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ABSTRACT

High number of writers, small number of training samples per writer with high intra-
class variability and heavily imbalanced class distributions are among the challenges and
difficulties of the offline Handwritten Signature Verification (HSV) problem. A good al-
ternative to tackle these issues is to use a writer-independent (WI) framework. In WI
systems, a single model is trained to perform signature verification for all writers from
a dissimilarity space generated by the dichotomy transformation. Among the advantages
of this framework is its scalability to deal with some of these challenges and its ease in
managing new writers, and hence of being used in a transfer learning context. In this
work, a deep analysis of this approach is presented, highlighting how it handles the chal-
lenges as well as the dynamic selection of reference signatures through fusion function,
and its application for transfer learning. All the analyses are carried out using the in-
stance hardness (IH) measure. By having these findings at the instance level, we develop
an approach that uses prototype selection (Condensed Nearest Neighbors) and feature
selection (based on Binary Particle Swarm Optimization) techniques well suited to our
WI-HSV scenario. These techniques allowed us to handle the redundancy of information
in both sample and the feature levels present in the dissimilarity space. Specifically in the
feature selection scenario, we also propose a global validation strategy with an external
archive to control overfitting during the search process. The experimental results reported
herein show that the use of prototype selection and feature selection in the dissimilarity
space allows a reduction in its redundant information and the complexity of the classifier
without degrading its generalization performance. In addition, the results show that the
WI classifier is scalable enough to be used in a transfer learning approach, with a result-
ing performance comparable to that of a classifier trained and tested in the same dataset.
Finally, using the IH analysis, we were able to characterize “good” and “bad” quality
skilled forgeries as well as the frontier region between positive and negative samples.

Keywords: Offline signature verification. Dichotomy transformation. Instance hardness.
Prototype selection. Transfer learning. Feature selection.



RESUMO

Grande número de escritores, poucas amostras de treinamento por escritor, com alta
variabilidade intra-classe e distribuições de classes fortemente desequilibradas, estão entre
os desafios e as dificuldades da Verificação de Assinatura Manuscrita (HSV) offline. Uma
boa alternativa para resolver esses problemas é usar um método independente de escritor
(WI). Nos sistemas WI, um único modelo de classificação é treinado para executar a
verificação de assinatura de todos os escritores a partir de um espaço de dissimilaridade
gerado pela transformação dicotômica. Entre as vantagens dessa estrutura estão: a escal-
abilidade para lidar com alguns desses desafios listados e a facilidade no gerenciamento
de novos escritores, e, portanto, a sua utilização em um contexto de transferência de
aprendizado. Neste trabalho, apresentamos uma análise aprofundada dessa abordagem,
destacando como ela lida com os desafios, a seleção dinâmica de assinaturas de referên-
cia por meio da função de fusão e sua aplicação na transferência de aprendizado. Todas
as análises são realizadas usando a medida de dificuldade da instância (IH). Tendo por
base os resultados dessas análises, desenvolvemos uma abordagem que usa técnicas de se-
leção de protótipos (vizinhos mais próximos condensados) e de seleção de características
(com base na otimização de enxame de partículas binárias) adequadas ao nosso cenário
WI-HSV. Essas técnicas nos permitiram lidar com a redundância de informações nos
níveis das amostras e das características presentes no espaço de dissimilaridades. Especi-
ficamente no cenário de seleção de características, também propomos uma estratégia de
validação global com um arquivo externo para controlar o overfitting durante o processo
de busca. Os resultados experimentais relatados aqui mostram que o uso da seleção de
protótipos e seleção de características no espaço de dissimilaridade permite uma redução
em suas informações redundantes e na complexidade do classificador sem degradar seu
desempenho de generalização. Além disso, os resultados mostram que o classificador WI é
escalável o suficiente para ser usado em uma abordagem de aprendizado de transferência,
com um desempenho resultante comparável ao de um classificador treinado e testado no
mesmo conjunto de dados. Por fim, os resultados experimentais mostram que, utilizando
a análise IH, conseguimos caracterizar falsificações especializadas de qualidade “boa” e
“ruim”, bem como a região fronteiriça entre amostras positivas e negativas.

