

UNIVERSIDADE FEDERAL DE PERNAMBUCO CENTRO DE FILOSOFIA E CIÊNCIAS HUMANAS DEPARTAMENTO DE ARQUEOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ARQUEOLOGIA

ANDRÉ LUIZ CAMPELO DOS SANTOS

PALEOMIGRAÇÕES NA AMÉRICA: uma abordagem arqueogenética

Recife

ANDRÉ LUIZ CAMPELO DOS SANTOS

PALEOMIGRAÇÕES NA AMÉRICA: uma abordagem arqueogenética

Tese apresentada ao Programa de Pós-Graduação em Arqueologia da Universidade Federal de Pernambuco, como requisito parcial para a obtenção do título de Doutor em Arqueologia.

Área de concentração: Arqueologia e Conservação do Patrimônio Cultural no Nordeste.

Orientador: Profo. Dr. Henry Socrates Lavalle Sullasi

Coorientador: Profº. Dr. Sergio Francisco Serafim Monteiro da Silva

Catalogação na fonte Bibliotecária Maria do Carmo de Paiva, CRB4-1291

S237p Santos, André Luiz Campelo dos.

Paleomigrações na América : uma abordagem arqueogenética / André Luiz Campelo dos Santos. -2020.

146 f.: il.; 30 cm.

Orientador: Prof. Dr. Henry Socrates Lavalle Sullasi.

Coorientador: Prof. Dr. Sergio Francisco Serafim Monteiro da Silva.

Tese (Doutorado) – Universidade Federal de Pernambuco, CFCH.

Programa de Pós-Graduação em Arqueologia, Recife, 2020.

Inclui referências e apêndices.

1. Arqueologia. 2. Ancestralidade. 3. Genômica. 4. Homem - Migrações. 5. América. 6. Povoamento. I. Lavalle Sullasi, Henry Socrates (Orientador). II. Silva, Sergio Francisco Serafim Monteiro da (Coorientador). III. Título.

930.1 CDD (22. ed.)

UFPE (BCFCH2020-147)

ANDRÉ LUIZ CAMPELO DOS SANTOS

PALEOMIGRAÇÕES NA AMÉRICA: uma abordagem arqueogenética

Tese apresentada ao Programa de Pós-Graduação em Arqueologia da Universidade Federal de Pernambuco, como requisito parcial para a obtenção do título de Doutor em Arqueologia.

Área de concentração: Arqueologia e Conservação do Patrimônio Cultural no Nordeste.

Aprovada em: 28/02/2020.

BANCA EXAMINADORA

Prof^o. Dr. Henry Socrates Lavalle Sullasi (Orientador)
Universidade Federal de Pernambuco

Prof^a. Dr^a. Ana Catarina Peregrino Torres Ramos (Examinadora Interna)

Universidade Federal de Pernambuco

Prof^o. Dr. Demétrio da Silva Mutzenberg (Examinador Interno)

Universidade Federal de Pernambuco

Prof^a. Dr^a. Renata Libonati de Azevedo (Examinadora Externa)

Universidade Federal de Pernambuco

Prof^a. Dr^a. Viviane Khoury Asfora (Examinadora Externa)
Universidade Federal de Pernambuco

A Deus.

A meus pais, Simone e Robério.

A meus irmãos, Júnior, Ígor e Marcia.

À minha avó Raimunda, minha "mãeinha".

A meus primos Lucas e Cinthia, e aos meus tios Socorro e Anchieta – as saudades são eternas.

AGRADECIMENTOS

A Deus, por permitir que tudo isso fosse possível.

Ao meu orientador, professor Henry, pelas sempre elucidantes e dedicadas orientações que se estendiam para além do âmbito de minha pesquisa. Encontrei no professor um verdadeiro mentor, sempre me direcionando para os caminhos corretos. Sem o seu constante apoio e sua plena confiança em mim, este trabalho não teria se concretizado. Espero que a amizade e a parceria científica, construídas ao longo dos últimos seis anos, sejam muito duradouras e ainda gere muitos frutos.

Ao meu coorientador, professor Sérgio, pelas longas, porém muito enriquecedoras, conversas, que na verdade são suas orientações. Trata-se de um pesquisador incansável, cujo olhar científico, sempre muito atento, impressiona e inspira. Agradeço também pela amizade e pelo apoio, valiosíssimos ao longo de toda a minha formação.

Aos professores Ana Catarina Ramos, Demétrio Mutzenberg, Renata Libonati e Viviane Khoury, cujos discursos se transformaram em grandes contribuições para este trabalho. Fui muito feliz em tê-los como membros da banca examinadora desta tese.

Aos demais professores do Programa os quais tive o prazer de ser aluno: Gabriela Martin, Paulo Souto, Scott Allen, Carlos Rios e Antônio Nunes. Todos responsáveis por ensinamentos únicos que inspiravam muito mais do que somente a formação profissional.

Às amizades que cultivei ao longo do Doutorado, tenham certeza que todos de alguma forma me auxiliaram nesta caminhada e que a companhia de vocês fora valiosíssima, em especial Andréia Macedo, Emília Arnaldo, Francisco Soares, Igor Pedroza, Ilca Pacheco, Rosangela Alves e Thiago Fonseca, pelas incontáveis experiências compartilhadas.

Aos demais funcionários do Departamento e do Programa, em especial Luciane Borba, sempre dispostos ao auxílio do corpo discente, e de fundamental importância nesta caminhada.

À minha mãe Simone, ao meu pai Robério e ao meu irmão Júnior, que acompanharam mais de perto esse percurso, por serem fontes inesgotáveis de incentivo, compreensão, segurança, dedicação e, especialmente, paciência, exemplos humanos que tento seguir diariamente.

A todos os meus familiares que sempre se fizeram presentes ao longo dessa caminhada, em especial meus primos/irmãos Cinthia e Lucas, e minha avó Raimunda, a quem carinhosamente chamo de "mãeinha", minha grande inspiração de vida.

Aos meus grandes amigos de longa data Arthur Macedo, Ítalo Pereira, Joannillson Taygon, Lucas Souza e Narcélio Júnior, companhias imprescindíveis entre um momento e outro de obrigações cotidianas.

A todas as amizades que iniciei e ainda cultivo na UFPE, que por serem muitas não ousarei citar aqui, pois certamente esquecerei alguém.

À CAPES e à CNPq pelo suporte financeiro na forma de bolsas de pesquisa no Brasil e no exterior. Sem as mesmas este trabalho não seria possível, e minhas formações profissional e científica teriam sido menos ricas.

--//--

ACKNOWLEDGEMENTS

I must also thank Dr. Omer Gokcumen for hosting me at his laboratory for an entire year and for have taught me, among many things, "how to learn". This is one of the most important lessons that I will carry with me for the rest of my life, as well as something that gives me the confidence to tackle the most diverse challenges I might face in the future. Omer's mentoring and friendship have been the source of many experiences that help improve my attitude both as a researcher and human being.

Besides making this research possible, Omer's generosity also allowed me the unique opportunity to interact with many bright and inspiring faculty and researchers, including my former colleagues at the Gokcumen Lab: Izzy Starr, Marie Saitou, Ozgur Taskent, Skyler Resendez, Yen-Lung "Onta" Lin – and especially my brother Petar Pajic. I am grateful for all the shared experiences, the demonstrations of support and care, and the incredibly valuable insights you gave towards my research and work. I miss you guys so much!

I also must especially thank Moon Eun-Ju, Arindam Phani, Omer, Skyler, and Petar (with their families and/or friends) for making Buffalo feel like home. Your companionship made the whole experience less cold and grey:)

Bernard de Chartres disse que somos como anões empoleirados nos ombros dos gigantes, para que possamos ver mais coisas do que eles e mais além, não certamente por causa da acuidade da nossa visão ou do nosso tamanho maior, mas porque somos elevados em altura e elevados ao tamanho de um gigante. (JEAN DE SALISBURY, 2009, p. 246-247, tradução nossa)

RESUMO

O Povoamento das Américas tem sido um dos capítulos mais intrigantes da História Humana. A Teoria original sobre este processo, "Clovis First", defendeu que todas as populações nativo-americanas se originaram de uma única população ancestral proveniente da Beríngia, a partir de uma também única onda migratória. Na medida em que novas investigações arqueológicas foram realizadas no continente americano, a teoria "Clovis First" perdeu o status de consenso científico, e isso ocorreu de dois modos: no primeiro, novos estudos propõem um início mais ancestral para o povoamento das Américas a partir da Beríngia, enquanto que no segundo, pesquisas recentes consideram a possibilidade da ocorrência de ondas migratórias, em direção ao continente americano, originárias de outras regiões geográficas que não a Beríngia. Este trabalho visa então testar esta segunda hipótese, mais precisamente, a presença de uma ancestralidade genética proveniente da Oceania em indivíduos humanos antigos evidenciados nas Américas. Para isso, foram compilados e analisados os dados genômicos, já previamente publicados, de 219 indivíduos antigos provenientes de 9 países americanos. Duas análises foram então realizadas: a ADMIXTURE, que busca estimar as ancestralidades genéticas de cada indivíduo, e a Análise de Componentes Principais, que possibilita uma visualização de afinidades genéticas entre os indivíduos. Como referências para as análises foram utilizados os dados genômicos de 2578 indivíduos humanos contemporâneos de todos os continentes, disponibilizados a partir do Projeto 1000 Genomas e do Projeto de Diversidade Genômica Simons. Os resultados demonstraram que não é possível observar nos indivíduos antigos das Américas uma ancestralidade genética especificamente oceânica. No entanto, os mesmos compartilham inúmeras mutações genômicas com populações oceânicas e centro-asiáticas/siberianas contemporâneas. A partir desta constatação e de outras observações, incluindo das cronologias associadas, conclui-se que o processo de povoamento das Américas se deu como um fluxo migratório quase que contínuo de indivíduos, ao longo de milhares de anos, que teria partido da Beríngia.

Palavras-chave: Ancestralidades. Genômica. Migrações. Povoamento das Américas.

ABSTRACT

The settlement of the Americas is one of the most intriguing events in Human History. The original theory on this process, "Clovis First", argued that all Native American populations originated from a single ancestral population from Beringia, in a single migratory wave. As new archaeological interventions were conducted on the Continent, the "Clovis First" theory lost its status of scientific consensus. And this occurred in two ways: in the first, new studies proposed an ancestral beginning for the settlement of the Americas from Beringia, while in the second, recent works consider the possibility of migratory waves originating from geographic regions other than Beringia. This thesis aims to test this second hypothesis, more precisely, the presence of an oceanic-specific genetic ancestry in ancient human individuals unearthed in the Americas. To achieve this goal, previously published genome-wide data from 219 ancient individuals from nine countries in the Americas was compiled. After that, two analyzes were then carried out: ADMIXTURE and Principal Component Analysis. As references for these analyzes, the genomic data of 2578 extant human individuals from 1,000 Genomes and Simons Genomic Diversity projects were added to the ancient dataset. The results demonstrated that it is not possible to observe a specifically oceanic genetic ancestry in the ancient individuals of the Americas. However, they share numerous SNPs with extant oceanic and central Asian/Siberian populations. From this and other findings, including the associated chronological data, it is possible to conclude that the settlement of the Americas occurred as a quasi-continuous migratory flow of individuals, over thousands of years, originating from the Beringia.

Keywords: Ancestry. Genomics. Migrations. Settlement of the Americas.

LISTA DE FIGURAS

Figura 1 –	Exemplos de artefatos associados à Cultura Clovis (sem escala)18				
Figura 2 –	Hipótese inicial sobre o povoamento das Américas; a Cultura Folsom				
	também indicada, seria posterior à Clovis20				
Figura 3 –	Exemplos de sítios arqueológicos pré-Clovis nas Américas22				
Figura 4 –	Gráfico de Análise de Componentes Principais demonstrando a				
	afinidade dos indivíduos "Zuzu" ("Coqueiros") e "Paraguaio 1" com a				
	ancestralidade australiana24				
Figura 5 –	Países americanos que proveram indivíduos humanos antigos para				
	sequenciamento genético30				
Figura 6 –	Exemplificação de SNP (em vermelho)69				
Figura 7 –	Histograma demonstrando que a maior parte dos SNPs obtidos a partir				
	das amostras antigas somente aparece em poucos indivíduos71				
Figura 8 –	Exemplo de gráfico de barras produzido a partir de resultados				
	(porcentagens) da aplicação de ADMIXTURE (neste exemplo, k=16) em				
	dados genéticos de dezenas de indivíduos humanos antigos e modernos				
	(barras verticais)74				
Figura 9 –	Exemplo de gráfico de dispersão produzido a partir das duas principais				
	componentes resultantes de uma ACP realizada em dados genéticos				
	das amostras do 1kGP (pontos coloridos)75				
Figura 10 –	Componentes ancestrais predominantes nas amostras modernas78				
Figura 11 –	Resultados ADMIXTURE para as amostras antigas, <i>k</i> =1279				
Figura 12 –	Presença da ancestralidade "turquesa" em amostras antigas (mexicana				
	como exemplo) e modernas (flechas pretas)80				
Figura 13 –	Estruturas populacionais (genômicas) observadas dos indivíduos				
	antigos das Américas81				
Figura 14 –	Ambas estruturas populacionais foram contemporâneas (Spirit Cave) e				
	a ancestralidade "turquesa" persistiu na América do Norte até períodos				
	pós-Contato82				
Figura 15 –	Resultados (exemplos) dos testes ADMIXTURE, para k=12, nos quais				
	foram excluídas as populações da CAS ou da OCE84				
Figura 16 –	Presença da componente ancestral "verde clara" em indivíduos antigos				
	da América85				

Figura 17 –	Presença da componente ancestral "marrom" em indivíduos antigos da
	América87
Figura 18 –	Indivíduos antigos da América que apresentam alguma ancestralidade
	africana88
Figura 19 –	Indivíduos antigos da América que apresentam possível ancestralidade
	europeia91
Figura 20 –	Indivíduos antigos da América que apresentam possível ancestralidade
	do Sul da Ásia92
Figura 21 –	Componentes ancestrais observados em indivíduos humanos antigos de
	períodos pós-Contato (458 anos AP-Presente)93
Figura 22 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 459 e 650 anos AP94
Figura 23 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 651 e 950 anos AP95
Figura 24 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 951 e 1.450 anos AP96
Figura 25 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 1.451 e 1.950 anos AP97
Figura 26 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 1.951 e 3.950 anos AP98
Figura 27 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 3.951 e 5.950 anos AP99
Figura 28 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 5.951 e 7.950 anos AP100
Figura 29 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 7.951 e 9.950 anos AP100
Figura 30 –	Componentes ancestrais observados em indivíduos humanos antigos do
	período entre 9951 anos AP à transição Pleistoceno-Holoceno101
Figura 31 –	Gráfico de dispersão produzido com as duas principais componentes
	resultantes da ACP103
Figura 32 –	Detalhe do gráfico produzido com os resultados da ACP demonstrando
	os 2 pontos de agrupamento amostras antigas-modernas104

LISTA DE TABELAS

Tabela 1 –	Dados dos indivíduos antigos provenientes da Argentina31
Tabela 2 –	Dados dos indivíduos antigos provenientes do Belize33
Tabela 3 –	Dados dos indivíduos antigos provenientes do Brasil34
Tabela 4 –	Dados dos indivíduos antigos provenientes do Canadá39
Tabela 5 –	Dados dos indivíduos antigos provenientes do Chile42
Tabela 6 –	Dados dos indivíduos antigos provenientes dos EUA48
Tabela 7 –	Dados dos indivíduos antigos provenientes do México51
Tabela 8 –	Dados dos indivíduos antigos provenientes do Peru53
Tabela 9 –	Descrição Estereotípica dos Traços Craniofaciais das "Três Principais
	Raças Humanas" de Krogman59
Tabela 10 –	Categorias de cronologias e alguns métodos para suas obtenções65
Tabela 11 –	Visão geral das principais técnicas de datação absoluta atualmente
	disponíveis (em ordem alfabética)66
Tabela 12 –	Lista de populações do 1kGP e suas respectivas quantidades (n) de
	indivíduos72
Tabela 13 –	Lista de etnias do SGDP utilizadas neste trabalho e suas respectivas
	quantidades (n) de indivíduos
Tabela 14 –	CV-error's para cada k utilizado no ADMIXTURE, o CV-error do K=12 é
	o menor de todos depois de 100 iterações77

LISTA DE ABREVIATURAS E SIGLAS

1kGP Projeto 1000 Genomas

ACP Análise de Componentes Principais

aDNA DNA antigo

AK Alasca (Estado americano)

AMR Américas

AMS Espectrometria por Aceleração de Partículas

AP Antes do Presente

CA Califórnia (Estado americano)

cal Calibrados

CAS Ásia Central/Sibéria

CCR Center for Computational Research

cm Centímetros

CV-error Erro de Validação Cruzada

EUA Estados Unidos da América

ISOGG Sociedade Internacional de Genealogia Genética

ka Mil anos

km Quilômetros

LOE Luminescência Opticamente Estimulada

M Metros

MG Minas Gerais

MHCP Mayahak Cab Pek

MT Montana (Estado americano)

mtDNA DNA Mitocondrial

NGS Sequenciamento de Próxima Geração

NV Nevada (Estado americano)

OCE Oceania

PA Pensilvânia (Estado americano)

Qt Qeqertasussuk

SGDP Projeto Simons de Diversidade Genômica

SNP Polimorfismo de nucleotídeo único

SP São Paulo (Estado brasileiro)

ST Saki Tzul

UMG Último Máximo Glacial

uncal Não-calibrados

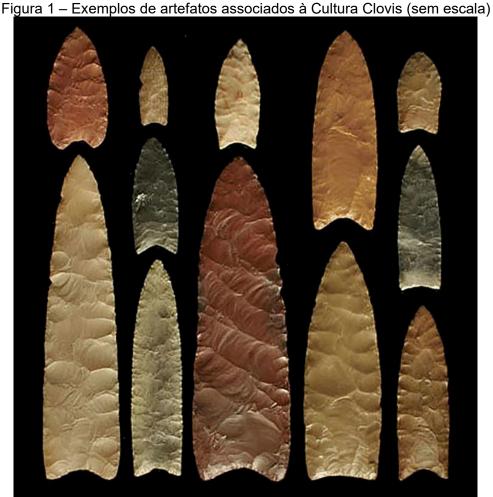
USR Upward Sun River

WA Washington (Estado americano)

LISTA DE SÍMBOLOS

- A/ao/menos (a depender do contexto)
- ~ Aproximadamente
- > Maior que
- ± Mais ou menos
- [®] Marca registrada
- m² Metro quadrado
- % Porcento

SUMÁRIO


1	INTRODUÇÃO	.18
1.1	ANTECEDENTES E DEFINIÇÃO DA PROBLEMÁTICA	.21
1.2	HIPÓTESES, OBJETIVOS E ESTRUTURA	. 27
2	CONTEXTUALIZAÇÃO DAS AMOSTRAS ARQUEOLÓGICAS	. 30
2.1	ARGENTINA	.31
2.2	BELIZE	.33
2.3	BRASIL	.33
2.4	CANADA	.36
2.5	CHILE	.40
2.6	ESTADOS UNIDOS DA AMÉRICA	.42
2.7	GROENLÂNDIA	. 50
2.8	MÉXICO	.51
2.9	PERU	.51
2.10	O CONTEXTO AMBIENTAL DA BERÍNGIA NOS ÚLTIMOS 30 MIL ANOS .	. 53
3	MÉTODO	. 57
3.1	ANCESTRALIDADE BIOGEOGRÁFICA	.58
3.2	CRONOLOGIA ABSOLUTA	.64
3.3	PROCEDIMENTOS TÉCNICOS	.67
4	RESULTADOS E DISCUSSÃO	.77
4.1	ADMIXTURE	.77
4.1.1	Testando a presença de uma ancestralidade especificamente oceân	ica
	nas amostras antigas das Américas	.83
4.1.2	A presença de outras ancestralidades nas amostras antigas	.88
4.1.3	Relação cronologias-ancestralidades dos indivíduos antigos	.92
4.2	ANÁLISE DE COMPONENTES PRINCIPAIS	102
5	CONSIDERAÇÕES FINAIS	106
	REFERÊNCIAS	110
	APÊNDICE A - LISTA DAS AMOSTRAS DO 1KGP UTILIZADAS NES	TA
	PESQUISA, SEGUIDAS DAS POPULAÇÕES ("POP.") ÀS QUA	AIS
	PERTENCEM E DE SUAS RESPECTIVAS REGIÕES GEOGRÁFIC	AS
	("REG.")	119

APÊNDICE B - LISTA DAS AMOSTRAS DO SGDP UTILIZADAS,
SEGUIDAS DAS ETNIAS ÀS QUAIS PERTENCEM E DE SEUS
RESPECTIVAS PAÍSES E REGIÕES GEOGRÁFICAS138
APÊNDICE C - RESULTADOS ADMIXTURE PARA AS AMOSTRAS
MODERNAS, <i>K</i> =12140
APÊNDICE D - AS 20 PRIMEIRAS COMPONENTES PRINCIPAIS (CP OU
PC) E SEUS AUTOVALORES146

1 INTRODUÇÃO

O povoamento das Américas é um processo do passado que ainda se encontra longe de ser entendido em sua plenitude. As primeiras hipóteses que vieram a surgir sobre este "evento" envolviam um conjunto de vestígios líticos, em sua maioria pontas de lança, encontrados na primeira metade do Século XX, no atual Estado do Novo México, nos Estados Unidos da América (EUA) (WATERS, 2019).

Tais remanescentes, evidenciados próximos à cidade de Clovis, apresentavam morfologia até então considerada como a mais primitiva já encontrada nas Américas (Figura 1): todos os outros conjuntos de vestígios líticos encontrados no mesmo país e em torno do mesmo período, quando também envolviam pontas de lança, pareciam ser um aperfeiçoamento em estilo e aplicação daquele encontrado em Clovis (O'BRIEN et al., 2015).

Fonte: adaptado de O'Brien e colaboradores (2015, p. 127).

O conjunto de vestígios arqueológicos considerado como o mais primitivo viria futuramente a ser apresentado também como uma cultura arqueológica única, recebendo o nome da localidade mais próxima, e passaria a ser considerada também como a cultura ancestral que teria antecedido o aparecimento das demais. Assim, gerou-se o consenso na comunidade antropológica/arqueológica americana, ainda no mesmo período do Século XX, de que a cultura Clovis seria a primeira cultura arqueológica a emergir nas Américas. A teoria que veio a surgir após este consenso foi chamada então de "Clovis First theory" (WATERS; STAFFORD, 2007).

A segunda metade do mesmo Século trouxe uma série de desenvolvimentos científicos/tecnológicos que viriam a "pôr à prova" até mesmo os mais consolidados paradigmas, afetando de diferentes formas as mais diversas Ciências, incluindo a Arqueologia. Neste campo, o advento das técnicas de datação por Radiocarbono na década de 1950 trouxeram importantíssimas contribuições, e as mesmas ainda podem ser observadas, com cada vez maior frequência, na contemporaneidade (SANTOS, 2016).

Tais desenvolvimentos adicionaram mais um aspecto muito importante à primeira teoria de povoamento das Américas: o ponto de partida temporal. Após a descoberta do Sítio Clovis original, outros sítios arqueológicos que possuíam novos espécimes pertencentes à mesma cultura "ancestral" foram encontrados. Estes novos sítios, assim como o original, foram então datados por associação¹ e suas idades estimadas entre 13-12,7 mil anos antes do presente (ka AP). Com este novo aspecto, era então conferido ao processo de povoamento das Américas um ponto de partida, como previamente citado (WATERS; STAFFORD, 2007).

Após a obtenção das datações, buscou-se então contextualizar este início de povoamento continental com o conhecimento então já existente sobre as Américas de 13 ka AP: a população responsável por desenvolver a Cultura Clovis atravessou uma gigantesca ponte terrestre localizada onde hoje se encontra o Estreito de Bering, a Beríngia, entre os atuais leste da Rússia e o Alasca, durante o período de baixos níveis dos oceanos proporcionado pela última Era Glacial. Esta população teria então seguido para o sul através de um corredor livre de gelo a leste das *Rocky Mountains*, no atual oeste do Canadá, quando as geleiras passaram a recuar como consequência

-

¹ Quando outro material ou vestígio encontrado na mesma camada estratigráfica e/ou contexto arqueológico que o objeto principal de estudo é utilizado para a datação. Neste caso, vestígios de paleofogueiras/carvões vegetais. Também chamada de datação indireta (WEINER, 2010).

do aumento de temperatura (Figura 2). Assim, segundo a teoria Clovis o subsequente domínio territorial das Américas por populações humanas teria ocorrido dentro de um intervalo de tempo de 13 mil anos (WATERS; STAFFORD, 2007).

Beringia

Laurentide
ice sheet

Cordilleran
ice sheet

Corridor

Figura 2 – Hipótese inicial sobre o povoamento das Américas; a Cultura Folsom, também indicada, seria posterior à Clovis

Fonte:

https://upload.wikimedia.org/wikipedia/commons/4/4d/Peopling_of_America_through_Beringia.png.

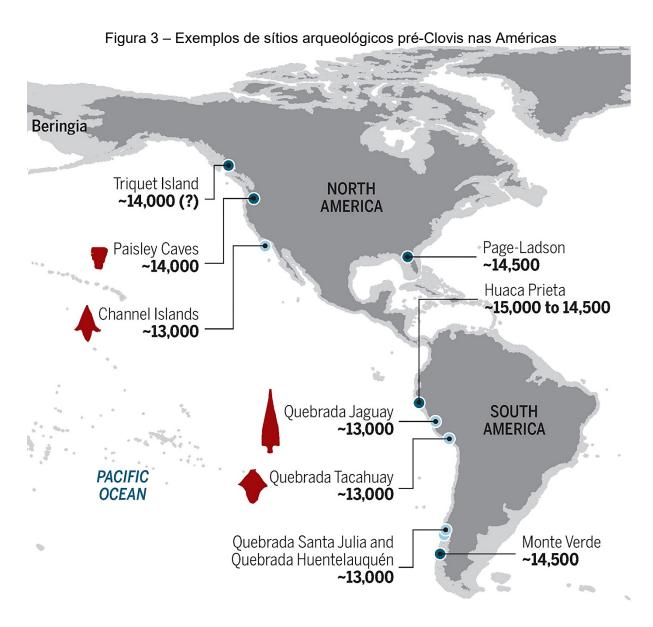
Acesso em: 23 jan. 2019.

Legenda: Cordilleran ice sheet, Laurentide ice sheet: camadas de gelo; ice-free corridor: corredor livre de gelo

Durante décadas, novos sítios arqueológicos encontrados por todo o continente americano e que apresentavam datações de igual natureza às dos sítios da Cultura Clovis, porém com datas anteriores a 13 ka AP, foram rejeitados por supostamente não possuírem artefatos, contexto estratigráfico ou datações "confiáveis" – isso quando não possuíam uma combinação destes "problemas" (WATERS, 2019).

No entanto, era a própria teoria "Clovis First" que parecia ter sua própria e justa quota de problemas. O primeiro seria a proposição de uma teoria de envergadura continental a partir de observações limitadas a espaços geográfico e intelectual, além de conjunto vestigial, muito reduzidos.

O segundo, de ordem temporal, confere um período de povoamento que parece não ser condizente com as diversas condições ambientais que as primeiras populações que aqui se assentaram tiveram que se adaptar. E não se trata somente da diversidade ambiental observada nos tempos atuais, mas também daquelas que surgiram e desaparecem, ou se modificaram, como já pôde e ainda poderá ser observado nesta obra, enquanto estas populações se movimentavam Continente adentro.


Aos poucos, arqueólogos do continente americano foram se dirigindo a um novo consenso: o de que a teoria "Clovis First" parecia não ser capaz de explicar toda a complexidade que envolve o processo de povoamento do Continente (ROMERO, 2014; WATERS, 2019).

1.1 ANTECEDENTES E DEFINIÇÃO DA PROBLEMÁTICA

Nos últimos 30 anos, investigações arqueológicas nas Américas do Norte e do Sul revelaram ocupações anteriores à Cultura Clovis que não podem ser desconsideradas. Na medida em que novos estudos sobre o tema têm sido publicados, novas (e nem tão novas) teorias, mais complexas e realistas do que a "Clovis First" têm também sido consideradas como plausíveis — por outro lado, tornando cada vez mais distante um possível consenso sobre o tema —, principalmente frente aos achados arqueológicos oriundos da América do Sul.

Os estudos mais recentes que vieram a superar a teoria "Clovis First" o fazem em duas frentes: 1) Propõem um início mais ancestral para o povoamento das Américas a partir da Beríngia, em torno de 22 a 18 ka AP, ou ainda a um período ainda mais antigo (MORENO-MAYAR et al., 2018a; SCHEIB et al., 2018); e 2) consideram a possibilidade de diferentes ondas migratórias ainda mais ancestrais ou mais recentes (ainda que antecedam o contato com populações europeias em milênios), originadas em outras regiões geográficas que não a Beríngia, dentre as quais se destaca a Oceania – a qual os mais importantes autores sobre o assunto denominam "Australasia".

A primeira "frente", ainda que venha a de fato refutar a teoria "Clovis First" por meio do fornecimento de novos dados/vestígios arqueológicos provenientes das mais diversas regiões das Américas (Figura 3), ainda mantém alguns dos principais componentes da teoria original: as primeiras populações americanas seriam descendentes de povos do leste asiático, principalmente da Sibéria, que teriam cruzado a Beríngia e consequentemente povoado o continente americano na forma de uma única onda migratória que teria partido do Norte em direção ao Sul.

Fonte: adaptado de Braje e colaboradores (2017, p. 593).

Já a segunda possibilidade é sustentada por estudos genéticos ainda muito incipientes, porém relevantes (SKOGLUND et al., 2015; SKOGLUND; REICH, 2016),

apresentando-se como o principal cerne das discussões atuais sobre o tema. Sobre esta ideia de uma possível ancestralidade oceânica para as populações nativo-americanas, Skoglund e Reich (2016, p. 31) afirmam o seguinte:

Recently, we carried out a stringent test of the null hypothesis of a single founding population of Central and South Americans using genome-wide data from diverse Native Americans. We detected a statistically clear signal linking Native Americans in the Amazonian region of Brazil to present-day Australo-Melanesians and Andaman Islanders ('Australasians'). Specifically, we found that Australasians share significantly more genetic variants with some Amazonian populations — including ones speaking Tupi languages — than they do with other Native Americans. We called this putative ancient Native American lineage 'Population Y' after Ypykue'ra, which means 'ancestor' in the Tupi language family. To learn more about the Population Y ancestry present in the Americas, we carried out a series of statistical modeling analyses. We found that the patterns of genomic variation of present-day Amazonians could be explained by as little as 2% admixture from an Australasian-related population, that would thus have penetrated deep inside the Americas without mixing with the main ancestral lineage of present-day Native Americans (...). (SKOGLUND; REICH, 2016, p. 31)

Como pode ser observado, mesmo que tenha ocorrido uma migração direta de uma população da Oceania para a América do Sul, as populações nativo-americanas modernas ainda assim seriam em grande parte descendentes das populações que migraram da Beríngia (SKOGLUND *et al.*, 2015; SKOGLUND; REICH, 2016). O que indica: 1) que uma possível população ancestral oceânica teria sido absorvida pelas populações que migraram para a América do Sul a partir do Norte, ou 2) trata-se de uma migração mais recente, porém por caminhos alternativos àquele percorrido pela população que gerou a Cultura Clovis, por exemplo.

No Brasil, afirmações semelhantes têm sido realizadas há pelo menos 3 décadas – neste caso capitaneadas por Niède Guidon e seus colaboradores e suportadas por dados cronológicos e resultados de análises líticas e morfológicas efetuadas em vestígios ósseos humanos (crânios, mandíbulas e dentes) evidenciados em sítios arqueológicos que compõem a área do Parque Nacional Serra da Capivara (GUIDON; DELIBRIAS, 1986; GUIDON *et al.*, 1996; NEVES *et al.*, 2005; HUBBE *et al.*, 2007; BERNARDO; NEVES, 2009; GUIDON; PESSIS; MARTIN, 2009; PEYRE; GRANAT; GUIDON, 2009).

Para exemplificar a afirmação anterior, podemos observar a conclusão efetuada por Bernardo e Neves (2009, p. 104) após análise morfológica de 5 indivíduos

evidenciados em sítios do Parque – dos quais pelo menos 2, os mais antigos, "Zuzu" e 1 daqueles escavados no Sítio Toca do Paraguaio, denominado pelos autores como "Paraguaio 1", apresentaram uma grande aproximação com a ancestralidade australiana (Figura 4):

Nossa conclusão é que o quadro delineado na Serra da Capivara é perfeitamente congruente com a ideia de que a América foi ocupada por duas populações morfologicamente distintas, sendo a primeira muito similar aos australianos e africanos atuais, e a segunda, aos Asiáticos e Nativos Americanos tardios e de hoje (Neves et al., 2007). O modelo das duas migrações estima, ao mesmo tempo, que a chegada dos mongoloides à América do Sul se deu entre 8,0 e 9,0 kyr BP (...). (BERNARDO; NEVES, 2009, p. 104)

4 Espécimes masculino África Ásia 3 2 Paraguaio 1 Coqueiros Sul-americano "Arcaico" Austrália Paraguaio 2 0 Gongo 1 Factor 2: 13,22% Caboclos -2 -3 Paleoamericano América -2 CP 1: 21,85%

Figura 4 – Gráfico de Análise de Componentes Principais demonstrando a afinidade dos indivíduos "Zuzu" ("Coqueiros") e "Paraguaio 1" com a ancestralidade australiana

Fonte: Bernardo e Neves (2009, p. 103).

É interessante notar também que antigos refutadores tanto da possibilidade da maior antiguidade, quanto de uma possível diferente ancestralidade geográfica para a população que habitou a área do Parque (MELTZER; ADOVASIO; DILLEHAY, 1994; FIEDEL, 2004), hoje ou defendem tais possibilidades (DILLEHAY, 2014; DILLEHAY *et al.*, 2015), ou já as consideram como plausíveis, ainda que pareçam não acreditar nas mesmas, como é o caso de Fiedel (2017):

So, we are left with three alternative explanations of the multiply-flaked quartzite pebbles of the Serra da Capivara: (...) [e uma delas é:] they were made over the course of 35,000 years by an incredibly conservative Homo sapiens population, of mysterious origin, that suffered both cultural and genetic extinction at 12,500 cal yr BP; (...). (FIEDEL, 2017, p. 9)

Em um ainda mais recente artigo sobre as ancestralidades genéticas de 18 indivíduos antigos nativo-americanos – incluindo 5 evidenciados em um sítio arqueológico da área de Lagoa Santa, Minas Gerais (MG) –, Moreno-Mayar e colaboradores (2018a) parecem confirmar as suspeitas de Fiedel ao afirmar que:

As we have found, there was a previously unknown population in the Americas (UPopA), as well as one that harbored an Australasian signal in the Late Pleistocene and reached South America, yet left no apparent traces in North America. (MORENO-MAYAR *et al.*, 2018a, p. 362)

Seguindo a mesma linha, Posth e colaboradores (2018, p. 1186), após empreender uma pesquisa semelhante à de Moreno-Mayar e colaboradores (2018a), porém desta vez com 56 indivíduos antigos nativo-americanos, dentre os quais 22 evidenciados em 4 sítios arqueológicos brasileiros, afirmam que estes indivíduos "do not entirely descend from a single homogeneous population and instead derive from a mixture of populations, one of which, *Population Y*, bore a distinctive affinity to Australasians".

Esta conclusão de Posth e colaboradores (2018) é especialmente relevante pois trata-se da primeira identificação de um componente ancestral proveniente da Oceania em populações antigas nativo-americanas. Enquanto que os achados anteriores de Skoglund colaboradores (2015) foram proporcionados por análises realizadas em populações contemporâneas.

Isso demonstra que, de fato, tal componente genético teria alcançado o continente americano em uma onda migratória que ocorreu anteriormente à chegada de populações europeias nas Américas, por meio de uma rota diferente daquela

utilizada pelas primeiras populações norte-americanas, ainda que não seja possível precisar o horizonte temporal no qual tal processo teria ocorrido.

Por fim, o estudo de Moreno-Mayar e colaboradores (2018a) também veio a refutar a ideia implícita no trabalho de Bernardo e Neves (2009) de que uma morfologia craniana nativo-americana possuidora de traços "australianos" (denominados pelos autores como "Paleoamericana") seria decorrente de uma possível contribuição genética oceânica. A respeito disso os primeiros autores (2018) afirmam:

Although we detected the Australasian signal in one of the Lagoa Santa individuals identified as a Paleoamerican, it is absent in other Paleoamericans, including the Spirit Cave genome with its strong genetic affinities to Lagoa Santa. This indicates that the Paleoamerican cranial form is not associated with the Australasian genetic signal, as previously suggested (...). The Paleoamerican cranial form, if it is representative of broader population patterns, evidently did not result from separate ancestry but likely from multiple factors, including isolation, drift, and nonstochastic mechanisms. (Moreno-Mayar *et al.*, 2018a, p. 362)

Esta última conclusão traz um pressuposto importantíssimo para futuros estudos sobre o povoamento das Américas a partir de análises morfométricas e genéticas de remanescentes humanos arqueológicos: o de que qualquer indivíduo nativo-americano antigo pode possuir o componente genético oceânico, mesmo que não possua uma crânio-morfologia "Paleoamericana".

É notável então que em paralelo a descobertas arqueológicas, estudos genéticos de populações nativo-americanas contemporâneas, assim como de indivíduos pré-históricos de igual natureza, fornecem novas perspectivas sobre a origem e a história das primeiras populações americanas.

Frente ao que foi anteriormente exposto, é necessário apresentar aqui mais uma informação importante: a existência de dados genéticos de outros indivíduos antigos nativo-americanos que foram publicados antes dos trabalhos de Moreno-Mayar e colaboradores (2018a) e Posth e colaboradores (2018), ou seja, antes que se identificasse de fato um componente genético oceânico em indivíduos desta natureza.

Isto se configura como um problema pois tais dados não foram confrontados com outros de igual natureza advindos de indivíduos antigos ou modernos da Oceania, tornando impossível uma anterior descoberta do referido componente genético.

Dentre estes dados encontram-se informações genéticas do indivíduo nomeado como Enoque65, publicadas por Raghavan e colaboradores (2015), evidenciado no

sítio Toca do Enoque, na Serra da Capivara, Piauí, mas que somente foram alvo de uma análise muito superficial, rendendo pouquíssimas e praticamente irrelevantes conclusões acerca de sua ancestralidade dado o seu isolamento geográfico frente aos outros indivíduos os quais foram comparados – todos provenientes de outros sítios localizados fora do Brasil, de espacialidades totalmente distintas e distantes.

Levando em consideração tais informações, parece notório que uma nova análise genômica de todos os indivíduos antigos nativo-americanos já previamente estudados poderia testar mais adequadamente a hipótese de uma outra onda migratória possivelmente originária da Oceania e que somente deixou traços em populações nativas sul-americanas.

Esta nova análise proporcionaria uma maior diversidade de espacialidades e temporalidades, provendo maiores subsídios para conclusões mais precisas e confiáveis a respeito do "caminho percorrido" pelo componente genético oceânico nas Américas ao longo dos últimos milênios.

Tal análise envolveria a reavaliação genômica destes indivíduos a fim de se realizar tanto estudos de ancestralidades como também de miscigenação dentre os mesmos, porém considerando também dados genéticos de populações contemporâneas globais, incluindo populações nativas da Oceania.

Tendo exposto todos estes antecedentes, é possível afirmar que a problemática desta pesquisa pode ser apresentada na forma das seguintes questões:

- a) Seria ainda possível encontrar o componente genético Oceânico em indivíduos antigos nativos da América do Norte já previamente publicados, mas que não foram analisados com este enfoque?
- b) Caso não seja possível, quais os horizontes espaciais da presença deste componente em populações antigas nativo-americanas?
- c) Uma vez que seja possível identificar os horizontes espaciais, qual teria sido o "ponto de entrada" deste componente na América, e quando tal evento teria ocorrido? e;
- d) Por fim, por quais "caminhos" tal componente teria se dispersado no continente americano ao longo dos últimos milênios?

A problemática, portanto, envolve dois aspectos principais: um cronológico e outro biogeográfico. E os mesmos, consequentemente, influenciarão nos principais componentes da hipótese proposta para este trabalho.

1.2 HIPÓTESES, OBJETIVOS E ESTRUTURA

Definida então a problemática, a hipótese a ser testada nesta pesquisa referencia todas as quatro perguntas realizadas anteriormente:

- a) O componente genético oceânico não estaria presente em indivíduos antigos evidenciados na América do Norte. Tal fato poderia ser explicado por uma suposta utilização de uma via migratória alternativa àquela efetuada pela cultura Clóvis, por exemplo;
- Assim, muito provavelmente, o componente estaria restringido a indivíduos antigos sul-americanos e seus descendentes – podendo ser incluídos aqui indivíduos centro-americanos;
- c) Tal conjunto de marcadores genéticos teria adentrado nas Américas por meio de populações que se estabeleceram ao longo da faixa litorânea delimitada pelo Oceano Pacífico, em território hoje restrito à seção sulamericana, em um período provavelmente anterior a 10 ka AP, que seria uma média aproximada das idades associadas aos sítios da área arqueológica da Lagoa Santa, e;
- d) A ancestralidade oceânica teria então se dispersado por toda a América do Sul, e até por partes da América Central, ao longo dos últimos 10-15 ka AP.

Tendo então apresentado a hipótese, o objetivo geral desta pesquisa delineiase no sentido de se realizar uma reavaliação genômica de todos os indivíduos antigos nativo-americanos já publicados a fim de se efetuar novos estudos de ancestralidade e de miscigenação dentre os mesmos, também considerando dados genéticos de populações contemporâneas habitantes de outras regiões do globo, com especial enfoque em informações genéticas provenientes da Oceania.

Já os objetivos específicos a serem almejados no decorrer desta pesquisa são os seguintes:

- a) Compilar os dados genômicos e cronológicos de todos os indivíduos antigos nativo-americanos previamente publicados;
- b) Comparar tais dados genômicos antigos com elementos de igual natureza proveniente de populações contemporâneas, incluindo aquelas provenientes da Oceania;
- c) Realizar testes de ancestralidade e mistura/miscigenação em todo o conjunto de dados antigos e contemporâneos; e

d) Identificar os horizontes espacial e temporal de ocorrência do componente genético Oceânico nos indivíduos antigos nativo-americanos.

