
 

 
 

UNIVERSIDADE FEDERAL DE PERNAMBUCO- UFPE 

CENTRO DE CIÊNCIAS SOCIAIS APLICADAS 

DEPARTAMENTO DE ECONOMIA 

DOUTORADO EM ECONOMIA – PIMES 

 
 
 
 

 TESE DE DOUTORADO 

“UM ESTUDO DE EFICIÊNCIA DE MERCADO 
USANDO SÉRIES TEMPORAIS COM 

DIFERENCIAÇÃO FRACIONÁRIA: O CASO DE 
COMMODITIES AGRÍCOLAS ” 

 
 
 
 
 
 

Orientador: Prof. Dr. Ricardo Chaves Lima 

Aluno: Sylvio José Pereira dos Santos 

 

Recife, 2003 
 



 
 
 
 

UNIVERSIDADE FEDERAL DE PERNAMBUCO- UFPE 

CENTRO DE CIÊNCIAS SOCIAIS APLICADAS 

DEPARTAMENTO DE ECONOMIA  

DOUTORADO EM ECONOMIA – PIMES 

 
 

 TESE DE DOUTORADO 

“UM ESTUDO DE EFICIÊNCIA DE MERCADO 
USANDO SÉRIES TEMPORAIS COM 

DIFERENCIAÇÃO FRACIONÁRIA: O CASO DE 
COMMODITIES AGRÍCOLAS ” 

 
 
Tese Apresentada ao Curso de Pós-Graduação em Economia – 
PIMES – da Universidade Federal de Pernambuco, como 
Requisito para Obtenção do Título de Doutor em Economia. 
 
 
 

Orientador: Prof. Dr. Ricardo Chaves Lima 

Aluno: Sylvio José Pereira dos Santos 

 

Recife, 2003 
 



UNIVERSIDADE FEDERAL DE PERNAMBUCO - UFPE 

CENTRO DE CIÊNCIAS SOCIAIS APLICADAS 

DEPARTAMENTO DE ECONOMIA  

DOUTORADO EM ECONOMIA – PIMES 

 TESE DE DOUTORADO 

“UM ESTUDO DE EFICIÊNCIA DE MERCADO 
USANDO SÉRIES TEMPORAIS COM 

DIFERENCIAÇÃO FRACIONÁRIA: O CASO DE 
COMMODITIES AGRÍCOLAS ” 

TESE APROVADA EM 10 / 03 / 2003  
Aluno: Sylvio José Pereira dos Santos 
 
BANCA EXAMINADORA 
 
 
---------------------------------------------------------------------------------------- 
        PhD Ricardo Chaves Lima – Orientador  
 
 
---------------------------------------------------------------------------------------- 
        PhD. Francisco Cribari Neto – Examinador Externo  
 
 
---------------------------------------------------------------------------------------- 
        Dr. Sinézio Fernandes Maia - Examinador Externo  
 
 
---------------------------------------------------------------------------------------- 
        PhD. Ana Catarina T. de N. Campelo – Examinador Interno  
 
 
---------------------------------------------------------------------------------------- 
        Dr. Herminio Ramos de Souza – Examinador Interno  
 



A Idalina, minha companheira Luso Brasileira

de muitas jornadas e belas andanças.

Minha companhia por este e pelos próximos caminhos.
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R E S U M O

O principal objetivo deste trabalho é apresentar um procedimento metodológico para

examinar a hipótese de que uma série temporal tenha sido gerada por um processo com inte-

gração fracionária, procurando explicar algumas peculariedades de séries financeiras que não

são ajustadas por modelos univariados clássicos.Como exemplo emṕırico foram analisadas

as séries temporais dos retornos dos preços futuros das principais commodities agŕıcolas

brasileiras (café, açúcar, soja, cacau, suco de laranja entre outras, que representam cerca

de 20% do total das exportações). Os dados utilizados nesta pesquisa foram obtidos da

Bolsa de Mercadorias e Futuros (BM&F) e da Bolsa de New York. Pretendeu-se explicar

o comportamento da evolução dos retornos destas commodities agŕıcolas levando em conta

que esta categoria de processo estocástico não possui raiz unitária, apesar de apresentar alta

persistência.

Procurou-se averiguar de que maneira estas variáveis podem ser explicadas por um pro-

cesso ARFIMA, estimando sua ordem de integração através do método de regressão do

periodograma. Procurou-se ainda examinar a hipótese de que os valores estimados para or-

dem de integração são estatisticamente menores do que a unidade. Isto pode indicar que o

processo gerador dessas séries temporais têm integração fracionária, ou seja, apresenta longa

persistência.

As séries dispońıveis foram analisadas globalmente(todo peŕıodo) e particionada em dois

peŕıodos e, após a análise dos diversos modelos ajustados podemos destacar as seguintes

conclusões: o açúcar é um mercado eficiente nas duas Bolsas com exceção para o segundo

peŕıodo analisado no Brasil; o café é quase sempre não eficiente na Bolsa de New York e

eficiente globalmente e no primeiro peŕıodo da Bolsa da BMF; o milho é não eficiente nas

duas Bolsas em todos os peŕıodos; o cacau da Bolsa de New York é eficiente em todos os

peŕıodos; o trigo é não eficiente na Bolsa de New York.



ABSTRACT
The objective this work is presenting a methodological procedure to examine the hy-

pothesis that a time series was generated by a process with fractionally integration, in order

to explain some peculiarity of financial time series that do not fit the classical univariate

models. We analyzed the time series of return of future price of agriculture commodities.

The data utilized in this investigation was obtained the ”Bolsa de Mercadorias e Futuros”

(BMF) - Brazil, and the New York stock exchange We explained the performance of the

evolution of returns this commodities to take into account that this category of stochastic

process has not an unit root, in spite of their low persistence. We estimating ARFIMA their

integration order using the regression method of periodogram. We examined the hypothesis

that the estimated values of integration order are smaller than unity. Because this fact may

be indicated that the process that generated of time series has fractionally integration. The

available series were analyzed in overall form and divided in two periods. The conclusions

was obtained from the analysis of different models. Amongst the main conclusions, we em-

phasized that the sugar is an efficient market in these two stock exchange with the exception

for second period analyzed in Brazil. The coffee is not always efficient in the stock exchange

of New York but is efficient in overall form and in the first period of BMF. The corn is

not efficient market in the two in all periods. The cacao is an efficient market in the stock

exchange New York in all periods. The wheat is not efficient in the stock exchange of New

York.
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Introdução

Esta tese tem como intuito o de apresentar um procedimento metodológico (Modelo

ARFIMA) para examinar a hipótese de que uma série temporal tenha sido gerada por um

processo de integração fracionária. Para tanto analisamos as séries temporais dos retornos

dos preços das principais commodities agŕıcolas: café, açúcar, soja em grão, farelo de soja,

cacau, álcool, milho, suco de laranja, trigo, algodão.

Usamos os dados obtidos nas bolsas de Mercadoria e Futuro (BM&F) e de New York. O

suporte computacional foi o software WINRATS.

Para elaboração desta pesquisa procuramos identificar o processo gerador das séries tem-

porais que possui integração fracionária, ou seja, que apresente longa dependência ou não.

Utilizando o Modelo ARFIMA buscamos provar se os mercados das commodities agŕıcolas

são eficientes ou não.

Longa dependência pode ser definida, no domı́nio do tempo, como uma caracteŕıstica

de uma série na qual as autocorrelações correspondentes a defasagens distantes não são

despreźıveis e, no domı́nio da freqüência, como uma caracteŕıstica na qual a função espectral

da série torna-se ilimitada para as freqüências perto de zero. Ou seja caracterizam-se por

persistente dependência entre as observações ainda que distantes no tempo.

Estudos iniciais de séries com esta caracteŕıstica foram apresentados em 1951. Recente-

mente, os estudos de séries com memória longa são baseados no modelo ARIMA(p, d, q), o

qual apresenta esta caracteŕıstica para valores não inteiros de d. Nesta situação, d torna-

se um parâmetro desconhecido e então o modelo ARIMA(p, d, q) é referido como o modelo

ARFIMA. A intenção é identificar, através de propriedades, caracteŕısticas de uma série

temporal com memória longa e avaliar estimadores do parâmetro d. Os modelos fracionários

foram inicialmente investigados por Mandelbrot (1977), Granger e Joyeux (1980), Hosking
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(1981) e Geweke e Porter-Hudak (1983).

A persistência de choques econômicos tem sido freqüentemente associada à presença de

raiz unitária no processo gerador da série de tempo, ou seja, para que os choques sejam

persistentes a série deve apresentar tendência estocástica.

Alta persistência e ausência de raiz unitária podem coexistir quando o processo gerador da

série de tempo tem a caracteŕıstica de longa dependência. Além disso, os testes convencionais

de raiz unitária podem confundir o pesquisador, pois têm baixa potência quando o processo

é de memória longa.

O interesse pelos processos estocásticos que apresentam longa dependência ou memória

longa surgiu na área de ciências geof́ısicas no ińıcio da década de 1950, com o trabalho

pioneiro de Hurst sobre hidrologia. Somente na década 1980 esse tipo de processo passou a

ser considerado em aplicações na área de Economia.

Muitas séries temporais macroeconômicas, financeiras e outras, tais como: taxa de in-

flação, taxa de câmbio, preços de contratos de mercadoria corrente (commodity futuro), preço

do ouro, preço de mercadorias internacionais, preços de ações etc. apresentam persistência

considerável.

Os testes de Dickey-Fuller e Phillips-Perron e suas generalizações têm sido largamente

aplicados na economia para testar a hipótese de raiz unitária. A maioria desses estudos

conclui que muitas séries cronológico-econômicas são bem descritas pelos processos ARIMA

de baixa ordem com uma única raiz unitária. Amplos estudos empreendidos por Nelson e

Plosser (1982) e Schwert (1987) fazem uso de uma variedade de testes de raiz unitária em

diversas variáveis econômicas e encontram rejeição à existência de ráızes unitárias. Portanto,

a suposição de uma ordem integrada I(1) é arbitrária e pouco consistente. Um exemplo disto

é a série da taxa de inflação, que não é um processo estacionário ARMA e nem tão pouco um

processo integrado de ordem 1; e sim um modelo com diferenciação fracionária entre zero e

um.

A dependência de longo prazo nesses modelos citados é capturado por um único parâmetro,
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chamado de parâmetro diferencial fracionário. Vários métodos são empregados para estimar

d. O pioneiro destes métodos é o de regressão espectral proposto por Geweke e Porter-Hudak

(1983). O aspecto atrativo destas metodologias é que se pode estimar o parâmetro difer-

encial fracionário (d) sem a especificação completa do modelo da série temporal ARIMA

(Box-Jenkins).

Diversos pesquisadores têm mostrado a aplicabilidade desta metodologia em inúmeras

situações econômicas. Podemos citar os seguintes: Barkoulas e Baum (1996), para preços de

fundos de ações nos Estados Unidos; Barkoula, Labys e Onochie (1997) para preços futuros,

Cheung (1993) para taxa de câmbio, Greene e Fielit (1997) para preços de fundos, Cheung

e Lai (1993) para preços do ouro, Baum, Barkoulas e Mustala (1999) para taxa de inflação.

No estudo de análise de séries temporais, o ponto de partida para testar empiricamente

a Hipótese de Mercados Eficientes é analisar a estrutura da memória dos retornos das ações.

Isto explica por que trabalhos sobre memória da série e testes de não linearidade têm recen-

temente sido objeto de estudos cient́ıficos.

O ińıcio do estudo da existência de longa memória nos preços das ações foi baseado

no trabalho de Mandelbrot (1965, 1972) que tratava do movimento Browniano fracionário

e sua clássica estat́ıstica R/S. Diversos pesquisadores utilizaram ferramentas desenvolvidas

por Mandelbrot e chegaram à surpreendente conclusão de que algumas séries cronológicas

financeiras possuem estruturas de longa memória. Isto indicaria que os atuais movimentos

no mercado financeiro associados aos preços de ações foram estocasticamente influenciados

pelos dados mais remotos.

Duas técnicas podem ser utilizadas para checar esta suspeita. A primeira procura es-

timar o parâmetro de diferenciação fracionária d do modelo de longa memória ajustando

diretamente os valores observados. A segunda propõe utilizar a estat́ıstica não paramétrica

R/S na sua forma original e a sua versão modificada desenvolvida por Lo (1991).

Estes testes podem não rejeitar a hipótese nula de existência de curta ou longa memória

no retorno dos preços das ações. Entretanto quando alteramos e analisamos o quadrado dos
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retornos, consistentemente encontramos longa memória na série, indicando a existência de

persistência e de volatilidade no retorno dos preços das ações.

Esta análise ficou restrita a um particular tipo de estrutura linear para retorno dos

preços das ações. Uma outra forma de trabalhar os dados é verificar de uma maneira geral

a existência de uma estrutura não linear.

Nos últimos anos, o número de aplicações de técnicas não lineares em séries temporais

para dados econométricos tem crescido substancialmente. Em particular, vale ressaltar que

atualmente é comum assumir que os preços dos ativos possuem uma dinâmica não linear.

Brock, Hsiek e LeBaron (1991) e Hsiek (1991) descobriram e apresentaram de vários

conjuntos de dados que possuem esta caracteŕıstica. Eles notaram que a existência da cara-

cteŕıstica de não linearidade nos retornos dos preços das ações não é necessariamente incom-

pat́ıvel com a Hipótese de Mercados Eficientes.

Uma importante caracteŕıstica das séries temporais financeiras observadas nos preços

das ações é de que as distribuições de probabilidade das mesmas têm caudas pesadas, isto

é, a série tem valores extremos com probabilidade diferente de zero e significativa. Esta

caracteŕıstica poderia ser encontrada nos trabalhos iniciais de Mandelbrot, em 1963. Mesmo

admitindo estabilidade para os modelos de séries cronológicas financeiras, ele constatou que

a distribuição de probabilidade dos retornos apresenta uma curtose leptocúrtica. Entretanto,

diversos autores interessados neste tema encontraram evidências de que alguns destes dados

são caracterizados pela ausência de momentos condicionais, isto é, os momentos de ordens

mais elevadas não são finitos (Loretan e Phillips, 1992).

Esta discussão mostra que algumas questões sobre robustez podem inferir sobre a des-

coberta de que os dados financeiros apresentam ou não linearidade. Pesquisadores, através de

simulações, verificaram que a não linearidade pode ser aceita como uma conseqüência do fato

de que alguns testes carecem de robustez, quando estão com valores cuja distribuição possui

probabilidade significativa nas extremidades. Um dos testes utilizados é o BDS (Brock,

Dechert, Scheinkman, 1987).
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O presente estudo apresenta no Caṕıtulo 1 uma descrição das commodities agŕıcolas

brasileiras, o conceito de mercados eficientes, bem como uma introdução sobre os modelos

ARFIMA; no Caṕıtulo 2 é exposto um breve resumo dos modelos de Box-Jenkins ARIMA e

da função espectral; no Caṕıtulo seguinte são exibidas diversas caracteŕısticas probabiĺısticas

e fundamentos estat́ısticos para os modelos ARFIMA(p, d, q); no Caṕıtulo 4 são enfocadas

várias metodologias para estimar d, bem como teste de hipótese sob o parâmetro diferencial

fracionário e um roteiro para estimar os parâmetros de uma série cronológica, no Caṕıtulo

5 é feita a descrição dos dados e apresentada a metodologia sobre o teste de raiz unitária

e a estimação do parâmetro fracionário d; no Caṕıtulo 6 são exibidos os resultados dos

ajustes dos modelos que indicaram quais commodities agŕıcolas são eficientes e finalmente

no Caṕıtulo 7 são apresentados as conclusões deste trabalho.
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Chapter 1

Referencial Teórico

1.1 A Importância das Commodities Agŕıcolas na Ex-

portação brasileira

Não se pode negar a importância das commodities na pauta de exportação brasileira. Embo-

ra apresentando uma trajetória descendente, as principais commodities ainda representam,

aproximadamente, 20% das exportações brasileiras, tendo atingido seu ápice nos anos de

1970, quando representavam cerca de 70% das exportações.

A adoção, em janeiro de 1999, do regime de câmbio flutuante criou a expectativa de uma

melhoria na balança comercial brasileira, devido ao aumento das exportações e à queda das

importações. Contudo, alguns especialistas tendem a afirmar que esta recuperação do saldo

comercial não se dará, principalmente, pelo efeito das commodities sobre a exportação, já

que seus preços vêm caindo no mercado internacional, atingindo um patamar de 30% nos

últimos 12 meses.

Não só a participação das commodities na pauta exportadora tem mudado nos últimos

tempos, mas também sua importância. Como mostra a Tabela 1, houve uma significativa

redução da participação das commodities na exportação total, isto é passando de 42,43%
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no peŕıodo de 1973/79 para 18,90%. O café era a principal commodity exportada pelo

páıs, representando 18,18% da pauta de exportações brasileiras no peŕıodo 1977/79. Já na

década de 1980, este produto passou a representar 9,5% das exportações totais, caindo para

o segundo lugar, sendo ultrapassado pela soja, que passou a ser a principal commodity, de

exportação brasileira, com 10% de participação nas exportações. Na década de 1990, o café

voltou a cair de importância, com participação de 4,60% e, neste mesmo peŕıodo, a soja

manteve sua posição de liderança com 8,46% na exportação total.

Dentre os outros produtos, cabe realçar a queda da participação do cacau, que passou de

5,81% no peŕıodo 1977/79 para 0,56% na década de 1990.

Tabela 1 - Participação das Commodities na Exportação Total brasileira

(Em %)

1977/79 1980/89 1990/98

Soja 13,42 10,00 8,46

Cacau 5,81 2,39 0,56

Café 18,18 9,50 4,60

Suco de Laranja 1,98 3,11 2,76

Açúcar 3,04 2,48 2,52

Total 42,43 27,48 18,90

1.2 Um Breve Histórico do Mercado das Commodities

brasileiras

Historicamente, as tendências da economia brasileira oscilaram em função dos ciclos da

agricultura, tendo o cultivo do algodão, do cacau, da borracha e do café seguido a produção

em larga escala da cana-de-açúcar.
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Baseada inicialmente em grandes empreendimentos dedicados a um único produto de

exportação e dependente do trabalho escravo para sua produção, desde os primeiros anos

do peŕıodo colonial, a agricultura tem tido papel fundamental na economia brasileira, cons-

tituindo, até a década de 1950 o principal elo de ligação do Páıs com a economia mundial,

como foi o caso do cultivo da cana-de-açúcar a partir do século XVI.

A partir de meados dos anos 1960, verificou-se o processo de modernização agŕıcola, que

propiciou aumento geral da produtividade e do número de produtos agŕıcolas exportados.

Na ocasião, a produção de soja superou a dos produtos agŕıcolas tradicionais do Brasil,

como o café, o cacau e o açúcar. Graças aos incentivos do Governo em favor dos produtos

processados sobre os não processados, aumentaram substancialmente o volume, o valor e a

variedade dos produtos agŕıcolas semiprocessados e industrializados.

Nos anos 1980, a agricultura continuou a ter papel muito importante na economia do páıs.

Mediante incentivos fiscais e facilidades especiais de crédito, o Governo Federal promoveu

maior eficiência na produção agŕıcola, em especial na agricultura de exportação.

Recentemente, o setor agropecuário tem experimentado grandes mudanças. Em 20 anos,

a agricultura brasileira praticamente dobrou a sua produção anual de grãos. Na década

de 1980, a taxa anual de crescimento do setor agŕıcola, segundo o Instituto Brasileiro de

Geografia e Estat́ıstica (IBGE), foi 3,4% contra 1,7% do setor industrial. Em 1996, a taxa

de crescimento do setor agropecuário foi de 4,1%, e em 1997, de 1,9%. Em 1999, a safra de

grãos foi de 82,6 milhões de toneladas, totalizando um volume de 9,9% superior ao observado

no ano de 1998. Culturas voltadas eminentemente para o mercado externo, como a soja, a

cana-de-açúcar e a laranja, apresentaram excelente desempenho em termos de rendimento

por área plantada nos últimos tempos, tendo crescimento anual de preços em torno de 1,9%

na última década. Foram desenvolvidos esforços para controlar o movimento dos habitantes

do meio rural para as áreas urbanas, estender benef́ıcios trabalhistas ao campo, estabelecer

planos racionais de reforma agrária, estimular os pequenos empreendimentos até então não

rentáveis e, de modo geral, melhorar a qualidade de vida em regiões afastadas dos grandes
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centros. Entre as culturas agŕıcolas de maior volume de produção estão as de arroz, feijão,

milho, algodão e laranja.

