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ABSTRACT

More than one century has passed since Heike Kamerlingh Onnes discovered the phe-
nomena of superconductivity but this field is still full of potential. This work will consider
how we can understand the phenomena of superconductivity using quantum mechanics
and how we can go beyond the standard superconducting model developed in the middle
of the 20th century. We will start our consideration by discussing the basic experimental
facts of a superconductor and the work of the London brothers that explains the Meissner
effect by using the two-fluid theory where some of the electrons would condense into a
super-fluid. The physical explanation of how this happens done by Leon Cooper who
explained that at sufficiently low temperatures electrons can form stable pairs and con-
densate as bosons is discussed. This, though, is not enough to explain the phenomena of
superconductivity. The first attempt at an explanation was the phenomenological theory
by Ginzburg and Landau(GL) which we derive by considering the necessity of an order-
parameter, a quantity which is small near the critical temperature, allowing us to write
the free-energy as a expansion on this small parameter. By using the variational princi-
ple we are able get the two GL equations. However, there is still the need for a theory
based on microscopic arguments. We will calculate the BCS Hamiltonian which lies at
the heart of the theory developed by Bardeen, Cooper and Schrieffer by using mean-field
theory and quasiparticles. This theory explains the behavior of a clean s-wave supercon-
ductor and naturally arrive at the conclusion that the spectrum of the excitation of the
quasiparticles has a gap. To complete our analysis of basic theory we will discuss how
we can link GL theory with BCS theory by the Green function formalism first develop
by Gor’kov. We are going to clearly see that the GL equations which were obtained by
phenomenological arguments can be derived from microscopic arguments. Following this
discussion the application of this formalism is done by considering a system with just
spin-magnetic interaction and a system with more than one electronic band, broadening
therefore the scope of the BCS theory. For this two situations, the values for the critical
temperature will change from the mean-field result. And, as a last topic we will tackle
fluctuations. The mean-field theory is an approximation and has its limits of application.
Going beyond we can use the fluctuation theory. How this theory is obtained and the
so-called "Fluctuation driven shift of the critical temperature" are presented at the end
of this dissertation.

Keywords: GL equations. BCS theory. FFLO. Multi-band. Fluctuations.



RESUMO

Mais de um século se passou desde que Heike Karmerlingh Onnes descobriu o fenô-
meno da supercondutividade, mas essa área ainda contém muito potencial. Essa tese
considerará como podemos entender o fenômeno da supercondutividade e como podemos
ir além dos modelos de supercondutores padrões que foram desenvolvidos durante o meio
do século XX. Nós começamos nossa consideração por discutir os fatos experimentais
básicos e o trabalho dos irmãos Fritz e Heinz London que explica o efeito Meissner us-
ando a teoria de dois-fluidos onde alguns elétrons são condensados em um super fluido.
A explicação física de como isso pode acontecer, dada por Leon Cooper ao demonstrar
que em temperaturas suficientemente baixas elétrons podem formar pares estáveis e criar
um condensado como se fossem bósons, é discutida. Isto, no entanto, não foi suficiente
para explicar todos os efeitos da supercondutividade. A primeira tentativa de explicar
ela foi a teoria fenomenológica de Ginzburg e Landau (GL) a qual nós derivamos por
introduzir o conceito de um parâmetro de ordem,uma quantidade que é nula acima da
temperatura crítica e não nula abaixo mas é pequeno perto da temperatura crítica. Isso
nos permite expandir a energia livre em potências do parâmetro de ordem e então usar
o princípio variacional chegando assim nas duas equações GL. No entanto, ainda havia
necessidade de uma teoria baseada em argumentos microscópicos. A teoria Bardeen-
Cooper-Schrieffer (BCS) resolveu essa necessidade. Nós derivamos a Hamiltoniana de
BCS usando "Mean-Field Theory" e "quasiparticles". Essa teoria explica o comporta-
mento de um supercondutor limpo e s-wave chegando naturalmente na conclusão de que
o espectro energético possue um "gap". Para completar a nossa análise da teoria basica
nós investigamos como a teoria GL está conectada com a teoria BCS usando o formalismo
das funções de Green desenvolvido por Gor’kov. Nós veremos claramente que as equações
GL que foram obtidas por meio de argumentos fenomenológicos podem ser derivadas pelo
formalismo microscópico. Em seguida a aplicação desse formalismo é feito por considerar
sistemas com apenas interação "spin-magnetic" e um sistemas com mais de uma banda
eletrônica, ampliando assim o escopo inicial da teoria BCS. Para esses dois casos a tem-
peratura crítica afasta-se do resultado convencional obtido com a teoria de "Mean-Field".
O último tópico desse trabalho trata de flutuações térmicas. A teoria de campo médio é
uma aproximação e possue um limite para sua aplicação. Indo além nós podemos usar
a teoria de flutuações térmicas. Como essa teoria é derivada e o chamado "Fluctuation
driven shift of the critical temperature" são discutidos no final dessa dissertação.

Palavras-Chave: Equações GL.Teoria BCS. FFLO. Multi bandas. Flutuações.
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1 GENERAL INTRODUCTION

An old English adage goes: “A picture is worth a thousand words”. And that proves
to be true when someone is introducing the concept of superconductivity. Here I could
talk a lot about the technical benefits of the deeper understanding the world around us
but I will simply show you the following picture:

Both of these objects are electric cables used at CERN. Both of them conduct a current
of 12,500 A. The massive cable at the back was used at the Large Electron Positron
Collider and the one in the front is used at the Large Hadron Collider. So, the question
is, how can both of them conduct an electric current of 12,500 A? The answer lies in the
phenomenon of superconductivity which is going to be discussed in this thesis.

In Chapter 2 we will discuss how the first steps were taken in understanding the
behavior of superconducting materials. We will learn what is the Meissner effect and
how Heinz and Fritz London explained it by the idea of electrons forming a superfluid
quantum condensate.

Next, Chapter 3 will consider the phenomenological and microscopical theories of



13

superconductivity and how they are linked to the formalism of Green Functions. We will
see examples that will indicate their validity by showing that they give results backed by
experimental data.

Chapter 4 will expand the range of application of the theory of superconductivity
by considering a system in the paramagnetic limit when the external magnetic field only
acts on spins of electrons, leading to electron paring with nonzero momenta. Then we
will consider how to deal with a system with two carrier bands and will see that despite
having two contributing bands, the GL formalism for this system is single-component but
with coefficients given by averages over these available bands.

Finally, in the last chapter Chapter 5, we will consider thermal fluctuations. We will
see why BCS theory is not always enough to describe superconductors, we will see how
the fluctuations shift the critical temperature from its mean field value and what is the
Ginzburg number and why it is important in this formalism.
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2 INTRODUCTION TO SUPERCONDUCTIVITY

2.1 A little bit of history

In the beginning of the 20th century many investigations were focused on the nature of
matter near absolute zero. However, a serious obstacle was achievement of temperatures
near 0K. In 1908 Dutch physicist Heike Kamerlingh Onnes, by using new techniques,
was able to liquefy helium that can be in such a state below 4 K. This achievement had
opened the doors for experiments at very low temperatures. And 3 years later, Onnes
found something very exciting when studying the electrical properties of low-temperature
metals. The point is that 20 years before this finding, German scientist Georg Simon Ohm
had demonstrated that metals have an intrinsic resistance to the flow of electrons because
the latter collide with material atoms. This is what we know as electrical resistance. Onnes
expected that when the temperature decreases, the averaged kinetic energy of electrons
decreases as well so that the interaction between them plays the major role. From the
point of view of the classical statistical mechanics, cold particles should produce a lattice
(for electrons it is known as the Wigner crystal) and, thus, it is rather hard to arrange a
steady current in this case, i.e., the resistance should increase up to infinity. Surprisingly,
after cooling mercury down to around 4K and measuring its electrical resistivity, Onnes
have found that the resistivity dropped abruptly to zero and the electrons move without
losses of energy [1]. Onnes expected a kind of superinsulator but discovered the first
superconductor.
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Figure 1: Sharp drop in electrical resistance R(Ω) bellow critical temperature Tc = 4.2K

for mercury

2.2 Basic experimental facts

Although the infinite conductivity is the most obvious characteristic, the true nature
of the superconducting state appears more clearly in its magnetic response.

• MEISSNER EFFECT: This next step in the related research has been made by Ger-
man physicists Walther Meissner and Robert Ochsenfeld [2]. They observed that
a superconductor can expel a magnetic field from its core. Their work has demon-
strated that the superconducting state has another important property in addition
to the zero resistance: it can be perfectly diamagnetic. The perfect diamagnetism
means that when the system in question is placed in an external magnetic field, it
produces a field in the opposite direction so that in its interior B = 0.

• CRITICAL FIELD: The interplay between the superconducting state and magnetic
field is not reduced to the Meissner effect. An increase in the magnitude of the
external magnetic field kills superconductivity, similarly to an increase in the tem-
perature. For a given temperature the highest external magnetic field at which the
material remains in the superconducting state, is usually called "critical field".

For type I superconductors this is the thermodynamic critical field denoted asHc(T ).
For type II superconductors the transformation under an external field is more
complicated, involving the lower critical Hc1(T ) and upper critical Hc2(T ) fields. For
Hc1(T ) < H < Hc2(T ) the mixed (Shubnikov) state appears where the diamagnetic
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currents are accompanied by paramagnetic ones. The normal state is realized above
Hc2(T ).

Figure 2: Phase diagram ofH(T ) for type I superconductors, showing the superconducting
region and normal region

• HEAT CAPACITY: Superconductors are also identified by their distinctive thermal
properties. In the normal state the heat capacity (or specific heat) Cn is linear in the
limit T → 0. However, when the system undergoes the superconducting transition,
a sharp peak in the heat capacity appears at the critical temperature Tc[3]. In the
superconducting state the heat capacity decays exponentially when the temperature
goes to zero.

Figure 3: Sketch of the heat capacity (specific heat) temperature dependence in a super-
conductor
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Up to the discovery of the perfect diamagnetism of superconductors there were no
successful theory of superconductivity. In 1935 the first successive move was done by the
brothers Fritz and Heinz London. They developed the London equations [4] describing
the perfect diamagnetism of the Meissner state and postulated that the electrodynamics
of superconductors is described by a massive vector field.

At the same time Fritz London proposed the derivation of the London equations on
the basis of the idea about the macroscopic condensation of electrons in the same single-
particle quantum state. The clear link between the quantum condensate and massive
vector fields, known as the Higgs mechanism today, was first established by Fritz Lon-
don. However, the remaining problem was that electrons are fermions and a macroscopic
occupation of the same quantum state is not possible for fermions by virtue of the Pauli
exclusion principle.

The mystery related to the condensation of superfluid electrons was solved in a while
by American physicist Leon Cooper who showed that at sufficiently low temperatures,
fermions can form stable pairs. The condensation of these pairs, which are in fact com-
posite bosons, produces a superfluid that was anticipated by Fritz London.

2.3 London equations

In 1935 Fritz and Heinz London developed a theory explaining the Meissner effect. To
go in more details about the London equations, let us consider a superelectron (an electron
contributing to a superfluid flow) moving inside a material within the framework of the
well-known Drude model. The latter assumes that the motion of an electron is affected
by the resistive force −v

τ
, with τ the conductivity-related relaxation time. In this case

Newton’s second law reads
m∗∂v

∂t
= e∗E− v

τ
, (2.1)

where e∗ and m∗ are the superelectron charge and mass and E is the electric field. Follow-
ing the arguments by brothers London, we take the limit τ → ∞, which means that the
electron in question moves without any resistance. Then, for such a superfluid electron
we get

m∗∂v

∂t
= e∗E. (2.2)

The supercurrent density js is given by js = nse
∗v, where ns is the density of electrons that

conduct electricity without resistance. Therefore the drift velocity of superfluid electrons
is v = 1

nse∗
js. Differentiating this expression with respect to the time, we get ∂v

∂t
= 1

nse∗
∂js
∂t

.
Then equation (2.2) yields

∂js
∂t

=
nse

∗2

m∗ E, (2.3)
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which is the first London equation connecting the electric field with the supercurrent
density. Now, let us take the curl of the both sides of equation (2.3) and express ∇× E

in terms of the magnetic field B from the Maxwell equation ∇× E = −1
c
∂B
∂t

. Then, we
arrive at

∂

∂t

(
∇× js +

nse
∗2

m∗c
B

)
= 0. (2.4)

One sees that the expression in the parentheses is constant in time. The London brothers
argued that it should be zero (a nonzero expression leads to a nonphysical solution) and
obtained

∇× js = −nse
∗2

m∗c
B, (2.5)

which is the second London equation. The latter can be rearranged by using Ampere’s
law ∇×B = 4π

c
js and the homogeneous Maxwell equation ∇ ·B = 0 as

∇2B− 4πnse
∗2

m∗c2
B = 0. (2.6)

To demonstrate the importance of the London equations, we consider a semi-infinite
superconductor (z > 0) in an applied field H = Hex parallel to the surface. The magnetic
field B should be equal to H at the boundary z = 0. The corresponding physical solution
of equation (2.6) is given by

B(z) = He−z/λ , (2.7)

with the London penetration depth

λ =

√
m∗c2

4πnse∗2
(2.8)

that controls the exponential decay of B(z) inside the superconductor. We note that ns is
not position dependent. but temperature dependent, as it is assumed within the London
regime. One sees that the London equations explains the Meissner effect.
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Figure 4: Magnetic-field decay inside the superconducting medium.

The initial arguments by the London brothers in favor of the London equations are
heavily based on the assumption that the expression in the parentheses in equation (2.4)
is equal to zero. As this assumption assumes additional and extensive calculations[4], not
shown in textbooks, it is deductive to give another way to derive (2.6). It is similar to
the well-known two-fluid model of liquid helium by Gorter and Casimir. Suppose that a
part of electrons in the system move without losses while another part comprises normal
electrons. The free energy of the system is given by

F = FN + Fkin + Fmag, (2.9)

where FN is the free energy of normal electrons, Fkin is the contribution of superfluid
electrons, and Fmag is the energy of the magnetic field. For Fmag we have

Fmag =

∫
B2

8π
dr. (2.10)

The kinetic energy of superfluid electrons moving with the velocity v(r) is of the form

Fkin =

∫
m∗v2

2
nsdr. (2.11)

We express Fkin in terms of the supercurrent js and, then, use Ampère’s equation for the
magnetic field. This makes it possible to get the free energy only in terms of integrals of
the magnetic field, i.e.,

F = FN +
1

8π

∫ [
B2 +

m∗c2

4πnse∗2
(
∇×B

)2]
dr. (2.12)
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Now we minimize the free energy with respect to the magnetic field. The energy of normal
electrons doesn’t depend on this field and, hence, we get

δF =
1

4π

∫ [
B · δB+

m∗c2

4πnse∗2
(
∇×B

)
·
(
∇× δB

)]
dr. (2.13)

We integrate by parts the second term and use the divergence theorem, producing a
vanishing surface integral. As a result, we obtain

δF =
1

4π

∫ (
B+

m∗c2

4πnse∗2
∇×∇×B

)
· δB. (2.14)

Now we set δF = 0 and get exactly (2.6), when keeping in mind the homogeneous Maxwell
equation ∇ · B = 0. The London theory provides a clear link between the superfluid
electrons moving without losses and the Meissner effect.

We are now in the position to address the critical point about superfluid electrons.
Superfluids are made of bosons that form a Bose-Einstein condensate. However, electrons
are fermions and obey the Fermi-Dirac statistics that prevents them from the condensation
in the same single-particle state. Does it mean that superfluid electrons cannot move with
the same superfluid velocity? The answer is “no" and important details are discussed in
the next section.

2.4 Cooper pairs

In 1956 Leon Cooper [5] proposed how electrons can form a superfluid: the electron-
phonon interaction is responsible for the formation of Cooper pairs that are composite
bosons. It is well-known that bare electrons repel each other. However, they can attract
each other via ions of the crystalline structure inside a metal. A temporary build of
positive charge made of displaced ions is created by a moving electron. This charge
attracts another electron, providing a weak attraction between electrons in the system.
The displacement of ions in the crystalline structure of a metal is characterized by the
phonon field so that phonons are mediators of the attraction between electrons and the
phono-electron interaction is responsible for the formation of Cooper pairs.

Figure 5: Sketch of the ion displacement in a metal.

However, the competition with the direct Coulomb repulsion makes the effective at-
traction between electrons rather weak. At the same time, it is well-known from the
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quantum mechanics that the bound state in three dimensions is not possible when the
particle attraction is rather weak. Thus, the question arises: How can a weak electron-
phonon interaction produce Cooper pairs? The point is that the fundamental ingredient,
which should be mentioned together with the electron-phonon attraction, is the presence
of the Fermi sea, i.e., the collection of almost fully occupied single-particle states below
the Fermi level. This tends to prevent the decay of a bound Cooper pair in two sepa-
rated (free) electrons because such electrons should have energies larger than the Fermi
energy. This favors the Cooper-pair formation even for a rather weak attraction between
electrons, as was first mentioned by Leon Cooper.

To find whether or not a weak attraction can produce, in three dimensions, an in-
medium bound state called the Cooper pair, let us consider a gas of electrons in a cubic
box with the volume L3, assuming the periodic boundary conditions and zero temperature.
The Cooper-pair wave function of two electrons with the spatial coordinates ri and spin
projections σi for i = 1, 2 is separable into a product

Ψ(r1, σ1; r2, σ2) = φ(R)g(r)χ(σ1, σ2), (2.15)

where R = r1+r2
2

is the center-of-mass radius vector and r = r1 − r2 is the relative
coordinate vector. The spin part is antisymmetric χ(σ1, σ2) = −χ(σ2, σ1) due to the
singlet pairing. Then, g(r) = g(−r), as the Cooper-pair wave function is antisymmetric
with respect to the permutation of electrons. For the s-wave case (typical of the Bardeen-
Cooper-Schrieffer superconductors) one obtains g(r) = g(r), with r = |r|. As the medium
is homogeneous, the center-of-mass momentum is conserved and we have

φ(R) =
1

L3/2
eiQR. (2.16)

When the in-medium pairs form the quantum condensate, they have the same center-of-
mass momentum Q = 0. In the presence of a supercurrent, Q is nonzero.

Now we have everything at our disposal to investigate the Schrödinger equation for the
internal motion of electrons in a Cooper pair. At zero temperature electrons occupy low-
energy levels up to the Fermi energy EF . As the single-particle states are plane waves, we
find that the states with k < kF =

√
2mEF

ℏ2 (m is the effective electron mass) are occupied
while the states with k > kF remain free. In this picture we ignore the interaction of
electrons producing the Fermi sea below kF but we do take into account the attraction of
two electrons forming a Cooper pair via an attractive potential V (r). Then, we have

g(r) =
∑

|k|>kF

gke
ik·r, (2.17)

where gk is proportional to the probability amplitude of finding an electron above the
Fermi sea (the states with |k| < kF are excluded because they are occupied by the Fermi
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sea). The Schrödinger equation for gk reads

ℏ2k2

2m
gk +

∑
|k|>kF

Vk,k′gk′ = (E + 2EF )gk, (2.18)

where E is the eigenvalue measured from 2EF and Vk,k′ = 1
L3

∫
V (r)ei(k−k′)·rdr. Following

Cooper’s suggestion and to simplify our analysis, we adopt the pseudopotential given by

Vk,k′ = − V

L3
. (2.19)

Then, the Schrödinger equation (2.18) is reduced for k > kF to

gk = − V

L3

1(
− ℏ2k2

m
+ E + 2EF

) ∑
|k′|>kF

gk′ (2.20)

while for k < kF we have gk = 0. Making a summation with respect to k, one arrives at∑
|k|>kF

gk = − V

L3

∑
|k|>kF

1(
− ℏ2k2

m
+ E + 2EF

) ∑
|k′|>kF

gk′ , (2.21)

which eventually gives the equation for the eigenvalue E as

1 = − V

L3

∑
|k|>kF

1(
− ℏ2k2

m
+ E + 2EF

) . (2.22)

The sum in the eigenvalue equation suffers of the ultraviolet divergence that is not fun-
damental but appears due to the use of the pseudopotential. The standard regularization
procedure, dating back to Cooper, invokes a cut-off that removes all states with the
single-particle energies higher than EF + ℏωD, with ωD the cut-off frequency (the De-
bye frequency for the Bardeen-Cooper-Schrieffer pairing scenario). Now, replacing the
discrete sum by an integral and changing variables so that to integrate with respect to
ξ = ℏ2k2

2m
− EF , we get

1 = −V
ℏωD∫
0

N(ξ)

E − 2ξ
dξ, (2.23)

with N(ξ) the density of states (DOS). As N(ξ) is a sufficiently slow varying function of
ξ, we can rewrite the equation (2.23) as

1 = V N(0)

ℏωD∫
0

1

2ξ − E
dξ =

1

2
V N(0) ln

(
E − 2ℏωD

E

)
, (2.24)

with N(0) = mkF
2π2ℏ2 the DOS at the Fermi energy. Keeping in mind that for the weak-

coupling regime (it is of interest here) ℏωD

E
≫ 1, we find the solution of equation (2.23) as

E = −2ℏwDe−2/N(0)V . (2.25)
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As E < 0, any pair of free electrons above the Fermi sea is less favorable than a Cooper
pair. This is called the Cooper instability, i.e., the system of free electrons is not stable
with respect to the formation of Cooper pairs. It is important to stress that the result
holds even in the limit V → 0. The fact that we did not take into account the interaction
of free electrons forming the Fermi sea is not of importance here. It can be taken into
account within the mean-field approximation which produces a trivial shift of the Fermi
level. For E < 0, we have a bound state. This bound state suggests a gap in the
energy spectrum, which is consistent with the exponentially falling heat capacity bellow
the critical temperature. As we will see in the next chapter, this gap can be calculated
precisely by the BCS theory. And as a last property the bound state is obtain regardless of
how small V is unlike other systems where there are a minimum value for the attraction.
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3 THEORIES OF SUPERCONDUCTIVITY

Normally, to calculate thermodynamic properties like the free energy, entropy or spe-
cific heat in an interacting system, it is necessary to perform a long and numerically
intensive calculations. However, Lev Landau has realized that near the phase transition
one can construct an approximation for the free energy without calculating the micro-
scopic states, just being based on general phenomenological rules. He introduced the
concept of the order parameter, a quantity that is zero above the phase transition tem-
perature (in the disordered phase) and non-zero below it (in the ordered phase). This
idea is the cornerstone the phenomenological Ginzburg-Landau theory.

3.1 Phenomenological theory

3.1.1 Order parameter and free energy functional
Based on the theory of phase transitions developed by Landau, suppose that there is

an order parameter ψ which obeys the following property⎧⎨⎩ψ = 0, if T > Tc

ψ ̸= 0, if T < Tc.
(3.1)

Near Tc, we assume that the order parameter is small (vanishing at Tc) and, therefore,
the microscopic free-energy density fs,0 of the superconducting state in zero field can be
expanded as follows:

fs,0 = fN,0 + a|ψ|2 + b

2
|ψ|4 + . . . , (3.2)

where fN,0 is the free-energy density of the normal state of the system at zero magnetic
field, a and b are phenomenological (real) parameters. Following Ginzburg and Landau,
we assume b independent of temperature and a = α(T − Tc) and α > 0. In the absence
of magnetic fields the order parameter is spatially uniform, so Ginzburg and Landau
added a term proportional to |∇ψ|2 in order to suppress spatial variations. In analogy
with the Schroedinger equation, in the absence of magnetic fields this term reads: ℏ2

2m∗ | −
i∇ψ|2, where m∗ is the effective mass of relevant particles (superelectrons which in our
modern understanding two bound electrons in a Cooper pair) that contribute to the
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super-conducting current. When magnetic fields are present then one needs to use the
gauge-invariant gradient: − ℏ2

2m∗

(
∇− ie∗

ℏcA(r)
)2

and add the field energy: B2

8π
. Here B is

the magnetic field and e∗ is the charge of superelectrons carrying the supercurrent. In
this way the total free energy density of a superconductor in a magnetic field becomes

fs = fN,0 + a|ψ|2 + 1

2
b|ψ|4 + ℏ2

2m∗

⏐⏐⏐(∇− ie∗

ℏc
A
)
ψ
⏐⏐⏐2 + B2

8π
. (3.3)

We need just to integrate over the system volume V , which is localized and correspond
to the volume of the sample, to get the free energy. We choose the usual normalization
for ψ

|ψ|2 ≡ n∗
s, (3.4)

where n∗
s defines an effective superelectron density. Following our discussion in the pre-

vious chapter we can promptly recognize that m∗ = 2m and e∗ = 2e (with m and e the
mass and charge of an electron) because the supercurrent is formed by composite bosons
(Cooper pairs) made of two bound electrons. To obtain the so-called Ginzburg-Landau
equations, we need to use variational derivatives and minimize the free energy with respect
to the order parameter, which gives the equation for the order parameter, and with respect
to the vector potential, which yields a complimentary equation for the supercurrent.