A justificativa para esta pesquisa é de que o trabalho a ser realizado ajudará a entender melhor como se deu o processo de povoamento nas Américas nos últimos milênios, oferecendo conclusões mais confiáveis e precisas acerca do mesmo. Além disso, nos últimos 2 anos novas pesquisas acerca das ancestralidades de uma limitada parcela de indivíduos antigos lançaram luz sobre aspectos não explorados anteriormente, o que nos permite agora extrapolar a aferição destes aspectos nos indivíduos nativo-americanos antigos previamente analisados (de uma forma mais limitada) e publicados.

A seção de desenvolvimento deste trabalho dar-se-á de acordo com a seguinte estruturação:

No próximo capítulo é realizada a apresentação e a contextualização arqueológica das amostras a serem analisadas neste trabalho assim como uma breve contextualização ambiental das Américas nos últimos 10-30 ka AP, apresentando as mudanças climáticas que ocorreram neste período e como as mesmas podem ter afetado as paleomigrações que ocorreram no Continente.

Já no capítulo número 3, é apresentado o método que será empregado nesta pesquisa. Nele são apresentados os conceitos que serão utilizados aqui como ferramentas de análise e as técnicas escolhidas visando tanto a resolução da problemática quanto o alcance dos objetivos geral e específicos da investigação realizada, assim como as justificativas para tais escolhas junto aos fundamentos específicos das técnicas escolhidas e as considerações que devem ser realizadas quanto a aplicação destas técnicas escolhidas nos objetos analisados.

No capítulo 4, serão apresentados todos os resultados das aplicações dos conceitos e técnicas apresentados no capítulo anterior, seguidos de suas respectivas discussões e relações com os dados pré-existentes.

Por fim, na seção de conclusão – na forma de considerações finais – será apresentada a tese composta por aspectos inferidos a partir dos resultados apresentados no último capítulo do desenvolvimento. Também serão apresentados aqui possíveis pontos que possam ter limitado o espaço para inferências, assim como possíveis soluções e perspectivas para trabalhos futuros que venham a intentar aprofundar ou ampliar ainda mais esta linha de pesquisa.

2 CONTEXTUALIZAÇÃO DAS AMOSTRAS ARQUEOLÓGICAS

Como afirmado anteriormente, neste trabalho será analisado o maior número de indivíduos antigos nativo-americanos já sequenciados geneticamente, cujos dados encontram-se publicados em trabalhos genômicos². Assim, ao todo serão alisados 219³ indivíduos provenientes de sítios arqueológicos de 8 países e 1 território americanos (Figura 5): 12 da Argentina, 3 do Belize, 20 do Brasil, 45 do Canadá, 19 do Chile, 93 dos EUA, 1 da Groenlândia, 11 do México e 15 do Peru.

Figura 5 – Países americanos que proveram indivíduos humanos antigos para sequenciamento genético

Fonte: autoria própria (2020).

² Trabalhos que tiveram como objetivo o sequenciamento de partes de todos os cromossomos que compõem o DNA Nuclear (Cromossomos 1 a 22, X e Y), assim como do DNA Mitocondrial (mtDNA). Juntos eles formam o Genoma Humano (BROWN, 2002).

³ Ao todo, material genético de 231 indivíduos antigos nativo-americanos foram publicados nos trabalhos que serão citados a seguir. No entanto, durante esta pesquisa, não foi possível o acesso ao material genético de 4 dos indivíduos. Além disso, outros 8 indivíduos somente tiveram sequenciado o mtDNA (a menor parte do Genoma Humano), sendo que nesta pesquisa buscou-se trabalhar com a grande maioria dos dados do DNA Nuclear (mais de 98% do Genoma Humano) (PENNISI, 2001) – algo que será melhor explicado no capítulo de apresentação do Método.

Das 219 amostras, 3 foram publicadas por Rasmussen e colaboradores (2010; 2014; 2015), 23 por Raghavan e colaboradores (2015), 25 por Lindo e colaboradores (2016; 2017), 17 por Moreno-Mayar e colaboradores (2018a; 2018b), 49 por Posth e colaboradores (2018), 87 por Scheib e colaboradores (2018) e 15 por Flegontov e colaboradores (2019).

Como é possível observar, estudos genômicos com indivíduos antigos nativoamericanos são muito recentes. Além disso, destes trabalhos somente os de Moreno-Mayar e colaboradores (2018a; 2018b) e Posth e colaboradores (2018) analisaram tais amostras com o enfoque de se intentar identificar ancestralidades diferentes daquelas mais comumente e previamente consideradas – do Nordeste Asiático. Ou seja, mais da metade dos indivíduos (*n*=153) não foi testada para uma possível ancestralidade oceânica.

Adiante serão apresentadas mais informações acerca das amostras e seus respectivos contextos arqueológicos.

2.1 ARGENTINA

As 12 amostras oriundas da Argentina são provenientes de 3 sítios arqueológicos (Tabela 1).

Tabela 1 – Dados dos indivíduos antigos provenientes da Argentina

Indivíduo	Sítio	Datação (anos AP)	Referência
Aconcagua	Cerro Piramidal	500	Moreno-Mayar <i>et al.</i> , 2018a
10308	Arroyo Seco II	7.570-7.300	Posth <i>et al.</i> , 2018
10309	Arroyo Seco II	7.800-7.500	Posth <i>et al.</i> , 2018
I1748	Arroyo Seco II	7.330-6.950	Posth <i>et al.</i> , 2018
12230	Arroyo Seco II	8.960-8.380	Posth <i>et al.</i> , 2018
12232	Arroyo Seco II	8.520-8.200	Posth <i>et al</i> ., 2018
17086	Arroyo Seco II	7.920-7.660	Posth <i>et al.</i> , 2018
17088	Arroyo Seco II	7.570-7.290	Posth <i>et al.</i> , 2018
17090	Arroyo Seco II	7.330-6.950	Posth <i>et al.</i> , 2018
I8348	Laguna Chica	6.960-6.790	Posth <i>et al.</i> , 2018
18349	Laguna Chica	6.780-6.650	Posth <i>et al.</i> , 2018
18350	Laguna Chica	6.800	Posth <i>et al</i> ., 2018

Fonte: autoria própria (2020).

O primeiro deles, *Arroyo Seco* 2, está localizado próximo à cidade de Tres Arroyos, na região dos Pampas e é um sítio arqueológico ao ar livre. Trata-se de um sítio multi-componencial com vários episódios de ocupação em uma faixa cronológica

que se estende do Pleistoceno Superior até tempos históricos (PUCCIARELLI; PEREZ; POLITIS, 2010; POLITIS *et al.*, 2016). A evidência mais antiga para ocupação humana na região é datada em cerca de 12.170 anos AP – 14.060 anos calibrados (cal) AP.

Atividades funerárias no sítio produziram sepultamentos humanos em quantidade bastante elevada (n=50). Os indivíduos são de ambos os sexos e todas as faixas etárias, datados entre 7.819±61 e 4.487±45 anos AP (n=27 datações). As modalidades de enterro são variadas, incluindo enterros primários simples e múltiplos. Acompanhamentos funerários produzidos com conchas marinhas e colares de composto de dentes caninos de canídeos foram registrados em alguns esqueletos, indicando um tratamento antigo e complexo dos mortos (POSTH *et al.*, 2018). Deste sítio foram sequenciadas 8 amostras.

O segundo sítio argentino é a base do *Cerro Piramidal*, que compõe o Aconcágua na província de Mendoza. Nele foi encontrada uma múmia congelada de um menino de sete anos envolto em 18 peças de tecido e cercado por estatuetas antropomórficas. O cenário lembrava o típico enterro ritual Inca conhecido como "*Capacocha*" (ou "*Capac hucha*"). A idade aproximada da múmia é em torno de 500 anos, coincidindo com o tempo de expansão máxima da civilização Inca em direção ao Cone Sul. Há indicações arqueológicas de que o menino pode ter sido trazido da costa central do Peru (MORENO-MAYAR *et al.*, 2018a).

Por fim, o sítio onde foram evidenciadas as últimas 3 amostras oriundas da Argentina é conhecido como *Laguna Chica* e está localizado nos Pampas da região central da Argentina. Quatro enterramentos foram identificados e os mesmos foram datados como pertencentes ao Holoceno Médio e Tardio (6.960-6.650 anos cal AP) (SCHEIFLER *et al.*, 2017).

Embora não tenham sido realizadas escavações no local – os indivíduos foram encontrados parcialmente exumados –, além dos enterramentos, material lítico em abundância também foi encontrado na sua superfície. Estes materiais líticos caracterizam-se por uma predominância de torquartite, seguida por outras matérias-primas líticas em baixas frequências como sílex, granito, basalto e sílex silicoso, entre outras. Há uma alta diversidade de ferramentas, como raspadores, facas, ferramentas multiuso, pontas de projeto triangulares e outros. A análise preliminar de todo o material indica que o sítio foi ocupado durante o Holoceno Médio e Tardio, podendo

representar uma sucessão de acampamentos residenciais de caçadores-coletores (POSTH *et al.*, 2018).

2.2 BELIZE

As 3 amostras oriundas do Belize foram evidenciadas em 2 sítios: *Mayahak Cab Pek* (MHCP) e *Saki Tzul* (ST). Tratam-se de dois abrigos sobre rocha localizados em um vale da Reserva Natural de Bladen nas Montanhas Maias do sul de Belize.

Os sítios foram escavados entre 2014 e 2016 e consistem em depósitos antropogênicos que datam de 12.500 a 1.000 anos AP. O enterramento do sítio MHCP foi datado e possui idade de 9.430-9.140 anos cal AP. Já os enterramentos do sítio ST foram datados e possuem entre 7.460-7.310 anos cal AP (Tabela 2). Ambas as datações do sítio ST foram realizadas em esmalte dentário e Espectroscopia no Infravermelho por Transformada de Fourier (FTIR) foi usada para confirmar a integridade do material orgânico no esmalte (POSTH *et al.*, 2018).

Tabela 2 – Dados dos indivíduos antigos provenientes do Belize

Indivíduo	Sítio	Datação (anos AP)	Referência
13443	Mayahak Cab Pek	9.430-9.140	Posth <i>et al</i> ., 2018
15456	Saki Tzul	7.440-7.310	Posth <i>et al</i> ., 2018
15457	Saki Tzul	7.460-7.320	Posth <i>et al</i> ., 2018

Fonte: autoria própria (2020).

2.3 BRASIL

As 20 amostras do Brasil são oriundas de 6 sítios arqueológicos (Tabela 3) localizados nos Estados de Minas Gerais (Lapa do Santo e Gruta do Sumidouro), Piauí (Toca do Enoque), Santa Catarina (Jabuticabeira 2) e São Paulo (Laranjal e Moraes).

Tabela 3 – Dados dos indivíduos antigos provenientes do Brasil

Indivíduo	Sítio	Datação (anos AP)	Referência
CP18	Lapa do Santo	9.550-9.470	Posth <i>et al</i> ., 2018
CP19	Lapa do Santo	10.160-9.600	Posth <i>et al</i> ., 2018
CP21	Lapa do Santo	9.410-9.090	Posth <i>et al</i> ., 2018
CP22	Lapa do Santo	9.670-9.490	Posth <i>et al</i> ., 2018
CP23	Lapa do Santo	9.550	Posth <i>et al</i> ., 2018
CP25	Lapa do Santo	9.680-9.530	Posth <i>et al</i> ., 2018
CP26	Lapa do Santo	9.550	Posth <i>et al</i> ., 2018
Enoque65	Toca do Enoque	~3.500	Raghavan <i>et al</i> ., 2015
I9054_d	Jabuticabeira 2	2.030-1.830	Posth <i>et al</i> ., 2018
I9055_d	Jabuticabeira 2	1.990-1.750	Posth <i>et al.</i> , 2018
I9056_d	Jabuticabeira 2	1.290-1.080	Posth <i>et al</i> ., 2018
I9057_d	Jabuticabeira 2	2.340-2.100	Posth <i>et al.</i> , 2018
I9058_d	Jabuticabeira 2	2.340-2.100	Posth <i>et al</i> ., 2018
LAR001	Laranjal	6.660-6.450	Posth <i>et al</i> ., 2018
LAR002	Laranjal	6.900-6.680	Posth <i>et al</i> ., 2018
MOS001	Moraes	6.900-6.680	Posth <i>et al</i> ., 2018
Sumidouro4	Gruta do Sumidouro	>10.000	Moreno-Mayar <i>et al.</i> , 2018a
Sumidouro6	Gruta do Sumidouro	>10.000	Moreno-Mayar <i>et al</i> ., 2018a
Sumidouro7	Gruta do Sumidouro	>10.000	Moreno-Mayar et al., 2018a
Sumidouro8	Gruta do Sumidouro	>10.000	Moreno-Mayar <i>et al</i> ., 2018a

Fonte: autoria própria (2020).

A primeira delas foi coletada em uma caverna chamada Toca do Enoque, na Serra da Capivara, Piauí. Esta amostra foi registrada como originária de um fêmur esquerdo pertencente ao esqueleto 3 do sepultamento 3. A datação por Radiocarbono desta amostra resultou em uma idade em torno de 3.500 anos cal AP (RAGHAVAN *et al.*, 2015).

Um segundo sítio é a Lapa do Santo, localizado na parte norte da área arqueológica de Lagoa Santa, Minas Gerais (MG) (STRAUSS *et al.*, 2016; VILLAGRAN *et al.*, 2017). A área é bem conhecida desde o Século XIX e apresenta abundantes esqueletos humanos holocênicos, bem preservados, e diretamente datados como do início do Holoceno. A Lapa do Santo é uma caverna com uma área abrigada de cerca de 1.300 m² que se desenvolveu sob a saliência de um suporte calcário de 30 metros de altura. A cronologia do local é baseada em 21 datações por Luminescência Opticamente Estimulada (LOE) de sedimentos, 53 datações radiocarbônicas de carvões e 20 de colágeno extraído de ossos humanos. Foram identificados três períodos distintos de ocupação: no Holoceno Inicial (12.700-11.700 a 8.300-8.000 anos cal AP), no Holoceno Médio (5.400-4.900 a 4.300-3.900 anos cal AP) e Holoceno Tardio (2.100-800 a 900-200 anos cal AP) (STRAUSS *et al.*, 2016).

Um total de 39 enterramentos humanos foram evidenciados na Lapa do Santo desde 2001 e as datações diretas de colágeno ósseo e observações estratigráficas

indicam que todos pertencem à fase tardia do Holoceno Inicial: enquanto a ocupação do local foi datada entre 12.700 e 11.700 anos cal AP, o seu uso como um local de enterramento começou entre 10.600-10.300 anos cal AP com sepultamentos primários. Os sedimentos do local são principalmente antropogênicos, refletindo repetidas atividades de acendimentos de fogueira. O conjunto lítico é dominado por pequenos núcleos com quartzo como matéria-prima dominante. Enquanto as tipologias líticas eram constantes ao longo do tempo, o uso da matéria-prima variava, no entanto, por volta 9.900 anos cal AP fontes não locais, como a silexita, não eram mais exploradas e o quartzo, localmente disponível, tornou-se dominante. Além disso, baixos níveis de mobilidade entre as populações que lá se assentaram foram identificados a partir de estudos isotópicos e antropológicos (POSTH *et al.*, 2018). Deste sítio foram sequenciados 11 indivíduos.

Outros dois sítios que proveram indivíduos para sequenciamento foram o do Moraes e o Laranjal, dois concheiros/sambaquis fluviais (ou seja, não costeiros) localizados na região sudeste do Estado de São Paulo (SP), no centro do Vale da Ribeira. A cultura material dos sítios inclui artefatos feitos de elementos animais (ossos, dentes e chifres) e conchas. Não foi possível identificar a produção de implementos cerâmicos no local. A presença de enterramentos humanos é comum em concheiros/sambaquis ribeirinhos ao longo de todo o Holoceno. O sítio do Moraes (PLENS, 2007) é circular com um diâmetro de aproximadamente 30 metros e está localizado na cidade de Miracatu. A cronologia do local é de aproximadamente 5 ka AP não calibrada.

O sítio Laranjal, também localizado na cidade de Miracatu, a aproximadamente 5 quilômetros (km) do Moraes, também é circular apresentando um diâmetro de aproximadamente 20 metros e está localizado no topo de uma colina a 200 metros de um curso de rio. A cultura material é semelhante à do Moraes, e as idades radiocarbônicas absolutas calculadas para o sítio partem de 6.980 a 6.585 anos AP, não calibradas (uncal) (POSTH *et al.*, 2018). 1 indivíduo do Moraes e 2 do Laranjal foram sequenciados.

O quinto sítio é o sambaqui Jabuticabeira 2, localizado em Jaguaruna, Santa Catarina. Oito indivíduos deste sambaqui foram sequenciados. Eles foram selecionados entre mais de 200 inumações escavadas no Sítio, que apresenta idades de 3.137-2.794 a 1.860-1.524 anos cal AP (DEBLASIS *et al.*, 2007). Estudos craniométricos neste e em muitos outros concheiros/sambaquis do Brasil revelam um

padrão morfológico diferente daquele de grupos anteriores que habitavam o interior do País, consistente com a evolução genética ou misturas/miscigenação de populações costeiras (HUBBE *et al.*, 2009).

O sexto e último sítio brasileiro aqui representado é a Gruta do Sumidouro, também localizada na área arqueológica de Lagoa Santa, MG. Os 30 remanescentes ósseos humanos evidenciados no local compõem a maior coleção conhecida de remanescentes ósseos humanos antigos. Tais remanescentes foram coletados pelo naturalista dinamarquês Peter W. Lund, que entre 1835 e 1845 explorou aproximadamente 800 grutas nesta região, das quais seis produziram remanescentes ósseos humanos, incluindo a do Sumidouro. A grande maioria da coleção de Lund hoje encontra-se acondicionada no Museu de Zoologia da Universidade de Copenhague (MORENO-MAYAR et al., 2018a). Quatro dos indivíduos deste sítio foram sequenciados.

2.4 CANADÁ

O primeiro indivíduo antigo nativo-americano evidenciado no Canadá e que foi sequenciado geneticamente, MARC1492, é proveniente do sítio Old Mission Point, localizado às margens do rio Restigouche, perto da cidade de Atholville, no norte de New Brunswick, Canadá. O sítio representa a aldeia pré-histórica de Tjigog, redescoberta em 1968 por levantamentos arqueológicos realizados nos condados de Gloucester e Restigouche, no entanto, o local só foi escavado entre 1972 e 1973 depois que trabalhadores da construção civil desenterraram remanescentes humanos em um sítio próximo. Os artefatos associados aos enterramentos incluem uma ponta de arpão, ossos trabalhados, tubos de cobre e contas de concha, uma lâmina de machado, raros segmentos de cordas e tecidos de fibra vegetal trançadas, bem como restos de pele de castor, dentre outros. As escavações também revelaram possíveis fundações domésticas perto da área de sepultamentos, bem como mais de mil fragmentos de cerâmica adornada. Uma única amostra de carvão coletada de um forno arqueológico associado aos achados de cerâmica resultado em uma idade radiocarbônica de 2.030±130 anos uncal AP. Os remanescentes humanos recuperados do local passaram por avaliação bioarqueológica a partir de 2011, quando foi determinado que pelo menos 5 adultos e 9 indivíduos juvenis (número mínimo de indivíduos = 14) compões o conjunto de vestígios ósseos. Amostras de um dente solto (primeiro pré-molar mandibular direito) associado ao indivíduo adulto feminino MARC1492 foram coletadas para análise de DNA antigo (aDNA). Idades de Radiocarbono-AMS (*Accelerator Mass Spectrometry*) obtidas no colágeno ósseo do fêmur direito de 4 dos esqueletos adultos, bem como de 4 dos esqueletos juvenis variam entre 2.405-415 anos uncal AP. Esse intervalo de tempo se sobrepõe à data apresentada anteriormente de Radiocarbono tradicional não calibrada e, junto com os achados de cerâmica, sugere que populações humanas viviam e eram sepultados na área há pelo menos 2 mil anos. No entanto, o indivíduo sequenciado possui uma idade de aproximadamente 400 anos AP (RAGHAVAN *et al.*, 2015).

Vinte e cinco das 45 amostras canadenses são provenientes de uma única região, a *Prince Rupert Harbor*, na Colúmbia Britânica, mais precisamente de sete sítios arqueológicos onde grandes escavações foram realizadas pelo Museu Nacional do Canadá (atual Museu Canadense da História) entre 1966 e 1973. Todos os sete sítios arqueológicos são antigos concheiros que representam centenas ou milhares de anos de História na região. Além de evidências de habitação, subsistência (vestígios de comida e tecnologias de obtenção de alimentos), ferramentas de marcenaria e para produção de arte associados, os concheiros tradicionalmente também foram utilizados como locais de sepultamento. O modo de vida das populações que habitaram as regiões é refletido nos conteúdos dos concheiros, um fato que sugere uma ocupação ancestral de longo prazo. As datas de Radiocarbono indicam que a região da *Prince Rupert Harbor* foi continuamente ocupada a partir de aproximadamente 6.000 até 350 anos AP (Raghavan *et al.*, 2015; LINDO *et al.*, 2016; 2017).

Uma outra amostra canadense, 19651, é proveniente do sítio *Big Bar Lake*, localizado no centro da Columbia Britânica. O sítio arqueológico foi estudado pela primeira vez durante uma prospecção realizada em 1970, embora o local onde os remanescentes ósseos humanos foram encontrados – a cerca de 10 metros à sudeste da área pesquisada em 1970 – não tenha sido documentado na época. Os remanescentes ósseos foram observados somente em 2002 por membros da população nativa da região, que os encontraram já no nível da superfície, devido à erosão do solo. A escavação dos remanescentes veio a ocorrer no ano seguinte. Os ossos foram encontrados no que parecia ser uma cova rasa, orientados aproximadamente de norte a sul, e o indivíduo estava sepultado em decúbito lateral, voltado para o oeste, em direção ao lago *Big Bar*, localizado nas proximidades. Embora alguns ossos estivessem faltando, o esqueleto estava mais ou menos

completo e em posição anatômica. Nenhum objeto cultural ou acompanhamento funerário foram encontrados associados ao esqueleto. O indivíduo ali sepultado é do sexo feminino e possuía aproximadamente 60 anos de idade no momento da morte. O esqueleto não exibia sinais de doença ou trauma, mas apresentava algumas alterações degenerativas associadas à idade, como sinais de osteoporose e perda dentária anterior à morte. Datação por Radiocarbono de fragmentos de costela e da fíbula esquerda produziu idades entre 5.000 e 4.940±40 anos AP (MORENO-MAYAR et al., 2018a).

Já o sítio arqueológico de *Lucier* é um cemitério pré-Contato localizado na cidade de Windsor, no sudoeste de Ontário. Este complexo sítio possuía numerosos enterramentos humanos com idades entre os anos de 1200 e 1450 da Era Comum, com a exceção de um indivíduo datado de aproximadamente 4.200 anos AP. Os indivíduos estavam sepultados em covas únicas e múltiplas, com pouco ou nenhum acompanhamento funerário. Foram identificados diferentes estilos de sepultamentos, incluindo primários, secundários e cremações, assim como a ocorrência de modificações *post-mortem* em alguns indivíduos, típicos de populações nativas da região. O sítio foi escavado inúmeras vezes desde, pelo menos, 1935. Deste sítio, 15 indivíduos foram sequenciados geneticamente (SCHEIB *et al.*, 2018).

Uma amostra, I10427, é proveniente do sítio de *Buchanan* perto da Baía de Cambridge, Ilha Victoria, Nunavut. O sítio foi originalmente escavado na década de 1960, no entanto, somente no ano de 2007 foi evidenciada a amostra na qual foi realizado o sequenciamento genético. A amostra se trata de um terceiro molar inferior esquerdo pertencente a um adulto. Este dente foi recuperado de uma profundidade de 15 centímetros (cm) abaixo do nível da superfície. A idade radiocarbônica foi calculada entre 1.900-1.610 anos AP (FLEGONTOV *et al.*, 2019).

Os último dois sítios canadenses, de contextos arqueológicos muito semelhantes, proveram uma amostra cada para sequenciamento genético. O sítio *Teston Road* está situado a cerca de 30 km ao norte de Toronto, em Vaughan, Ontário, enquanto o sítio *Turnbull* está situado na margem oeste do lago Couchiching, na cidade de Orillia, ambos em territórios ancestrais de populações nativas. Ambos também são caracterizados pela presença de remanescentes ósseos pertencentes a várias centenas de indivíduos misturados em um mesmo sepultamento, um padrão de enterramento secundário distinto do povo *Wendat*. Ambos também foram descobertos após intervenções não-arqueológicas e hoje encontram-se protegidos de novas

escavações. Destes sítios, dentes foram utilizados para o sequenciamento genético (SCHEIB *et al.*, 2018).

Uma visão geral das amostras do Canadá encontra-se abaixo (Tabela 4).

Tabela 4 – Dados dos indivíduos antigos provenientes do Canadá

Indivíduo	Sítio	Datação (anos AP)	Referência
125	GbTo-23	1.870-1.500	Lindo <i>et al</i> ., 2016
158	GbTo-23	2.740-2.350	Lindo <i>et al</i> ., 2016
163	GbTo-18	N/A	Lindo <i>et al</i> ., 2016
167	GbTo-23	N/A	Lindo <i>et al</i> ., 2016
168	GbTo-18	2.330-1.840	Lindo <i>et al</i> ., 2016
181	GbTo-23	2.250-1.770	Lindo <i>et al</i> ., 2016
300	GbTo-30	1.240-800	Lindo <i>et al</i> ., 2016
302	GbTo-30	2.120-1.600	Lindo <i>et al.</i> , 2016
311	GbTo-31	1.670-1.280	Lindo et al., 2016
318	GbTo-31	1.170-800	Lindo et al., 2016
322	GbTo-31	1.620-1.270	Lindo <i>et al.</i> , 2016
357	GbTo-31	N/A	Lindo et al., 2016
365	GbTo-31	1.890-1.440	Lindo et al., 2016
386	GbTo-31	1.036-946	Lindo et al., 2016
406	GbTo-31	N/A	Lindo et al., 2016
412	GbTo-31	1.490-1.120	Lindo et al., 2016
413	GbTo-23	1.500-1.140	Lindo <i>et al.</i> , 2016
443	GbTo-31	1.360-1.000	Lindo <i>et al.</i> , 2016
468	GbTo-33	1.500-1.130	Lindo <i>et al.</i> , 2016
470	GbTo-33	1.180-800	Lindo <i>et al.</i> , 2016
507	GbTo-36	1.890-1.410	Lindo <i>et al.</i> , 2016
516	GbTo-36	N/A	Lindo <i>et al.</i> , 2016
525	GbTo-31	1.340-990	Lindo <i>et al.</i> , 2016
532	GbTo-36	N/A	Lindo <i>et al.</i> , 2016
939	GbTo-1	6.260-5.890	Raghavan <i>et al.</i> , 2015
19651	Big Bar Lake	6.000	Moreno-Mayar <i>et al.</i> , 201
CK-01	Lucier	N/A	Scheib <i>et al.</i> , 2018
CK-02	Lucier	662-536	Scheib <i>et al.</i> , 2018
CK-03	Lucier	695-656	Scheib <i>et al.</i> , 2018
CK-04	Lucier	N/A	Scheib <i>et al.</i> , 2018
CK-07	Lucier	N/A	Scheib <i>et al.</i> , 2018
CK-08	Lucier	N/A	Scheib <i>et al.</i> , 2018
CK-09	Lucier	351±40	Scheib <i>et al.</i> , 2018
CK-10	Lucier	N/A	Scheib <i>et al.</i> , 2018
CK-13	Lucier	4.853-4.837	Scheib <i>et al.</i> , 2018
110427	Buchanan	1.900-1.610	Flegontov et al., 2019
LU-01	Lucier	N/A	Scheib <i>et al.</i> , 2018
LU-02	Lucier	N/A	Scheib <i>et al.</i> , 2018
LU-03	Lucier	N/A	Scheib <i>et al.</i> , 2018
LU-04	Lucier	N/A	Scheib et al., 2018
LU-05	Lucier	N/A	Scheib et al., 2018
LU-06	Lucier	N/A	Scheib et al., 2018
MARC1492	Old Mission Point	~400	Raghavan et al., 2015
RM-83	Teston Road	500	Scheib et al., 2018
1/141-02	I GSIOH LYONG	500	3011610 61 al., 2010

Fonte: autoria própria (2020).

2.5 CHILE

Os primeiros indivíduos antigos originários do Chile a serem sequenciados estavam, infelizmente, separados de seus contextos arqueológicos originais. Tratamse de 11 indivíduos que, acredita-se, pertenciam a populações nativo-americanas da Patagônia chilena, mais precisamente da Terra do Fogo, já próximo do Estreito de Magalhães. É geralmente aceito que estas populações diferem morfologicamente dos povos considerados como "Ameríndios", com algumas suposições de que eles façam parte do grupo "Paleoamericano", que possuem traços oceânicos. Todas as 11 amostras, no entanto, foram cedidas pelo *Musée de l'Homme* em Paris, na França, e pelo Instituto de Antropologia da Universidade de Zurique, na Suíça, sendo originalmente obtidas por volta do ano de 1800. Amostras de cabelo e ósseas destes indivíduos foram utilizadas para a realização do sequenciamento genético (RAGHAVAN *et al.*, 2015).

Um sítio chileno do qual se há contexto arqueológico documentado, *Los Rieles*, localizado no centro-norte do Chile, possui evidências de cultura material humana que datam de 12.400 a 4.850 anos cal AP, além de enterramentos de seis indivíduos dos quais 2 foram sequenciados geneticamente. Um é um adulto (40-45 anos de idade ao momento da morte) masculino incompleto sepultado em decúbito lateral semiflexionado e que foi datado diretamente em 11.140-10.730 cal anos AP a partir de datação por Radiocarbono realizada em osso petroso, o mesmo elemento anatômico do qual o DNA foi extraído. Outras idades obtidas em dentes para este indivíduo são muitas próximas da primeira. Trata-se, portanto, de um dos indivíduos humanos mais antigos a ser datado diretamente da América do Sul (JACKSON; MÉNDEZ; ASPILLAGA, 2012). Já o outro indivíduo deste sítio a ser sequenciado geneticamente é também um adulto (24-26 anos de idade ao momento do óbito) masculino quase completo datado diretamente para 5.310-4.870 anos cal AP, com base em duas idades estatisticamente indistinguíveis (POSTH *et al.*, 2018).

Outros dois indivíduos antigos chilenos são também originários da Patagônia, nas proximidades do Estreito de Magalhães, porém desta vez cedidos pela local *Universidad de Magallanes*. Os mesmos foram coletados em dois sítios arqueológicos datados como pertencentes ao Holoceno Médio (entre 8.000-4.000 anos AP): sítios *Punta Santa Ana*-1 e *Ayayema*. As idades obtidas a partir da datação por Radiocarbono-AMS foram calibradas para o intervalo de 7.001-7.584 anos AP, para o

primeiro sítio, e de 5308-4.933 anos AP, para o segundo. A primeiro sítio se trata de concheiro multicomponencial, enquanto o segundo é uma caverna localizado na *Isla Madre de Dios*. Análises bioantropológicas realizadas a partir de características craniais e pélvicas do primeiro indivíduo indicam que os remanescentes pertencem a uma pessoa do sexo feminino e adulta (35-50 anos de idade ao momento do óbito). Já os remanescentes osteológicos do segundo indivíduo, encontrados na superfície da caverna, demonstram que os mesmos pertencem a um indivíduo do sexo masculino adulto (também de 35-50 anos de idade no momento da morte), e embora estejam incompletos, a condição de conservação do mesmo mostrava-se propícia para o sequenciamento genético. Assume-se que ambos os indivíduos possam ter correspondido a caçadores-coletores marinhos pioneiros na região da Terra do Fogo chilena (MORENO-MAYAR *et al.*, 2018a).

O sítio *Conchali*, localizado dentro dos limites da capital Santiago, foi identificado durante obras urbanas, quando remanescentes ósseos de dois indivíduos humanos (o primeiro de aproximadamente 600 anos cal AP; e o segundo de aproximadamente 830 anos cal AP) foram evidenciados. Ambos os indivíduos são do sexo masculinos e seus remanescentes demonstram uma boa condição de preservação, embora não tenha sido identificada uma associação direta dos mesmos com qualquer outro material arqueológico. Ambos os indivíduos foram sequenciados geneticamente (POSTH *et al.*, 2018).

O indivíduo *Chinchorro* é originário de Arica e foi escavado em 1990. Trata-se de uma das múmias que foram encontradas em um enterramento próximo ao nível da superfície do sítio arqueológico de mesmo nome. O registro arqueológico indica que, antes de serem sepultados, todos os indivíduos foram desarticulados, reagrupados e mumificados artificialmente antes de serem inumados. O indivíduo aqui analisado é do sexo feminino e possuía mais de 25 anos de idade ao momento da morte. A mesma foi datada diretamente em aproximadamente 5.800 anos AP por datação radiocarbônica de uma amostra de cabelo. Para o sequenciamento do DNA foram utilizadas amostras ósseas da múmia (RAGHAVAN *et al.*, 2015).

Por fim, o sítio *Pica Ocho* é um cemitério – que possui datações que partem do ano 900 a 1450 da Era Comum – localizado no oásis de *Pica-Matilla*, no Deserto de Atacama, a 1.350 m de altitude. Embora o sítio esteja localizado a aproximadamente 90 km da costa, evidências arqueológicas desse cemitério sugerem conexões entre o

oásis e regiões costeiras. Um indivíduo evidenciado neste sítio foi sequenciado geneticamente (POSTH *et al.*, 2018).

Uma visão geral de todas as amostras oriundas do Chile pode ser observada a seguir (Tabela 5).

Tabela 5 – Dados dos indivíduos antigos provenientes do Chile

Indivíduo	Sítio	Datação (anos AP)	Referência
890	N/A	N/A	Raghavan <i>et al</i> ., 2015
894	N/A	N/A	Raghavan <i>et al</i> ., 2015
895	N/A	N/A	Raghavan <i>et al</i> ., 2015
5832	Punta Santa Ana-1	6.500	Moreno-Mayar <i>et al</i> ., 2018a
A460	Cueva Ayayema	4.500	Moreno-Mayar <i>et al</i> ., 2018a
AM71	N/A	N/A	Raghavan <i>et al</i> ., 2015
Chinchorro	Chinchorro	~5.800	Raghavan <i>et al</i> ., 2015
l11974	Los Rieles	11.140-10.730	Posth <i>et al</i> ., 2018
l1752	Conchalí	650-540	Posth <i>et al</i> ., 2018
l1753	Los Rieles	5.310-4.870	Posth <i>et al</i> ., 2018
l1754	Conchalí	910-740	Posth <i>et al</i> ., 2018
12537	Pica Ocho	720-570	Posth <i>et al</i> ., 2018
MA572	N/A	N/A	Raghavan <i>et al</i> ., 2015
MA575	N/A	N/A	Raghavan <i>et al</i> ., 2015
MA577	N/A	N/A	Raghavan <i>et al</i> ., 2015
Nr66	N/A	N/A	Raghavan <i>et al</i> ., 2015
Nr72	N/A	N/A	Raghavan <i>et al</i> ., 2015
Nr73	N/A	N/A	Raghavan <i>et al</i> ., 2015
Nr74	N/A	N/A	Raghavan <i>et al</i> ., 2015

Fonte: autoria própria (2020).

2.6 ESTADOS UNIDOS DA AMÉRICA

Os indivíduos antigos sequenciados e oriundos dos EUA foram evidenciados em sítios arqueológicos existentes em seis Estados localizados em diversas regiões do País: Alasca (AK), Califórnia (CA), Montana (MT), Nevada (NV), Pensilvânia (PA) e Washington (WA) (RASMUSSEN *et al.*, 2014; 2015; LINDO *et al.*, 2017; MORENO-MAYAR *et al.*, 2018a; 2018b; SCHEIB *et al.*, 2018; FLEGONTOV *et al.*, 2019).

Do Alasca, região de relevância ímpar nesta pesquisa e que não possui ligação terrestre com o resto do País – podendo muito bem ser considerado aqui como um território à parte – foram sequenciados 19 indivíduos provenientes de 8 sítios: *Chaluka Midden* (4 indivíduos), *On Your Knees Cave* (1), *Palm Site* (1), *Ship Rock Island* (1), *Tochak McGrath* (3), *Trail Creek Cave* 2 (1), *Upward Sun River* (2) e *Warm Cave* (6) (LINDO *et al.*, 2017; MORENO-MAYAR *et al.*, 2018a; 2018b; SCHEIB *et al.*, 2018; FLEGONTOV *et al.*, 2019).

Do Chaluka Midden, uma profunda estrumeira na ilha Umnak, adjacente à vila contemporânea de Nikolski, quatro indivíduos (três dos sexo biológico masculino e um do feminino, de acordo com dados genéticos) foram sequenciados e datados, exibindo uma faixa de idade de 702 a 2.305 anos cal AP. Tratar-se-iam de indivíduos representativos de populações precoces Pré- ou Paleoaleutas (3.600 a 300 anos cal AP) que apresentavam uma morfologia dicrocranica e sepultamentos por inumação. As amostras ósseas destes indivíduos foram selecionadas de coleções do Instituto Smithsonian, tendo sido escavadas no final da década de 1930 (FLEGONTOV et al., 2019).

No sítio *On Your Knees Cave*, uma caverna localizada no norte da Ilha do Príncipe de Gales, foram evidenciados os remanescentes ósseos do indivíduo conhecido como Shuká Káa que datam de aproximadamente 9.200±50 anos AP. A distribuição espacial dos remanescentes ósseos dentro da caverna sugere que o indivíduo não foi intencionalmente enterrado, mas sim depositado ou reposicionado na caverna, possivelmente como resultado de morte acidental e agentes tafonômicos pós-deposicionais. A análise do colágeno ósseo deste indivíduo revelou uma dieta de longo prazo de alimentos marinhos, com pouco sustento derivado de fontes terrestres. Ferramentas líticas foram encontradas no mesmo nível estratigráfico dos remanescentes humanos, mas não diretamente associadas ao indivíduo, e foram fabricadas com materiais originários de ilhas próximas, e pelo menos uma fonte proveniente do continente. Essa evidência sugere que a população associada a Shuká Káa compreendia navegadores costeiros adaptados para o mar e que participaram de redes comerciais estabelecidas entre ilhas adjacentes e o continente (LINDO *et al.*, 2017).

A *Ship Rock Island* está localizada a nordeste da ilha Umnak. O único indivíduo deste sítio foi identificado como do sexo biológico masculino e possuidor de uma idade de 749 anos cal AP. O sítio também está associado a uma população existente desde 800/900 anos cal AP em diante, possuidora de uma morfologia braquicraniana e praticantes de sepultamentos envolvendo mumificação. A mesma também seria composta pelos ancestrais imediatos das populações Aleutas modernas, que haviam substituído uma população anterior de Pré- ou Paleoaleutas há cerca de um milênio atrás. A amostra óssea deste indivíduo também foi selecionada de coleção do Instituto Smithsonian, tendo sido também escavada no final da década de 1930 (FLEGONTOV *et al.*, 2019).

O Palm Site é um cemitério de atabascano Dena'ina (Dene) localizado em uma praia remota e erodida de Cook Inlet, 36 km ao norte de Kenai, no Alasca. Três conjuntos de remanescentes humanos erodiram, mesmo que parcialmente, de um penhasco de 4 metros de altura. Como resultado das atividades missionárias ortodoxas russas de meados do século XIX, as práticas funerárias na região passaram da cremação para o enterro em caixões em cemitérios ortodoxos consagrados. Os sepultamentos em erosão no Palm Site são inumações rasas (~50 cm-1 metro abaixo da superfície) em caixões de madeira, não localizadas em cemitério ortodoxo, o que pode representar uma prática de sepultamento intermediária de relativa curta duração. O modo único de sepultamento (nem a cremação, nem o enterro ortodoxo) sugerem uma data do início do Século XIX. Durante esse período, os Dena'ina foram vítimas de numerosas epidemias de doenças contagiosas, a mais devastadora foi a epidemia de varíola de 1838-40, durante a qual morreram metade dos Kenai Dena'ina. O cemitério está possivelmente associado a uma ou mais dessas epidemias, uma vez que estes eventos requerem rápido sepultamento (SCHEIB et al., 2018).

O sítio *Tochak McGrath*, que é uma área atabascana (cujo nome é Tochak) nas proximidades da eticamente miscigenada comunidade moderna de McGrath, no sudoeste do Alasca Interior. Três indivíduos foram encontrados misturados em um contexto que não indica sepultamento na zona ribeirinha do alto do rio Kuskokwim, associados com remanescentes de fogueira, artefatos líticos lascados e ósseos. Os remanescentes humanos não puderam ser associados estratigraficamente às características da ocupação cultural circundante. A apresentação dos esqueletos e o padrão de articulação quase completos dos indivíduos em depósitos maciços de areia sugerem que os mesmos morreram juntos por exposição ambiental e foram enterrados pela sedimentação fluvial (FLEGONTOV *et al.*, 2019).

O sítio *Trail Creek*, um conjunto de aproximadamente doze cavernas localizado na Península de Seward, a aproximadamente 25 km ao sudoeste de Deering. As cavernas foram descobertas em 1928 por residentes de Deering. As cavernas 2 e 9 foram então escavadas mais minuciosamente em 1949 e 1950. Um dente humano foi recuperado em 1949 na Camada III da seção de 4 metros da Caverna 2 e não foi identificado como humano até muito tempo depois, quando foi sequenciado geneticamente. O mesmo foi identificado como um dente incisivo central superior esquerdo decíduo, levemente desgastado, embora a raiz não estivesse totalmente formada. A borda incisal da coroa está levemente desgastada e a formação radicular

não está completa. A formação radicular do incisivo central superior é completada aproximadamente aos 2,5 anos de idade (ALQAHTANI; HECTOR; LIVERSIDGE, 2010). Devido ao fato de a formação radicular não estar concluída, em vez de a raiz ser reabsorvida antes de ser descartada, pode-se presumir que o mesmo pertencia a uma criança que morreu enquanto o dente ainda estava em seu devido local. Portanto, presume-se que essa criança morreu com aproximadamente 1,5 ano de idade. O sexo da criança não pode ser avaliado positivamente a partir do tamanho ou da forma do dente. O dente humano foi diretamente datado por radiocarbono, produzindo uma idade calibrada de 9.020 anos AP (MORENO-MAYAR et al., 2018a).