Os vários programas empreendidos nas duas últimas décadas de 1980 e 1990, com vistas a

diversificar as colheitas, trouxeram resultados surpreendentes. A produção de grãos cresceu

consistentemente, incluindo as lavouras de trigo, arroz, milho e soja, chegando a 77,6 milhões

de toneladas em 1997. Produtos do setor extrativista, como a borracha (que já foi elemento

vital para as exportações brasileiras), assim como a castanha-do-pará, caju, ceras e fibras,

passaram também a ser cultivados em plantações espećıficas. Dados de 1996 (FIPE) indicam

ser o Brasil o maior produtor mundial de café, o segundo de feijão, o terceiro produtor de

cana-de-açúcar e de milho e o quarto entre os produtores mundiais de cacau.

Graças ao clima variado, o Brasil produz todos os tipos de frutas, desde variedades

tropicais do norte (inclusive abacates), até ćıtricos e uvas, cultivadas principalmente nas

regiões mais temperadas do sul. Em 1996, a produção de laranjas cresceu 10,8%, atingindo

21.811 toneladas. Em 1997, o Brasil contribuiu com 32% para o total da produção mundial

de laranjas, destacando-se como o maior produtor mundial dessa fruta.

Com produção da ordem de 91 milhões de toneladas/ano, os grãos soja, milho, arroz,

trigo, feijão e cevada são largamente utilizados para o atendimento da demanda interna e,

ainda, têm destinado seus excedentes à alimentação de rebanhos pecuários e à exportação.

Juntamente com a produção dos grãos, outros produtos agŕıcolas apresentam grande

importância e se destacam na economia agŕıcola e agroindustrial brasileira, bem como nas

exportações. Estes produtos, café, açúcar, suco de laranja e os derivados da soja (farelo de

soja e óleo), são os principais produtos agŕıcolas de exportação do Brasil e representam, hoje,

para sua balança comercial, mais de 10,5 bilhões de dólares/ano em ingressos de divisas.

De outra parte, em razão de seu grande mercado interno, mesmo sendo importante pro-

dutor de trigo, milho, arroz, cevada e malte, o Brasil os importa muito, chegando a mais de

1 milhão de dólares/ano seus gastos de divisas com estes produtos.

Milho (34 milhões de toneladas), soja (37 milhões de toneladas), arroz (10,3 milhões de
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toneladas), trigo (2,3 milhões de toneladas), cevada (150 mil toneladas) e feijão (3,2 milhões

de toneladas) são as mais importantes produções de grãos da agricultura brasileira.

O milho, além de sua importante utilização para a alimentação da população, na forma

de farinha, é muito utilizado na alimentação de rebanhos súınos, na avicultura e na pecuária

leiteira. Como a produção brasileira, nos útimos anos, não tem sido suficiente para atender

à totalidade da demanda, têm sido importadas cerca de 1,5 milhão de toneladas/ano. Em

2001, entretanto, houve grande produção de milho e ocorreu exportação de cerca de 1 milhão

de toneladas do produto.

O complexo soja (grão - 9,4 milhões de toneladas, farelo - 11,5 milhões de toneladas e

óleo - 1 milhão de toneladas) é um dos importantes responsáveis pelas exportações agŕıcolas

brasileiras, representando mais de 4,15 bilhões de dólares/ano em divisas para o páıs.

Arroz e feijão são produtos que têm grande produção e consumo no Brasil. Suas produções,

com freqüência são prejudicadas pelo clima, em alguns anos geram excedentes e em outros,

déficits. Os déficits eventuais, que podem chegar a 1,5 milhão de toneladas no caso do arroz e,

aproximadamente, 300 a 500 mil toneladas, no caso do feijão, são atendidos por importações.

Café e açúcar são produtos dos mais importantes e tradicionais das exportações brasileiras.

Com produção superior a 30 milhões de sacas/ano e exportações de 1 milhão de toneladas/ano

(2000), o café brasileiro é exportado para quase todos os páıses do mundo em suas várias

formas.

O valor das exportações de café em grão representaram em 2000 mais de 1,76 bilhão de

dólares em ingressos de divisas para o Brasil. Açúcar e álcool (obtidos a partir da cana-de-

açúcar) são produtos cujas produções chegam a aproximados 10 milhões de toneladas/ano

(açúcar) e 13 bilhões de litros/ano (álcool). O álcool, no Brasil, é largamente utilizado como

combust́ıvel em sua frota de automóveis, sendo responsável por mais de 25% do abasteci-

mento total. As exportações de açúcar em 2000 foram superiores a 4,7 milhões de toneladas

e alcançaram 1,19 bilhão de dólares.

A indústria cafeeira e as de açúcar e de álcool são representadas por empresas e coopera-
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tivas de produtores, sendo responsáveis também pelo desenvolvimento de grande capacidade

tecnológica. Por esta razão, o Brasil também é um exportador de projetos e de equipamentos

nesta área.

O Brasil é um grande produtor e exportador mundial de suco de laranja (1,02 bilhão de

dólares/ano). Praticamente 70% do mercado mundial de suco de laranja é abastecido com

produtos de origem brasileira.

A indústria de sucos do Brasil localiza-se, em sua maioria próxima às regiões produtoras

do páıs. Desta forma, a produção destes sucos encontra-se junto aos estados das regiões

Sudeste, Norte e Nordeste do Brasil.

Atualmente, como já referido, a principal commodity de exportação brasileira é a soja. Até

a segunda metade da década de 1960, o mercado de soja, que abrange grão, farelo e óleo, foi

amplamente dominado pelos Estados Unidos, que produziam mais de 80% da soja mundial.

Com o aumento das cotações internacionais, páıses como Brasil e Argentina passaram a

exercer um importante papel nas exportações mundiais. Nos dias de hoje, o Brasil ocupa a

segunda posição no mercado mundial da soja, com os Estados Unidos mantendo sua posição

de liderança. Segundo o relatório anual do Departamento de Agricultura dos Estados Unidos

(Usda), a safra de 1998/99 norte-americana foi de 79,87 milhões de toneladas e a brasileira

de 31 milhões.

O grão e o farelo da soja são utilizados em sistemas de criação, como ração para ani-

mais, em páıses desenvolvidos, tendo seu mercado caracterizado por uma demanda estável

no tempo. O óleo de soja, ao contrário, tem como principais demandantes no mercado inter-

nacional as nações subdesenvolvidas, sendo usado como fonte energética e por isso apresenta

demanda com maior instabilidade.

A soja brasileira passou durante a década de 1980 um peŕıodo de crescimento do valor ex-

portado, causado, dentre outros motivos, pela ocorrência de quebras de safra devido a razões

climáticas, à adoção de cotas de exportação para manter a estabilidade interna de preços e

ao decĺınio dos preços internacionais. Já o final da década de 1980 marcou uma recuperação
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no valor exportado com um aumento dos preços internacionais e o desenvolvimento de novas

áreas de cultivo, principalmente no cerrado brasileiro.

Embora tenha cáıdo de importância como commodity de exportação brasileira, o Brasil

continua sendo o principal produtor mundial de café. A participação brasileira no mercado

caiu de quase 50% em 1950 para menos de 30% nos dias atuais (27% em 1998). Durante a

década de 1980, houve um decĺınio progressivo do valor exportado de café. O Acordo Inter-

nacional de Café (AIC) foi a principal causa desta queda, pois o estabelecimento de quotas

para as exportações dos páıses signatários não permitiu que o Brasil pudesse aproveitar os

peŕıodos de alta no mercado internacional. Além disso, o Brasil foi cedendo ano a ano sua

participação nas exportações mundiais, a fim de manter o acordo, que foi rompido em 1989;

em conseqüência, na década de 90 observa-se uma recuperação da cultura cafeeira. Hoje, o

Brasil tenta dar mais dinamismo à Organização Internacional de Comércio (OIC) com maior

integração entre produtores e consumidores e entre o setor público e a iniciativa privada.

Dentre todas as commodities brasileiras, o cacau é a que apresentou a maior queda rela-

tiva no valor exportado nas últimas décadas. Desde 1985, observa-se que a cultura cacaueira

passa por uma séria crise. São inúmeras as causas para o fato. Internamente, os cacaueiros do

sul da Bahia, principal região produtora no páıs, foram assolados por pragas como “vassoura-

de-bruxa” e “podridão-parda”. O clima adverso no peŕıodo 1986/89 provocou a queda da

produção e o endividamento dos produtores. Externamente, houve uma queda dos preços

internacionais devido ao excesso de oferta ocasionado pelo surgimento de novos páıses produ-

tores, principalmente no Sudeste Asiático. Além disso, a estrutura do mercado internacional

de cacau confere o mais alto grau de ciclos de baixa renda dentre todas as commodities.

O mercado internacional de açúcar apresenta algumas caracteŕısticas diferentes dos outros

produtos. Primeiramente, a maior volatilidade-preço dentre todas as commodities; além

disso, uma grande dependência na produção e na comercialização com relação às poĺıticas

governamentais.

O açúcar produzido nos páıses desenvolvidos (em geral da beterraba) é fortemente sub-
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sidiado e sujeito a poĺıticas protecionistas de controle de produção e preços. Por outro lado,

a produção dos páıses em desenvolvimento (a partir da cana) em geral está sujeita à taxação

doméstica, às BTN (Bônus do Teseoro Nacional) e às cotas tarifárias dos páıses desenvolvi-

dos. Além disso, páıses como o Brasil regulam o mercado interno com o objetivo de incentivar

as destilarias a preencherem suas cotas na produção de álcool destilado. A estrutura do mer-

cado de açúcar inclui mercados controlados: os Acordos Internacionais do Açúcar (AIA),

que visam à estabilidade de preços através da formação de estoques reguladores e fixação

de cotas de exportação; os mercados preferenciais e garantidos; e o Mercado Livre Mundial,

atualmente representando a maior parcela do mercado mundial. Por fim, não se deve des-

prezar o avanço dos adoçantes alternativos nos mercados desenvolvidos (a participação do

açúcar neste mercado teria cáıdo de 79% em 1970 para 41% em 1988).

O Brasil é o maior produtor mundial de cana-de-açúcar, contudo percebe-se que até

1992 houve uma queda do valor exportado de açúcar. A causa primordial foi o aumento

da demanda por álcool combust́ıvel ocasionado pelo aumento do preço do petróleo, fazendo

com que o governo estabelecesse cotas de produção e inúmeros subśıdios para a produção

de álcool em detrimento da produção açucareira. A partir de 1992, com a queda do preço

do petróleo no mercado mundial, há uma recuperação da produção de açúcar. Observa-se

que no peŕıodo da safra 1991/92 a produção dividia-se em 72% para o álcool e 28% para o

açúcar, já na safra 1996/97 passou a ser de 58% para o álcool e 42% para o açúcar

O mercado de suco de laranja brasileiro tem como caracteŕıstica básica estar voltado quase

que exclusivamente para o mercado externo. O consumo de suco concentrado no mercado

interno oscila de 5% a 10% da quantidade produzida. Atualmente, o Brasil é o maior

supridor mundial de suco de laranja, sendo os Estados Unidos seu principal concorrente. Ao

mesmo tempo, os Estados Unidos, junto com a Alemanha, são os principais importadores

do suco brasileiro. Essa simultânea posição americana de concorrente e importadora de

suco de laranja deve-se ao fato do produto brasileiro ser utilizado pelos Estados Unidos

para mistura ou blend com seus produtos devido à alta relação brix/acidez total do nosso
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suco. A exportação brasileira de suco de laranja teve um salto significativo na década de

1970, atingindo um aumento de 143,3% no peŕıodo 1970/75. A partir da década de 1980,

as exportações passaram a ter comportamento oscilatório, sendo bastante dependentes das

geadas no Estado americano da Flórida e das pressões dos agricultores americanos para

adoção de um controle sobre o produto brasileiro.

1.3 Mercados Eficientes

A Hipótese da Eficiência do Mercado (HEM) é uma das teorias mais conhecidas e polêmicas

de Finanças. Alguns pesquisadores defendem a HEM demonstrando com estudos práticos

a veracidade da teoria. Por outro lado, outros pesquisadores, através de estudos emṕıricos,

chegaram a resultados que contradizem ou invalidam a HEM.

A HEM, segundo Fama (1970, 1991), é aquela que afirma que os preços refletem todas as

informações relevantes dispońıveis sobre um determinado ativo. Portanto, o valor presente

esperado da diferência entre a compra e venda de ativos a preços de mercado seria sempre

nulo. Assim, de acordo com a HEM, não existe a possibilidade de lucros anormais, pois

todas as informações relevantes referentes a este ativo estão refletidas no seu preço.

Por isso, profissionais e teóricos de todo o mundo vêm estudando o comportamento de

ativos financeiros em busca de ganhos extraordinários que contradizem a HEM. Contudo, a

dificuldade de se encontrar facilmente esses ganhos com base em dados passados e informações

públicas fez com que cada vez mais estudos fossem realizadas no sentido de tentar validar

ou contradizer a HEM.

Neste estudo, e à luz dos conceitos e de pesquisas realizadas, verificamos a aplicabilidade

da HEM no mercado de commodities agŕıcola. Através de um estudo de evento foi examinada

a hipótese da eficiência de mercado em sua forma semiforte.

A eficiência do mercado pode ser observada de três formas: fraca, semiforte e forte.
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Na forma fraca, o preço reflete todas as informações passadas que são totalmente refletidas

nos preços das ações, e é a forma menos exigente de eficiência.

Informações de cotações passadas são facilmente acesśıveis; se fosse posśıvel obter lucros

apenas analisando preços passados, todos o fariam e esse ganho logo desapareceria (Ross et

al., 1995, p.266).

Tomando como verdadeira a hipótese de eficiência fraca, evidencia-se a impossibilidade de

se obter lucros através da análise de dados passados, desacreditando a análise técnica, muito

difundida no mercado financeiro. O argumento dos analistas técnicos é que toda informação

relevante para se prever um preço futuro está contida em dados passados.

Na eficiência semiforte, é englobada a forma fraca e as informações privadas dispońıveis

que tornaram-se públicas.

A análise fundamentalista, bastante disseminada no mercado, também não proporcionaria

ganhos extraordinários a partir da análise de relatórios financeiros dispońıveis.

Na forma forte, o preço refletirá além das formas fraca e semiforte, informações privadas,

impossibilitando ganhos por insider information.

Em 1953, a Royal Statistical Society reuniu-se em Londres (Brealey e Myers; 1992, p.290)

e Maurice Kendall, estat́ıstico inglês, apresentou um estudo sobre o comportamento dos

preços de ações e mercadorias. Kendall, em sua pesquisa, procurou identificar comporta-

mentos ćıclicos na seqüência de preços, contudo, segundo suas conclusões, cada série parecia

estar errada, e era como se ao acaso um evento qualquer estivesse ocorrido durante um

peŕıodo de tempo e isto acrescentasse ao preço corrente para determinar o preço do peŕıodo

seguinte.

Para a maioria dos economistas da época, essa hipótese era estarrecedora. Não se po-

dia aceitar que as variações de preços fossem totalmente independentes umas das outras.

Contudo, através de simulação computacional ficou mais fácil conseguir evidências que com-

provassem a teoria de Kendall, que daria ińıcio ao estudo da eficiência do mercado.

Um dos pioneiros do estudo da eficiência do mercado, Eugene Fama, nos anos 1970
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afirmou que:

“Um mercado eficiente é definido como um mercado onde há um

grande número de agentes racionais maximizadores de lucros com-

petindo ativamente e tentando prever o valor futuro de mercado dos

t́ıtulos individuais e onde informações importantes estão dispońıveis

para todos os participantes a um custo próximo de zero. Em

um mercado eficiente, a competição entre muitos participantes

racionais conduz a uma situação onde, em qualquer momento no

tempo, os preços reais dos ativos individuais já refletem os efeitos

de informações, tanto com base em eventos que já tenham ocorrido

no passado como com base em eventos que o mercado espera que

ocorram no futuro. Em outras palavras, em um mercado eficiente o

preço de um ativo será uma boa estimativa do seu valor intŕınseco

em qualquer momento” (Fama, 1995, p.34).

Pode-se dizer, sinteticamente, que um mercado eficiente é aquele que reflete nos preços dos

ativos todas as informações dispońıveis. Assim, como a informação se reflete imediatamente

nos preços, os investidores só devem esperar obter uma taxa normal de retorno. A tomada

de conhecimento da informação apenas no momento em que é divulgada não traz vantagem

alguma para o investidor. O preço se ajusta antes que o investidor tenha tido tempo de

comprar ou vender a ação. Por outro lado, as empresas devem esperar receber o valor justo

pelos t́ıtulos vendidos. Justo quer dizer que o preço recebido pelos t́ıtulos emitidos é o valor

presente nesses t́ıtulos. Portanto, não há, em mercados eficientes de capitais, oportunidades

de financiamento que produzam valor em decorrência de se ter enganado os investidores

(Ross et al., 1995, p.264).

Existem três ajustes posśıveis para os preços diante de uma nova informação: a reação

imediata, reação retardada e reação excessiva. A reação pode ser imediata, mostrando um

mercado eficiente. Neste caso, o preço se ajusta imediatamente à nova informação, não

ocorrendo nenhuma outra alteração no preço. Uma reação é retardada quando decorre um
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peŕıodo até que o preço se ajuste à nova realidade. Por fim, uma reação excessiva é aquela

que se corrige no decorrer dos dias. Pode-se dizer que as reações retardadas e excessivas

representam um mercado ineficiente, pois abrem brechas para se auferir lucros até que o

preço atinja o equiĺıbrio. Neste sentido, como foi visto, a informação pode afetar de maneira

distinta o preço de um ativo.

A eficiência de um mercado pode ser dividida em três formas de acordo com a velocidade

de reação dos preços às novas informações: fraca, semiforte e forte.

Com o objetivo de comprovar ou contradizer a HEM, muitos estudos foram feitos ao longo

dos anos. Existem formas distintas de se verificar a existência da eficiência dos mercados em

suas diferentes formas.

Na forma fraca, também conhecida como passeio aleatório, o preço futuro de um ativo

está relacionado com os preços passados, como já referido. Existem várias maneiras de se

comprovar a forma fraca de eficiência do mercado. A forma inicial é através da correlação

serial (Ross et al., 1995, p.270), sendo feita a partir da comparação do retorno corrente de

um t́ıtulo com um retorno posterior do mesmo t́ıtulo. Caso a correlação se aproxime de

zero, é confirmada a hipótese de eficiência fraca de mercado, pois qualquer valor superior ou

inferior a zero na correlação serial pode indicar uma tendência que pode possibilitar ganhos

extraordinários.

A forma semiforte pode ser comprovada de duas formas: através da análise de eventos

ou pelo desempenho dos fundos mútuos. Estudos de eventos são análises estat́ısticas que

examinam se a divulgação de informações afetam os retornos de um determinado ativo.

A outra maneira de se comprovar a forma semiforte é através da análise do retorno de

fundos mútuos. Caso essa hipótese seja verdadeira, o retorno médio obtido pelos fundos

deve ser igual ao de um investidor comum, independente da maneira utilizada para montar

sua carteira. Assim, pode-se medir a eficiência semiforte comparando o retorno do mercado

com a média dos retornos obtidos pelos fundos.

