we can conclude that

ξ+(0) ∝
(

1

−i

)
(5.27)

With the same reasoning

ξ−(0) ∝
(

1

i

)
(5.28)

It is important to mention that we have faced a numerical difficulty when solving the
bound state energies for small µ. In this case our soliton is very broad and converges very
slowly to the limiting value θ0. As a result it takes more time to find the bound energies
and numerical errors starts to stack. Even though Fig 5.5 matches the results in [78]
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Figure 5.4. Bound state energies as a function of the parameter θ0, for three values of
n. The µ parameter is set at µ = 10. The + and − signs labels the bound states found
depending on the boundary condition we have used, (5.27) or (5.8)

Figure 5.5. Bound state energies as a function of the slope of the field µ, for three values
of n. The θ0 parameter is set as θ0 = π. The + and − signs labels the bound states found
depending on the boundary condition we have used, (5.27) or (5.8)

5.3 Scattering states

We have also calculated the fermion wave function scattered by the soliton. We have
considered an incident plane wave from the left, this wave is partially transmitted but
also partially reflected, and have the following form
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ξk(x) =

(
y1(x) + iy2(x)
y3(x) + iy4(x)

)
=



(
a1 + ia2

a3 + ia4

)
e−ikx +

(
b1 + ib2

b3 + ib4

)
eikx for x→ −∞(

z1(x) + iz2(x)

z3(x) + iz4(x)

)
for finite x(

c1 + ic2

c3 + ic4

)
eikx for x→ +∞

(5.29)

For computational purposes we can factorize the oscillatory factor present in ξk(x).

ξk(x) = eikxηk(x) = eikx
(
η1(x) + iη2(x)
η3(x) + iη4(x)

)
(5.30)

This will allow us to easily extract the relevant coefficients in (5.29). Then, inserting
(5.30) in our equations of motion leads to

η
′

1 + cosφ (x) η3 − (E + k)η2 − sinφ (x) η4 = 0 (5.31)

η
′

2 + cosφ (x) η4 + (E + k)η1 + sinφ (x) η3 = 0 (5.32)

η
′

3 + cosφ (x) η1 + (E − k)η4 + sinφ (x) η2 = 0 (5.33)

η
′

4 + cosφ (x) η2 − (E − k)η3 − sinφ (x) η1 = 0 (5.34)

where we choose the boundaries conditions to be dictated by the same problem analyti-
cally solved in (4.36). At large x the scattered states will have the values

η1(∞) = c0(E − k) cos

(
θ0

2
− kθ0

µ

)
, η2(∞) = c0(E − k) sin

(
θ0

2
− kθ0

µ

)
η3(∞) = c0 sin

(
−θ0

2
− kθ0

µ

)
, η4(∞) = −c0 cos

(
−θ0

2
− kθ0

µ

) (5.35)

with c0 = ((k1+E)2−1), k1 = 1
2

(µ+ ζ) and ζ =
√

(µ2 − 4(1− E2 − µE)), all parameters
defined in the SESM model. Knowing this we numerically integrate backwards to obtain
Fig. 5.6

One can see that increasing n we obtain an oscillation amplitude more proeminent than
the two other cases. It means that the fermion wave function is more reflected in the
n = 10 than in the other n = 1, 2 cases, since the oscillatory behaviour in (5.30) comes
from the term of the reflected wave (this can be noticed more clearly in 5.37). Here we
are adopting that we reach the SESM model for n = 10, since in this case our result is
barely distinguishable from the SESM (n → ∞). Particularly, the kink (n = 1) case is
the one that less reflects the wave function
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Figure 5.6. These are the scattered wave functions of the fermion induced by the soliton
for the following parameters’ values k = 3.0, θ0 = π, µ = 10 and E =

√
k2 +M2. The

cases n = 1, n = 2 and n = 10 are given respectively by solid, dashed and dotdashed
lines.

5.4 Phase shift

It is also instructive to study the phase shift of the scattering process. For doing so we
follow the procedure indicated by S.Gousheh in [83] which is in agreement with Levinson’s
theorem.
The phase shift is given by :

δ(k) =
1

2

(
tan−1

∣∣∣∣c1 + ic2

b1 + ib2

∣∣∣∣+ tan−1

∣∣∣∣c3 + ic4

b3 + ib4

∣∣∣∣) (5.36)

where the both terms comes from the S-matrix element, here we are averaging up and down
component of the S-matrix element spinor as explained in (4.38). We have determined
already the coefficients c1, c2, c3, c4, those are η1(∞), η2(∞), η3(∞), η4(∞), respectively.
In order to obtain the coefficients left we need to proceed as following.

We insert ηk in the equations of motion

ηk =

(
η1 + iη2

η3 + iη4

)
=

(
a1 + ia2

a3 + ia4

)
e−i2kx +

(
b1 + b2

b3 + ib4

)
(5.37)

and realize

η
′

1 = 2k (η2 − b2) , η
′

2 = −2k (η1 − b1)

η
′

3 = 2k (η4 − b4) , η
′

4 = −2k (η3 − b3)
(5.38)
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where η′i(x) = dηi(x)
dx

. Using (5.38) we obtain 4 equations and 4 unknowns where we can
solve for b1, b2, b3, b4.
When calculating the scattering states of the sea, for some values of k we realize that
our variables contributing to the real and imaginary parts gets mixed. The source of this
issue relies in the c0 term which depends on ζ and of course the values we choose for µ.
We have found that for values of momentum between k∗1 and k∗2

k∗1 = +

√(µ
2
− 1
)2

− 1, k∗2 = +

√(µ
2

+ 1
)2

− 1 (5.39)

We need to separate again real and imaginary contributions. This comes from studying
the sign of the following equation µ2 − 4(1 − E2 − µE) = 0 which is the same as ζ = 0.
After that one can calculate the phase shift for the Dirac sea and sky.