O sítio *Warm Cave* está localizado em Kagamil, imediatamente a oeste da ilha Umnak. O sítio está associado a uma população existente desde 800/900 anos cal AP em diante, possuidora de uma morfologia braquicraniana e praticantes de sepultamentos envolvendo mumificação. A mesma seria composta pelos ancestrais imediatos das populações Aleutas modernas, que haviam substituído uma população anterior de Pré- ou Paleoaleutas há cerca de um milênio atrás. Geneticamente, dos seis indivíduos evidenciados neste sítio, três seriam masculinos e três femininos. Os mesmos possuem uma cronologia calibrada de 479 a 596 anos AP. As amostras ósseas destes indivíduos também foram selecionadas de coleções do Instituto Smithsonian, tendo sido escavadas também no final da década de 1930 (FLEGONTOV *et al.*, 2019).

Por último no Alasca, os remanescentes ósseos de dois bebês, indivíduos USR 1 e 2, foram recuperados de uma cova no sítio *Upward Sun River* (USR), localizado no vale do rio Tanana, no centro do Alasca. Os dois indivíduos foram nomeados *Xach'itee'aanenh t'eede gaay* ou "nascer do sol" (USR1) e *Yełkaanenh t'eede gaay* ou "crepúsculo do amanhecer" (USR2) pela comunidade indígena local. Os bebês foram descobertos em uma cova em meio a um lodo maciço a aproximadamente 160-170 cm abaixo da superfície. O distúrbio pós-deposicional é interpretado como mínimo. Os dois bebês estavam dentro de um elemento residencial no Componente 3 do sítio, que data da transição do Pleistoceno terminal ao Holoceno. Com base nas dimensões dos elementos ósseos diagnóstico e no desenvolvimento da coroa decídua, o indivíduo 1 morreu com 6 a 12 semanas de vida e o indivíduo 2 morreu com mais de 30 semanas pré-natais. As análises morfológicas e genéticas confirmam que os dois indivíduos são do sexo feminino. Os resultados da análise das características morfológicas dentárias indicam que o indivíduo 1 possui afinidade com populações nativo-americanas. Os

indivíduos associados ao Componente 3 da USR fazem parte de uma tradição cultural material difundida que se estende por grande parte do noroeste da América do Norte (MORENO-MAYAR *et al.*, 2018b).

Já da Califórnia, na costa do Pacífico dos EUA, foram sequenciados 65 indivíduos antigos, o maior número entre todos os Estados do País – e até mais do que qualquer outro país incluído nesta pesquisa -, provenientes de 9 sítios: Carpenteria (1 indivíduo), New Cuyema (1), Point Sal (15), San Clemente Island (7), San Miguel Island (2), San Nicolas Island (35), Santa Catalina Island (2), Santa Cruz Island (1) e Síi Túupentak (1). Este último é uma grande vila ancestral do povo nativoamericano Ohlone/Costanoan, intensivamente ocupada desde 685 anos cal AP, associada a um cemitério situado ao longo do riacho Alameda – onde as amostras foram coletadas – no sudeste da Baía de San Francisco. Os sítios nas ilhas do Canal da Califórnia (San Clemente, San Miguel, San Nicolas, Santa Catalina e Santa Cruz) fornecem evidências de substancial habitação e incluem extensos concheiros. A maioria das amostras de San Nicolas, em específico, provêm do extremo oeste da ilha, o único local com fontes de água doce. Dados isotópicos indicam que a dieta local era focada em recursos marinhos, e que a mesma não teria variado consideravelmente ao longo dos conhecidos 8.000 anos de ocupação. Os ilhéus estavam relativamente isolados do continente e possivelmente de outras ilhas, no entanto há evidências da existência de duas ocupações distintas em San Nicolas ao longo do tempo. As amostras dos demais sítios estavam sob curadoria do American Museum of Natural History e seus dados contextuais são escassos (SCHEIB et al., 2018).

Do estado de Montana, apenas um único indivíduo antigo foi sequenciado geneticamente. Trata-se do também único sepultamento conhecido associado à cultura Clovis, evidenciado no sítio *Anzick* em 1968. Lá, em associação direta com os remanescentes parcialmente fragmentários de uma criança (Anzick-1), também foram encontradas cerca de 100 ferramentas líticas e 15 fragmentos de ferramentas ósseas (pelo menos uma produzida a partir de remanescente ósseo de alce) que são tecnologicamente consistentes com artefatos do complexo Clovis. Os remanescentes humanos foram encontrados diretamente abaixo dos citados artefatos e cobertos com ocre vermelho. Um osso do esqueleto foi datado diretamente por radiocarbono obtendo-se uma idade entre 12.707-12.556 anos cal AP, próximo ao final do período de Clovis (RASMUSSEN *et al.*, 2014).

Do Nevada, Estado vizinho à Califórnia, foram sequenciados 6 indivíduos antigos provenientes de 2 sítios: Lovelock Cave (4) e Spirit Cave (2). A Lovelock Cave está localizada em uma formação de calcário no condado de Churchill, no centro-oeste do Estado. Ele está situado à beira do lago Humboldt, um lago intermitente que ocupa uma parte da área do pleistocênico lago Lahontan, que ajudou a formar a própria caverna. Escavações arqueológicas e esforços de salvamento foram realizados no sítio em 3 momentos: 1912, 1929 e na década de 1960. O local produziu uma abundância de vestígios arqueológicos (estimados em mais de 20.000 espécimes). No geral, estima-se que 45 indivíduos humanos foram inumados na caverna. Os indivíduos sequenciados eram adultos e foram diretamente datados por radiocarbono como pertencentes ao Holoceno Final. Já a Spirit Cave é um pequeno abrigo sob rocha localizado no mesmo condado, porém ao norte do leito seco do lago Lahontan. O sítio foi investigado pela primeira vez em 1940, quando remanescentes ósseos de dois indivíduos, embrulhados em esteiras de tecido de junco, foram evidenciados. Os sepultamentos foram realizados um em cima do outro. O sepultamento superior (AHUR770c) continha relativamente poucos ossos desarticulados de uma mulher adulta. O esqueleto do indivíduo inferior (AHUR2064) estava praticamente completo e parcialmente mumificado, e incluía cabelos, mocassins de couro, um cobertor de pele de coelho e, no intestino, os restos da última refeição consumida. O mesmo era um homem adulto, talvez com 45±5 anos de idade à época da morte. A datação por Radiocarbono dos indivíduos indica que os mesmos pertençam ao início do Holoceno. Uma comparação dos crânios de Spirit Cave com uma base de dados mundial de medições craniométricas posicionou estes indivíduos fora do alcance de qualquer população moderna, mas aquelas as quais eles estavam mais próximos incluíam europeus (Nórdicos e Zalavar) e, em particular, os Ainu. Os crânios não eram muito semelhantes aos de nenhum nativo americano moderno. Os mesmos provaram ser parte de um conjunto de indivíduos antigos – incluindo o Kennewick e os de Lagoa Santa – cujos atributos craniométricos pareciam ser suficientemente distintos para garantir o rótulo de "Paleoamericano" e possivelmente representam uma população que chegou em migrações mais ancestrais para as Américas (MORENO-MAYAR et *al.*, 2018a).

Já a única amostra proveniente da Pensilvânia (no Nordeste dos EUA), US-14, foi evidenciado nos arredores do *Shohola Creek*, um tributário do Rio Delaware, no leste do Estado, e doado ao *American Museum of Natural History* na década de 1960.

Trata-se de um Indivíduo culturalmente não identificável, cujo contexto arqueológico é escasso (SCHEIB *et al.*, 2018).

O último indivíduo sequenciado proveniente dos EUA, o *Kennewick Man*, foi descoberto inadvertidamente em julho de 1996 em águas rasas ao longo da costa do rio Columbia, nos arredores de Kennewick, estado de Washington – localizado na costa do Pacífico, na fronteira com o Canadá. Em várias idas à localidade durante o mês seguinte, foram coletados cerca de 300 elementos e fragmentos ósseos, compreendendo no final aproximadamente 90% de um esqueleto humano masculino adulto. A datação por radiocarbono do mesmo posicionou-o cronologicamente no início do Holoceno. Ao que os estudos indicam, os remanescentes foram intencionalmente inumados e erodiram pouco antes de sua descoberta. Análises anatômicas e morfométricas concluíram que o *Kennewick Man* se assemelha a populações circumpacíficas, particularmente os Ainu e Polinésios, embora ele tenha certas características morfológicas europeias e seja anatomicamente distinto dos nativos americanos modernos. Esses resultados indicariam que o *Kennewick Man* era descendente de uma população que migrou antes e independentemente da população que originou os nativos americanos modernos. (RASMUSSEN *et al.*, 2015).

Enfim, uma visão geral de todas as amostras oriundas dos EUA pode ser observada a seguir (Tabela 6).

Tabela 6 – Dados dos indivíduos antigos provenientes dos EUA

Indivíduo	Sítio	Datação (anos AP)	Referência
523a	Palm Site, AK	N/A	Scheib <i>et al</i> ., 2018
AHUR2064	Spirit Cave, NV	10.000	Moreno-Mayar <i>et al</i> ., 2018a
AHUR770c	Spirit Cave, NV	10.000	Moreno-Mayar <i>et al</i> ., 2018a
Ala1	Síi Túupentak, CA	N/A	Scheib <i>et al.</i> , 2018
Anzick-1	Anzick, MT	12.722-12.590	Rasmussen <i>et al</i> ., 2014
CH-01	Carpenteria, CA	1.555-1.410	Scheib <i>et al</i> ., 2018
CR-01	Santa Cruz Island, CA	764-561	Scheib <i>et al</i> ., 2018
CT-01	Santa Catalina Island, CA	139-Presente	Scheib <i>et al</i> ., 2018
CT-02	Santa Catalina Island, CA	N/A	Scheib <i>et al.</i> , 2018
10712	Chaluka Midden, AK	1.260-870	Flegontov <i>et al</i> ., 2019
10719	Chaluka Midden, AK	700-310	Flegontov <i>et al</i> ., 2019
10721	Chaluka Midden, AK	2.300-1.840	Flegontov <i>et al</i> ., 2019
I1118	Warm Cave, AK	500-130	Flegontov <i>et al</i> ., 2019
I1123	Warm Cave, AK	500-130	Flegontov et al., 2019
I1124	Warm Cave, AK	47010	Flegontov et al., 2019
I1125	Ship Rock Island, AK	710-440	Flegontov et al., 2019
I1126	Chaluka Midden, AK	1.220-710	Flegontov et al., 2019

(Continua)

Indivíduo	Sítio	Datação (anos AP)	Referência
I1127	Warm Cave, AK	600-270	Flegontov <i>et al</i> ., 2019
I1128	Warm Cave, AK	560-250	Flegontov <i>et al.</i> , 2019
I1129	Warm Cave, AK	560-230	Flegontov <i>et al.</i> , 2019
I5319	Tochak McGrath, AK	900-550	Flegontov <i>et al.</i> , 2019
15320	Tochak McGrath, AK	N/A	Flegontov <i>et al.</i> , 2019
I5321	Tochak McGrath, AK	N/A	Flegontov <i>et al.</i> , 2019
Kennewick	Columbia River, WA	8.400-8.690	Rasmussen <i>et al.</i> , 2015
Lovelock1	Lovelock Cave, NV	2.000	Moreno-Mayar <i>et al.</i> , 2018a
Lovelock2	Lovelock Cave, NV	1.900	Moreno-Mayar <i>et al.</i> , 2018a
Lovelock3	Lovelock Cave, NV	700	Moreno-Mayar et al., 2018a
Lovelock4	Lovelock Cave, NV	1.800	Moreno-Mayar et al., 2018a
NC	New Cuyama, CA	1.390-1.300	Scheib <i>et al.</i> , 2018
PS-02	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-03	Point Sal, CA	1.521-1.413	Scheib <i>et al</i> ., 2018
PS-04	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-06	Point Sal, CA	1.522-1.414	Scheib <i>et al.</i> , 2018
PS-07	Point Sal, CA	1.522-1.423	Scheib <i>et al</i> ., 2018
PS-09	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-12	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-13	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-17	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-18	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-19	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-23	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-26	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-30	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
PS-34	Point Sal, CA	N/A	Scheib <i>et al</i> ., 2018
SC-01	San Clemente Island, CA	N/A	Scheib <i>et al</i> ., 2018
SC-02	San Clemente Island, CA	N/A	Scheib <i>et al</i> ., 2018
SC-03	San Clemente Island, CA	665-485	Scheib <i>et al</i> ., 2018
SC-04	San Clemente Island, CA	508-274	Scheib <i>et al</i> ., 2018
SC-05	San Clemente Island, CA	760-561	Scheib <i>et al</i> ., 2018
SC-06	San Clemente Island, CA	N/A	Scheib <i>et al.</i> , 2018
SC-07	San Clemente Island, CA	N/A	Scheib <i>et al</i> ., 2018
Shuka Kaa	On Your Knees Cave, AK	~10.300	Lindo <i>et al</i> ., 2017
SM-01	San Miguel Island, CA	244-Presente	Scheib <i>et al</i> ., 2018
SM-02	San Miguel Island, CA	465-150	Scheib <i>et al</i> ., 2018
SN-01	San Nicolas Island, CA	N/A	Scheib <i>et al</i> ., 2018
SN-03	San Nicolas Island, CA	1.246-974	Scheib <i>et al.</i> , 2018
SN-04	San Nicolas Island, CA	4.346-3.943	Scheib <i>et al.</i> , 2018
SN-09	San Nicolas Island, CA	N/A	Scheib <i>et al.</i> , 2018
SN-10	San Nicolas Island, CA	N/A	Scheib <i>et al.</i> , 2018
SN-11	San Nicolas Island, CA	714-517	Scheib <i>et al.</i> , 2018
SN-12	San Nicolas Island, CA	870-643	Scheib <i>et al.</i> , 2018
SN-13	San Nicolas Island, CA	508-276	Scheib <i>et al.</i> , 2018
SN-15	San Nicolas Island, CA	1.491-1.252	Scheib <i>et al.</i> , 2018
SN-16	San Nicolas Island, CA	650-510	Scheib <i>et al.</i> , 2018
SN-17	San Nicolas Island, CA	4.774-4.342	Scheib <i>et al</i> ., 2018

(Continua)

Indivíduo	Sítio	Datação (anos AP)	Referência
SN-20	San Nicolas Island, CA	N/A	Scheib <i>et al.</i> , 2018
SN-25	San Nicolas Island, CA	3.868-3.514	Scheib <i>et al</i> ., 2018
SN-31	San Nicolas Island, CA	N/A	Scheib <i>et al</i> ., 2018
SN-32	San Nicolas Island, CA	4.561-4.156	Scheib <i>et al</i> ., 2018
SN-37	San Nicolas Island, CA	N/A	Scheib <i>et al</i> ., 2018
SN-38	San Nicolas Island, CA	N/A	Scheib <i>et al</i> ., 2018
SN-39	San Nicolas Island, CA	N/A	Scheib <i>et al</i> ., 2018
SN-40	San Nicolas Island, CA	N/A	Scheib <i>et al.</i> , 2018
SN-41	San Nicolas Island, CA	N/A	Scheib <i>et al.</i> , 2018
SN-43	San Nicolas Island, CA	2.202-1.888	Scheib <i>et al</i> ., 2018
SN-44	San Nicolas Island, CA	4.819-4.450	Scheib <i>et al.</i> , 2018
SN-45	San Nicolas Island, CA	N/A	Scheib <i>et al</i> ., 2018
SN-48	San Nicolas Island, CA	4.073-3.697	Scheib <i>et al.</i> , 2018
SN-50	San Nicolas Island, CA	1.126-826	Scheib <i>et al</i> ., 2018
SN-51	San Nicolas Island, CA	1.171-888	Scheib <i>et al</i> ., 2018
SN-52	San Nicolas Island, CA	634-414	Scheib <i>et al</i> ., 2018
SN-53	San Nicolas Island, CA	427-134	Scheib <i>et al</i> ., 2018
SN-54	San Nicolas Island, CA	3.960±70	Scheib <i>et al</i> ., 2018
SN-55	San Nicolas Island, CA	4.410±100	Scheib <i>et al</i> ., 2018
SN-56	San Nicolas Island, CA	4.410±100	Scheib <i>et al</i> ., 2018
SN-57	San Nicolas Island, CA	4.410±100	Scheib <i>et al</i> ., 2018
SN-58	San Nicolas Island, CA	4.410±100	Scheib <i>et al</i> ., 2018
SN-59	San Nicolas Island, CA	4.430±30	Scheib <i>et al</i> ., 2018
SN-60	San Nicolas Island, CA	3.960±70	Scheib <i>et al</i> ., 2018
TrailCreek	Trail Creek Cave 2, AK	10.000	Moreno-Mayar <i>et al</i> ., 2018a
US-14	Shohola Creek, PA	316-288	Scheib <i>et al</i> ., 2018
USR1	Upward Sun River, AK	11.600-11.270	Moreno-Mayar <i>et al</i> ., 2018b
USR2	Upward Sun River, AK	11.600-11.270	Moreno-Mayar <i>et al</i> ., 2018b

Fonte: autoria própria (2020).

2.7 GROENLÂNDIA

Do único indivíduo groenlandês já sequenciado somente se tem conhecimento da existência de um tufo de cabelos que foi escavado em 1986 em Qeqertasussuk (Qt), um sítio da Cultura Saqqaq, localizado na parte mais meridional da Baía de Disko, no oeste do País. Devido à ocorrência de *permafrost*, o sítio Qt permite excelente preservação orgânica, sendo o único sítio Paleoesquimó a demonstrar preservação de materiais orgânicos como madeira, pele, cabelos e barbas. O sítio, no entanto, não contém vestígios de culturas esquimó posteriores (como os Dorset ou os Thule), sendo o único sítio da cultura Saqqaq onde remanescentes humanos foram coletados. O tufo de cabelo sequenciado foi encontrado embebido no permafrost, adjacente a um crânio de rena, a aproximadamente 40 centímetros abaixo da superfície atual. A amostra possui uma idade aproximada de 4.000 anos AP (RASMUSSEN *et al.*, 2010).

2.8 MÉXICO

Os 11 indivíduos humanos antigos sequenciados oriundos do México foram evidenciados em 5 sítios arqueológicos: *Comondu* (1 indivíduo), LC-218 (1), *Iron Springs* (1), *Piedra Gorda* (6) e *Sierra Tarahumara* (2) (RAGHAVAN *et al.*, 2015; SCHEIB *et al.*, 2018).

Os sítios arqueológicos *Piedra Gorda* e *Sierra Tarahamura* são associados aos povos Pericúes. Os Pericúes ocuparam a ponta sul da península de *Baja California*, no México, e foram extintos há aproximadamente 200 anos. Argumenta-se que eles são um grupo de 'paleoamericanos', devido à sua forma craniana distinta. Tratam-se de povos associados à cultura *Las Palmas*, que teria existido entre 800 e 300 anos AP. Todas as amostras de ossos e dentes de Pericúes foram coletadas no Museu Nacional de Antropologia – incluindo as de duas múmias da *Sierra Tarahumara*, sítio localizado no norte do México. O sítio de *Piedra Gorda* está localizado no sul da península de *Baja California* (RAGHAVAN *et al.*, 2015).

As amostras dos demais sítios estavam sob curadoria do *American Museum of Natural History* e seus dados contextuais são escassos (SCHEIB *et al.*, 2018).

Não há dados cronológicos diretos para nenhuma das amostras evidenciadas no México. Uma visão geral das mesmas pode ser observada abaixo (Tabela 7).

Tabela 7 – Dados dos indivíduos antigos provenientes do México

Indivíduo	Sítio	Referência
B-03	LC-218	Scheib <i>et al.</i> , 2018
B-04	Comondu	Scheib <i>et al.</i> , 2018
BC23	Piedra Gorda	Raghavan <i>et al</i> ., 2015
BC25	Piedra Gorda	Raghavan <i>et al</i> ., 2015
BC27	Piedra Gorda	Raghavan <i>et al</i> ., 2015
BC28	Piedra Gorda	Raghavan <i>et al</i> ., 2015
BC29	Piedra Gorda	Raghavan <i>et al</i> ., 2015
BC30	Piedra Gorda	Raghavan <i>et al</i> ., 2015
F9	Sierra Tarahumara	Raghavan <i>et al</i> ., 2015
МОМ6	Sierra Tarahumara	Raghavan <i>et al</i> ., 2015
MX-01	Iron Springs	Scheib <i>et al</i> ., 2018

Fonte: autoria própria (2020).

2.9 PERU

Os 15 indivíduos antigos evidenciados no Peru que foram sequenciados geneticamente são provenientes de 7 sítios arqueológicos (Quadro 7): *Botigiriayocc* (3

indivíduos), Cueva Yacotogia (1), Tranca (1) e Huayuncalla (1), em Laramate; Cuncaicha (3); La Galgada (1); e Lauricocha (5). O sítio Botigiriayocc está localizado na parte alta de um planalto alongado que forma a linha divisória entre os rios Llauta e Laramate, e fica a cerca de 3.500 metros acima do nível do mar, estando localizado no meio de três colinas. A área contém numerosos abrigos sob rocha de diferentes dimensões que foram utilizados para sepultamento. O período intermediário tardio é o tempo de ocupação mais provável. Já o *Cueva Yacotogia* está localizado na margem esquerda do rio Llauta, no Cerro Sausana, a quase 3.400 metros acima do nível do mar, onde há uma série de afloramentos rochosos que compõem várias cavernas e abrigos naturais. Dois deles foram usados especialmente para fins funerários durante o Horizonte Médio e o Período Intermediário Final. O sítio de *Tranca* está localizado na margem esquerda do rio Laramate, a 2.800 metros acima do nível do mar, e ocupa uma área que desce suavemente da colina Cutamalla até o rio Laramate, no setor de Santa María. É um sítio de tipo residencial que inclui túmulos isolados e terraços agrícolas ocupados durante o Horizonte Médio (1300-950 anos cal AP). No extremo leste da área, há uma estrutura funerária de formato oval, na qual havia os remanescentes de mais de 30 indivíduos. Já o sítio de Huayuncalla está localizado na margem esquerda do rio Laramate, a cerca de 3.100 metros acima do nível do mar, ocupando mais de seis hectares com setores distintos de edifícios de pedra, incluindo gabinetes ovais/circulares e quadrangulares e estruturas funerárias. O local foi ocupado durante o período tardio dos Paracas, o período médio dos Nasca e a era de Wari. No ponto mais alto do sítio, existem dois gabinetes circulares cercados por um gabinete retangular; esses eram recintos funerários importantes. Em um nível mais baixo, do lado norte, existem três estruturas funerárias (conhecidas como kuntis), duas retangulares e uma oval, localizadas uma ao lado da outra. Todas as estruturas funerárias entraram em colapso com o passar do tempo. (POSTH et al., 2018).

O abrigo sob rocha *Cuncaicha* (localizado a 4.480 metros acima do nível do mar) é o sítio do Pleistoceno Terminal mais antigo e bem datado dos Andes (RADEMAKER *et al.*, 2014). Investigações arqueológicas documentaram uma ocupação residencial episódica por caçadores-coletores a partir de 12.500-12.000 anos cal AP. Em torno de 9.000 anos atrás, o local também se tornou um cemitério onde caçadores-coletores e, posteriormente, pastores, enterravam seus mortos. Episódios de ocupação alternaram com episódios de sepultamento até o Holoceno tardio (CHALA-ALDANA *et al.*, 2018).

Posth et al., 2018

Posth et al., 2018

Posth et al., 2018

La Galgada era um sítio cerimonial e administrativo localizado nas terras altas do norte do Peru, mais precisamente no departamento de Ancash, datado do período arcaico e inicial tardio (4.700-3.500 anos cal AP) e associado à tradição religiosa Kotosh. O sítio encontra-se a uma altitude relativamente baixa, de 1.100 metros acima do nível do mar, no desfiladeiro de Tablachaca, às margens do rio com o mesmo nome. O local é dominado por arquitetura de pedra monumental, incluindo câmaras de pedra, das quais algumas foram usadas para inumações (GRIEDER *et al.*, 1988).

Por fim, o sítio *Lauricocha* é um abrigo sob rochas localizado na província de Huanuco a 4.050 metros acima do nível do mar, perto do lago Lauricocha e da nascente do rio Marañón. O local foi escavado em várias campanhas entre 1958 e o início da década de 1960 e revelou remanescentes ósseos incompletos de 11 indivíduos humanos (8 adultos, 3 subadultos). Reinvestigações dos remanescentes ósseos revelaram que as inumações não são todas contemporâneas e que as datas dos sepultamentos variam desde o início do Período Arcaico (8.600 anos cal AP) até o Inicial (3.500 anos cal AP) (FEHREN-SCHMITZ *et al.*, 2015).

Uma visão geral das amostras do Peru pode ser observada abaixo (Tabela 8).

Indivíduo Sítio Datação (anos AP) Referência **CP29** Cuncaicha 9.240-8.770 Posth et al., 2018 CP8 Cuncaicha 4.290-4.080 Posth et al., 2018 **CUN008** Cuncaicha 3.370-3.180 Posth et al., 2018 10038 Lauricocha 8.730-8.520 Posth et al., 2018 10039 Posth et al., 2018 Lauricocha 8.580-8.420 10040 Lauricocha 5.940-5.740 Posth et al., 2018 10041 8.580-8.420 Posth et al., 2018 Lauricocha Botigiriayocc 10237 920-800 Posth *et al.*, 2018 10238 Lauricocha 8.560 Posth et al., 2018 11357 Botigiriayocc 880 Posth et al., 2018 900-730 **I1484** Botigiriayocc Posth et al., 2018 11485 Cueva Yacotogia 1.160-960 Posth et al., 2018

880

4.230-3.980

910-740

Tabela 8 – Dados dos indivíduos antigos provenientes do Peru

Fonte: autoria própria (2020).

11742

12261

12551

2.10 O CONTEXTO AMBIENTAL DA BERÍNGIA NOS ÚLTIMOS 30 MIL ANOS

Tranca

La Galgada

Huayuncalla

Durante o Último Máximo Glacial (UMG), grandes porções dos oceanos estavam acumuladas em geleiras continentais. Com isso, o volume de água nos

oceanos diminuiu proporcionalmente, resultando em uma redução global do nível do mar. Esta variação no nível do mar ao longo dos últimos milênios pode ser confirmada a partir de análises isotópicas de amostras provenientes de regiões marinhas profundas, da datação de plataformas continentais e de análises de iguais naturezas de calotas polares contemporâneas. A queda global do nível do mar durante o UMG, que teria começado em torno de 30 ka AP, criou então a Beríngia, que voltaria a ser submersa com o posterior aumento do nível do mar após o UMG. Estima-se que este evento de submersão teria ocorrido em torno de 11 ka AP (BRIGHAM-GRETTE et al., 2004).

O advento do UMG propiciou a expansão de geleiras até então restritas às mais elevadas latitudes do Hemisfério Norte e aos topos de montanhas e alpes, criando assim grandes lençóis de gelo de tamanhos continentais que poderiam se configurar como um impedimento de possíveis rotas de migração através da Beríngia. Há aproximadamente 21 ka AP, os maiores lençóis de gelo da América do Norte teriam se unido à leste das *Rocky Mountains*, fechando uma possível rota de migração para o centro do continente (MANDRYK *et al.*, 2001).

Mais próximo do litoral do Pacífico, geleiras alpinas ao longo das faixas costeiras do Alasca isolaram a Beríngia do Continente Americano. No entanto, as mesmas passariam a recuar a partir de 19 ka AP (BLAISE; CLAGUE; MATHEWES, 1990) enquanto que as grandes calotas polares continentais unificadas ainda se expandiam em direção ao centro da América do Norte (BOOTH *et al.*, 2003).

A costa da Beríngia veio a se tornar totalmente livre de gelo por volta de 15 ka AP (MANDRYK *et al.*, 2001), processo que começou a proporcionar uma ligação entre a região e a costa do Pacífico norte-americana em torno de 17.000 ka AP (MISARTI *et al.*, 2012). A posterior ligação entre a costa do Pacífico e o interior da América do Norte teria ocorrido então entre 13 e 12 ka AP (*MANDRYK* et al., 2001).

Já na Ásia, mais precisamente no leste da Sibéria, a glaciação que lá ocorreu durante o UMG limitou-se a glaciares alpinos e em cadeias montanhosas, não bloqueando assim o acesso entre a Sibéria e a Beríngia, apesar de que o clima ali oscilava entre condições próximas às atuais e períodos de temperaturas ainda mais baixas. Ciclos mais quentes na Sibéria anteriores ao UGM propiciaram o advento de grandes hordas de megafauna. Análises isotópicas da calota polar da Groenlândia sugere que esses ciclos surgiram há aproximadamente 45 ka AP e duravam de

centenas a até 2 mil anos, e teriam desaparecido em torno de 32 ka AP. (BRIGHAM-GRETTE *et al.*, 2004).

Análises de pólen na Beríngia demonstram uma mudança marcante de pólens de arbusto para pólens de ervas antes de 26 ka AP, enquanto a tundra de ervas substituía a floresta boreal e a estepe arbustiva na medida em que o UMG se instalava. Análises de pólen do lado do Alasca demonstram uma transição de volta para floresta boreal/estepe arbustiva ainda antes do fim do UMG, o que sugere um episódio de reaquecimento que permitiu a colonização florestal do Alasca de modo muito semelhante ao ocorrido no lado siberiano – com a presença de hordas de megafauna. Diversos grupos de megafauna, embora não necessariamente tão abundantes como na Sibéria, estavam presentes na América do Norte. Em muito devido à tundra de ervas que foi dominante durante o UMG, devido às condições climáticas majoritariamente frias e secas (CLAGUE; MATHEWES; AGER, 2004).

Já os ambientes costeiros junto ao Pacífico durante o UMG foram um pouco mais complexos. O nível do mar rebaixado expôs a plataforma continental para formar uma planície costeira que, embora fosse em grande parte coberta por geleiras, possuía uma série de refúgios que suportaram a vida de mamíferos terrestres. Dados palinológicos indicam que a vegetação presente nestes refúgios era composta principalmente por tundra de ervas com arbustos em áreas não cobertas pelos glaciares, com alguma presença de floresta boreal em direção ao atual Norte dos EUA. A partir de registros fósseis é possível afirmar também que o ambiente marinho costeiro continuou produtivo durante o UMG: as algas marinhas altamente abundantes na região podem ter sido uma atração para a migração costeira (ERLANDSON et al., 2007; ERLANDSON; BRAJE, 2011).

Por volta de 12 ka AP, com o aumento das temperaturas na região, se deu a substituição da tundra de ervas/arbustiva por florestas de coníferas. Além disso, os lençóis de gelo continentais do interior da América do Norte recuavam, ainda que mais lentamente do que os glaciares costeiros do Pacífico. Assim, a abertura de um corredor livre de gelo no interior não teria ocorrido antes de 13 a 12 ka AP. O ambiente inicial dentro deste corredor era dominado pelo fluxo glacial e por água derretida, com a formação de lagos represados pelo gelo e inundações periódicas provocadas pelo seu derretimento. A produtividade biológica neste cenário constantemente modificado foi adquirida lentamente, o que eventualmente propiciou a viabilidade do uso do

corredor livre de gelo como rota de migração humana em torno de 11 ka AP (MANDRYK *et al.*, 2001; BRIGHAM-GRETTE *et al.*, 2004).

Levando em consideração os contextos arqueológicos apresentados anteriormente – de algumas amostras mais antigas do que 10 ka AP evidenciadas na América do Sul – a teoria sobre o corredor livre de gelo parece não explicar a presença de populações humanas nas regiões austrais do continente americano em um período muito semelhante ao da viabilização do referido corredor.

Considera-se aqui, portanto, a utilização de outras rotas para esta migração humana no sentido Norte-Sul que não seja pelo interior da América do Norte; como por via costeira junto ao Pacífico, que já estava livre do gelo alguns milênios antes e já era ocupado por hordas de megafauna que serviam de alimento para as populações humanas que por ali se locomoviam.

Evidentemente, idades muito antigas na América do Sul também deixam margem para o surgimento de hipóteses migratórias que não necessariamente envolvem a Beríngia e nem um sentido Norte-Sul.

3 MÉTODO

Como já denunciado pelo título deste trabalho, será aqui empregada metodologicamente uma abordagem arqueogenética para o estudo das paleomigrações ocorridas na América e que culminaram na total e posterior colonização do Continente.

Arqueogenética é um termo cunhado e introduzido por Colin Renfrew que pode ser definido como uma disciplina que estuda o passado humano a partir do emprego de técnicas da área de Genética Molecular (RENFREW, 2001; RENFREW; BAHN, 2005), ou seja, a partir da extração de material genético de um vestígio ósseo humano e arqueológico, são buscadas informações que possibilitem uma aproximação à história de vida do indivíduo sob estudo.

A partir de tal análise é possível se chegar à respectiva ancestralidade biogeográfica daquele vestígio/indivíduo, ou até mesmo a possíveis relações de parentesco entre diferentes indivíduos, além de permitir a identificação de possíveis agentes patogênicos microscópicos (como vírus e bactérias) causadores de suas respectivas mortes (HERRMANN; HUMMEL, 1994; HUMMEL, 2007).

A extração e análise de material genético de ossos arqueológicos, o chamado "DNA antigo" (aDNA, *ancient DNA*), têm se tornado nos últimos anos⁴ um método de uso comum na Europa e na América do Norte para a resolução de problemas científicos concernentes a paleomigrações (SANTOS, 2008), paleopatologias e à própria evolução humana, assim como para complementar a análise das características osteológicas (morfométricas) de um determinado esqueleto ou remanescente ósseo – geralmente levando a conclusões ainda mais precisas (HERRMANN; HUMMEL, 1994; HUMMEL, 2003; 2007; PETRAGLIA *et al.*, 2012), como também poderá ser observado mais adiante. Nacionalmente, no entanto, tal abordagem tem sido geralmente apropriada por outras ciências que não a Arqueologia (FREITAS, 2001; 2002; 2006). E é isso que se empreende mudar com esta pesquisa.

-

⁴ Desde 1984, quando começaram a se noticiar as primeiras extrações bem-sucedidas de aDNA: de uma múmia egípcia de aproximadamente 2.500 anos e de um Quagga (espécie de animal, semelhante à zebra, já extinta) (HIGUCHI *et al.*, 1984; PÄÄBO, 1985).

Levando em consideração todas as informações expostas até aqui, é evidente que serão analisados 2 aspectos principais (que podem ser considerados, também, conceitos⁵) de todo o contexto anteriormente apresentado:

- a) Ancestralidades biogeográficas; e
- b) Cronologias absolutas.

Dar-se-á aqui então uma breve apresentação destes conceitos.

3.1 ANCESTRALIDADE BIOGEOGRÁFICA

Nos últimos anos, estudos que envolvem a estimação de ancestralidade têm sido prática comum no meio arqueológico (DIRKMAAT *et al.*, 2008; DIRKMAAT; CABO, 2012; SOLARI; MARTIN; SILVA, 2016; SILVA; GHETTI; SANTOS, 2016). Trata-se de um conceito e variável advindo das ciências forenses, onde possui lugar de destaque⁶ na tarefa de se caracterizar (ou até mesmo identificar) – na forma de perfil biológico – remanescentes humanos encontrados em contextos desta natureza (BIRX, 2010; ISCAN; STEYN, 2013).

O conceito de ancestralidade é dificilmente definido nos trabalhos que o abordam, tratado quase como um axioma, não parecendo ser necessária a sua definição, talvez por ser considerada óbvia, ou muito pelo contrário: por ser problemática (BIRX, 2010). No entanto, os autores que o empregam oferecem alguns indícios de como parecem pensar tal conceito.

Adams (2007, p. 43) sugere que "geralmente, antropólogos forenses tendem a classificar indivíduos em três grupos principais: Caucasoide ou branco/europeu; Negroide, ou preto/africano; e Mongoloide, ou nativo americano/asiático" e prossegue afirmando de forma contundente que "a melhor área para estimar raça⁷/ancestralidade

⁵ Bunge (2004, p. 66) afirma que "do ponto de vista metodológico, os conceitos são instrumentos utilizados para distinguir entidades e agrupá-las; eles nos permitem realizar análises e sínteses conceituais e empíricas", ou seja, de forma resumida, os conceitos seriam, portanto, ferramentas de análise. E é assim que os mesmos são aqui tratados.

⁶ Forma o denominado "*Big Four*" juntamente com as estimações de sexo biológico, idade e estatura do indivíduo analisado – as quais seriam as principais e primordiais informações do perfil biológico (ADAMS, 2007, p. 31).

⁷ Ainda que o conceito de raça seja amplamente utilizado na atualidade pelos profissionais das ciências forenses – nomeadamente, antropólogos forenses –, Hiernaux (1964 apud SAUER, 1992, p. 107) afirma que "a partir de qualquer ponto de vista que alguém aborde a questão da aplicabilidade do conceito de raça para a humanidade, as modalidades de variabilidade humana parecem tão distante daquelas exigidas para uma classificação coerente que o conceito deve ser considerado como de uso muito limitado (...) desmembrar a humanidade em raças como uma aproximação conveniente requer tamanha distorção dos fatos que qualquer utilidade desaparece". Neste sentido, Iscan e Steyn (2013, p. 195)

é a partir do crânio, especialmente os ossos do rosto". Os três grupos trazidos por Adams referenciam a proposição originalmente efetuada por Krogman em 1955 das "Três Principais Raças⁸ Humanas" (KROGMAN, 1955; ISCAN; STEYN, 2013). Em seu trabalho, Krogman propunha a distinção destas três "raças" – onde a Caucasoide era ainda subdividida em Nórdica, Alpina e Mediterrânea – mediante observação e análise de características morfológicas craniofaciais (Tabela 9) (KROGMAN, 1962).

Tabela 9 – Descrição Estereotípica dos Traços Craniofaciais das "Três Principais Raças Humanas" de Krogman

	Caucasoide				
Dimensões	Nórdico	Alpino	Mediterrâneo	Negroide	Mongoloide
Comprimento do crânio	Longo	Curto	Longo	Longo	Longo
Largura do crânio	Estreita	Larga	Estreita	Estreita	Larga
Altura do crânio	Alta	Alta	Moderadamente alta	Baixa	Média
Contorno Sagital	Arredondado	Arqueado	Arredondado	Plano	Arqueado
Largura da face	Estreita	Larga	Estreita	Estreita	Muito larga
Altura da Face	Alta	Alta	Moderadamente alta	Baixa	Alta
Órbita	Angular	Arredondada	Angular	Retangular	Arredondada
Abertura nasal	Estreita	Moderadamente larga	Estreita	Larga	Estreita
Margem nasal inferior	Aguda	Aguda	Aguda	Canalizada	Aguda
Perfil Nasal	Reto	Reto	Reto	Inclinado para baixo	Reto
Forma do palato	Estreito	Moderadamente largo	Estreito	Largo	Moderadamente largo
Impressão geral	Maciço,	Grande,	Pequeno, liso,	Maciço, liso,	Grande, liso,
do crânio	rugoso,	moderadamente	alongado,	alongado,	arredondado
	alongado, ovoide	rugoso, arredondado	pentagonóide a ovoide	comprimido, oval	

Fonte: adaptado de Iscan e Steyn (2013, p. 197).

_

confirmam que há um certo consenso no meio antropológico (físico) de que "raça é (...) mais uma construção social do que uma biológica, apesar de ter consequências biológicas generalizadas relacionadas à união seletiva, à manipulação genética e ao racismo institucional[; e de que] se a região de onde um indivíduo veio for estabelecida, isso não equivale a raça". De forma semelhante, Sauer (1992, p. 110) também afirma que "a maioria dos antropólogos rejeitou o conceito de raça para populações humanas tanto como ferramenta de pesquisa como como uma representação válida da diversidade biológica". Enquanto que Birx (2010, p. 43) pondera que "por causa da controvérsia em torno deste tema, alguns antropólogos forenses [já] adotaram termos como ancestralidade, afiliação cultural ou etnia em lugar de 'raça'". Ainda que não haja aqui concordância com a utilização dos termos/conceitos de "afiliação cultural" e de "etnia" para se abordar ancestralidade biológica — e isto será abordado mais adiante —, por todos os motivos anteriormente referenciados também não será tratado e/ou empregado aqui o conceito de raça.

⁸ Alguns anos mais tarde, o próprio Krogman recuou do uso do conceito de raça, alterando "*Races*" para "*Stocks*" (KROGMAN, 1962, p. 190).

De forma semelhante, Iscan e Steyn (2013) defendem que seja possível a identificação de pelo menos 3 tipos de ancestralidade – Africana, Asiática e Europeia – a partir de análises morfológicas e métricas tanto craniofaciais quanto de outros ossos do esqueleto humano.

Hefner (2009), por sua vez, se utiliza dos caracteres morfológicos craniofaciais presentes em múltiplas populações americanas para segregar seus respectivos indivíduos em 5 ancestralidades distintas: preto americano, branco americano, ameríndio, asiático e hispânico. Por fim, algo semelhante é praticado por antropólogos forenses, como apresenta Sauer (1992), que dividem a ancestralidade Mongoloide em duas: a ameríndia e a asiática – para além da preta e da branca. É perceptível, então, que todos estes profissionais concordam que existe alguma forma de padronização geográfica (ISCAN; STEYN, 2013).

Após esta breve, porém compreensiva, apresentação de como o conceito de ancestralidade é trabalhado nas ciências forenses – e inclui-se aqui parcela significativa do meio antropológico e até do arqueológico –, é possível se propor, de um modo geral, uma definição para o mesmo: a ancestralidade é a estimação das origens geográfica, biológica e/ou étnica (assim como a "afiliação cultural") de um indivíduo baseada em suas características morfométricas ósseas.

A apropriação deste aporte (proveniente das ciências forenses) por parte da Arqueologia demonstra-se naturalmente lógica, então, por dois motivos: 1) por compartilhar do mesmo objeto de estudo – vestígios ósseos humanos –, ainda que os contextos possam vir a ser distintos, ou não; e 2) por dividir semelhante curiosidade: a "origem" do indivíduo estudado, ainda que para fins diferentes – de identificação individual para as ciências forenses (ADAMS, 2007; ISCAN; STEYN, 2013); e para estudos de paleomigração (SANTOS, 2008), por exemplo.

É notável até aqui que pouquíssimos trabalhos façam menção à expressão "biogeografia/biogeográfica" – mesmo que tal ideia (a relação biologia-geografia) possa já estar implícita na definição proposta acima para o conceito de ancestralidade. E isto se dá pelo fato de tal expressão ser mais comumente empregada em estudos que envolvem outros tipos de organismos que não o ser-humano.