A forma forte de eficiência é a mais complexa. Os órgãos reguladores do mercado de
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diversos páıses possuem legislação que restringe o uso de informação privada por parte dos

administradores das empresas. A SEC (Securities and Exchange Comission), órgão regulador

dos EUA, obriga que os administradores informem os negócios efetuados com ações de sua

empresa. Um estudo desses relatórios comprova a existência de ganhos extraordinários por

parte dos administradores, contradizendo a hipótese de eficiência na forma forte (Ross et al.,

1995, p.76).

Em 1907, o hidrologista britânico, H.E. Hurst, descobriu que duas enchentes ou secas

consecutivas do rio Nilo seriam mais freqüentes do que deveriam (segundo as freqüências de

cheias e secas únicas). A distribuição não seria normal, e sim leptocúrtica. Seus estudos

deram origem ao chamado expoente de Hurst, que é simplesmente a probabilidade de um

evento ser seguido por outro evento similar. Se seu valor é 0,5, o gráfico resulta na curva de

Gauss. Se o valor for maior que 0,5, o gráfico é leptocúrtico e produzido por um processo com

tendência de repetições, como uma moeda em que uma cara tende aparecer imediatamente

depois de outra cara.

Da mesma forma que as cheias ou secas conjuntas do Nilo, os retornos dos mercados de

capitais também apresentariam tendências de repetições. Após analisar o comportamento

dos retornos do ı́ndice S&P 500 para peŕıodos maiores que 20 dias e menores que 110 dias e

entre os anos 1928 e 1989, Peters [1991, apud The Economist (1993)] detectou um coeficiente

de Hurst aproximadamente igual a 0,8. Suas conclusões indicaram a possibilidade de previsi-

bilidade dos mercados de capitais: retornos positivos tenderiam a ser seguidos por positivos,

da mesma forma que retornos negativos tenderiam a ser seguidos por retornos negativos. A

grande dificuldade estaria em estimar os peŕıodos nos quais os eventos tenderiam a se repetir.

A razão para a existência de comportamentos caóticos nos mercados de capitais seria

a própria psicologia dos investidores: muitos investidores esperariam até ver os preços dos

ativos subindo para decidir comprá-los, como também esperariam até que começassem a cair

para decidir vendê-los, em ambos os casos ajudariam a reforçar as tendências de alta e de

baixa.
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1.4 O Primeiro Exemplo de Persistência

O hidrologista Harol Edwin Hurst, como já citado anteriormente, estudou o primeiro exemplo

histórico de uma série de dados reais (ńıveis do rio Nilo). Ele utilizou a chamada estat́ıstica

R/S, ou de amplitude ajustada, definida a seguir.

Para as variáveis observadas X1, X2, ..., Xn dos ńıveis de um rio em n anos sucessivos, a

amplitude ajustada R é definida como

R(n) = max
0≤`≤n





∑̀

i=1

Xi − `X




− min

0≤`≤n





∑̀

i=1

Xi − `X





(1.1)

onde S é o desvio padrão

S(n) = n−
1
2




n∑

i=1

X2
i − nX

2




1
2

. (1.2)

A estat́ıstica de Hurst é o quociente entre a amplitude de oscilação ajustada pela tendência

e o desvio padrão:

Q(n) =
R(n)

S(n)
. (1.3)

Hurst tirou médias da estat́ıstica R/S para diferentes pontos de partida nos seus estudos

do rio Nilo e de outros rios e notou que essas médias oscilavam em torno de nh com h ' 0, 74.

O parâmetro h veio a ser chamado de expoente de Hurst e o fato de se observar h > 1/2

para esses dados e para muitos outros, inclusive econômicos (Mandelbrot, 1983), tornou-se

um fato surpreendente.

Para a classe de processos ARMA, veio a provar-se que h = 1/2 e para a classe de pro-

cessos ARIMA, demonstrou-se que h = 1. Tendo-se encontrado séries longas de observações

em que h não mostrava convergência para nenhum destes valores, tornava-se necessário criar

modelos em que o expoente de Hurst pudesse tomar valores no intervalo (1/2; 1).

Para solucionar este problema surgiu o trabalho de Benoit Mandelbrot que veio a ter

grandes repercussões na teoria dos processos estocásticos (Mandelbrot, 1965). Nesse trabalho
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e em alguns outros que se seguiram (Mandelbrot e Van Ness, 1968), veio a ser definido

o movimento browniano fracionário e o rúıdo gaussiano fracionário. Este último revelou

propriedades intermediárias entre os processos ARMA e os processos não estacionários ( Ver

Reisen, V. e Crato, N.).

1.5 Caracteŕısticas dos Processos Estacionários e Não

Estacionários

Pretendemos explicar algumas peculiaridades de séries financeiras que não são bem descritos

por modelos univariados de séries de tempo tradicionais (lineares e gaussianos com memória

curta como o modelo ARMA) propagados por Box e Jenkins, 1970. As principais carac-

teŕısticas dos processos estacionários podem ser explicadas pela presença de:

1.Conglomerados de valores extremos em séries financeiras comentada por Mandelbrot

(1963), que levou ao desenvolvimento da teoria de modelos da famı́lia ARCH propostos por

Robert Engle no final dos anos de 1970.

2.Assimetrias no comportamento de retornos de diversos ativos cuja percepção é atribúıda

a Black (1976).

3.Que modelos GARCH estimados, freqüentemente geravam estimativas dos parâmetros

cuja soma é próxima da unidade sugerindo elevada persistência na volatilidade, estimulando

a pesquisa de modelos de memória longa para proxies do risco em séries financeiras.

Para investigar esta última caracteŕıstica usamos modelos da classe ARFIMA, intro-

duzidos por Granger e Joyeux (1980), às séries financeiras e proxies de suas volatilidades e

tentamos avaliar os ganhos em termos de caracterização e previsão de médio prazo.

Este trabalho preocupa-se em explorar dois aspectos principais, um prático e outro

teórico. O aspecto prático é a crescente demanda por métodos cient́ıficos para avaliar riscos

no comportamento de mercados financeiros, tanto do ponto de vista microeconômico do in-
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vestidor que queira manter uma posição de mercado compat́ıvel com o seu comportamento

diante do risco e sua relação com o retorno esperado, quanto do ponto de vista macroe-

conômico de antecipar e evitar posśıveis crashes que se propaguem com profundos efeitos

adversos. Essas duas formas do controle de risco estão intrinsecamente associadas à teoria de

previsão, na qual a análise univariada de séries de tempo pode e deve, a nosso ver, desempe-

nhar importante papel. Com isto não queremos dizer que acreditamos que as caracteŕısticas

essenciais de alguma série estejam fundamentalmente associadas a um modelo univariado

espećıfico, mas tão somente que tal modelo univariado pode ser uma primeira aproximação

que permita a investigação de caracteŕısticas importantes e apresente desempenho preditivo

satisfatório para uma futura generalização multivariada, ou seja, estamos supondo que em

alguns casos a desconsideração da presença de memória longa ou não linearidade pode ser

mais grave que a desconsideração do aspecto multivariado do processo gerador dos dados.

O aspecto formal associa a teoria de previsão à teoria de mercados eficientes e sua ligação

com expectativas racionais. Em particular, modelos não lineares na média podem servir como

ind́ıcio contrário à hipótese de mercados eficientes se fornecerem previsões suficientemente

melhores a ponto de permitirem gerar estratégias de investimento com desempenho superior

a um elemento representativo do desempenho do mercado como um todo.

Para entendermos as caracteŕısticas dos processos estacionários e não estacionários uti-

lizamos como exemplo o rúıdo branco e o passeio aleatório.

O rúıdo branco, {εt}, consiste numa seqüência de variáveis não correlacionadas com

E(εt) = µε, variância constante V ar(εt) = σ2
ε e cov(εt, εt+k) = 0 para todo k 6= 0 é esta-

cionário fracamente, e o passeio aleatório, Xt = Xt−1 + at torna-se estacionário na primeira

diferença, são modelos importantes que esclarece caracteŕısticas essenciais de uma classe

muito vasta de processos. O conceito de estacionaridade aqui aplicado é, habitualmente, o

de estacionaridade à segunda ordem (ou em covariância, ou fraca), que é o mais simples e

mais importante na análise de séries temporais.

A série temporal é dita de segunda ordem se E(X2
t ) < ∞ para todo t = 0, 1, 2, · · · e
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será chamada estacionária de segunda ordem se o primeiro e o segundo momentos forem

independentes de t , ou seja: E(Xt) = µ, ∀t e

γX(k) = Cov (Xt, Xt+k) = E {[Xt − E(Xt)] [Xt+k − E (Xt+k)]} ∀k = 0, 1, 2, · · · dependa de

k.

A função de autocorrelação, ρk, de um rúıdo branco é nula para todas as ordens diferentes

de zero e a densidade espectral do mesmo processo é constante, f(w) = σ2/2π. A função

de autocorrelação e a função espectral não existem num passeio aleatório, pois este processo

não é estacionário, mas pode ser estimadas com base numa qualquer realização finita deste

processo. O resultado de tal estimação é uma função de autocorrelação amostral que decai

muito lentamente, tendendo para uma função constante à medida que o número de defasagens

aumenta. A função de densidade espectral estimada, por seu turno, revela um alto valor

com freqüência nula.

O passeio aleatório pode ser visto como resultante de aplicação ao processo de rúıdo

branco at do filtro (1 − B)−1. Por aplicação formal da teoria básica das funções de trans-

ferência, verifica-se que o espectro do processo aleatório tem a forma

fX(w) =
∣∣∣1− e−iw

∣∣∣
−2 σ2

2π
, −π ≤ w ≤ π ,

fX(w) →∞ quando w → 0

A diferença entre rúıdo branco e passeio aleatório mostra o contraste mais geral entre

os processos ARMA(p, q), estacionários e invert́ıveis, e os processos ARIMA(p, d, q), não

estacionários, mas redut́ıveis a ARMA(p, q) após aplicação de transformações nos dados, por

exemplo, (1−B)dXt , `nXt , (1−B)d`nXt.

Os processos fracionariamente integrados generalizam os processos ARMA e ARIMA,

pois mostram funções de autocorrelação que não decaem para zero de forma geométrica

e evidenciam funções de densidade espectral que podem ser zeros e divergir na freqüência

zero. Esta generalização é notável na medida em que essas caracteŕısticas são alcançadas

por processos estacionários e invert́ıveis.
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Chapter 2

Modelos Univariados de Séries

Temporais

2.1 Modelos Estacionários

Seja {Xt} o modelo auto-regressivo de média móvel de ordem (p,q), ARMA (p, q) e seja

{εt}, um processo rúıdo branco, não observado, consistindo de uma seqüência de variáveis

não correlacionadas com E(εt) = µε, variância constante V ar(εt) = σ2
ε e cov(εt, εt+k) = 0

para todo k 6= 0.

Então a série observada no tempo {Xt} satisfaz à seguinte equação

Φp(B) (Xt − µ) = Θq(B)εt (2.1)

onde B é o operador de defasagem

BXt = Xt−1 , Φp(B) = 1− φ1B − · · · − φpB
p e θ(B) = 1− θ1B − · · · − θqB

q .

Para {Xt} ser invert́ıvel, as ráızes da equação caracteŕıstica Θq(B) = 0 devem estar fora

do ćırculo unitário, e para o processo ser estacionário, as ráızes da equação caracteŕıstica
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Φp(B) = 0 devem estar fora do ćırculo unitário. (Assume-se que Φp(B) = 0 e Θq(B) = 0

não possuem ráızes comuns).

Sendo {Xt} estacionário e µε = 0, o valor esperado é

E(Xt) =
µ

1−
p∑

i=1

φi

e a função de autocorrelação - FAC - satisfaz

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p , ou Φp(B)ρk = 0 , para k ≥ q + 1 . (2.2)

A função de autocovariância é dada por

γk = φ1γk−1 + φ2γk−2 + · · ·+ φpγk−p + γzε(k)− θ1γzε(k − 1)− . . .− θqγzε(k − q) , k ≤ q ,

(2.3)

onde γzε(k) = E(εtzt−k) =





0 , k > 0

6= 0 , k ≤ 0

O processo ARMA(p, q) estacionário tem função de autocorrelação que decai à medida

que a ordem k aumenta. Mais precisamente, qualquer processo ARMA tem função de auto-

correlação que é limitada por uma sucessão geométrica

|ρ(k)| ≤ Crk → 0 , quando k →∞, com 0 < r < 1 . (2.4)

Este resultados citados acima podem ser vistos em Box e Jenkins (1976).

Função Autocorrelação Parcial-FACP-

A função de correlação parcial mede a relação existente entre Xt e Xt+k, quando se fixam

as variáveis intermediárias Xt+1, Xt+2, ..., Xt+k−1. Seja a regressão linear múltipla de Xt+k

sobre Xt+k−1, Xt+k−2, ..., Xt+1, Xt dada por:

Xt+k = φk1Xt+k−1 + φk2Xt+k−2 + · · ·+ φkkXt + ξt+k ,
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onde φkj, j = 1, 2, ..., k são os coeficientes de regressão e ξt+k o erro não correlacionado com

Xt+k−j para j ≥ 1. O coeficiente φkk exprime a variação em Xt+k que acompanha em média

uma variação unitária em Xt, quando Xt+1, Xt+2, ..., Xt+k−1 permanecem constantes; como

as variáveis estão, por hipótese, estandardizadas, tal variação pode ser interpretada como a

correlação parcial entre Xt e Xt+k

Sabe-se que

ρj = φk1ρj−1 + φk2ρj−2 + · · ·+ φkkρj−k , j = 1, ..., k ,

ρ1 = φk1 + φk2 ρ1 + · · ·+ φkkρk−1

ρ2 = φk1 ρ1 + φk2 + · · ·+ φkkρk−2

...

ρk = φk1 ρk−1 + φk2 ρk−2 + · · ·+ φkk

ρ = P∼ φkk

a partir de onde obtemos as equações de Yule-Walker:

Logo;

φkk =

∣∣∣∣∣ P ∗
k∼

∣∣∣∣∣
| Pk∼

| ,

onde Pk∼
é a matriz de autocorrelação e P ∗

k∼
é a matriz Pk∼

com a última coluna su-

bstitúıda pelo vetor de autocorrelações.

i) um processo AR(p) tem FACP φkk 6= 0, para k ≤ p e φkk = 0, para k > p;

ii) um processo MA(q) a FAC 6= 0, para k ≤ q e é zero, para k > q;

iii) a FAC de um rúıdo branco é nula para qualquer defasagem
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O Modelo AR(p)

O modelo auto-regressivo de ordem p, AR(p), pode ser escrito como

Φp(B)Xt = µ + εt , onde Φp(B) = 1− φ1B − · · · − φpB
p . (2.5)

O modelo AR(p) é sempre invert́ıvel. Para ser estacionário, as ráızes de Φp(B)=0 devem

estar fora do ćırculo unitário.

Este processo tem o seu valor esperado dado por:

E(Xt) =
µ

1−
p∑

i=1

φi

e a sua variância é dada por:

γ0 =
σ2

1−
p∑

i=1

φ2
i

O que caracteriza o modelo AR(p) é que a função de autocorrelação parcial φkk é igual

a zero para valores de k maiores do que p. No modelo AR (p) temos as equações de Yule-

Walker, que nos permitem estimar os coeficientes φ1, . . . , φp, dados por

ρk = φ1ρk−1 + φ2ρk−2 + · · ·+ φpρk−p, k = 1, 2, . . . , p.

O Processo MA(q)

O processo de média móvel de ordem q, MA(q), é da forma

Xt = µ + εt − θ1εt−1 · · · − θqεt−q . (2.6)

Um processo MA é sempre estacionário. Para ser invert́ıvel, as ráızes de Θq(B) = 0

devem estar fora do ćırculo unitário.

O valor esperado é dado por E(Xt) = µ, e a variância por:

γ0 = σ2
ε

q∑

j=0

θ2
j com θ0 = 1 . (2.7)
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A função de autocovariância é dada por

γk =





σ2
ε (−θk + θ1θk+1 + · · ·+ θq−kθq) , k = 1, 2, . . . , q,

0 , k > q,
(2.8)

e a função de autocorrelação é

ρk =





−θk+θ1θk+1+···+θq−kθq

1+θ2
1+···+θ2

q
, k = 1, 2, . . . , q,

0 , k > q,

(2.9)

2.2 Processo Linear Geral

Um processo{Xt} é dito ser processo linear geral se puder ser representado por uma com-

binação linear do rúıdo branco {εt}, isto é, se Xt puder ser escrito da forma

Xt =
∞∑

j=0

ψjεt−j , (2.10)

onde {ψj} é uma seqüência de constantes satisfazendo
∞∑

j=0

ψ2
j < ∞.

Pode ser mostrado que para o processo linear geral que:

E(Xt) = 0 , V ar(Xt) = σ2
ε

∞∑

j=0

ψ2
j < ∞ ,

γk = σ2
ε

∞∑

i=0

ψiψi+k , e ρk =

∞∑

i=0

ψiψi+k

∞∑

i=0

ψ2
i

, k = 0,±1,±2, . . . (2.11)

A função de autocovariância para um processo linear geral é finita para cada k e expresso

por:

|γk| = |E(XtXt+k)| ≤ [var(Xt)var(Xt+k)]
1/2 = σ2

ε

∞∑

j=0

ψ2
j .
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2.3 Processo ARIMA(p, d, q)

{Xt} é um processo auto-regressivo integrado de média móvel se a transformação∇dXt, d ≥ 1

e ∇ = 1−B resultar em um processo ARMA. O modelo é expresso na forma

Φp(B) (1−B)d(Xt − µ) = Θq(B)εt, (2.12)

onde Φp(B) e Θq(B) são polinômios estacionários e invert́ıveis do modelo ARMA(p, q) e d é

um inteiro maior ou igual a 1.

O processo ARIMA(p, d, q) é escrito na seguinte forma:

Φp(B)Ut = Θq(B)εt, (2.13)

onde Ut = (1−B)d(Xt − µ) é o processo estacionário ARMA (p, q).

2.4 Processo Estacionário no Domı́nio da Freqüência

Se {Xt} é um processo estacionário com as autocovariâncias, γk, absolutamente convergentes,

isto é,
∑

k

|γk| < ∞. A função espectral de {Xt} é dada por

fX(w) =
1

2π

∞∑

k=−∞
γke

−iwk =
1

2π

[
γ0 + 2

∞∑

k=1

γkcos(wk)

]
, w ∈ [−π, π], (2.14)

onde são consideradas as propriedades γk = γ−k; sen(−wk) = −sen(wk);

cos(−wk) = cos(wk); e−iwk = cos(wk) - i sen(wk); e−iwk + eiwk = 2cos(wk).

f(w) é uma função cont́ınua real, f(w) = f(−w), f(w) ≥ 0, para todo w.
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Função Espectral do Modelo ARMA

Seja {Xt} uma série seguindo um processo ARMA(p, q) e {εt} um processo rúıdo branco

com média zero e variância σ2
ε . A função espectral de {Xt} é dada por

fX(w) =
σ2

ε

2π

∣∣∣∣∣
Θq(e

−iw)

Φp(e−iw)

∣∣∣∣∣
2

− π ≤ ω ≤ π, (2.15)

onde Φp(·) e Θq(·) são polinômios do processo ARMA(p, q):

Θq(e
−iw) = 1− θ1 e−iw − θ2 e−2iw − · · · − θq e−qiw,

φp(e
−iw) = 1− φ1 e−iw − φ2 e−2iw − · · · − φp e−piw,

|φ(·)|2 = φ2(·) .

Para um processo MA(1), a função espectral é dada por

fX(w) =
σ2

ε(1 + θ2 − 2θ cos w)

2π

e para um AR(1) fX(w) é especificada através da seguinte expressão:

fX(w) =
σ2

ε

2π(1 + φ2 − 2φ cos w)
.