Palavras-chaves: Verificação de assinaturas offline. Transformação dicotômica. Dificul-
dade da instância. Seleção de protótipos. Transferência de aprendizado. Seleção de carac-
terísticas.
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1 INTRODUCTION

Handwritten Signature Verification (HSV) systems are used to automatically recog-
nize whether the signature provided by a writer belongs to the claimed person (GURU et

al., 2017). In offline HSV, the signature is acquired after the writing process is completed,
and the system deals with the signature as an image. For instance, bank cheques and doc-
ument authentication are among real-world applications using HSV systems (HAFEMANN;

SABOURIN; OLIVEIRA, 2017b; ZOIS; ALEXANDRIDIS; ECONOMOU, 2019).
In the HSV problem, genuine signatures are the ones produced by the claimed person

(original writer) and forgeries are those created by an impostor (forger). In general, forg-
eries can be categorized, based on the knowledge of the forger, into the following types
(MASOUDNIA et al., 2019):

• Random forgeries: the forger has no information about the original writer.

• Simple forgeries: the forger knows the name of the original writer, but does not have
access to the signature pattern.

• Skilled forgeries: the forger has information about both the name and the genuine
signature pattern of the original writer, resulting in forgeries that are more similar
to genuine signatures.

Figure 1 depicts examples of genuine signatures and skilled forgeries, obtained from
(HAFEMANN; SABOURIN; OLIVEIRA, 2017a). Each column shows two genuine signatures
from the same writer and a skilled forgery, from the GPDS dataset.

Fig. 1 – Signature examples from the GPDS dataset. Each column shows two genuine
signatures from the same writer (above the line) and a skilled forgery (under the
line).

A first aspect that should be considered when working with HSV is the decision
about which classification strategy to use, that is, writer-dependent vs. writer-independent
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(BOUAMRA et al., 2018). If a verification model is trained for each writer, the system
is called Writer-Dependent (WD). This approach is the most commonly used and, in
general, achieves better classification accuracies. However, requiring a classifier for each
writer increases the complexity, and the computational cost of the system operations as
more writers are added (ESKANDER; SABOURIN; GRANGER, 2013).

On the other hand, in Writer-Independent (WI) systems, a single model is trained
for all writers. In this scenario, the systems usually operate on the dissimilarity space
generated by the Dichotomy Transformation (DT) (RIVARD; GRANGER; SABOURIN, 2013).
In this approach, a dissimilarity (distance) measure is used to compare signatures and a
dichotomizer (two class classifier) is responsible for classifying them as belonging to the
same writer or not. (ESKANDER; SABOURIN; GRANGER, 2013). When compared to the WD
approach, WI systems are less complex, but in general obtain worse accuracy (HAFEMANN;

SABOURIN; OLIVEIRA, 2017b).
Some of the challenges related to the offline HSV are: (𝐶1) the high number of writers

(classes), (𝐶2) the high-dimensional feature space, (𝐶3) small number of training samples
per writer with high intra-class variability (Figure 2 shows an example of this problem in
the genuine signatures), and (𝐶4) the heavily imbalanced class distributions (HAFEMANN;

SABOURIN; OLIVEIRA, 2017b; MASOUDNIA et al., 2019).

Fig. 2 – Overlaid genuine signature images of a single writer, illustrating the intra-class
variability of the data.

Still, the main challenge is faced when dealing with skilled forgeries (𝐶5). Even though
they are the most similar to genuine signatures, in general, they are not available for train-
ing purposes in real HSV applications. Thus, the systems are trained with partial knowl-
edge as the classifiers are trained without sufficient information to distinguish between
genuine signatures and skilled forgeries (HAFEMANN; SABOURIN; OLIVEIRA, 2017b).

The Dichotomy Transformation (DT), propopsed by Cha and Srihari (CHA; SRIHARI,
2000), can be applied to deal with some of these challenges and therefore facilitate the
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signature verification task. The samples in the Dissimilarity Space (DS) generated by the
dichotomy transformation are formed through the pairwise comparisons of signatures (a
questioned and a reference signature) in the feature space (SOUZA; OLIVEIRA; SABOURIN,
2018).

Thus, the classification only depends on the input reference signature, by using the
DT in a writer-independent approach, the model can verify signatures of writers for whom
the classifier was not trained. So, it can easily manage new incoming writers (𝐶6). In this
way, WI systems have the advantages of being scalable and adaptable (SHAO; ZHU; LI,
2015).