Brown e Lomolino (1998, p. 3) definem Biogeografia como "a ciência que intenta documentar e entender padrões espaciais de biodiversidade. É o estudo da distribuição de organismos, pretéritos e do presente, e de padrões de variação (...) nos

números e tipos de seres vivos sobre a terra". Então, por que excluir o gênero humano (ou as populações modernas) deste tipo de estudo?

São nos estudos de Genealogia humana que o termo composto surge. Segundo a Sociedade Internacional de Genealogia Genética (ISOGG, *International Society of Genetic Genealogy*), ancestralidade biogeográfica é definida⁹ como a estimação das origens geográfica, biológica e/ou étnica de um indivíduo baseada em análises de DNA. E há uma série de trabalhos nas ciências biológica, médica e/ou forense que compartilham de tal definição do conceito (SHRIVER; KITTLES, 2004; HALDER *et al.*, 2008; BOUAKAZE *et al.*, 2009).

Comparada com a definição proposta para o conceito de ancestralidade aplicado nas ciências forenses, o conceito de ancestralidade biogeográfica proposto pela ISOGG traz uma nova perspectiva de análise: a genética; enquanto ignora os caracteres morfométricos. Por outro lado, a primeira definição ignora a perspectiva genética em favor das análises macroscópicas. Os fins, por sua vez, são os mesmos.

Nesse caso, a aplicação do conceito de ancestralidade como efetuada nas ciências forenses parece não ser satisfatório para se chegar a uma conclusão mais precisa acerca da origem destes indivíduos.

O próprio Adams (2007) realiza críticas às possibilidades de respostas que esta definição do conceito de ancestralidade oferece:

Claramente, esses grupos não abrangem a diversidade do mundo moderno, e os esqueletos de algumas pessoas não se encaixam confortavelmente nessas amplas classificações. Outra consideração é que a mestiçagem é uma possibilidade. Mestiçagem refere-se a uma situação em que uma pessoa tem pais que se enquadram em diferentes grupos raciais. Por exemplo, se alguém tiver uma mãe caucasoide e um pai negroide, ele ou ela provavelmente teria algumas características esqueléticas típicas de ambos os grupos. (...) Muitas das diferenças [entre os grupos] são relativas (ADAMS, 2007, p. 43).

A definição do conceito de ancestralidade biogeográfica apresentada pela ISOGG, por sua vez, soa um tanto pretenciosa. Como definir etnia a partir de análises genéticas? (e esta pergunta se estende também para as análises morfométricas). Segundo afirma Nagel (1994, p. 153) etnia fundamenta-se sobre duas bases: "a identidade e a cultura". Reformula-se assim a pergunta: como, então, abordar estes

⁹ Cf. *Biogeographical ancestry* em *ISOGG Wiki*. Disponível em: https://isogg.org/wiki/Biogeographical_ancestry. Acesso em: 20 nov. 2018.

dois aspectos de etnia a partir de análises genéticas? Certamente não faz parte dos anseios desta pesquisa pôr em prática tal procedimento.

Frente às salientadas limitações de ambas definições, é necessário se pensar em uma alternativa para o conceito de ancestralidade biogeográfica.

Weiner (2010) defende que, para se obter a maior quantidade possível de informações do registro arqueológico e prover interpretações com o menor grau de incerteza, o arqueólogo deve buscar realizar em sua pesquisa uma investigação que abarque a ambas perspectivas deste registro: a macroscópica e a microscópica, explorando assim todas as fontes de informação possíveis. Concordando com tal argumento, admite-se que esta postura deve ser empregada, portanto, para o estudo de paleomigrações na América a fim de se efetuar a mais compreensiva caracterização possível das mesmas.

Nesse sentido, propõe-se aqui a definição do conceito de ancestralidade biogeográfica a ser aplicado como ferramenta de análise neste trabalho: ancestralidade biogeográfica é a estimação da origem geográfica de um indivíduo a partir de suas características biológicas – inclui-se, assim, ambas perspectivas, as análises morfométricas e genéticas; e exclui-se, portanto, os anseios étnicos e/ou culturais de tal aplicação.

Em Arqueogenética, o conceito de Ancestralidade Biogeográfica surge na forma de outros dois conceitos que são empregados de maneira intercambiável (SANTOS, 2008): Haplótipo e Haplogrupo. Haplótipo seria o próprio perfil genético de um determinado indivíduo (GOODWIN; LINACRE; HADI, 2011). Já Haplogrupo pode ser definido como o simples agrupamento de indivíduos que compartilham um mesmo Haplótipo, ou Haplótipos semelhantes, geralmente associado a uma região geográfica especifica (HUMMEL, 2007). Como exemplo desta última afirmação, podem ser citadas aqui algumas das denominações escolhidas pelo consórcio que realizou o Projeto 1000 Genomas (1kGP) — o maior projeto de sequenciamento genômico de populações globais: Chinês Han do Sul (CHS) na Ásia, População Ibérica na Espanha (IBS) na Europa, Gambianos nas Divisões Ocidentais da Gambia (GWD) na África, Porto-riquenhos de Porto Rico (PUR) na América e Bengalis de Bangladesh (BEB) no Sul da Ásia (1000 GENOMES PROJECT CONSORTIUM *et al.*, 2015).

Geneticamente, os Haplótipos são definidos por polimorfismos (SNPs, *single nucleotide polymorphisms*)¹⁰ presentes na carga genética que cada indivíduo carrega, geralmente herdando de seus antepassados. Quando as mesmas combinações de SNPs passam a ocorrer frequentemente dentro de uma população, passa-se a existir um Haplogrupo, associado ao recorte espacial o qual aquela população ocupa (BYRNES *et al.*, 2012). E é dessa forma que se afere a ancestralidade biogeográfica de um determinado indivíduo.

A aferição de ancestralidades biogeográficas mediante a classificação/seriação de Haplótipos em Haplogrupos é constantemente empregada com sucesso em estudos de Arqueogenética efetuados recentemente nas mais diversas regiões do globo (POSTH *et al.*, 2019; KAMPUANSAI *et al.*, 2020)

Usa-se portanto aqui, mesmo que minimamente, alguns fundamentos de classificação e tipologia, ainda que a partir de termos específicos: Haplogrupos e Haplótipos representam as ideias de "grupos" e "tipos" trazidas originalmente ao meio arqueológico por profissionais hoje considerados como histórico-culturalistas (SPAULDING, 1953; FORD; STEWARD, 1954); enquanto que os SNPs seriam as variáveis ou atributos que definiriam estes tipos e grupos. No entanto, é importante salientar, diferentemente também de certas pretensões histórico-culturalistas, que não é possível trabalhar esta tipologia e/ou classificação dentro de um "quadro espaçotempo" (BRAINERD, 1951, p. 303), uma vez que as ancestralidades biogeográficas não se limitam no tempo, já que estão em constante atualização¹¹ — desde que passaram a ser estudadas, na duas últimas décadas¹² (SEMINO *et al.*, 2000; CARRACEDO, 2005; KAYSER *et al.*, 2005; GOODWIN; LINACRE; HADI, 2011; HUMMEL, 2007).

O que deve ser observado a partir de tal classificação/tipologia, então, são as frequências com que diferentes ancestralidade biogeográfica podem aparecer entre os indivíduos analisados, uma vez que a depender destas – caso haja uma total homogeneidade ou, pelo contrário, heterogeneidade de ancestralidades –, inferências

•

¹⁰ Ou variantes, mutações genéticas que afetam uma única base nitrogenada (CARRACEDO, 2005).

¹¹ Cf. *Y-DNA Haplogroup Tree 2017* para acesso e visualização de todas as versões anuais, começando em 2006, da árvore de haplogrupos para a carga genética proveniente do cromossomo Y. Disponível em: https://isogg.org/tree/. Acesso em: 21 nov. 2018.

¹² No entanto, é correto afirmar que esta "atualização" ocorre desde o "surgimento biológico" destas ancestralidades ainda em períodos pré-históricos, devido às mutações aleatórias que ocorreram e ainda ocorrem no genoma humano ao longo do tempo (SANTOS, 2008; CASSIDY *et al.*, 2016; MARTINIANO *et al.*, 2017).

quanto ao período cronológico de povoamento das Américas podem vir a ser realizadas. No entanto, mesmo a simples observância das frequências as quais cada tipo de ancestralidade aparece não permite definir, com a precisão e a exatidão necessária, o recorte temporal no qual uma determinada região do Continente foi ocupada no passado. E isto se dá porque se, hipoteticamente, houver ocorrido uma reocupação posterior desta região, as frequências de ancestralidades biogeográficas sozinhas poderão levar a conclusões enganosas (a depender das mutações genéticas que ocorreram no intervalo de tempo entre as ocupações). Neste caso, ainda se mostra necessária a consideração de cronologias absolutas associadas a estas diferentes ocupações.

3.2 CRONOLOGIA ABSOLUTA

Dada a essência histórica deste ofício, o estabelecimento das cronologias de eventos pretéritos é uma das mais importantes informações que podem ser determinadas em Arqueologia. Estas cronologias podem possibilitar interpretações que visem desde a inserção de um achado arqueológico em seu contexto histórico, até o encadeamento (ou sequenciamento) de acontecimentos sucessivos ocorridos ao longo do tempo, durante o percurso da humanidade (SANTOS, 2016).

Nos últimos anos, uma relevante quantidade de métodos para se determinar a cronologia de vestígios arqueológicos foi sendo desenvolvida na medida em que era almejado, por parte do pesquisadores deste meio, um maior rigor no estabelecimento de cronologias – possibilitando assim a obtenção de interpretações empiricamente fundamentadas (WEINER, 2010; SANTOS, 2016). E, felizmente, este ainda continua a ser um anseio sempre presente no meio e no ofício arqueológico, tão antigo quanto esta própria ciência.

Tais métodos variam desde aplicações do conhecimento e de técnicas científicos advindos das ciências naturais (Física e Química, principalmente), das engenharias e, até mesmo, da Biologia, e que provêm dados que possibilitam o estabelecimento de idades e/ou cronologias a tidas como absolutas (WEINER, 2010); até aqueles proporcionados pelas categorizações sistemáticas baseadas, por exemplo, em estruturas (atributos) artísticas e/ou ornamentais presentes em um determinado artefato (ou seja, sua tipologia), o que resulta, por sua vez, em cronologias consideradas relativas (SANTOS, 2016). Lucas (2005) oferece uma

melhor visualização destas categorias de métodos de datação comumente empregados em Arqueologia, citando de alguns exemplos de técnicas associadas às mesmas (Tabela 10):

Tabela 10 – Categorias de cronologias e alguns métodos para suas obtenções

Cronologias relativas	Cronologias absolutas
a) Primária	a) Históricas
Estratigrafia	Associativas
Seriação	Intrínsecas
Tipologia	
, -	b) "Científicas"
b) Secundária	Dendrocronologia
Periodização	Radiocarbono
	(dentre outras)

Fonte: adaptado de Lucas (2005, p. 5).

Segundo Murray (1999, p. 80) cronologias absolutas podem ser definidas como a "estimação de tempo" desde que "processos químicos ou físicos", cujas "taxas" podem ser medidas, começaram". Artioli (2010, p. 166) afirma de modo muito parecido que a cronologia absoluta é definida pela "medição [de] uma quantidade física que é proporcional ao tempo decorrido a partir de um ponto de partida específico na história do material [analisado]".

De forma semelhante, Price e Burton (2011, p. 27) parecem definir cronologias absolutas como "medições da idade de materiais, em anos civis antes do presente", a partir de "sofisticadas instrumentação e química" laboratoriais. Nesse mesmo sentido, Bahn (1996, p. 19) apresentam as expressões "idades absolutas" e "anos civis" como se tivessem o mesmo significado. Para Lucas (2005, p. 3) cronologia absoluta "significa uma cronologia baseada em um quadro temporal que é independente dos dados em estudo - tipicamente, ela é expressa através do sistema de calendário, com datas em anos AC/DC [Antes de Cristo/Depois de Cristo] ou AP". E uma série de outros autores parece concordar com as definições e significados expostos acima (GEYH; SCHLEICHER, 1990; TAYLOR; AITKEN, 1997; HOLDAWAY, 2006; POLLARD *et al.*, 2007; GOFFER, 2007).

Destas definições para cronologia absoluta, talvez a mais satisfatória seja a apresentada por Lucas (2005). O conceito de cronologia absoluta a ser aplicado nesta pesquisa pode ser definido então como: a estimação de uma sequência de idades (em anos civis AP) de vestígios e/ou eventos pretéritos. Tal definição abarca, portanto, as datações absolutas obtidas mediante emprego de técnicas físico-químicas.

Faz-se necessário, neste momento, explicar o porquê de estar se favorecendo, nesta pesquisa a busca por cronologias absolutas para o povoamento das Américas. Como já ponderado anteriormente, o emprego de alguns fundamentos tipológicos e/ou de seriação (concretizados na forma de Haplogrupos/Haplótipos e seus respectivos atributos) neste contexto não garante necessariamente uma significância temporal como por muito tempo foi (e ainda é) ansiado no meio arqueológico (BRAINERD, 1951; SPAULDING, 1953; FORD; STEWARD, 1954). Assim, ainda é necessária uma aferição independente e absoluta de sítios arqueológicos pré-Contato nas Américas.

Um outro motivo para o favorecimento de métodos de cronologia absoluta é apontado por Weiner (2010). O autor destaca a variada quantidade de técnicas de datação absoluta atualmente disponíveis para apropriação do ofício arqueológico. Tal diversidade de técnicas possibilita que um igualmente diverso conjunto de materiais – orgânicos e inorgânicos – possa ser analisado para fins cronológicos, e em alguns casos há inclusive a disponibilidade de mais de uma técnica por natureza de material (Tabela 11), o que permite o confronto de dados com a finalidade de prover a melhor interpretação sobre o contexto estudado.

Tabela 11 – Visão geral das principais técnicas de datação absoluta atualmente disponíveis (em ordem alfabética)

Técnica	Material analisado	Possibilidade de resultado
Arqueomagnetismo	Sedimentos de paredes de fornos e fluxos de lava	Até milhares ou milhões de anos
Datação por séries de urânio	Espeleotemas e travertino	A partir de algumas centenas de anos até 500 Ka AP (±10%)
Dendrocronologia	Madeira carbonizada, ou não, com anéis de crescimento	Geralmente menos de 50 anos AP com margem de erro de ±10 anos
Hidratação de obsidiana	Obsidiana	Até 100 Ka AP (±10%–15%)
Luminescência opticamente estimulada	Sedimentos e materiais construtivos	A partir de algumas centenas de anos até 200 Ka AP (±10%–15%)
Radiocarbono	Colágeno ósseo, madeira, materiais carbonizados	Até 75 Ka AP (±0,3%, na melhor das situações empregando AMS)
Racemização de aminoácidos	Cascas de ovos e conchas de caracóis terrestres	Até 1 milhão de anos AP (±10%–15%)
Ressonância paramagnética eletrônica	Esmalte dentário, minerais, ossos, valvas, papel	Até 1 milhão de anos AP (±10%–20%)
Termoluminescência	Ferramentas de sílex queimado, cerâmicos	Até 100 Ka ⁷ AP (±10%–15%)

Fonte: adaptado de Weiner (2010, p. 14, 15 e 246); contanto também com dados de Polikreti e Maniatis (2002), Polikreti e colaboradores (2004), Baffa e Kinoshita (2004) e Artioli (2010).

Deste modo, torna-se claro que o caminho que possibilita uma mais compreensiva, precisa e exata caracterização cronológica de remanescentes ósseos humanos seria aquele que envolve a aplicação de métodos de datação absoluta destes remanescentes. No entanto, é importante realizar aqui uma breve consideração a respeito do caráter "absoluto" das técnicas "científicas" (como trazidas no Tabela 10).

Segundo Walker (2005, p. 15) o termo "absoluto implica um nível de exatidão e precisão 13 que raramente, se alguma vez, serão alcançados na realidade". No caso de técnicas como o Radiocarbono ou a LOE 14, por exemplo, Skoog, Holler e Crouch (2007) observam que, a rigor, o único método de medição (e tais técnicas são métodos de medição) que pode ser completamente exato é aquele que envolve contagem. Todas as outras medidas contêm erros 15 e provêm apenas uma aproximação da verdade, inclusive as idades consideradas como absolutas. Ou seja, mesmo na aplicação de datações absolutas, o que de fato são estabelecidos são valores muito aproximados aos reais/verdadeiros (SULLASI; AZEVEDO; PESSIS, 2009; SANTOS, 2016).

3.3 PROCEDIMENTOS TÉCNICOS

Uma vez que as idades absolutas para a maioria dos indivíduos a serem aqui analisados já se encontram aferidas – 148 de 219, aproximadamente 68%, sendo o México o único país a não possuir datações –, nos próximos parágrafos dar-se-á prioridade para apresentar como se dá o processo de obtenção dos dados genômicos que serão analisados, e como os mesmos serão analisados.

Na atualidade, para a obtenção de dados genômicos, as amostras objetos de pesquisa são submetidas a técnicas de Sequenciamento de Próxima Geração (NGS, *Next-Generation Sequencing*), que permitem a obtenção de até milhões de sequências curtas – frações do genoma – mesmo em remanescentes antigos/arqueológicos (LINDERHOLM, 2016). Estas milhões de sequências curtas são

¹³ Neste contexto, a precisão pode ser definida como a medida do quão próximo a idade obtida na datação estaria da idade verdadeira (MALAINEY, 2011).

¹⁴ As duas técnicas mais indicadas para datar de forma absoluta, respectivamente, os indivíduos sepultados e os próprios sepultamentos (WEINER, 2010).

¹⁵ Segundo Walker (2005, p. 15) "erros são inevitáveis e, portanto, inevitavelmente haverá um elemento de incerteza associado a cada determinação de idade".

os dados brutos provenientes de um equipamento sequenciador, liberados na forma de arquivos de texto no formato FASTQ.

Isto possibilita que todo o genoma de um determinado indivíduo possa ser completamente "coberto" entre dezenas e centenas de vezes pelas sequências curtas, diminuindo assim a probabilidades de erros na sequência final de cada indivíduo/amostra – algo especialmente importante para estudos de DNA antigo, uma vez que tal molécula sofre constante desgaste ao longo do tempo, após a morte de um organismo (a Tafonomia) (HUMMEL, 2007; MUTZENBERG *et al.*, 2015; LINDERHOLM, 2016; SANTOS, 2016; SANTOS; SULLASI, 2016; SULLASI *et al.*, 2017; SULLASI; SANTOS; SILVA, 2018).

Na Era da NGS, as tecnologias desenvolvidas pela empresa Illumina® têm dominado o ambiente de sequenciamento genômico, e à mesma tem-se atribuído o fato da queda dos valores envolvidos no processo de se sequenciar um genoma inteiro (whole genome sequencing), isto é, o sequenciamento do DNA presente tanto na Mitocôndria quanto nos Cromossomos sexuais ou não (LINDERHOLM, 2016).

Todas as 219 amostras antigas que serão aqui analisadas passaram por processos de sequenciamento de todo o genoma. No entanto, nesta pesquisa foram desconsiderados os dados genéticos provenientes do Cromossomo Y e da Mitocôndria, o que é comum em estudos de (Arqueo)Genética – inclui-se aqui aqueles já citados neste trabalho –, e os motivos são bem simples:

- a) O Cromossomo Y é um cromossomo sexual, somente presente em indivíduos do sexo biológico masculino. Admite-se que dentre as amostras analisadas nesta pesquisa haja tantos indivíduos do sexo biológico feminino quanto do masculino, por isso, não é prudente considerar os dados deste cromossomo para análises comparativas (BROWN, 2002); e
- b) O mtDNA é uma porção do genoma humano somente passado de geração em geração pelo lado materno, ou seja, todo indivíduo humano vivo (ou não) recebeu tal carga genética somente de seu respectivo gestor do sexo biológico feminino. Assim, tal parte do genoma somente oferece informações a respeito de uma metade da ancestralidade do indivíduo (PENNISI, 2001).

As porções restantes do Genoma Humano, Cromossomos 1 a 22 e X, a serem analisados, estão presentes em todos os indivíduos humanos e correspondem a 98,1% de toda a carga genética que uma pessoa carrega (BROWN, 2002). Desse

modo, não haverá prejuízo em se excluir das análises os dados genéticos provenientes do Cromossomo Y e da Mitocôndria.

Mas não é exatamente toda a carga genética de um indivíduo que será analisada. Uma vez que a diferença genômica entre 2 indivíduos humanos é de apenas 0.1%, – isto é, quando se comparam 2 genomas humanos, somente uma posição em cada 1000 de bases nitrogenadas (adenina, A; citosina, C; guanina, G; e timina, T) é diferente entre os mesmos – em estudos de genômica só se consideram para análise os SNPs, já que analisar 99.9% de dados similares se configuraria como desperdício de tempo e recursos (monetários e computacionais), principalmente frente ao tamanho de um genoma humano: mais de 3 bilhões de bases nitrogenadas (Figura 6). Assim, 0.1% de diferença significa ainda mais de 3 milhões de dados genéticos na forma de SNPs (NAIDOO et al., 2011).

Figura 6 – Exemplificação de SNP (em vermelho)
...GATCTGCATCGTCGGCATTGTCATGCGCATC... (Indivíduo A)

...GATCTGCATCGTCGGCGTTGTCATGCGCATC... (Indivíduo B) Fonte: autoria própria (2020).

Para se chegar aos SNPs é necessário realizar o mapeamento (comparação) dos dados brutos de sequenciamento (os dados do arquivo FASTQ) de cada indivíduo antigo com um genoma humano de referência, disponível na forma de arquivo de texto no formato FASTA. Trata-se de um processo, possibilitado por algoritmos e/ou programas computacionais, que é universal e mandatório para todo e qualquer trabalho Genômico. Desse modo, a fase de mapeamento envolve procedimentos padrão que possibilitam pouquíssima margem para customização. Esta pesquisa seguiu, portanto, os procedimentos técnicos de mapeamento mais atuais 16 e que são amplamente aceitos na área de Genética.

Os arquivos de sequenciamento destes indivíduos já se encontravam disponíveis em diversos repositórios de dados genômicos hospedados na Internet. No

¹⁶ Para uma detalhada descrição dos procedimentos, conferir: https://github.com/Saguiomics/AAAGs_2018/tree/master/Session2_ReadAlignment_VariantCalling. Acesso em: 17 jan. 2020. Trata-se da descrição de um protocolo que possibilita se obter os SNPs a partir da comparação de dados brutos de seguenciamento, de qualquer amostra, com um genoma humano de referência.

caso, o repositório mais utilizado é o *European Nucleotide Archive*, no entanto, outros foram consultados, a depender da escolha dos respectivos autores originais para a disponibilização dos dados.

O genoma humano de referência¹⁷ no qual todos os dados de sequenciamento dos indivíduos antigos foram mapeados é o GRCh37¹⁸, também disponível na Internet, sendo o mesmo utilizado nas publicações originais das amostras.

Todos os procedimentos computacionais realizados nesta pesquisa foram efetuados no ambiente do *Cluster* Computacional de Alta Performance do Centro para Pesquisa Computacional (CCR, *Center for Computational Research*) da Universidade Estadual de Nova Iorque em Buffalo (SUNY Buffalo, *State University of New York at Buffalo*), dos EUA.

Inicialmente, para os 219 indivíduos, um conjunto de mais de 31 milhões de SNPs foram identificados em todos os Cromossomos, sexuais ou não, e na Mitocôndria. No entanto, a vasta maioria dos SNPs somente aparece em 1 a 15 indivíduos, não necessariamente os mesmos, o que pode configurar como erros de sequenciamento (falso-positivos) – principalmente quando há SNPs que aparecem em até 205 dos 219 indivíduos (Figura 7).

_

¹⁷ Trata-se de um genoma consenso. Isto é, um genoma artificialmente criado a partir de inúmeros genomas naturais doados anonimamente. Assim, o genoma humano de referência é criado levando em consideração a base nitrogenada (A, C, G, T) mais frequente para cada posição genômica dentre todos os genomas doados. A princípio, o genoma humano de referência não representa somente o genoma de um dos doadores. Para mais detalhes, conferir: https://www.nature.com/articles/nmeth0510-331. Acesso em: 17 jan. 2020.

¹⁸ Tal nomenclatura indica, portanto, que é o genoma de referência versão 37 lançado pelo *Genome Reference Consortium* (GRC, Consórcio do Genoma de Referência).

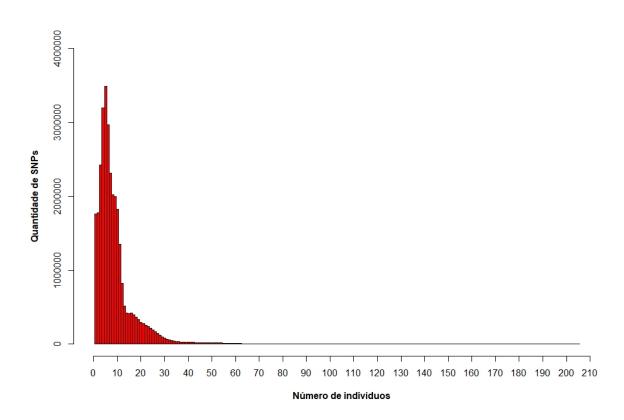


Figura 7 – Histograma demonstrando que a maior parte dos SNPs obtidos a partir das amostras antigas somente aparece em poucos indivíduos

Fonte: autoria própria (2020).

Assim, a fim de eliminar falso-positivos dentro deste conjunto de dados, optouse por realizar uma filtragem e desconsiderar os SNPs que aparecem em menos de 10% das amostras, ou seja, em 21 ou menos indivíduos. Como consequência, o número de SNPs a serem utilizados nas análises posteriores caiu para pouco mais de 2 milhões, no entanto, garantiu-se assim uma maior confiabilidade nos resultados.

Posteriormente foram adicionados a este conjunto de dados mais 2578 indivíduos modernos que seriam usados como referência nas análises de ancestralidade dos indivíduos antigos. Ainda que tal procedimento soe estranho – aferir ancestralidades de indivíduos antigos a partir de indivíduos modernos –, tratase de uma procedimento padrão em estudos de genômica (FLEGONTOV *et al.*, 2019), e assim o é porque ainda não há uma quantidade significante de indivíduos antigos sequenciados ao redor do mundo que possibilitem confiáveis estudos de ancestralidades a partir somente de amostras antigas. Ou seja, o emprego de amostras modernas como referência para antigas ainda é o que permite a melhor aproximação para o estudo de ancestralidades antigas.

Das 2578 amostras modernas adicionadas, 2504 (Apêndice A) foram originalmente publicadas no âmbito do Projeto 1000 Genomas (1kGP), estando também disponíveis na Internet, e pertenciam a 26 populações de 5 regiões geográficas do planeta (Tabela 12): Américas (AMR), Europa (EUR), África (AFR), Sul da Ásia (SAS) e Leste Asiático (EAS) (1000 GENOMES PROJECT CONSORTIUM *et al.*, 2015).

Tabela 12 – Lista de populações do 1kGP e suas respectivas quantidades (n) de indivíduos

Denominação da população	Região	n
Iorubás em Ibadan, Nigéria (YRI)	AFR	108
Luias em Webuye, Quênia (LWK)	AFR	99
Gambianos nas Divisões Ocidentais da Gambia (GWD)	AFR	113
Mande em Serra Leoa (MSL)	AFR	85
Esan na Nigéria (ESN)	AFR	99
Americanos de Ancestralidade Africana no Sudoeste dos EUA (ASW)	AFR	61
Afro-Caribenhos no Barbados (ACB)	AFR	96
Americanos de Ancestralidade Mexicana em Los Angeles, EUA (MXL)	AMR	64
Porto-Riquenhos de Porto Rico (PUR)	AMR	104
Colombianos de Medellín, Colômbia (CLM)	AMR	94
Peruanos de Lima, Peru (PEL)	AMR	85
Chinês Han em Pequim, China (CHB)	EAS	103
Japoneses em Tóquio, Japão (JPT)	EAS	104
Chinês Han do Sul (CHS)	EAS	105
Chinês Dai em Xishuangbanna, China (CDX)	EAS	93
Kinh da Cidade de Ho Chi Minh, Vietnã (KHV)	EAS	99
Residentes do Utah com Ancestralidade do Norte e do Oeste da Europa (CEU)	EUR	99
Toscanos na Itália (TSI)	EUR	107
Finlandeses na Finlândia (FIN)	EUR	99
Britânicos na Inglaterra e na Escócia (GBR)	EUR	91
População Ibérica na Espanha (IBS)	EUR	107
Indianos Guzerates de Houston, Texas (GIH)	SAS	103
Punjabis de Lahore, Paquistão (PJL)	SAS	96
Bengalis do Bangladesh (BEB)	SAS	86
Tâmeis Cingaleses do Reino Unido (STU)	SAS	102
Indianos Telugos do Reino Unido (ITU)	SAS	102

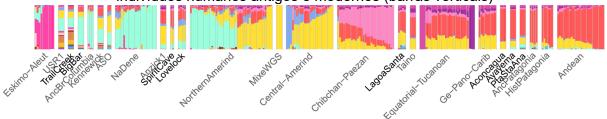
Fonte: autoria própria (2020) com dados de 1000 Genomes Project Consortium e colaboradores (2015).

As outras 74 amostras modernas utilizadas foram provenientes do Projeto Simons de Diversidade Genômica (SGDP) (Apêndice B), semelhante ao 1kGP, porém com foco em populações indígenas de todo o globo (MALLICK *et al.*, 2016). No entanto, do SGDP só foram utilizadas aqui populações de áreas geográficas não contempladas pelo 1kGP, mais indivíduos indígenas americanos. Assim, as regiões geográficas provenientes do SGDP foram: Américas (AMR-SGDP), Oceania (OCE) e Ásia Central/Sibéria (CAS) (Tabela 13).

Tabela 13 – Lista de etnias do SGDP utilizadas neste trabalho e suas respectivas quantidades (n) de indivíduos

Etnia	País	Região	n
Chane	Argentina	AMR-SGDP	1
Caritiana	Brasil	AMR-SGDP	3
Suruí	Brasil	AMR-SGDP	2
Piapoco	Colômbia	AMR-SGDP	2
Maia	México	AMR-SGDP	2
Mixe	México	AMR-SGDP	3
Mixteca	México	AMR-SGDP	2
Pima	México	AMR-SGDP	2
Zapoteca	México	AMR-SGDP	2
Quechua	Peru	AMR-SGDP	3
Mongol	China	CAS	2
Quirguiz	Quirguistão	CAS	2
Aleúte	Rússia	CAS	2
Altai	Rússia	CAS	1
Chukchi	Rússia	CAS	1
Esquimó-Chaplin	Rússia	CAS	1
Esquimó-Naukan	Rússia	CAS	2
Esquimó-Sireniki	Rússia	CAS	2
Even	Rússia	CAS	3
Itelman	Rússia	CAS	1
Mansi	Rússia	CAS	2
Tlingit	Rússia	CAS	2
Tubalar	Rússia	CAS	2
Ulchi	Rússia	CAS	2
lacuto	Rússia	CAS	2
Australiana	Austrália	OCE	2
Dusun	Brunei	OCE	2
Havaiano	EUA	OCE	1
Igorot	Filipinas	OCE	2
Maori	Nova Zelândia	OCE	1
Bougainville	Papua-Nova Guiné	OCE	2
Papua	Papua-Nova Guiné	OCE	15

Fonte: autoria própria (2020) com dados de Mallick e colaboradores (2016).


Com isso, alcançou-se um conjunto total de 2797 indivíduos que seriam utilizados nesta pesquisa. Neste conjunto de indivíduos, duas análises foram então realizadas: (1) ADMIXTURE e (2) Análise de Componentes Principais (ACP).

ADMIXTURE® é um *software* e ferramenta que busca estimar estatisticamente a(s) ancestralidade(s) de um ou mais indivíduo(s) a partir da frequência da ocorrência de seus respectivos SNPs. A ferramenta requer que o responsável pela análise sugira um número arbitrário (*k*) referente à quantidade de ancestralidades que se busca observar no(s) indivíduo(s). Após isso, baseado nas frequências dos SNPs, o software define estatisticamente quais SNPs compõem as *k*-ancestralidades. O resultado de tal

aplicação é uma lista de indivíduos e as respectivas porcentagens de cada uma das *k*-ancestralidades nos mesmos (ALEXANDER; NOVEMBRE; LANGE, 2009).

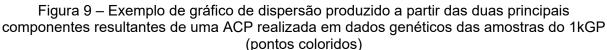
A partir destas porcentagens, um gráfico de barras pode então ser produzido afim de facilitar a interpretação dos resultados. (Figura 8).

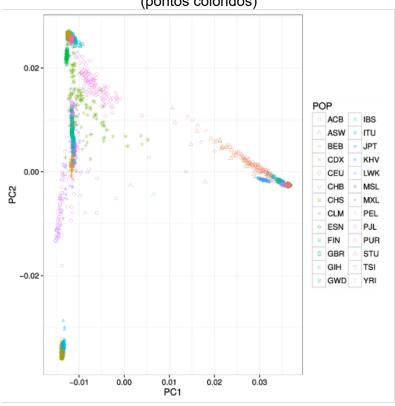
Figura 8 – Exemplo de gráfico de barras produzido a partir de resultados (porcentagens) da aplicação de ADMIXTURE (neste exemplo, *k*=16) em dados genéticos de dezenas de indivíduos humanos antigos e modernos (barras verticais)

Fonte: adaptado de Moreno-Mayar e colaboradores (2018a, p. 3).

Uma vez que é desconhecido o número de ancestralidades existentes em um determinado genoma humano, será utilizado um intervalo de valores, entre 5 e 20, para k – mesmos valores utilizados por Flegontov e colaboradores (2019) –, e será apresentado somente o resultado para k que possuir o menor erro de validação cruzada (CV-error) dentre todas os valores de k depois de 100 iterações.

O software não inclui qualquer informação quanto a ancestralidades existentes e/ou previamente definidas, por isso faz-se necessário também submeter a esta análise indivíduos de populações modernas para servirem como referências para a análise das antigas.


A segunda técnica é a ACP, que tem por finalidade básica gerar uma visualização da dispersão máxima de dados baseada em todas as suas respectivas variáveis (ABDI; WILLIAMS, 2010).


Neste caso, o que se buscará ser observado é a distância genética de todos os indivíduos analisados levando em consideração todos os milhões ou milhares de SNPs identificados nos mesmos, sendo cada SNP uma variável sob análise. Assim, baseado nos respectivos posicionamentos dos indivíduos em meio à dispersão, é possível observar aqueles que possuem afinidades genéticas ou ancestralidades semelhantes.

Assim como na análise apresentada anteriormente, na ACP também se faz necessário submeter à análise indivíduos de populações modernas para servirem como referência.

A ACP será realizada a partir do emprego do *software* Plink[®], voltado especificamente para a análise de dados genômicos (CHANG *et al.*, 2015). Serão buscadas as 20 principais componentes que expliquem as maiores dispersões dentro deste conjunto de dados (operação *default* do *software*), no entanto, somente será produzido e analisado um único gráfico de dispersão com as duas principais componentes – aquelas que possibilitam a visualização da máxima dispersão possível de dados dentre todas as componentes.

Uma vez que o conjunto de dados aqui analisado envolve também as amostras do 1kGP, se a análise for bem-sucedida, um gráfico de dispersão produzido com as duas principais componentes apresentará um perfil em "V", invertido ou levemente deslocado para a diagonal, para estas amostras modernas (Figura 9).

Fonte: http://apol1.blogspot.com/2016/10/1000-genomes-project-phase-3-principal.html. Acesso em: 19 jan. 2020.

A visualização dos resultados de todos os procedimentos analíticos aqui efetuados se dará pela criação de gráficos mediante emprego da linguagem de programação R® e seus diversos pacotes de funções.

É importante agora relatar aqui que o número de SNPs efetivamente utilizado para as análises foi menor do que o anteriormente citado. Ao se intentar realizar a análise de ADMIXTURE no conjunto de dados original (2797 indivíduos e mais de 2 milhões de SNPs), não foi possível se obter nenhum resultado, pois o *software* passou a operar em uma velocidade muito baixa, frente à quantidade de dados, mesmo no ambiente computacional de alta performance oferecido pelo CCR – o que sugere uma limitação do algoritmo do ADMIXTURE[®].

O CCR também apenas permite um tempo total de 72 horas para que uma operação computacional seja efetivada em seu ambiente, e este tempo não foi o suficiente para que o ADMIXTURE® operasse em sua plenitude para este conjunto de dados. Nesses casos, a única solução que os criadores do *software* sugerem é diminuir o número de SNPs utilizado na análise. Nesse sentido, em vez de excluir da análise aqueles SNPs que só apareciam em menos de 10% (22) dos indivíduos, optouse por aumentar esse limiar para 20%, ou seja, somente foram considerados para a análise aqueles SNPs que apareciam em pelo menos 44 dos 219 indivíduos antigos. Assim, um total de 311.937 SNPs foi utilizado para as análises anteriormente descritas, o que possibilitou a plena realização das mesmas.

Ao final das análises aqui descritas, e ao se confrontar seus respectivos resultados (as ancestralidades biogeográficas de cada indivíduo) com os dados cronológicos já existentes, será possível apresentar uma tese sobre as paleomigrações que compuseram o processo de povoamento das Américas, incluindo a dispersão da ancestralidade oceânica no Continente, cumprindo assim com os objetivos propostos para esta pesquisa.

4 RESULTADOS E DISCUSSÃO

Como afirmado anteriormente, foi possível a realização plena das análises aqui empregadas. A seguir serão apresentados os resultados das mesmas em subcapítulos exclusivos para cada análise. No entanto, quando possível, buscar-se-á realizar uma discussão que envolva os diferentes resultados das diferentes análises.

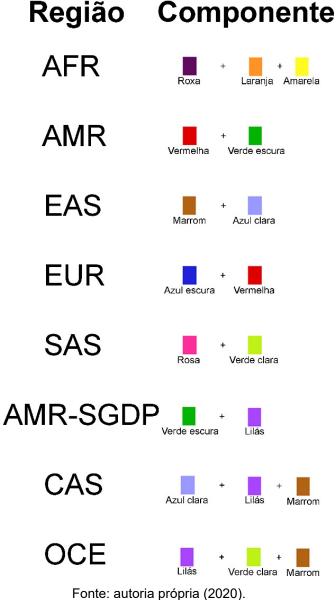
4.1 ADMIXTURE

Dentre o intervalo de valores de k utilizado para a análise de ADMIXTURE, 5 a 20, aquele que apresentou o menor erro de validação cruzada (CV-error) após 100 iterações foi o k=12 (Tabela 14), e é o resultado para este k que será aqui apresentado e discutido.

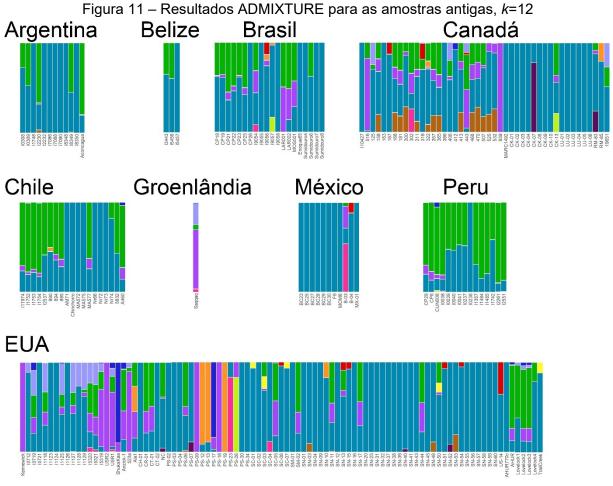
Tabela 14 – *CV-error*'s para cada *k* utilizado no ADMIXTURE, o *CV-error* do *k*=12 é o menor de todos depois de 100 iterações

k	CV-error
5	0.56674
6	0.56255
7	0.56195
8	0.56180
9	0.56162
10	0.56120
11	0.56097
12	0.56080
13	0.56186
14	0.56196
15	0.56255
16	0.56204
17	0.56292
18	0.56293
19	0.56222
20	0.56349

Fonte: autoria própria (2020).


Assim, a análise de ADMIXTURE retorna o resultado de que, frente aos dados genéticos dos 2797 indivíduos antigos e modernos aqui analisados, a hipótese de haverem ali 12 ancestralidades (ou componentes ancestrais) é a mais provável.

Nos resultados que serão apresentados a seguir, esses 12 componentes ancestrais serão aqui representados e nomeados de acordo com 12 cores aleatórias


escolhidas pela linguagem de programação R® no momento da visualização (criação dos gráficos) dos resultados.

Assim, nas populações modernas (Apêndice C) foi observado que 11 dos 12 componentes ancestrais predominam (Figura 10) - às vezes em mais de uma população.

Figura 10 – Componentes ancestrais predominantes nas amostras modernas

Já nas amostras antigas, 3 das 12 componentes predominam: "turquesa" (azulesverdeado, a componente mais comum), "verde escuro" (aparece em todas as populações) e "lilás" (a terceira cor mais comum) (Figura 11).

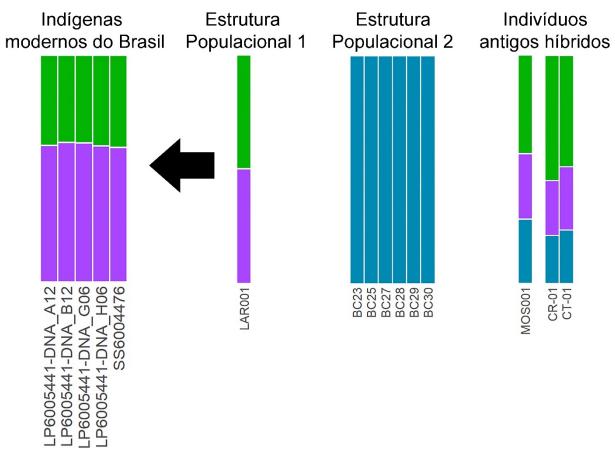
A princípio, é possível perceber que um dos componentes ancestrais que aparecem nas amostras antigas praticamente não aparece nas amostras modernas, que é a componente "turquesa", predominante em todas as populações antigas das Américas. As únicas populações modernas que apresentam vestígios desta ancestralidade são as populações mexicana (do 1kGP e do SGDP), argentina e russa (Sibéria) (Figura 12). Inclusive, as amostras mexicanas antigas aparentemente são as que possuem a maior concentração da ancestralidade "turquesa".