Como se admite tratar-se de processos ARMA estacionários e invert́ıveis, não existem

ráızes unitárias nesses polinômios, o que implica que o espectro fX(w) é finito e estritamente

maior que zero na freqüência zero. Com efeito, fX(0) = 0 implicaria a existência de uma

raiz unitária no polinômio de médias móveis, indicando um processo não invert́ıvel enquanto

fX(0) →∞ implicaria a existência de uma raiz unitária no polinômio auto-regressivo, indi-

cando um processo não estacionário. Estes resultdos podem ser encontrados no texto Time

Series Analysis de Hamilton, J.
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2.5 Processo Não Estacionário no Domı́nio da

Freqüência

Seja {Xt} um processo ARIMA(p, d, q). Se d 6= 0, a série {Xt} é não estacionária e, es-

tritamente dizendo, a mesma não possui espectro. Entretanto, o operador ∇d aplicado ao

modelo ARIMA poderá gerar uma transformação na função de densidade espectral de fX(w)

gerando uma função espectral f∇X(w) dada pela seguinte expressão:

f∇X(w) = fX(w)
∣∣∣1− e−iw

∣∣∣
2d

, w 6= 0 .

Se {Xt} possui densidade espectral e se diferenciarmos d vezes a série temporal {Xt},
a expressão acima é rigorosamente correta. Um resultado simples de aplicação é utilizar a

função de transferência |ψ(e−iw)|2 sob o filtro ψ(B) = (1−B)d, ou seja, ψ(e−iw) = (1−e−iw)d.

Considerando o caso onde {Xt} é estacionário e com densidade espectral limitada, então

para w ' 0 e d > 0 teremos

f∇X(w) ' fX(0)
∣∣∣1− e−iw

∣∣∣
2d ' fX(0)|w|2d ' 0

fX(0) = 2
∞∑

k=1

γX(k) + γX(0) ; pois γX(k) = γX(−k).

Dado o resultado f∇X(0) = 0 num cenário de um modelo ARMA, somos obrigados

a suspeitar que isto se deve a um excesso de diferenciação de série original. Excesso de

diferenciação pode gerar um processo não invert́ıvel. Considerando a função de densidade

espectral de um ARMA, teremos

f∇X(w) =
σ2 |θ(e−iw)|2
2π |φ(e−iw)|2 .

Se assumirmos que∇X segue um modelo ARMA, a única possibilidade para que f∇X(0) = 0

é o polinômio de média móvel θ(e−iw) ser igual a zero para w = 0, ou seja,

θ(e−iw) = 1− θ1 e−iw − θ2 e−2iw − · · · − θq e−qiw,

θ(e−iw) = 0 quando w = 0,
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implica que θ1 + θ2 + · · · + θq = 1, o que é equivalente a θ(1) = 0, ou seja, o polinômio

θ(B) possui raiz da equação caracteŕıstica sob o ćırculo unitário, portanto o modelo não é

invert́ıvel.

Se fX(w) não é limitada na origem, mas f∇X(0) = C > 0, para alguma ordem de

diferenciação, então temos o tradicional modelo ARIMA(p, d, q), com d = 1, 2, 3, · · ·. Mas

se fX(w) não é limitada na origem e f∇X(0) = 0, poderemos pensar em utilizar o operador

∇d = (1 − B)d para algum d ∈ (0, 1), como uma alternativa de tornar a série ∇dXt

estacionária. Hamilton, J. exibe estes resultados em Time Series Analysis.

2.6 Estimação da Função Espectral

Seguem-se dois estimadores da função espectral: a função periodograma e a função perio-

dograma suavizada.

A Função Periodograma

Seja as n observações X1, X2, · · · , Xn de um processo {Xt}, a função IX(w), denominada

de periodograma, é defenida para todo w ∈ [−π, π] por

IX(w) = 2

[
R(0) + 2

n−1∑

k=1

R(k)cos(wk)

]
, (2.16)

R(k) sendo a função de autocovariância amostral do processo, dada por

R(k) =
1

n

n−k∑

i=1

(Xi −X) (Xi+k −X), k = 0,±1,±2, · · · ,±(n− 1)

Seja

I ′X(w) =
Ix(w)

4π
=

1

2π

[
R(0) + 2

n−1∑

k=1

R(k)cos(wk)

]
. (2.17)

I ′X(w) é o estimador “natural” da função fX(w). Temos

E[I ′X(w)] =
1

2π

[
γ(0) + 2

n−1∑

k=1

γkcos(kw)

]
→ fX(w) quando n →∞ .

I ′X(w) é um estimador assintoticamente não viciado de fX(w). Ver Box e Jenkins (1976).
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Função Periodograma Suavizada

A função periodograma suavizada, denotada aqui por fs(w), é um estimador alternativo

do espectro fX(w). A função é dada por

fs(w) =
1

2π

n−1∑

k=−(n−1)

λ(k)R(k)cos(kw) , w ∈ [−π, π], (2.18)

onde λ(k) é uma função real de ponderação conhecida como janela.
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Chapter 3

Modelo ARFIMA(p, d, q)

3.1 Introdução

Os conceitos de integração fracionária e de derivação fracionária foram usados por Mandel-

brot para criar processos em tempo cont́ınuo de caracteŕısticas anteriormente inexplicáveis

pelos modelos existentes. De forma muito semelhante, Granger e Joyeux (1980) e, indepen-

dentemente, Hosking (1981) criaram processos em tempo discreto com base na integração e

diferenciação fracionárias.

A sua idéia é simples e pode ser assim explicada. Um passeio aleatório, por exemplo,

transforma-se num rúıdo branco por aplicação de diferenciação de primeira ordem. Caso as

diferenças fracionárias forem de ordem 1/2, por exemplo, dever-se-á encontrar um processo

de caracteŕısticas intermediárias entre a não estacionaridade e a estacionaridade.

Logo o modelo ARIMA (p, d, q) Auto-regressivo Integrado de Média Móvel é algumas

vezes denominado como processo geral com diferenciação fracionária ARFIMA quando o

parâmetro d (grau de diferenciação) assume valores não inteiros.

Seja {εt} um processo rúıdo branco com E(εt) = 0 e V ar(εt) = σ2
ε < ∞ e B o operador

defasagem BXt = Xt−1. Sejam Φ(B) e Θ(B) polinômios de ordem p e q, respectivamente,

onde Φ(B) = 1 − φ1B − · · · − φpB
p e Θ(B) = 1 − θ1B − · · · − θqB

q, com todas as ráızes
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distintas das equações caracteŕısticas Φ(B) = 0 e Θ(B) = 0 fora do ćırculo unitário. Seja

Φ(B)(1−B)d(Xt − µ) = Θ(B)εt, (3.1)

onde d é o grau da diferenciação fracionária, com d ∈ (−0, 5; 0, 5). Então {Xt} é chamado

de processo geral com diferenciação fracionária ARFIMA (p, d, q).

Quando Φ(B) = Θ(B) = 1, {Xt} é definido como processo rúıdo branco com diferenciação

fracionária e representado por

(1−B)d(Xt − µ) = εt (3.2)

Hosking (1981, 1982, 1984) utiliza este modelo para analisar dados de séries hidrológicas.

Juntamente com Granger e Joyeux (1980), ele foi o pioneiro nos estudos deste modelo.

A mais importante caracteŕıstica do modelo ARFIMA (p, d, q) é a propriedade de longa

dependênca quando d ∈ (0.0, 0.5) e curta dependência quando d ∈ (−0.5, 0.0). Longa

dependência (persistência) é caracterizada pela presença, na série, de uma significante de-

pendência entre as observações, mesmo para defasagens distantes. Esta caracteŕıstica tem

sido observada em séries de diferentes áreas de estudos, tais como meteorologia, astronomia,

hidrologia e economia. Muitas referências podem ser encontradas em Sowell (1990).

No modelo ARFIMA (p, d, q), d ∈ (−0.5, 0.5), as caracteŕısticas de longa e curta de-

pendência podem ser notadas pelo comportamento da função espectral e da função de auto-

correlação.

O termo (1−B)d, para d ∈ R, é definido como a expansão binomial,

∇d = (1−B)d =
d∑

k=0

(
d

k

)
(−B)k , (3.3)

onde (
d

k

)
=

d

k

d− 1

k − 1
· · · d− k + 1

1
. (3.4)

Procedendo exatamente da mesma forma como no desenvolvimento de uma série de

Taylor de (1− x)d quando d não é inteiro, temos então
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(1−B)d =
∞∑

k=0

(
d

k

)
(−B)k = 1− dB − d(1− d)B2

2!
− d(1− d)(2− d)B3

3!
− · · · ,

(1−B)d =
∞∑

k=0

Γ(k − d)Bk

Γ(−d)Γ(k + 1)
, (3.5)

onde Γ(·) é a função gama, ou seja, Γ(p) =
∫ ∞

0
e−xxp−1dx, p > 0. Γ(p) = p−1 Γ(p + 1),

p < 0, p 6= −1,−2,−3, . . .. Γ(1/2) =
√

π, Γ(p + 1) = pΓ(p), Γ(p) = (p − 1)!, se p é inteiro,

Γ(p + 1/2) = [(2p)!
√

π] / [p! 22p], sen(πx) = π x
∞∏

n=1

(
1− x2

n2

)
. Ver Hamilton, J. em Time

Series Analysis.

3.2 O Modelo ARIMA (p, d, q)

Teorema 3.1: (Hosking (1981)). Seja {Xt} o modelo ARIMA (p, d, q) definido acima. Seja

d ∈ (−0.5, 0.5). Então:

a) {Xt} é estacionário e invert́ıvel, com as representações infinitas de MA e AR dadas por

MA : Xt =
∞∑

k=0

ψkεt−k , AR :
∞∑

k=0

πkXt−k = εt , (3.6)

respectivamente, onde ψk e πk são coeficientes de Bk na expansão de

Ψ(B) =
Θ(B)

Φ(B)
(1−B)−d e Π(B) =

Φ(B)

Θ(B)
(1−B)d .

Se {Xt} é estacionário e invert́ıvel, temos:

b) Seja Ut = (1 − B)dXt, então Φ(B)Ut = Θ(B)εt, logo Ut é ARMA (p, q) com densidade

espectral fU(w) e função de autocovariância γU
k .

Seja

Yt =
Φ(B)

Θ(B)
Xt ,
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então Yt é ARIMA (0, d, 0) com função espectral fY (w) e covariância γY
k mostradas por

Hosking(1981). Esta demonstração pode ser vista em Reisen, V.(1994).

Então:

b.1) A densidade espectral {Xt}, fX(w), é dada por

fX(ω) = fU(ω) (2sen(ω/2))−2d = fU(ω)
(
4sen2(ω/2)

)−d
,

fX(ω) = σ2
ε

|Θ(e−iω)|2
2π |Φ(e−iω)|2

(
4sen2

(
ω

2

))−d

,

fX(ω) =
∣∣∣1− e−iω

∣∣∣
−2d |θ(e−iω)|2

|φ(e−iω)|2
σ2

2π
, −π ≤ ω ≤ π .

Quando w → 0, lim fX(w) ' [σ2/2π] [θ(1)/φ(1)]2 w−2d e é finito.

fX(w) ∼ Cw−2d , quando w → 0 . (3.7)

Sendo assim, os processos ARFIMA estacionários, a densidade espectral diverge na

freqüência zero quando d > 0 e é zero nessa mesma freqüência quando d < 0. O que é

surpreendente é que essa divergência nas baixas freqüências, também chamada persistência,

é obtida com um processo estacionário; o que era imposśıvel no quadro dos modelos ARMA

e ARIMA, e que um valor nulo na freqüência zero pode ser obtida por processos ARFIMA

invert́ıveis, o que também era imposśıvel no caso ARMA e ARIMA.

Enquanto a densidade espectral de processos ARFIMA é de fácil obtenção, a sua função

de autocorrelação é de cálculo mais complexo. No entanto, pela transformada do espectro,

verifica-se que ela decai hiperbolicamente e que se tem a seguinte relação assintótica:

ρX(k) ∼ Ck2d−1 quando k →∞ , (3.8)

onde C é uma constante diferente de zero. Ou seja ρX(k) existe e é finito.

Sendo assim, os processos ARFIMA estacionários com d 6= 0 distinguem-se dos processos

ARMA, pois o decaimento da sua função de autocorrelação não é dominado por nenhuma
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sucessão geométrica, o que significa que, dado qualquer ARFIMA e qualquer ARMA, a partir

de certa ordem as autocorrelações do primeiro (ARFIMA) são maiores, em valor absoluto,

que as do segundo (ARMA).

As condições (3.7) e (3.8) são equivalentes e definem a chamada memória longa ou per-

sistência. Um processo tem memória longa se verificar (3.7) ou, equivalentemente, (3.8).

Por vezes distinguem-se os casos de processos com d > 0, chamados persistentes, dos com

d < 0, chamados antipersistentes ou de memória intermediária. Ou seja, se −1/2 < d < 0, o

processo é antipersitente e se 0 < d < 1/2, o processo é persistente. Para maiores detalhes

ver Brockwell e Davis (1991).

b.2) Seja ρX
k a função de autocorrelação de {Xt}. Então, quando k →∞, lim k1−2dρX

k existe

e é finito.

Pelo Teorema 3.1, pode-se deduzir casos particulares do modelo ARIMA (p, d, q), isto é,

para os modelos ARIMA (1, d, 0), ARIMA (0, d, 1) e ARIMA (0, d, 2), onde γY
k e ρY

k denotam

as funções de autocovariância e autocorrelação do modelo ARIMA (0, d, 0), e F (·) é a função

hipergeométrica dada por

F (a, b, c, z) = 1 +
ab

c 1
z +

a(a + 1)b(b + 1)

c(c + 1)1 2
z2 +

a(a + 1)(a + 2)b(b + 1)(b + 2)

c(c + 1)(c + 2)1 2 3
z3 + · · · (3.9)

Se d ∈ (0.0, 0.5), o processo tem a propriedade de longa dependência e exibe uma forte

e positiva dependência entre as distantes observações. No domı́nio do tempo, as autocor-

relações decaem lentamente de uma forma hiperbólica, isto é, ρk ∼ k−d, o oposto das auto-

correlações produzidas pelo modelo ARMA (p, q), que têm decaimento exponencial, ρk ∼ ak,

0 < a < 1. No domı́nio da freqüência, a função espectral tende a infinito quando a freqüência

se aproxima de zero.

Se d ∈ (−0.5, 0.0), o processo tem a propriedade de curta dependência. No domı́nio

da freqüência, isto é indicado pelo comportamento da função espectral, que se aproxima de

zero quando a freqüência também se aproxima de zero. No domı́nio do tempo, a função de
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autocorrelação poderá exibir dependências negativas entre observações distantes. Portanto,

o tipo de dependência é essencialmente determinado pelo valor fracionário de d.

Segue um resumo de algumas das principais caracteŕısticas do modelo ARIMA (0, d, 0):

1) Para d ∈ (−0.5; 0.5), {Xt} é estacionário e invert́ıvel e os coeficientes de MA e AR

decaem hiperbolicamente.
∑

k

ψ2
k < ∞ e

∑

k

π2
k < ∞, onde ψk e πk são os coeficientes

das representações infinitas de MA e AR.

2) Para d ∈ (−0.5; 0.0) e k > 0, ρk é negativo e tende hiperbolicamente para zero.
∑

k

|ψk|
é finito e

∑

k

|πk| é infinito. A função de autocorrelação é absolutamente convergente,

isto é,
∑

k

|ρk| < ∞.

3) Para d ∈ (0.0; 0.5) e k > 0, ρk é positivo e tende hiperbolicamente para zero de uma forma

muito lenta.
∑

k

|ρk| é infinito e
∑

k

|ψk| → ∞ enquanto que
∑

k

|πk| → ∞, fX(w) → ∞
quando w → 0.

4) Se d ∈ (0.5; 1.0), o processo deixa de ser estacionário porque sua variância não é finita,

mas ele continua apresentando reversão à média. Estas observações podem ser encon-

tradas em Reisen, V.(1994).

Assim sendo, a função de autocorrelação de uma série estacionária gerada por um pro-

cesso ARFIMA pode exibir comportamento t́ıpico de séries não estacionárias, conduzindo à

conclusão equivocada de que a série é integrada de ordem 1 I(1) pelo simples fato de não ser

integrada de ordem zero I(0). Os modelos ARFIMA preenchem a lacuna que existe entre

essas duas situações extremas. O valor da ordem de integração d passa agora a ser estimado.

Para concluir este terceiro caṕıtulo apresentamos um teorema demonstrado por Has-

sler(1991) que será de fundamental importância no decorrer do texto.

Teorema 3.2: Os coeficientes da representação infinita MA do modelo ARIMA (p, d, q),

Xt = (1−B)−d Θ(B)

Φ(B)
εt = Ψ(B)εt ,
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decaem hiperbolicamente no sentido que para uma constante real b,

ψk ∼ kd−1 b

(d− 1)!
, k →∞ . (3.10)

A prova do teorema 3.2 é dada por Hassler (1991).

Os coeficientes da representação infinita MA do modelo ARIMA (p, d, q) (teoremas 3.1

e 3.2) satisfazem à condição de que a soma dos quadrados dos coeficientes da representação

infinita MA é finita. Portanto, tem-se o seguinte lema para o modelo ARIMA (p, d, q) quando

d ∈ (−0.5, 0.5).

Seja {Xt} um processo ARIMA (p, d, q) quando d ∈ (−0.5, 0.5), isto é, {Xt} pode ser

escrito da forma

Xt = (1−B)−d Θ(B)

Φ(B)
εt = Ψ(B)εt , (3.11)

onde εt é um processo rúıdo branco. Então, {Xt} é um processo linear geral e ψk é dado

assintoticamente pelo teorema 3.2.
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Chapter 4

Métodos de Estimação do Parâmetro

d no Modelo ARFIMA

4.1 Introdução

Existem vários métodos para estimação do parâmetro d no modelo ARIMA (p, d, q). Apre-

sentaremos alguns métodos e suas propriedades. Os comportamentos dos métodos aqui

discutidos poderão ser avaliados através de resultados de simulação. Os métodos que serão

estudados são:

- Método de regressão utilizando a função periodograma;

- Método de regressão utilizando a função periodograma suavizado;

- Método baseado no coeficiente de Hurst;

- Método de máxima verossimilhança.

O método de regressão usando a função de periodograma foi apresentado por Geweke e

Porter-Hudak (1983). A função periodograma, entretanto, não é um estimador consistente

da função espectral (Priestley, 1981). No método de regressão, Reisen (1994) propõe o uso

da função periodograma suavizada, que é um estimador consistente da função espectral. O
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terceiro método apresentado aqui é o método do coeficiente de Hurst. Este método é baseado

nos estudos de Hurst (1951, 1956), que recebeu seu nome, pois foi o pioneiro no assunto.

Uma completa revisão do estudo de Hurst é dada por McLeod e Hipel (1978). Será também

considerada a estimação do parâmetro d usando uma aproximação do método de máxima

verossimilhança proposta por Whittle (1951).

O método da máxima verossimilhança (ML), tem sido bastante usado em trabalhos

emṕıricos, mas por não ser o principal enfoque anaĺıtico desta tese, será apresentado de

maneira simplificada. Este método apresenta uma complexidade associada à construção da

função de verossimilhança e também no processo de avaliá-la repetidamente. Estas desvanta-

gens são argumentadas nos trabalhos de McLeod e Hipel (1978) e Brockwell e Davis (1987).

Em conseqüência destas desvantagens, alguns autores, tais como Brockwell e Davis (1987), Li

e McLeod (1986) e Hosking (1984), sugerem uma aproximação da função de verossimilhança.

Entretanto, Sowell (1990) argumenta que as desvantagens do método não têm fundamento.

Ele deriva a função exata (não condicional) de verossimilhança para estimar d e a compara

empiricamente com os métodos propostos por Fox e Taqqu (1986) e Geweke e Porter-Hudak

(1983).