3.1.2 Variation with respect to the order parameter - the first
Ginzburg-Landau equation

We introduce the variation of ψ∗(r) given by δψ∗(r). The corresponding variation of
the free energy is therefore

δF =

∫
dr

[(
aψ + b|ψ|2ψ)δψ∗ +

ℏ2

2m∗

(
∇ψ − ie∗

ℏc
Aψ
)
·
(
∇δψ∗ +

ie∗

ℏc
Aδψ∗

)
.

]
(3.5)

Now, the last term is integrated by parts, using the divergence theorem and nullifying the
obtained integral over the superconductor surface, as follows(

∇ψ − ie∗

ℏc
Aψ
)
·
(
∇δψ∗ +

ie∗

ℏc
Aδψ∗

)

= ∇ψ · ∇δψ∗ +
(e∗A

ℏc

)2
ψδψ∗ + δψ∗ ie

∗

ℏc
A · ∇ψ − ψ

ie∗

ℏc
A · ∇δψ∗. (3.6)

Consider that
∇ψ · ∇δψ∗ = ∇ · (∇ψδψ∗)− δψ∗∇2ψ, (3.7)
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and that

δψ∗ ie
∗

ℏc
A · ∇ψ − ψ

ie∗

ℏc
A · ∇δψ∗ =

ie∗

ℏc
A · (δψ∗∇ψ − ψ∇δψ∗)

=
ie∗

ℏc
A ·

[
δψ∗∇ψ − (∇(δψ∗ψ)− δψ∗∇ψ)

]
=
ie∗

ℏc
A ·

[
2δψ∗∇ψ −∇(δψ∗ψ)].

Therefore (
∇ψ − ie∗

ℏc
Aψ
)
·
(
∇δψ∗ +

ie∗

ℏc
Aδψ∗

)
= ∇ · (∇ψδψ∗)− δψ∗∇2ψ +

ie∗

ℏc
A ·

[
2δψ∗∇ψ −∇(δψ∗ψ)] +

(e∗A
ℏc

)2
ψδψ∗

= ∇
(
ψδψ∗ − ie∗A

ℏc
(δψ∗ψ)

)
−
(
∇2ψ − 2ie∗

ℏc
A · ∇ψ −

(e∗A
ℏc

)2
ψ
)
δψ∗,

where the Coulomb gauge(∇ ·A = 0) is used. Finally we get

δF =

∫
V

dr
[
aψ + b|ψ|2ψ − ℏ2

2m∗

(
∇− ie∗

ℏc
A
)2
ψ
]
δψ∗

+

∮
∂V

dS
ℏ2

2m∗

(
∇ψ − ie∗

ℏc
Aψ
)
· n̂. (3.8)

Where we have integrated over the volume V enclosed by the surface ∂V . To get δF = 0

for any value of δψ∗, it is necessary that

aψ + b|ψ|2ψ − ℏ2

2m∗

(
∇− ie∗

ℏc
A
)2
ψ = 0, (3.9)

with the boundary condition (
∇ψ − ie∗

ℏc
Aψ
)
· n̂
⏐⏐⏐
∂V

= 0. (3.10)

Equation (3.9) is called First Ginzburg-Landau Equation which describes the
behavior of the order parameter near the critical temperature.

3.1.3 Variation with respect to the vector potential - the second
Ginzburg-Landau equation

Now we introduce the variation of the vector potential δA. The corresponding varia-
tion of the free energy reads

δF =

∫
dr

ℏ2

2m∗

[
− ie∗

ℏc
ψδA ·

(
∇+

ie∗

ℏc
A
)
ψ∗ +

ie∗

ℏc
ψ∗δA ·

(
∇− ie∗

ℏc
A
)
ψ

]
+

∫
dr

1

4π
B ·
(
∇× δA

)
,



3.1. PHENOMENOLOGICAL THEORY 27

which can be rearranged as

δF =

∫
dr
[ ℏ2

2m∗ (ψ
∗∇ψ − ψ∇ψ∗)

ie∗

ℏc
+

e∗2

m∗c2
|ψ|2A

]
· δA

+

∫
dr

1

4π
B ·
(
∇× δA

)
. (3.11)

Where, by virtue of the standard definition, B = ∇ × A. Using the vector calculus
identities, we get

B ·
(
∇× δA

)
= ∇ · (δA×B) + δA · (∇×B)

and, invoking Ampère’s law, we obtain

δF =

∫
dr
[ ℏ2

2m∗ (ψ
∗∇ψ − ψ∇ψ∗)

ie∗

ℏc
+

e∗2

m∗c2
|ψ|2A)

]
· δA (3.12)

+

∫
dr

1

4π

(
∇ · (δA×B) +

4π

c
js · δA

)
,

with js the supercurrent density. Applying the divergence theorem, one separates the
integration over the sufficiently large volume V∞ (including the superconductor sample,
V < V∞) and its surface ∂V∞. So, we have

δF =

∫
V

dr

[
ℏ2

2m∗ (ψ
∗∇ψ − ψ∇ψ∗)

ie∗

ℏc
+

e∗2

m∗c2
|ψ|2A) +

1

c
js

]
· δA (3.13)

+
1

4π

∮
∂V∞

dS
(
δA×B

)
· n̂.

The last integral is zero because we suppose that the magnetic field decays at infinity .
The first integral is over the volume V because the related integrand is zero beyond the
superconducting sample. To get δF = 0 for an arbitrary variation of the vector potential,
we need to have

js =
ie∗ℏ
2m∗ (ψ∇ψ∗ − ψ∗∇ψ)− e∗2

m∗c
|ψ|2A. (3.14)

Equation (3.14) is known as Second Ginzburg-Landau Equation. It determines the
supercurrent js.

3.1.4 Solutions in simple cases
Even though a solution to the Ginzburg-Landau equations (3.9) and (3.14) cannot be

obtained in the general case, we can get some insight by examining limiting cases. We will
see that another important length will appear in the theory, in addition to the London
penetration depth.

In the absence of a magnetic field the first Ginzburg-Landau equation reads

aψ + b|ψ|2ψ = 0. (3.15)
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This equation admits two spatially uniform solutions

ψ = 0 (3.16)

and
|ψ|2 = −a

b
. (3.17)

The first solution corresponds to the normal state and appears both for T > Tc and
T ≤ Tc. The second one is valid only for T ≤ Tc, as the parameter a is negative below Tc

and positive above.
As a second example, we consider the one-dimension geometry where ψ is not spatially

uniform but the magnetic field is still zero. The Ginzburg-Landau equation becomes

− ℏ2

2m∗
d2ψ(z)

dz2
+ aψ(z) + b|ψ(z)|2ψ = 0. (3.18)

We introduce a change of variables to achieve a dimensionless order parameter: f(z) =
ψ(z)
|ψ∞| , where |ψ∞| ≡

√
|a|
b
. Thus, we arrive at

− ℏ2

2m∗|a|
d2f(z)

dz2
− f(z) + f 3(z) = 0, (3.19)

which defines a natural scale for spatial variations of the order parameter. We define

ξ(T ) ≡

√
ℏ2

2m∗(Tc − T )α
. (3.20)

The quantity ξ = ξ(T ) is known as the Ginzburg-Landau coherence length.
Let us see how f behaves. By hypothesis, the field doesn’t penetrate in the region

where the order parameter is non-zero. So, we can use the following boundary conditions
to solve this differential equation

f(0) = 0

f(z → ∞) → 1.

By multiplying this differential equation by df
dx

and integrating we obtain

−ξ(T )2
(df
dz

)2
− f 2 +

1

2
f 4 = cte.

Using the boundary condition in the infinity we have that

ξ(T )2
(df
dz

)2
=

1

2
(1− f 2)2.

If f increases with z we take the positive square root and thus

df

dz
=

1− f 2

√
2ξ

,
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which we easily integrate and obtain

f = tanh
z√
2ξ
.

Now we plot this function and can clearly see that the Ginzburg Landau coherence lenght
is a natural scale of the variation of the order parameter.

Figure 6: Behavior of the order parameter near the interface between superconducting
and normal states.

As a final example, consider an applied magnetic field with an essentially uniform
order parameter. The expression for the super-current then reduces to

j(r) = − e∗2

m∗c
|ψ|2A(r). (3.21)

Using this current in Ampere’s law and taking the curl of both sides of the equation we
get

∇2B =
4π|ψ|2e∗2

m∗c2
B. (3.22)

Solving this equation, we get the length at which the magnetic field is screened out inside
the material. Following the usual normalization of the order parameter |ψ|2 = n∗

s, we
can clearly see that the obtained expression for the magnetic length recovers the London
penetration depth considered in Chapter 1, λ = λ(T ). We write

λ(T ) =

√
m∗c2

4πnse∗2
. (3.23)

Therefore, we were able to get two important parameters, the Ginzburg-Landau co-
herence length and the London penetration depth just by consider simple limiting cases.
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3.1.5 Ginzburg-Landau parameter and classification of super-
conductors

The importance of the coherence length and the London penetration depth can be
seen by considering their ratio, i.e., the Ginzburg-Landau parameter

κ(T ) ≡ λ(T )

ξ(T )
. (3.24)

By using the Ginzburg-Landau theory one can distinguish two types of superconductors.
In Type I superconductors, superconductivity is abruptly destroyed when the applied
field amplitude exceeds the thermodynamic critical value Hc. In Type II superconductors
when a strong enough magnetic field is applied (exceeding the lower critical field), the
superconductor can lower its free energy by creating regions of normal state in its interior,
allowing penetration of magnetic field in these regions. In this case we have a coexistence
of normal and superconducting phases which is called the mixed state. The difference
between these two types is quantified via the Ginzburg-Landau parameter. When κ < 1√

2
,

we have a type I superconductor. When κ > 1√
2
, we have a type II superconductor. One

can see a relevant illustration below.

Figure 7: Spatial variation of the magnetic field B(z) and the order parameter ψ(z) in
type I and type II superconductor.

3.2 BCS microscopic theory

Unlike phenomenological theories, the BCS microscopic theory of superconductivity
can connect properties of superconductors with the material structure and related mi-
croscopic parameters. It has been developed in the 50’s and published in 1957 by John
Bardeen, Leon Cooper, and John Robert Schrieffer [6](BCS are initials of the last names
of the physicists). This theory is able to explain superconductivity via the condensation of
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Cooper pairs, being composite bosons. The focus of the present chapter is to find the BCS
hamiltonian (this Hamiltonian was introduced by Nikolay Bogoliubov and coauthors) and
diagonalize it to find the quasi-particle spectrum.

3.2.1 BCS-Bogoliubov Hamiltonian
We start our consideration by writing the Hamiltonian in term of the field operators

Ĥ =
∑
a

∫
drψ̂†

a(r)ξrψ̂a(r) +
1

2

∑
a,b

∫
drdr′ψ̂†

a(r)ψ̂
†
b(r

′)V (r, r′)ψ̂b(r
′)ψ̂a(r), (3.25)

where a and b are spin projection variables, V (r, r′) is the pair interaction potential, and
ξr = − ℏ2

2m

(
∇− ie

ℏcA(r)
)2

− µ is the single-electron Hamiltonian (absorbing the chemical
potential due to the grand canonical formalism, as it is usual for U(1) symmetry breaking).
For simplicity, the inter-particle potential is approximated as V (r, r′) = −gδ(r−r′), where
g > 0 is the Gor’kov coupling (after Lev Gor’kov who first derived the Ginzburg-Landau
theory from the BCS microscopic equations). Then, the Hamiltonian reads

Ĥ =

∫
dr
∑
a

ψ̂†
a(r)ξrψ̂a(r)−

g

2

∫
dr
∑
a,b

ψ̂†
a(r)ψ̂

†
b(r)ψ̂b(r)ψ̂a(r). (3.26)

Now we are going to solve the problem, following seminal mean-field prescriptions by
Bogoliubov with coauthors. Within the Bogoliubov mean-field approximation, the four
operator product is written as

ψ̂†
a(r)ψ̂

†
b(r)ψ̂b(r)ψ̂a(r) ≃ ψ̂†

a(r)ψ̂
†
b(r)⟨ψ̂b(r)ψ̂a(r)⟩+ (3.27)

+⟨ψ̂†
a(r)ψ̂

†
b(r)⟩ψ̂b(r)ψ̂a(r)− ⟨ψ̂†

a(r)ψ̂
†
b(r)⟩⟨ψ̂b(r)ψ̂a(r)⟩.

Here we introduce the anomalous averages (anomalous Green functions)

⟨ψ̂†
a(r)ψ̂

†
b(r)⟩, ⟨ψ̂b(r)ψ̂a(r)⟩, (3.28)

and such averages are given by

⟨ψ̂†
a(r)ψ̂

†
b(r)⟩ =

1

Tr e−βĤ
Tr
(
e−βĤψ̂†

a(r)ψ̂
†
b(r)

)
, (3.29)

where we recall that Ĥ is the grand canonical Hamiltonian. Notice that the Hartree-Fock
contribution is suppressed here. The interaction energy is given by

⟨HBCS,int⟩ ≃ −g
2

∑
a,b

∫
dr⟨ψ̂†

a(r)ψ̂
†
b(r)⟩⟨ψ̂b(r)ψ̂a(r)⟩. (3.30)

The physical meaning of ⟨ψ̂b(r)ψ̂a(r)⟩ will be explained later but here we can simply
accept that it is the (center-of-mass) pair wave function of two bound electrons, i.e., the
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pair wave function of the composite boson or the Cooper pair. The standard picture of
superconductivity implies the spin singlet pairing. This means that the total spin of the
Cooper pair is zero. We can, therefore only have the following combinations: a =↑, b =↓
and a =↓, b =↑. Carrying out the summation over the spin projections and using the
anti-commutation rules for fermionic field operators, [ψ̂a(r), ψ̂†

b(r
′)]+ = δabδ(r − r′) and

[ψ̂a(r), ψ̂b(r
′)]+ = [ψ̂†

a(r), ψ̂
†
b(r

′)]+ = 0, where [ ]+ is the anti-commutator backets, we
obtain the BCS approximation of the interaction part of the Hamiltonian as

⟨HBCS,int⟩ = −g
∫
dr⟨ψ̂†

↑(r)ψ̂
†
↓(r)⟩⟨ψ̂↓(r)ψ̂↑(r)⟩ = −

∫
dr

|∆(r)|2

g
,

where we introduce the order parameter ∆(r) as

∆(r) ≡ g⟨ψ̂↑(r)ψ̂↓(r)⟩. (3.31)

The order parameter is also called the gap function because it is defined such that it
yields the energy gap in the excitation spectrum of a uniform superconductor. Using
the definition for the order parameter and Bogoilubov’s prescriptions, we can write the
BCS-model Hamiltonian as

HBCS =

∫
dr
(
ψ†
↑(r)ξrψ↑(r) + ψ†

↓(r)ξrψ↓(r)
)

(3.32)

+

∫
dr
(
ψ†
↑(r)ψ

†
↓(r)∆(r) + ∆∗(r)ψ↓(r)ψ↑(r)

)
+ C,

where C =
∫
dr |∆(r)|2

g
. But now we encounter a problem because this Hamiltonian is not

diagonal. To work with the Hamiltonian in this form will be incredibly time consuming.
We will now diagonalize it because it will be at the center of all our calculations.

3.2.2 Diagonalization of the BCS Hamiltonian
To start our calculations consider the BCS hamiltonian in the Heisenberg representa-

tion. The fermionic field operators in the Heisenber formalism are

ψ↑(r, t) = eiHBCSψ↑(r)e
−iHBCS ,

ψ↓(r, t) = eiHBCSψ↓(r)e
−iHBCS .

The equation of motion for these field operators is

iℏ∂tψ↑(r, t) =[ψ↑(r, t), HBCS] = eiHBCS
t
ℏ [ψ↑(r), HBCS]e

−iHBCS
t
ℏ .

iℏ∂tψ†
↓(r, t) =[ψ†

↓(r, t), HBCS] = eiHBCS
t
ℏ [ψ†

↓(r), HBCS]e
−iHBCS

t
ℏ .

Simple calculations yields

[ψ↑(r), ĤBCS] =ξrψ↑(r) + ∆(r)ψ†
↓(r) (3.33)

[ψ↓(r), ĤBCS] =ξrψ↓(r)−∆(r)ψ†
↑(r).
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And we can write
−[ψ†

↓(r), HBCS] = ξ∗rψ
†
↓(r)−∆∗(r)ψ↑(r). (3.34)

So the equations of motion are

iℏ∂t

(
ψ↑(r, t)

ψ†
↓(r, t)

)
=

(
ξr ∆(r)

∆∗(r) −ξ∗r

)
  

HBdG

(
ψ↑(r, t)

ψ†
↓(r, t)

)
(3.35)

HBdG is called Bogoliubov-deGennes matrix. The eigenvalues and eigenstates of HBdG are
given by (

ξr ∆(r)

∆∗(r) −ξ∗r

)(
uλ(r)

vλ(r)

)
= ϵλ

(
uλ(r)

vλ(r)

)
. (3.36)

These equations are commonly known as the Bogoliubov-de Gennes equations.
We can, also,express the field operators ψ(r, t) and ψ†(r, t) in terms of uλ(r) and vλ(r)

as (
ψ↑(r, t)

ψ†
↓(r, t)

)
=
∑
λ

Γλ(t)

(
uλ(r)

vλ(r)

)
Let us now substitute this expression in the equation of motion for the field operators.
We obtain

iℏ∂t
∑
λ

Γλ(t)

(
uλ(r)

vλ(r)

)
= HBdG

∑
λ

Γλ(t)

(
uλ(r)

vλ(r)

)
.

Using the eigenvalue equation we can write

iℏ∂t
∑
λ

Γλ(t)

(
uλ(r)

vλ(r)

)
=
∑
λ

ϵλΓλ(t)

(
uλ(r)

vλ(r)

)
.

Now we multiply by the complex conjugated eigenstates of the BdG matrix and integrate
over all space, as follows∫

dr
(
u∗λ′(r) v∗λ′(r)

)
iℏ∂t

∑
λ

Γλ(t)

(
uλ(r)

vλ(r)

)

=

∫
dr
(
u∗λ′(r) v∗λ′(r)

)∑
λ

ϵλΓλ(t)

(
uλ(r)

vλ(r)

)
.

From the Bogoliubov-de Gennes equations one obtains

Completeness :

⎧⎪⎪⎨⎪⎪⎩
∑
λ

uλ(r)u
∗
λ(r

′) = δ(r− r′),∑
λ

vλ(r)u
∗
λ(r

′) = 0.
(3.37)

Orthogonality :

∫
dr
(
u∗λ(r) v∗λ(r)

)(uλ′(r)
vλ′(r)

)
= δλ,λ′ , (3.38)
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(from this relation we can prove that the γ-operators obey the fermionic anti-commutation
relations) and so

iℏ∂τΓλ(t) = ϵλΓλ(t). (3.39)

This is not the end of the story. In fact, there are two branches of the solution to the
BdG equations that we specify as λ = ν,±. One can check that they obey the relation

uν,− = −v∗ν,+, vν,− = u∗ν,+, ϵν,− = −ϵν,+ = Eν , (3.40)

where ∗ means the complex conjugate operation and ϵν,+ is normally positive (except of
the depairing regime). Defining uν ≡ uν,+, vν ≡ vν,+, and Eν ≡ ϵν,+, we introduce new
Heisenberg fermionic operators γν↑(t) and γν↓(t) in the following way:(

ψ↑(r, t)

ψ†
↓(r, t)

)
=
∑
ν

(
uν(r) −v∗ν(r)
vν(r) u∗ν(r)

)(
γν↑(t)

γ†ν↓(t)

)
. (3.41)

Where Γν,+(t) = γν,↑(t),Γν,−(t) = γ†ν,↓(t). This is the Bogoliubov-Valatin canonical trans-
formation. As we can see, the Bogoliubov-Valatin transformation mixes electron and hole
operators with opposite spins - this is the only way to get rid of nondiagonal pairing
terms. The physical significance of this is that the quasi-particles in the superconductor
are rather like centaurs: “partly electrons, partly holes.” For obvious reasons they are
called bogolons.

We can also calculate the inverse Bogoliubov-Valatin transformation. Multiplying this
expression to the left by the inverse matrix(

u∗ν(r) v∗ν(r)

−vν(r) uν(r)

)
and integrating over all r, one obtains(

γν↑(t)

γ†ν↓(t)

)
=

∫
dr

(
u∗ν(r) v∗ν(r)

−vν(r) uν(r)

)(
ψ↑(r, t)

ψ†
↓(r, t)

)
(3.42)

Does the transformation of equation (3.41) diagonalizes the Hamiltonian? Let us apply
it in the equation of motion for the fermionic operators. We will obtain

iℏ∂t
∑
ν

(
uν(r) −v∗ν(r)
vν(r) u∗ν(r)

)(
γν↑(t)

γ†ν↓(t)

)
= HBdG

∑
ν

(
uν(r) −v∗ν(r)
vν(r) u∗ν(r)

)(
γν↑(t)

γ†ν↓(t)

)
.

From the eigenvector equation we find that

iℏ∂t
∑
ν

(
uν(r) −v∗ν(r)
vν(r) u∗ν(r)

)(
γν↑(t)

γ†ν↓(t)

)

=
∑
ν

(
uν(r) −v∗ν(r)
vν(r) u∗ν(r)

)(
Eν 0

0 −Eν

)(
γν↑(t)

γ†ν↓(t)

)
.
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And so

iℏ∂t

(
γν,↑

γ†ν,↓

)
=

(
Eν 0

0 −Eν

)(
γν,↑

γ†ν,↓

)
.

Therefore, the γ operators diagonalize the hamiltonian with Eν as the eigenvalue.
The anticommutation rules for the quasiparticle operators are derived using the Bogoliubov-

Valatin transformation. We will derive them as follows

γν,↑γ
†
ν′,↑+γ

†
ν′,↑γν,↑

=

∫
drdr′

{[
u∗ν(r)ψ↑(r) + v∗νψ

†
↓(r)

][
uν′(r

′)ψ†
↑(r

′) + vν′(r
′)ψ↓(r

′)
]

+

∫
drdr′

{[
uν′(r

′)ψ†
↑(r

′) + vν′(r
′)ψ↓(r

′)
][
u∗ν(r)ψ↑(r) + v∗ν(r)ψ

†
↓(r)

]}
=

∫
drdr′

{[
ψ↑(r)ψ

†
↑(r

′) + ψ†
↑(r

′)ψ↑(r)  
δ(r−r′)

]
u∗ν(r)uν′(r

′)

+
[
ψ†
↓(r)ψ

†
↑(r

′) + ψ†
↑(r

′)ψ†
↓(r)  

0

]
v∗ν(r)uν′(r

′)

+
[
ψ↑(r)ψ↓(r

′) + ψ↓(r
′)ψ↑(r)  

0

]
u∗ν(r)vν′(r

′)

+
[
ψ†
↓(r)ψ↓(r

′) + ψ↓(r
′)ψ†

↓(r)  
δ(r−r′)

]
v∗ν(r)vν′(r

′)
}
.