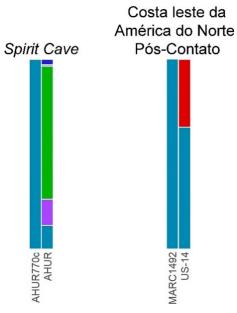
Figura 12 – Presença da ancestralidade "turquesa" em amostras antigas (mexicana como exemplo) e modernas (flechas pretas)

A ancestralidade "turquesa" parece, portanto, ter diminuído em frequência ao longo do tempo, ao ponto no qual ela já não aparece em determinadas regiões geográficas as quais ela era predominante há alguns milênios atrás (Brasil, por exemplo).

As outras duas componentes ancestrais predominantes nas amostras antigas já aparecem em amostras modernas: a verde escura é predominante em todas as populações americanas modernas (1kGP e SGDP); e a lilás é predominante em todas as populações indígenas sequenciadas pelo SGDP (AMR, CAS e OCE).

É perceptível então, mesmo que minimamente, a ocorrência de indivíduos americanos antigos já com a estrutura genética de indivíduos americanos modernos, como é o caso do indivíduo LAR001, do Sítio Laranjal, SP, que apresenta uma datação de 6.660 a 6.450 anos cal AP. Assim, é possível afirmar que, de um modo geral, as populações antigas americanas poderiam ser separadas em duas estruturas populacionais (ancestralidades genéticas) distintas: uma (1) já parecida com a de populações indígenas modernas; e outra (2), a "turquesa", bastante diferente das populações modernas, indígenas ou não – além de indivíduos antigos com uma estrutura híbrida, apresentando as 3 ancestralidades predominantes ao mesmo tempo (Figura 13).




Figura 13 – Estruturas populacionais (genômicas) observadas dos indivíduos antigos das Américas

Ao se levar em consideração as cronologias absolutas associadas à ambas estruturas populacionais, é possível perceber que há tanto indivíduos muito antigos (>10.000 anos cal AP) quanto relativamente modernos (pós-Contato, como já evidenciado também pelas amostras do SGDP) apresentando as mesmas, ou seja, não existe uma correlação "estrutura populacional-cronologia", pois elas são contemporâneas. A única diferença é que a estrutura populacional 1 aumentou em frequência ao longo do tempo, em detrimento da estrutura populacional 2.

Um dos melhores exemplos desta contemporaneidade são os indivíduos evidenciados no sítio *Spirit Cave*, no Estado do Nevada, nos EUA. Ambos – AHUR(2064) e AHUR770c – foram evidenciados em um mesmo contexto e foram datados de forma absoluta a uma idade de aproximadamente 10.000 anos cal AP. No entanto, os mesmos apresentam estruturas genéticas distintas. Algo semelhante pode ser observado nos indivíduos dos sítios Lapa do Santo e Gruta do Sumidouro, ambos em MG, no Brasil, e que possuem cronologias semelhantes. Já como exemplo da

persistência da estrutura populacional "turquesa" até períodos pós-Contato, podem ser citadas duas amostras evidenciadas na costa leste da América do Norte: MARC1492 (da Província canadense de *New Brunswick* e com idade aproximada de 400 anos cal AP) e US-14 (do Estado americano da Pensilvânia e associado ao período de 316-288 anos AP) (Figura 14).

Figura 14 – Ambas estruturas populacionais foram contemporâneas (*Spirit Cave*) e a ancestralidade "turquesa" persistiu na América do Norte até períodos pós-Contato

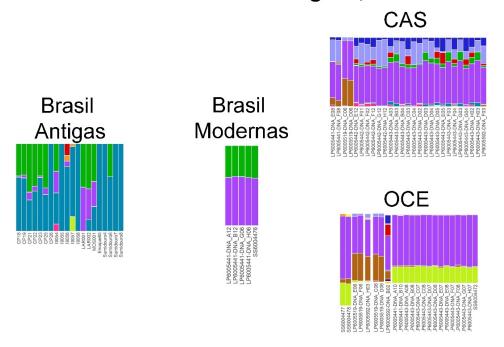
Fonte: autoria própria (2020).

De um modo geral, indivíduos antigos da estrutura populacional 1, parecida com a de indivíduos modernos da América, e híbridos parecem ser mais comuns na América do Sul, enquanto que indivíduos antigos da estrutura populacional 2, majoritariamente "turquesa", são mais comuns nas Américas do Norte e Central. No entanto, nenhuma dessas estruturas populacionais pode ser considerada exclusiva de uma seção ou outra das Américas.

A estrutural populacional 2, majoritariamente "turquesa", não é, todavia, interessante para uma análise da presença de uma suposta ancestralidade oceânica em indivíduos antigos das Américas, uma vez que tal ancestralidade é praticamente inexistente em outras populações que não do continente americano – e totalmente inexistente nas amostras modernas provenientes da Oceania. Diferentemente da estrutura populacional 1 e híbridos, que apresentam uma certa predominância de ao

menos um componente ancestral que aparece nas amostras modernas oceânicas, que é a ancestralidade "lilás".

4.1.1 Testando a presença de uma ancestralidade especificamente oceânica nas amostras antigas das Américas


Como já apresentado anteriormente, a estrutura populacional 1, aquela observada em todos os indivíduos modernos das Américas e na maioria dos indivíduos da América do Sul e híbridos, é composta por duas ancestralidades: uma "verde escura" e uma "lilás". Esta última está presente com relativa predominância nos indivíduos modernos oriundos da Oceania, e de início parece indicar que uma suposta ancestralidade oceânica estaria espalhada por toda a América. No entanto, a ancestralidade "lilás" não é exclusiva da Oceania (OCE), entre as amostras modernas não-americanas.

Tal ancestralidade também aparece com considerável proporção nas amostras modernas provenientes da Ásia Central/Sibéria (CAS). Assim, empreendeu-se um novo teste a fim de se intentar observar qual das duas regiões geográficas mais "contribuiu" com a ancestralidade "lilás" nas amostras antigas das Américas.

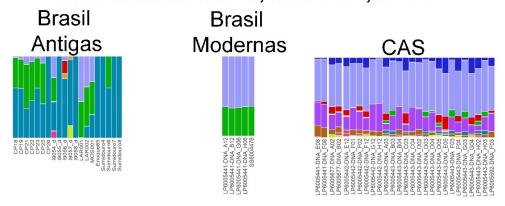

Desse modo, realizou-se duas novas análises ADMIXTURE para k=12: em uma, excluiu-se as amostras da OCE a fim de se observar o quanto as amostras da CAS "contribuíam" com as amostras antigas das Américas; na outra, realizou-se o inverso, excluiu-se as amostras da CAS para observar o quanto as amostras da OCE "contribuíam" com as americanas antigas (Figura 15).

Figura 15 – Resultados (exemplos) dos testes ADMIXTURE, para *k*=12, nos quais foram excluídas as populações da CAS ou da OCE

Análise ADMIXTURE original, k=12

Teste ADMIXTURE 1, sem OCE, k=12

Teste ADMIXTURE 2, sem CAS, k=12

Fonte: autoria própria (2020).

Antes de seguir com a discussão, é preciso clarificar aqui que no teste 1 as cores de dois componentes ancestrais das populações da CAS se inverteram. Aonde se vê uma ancestralidade "azul clara" deve se ver "lilás", e vice-versa. Essa inversão se deu de modo automático pela linguagem de programação R[®] no momento da criação do gráfico de barras para aqueles resultados. A explicação para essa inversão é a exclusão das populações da OCE, que afetou a ordem como a linguagem atribuiu as cores. Apesar disso, a inversão de cores não afetou o resultado.

É possível observar então que não importa se a análise ADMIXTURE foi realizada com ambas CAS e OCE, ou só com uma delas: os resultados para a componente ancestral "lilás" ("azul clara" no teste 1) são exatamente iguais. Isso quer dizer que os SNPs/as mutações que compõem tal ancestralidade são compartilhados por populações modernas da América, Ásia Central/Sibéria e Oceania e estão presentes também, em variadas proporções, nos indivíduos antigos das Américas.

Assim, não é possível observar então uma ancestralidade biogeográfica especificamente oceânica nas Américas, até porque nenhuma outra das componentes ancestrais que aparecem com frequência nos indivíduos da OCE está presente com tanta predominância quanto (e acompanhando) a "lilás" nas amostras antigas das Américas. No entanto, é importante apontar aqui que as outras duas componentes ancestrais presentes na população moderna da OCE – "verde clara" e "marrom" – ainda aparecem em alguns indivíduos antigos das Américas.

A ancestralidade "verde clara" é perceptível em apenas 4 indivíduos: CK-13, do Canadá; PS-26, dos EUA; CUN008, do Peru; e I9057(d), do Brasil (Figura 16).

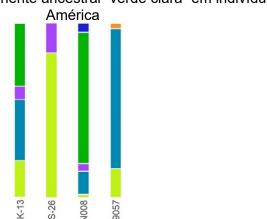


Figura 16 – Presença da componente ancestral "verde clara" em indivíduos antigos da

Fonte: autoria própria (2020).

O indivíduo dos EUA, PS-26, parece ser completamente oceânico, uma vez que ele só apresenta uma combinação de ancestralidades vista apenas nos indivíduos das populações da OCE – e em nenhuma outra. Trata-se de um indivíduo antigo de fato singular, mas infelizmente não há informações cronológicas para esta amostra.

Os indivíduos CK-13, do Canadá, e CUN008, do Peru, apresentam vestígios da ancestralidade "verde clara" acompanhados de vestígios da ancestralidade "lilás", o que poderia indicar uma descendência direta de indivíduos da OCE, no entanto, eles também possuem a ancestralidade "verde escura" em grandes proporções, principalmente o CUN008, e, com exceção das populações modernas das Américas, vestígios desta ancestralidade só aparecem nas populações modernas/indígenas da Rússia.

No indivíduo I9057(_d) a ancestralidade "verde clara" não aparece acompanhada da "lilás", o que também torna muito difícil de se pensar que se trata de um indivíduo de descendência direta da OCE. Nesse caso em específico, a presença desta componente pode ser explicada pela ocorrência de possíveis mutações aleatórias neste indivíduo, uma vez que as outras amostras do mesmo sítio não apresentaram a mesma – é importante ressaltar também que esta componente não é exclusiva da OCE, mas está presente também em populações do Sul da Ásia, em combinação com outras ancestralidades/componentes.

No caso da última componente ancestral da OCE, a "marrom", sua frequência é mais alta nos indivíduos antigos das Américas. Ela aparece em: 14 indivíduos do Canadá (158, 168, 181, 300, 311, 322, 357, 365, 413, 468, 470, 507, 525, 532); 5 dos EUA (PS-06, SN-03, SN-11, SN-48, SN-53) e 1 da Argentina (I2230) (Figura 17).

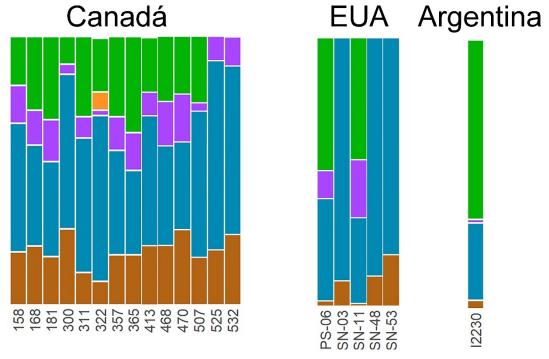


Figura 17 – Presença da componente ancestral "marrom" em indivíduos antigos da América

Os indivíduos do Canadá e dos EUA foram evidenciados em regiões geográficas relativamente próximas. Os primeiros no litoral da Província da Colúmbia Britânica e os segundos no litoral Califórnia, em ambos os casos no litoral Oeste da América do Norte. Todos estes indivíduos também possuem cronologias muito próximas de aproximadamente 2.000-500 anos cal AP – com exceção do indivíduo SN-48, que possui uma datação calibrada de aproximadamente 4.000 anos AP.

Todos os indivíduos oriundos do Canadá apresentam também a componente ancestral "lilás", enquanto que nos EUA apenas dois a apresentam – e na Argentina apenas um vestígio de ambas as componentes é observado em apenas um indivíduo. Este último é o indivíduo mais antigo das Américas a apresentar ambas as componentes. Destes 20 indivíduos, 15, nos 3 países, também carregam consideráveis proporções da componente ancestral "verde escura".

Todos estes fatos levam a crer em uma possível relação direta entre os indivíduos do Canadá e dos EUA, mas não entre estes e o da Argentina. E uma vez que na Argentina estes componentes só aparecem em um indivíduo, e em proporções minúsculas, é muito provável também que se tratem de resultados de mutações aleatórias que afetou somente a este indivíduo.

Os resultados ADMIXTURE apresentados até aqui apontam então que se uma suposta ancestralidade especificamente oceânica adentrou nas Américas, este evento deve ter se dado pela Beríngia. E assim o parece não só pela quantidade de indivíduos antigos do Canadá e dos EUA apresentando componentes ancestrais presentes em populações modernas da OCE, mas também pelo fato de só as populações modernas russas apresentarem também vestígios da componente ancestral "verde escura", tão frequente nos indivíduos antigos das Américas.

4.1.2 A presença de outras ancestralidades nas amostras antigas

Outras ancestralidades, em bem menor quantidade e proporção, foram observadas nas amostras antigas das Américas. Os indivíduos africanos modernos do 1kGP apresentam 3 componentes ancestrais que não aparecem em nenhuma outra população moderna: as componentes "roxa", "laranja" e "amarela".

Dentre as amostras antigas das Américas, estas componentes apareciam em 21 indivíduos de 4 países: 2 do Brasil (I9056_d e I9057_d); 4 do Canadá (322, CK-07, RM-83, RM-85); 1 do Chile (890), 14 dos EUA (Ala1, NC, PS-07, PS-12, PS-13, PS-19, SC-01, SC-03, SC-07, SN-10, SN-40, SN-50, SN-52, TrailCreek) (Figura 18).

Brasil Canadá Chile

RM-83
RM-83
RM-83
RM-83
RM-85
RM-83
RM-85
RM-

Figura 18 – Indivíduos antigos da América que apresentam alguma ancestralidade africana

Fonte: autoria própria (2020).

Destes indivíduos, não há dados cronológicos para 10 deles: CK-07, do Canadá; 890, do Chile; e Ala1, PS-12, PS-13, PS-19, SC-01, SC-07, SN-10 e SN-40, dos EUA.

Os dois indivíduos do Brasil possuem idades absolutas que os põem um tanto distantes de contextos de contato. No entanto, tratam-se de indivíduos oriundos de um mesmo, ou pelo menos semelhante, contexto arqueológico, o que pode indicar uma relação direta destes indivíduos e suas respectivas cargas genéticas. O componente africano neles presente, "laranja", aparece em uma proporção diminuta, quase como vestígios, o que parece sugerir que se tratam de resultados de mutações aleatórias. Este parece ser o caso quando observado que o indivíduo mais recente (I9056_d) possui uma maior proporção da ancestralidade do que o mais antigo (I9057_d). Ou seja, essa ancestralidade aumentou com o tempo, por um curto período de tempo, antes de aparentemente desaparecer – já que nenhum indígena moderno do Brasil possui esta ancestralidade.

Caso se tratasse de um evento de mistura genética seguido da hereditariedade direta, muito provavelmente o que seria observado era que o indivíduo mais antigo teria uma maior proporção dessa ancestralidade, e esta diminuiria com o tempo, frente aos indígenas modernos das Américas, em vez de aumentar.

No caso dos indivíduos antigos do Canadá, o mais interessante deles por apresentar uma maior proporção de ancestralidade africana, o CK-07, não possui dados cronológicos associados, o que limita muito o processo de interpretação. O que se sabe é que ele advém de um contexto a princípio de pré-Contato na Província de Ontário, uma das mais próximas ao Oceano Atlântico. Torna-se difícil, porém, realizar maiores inferências sobre este indivíduo.

O indivíduo 322 foi datado absolutamente para tempos pré-Contato e o mesmo foi evidenciado na costa Leste canadense, um dos possíveis caminhos de entrada nas Américas. Estes fatores sugerem então que os indivíduos que adentraram na América a partir da Beríngia poderiam estar carregando um componente genético advindo da África. No entanto, não é razoável realizar este tipo de interpretação frente à pequena proporção do componente africano "laranja" neste indivíduo – há uma chance deste componente ser obra de mutações aleatórias.

O que não parece ser o caso dos outros 2 indivíduos, evidenciados na já citada Província de Ontário. Ainda que os dois indivíduos possuam dados cronológicos semelhantes que os colocam próximos de período de Contato, não está nada claro

como dois componentes africanos distintos teriam aparecido com relevante proporção em um mesmo contexto arqueológico. Uma possível migração pela Beríngia implicaria a existência destes componentes em indivíduos mais antigos e em maiores proporções, o que não é o caso. Já uma possível migração pelo Leste, implicaria em uma viagem transoceânica partindo da África em direção ao Atlântico Norte, uma conjuntura que ainda permanece sem ser testada. Assim a presença destes componentes nestes indivíduos permanece uma incógnita.

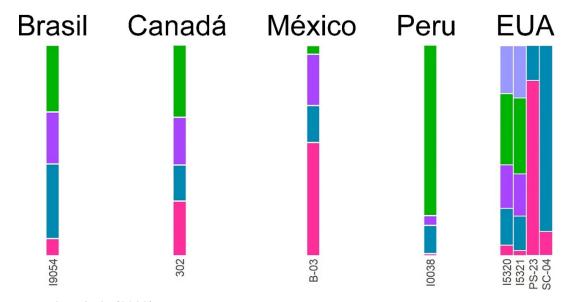
No caso dos indivíduos dos EUA, a situação é semelhante à encontrada no Canadá. Os indivíduos que possuem maiores proporções de componentes africanos, Ala1, PS-12, PS-13 e PS-19, também não possuem dados cronológicos absolutos associados. No entanto, todos foram evidenciados no Estado da Califórnia, na costa Lesta da América do Norte, o que indica que, a menos que eles estejam associados a contextos pós-Contato, suas ancestralidades africanas teriam adentrado nas Américas por meio da Beríngia.

Das 14 amostras dos EUA, as 6 que possuem dados cronológicos remetem a períodos pré-Contato e foram evidenciadas na já citada Califórnia ou no Alasca (TrailCreek, a mais antiga delas), o que parece confirmar a hipótese de que ancestralidades africanas teriam adentrado nas Américas por meio da Beríngia. No entanto, é importante apontar que as proporções dessas supostas ancestralidades africanas nos 6 indivíduos são diminutas, assim, a possibilidade de elas serem consequências de mutações aleatórias não pode ser descartada.

Para além de uma possível ancestralidade africana, é possível perceber também que 4 indivíduos antigos das Américas, apresentam as ancestralidades "azul escura" e "vermelha" em proporções maiores do que aquelas observadas nas populações modernas da Sibéria (Figura 19), o que inicialmente parece indicar possíveis migrações que partiram da Europa continental, passando pela Beríngia.

Shukakaa EUA

Figura 19 – Indivíduos antigos da América que apresentam possível ancestralidade europeia


O único indivíduo do Canadá possui uma idade que remete a períodos pré-Contato, foi evidenciado na costa Oeste da América do Norte e apresenta a componente ancestral "verde escura", também presente nos indivíduos da Sibéria. Fatos que tornam clara a ideia de que tal componente "vermelha", nesta proporção, adentrou a América via Beríngia.

O que parece ser o mesmo caso dos indivíduos ShukaKaa e PS-17, dos EUA – com a exceção de que não há dados cronológicos associados ao segundo. Ambos foram também evidenciados na costa Oeste da América do Norte, no Alasca e na Califórnia, respectivamente. As proporções de suas ancestralidades "azul escuras" não deixam margem para dúvida: não se tratam de mutações aleatórias. Além disso, é possível também observar a presença da componente "lilás" nestes indivíduos. Fatos que reforçam a hipótese de uma entrada, mesmo que mínima, de ancestralidades da Europa continental nas Américas em períodos pré-Contato.

Já o indivíduo US-14 é um caso singular frente a tudo que já foi apresentado até aqui. Trata-se de um indivíduo evidenciado no Estado da Pensilvânia, na costa Leste dos EUA, e cuja datação absoluta remete a um período pós-Contato. O que indica que seja um indivíduo fruto de uma relação entre um indivíduo indígena americano e um indivíduo colonizador europeu.

Por fim, para além das ancestralidades anteriormente apresentadas, foi possível observar também consideráveis (ou não) proporções da componente ancestral "rosa", exclusiva do Sul da Ásia (subcontinente indiano) em 8 indivíduos antigos das Américas: 1 do Brasil (I9054_d), 1 do Canadá (302), 1 do México (B-03), 1 do Peru (I0038) e 4 dos EUA (I5320, I5321, PS-23 e SC-04) (Figura 20).

Figura 20 – Indivíduos antigos da América que apresentam possível ancestralidade do Sul da Ásia

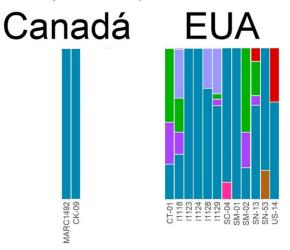
Fonte: autoria própria (2020).

Enquanto que as proporções desta ancestralidade nos indivíduos da América do Norte parecem não deixar dúvidas de que as mesmas não são fruto de aleatoriedade, o mesmo não é possível dizer dos indivíduos da América do Sul.

Ao que tudo indica – localização dos sítios, cronologias e a presença de componentes presentes nas populações da Sibéria – essa componente "rosa" também deve ter adentrado na América via Beríngia, tendo se espalhado, mesmo que minimamente, pela seção Norte do Continente.

Com a apresentação da ancestralidade do Sul da Ásia, finaliza-se então as possíveis inferências sobre os resultados específicos da análise de ADMIXTURE.

4.1.3 Relação cronologias-ancestralidades dos indivíduos antigos


Uma vez estimadas as ancestralidades dos indivíduos antigos, é necessário então relacionar tais dados também com suas respectivas cronologias. Somente serão

abordados adiante aqueles indivíduos que possuem dados cronológicos absolutos associados, ou seja, 148 do total de 219.

Foi buscado aqui dividir estes indivíduos em intervalos temporais que contivessem entre 10 e 20 deles. Este critério foi aplicado a fim de evitar uma falsa observação: de que teria sido dada, nos últimos anos, prioridade analítica para um determinado período do passado (por este conter mais dados genômicos e cronológicos). Quando, na verdade, é natural que possa haver uma maior quantidade de dados cronológicos e genômicos de períodos mais recentes do passado simplesmente porque a matéria orgânica, nem tão necessária para datações, mas essencial para sequenciamentos, ainda estar mais conservada.

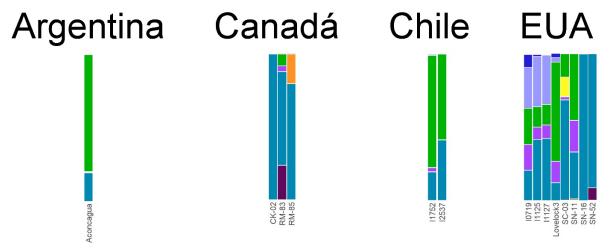
Os 14 indivíduos antigos de períodos pós-Contato, isto é, até 458 anos AP¹⁹ (ano de 1492), são provenientes somente do Canadá (2 indivíduos) e dos EUA (12). Neste período predomina a estrutura populacional turquesa, sendo 5 "turquesa-puros", dentre os quais os dois do Canadá. Esta constatação confirma que esta estrutura populacional persistiu a períodos pós-Contato, ao menos no Norte das Américas (Figura 21).

Figura 21 – Componentes ancestrais observados em indivíduos humanos antigos de períodos pós-Contato (458 anos AP-Presente)

Fonte: autoria própria (2020).

Infelizmente, devido à ausência de dados genômicos de populações nativoamericanas modernas destes dois países, não é possível verificar se este componente

-


¹⁹ É importante lembrar aqui que o ano de referência para "o Presente" é 1950. Trata-se de uma convenção adotada com o surgimento e posterior popularização da técnica de datação por Radiocarbono (WEINER, 2010).

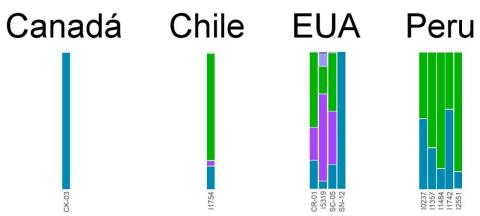
ainda está ali presente. No entanto, é importante lembrar que em outras regiões das Américas e do Globo, tal componente é inexistente ou apenas vestigial.

Os indivíduos SN-13 e US-14 apresentam a componente "vermelha", que somente aparece em populações europeias (bem como nas americanas modernas), o que pode indicar que, como já afirmado anteriormente, sejam frutos da miscigenação entre colonizador e colonizado. Já o indivíduo SC-04 apresenta uma pequena concentração de um componente que somente aparece em indivíduos do subcontinente indiano. Os demais componentes são comuns a populações do centro e do leste da Ásia e da Oceania.

Outros 14 indivíduos estão associados a um período de aproximadamente 200 anos entre 459 e 650 anos AP, isto é, entre os anos de 1491 a 1300 da Era Comum. Os mesmos são provenientes de 4 países: Argentina (1 indivíduo), Canadá (3), Chile (2) e EUA (8). Neste período predomina o componente ancestral "verde escuro" nos dois países do Sul, enquanto que no Canadá e nos EUA o "turquesa" é predominante – mais no primeiro do que no segundo. Esta última constatação aliada às informações do período pós-Contato pode indicar então que este último adentrava nas Américas a partir do Norte e ia diminuindo de proporção em direção ao sul (Figura 22).

Figura 22 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 459 e 650 anos AP

Fonte: autoria própria (2020).

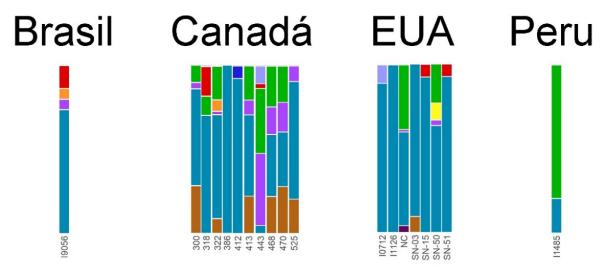

Os indivíduos RM-83 e 85, do Canadá, e SC-03 e SN-52, dos EUA, possuem uma pequena proporção de ao menos uma das componentes ancestrais que somente são encontradas hoje em populações da África ("roxa", "amarela" e "laranja"). Enquanto que alguns indivíduos dos EUA possuem uma também pequena proporção

da componente ancestral "azul escura", somente observável em populações modernas da Europa. Todas elas poderiam ser explicadas por migrações ancestrais através da Beríngia, devido a suas localizações geográficas, ou à ocorrência de mutações aleatórias, devido à pequena proporção. Os demais componentes são comuns a populações do centro e do leste da Ásia e da Oceania.

Outros 11 indivíduos estão associados a um período de 300 anos entre 651 e 950 anos AP, isto é, entre os anos de 1299 e 1000 da Era Comum. Os mesmos são também provenientes de 4 países: Canadá (1 indivíduo), Chile (1), EUA (4) e Peru (5). Neste período predomina o componente ancestral "verde escuro", com exceção do indivíduo do Canadá e um dos EUA que são "turquesa-puros". Constatação que mais uma vez leva a crer que este componente adentrava nas Américas a partir do Norte e ia diminuindo de proporção em direção ao sul (Figura 23).

O indivíduo I5319, dos EUA, ainda que já pareça semelhante genomicamente a populações nativo-americanas modernas, possui vestígios de componentes que somente aparecem na Europa moderna ("azul escuro") e em populações do leste da Ásia e da Oceania. Muito provavelmente tratam-se de frutos da ocorrência de mutações aleatórias.

Figura 23 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 651 e 950 anos AP



Fonte: autoria própria (2020).

Dezenove indivíduos estão associados ao período de 500 anos entre 951 e 1.450 anos AP, isto é, entre os anos de 999 e 500, no primeiro milênio. Os mesmos são também provenientes de 4 países: Brasil (1 indivíduo), Canadá (10), EUA (7) e

Peru (1). Neste período predomina a estrutura populacional turquesa, à exceção do indivíduo do Peru, no qual a componente "verde escura" predomina (Figura 24).

Figura 24 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 951 e 1.450 anos AP

Fonte: autoria própria (2020).

É interessante aqui a extensa presença das componentes "vermelha" (em diferentes geografias) e "marrom" (em diferentes indivíduos) – além da "azul escura" em um indivíduo –, que podem sugerir a ocorrência de uma migração ancestral que teria partido da Europa em direção à América a partir do leste asiático/Beríngia. No entanto, se isso for verdade, como esta componente europeia teria chegado quase que "simultaneamente" no Norte e no Sul das Américas? Um outro fato interessante é que a ancestralidade "marrom", em especial, não aparece mais em populações modernas das Américas.

Outros 4 indivíduos possuem vestígios de ao menos uma das componentes ancestrais que somente são encontradas em populações modernas da África ("roxa", "amarela" e/ou "laranja"), o que pode ser explicada pela ocorrência de mutações aleatórias. Muito provavelmente, este seja o intervalo temporal aqui trabalhado que apresente a maior diversidade de ancestralidades.

Catorze indivíduos estão associados ao período de 500 anos entre 1.451 e 1.950 anos AP, isto é, entre os anos de 499 e 1 do primeiro milênio. Os mesmos são provenientes de 3 países: Brasil (2 indivíduos), Canadá (6) e EUA (6). Neste período também predomina, em geral, a estrutura populacional turquesa (Figura 25).

Brasil Canadá EUA

Figura 25 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 1.451 e 1.950 anos AP

Assim como no período de 500 anos apresentado anteriormente, é interessante aqui também a presença da ancestralidade "marrom" em indivíduos do Canadá e dos EUA.

O destaque é a presença da ancestralidade "rosa" em dois indivíduos, um do Canadá e outro do Brasil. Tal componente somente aparece em populações modernas do subcontinente indiano. A dúvida surge mais uma vez: como esta componente teria chegado quase que "simultaneamente" no Norte e no Sul das Américas?

As demais componentes são comuns a populações do centro e do leste da Ásia e da Oceania, ou são em tão pequena proporção que podem ser frutos da ocorrência de mutações aleatórias.

Outros 11 indivíduos estão associados ao período de 2.000 anos entre 1.951 e 3.950 anos AP. Os mesmos são também provenientes de 4 países: Brasil (3 indivíduos), Canadá (3), EUA (4) e Peru (1). Neste período a componente "turquesa" predomina nos indivíduos do Brasil e dos EUA, com 5 "turquesa-puros" entre os dois países. No Canadá há um equilíbrio de ancestralidades, enquanto que no indivíduo do Peru predomina a "verde escura" (Figura 26).

Brasil Canadá EUA Peru

Figura 26 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 1.951 e 3.950 anos AP

Os 3 indivíduos do Canadá apresentam estruturas genômicas muito semelhantes, inclusive com relevante presença da componente "marrom" em quase iguais proporções. O indivíduo I9057, do Brasil, apresenta uma relevante quantidade da componente "verde clara", que somente aparece em populações modernas da Oceania e do subcontinente indiano. As demais componentes observadas são apenas vestigiais.

Vinte indivíduos estão associados ao período de dois milênios entre 3.951 e 5.950 anos AP. Os mesmos são provenientes de 5 países: Canadá (1 indivíduo), Chile (3), EUA (12) Groenlândia (1) e Peru (3). Neste período a componente "turquesa" predomina nos indivíduos dos EUA, com 8 "turquesa-puros". Apesar de no Chile haver um "turquesa puro", nos outros dois indivíduos predomina a componente "verde escura", assim como no Peru. No indivíduo do Canadá há novamente um equilíbrio de ancestralidades, enquanto que no indivíduo da Groenlândia predomina a "lilás" (Figura 27).

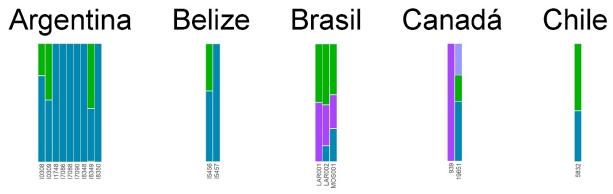

Canadá Chile EUA Groenlândia Peru

Figura 27 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 3.951 e 5.950 anos AP

O indivíduo do Canadá apresenta uma relevante quantidade da componente "verde clara", que somente aparece em populações modernas da Oceania e do subcontinente indiano, enquanto que a componente predominante no indivíduo da Groenlândia somente é observável em populações modernas da Ásia Central/Sibéria, bem como da Oceania. Na verdade, a estrutura genômica deste último em muito se assemelha à de siberianos modernos. As demais componentes observadas neste período são apenas vestigiais.

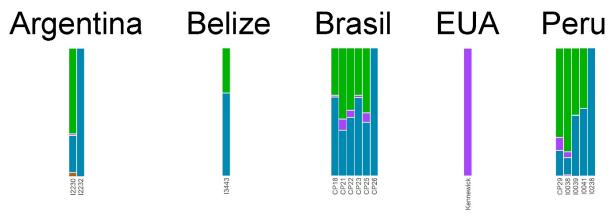
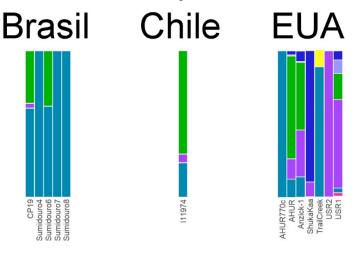

Outros 17 indivíduos estão associados ao período de 2.000 anos entre 5.951 e 7.950 anos AP. Os mesmos são também provenientes de 5 países: Argentina (9 indivíduos), Belize (2), Brasil (3), Canadá (2) e Chile (1). Neste período a componente "turquesa" também predomina nos indivíduos da Argentina e do Belize, com 7 "turquesa-puros" entre os dois países. Os indivíduos do Brasil, apesar da distância cronológica, já possuem uma estrutura genômica muito parecidas com populações nativo américas modernas. No indivíduo 939, do Canadá, a componente "lilás" domina todo o genoma, enquanto que no outro indivíduo deste País há novamente um equilíbrio de ancestralidades – apesar de certa predominância da "turquesa" –, assim como no indivíduo do Chile (Figura 28).

Figura 28 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 5.951 e 7.950 anos AP

Quinze indivíduos estão associados ao período de dois milênios entre 7.951 e 9.950 anos AP. Os mesmos são também provenientes de 5 países: Argentina (2 indivíduos), Belize (1), Brasil (6), EUA (1) e Peru (5). Neste período a componente "turquesa" também tem leve predominância em geral, com 3 "turquesa puros", na Argentina, no Brasil e no Peru. A exceção para afirmação anterior é o indivíduo dos EUA, Kennewick, no qual a componente "lilás" domina todo o genoma (Figura 29).

Figura 29 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 7.951 e 9.950 anos AP



Fonte: autoria própria (2020).

Depois da "turquesa", a componente "verde escura" aparece de forma muito proeminente em praticamente todos os países, novamente, à exceção dos EUA. A componente "marrom" é apenas vestigial.

Os últimos 13 indivíduos estão associados ao período que parte de 9.951 anos AP até a transição do Pleistoceno para o Holoceno. Os mesmos são provenientes de 3 países: Brasil (5 indivíduos), Chile (1) e EUA (7) (Figura 30).

Figura 30 – Componentes ancestrais observados em indivíduos humanos antigos do período entre 9951 anos AP à transição Pleistoceno-Holoceno

Fonte: autoria própria (2020).

No Brasil predomina a ancestralidade "turquesa", com 3 indivíduos "turquesa-puros", enquanto que no Chile a "verde escuro" predomina. Já nos EUA há um equilíbrio de ancestralidades. O destaque neste último País é a extensa presença da componente ancestral "azul escura" somente presente, na atualidade, em populações Europeias. As demais componentes são apenas vestigiais. Aqui há uma clara diferença entre as estruturas genômicas observadas nas diferentes regiões das Américas.

Em suma, se os indivíduos mais antigos, e aqui analisados, do Brasil e do Chile forem descendentes de populações que adentraram as Américas pela Beríngia, estas possuíam uma estrutura genômica composta majoritariamente pelas componentes "turquesa", "verde escura" e "lilás". Enquanto que a "azul escura" aparentemente adentrou pelo Beríngia posteriormente e se limitou à porção Norte dos Continente, até desaparecer.

Nos 4.000 anos seguintes as estruturas genômicas dos indivíduos americanos se estabilizou entre as componentes "turquesa", "verde escura" e "lilás". O que pode indicar um período sem maiores migrações para as Américas, ou de migrações de indivíduos que somente carregavam estas componentes.

Nos próximos 5.000 anos houve uma cada vez maior afluência de novas ancestralidades nos indivíduos americanos, com um pico de diversidade entre 951 e 1.450 anos AP, isto é, entre os anos de 999 e 500 do primeiro milênio. Isto pode ter sido causado por novas migrações em massa em direção às Américas, e não somente pela Beríngia – ou como resultado de diferentes adaptações biológicas a possíveis novas pressões ambientais enfrentadas no continente americano.

Os 3 séculos seguintes viram novamente uma estabilidade genômica entre as componentes ancestrais "turquesa", "verde escura" e "lilás". O que pode indicar, também novamente, um curto período com a ausência de maiores migrações para as Américas, ou, como já afirmado anteriormente, a ocorrência de migrações de indivíduos que somente carregavam estas componentes.

Por fim, nos últimos 650 (ou 700) anos houve um novo (res)surgimento de diversas ancestralidades, muito provavelmente pelo motivo de a América se tornar palco de diversas migrações, em especial, mas não exclusivamente, do continente europeu.

Como já destacado anteriormente, ao longo dos últimos 10 a 12 mil anos, a componente ancestral "turquesa" manteve certa hegemonia em relação às outras, algo observável principalmente na América do Norte, até praticamente desaparecer, na atualidade. Na América do Sul, ela rapidamente perdeu espaço para uma estrutura populacional genômica que mais se assemelhava àquela observável em populações nativo-americanas modernas (componentes "lilás" mais "verde escura").

Finaliza-se aqui então as possíveis inferências resultantes da associação dos dados ADMIXTURE com aqueles de ordem cronológica dos indivíduos antigos das Américas.

4.2 ANÁLISE DE COMPONENTES PRINCIPAIS

Logo de início, é possível afirmar que a Análise de Componentes Principais (ACP) resultou em sucesso²⁰ uma vez que é possível observar o perfil em "V" invertido das amostras do 1kGP, mesmo que um tanto achatado (Figura 31).

²⁰ As primeiras 20 componentes principais resultantes da ACP e seus respectivos autovalores podem ser observados no final desta obra (Apêndice D).

Figura 31 – Gráfico de dispersão produzido com as duas principais componentes resultantes da ACP

É interessante observar o quão distante estão as amostras do SGDP das do 1kGP, o que demonstra que a maioria dos indivíduos do último passaram por vários eventos de mistura genética, comprovando a essência dos projetos, principalmente do primeiro, que buscou sequenciar populações modernas que, a princípio, passaram por pouco eventos de mistura.

É possível também observar que há um grande agrupamento de amostras antigas na parte superior do gráfico, distantes de qualquer amostra moderna. Tal agrupamento é composto principalmente por indivíduos com a estrutura populacional 2, caracterizada pela componente ancestral "turquesa", e híbridos com maiores proporções desta componente.

Um dos objetivos ao se produzir este gráfico é identificar possíveis agrupamentos de amostras antigas com amostras modernas, e na figura anterior é possível observar que este agrupamento acontece em dois momentos, um de amostras antigas com amostras do SGDP e outro das primeiras com amostras do 1kGP (Figura 32).

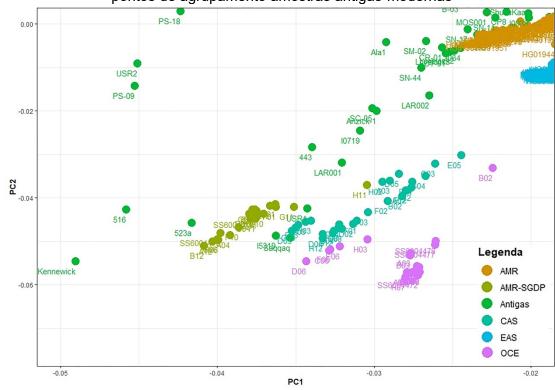


Figura 32 – Detalhe do gráfico produzido com os resultados da ACP demonstrando os 2 pontos de agrupamento amostras antigas-modernas

O detalhe demonstra, inicialmente, que de fato as amostras do SGDP (AMR-SGDP, CAS e OCE) são muito próximas geneticamente, o que comprova a constatação anterior de que estes indivíduos modernos compartilham considerável carga genética entre si – e com os indivíduos antigos das Américas.

Alguns destes últimos, por sua vez, se agrupam entre os indivíduos modernos das CAS e da AMR-SGDP, em um primeiro ponto, e com indivíduos modernos da AMR (1kGP) em um segundo ponto. Estes indivíduos antigos seriam aqueles da estrutura populacional 1, mais parecidos geneticamente com os indígenas atuais, apresentando as componentes ancestrais "verde escura" e "lilás" em maiores proporções, e híbridos.

Nenhum indivíduo antigo das Américas se agrupa entre os indivíduos da OCE. Nem mesmo o indivíduo PS-26, anteriormente apresentado nos resultados ADMIXTURE como possuidor de duas componentes ancestrais da OCE (Figura 16). Este fato parece significar que: não basta que um indivíduo possua as componentes ancestrais presentes em determinado recorte geográfico para que ele se agrupe com amostras daquele local, mas as proporções destas componentes/ancestralidades parece ser um importante fator para definir este agrupamento.

Por fim, segundo o resultado da ACP, nenhum outro indivíduo antigo das Américas se agrupa com qualquer outra população moderna. O que parece indicar de fato que todos os indivíduos antigos são descendentes daqueles que cruzaram a Beríngia em direção ao interior da América – ainda que carreguem resquícios de outras ancestralidades, como demonstram os resultados ADMIXTURE, provavelmente resultado de migrações ainda mais ancestrais ocorridas nas mais diversas regiões da Eurásia.

5 CONSIDERAÇÕES FINAIS

Ao se observar os resultados ADMIXTURE é possível se notar que os indivíduos antigos oriundos do Canadá e dos EUA possuem uma alta diversidade de componentes ancestrais não observável nos indivíduos da América do Sul. Trata-se de um cenário muito semelhante a outro observável em um nível mundial: a África é hoje considerada o continente com maior grau de diversidade genética dentre todos do Planeta, e assim parece ter sido em todas as etapas da História Humana. Tal fato levou à proposição da (hoje) dominante teoria de que o Gênero Humano surgiu naquele Continente e de lá se espalhou por todo o Globo (LIU *et al.*, 2006).