4.2 Método de Regressão

Seja {Xt} um processo ARIMA (p, d, q), d ∈ (−0.5, 0.5) representado por (1 − B)dXt = Ut

onde Φ(B)Ut = Θ(B)εt é um modelo ARMA (p, q) e {εt} é o processo rúıdo branco com

média zero e variância σ2
ε . A função espectral de {Xt} é dada por

fX(w) = fU(w) (2sen(w/2))−2d , w ∈ [−π, π] , fU(w) sendo a função espectral Ut . (4.1)

lnfX(w) = lnfU(w)− dln (2sen(w/2))2 . (4.2)
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lnfX(w) = lnfU(0)− dln (2sen(w/2))2 + ln{fU(w)/fU(0)} . (4.3)

Teorema 4.1: (Priestley 1981). Seja {Xt} um processo linear geral onde os elementos

da seqüência de variáveis {εt} {t = 1, 2 . . .} são independentes com E(εt) = 0, E(ε2
t ) = σ2

ε ,

E(ε4
t ) < ∞ e

∞∑

k=−∞
|ψk| |k|δ < ∞ , d > 0. Então, a função periodograma I∗X(wj) é dada por

I∗X(wj) = 2πfX(wj)
1

σ2
ε

I∗ε (wj) + Tn(wj) , (4.4)

onde E (|Tn(wj)|2) = O
(

1
n2δ

)
uniformemente em w e I∗ε (wj) é o periodograma de {εt};

Considera-se a freqüência wj = 2πj
n , j = 0, 1, . . . , [n/2].

O teorema dado em Priestley (1981) mostra que a seqüência {I∗ε (wj)}, j = 0, 1, 2, . . . , [n/2],

é independente e tem distribuição qui-quadrado quando {εt} é um processo normal com

média zero e variância σ2
ε . A distribuição de I∗ε (wj) é dada por:

I∗ε (wj) ∼





1
4πσ2

εχ
2
2 , j 6= 0 , [n/2]

1
2πσ2

εχ
2
1 , j = 0 , [n/2]

(4.5)

Pelo teorema 4.1 e o resultado (4.5), temos que a seqüência I∗X(wj) (j = 0, 1, . . . , [n/2])

é formada de variáveis assintoticamente independentes com distribuição qui-quadrado dado

por

I∗ε (wj) ∼





1
2fX(wj)χ

2
2 , j 6= 0 , [n/2]

fX(wj)χ
2
1 , j = 0 , [n/2] .

(4.6)

Os resultados mostram que I∗X(wj) é assintoticamente não viciado, mas não é estimador

consistente de fX(wj).
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Como E
(
χ2

(n)

)
= n e V ar

(
χ2

(n)

)
= 2n, tem-se então:

E (I∗X(wj)) ∼ fX(wj) e V ar (I∗X(wj)) ∼





f 2
X(wj) , j 6= 0, [n/2]

2f 2
X(wj) , j = 0, [n/2] .

(4.7)

A expressão (4.7) confirma que I∗X(wj) é um estimador não consistente de fX(wj), pois

quando n tende para infinito V ar(I∗X(wj)) não tende para zero.

Para d < 0 e considerando o processo rúıdo branco {εt} com E(εt) = 0, E(ε2
t ) = σ2

ε

e E(ε4
t ) < ∞, tem-se, pelo teorema 3.2, que os coeficientes do processo ARIMA (p, d, q)

satisfazem às condições do teorema 4.1, isto é, se

Xt = (1−B)−d Θ(B)

Φ(B)
εt = ψ(B)εt ,

então,
∞∑

j=0

|ψj|jα < ∞ , para 0 < α < |d| . (4.8)

Portanto, (4.9) mostra que os resultados obtidos entre as funções periodogramas de {Xt}
e {εt}, em (4.4), e a distribuição de I∗ε (wj), em (4.6), podem ser usadas no processo ARIMA

(p, d, q) quando d < 0. Tem-se, então, o seguinte resultado.

Seja Xt = (1−B)−d Θ(B)
Φ(B)

εt um processo ARIMA (p, d, q) com d < 0 e seja E(ε4
t ) finito.

Então, a função periodograma de {Xt}, I∗X(w) é assintoticamente dada por

I∗X(wj) ∼ 2π
fX(wj)

σ2
ε

I∗ε (wj) ,
I∗X(wj)

fX(wj)
∼ 2π

σ2
ε

I∗ε (wj), (4.9)

e a seqüência {I∗X(wj)}, wj ∈ [0, π], é assintoticamente independente com distribuição dada

por (4.6). Pode-se então derivar a distribuição assintótica da variável {−`n [IX(wj)/fX(wj)]},
onde IX(wj) e fX(wj) são as funções periodograma e espectral de qualquer processo que

satisfaça às condições do teorema 4.1.

Seja {Xt} um processo ARIMA (p, d, q): Xt = (1 − B)−d Θ(B)
Φ(B)

εt, com d < 0 e εt um

processo rúıdo branco com distribuição normal. Quando n →∞, a seqüência

{−ln [Ix(wj)/fx(wj)]} , wj =
2πj

n
, j = 1, 2, . . . , [n/2]− 1,
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é independente com distribuição de Gumbel com média 0.577216 (constante de Euler) e

variância π2/6.

4.2.1 O Estimador Baseado na Função Periodograma dp

Substituindo w por wj = 2πj
n e adicionando ln(I(wj)) em (4.3), tem-se

ln I(wj) = lnfu(0)− d ln (2sen(wj/2))2 + ln {fu(wj)/fu(0)}+ ln {I(wj)/f(wj)} . (4.10)

Considera-se o limite superior de j igual a g(n), que é escolhido satisfazendo
g(n)
n → 0

quando n → ∞ e para wj próximo de zero, wj ≤ wg(n), onde wg(n) é tão pequeno quanto

desejarmos. Então o termo ln{fu(wj)/fu(0)} é despreźıvel quando comparado com os outros

termos. Ou seja, no limite superior em j,

lim
n→∞ g(n) →∞ , lim

n→∞

[
(ln n)2/g(n)

]
→ 0 e lim

wj→0
ln [fu(wj)/fu(0)] → 0. (4.11)

Portanto, obtém-se uma equação aproximada como

lnI(wj) ' ln fu(0)− dln (2sen(wj/2))2 + ln [I(wj)/f(wj)] . (4.12)

Esta nova equação resulta numa equação de regressão linear simples da forma

yj = a + bxj + ej , j = 1, 2, . . . , g(n), (4.13)

onde yj = lnI(wj), xj = ln (2sen(wj/2))2, ej = ln{I(wj)/f(wj)}+c, b = −d, a = lnfu(0)−c

e c = E {−ln [I(wj)/f(wj)]}.
Quando d ∈ (−0.5, 0.0), as variáveis {ln [(I(wj)/f(wj)]}, j = 1, 2, . . . , g(n) são aproxi-

madamente independentes tendo distribuição de Gumbel com média −0.577216 e variância

π2/6. Portanto, as variáveis {ej} também são aproximadamente independentes com dis-

tribuição Gumbel com média zero e variância π2/6. Temos que
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E(ej) = E {ln [I(wj)/f(wj)]}+ E(c) = −c + c = 0

e

V ar(ej) = V ar {ln [I(wj)/f(wj)]}+ V ar(c) = V ar (dist. de Gumbell) = π2/6 .

Este resultado sugere o estimador de d pelo método de mı́nimos quadrados da regressão

de y1, y2, . . . , yg(n) em x1, x2, . . . , xg(n) onde g(n) é escolhida de tal forma que quando n →∞,

g(n) →∞ e g(n)/n → 0. Tem-se então o estimador

b̂ =

g(n)∑

i=1

(xi − x)yi

g(n)∑

i=1

(xi − x)2

. (4.14)

O estimador de d baseado na função periodograma no método de regressão é dado por

dp = −b̂, (4.15)

com as propriedades:

E(dp) = d e V ar(dp) = V ar(ej)/
g(n)∑

i=1

(xi − x)2 =
π2

6
g(n)∑

i=1

(xi − x)2

. (4.16)

A distribuição assintótica de dp é dada pelo seguinte teorema, que sugere o uso da função

potência g(n) = nα(0 < α < 1).

Teorema 4.2 (Geweke e Porter-Hudak (1983)). Seja {Xt} um processo ARIMA (p, d, q)

com d < 0 e I(wj) sendo a função periodograma de {Xt} nas freqüências wj = 2πj
n . Seja dp

o estimador de d na forma de (4.15), supondo-se que g(n) satisfaz g(n) → ∞ e
g(n)
n → 0

quando n →∞. Então, plim dp = d.
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Se lim
n→∞ [(ln n)2/g(n)] → 0, então:

dp − d√
V ar(dp)

é distribúıdo assintoticamente N(0, 1),

onde V ar(dp) é a variância de dp. A rigor, este resultado limite é válido para −0.5 < d < 0,

mas simulações feitas por Geweke e Porter-Hudak (1983) indicam que ela também pode ser

usada quando d > 0.

Todos estes resultados citados podem ser vistos nos trabalhos de Reisen, V(1994)

Hurvich e Ray (1995) demonstraram que o periodograma de um processo com integração

fracionária não estacionário ou não invert́ıvel é viesado e, conseqüentemente, o estimador

GPH também é viesado, exceto no caso em que d = 1. Os autores propuseram um pro-

cedimento que reduz o viés e que consiste em estimar a regressão baseada no periodograma

de uma transformação de Xt ao invés da regressão do periodograma da série original. Essa

transformação, denominada tapering pelos autores, produz a série {wtxt}, onde wt é dado

por.

wt = 0.5{1− cos[2π(t + 0.5)/n]}

Na estimação da regressão, deve-se também excluir a primeira ordenada do periodograma.

A desvantagem desse procedimento, referido por método GPH, é o aumento na variância de

dp quando o processo é não estacionário.

4.2.2 Estimação de d usando a Função Periodograma Suavizada

Inicialmente são apresentados alguns resultados teóricos da função periodograma suavizada,

que serão necessários para construção teórica do estimador de d proposto por Reisen (1994),

encontrados em diversos textos econométricos, tais como Reisen, V.(1994).

Seja fS(w) a função periodograma suavizada definida como:

fS(w) =
1

2π

n−1∑

s=−(n−1)

λ(s)R(s)cos(sw) , w ∈ [−π, π], (4.17)
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onde a função λ(s) é uma função real de s conhecida como “lag window”. Diferentes formas

da função λ(s) são sugeridas na literatura.

fS(w) pode ser escrita em termos da função periodograma, I(w), na forma da seguinte

integral:

fs(w) =
∫ π

−π
Wn(θ)I(w − θ)dθ , =

∫ π

−π
Wn(w − θ)I(θ)dθ , (4.18)

onde Wn(θ) = 1
2π

n−1∑

s=−(n−1)

λ(s)e−isθ é chamada de janela espectral. A forma de I(w) é

dada por (2.20). A função λ(s) é escolhida satisfazendo às seguintes condições para Wn(θ),

θ ∈ (−π, π):

∫ π

−π
Wn(θ)dθ = 1 , Wn(θ) = Wn(−θ) , Wn(θ) ≥ 0 , para todo θ, (4.19)

lim
n→∞

1

n

∫ π

−π
W 2

n(θ)dθ = 0. (4.20)

A expressão 4.18 pode ser aproximada pela soma discreta da forma

fS(w) ≈ 2π

n

n/2∑

k=−n/2

Wn(w − wk)I(wk) , onde wk = 2πk/n . (4.21)

Sob as condições para Wn(θ) Priestley (1981) apresenta as seguintes propriedades assintóti-

cas de fS(w):

E(fS(w)) ≈ fX(w) , para todo w , (4.22)

isto é, fS(w) é um estimador assintoticamente não viciado de fX(w), e

V ar(fS(w)) ≈ (1 + δ)(2π/n)f 2
X(w)

∫ π

−π
W 2

n(θ)dθ ou (4.23)

V ar(fS(w)) ≈ (1 + δ)f 2
X(w)

n

n−1∑

s=−(n−1)

λ2
n(s) , −π ≤ w ≤ π , (4.24)

onde δ = 1 para w = 0, ±π e δ = 0 para w 6= 0, ±π.

Logo, V ar(fS(w)) → 0 quando n → ∞, sendo assim fS(w) é um estimador consistente

de fX(w).
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Para dois valores fixos de freqüências w1, w2 tais que w1 6= w2 pode ser mostrado que,

quando n →∞,

cov [fS(w1) , fS(w2)] → 0 , isto é , (4.25)

o estimador da função espectral é assintoticamente não correlacionado em diferentes freqüências.

As janelas podem ser escritas numa forma de parâmetro de escala:

λ(s) = k(s/m), (4.26)

onde k(u) é uma função cont́ınua real no domı́nio −1 < u < 1, com k(0) = 1 e k(−u) = k(u).

O parâmetro m é o ponto de truncamento e é função do tamanho da amostra n e é escolhido

satisfazendo (m/n) → 0 quando n →∞, m →∞. Então, escolhe-se m = nβ, 0 < β < 1.

Portanto

fS(w) =
1

2π

m∑

s=−m

k(s/m)R(s)cos(sw). (4.27)

Consequentemente a V ar(fS(w)) é dada por

(n/m)V ar(fS(w)) → (1 + δ)f 2(w)
∫ 1

−1
k2(u)du quando n →∞ e (4.28)

lim
n→∞

(
n

m

)
cov(fS(w1), fS(w2)) = 0 , w1 6= w2 . (4.29)

De acordo com as condições do teorema 4.1 e de 2.20, as variáveis {2IX(wj)/fX(wj)} são

assintoticamente independentes com distribuições qui-quadrado, isto é,

IX(wj) =





fX(wj)
2 χ2

2 j 6= 0, [n/2],

fX(wj)χ
2
1 j = 0, [n/2] , n par,

2IX(wj)

fX(wj)





χ2
2 ; j 6= 0, [n/2],

2χ2
1 ; j = 0, [n/2], n par.

(4.30)

Retornando à expressão (4.21), nota-se que esta é uma combinação linear de variáveis as-

sintoticamente independentes com distribuição qui-quadrado, portanto, para n →∞ a soma

(4.21) pode ser aproximada por uma distribuição qui-quadrado. Priestley (1981) apresenta

os valores dos graus de liberdade para algumas janelas conhecidas.
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Teorema 4.3: (Anderson (1971)). Sendo fS(w) o estimador da função espectral dado em

(4.27). Seja

Xt =
∞∑

k=−∞
ψkεt−k , (4.31)

onde
∞∑

k=−∞
|ψk| ≤ ∞ e seja {εt} um processo rúıdo branco com E(εt) = 0, E(ε2

t ) = σ2
ε e

E(ε4
t ) < ∞. Então,

√
n/m{fS(w)− E [fS(w)]} (4.32)

tem distribuição limite normal com variância dada por (4.28).

Anderson (1971) também deriva o seguinte resultado assintótico, que é aplicado para

ln(fS(w)):

Se Yn = g(Xn), onde plim Xn = µ e bn(Xn − µ) tem distribuição limite normal com

média 0 e variância σ2, para alguma constante bn tal que bn → ∞ quando n → ∞ e g(x)

possuindo derivada g′(u) em x = µ, então bn(Yn − g(µ)) tem distribuição normal limite com

média zero e variância σ2[g′(µ)]2.

Teorema 4.4: (Anderson (1971)). Se as condições do teorema 4.3 e suas derivações são

satisfeitas para fS(w) e fX(w) > 0, então

√
n/m {ln [fS(w)]− ln [fX(w)]} =

√
n/m {ln [fS(w)/fX(w)]} (4.33)

tem, no limite, distribuição normal com média zero e variância dada por

σ2 =
∫ 1

−1
k2(u) du se w 6= 0,±π e variância 2σ2 se w = 0,±π , onde − 1 < u < 1 .

Considera-se a função λ(s) sendo a janela de Parzen, pelo fato dela possuir a propriedade

de produzir somente estimativas positivas de densidade espectral.

A janela de Parzen (Parzen, 1961) é definida como:

λ(s) =





1− 6(s/m)2 + 6(|s|/m)3 , |s| ≤ m/2,

2 [1− (|s|/m)]3 , m
2

< |s| ≤ m,

0 , |s| > m

(4.34)
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Escrevendo na forma de parâmetro de escala, obtém-se

k(u) =





1− 6u2 + 6|u|3 , |u| ≤ 1/2,

2 (1− |u|)3 , 1/2 < |u| ≤ 1,

0 , |u| > 1.

(4.35)

Observando a equação (4.28), podemos obter a variância assintótica de fS(w), que é dada

por

V ar(fS(w)) ≈





0, 539285(m/n)f 2
X(w) , w 6= 0, π,

1, 07856(m/n)f 2
X(w) , w = 0, π .

(4.36)

Priestley (1981) mostra que, as variáveis {fS(wj)/fX(wj)} possuem assintoticamente

distribuição qui-quadrado com graus de liberdade (v) dados por

v = 3, 708617(n/m). (4.37)

Anderson(1971) mostou que, ln{fS(w)/fX(w)} possui distribuição assintoticamente nor-

mal com média zero e variância dada por

V ar[ln(fS(w)/fX(w))] ≈





0, 539285
(
m
n

)
, w 6= 0, π,

1, 07856
(
m
n

)
, w = 0, π.

(4.38)

Para d ∈ (−0.5, 0.0), o teorema 3.2 mostra que os coeficientes da representação MA

infinita do modelo ARIMA (p, d, q) são absolutamente convergentes, isto é, se for escrito

Xt =
∞∑

j=0

ψjεt−j , então
∞∑

j=1

|ψj| < ∞ . (4.39)

Seja fX(w) a função espectral do modelo ARIMA (p, d, q) d ∈ (−0.5, 0.0) ; fS(w) o

estimador em (4.17), e λ(s) a janela de Parzen. Se as condições dos teoremas 4.3 e 4.4

são satisfeitas, então ln{fs(w)/f(w)} tem distribuição assintótica normal com média zero e

variância dada por (4.38).
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O Estimador Baseado na Função Periodograma Suavizada dsp

Retornando a expressão (4.10) e usando os resultados assintóticos para ln [fS(w)/fX(w)],

pode-se escrever a equação de regressão como

lnfS(wj) = lnfU(0)− d ln(2sen(wj/2))2 + ln[fS(wj)/fX(wj)] + ln[fU(wj)/fU(0)] . (4.40)

Restringindo o domı́nio de j, 1 ≤ j ≤ g(n), e escolhendo a função g(n) como anterior-

mente, tem-se

lnfS(wj) ' lnfU(0)− d ln (2sen(wj/2))2 + ln (fS(wj)/fX(wj)) . (4.41)

Esta equação é uma forma aproximada da equação de regressão linear simples, isto é,

yj = a + bxj + ej , j = 1, 2, . . . , g(n), (4.42)

onde yj = lnfS(wj), b = −d, xj = ln (2sen(wj/2))2, ej = ln [fS(wj)/fX(wj)] e a = lnfU(0).

Como notado anteriormente, quando −0.5 < d < 0, 0, no modelo ARIMA (p, d, q), as

variáveis {ej} são assintoticamente não correlacionadas com média zero e variância dada por

(4.38). Isto sugere o método de regressão para estimar d na equação (4.42), onde g(n) é

escolhido como g(n) = nα(0 < α < 1).

O estimador de d obtido pelo método de regressão utilizando a função periodograma

suavizada proposto por Reisen em 1994 e com a janela de Parzen m = nα, 0 < α < 1, é

dado por

dsp = −b̂ , onde b̂ =

g(n)∑

i=1

(xi − x)yi

g(n)∑

i=1

(xi − x)2

, (4.43)
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com variância

V ar(dsp) ≈ V ar(ej) · 1

g(n)∑

i = 1
(xi − x)2

=





0, 53928 m

n

g(n)∑

i = 1
(xi−x)2

, w 6= 0 , π,

1, 07856 m

n

g(n)∑

i = 1
(xi−x)2

, w = 0 , π.
(4.44)

Esses resultados podem ser generalizados para qualquer estimador da função espectral

usando a janela que satisfaça às condições do teorema 4.4. A variância de ej será aproxi-

madamente (m/n)
∫ 1

−1
k2(u) du, onde o valor

∫ 1

−1
k2(u) du depende da janela escolhida.