Therefore, we obtain

γν,↑γ
†
ν′,↑+γ

†
ν′,↑γν,↑ =

∫
dr
(
u∗ν(r)uν′(r) + v∗ν(r)vν′(r)

)
= δν,ν′

For the general case we can write

γ†σ,νγσ′,ν′ + γσ′,ν′γ
†
σ,ν = δσ,σ′δν,ν′ , (3.43)

γσ,νγσ′,ν′ + γσ′,ν′γσ,ν = 0, (3.44)

where σ is the spin projection. Now, let us use the Bogoliubov-Valatin transformation in
order to obtain the diagonalized Hamiltonian. The field operators are written as

ψ↑(r, t) =
∑
ν

uν(r)γν,↑(t)− v∗ν(r)γ
†
ν,↓(t),

ψ†
↓(r, t) =

∑
ν

vν(r)γν,↑(t) + u∗ν(r)γ
†
ν,↓(t).

Let us write the BCS Hamiltonian as HBCS = H0 +H∆ +H∆∗ +C and calculate step by
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step. The first term is

H0 =

∫
dr

{∑
ν,ν′

(
u∗ν(r)γ

†
ν,↑(t)− vν(r)γν,↓(t)

)
ξr

(
uν′(r)γν′,↑(t)− v∗ν′(r)γ

†
ν′,↓(t)

)
+
∑
ν,ν′

(
vν(r)γν,↑(t) + u∗ν(r)γ

†
ν,↓(t)

)
ξr

(
v∗ν′(r)γ

†
ν′,↑(t) + uν′(r)γν′,↓(t)

)}

=

∫
dr

{∑
ν,ν′

u∗ν(r)ξruν′(r)γ
†
ν,↑(t)γν′,↑(t) +

∑
ν,ν′

vν(r)ξrv
∗
ν′(r)γν,↓(t)γ

†
ν′,↓(t)

−
∑
ν,ν′

u∗ν(r)ξrv
∗
ν′(r)γ

†
ν,↑(t)γ

†
ν′,↓(t)−

∑
ν,ν′

vν(r)ξruν′(r)γν,↓(t)γν′,↑(t)

+
∑
ν,ν′

vν(r)ξrv
∗
ν′(r)γν,↑(t)γ

†
ν′,↑(t) +

∑
ν,ν′

u∗ν(r)ξruν′(r)γ
†
ν,↓(t)γν′,↓(t)

+
∑
ν,ν′

u∗ν(r)ξrv
∗
ν′(r)γ

†
ν,↓(t)γ

†
ν′,↑(t) +

∑
ν,ν′

vν(r)ξruν′(r)γν,↑(t)γν′,↓(t)

}
.

The second term has the form

H∆ =

∫
dr
∑
ν,ν′

∆(r)
(
u∗ν(r)γ

†
ν,↑(t)− vν(r)γν,↓(t)

)(
vν′(r)γν′,↑(t) + u∗ν′(r)γ

†
ν′,↓(t)

)
=

∫
dr

{∑
ν,ν′

∆(r)
[
u∗ν(r)vν′(r)γ

†
ν,↑(t)γν′,↑(t)− vν(r)vν′(r)γν,↓(t)γν′,↑(t)

]
+
∑
ν,ν′

∆(r)
[
u∗ν(r)u

∗
ν′(r)γ

†
ν,↑(t)γ

†
ν′,↓(t)− vν(r)u

∗
ν′(r)γν,↓(t)γ

†
ν′,↓(t)

]}
.

And H∆∗ is

H∆∗ =

∫
dr
∑
ν,ν′

∆∗(r)
(
v∗ν(r)γ

†
ν,↑(t) + uν(r)γν,↓(t)

)(
uν′(r)γν′,↑(t)− v∗ν′(r)γ

†
ν′,↓(t)

)
=

∫
dr

{∑
ν,ν′

∆∗(r)
[
v∗ν(r)uν′(r)γ

†
ν,↑(t)γν′,↑(t)− v∗ν(r)v

∗
ν′(r)γ

†
ν,↑(t)γ

†
ν′,↓(t)

]
+
∑
ν,ν′

∆∗(r)
[
uν(r)uν′(r)γν,↓(t)γν′,↑(t)− uν(r)v

∗
ν′(r)γν,↓(t)γ

†
ν′,↓(t)

]}
.
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We collect terms proportional to γ†ν,↑(t)γν′,↑(t) and γν,↑(t)γ†ν′,↑(t) as follows

I11 =

∫
dr
∑
ν,ν′

[
u∗ν(r)ξruν′(r) + ∆(r)u∗ν(r)vν′(r)

]
γ†ν,↑(t)γν′,↑(t)

+

∫
dr
∑
ν,ν′

{
vν(r)ξrv

∗
ν′(r)γν,↑(t)γ

†
ν′,↑(t) + ∆∗(r)v∗ν(r)uν′(r)γ

†
ν,↑(t)γν′,↑(t)

}
=

∫
dr
∑
ν,ν′

[
u∗ν(r)ξruν′(r) + ∆(r)u∗ν(r)vν′(r)

]
γ†ν,↑(t)γν′,↑(t)

+

∫
dr
∑
ν,ν′

[
− vν(r)ξrv

∗
ν′(r) + ∆∗(r)v∗ν(r)uν′(r)

]
γ†ν,↑(t)γν′,↑(t)

}
+

∫
dr
∑
ν

vν(r)ξrv
∗
ν(r).

We can write the second term as∫
dr
∑
ν,ν′

[
− vν(r)ξrv

∗
ν′(r) + ∆∗(r)v∗ν(r)uν′(r)

]
γ†ν,↑(t)γν′,↑(t)

}
=

∫
dr
∑
ν,ν′

v∗(r)ν

[
− ξ∗rvν′(r) + ∆∗(r)uν′(r)

]
γ†ν,↑(t)γν′,↑(t)

}
,

where we have used the integration by parts and the zero boundary conditions for u and
v at infinity. We take the Bogoliubov-de Gennes equations (3.36) and the completeness
relation (3.37) and obtain

I11 =

∫
dr
∑
ν,ν′

Eν′
[
u∗ν(r)uν′(r) + v∗ν(r)vν′(r)

]
γ†ν,↑(t)γν′,↑(t) +

∫
dr
∑
ν

vν(r)ξrv
∗
ν(r)

=
∑
ν,ν′

Eν′δν′,νγ
†
ν,↑(t)γν′,↑(t) +

∫
dr
∑
ν

vν(r)ξrv
∗
ν(r)

=
∑
ν

Eνγ
†
ν,↑(t)γν,↑(t) +

∫
dr
∑
ν

vν(r)ξrv
∗
ν(r).

Let us now gather terms proportional to γ†ν,↓(t)γν′,↓(t) and to γν,↓(t)γ†ν′,↓(t).

I22 =

∫
dr
∑
ν,ν′

[
vν(r)ξrv

∗
ν′(r)−∆(r)vν(r)u

∗
ν′(r)

]
γν,↓(t)γ

†
ν′,↓(t)

+

∫
dr
∑
ν,ν′

u∗ν(r)ξruν′(r)γ
†
ν,↓(t)γν′,↓(t)−∆∗(r)uν(r)v

∗
ν′(r)γν,↓(t)γ

†
ν′,↓(t)

=

∫
dr
∑
ν,ν′

[
vν(r)ξrv

∗
ν′(r)−∆(r)vν(r)u

∗
ν′(r)

]
γν,↓(t)γ

†
ν′,↓(t)

−
∫
dr
∑
ν,ν′

[
u∗ν(r)ξruν′(r) + ∆∗(r)uν(r)v

∗
ν′(r)

]
γν,↓(t)γ

†
ν′,↓(t)

+

∫
dr
∑
ν,ν′

u∗ν(r)ξruν(r).
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The second term can be written as∫
dr
∑
ν,ν′

[
u∗ν(r)ξruν′(r) + ∆∗(r)uν(r)v

∗
ν′(r)

]
γν,↓(t)γ

†
ν′,↓(t)

=

∫
dr
∑
ν,ν′

uν(r)
[
ξ∗ru

∗
ν′(r) + ∆∗(r)v∗ν′(r)

]
γν,↓(t)γ

†
ν′,↓(t).

Then

I22 =

∫
dr
∑
ν,ν′

[
vν(r)ξrv

∗
ν′(r)−∆(r)vν(r)u

∗
ν′(r)

]
γν,↓(t)γ

†
ν′,↓(t)

−
∫
dr
∑
ν,ν′

uν(r)
[
ξ∗ru

∗
ν′(r) + ∆∗(r)v∗ν′(r)

]
γν,↓(t)γ

†
ν′,↓(t) +

∫
dr
∑
ν,ν′

u∗ν(r)ξruν(r)

= −
∫
dr
∑
ν,ν′

Eν′
[
u∗ν(r)uν′(r) + v∗ν(r)vν′(r)

]
γν,↓(t)γ

†
ν′,↓(t) +

∫
dr
∑
ν

u∗ν(r)ξruν(r)

= −
∑
ν,ν′

Eν′δν,ν′γν,↓(t)γ
†
ν′,↓(t) +

∫
dr
∑
ν

u∗ν(r)ξruν(r)

= −
∑
ν

Eνγν,↓(t)γ
†
ν′,↓(t) +

∫
dr
∑
ν

u∗ν(r)ξruν(r).

Now we gather the off-diagonal terms.

I12 = −
∫
dr
∑
ν,ν′

[
u∗ν(r)ξrv

∗
ν′(r) + ∆∗(r)v∗ν(r)v

∗
ν′(r)

]
γ†ν,↑(t)γ

†
ν′,↓(t)

+

∫
dr
∑
ν,ν′

{
u∗ν(r)ξrv

∗
ν′(r)γ

†
ν,↓(t)γ

†
ν′,↑(t) + ∆(r)u∗ν(r)u

∗
ν′(r)γ

†
ν,↑(t)γ

†
ν′,↓(t)

}
= −

∫
dr
∑
ν,ν′

v∗ν(r)
[
ξ∗ru

∗
ν′(r) + ∆∗(r)v∗ν′(r)

]
γ†ν,↑(t)γ

†
ν′,↓(t)

+

∫
dr
∑
ν,ν′

u∗ν(r)
[
− ξrv

∗
ν′(r) + ∆(r)u∗ν′(r)

]
γ†ν,↑(t)γ

†
ν′,↓(t)

=
∑
ν,ν′

Eν′γ
†
ν,↑(t)γ

†
ν′,↓(t)

∫
dr
[
u∗ν(r)v

∗
ν′(r)− v∗ν(r)u

∗
ν′(r)

]
= 0.

And

I21 =−
∫
dr
∑
ν,ν′

[
vν(r)ξruν′(r) + ∆(r)vν(r)vν′(r)

]
γν,↓(t)γν′,↑(t)

+

∫
dr
∑
ν,ν′

{
vν(r)ξruν′(r)γν,↑(t)γν′,↓(t) + ∆∗(r)uν(r)uν′(r)γν,↓(t)γν′,↑(t)

}
=−

∫
dr
∑
ν,ν′

vν(r)
[
ξruν′(r) + ∆(r)vν′(r)

]
γν,↓(t)γν′,↑(t)

+

∫
dr
∑
ν,ν′

uν′(r)
[
− ξ∗rvν(r) + ∆∗(r)uν(r)

]
γν,↓(t)γν′,↑(t)

=
∑
ν,ν′

Eν′γν,↓(t)γν′,↑(t)

∫
dr
[
uν(r)vν′(r)− vν(r)uν′(r)

]
= 0.
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Finally we have
HBCS = U0 +

∑
ν

Eν(γ
†
ν↑γν↑ + γ†ν↓γν↓), (3.45)

where

U0 =

∫
dr

|∆|2

g
+
∑
ν

u∗ν(r)ξruν(r) + v∗ν(r)ξrvν(r)− Eν ,

is the ground state energy of the superconductor. The second term is the quasi-particle
term,which describes the elementary excitations above the ground state

3.2.3 Application to a simple situation
To get a feeling of the validity of this theory, let’s consider an example of a uniform

superconductor in zero magnetic field. For this case we can use the plane wave approxi-
mation and the BdG equation becomes(

ξr ∆

∆∗ −ξ∗r

)(
uk

eik·r√
V

vk
eik·r√
V

)
= Ek

(
uk

eik·r√
V

vk
eik·r√
V

)
,

and we can write (
ξk ∆

∆∗ −ξk

)(
uk

vk

)
= Ek

(
uk

vk

)
.

Where ξk = ℏ2k2
2m

− µ. The nontrivial solution exists only when

det

(
ξk − Ek ∆

∆∗ −ξk − Ek

)
= 0,

we should, of course, choose the positive sign which yields

Ek =
√
ξ2k + |∆|2. (3.46)

And, as expected, the excitation energy spectrum has a energy gap. Plotting this expres-
sion we can clearly see this result.
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Figure 8: Quasi-particle dispersion

3.3 Microscopic derivation of GL equations

We have seen that BCS theory can explain superconductivity on microscopic argu-
ments, i.e., the formation of the Cooper pair in the presence of the Fermi sea. Lev Gor’kov
[7] has showed that the Ginzburg-Landau equations, that were initially introduced on the
phenomenological basis, can be derived from the microscopic BCS theory via the Green
function formalism. Now, we will show how one can get the Ginzburg-Landau equation
for the order parameter from the BCS theory by using the Gor’kov equations (we will
consider zero field case, for illustration). In our consideration we will follow closely the
Gor’kov original development but we will work with the anomalous averages introduced
by Bogoliubov.

3.3.1 Equations of motion for field operators
Basically, the Gor’kov equations are directly related to the equations of motion for the

finite temperature Heisenberg field operators. However, instead of working directly with
them we will introduce Green functions for these equations of motion. To start we will
introduce the Heisenberg formalism for imaginary time

ℏ∂τ Â(τ) = [Ĥ, Â(τ)].
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The Heisenberg operators are defined as

Â(τ) = e
Ĥτ
ℏ Âe

−Ĥτ
ℏ ,

ˆ̄A(τ) = e
Ĥτ
ℏ Â†e

−Ĥτ
ℏ .

So, the fermionic field operators on this representation obey the following equation of
motion

ℏ∂τ ψ̂↑(r, τ) = [ĤBCS, ψ̂↑(r, τ)],

ℏ∂τ ψ̂†
↓(r, τ) = [ĤBCS, ψ̂

†
↓(r, τ)].

(3.47)

Knowing that [Ĥ, Â] = −[Â, Ĥ] and using equations (3.33) and (3.34) these equations of
motion become

ℏ∂τ

(
ψ↑(r, τ)

ψ†
↓(r, τ)

)
=

(
−ξr −∆(r)

−∆∗(r) ξ∗r

)(
ψ↑(r, τ)

ψ†
↓(r, τ)

)
, (3.48)

where the Bogoliubov-de Gennes matrix is clearly seen.

3.3.2 Green functions formalism
Now, we introduce the corresponding Green function for the differential equation

above. It is
G(rτ1, rτ2) ≡ −1

ℏ
⟨Tτ [ψ↑(rτ1)ψ

†
↑(r

′τ2)]⟩. (3.49)

Where Tτ is the time ordering operator for the imaginary time. It works as

Tτ [A(τ1)B(τ2)] =

⎧⎨⎩A(τ1)B(τ2) , if τ1 > τ2,

−B(τ2)A(τ1) , if τ2 > τ1.
(3.50)

We can use the Heaviside step function θ to express the Green function using

Tτ [ψ↑(rτ1)ψ
†
↑(r

′τ2)] = θ(τ1 − τ2)ψ↑(rτ1)ψ
†
↑(r

′τ2)− θ(τ2 − τ1)ψ
†
↑(r

′τ2)ψ↑(rτ1).

We can see that this is true because when τ1 > τ2 then θ(τ1 − τ2) = 1 and θ(τ2 − τ1) = 0

and when τ1 < τ2 then θ(τ1 − τ2) = 0 and θ(τ2 − τ1) = 1. We do this because we know
the derivative of the Heaviside step function which is

dθ(x)

dx
= δ(x). (3.51)

Differentiating G with respect to τ1 we get

ℏ∂τ1G = −δ(τ1 − τ2)⟨ψ↑(rτ1)ψ
†
↑(r

′τ2)⟩

+
1

ℏ
θ(τ1 − τ2)⟨ℏ∂τ1ψ↑(rτ1)ψ

†
↑(r

′τ2)⟩

−δ(τ2 − τ1)⟨ψ†
↑(r

′τ2)ψ↑(rτ1)⟩

−1

ℏ
θ(τ2 − τ1)⟨ℏψ†

↑(r
′τ2)∂τ1ψ↑(rτ1)⟩.
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We can see that this expression can be written as

ℏ∂τ1G(rτ1, r′τ2) = −δ(τ1 − τ2)⟨
[
ψ↑(rτ1)ψ

†
↑(r

′τ2)
]
+
⟩

−1

ℏ
⟨Tτ [ℏ∂τ1(ψ↑(rτ1)ψ

†
↑(r

′τ2)]⟩.

From the anti-commutation rules for fermionic field operators we know that[
ψσ(rτ1)ψ

†
σ′(r

′τ2)
]
+
= δ(τ1 − τ2)δ(r− r′)δσ,σ′ . (3.52)

Then we can write

ℏ∂τ1G(rτ1, r′τ2) = −δ(τ1 − τ2)δ(r− r′)

−1

ℏ
⟨Tτ [ℏ∂τ1(ψ↑(rτ1)ψ

†
↑(r

′τ2)]⟩.

From the Heisenberg equations of motions for the fermionic field operators we know that

ℏ∂τψ↑(rτ) = −ξrψ↑(rτ)−∆(r)ψ†
↓(rτ). (3.53)

Putting everything together we have that

ℏ∂τ1G(rτ1, r′τ2) =
1

ℏ
ξr⟨Tτ [ψ↑(rτ1)ψ

†
↑(r

′τ2)]⟩

+
1

ℏ
∆(r)⟨Tτ [ψ†

↓(rτ1)ψ
†
↑(r

′τ2)]⟩

− δ(r− r′)δ(τ1 − τ2).

Now we are led to introduce a new Green Function

F̃(rτ1, r
′τ2) ≡ −1

ℏ
⟨Tτ [ψ†

↓(rτ1)ψ
†
↑(r

′τ2)]⟩, (3.54)

such that

ℏ∂τ1G(rτ1, r′τ2) = −ξrG(rτ1, r′τ2)−∆(r)F̃(rτ1, r
′τ2)

−δ(r− r′)δ(τ1 − τ2),

or
(ℏ∂τ1 + ξr)G(rτ1, r′τ2) + ∆(r)F̃(rτ1, r

′τ2) = −δ(r− r′)δ(τ1 − τ2). (3.55)

We use the same procedure and differentiate F̃(rτ1, r
′τ2) with respect to imaginary time.

We obtain
ℏ∂τ1F̃(rτ1, r

′τ2) = ξ∗rF̃(rτ1, r
′τ2)−∆∗(r)G(rτ1, r′τ2),

or
(ℏ∂τ1 − ξ∗r)F̃(rτ1, r

′τ2) + ∆∗(r)G(rτ1, r′τ2) = 0. (3.56)
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It is convenient to introduce two more Green functions

G̃(rτ1, r′τ2) ≡ −1

ℏ
⟨Tτ [ψ†

↓(rτ1)ψ↓(r
′τ2)]⟩, (3.57)

and
F(rτ1, r

′τ2) ≡ −1

ℏ
⟨Tτ [ψ↑(rτ1)ψ↓(r

′τ2)]⟩. (3.58)

The equation of motion for these Green functions are simply

ℏ∂τ1G̃(rτ1, r′τ2) = −δ(r− r′)δ(τ1 − τ2)

+ξ∗r G̃(rτ1, r′τ2)

−∆∗(r)F(rτ1, r
′τ2),

we organize this equation as

(ℏ∂τ1 − ξ∗r)G̃(rτ1, r′τ2) + ∆∗(r)F(rτ1, r
′τ2) = −ℏδ(r− r′)δ(τ1 − τ2).

And
ℏ∂τ1F̃(rτ1, r

′τ2) = −ξrF̃(rτ1, r
′τ2)−∆(r)G̃(rτ1, r′τ2),

or
(ℏ∂τ1 + ξr)F̃(rτ1, r

′τ2) + ∆(r)G̃(rτ1, r′τ2) = 0. (3.59)

Let us organize these 4 equations in a more visible pleasing way as{
(ℏ∂τ1 + ξr)G(rτ1, r′τ2) + ∆(r)F̃(rτ1, r

′τ2) = −δ(r− r′)δ(τ1 − τ2),

(ℏ∂τ1 − ξ∗r)G̃(rτ1, r′τ2) + ∆∗(r)F(rτ1, r
′τ2) = −δ(r− r′)δ(τ1 − τ2),

(3.60)

{
(ℏ∂τ1 − ξ∗r)F̃(rτ1, r

′τ2) + ∆∗(r)G(rτ1, r′τ2) = 0,

(ℏ∂τ1 + ξr)F(rτ1, r
′τ2) + ∆(r)G̃(rτ1, r′τ2) = 0.

(3.61)

These however are not the final format of these equations that we want to use. We will
perform a Fourier transform from imaginary time to frequency.

3.3.3 Some properties of finite temperature Green functions
Consider the imaginary-time boundary condition for the Green functions. We will see

that they have a period of 2βℏ. To get this result, first we will demonstrate that the
Green function will depend only on the difference τ1 − τ2 as follows

G(rτ1, r′τ2) = − 1

ℏTr e−βĤBCS

Tr
(
e−βĤBCSTτ [ψ↑(rτ1)ψ

†
↑(r

′τ2)]
)
.

Supose that τ1 > τ2 (below K̂ = ĤBCS) and so

G(rτ1, r′τ2) = − 1

ℏTr e−βK̂
Tr
(
e−βK̂ψ↑(rτ1)ψ

†
↑(r

′τ2)
)

= − 1

ℏTr e−βK̂
Tr
(
e−βK̂eK̂

τ1
ℏ ψ↑(r)e

−K̂ τ1
ℏ eK̂

τ2
ℏ ψ†

↑(r
′)e−K̂

τ2
ℏ

)
.
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Under the trace we can rearrange these operators.

G(rτ1, r′τ2) = − 1

ℏTr e−βK̂
Tr
(
e−βK̂eK̂

τ1−τ2
ℏ ψ↑(r)e

−K̂ τ1−τ2
ℏ ψ†

↑(r
′)
)

= − 1

ℏTr e−βK̂
Tr
(
e−βK̂ψ↑(rτ)ψ

†
↑(r

′)
)

Therefore
G(rτ1, r′τ2) = G(r, r′, τ), (3.62)

where τ = τ1 − τ2. Now let us demonstrate the periodicity of the Green functions. First
we explicitly write

G(r, r′, τ > 0) =− 1

ℏTr e−βK̂
Tr
(
e−βK̂ψ↑(rτ)ψ

†
↑(r

′)
)
.

We will show that
G(r, r′, τ < 0) = −G(r, r′, τ + βℏ), (3.63)

and by the same procedure we will get

G(r, r′, τ > 0) = −G(r, r′, τ − βℏ). (3.64)

Suppose that −βℏ < τ < 0 and we do the following

G(r, r′, τ < 0) =− 1

ℏTr e−βK̂
Tr
(
e−βK̂Tτ [ψ↑(rτ)ψ

†
↑(r

′)]
)
.

=
1

ℏTr e−βK̂
Tr
(
e−βK̂ψ†

↑(r
′)ψ↑(rτ)

)
.