Além disso, tais resultados indicam que todas as ancestralidades observadas nos indivíduos antigos das Américas podem ter adentrado neste Continente a partir da Beríngia – ainda que possa haver uma pequena quantidade de indivíduos nos quais há ausência de dados cronológicos associados e, portanto, não seja possível realizar maiores inferências quanto a migrações de suas ancestralidades.

A Beríngia parece ter sido então uma região geográfica aglutinadora de diversas outras ancestralidades originadas na África e em outras partes da Eurásia. Isso é perceptível também na estrutura populacional dos indivíduos indígenas modernos da Sibéria (SGDP), mais diversa do que qualquer outra população indígena moderna (SGDP). As constantes e rápidas mudanças ambientais que ocorreram na Beríngia poderiam ter sido ainda fontes de pressão para o surgimento de novas ancestralidades não existentes em outras partes da Terra – como a componente ancestral "turquesa".

Soma-se a isso o fato evidenciado pela ACP de que os indivíduos antigos apresentam uma maior afinidade genética com as amostras modernas provenientes da Sibéria/Rússia do que com qualquer outra população moderna não-americana.

Nesse sentido, frente a todos estes aspectos evidenciados no capítulo anterior, não foi possível atestar a existência de uma possível ancestralidade especificamente oceânica nos indivíduos antigos: as mutações (os SNPs) presentes nestas amostras, e que compõem possível componente ancestral oriundo da Oceania ("lilás"), são também compartilhadas por indivíduos da Sibéria/Rússia. Além disso, esse suposto componente oceânico quase sempre vem acompanhado de uma componente ancestral hoje somente observada na Rússia (das amostras não-americanas), que é a componente "verde escura".

O que pode ser afirmado aqui então é que uma relevante parcela dos indivíduos antigos das Américas compartilha de um mesmo componente ancestral com as populações modernas da Oceania, da Ásia Central/Sibéria e das próprias Américas.

No geral, é possível observar duas estruturas populacionais nos indivíduos antigos, uma delas praticamente não existente em populações modernas – aquela majoritariamente "turquesa" –, e a outra que lançou as bases genéticas da estrutura populacional de todos os indígenas modernos das Américas – aquela majoritariamente "lilás" e "verde escura".

Tais estruturas populacionais era contemporâneas e não é possível correlaciona-las com nenhum período cronológico em específico, isto é, ambas estão presentes em todo o espectro cronológico considerado nesta pesquisa. A diferença é que a estrutura populacional majoritariamente "turquesa" veio a decair em frequência ao longo do tempo, mas especialmente em períodos pós-Contato – ao ponto de que hoje somente vestígios desta ancestralidade é observável em indivíduos modernos da Argentina, do México e da Sibéria/Rússia. Por outro lado, a estrutura populacional "lilás mais verde escura" aparentemente se tornou dominante por toda a América.

Possíveis explicações para este fato é de que a carga genética "turquesa" estivesse relacionada à fatores de adaptação às duríssimas condições ambientais existentes na Beríngia em torno do UMG. Fatores de adaptação estes que já não seriam mais necessários no interior e/ou no Sul das Américas, assim tal componente ancestral teria passado por um processo de seleção natural negativa²¹ e ter decaído em frequência e proporção – o inverso pode também ter ocorrido com as componentes "lilás" e "verde escura", ou seja, elas poderiam estar associadas a fatores de adaptação ao ambiente das Américas e por isso passaram por processos de seleção natural positiva, aumentando em frequência e proporção (MOLLES, 2015).

A constatação da existência de duas estruturas populacionais antigas, porém contemporâneas, e distintas nas Américas pode então explicar as diferenças morfológicas observadas entre crânios de indivíduos antigos evidenciados no Continente, e entre indivíduos antigos e modernos – as denominadas morfologias "Paleoamericana" e "Ameríndia". Nesse sentido, o decaimento da ancestralidade "turquesa" e a consequente dominação das componentes "lilás" e "verde escura"

-

²¹ Este processo aparentemente se tornou especialmente mais intenso após o Contato europeu, mas muito provavelmente pelo surgimento de outras fontes de pressão seletiva – a chegada de novas patologias pode ter sido uma delas.

podem tem levado a uma maior homogeneização das morfologias cranianas de povos nativo-americanos, observada na atualidade.

Assim, a tese resultante desta pesquisa é a seguinte:

Não é possível observar nos indivíduos antigos das Américas uma ancestralidade genética especificamente oceânica. No entanto, os mesmos compartilham inúmeras mutações com populações oceânicas e asiáticas/siberianas modernas. Nesse sentido, SNPs presentes nas populações oceânicas modernas também estiveram presentes no passado, e ainda persistem no presente, por todo o continente americano. Diferenças crânio-morfológicas observadas entre indivíduos nativo-americanos antigos e/ou entre indivíduos nativoamericanos antigos e modernos podem ser explicadas então pela existência de duas estruturas populacionais (genéticas) distintas que existiram nas Américas em períodos pré-Contato. Ambas estruturas populacionais (e outras ancestralidades) muito provavelmente se originaram e adentraram no continente americano através da Beríngia, ao mesmo tempo, tendo ambas persistido até períodos pós-Contato. Uma vez que nenhuma das duas pode ser correlacionada a um período cronológico específico, conclui-se que o processo de povoamento das Américas se deu como um fluxo quase que contínuo de indivíduos ao longo de milhares de anos, que teria partido da Beríngia, e não como um limitado número de eventos migratórios – apesar de haver momentos em que este processo migratório pareceu ser mais intenso – fato que por si só rechaça a "Clovis First Theory".

Assim, é evidente então que os resultados aqui obtidos e apresentados rechaçam por completo os diversos aspectos que compõem a hipótese originalmente delineada para esta pesquisa. Obviamente, esta tese é resultado da comparação de dados genéticos de centenas de indivíduos antigos das Américas com aqueles de milhares de amostras modernas de todo o Mundo. Portanto, é importante reconhecer que há, invariavelmente, limites interpretativos. Mas se trata da melhor aproximação científica possível na atualidade.

A fim de se obter resultados e interpretações mais precisas, demonstram-se necessários maiores esforços que levem a uma também maior quantidade de indivíduos antigos sequenciados genomicamente ao redor do Globo, de modo que possa ser realizado um estudo pleno (e portador de significância estatística) sobre o passado humano.

Por fim, é importante relembrar que uma possível narrativa sobre o povoamento das Américas, deve ser fruto e suportada por um conjunto das mais diversas análises realizadas nos também diferentes tipos de remanescentes arqueológicos, como exemplificado na introdução desta pesquisa. Ainda que estudos em arqueogenômica promovam um novo olhar sobre este processo do passado, e culmine na produção de novos conhecimentos, esta é uma discussão que envolve aspectos que se estendem muito além do citado aporte.

REFERÊNCIAS

1000 GENOMES PROJECT CONSORTIUM *et al.* A global reference for human genetic variation. **Nature**, v. 526, n. 7571, p. 68-74, 2015.

ABDI, Hervé; WILLIAMS, Lynne J. Principal component analysis. **Wiley interdisciplinary reviews: computational statistics**, v. 2, n. 4, p. 433-459, 2010.

ADAMS, Bradley J. Forensic anthropology. New York: Infobase Publishing, 2007.

ALEXANDER, David H.; NOVEMBRE, John; LANGE, Kenneth. Fast model-based estimation of ancestry in unrelated individuals. **Genome research**, v. 19, n. 9, p. 1655-1664, 2009.

ALQAHTANI, Sakher J.; HECTOR, Mark P.; LIVERSIDGE, Helen M. Brief communication: the London atlas of human tooth development and eruption. **American Journal of physical anthropology**, v. 142, n. 3, p. 481-490, 2010.

ARTIOLI, Gilberto. **Scientific methods and cultural heritage:** An introduction to the application of materials science to archaeometry and conservation science. Oxford: Oxford University Press, 2010.

BAFFA, Oswaldo; KINOSHITA, Angela M. O. Datação Arqueológica por Ressonância Paramagnética Eletrônica. **Fumdhamentos**, v. 4, p. 1-7, 2004.

BAHN, Paul. **Archaeology**: a very short introduction. Oxford: Oxford University Press, 1996.

BERNARDO, Danilo V.; NEVES, Walter A. Diversidade morfocraniana dos remanescentes ósseos humanos da Serra da Capivara: implicações para a origem do homem americano. **Fumdhamentos**, v. 8, p. 95-106, 2009.

BLAISE, Bertrand; CLAGUE, John J.; MATHEWES, Rolf W. Time of maximum Late Wisconsin glaciation, west coast of Canada. **Quaternary Research**, v. 34, n. 3, p. 282-295, 1990.

BOOTH, Derek B. *et al.* The Cordilleran ice sheet. **Developments in Quaternary Sciences**, v. 1, p. 17-43, 2003.

BIRX, H. James (Ed.). **21st century anthropology**: a reference handbook. Thousand Oaks: SAGE Publications, Inc., 2010.

BOUAKAZE, Caroline *et al.* Pigment phenotype and biogeographical ancestry from ancient skeletal remains: inferences from multiplexed autosomal SNP analysis. **International journal of legal medicine**, v. 123, n. 4, p. 315-325, 2009.

BRAINERD, George W. The place of chronological ordering in archaeological analysis. **American Antiquity**, v. 16, n. 4, p. 301-313, 1951.

BRAJE, Todd J. *et al.* Finding the first Americans. **Science**, v. 358, n. 6363, p. 592-594, 2017.

BRIGHAM-GRETTE, Julie *et al.* Paleoenvironmental conditions in western Beringia before and during the Last Glacial Maximum. In: MADSEN, D. B. (Ed.). **Entering America**: Northeast Asia and Beringia before the last glacial maximum. Salt Lake City: University of Utah Press, p. 29-61, 2004.

BROWN, T. A. **Genomes**. Oxford: Wiley-Liss, 2002.

BROWN, J. H.; LOMOLINO, M. V. **Biogeography**. Sunderland: Sinauer Associates, Inc. Publishers, 1998.

BUNGE, Mario. La investigación científica: su estrategia y su filosofía. Coyoacán, Siglo XXI editores, s.a. de c.v., 2004.

BYRNES, Jennifer F. *et al.* mtDNA and osteological analyses of an unknown historical cemetery from upstate New York. **Archaeological and Anthropological Sciences**, v. 4, n. 4, p. 303-311, 2012.

CARRACEDO, Angel (Ed.). **Forensic DNA typing protocols**. Totowa: Humana Press Inc., 2005.

CASSIDY, Lara M. *et al.* Neolithic and Bronze Age migration to Ireland and establishment of the insular Atlantic genome. **Proceedings of the National Academy of Sciences**, v. 113, n. 2, p. 368-373, 2016.

CHALA-ALDANA, Döbereiner *et al.* Investigating mobility and highland occupation strategies during the Early Holocene at the Cuncaicha rock shelter through strontium and oxygen isotopes. **Journal of Archaeological Science: Reports**, v. 19, p. 811-827, 2018.

CHANG, Christopher C. *et al.* Second-generation PLINK: rising to the challenge of larger and richer datasets. **Gigascience**, v. 4, n. 1, p. 1-16, 2015.

CLAGUE, John J.; MATHEWES, Rolf W.; AGER, Thomas A. Environments of northwestern North America before the last glacial maximum. In: MADSEN, D. B. (ed.). **Entering America**: Northeast Asia and Beringia before the last glacial maximum. Salt Lake City: University of Utah Press, p. 63-94, 2004.

DEBLASIS, Paulo *et al.* Sambaquis e paisagem: dinâmica natural e arqueologia regional no litoral do sul do Brasil. **Arqueologia suramericana**, v. 3, n. 1, p. 29-61, 2007.

DILLEHAY, Tom D. Entangled Knowledge: Old Trends and New Thoughts in First South Americans Studies. In: GRAF, Kelly E.; KETRON, Caroline V.; WATERS, Michael R. (Ed.). **Paleoamerican odyssey**. College Station: Texas A&M University Press, p. 377–396, 2014.

DILLEHAY, Tom D. *et al.* New archaeological evidence for an early human presence at Monte Verde, Chile. **PloS one**, v. 10, n. 11, p. 1-11, 2015.

DIRKMAAT, Dennis C. *et al.* New perspectives in forensic anthropology. **American Journal of Physical Anthropology**, v. 137, n. S47, p. 33-52, 2008.

DIRKMAAT, Dennis C.; CABO, Luis L. Forensic Anthropology: Embracing the New Paradigm. In: DIRKMAAT, Dennis (Ed.). **A companion to forensic anthropology**. Chichester: Blackwell Publishing Ltd, p. 3-40, 2012.

ERLANDSON, Jon M. *et al.* The kelp highway hypothesis: marine ecology, the coastal migration theory, and the peopling of the Americas. **The Journal of Island and Coastal Archaeology**, v. 2, n. 2, p. 161-174, 2007.

ERLANDSON, Jon M.; BRAJE, Todd J. From Asia to the Americas by boat? Paleogeography, paleoecology, and stemmed points of the northwest Pacific. **Quaternary International**, v. 239, n. 1-2, p. 28-37, 2011.

FEHREN-SCHMITZ, Lars *et al.* A re-appraisal of the early Andean human remains from Lauricocha in Peru. **PloS one**, v. 10, n. 6, p. 1-13, 2015.

FIEDEL, Stuart J. The Kennewick follies: "New" theories about the peopling of the Americas. **Journal of Anthropological Research**, v. 60, n. 1, p. 75-110, 2004.

FIEDEL, Stuart J. Did monkeys make the Pre-Clovis pebble tools of northeastern Brazil?. **PaleoAmerica**, v. 3, n. 1, p. 6-12, 2017.

FLEGONTOV, Pavel *et al.* Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. **Nature**, v. 570, n. 7760, p. 236-240, 2019.

FORD, James A.; STEWARD, Julian H. On the concept of types. **American Anthropologist**, v. 56, n. 1, p. 42-57, 1954.

FREITAS, Fábio de Oliveira. **Estudo genético-evolutivo de amostras modernas e arqueológicas de milho (Zea mays, L.) e feijão (Phaseolus vulgaris, L.).** 2001. Tese (Doutorado em Agronomia) – Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, 2001.

FREITAS, Fábio de Oliveira. Analises genéticas em material arqueológico. **Embrapa Recursos Genéticos e Biotecnologia. Documentos**, v. 80, p. 7-22, 2002.

FREITAS, Fábio de Oliveira. Evidências genético-arqueológicas sobre a origem do feijão comum no Brasil. **Pesquisa Agropecuária Brasileira**, v. 41, n. 7, p. 1199-1203, 2006.

GEYH, Mebus A.; SCHLEICHER, Helmut. **Absolute age determination**: physical and chemical dating methods and their application. Berlin: Springer-Verlag Berlin Heidelberg, 1990.

GOFFER, Zvi. Archaeological chemistry. Hoboken: John Wiley & Sons, Inc., 2007.

GOODWIN, William; LINACRE, Adrian; HADI, Sibte. **An introduction to forensic genetics**. Chichester: John Wiley & Sons Ltd, 2011.

GRIEDER, Terence E. *et al.* **La Galgada, Peru:** A preceramic culture in transition. Austin: University of Texas Press, 2012.

GUIDON, Niede; DELIBRIAS, Gabriel. Carbon-14 dates point to man in the Americas 32,000 years ago. **Nature**, v. 321, n. 6072, p. 769-771, 1986.

GUIDON, Niede; PESSIS, A.; MARTIN, Gabriela. Pesquisas arqueológicas na região do Parque Nacional Serra da Capivara e seu entorno (Piauí-1998/2008). **Fumdhamentos**, v. 8, p. 1-61, 2009.

GUIDON, Niède *et al.* Nature and age of the deposits in Pedra Furada, Brazil: reply to Meltzer, Adovasio & Dillehay. **Antiquity**, v. 70, p. 408-421, 1996.

HALDER, Indrani *et al.* A panel of ancestry informative markers for estimating individual biogeographical ancestry and admixture from four continents: utility and applications. **Human mutation**, v. 29, n. 5, p. 648-658, 2008.

HEFNER, Joseph T. Cranial nonmetric variation and estimating ancestry. **Journal of forensic sciences**, v. 54, n. 5, p. 985-995, 2009.

HERRMANN, Bernd; HUMMEL, Susanne (Ed.). **Ancient DNA:** recovery and analysis of genetic material from paleontological, archaeological, museum, medical, and forensic specimens. New York: Springer-Verlag New York Inc., 1994.

HIERNAUX, Jean. The concept of race and the taxonomy of mankind. In: MONTAGU, A. **The Concept of Race**. Glencoe: Free Press of Glencoe, p. 29-45, 1964.

HIGUCHI, Russell *et al.* DNA sequences from the quagga, an extinct member of the horse family. **Nature**, v. 312, n. 5991, p. 282-284, 1984.

HOLDAWAY, Simon. Absolute Dating. In: BALME, Jane; PATERSON, Alistair (Ed.). **Archaeology in Practice**: A Student Guide to Archaeological Analyses. Malden: Blackwell Publishing Ltd, p. 117-158, 2006.

HUBBE, Mark *et al.* "Zuzu" strikes again—Morphological affinities of the early holocene human skeleton from Toca dos Coqueiros, Piaui, Brazil. **American Journal of Physical Anthropology**, v. 134, n. 2, p. 285-291, 2007.

HUBBE, Mark *et al.* Postmarital residence practice in southern Brazilian coastal groups: continuity and change. **Latin American Antiquity**, v. 20, n. 2, p. 267-278, 2009.

HUMMEL, Susanne. **Ancient DNA typing:** methods, strategies and applications. Berlin: Springer-Verlag Berlin Heidelberg, 2003.

HUMMEL, Susanne. Ancient DNA. In: HENKE, Winfried; TATTERSALL, Ian (Ed.). **Handbook of Paleoanthropology**. Berlin: Springer-Verlag Berlin Heidelberg New York, p. 763-790, 2007.

ISCAN, Mehmet Yasar; STEYN, Maryan. **The human skeleton in forensic medicine**. Springfield: Charles C Thomas Publisher Ltd, 2013.

JACKSON, Donald; MÉNDEZ, César; ASPILLAGA, Eugenio. Human remains directly dated to the Pleistocene-Holocene transition support a marine diet for early settlers of the Pacific Coast of Chile. **The Journal of Island and Coastal Archaeology**, v. 7, n. 3, p. 363-377, 2012.

JEAN DE SALISBURY. **Metalogicon**. Québec: Les Presses de l'Universite Laval, 2009.

KAMPUANSAI, Jatupol *et al.* Paternal genetic history of the Yong population in northern Thailand revealed by Y-chromosomal haplotypes and haplogroups. **Molecular Genetics and Genomics**, v. 295, p. 579-589, 2020.

KAYSER, Manfred *et al.* Significant genetic differentiation between Poland and Germany follows present-day political borders, as revealed by Y-chromosome analysis. **Human genetics**, v. 117, n. 5, p. 428-443, 2005.

KROGMAN, W. M. The human skeleton in forensic medicine. I. **Postgraduate medicine**, v. 17, n. 2, p. A-48; passim, 1955.

KROGMAN, W. M. **The human skeleton in Forensic Medicine**. Springfield: Charles C Thomas Publisher Ltd, 1962.

LINDERHOLM, Anna. Ancient DNA: the next generation—chapter and verse. **Biological journal of the Linnean society**, v. 117, n. 1, p. 150-160, 2016.

LINDO, John *et al*. A time transect of exomes from a Native American population before and after European contact. **Nature communications**, v. 7, n. 1, p. 1-11, 2016.

LINDO, John *et al.* Ancient individuals from the North American Northwest Coast reveal 10,000 years of regional genetic continuity. **Proceedings of the National Academy of Sciences**, v. 114, n. 16, p. 4093-4098, 2017.

LIU, Hua *et al.* A geographically explicit genetic model of worldwide human-settlement history. **The American Journal of Human Genetics**, v. 79, n. 2, p. 230-237, 2006.

LUCAS, G. The archaeology of time. Abingdon: Routledge, 2005.

MALAINEY, Mary E. A consumer's guide to archaeological science: analytical techniques. New York: Springer Science+Business Media, LLC, 2011.

MALLICK, Swapan *et al.* The Simons genome diversity project: 300 genomes from 142 diverse populations. **Nature**, v. 538, n. 7624, p. 201-206, 2016.

MANDRYK, Carole A. S. *et al.* Late Quaternary paleoenvironments of Northwestern North America: implications for inland versus coastal migration routes. **Quaternary Science Reviews**, v. 20, n. 1-3, p. 301-314, 2001.

MARTINIANO, Rui *et al.* The population genomics of archaeological transition in west lberia: Investigation of ancient substructure using imputation and haplotype-based methods. **PLoS genetics**, v. 13, n. 7, p. 1-24, 2017.

MELTZER, David J.; ADOVASIO, James M.; DILLEHAY, Tom D. On a pleistocene human occupation at Pedra Furada, Brazil. **Antiquity**, v. 68, n. 261, p. 695-714, 1994.

MISARTI, Nicole *et al.* Early retreat of the Alaska Peninsula Glacier Complex and the implications for coastal migrations of First Americans. **Quaternary Science Reviews**, v. 48, p. 1-6, 2012.

MOLLES, Manuel. **Ecology**: concepts and applications. New York: McGraw-Hill Higher Education, 2015.

MORENO-MAYAR, J. Víctor *et al.* Early human dispersals within the Americas. **Science**, v. 362, n. 6419, p. 1-11, 2018a.

MORENO-MAYAR, J. Víctor *et al.* Terminal Pleistocene Alaskan genome reveals first founding population of Native Americans. **Nature**, v. 553, n. 7687, p. 203-207, 2018b.

MURRAY, Tim (Ed.). Time and Archaeology. London: Routledge, 1999.

MUTZENBERG, Daniela Cisneiros Silva *et al.* Fundamentos da diagênese óssea e suas formas de avaliação usando as técnicas espectroscópicas de FTIR-ATR e DRX. **Clio Arqueológica**, v. 30, n. 2, p. 154-88, 2015.

NAGEL, Joane. Constructing ethnicity: Creating and recreating ethnic identity and culture. **Social problems**, v. 41, n. 1, p. 152-176, 1994.

NAIDOO, Nasheen *et al.* Human genetics and genomics a decade after the release of the draft sequence of the human genome. **Human genomics**, v. 5, n. 6, p. 577, 2011.

NEVES, Walter A. *et al.* A new early Holocene human skeleton from Brazil: implications for the settlement of the New World. **Journal of Human Evolution**, v. 48, n. 4, p. 403-414, 2005.

O'BRIEN, Michael J. *et al.* Transmission of cultural variants in the North American Paleolithic. In: MESOUDI, Alex; KENICHI, Aoki (Ed.). **Learning strategies and cultural evolution during the Palaeolithic**. Tokyo: Springer Japan, p. 121-143, 2015.

PÄÄBO, Svante. Preservation of DNA in ancient Egyptian mummies. **Journal of Archaeological Science**, v. 12, n. 6, p. 411-417, 1985.

PENNISI, Elizabeth. The human genome. **Science**, v. 291, n. 5507, p. 1177-1180, 2001.

PEYRE, Evelyne; GRANAT, Jean; GUIDON, Niède. Dentes e crânios humanos fósseis do Garrincho (Brasil) e o povoamento antigo da América. **Fumdhamentos**, v. 8, p. 61-69, 2009.

PETRAGLIA, Michael D. *et al.* Hominin dispersal into the Nefud desert and Middle Palaeolithic settlement along the Jubbah palaeolake, northern Arabia. **PLoS One**, v. 7, n. 11, p. 1-21, 2012.

PLENS, Cláudia Regina. **Sítio Moraes, uma biografia não autorizada**: analise do processo de formação de um sambaqui fluvial. 2007. Tese (Doutorado em Arqueologia) – Museu de Arqueologia e Etnologia, Universidade de São Paulo, São Paulo, 2007.

POLIKRETI, Kyriaki; MANIATIS, Y. A new methodology for the provenance of marble based on EPR spectroscopy. **Archaeometry**, v. 44, n. 1, p. 1-21, 2002.

POLIKRETI, Kyriaki *et al.* Provenance of archaeological limestone with EPR spectroscopy: the case of the Cypriote-type statuettes. **Journal of Archaeological Science**, v. 31, n. 7, p. 1015-1028, 2004.

POLITIS, Gustavo G. *et al.* The arrival of Homo sapiens into the Southern Cone at 14,000 years ago. **PLoS One**, v. 11, n. 9, p. 1-27, 2016.

POLLARD, A. Mark *et al.* **Analytical chemistry in archaeology**. Cambridge: Cambridge University Press, 2007.

POSTH, Cosimo *et al.* Reconstructing the deep population history of Central and South America. **Cell**, v. 175, n. 5, p. 1185-1197, 2018.

PRICE, T. Douglas; BURTON, James H. **An introduction to archaeological chemistry**. New York: Springer Science+Business Media, LLC, 2011.

PUCCIARELLI, Héctor M.; PEREZ, S. Ivan; POLITIS, Gustavo G. Early Holocene human remains from the Argentinean Pampas: additional evidence for distinctive cranial morphology of early South Americans. **American Journal of Physical Anthropology**, v. 143, n. 2, p. 298-305, 2010.

RADEMAKER, Kurt *et al.* Paleoindian settlement of the high-altitude Peruvian Andes. **Science**, v. 346, n. 6208, p. 466-469, 2014.

RAGHAVAN, Maanasa *et al.* Genomic evidence for the Pleistocene and recent population history of Native Americans. **Science**, v. 349, n. 6250, p. 1-10, 2015.

RASMUSSEN, Morten *et al.* Ancient human genome sequence of an extinct Palaeo-Eskimo. **Nature**, v. 463, n. 7282, p. 757-762, 2010.

RASMUSSEN, Morten *et al.* The genome of a Late Pleistocene human from a Clovis burial site in western Montana. **Nature**, v. 506, n. 7487, p. 225-229, 2014.

RASMUSSEN, Morten *et al.* The ancestry and affiliations of Kennewick Man. **Nature**, v. 523, n. 7561, p. 455-458, 2015.

RENFREW, Colin. From molecular genetics to archaeogenetics. **Proceedings of the National Academy of Sciences**, v. 98, n. 9, p. 4830-4832, 2001.

RENFREW, Colin; BAHN, Paul (Ed.). **Archaeology**: The Key Concepts. Abingdon: Routledge, 2005.

ROMERO, Simon. Discoveries Challenge Beliefs on Humans' Arrival in the Americas. **New York Times**, p. A5, 2014.

SANTOS, André Luiz Campelo dos. **Estudo da diagênese óssea e experimento de datação direta dos sepultamentos do Sítio Arqueológico Pedra do Alexandre-RN**. 2016. Dissertação (Mestrado em Arqueologia) — Centro de Filosofia e Ciências Humanas, Universidade Federal de Pernambuco, Recife, 2016.

SANTOS, André Luiz Campelo dos; SULLASI, Henry Socrates Lavalle. Implicações microscópicas da Tafonomia ao emprego de métodos e técnicas forenses em Arqueologia. **Fumdhamentos**, v. 13, p. 108-130, 2016.

SANTOS, Fabrício R. O povoamento das Américas através de estudos de ancestralidade paterna. **Fumdhamentos**, v. 7, p. 192-203, 2008.

SAUER, Norman J. Forensic anthropology and the concept of race: if races don't exist, why are forensic anthropologists so good at identifying them?. **Social Science & Medicine**, v. 34, n. 2, p. 107-111, 1992.

SCHEIB, Christiana Lyn *et al.* Ancient human parallel lineages within North America contributed to a coastal expansion. **Science**, v. 360, n. 6392, p. 1024-1027, 2018.

SCHEIFLER, N. A. *et al.* Primeros estudios arqueologicos y antiguas reivindicaciones indigenas del sitio Laguna Chica (Sistema Lagunar Hinojo-Las Tunas, area Oeste de la subregion Pampa Humeda). **Resumenes del VIII Congreso de Arqueologia de la Region Pampeana**, p. 39, 2017.

SEMINO, Ornella *et al.* The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: AY chromosome perspective. **Science**, v. 290, n. 5494, p. 1155-1159, 2000.

SHRIVER, Mark D.; KITTLES, Rick A. Genetic ancestry and the search for personalized genetic histories. **Nature Reviews Genetics**, v. 5, n. 8, p. 611-618, 2004.

SILVA, Sergio Francisco Serafim Monteiro da; GHETTI, Neuvânia Curty; SANTOS, Celyne Rodrigues Brito. Ensaio sobre preservação de materiais arqueológicos de natureza orgânica da RETEC-ARQ da UFPE: Remanescentes ósseos humanos. **Seminário de Preservação de Patrimônio Arqueológico, IV**, p. 402-432, 2016.

SKOGLUND, Pontus *et al.* Genetic evidence for two founding populations of the Americas. **Nature**, v. 525, n. 7567, p. 104-108, 2015.

SKOGLUND, Pontus; REICH, David. A genomic view of the peopling of the Americas. **Current opinion in genetics & development**, v. 41, p. 27-35, 2016.

SKOOG, Douglas A.; HOLLER, F. James; CROUCH, Stanley R. **Principles of instrumental analysis**. Belmont: Thomson Brooks/Cole, 2007.

SOLARI, Ana; MARTIN, Gabriela; SILVA, Sergio Francisco Serafim Monteiro da. A Presença Infantil no Registro Bioarqueológico no Sítio Pedra do Alexandre, Carnaúba dos Dantas, RN, Brasil. **Fumdhamentos**, v. 13, p. 4-30, 2016.

SPAULDING, Albert C. Statistical techniques for the discovery of artifact types. **American Antiquity**, v. 18, n. 4, p. 305-313, 1953.

STRAUSS, André *et al.* Early Holocene ritual complexity in South America: the archaeological record of Lapa do Santo (east-central Brazil). **Antiquity**, v. 90, n. 354, p. 1454-1473, 2016.

SULLASI, Henry Lavalle; AZEVEDO, Renata Libonati; PESSIS, Anne Marie. Datação de dentes por espectroscopia RPE: fundamentos, metodologia e aplicações. **Clio Arqueológica**, v. 24, n. 1, p. 97-117, 2009.

SULLASI, Henry Socrates Lavalle *et al.* A note on diagenetic parameters for bone remains from Pedra do Alexandre site without sample destruction. **Fumdhamentos**, v. 14, p. 74-85, 2017.

SULLASI, Henry Socrates Lavalle; SANTOS, André Luiz Campelo dos; SILVA, Sérgio Francisco Serafim Monteiro da. Bone diagenesis study of the burials from the Pedra do Alexandre archaeological site, Carnaúba dos Dantas, RN. **Cadernos do LEPAARQ (UFPEL)**, v. 15, n. 30, p. 162-178, 2018.

TAYLOR, Royal Ervin; AITKEN, Martin J. (Ed.). **Chronometric dating in archaeology**. New York: Springer Science+Business Media New York, 1997.

VILLAGRAN, Ximena S. *et al.* Buried in ashes: Site formation processes at Lapa do Santo rockshelter, east-central Brazil. **Journal of Archaeological Science**, v. 77, p. 10-34, 2017.

WALKER, Mike. **Quaternary dating methods**. Chichester: John Wiley and Sons Ltd, 2005.

WATERS, Michael R. Late Pleistocene exploration and settlement of the Americas by modern humans. **Science**, v. 365, n. 6449, p. 1-9, 2019.

WATERS, Michael R.; STAFFORD, Thomas W. Redefining the age of Clovis: implications for the peopling of the Americas. **Science**, v. 315, n. 5815, p. 1122-1126, 2007.

WEINER, S. **Microarchaeology**: beyond the visible archaeological record. Cambridge: Cambridge University Press, 2010.

APÊNDICE A – LISTA DAS AMOSTRAS DO 1KGP UTILIZADAS NESTA PESQUISA, SEGUIDAS DAS POPULAÇÕES ("POP.") ÀS QUAIS PERTENCEM E DE SUAS RESPECTIVAS REGIÕES GEOGRÁFICAS ("REG.")

Amostra	Pop.	Reg.
HG01879	ACB	AFR
HG01880	ACB	AFR
HG01882	ACB	AFR
HG01883	ACB	AFR
HG01885	ACB	AFR
HG01886	ACB	AFR
HG01889	ACB	AFR
HG01890	ACB	AFR
HG01894	ACB	AFR
HG01896	ACB	AFR
HG01912	ACB	AFR
HG01914	ACB	AFR
HG01915	ACB	AFR
HG01956	ACB	AFR
HG01958	ACB	AFR
HG01985	ACB	AFR
HG01986	ACB	AFR
HG01988	ACB	AFR
HG01989	ACB	AFR
HG01990	ACB	AFR
HG02009	ACB	AFR
HG02010	ACB	AFR
HG02012	ACB	AFR
HG02013	ACB	AFR
HG02014	ACB	AFR
HG02051	ACB	AFR
HG02052	ACB	AFR
HG02053	ACB	AFR
HG02054	ACB	AFR
HG02095	ACB	AFR
HG02107	ACB	AFR
HG02108	ACB	AFR
HG02111	ACB	AFR
HG02143	ACB	AFR
HG02144	ACB	AFR
HG02255	ACB	AFR
HG02256	ACB	AFR
HG02281	ACB	AFR
HG02282	ACB	AFR
HG02283	ACB	AFR

Amostra	Pop.	Reg.
HG02284	ACB	AFR
HG02307	ACB	AFR
HG02308	ACB	AFR
HG02309	ACB	AFR
HG02314	ACB	AFR
HG02315	ACB	AFR
HG02317	ACB	AFR
HG02318	ACB	AFR
HG02322	ACB	AFR
HG02323	ACB	AFR
HG02325	ACB	AFR
HG02330	ACB	AFR
HG02332	ACB	AFR
HG02334	ACB	AFR
HG02337	ACB	AFR
HG02339	ACB	AFR
HG02343	ACB	AFR
HG02419	ACB	AFR
HG02420	ACB	AFR
HG02427	ACB	AFR
HG02429	ACB	AFR
HG02433	ACB	AFR
HG02439	ACB	AFR
HG02442	ACB	AFR
HG02445	ACB	AFR
HG02449	ACB	AFR
HG02450	ACB	AFR
HG02455	ACB	AFR
HG02470	ACB	AFR
HG02471	ACB	AFR
HG02476	ACB	AFR
HG02477	ACB	AFR
HG02479	ACB	AFR
HG02481	ACB	AFR
HG02484	ACB	AFR
HG02485	ACB	AFR
HG02489	ACB	AFR
HG02496	ACB	AFR
HG02497	ACB	AFR
HG02501	ACB	AFR

Amostra	Pop.	Reg.
HG02502	ACB	AFR
HG02505	ACB	AFR
HG02508	ACB	AFR
HG02511	ACB	AFR
HG02536	ACB	AFR
HG02537	ACB	AFR
HG02541	ACB	AFR
HG02545	ACB	AFR
HG02546	ACB	AFR
HG02549	ACB	AFR
HG02554	ACB	AFR
HG02555	ACB	AFR
HG02557	ACB	AFR
HG02558	ACB	AFR
HG02577	ACB	AFR
HG02580	ACB	AFR
NA19625	ASW	AFR
NA19700	ASW	AFR
NA19701	ASW	AFR
NA19703	ASW	AFR
NA19704	ASW	AFR
NA19707	ASW	AFR
NA19711	ASW	AFR
NA19712	ASW	AFR
NA19713	ASW	AFR
NA19818	ASW	AFR
NA19819	ASW	AFR
NA19834	ASW	AFR
NA19835	ASW	AFR
NA19900	ASW	AFR
NA19901	ASW	AFR
NA19904	ASW	AFR
NA19908	ASW	AFR
NA19909	ASW	AFR
NA19913	ASW	AFR
NA19914	ASW	AFR
NA19916	ASW	AFR
NA19917	ASW	AFR
NA19920	ASW	AFR
NA19921	ASW	AFR

Amostra	Pop.	Pog
NA19922	•	Reg.
	ASW	AFR
NA19923	ASW	AFR
NA19982	ASW	AFR
NA19984	ASW	AFR
NA20126	ASW	AFR
NA20127	ASW	AFR
NA20274	ASW	AFR
NA20276	ASW	AFR
NA20278	ASW	AFR
NA20281	ASW	AFR
NA20282	ASW	AFR
NA20287	ASW	AFR
NA20289	ASW	AFR
NA20291	ASW	AFR
NA20294	ASW	AFR
NA20296	ASW	AFR
NA20298	ASW	AFR
NA20299	ASW	AFR
NA20314	ASW	AFR
NA20317	ASW	AFR
NA20318	ASW	AFR
NA20320	ASW	AFR
NA20321	ASW	AFR
NA20332	ASW	AFR
NA20334	ASW	AFR
NA20339	ASW	AFR
NA20340	ASW	AFR
NA20342	ASW	AFR
NA20346	ASW	AFR
NA20348	ASW	AFR
NA20351	ASW	AFR
NA20355	ASW	AFR
NA20356	ASW	AFR
NA20357	ASW	AFR
NA20359	ASW	AFR
NA20362	ASW	AFR
NA20412	ASW	AFR
HG03006	BEB	SAS
HG03007	BEB	SAS
HG03009	BEB	SAS
HG03012	BEB	SAS
HG03585	BEB	SAS
HG03589	BEB	SAS
HG03593	BEB	SAS
HG03594	BEB	SAS
11000094	טבט	O/O

Amostra	Pop.	Reg.
HG03595	BEB	SAS
HG03598	BEB	SAS
HG03600	BEB	SAS
HG03603	BEB	SAS
HG03604	BEB	SAS
HG03607	BEB	SAS
HG03611	BEB	SAS
HG03615	BEB	SAS
HG03616	BEB	SAS
HG03793	BEB	SAS
HG03796	BEB	SAS
HG03800	BEB	SAS
HG03802	BEB	SAS
HG03803	BEB	SAS
HG03805	BEB	SAS
HG03808	BEB	SAS
HG03809	BEB	SAS
HG03812	BEB	SAS
HG03814	BEB	SAS
HG03815	BEB	SAS
HG03817	BEB	SAS
HG03821	BEB	SAS
HG03823	BEB	SAS
HG03824	BEB	SAS
HG03826	BEB	SAS
HG03829	BEB	SAS
HG03830	BEB	SAS
HG03832	BEB	SAS
HG03833	BEB	SAS
HG03902	BEB	SAS
HG03905	BEB	SAS
HG03907	BEB	SAS
HG03908	BEB	SAS
HG03910	BEB	SAS
HG03911	BEB	SAS
HG03913	BEB	SAS
HG03914	BEB	SAS
HG03916	BEB	SAS
HG03917	BEB	SAS
HG03919	BEB	SAS
HG03920	BEB	SAS
HG03922	BEB	SAS
HG03925	BEB	SAS
HG03926	BEB	SAS
HG03928	BEB	SAS
П G U3928	DED	SAS

Amostra	Pop.	Reg.
HG03931	BEB	SAS
HG03934	BEB	SAS
HG03937	BEB	SAS
HG03940	BEB	SAS
HG03941	BEB	SAS
HG04131	BEB	SAS
HG04134	BEB	SAS
HG04140	BEB	SAS
HG04141	BEB	SAS
HG04144	BEB	SAS
HG04146	BEB	SAS
HG04152	BEB	SAS
HG04153	BEB	SAS
HG04155	BEB	SAS
HG04156	BEB	SAS
HG04158	BEB	SAS
HG04159	BEB	SAS
HG04161	BEB	SAS
HG04162	BEB	SAS
HG04164	BEB	SAS
HG04171	BEB	SAS
HG04173	BEB	SAS
HG04176	BEB	SAS
HG04177	BEB	SAS
HG04180	BEB	SAS
HG04182	BEB	SAS
HG04183	BEB	SAS
HG04185	BEB	SAS
HG04186	BEB	SAS
HG04188	BEB	SAS
HG04189	BEB	SAS
HG04194	BEB	SAS
HG04195	BEB	SAS
HG00759	CDX	EAS
HG00766	CDX	EAS
HG00844	CDX	EAS
HG00851	CDX	EAS
HG00864	CDX	EAS
HG00867	CDX	EAS
HG00879	CDX	EAS
HG00881	CDX	EAS
HG00956	CDX	EAS
HG00978	CDX	EAS
HG00982	CDX	EAS
HG01028	CDX	EAS

Amostra	Pop.	Reg.
HG01029	CDX	EAS
HG01031	CDX	EAS
HG01046	CDX	EAS
HG01794	CDX	EAS
HG01795	CDX	EAS
HG01796	CDX	EAS
HG01797	CDX	EAS
HG01798	CDX	EAS
HG01799	CDX	EAS
HG01800	CDX	EAS
HG01801	CDX	EAS
HG01802	CDX	EAS
HG01804	CDX	EAS
HG01805	CDX	EAS
HG01806	CDX	EAS
HG01807	CDX	EAS
HG01808	CDX	EAS
HG01809	CDX	EAS
HG01810	CDX	EAS
HG01811	CDX	EAS
HG01812	CDX	EAS
HG01813	CDX	EAS
HG01815	CDX	EAS
HG01816	CDX	EAS
HG01817	CDX	EAS
HG02151	CDX	EAS
HG02152	CDX	EAS
HG02153	CDX	EAS
HG02154	CDX	EAS
HG02155	CDX	EAS
HG02156	CDX	EAS
HG02164	CDX	EAS
HG02165	CDX	EAS
HG02166	CDX	EAS
HG02178	CDX	EAS
HG02179	CDX	EAS
HG02180	CDX	EAS
HG02181	CDX	EAS
HG02182	CDX	EAS
HG02184	CDX	EAS
HG02185	CDX	EAS
HG02186	CDX	EAS
HG02187	CDX	EAS
HG02188	CDX	EAS
HG02190	CDX	EAS
11002180		LAG

Amostra	Pop.	Reg.
HG02250	CDX	EAS
HG02351	CDX	EAS
HG02353	CDX	EAS
HG02355	CDX	EAS
HG02356	CDX	EAS
HG02360	CDX	EAS
HG02364	CDX	EAS
HG02367	CDX	EAS
HG02371	CDX	EAS
HG02373	CDX	EAS
HG02374	CDX	EAS
HG02375	CDX	EAS
HG02379	CDX	EAS
HG02380	CDX	EAS
HG02382	CDX	EAS
HG02383	CDX	EAS
HG02384	CDX	EAS
HG02385	CDX	EAS
HG02386	CDX	EAS
HG02389	CDX	EAS
HG02390	CDX	EAS
HG02391	CDX	EAS
HG02392	CDX	EAS
HG02394	CDX	EAS
HG02395	CDX	EAS
HG02396	CDX	EAS
HG02397	CDX	EAS
HG02398	CDX	EAS
HG02399	CDX	EAS
HG02401	CDX	EAS
HG02402	CDX	EAS
HG02406	CDX	EAS
HG02407	CDX	EAS
HG02408	CDX	EAS
HG02409	CDX	EAS
HG02410	CDX	EAS
NA06984	CEU	EUR
NA06985	CEU	EUR
NA06986	CEU	EUR
NA06989	CEU	EUR
NA06994	CEU	EUR
NA07000	CEU	EUR
NA07037	CEU	EUR
NA07037	CEU	EUR
NA07051	CEU	EUR
14/10/1001	OLU	LUIN