4.3 Estimação de d pelo Método do Coeficiente de Hurst

Este método é baseado nos trabalhos de McLeod e Hipel (1978) e O’Connell (1974), que

estão relacionados com os estudos originais de Hurst (1951).

Seja {Xt}, t = 1, 2, . . . , n, uma série temporal e seja X a média amostral. Definimos a

k-ésima soma parcial como

S∗k = S∗k−1 + (Xk − αX) , onde S∗0 é zero e α é uma constante onde 0 ≤ α ≤ 1. Ou seja,

S∗k =
k∑

i=1

Xi − k α X

Quando α = 1, a soma (4.46) é dada por

S∗k = S∗k−1 + Xk −X =
K∑

i=1

Xi − kX , k = 1, 2, 3, . . . , n , onde S∗0 = 0 e S∗n = 0 . (4.45)

A estat́ıstica amplitude ajustada Rn é definida como

Rn = M∗
n −m∗

n , onde M∗
n = max(0, S∗1 , . . . , S

∗
n) e m∗

n = min(0, S∗1 , . . . , S
∗
n) . (4.46)
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A estat́ıstica amplitude ajustada padronizada Qn é definida como

Qn = Rn/Sn , onde Sn =

√√√√√√√

n∑

i=1

(Xi −X)2

n
é o desvio padrão amostral. (4.47)

McLeod e Hipel (1978) verificaram através de séries de dados simulados que a distribuição

da variável aleatória Qn independe da distribuição da variável dos dados observados simula-

dos, isto é, Qn é função somente do tamanho da amostra n.

O interesse na estat́ıstica Qn foi estimulado pelos estudos de Hurst (1951, 1956) em dados

referentes ao rio Nilo. Para os dados analisados, Hurst encontrou que Qn tem aproximada-

mente uma variação em função de n de uma forma dada por

Qn ∼ nh, (4.48)

onde h é uma constante definida como coeficiente generalizado de Hurst. A equação acima

pode ser escrita da forma

Qn = bnh, (4.49)

onde b é um coeficiente que não depende de n. Os dois resultados anteriores são conhecidos

como lei de Hurst.

Hurst estimou o coeficiente h pelo coeficiente k através da expressão a seguir, onde a

constante b, em (4.50), foi escolhida como tendo o valor (1/2)h:

Qn = (n/2)k . (4.50)

Aplicando logaritmo, obtém-se k, o estimador de h, como sendo

k =
lnRn − lnSn

ln(n/2)
. (4.51)

Hurst (1951) apresenta o valor esperado de Rn para um processo normal independente:

E(Rn) = (nπ/2)1/2σ , onde σ2 é a variância do processo. (4.52)
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Outros estimadores para o parâmetro h têm sido formulados e são sumarizados em

McLeod e Hipel (1978).

O processo gaussiano fracionário (FGN), que foi apresentado inicialmente por Mandelbrot

(1965), pode ser adequadamente aplicado no fenômeno de Hurst. Mandelbrot e Wallis (1969)

e Mandelbrot e Vann Ness (1968) propuseram uma rigorosa teoria para o processo FGN, que

é utilizado no fenômeno de Hurst. Estas informações poderão ser encontradas em O’Connell

(1974).

O processo FGN possui o parâmetro H que está entre (0,1) com a propriedade de que o

processo FGN é longa memória quando 1/2 < H < 1. Pesquisadores também mostram que

para o processo FGN a estat́ıstica Qn é função de n através de R∗
n/D∗

n ∼ nH . Portanto, o

parâmetro H no processo FGN é freqüentemente estimado pelo método de Hurst (4.52).

O modelo ARIMA (p, d, q) está relacionado com o processo FGN. Hosking (1982, 1984)

mostra que o modelo ARIMA (0, d, 0) e o processo FGN com parâmetro H possuem estrutura

de correlação similar. Para valores grandes de k, ρk tem a forma k2H−2 no processo FGN,

assim como k2d−1 para o modelo ARIMA (0, d, 0), mas as constantes de proporcionalidade

são diferentes para os dois modelos.

A relação entre os dois processos FGN e ARIMA (0, d, 0) é desenvolvida no trabalho de

Geweke e Hudak (1983). Eles derivam a função espectral do processo “General Fractional

Gaussian Noise” (GFGN), com parâmetro H ∈ (0, 1), e mostram que é a mesma para o

modelo ARIMA (p, d, q) d ∈ (−0, 5; 0.5) onde o parâmetro d = H − 0.5.

Teorema 4.5 (Geweke e Hudak) (1983) {Xt} é um processo ARIMA (p, d, q) com d ∈
(−0.5, 0.5) se, e somente se, também for um proccesso “General Fractional Gaussian Noise”

(GFGN) com parâmetro H = d + 0, 5.

Os autores também mostram que H∗ = d∗ + 0.5 é um estimador consistente de H, como

também H∗ −H e d∗ − d possuem a mesma distribuição assintótica. Chamaremos H∗ e d∗

os estimadores de H e d, respectivamente.

Com base nos estudos apresentados acima, sugere-se o estimador de d usando o coeficiente
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de Hurst que é dado por

dh = Ĥ − 0.5 , onde Ĥ é obtido de acordo com a expressão (4.52). (4.53)

Estimação de d pela Estat́ıstica de Hurst Modificado R/S

O teste Modificado R/S pode detectar o alto grau de dependência das observações a

longo prazo em uma série temporal com estrutura probabiĺıstica não gaussiana e com grandes

valores para assimetria e curtose para a mesma. O teste Modificado R/S para verificação

de longa-memória pode ser considerado como um teste robusto não-paramétrico e pode

examinar a hipótese de que os dados são gerados por um processo que apresenta dependência

de curto prazo e heterocedasticidade. A estat́ıstica do teste Modificado R/S, QR, é dada

pela amplitude da soma dos desvios com relação à média da série cronológica dividida por

um estimador consistente do desvio-padrão.

Seja {Xt} um processo estacionário com média zero, com as seguintes condições:

(a) E(Xt) = 0; ∀t; (b) SuptE(|Xt|β) < ∞ para algum β > 2;

(c) 0 < σ2 ' lim
n→∞n−1E




(
n∑

t=1

Xt

)2

 < ∞; (d) {Xt} é ψ-combinado e ψn satisfaz à condição

∞∑

n=1

ψ1−2/β < ∞.

Nota-se que a condição (b) não obedece à condição da possibilidade da variância ser

infinita, mas é necessária para obtermos a distribuição de probabilidade desta, afim de se

poder fazer inferência. Portanto R/S Modificado é definido como

QR =
R(n)

S(n, q)
, (4.54)

onde

R(n) = max
0≤`≤n




∑̀

i=1

Xi − `X


− min

0≤`≤n




∑̀

i=1

Xi − `X


 , X =

n∑

i=1

Xi

n
, (4.55)

S(n, q) =




1

n

n∑

i=1

(Xi −X)2 +
2

n
wj(q)

n∑

i=j+1

(Xi −Xn)(Xi−j −Xn)




1/2

, (4.56)
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S(n, q) =


σ̂2 + 2

q∑

j=1

wj(q)γ̂X(j)




1/2

, (4.57)

σ̂2 e γ̂X(j) sendo os estimadores usuais de variância e da autocovariância da série Xt e os

pesos wj(q) sendo definidos por

wj(q) = 1− j

q + 1
, q < n . (4.58)

S2(n, q) é um estimador consistente para a soma parcial de variância, que, na presença das

autocovariâncias, não é uma simples soma de variâncias dos termos individuais, como é no

estimador de Hurst-Mandelbrot S(n), pois agora inclúımos as autocovariâncias. Os pesos

sobre as autocovariâncias foram propostos por Newey e West (1987) e eles provaram ser os

mesmos estimadores consistentes sob certas condições como apresentada por Phillips (1987):

(e) SuptE(|Xt|2β) < ∞, para algum β > 2; (f) q tem um erro de ordem n1/4.

Lo mostrou, usando simulação através do método de Monte Carlo, que o valor para o

parâmetro q é dado através a seguinte fórmula: q ' [Kn], Kn '
(

2n
3

)1/3 (
ρ̂(1)

1−ρ̂2(1)

)
, onde [Kn]

denota a parte inteira da expressão e ρ̂(1) é o estimador usual da autocorrelação de primeira

ordem. Valores cŕıticos para o teste R/S Modificado foram apresentados por Lo em 1991.

Lo provou que sob as condições de (a)-(f) citadas anteriormente, QR converge fracamente

para amplitude do movimento browniano (W 0(t)) em torno do intervalo unitário.

4.4 Método de Máxima Verossimilhança

Por esse método, todos os parâmetros do modelo ARFIMA (p, d, q) são estimados simul-

taneamente, ao contrário dos métodos anteriores que requerem uma segunda etapa para a

estimação dos parâmetros dos polinômios Φ(B) e Θ(B).

Sowell (1992) desenvolveu o estimador de máxima verossimilhança para inferir o valor do

parâmetro d derivando a função de verossimilhança exata (não condicional) para modelos
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estacionários ARFIMA(p, d, q), com os erros tendo distribuição normal com média nula e

matriz de covariância σ.

Seja Xt = (X1, X2 · · ·Xn) um vetor de valores observados de uma série temporal ARFIMA

(p, d, q) gerado pelo modelo Φ(B)(1 − B)d (Xt − µ) = Θ(B)et, onde et ∼ i.i.d N(0, σ2
e).

Logo, o logaritmo da função de verossimilhança do rúıdo branco é dado por

L
(
et; φ, θ, µ, σ2

e

)
= −n

2
ln2π − 1

2
lnσ2

e −
1

2

(
e′tσ

−2et

)
(4.59)

onde et = Θ−1(B)Φ(B)(1−B)d (Xt − µ).

O estimador de máxima verossimilhança, que é obtido maximizando em (4.60) com res-

peito aos parâmetros φi, θj, µ, σ2
e , é consistente e assintoticamente normal. A matriz de

covariância σ é uma função complexa dos parâmetros do modelo Xt e em cada avaliação

da função de verossimilhança requer a inversão da matriz
∑

n×n, que tem um custo com-

putacional elevado. Para uma maior compreensão do método, ver o texto ”Statistics for

Long-Memory Processes, Jan Beran (1994).

Fox e Taqqu (1986) e Whittle (1953) propõem uma aproximação para o estimador de

máxima verossimilhança (MV) baseado no periodograma e na função de densidade espec-

tral. Esta aproximação do logaritmo da verossimilhança gaussiana no domı́nio da freqüência

requer minimizar o logaritmo da função de verossimilhança espectral.

O estimador dw (Whittle) para o parâmetro d está baseado no periodograma e envolve a

função

Q(ζ) =
∫ π

−π

I(w)

fx(w, ζ)
dζ,

onde I(w) é o periodograma e fx(w, ζ) é a função de densidade espectral da série temporal Xt

com freqüência w, ζ denotando o vetor de parâmetros desconhecidos ζ = (φ1, . . . , φp; θ1, . . . , θq;

σ2
ε ; µ; d). O estimador de Whittle (dw) é o valor de ζ que minimiza a função Q(ζ).

Quando temos o modelo ARFIMA(0, d, 0), ζ é dado somente pelo parâmetro d, µ e σ2
ε .

Para mais detalhes, ver Fox e Taqqu (1986) e Dahlhaus (1989) e Beran (1994). Computa-

cionalmente, o estimador d̂W proposto é obtido utilizando a forma discreta de Q(ζ) sugerida
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por Dahlhaus (1989), que consiste em minimizar

Ln(ζ) =
1

2n

n−1∑

j=1

[
ln fx(wj, ζ) +

Ix(wj)

fx(wj, ζ)

]
,

onde a função de densidade espectral fx(wj; ζ) é admitida conhecida e wj são as freqüências

de Fourier para j = 1, 2, . . . , n.

Dahlhaus (1989), para um processo gaussiano, e Yajima (1985), para um modelo gaus-

siano ou não de uma série temporal ARFIMA(0, d, 0), mostram que o estimador de MV

aproximado por d̂w para d é superior aos outros estimadores em termos da consistência e de

ser assintoticamente distribúıdo normalmente e assintoticamente eficiente segundo o conceito

de Fisher.

4.5 Teste de Hipótese

O seguinte teste é formulado:

H0 : d = d0

H1 : d 6= d0, (4.60)

onde d0 assume valores no intervalo (−0.5; 0.5).

De acordo com a teoria já descrita, (dsp − d) e (dp − d) possuem distribuição assintótica

normal com média zero e variâncias dadas por (4.44) e (4.16) para dsp e dp, respectivamente.

A teoria assintótica foi desenvolvida para o caso quando d < 0, mas simulações feitas por

Geweke e Porter-Hudak (1983) indicam que também pode ser usada quando d > 0.

Portanto, baseando-se nos resultados assintóticos para o método de regressão usando

a função periodograma e a função periodograma suavizada para estimar d, a seguinte es-

tat́ıstica (sob a hipótese nula) será usada para o teste de hipóteses:

Z =
d̂− d0√
V̂ ar(d̂)

, (4.61)
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onde d̂ = dsp ou dp e V̂ ar(d̂) é a estimativa da variância (sob H0) do estimador escolhido.

Para d < 0 a estat́ıstica do teste Z tem distribuição assintótica normal com média zero e

variância 1.

4.6 Estimação dos Parâmetros do Modelo ARIMA(p, d, q)

Hosking (1981) e Brockwell e Davis (1991) sugerem o procedimento para identificar e estimar

todos os parâmetros do modelo ARIMA (p, d, q).

Seja {Xt} um modelo ARIMA (p, d, q), Φ(B)(1 − B)dXt = Θ(B)εt onde Φ(B) e Θ(B)

são polinômios de ordem p e q, respectivamente, µx = 0 e {εt} é um processo rúıdo branco

com média zero e variância σ2
ε . Define-se Ut = (1−B)dXt, {Ut} é um modelo ARMA (p, q)

e Yt =
φ(B)
θ(B)

Xt, {Yt} é um modelo ARIMA (0, d, 0).

1) Estimar d no modelo ARIMA (p, d, q), obtendo d̂.

2) Calcular Ût = (1−B)d̂Xt.

3) Usar o procedimento de Box-Jenkins para identificar e estimar os parâmetros no mode-

lo ARMA (p, q), φ(B)Ût = θ(B)εt. No passo 3, pode-se usar o critério de Akaike

(1973,1974).

4) Calcular Ŷt =
φ̂(B)

θ̂(B)
.

5) Estimar d no modelo ARIMA (0, d, 0), (1 − B)d Ŷt = εt. O valor obtido de d̂ é o novo

estimador de d.

6) Repetir os passos de 2 a 5 até obter-se uma convergência para d, φi, θj, σ2
ε .

Após o modelo identificado, necessitamos checar a adequação do proceso selecionado e

estimado.
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Chapter 5

Procedimento Metodológico

Os resultados apresentados neste caṕıtulo foram obtidos a partir de dados diários sobre

retornos das seguintes commodities agŕıcolas negociadas: açúcar, algodão, cacau, café, farelo

de soja, milho, soja em grão, suco de laranja e trigo, no peŕıodo de dezesseis de janeiro

de 1985 até quinze de junho de 1998, comercializadas na Bolsa New York; e das seguintes

commodities agŕıcolas negociadas na Bolsa de Mercadorias e Futuros (BM&F), no peŕıodo

de sete de dezembro de 1999 até sete de fevereiro de 2003: açúcar, álcool, café, e milho. O

retorno da commodity agŕıcola será representado por Rt = ln(Pt/Pt−1), onde Pt é o preço no

tempo atual (t) e Pt−1 é o preço no tempo imediatamente anterior (t− 1) desta commodity

agŕıcola.

O objetivo foi verificar se os mercados agŕıcolas são eficientes ou não, utilizando os mo-

delos ARFIMA. Neste sentido, quando o valor estimado do parâmetro fracionário pertencer

à região (−0.5; 0.0), teremos um mercado eficiente, e quando d ∈ (0.0; 0.5), este mercado

possuirá longa dependência e, portanto, não será eficiente.

O software que utilizamos foi o WINRATS e o procedimento econométrico de estimação

do parâmetro foi o de Porter-Hudak.

Os dados da Bolsa de New York foram analisados de duas formas. Primeiro, trabalhamos

com todos os valores observados, de dezesseis de janeiro de 1985 até quinze de junho de 1998,
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que será denominado de peŕıodo de tempo global. Posteriormente, foram particionados no

tempo mediano os dados em dois peŕıodos de tempo, ou seja, de dezesseis de janeiro de 1985

até quinze de janeiro de 1993 (chamado de primeiro peŕıodo de tempo) e de dezesseis de

janeiro de 1993 até quinze de janeiro de 1998 (designado de segundo peŕıodo de tempo).

Com esta partição, pudemos averiguar se os mercados comportaram-se eficientemente ou

não em peŕıodos de tempos distintos.

Os dados da Bolsa de Mercadorias e Futuros (BM&F) foram também ana-lisados de

duas formas. Primeiramente, trabalhamos com todos os valores observados, de sete de

dezembro de 1999 até sete de fevereiro de 2003, que denominamos de peŕıodo de tempo

global. Posteriormente, foram particionados no tempo mediano os dados em dois peŕıodos

de tempo, ou seja, de sete de dezembro de 1999 até dezoito de junho de 2001 (chamado de

primeiro peŕıodo de tempo) e de dezenove de junho de 2001 até sete de fevereiro de 2003

(designado de segundo peŕıodo de tempo). Com esta partição, pudemos averiguar se os

mercados comportaram-se eficientemente ou não em peŕıodos de tempos distintos.

5.1 Integração Fracionária e Testes de Raiz Unitária

Os testes de raiz unitária mais amplamente utilizados em trabalhos econométricos são os

propostos por Dickey e Fuller (1979, 1981) teste DF, por Said e Dickey (1984) teste ADF e

por Phillips e Perron (1988) teste PP. Todos têm como hipótese nula a existência de uma raiz

unitária, ou seja, a série em estudo é integrada de ordem 1 (d = 1). A hipótese alternativa

é que a série é estacionária, ou seja, seu processo gerador é um ARMA(p, q), p ≥ 0 e q ≥ 0.

Ocorre, porém, que uma série estacionária não é necessariamente um ARMA(p, q). Con-

forme visto anteriormente, ela pode ser um ARFIMA(p, d, q), 0.0 < d < 0.5. A questão que

então se coloca é se os testes convencionais de raiz unitária conseguem distinguir os processos

I(1) de processos com integração fracionária.
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Sowell (1990) encontrou a estat́ıstica assintótica do teste DF para processos integrados

de ordem 1 + d, onde −0.5 < d < 0.5, e mostrou que ela não é robusta em relação ao erro

de especificação da ordem de integração. Ele realizou um experimento com 1000 amostras

de 900 observações, para cinco valores de d entre −0.4 e 0.4, e os resultados sugeriram baixa

potência dos testes de raiz unitária. Segundo sua avaliação, deveriam ser buscados testes

que envolvessem a estimação de d.

Diebold e Rudebusch (1991) avaliaram a potência do teste de Dickey e Fuller por meio

de experimentos de Monte Carlo, tomando por base o processo (1 − B)dXt = εt, com dez

diferentes valores para d, que variaram de 0.3 a 1.3. Foram geradas 5000 amostras de 50,

100 e 250 observações. Os autores conclúıram pela baixa potência do teste DF; esta cresce

com o tamanho da amostra e com |d− 1| e é assimétrica em relação à hipótese nula d = 1.

Hassler e Wolters (1994) demonstraram que a probabilidade de rejeitar a hipótese de

existência de raiz unitária em um processo fracionariamente integrado diminui à medida que

aumenta o número de defasagens utilizadas no teste ADF. Os autores também tomaram

por base experimentos de Monte Carlo para avaliar o poder dos testes de raiz unitária. O

processo gerador considerado é o mesmo adotado por Diebold e Rudebusch (1991). Foram

replicadas 5000 amostras de tamanho 100 e 250, com seis valores para d, de 0.3 a 1. Foram

realizados os testes DF e ADF com diferentes defasagens, e PP com duas autocovariâncias.