=
1

ℏTr e−βK̂
Tr
(
e−βK̂ψ†

↑(r
′)eK̂

τ
ℏψ↑(r)e

−K̂ τ
ℏ

)
,

=
1

ℏTr e−βK̂
Tr
(
e−βK̂e−βK̂eβK̂ψ†

↑(r
′)eK̂

τ
ℏψ↑(r)e

−K̂ τ
ℏ

)
,

=
1

ℏTr e−βK̂
Tr
(
e−βK̂ψ†

↑(r
′)eK̂

τ+ℏβ
ℏ ψ↑(r)e

−K̂ τ+βℏ
ℏ

)
=

1

ℏTr e−βK̂
Tr
(
e−βK̂ψ†

↑(r
′)ψ↑(r, τ + βℏ)

)
.

=
1

ℏTr e−βK̂
Tr
(
e−βK̂ψ↑(r, τ + βℏ)ψ†

↑(r
′)
)

=− G(r, r′, τ + βℏ). τ + βℏ > 0

So, we can see that the Temperature Green functions with imaginary time are define for
−βℏ < τ < βℏ. This finite range for the imaginary time has a important consequence.
To see this let us make a Fourier transformation in τ

G(r, r′, τ) = 1

βℏ
∑
ω

e−iωτGω(r, r′), (3.65)

The inverse transformation is

Gω(r, r′) =
1

2

∫ βℏ

−βℏ
eiωnτG(r, r′, τ)dτ (3.66)
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Let us prove that ω only takes discrete values and that they are different based on the
statistics of the particle we are dealing with. Consider that

Gω(r, r′) =
1

2

∫ βℏ

0

eiωτG(r, r′, τ)dτ + 1

2

∫ 0

−βℏ
eiωnτG(r, r′, τ)dτ,

=
1

2

∫ βℏ

0

eiωτG(r, r′, τ)dτ − 1

2

∫ 0

−βℏ
eiωnτG(r, r′τ + βℏ)dτ.

We make the following change of variables: τ → τ + βℏ and we get

Gω(r, r′) =
1

2

∫ βℏ

0

eiωτG(r, r′, τ)dτ − 1

2

∫ βℏ

0

eiω(τ−βℏ)G(r, r′τ)dτ,

Gω(r, r′) =
1

2

(
1∓ eiωβℏ

)∫ βℏ

0

eiωτG(r, r′τ)dτ. (3.67)

To have a nonzero solution we need that

ω =
(2n+ 1)π

βℏ
.

Therefore, we can clearly see that this frequency only takes discrete values as a direct
consequence of the limited range of the imaginary time to which the Green functions are
defined. We called it Matsubara frequency.

3.3.4 Matsubara Green Functions
The Green function in terms of the Matsubara frequency is just called Matsubara

Green function. We will work with these functions. Performing a Fourier transformation
on equations (3.60) and (3.61) we will get{

(−iℏω + ξr)Gω(r, r′) + ∆(r)F̃ω(r, r
′) = −δ(r− r′),

(−iℏω − ξ∗r)G̃ω(r, r′) + ∆∗(r)Fω(r, r
′) = −δ(r− r′),

(3.68)

{
(−iℏω − ξ∗r)F̃ω(r, r

′) + ∆∗(r)Gω(r, r′) = 0,

(−iℏω + ξr)Fω(r, r
′) + ∆(r)G̃ω(r, r′) = 0.

(3.69)

We can express them in a more elegant way. It is{(
iℏω 0

0 iℏω

)
−

(
ξr ∆(r)

∆∗(r) −ξ∗r

)}(
Gω(r, r′) Fω(r, r

′)

F̃ω(r, r
′) G̃ω(r, r′)

)
= δ(r− r′)1̌2. (3.70)

Where, 1̌2 is the 2x2 unit matrix.
Using the matrix notations, we can further rewrite the Green function equations, called

Gor’kov-Nambu equations:

iℏωǦω = 1̌2 + ξ̌Ǧω + ∆̌Ǧω, (3.71)
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with

ξ̌ =

(
ξ̂ 0

0 −ξ̂∗

)
, ∆̌ =

(
0 ∆̂

∆̂∗ 0

)
. (3.72)

The matrix elements of the operators ξ̂ and ∆̂ in the single-particle Hilbert space are
given by

ξ̂ = ⟨r| ξ̂ |r′⟩ = δ(r− r′)ξr ∆̂ = ⟨r| ∆̂ |r′⟩ = ∆(r)δ(r− r′).

We also introduce

Ǧω =

(
Ĝω F̂ω

ˆ̃Fω
ˆ̃Gω

)
, (3.73)

with the operators Ĝω,
ˆ̃Gω, F̂ω, and ˆ̃Fω defined as

⟨r| Ĝω |r′⟩ = Gω(r, r′), ⟨r|
ˆ̃Gω |r′⟩ = F̃ω(r, r

′),

⟨r| F̂ω |r′⟩ = Fω(r, r
′), ⟨r| ˆ̃Fω |r′⟩ = F̃ω(r, r

′). (3.74)

To solve equation (3.71) we introduce G(0)
ω (r, r′), the Green function for the normal

state in the same magnetic field. The corresponding equation reads

(iℏω − ξ̌)Ǧ(0)
ω = 1̌2, (3.75)

where

Ǧ(0)
ω =

(
Ĝ(0)
ω 0

0
ˆ̃Gω(0)

)
.

We can, therefore, write
Ǧ(0)
ω = (iℏω − ξ̌)−1. (3.76)

Then equation (3.71) can be written as

Ǧω = Ǧ(0)
ω + Ǧ(0)

ω ∆̌Ǧω. (3.77)

From this equation in the matrix form we can get the relations

Fω = G(0)
ω ∆∗G̃ω

G̃ω = G̃(0)
ω + G̃(0)

ω ∆∗Fω

(3.78)

Using this couple equations we can get the following expression

G̃ω = G̃(0)
ω + G̃(0)

ω ∆∗G(0)
ω ∆G̃ω (3.79)

Now we take this and substitute on the equation for F̃ω as follows

Fω = G(0)
ω ∆G̃(0)

ω + G(0)
ω ∆G̃(0)

ω ∆∗G(0)
ω ∆G̃ω (3.80)



3.3. MICROSCOPIC DERIVATION OF GL EQUATIONS 47

Repeating this procedure we obtain

Fω = G(0)
ω ∆G̃(0)

ω + G(0)
ω ∆G̃(0)

ω ∆∗G(0)
ω ∆G̃(0)

ω + G(0)
ω ∆G̃(0)

ω ∆∗G(0)
ω ∆G̃(0)

ω ∆∗G(0)
ω ∆G̃ω.

This equation can be truncated to a desired order, which yields a nonlinear integral
equation. For our present purposes we will only keep the first two terms. In integral form
we have the following equation(pay attention to the rather complicated dependence of the
Green functions inside the integral)

Fω(r, r
′) =

∫
dyG(0)

ω (r,y)∆(y)G̃(0)
ω (y, r) (3.81)

+

∫
dy1dy2dy3G(0)

ω (r,y1)∆(y1)G̃(0)
ω (y1,y2)∆

∗(y2)G(0)
ω (y2,y3)∆(y3)G̃(0)

ω (y3, r).

The last step before calculating the Ginzburg-Landau equation is to express the order
parameter in terms of the Green function. Remember that

∆(r) = g⟨ψ̂↑(r)ψ̂↓(r)⟩, (3.82)

and that
F(r, r′, τ) = −1

ℏ
⟨Tτ [ψ↑(rτ)ψ↓(r

′0)]⟩. (3.83)

To express the order parameter we do the following

∆(r) = −gℏ lim
τ→0+

F(r, r, τ) (3.84)

Observe that the limit is τ going to zero from the positive side. This ensures that τ1 > τ2

and we get the correct relation. Now we wish to use Matsubara Green functions. The
order parameters is expressed by

∆(r) = − g

β
lim
τ→0+

∑
ω

e−iωτFω(r, r) (3.85)

From here onward we will use kB = 1 Taking the expression for Fω we get

∆(r) =

∫
dyKa(r,y)∆(y) (3.86)

+

∫
dy1dy2dy3Kb(r,y1,y2,y3)∆(y1)∆(y2)

∗∆(y3).

The kernels of the integrals are

Ka(r,y) = −gT lim
τ→0+

∑
ω

e−iωτG(0)
ω (r,y)G̃(0)

ω (y, r),

and,
Kb = −gT lim

τ→0+

∑
ω

e−iωτG(0)
ω (r,y1)G̃(0)

ω (y1,y2)G(0)
ω (y2,y3)G̃(0)

ω (y3, r).
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The equation for the order parameter can be converted into a nonlinear partial differential
equation by (odd powers of the gradient don’t contribute in the final calculation)

∆(y) = ∆(r) +
1

2

(
(r− y) · ∇

)2
∆(r) + · · · (3.87)

if we assume that we are close to the critical temperature. This makes sense because the
order parameter becomes smaller the close we get to the critical temperature. Therefore,
the gap equation will be

∆(r) =∆(r)

∫
dyKa(r,y) +

1

2
∇2∆(r)

∫
dyKa(r,y)(r− y)2+ (3.88)

+|∆|2∆(r)

∫
dy1dy2dy3Kb(r,y1,y2,y3).

Let us use the following notation

∆(r)

g
= a1∆(r) + a2∇2∆+ b1|∆|2∆(r). (3.89)

The terms ai are related to the integrals with kernel Ka and the term b1 are related to the
integral with kernel Kb. We say that a1 is the local term, a2 is the term proportional to
the square gradient and b1 is the term proportional to ∆3. Each one of the integrals will
give the 3 Ginzburg-Landau coefficients that are present on equation (3.9). To calculate
these integrals we need to know the form of the normal-state Green function. Here, we
will only calculate for zero magnetic field with plane wave approximation so we can set
the vector potential to zero. From equation (3.76) we have

G(0)
ω (r,y) =

∫
dk

(2π)3
eik·(r−y)

iℏω − ξk
, (3.90)

G̃(0)
ω (r,y) =

∫
dk

(2π)3
eik·(r−y)

iℏω + ξk
. (3.91)

Here ξk = ℏ2k2
2m

− µ is the single particle energy measured from the chemical potential.

3.3.5 Systematic expansion in small deviation from the critical
temperature

Before we dive into the calculation of each of the Ginzburg-Landau coefficient it is
productive first to take a step back and look at the temperature dependence of these
elements. Each integral kernel is directly dependent on temperature but they also depend
on the Matsubara frequency which in turn is dependent on temperature. If we take this
temperature and simply do the calculations we will run into complications. In fact, we
don’t need to perform the calculations for an arbitrary temperature. We already know
that superconductivity starts at a very specific temperature called critical temperature.
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We are interest in the system near this temperature. So, for the Standard Ginzburg-
Landau equation we will introduce a parameter which becomes small near the critical
temperature and can be used to produce a single-small-parameter series expansion of the
gap equation[8]. It is

τ = 1− T

Tc
. (3.92)

When T → Tc, the order parameter decays as ∆ ∝ τ 1/2 and ∇∆ ∝ τ 1/2. By using
this parameter we will be able to collect the relevant quantities for our present endeavor
but it will also empower us to go beyond the Standard Ginzburg-Landau equations if
needed. For now we will calculate first terms up to τ 1/2 which will give us a equation
for the critical temperature. After that we will collect terms up to τ 3/2 which will give
us the Standard Ginzburg-Landau equation. If we would go up to τ 5/2 we will obtain
the so called Extended Ginzburg Landau equation. This systematic expansion of the gap
equation in τ can be facilitated by introducing the scaling transformation for the order
parameter and the spatial derivatives as

∆ = τ 1/2∆̄

∇ = τ 1/2∇̄
.

We obtain
τ 1/2

∆̄

g
= a1τ

1/2∆̄ + a2τ
3/2∇̄2

∆̄ + b1τ
3/2|∆̄|2∆̄. (3.93)

The solution to the gap equation must also be sought in the form of a series expansion in
τ .

∆̄ = ∆̄0 + τ∆̄1 + · · ·

Then we write

τ 1/2

g
(∆̄0 + τ∆̄1) =a1(∆̄0 + τ∆̄1)τ

1/2 (3.94)

+a2∇̄
2
(∆̄0 + τ∆̄1)τ

3/2

+b1|∆̄0 + τ∆̄1|2(∆̄0 + τ∆̄1)τ
3/2.

We will keep this in mind because we are going to need this expression.

3.3.6 Calculation of the Ginzburg-Landau coefficients
Now we are going to explicitly calculate the integrals we found. Remember that

for each term we have an integration over momenta and a summation over Matsubara
frequencies.

TERM PROPORTIONAL TO ∆3



3.3. MICROSCOPIC DERIVATION OF GL EQUATIONS 50

Using the normal-state Green function we write

b1 = −T
∑
ω

∫
dy1dy2dy3

dk

(2π)3
eik·(r−y1)

(iℏω − ξk)

dk1

(2π)3
eik1·(y1−y2)

(iℏω + ξk1)

× dk2

(2π)3
eik2·(y2−y3)

(iℏω − ξk2)

dk3

(2π)3
eik3·(y3−r)

(iℏω + ξk3)
.

The exponential doesn’t play a part here because the integral converges without any more
complications(unfortunately this cannot be said for all of the remaining terms). Some of
these integrals will lead to delta functions as follows

b1 =− T
∑
ω

∫
dk

(2π)3
dk1dk2dk3δ(k1 − k)δ(k2 − k1)δ(k3 − k2)e

i(k−k3)·r

(2π)9(iℏω − ξk)(iℏω + ξk1)(iℏω − ξk2)(iℏω + ξk3)
,

=− T
∑
ω

∫
dk

(2π)3
1

(iℏω − ξk)2
1

(iℏω + ξk)2

=− T
∑
ω

∫
dk

(2π)3
1

(ℏ2ω2 + ξk)2
.

We introduce the following approximation consistently to evaluate integrals that are
peaked near the Fermi surface. It is∫

dk

(2π)3
· · · ≈ N(0)

∫
dξ · · · (3.95)

Where, N(0) is the Density of States per spin projection near the Fermi surface and its
value is: N(0) = mkF

2π2ℏ2 and kF is the Fermi momentum. b1 then becomes

b1 = −N(0)T
∑
ω

∫
dξ

1

(ℏ2ω2 + ξ2)2
. (3.96)

By setting x = ξ
ℏω we find

b1 = −N(0)T
∑
ω

dx

|ℏω|3

∫ ∞

−∞
dξ

1

(1 + x2)2
.

Realizing that
∑
x

|f(x)| = 2
∑
x>0

f(x), we get

b1 = −2N(0)T
∑
ω>0

1

(ℏω)3
π

2
= −N(0)πT

1

(2πT )3

∞∑
n=0

1

(n+ 1/2)3
,

Finally,

b1 = −N(0)
7ζ(3)

8π2T 2
. (3.97)

Here ζ is the zeta function. Now, we applied the expansion of the small parameter τ

T 2
c

T 2
=

1

(1− τ)2
≈ 1 + 2τ +O(τ 2),
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because τ is small. Since ∆3 ∝ τ 3/2 we need to get the zeroth power of this expansion in
τ . We obtain

b1 = −N(0)
7ζ(3)

8π2T 2
c

. (3.98)

TERM PROPORTIONAL TO THE SQUARED GRADIENT

This term is given by

1

2

∫
dyKa(r,y)(r− y)2 = −T

2

∑
ω

∫
dzG(0)

ω (r, r+ z)G̃(0)
ω (r+ z, r)z2.

Where we made a change of variables: r−y → z. To calculate this integral we need to do
a little trick. We take the normal-state Green function and perform a Fourier transform
on the coordinates and get the following

1

iℏω − ξk
=

∫
dzG(0)

ω (r, r+ z)e−ik·z. (3.99)

Now, we differentiate with respect to the momenta

∇k

(
1

iℏω − ξk

)
=

∫
dz(−iz)G(0)

ω (r, r+ z)e−ik·z. (3.100)

And now we reverse the Fourier transform to obtain

zG(0)
ω (r, r+ z) =

∫
dk

(2π)3

(
− 1

i

)
∇k

(
1

iℏω − ξk

)
eik·z. (3.101)

In similar fashion for the hole Green function

−zG̃(0)
ω (r+ z, r) =

∫
dk

(2π)3

(
− 1

i

)
∇k

(
1

iℏω + ξk

)
e−ik·z. (3.102)

Now, we are able to express the term proportional to the square gradient as follows

a2 =− T

2

∑
ω

∫
dzG(0)

ω (r, r+ z)G̃(0)
ω (r+ z, r)z2

=
T

2

∑
ω

∫
dz
(
zG(0)

ω (r, r+ z)
)(

− zG̃(0)
ω (r+ z, r)

)
=
T

2

∫
dz

dk

(2π)3
dk′

(2π)3

(
− 1

i

)
∇k

(
1

iℏω − ξk

)
eik·z

(
− 1

i

)
∇k′

(
1

iℏω + ξk′

)
e−ik

′·z

=
T

2

∑
ω

∫
dk

(2π)3
dk′

(2π)3

(
k

(iℏω − ξk)2

)(
k′

(iℏω + ξk′)2

)
δ(k− k′)

=
T

2

∑
ω

∫
dk

(2π)3

(
ℏ2

m

)2
k2

(ℏ2ω2 + ξ2k)
2
.



3.3. MICROSCOPIC DERIVATION OF GL EQUATIONS 52

Because we are considering a spherical Fermi surface
k2

3
= k2x = k2y = k2z . So, if we

integrate
∫
dkk2 over Cartesian coordinates we will have 3 times the contribution of the

integration over spherical coordinates. Therefore, we write

a2 =
T

6

∑
ω

∫
dk

2π2

(
ℏ2

m

)2
k2

(ℏ2ω2 + ξ2k)
2
. (3.103)

Using the approximation for expressions peaked near the Fermi surface we obtain

T

6

(ℏ2
m

)2
k2FN(0)

∑
ω

∫
dξ

1

(ℏ2ω2 + ξ2)2
=
TN(0)v2Fℏ2π

6

∑
ω>0

1

(ℏω)3

=
N(0)v2Fℏ2

6

7ζ(3)

(8π2T 2)
,

where, vF is the fermi velocity. And, expanding in powers of τ and taking the term
proportional to the zeroth power because ∇2∆ ∝ τ 3/2 we finally get

a2 =
v2Fℏ2N(0)

48T 2
c π

2
7ζ(3). (3.104)

LOCAL TERM

The local term is obtained as

a1 =

∫
dyKa(r,y) = −T lim

τ→0+

∑
ω

eiωτ
∫
dyG(0)

ω (r,y)G̃(0)
ω (y, r)

=− T lim
τ→0+

∑
ω

eiωτ
∫
dy

dk

(2π)3
dk1

(2π)3
eik·(r−y)

(iℏω − ξk)

eik·(y−r)

(iℏω + ξk)

=− T lim
τ→0+

∑
ω

eiωτ
∫

dk

(2π)3
dk1

(2π)3
δ(k1 − k)

(iℏω − ξk)

eir·(k−k1)

(iℏω + ξk)

=− T lim
τ→0+

∑
ω

eiωτ
∫

dk

(2π)3
1

ℏ2ω2 + ξ2k

=N(0)T
∑
ω

∫
dξ

1

ℏ2ω2 + ξ2
,

=N(0)T
∑
ω

1

ℏω

∫ ∞

−∞

dx

1 + x2

=2N(0)Tπ
∑
ω>0

1

ℏω
.

This sum is divergent. How to deal with this? Let us go back a few steps.

a1 = T lim
τ→0+

∑
ω

eiωτ
∫

dk

(2π)3
1

(ξk − iℏω)
1

(ξk + iℏω)
,

and we rewrite as

a1 = T lim
τ→0+

∑
ω

∫
dk

(2π)3
1

2ξk

( eiωτ

ξk + iℏω
+

eiωτ

ξk − iℏω

)
. (3.105)
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Let us evaluate
lim
τ→0+

∑
ω

eiωτ

iℏω + ξk
.

This can be done with a contour integration as follows[9]. If C is a contour encircling the
imaginary axis (Im{z}) we have the following relation (see fig.9)

lim
τ→0+

∑
ω

eiωτ

iℏω + ξk
= − 1

2Tπi

∫
C

dz

ez/T + 1

ezτ/ℏ

z − ξk
. (3.106)

Figure 9: Contour for evaluation of the frequency sums.

This expression is true because the function − 1
T
(e−z/T − 1)−1 has simple poles at

z = iω. Deforming the contour to C’ and Γ we are left with only one pole at z = ξk with
unit residue. Taking the limit of τ we get

lim
τ→0+

∑
ω

eiωτ

iℏω + ξk
=

1

T

1

e−ℏξk/T + 1
, (3.107)

and
lim
τ→0+

∑
ω

eiωτ

iℏω − ξk
=

1

T

1

eξk/T + 1
. (3.108)

Inserting these results in the expression for a1 we obtain

a1 =

∫
dk

(2π)3
1

2ξk

( 1

e−ξk/T + 1
− 1

eξk/T + 1

)
.

Using the approximation for integrals peaked near the Fermi surface we write

a1 = N(0)

∫
dξ

1

2ξ
tanh

( ξ

2T

)
(3.109)
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This integral is divergent. But, as we mention before in the case of temperature we are
not dealing with a arbitrary range of energies. We can introduce cut-offs that comes from
the limited range of scattering between two electrons above the Fermi surface. So, our
integral very fittingly becomes

a1 = N(0)

∫ ℏωD

−ℏωD

dξ
1

2ξ
tanh

( ξ

2T

)
= N(0)

∫ ℏωD

0

dξ
1

ξ
tanh

( ξ

2T

)
Where ωD is the Debye frequency. Now we solve this integral. To do that we perform a
change of variables z = ξ

2T
we obtain

a1 = N(0)

∫ ℏωD/2T

0

dz

z
tanh(z)

= ln(z) tanh(z)
⏐⏐⏐ℏωD/2T

0
−
∫ ℏωD/2T

0

dz ln(z)
1

cosh2(z)
. (3.110)

Here we use again the fact that we are not calculating for an arbitrary range of tempera-
ture. In fact we are working very closely to the critical temperature. As we are working
with very small temperatures we can set ℏωD/2T → ∞ and therefore

a1 = N(0) ln
(ℏωD
2T

)
−
∫ ∞

0

dz ln(z)
1

cosh2(z)
(3.111)

The integral on the second term is easily found on textbooks[9]. Here we just quote the
result. It is ∫ ∞

0

dz ln(z)
1

cosh2(z)
= − ln

(4eγ
π

)
, (3.112)

where γ is the Euler–Mascheroni constant. Putting everything together we have

a1 = N(0) ln
(2ℏωDeγ

πT

)
. (3.113)

As we are considering the term a1∆(r) and ∆ ∝ τ 1/2 we have to collect terms up to
a1 ∝ τ . So, we do the following

a1 = N(0) ln
(2ℏωDeγ

πTc

)
+N(0) ln

(Tc
T

)
= N(0) ln

2ℏωDeγ

πTc
+N(0) ln

( 1

1− τ

)
,

As τ is a small parameter we can do

a1 = N(0) ln
2ℏωDeγ

πTc
+N(0)(τ +O(τ 2)). (3.114)

Now we will use the following notation

a1 = AT − aτ. (3.115)

We can readily identify this terms: AT = N(0) ln 2ℏωDe
γ

πTc
and a = −N(0).
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3.3.7 Equation for the critical temperature
Now, we return to the expression 3.94. We truncated this equation up to τ 3/2 order.

But we can obtain another important equation if we truncate this expression up to τ 1/2.
We match all coefficients proportional to the main contribution to the order parameter
∆0 up to the τ 1/2. We will arrive at the following expression

∆0(g
−1 −AT ) = 0. (3.116)

The solution to this equation is
gAT = 1,

and will give us the expression of the critical temperature. It is

Tc0 =
2ℏωDeγ

π
e−1/gN(0). (3.117)

This is referred to Mean-Field Critical temperature.