Amostra	Pop.	Reg.
NA07056	CEU	EUR
NA07347	CEU	EUR
NA07357	CEU	EUR
NA10847	CEU	EUR
NA10851	CEU	EUR
NA11829	CEU	EUR
NA11830	CEU	EUR
NA11831	CEU	EUR
NA11832	CEU	EUR
NA11840	CEU	EUR
NA11843	CEU	EUR
NA11881	CEU	EUR
NA11892	CEU	EUR
NA11893	CEU	EUR
NA11894	CEU	EUR
NA11918	CEU	EUR
NA11919	CEU	EUR
NA11920	CEU	EUR
NA11930	CEU	EUR
NA11931	CEU	EUR
NA11932	CEU	EUR
NA11933	CEU	EUR
NA11992	CEU	EUR
NA11994	CEU	EUR
NA11995	CEU	EUR
NA12003	CEU	EUR
NA12004	CEU	EUR
NA12005	CEU	EUR
NA12006	CEU	EUR
NA12043	CEU	EUR
NA12044	CEU	EUR
NA12045	CEU	EUR
NA12046	CEU	EUR
NA12058	CEU	EUR
NA12144	CEU	EUR
NA12154	CEU	EUR
NA12155	CEU	EUR
NA12156	CEU	EUR
NA12234	CEU	EUR
NA12249	CEU	EUR
NA12272	CEU	EUR
NA12273	CEU	EUR
NA12275	CEU	EUR
NA12282	CEU	EUR
NA12283	CEU	EUR

Amostra	Pop.	Reg.
NA12286	CEU	EUR
NA12287	CEU	EUR
NA12340	CEU	EUR
NA12341	CEU	EUR
NA12342	CEU	EUR
NA12347	CEU	EUR
NA12348	CEU	EUR
NA12383	CEU	EUR
NA12399	CEU	EUR
NA12400	CEU	EUR
NA12413	CEU	EUR
NA12414	CEU	EUR
NA12489	CEU	EUR
NA12546	CEU	EUR
NA12716	CEU	EUR
NA12717	CEU	EUR
NA12718	CEU	EUR
NA12748	CEU	EUR
NA12749	CEU	EUR
NA12750	CEU	EUR
NA12751	CEU	EUR
NA12760	CEU	EUR
NA12761	CEU	EUR
NA12762	CEU	EUR
NA12763	CEU	EUR
NA12775	CEU	EUR
NA12776	CEU	EUR
NA12777	CEU	EUR
NA12778	CEU	EUR
NA12812	CEU	EUR
NA12813	CEU	EUR
NA12814	CEU	EUR
NA12815	CEU	EUR
NA12827	CEU	EUR
NA12828	CEU	EUR
NA12829	CEU	EUR
NA12830	CEU	EUR
NA12842	CEU	EUR
NA12843	CEU	EUR
NA12872	CEU	EUR
NA12873	CEU	EUR
NA12874	CEU	EUR
NA12878	CEU	EUR
NA12889	CEU	EUR
NA12890	CEU	EUR

Amostra	Pop.	Reg.
NA18525	CHB	EAS
NA18526	CHB	EAS
NA18528	CHB	EAS
NA18530	CHB	EAS
NA18531	CHB	EAS
NA18532	CHB	EAS
NA18533	CHB	EAS
NA18534	СНВ	EAS
NA18535	CHB	EAS
NA18536		
NA18537	CHB	EAS
NA18538	CHB	EAS
NA18539	CHB	EAS
NA18541	CHB	EAS
NA18542	CHB	EAS
NA18543	СНВ	EAS
NA18544	СНВ	EAS
NA18545	CHB	EAS
NA18546	СНВ	EAS
NA18547	СНВ	EAS
NA18548	CHB	EAS
NA18549	CHB	EAS
NA18550	CHB	EAS
NA18552	CHB	EAS
NA18553	CHB	EAS
NA18555	CHB	EAS
NA18557	СНВ	EAS
NA18558	CHB	EAS
NA18559	CHB	EAS
NA18560	CHB	EAS
NA18561	CHB	EAS
NA18562	CHB	EAS
NA18563	CHB	EAS
NA18564	СНВ	EAS
NA18565	CHB	EAS
NA18566	CHB	EAS
NA18567	CHB	EAS
NA18570	СНВ	EAS
NA18571	CHB	EAS
NA18572	СНВ	EAS
NA18573	СНВ	EAS
NA18574	СНВ	EAS
NA18577	СНВ	EAS
NA18579	CHB	EAS
NA18582	CHB	EAS
117 (10002	נווט	

Amostra	Pop.	Reg.
NA18591	CHB	EAS
NA18592	CHB	EAS
NA18593	CHB	EAS
NA18595	CHB	EAS
NA18596	СНВ	EAS
NA18597	СНВ	EAS
NA18599	CHB	EAS
NA18602	CHB	EAS
NA18603	CHB	EAS
NA18605	CHB	EAS
NA18606	CHB	EAS
NA18608	CHB	EAS
NA18609	CHB	EAS
NA18610	CHB	EAS
NA18611	CHB	EAS
NA18612	CHB	EAS
NA18613	CHB	EAS
NA18614	CHB	EAS
NA18615	CHB	EAS
NA18616	CHB	EAS
NA18617	CHB	EAS
NA18618	CHB	EAS
NA18619	CHB	EAS
NA18620	CHB	EAS
NA18621	CHB	EAS
NA18622	CHB	EAS
NA18623	CHB	EAS
NA18624	CHB	EAS
NA18625	CHB	EAS
NA18626	CHB	EAS
NA18627	CHB	EAS
NA18628	CHB	EAS
NA18629	CHB	EAS
NA18630	CHB	EAS
NA18631	CHB	EAS
NA18632	CHB	EAS
NA18633	CHB	EAS
NA18634	CHB	EAS
NA18635	CHB	EAS
NA18636	CHB	EAS
NA18637	CHB	EAS
NA18638	CHB	EAS
NA18639	CHB	EAS
NA18640	CHB	EAS
NA18641	CHB	EAS

Amostra	Pop.	Reg.
NA18642	CHB	EAS
NA18643	СНВ	EAS
NA18644	СНВ	EAS
NA18645	СНВ	EAS
NA18646	СНВ	EAS
NA18647	СНВ	EAS
NA18648	СНВ	EAS
NA18740	СНВ	EAS
NA18745	СНВ	EAS
NA18747	СНВ	EAS
NA18748	СНВ	EAS
NA18749	СНВ	EAS
NA18757	СНВ	EAS
HG00403	CHS	EAS
HG00404	CHS	EAS
HG00406	CHS	EAS
HG00407	CHS	EAS
HG00409	CHS	EAS
HG00410	CHS	EAS
HG00419	CHS	EAS
HG00421	CHS	EAS
HG00422	CHS	EAS
HG00428	CHS	EAS
HG00436	CHS	EAS
HG00437	CHS	EAS
HG00442	CHS	EAS
HG00443	CHS	EAS
HG00445	CHS	EAS
HG00446	CHS	EAS
HG00448	CHS	EAS
HG00449	CHS	EAS
HG00451	CHS	EAS
HG00452	CHS	EAS
HG00457	CHS	EAS
HG00458	CHS	EAS
HG00463	CHS	EAS
HG00464	CHS	EAS
HG00472	CHS	EAS
HG00473	CHS	EAS
HG00475	CHS	EAS
HG00476	CHS	EAS
HG00478	CHS	EAS
HG00479	CHS	EAS
HG00500	CHS	EAS
HG00513	CHS	EAS

Amostra	Pop.	Reg.
HG00524	CHS	EAS
HG00525	CHS	EAS
HG00530	CHS	EAS
HG00531	CHS	EAS
HG00533	CHS	EAS
HG00534	CHS	EAS
HG00536	CHS	EAS
HG00537	CHS	EAS
HG00542	CHS	EAS
HG00543	CHS	EAS
HG00556	CHS	EAS
HG00557	CHS	EAS
HG00559	CHS	EAS
HG00560	CHS	EAS
HG00565	CHS	EAS
HG00566	CHS	EAS
HG00580	CHS	EAS
HG00581	CHS	EAS
HG00583	CHS	EAS
HG00584	CHS	EAS
HG00589	CHS	EAS
HG00509	CHS	EAS
HG00590	CHS	EAS
HG00592	CHS	EAS
HG00595	CHS	EAS
HG00595	CHS	EAS
HG00598	CHS	EAS
HG00598	CHS	EAS
HG00607	CHS	EAS
HG00608	CHS	EAS
	CHS	EAS
HG00610 HG00611	CHS	EAS
HG00613		EAS
	CHS	
HG00614	CHS	EAS
HG00619	CHS	
HG00620	CHS	EAS
HG00622	CHS	EAS
HG00623	CHS	EAS
HG00625	CHS	EAS
HG00626	CHS	EAS
HG00628	CHS	EAS
HG00629	CHS	EAS
HG00631	CHS	EAS
HG00632	CHS	EAS
HG00634	CHS	EAS

Amostra	Pop.	Reg.
HG00650	CHS	EAS
HG00651	CHS	EAS
HG00653	CHS	EAS
HG00654	CHS	EAS
HG00656	CHS	EAS
HG00657	CHS	EAS
HG00662	CHS	EAS
HG00663	CHS	EAS
HG00671	CHS	EAS
HG00672	CHS	EAS
HG00674	CHS	EAS
HG00675	CHS	EAS
HG00683	CHS	EAS
HG00684	CHS	EAS
HG00689	CHS	EAS
HG00690	CHS	EAS
HG00692	CHS	EAS
HG00693	CHS	EAS
HG00698	CHS	EAS
HG00699	CHS	EAS
HG00701	CHS	EAS
HG00704	CHS	EAS
HG00705	CHS	EAS
HG00707	CHS	EAS
HG00708	CHS	EAS
HG00717	CHS	EAS
HG00728	CHS	EAS
HG00729	CHS	EAS
HG01112	CLM	AMR
HG01113	CLM	AMR
HG01119	CLM	AMR
HG01121	CLM	AMR
HG01122	CLM	AMR
HG01124	CLM	AMR
HG01125	CLM	AMR
HG01130	CLM	AMR
HG01131	CLM	AMR
HG01133	CLM	AMR
HG01134	CLM	AMR
HG01136	CLM	AMR
HG01137	CLM	AMR
HG01139	CLM	AMR
HG01140	CLM	AMR
HG01142	CLM	AMR
HG01148	CLM	AMR

Amostra	Pop.	Reg.
HG01149	CLM	AMR
HG01250	CLM	AMR
HG01251	CLM	AMR
HG01253	CLM	AMR
HG01254	CLM	AMR
HG01254	CLM	AMR
HG01257	CLM	AMR
HG01257	CLM	AMR
HG01260	CLM	AMR
HG01269	CLM	AMR
HG01209	CLM	AMR
HG01271	CLM	AMR
HG01272	CLM	AMR
HG01277	CLM	AMR
HG01277	CLM	AMR
HG01281	CLM	AMR
HG01281	CLM	AMR
HG01264	CLM	
HG01341	CLM	AMR AMR
HG01344	CLM	AMR
HG01345	CLM	AMR
HG01348	CLM	AMR AMR
HG01350		
HG01351 HG01353	CLM	AMR AMR
	CLM	
HG01354 HG01356	CLM	AMR AMR
HG01357	CLM	AMR
HG01357	CLM	AMR
HG01360	CLM	
		AMR AMR
HG01362 HG01363	CLM	
	CLM	AMR
HG01365	CLM	AMR
HG01366 HG01369	CLM	AMR
	CLM	AMR
HG01372	CLM	AMR
HG01374	CLM	AMR
HG01375	CLM	AMR
HG01377	CLM	AMR
HG01378	CLM	AMR
HG01383	CLM	AMR
HG01384	CLM	AMR
HG01389	CLM	AMR
HG01390	CLM	AMR
HG01431	CLM	AMR

Amostra	Pop.	Reg.
HG01432	CLM	AMR
HG01435	CLM	AMR
HG01437	CLM	AMR
HG01438	CLM	AMR
HG01440	CLM	AMR
HG01441	CLM	AMR
HG01443	CLM	AMR
HG01444	CLM	AMR
HG01447	CLM	AMR
HG01455	CLM	AMR
HG01456	CLM	AMR
HG01459	CLM	AMR
HG01461	CLM	AMR
HG01462	CLM	AMR
HG01464	CLM	AMR
HG01465	CLM	AMR
HG01468	CLM	AMR
HG01474	CLM	AMR
HG01479	CLM	AMR
HG01485	CLM	AMR
HG01486	CLM	AMR
HG01488	CLM	AMR
HG01489	CLM	AMR
HG01491	CLM	AMR
HG01492	CLM	AMR
HG01494	CLM	AMR
HG01495	CLM	AMR
HG01497	CLM	AMR
HG01498	CLM	AMR
HG01550	CLM	AMR
HG01551	CLM	AMR
HG01556	CLM	AMR
HG02922	ESN	AFR
HG02923	ESN	AFR
HG02938	ESN	AFR
HG02941	ESN	AFR
HG02943	ESN	AFR
HG02944	ESN	AFR
HG02946	ESN	AFR
HG02947	ESN	AFR
HG02952	ESN	AFR
HG02953	ESN	AFR
HG02968	ESN	AFR
HG02970	ESN	AFR
HG02971	ESN	AFR

Amostra	Pop.	Reg.
HG02973	ESN	AFR
HG02974	ESN	AFR
HG02976	ESN	AFR
HG02977	ESN	AFR
HG02979	ESN	AFR
HG02981	ESN	AFR
HG03099	ESN	AFR
HG03100	ESN	AFR
HG03103	ESN	AFR
HG03105	ESN	AFR
HG03108	ESN	AFR
HG03109	ESN	AFR
HG03111	ESN	AFR
HG03112	ESN	AFR
HG03114	ESN	AFR
HG03115	ESN	AFR
HG03117	ESN	AFR
HG03118	ESN	AFR
HG03120	ESN	AFR
HG03121	ESN	AFR
HG03123	ESN	AFR
HG03124	ESN	AFR
HG03126	ESN	AFR
HG03127	ESN	AFR
HG03129	ESN	AFR
HG03130	ESN	AFR
HG03132	ESN	AFR
HG03133	ESN	AFR
HG03135	ESN	AFR
HG03136	ESN	AFR
HG03139	ESN	AFR
HG03157	ESN	AFR
HG03159	ESN	AFR
HG03160	ESN	AFR
HG03162	ESN	AFR
HG03163	ESN	AFR
HG03166	ESN	AFR
HG03168	ESN	AFR
HG03169	ESN	AFR
HG03172	ESN	AFR
HG03175	ESN	AFR
HG03189	ESN	AFR
HG03190	ESN	AFR
HG03193	ESN	AFR
HG03195	ESN	AFR

Amostra	Pop.	Reg.
HG03196	ESN	AFR
HG03198	ESN	AFR
HG03199	ESN	AFR
HG03202	ESN	AFR
HG03265	ESN	AFR
HG03267	ESN	AFR
HG03268	ESN	AFR
HG03270	ESN	AFR
HG03271	ESN	AFR
HG03279	ESN	AFR
HG03280	ESN	AFR
HG03291	ESN	AFR
HG03294	ESN	AFR
HG03295	ESN	AFR
HG03297	ESN	AFR
HG03298	ESN	AFR
HG03300	ESN	AFR
HG03301	ESN	AFR
HG03303	ESN	AFR
HG03304	ESN	AFR
HG03311	ESN	AFR
HG03313	ESN	AFR
HG03342	ESN	AFR
HG03343	ESN	AFR
HG03351	ESN	AFR
HG03352	ESN	AFR
HG03354	ESN	AFR
HG03363	ESN	AFR
HG03366	ESN	AFR
HG03367	ESN	AFR
HG03369	ESN	AFR
HG03370	ESN	AFR
HG03372	ESN	AFR
HG03499	ESN	AFR
HG03511	ESN	AFR
HG03514	ESN	AFR
HG03515	ESN	AFR
HG03517	ESN	AFR
HG03518	ESN	AFR
HG03520	ESN	AFR
HG03521	ESN	AFR
HG00171	FIN	EUR
HG00173	FIN	EUR
HG00174	FIN	EUR
HG00176	FIN	EUR

Amostra	Pop.	Reg.
HG00177	FIN	EUR
HG00178	FIN	EUR
HG00179	FIN	EUR
HG00180	FIN	EUR
HG00181	FIN	EUR
HG00182	FIN	EUR
HG00183	FIN	EUR
HG00185	FIN	EUR
HG00186	FIN	EUR
HG00187	FIN	EUR
HG00188	FIN	EUR
HG00189	FIN	EUR
HG00190	FIN	EUR
HG00266	FIN	EUR
HG00267	FIN	EUR
HG00268	FIN	EUR
HG00269	FIN	EUR
HG00271	FIN	EUR
HG00272	FIN	EUR
HG00273	FIN	EUR
HG00274	FIN	EUR
HG00275	FIN	EUR
HG00276	FIN	EUR
HG00277	FIN	EUR
HG00278	FIN	EUR
HG00280	FIN	EUR
HG00281	FIN	EUR
HG00282	FIN	EUR
HG00284	FIN	EUR
HG00285	FIN	EUR
HG00288	FIN	EUR
HG00290	FIN	EUR
HG00304	FIN	EUR
HG00306	FIN	EUR
HG00308	FIN	EUR
HG00309	FIN	EUR
HG00310	FIN	EUR
HG00311	FIN	EUR
HG00313	FIN	EUR
HG00315	FIN	EUR
HG00318	FIN	EUR
HG00319	FIN	EUR
HG00320	FIN	EUR
HG00321	FIN	EUR
HG00323	FIN	EUR

Amostra	Pop.	Reg.
HG00324	FIN	EUR
HG00325	FIN	EUR
HG00326	FIN	EUR
HG00327	FIN	EUR
HG00328	FIN	EUR
HG00329	FIN	EUR
HG00330	FIN	EUR
HG00331	FIN	EUR
HG00332	FIN	EUR
HG00334	FIN	EUR
HG00335	FIN	EUR
HG00336	FIN	EUR
HG00337	FIN	EUR
HG00338	FIN	EUR
HG00339	FIN	EUR
HG00341	FIN	EUR
HG00342	FIN	EUR
HG00343	FIN	EUR
HG00344	FIN	EUR
HG00345	FIN	EUR
HG00346	FIN	EUR
HG00349	FIN	EUR
HG00350	FIN	EUR
HG00351	FIN	EUR
HG00353	FIN	EUR
HG00355	FIN	EUR
HG00356	FIN	EUR
HG00357	FIN	EUR
HG00358	FIN	EUR
HG00360	FIN	EUR
HG00361	FIN	EUR
HG00362	FIN	EUR
HG00364	FIN	EUR
HG00365	FIN	EUR
HG00366	FIN	EUR
HG00367	FIN	EUR
HG00368	FIN	EUR
HG00369	FIN	EUR
HG00371	FIN	EUR
HG00372	FIN	EUR
HG00373	FIN	EUR
HG00375	FIN	EUR
HG00376	FIN	EUR
HG00378	FIN	EUR
HG00379	FIN	EUR

Amostra	Pop.	Reg.
HG00380	FIN	EUR
HG00380	FIN	EUR
HG00381	FIN	EUR
HG00382	FIN	EUR
	FIN	EUR
HG00384		_
HG00096	GBR	EUR
HG00097	GBR	EUR
HG00099	GBR	EUR
HG00100	GBR	EUR
HG00101	GBR	EUR
HG00102	GBR	EUR
HG00103	GBR	EUR
HG00105	GBR	EUR
HG00106	GBR	EUR
HG00107	GBR	EUR
HG00108	GBR	EUR
HG00109	GBR	EUR
HG00110	GBR	EUR
HG00111	GBR	EUR
HG00112	GBR	EUR
HG00113	GBR	EUR
HG00114	GBR	EUR
HG00115	GBR	EUR
HG00116	GBR	EUR
HG00117	GBR	EUR
HG00118	GBR	EUR
HG00119	GBR	EUR
HG00120	GBR	EUR
HG00121	GBR	EUR
HG00122	GBR	EUR
HG00123	GBR	EUR
HG00125	GBR	EUR
HG00126	GBR	EUR
HG00127	GBR	EUR
HG00128	GBR	EUR
HG00129	GBR	EUR
HG00130	GBR	EUR
HG00131	GBR	EUR
HG00132	GBR	EUR
HG00133	GBR	EUR
HG00136	GBR	EUR
HG00137	GBR	EUR
HG00138	GBR	EUR
HG00139	GBR	EUR
HG00140	GBR	EUR
1.000140	00.1	

Amostra	Pop.	Reg.
HG00141	GBR	EUR
HG00142	GBR	EUR
HG00143	GBR	EUR
HG00145	GBR	EUR
HG00146	GBR	EUR
HG00148	GBR	EUR
HG00148	GBR	EUR
HG00149	GBR	EUR
HG00150	GBR	EUR
HG00154	GBR	EUR
HG00155	GBR	EUR
HG00157	GBR	EUR
HG00158	GBR	EUR
HG00159	GBR	EUR
HG00160	GBR	EUR
HG00231	GBR	EUR
HG00232	GBR	EUR
HG00233	GBR	EUR
HG00234	GBR	EUR
HG00235	GBR	EUR
HG00236	GBR	EUR
HG00237	GBR	EUR
HG00238	GBR	EUR
HG00239	GBR	EUR
HG00240	GBR	EUR
HG00242	GBR	EUR
HG00243	GBR	EUR
HG00244	GBR	EUR
HG00245	GBR	EUR
HG00246	GBR	EUR
HG00250	GBR	EUR
HG00251	GBR	EUR
HG00252	GBR	EUR
HG00253	GBR	EUR
HG00254	GBR	EUR
HG00255	GBR	EUR
HG00256	GBR	EUR
HG00257	GBR	EUR
HG00258	GBR	EUR
HG00259	GBR	EUR
HG00260	GBR	EUR
HG00261	GBR	EUR
HG00261	GBR	EUR
		EUR
HG00263	GBR	
HG00264	GBR	EUR

Amostra	Pop.	Reg.
HG00265	GBR	EUR
HG01334	GBR	EUR
HG01789	GBR	EUR
HG01790	GBR	EUR
HG01791	GBR	EUR
HG02215	GBR	EUR
NA20845	GIH	SAS
NA20846	GIH	SAS
NA20847	GIH	SAS
NA20849	GIH	SAS
NA20850	GIH	SAS
NA20851	GIH	SAS
NA20852	GIH	SAS
NA20853	GIH	SAS
NA20854	GIH	SAS
NA20856	GIH	SAS
NA20858	GIH	SAS
NA20859	GIH	SAS
NA20861	GIH	SAS
NA20862	GIH	SAS
NA20863	GIH	SAS
NA20864	GIH	SAS
NA20866	GIH	SAS
NA20867	GIH	SAS
NA20868	GIH	SAS
NA20869	GIH	SAS
NA20870	GIH	SAS
NA20872	GIH	SAS
NA20874	GIH	SAS
NA20875	GIH	SAS
NA20876	GIH	SAS
NA20877	GIH	SAS
NA20878	GIH	SAS
NA20881	GIH	SAS
NA20882	GIH	SAS
NA20884	GIH	SAS
NA20885	GIH	SAS
NA20886	GIH	SAS
NA20887	GIH	SAS
NA20888	GIH	SAS
NA20889	GIH	SAS
NA20890	GIH	SAS
NA20891	GIH	SAS
NA20892	GIH	SAS
NA20894	GIH	SAS

Amostra	Pop.	Reg.
NA20895	GIH	SAS
NA20896	GIH	SAS
NA20897	GIH	SAS
NA20897	GIH	SAS
NA20900	GIH	SAS
NA20901	GIH	SAS
NA20902	GIH	SAS
NA20903	GIH	SAS
NA20904	GIH	SAS
NA20905	GIH	SAS
NA20906	GIH	SAS
NA20908	GIH	SAS
NA20910	GIH	SAS
NA20911	GIH	SAS
NA21086	GIH	SAS
NA21087	GIH	SAS
NA21088	GIH	SAS
NA21089	GIH	SAS
NA21090	GIH	SAS
NA21091	GIH	SAS
NA21092	GIH	SAS
NA21093	GIH	SAS
NA21094	GIH	SAS
NA21095	GIH	SAS
NA21097	GIH	SAS
NA21098	GIH	SAS
NA21099	GIH	SAS
NA21100	GIH	SAS
NA21101	GIH	SAS
NA21102	GIH	SAS
NA21103	GIH	SAS
NA21104	GIH	SAS
NA21105	GIH	SAS
NA21106	GIH	SAS
NA21107	GIH	SAS
NA21108	GIH	SAS
NA21109	GIH	SAS
NA21110	GIH	SAS
NA21111	GIH	SAS
NA21112	GIH	SAS
NA21113	GIH	SAS
NA21114	GIH	SAS
NA21115	GIH	SAS
NA21116	GIH	SAS
NA21117	GIH	SAS
	J 1	0, 10

Amostra	Pop.	Reg.
NA21118	GIH	SAS
NA21119	GIH	SAS
NA21120	GIH	SAS
NA21122	GIH	SAS
NA21123	GIH	SAS
NA21124	GIH	SAS
NA21124	GIH	SAS
NA21125	GIH	SAS
NA21120	GIH	SAS
NA21127 NA21128	GIH	SAS
NA21128	GIH	SAS
NA21129 NA21130	GIH	SAS
	GIH	
NA21133		SAS
NA21135	GIH	SAS
NA21137	GIH	SAS
NA21141	GIH	SAS
NA21142	GIH	SAS
NA21143	GIH	SAS
NA21144	GIH	SAS
HG02461	GWD	AFR
HG02462	GWD	AFR
HG02464	GWD	AFR
HG02465	GWD	AFR
HG02561	GWD	AFR
HG02562	GWD	AFR
HG02568	GWD	AFR
HG02570	GWD	AFR
HG02571	GWD	AFR
HG02573	GWD	AFR
HG02574	GWD	AFR
HG02582	GWD	AFR
HG02583	GWD	AFR
HG02585	GWD	AFR
HG02586	GWD	AFR
HG02588	GWD	AFR
HG02589	GWD	AFR
HG02594	GWD	AFR
HG02595	GWD	AFR
HG02610	GWD	AFR
HG02611	GWD	AFR
HG02613	GWD	AFR
HG02614	GWD	AFR
HG02620	GWD	AFR
HG02621	GWD	AFR
HG02623	GWD	AFR
		ı

Amostra	Pop.	Reg.
HG02624	GWD	AFR
HG02628	GWD	AFR
HG02629	GWD	AFR
HG02634	GWD	AFR
HG02635	GWD	AFR
HG02642	GWD	AFR
HG02643	GWD	AFR
HG02645	GWD	AFR
HG02646	GWD	AFR
HG02666	GWD	AFR
HG02667	GWD	AFR
HG02675	GWD	AFR
HG02676	GWD	AFR
HG02678	GWD	AFR
HG02679	GWD	AFR
HG02702	GWD	AFR
HG02703	GWD	AFR
HG02715	GWD	AFR
HG02716	GWD	AFR
HG02721	GWD	AFR
HG02722	GWD	AFR
HG02756	GWD	AFR
HG02757	GWD	AFR
HG02759	GWD	AFR
HG02760	GWD	AFR
HG02763	GWD	AFR
HG02768	GWD	AFR
HG02769	GWD	AFR
HG02771	GWD	AFR
HG02772	GWD	AFR
HG02798	GWD	AFR
HG02799	GWD	AFR
HG02804	GWD	AFR
HG02805	GWD	AFR
HG02807	GWD	AFR
HG02808	GWD	AFR
HG02810	GWD	AFR
HG02811	GWD	AFR
HG02813	GWD	AFR
HG02814	GWD	AFR
HG02816	GWD	AFR
HG02817	GWD	AFR
HG02819	GWD	AFR
HG02820	GWD	AFR
HG02836	GWD	AFR

Amostra	Pop.	Reg.
HG02837	GWD	AFR
HG02839	GWD	AFR
HG02840	GWD	AFR
HG02851	GWD	AFR
HG02852	GWD	AFR
HG02854	GWD	AFR
HG02855	GWD	AFR
HG02860	GWD	AFR
HG02861	GWD	AFR
HG02870	GWD	AFR
HG02878	GWD	AFR
HG02879	GWD	AFR
HG02881	GWD	AFR
HG02882	GWD	AFR
HG02884	GWD	AFR
HG02885	GWD	AFR
HG02887	GWD	AFR
HG02888	GWD	AFR
HG02890	GWD	AFR
HG02891	GWD	AFR
HG02895	GWD	AFR
HG02896	GWD	AFR
HG02982	GWD	AFR
HG02983	GWD	AFR
HG03024	GWD	AFR
HG03025	GWD	AFR
HG03027	GWD	AFR
HG03028	GWD	AFR
HG03039	GWD	AFR
HG03040	GWD	AFR
HG03045	GWD	AFR
HG03046	GWD	AFR
HG03048	GWD	AFR
HG03049	GWD	AFR
HG03240	GWD	AFR
HG03241	GWD	AFR
HG03246	GWD	AFR
HG03247	GWD	AFR
HG03258	GWD	AFR
HG03259	GWD	AFR
HG03538	GWD	AFR
HG03539	GWD	AFR
HG01500	IBS	EUR
HG01501	IBS	EUR
HG01503	IBS	EUR

Amostra	Pop.	Reg.
HG01504	IBS	EUR
HG01506	IBS	EUR
HG01507	IBS	EUR
HG01509	IBS	EUR
HG01510	IBS	EUR
HG01512	IBS	EUR
HG01513	IBS	EUR
HG01515	IBS	EUR
HG01516	IBS	EUR
HG01518	IBS	EUR
HG01519	IBS	EUR
HG01521	IBS	EUR
HG01522	IBS	EUR
HG01524	IBS	EUR
HG01525	IBS	EUR
HG01527	IBS	EUR
HG01528	IBS	EUR
HG01530	IBS	EUR
HG01531	IBS	EUR
HG01536	IBS	EUR
HG01537	IBS	EUR
HG01602	IBS	EUR
HG01603	IBS	EUR
HG01605	IBS	EUR
HG01606	IBS	EUR
HG01607	IBS	EUR
HG01608	IBS	EUR
HG01610	IBS	EUR
HG01612	IBS	EUR
HG01613	IBS	EUR
HG01615	IBS	EUR
HG01617	IBS	EUR
HG01618	IBS	EUR
HG01619	IBS	EUR
HG01620	IBS	EUR
HG01623	IBS	EUR
HG01624	IBS	EUR
HG01625	IBS	EUR
HG01626	IBS	EUR
HG01628	IBS	EUR
HG01630	IBS	EUR
HG01631	IBS	EUR
HG01632	IBS	EUR
HG01668	IBS	EUR
HG01669	IBS	EUR

Amostra	Pop.	Reg.
HG01670	IBS	EUR
HG01672	IBS	EUR
HG01673	IBS	EUR
HG01675	IBS	EUR
HG01676	IBS	EUR
HG01678	IBS	EUR
HG01679	IBS	EUR
HG01680	IBS	EUR
HG01682	IBS	EUR
HG01684	IBS	EUR
HG01685	IBS	EUR
HG01686	IBS	EUR
HG01694	IBS	EUR
HG01695	IBS	EUR
HG01697	IBS	EUR
HG01699	IBS	EUR
HG01700	IBS	EUR
HG01702	IBS	EUR
HG01704	IBS	EUR
HG01705	IBS	EUR
HG01707	IBS	EUR
HG01708	IBS	EUR
HG01709	IBS	EUR
HG01710	IBS	EUR
HG01746	IBS	EUR
HG01747	IBS	EUR
HG01756	IBS	EUR
HG01757	IBS	EUR
HG01761	IBS	EUR
HG01762	IBS	EUR
HG01765	IBS	EUR
HG01766	IBS	EUR
HG01767	IBS	EUR
HG01768	IBS	EUR
HG01770	IBS	EUR
HG01771	IBS	EUR
HG01773	IBS	EUR
HG01775	IBS	EUR
HG01776	IBS	EUR
HG01777	IBS	EUR
HG01779	IBS	EUR
HG01781	IBS	EUR
HG01783	IBS	EUR
HG01784	IBS	EUR
HG01785	IBS	EUR

Amostra	Pop.	Reg.
HG01786	IBS	EUR
HG02219	IBS	EUR
HG02220	IBS	EUR
HG02221	IBS	EUR
HG02223	IBS	EUR
HG02224	IBS	EUR
HG02230	IBS	EUR
HG02231	IBS	EUR
HG02232	IBS	EUR
HG02233	IBS	EUR
HG02235	IBS	EUR
HG02236	IBS	EUR
HG02238	IBS	EUR
HG02239	IBS	EUR
HG03713	ITU	SAS
HG03714	ITU	SAS
HG03716	ITU	SAS
HG03717	ITU	SAS
HG03718	ITU	SAS
HG03720	ITU	SAS
HG03722	ITU	SAS
HG03727	ITU	SAS
HG03729	ITU	SAS
HG03730	ITU	SAS
HG03731	ITU	SAS
HG03742	ITU	SAS
HG03770	ITU	SAS
HG03771	ITU	SAS
HG03772	ITU	SAS
HG03773	ITU	SAS
HG03774	ITU	SAS
HG03775	ITU	SAS
HG03777	ITU	SAS
HG03778	ITU	SAS
HG03779	ITU	SAS
HG03780	ITU	SAS
HG03781	ITU	SAS
HG03782	ITU	SAS
HG03784	ITU	SAS
HG03785	ITU	SAS
HG03786	ITU	SAS
HG03787	ITU	SAS
HG03788	ITU	SAS
HG03789	ITU	SAS
HG03790	ITU	SAS

Amostra	Pop.	Reg.
HG03792	ITU	SAS
HG03861	ITU	SAS
HG03862	ITU	SAS
HG03863	ITU	SAS
HG03864	ITU	SAS
HG03866	ITU	SAS
HG03867	ITU	SAS
HG03868	ITU	SAS
HG03869	ITU	SAS
HG03870	ITU	SAS
HG03871	ITU	SAS
HG03872	ITU	SAS
HG03873	ITU	SAS
HG03874	ITU	SAS
HG03875	ITU	SAS
HG03882	ITU	SAS
HG03960	ITU	SAS
HG03963	ITU	SAS
HG03965	ITU	SAS
HG03967	ITU	SAS
HG03968	ITU	SAS
HG03969	ITU	SAS
HG03909	ITU	SAS
HG03973	ITU	SAS
HG03974	ITU	SAS
HG03976	ITU	SAS
HG03977	ITU	SAS
HG03978	ITU	SAS
HG04001	ITU	SAS
HG04001	ITU	SAS
HG04002	ITU	SAS
HG04015	ITU	SAS
HG04017	ITU	SAS
HG04017	ITU	SAS
HG04019	ITU	SAS
HG04019	ITU	SAS
HG04020	ITU	SAS
HG04023	ITU	SAS
HG04025	ITU	SAS
HG04026	ITU	SAS
HG04026	ITU	SAS
HG04054	ITU	SAS
HG04059	ITU	SAS
HG04069	ITU	SAS
HG04061	ITU	SAS
ПG0400 I	110	SAS

Amostra	Pop.	Reg.
HG04062	ITU	SAS
HG04063	ITU	SAS
HG04070	ITU	SAS
HG04076	ITU	SAS
HG04080	ITU	SAS
HG04090	ITU	SAS
HG04093	ITU	SAS
HG04094	ITU	SAS
HG04096	ITU	SAS
HG04098	ITU	SAS
HG04118	ITU	SAS
HG04198	ITU	SAS
HG04200	ITU	SAS
HG04202	ITU	SAS
HG04206	ITU	SAS
HG04209	ITU	SAS
HG04211	ITU	SAS
HG04212	ITU	SAS
HG04214	ITU	SAS
HG04216	ITU	SAS
HG04219	ITU	SAS
HG04222	ITU	SAS
HG04225	ITU	SAS
HG04235	ITU	SAS
HG04238	ITU	SAS
HG04239	ITU	SAS
NA18939	JPT	EAS
NA18940	JPT	EAS
NA18941	JPT	EAS
NA18942	JPT	EAS
NA18943	JPT	EAS
NA18944	JPT	EAS
NA18945	JPT	EAS
NA18946	JPT	EAS
NA18947	JPT	EAS
NA18948	JPT	EAS
NA18949	JPT	EAS
NA18950	JPT	EAS
NA18951	JPT	EAS
NA18952	JPT	EAS
NA18953	JPT	EAS
NA18954	JPT	EAS
NA18956	JPT	EAS
NA18957	JPT	EAS
NA18959	JPT	EAS

Amostra	Pop.	Reg.
NA18960	JPT	EAS
NA18961	JPT	EAS
NA18962	JPT	EAS
NA18963	JPT	EAS
NA18964	JPT	EAS
NA18965	JPT	EAS
NA18966	JPT	EAS
NA18967	JPT	EAS
NA18968	JPT	EAS
NA18969	JPT	EAS
NA18970	JPT	EAS
NA18971	JPT	EAS
NA18972	JPT	EAS
NA18973	JPT	EAS
NA18974	JPT	EAS
NA18975	JPT	EAS
NA18976	JPT	EAS
NA18977	JPT	EAS
NA18978	JPT	EAS
NA18979	JPT	EAS
NA18980	JPT	EAS
NA18981	JPT	EAS
NA18982	JPT	EAS
NA18983	JPT	EAS
NA18984	JPT	EAS
NA18985	JPT	EAS
NA18986	JPT	EAS
NA18987	JPT	EAS
NA18988	JPT	EAS
NA18989	JPT	EAS
NA18990	JPT	EAS
NA18991	JPT	EAS
NA18992	JPT	EAS
NA18993	JPT	EAS
NA18994	JPT	EAS
NA18995	JPT	EAS
NA18997	JPT	EAS
NA18998	JPT	EAS
NA18999	JPT	EAS
NA19000	JPT	EAS
NA19001	JPT	EAS
NA19002	JPT	EAS
NA19003	JPT	EAS
NA19004	JPT	EAS
NA19005	JPT	EAS

Amostra	Pon	Pog
NA19006	Pop.	Reg.
	JPT	EAS
NA19007	JPT	
NA19009	JPT	EAS
NA19010	JPT	EAS
NA19011	JPT	EAS
NA19012	JPT	EAS
NA19054	JPT	EAS
NA19055	JPT	EAS
NA19056	JPT	EAS
NA19057	JPT	EAS
NA19058	JPT	EAS
NA19059	JPT	EAS
NA19060	JPT	EAS
NA19062	JPT	EAS
NA19063	JPT	EAS
NA19064	JPT	EAS
NA19065	JPT	EAS
NA19066	JPT	EAS
NA19067	JPT	EAS
NA19068	JPT	EAS
NA19070	JPT	EAS
NA19072	JPT	EAS
NA19074	JPT	EAS
NA19075	JPT	EAS
NA19076	JPT	EAS
NA19077	JPT	EAS
NA19078	JPT	EAS
NA19079	JPT	EAS
NA19080	JPT	EAS
NA19081	JPT	EAS
NA19082	JPT	EAS
NA19083	JPT	EAS
NA19084	JPT	EAS
NA19085	JPT	EAS
NA19086	JPT	EAS
NA19087	JPT	EAS
NA19088	JPT	EAS
NA19089	JPT	EAS
NA19090	JPT	EAS
NA19091	JPT	EAS
HG01595	KHV	EAS
HG01596	KHV	EAS
HG01597	KHV	EAS
HG01597	KHV	EAS
	KHV	EAS
HG01599	NΠV	EA2

Amostra	Pop.	Reg.
HG01600	KHV	EAS
HG01840	KHV	EAS
HG01841	KHV	EAS
HG01842	KHV	EAS
HG01843	KHV	EAS
HG01844	KHV	EAS
HG01845	KHV	EAS
HG01846	KHV	EAS
HG01847	KHV	EAS
HG01848	KHV	EAS
HG01849	KHV	EAS
HG01850	KHV	EAS
HG01851	KHV	EAS
HG01852	KHV	EAS
HG01853	KHV	EAS
HG01855	KHV	EAS
HG01857	KHV	EAS
HG01858	KHV	EAS
HG01859	KHV	EAS
HG01860	KHV	EAS
HG01861	KHV	EAS
HG01862	KHV	EAS
HG01863	KHV	EAS
HG01864	KHV	EAS
HG01865	KHV	EAS
HG01866	KHV	EAS
HG01867	KHV	EAS
HG01868	KHV	EAS
HG01869	KHV	EAS
HG01870	KHV	EAS
HG01871	KHV	EAS
HG01872	KHV	EAS
HG01873	KHV	EAS
HG01874	KHV	EAS
HG01878	KHV	EAS
HG02016	KHV	EAS
HG02017	KHV	EAS
HG02019	KHV	EAS
HG02020	KHV	EAS
HG02023	KHV	EAS
HG02025	KHV	EAS
HG02026	KHV	EAS
HG02028	KHV	EAS
HG02029	KHV	EAS
HG02031	KHV	EAS

Amostra	Pop.	Reg.
HG02032	KHV	EAS
HG02035	KHV	EAS
HG02040	KHV	EAS
HG02047	KHV	EAS
HG02048	KHV	EAS
HG02049	KHV	EAS
HG02050	KHV	EAS
HG02057	KHV	EAS
HG02058	KHV	EAS
HG02060	KHV	EAS
HG02061	KHV	EAS
HG02064	KHV	EAS
HG02067	KHV	EAS
HG02069	KHV	EAS
HG02070	KHV	EAS
HG02072	KHV	EAS
HG02073	KHV	EAS
HG02075	KHV	EAS
HG02076	KHV	EAS
HG02078	KHV	EAS
HG02079	KHV	EAS
HG02081	KHV	EAS
HG02082	KHV	EAS
HG02084	KHV	EAS
HG02085	KHV	EAS
HG02086	KHV	EAS
HG02087	KHV	EAS
HG02088	KHV	EAS
HG02113	KHV	EAS
HG02116	KHV	EAS
HG02121	KHV	EAS
HG02122	KHV	EAS
HG02127	KHV	EAS
HG02128	KHV	EAS
HG02130	KHV	EAS
HG02131	KHV	EAS
HG02133	KHV	EAS
HG02134	KHV	EAS
HG02136	KHV	EAS
HG02137	KHV	EAS
HG02138	KHV	EAS
HG02139	KHV	EAS
HG02140	KHV	EAS
HG02141	KHV	EAS
HG02142	KHV	EAS
[<u> </u>	