It is worth noting that, in the dissimilarity space generated by the WI dichotomy trans-
formation, regardless of the number of writers, there are only two classes: (i) The positive
class, composed of dissimilarity vectors computed from samples of the same writer. (ii)
The negative class, composed of distances vectors computed from samples of different
writers. Therefore, having a good feature representation of the signatures is very impor-
tant for DT to work, i.e., to obtain little or no overlap between the positive and negative
samples in the tranposed space (BERTOLINI et al., 2010).

Recently, Hafemann et al. (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) proposed a new
feature representation for the HSV problem. The approach carries out feature learning
from the signature images in a WI format, using a Deep Convolutional Neural Network
(DCNN) called 𝑆𝑖𝑔𝑁𝑒𝑡. After being trained, the DCNN is used to extract representative
features from the signatures. Their results showed a significant improvement in perfor-
mance when compared to the previous state-of-the-art methods.

1.1 OBJECTIVES

The main objective of this thesis is to investigate how a writer-independent (WI)
approach can handle the challenges of the HSV problem presented. Resulting in a general
WI framework that uses targeted techniques to deal with each of the challenges presented.
Due to its main characteristics, the 𝑆𝑖𝑔𝑛𝑒𝑡 is used as the original feature space in this
work (HAFEMANN; SABOURIN; OLIVEIRA, 2017a).

Considering the main characteristics of the WI dichotomy transformation, it is able to
handle some challenges of the HSV problems that WD systems are not capable of. (i) The
DT reduced the high number of classes to a 2-class problem. (ii) The problem is no longer
imbalanced as both positive and negative classes may have the same number of samples.
(iii) The small number of samples is no longer a problem. Since each dissimilarity vector
generated by the DT is formed by the difference between the features of a questioned
signature and a reference signature, this approach can increase the number of samples
in the WI-HSV scenario. In this way, the dichotomy transformation naturally deals with
some of the difficulties present in the HSV problem.
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A disadvantage of the DT is that many of these samples may be redundant and have
little influence for training the verification model. Thus, one goal of this study is to analyse
the use of Prototype Selection (PS) techniques in the dissimilarity space to reduce the
complexity and the training time of the classifier used without degrading its generalization
(GARCIA et al., 2012).

In the WI case, a single model is trained for all users, and the classification depends
solely on the input reference signature. Thus, another goal of this study is to analyse the
use of a WI classifier in a transfer learning scenario, i.e., where the classifier is trained in
one dataset, and is used to verify signatures in other datasets (SHAO; ZHU; LI, 2015).

In the considered feature representation, 𝑆𝑖𝑔𝑁𝑒𝑡 feature vectors are composed of 2048
dimensions (HAFEMANN; SABOURIN; OLIVEIRA, 2017a). However, when using this rep-
resentation in a WI context, some of the features may be redundant and have little
importance in the generated dissimilarity space (just like the redundant samples). In this
context, another aspect the worth being analysed is whether Swarm optimization algo-
rithms can be used for Feature Selection (FS) to obtain only the relevant dimensions on
the transposed space (CRUZ; SABOURIN; CAVALCANTI, 2017)

Additional discussions on dichotomy transformation will be made throughout this
study. With a further maturation of the related concept, it will be explained how this
approach deals with the other challenges related to the faced problem.

The analyses of this study are also carried out based on the Instance Hardness (IH)
measure (SMITH; MARTINEZ; GIRAUD-CARRIER, 2014) to maintain the findings at the in-
stance level (LORENA et al., 2019). According to (SMITH; MARTINEZ; GIRAUD-CARRIER,
2014), understanding why instances are misclassified can lead to the development of learn-
ing algorithms that tackles directly the causes of the misclassification. In our scenario,
the instance hardness is also used to characterize and analyse “good” and “bad” skilled
forgeries.

1.2 RESEARCH QUESTIONS

Based on this context, the main research questions investigated in this thesis are:

1. How the writer-independent dichotomy transformation can handle the HSV data
difficulties?

2. Does the number of reference signatures used influence the ability to verify signa-
tures in the writer-independent model?

3. What is the best fusion function to be used to combine partial decisions in a scenario
with multiple reference signatures?
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4. Does the dissimilarity space generated by the dichotomy transformation have sam-
ples with redundant information, i.e., with little importance for training purposes?
Can we use prototype selection methods for eliminating redundant training data?

5. Can the writer-independent approach be used in the context of transfer learning
and still obtain good verification performance?