3.3.8 Ginzburg-Landau equation
At last we arrive at the goal of the second part of this chapter: the Ginzburg-Landau

equation derived from BCS theory and as a consequence a connection between Ginzburg
and Landau’s theory of superconductivity and BCS theory. So, we go back now to the
expression of the gap equation (3.94) and match coefficients proportional to ∆0 but this
time we take terms up to τ 3/2. We will get the following equation

τ 1/2
∆̄0

g
= a1τ

1/2∆̄0 + a2τ
3/2∇̄2

∆̄0 + b1τ
3/2|∆̄0|2∆̄0. (3.118)

But, from the critical temperature equation gAT = 1 we have that a1 = g−1 − aτ so

τ 1/2
∆̄0

g
= (g−1 − aτ)τ 1/2∆̄0 + a2τ

3/2∇̄2
∆̄0 + b1τ

3/2|∆̄0|2∆̄0. (3.119)

We rewrite it as

(−aτ + g−1 − g−1)τ 1/2∆̄0 + a2τ
3/2∇̄2

∆̄0 + b1τ
3/2|∆̄0|2∆̄0 = 0, (3.120)

and then
(−aτ)τ 1/2∆̄0 + a2τ

3/2∇̄2
∆̄0 + b1τ

3/2|∆̄0|2∆̄0 = 0. (3.121)

Multiplying this equation by τ 3/2 we get

aτ∆0 − a2∇2∆0 − b1|∆0|2∆0 = 0. (3.122)

We know that

a2 =
v2Fℏ2N(0)

48T 2
c π

2
7ζ(3) b1 =−N(0)

7ζ(3)

8π2T 2
c

.
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We define the terms a2 = K and b1 = −b. At last we write in a clear form the Ginzburg
Landau equation for zero magnetic field

aτ∆0 + b|∆0|2∆0 −K∇2∆0 = 0. (3.123)

3.3.9 Determination of the Gap Function ∆(T )

We have seen that indeed the Green Function formalism developed by Gor’kov recover
the Ginzburg-Landau equations from BCS theory. But, do we have any experimental
evidence that the BCS theory is valid? Well, now we will determine the gap function
from Gor’kov equations. We take the coupled Gor’kov-Nambu equations

(−iℏω − ξ∗r)F̃ω(r, r
′) + ∆∗(r)Gω(r′, r) = 0, (3.124)

and
(−iℏω + ξr)Gω(r, r′) + ∆(r)F̃ω(r, r

′) = −δ(r− r′). (3.125)

We make a Fourier transform to the momentum space and consider zero external magnetic
field and therefore we can set the vector potential to zero. By doing this we are able to
get a pair of algebraic equations

(−iℏω + ξk)Gω(k) + ∆F̃ω(k) = −1, (3.126)

and
(−iℏω − ξk)F̃ω(k) + ∆∗Gω(k) = 0. (3.127)

Solving this system of equations we are able to express the Green functions independent
of one another as follows

F̃ω(k) = − ∆∗

E2
k + ℏ2ω2

, (3.128)

and
Gω(k) = −(ξk + iℏω)

E2
k + ℏ2ω2

. (3.129)

E2
k = ξk + |∆|2 from equation (3.46) . Now we take the definition of the gap function in

term of the Green function

∆(r) = −gT
∑
ω

lim
η→0+

eiωηFω(r, r).

Then we get the following summation of integrals

−∆ = gT
∑
ω

lim
η→0+

eiωη
∫

dk

(2π)3
∆

E2
k + ℏ2ω2

.
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Decomposing in fractions as we did before( see eq. 3.105 onward) we get the following
expression

1 = g

∫
dk

(2π)3
1

2Ek

tanh

(
Ek

2T

)
.

For an integral peaked near the Fermi surface

1 = gN(0)

∫
dξ

1

2
√
ξ2 +∆2

tanh

(√
ξ2 +∆2

2T

)
. (3.130)

This reproduces the experimental data[10]. It is presented in fig. 10 where ∆(T )
∆(0)

is plotted
as a function of T

Tc

Figure 10: The Temperature-dependent gap in units of the zero-temperature order pa-
rameter calculated within the full BCS approach versus relative temperature.

3.3.10 Zero temperature energy gap
As our last calculation for this chapter we can get another important result. Let

us calculate the gap function when the temperature drops to zero. As we do T → 0

tanh
(
Ek

2T

)
→ 1 so we have

1 = gN(0)

∫
dξ

2
√
ξ2 +∆2

(3.131)

This integral is divergent. As always we are not performing our calculations for an ar-
bitrary quantity. The energy range that the electrons can scatter is proportional to the
Debye energy.Therefore

1 = gN(0)

∫ ℏωD

−ℏωD

1

2

dξ√
ξ2 +∆2

(3.132)
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We again used the approximation for integrals peaked near the Fermi surface. Solving
this integral we get

1 = gN(0) ln

(√
1 +

(ℏωD
∆

)2
+ ℏωD

)
. (3.133)

As ℏωD

∆
≫ 1 we get finally:

∆(0) = 2ℏωDe−
1

gN(0) , (3.134)

which is the zero temperature energy gap. We already know that

Tc =
2ℏωDeγ

π
e−1/gN(0). (3.135)

So, we have that
∆(0)

Tc
≈ 1.76 (3.136)

Within the used approach with the simplified form of effective interaction between elec-
trons the ratio ∆(0)

Tc
is universal, i.e. does not depend on the nature of superconductor.

In fact the value of the fraction is slightly above 1.76. One of the early successes of BCS
theory was the verification that this relationship is approximately satisfied in most of the
known superconductors at the time.



59

4 APPLICATIONS OF MEAN FIELD THEORY

Until now we were focused on the case of conventional superconductors with only
one contributing single-particle band and with no paramagnetic effects (no spin-magnetic
interaction). In this chapter we are going to consider 2 cases that broaden the scope of
our calculations: (1) superconductors in the paramagnetic limit and (2) superconductors
with more than one contributing band.

4.1 Paramagnetic limit

While orbital effects lead to the formation of an Abrikosov vortex lattice bellow the
orbital upper critical field in type-II superconductors, the spin-magnetic interaction pro-
motes the tendency to Cooper pairing with non-zero momentum[11], the so-called Fulde-
Ferrel-Larkin-Ovchinikov(FFLO) state[12] [13]. Now, our goal is to derive the Ginzburg-
Landau equations with the spin-magnetic interaction taken into account. For the sake of
illustration, we investigate a single-band (clean) superconductor with a spherical Fermi
surface in the paramagnetic limit (orbital effects are neglected).

4.1.1 BCS Hamiltonian in the paramagnetic limit
Our starting point is the BCS Hamiltonian in the paramagnetic limit

HBCS =
∑
a

∫
drψ†

a(r)ξr,aψa(r)

+

∫
dr
(
ψ†
↑(r)ψ

†
↓(r)∆(r) + ∆∗(r)ψ↓(r)ψ↑(r)

)
+ C,

where the interaction part is considered within the Bogoliubov mean-field approximation.
The single-electron energies now read

ξr,↑ = −ℏ2∇2
r

2m
+ µBB − µ, ξr,↓ = −ℏ2∇2

r

2m
− µBB − µ,

where µB is the Bohr magneton, µ is the chemical potential, and the magnetic field is
chosen in the z-direction.
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The finite-temperature Heisenberg field operators obey the following equations of mo-
tion:

−ℏ∂τ

(
ψ↑(r, τ)

ψ†
↓(r, τ)

)
= HBdG

(
ψ↑(r, τ)

ψ†
↓(r, τ)

)
, (4.1)

where the Bogoliubov-de Gennes matrix in the paramagnetic limit reads

HBdG =

(
ξr,↑ ∆(r)

∆∗(r) −ξ∗r,↓

)
. (4.2)

Now, as in the previous chapter, we are going to investigate the corresponding Green
function formalism.

4.1.2 Green function formalism for paramagnetic limit
Similar to the previous chapter, we introduce the following Green functions:

G(rτ1, r′τ2) = −1

ℏ
⟨Tτ [ψ↑(rτ1)ψ

†
↑(r

′τ2)]⟩, (4.3)

F̃(rτ1, r
′τ2) = −1

ℏ
⟨Tτ [ψ†

↓(rτ1)ψ
†
↑(r

′τ2)]⟩, (4.4)

G̃(rτ1, r′τ2) = −1

ℏ
⟨Tτ [ψ†

↓(rτ1)ψ↓(r
′τ2)]⟩, (4.5)

F(rτ1, r
′τ2) = −1

ℏ
⟨Tτ [ψ↑(rτ1)ψ↓(r

′τ2)]⟩. (4.6)

Based on the above equations of motion for the Heisenberg field operators, one obtains
the following equations of motion for the introduced Green functions:{

(ℏ∂τ1 + ξr,↑)G(rτ1, r′τ2) + ∆(r)F̃(rτ1, r
′τ2) = −δ(r− r′)δ(τ1 − τ2),

(ℏ∂τ1 − ξ∗r,↓)G̃(rτ1, r′τ2) + ∆∗(r)F(rτ1, r
′τ2) = −δ(r− r′)δ(τ1 − τ2),

(4.7)

{
(ℏ∂τ1 − ξ∗r,↓)F̃(rτ1, r

′τ2) + ∆∗(r)G(rτ1, r′τ2) = 0,

(ℏ∂τ1 + ξr,↑)F(rτ1, r
′τ2) + ∆(r)G̃(rτ1, r′τ2) = 0.

(4.8)

Now, we invoke the Fourier representation with the fermionic Matsubara frequencies ω.
The equation of motions for the Green functions becomes{

(−iℏΩ + ξr)Gω(r, r′) + ∆(r)F̃ω(r, r
′) = −δ(r− r′),

(−iℏΩ− ξ∗r)G̃ω(r, r′) + ∆∗(r)Fω(r, r
′) = −δ(r− r′),

(4.9)

{
(−iℏΩ− ξ∗r)F̃ω(r, r

′) + ∆∗(r)Gω(r, r′) = 0,

(−iℏΩ + ξr)Fω(r, r
′) + ∆(r)G̃ω(r, r′) = 0,

(4.10)
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where Ω = ω + 1
ℏiµBB. Ω is called shifted Matsubara frequency. Following the matrix

notations of the previous chapter we can write

iℏΩǦω = 1̌2 + ξ̌Ǧω + ∆̌Ǧω, (4.11)

with

ξ̌ =

(
ξ̂ 0

0 −ξ̂∗

)
, ∆̌ =

(
0 ∆̂

∆̂∗ 0

)
. (4.12)

The matrix elements of the operators ξ̂ and ∆̂ in the single-particle Hilbert space are
given by

ξ̂ = ⟨r| ξ̂ |r′⟩ = δ(r− r′)ξr, ∆̂ = ⟨r| ∆̂ |r′⟩ = ∆rδ(r− r′).

We also introduced

Ǧω =

(
Ĝω F̂ω

ˆ̃Fω
ˆ̃Gω

)
, (4.13)

with the operators Ĝω,
ˆ̃Gω, F̂ω, and ˆ̃Fω defined as

⟨r| Ĝω |r′⟩ = Gω(r, r′), ⟨r|
ˆ̃Gω |r′⟩ = F̃ω(r, r

′),

⟨r| F̂ω |r′⟩ = Fω(r, r
′), ⟨r| ˆ̃Fω |r′⟩ = F̃ω(r, r

′). (4.14)

The normal-state Green function matrix obeys the following equation of motion

(iℏΩ− ξ̌)Ǧ(0)
ω = 1̌2, (4.15)

where

Ǧ(0)
ω =

(
Ĝ(0)
ω 0

0
ˆ̃Gω(0)

)
.

We can, therefore, write
Ǧ(0)
ω = (iℏΩ− ξ̌)−1. (4.16)

We can see that the only difference with our previous consideration is the appearance of
the shifted Matsubara frequencies. We can therefore write the gap equation, based on
our previous results, as

∆(r) =

∫
dyKa(r,y)∆(y) +

∫
dy1dy2dy3Kb(r,y1,y2,y3)∆(y1)∆

∗(y2)∆(y3).

The kernels of the integrals are

Ka(r,y) = −gT lim
τ→0+

∑
ω

eiωτG(0)
ω (r,y)G̃(0)

ω (y, r),

and
Kb = −gT lim

τ→0+

∑
ω

eiωτG(0)
ω (r,y1)G̃(0)

ω (y1,y2)G(0)
ω (y2,y3)G̃(0)

ω (y3, r).
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4.1.3 Calculations of the Ginzburg-Landau coefficients
Here the same formalism is applied to the calculation of the Ginzburg-Landau co-

efficients as previously. The only new feature is accounting for the shifted Matsubara
frequency Ω.
TERM PROPORTIONAL TO ∆3

b1 =

∫
dy1dy2dy3Kb(r,y1,y2,y3) =

∑
ω

∫
dk

(2π)3
1

(ℏ2Ω2 + ξ2k)
2
. (4.17)

b1 = TN(0)π
∑
ω>0

1

(ℏΩ)3
=

N(0)

8π2T 2
Re

(
∞∑
n=0

1

(n+ 1
2
+ iµBB

2πT
)3

)
. (4.18)

Expanding around τ = 1− T
Tc0(B)

we have

i
µBB

2πT
= i

µBB

2πTc0(B)

Tc0(B)

T
= i

µBB

2πTc0(B)

1

1− τ
≈ i

µBB

2πTc0(B)
(1 + τ).

We only take the zeroth order of τ and we get

b1 =
N(0)

8π2T 2
c0(B)

Re

(
∞∑
n=0

1(
n+ 1

2
+ i µBB

2πTc0(B)

)3
)
. (4.19)

where Tc0(B) is the mean-field critical temperature in the paramagnetic limit. a
TERM PROPORTIONAL TO THE SQUARED GRADIENT

We again have a similar term to the case without spin-magnetic interaction and we
proceed in the exact same way. Therefore,

a2 =
∑
ω

∫
dyKa(r,y)(r− y)2 = −T

2

∫
dk3

(2π)3

(ℏ2
m

)2 k2

(ℏ2Ω2 + ξ2k)
2
. (4.20)

Expanding for τ small we get

a2 = −v
2
F

6

N(0)

8π2T 2
c0(B)

Re

(
∞∑
n=0

1

(n+ 1
2
+ i µBB

2πTc0(B)
)3

)
. (4.21)

LOCAL LINEAR TERM

a1 =

∫
dyKa(r,y) = T

∑
ω

∫
dk

(2π)3
1

ℏ2Ω2 + ξ2k
= 2πTN(0)Re

(∑
ω>0

1

ℏΩ

)
. (4.22)

Here, as before, we encounter a divergent sum. To deal with this we need to introduce
cut-offs but for the paramagnetic limit. To avoid calculating new cut-offs we can use the
cut-offs from the previous case we encounter in Chapter 3 but with some modifications.
To do this consider the local term written in the following form

a1 = 2πTN(0)Re

(∑
ω>0

(
1

ℏΩ
− 1

ℏω

))
+ 2πTN(0)

∑
ω>0

1

ℏω
.
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From our earlier calculations we know that

2πTN(0)
∑
ω>0

1

ℏω
= N(0) ln

2ℏωDeγ

πT
. (4.23)

Therefore

a1 = 2πTN(0)Re

(∑
ω>0

(
1

ℏΩ
− 1

ℏω

))
+N(0) ln

2ℏωDeγ

πT
, (4.24)

We need to collect terms up to τ 3/2 in the Ginzburg-Landau equation. Since the order
parameter is proportional to τ 1/2, a1 has to include terms up to τ . So, the local-term
coefficient becomes

a1 = N(0)

{
ln

2ℏωDeγ

πTc0(B)
+ ln

Tc0(B)

T
+Re

(
∞∑
n=0

1

n+ 1
2
+ i µBB

2πTc0(B)

−
∞∑
n=0

1

n+ 1
2

)}
.

We wish to express this term in the familiar form: a1 = AT − a(B)τ . If we do this, we
have

AT = N(0)
{
ln

2ℏωDeγ

πTc0(B)
+ Re

(
∞∑
n=0

1

n+ 1
2
+ i µBB

2πTc0(B)

−
∞∑
n=0

1

n+ 1
2

)}
,

In addition, a(B) reads

a(B) = − N(0)

Tc0(B)
, (4.25)

where we use
ln
Tc0(B)

T
= ln

1

1− τ
≈ τ +

τ 2

2
.

Finally, we have all three coefficients for the Ginzburg-Landau equation in the param-
agnetic limit. Let us just summarize our calculations. The coefficients in the standard
notations of the Ginzburg-Landau theory are given by

a(B) = − N(0)

Tc0(B)
,

b(B) =
N(0)

8π2T 2
c0(B)

Re

(
∞∑
n=0

1(
n+ 1

2
+ i µBB

2πTc0(B)

)3
)
,

and

K(B) = −v
2
F

6

N(0)

8π2T 2
c0(B)

Re

(
∞∑
n=0

1

(n+ 1
2
+ i µBB

2πTc0(B)
)3

)
.

4.1.4 Equation for critical temperature in the paramagnetic limit
Next step to get all the necessary formalism to work in the paramagnetic limit is to

calculate the equation for the critical temperature. By the same reasons that we showed in
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Chapter 3 the critical temperature equation is: gAT = 1, but know we have a dependence
on the magnetic field. So, we write

gN(0)
{
ln

2ωDe
γ

πTc0(B)
+ Re

(
∞∑
n=0

1

n+ 1
2
+ i µBB

2πTc0(B)

−
∞∑
n=0

1

n+ 1
2

)}
= 1.

The logarithm term can be evaluated as

ln
2ωDe

γ

πTc0(B)
= ln

(
2ωDe

γ

πTc0(B = 0)

Tc0(B = 0)

Tc0(B)

)
,

= ln
2ωDe

γ

πTc0(B = 0)
+ ln

Tc0(B = 0)

Tc0(B)
,

=
1

gN(0)
+ ln

Tc0(B = 0)

Tc0(B)
.

since
Tc0(B = 0) =

2ℏωDeγ

π
e−1/gN(0).

So, the critical temperature equation becomes

1

gN(0)
+ ln

Tc0(B = 0)

Tc0(B)
+ Re

(
∞∑
n=0

1

n+ 1
2
+ i µBB

2πTc0(B)

−
∞∑
n=0

1

n+ 1
2

)
=

1

gN(0)
.

Rearranging we obtain

ln
Tc0(B = 0)

Tc0(B)
= Re

(
∞∑
n=0

1

n+ 1
2

−
∞∑
n=0

1

n+ 1
2
+ i µBB

2πTc0(B)

)
.

In figure 11 we depic the critical temperature Tc0(B) as function of µBB.
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Figure 11: Critical temperature in the paramagnetic limit.

4.1.5 Ginzburg-Landau equation
In the paramagnetic limit the Ginzburg-Landau equation is the same as before with

the only difference that the coefficients are magnetic field dependent. Here we just quote
the previous result. It is

a(B)∆ + b(B)|∆|2∆−K(B)∇2∆ = 0. (4.26)

4.1.6 Fulde-Ferrel-Larkin-Ovchinnikov phase
As it was shown long time ago by Larkin and Ovchinnikov and by Fulde and Ferrell[12][13],

at low temperatures and when the magnetic field is acting on the spin of electrons
only(paramagnetic limit), a transition from normal (N) to modulated superconducting
state (FFLO state) must occur. The FFLO phase consists in a condensate of finite mo-
mentum Cooper pairs in contrast to the zero momenta pairs of the usual BCS state(as
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shown in chapter 2). Hence the FFLO superconducting order parameter acquires a spatial
variation. A characteristic feature of the field-temperature phase diagram is the existence
of a tricritical point (TCP) which is the meeting point of three transition lines separating
the normal metal, the uniform superconductor and the FFLO state[11]. For clean s-wave
superconductors the TCP is located at T ∗ = 0.56Tc0[14] and B∗ = 1.07Tc0, Tc0 being the
zero field critical temperature. The FFLO state is only energetically favorable in a small
part of the phase diagram, located at low temperatures T < T ∗ and high fields,

Along the transition line define by gA = 1 (see figure 11) the Ginzburg-Landau coef-
ficient b(B) changes sign and at the tri-critical point (T*, B*) where the BCS supercon-
ducting state, normal state and FFLO state meet, it becomes zero (b = 0). This means
that

Re

(
∞∑
n=0

1(
n+ 1

2
+ i µBB

2πTc0(B)

)3
)

= 0.

From this equation we get that

µBB(T )

2πTc0(B)
≈ 0.3. (4.27)

We also know that along the transition line a1(T ) = 0 because ∆ = 0 for the normal
state. Taking the expression for this coefficient and calculating at which temperature
µBB(T )
2πTc0(B)

= 0.3 is true we obtain

ln
2ωDe

γ

πTc0(B)
+ Re

(
∞∑
n=0

1

n+ 1
2
+ i0.3

−
∞∑
n=0

1

n+ 1
2

)
= 0. (4.28)

This is true when
T ∗

Tc0(B = 0)
≈ 0.56. (4.29)

and, therefore,
B∗(T ∗)µB
Tc0(B = 0)

≈ 1.07, (4.30)

which give us the TCP on the field-temperature phase diagram.
Now, we will calculate the phase diagram for the modulated order parameter for a

simple case to see that for low temperature and high magnetic field the system has a
tendency to form Cooper pair with nonzero momenta. To do this we start with the
following two Gor’kov equations in the paramagnetic limit

(−iℏΩ− ξ∗r)G̃ω(r− r′) + ∆∗(r)Fω(r− r′) = −δ(r− r′),

(−iℏΩ + ξr)Fω(r− r′) + ∆(r)G̃ω(r− r′) = 0.
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We submit the following space dependence for the Green functions

Fω(r− r′) =

∫
dk

(2π)3
Fω(k)e

i(k+q/2)·(r−r′),

G̃ω(r− r′) =

∫
dk

(2π)3
G̃ω(k)ei(k−q/2)·(r−r′),

where q is the centre of mass vector for the Cooper pair. We go to the fourier space and
the Gor’kov equations become(

− iℏΩ−
[ℏ2(k− q/2)2

2m
− µ

])
G̃ω(k) + ∆∗Fω(k) = −1,(

− iℏΩ +
[ℏ2(k+ q/2)2

2m
− µ

])
Fω(k) + ∆G̃ω(k) = 0.

Observe that

ℏ2

2m
(k− q/2)2 − µ =

ℏ2q2

8m
+

ℏ2k2

2m
− ℏ2q · k

2m
− µ ≈ ξk −

ℏ2q · k
2m

ℏ2

2m
(k+ q/2)2 − µ =

ℏ2q2

8m
+

ℏ2k2

2m
+

ℏ2q · k
2m

− µ ≈ ξk +
ℏ2q · k
2m

,

where ξk = ℏ2k2
2m

− µ. Because the q-vector is of the order of the coherence length it is
small when we compare with kF in the regions of major interest , q ≪ kF , we need to
keep only the first order terms of q. Then, the Gor’kov equation becomes(

− iℏΩ− ξk +
ℏ2q · k
2m

)
G̃ω(k) + ∆∗Fω(k) = −1,(

− iℏΩ + ξk +
ℏ2q · k
2m

)
Fω(k) + ∆G̃ω(k) = 0.

From this system of equations we obtain the following expression for the hole Green
function

Fω = − ∆

(iℏΩ− ξk − ℏ2q·k
2m

)(−iℏΩ− ξk +
ℏ2q·k
2m

) + |∆|2
,

Fω = − ∆

(ℏ2Ω2 + 2iℏ3Ωq·k
2m

− ℏ4q2k2
4m2 + ξ2k) + |∆|2

,

Fω = − ∆

(ℏΩ + iℏ
2q·k
2m

)2 + ξ2k + |∆|2
.