Figure 5.7. Phase shift for the Dirac sky, E =
√
k2 +M2, for µ = 10 and θ0 = π parameter

values. We have n = 1, 2, 10 in the solid, dashed and dotdashed lines respectively. Note
that δ(0)/π = 3

2
and δ(∞)/π = 1

Note that despite that the phase shift for the Dirac sky Fig.5.7 does not show us
significant differences for the models we are considering n = 1, 2, 10 the phase shift for the
sea does, check Fig. 5.8. This differences will for sure be reflected in the Casimir energy
(4.44).

We can use Levinson’s theorem to check the consistency of our results. Let us take a
look at Fig.5.8 and Fig.5.7. We use (5.40) to conclude that for the case of µ = 10 and
θ0 = π:

∆δ ≡
[

3

2
− 1

]
+

[
−1

2
− (−1)

]
=

(
2 + 0− 2

2

)
π = π, (5.40)

The results for the phase shifts are in complete agreement with the Levinson’s theorem.
In the continuation of this work we plan to find the Casimir energy for two different cases:
fixing the slope of the background field, µ, and changing the asymptotic value of the field,
θ0, and vice versa. Besides that we plan to study the Casimir energy for each parity.
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Figure 5.8. Phase shift for the Dirac sea, E = −
√
k2 +M2, for µ = 10 and θ0 = π

are the parameter values. We have n = 1, 2, 10 in the solid, dashed and dotdashed lines
respectively. Note that δ(0)/π = −1

2
and δ(∞)/π = −1
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6 Conclusion, remarks and perspectives

In this thesis we have studied the concept of soliton. A well behaved, finite energy
solution that arises in many contexts in physics due to the interplay of nonlinearity and
dissipation that stabilizes this structure. In the introduction we have started from a his-
torical point of view highlighting the first considerations that yielded to understand the
properties of this new structure or "wave" compared to what was known at the time
of J. S. Russel[2]. Later we briefly discussed how nonlinearity also brought unexpected
results besides solitons in hidrodynamics modeled by KdV equation. The FPUT problem
that amazed Fermi Pasta, Ulam and Tsingou showing that the equipartition of energy
do not hold when considering nonlinear oscillators. Also we have cited other soliton-like
structures such as skyrmions and cosmic strings that play important role in nowadays
physics research.
In chapter II we have discussed and derived thoroughly general properties of soliton in
(1 + 1)-dimensions, deriving an important theorem known as the Derrick’s theorem. We
have also introduced soliton solutions in higher dimensions. We presented the concept
of monopoles, first derived by Dirac searching for symmetric solutions of the Maxwell’s
equations at the level of E,B fields. We have also considered monopoles in the Yang-
Mills theory of the Georgi-Glashow model and discussed briefly the relation between these
two structures. We discussed vortices and instantons. Particularly, we have shown how
instantons can be introduced from a discussion of periodic potentials in non-relativistic
quantum mechanics and how they describe QCD vacuum.
In the chapter III we presented the main focus of this study, the interaction of fermions
with solitons. We have shown an approach to this problem using the formalism of path
integral and the tools we developed up to this point. We rederived the prominent result
of Jackiw and Rebbi of a fractional fermion number induced in the soliton field due to
the existence of a zero mode in the spectrum of the coupled system. We also discussed
the works that introduced the adiabatic and non-adiabatic contributions to the fermion
charge. For the adiabatic contribution we have derived the well known Goldstone-Wilczek
current and discussed the main steps of this derivation. In the chiral limit (m → 0) we
have also recovered the result of Jackiw and Rebbi. Moreover we investigated an spe-
cific example of non-adiabatic contribution induced by an infinitly thin soliton and have
written the fermion number operator as a function of the quantum field operators. We
provided a detailed discussion on how the fermion number changes as a function of the
vacua of the soliton. In chapter IV we discussed Casimir energy and Levinson’s theorem
and related them to the phase shift of the fermion field scattered by the soliton.
In chapter IV we have provided a historical introduction to the Casimir energy and we
derived this result using the phase shift approach for the case of fermion-soliton interac-
tion. We discussed the weak and strong form of Levinson’s theorem and performed some
examples.
In chapter V we presented the system we have been working with and report our recent
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results. We have stressed that an important symmetry of our system is the parity symme-
try and we have used this as a way to choose our boundary conditions for the equations
of motion. We have discussed the bound states with numerical details on how to calcu-
late such bound energies and also discussed limitations of our method for certain values of
parameters. We have discussed the scattering states and phase shifts induced by the pres-
ence of the soliton and have raised some expectations on the profile for the Casimir energy.
Our future perspectives relies on calculating the Casimir Energy as depending on θ0 and
µ separately. Adopting different values of n parameter and providing discussion regarding
the same values of n we have been considering. In order to achieve this we need to choose
a numerical integration method that can compute the integral in (4.44) of the phase shift.
Besides that we plan to calculate the parity states of our system. To obtain that we take
advantage again of the parity symmetry and remember that the eigenfunctions of the
parity operator are also eigenfunctions of the Hamiltonian operator. Previous works [83]
have found that these eigenfunctions are related as ξscatt± (x) = ξscattk (x) + ξscatt−k (x) with
Pξscattk (x) = ξscatt−k (x) and where ξscatt and ξscatt± are the scattering and parity eigenfunc-
tions respectively. After computing these entities we plan to compute the phase shift and
Casimir energy for each parity channel. Investigating the Casimir energy for each parity
channel is one of the main goals of this work, we will calculate this result for the case
n = 2 and expect it to be an enlightening result since it is a model between the known
kink profile and the SESM.
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