Os testes DF e PP tiveram desempenho semelhante, com alta potência para d < 0.5; esta

decresce à medida que d aumenta. O poder do teste PP quase não muda com o número de

autocovariâncias utilizado. O teste ADF, por sua vez, tem potência inferior à dos outros

dois testes e ela diminui substancialmente quando defasagens adicionais são consideradas.

Lee e Schmidt (1996) avaliaram a potência dos testes KPSS face à integração fracionária.

Esses testes foram propostos por Kwiatkowski, Phillips, Schmidt e Shin (1992) e diferem dos

testes de Dickey-Fuller e Phillips-Perron pelo fato de terem como hipótese nula a estaciona-

riedade da série em torno de sua média ou de uma tendência determińısta.

Eles demonstraram que os testes KPSS são consistentes em relação à hipótese alternativa
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de que a série é I(d), −0.5 < d < 0.5. A avaliação da potência dos testes foi feita com base

em amostras de 50, 100, 250 e 500 observações, geradas para doze valores de d, de 0.1 a 1.

As conclusões obtidas foram as seguintes: o poder dos testes aumenta com o tamanho

da amostra e com o valor de d e diminui à medida que se incluem mais defasagens no

denominador da estat́ıstica de teste. Somente quando o tamanho da amostra é razoavelmente

grande (em torno de 1000 observações), os testes KPSS conseguem distinguir, de forma

confiável, processos de memória curta daqueles com longa dependência.

Os trabalhos que foram citados anteriormente demonstram a reduzida confiabilidade dos

testes de raiz unitária face à eventual existência de integração fracionária no processo gerador

da série, sobretudo quando o tamanho da amostra não é muito grande e o valor de d não se

distancia substancialmente daquele pressuposto pela hipótese nula do teste. Assim sendo,

conclusões sobre os resultados da aplicação desses testes devem levar em conta a possibilidade

da série apresentar longa dependência.

Um processo estacionário, AR(p), necessita que os inversos de todas as ráızes, G dada

através da equação caracteŕıstica φ(B) = 0, satisfaçam à seguinte equação

Φ(B) = (1−G1B)(1−G2B) · · · (1−GpB), (5.1)

onde |Gi| < 1, ∀i. Suponha que pelo menos um dos inversos das ráızes, digamos G1, esteja

próximo de 1, ou seja, G1 = 1 + δ, onde δ é um valor positivo tão próximo de zero quanto

desejarmos. As autocorrelações são dominadas por A1G
k
1, pois

ρ(K) = A1G
k
1 + · · ·+ ApG

k
p ' A1G

k
1 , (5.2)

visto que todos os outros termos GK
i , i = 2, ..., p, tendem a zero para grandes valores de k.

Além disso, o decaimento de A1G
k
1 será suave e exponencial, devido a G1 estar próximo a 1,

pois

A1G
k
1 = A1(1− δ)k = A1(1− δk + δ2k2 − · · ·) ' A1(1− δk). (5.3)

Portanto, uma indicação de não estacionaridade da série temporal é quando o valor estimado

de ρ̂(K) for considerado alto para valores grandes de k.
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5.2 Teste de Raiz Unitária

O conceito de raiz unitária é importante em econometria porque, quando uma série econômica

possui esse tipo de raiz, é incorreto usar a distribuição t-Student nas regressões que a in-

cluem. Este conceito ganha maior importância quando temos em mente que muitas variáveis

econômicas aparentam possuir raiz unitária.

A fim de entendermos o conceito, consideremos o modelo AR(1):

Xt = φ1Xt−1 + εt, (5.4)

sendo φ1 um número real e εt é rúıdo branco.

Ao examinarmos a questão da raiz unitária, iremos observar o comportamento de φ1.

Quando |φ1| > 1, a série apresenta um comportamento explosivo, possibilidade que, por ser

considerada irrealista, não é usualmente cogitada pelos pesquisadores. Quando |φ1| < 1, Xt

segue um processo estacionário (Andersen e Weiss, 1984). Quando |φ1| = 1, dizemos que o

processo possui raiz unitária. Neste caso, o processo Xt não é estacionário, pois

Xt = Xt−1 + εt (5.5)

Xt = Xt−2 + εt−1 + εt (5.6)

...

Xt = X0 +
t∑

i=1

εi, (5.7)

ou seja, V ar(Xt) = tσ2, a variância de Xt cresce no tempo, o que viola a condição de

estacionariedade. Por outro lado, a primeira diferença do processo, ∇Xt, será estacionária

quando φ1 = 1, pois∇Xt = εt e εt é, por definição, estacionário. Quando temos raiz unitária,

φt = 1, o modelo é chamado estacionário em diferença e dizemos que o processo é integrado

de primeira ordem, ou I(1).

Dickey e Fuller (1979) são os pioneiros nos testes de raiz unitária. A fim de examinarmos

como eles o fazem, consideremos o caso mais simples, onde Xt é um processo AR(1), Xt =

φ1Xt−1 + εt, com X0 dado. Esse processo pode ser reescrito como ∇Xt = b1Xt−1 + εt, onde
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b1 = φ1−1. A hipótese de raiz unitária é dada por b1 = 0 e a hipótese alternativa por b1 < 0.

Quatro são os modelos por eles examinados que podem ser usados para testar a hipótese da

raiz unitária.

∇Xt = b1Xt−1 + εt, (5.8)

∇Xt = b0 + b1Xt−1 + εt, (5.9)

∇Xt = b1Xt−1 + b2t + εt, (5.10)

∇Xt = b0 + b1Xt−1 + b2t + εt, (5.11)

sendo que a diferença entre eles se encontra na presença da constante e da tendência deter-

mińıstica. A idéia do teste é simples: estimam-se uma ou mais das equações acima através

dos mı́nimos quadrados ordinários e então se compara o resultado da estat́ıstica t do coe-

ficiente b1 com um valor cŕıtico apresentado numa tabela elaborada por Dickey. Esse valor

dependerá do tamanho da amostra, de qual dos modelos acima está sendo usado e do ńıvel de

significância utilizado. Se a estat́ıstica t do coeficiente b1 for menor do que o valor tabelado

corretamente escolhido, rejeitamos a hipótese nula da existência de uma raiz unitária a um

dado ńıvel de significância. Se a estat́ıstica t de Dickey-Fuller for maior que os valores

cŕıticos tabelados não rejeitamos a hipótese de não estacionaridade, ou seja, não rejeitamos

a hipótese de existência de raiz unitária.

A estat́ıstica t é dada por t = b̂1/
√

V̂ ar(b̂1), onde b̂1 é obtido pelo método de mı́nimos

quadrados b̂1 = (X ′X)−1X ′Y e V̂ ar(b̂1) é a variância estimada do estimador e é obtida

através de σ̂2(X ′X)−1, onde Y = ∆Xt e X = (Xt−1), X = (1, Xt−1), X = (Xt−1, t),

X = (1, Xt−1, t) respectivamente. Aqui σ̂2 é a estimativa da variância do erro.

Dickey e Fuller (1979) mostraram que o teste apresentado era muito mais poderoso do

que o feito com a estat́ıstica Q de Box e Pierce (1970), que vinha sendo utilizado nos diversos

trabalhos econométricos. O teste, todavia, apresenta o viés de aceitar a hipótese nula mais

freqüentemente para um b1 próximo de, porém, menor que um. A partir deste referido artigo,

uma série de outros testes e tabelas foram sendo propostos na literatura.
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5.3 Teste de Dickey-Fuller Aumentado

Antes, estávamos lidando com um termo aleatório que seguia um processo AR(1); contudo,

se esse termo requer um ARMA(p, q), certas modificações são necessárias.

Uma alternativa posśıvel para solucionar esse problema é o teste conhecido como de

Dieckey-Fuller aumentado (ADF). Este é, em prinćıpio, voltado para o caso de AR(p),

Xt = A1Xt−1 + A2Xt−2 + · · ·+ ApXt−p + at, ou seja, Xt = A(B)Xt+at com A(B) =
p∑

i=1

AiB
i.

Said e Dickey (1984) sugerem que o teste permanece válido quando trabalhamos com um

ARMA(p, q), pois podemos aproximar este último somente por um processo auto-regressivo

de maior ordem. Entretanto, para isso ser assintoticamente válido, a ordem da parte auto-

regressiva estimada, p − 1, deve crescer para infinito, à medida que o tamanho da amostra

também cresce para infinito. Podemos, então, escrever∇Xt = πXt−1+
p−1∑

j=1

γj∇Xt−j+at, sendo

que p é a diferença entre os coeficientes auto-regressivos e um, π = (A1 + A2 + · · ·+ Ap)−1,

e γj = −
p∑

i=j+1

Ai. Novamente estaremos no caso de raiz unitária se π = 0. Usualmente se

faz o teste de Dickey-Fuller aumentado com apenas uma regressão, mas ele pode ser feito

através da etimação de duas regressões de um modo similar ao sugerido por Campbell e

Perron (1991).

5.4 Estimação de d pelo Método GPH

Seja {Xt} um processo ARIMA (p, d, q), d ∈ (−0.5, 0.5), representado por (1−B)dXt = Ut,

onde Φ(B)Ut = Θ(B)εt é um modelo ARMA (p, q) e {εt} é um processo rúıdo branco com

média zero e variância σ2
ε . A função espectral de {Xt} é dada por

fX(w) = fU(w) (2sen(w/2))−2d , w ∈ [−π, π] , ondefU(w) é a função espectral Ut .

(5.12)
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Aplicando o logaritmo em 5.11, obtém-se

lnfX(w) = lnfU(w)− dln (2sen(w/2))2 . (5.13)

Escrevendo (5.12) de outra forma, obtém-se

lnfX(w) = lnfU(0)− dln (2sen(w/2))2 + ln{fU(w)/fU(0)} . (5.14)

Retornando à equação (5.13) e substituindo w por wj = 2πj
n e adicionando ln(I(wj)) em

(5.13), tem-se

ln I(wj) = lnfU(0)− d ln (2sen(wj/2))2 + ln {fU(wj)/fU(0)}+ ln {I(wj)/fX(wj)} . (5.15)

Considera-se o limite superior de j igual a g(n), que é escolhido satisfazendo
g(n)
n → 0

quando n → ∞ e para wj próximo de zero, wj ≤ wg(n) onde wg(n) é tão pequeno quanto

desejarmos. Então, o termo ln{fU(wj)/fU(0)} é considerado despreźıvel quando comparado

com os outros termos. Ou seja, no limite superior em j,

lim
n→∞ g(n) →∞ , lim

n→∞

[
(ln n)2/g(n)

]
→ 0 e lim

wj→0
ln [fU(wj)/fU(0)] → 0. (5.16)

Portanto, obtém-se uma equação aproximada de (5.14) como

lnI(wj) ' ln fU(0)− dln (2sen(wj/2))2 + ln [I(wj)/fX(wj)] . (5.17)

Esta nova equação resulta numa equação de regressão linear simples da forma

yj = a + bxj + ej , j = 1, 2, . . . , g(n), (5.18)

onde yj = lnI(wj), xj = ln (2sen(wj/2))2, ej = ln{I(wj)/fX(wj)}+ c, b = −d,

a = lnfU(0)− c e c = E {−ln [I(wj)/fX(wj)]}.
Este resultado sugere o estimador de d pelo método de mı́nimos quadrados da regressão de

y1, y2, . . . , yg(n) em x1, x2, . . . , xg(n), onde g(n) é escolhida de tal forma que quando n →∞,

g(n) →∞ e g(n)/n → 0.
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Tem-se então o estimador

b̂ =

g(n)∑

i=1

(xi − x)yi

g(n)∑

i=1

(xi − x)2

. (5.19)

O estimador de d usando a função periodograma no método de regressão é dado por:

dp = −b̂, (5.20)

com as propriedades:

E(dp) = d e V ar(dp) = V ar(ej)/
g(n)∑

i=1

(xi − x)2 =
π2

6
g(n)∑

i=1

(xi − x)2

. (5.21)

Se lim
n→∞ [(ln n)2/g(n)] → 0, então:

dp − d√
V ar(dp)

é distribúıdo assintoticamente N(0, 1), onde

V ar(dp) é a variância de dp. A rigor, este resultado limite é válido para −0.5 < d < 0.0,

mas simulações feitas por Geweke e Porter-Hudak (1983) indicam que ela também pode ser

usada quando d > 0.
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Chapter 6

Resultados dos Modelos Ajustados

Os principais produtos primários (commodities) comercializados internacionalmente têm seus

preços determinados ou fortemente influenciados pelas cotações vigentes nas principais bolsas

de mercadorias, localizadas em importantes centros financeiros mundiais. Uma caracteŕıstica

marcante observada nas cotações desse tipo de produto é a sua significativa volatilidade. Na

verdade, esse fenômeno advém do fato de, teoricamente, tanto a oferta quanto a demanda

nesses mercados serem tidas como inelásticas com relação aos preços no curto prazo, resul-

tando em uma elevada sensibilidade dos preços a pequenas variações ou choques acontecidos

ou esperados tanto nas suas ofertas quanto nas suas demandas.

Inicialmente verificamos se os valores dos retornos são estacionários ou não, utilizando

o teste de raiz unitária; com tendência e constante(ta), somente tendência(tb), somente

constante(tc) e sem ambos(td); pelo teste de Dickey-Fuller ao ńıvel de 5 %. Após ve-

rificarmos que os dados trabalhados não apresentaram raiz unitária e nem comportamento

sazonal, estimamos o valor do parâmetro fracionário d pelo método GPH.

A seguir apresentaremos cada uma das commodities agŕıcolas analisadas, por ordem al-

fabética, demonstrando se o mercado foi ou não eficiente nos peŕıodos estudados,com dife-

rentes ńıveis de α da função potência g(n) = nα(0 < α < 1).

O açúcar é importante produto da pauta de exportação brasileira e em termos de variação
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de preços no mercado internacional não apresentou desempenho muito satisfatório, pois é

tido como abundante no mercado mundial. A quebra da safra brasileira de açúcar também

contribuiu para o recuo da balança agŕıcola. Com uma safra menor, decorrente da estiagem

que atingiu o páıs, o produtor de açúcar cortou suas exportações priorizando o mercado

interno, que estava com preços melhores.

Ao analisarmos o retorno da commodity agŕıcola do açúcar, observamos que a mesma

apresentou quase sempre um mercado eficiente, como pode ser observado nas tabelas 2 e 3,

seja quando trabalhamos com os valores em todo o peŕıodo de tempo da série ou quando

dividimos os dados em dois intervalos de tempo, para as duas bolsas estudadas, com exceção

do o 2o
¯ peŕıodo da bolsa de New York e em algumas situações da bolsa BM&F, visto que

os valores estimados de d são não negativos.

Tabela 2A - Açúcar (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 32,06 - 32,05 - 30642,26 - 30282,06

1o
¯ Peŕıodo - 19,52 - 19,53 - 11159,22 - 11152,14

2o
¯ Peŕıodo - 25,52 - 25,53 - 24591,14 - 24519,69

Tabela 2 - Açúcar (Nova York) - estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global - 0,0878 - 0,0425 - 0,0685 - 0,0676

Desvio-Padrão 0,0955 0,0756 0,0604 0,0485

1o
¯ Peŕıodo - 0,2163 - 0,2209 - 0,1354 - 0,1643

Desvio-Padrão 0,1275 0,1031(*) 0,0843 0,0689(*)

2o
¯ Peŕıodo 0,1190 - 0,0689 - 0,1715 - 0,2028

Desvio-Padrão 0,1096 0,0878 0,0707(*) 0,0572(*)
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Tabela 3A - Açúcar (BM&F)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 14,26 - 14,25 - 1996,40 - 1971,09

1o
¯ Peŕıodo - 10,38 - 10,34 - 1424,33 - 1351,00

2o
¯ Peŕıodo - 9,79 - 9,64 - 869,75 - 744,07

Tabela 3 - Açúcar (BM&F)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global 0,0183 - 0,0117 - 0,0506 - 0,0691

Desvio-Padrão 0,1496 0,1195 0,09887 0,0813

1o
¯ Peŕıodo - 0,0629 0,1392 - 0,1023 - 0,1641

Desvio-Padrão 0,1874 0,1534 0,1279 0,1063

2o
¯ Peŕıodo 0,2321 0,1043 0,0458 - 0,0289

Desvio-Padrão 0,1874 0,1534 0,1279 0,1067

O álcool comercializado na bolsa de BM&F apresentou caracteŕıstica de possuir longa

dependência no peŕıodo global e no primeiro peŕıodo; contudo, no segundo peŕıodo verificou-

se a existência de antipersistência, como mostra a tabela 4.

Tabela 4A - Álcool (BM&F)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 12,57 - 12,57 - 998,60 - 996,18

1o
¯ Peŕıodo - 7,43 - 7,01 - 213,13 - 174,15

2o
¯ Peŕıodo - 9,95 - 9,52 - 1593,34 - 905,11
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Tabela 4 - Álcool (BM&F)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global 0,2626 0,2018 0,0789 0,0996

Desvio-Padrão 0,1532 0,1254 0,1020 0,0845

1o
¯ Peŕıodo 0,4026 0,2404 0,1896 0,2114

Desvio-Padrão 0,1943 0,1573 0,1326 0,1104

2o
¯ Peŕıodo - 0,0934 - 0,1369 - 0,0184 - 0,1157

Desvio-Padrão 0,1942 0,1573 0,1326 0,1104

Com relação à pauta das commodities importadas, o Brasil vem tornando-se o maior

consumidor mundial de algodão, cujas cotações reduziram-se motivadas pela menor demanda

chinesa devido aos estoques destes estarem bastante elevados e pelo significativo aumento

da produção de algodão nos Estados Unidos, na África e na Austrália.

Ao analisarmos o mercado do algodão no Brasil, este mostrou-se eficiente em todas as 3339

observações. Ao fazermos a análise de maneira particionada, verificamos que, no primeiro

peŕıodo de tempo, o mercado da commodity agŕıcola do algodão foi eficiente. A partir de

dezesseis de janeiro de 1993, porém, este mercado deixou de ser eficiente como pode ser visto

na tabela 5 abaixo.

Tabela 5A - Algodão (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 26,64 - 26,65 - 3961,78 - 3961,74

1o
¯ Peŕıodo - 16,33 - 16,35 - 1523,19 - 1521,08

2o
¯ Peŕıodo - 20,81 - 20,81 - 2322,10 - 2320,44
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Tabela 5 - Algodão (Nova York)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global - 0,1789 - 0,0460 - 0,0391 - 0,0195

Desvio-Padrão 0,0955 0,0756 0,0602 0,0483

1o
¯ Peŕıodo - 0,1138 - 0,0747 - 0,0621 - 0,0829

Desvio-Padrão 0,1275 0,1031 0,0836 0,0689

2o
¯ Peŕıodo 0,1014 0,0476 0,0071 0,0369

Desvio-Padrão 0,1096 0,0878 0,0703 0,0572

Os preços do cacau, do qual o Brasil é um dos maiores produtores mundiais, elevaram-

se segundo o Banco Mundial, devido a uma redução da ordem 10 a 15 % que ocorreu na

produção africana. O mercado agŕıcola do cacau apresentou caracteŕısticas de ser eficiente

quando analisamos os dados de forma particionada, ou seja, entre quinze de janeiro de 1985

até quinze de janeiro de 1993 e de dezesseis de janeiro de 1993 até quinze de janeiro de 1998

e quando trabalhamos com todos os dados de maneira global, como pode ser observado na

tabela 6.