6. Can skilled forgeries be characterized as having “good” or “bad” quality based on
the measure of instance hardness?

7. Does the generated dissimilarity space have redundant features?

8. Can overfitting control improve the performance of the optimization in the feature
selection scenario?

1.3 CONTRIBUTIONS

The studies carried out in the present work stand out for presenting an innovative
approach for offline writer-independent handwritten signatures verification in a image
stream context.

The following papers were published during this research:

• SOUZA, V. L. F.; OLIVEIRA, A. L. I.; CRUZ, R. M. O.; SABOURIN, R. Improvingbpso-
based feature selection applied to offline wi handwritten signature verification-
through overfitting control. In:2020 Genetic and Evolutionary Computation Con-
ference Companion. 2020. (GECCO ’20), p. 69–70.

– Contribution of this paper: Analysis on the redundancy of the features in the
dissimilarity space and how the overfitting control can improve the performance
of the optimization in the feature selection

• SOUZA, V. L. F.; OLIVEIRA, A. L. I.; CRUZ, R. M. O.; SABOURIN, R. A white-
box analysis on the writer-independent dichotomy transformation applied to offline
handwritten signature verification. Expert Systems with Applications, v. 154, p.
113397, 2020.

– Contribution of this paper: Extension of studies related to the difficulties of the
HSV problem data and the use of transfer learning. Also, the characterization
of “good” and “bad” quality skilled forgeries.

• SOUZA, V. L. F.; OLIVEIRA, A. L. I.; CRUZ, R. M. O.; SABOURIN, R. Charac-
terization of handwritten signature images in dissimilarity representation space. In:
2019 International Conference on Computational Science (ICCS). Springer Interna-
tional Publishing, 2019. p. 192–206
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– Contribution of this paper: Analysis on the difficulties of the HSV problem
data and how writer-independent dichotomy transformation can handle it

• SOUZA, V. L. F.; OLIVEIRA, A. L. I.; CRUZ, R. M. O.; SABOURIN, R. On
dissimilarity representation and transfer learning for offline handwritten signature
verification. In: 2019 International Joint Conference on Neural Networks (IJCNN).
2019.

– Contribution of this paper: Analysis on the use of prototype selection in the
dissimilarity space and the use of the WI approach in a transfer learning context

• SOUZA, V. L. F.; OLIVEIRA, A. L. I.; SABOURIN, R. A writer-independent
approach for offline signature verification using deep convolutional neural networks
features. In: IEEE. 2018 7th Brazilian Conference on Intelligent Systems (BRACIS).
2018. p. 212–217.

– Contribution of this paper: Analysis on the number of reference signatures and
the fusion functions to be used during the verification.

1.4 ORGANIZATION

This thesis is organized as follows. In this chapter the introduction, the problem state-
ment and the objectives for the accomplishment of this work were presented.

In chapter 2 the basic concepts and literature review related to this work are dis-
cussed. Firstly, the Handwritten Signature Verification Systems are presented, focusing
on writer-independent approaches and on Dichotomy Transformation. Then, the feature
representation used in this thesis is presented. After, prototype selection, transfer learn-
ing, instance hardness and feature selection which are themes involved in this study, are
also addressed.

Chapter 3 presents the main contribution of this thesis: a deep analysis on the writer-
independent (WI) dichotomy transformation applied to the offline handwritten signature
verification problem. By having a good knowledge and mastery of the worked context
we chose the fusion function, the prototype selection technique and the way to deal with
transfer learning and the feature selection technique that best suit our problem.

Chapter 4 presents the experiments conducted in order to answer the research ques-
tions formulated in this thesis. In that chapter, the experimental protocol, experimental
setup, the datasets used in the experiments and the main results obtained are presented
and discussed.

In Chapter 5 the general conclusions and future works of this study are presented.
In Appendix A, we present a study on “good” and “bad” quality skilled forgeries at

image level. Analyzes related to the location of these samples in the dissimilarity space and
the respective instance hardness (IH) values are also presented. Next, in Appendix B and
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C, we present the relationship of IH and the accuracy (%) of the writer-independent model,
respectively, for the BRAZILIAN and the CEDAR datasets in the original dissimilarity
space. In Appendix D, the relationship of IH and the accuracy (%) for the CEDAR dataset
when considering the optimized feature space generated when using the proposed feature
selection with global validation and external archive technique.
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2 LITERATURE REVIEW

This chapter contains the literature review and description of the basic concepts re-
lated to the research areas of the proposed work, including 1) Handwritten Signature
Verification Systems, 2) Feature representation, 3) Prototype Selection, 4) Feature Selec-
tion, 5) Transfer learning and 6) Instance Hardness.