Amostra	Don	Dog
	Pop.	Reg.
HG02512	KHV	EAS
HG02513	KHV	EAS
HG02521	KHV	EAS
HG02522	KHV	EAS
NA19017	LWK	AFR
NA19019	LWK	AFR
NA19020	LWK	AFR
NA19023	LWK	AFR
NA19024	LWK	AFR
NA19025	LWK	AFR
NA19026	LWK	AFR
NA19027	LWK	AFR
NA19028	LWK	AFR
NA19030	LWK	AFR
NA19031	LWK	AFR
NA19035	LWK	AFR
NA19036	LWK	AFR
NA19037	LWK	AFR
NA19038	LWK	AFR
NA19041	LWK	AFR
NA19042	LWK	AFR
NA19043	LWK	AFR
NA19307	LWK	AFR
NA19308	LWK	AFR
NA19309	LWK	AFR
NA19310	LWK	AFR
NA19312	LWK	AFR
NA19314	LWK	AFR
NA19315	LWK	AFR
NA19316	LWK	AFR
NA19317	LWK	AFR
NA19318	LWK	AFR
NA19319	LWK	AFR
NA19320	LWK	AFR
NA19321	LWK	AFR
NA19323	LWK	AFR
NA19324	LWK	AFR
NA19327	LWK	AFR
NA19327	LWK	
		AFR
NA19331	LWK	AFR
NA19332	LWK	AFR
NA19334	LWK	AFR
NA19338	LWK	AFR
NA19346	LWK	AFR
NA19347	LWK	AFR

Amostra	Pop.	Reg.
NA19350	LWK	AFR
NA19351	LWK	AFR
NA19355	LWK	AFR
NA19360	LWK	AFR
NA19372	LWK	AFR
NA19374	LWK	AFR
NA19375	LWK	AFR
NA19376	LWK	AFR
NA19377	LWK	AFR
NA19378	LWK	AFR
NA19379	LWK	AFR
NA19380	LWK	AFR
NA19383	LWK	AFR
NA19384	LWK	AFR
NA19385	LWK	AFR
NA19390	LWK	AFR
NA19391	LWK	AFR
NA19393	LWK	AFR
NA19394	LWK	AFR
NA19395	LWK	AFR
NA19397	LWK	AFR
NA19399	LWK	AFR
NA19401	LWK	AFR
NA19403	LWK	AFR
NA19404	LWK	AFR
NA19428	LWK	AFR
NA19429	LWK	AFR
NA19430	LWK	AFR
NA19431	LWK	AFR
NA19434	LWK	AFR
NA19435	LWK	AFR
NA19436	LWK	AFR
NA19437	LWK	AFR
NA19438	LWK	AFR
NA19439	LWK	AFR
NA19440	LWK	AFR
NA19443	LWK	AFR
NA19445	LWK	AFR
NA19446	LWK	AFR
NA19448	LWK	AFR
NA19449	LWK	AFR
NA19451	LWK	AFR
NA19452	LWK	AFR
NA19454	LWK	AFR
NA19455	LWK	AFR

Amostra	Pop.	Reg.
NA19456	LWK	AFR
NA19450	LWK	AFR
NA19457	LWK	AFR
NA19461	LWK	AFR
NA19462 NA19463	LWK	AFR
NA19466	LWK	AFR
NA19466 NA19467	LWK	AFR
NA19467	LWK	AFR
NA19400	LWK	AFR
NA19471	LWK	AFR
NA19472 NA19473	LWK	AFR
NA19473	LWK	AFR
NA19474 NA19475	LWK	AFR
HG03052 HG03054	MSL MSL	AFR AFR
HG03055	MSL	AFR
HG03057	MSL	AFR
HG03058	MSL	AFR
HG03060	MSL	AFR
HG03061	MSL	AFR
HG03063	MSL	AFR
HG03064	MSL	AFR
HG03066	MSL	AFR
HG03069	MSL	AFR
HG03072	MSL	AFR
HG03073	MSL	AFR
HG03074	MSL	AFR
HG03077	MSL	AFR
HG03078	MSL	AFR
HG03079	MSL	AFR
HG03081	MSL	AFR
HG03082	MSL	AFR
HG03084	MSL	AFR
HG03085	MSL	AFR
HG03086	MSL	AFR
HG03088	MSL	AFR
HG03091	MSL	AFR
HG03095	MSL	AFR
HG03096	MSL	AFR
HG03097	MSL	AFR
HG03209	MSL	AFR
HG03212	MSL	AFR
HG03224	MSL	AFR
HG03225	MSL	AFR
HG03376	MSL	AFR

Amostra	Pop.	Reg.
HG03378	MSL	AFR
HG03380	MSL	AFR
HG03382	MSL	AFR
HG03385	MSL	AFR
HG03388	MSL	AFR
HG03391	MSL	AFR
HG03394	MSL	AFR
HG03397	MSL	AFR
HG03401	MSL	AFR
HG03410	MSL	AFR
HG03419	MSL	AFR
HG03428	MSL	AFR
HG03432	MSL	AFR
HG03433	MSL	AFR
HG03436	MSL	AFR
HG03437	MSL	AFR
HG03439	MSL	AFR
HG03442	MSL	AFR
HG03445	MSL	AFR
HG03446	MSL	AFR
HG03449	MSL	AFR
HG03451	MSL	AFR
HG03452	MSL	AFR
HG03455	MSL	AFR
HG03457	MSL	AFR
HG03458	MSL	AFR
HG03460	MSL	AFR
HG03461	MSL	AFR
HG03464	MSL	AFR
HG03469	MSL	AFR
HG03470	MSL	AFR
HG03472	MSL	AFR
HG03473	MSL	AFR
HG03476	MSL	AFR
HG03478	MSL	AFR
HG03479	MSL	AFR
HG03484	MSL	AFR
HG03485	MSL	AFR
HG03547	MSL	AFR
HG03548	MSL	AFR
HG03556	MSL	AFR
HG03557	MSL	AFR
HG03558	MSL	AFR
HG03559	MSL	AFR
HG03563	MSL	AFR

Amostra	Pop.	Reg.
HG03565	MSL	AFR
HG03567	MSL	AFR
HG03571	MSL	AFR
HG03572	MSL	AFR
HG03575	MSL	AFR
HG03577	MSL	AFR
HG03578	MSL	AFR
HG03583	MSL	AFR
NA19648	MXL	AMR
NA19649	MXL	AMR
NA19651	MXL	AMR
NA19652	MXL	AMR
NA19654	MXL	AMR
NA19655	MXL	AMR
NA19657	MXL	AMR
NA19658	MXL	AMR
NA19661	MXL	AMR
NA19663	MXL	AMR
NA19664	MXL	AMR
NA19669	MXL	AMR
NA19670	MXL	AMR
NA19676	MXL	AMR
NA19678	MXL	AMR
NA19679	MXL	AMR
NA19681	MXL	AMR
NA19682	MXL	AMR
NA19684	MXL	AMR
NA19716	MXL	AMR
NA19717	MXL	AMR
NA19719	MXL	AMR
NA19720	MXL	AMR
NA19722	MXL	AMR
NA19723	MXL	AMR
NA19725	MXL	AMR
NA19726	MXL	AMR
NA19728	MXL	AMR
NA19729	MXL	AMR
NA19731	MXL	AMR
NA19732	MXL	AMR
NA19734	MXL	AMR
NA19735	MXL	AMR
NA19740	MXL	AMR
NA19741	MXL	AMR
NA19746	MXL	AMR
NA19747	MXL	AMR

Amostra	Pop.	Reg.
NA19749	MXL	AMR
NA19750	MXL	AMR
NA19752	MXL	AMR
NA19755	MXL	AMR
NA19756	MXL	AMR
NA19758	MXL	AMR
NA19759	MXL	AMR
NA19761	MXL	AMR
NA19762	MXL	AMR
NA19764	MXL	AMR
NA19770	MXL	AMR
NA19771	MXL	AMR
NA19773	MXL	AMR
NA19774	MXL	AMR
NA19776	MXL	AMR
NA19777	MXL	AMR
NA19779	MXL	AMR
NA19780	MXL	AMR
NA19782	MXL	AMR
NA19783	MXL	AMR
NA19785	MXL	AMR
NA19786	MXL	AMR
NA19788	MXL	AMR
NA19789	MXL	AMR
NA19792	MXL	AMR
NA19794	MXL	AMR
NA19795	MXL	AMR
HG01565	PEL	AMR
HG01566	PEL	AMR
HG01571	PEL	AMR
HG01572	PEL	AMR
HG01577	PEL	AMR
HG01578	PEL	AMR
HG01892	PEL	AMR
HG01893	PEL	AMR
HG01917	PEL	AMR
HG01918	PEL	AMR
HG01920	PEL	AMR
HG01921	PEL	AMR
HG01923	PEL	AMR
HG01924	PEL	AMR
HG01926	PEL	AMR
HG01927	PEL	AMR
HG01932	PEL	AMR
HG01933	PEL	AMR
l		L

Amostra	Pop.	Reg.
HG01935	PEL	AMR
HG01936	PEL	AMR
HG01938	PEL	AMR
HG01939	PEL	AMR
HG01941	PEL	AMR
HG01942	PEL	AMR
HG01944	PEL	AMR
HG01945	PEL	AMR
HG01947	PEL	AMR
HG01947	PEL	AMR
HG01940	PEL	AMR
HG01950	PEL	AMR
HG01951	PEL	AMR
HG01953	PEL	AMR
HG01954	PEL	AMR
HG01961	PEL	AMR
HG01965		
	PEL	AMR
HG01968	PEL	AMR
HG01970	PEL	AMR
HG01971	PEL	AMR
HG01973	PEL	AMR
HG01974	PEL	AMR
HG01976	PEL	AMR
HG01977	PEL	AMR
HG01979	PEL	AMR
HG01980	PEL	AMR
HG01982	PEL	AMR
HG01991	PEL	AMR
HG01992	PEL	AMR
HG01997	PEL	AMR
HG02002	PEL	AMR
HG02003	PEL	AMR
HG02006	PEL	AMR
HG02008	PEL	AMR
HG02089	PEL	AMR
HG02090	PEL	AMR
HG02102	PEL	AMR
HG02104	PEL	AMR
HG02105	PEL	AMR
HG02146	PEL	AMR
HG02147	PEL	AMR
HG02150	PEL	AMR
HG02252	PEL	AMR
HG02253	PEL	AMR
HG02259	PEL	AMR

Amostra	Pop.	Reg.
HG02260	PEL	AMR
HG02262	PEL	AMR
HG02265	PEL	AMR
HG02266	PEL	AMR
HG02271	PEL	AMR
HG02272	PEL	AMR
HG02274	PEL	AMR
HG02275	PEL	AMR
HG02277	PEL	AMR
HG02278	PEL	AMR
HG02285	PEL	AMR
HG02286	PEL	AMR
HG02291	PEL	AMR
HG02292	PEL	AMR
HG02298	PEL	AMR
HG02299	PEL	AMR
HG02301	PEL	AMR
HG02304	PEL	AMR
HG02312	PEL	AMR
HG02345	PEL	AMR
HG02348	PEL	AMR
HG02425	PEL	AMR
HG01583	PJL	SAS
HG01586	PJL	SAS
HG01589	PJL	SAS
HG01593	PJL	SAS
HG02490	PJL	SAS
HG02491	PJL	SAS
HG02493	PJL	SAS
HG02494	PJL	SAS
HG02597	PJL	SAS
HG02600	PJL	SAS
HG02601	PJL	SAS
HG02603	PJL	SAS
HG02604	PJL	SAS
HG02648	PJL	SAS
HG02649	PJL	SAS
HG02651	PJL	SAS
HG02652	PJL	SAS
HG02654	PJL	SAS
HG02655	PJL	SAS
HG02657	PJL	SAS
HG02658	PJL	SAS
HG02660	PJL	SAS
HG02661	PJL	SAS

Amostra	Pop.	Reg.
HG02681	PJL	SAS
HG02682	PJL	SAS
HG02684	PJL	SAS
HG02685	PJL	SAS
HG02687	PJL	SAS
	PJL	
HG02688	PJL	SAS
HG02690 HG02691	PJL	SAS
	PJL	SAS
HG02694	PJL	SAS
HG02696		
HG02697	PJL	SAS
HG02699	PJL	SAS
HG02700	PJL	SAS
HG02724	PJL	SAS
HG02725	PJL	SAS
HG02727	PJL	SAS
HG02728	PJL	SAS
HG02731	PJL	SAS
HG02733	PJL	SAS
HG02734	PJL	SAS
HG02736	PJL	SAS
HG02737	PJL	SAS
HG02774	PJL	SAS
HG02775	PJL	SAS
HG02778	PJL	SAS
HG02780	PJL	SAS
HG02783	PJL	SAS
HG02784	PJL	SAS
HG02786	PJL	SAS
HG02787	PJL	SAS
HG02789	PJL	SAS
HG02790	PJL	SAS
HG02792	PJL	SAS
HG02793	PJL	SAS
HG03015	PJL	SAS
HG03016	PJL	SAS
HG03018	PJL	SAS
HG03019	PJL	SAS
HG03021	PJL	SAS
HG03022	PJL	SAS
HG03228	PJL	SAS
HG03229	PJL	SAS
HG03234	PJL	SAS
HG03235	PJL	SAS
HG03237	PJL	SAS
<u> </u>		i .

Amostra	Pop.	Reg.
HG03238	PJL	SAS
HG03488	PJL	SAS
HG03490	PJL	SAS
HG03491	PJL	SAS
HG03619	PJL	SAS
HG03624	PJL	SAS
HG03625	PJL	SAS
HG03629	PJL	SAS
HG03631	PJL	SAS
HG03634	PJL	SAS
HG03636	PJL	SAS
HG03640	PJL	SAS
HG03649	PJL	SAS
HG03652	PJL	SAS
HG03652	PJL	SAS
HG03660		
	PJL	SAS
HG03663	PJL	SAS
HG03667	PJL	SAS
HG03668	PJL	SAS
HG03702	PJL	SAS
HG03703	PJL	SAS
HG03705	PJL	SAS
HG03706	PJL	SAS
HG03708	PJL	SAS
HG03709	PJL	SAS
HG03762	PJL	SAS
HG03765	PJL	SAS
HG03767	PJL	SAS
HG00551	PUR	AMR
HG00553	PUR	AMR
HG00554	PUR	AMR
HG00637	PUR	AMR
HG00638	PUR	AMR
HG00640	PUR	AMR
HG00641	PUR	AMR
HG00731	PUR	AMR
HG00732	PUR	AMR
HG00734	PUR	AMR
HG00736	PUR	AMR
HG00737	PUR	AMR
HG00739	PUR	AMR
HG00740	PUR	AMR
HG00742	PUR	AMR
HG00743	PUR	AMR
HG01047	PUR	AMR

Amostra	Pop.	Reg.
HG01048	PUR	AMR
HG01049	PUR	AMR
HG01051	PUR	AMR
HG01052	PUR	AMR
HG01054	PUR	AMR
HG01055	PUR	AMR
HG01058	PUR	AMR
HG01060	PUR	AMR
HG01061	PUR	AMR
HG01063	PUR	AMR
HG01064	PUR	AMR
HG01066	PUR	AMR
HG01067	PUR	AMR
HG01069	PUR	AMR
HG01070	PUR	AMR
HG01072	PUR	AMR
HG01073	PUR	AMR
HG01075	PUR	AMR
HG01077	PUR	AMR
HG01079	PUR	AMR
HG01080	PUR	AMR
HG01082	PUR	AMR
HG01083	PUR	AMR
HG01085	PUR	AMR
HG01086	PUR	AMR
HG01088	PUR	AMR
HG01089	PUR	AMR
HG01092	PUR	AMR
HG01094	PUR	AMR
HG01095	PUR	AMR
HG01097	PUR	AMR
HG01098	PUR	AMR
HG01101	PUR	AMR
HG01102	PUR	AMR
HG01104	PUR	AMR
HG01105	PUR	AMR
HG01107	PUR	AMR
HG01108	PUR	AMR
HG01110	PUR	AMR
HG01111	PUR	AMR
HG01161	PUR	AMR
HG01162	PUR	AMR
HG01164	PUR	AMR
HG01167	PUR	AMR
HG01168	PUR	AMR

Amostra	Pop.	Reg.
HG01170	PUR	AMR
HG01171	PUR	AMR
HG01173	PUR	AMR
HG01174	PUR	AMR
HG01176	PUR	AMR
HG01177	PUR	AMR
HG01182	PUR	AMR
HG01183	PUR	AMR
HG01187	PUR	AMR
HG01188	PUR	AMR
HG01190	PUR	AMR
HG01191	PUR	AMR
HG01197	PUR	AMR
HG01198	PUR	AMR
HG01200	PUR	AMR
HG01204	PUR	AMR
HG01205	PUR	AMR
HG01241	PUR	AMR
HG01242	PUR	AMR
HG01247	PUR	AMR
HG01248	PUR	AMR
HG01286	PUR	AMR
HG01302	PUR	AMR
HG01303	PUR	AMR
HG01305	PUR	AMR
HG01308	PUR	AMR
HG01311	PUR	AMR
HG01312	PUR	AMR
HG01323	PUR	AMR
HG01325	PUR	AMR
HG01326	PUR	AMR
HG01392	PUR	AMR
HG01393	PUR	AMR
HG01395	PUR	AMR
HG01396	PUR	AMR
HG01398	PUR	AMR
HG01402	PUR	AMR
HG01403	PUR	AMR
HG01405	PUR	AMR
HG01412	PUR	AMR
HG01413	PUR	AMR
HG01414	PUR	AMR
HG03642	STU	SAS
HG03643	STU	SAS
HG03644	STU	SAS

Amostra	Don	Dog
	Pop.	Reg.
HG03645	STU	SAS
HG03646	STU	SAS
HG03672	STU	SAS
HG03673	STU	SAS
HG03679	STU	SAS
HG03680	STU	SAS
HG03681	STU	SAS
HG03684	STU	SAS
HG03685	STU	SAS
HG03686	STU	SAS
HG03687	STU	SAS
HG03689	STU	SAS
HG03690	STU	SAS
HG03691	STU	SAS
HG03692	STU	SAS
HG03693	STU	SAS
HG03694	STU	SAS
HG03695	STU	SAS
HG03696	STU	SAS
HG03697	STU	SAS
HG03698	STU	SAS
HG03711	STU	SAS
HG03733	STU	SAS
HG03736	STU	SAS
HG03738	STU	SAS
HG03740	STU	SAS
HG03741	STU	SAS
HG03743	STU	SAS
HG03744	STU	SAS
HG03745	STU	SAS
HG03746	STU	SAS
HG03750	STU	SAS
HG03752	STU	SAS
HG03753	STU	SAS
HG03754	STU	SAS
HG03755	STU	SAS
HG03756	STU	SAS
HG03757	STU	SAS
HG03760	STU	SAS
HG03836	STU	SAS
HG03837	STU	SAS
HG03838	STU	SAS
HG03844	STU	SAS
HG03846	STU	SAS
HG03848	STU	SAS

Amostra	Pop.	Reg.
HG03849	STU	SAS
HG03850	STU	SAS
HG03851	STU	SAS
HG03854	STU	SAS
HG03856	STU	SAS
HG03857	STU	SAS
HG03858	STU	SAS
HG03884	STU	SAS
HG03885	STU	SAS
HG03886	STU	SAS
HG03887	STU	SAS
HG03888	STU	SAS
HG03890	STU	SAS
HG03894	STU	SAS
HG03895	STU	SAS
HG03896	STU	SAS
HG03897	STU	SAS
HG03898	STU	SAS
HG03899	STU	SAS
HG03900	STU	SAS
HG03943	STU	SAS
HG03944	STU	SAS
HG03945	STU	SAS
HG03947	STU	SAS
HG03949	STU	SAS
HG03950	STU	SAS
HG03951	STU	SAS
HG03953	STU	SAS
HG03955	STU	SAS
HG03985	STU	SAS
HG03986	STU	SAS
HG03989	STU	SAS
HG03990	STU	SAS
HG03991	STU	SAS
HG03995	STU	SAS
HG03998	STU	SAS
HG03999	STU	SAS
HG04003	STU	SAS
HG04006	STU	SAS
HG04029	STU	SAS
HG04033	STU	SAS
HG04035	STU	SAS
HG04038	STU	SAS
HG04039	STU	SAS
HG04042	STU	SAS

Amostra	Pop.	Reg.
HG04047	STU	SAS
HG04075	STU	SAS
HG04099	STU	SAS
HG04100	STU	SAS
HG04106	STU	SAS
HG04107	STU	SAS
HG04210	STU	SAS
HG04227	STU	SAS
HG04229	STU	SAS
NA20502	TSI	EUR
NA20503	TSI	EUR
NA20504	TSI	EUR
NA20505	TSI	EUR
NA20506	TSI	EUR
NA20507	TSI	EUR
NA20508	TSI	EUR
NA20509	TSI	EUR
NA20510	TSI	EUR
NA20511	TSI	EUR
NA20512	TSI	EUR
NA20513	TSI	EUR
NA20514	TSI	EUR
NA20515	TSI	EUR
NA20516	TSI	EUR
NA20517	TSI	EUR
NA20518	TSI	EUR
NA20519	TSI	EUR
NA20520	TSI	EUR
NA20521	TSI	EUR
NA20522	TSI	EUR
NA20524	TSI	EUR
NA20525	TSI	EUR
NA20527	TSI	EUR
NA20528	TSI	EUR
NA20529	TSI	EUR
NA20530	TSI	EUR
NA20531	TSI	EUR
NA20532	TSI	EUR
NA20533	TSI	EUR
NA20534	TSI	EUR
NA20535	TSI	EUR
NA20536	TSI	EUR
NA20538	TSI	EUR
NA20539	TSI	EUR
NA20540	TSI	EUR

Amostra	Pop.	Reg.
NA20541	TSI	EUR
NA20542	TSI	EUR
NA20542	TSI	EUR
NA20544	TSI	EUR
NA20581	TSI	EUR
NA20582	TSI	EUR
NA20585	TSI	EUR
NA20586	TSI	EUR
NA20587	TSI	EUR
NA20588	TSI	EUR
NA20589	TSI	EUR
NA20752	TSI	EUR
NA20753	TSI	EUR
NA20754	TSI	EUR
NA20755	TSI	EUR
NA20756	TSI	EUR
NA20757	TSI	EUR
NA20758	TSI	EUR
NA20759	TSI	EUR
NA20760	TSI	EUR
NA20761	TSI	EUR
NA20762	TSI	EUR
NA20763	TSI	EUR
NA20764	TSI	EUR
NA20765	TSI	EUR
NA20766	TSI	EUR
NA20767	TSI	EUR
NA20768	TSI	EUR
NA20769	TSI	EUR
NA20770	TSI	EUR
NA20771	TSI	EUR
NA20772	TSI	EUR
NA20773	TSI	EUR
NA20774	TSI	EUR
NA20775	TSI	EUR
NA20778	TSI	EUR
NA20783	TSI	EUR
NA20785	TSI	EUR
NA20786	TSI	EUR
NA20787	TSI	EUR
NA20790	TSI	EUR
NA20792	TSI	EUR
NA20792	TSI	EUR
NA20795	TSI	EUR
NA20790	TSI	EUR
INAZUISI	101	LUK

Amostra	Pop.	Reg.
NA20798	TSI	EUR
NA20799	TSI	EUR
NA20800	TSI	EUR
NA20801	TSI	EUR
NA20802	TSI	EUR
NA20803	TSI	EUR
NA20804	TSI	EUR
NA20805	TSI	EUR
NA20806	TSI	EUR
NA20807	TSI	EUR
NA20808	TSI	EUR
NA20809	TSI	EUR
NA20810	TSI	EUR
NA20811	TSI	EUR
NA20812	TSI	EUR
NA20813	TSI	EUR
NA20814	TSI	EUR
NA20815	TSI	EUR
NA20818	TSI	EUR
NA20819	TSI	EUR
NA20821	TSI	EUR
NA20822	TSI	EUR
NA20826	TSI	EUR
NA20827	TSI	EUR
NA20828	TSI	EUR
NA20832	TSI	EUR
NA18486	YRI	AFR
NA18488	YRI	AFR
NA18489	YRI	AFR
NA18498	YRI	AFR
NA18499	YRI	AFR
NA18501	YRI	AFR
NA18502	YRI	AFR
NA18504	YRI	AFR
NA18505	YRI	AFR
NA18507	YRI	AFR
NA18508	YRI	AFR
NA18510	YRI	AFR
NA18511	YRI	AFR
NA18516	YRI	AFR
NA18517	YRI	AFR
NA18519	YRI	AFR
NA18520	YRI	AFR
NA18522	YRI	AFR
NA18523	YRI	AFR

Amostra	Pop.	Reg.	Amostra	Pop.	Reg.
NA18853	YRI	AFR	NA19093	YRI	AFR
NA18856	YRI	AFR	NA19095	YRI	AFR
NA18858	YRI	AFR	NA19096	YRI	AFR
NA18861	YRI	AFR	NA19098	YRI	AFR
NA18864	YRI	AFR	NA19099	YRI	AFR
NA18865	YRI	AFR	NA19102	YRI	AFR
NA18867	YRI	AFR	NA19107	YRI	AFR
NA18868	YRI	AFR	NA19108	YRI	AFR
NA18870	YRI	AFR	NA19113	YRI	AFR
NA18871	YRI	AFR	NA19114	YRI	AFR
NA18873	YRI	AFR	NA19116	YRI	AFR
NA18874	YRI	AFR	NA19117	YRI	AFR
NA18876	YRI	AFR	NA19118	YRI	AFR
NA18877	YRI	AFR	NA19119	YRI	AFR
NA18878	YRI	AFR	NA19121	YRI	AFR
NA18879	YRI	AFR	NA19129	YRI	AFR
NA18881	YRI	AFR	NA19130	YRI	AFR
NA18907	YRI	AFR	NA19131	YRI	AFR
NA18908	YRI	AFR	NA19137	YRI	AFR
NA18909	YRI	AFR	NA19138	YRI	AFR
NA18910	YRI	AFR	NA19141	YRI	AFR
NA18912	YRI	AFR	NA19143	YRI	AFR
NA18915	YRI	AFR	NA19144	YRI	AFR
NA18916	YRI	AFR	NA19146	YRI	AFR
NA18917	YRI	AFR	NA19147	YRI	AFR
NA18923	YRI	AFR	NA19149	YRI	AFR
NA18924	YRI	AFR	NA19152	YRI	AFR
NA18933	YRI	AFR	NA19153	YRI	AFR
NA18934	YRI	AFR	NA19159	YRI	AFR
NA19092	YRI	AFR	NA19160	YRI	AFR

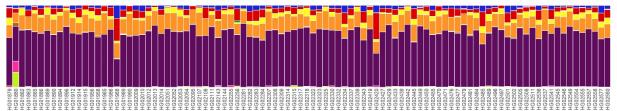
Amostra	Pop.	Reg.
NA19093	YRI	AFR
NA19095	YRI	AFR
NA19096	YRI	AFR
NA19098	YRI	AFR
NA19099	YRI	AFR
NA19102	YRI	AFR
NA19107	YRI	AFR
NA19108	YRI	AFR
NA19113	YRI	AFR
NA19114	YRI	AFR
NA19116	YRI	AFR
NA19117	YRI	AFR
NA19118	YRI	AFR
NA19119	YRI	AFR
NA19121	YRI	AFR
NA19129	YRI	AFR
NA19130	YRI	AFR
NA19131	YRI	AFR
NA19137	YRI	AFR
NA19138	YRI	AFR
NA19141	YRI	AFR
NA19143	YRI	AFR
NA19144	YRI	AFR
NA19146	YRI	AFR
NA19147	YRI	AFR
NA19149	YRI	AFR
NA19152	YRI	AFR
NA19153	YRI	AFR
NA19159	YRI	AFR
NA19160	YRI	AFR

Amostra	Pop.	Reg.
NA19171	YRI	AFR
NA19172	YRI	AFR
NA19175	YRI	AFR
NA19184	YRI	AFR
NA19185	YRI	AFR
NA19189	YRI	AFR
NA19190	YRI	AFR
NA19197	YRI	AFR
NA19198	YRI	AFR
NA19200	YRI	AFR
NA19201	YRI	AFR
NA19204	YRI	AFR
NA19206	YRI	AFR
NA19207	YRI	AFR
NA19209	YRI	AFR
NA19210	YRI	AFR
NA19213	YRI	AFR
NA19214	YRI	AFR
NA19222	YRI	AFR
NA19223	YRI	AFR
NA19225	YRI	AFR
NA19235	YRI	AFR
NA19236	YRI	AFR
NA19238	YRI	AFR
NA19239	YRI	AFR
NA19247	YRI	AFR
NA19248	YRI	AFR
NA19256	YRI	AFR
NA19257	YRI	AFR

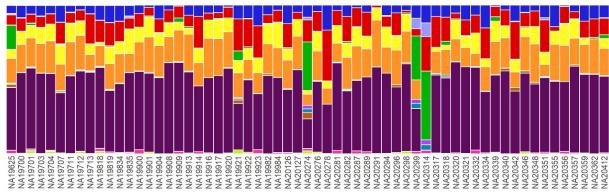
Fonte: autoria própria (2020) com dados de 1000 Genomes Project Consortium e colaboradores (2015).

APÊNDICE B – LISTA DAS AMOSTRAS DO SGDP UTILIZADAS, SEGUIDAS DAS ETNIAS ÀS QUAIS PERTENCEM E DE SEUS RESPECTIVAS PAÍSES E REGIÕES GEOGRÁFICAS

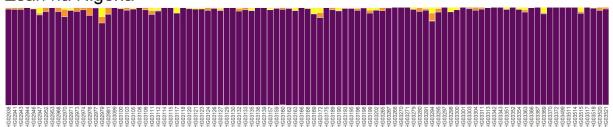
Amostra	Etnia	País	Região
LP6005519-DNA D01	Chane	Argentina	AMR
LP6005441-DNA G06	Caritiana	Brasil	AMR
LP6005441-DNA H06	Caritiana	Brasil	AMR
SS6004476	Caritiana	Brasil	AMR
LP6005441-DNA A12	Suruí	Brasil	AMR
LP6005441-DNA B12	Suruí	Brasil	AMR
LP6005441-DNA A04	Piapoco	Colômbia	AMR
LP6005441-DNA B04	Piapoco	Colômbia	AMR
LP6005441-DNA G07	Maia	México	AMR
LP6005441-DNA H07	Maia	México	AMR
LP6005443-DNA E11	Mixe	México	AMR
LP6005443-DNA F11	Mixe	México	AMR
SS6004479	Mixe	México	AMR
LP6005443-DNA G11	Mixteca	México	AMR
LP6005443-DNA H11	Mixteca	México	AMR
LP6005441-DNA E10	Pima	México	AMR
LP6005441-DNA F10	Pima	México	AMR
LP6005443-DNA A12	Zapoteca	México	AMR
LP6005677-DNA D01	Zapoteca	México	AMR
LP6005519-DNA G02	Quechua	Peru	AMR
LP6005677-DNA E01	Quechua	Peru	AMR
LP6005677-DNA F01	Quechua	Peru	AMR
LP6005441-DNA E08	Mongol	China	CAS
LP6005441-DNA F08	Mongol	China	CAS
LP6005677-DNA A02	Quirguiz	Quirguistão	CAS
LP6005677-DNA B02	Quirguiz	Quirguistão	CAS
LP6005443-DNA A03	Aleúte	Rússia	CAS
LP6005443-DNA H02	Aleúte	Rússia	CAS
LP6005442-DNA F02	Altai	Rússia	CAS
LP6005443-DNA C03	Chukchi	Rússia	CAS
LP6005443-DNA D03	Esquimó-Chaplin	Rússia	CAS
LP6005443-DNA F03	Esquimó-Naukan	Rússia	CAS
LP6005443-DNA G03	Esquimó-Naukan	Rússia	CAS
LP6005443-DNA B03	Esquimó-Sireniki	Rússia	CAS
LP6005443-DNA H03	Esquimó-Sireniki	Rússia	CAS
LP6005443-DNA B04	Even	Rússia	CAS
LP6005443-DNA C04	Even	Rússia	CAS
LP6005592-DNA F03	Even	Rússia	CAS
LP6005443-DNA D04	Itelman	Rússia	CAS
LP6005443-DNA F04	Mansi	Rússia	CAS
LP6005443-DNA G04	Mansi	Rússia	CAS
LP6005443-DNA D05	Tlingit	Rússia	CAS
LP6005443-DNA E05	Tlingit	Rússia	CAS
LP6005442-DNA E12	Tubalar	Rússia	CAS
LP6005442-DNA F12	Tubalar	Rússia	CAS
LP6005442-DNA G12	Ulchi	Rússia	CAS
LP6005442-DNA H12	Ulchi	Rússia	CAS
LP6005442-DNA F01	lacuto	Rússia	CAS
LP6005443-DNA D02	lacuto	Rússia	CAS
SS6004477	Australiana	Austrália	OCE

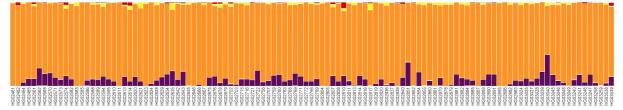

Amostra	Etnia	País	Região
SS6004478	Australiana	Austrália	OCE
LP6005519-DNA_E06	Dusun	Brunei	OCE
LP6005519-DNA_F06	Dusun	Brunei	OCE
LP6005592-DNA_H03	Havaiano	EUA	OCE
LP6005519-DNA_C06	Igorot	Filipinas	OCE
LP6005519-DNA_D06	Igorot	Filipinas	OCE
LP6005592-DNA_B02	Maori	Nova Zelândia	OCE
LP6005441-DNA_A03	Bougainville	Papua-Nova Guiné	OCE
LP6005441-DNA_B03	Bougainville	Papua-Nova Guiné	OCE
LP6005441-DNA_A10	Papua	Papua-Nova Guiné	OCE
LP6005441-DNA_B10	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_A08	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_B08	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_C07	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_C08	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_D07	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_D08	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_E07	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_E08	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_F07	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_F08	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_G07	Papua	Papua-Nova Guiné	OCE
LP6005443-DNA_H07	Papua	Papua-Nova Guiné	OCE
SS6004472	Papua	Papua-Nova Guiné	OCE

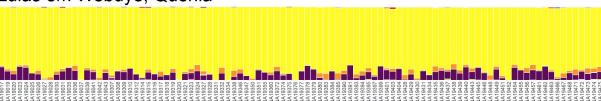
Fonte: autoria própria (2020) com dados de Mallick e colaboradores (2016).

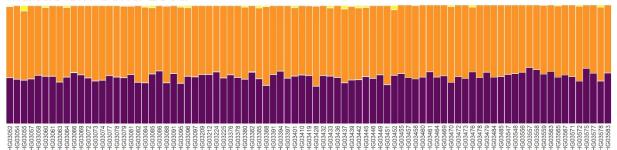

APÊNDICE C – RESULTADOS ADMIXTURE PARA AS AMOSTRAS MODERNAS, K=12

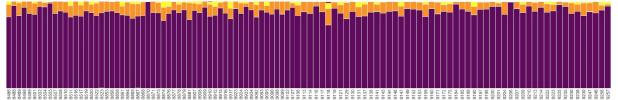
África


Afro-Caribenhos no Barbados


Americanos de Ancestralidade Africana no Sudoeste dos EUA

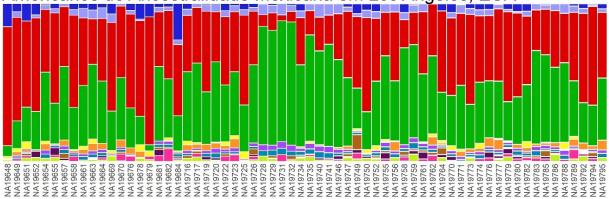

Esan na Nigéria


Gambianos nas Divisões Ocidentais da Gambia

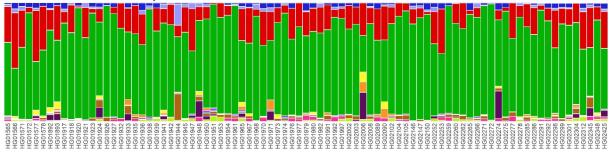

Luias em Webuye, Quênia

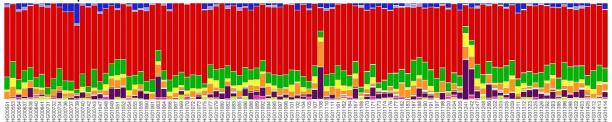
Mande em Serra Leoa

Iorubás em Ibadan, Nigéria

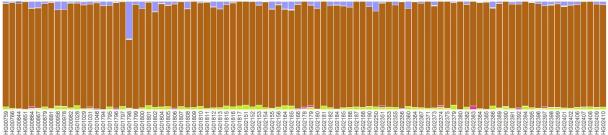


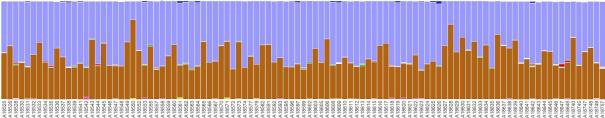
Américas - 1kGP


Colombianos de Medellín, Colômbia

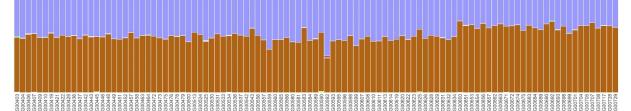

Americanos de Ancestralidade Mexicana em Los Angeles, EUA

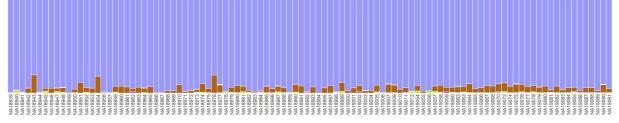
Peruanos de Lima, Peru

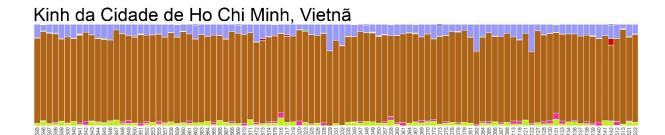




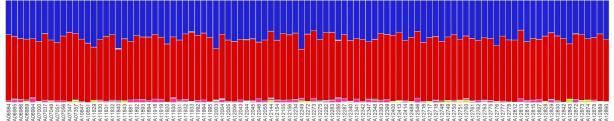
Leste Asiático

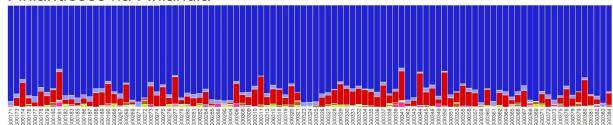

Chinês Dai em Xishuangbanna, China


Chinês Han em Pequim, China

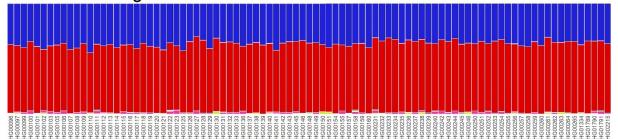


Chinês Han do Sul

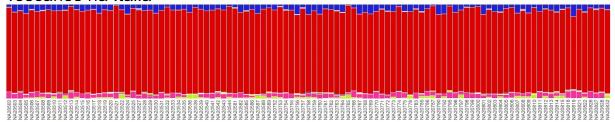

Japoneses em Tóquio, Japão



Europa

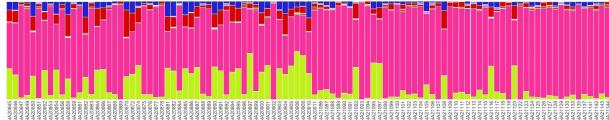


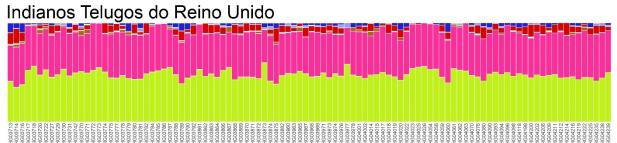
Finlandeses na Finlândia

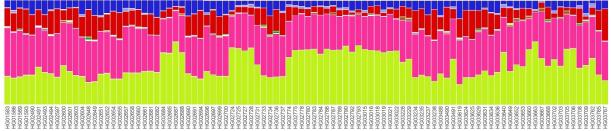

Britânicos na Inglaterra e na Escócia

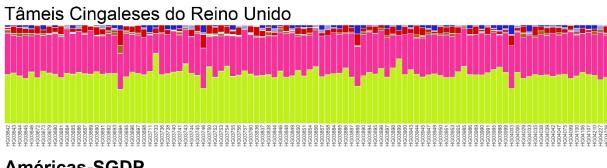
População Ibérica na Espanha

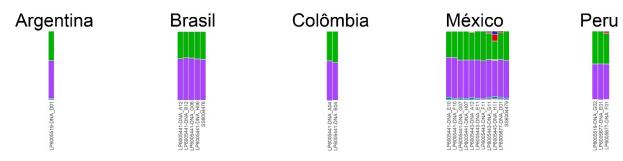
Toscanos na Itália



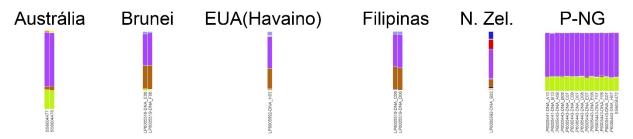

Sul da Ásia




Indianos Guzerates de Houston, Texas



Punjabis de Lahore, Paquistão


Américas-SGDP

Ásica Central/Sibéria

Oceania

Fonte: autoria própria (2020).

APÊNDICE D – AS 20 PRIMEIRAS COMPONENTES PRINCIPAIS (CP OU PC) E SEUS AUTOVALORES

CP (ou PC)	Autovalor
1	241,413
2	135,849
3	114,045
4	71,199
5	43,0374
6	30,2225
7	27,6447
8	22,3276
9	19,0376
10	15,8514
11	13,24
12	12,7923
13	11,1684
14	10,8027
15	9,06476
16	8,87458
17	8,27052
18	8,04405
19	7,77344
20	7,67026

Fonte: autoria própria (2020).