As we know, the order parameter is given by

∆ = −gT
∑
n

lim
η→0+

eiωη
∫

dk

(2π)3
Fω(k),

which means that

∆ = gT
∑
n

lim
η→0+

eiωη
∫

dk

(2π)3
∆

(ℏΩ + iℏ
2q·k
2m

)2 + ξ2k + |∆|2
.
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We then go to the critical point for the paramagnetic limit Tc0(B), a point which we
denote by Tcp. Because of this |∆|2 → 0 and we have

∆ = gTc0(B)
∑
n

lim
η→0+

eiωη
∫

dk

(2π)3
∆

(ℏΩ + iℏ
2q·k
2m

)2 + ξ2k
.

For the 1D case we obtain

∆ = gTc0(B)
∑
n

lim
η→0+

eiωη
∫

dk

2π

∆d(cosθ)

(ℏΩ + iℏ
2qk
2m

cosθ)2 + ξ2k
.

where for this case cosθ = ±1. So,

∆ = gTc0(B)
∑
n

lim
η→0+

eiωη

[∫
dk

2π

∆

(ℏΩ + iℏ
2qk
2m

)2 + ξ2k
+

∫
dk

2π

∆

(ℏΩ− iℏ
2qk
2m

)2 + ξ2k

]
.

We proceed with integration in the same way we did before (see eq. 4.22). We get

∆ =gTc0(B)
m

ℏ22πkF

∑
n

∑
±

∫ ∞

−∞
dξ

∆

(ℏΩ± iℏ
2kF
2m

)2 + ξ2
,

=gTc0(B)N1D
1

2

∑
n

∑
±

∫ ∞

−∞
dξ

∆

(ℏΩ± iℏqvF
2

)2 + ξ2
,

=gTc0(B)N1D
1

2

∑
n

∑
±

∆

ℏΩ± iℏvF q
2

∫ ∞

−∞
dx

1

1 + x2
,

=gTc0(B)N1Dπ
1

2

∑
n

∑
±

∆

ℏΩ± iℏvF q
2

.

This series is divergent. As before we do

1

2

∑
n

∑
±

1

(ℏΩ± iℏvF q
2

)
=
∑
n

(
1

2

∑
±

1

(ℏΩ± iℏvF q
2

)
− 1

ℏω
+

1

ℏω

)
,

with ∑
n

1

ℏω
=

1

πT
ln

2ℏωDeγ

πT
.

Finally we have that

1

gN1D

= πTc0(B) Re

{∑
n

(
1

2

∑
±

1

(ℏΩ± iℏvF q
2

)
− 1

ℏω

)}
+ ln

2ℏωDeγ

πTc0(B)
,

ln
2ℏωDeγ

πTc0(B)
− 1

gN1D

= πTc0(B) Re

{∑
n

(
1

ℏω
− 1

2

∑
±

1

(ℏΩ± iℏvF q
2

)

)}
,

ln
Tc0(B = 0)

Tc0(B)
+ ln

2ℏωDeγ

Tc0(B = 0)
− 1

gN1D

= πTc0(B) Re

{∑
n

(
1

ℏω
− 1

2

∑
±

1

(ℏΩ± iℏvF q
2

)

)}
,

ln
Tc0(B = 0)

Tc0(B)
= πTc0(B) Re

{∑
n

(
1

ℏω
− 1

2

∑
±

1

(ℏΩ± iℏvF q
2

)

)}
.
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The graph bellow shows this plot using the result for q = 0 as a reference. We can see
the region of FFLO state for low temperatures and high magnetic fields.

Figure 12: Phase diagram for q ̸= 0 solid line and for q = 0 dashed line. The absolute
value of the FFLO modulation vector q as a function of Tc0(B)/Tc0(B = 0) gray line.

4.2 Multi-band superconductors

Multi-band and multi-gap superconductors have demonstrated a potential for realizing
novel coherent quantum phenomena that can enhance their critical temperature. As we
demonstrated in last chapter, τ = 1 − T

Tc
controls all the relevant quantities and their

spatial gradients. Within this approach, the Ginzburg-Landau theory follows from the
systematic τ -expansion of the free energy and the gap equation. Here we find the series
expansion in τ for the original system of the two equations for two band order parameters
in the matrix form. While being more transparent and intuitively clear, this approach
also significantly simplifies the technical aspects and also allows a generalization to the
case of multiple contributing bands.

In this section first we will show a general expression for the free-energy functional
of a two-band (clean) superconductor with s-wave pairing governed by the intra-band
interaction strength gνν(ν = 1, 2) and inter-band coupling g12 = g21 of the Josephson
type. Then we will investigate the τ expansion for the free energy and the corresponding
τ -expansion for the matrix gap equation, which yields consequently the equation for the
critical temperature and the standard Ginzburg-Landau formalism [15].
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4.2.1 Free-energy functional density
The free-energy functional for a two-band s-wave superconductor with pairing between

electrons in the same sub-band reads

Fs = Fn,B=0 +

∫
dr
{B2(r)

8π
+ ∆⃗†ǧ−1∆⃗

}
+
∑
ν=1,2

Fν [∆ν ], (4.31)

where ǧ is the coupling matrix

ǧ =

(
g11 g12

g12 g22,

)
, ǧ−1 =

1

G

(
g22 g12

−g12 g11

)
.

We also have that

∆⃗ =

(
∆1

∆2

)
, and G = g11g22 − g212.

The functional Fν [∆ν ] can be represented as an infinite series in powers of ∆ν as

Fν =−
∫
drdyKν,a(r,y)∆

∗
ν(r)∆ν(y)

−1

2

∫
dr

3∏
j=1

d3yjKν,b(r, {y}3)∆∗
ν(r)∆ν(y1)∆

∗
ν(y2)∆ν(y3)− . . . .

Where {y}3 = y1,y2,y3. In vicinity of the critical temperature this infinite series in
powers of ∆ν (and also ∆∗

ν) can be truncated. Keeping only the first two terms makes
it possible to get the Ginzburg-Landau theory. The kernels of the integrals in the above
expression are the same as those in the derivation of the Ginzburg-Landau equations in
Chapter 3 (up to band index).

4.2.2 τ expansion
Applying the variational principle in this free-energy functional we can get the Ginzburg-

Landau equation and the critical temperature equation. But, first we need to get the cor-
rect contributions to these equations. All relevant quantities of the problem, including the
coherence length(s), are controlled by the same small parameter τ that we have discussed
before. To get the explicit τ -dependence we introduce, as the first step, the scaling

∆ν = τ 1/2∆̄ν , r =τ−1/2r̄, A =τ 1/2Ā, B =τB̄. (4.32)

One notes that the scaling of the spatial coordinates means ∇r = τ 1/2∇̄r. The scaling of
the free energy density is given by comparing with the single-band case. It is

fs = fn,B=0 +
1

τ
(g−1 − a1)|∆|2 + a2|∇∆|2 + b1

2
|∆|4,
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because of the scaling of the order parameter and the magnetic field we have that

f = f̄ τ 2

As the second step, we expand all the relevant quantities in τ , e.g.,

∆̄ν =∆̄(0)
ν + τ∆̄(1)

ν + · · · ,

Ā =Ā(0) + τĀ(1) + · · · ,

B̄ =B̄(0) + τB̄(1) + · · · .

By substituting these expressions in the free-energy expression and matching the same
orders of magnitude, we get the τ -expansion for the free-energy functional.

We obtain
f̄s − f̄n,B=0 = τ−1f̄ (−1) + τ 0f̄ (0). (4.33)

Hereafter we omit bars over the scaled quantities unless it causes confusion. The lowest-
order term in this expansion reads

f (−1) = ∆⃗(0)†Ľ∆⃗(0), (4.34)

where

Ľ =
1

G

(
g22 −GN1(0)A −g12

−g12 g11 −GN2(0)A

)
, (4.35)

with

A = ln
2eγℏωD
πTc0

(4.36)

Tc0 the mean-field critical temperature and Ni(0) is the DOS for the respective band. The
leading-order term is

f (0) =
B2

8π
+
(
∆⃗(0)†Ľ∆⃗(1) + c.c.

)
+
∑
ν=1,2

f (0)
ν , (4.37)

where
f (0)
ν = aν |∆(0)

ν |2 + bν
2
|∆(0)

ν |4 +Kν |D∆(0)
ν |2, (4.38)

with D = ∇ − i2eℏcA
(0). The coefficients of the expansion depend on the particular

superconducting system.

4.2.3 Critical temperature equation
Taking the functional derivative of the free energy with the density f (−1) with respect

to ∆⃗(0)† and set it to zero we obtain

Ľ∆⃗(0) = 0. (4.39)
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The condition to the existence of a nontrivial solution give us the critical temperature.
This condition is

det Ľ = 0. (4.40)

This means that
(g22 −N1GA)(g11 −N2GA)− g212 = 0. (4.41)

This equation has two solutions but we have to choose the one with the largest critical
temperature. To get a explicit expression for the critical temperature we will now calculate
the solution to equation (4.39). If η⃗ is an eigenvector of the matrix Ľ and Ψ(r) is, for
now, an unknown function that we will specify later, we have that

∆⃗(0)(r) = Ψ(r)η⃗ (4.42)

is a solution. Let us calculate η⃗. The characteristic equation of matrix Ľ is

(g22 −N1GA− λ)(g11 −N2GA− λ) = g212,

where λ is the eigenvalue. However, the condition for a nontrivial solution that we have
already considered means that we need to take the eigenvector associated with the λ = 0

eigenvalue. Therefore

1

G

(
g22 −GN1(0)A −g12

−g12 g11 −GN2(0)A

)
η⃗ = 0,(

g22 −GN1(0)A −g12
−g12 g11 −GN2(0)A

)(
a

b

)
= 0.

This system of equations has an infinite number of solutions different up to an arbitrary
numerical factor. Choosing

η⃗ =

⎛⎝√ g12
g22−GN1A√
g22−GN1A

g12

⎞⎠ . (4.43)

we can write

∆⃗(0) = Ψ(r)

(
S−1/2

S1/2

)
, (4.44)

with
S ≡ g22 −GN1A

g12
. (4.45)

This result shows that the band order parameters are strictly proportional to one another
with their position dependence governed by the ψ(r) function.
We have calculated the eigenvector of Ľ because we need to use the value of S in our
expression for the critical temperature. We can see that S is defined using A and the
critical temperature is defined using A. We wish to express the critical temperature in
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terms of the properties of the system only. To do this we will remove the dependence of
S on A. So, from the definition of S we have that

S =
g22 −GN1A

g12
,

or
A =

g22 − g12S

N1G
. (4.46)

From the critical temperature equation

g12
g22 −GN1A

=
g11 −GN2A

g12
,

Since
1

S
=

g12
g22 −GN1A

,

we can write
S−1 =

g11 −GN2A
g212

,

and we get

A =
g11 − g12S

−1

GN2

. (4.47)

Now, we can eliminate A from the equation and write

g12S − g22
GN1

=
g12S

−1 − g11
GN2

. (4.48)

Introducing χ ≡ N2

N1
, this equation can be written as

χ(g12S − g22) = g12S
−1 − g11,

χg12S
2 − g22χS = g12 − g11S,

χg12S
2 + S(g11 − g22χ)− g12 = 0,

g12S
2 +

(g11
χ

− g22

)
S − g12

χ
= 0.

Multiplying this equation by (N1 +N2) we get

g12(N1 +N2)S
2 + S

(g11
χ

− g22

)
(N1 +N2)−

g12
χ

(N1 +N2) = 0.

We define λµν ≡ gµν(N1 +N2). So, we can write that

λ12S
2 +

(λ11
χ

− λ22

)
S − λ12

χ
= 0. (4.49)

Solving this quadratic equation we have two values of S. We take the one which gives the
highest value for the critical temperature. It is

S =

(
λ22 − λ11

χ

)
+

√(
λ22 − λ11

χ

)2
+ 4

λ212
χ

2λ12
(4.50)
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Now, S is only given in terms of the system microscopic parameters χ and λµν . The last
step in our calculation is to deal directly with the expression for the critical temperature
and the value of A. We got back to the following relation

A =
g22 − g12S

N1G
.

Now, let us write the following

N1 +N2

1 + χ
=
N1 +N2

1 + N2

N1

= N1

(N1 +N2

N1 +N2

)
= N1.

Then we substitute this expression in the relation for A as follows

A =
g22 − g12
N1+N2

1+χ
G

= (1 + χ)
g22 − g12S

(N1 +N2)G
= (1 + χ)

g22 − g12S

(N1 +N2)G

(
N1 +N2

N1 +N2

)
.

Following the definition of λµν , the above equation becomes

A = (1 + χ)
λ22 − λ11S

(N1 +N2)2G
.

The expression in the denominator can be written as

(N1 +N2)
2G = (N1 +N2)

2(g11g22 − g212) = λ11λ22 − λ212

and so
A = (1 + χ)

λ22 − λ11S

λ11λ22 − λ212
. (4.51)

Now, from equation (4.36) we find

Tc0 =
2eγℏωD

π
exp

{
−(1 + χ)

λ22 − λ11S

λ11λ22 − λ212

}
. (4.52)

For further illustration we use the fact that

Tc0,1 =
2eγℏωD

π
exp

{
− 1

g11N1

}
,

where, Tc0,1 is the mean field critical temperature of band 1. The exponential function
factor can be represented as

exp

{
− 1

g11N1

}
= exp

⎧⎨⎩− 1

g11

(
N1+N2

1+χ

)
⎫⎬⎭ = exp

{
− 1

λ11
1+χ

}
,

and, finally, we get

Tc0
Tc0,1

= exp

{
(1 + χ)

( 1

λ11
− λ22 − λ12S

λ11λ22 − λ212

)}
. (4.53)
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In the figure 13 we plot Tc0
Tc0,1

as function of the intra-band coupling λ12 for λ22 = 0.3 and
λ11 = 0.25.

Figure 13: The mean-field critical temperature Tc0 of the two-band superconductor versus
λ12.

4.2.4 Ginzburg-Landau equation for a two-band system
The free energy density contribution to the τ 0 order is

f (0) =
B2

8π
+ ∆⃗(0)†Ľ∆⃗(1) + ∆⃗(0)Ľ∆⃗(1)† +

∑
ν=1,2

f (0)
ν , (4.54)

where
f (0)
ν = aν |∆(0)

ν |2 + bν
2
|∆(0)

ν |4 −Kν |D∆(0)
ν |2. (4.55)

Taking the functional derivative of the free energy contribution corresponding to f (0) with
respect to ∆

(0)†
ν , we obtain

Ľ∆⃗(1) + W⃗[∆⃗(0)] = 0, (4.56)

where

W⃗ =

(
W1

W2

)
,
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and Wν = aν∆
0
ν+bν |∆0

ν |2∆0
ν−KνD

2∆0
ν . We can see that the stationary-point equation in

this order for a two-band system mixes contributions from ∆⃗(1) and ∆⃗(0), unlike the single
band case. However, despite this feature, we are still able to calculate ∆

(0)
ν independently

of ∆(1)
ν . To do this, we express ∆(1) as a linear combination of the following two linear

independent vectors

η⃗+ =

(
S−1/2

S1/2

)
, η⃗− =

(
S−1/2

−S1/2

)
, (4.57)

i.e.,
∆⃗(1) = ϕ+(r)η⃗+ + ϕ−(r)η⃗−.

Substituting this expression in (4.56) we get

ϕ−(r)Ľη⃗− + W⃗[∆⃗0] = 0, (4.58)

where we have taken into account the fact that η⃗+ is an eigenvector of Ľ with zero
eigenvalue. Projecting the obtained equation onto η⃗+ we get

η⃗+W̌ (∆0) = 0, (4.59)

as η⃗+Ľ = 0. Now, let’s write these matrices explicitly. They are(
S−1/2, S1/2

)(a1Ψ(r)S−1/2 + b1|Ψ(r)S−1/2|2Ψ(r)S−1/2 −K1D
2Ψ(r)S−1/2

a1Ψ(r)S1/2 + b1|Ψ(r)S1/2|2Ψ(r)S1/2 −K1D
2Ψ(r)S1/2

)
,

which dictates
aΨ(r) + b|Ψ(r)|2Ψ(r)−KD2Ψ(r) = 0 (4.60)

The relevant coefficients are averages over the contributing bands

a = a1S
−1 + a2S, (4.61)

b = b1S
−2 + b2S

2, (4.62)

K = K1S
−1 +K2S. (4.63)

Thus, a consistent implementation of the two-band Ginzburg-Landau theory produces
the effectively-single component Ginzburg-Landau formalism but with the parameters
averaging over the both contributing bands. However, one should keep in mind that ψ(r)
can not be interpreted as an excitation gap but it is related to the band energy gaps
through

∆⃗(0) = Ψ(r)

(
S−1/2

S1/2

)
. (4.64)
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5 FLUCTUATION THEORY

A major success in low temperature physics was achieved with the introduction of
the notion of quasiparticles. According to this hypothesis the properties of many-body
interacting system at low temperature are determined by the spectra of some low-energy,
long-lived excitations. Another important milestone of many-body theory is the mean-
field approximation. Phenomena which cannot be described by the quasiparticle method
or by the mean field approximation are usually called fluctuation.

The BCS theory, as we saw in chapter 2, is a successful example of both quasiparticle
and mean-field. However, BCS gives only good results for traditional superconductors. In
the vicinity of transition, superconducting fluctuations influence different physical prop-
erties of a metal and lead to the appearance of small corrections to the corresponding
physical characteristics in a wide range of temperatures. Our aim in this chapter is to
consider how to deal with fluctuations and to demonstrate how to correct the critical
temperature obtained from mean-field theory.

5.1 Fluctuation domain

The characteristics of high temperature and organic superconductors, low dimensional
and amorphous superconducting systems studied nowadays strongly differ from those of
the traditional superconductors discussed in Chapter 3. The phase transition turn out
to be much more smeared out. The appearance of superconducting fluctuations above
the critical temperature leads to precursor effects of the superconducting phase occurring
while the system is still in the normal phase, sometimes far from the critical temperature.
The conductivity, the heat capacity, the diamagnetic susceptibility, the sound attenuation,
etc. may increase considerably in the vicinity of the transition temperature.

The first numerical estimation of the fluctuation contribution to the heat capacity of a
superconductor in the vicinity of Tc0 was done by Ginzburg in 1960[16]. In that paper he
showed that superconducting fluctuations increase the heat capacity even above Tc0. In
this way fluctuations change the temperature dependence of the specific heat in the vicin-
ity of the critical temperature where, according to the phenomenological Landau theory
of second-order phase transitions, a jump should take place. The range of temperatures
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where the fluctuation correction to the heat capacity of a bulk, clean, conventional super-
conductor is relevant was estimated by Ginzburg to be δT

Tc0
∼ 10−18. In the modern theory

of phase transitions the relative temperature width of the fluctuation region is called the
Ginzburg Number, Gi.

5.1.1 The Ginzburg number
This quantity is defined as

Gi ≡ 1− T ∗

Tc0
, (5.1)

where T ∗ is the Ginzburg-Levanyuk temperature. At this particular temperature fluc-
tuations start to be important. The piece of physical information that will allow us to
understand a little more about superconductors is that at this exact temperature the
fluctuation contribution to the heat capacity is equal to the mean field contribution to
the heat capacity. On this chapter we are going to calculate both mean-field and fluctua-
tion contribution to the heat capacity. We will find T ∗ in terms of the Ginzburg-Landau
coefficients(a, b and K) and mean-field critical temperature(Tc0) and use it to calculate the
Ginzburg number. With this number we will be able to know how much the temperature
will shift from its mean-field result in consequence of thermal fluctuations.

5.2 Partition function and free energy

To calculate system properties we need to find the correct expression to the partition
function, Z. The partition function is composed of two different contributions: fluctuation
and mean field. Because the free energy is of the form F = F [∆(r)] we need to integrate
all possible configurations of the system. In particular, for the fluctuation contribution we
will need to integrate over all possible fluctuation fields. This means that we need perform
a functional integration. But, what will be the fluctuation “Hamiltonian" for our system?
We will need to reinterpret the free-energy functional as a fluctuation “Hamiltonian" and
calculate the partition function. To this end we need first to deal with the free-energy
functional.

5.2.1 Mean field and fluctuation contribution to the free energy
For a configuration of D-dimensions we have

F =

∫
LD

dDr
{
a|∆(r)|2 + b

2
|∆(r)|4 +K|∇∆(r)|2

}
. (5.2)
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If we consider that the order parameter varies from the uniform solution by a fluctuation
field η(r) we can write

∆(r) = ∆0 + η(r). (5.3)

Where ∆2
0 = −a

b
. Then the free-energy functional can be express as

F = F0 +H. (5.4)

F0 is the mean-field contribution to the free-energy density. H is called fluctuation “Hamil-
tonian" which is the fluctuation contribution to the free-energy density and only depends
on the fluctuation fields η(r) and η∗(r). We gave it this name because, as we mention
before, when we calculate the properties of the system we reinterpret the free energy as
the “Hamiltonian". Therefore, the partition function which has the form

Z =

∫
D[∆(r)] exp

{
− 1

T
F
}
,

becomes
Z = exp

{
− 1

T
F0

}∫
D[η(r)] exp

{
− 1

T
H[η(r)η∗(r)]

}
, (5.5)

where the integration is perform over all possible configurations of the Cooper pair wave
function. Let us plug ∆(r) = ∆0 + η(r) in the free-energy functional. We are only
interested in the quadratic terms. We will see further why odd-power terms do not
contribute to Gaussian fluctuations. Let’s calculate each of the 3 terms of F individually.
We have

a|∆(r)|2 → a(∆0 + η(r))(∆0 + η∗(r)) = a∆2
0 + a|η(r)|2 + a∆0η

∗(r) + a∆0η(r).

Keeping only the quadratic terms we obtain

a|∆(r)|2 → a∆2
0 + a|η(r)|2. (5.6)

For the next term
b

2
|∆(r)|4 → b

2

(
∆0 + η(r)

)2(
∆0 + η∗(r)

)2
.

Keeping only quadratic terms we get
b

2
|∆(r)|4 → b

2

(
∆4

0 +∆2
0η

∗(r)2 + 4∆2
0|η(r)|2 + η2(r)∆2

0

)
. (5.7)

The last term becomes

K
⏐⏐∇∆(r)

⏐⏐2 → K
⏐⏐∇(∆0 + η(r)

)⏐⏐2 = K|∇η(r)|2. (5.8)

∆0 is not position dependent. Collecting the terms proportional to ∆0 we obtain

F0 =

∫
LD

dDr
{
a∆2

0 +
b

2
∆4

0

}
= −a

2

2b
LD. (5.9)

Now, collecting the remaining terms we obtain the fluctuation “Hamiltonian". It is

H =

∫
LD

dDr
{
(a+ 2b∆2

0)|η2(r)|+
b

2
∆2

0η
2(r) +

b

2
∆2

0(η
∗(r))2 +K|∇η(r)|2

}
. (5.10)
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5.2.2 Fourier transform of the Gaussian “Hamiltonian"
We can write the fluctuation contribution to the partition function as

ZFLUC =

∫
[Dη(r)] exp

{
− 1

T
H(η(r), η∗(r))

}
. (5.11)

As we said before it involves a functional integral. We, however, can deal with this by first
transforming the fluctuation fields from configuration space to the momentum space and
then separating the real and imaginary parts of this field. We will perform the following
Fourier transform into momentum space

η(r) =
1

LD/2

∑
q

eiq·rηq, η∗(r) =
1

LD/2

∑
q

e−iq·rη∗q. (5.12)

Now, to make it easier to see each term, let us express the Gaussian “Hamiltonian" as

H = (a+ 2b∆2
0)

∫
LD

dDr|η2(r)|+ b

2
∆2

0

∫
LD

dDrη2(r)

+
b

2
∆2

0

∫
LD

dDr(η∗(r))2 +K
∫
LD

dDr|∇η(r)|2.