In the Handwritten Signature Verification (HSV) Systems section, this problem is
defined, and writer-dependent, writer-independent and hybrid approaches are discussed.
More attention will be given to the writer-independent models, including the Dichotomy
Transformation, as this approach is the one investigated in this thesis. In sequence, we
will present how to use the Deep Convolutional Neural Networks DCNN proposed by
(HAFEMANN; SABOURIN; OLIVEIRA, 2017a) to obtain features in the HSV context.

In the Prototype Selection section, we discussed a little about the Condensation, Edi-
tion and Hybrid approaches. Next, the main concepts related to Transfer learning and
Instance Hardness are presented. Finally, Feature Selection based on Particle Swarm Op-
timization (PSO) is contextualized and the IDPSO (a variation of PSO - Particle Swarm
Optimization) is presented.

2.1 HANDWRITTEN SIGNATURE VERIFICATION (HSV)

The handwritten signature is one of the oldest accepted biometric characteristics used
to verify whether a person is whom he/she claims to be. The key task for an HSV system
is deciding whether a given signature image is genuine or a forgery. Intuitively, genuine
signatures are those that really belong to the indicated person and forgeries are those
created by someone else (HAFEMANN; SABOURIN; OLIVEIRA, 2017b). The forgeries can be
segmented into the following types (BHARATHI; SHEKAR, 2013): random forgeries, simple
forgeries and skilled forgeries.

Authors recommend that random forgeries should be distinguished from other types
of forgeries and should not affect the overall evaluation of the system (BOUAMRA et al.,
2018).

Systems that deal with the offline HSV can be divided into Writer-Dependent (WD)
or Writer-Independet (WI) systems. While in the first case, a classifier is trained for each
writer, in WI systems a single model is trained for all writers from a dissimilarity space
generated by the dichotomy transformation (DT) (SOUZA; OLIVEIRA; SABOURIN, 2018).
In DT, a dissimilarity (distance) measure is used to compare two samples as belonging to
the same writer or not (ESKANDER; SABOURIN; GRANGER, 2013). When compared to the
WD approach, WI systems have the advantages of being less complex and more scalable,
but in general, obtain worse accuracy (HAFEMANN; SABOURIN; OLIVEIRA, 2017b).
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2.1.1 Writer-Dependent Approaches

(VARGAS et al., 2011) focused on the features extraction task in the WD handwritten
signature verification context. The proposed features are based on statistical textural
analysis of the gray level information from the handwritten signature images. The ink
distribution in the signature strokes are also used to reduce the influence of different
writing ink pens used by writers, since they provide information about rotation and
luminance invariance. A WD Support Vector Machine (SVM) is trained on genuine and
random forgeries samples and tested on random and skilled forgeries.

(BATISTA; GRANGER; SABOURIN, 2012) proposed a hybrid generative–discriminative
ensemble of classifiers which dynamically selects the classifiers for building a writer-
dependent HSV system. During the generative stage, the signatures are divided in a grid
format and multiple discrete left-to-right Hidden Markov Models (HMMs) are trained
with different number of states and codebook sizes, so the model can work at different
levels of perception. Then, the HMM likelihoods for each enrolled signature are computed
and grouped into a feature vector that is used through a specialized Random Subspace
Method to build a pool of two-class classifiers (discriminative stage). For the verification
task, the authors propose a new dynamic selection strategy based on the K-nearest-oracles
(KNORA) algorithm and on Output Profiles (OP) to select the most accurate ensemble
to classify the given signature.

(BHARATHI; SHEKAR, 2013) proposed a WD approach based on the combination of
chain code histogram features improved by the Laplacian of Gaussian filter with a SVM
classifier. The proposed chain code histogram approach can be divided as follows: (i) in
the first step, the images are binarized and the noise eliminated, then signature contour
is extracted. (ii) In sequence, a 4-directional chain code histogram is created on the grid
of the extracted contour. (iii) At the end, the Laplacian of Gaussian filter is applied. The
feature matrix obtained is then used to train a two-class SVM, which is responsible of
performing the verification. While the training is based on genuine signatures and random
forgeries, the verification is carried out on genuine signatures and skilled forgeries.