Tabela 6A - Cacau (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 26,84 - 26,83 - 4078,48 - 4071,82

1o
¯ Peŕıodo - 17,10 - 17,07 - 2049,89 - 2013,59

2o
¯ Peŕıodo - 20,68 - 20,68 - 2196,21 - 2192,89
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Tabela 6 - Cacau (Nova York)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global -0,1435 - 0,1788 - 0,1436 - 0,1340

Desvio-Padrão 0,0955 0,0756(*) 0,0601(*) 0,0483(*)

1o
¯ Peŕıodo - 0,1932 - 0,0677 - 0,0769 - 0,0798

Desvio-Padrão 0,1275 0,1031 0,0843 0,0689

2o
¯ Peŕıodo - 0,1420 - 0,1741 - 0,1794 - 0,1213

Desvio-Padrão 0,1096 0,0870(*) 0,0703(*) 0,0567(*)

Também os preços de café, do qual o Brasil é o maior produtor e exportador e, atualmente,

o segundo maior consumidor mundial, apresentaram forte elevação, acumulando ao longo do

tempo estudado alta de cerca de 60 % e alcançando valores elevados desde as geadas que

atingiram as lavouras brasileiras em 1994. As incertezas acerca da safra brasileira e uma

longa greve de portuários na Colômbia têm sido apontados como fatores responsáveis por

esse movimento nos preços. De fato, há algum tempo as cotações do café vêm apresentando

significativo potencial de instabilidade, devido as fortes reduções e os decrescentes estoques

acumulados junto aos páıses consumidores, em parte explicados pela crescente adoção de

processos do tipo “just in time” nas indústrias de torrefação.

O café teve o seu mercado caracterizado como sendo não eficiente na bolsa de New York

quando observamos os seus retornos, seja qual for a maneira que estes dados estivessem

sendo analisados, ao ńıvel α de 0.60 e 0.65; porém é eficiente na BM&F no peŕıodo global e

no primeiro peŕıodo como mostram as tabelas 7 e 8 adiante.
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Tabela 7A - Café (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 25,89 - 25,88 - 3364,56 - 3349,59

1o
¯ Peŕıodo - 15,36 - 15,34 - 1118,81 - 1107,04

2o
¯ Peŕıodo - 20,74 - 20,74 - 2231,22 - 2227,05

Tabela 7 - Café (Nova York)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global 0,0557 - 0,0221 0,0536 0,0600

Desvio-Padrão 0,0955 0,0751 0,0601 0,0482

1o
¯ Peŕıodo - 0,0748 0,0491 0,0646 0,0982

Desvio-Padrão 0,1275 0,1031 0,0843 0,0689

2o
¯ Peŕıodo - 0,0589 - 0,0926 0,0154 0,0145

Desvio-Padrão 0,1082 0,0870 0,0699 0,0567

Tabela 8A - Café (BM&F)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 14,21 - 13,98 - 1852,38 - 1609,88

1o
¯ Peŕıodo - 10,20 - 10,21 - 1219,29 - 1206,55

2o
¯ Peŕıodo - 9,46 - 9,38 - 617,22 - 583,07
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Tabela 8 - Café (BM&F)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global 0,1122 - 0,0308 - 0,0062 - 0,0230

Desvio-Padrão 0,1462 0,1195 0,0987 0,0813

1o
¯ Peŕıodo - 0,2655 - 0,2361 - 0,2448 - 0,1588

Desvio-Padrão 0,1874 0,1534 0,1279 0,1062

2o
¯ Peŕıodo 0,0969 0,1785 0,0578 0,0867

Desvio-Padrão 0,1874 0,1534 0,1279 0,1063

As variações consideráveis nas exportações do farelo de soja são provocadas por uma

alteração nos preços internacionais. A taxa de câmbio real efetiva também tem grande

influência sobre o volume exportado de farelo. As exportações de farelo de soja são deter-

minadas, no curto prazo, principalmente por variáveis relacionadas ao mercado externo.

Fazendo a análise do retorno da commodity agŕıcola de farelo de soja na bolsa americana

notamos que este mercado foi eficiente quando trabalhamos no peŕıodo de tempo de quinze

de janeiro de 1989 até quinze de janeiro de 1998. Porém quando observamos os dados de

maneira particionada, ou seja, entre quinze de janeiro de 1989 e quinze de janeiro de 1993

e de dezesseis de janeiro de 1993 até quinze de janeiro de 1998, este mercado não mais se

mostra eficiente, como pode ser observado na tabela 9.

Tabela 9A - Farelo de Soja (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 27,68 - 27,69 - 4823,44 - 4820,92

1o
¯ Peŕıodo - 16,55 - 16,55 - 1633,53 - 1627,87

2o
¯ Peŕıodo - 22,27 - 22,28 - 3336,59 - 3336,58
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Tabela 9 - Farelo de Soja (Nova York)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global - 0,0993 - 0,0763 - 0,0521 - 0,0276

Desvio-Padrão 0,0945 0,0751 0,0598 0,0482

1o
¯ Peŕıodo 0,0298 0,0848 0,0661 - 0,0150

Desvio-Padrão 0,1275 0,1031 0,0836 0,0685

2o
¯ Peŕıodo 0,0718 0,0070 0,0427 0,0325

Desvio-Padrão 0,1082 0,0870 0,0699 0,0567

Com relação aos preços de grãos de soja, milho e trigo, que haviam contráıdo no segundo

semestre de 1996 devido ao crescimento da produção mundial em cerca de 8 %, encontravam-

se no final de 1996 em patamares bastante reduzidos. No entanto, ao contrário do que se tem

observado nos mercados do milho e do trigo, produtos constantes da pauta de importações

brasileira, os preços da soja em grão exportada pelo Brasil voltaram a se elevar fortemente

nos primeiros meses de 1997. As principais explicações para esse comportamento diferenciado

residem na manutenção da tendência de redução dos estoques de soja nos Estados Unidos,

na sensivelmente menor demanda chinesa por milho e trigo e no forte crescimento das ofertas

canadense e australiana de trigo e argentina de ambos os produtos.

O mercado agŕıcola do milho mostrou-se não eficiente, seja de que forma os retornos

estivessem sendo observados quer de maneira global, quer de maneira particionada como

pode ser visto na tabela 10 e 11 a seguir, com apenas duas exceções no 1o
¯ peŕıodo da

BM&F.
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Tabela 10A - Milho (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 26,77 - 26,77 - 3972,46 - 3969,90

1o
¯ Peŕıodo - 15,91 - 15,89 - 1312,07 - 1302,69

2o
¯ Peŕıodo - 21,80 - 21,79 - 2926,70 - 2923,36

Tabela 10 - Milho (Nova York)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global 0,0362 0,1117 0,1037 0,1002

Desvio-Padrão 0,0945 0,0751 0,0599 0,0482(*)

1o
¯ Peŕıodo 0,1003 0,0851 0,0574 0,0524

Desvio-Padrão 0,1275 0,1031 0,0836 0,0685

2o
¯ Peŕıodo 0,1465 0,1281 0,2139 0,1453

Desvio-Padrão 0,1082 0,0870 0,0699(*) 0,0567(*)

Tabela 11A - Milho (BM&F)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 9,45 - 9,47 - 1467,44 - 1467,88

1o
¯ Peŕıodo - 8,58 - 8,18 306,89 399,08

2o
¯ Peŕıodo - 6,33 - 5,85 - 494,40 - 234,65
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Tabela 11 - Milho (BM&F)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global 0,3102 0,2315 0,0385 - 0,0385

Desvio-Padrão 0,2018 0,1659 0,1379 0,1151

1o
¯ Peŕıodo 0,1836 0,1801 - 0,1381 - 0,2811

Desvio-Padrão 0,2567 0,2111 0,1826 0,1552

2o
¯ Peŕıodo 0,3451 0,1332 0,0697 0,0734

Desvio-Padrão 0,2567 0,2110 0,1826 0,1552

O mercado agŕıcola da soja em grão mostrou-se eficiente quando analisamos os dados de

maneira global e no peŕıodo de dezesseis de janeiro de 1993 até quinze de janeiro de 1998.

Porém, no peŕıodo de quinze de janeiro de 1989 até quinze de janeiro de 1993 o mercado

desta commodity mostrou-se não eficiente, como é exibido na tabela 12.

Tabela 12A - Soja em Grão (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 27,84 - 27,85 - 5003,05 - 5001,95

1o
¯ Peŕıodo - 16,74 - 16,75 - 1744,35 - 1743,63

2o
¯ Peŕıodo - 22,25 - 22,26 - 3329,22 - 3329,21
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Tabela 12 - Soja em Grão (Nova York)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global - 0,1130 - 0,1462 - 0,0947 - 0,0655

Desvio-Padrão 0,0945 0,0751 0,0599 0,0482

1o
¯ Peŕıodo 0,1217 0,1043 0,0201 - 0,0379

Desvio-Padrão 0,1275 0,1031 0,0836 0,0685

2o
¯ Peŕıodo - 0,1040 - 0,1187 - 0,0242 - 0,0485

Desvio-Padrão 0,1082 0,0870 0,0700 0,0567

O suco de laranja é a commodity que apresenta exportações menos senśıveis a variações

dos condicionantes da oferta, o que pode ser explicado pela ŕıgida estrutura do setor exporta-

dor desse produto. Isso tem sido associado a uma concentração relativamente elevada, além

da utilização de contratos para a comercialização dos produtos no mercado internacional.

Observando o retorno da commodity de suco de laranja na bolsa de New York constatou-

se que este mercado não foi eficiente no peŕıodo de quinze de janeiro de 1989 até quinze de

janeiro de 1998 (Global) e também quando os dados foram tratados entre quinze de janeiro

de 1989 e quinze de janeiro de 1993. Contudo, a partir de dezesseis de janeiro de 1993 este

mercado tornou-se eficiente ao ńıvel α de 0.55; 0.60 e 0.65 como pode ser visto na tabela 13.

Tabela 13A - Suco de Laranja (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 25,12 - 25,13 - 2868,37 - 2867,72

1o
¯ Peŕıodo - 14,55 - 14,49 - 931,84 - 923,01

2o
¯ Peŕıodo - 20,40 - 20,40 - 2016,51 - 2015,74
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Tabela 13 - Suco de Laranja (Nova York)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global 0,0100 0,0446 0,0262 0,0367

Desvio-Padrão 0,0955 0,0756 0,0601 0,0483

1o
¯ Peŕıodo 0,1661 0,2283 0,3083 0,2553

Desvio-Padrão 0,1275 0,1031(*) 0,0843(*) 0,0689(*)

2o
¯ Peŕıodo 0,0423 - 0,0486 - 0,0607 - 0,0631

Desvio-Padrão 0,1096 0,0870 0,0701 0,0567

A tabela 14 mostra o retorno da commodity agŕıcola do trigo na bolsa New York com-

provando que este mercado não foi eficiente, ou seja, apresentou caracteŕısticas de longa

dependência ao ńıvel α de 0.65 seja qual fosse o peŕıodo de tempo em que os dados foram

analisados. Para o 2o
¯ peŕıodo analisado, o mercado não foi eficiente para todas as alterna-

tivas de poder.

Tabela 14A - Trigo (Nova York)

Tempo Argumento do Teste de Dickey-Fuller

ta tb tc td

Global - 26,46 - 26,45 - 3716,46 - 3712,70

1o
¯ Peŕıodo - 16,12 - 16,10 - 1407,31 - 1394,12

2o
¯ Peŕıodo - 21,01 - 21,02 - 2361,20 - 2357,81
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Tabela 14 - Trigo (Nova York)- estimativas de d

Tempo Alfa α

0,50 0,55 0,60 0,65

Global 0,0401 - 0,0004 - 0,0139 0,0051

Desvio-Padrão 0,0945 0,0751 0,0599 0,0482

1o
¯ Peŕıodo - 0,2096 - 0,0611 0,0575 0,0293

Desvio-Padrão 0,1275 0,1031 0,0836 0,0685

2o
¯ Peŕıodo 0,0575 0,0028 0,0252 0,0231

Desvio-Padrão 0,1082 0,0870 0,0700 0,0567
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Chapter 7

Conclusão

A presente tese explorou a idéia de eficiência de um mercado usando um novo procedimento

metodológico, ou seja, modelo ARFIMA na análise das commodities agŕıcolas. Baseado nos

dados coletados, verificou-se que as commodities apresentaram comportamentos distintos em

bolsas diferentes. Nesse sentido, a contribuição maior deste estudo foi a utilização desta nova

metodologia para analisar esses mercados em diferentes peŕıodos.

Os principais produtos primários (commodities) comercializados internacionalmente têm

seus preços determinados ou fortemente influenciados pelas cotações vigentes nas princi-

pais bolsas de mercadorias, localizadas em importantes centros financeiros mundiais. Uma

caracteŕıstica marcante observada nas cotações desse tipo de produto é a sua significativa

volatilidade. Esse fenômeno advém do fato de que, teoricamente, tanto a oferta quanto a

demanda desses mercados serem bastante senśıveis em relação aos preços no curto prazo.

Isto resulta numa elevada instabilidade de seus preços gerados pelas pequenas variações,

choques acontecidos ou esperados, nas suas ofertas e nas suas demandas.

Das commodities agŕıcolas analisadas, apenas o açúcar, o café e o milho foram estudadas

nas bolsas de Nova York e Bolsa de Mercadorias e Futuros (BM&F).

Um resumo das conclusões sobre eficiência e não eficiência de cada um dos mercados

estudados encontra-se na tabela 15.
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Tabela 15- Resumo das conclusões sobre eficiência (E) e não eficiência (N) dos mercados estudados

BOLSA

MERCADO NEW YORK BM&F

Global 1o Peŕıodo 2o Peŕıodo Global 1oPeŕıodo 2oPeŕıodo

Açúcar E E E(α1*) E(α1*) E(α2*) N(α4*)

Álcool — — — N N E

Algodão E E N — — —

Cacau E E E — — —

Café N(α2*) N(α1*) N(α1*, α2*) E(α1*) E N

Farelo de soja E N(α4*) N — — —

Milho N N N N(α4*) N(α3*, α4*) N

Soja grão E N(α4*) E — — —

Suco de laranja N N E(α1*) — — —

Trigo N(α2*, α3*) N(α1*, α2*) N — — —

(*) com uma exceção para um determinado α. α1∗ = 0.50, α2∗ = 0.55, α3∗ = 0.60, α4∗ = 0.65.

(**) com duas exceções para determinados ńıveis de α. α1∗ = 0.50 e α2∗ = 0.55, α3∗ = 0.60 e

α4∗ = 0.65.

Analisando estes resultados de E (eficiência) e N (não eficiência) pode-se destacar os

seguintes aspectos:

O açúcar, apesar de ser uma cultura semiperene, apresenta grande volatilidade de preço,

bem como grande dependência de sua produção e comercialização. Isto se explica por que o

açúcar mostrou um comportamento sempre eficiente na bolsa de Nova York, porém, quando

comercializado na Bolsa de Mercadorias e Futuros (BM&F) o mesmo apresentou apenas

eficiência no peŕıodo global e no primeiro peŕıodo e longa dependência no segundo peŕıodo,

para quase todos os ńıveis de α analisados.
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O café é uma cultura perene e por isso justifica-se não ser eficiente no peŕıodo global e nos

dois peŕıodos observados na bolsa de Nova York e no segundo peŕıodo na bolsa da Bolsa de

Mercadorias e Futuros (BM&F). Apesar do decĺınio da quantidade do produto exportado pelo

Brasil, esse mercado mostrou-se eficiente no peŕıodo de 7 de dezembro de 1999 a 18 de junho

de 2001, provavelmente motivado pela maior interação entre produtores e consumidores,

através da organização internacional do comércio. A possibilidade do armazenamento e

estoque desse produto justifica a sua antipersistência verificada no peŕıodo citado.

O milho por ser uma cultura anual e utilizado, sobretudo, como ração animal para os

rebanhos súıno e bovino e na avicultura, apresentou um mercado sempre não eficiente, seja

de que forma os dados tivessem sido analisados na bolsa de Nova York. Verificou-se, também,

longa dependência no peŕıodo global e nos dois peŕıodos parciais quando se observou sua

comercialização na Bolsa de Mercadorias e Futuros (BM&F).

Ao averiguar os resultados da commodity agŕıcola álcool, negociada na BM&F, a mesma

apresentou-se eficiente apenas no segundo peŕıodo de tempo e mostrou-se não eficiente tanto

no peŕıodo global quanto no primeiro peŕıodo. Isso se deve ao fato desse produto ser usa-

do basicamente como combust́ıvel para transportes rodoviários e, dessa forma, sofrer forte

influência do mercado internacional de petróleo.

O algodão que possui um ciclo vegetativo em torno de três a quatro anos sendo uma

cultura permanente pois permite colheitas por vários anos sem necessidade de novo plantio,

apresentou significativo aumento de produção nos continentes norte-americanos, sobretudo

EUA, africano e australiano. Estando os estoques mundiais bastante elevados e dado a pe-

quena procura pelo mercado chinês, justifica-se que essa commodity apresenta caracteŕısticas

de eficiência no primeiro peŕıodo e no peŕıodo global na bolsa de Nova York devido à esta-

bilidade do preço do mesmo.

O cacau apesar de ser uma cultura perene, ou seja, possui um ciclo longo que requer um

investimento elevado para a sua implantação, apresentou sempre eficiência, seja de que forma

fossem analisados os seus dados, tanto de maneira global quanto de forma particionada na
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bolsa de Nova York. Pode-se explicar tal caracteŕıstica pela superprodução dos páıses do sul

da Ásia, ocasionando uma estabilidade nos preços dessa commodity.

A soja merece destaque por ser o principal produto agŕıcola de exportação brasileira. É

uma cultura anual e sua comercialização, tanto em farelo quanto em grão, apresentou o seu

preço como sendo antipersistente em todo o peŕıodo observado na bolsa de Nova York, em

razão de uma demanda estável dos páıses desenvolvidos. Contudo, o mercado da commodity

farelo de soja não é eficiente nos dois peŕıodos particionados e o mercado da commodity grão

em soja apresenta longa dependência no segundo peŕıodo de tempo, quando comercializado

na bolsa de Nova York. Isso pode ser justificado pela baixa de sua safra, motivada por

razões climáticas no Brasil e pelas fortes variações nas cotações dos preços destas no mercado

internacional.

A cultura da laranja é perene, isto é, o seu cultivo possui periodicidade longa, com ciclo

médio de produção entre 25 a 30 anos e a comercialização de seu suco mostrou-se não eficiente

na bolsa de Nova York, no peŕıodo global e no primeiro peŕıodo. Isso pode ser explicado

tanto pela posição antagônica americana de importador e produtor do suco de laranja em

relação ao Brasil, que é basicamente exportador, quanto por razões de ordem climática,

geradas pelas fortes geadas no sudeste norte-americano.

O preço da commodity agŕıcola trigo, cuja cultura é anual, foi comercializada na bolsa

de Nova York, e apresentou grande variação de eficiência e não eficiência, em função dos

diferentes ńıveis de α. No último peŕıodo, mostrou-se não eficiente pela pouca demanda

desse produto pela China e por um forte crescimento de oferta canadense, australiana e

argentina.

Enfim, as conclusões apresentadas sobre a eficiência (E) e não eficiência (N) das com-

moditie agŕıcolas estudadas tiveram seus cálculos averiguados pelo uso do procedimento

metodológico ARFIMA.

Neste sentido apesar das questões de ordem histórica, poĺıtica, climática e às ligadas

aos ciclos vegetativos dos produtos interferirem direta ou indiretamente na eficiência dos
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mercados, a utilização deste modelo estat́ıstico ARFIMA permitiu classificar o mercado

destas commoditie agŕıcolas. Esta é, portanto, a principal contribuição desta tese: Um

Estudo de Eficiência de Mercado Usando Séries Temporais com Diferenciação Fracionária:

O Caso de Commoditie Agŕıcolas.

Trabalhos complementares de pesquisa surgirão posteriormente que venham a ampliar

esta tese. Como exemplo estudo da estimativa do parâmetro fracionário d usando o método

de máxima verossimilhança e a identificação dos retornos das commodities agŕıcolas através

da análise do modelo ARFIMA onde o rúıdo branco possui uma estrutura estocástica com

volatilidade do tipo GARCH. Provavelmente estes estudos e pesquisas poderão prever valores

futuros destes retornos.
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