Now, we perform the transformation into momentum space. The first integral becomes∫
LD

dDr|η(r)|2 =
∫
LD

dDr
1

LD

∑
q,q′

ei(q−q′)·rηqη
∗
q′ =

∑
q,q′

ηqη
∗
q′δq,q′ =

∑
q

|ηq|2.

The second integral is∫
LD

dDrη2(r) =

∫
LD

dDr
1

LD

∑
q,q′

ei(q+q′)·rηqηq′ =
∑
q,q′

ηqηq′δq,−q′ =
∑
q

ηqη−q.

The third integral becomes∫
LD

dDr(η∗(r))2 =

∫
LD

dDr
1

LD

∑
q,q′

e−i(q+q′)·rη∗qη
∗
q′

=
∑
q,q′

η∗qη
∗
q′δq,−q′ =

∑
q

η∗qη
∗
−q.

The last term is∫
LD

dDr|∇η(r)|2 =
∫
LD

dDr
1

LD

∑
q,q′

∇
(
eiq·rηq

)
· ∇
(
e−iq·rη∗q

)
=
∑
q,q′

q2ei(q−q′)·rηqη
∗
q =

∑
q

q2|ηq|2.

Collecting all terms we obtain

H =
∑
q

(a+ 2b∆2
0 +Kq2)|ηq|2 +

b

2
∆2

0

{
ηqη−q + η∗qη

∗
−q

}
. (5.13)
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Now we separate the real and imaginary parts of the fluctuation field. We can write

ηq = xq + iyq, (5.14)

where, xq = Re{ηq} and yq = Im{ηq}. Then, the Gaussian “Hamiltonian" becomes

H =
∑
q

{
(a+ 2b∆0 +Kq2)(x2q + y2q) +

b

2
∆2

0(2xqx−q − 2yqy−q)
}
. (5.15)

If we denote: Aq = a+ 2b∆2
0 +Kq2 and B = b∆2

0 we will have the following

H =
∑
q

{
Aq

(
x2q + y2q

)
+B

(
xqx−q − yqy−q

)}
. (5.16)

Let us now express it in a more convenient form. Because of the summation over all
momenta q we have the following relations∑

q

Aqx
2
q =

∑
q

Aqx
2
−q

∑
q

Bxqx−q =
∑
q

Bx−qxq,∑
q

Aqy
2
q =

∑
q

Aqy
2
−q

∑
q

Byqy−q =
∑
q

By−qyq.

Using these relations we can write

H =
1

2

∑
q

[
Aqx

2
q +Bxqx−q +Bx−qxq + Aqx

2
−q

]
+

1

2

∑
q

[
Aqy

2
q −Byqy−q −By−qyq + Aqy

2
−q

]
.

Now we can express this fluctuation “Hamiltonian" in the matrix form

H =
1

2

∑
q

[(
xq, x−q

)(Aq B

B Aq

)(
xq

x−q

)
+
(
yq, y−q

)(Aq −B
−B Aq

)(
yq

y−q

)]
. (5.17)

It is convenient to rewrite this expression as

H =
∑

q,qx≥0

[(
xq, x−q

)(Aq B

B Aq

)(
xq

x−q

)
+
(
yq, y−q

)(Aq −B
−B Aq

)(
yq

y−q

)]
(5.18)

and represent the fluctuation contribution to the partition function in the form

ZFLUC =

∫ ∏
q,qx≥0

[(
dxqdx−qdyqdy−q

)
e−

1
T
H[xq,x−q,yq,y−q]

]
. (5.19)

The auxiliary restriction of the summation and product to the domain qx ≥ 0 is a matter
of our convenience. One can also use, e.g., qy ≥ 0 or qz ≥ 0. The final results are not
sensitive to such an auxiliary procedure.
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5.2.3 Diagonalization of the “Hamiltonian"
As we can see our fluctuation “Hamiltonian" is not diagonal. Calculations with Hamil-

tonians in the diagonal form are easier. Let us diagonalize the relevant Gaussian “Hamil-
tonian", introducing new variables αq, βq, ηq, and ζq as follows:

(
xq, x−q

)(Aq B

B Aq

)(
xq

x−q

)
=
(
αq, βq

)(E(x)
q,+ 0

0 E
(x)
q,−

)(
αq

βq

)
, (5.20)

and (
yq, y−q

)(Aq −B
−B Aq

)(
yq

y−q

)
=
(
ξq, ζq

)(E(y)
q,+ 0

0 E
(y)
q,−

)(
ξq

ζq

)
. (5.21)

Here, E(x)
q,+ and E

(x)
q,− are the eigenvalues of diagonal fluctuation modes associated with

the real component of the fluctuation field and E
(y)
q,+ and E

(y)
q,− are associated with its

imaginary component. If the unitary matrix Ux is made of eigenvectors of

(
Aq B

B Aq

)
,

then

U †
x

(
Aq B

B Aq

)
Ux =

(
E

(x)
q,+ 0

0 E
(x)
q,−

)
,

and we can write(
xq, x−q

)
UxU †

x

(
Aq B

B Aq

)
UxU †

x

(
xq

x−q

)
=
(
αq, βq

)(E(x)
q,+ 0

0 E
(x)
q,−

)(
αq

βq

)
,

where

U †
x

(
xq

x−q

)
=

(
αq

βq

)
or
(
xq, x−q

)
Ux =

(
αq, βq

)
. (5.22)

Similarly, if the unitary matrix Uy is made of eigenvectors of

(
Aq −B
−B Aq

)
, then

U †
y

(
Aq −B
−B Aq

)
Uy =

(
E

(y)
q,+ 0

0 E
(y)
q,−

)
,

and we have(
yq, y−q

)
UyU †

y

(
Aq −B
−B Aq

)
UyU †

y

(
yq

y−q

)
=
(
ξq, ζq

)(E(y)
q,+ 0

0 E
(y)
q,−

)(
ξq

ζq

)
,

where

U †
y

(
yq

y−q

)
=

(
ξq

ζq

)
or
(
yq, y−q

)
Uy =

(
ξq, ζq

)
. (5.23)
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Our next step is to explicitly find the unitary transformations Ux and Uy. The eigen-
value equation associated with Ux is(

Aq B

B Aq

)(
u
(x)
±

v
(x)
±

)
= E

(x)
q,±

(
u
(x)
±

v
(x)
±

)
. (5.24)

A solution for this equation exists when

det

(
Aq − E

(x)
q,± B

B Aq − E
(x)
q,±

)
= 0.

This, of course, means that

E
(x)
q,+ =Aq +B, E

(x)
q,− =Aq −B.

The eigenvector for E(x)
q,+ is given by(

Aq B

B Aq

)(
u
(x)
+

v
(x)
+

)
= (Aq +B)

(
u
(x)
+

v
(x)
+

)
,

where the normalization condition u(x)2+ + v
(x)2
+ = 1 is assumed. So, we get

u
(x)
+ =

1√
2

and v(x)+ =
1√
2
.

Proceeding in the same fashion, we get that the components of the eigenvector for E(x)
q,−

are
u
(x)
− =

1√
2

and v(x)− = − 1√
2
.

So, the unitary transformation associated with the real part of the fluctuation field is
given by

Ux =
1√
2

(
1 1

1 −1

)
. (5.25)

This means that (
xq

x−q

)
=

1√
2

(
1 1

1 −1

)(
αq

bq

)
. (5.26)

The eigenvalue equation associated with Uy reads(
Aq −B
−B Aq

)(
u
(y)
±

v
(y)
±

)
= E

(y)
q,±

(
u
(y)
±

v
(y)
±

)
.

From the condition of a non-trivial solution we get

E
(y)
q,+ =Aq +B, E

(y)
q,− =Aq −B. (5.27)
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Then, the eigenvector corresponding to E(y)
q,+ is given by

u
(y)
+ =

1√
2

and v(y)+ = − 1√
2
.

For E(x)
q,− one obtains

u
(x)
− =

1√
2

and v(x)− =
1√
2
.

Thus, the corresponding unitary transformation is

Uy =
1√
2

(
1 1

−1 1

)
, (5.28)

and (
yq

y−q

)
=

1√
2

(
1 1

−1 1

)(
ξq

ζq

)
. (5.29)

Thus, the diagonalized Gaussian fluctuation “Hamiltonian" writes

H =
∑

q,qx≥0

(
αq, βq

)(Aq +B 0

0 Aq −B

)(
αq

βq

)

+
∑

q,qx≥0

(
ξq, ζq

)(Aq +B 0

0 Aq −B

)(
ξq

ζq

)
. (5.30)

Then, the fluctuation contribution to the partition function becomes

ZFLUC =

∫ ∏
q,qx≥0

[(
dαqdβqdηqdζq

)
exp

{
− 1

T
H[αq, βq, ηq, ζq]

}]
. (5.31)

5.3 Calculation of the heat capacity

The heat capacity is proportional to the second derivative of the free energy with
respect to the temperature. Let us calculate the fluctuation contribution to the free
energy.

5.3.1 Fluctuation contribution to the free energy
The fluctuation contribution to the free-energy is given by

FFLUC = −T lnZFLUC . (5.32)

Explicitly writing the partition function, we get

FFLUC = −T ln

∫ ∏
q,qx≥0

dαqdβq exp

{
− 1

T

∑
q,qx≥0

(Aq +B)α2
q + (Aq −B)β2

q

}

= −T ln

∫ ∏
q,qx≥0

dξqdζq exp

{
− 1

T

∑
q,qx≥0

(Aq +B)ξ2q + (Aq −B)ζ2q

}
.
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This is simply a Gaussian integral. We find that

FFLUC = −T ln

( ∏
q,qx≥0

√
πT

Aq +B

√
πT

Aq −B

√
πT

Aq +B

√
πT

Aq −B

)
,

And finally

FFLUC = −T
∑

q,qx≥0

(
ln

πT

Aq +B
+ ln

πT

Aq −B

)
,

which can be rewritten as

FFLUC = −T
2

∑
q

(
ln

πT

Aq +B
+ ln

πT

Aq −B

)
. (5.33)

Below the critical temperature, the second term of the fluctuation contribution to the
heat capacity is

−T
2

∑
q

ln
πT

Aq −B
= −T

2

∑
q

ln
πT

Kq2
,

this term does not include the parameter a and slowly varies with temperature. To get
the critical contribution, we can include only the contribution to the free energy related
to Aq +B = 2|a|+Kq2. So we write

F crit
FLUC = −Tc0

2

∑
q

ln
πTc0

2|a|+Kq2
, (5.34)

where the temperature dependence is only kept in a.

5.3.2 Fluctuation contribution to the entropy
The entropy is proportional to the first derivative of the free-energy with respect to

the temperature. We have

ScritFLUC = −∂F
crit
FLUC

∂T
=
Tc0
2

∑
q

∂

∂T
ln

πTc0
2|a|+Kq2

,

ScritFLUC = αTc0
∑
q

1

2|a|+Kq2
, (5.35)

where |a| = α(T − Tc0). Now, we have everything at our disposal to calculate the fluctu-
ation contribution to the heat capacity.

5.3.3 Fluctuation contribution to the heat capacity
From statistical mechanics we know that

Cv = T
∂S

∂T
(5.36)
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so, the critical contribution is

Ccrit
v,FLUC = Tc0

∂ScritFLUC

∂T
= T 2

c02α
2
∑
q

1

(2|a|+Kq2)2
. (5.37)

Now we can see why we kept the temperature dependency on |a|. The critical fluctuation
contribution to the heat capacity becomes divergent as T → Tc0 because a → 0 in this
limit. It is convenient to express this result in terms of superconducting quantities. We
do the following

Ccrit
v,FLUC =

T 2
c0

4K2
2α2

∑
q

1

( |a|K + q2

2
)2
,

Ccrit
v,FLUC =

1

2ξ40

∑
q

1

(ξ−2 + q2

2
)2
.

where ξ =
√

K
|a| is the Ginzburg-Landau coherence length, which makes ξ0 =

√
K

αTc0
the

zero temperature coherence length. We can see that the asymptotic behavior of ξ is

ξ → ∞ when T → Tc0.

Which means that Ccrit
v,FLUC → ∞ when T → Tc0. We can conclude that the critical

behavior is due to the divergence of ξ which follows from the fact that |a| → 0 near the
critical temperature. This is why the temperature dependence of |a| is decisive in the
fluctuation free-energy.

We proceed with the calculations of the fluctuation contribution to the heat capacity
for D-dimensions. We go from discreet variables to continuous by using the standard
procedure ∑

q

→ LD
∫

dDq

(2π)D
,

for D dimensions. Then, we obtain

Ccrit
v,FLUC = 2T 2

c0α
2LD

∫
dDq

(2π)D
1

(2|a|+Kq2)2
.

Let us solve this integral. First we do a change of variables

q
√
K → p which means that dDq =

dDp

(
√

K)D
.

And so
Ccrit
v,FLUC =

2T 2
c0α

2LD

KD/2

∫
dDp

(2π)D
1

(2|a|+ p2)2
. (5.38)

Again, we do a change of variables

p√
a
→ m which means that dDp = (

√
a)DdDm.
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And then
Ccrit
v,FLUC =

2T 2
c0α

2LD

KD/2|a|2
|a|D/2

∫
dDm

(2π)D
1

(2 +m2)2
. (5.39)

As |a| = αTc0τ with τ = 1− T
Tc0

we can write

Ccrit
v,FLUC =

LD

τ 2−D/2
2
αD/2T

D/2
c0

KD/2

∫
dDm

(2π)D
1

(2 +m2)2
, (5.40)

and as
αD/2T

D/2
c0

KD/2
=

1

ξD0
,

we finally have that

Ccrit
v,FLUC =

LD

τ 2−D/2
2
1

ξD0

∫
dDm

(2π)D
1

(2 +m2)2
. (5.41)

With this result one can see that

Ccrit
v,FLUC ∝

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

τ 1/2
1

ξ30
, for D = 3;

1

τ

1

ξ20
, for D = 2;

1

τ 3/2
1

ξ0
, for D = 1.

(5.42)

We can conclude that the divergence of the heat capacity at the critical temperature
is more pronounced in lower dimensions. Now we perform calculations of the integral for
D=3, D=2 and D=1.
FOR D=3 equation (5.39) becomes

C3D,crit
v,FLUC =

2T 2
c0α

2L3

K3/2|a|1/2

∫
d3m

(2π)3
1

(2 +m2)2
=

2T 2
c0α

2L3

K3/2|a|1/2
1

8π
√
2
,

Finally

C3D,crit
v,FLUC =

L3

4π
√
2

T 2
c0α

2√
K3|a|

. (5.43)

For D=2 the Heat Capacity becomes

C2D,crit
v,FLUC =

2T 2
c0α

2L2

K|a|2
|a|
∫

d2m

(2π)2
1

(2 +m2)2
=

2T 2
c0α

2L2

K|a|
1

8π
,

C2D,crit
v,FLUC =

L2

4π

T 2
c0α

2

K|a|
. (5.44)

For D=1 we have that

C1D,crit
v,FLUC =

2T 2
c0α

2L

K1/2|a|3/2

∫
dm

(2π)2
1

(2 +m2)2
=

2T 2
c0α

2L

K1/2|a|3/2
1

16
√
2

C1D,crit
v,FLUC =

T 2
c0α

2L

K1/2|a|3/2
1

8
√
2
. (5.45)

With these calculations we have obtained all the fluctuation contributions we need. Re-
member, however, that we also need the mean-field contribution to the heat capacity
because our goal is to calculate the Ginzburg Number.
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5.3.4 Mean-field contribution to the heat capacity
Finally, we need to calculate the mean-field values for the heat capacity which we

know that at the Ginzburg-Levanyuk temperature will be the same as the fluctuation
contribution. From equation (5.9) we know that

Fm.f. = −a
2

2b
LD. (5.46)

The mean-field contribution to the entropy is

Sm.f. = −∂Fm.f.
∂T

= −LD |a|α
b
. (5.47)

And the mean-field contribution to the heat capacity is

Cv,m.f. = Tc0
∂Sm.f.
∂T

= LD
Tc0α

2

b
. (5.48)

5.4 Calculation of Ginzburg number

Before performing calculations for the different dimensions with the proper numerical
coefficients let us derive a useful approximation for Gi. When the fluctuation and mean
field contributions are equal (T = T ∗ or τ = Gi) we have that

LD
Tc0α

2

b
∼ LD

τ 2−D/2
1

ξD0

⏐⏐⏐⏐⏐
τ=Gi

. (5.49)

We will give this expression in terms of the jump of the mean-field heat capacity at the
critical temperature per unity volume, i.e.

∆c =
Tc0α

2

b
.

And so

∆c ∼ 1

ξD0 τ
(4−D)/2

⏐⏐⏐⏐⏐
τ=Gi

,

which means that
Gi ∼ 1

(∆cξD0 )
2

4−D

. (5.50)

The zero-temperature coherence length ξ0 plays an important role in the estimation of the
fluctuation impact. When ξ0 decreases Gi increases and so the impact of fluctuation is
more pronounced. This increase of the Ginzburg number is dependent on the dimension
of the system. We can write

Gi ∝

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
ξ60
(D = 3);

1
ξ20
(D = 2);

1
ξ0
(D = 1).

(5.51)
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Now, let us calculate Gi, including numerical coefficients. For this calculation we use
the following criterion Ccrit

v,FLUC(T
∗) = Cv,m.f.(T

∗), to calculate Gi. D=3

L3

4π
√
2

T 2
c0α

2

K3/2|a(T ∗)|1/2
= L3Tc0

α2

b
. (5.52)

But √
|a(T ∗)| =

√
α(Tc0 − T ∗) =

√
α

Tc0
Gi.

Substituting this result we obtain

L3

4π
√
2

T 2
c0a

2

K3/2
√

α
Tc0
Gi

= L3Tc0
a2

b
,

Solving for Gi we get

Gi3D =
Tc0b

2

32π2αK3
(5.53)

for the 3D case.
D=2

L2

4π

T 2
c0α

2

K|a(T ∗)|2
=
L2Tc0α

2

b
. (5.54)

Because a(T ∗) = αGiTc0 we have

Gi2D =
b

4παK
. (5.55)

D=1
T 2
c0α

2L

K1/2|a|3/2
1

8
√
2
=
LTc0α

2

b
, (5.56)

Gi1D =

(
1

128

b2

KTc0α3

)1/3

. (5.57)

5.4.1 Calculation of Gi for deep band
As an example, consider a single-band superconductor with a deep band in the clean

limit(see sec. 3.3.6). The values of the coefficients for D = 3 are

b3D =N(0)
7ζ(3)

8π2T 2
c0

, K3D =N(0)
7ζ(3)v2F
8π26T 2

c0

, α3D =
N(0)

Tco
.

Substituting this values in the Ginzburg number expression for 3D we get

Gi3D = T 4
c0

32

36π2

8π2

7ζ(3)

1

N2(0)v6F
. (5.58)
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Where, vF is the fermi velocity and N(0) is the 3 dimensional density of states (DOS).
But, v6FN2(0) =

E4
F

2π4 , where EF is the fermi energy. Therefore

Gi3D =
27π4

14ζ(3)

(
Tc0
EF

)4

. (5.59)

For a typical deep band clean single band superconductor like aluminum we have that[17]

Tc0 = 1.2K ≈ 0.1MeV ; EF = 104.MeV (5.60)

So, the usual value of the Ginzburg number for this kind of superconductor is

Gi3D ≈ 10−18. (5.61)

The Ginzburg-Landau coefficients for 2D are

b2D =N2D
7ζ(3)

8π2T 2
c0

, K2D =N2D
7ζ(3)v2F
8π26T 2

c0

, α2D =
N2D

Tco
.

Where N2D = m
2π

which is the 2 dimensional DOS. Then

Gi2D =
8π

4π

Tc0
mv2F

=
Tc0
k2F
m

=
Tc0
EF

. (5.62)

So
Gi2D ≈ 10−5. (5.63)

Clearly, as we have found earlier, the dimensionality player an important role. Finally for
D = 1 we have that

b1D = N1D
7ζ(3)

16π2T 2
c0

; K1D = N1D
7ζ(3)v2F
16π26T 2

c0

; α1D =
N1D

2Tco
. (5.64)

Where N1D = m
πkF

and is the 1 dimensional DOS. The one dimension Ginzburg number
is:

Gi1D =

(
1

128

b

a3
6

v2FTc0

)
∝
(Tc0
EF

)0
≈ 1. (5.65)

For 1D case Gi is so large that the mean-field approach does not make sense in the
whole temperature range below Tc0. This cases are beyond the scope of the Gaussian
fluctuation formalism.
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5.5 General form of the "Hamiltonian"

As we move forward with our formalism, we need to generalize the fluctuation "Hamil-
tonian" to make our calculations easier. Suppose that our Hamiltonian with ϵ+ and ϵ−

as eigenvalues can be expressed as

H =
∑
q

[
ϵ+(x

2
q + y2q) + ϵ−(xqx−q − yqy−q)

]
, (5.66)

where, of course, we already have performed the Fourier transform of the fluctuation field
and expressed the “Hamiltonian" in terms of the real and imaginary parts of the field
ηq[18]. After the diagonalization procedure we obtain

H =
∑

q,qx≥0

[
ϵ1,q(α

2
q + ξ2q) + ϵ2,q(β

2
q + ζ2q)

]
, (5.67)

where one finds

αq =
1√
2
(xq + x−q), βq =

1√
2
(xq − x−q), (5.68)

ξq =
1√
2
(yq − y−q), ζq =

1√
2
(yq + y−q).

The relations between ϵ± and ϵ1(2),q are

ϵ+ =
ϵ1,q + ϵ2,q

2
, ϵ− =

ϵ1,q − ϵ2,q
2

.

By comparing with equation (5.33) we can express the fluctuation contribution to the free
energy as

FFLUC = −T
2

∑
q

(
ln
πT

ϵ1,q
+ ln

πT

ϵ2,q

)
, (5.69)

where

Aq +B =ϵ1,q, Aq −B =ϵ2,q.

We will use this convenient framework to calculate various averaged products of fluctua-
tion fields.

5.6 Average of the fluctuation fields

Now we are going to calculate some averages of fluctuation fields.
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5.6.1 Odd powers of fluctuation field
The average that we are dealing is done over fluctuation fields as we mentioned before.

It is given by the following expression

⟨ψ(r)⟩ =
∫
D[η(r)]ψ(r)e−

H
T∫

D[η(r)]e−
H
T

. (5.70)

Where H is the fluctuation “Hamiltonian" and ψ(r) is an arbitrary function. Therefore,
we have that

⟨η(r)⟩ =
∫
D[η(r)]η(r)e−

H
T∫

D[η(r)]e−
H
T

.

Performing a Fourier transform we get

⟨ηq⟩ =
∫
D[ηq]ηqe

−H
T∫

D[ηq]e
−H

T

.

Separating the real and imaginary parts

⟨xq⟩ =
∫
D[η(r)]xqe

−H
T∫

D[η(r)]e−
H
T

, ⟨yq⟩ =
∫
D[η(r)]yqe

−H
T∫

D[η(r)]e−
H
T

To perform this calculation we are going to use the general diagonal fluctuation “Hamil-
tonian" that we have obtained last section. We will get the following expression for the
average of the real part of the fluctuation field

⟨xq⟩ =

∫ ∏
k,kx≥0

xqe
− 1

T
[ϵ1,k(α

2
k+ξ

2
k)+ϵ2,k(β

2
k+ζ

2
k)] dαkdβkdξkdζk∫ ∏

k,kx≥0

e−
1
T
[ϵ1,k(α

2
k+ξ

2
k)+ϵ2,k(β

2
k+ζ

2
k)] dαkdβkdξkdζk

(5.71)

Separating the terms for which k ̸= q we have the following expression

⟨xq⟩ =

∫
xqe

− 1
T
[ϵ1,q(α2

q+ξ
2
q)+ϵ2,q(β

2
q+ζ

2
q)]dαqdβqdξqdζq∫

e−
1
T
[ϵ1,q(α2

q+ξ
2
q)+ϵ2,q(β

2
q+ζ

2
q)]dαqdβqdξqdζq

×

×

∫ ∏
k ̸=q,kx≥0

e−
1
T
[ϵ1,k(α

2
k+ξ

2
k)+ϵ2,k(β

2
k+ζ

2
k)]dαkdβkdξkdζk∫ ∏

k ̸=q,kx≥0

e−
1
T
[ϵ1,k(α

2
k+ξ

2
k)+ϵ2,k(b

2
k+ζ

2
k)]dαkdβkdξkdζk

.