(SOLEIMANI; ARAABI; FOULADI, 2016) proposed a Deep Multitask Metric Learning
(DMML) system for HSV. This approach combines Histogram of Oriented Gradients
(HOG) and Discrete Radon Transform (DRT) with DMML. The system learns to compare
two signatures, by learning a distance metric between them. The signatures are processed
using a feedforward neural network, where the same weights are used in the bottom layers
for all users and the last layer is specific and specializes for each individual.

(HAFEMANN; SABOURIN; OLIVEIRA, 2016) proposed a Deep Convolutional Neural Net-
works (DCNN) feature learning approach for the offline HSV problem, in order to obtain
better feature representations than by using hand-crafted features. This approach can be
divided in two steps: a Writer-Independent feature learning phase followed by Writer-
Dependent classification, performed by a WD SVM. The feature learning phase uses a
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surrogate classification task for learning the feature representations, where a DCNN is
trained to discriminate between signatures from users not enrolled in the system. Then,
this approach uses this DCNN as a feature extractor and trains a writer-dependent clas-
sifier for the verification of each user.

(HAFEMANN; SABOURIN; OLIVEIRA, 2017a) proposed an approach to deal with the
offline HSV problem that uses concepts from both WI and WD systems. This model
represents an evolution from the one cited above, with a more complex architecture and
more complete experimental protocol. The approach carries out feature learning from
the signature images in a WI format, using a Deep Convolutional Neural Network called
SigNet. After being trained, the DCNN is used to extract representative features from the
signatures, which are used to train a writer-dependent SVM classifier for each writer. The
experimental results showed a significant improvement in performance when compared to
the previous state-of-the-art methods.

(BOUAMRA et al., 2018) proposed a writer-dependent approach for offline HSV that
employs One-Class Support Vector Machine (OC-SVM) with features based on run-length
distributions of signatures binary images to perform the verification. The option of using
OC-SVM is to simulate the real world scenarios, in which only genuine signatures are
available for training the classifier model. In the training phase, the system searches for
the optimal OC-SVM parameters - i.e., proportion of outliers (𝜈) and kernel parameter
(𝛾) - and also selects the best decision threshold values (which is responsible for accepting
or rejecting the signature as genuine) using a small subset of the development dataset.
The results show that the proposed system is able to detect the skilled forgeries, especially
when there is only one reference signature in the training set.

(OKAWA, 2018) proposed an offline signature verification system based on bag-of-visual
words (BoVW) and a vector of locally aggregated descriptors (VLAD) to detect salient
regions of the signature structure. Then, KAZE features are used to obtain information
about the contours of strokes and the relationships between strokes. The KAZE features
approach is a multiscale 2-D feature detection and description algorithm that is applied
to nonlinear scale spaces. Finally, principal component analysis (PCA) is used to reduce
the data dimensionality and the SVM is responsible for verifying signatures.

The HSV system proposed by (ZOIS et al., 2019) utilizes a Sparse Representation (SR)
in order to learn local features and construct a global signature descriptor. In this study,
the authors investigate the selection of the appropriate SR approach, which can be seg-
mented in greedy and convex relaxation. The effects of the associated parameters, the
sparsity level and the regularization function are also evaluated. Results showed that,
greedy techniques can deploy the full potential of SR in a signature verification system.
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2.1.2 Writer-Independent Approaches

In the WI scenario, (BERTOLINI et al., 2010) proposed a writer-independent approach
for handwritten signature verification. This approach applies the ideas of the dissimilarity
representation and SVMs as classifiers. The two main contributions of the authors are the
following: (i) introduce a new graphometric feature set based on the curvature of the
most important segments, simulated by using Bezier curves. (ii) The use of an ensemble
of classifiers structure to improve the reliability and to reduce the false acceptance of
the model. This ensemble is built using a standard genetic algorithm and a pool of base
classifiers trained with four different graphometric feature sets.

(KUMAR; SHARMA; CHANDA, 2012) proposed a new feature set based on the surround-
edness property for writer-independent HSV. The verification is performed by two-class
classifiers, for example, RBF-SVM (Support Vector Machine with RBF kernel) or MLP
(Multilayer perceptron). The proposed approach was able to find distinctive and repre-
sentative features that represent both shape and texture properties of the signature. The
shape of the signature is computed by considering the distribution of surrounded signa-
ture black pixels. The texture is computed through the correlation between a questioned
signature pixel and the reference signature pixels. Experimental results indicate that the
proposed feature set was sufficiently general to handle data.

(RIVARD; GRANGER; SABOURIN, 2013) have proposed a writer-independent approach
that combines multiple feature extraction, Dichotomy Transformation (DT) and boosting
feature selection. The authors report that the accuracy and reliability of the system can
be improved by integrating features from different sources of information. Initially the au-
thors employ some techniques to extract features at different scales. Then, the Dichotomy
Transformation, which reduces the pattern recognition problem to a 2-class problem, is
used. A good point that deserves to be highlighted is that with this transformation the
system alleviates the challenges of dealing with limited number of reference signatures
from a large number of users. Finally, an ensemble is built using boosting feature se-
lection that uses low-cost classifiers capable of automatically selecting relevant features
during training.

(HAMADENE; CHIBANI, 2016) proposed a WI framework for HSV using both the Con-
tourlet Transformation (CT) and the Feature Dissimilarity Measure (FDM) thresholding
for classification. The CT describes the writer’s handwriting style through the follow-
ing characteristics of each user: (i) which directions are contained in signatures, (ii) the
amount of each direction, (iii) the spatial distribution of the directions toward users. The
classification is performed by using straightforward FDM thresholding and the writer-
independent threshold is defined using a signature stability criterion. This criterion is
based on users genuine-genuine dissimilarities stability and the most appropriate frontier
of the stable signatures is selected. This stability principle is based on considering a sig-
nature pair as more stable when their feature dissimilarity is lower. Experimental results
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showed that the proposed system was able to perform the verification even with a unique
threshold for accepting or rejecting a questioned signature, a reduced number of writers
and a limited number of reference signatures.

(RANTZSCH; YANG; MEINEL, 2016), proposed a writer-independent approach based on
deep similarity metrics. To this end, the signatures are embedded into a high-dimensional
space and their Euclidean Distance, in that space, can be used to compute their similarity.
Therefore, since genuine signatures generated from the same writer are more similar,
they are embedded close to each other and the forgeries are embedded far from them.
This can be obtained by training a Deep Neural Network (DNN) using a triplet-based
loss function. The experimental results showed that the proposed approach was able to
outperform the state-of-the-art from the ICDAR SigWiComp 2013 challenge on offline
signature verification.

(GUERBAI; CHIBANI; HADJADJI, 2015) proposed a writer-dependent HSV system based
on One-Class SVM (OC-SVM) that tries to reduce the difficulties of having a large num-
bers of users. As a one-class classification problem, the proposed approach models only
one class (genuine signatures), which is a good characteristic, as, in general, the system
only has the genuine signatures for each writer to train the classifier. Nevertheless, the
low number of genuine signatures is still an important challenge.

(DUTTA; PAL; LLADOS, 2016) proposed an approach that uses hybrid features that
consider the spatial information between local features and their global statistics in the
signature image to perform the handwritten signature verification in a writer-independent
way. To avoid the excess of computational burden when learning the condensed set of
higher order neighbouring features based on visual words, the authors also create a code of
local pairwise features which are represented as joint descriptors. Finally, local features are
paired based on the edges of a graph representation built upon the Delaunay triangulation
to to perform the verification task.

(ZOIS; ALEXANDRIDIS; ECONOMOU, 2019) proposed a writer independent framework
that uses the dissimilarity approach on a new feature set obtained by detecting and
counting asymmetric first order 5𝑥5 pixel mask transitions, instead of transitions between
pixel assortments. By doing this, the proposed model obeys the inclusion property. A
decision stump committee with Gentle AdaBoost (DSC-BFS) framework, which also per-
forms feature selection, was used to perform the verification. According to the authors,
the discriminating capabilities of the employed features are related to the high verification
performance achieved.

2.1.3 Hybrid WD-WI Approaches

Some authors use a combination of both WD and WI approaches. For example,
(ESKANDER; SABOURIN; GRANGER, 2013) proposed a hybrid writer-independent-writer-
dependent model. The aim of the authors was to take advantage of the positive character-
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istics of each approach. In the scenario where only a few genuine signatures are available,
they use the writer-independent classifier to perform the verification. On the other hand,
the writer-dependent classifier is trained for a user when the number of genuine samples
is above a defined threshold.