The first term in this expression is for k = q. The product is done over all values of k.



5.6. AVERAGE OF THE FLUCTUATION FIELDS 93

There’s no summation over q. Because xq = 1√
2
(αq + βq) we have that

⟨xq⟩ =

∫
1√
2
(αq + βq)e

− 1
T
(ϵ1,qα2

q+ϵ2,qβ
2
q)dαqdβq

∫
dξqdζqe

− 1
T
ϵ1,qξ2q+ϵ2,qζ

2
q∫

e−
1
T
(ϵ1,qα2

q+ϵ2,qb
2
q)dαqdβq

∫
dξqdζqe

− 1
T
ϵ1,qξ2q+ϵ2,qζ

2
q

,

⟨xq⟩ =
1√
2

∫
(αq + bq)e

− 1
T
(ϵ1,qα2

q+ϵ2,qb
2
q)dαqdβq∫

e−
1
T
(ϵ1,qa2q+ϵ2,qb

2
q)dαqdβq

.

And because the integral is a odd Gaussian integral its result is obviously zero. For the
imaginary part we will follow the same calculation and get

⟨yq⟩ =
1√
2

∫
(ξq + ζq)e

− 1
T
(ϵ1,qξ2q+ϵ2,qζ

2
q)dξqdζq∫

e−
1
T
(ϵ1,qξ2q+ϵ2,qζ

2
q)dξqdζq

= 0.

Therefore, the average of odd powers of fluctuation fields don’t contribute.

5.6.2 Even powers of fluctuation field
In this subsection our goal is to calculate ⟨|η(r)|2⟩. The first step is to express this

field in term of the quasi-particles. We have that

η(r) =
1

LD/2

∑
q

eiq·rηq =
1

LD/2

∑
q

eiq·r(xq + iyq).

If we do q → −q we obtain

η(r) =
1

LD/2

∑
q

e−iq·rη−q =
1

LD/2

∑
q

e−iq·r(x−q + iy−q).

Adding these two expressions we get

η(r) =
1

2LD/2

∑
q

(
eiq·r(xq + iyq) + e−iq·r(x−q + iy−q)

)
.

Restricting the sum to only momenta who has positive components

η(r) =
1

LD/2

∑
q,qx≥0

(
eiq·r(xq + iyq) + e−iq·r(x−q + iy−q)

)
.

Using equation (5.68) we get

η(r) =
1

LD/2

∑
q,qx≥0

eiq·r
(αq + βq√

2
+ i

ξq + ζq√
2

)
+

1

LD/2

∑
q,qx≥0

e−iq·r
(αq − βq√

2
− i

ξq − ζq√
2

)
. (5.72)
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For the complex conjugate field we have that

η∗(r) =
1

LD/2

∑
q′,q′x≥0

e−iq
′·r
(αq′ + βq′

√
2

− i
ξq′ + ζq′

√
2

)
+

1

LD/2

∑
q′,q′x≥0

eiq
′·r
(αq′ − βq′

√
2

+ i
ξq′ − ζq′

√
2

)
. (5.73)

Now we calculate η(r)η∗(r). Only terms that q = q′ will contribute for the final calculation
of the average. We write

|η(r)|2 = 1

LD

∑
q,qx≥0

(
α2
q + α2

qe
2iq·rα2

qe
−2iq·r + α2

q + β2
q − β2

qe
2iq·r − β2

qe
−2iq·r

+β2
q + ξ2q − ξ2qe

2iq·r − ξ2qe
−2iq·r + ξ2q + ζ2q + ζ2qe

2iq·r + ζ2qe
−2iq·r + ζ2q

)
. (5.74)

Now we are going to take the average of this expression, but first let’s calculate the average
of the squared quasiparticles.

⟨α2
q⟩ =

∫
D[ηq]α

2
qe

−H
T∫

D[ηq]e
−H

T

=

∫
α2
qe

− 1
T
ϵ1,qα2

qdαq∫
e−

ϵ1,q
T dαq

=
T

2ϵ1,q
. (5.75)

⟨β2
q⟩ =

∫
D[ηq]β

2
qe

−H
T∫

D[ηq]e
−H

T

=

∫
β2
qe

− 1
T
ϵ2,qβ2

qdβq∫
e−

ϵ2,q
T dβq

=
T

2ϵ2,q
. (5.76)

Because ξq has the same eigenvalue as αq and ζq has the same value as βq the averages
of their squared values are simply

⟨ξ2q⟩ =
T

2ϵ1,q
, ⟨ζ2q⟩ =

T

2ϵ2,q
.

With these results we can write

⟨|η(r)|2⟩ = 1

LD

∑
q,qx≥0

(
⟨α2

q⟩+ ⟨β2
q⟩+ ⟨ξ2q⟩+ ⟨ζ2q⟩

)
=

2

LD

∑
q,qx≥0

(
⟨α2

q⟩+ ⟨β2
q⟩
)
.

Removing the restriction in the summation we obtain

⟨|η(r)|2⟩ = 1

LD

∑
q

(
⟨α2

q⟩+ ⟨β2
q⟩
)
.

Finally we get

⟨|η(r)|2⟩ = 1

2LD

∑
q

[
T

ϵ1,q
+

T

ϵ2,q

]
. (5.77)
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By the same procedures we can find that

⟨η2(r)⟩ = 1

2LD

∑
q

[
T

ϵ1,q
− T

ϵ2,q

]
. (5.78)

This average is usually zero. It becomes nonzero only when ϵ1,q ̸= ϵ2,q. As we are always
working near the critical temperature ϵ1,q ≈ ϵ2,q [18] and so we can consider ⟨η2(r)⟩ = 0.

5.7 Fluctuation Shifted Critical Temperature

This section is the culmination of this chapter. We are going to apply the formalism
of Gaussian fluctuations to calculate how much the critical temperature is going to shift
from its mean field value. As is usual, the critical temperature equation is part of the
Ginzburg-Landau equation by the temperature dependence on a. The Ginzburg-Landau
equation of course is given by

a∆(r) + b∆(r)|∆(r)|2 −K∇2∆(r) = 0.

Suppose that the order parameter is given by its average value over fluctuations plus a
fluctuation field as ∆(r) = ∆0+η(r) where ∆0 = ⟨∆(r)⟩. The Ginzburg-Landau equation
becomes

a(∆0 + η(r)) + b|∆0 + η(r)|2(∆0 + η(r))−K∇2(∆0 + η(r)) = 0. (5.79)

Now we collect similar terms

a∆0 + b∆0|∆0|2 −K∇2∆0  
(no fluctuation terms)

+ aη(r) + 2bη(r)|∆0|2 + b∆2
0η

∗(r)−K∇2η(r)  
(linear in η)

+ bη2(r)∆∗
0 + 2b∆0|η(r)|2 + bη(r)|η(r)|2  

(non linear in η)

= 0. (5.80)

Now, we average this equation over fluctuations. However, as we already calculated, the
terms linear in η don’t contribute and the nonlinear terms give a contribution provided
that they are not anomalous, i.e. ⟨η2⟩ = 0 and ⟨η|η|2⟩ = 0. We will obtain the following

a∆0 + b|∆0|2∆0 + 2b⟨|η(r)|2⟩∆0 −K∇2∆0 = 0,

and we rewrite this equation as(
a+ 2b⟨|η(r)|2⟩

)
∆0 + b|∆0|2∆0 −K∇2∆0 = 0. (5.81)
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We can see that this is a Ginzburg-Landau equation for ∆0 but with a new coefficient
proportional to the local term. From the format of this equation, when we go to the
critical temperature the coefficient proportional to the local term has to go to zero. So
we have that when T → Tc0

a+ 2b⟨|η(r)|2⟩Tc0 = 0. (5.82)

Making explicitly the temperature dependence of the coefficient a we obtain

α(Tc − Tc0) + 2b⟨|η(r)|2⟩Tc0 = 0.

Finally, the shifted critical temperature is given by

Tc = Tc0 −
2b

α
⟨|η(r)|2⟩Tc0 . (5.83)

This is the shifted critical temperature because of fluctuations. To quantify this shift,
however, we need to calculate ⟨|ηq|2⟩.

5.8 Calculation of ⟨|ηq|2⟩

To obtain the expression for ⟨|ηq|2⟩ we will go back to equation (5.79) and linearize it.
Our goal is to find the equation for the fluctuation fields. We will follow the classical way
of the linearization of the Ginzburg-Landau equation but with one important additional
ingredient that is related to the mean-field theory of fluctuations. Nonlinear terms in
η(r) are approximated according to the mean-field recipe. If the product of two operators
obeys the relation

⟨AB⟩ ≃ ⟨A⟩⟨B⟩ then, AB = ⟨A⟩B + A⟨B⟩ − ⟨A⟩⟨B⟩.

The three operator product can be approximated by taking only into account the two
operator correlation as

ABC ≃ ⟨A⟩BC + A⟨BC⟩ − ⟨A⟩⟨BC⟩

+ ⟨B⟩AC +B⟨AC⟩ − ⟨B⟩⟨AC⟩

+ ⟨C⟩AB + C⟨AB⟩ − ⟨C⟩⟨AB⟩.

Following the recipe we obtain

η(r)|η(r)|2 = η(r)η(r)η∗(r) ≃⟨η(r)⟩η(r)η∗(r) + η(r)⟨η(r)η∗(r)⟩ − ⟨η(r)⟩⟨η(r)η∗(r)⟩

+ ⟨η(r)⟩η(r)η∗(r) + η(r)⟨η(r)η∗(r)⟩ − ⟨η(r)⟩⟨η(r)η∗(r)⟩

+ ⟨η∗(r)⟩η2(r) + η∗(r)⟨η2(r)⟩ − ⟨η∗(r)⟩⟨η(r)2⟩,
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which is reduced to (since ⟨η∗(r)⟩ = ⟨η(r)⟩ = ⟨η2(r)⟩ = 0)

η(r)|η(r)|2 ≃ 2η(r)⟨|η(r)|2⟩. (5.84)

Then, the equation (5.80) becomes at T ≥ Tc (i.e., for ∆0 = 0)

(a+ 2b⟨|η(r)|2⟩)  
new coefficient

η(r)−K∇2η(r) = 0. (5.85)

The functional that generates this equation through the variational principle is

FsG =

∫
LD

dDr
{[
a+ 2b⟨|η(r)|2⟩

]
|η(r)|2 +K|∇η(r)|2

}
. (5.86)

Based on this functional and in the result written as equation (5.6.2) , we find

⟨|ηq|2⟩ =
1

2LD

∑
q

[
T

ϵ1,q
+

T

ϵ2,q

]
,

where comparing to previous results

Aq +B =ϵ1,q, Aq −B =ϵ2,q

and

Aq =a+ 2b⟨|ηq|2⟩+Kq2, B =0.

So,

⟨|ηq|2⟩ =
1

LD

∑
q

[
T

a+ 2b⟨|ηq|2⟩+Kq2

]
. (5.87)

Here we can see another example of the usefulness of the general fluctuation hamiltonian
that we have derived earlier. In just a few lines of calculations we were able to find the
expression that we wanted. Going from discrete to continous variables we have

⟨|ηq|2⟩ =
∫

dDq

(2π)D

[
T

a+ 2b⟨|ηq|2⟩+Kq2

]
. (5.88)

The last step is just to find this average at the critical temperature. The coefficient
proportional to the local term in a Ginzburg-Landau equation goes to zero at the critical
temperature, which means that a+ 2b⟨|ηq|2Tc⟩ = 0. Finally we obtain

⟨|ηq|2⟩Tc =
∫

dDq

(2π)D

[
Tc
Kq2

]
. (5.89)

This integral is of course divergent. To deal with this we have to introduce the infrared
and ultraviolet cut-offs as

⟨|η(r)|2⟩Tc =
∫ Λ∞

Λ0

dDq

(2π)D

[
Tc
Kq2

]
. (5.90)
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Here Λ0 is the infrared cut-off that is proportional to the inverse of the Ginzburg-Landau
coherence length at the Ginzburg-Levanyuk temperature (justified from the renormaliza-
tion group analysis)[18]

Λ0 ∼
1

ξ(Gi)
. (5.91)

Momenta which is smaller than 1
ξ(Gi)

should not contribute because ξ(Gi) is an upper
limit to the coherence radius in the system. Beyond that we don’t yet have means to
understand the behavior of the system. The ultra-violet cut-off Λ∞ is proportional to the
inverse of the zero temperature coherence length. Momenta which are larger than 1

ξ0
are

excluded as ξ0 is the minimal length in the Ginzburg-Landau theory and so

Λ∞ ∼ 1

ξ0
. (5.92)

Now we will calculate ⟨|η(r)|2⟩Tc for D = 3, D = 2 and D = 1 and use this result to
calculate the shift of the critical temperature.

5.9 Equation for Tc

5.9.1 Tc shifted by fluctuations for D = 3

⟨|η(r)|2⟩Tc =
∫ Λ∞

Λ0

d3q

(2π)3
Tc
Kq2

=
Tc

2π2K

[
c∞
ξ0

− c0
ξ(Gi)

]
, (5.93)

where, c0 and c∞ are proportionality coefficients of the cut-offs. Because ξ(Gi) = ξ0
√
Gi

we can write
⟨|η(r)|2⟩Tc0 =

Tc
2π2K

c∞
ξ0

(
1− c0

c∞

√
Gi
)
. (5.94)

The equation for the shifted critical temperature give us

Tc0 − Tc
Tc

=
2b

a

1

2π2K
c∞
ξ0

(
1− c0

c∞

√
Gi
)
. (5.95)

From previous calculations we have that

Gi3D =
Tc0b

2

32π2aK3
.

Then
Tc0 − Tc
Tc

=
c∞
π2

√
32π2Gi

(
1− c0

c∞

√
Gi

)
. (5.96)

Because the Ginzburg number is very small for D = 3 we only need to keep the leading-
order contribution in

√
Gi, i.e.,

Tc0 − Tc
Tc

=
c∞
π2

√
32π2Gi, (5.97)
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Tc = Tc0

(
1

1 + 8
π

√
Gi

)
, (5.98)

here we set c∞ =
√
2 to get the result known form the renormalization group theory.

5.9.2 Shifted Tc for D = 2

⟨|η(r)|2⟩Tc =
∫ Λ∞

Λ0

d2q

(2π)2
Tc
Kq2

=
1

2π

∫ Λ∞

Λ0

dq
Tc
Kq

=
Tc
2πK

ln
Λ∞

Λ0

, (5.99)

⟨|η(r)|2⟩Tc =
Tc
2πK

ln
c∞
c0

1√
Gi

. (5.100)

Inserting this result in the equation for the shifted critical temperature
Tc0 − Tc
Tc

=
2b

a

1

2π2K
ln
c∞
c0

1√
Gi

(5.101)

The Ginzburg number for 2D is
Gi2D

b

4πaK
.

So, we have
Tc0 − Tc
Tc

= 4Gi ln
c∞
c0

1√
Gi
.

To get the result that agrees with the renormalization group result we set c∞
c0

= 1
2

and so

Tc0 − Tc
Tc

= 2Gi ln
1

4Gi
,

Tc = Tc0

(
1

1 + 2Gi ln 1
4Gi

)
. (5.102)

5.9.3 Calculations of Tc for one spatial dimension
Our previous calculation of Gi for one spatial dimension produced the result Gi ∼

1, meaning the failure of the perturbation scheme based on the Gaussian fluctuations.
Here, for a further illustration we calculate the shift of the critical temperature due to
fluctuations for D = 1

⟨|η(r)|2⟩Tc =
∫ Λ∞

Λ0

dq

2π

Tc
Kq2

=
Tc
2πK

( 1

Λ0

− 1

Λ∞

)
=

Tc
2πK

(ξ(Gi)
c0

− ξ0
c∞

)
=

Tc
2πK

ξ0
c∞

(c∞
c0

1√
Gi

− 1
)
.
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Inserting this result in the equation for the shifted critical temperature we have

Tc0 − Tc
Tc

=
b

aπK

√
K
aTc0

(c∞
c0

1√
Gi

− 1
)
.

The expression for the Ginzburg number for one spatial dimension is

Gi = Gi1D =

(
1

128

b2

KTc0a3

)1/3

.

Then
b

aπK

√
K
aTc0

=
1

π

√
128Gi3.

Finally

Tc0 − Tc
Tc

=
1

c∞π

√
128Gi3

(c∞
c0

1√
Gi

− 1
)

=
1

πc0

√
128Gi  

∼1

− 1

πc∞

√
128G

3/2
i  

∼1

,

which are beyond the scope of perturbation theory. For D = 1 fluctuations are huge and
we cannot invoke any framework based on the Gaussian picture of fluctuations.

5.10 Fluctuation driven shift of critical temperature for

a two-band system

To end this work we will take the formalism we did for a two-band system and calculate
the shift of the critical temperature. We will see that bellow a certain threshold the
thermal fluctuation kills the superconducting state. We consider the standard microscopic
model of a two-band superconductor introduced in the last chapter, where one band is
deep (ν = 1) and the other one is shallow (ν = 2). We model this situation by assuming
that the Fermi velocity in band 2 is much smaller than that in band 1, we set their ratio
equal to zero. The condensate is formed due to the conventional s-wave pairing in both
bands with the intraband interaction strength gν,ν (ν = 1, 2) and the inter band coupling
g12 = g21 of the Josephson type [19]. So we plot in figure 14

Tc0 − Tc
Tc

= 2G2D
i ln

1

4Gi2D
, (5.103)

where,

Gi2D =
b

4πaK
= G2Dideep

1 + S4

1 + S2
, (5.104)
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with S introduced in the previous chapter eq. (4.50) and Gideep the Ginzburg number of
the deep band. As it has been found previously, the mean-field critical temperature in
units of Tc0,1 is given by

Tc0
Tc0,1

= exp

{
(1 + χ)

( 1

λ11
− λ22 − λ11S

λ11λ22 − λ212

)}
, (5.105)

where Tc0,1 is the mean-field critical temperature of an uncoupled band 1. Considering
Gideep = 10−5 and using λ11 = 0.25 and λ22 = 0.3, and N1 = N2, we find the dependence
of the critical temperature shift on λ12 illustrated in Fig. 14. The qualitative behavior is
not sensitive to a particular choice of λ11, λ22, χ = N2/N1 and Gideep. In real materials
we usually have λ11, λ22 ≃ 0.1-0.4, λ12 ≪ λ11, λ22, and N1 ≈ N2. In addition, 10−5 is a
conservative estimation of the Ginzburg number for real materials with quasi-2D bands.

Figure 14: The mean-field Tc0,and fluctuation-renormalized Tc critical temperatures, plot-
ted versus the inter-band coupling λ12.

We can see from this figure that the fluctuations are reduced and eventually suppressed
in the presence of the inter-band coupling between shallow-band (unstable) and deep-
band (stable) condensates. Thus, the interplay of different condensates in one material
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can significantly change the physical picture: for ia single shallow band the condensate
is suppressed by fluctuations while in the combination of deep and shallow band one
observes the mean-field regime already at relatively small inter-band couplings.
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6 SUMMARY AND FUTURE WORK

6.1 Summary

In the introductory Chapter 2 of this thesis we were able to see how the Meissner
effect was explained by the idea of the electrons forming a macroscopic condensate in the
same single-particle quantum state, a superfluid which flows through the metal without
resistance explaining how the cables in figure 1 in the general introduction chapter can
have the same current. Next we have proved that the formation of this condensate of
fermions is possible because below a certain temperature, two free electrons above the
Fermi sea are less favorable thermodynamically than an in-medium bound state of these
two electrons. Therefore, the composite boson (the Cooper pair) is formed even for weak
interaction between fermions as long as it is attractive.

Even with the London equations and Cooper instability superconductivity was not
yet fully understood. So, we continued our study by investigating the phenomenological
theory of Ginzburg and Landau, see Chapter 3. We obtained the Ginzburg-Landau
equations by using the concept of the order parameter which is nonzero below the critical
temperature. Because the order parameter is small near Tc, it is possible to expand the
free-energy functional and use the variational principle to obtain the first and second
Ginzburg Landau equations which describes the order parameter and the supercurrent.
Finally, we have introduced two characteristics lengths, the Ginzburg-Landau coherence
length and the London penetration depth, and discussed the Ginzburg-Landau parameter
which quantifies the difference between two conventional types of superconductivity.

Though the Ginzburg-Landau theory can describe many important features of the
superconducting state, it was, in its original formulation, a phenomenological theory. To
go deeper into microscopic details of superconductivity, the BCS approach is discussed
in Chapter 3. We have employed the BCS-Bogoliubov Hamiltonian and found that the
excitation spectrum has a energy gap in the uniform superconductor. Both the BCS
and Ginzburg-Landau theories explain experimental data(fig. 10) and therefore they
are both consistent with the data. To connect these two theories, we have used the
formalism of Green functions developed by Gor’kov. By expressing the order parameter
in terms of the anomalous Green function and by using the perturbative expansion of
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the microscopic gap equation in small deviation from the critical temperature, we have
got the Ginzburg-Landau equation for the order parameter with coefficients expressed
in terms of the normal state Green functions. Thus, we have demonstrated (following
Gor’kov) how the Ginzburg-Landau formalism is linked to the microscopic parameters of
the superconducting system.

In Chapter 4 we have considered how the Gor’kov equations can be generalized to
other physically interesting cases. We have constructed these equation in the param-
agnetic limit where the external magnetic field only acts on the spin of the electrons
promoting the tendency to Cooper pairing with non-zero momentum, the FFLO state.
We have derived the corresponding Ginzburg Landau formalism with the coefficients de-
pending on the applied field. By calculating when the coefficients for the squared gradient
and nonlinear terms in the Ginzburg-Landau equation become zero, we have found the
point where the superconducting, normal and FFLO state meets. For another illustra-
tion, we have considered the Gor’kov equations generalized to the case of a two-band
system. We have found the equation for the mean-field critical temperature and have
shown that the implementation of the two-band Ginzburg Landau theory produces the
effective single-component GL formalism but with the coefficients averaged over both
contributing bands.

Despite the great success of the mean field theory in the form of the BCS-Bogoliubov
Hamiltonian, there are plenty of superconductors where the mean-field approach should be
corrected by including fluctuations. To deal with them we have considered the Gaussian
theory of thermal fluctuations in Chapter 5. We have assumed that the order parameter
deviates from the uniform stationary solution due to the contribution of fluctuation fields
and constructed the Gaussian fluctuation “Hamiltonian". Using this“Hamiltonian" we
have investigated various aspects of fluctuation effects. In particular, we have calculated
the Ginzburg number Gi that measure the temperature range with strong fluctuations
near the mean-field critical temperature. We have also calculated the shift of the criti-
cal temperature due to fluctuations within the generalized Gaussian scheme taking into
account the interaction between fluctuation modes. Finally, we have applied the gener-
alized Gaussian scheme to calculate the fluctuation shift of the critical temperature in a
two band system with one shallow and one deep bands. We have shown that fluctuations
are reduced in the presence of the inter-band coupling between unstable shallow-band
condensate and stable deep-band condensate.

6.2 Future Work

Further applications of the generalized Gaussian model of thermal fluctuations will
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be considered for multiband superconductors in the paramagnetic limit during my PhD
program.
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