(HU; CHEN, 2013) proposed a HSV approach that combines multiple features with
different classifications methods. It is worth noting that in the proposed approach, the
verification task can be performed in both WI and WD forms. The multiple used features
are based on local binary pattern (LBP), gray level co-occurrence matrix (GLCM) and
histogram of oriented gradients (HOG). In turn, SVM classifiers are used as WD or Global
Real Adaboost as WI classifiers to perform the verification. In the first mode, each WD
SVM is trained using the feature vectors extracted from the reference signatures of the
corresponding user, as positive samples, and random forgeries of each other writer, as
negative samples. Differently, in the WI approach, a global Adaboost classifier is trained
using genuine and random forgery signatures of writers that are not included in the test
set. It is important to highlight that the use of all the features improves the overall
verification performance.

(YILMAZ; YANIKOĞLU, 2016) also propose a hybrid approach using the main ideas from
the WD and WI approaches, aiming to learn the importance of different dissimilarities, the
writer-independent classifier is trained with dissimilarity vectors of query and reference
signatures of all users. In its turn, the writer-dependent classifiers are trained separately
for each user, to learn to differentiate genuine signatures and forgeries. The results are
then combined using a score-level fusion of these complementary classifiers with different
local features.

(ZHANG; LIU; CUI, 2016) proposed a multi-phase approach that combines unsupervised
feature extraction and a hybrid WI-WD classification method to perform the signature
verification. The feature extraction is based on Deep Convolutional Generative Adversar-
ial Networks (DCGANs). If few samples per writer are available, a Gentle Adaboost is
employed in WI way. Once enough samples are collected, then it operates in WD way.
So, the more query samples are tested and enrolled into the system, the more accurate
the system will be, theoretically. The authors defend the idea that in the long run the
unsupervised feature learning of signature verification has the potential to outperform
supervised training as it has access to more data.

2.1.4 Offline HSV datasets

Table 2 presents a summary of the most commonly used signature datasets, which
are BRAZILIAN (FREITAS et al., 2000), CEDAR (KALERA; SRIHARI; XU, 2004), MCYT
(ORTEGA-GARCIA et al., 2003) and GPDS-300 (VARGAS-BONILLA et al., 2007). In the
BRAZILIAN, forgeries are available only for 60 users, that is why the number of users
are segmented.
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Table 2 – Summary of the used datasets.

Dataset Name Users Genuine signatures (per user) Forgeries per user
BRAZILIAN 60 + 108 40 10 simple, 10 skilled

CEDAR 55 24 24
MCYT 75 15 15

GPDS-300 881 24 30

Table 10 summarizes the used Exploitation set 𝜀 for each dataset. The number of
questioned signatures per writer is acquired according to the literature (HAFEMANN;

SABOURIN; OLIVEIRA, 2017a).

Table 3 – Exploitation set 𝜀

Dataset #Samples #questioned signatures (per writer)
BRAZILIAN 2400 10 genuine, 10 random, 10 simple, 10 skilled

CEDAR 1650 10 genuine, 10 skilled, 10 random
MCYT 2250 5 genuine, 15 skilled, 10 random

GPDS-300 9000 10 genuine, 10 skilled, 10 random

2.2 FEATURE REPRESENTATION

The SigNet, proposed by (HAFEMANN; SABOURIN; OLIVEIRA, 2017a), uses Deep Con-
volutional Neural Networks (DCNN) for learning the signature representations in a writer-
independent way and, nowadays, represents a state of the art approach in this research
area. This approach tries to build a new representation space in which different writers
are clustered in separate regions, based on the most representative properties of the hand-
written signatures. To achieve this, the DCNN is trained by minimizing the negative log
likelihood of the correct writer given the signature image. Table 4 summarizes the DCNN
architecture used by the SigNet model.

Table 4 – Summary of the SigNet layers

Layer Size Other Parameters
Input 1 x 150 x 220
Convolution (C1) 96 x 11 x 11 Stride = 4, pad = 0
Pooling 96 x 3 x 3 Stride = 2
Convolution (C2) 256 x 5 x 5 Stride = 1, pad = 2
Pooling 256 x 3 x 3 Stride = 2
Convolution (C3) 384 x 3 x 3 Stride = 1, pad = 1
Convolution (C4) 384 x 3 x 3 Stride = 1, pad = 1
Convolution (C5) 256 x 3 x 3 Stride = 1, pad = 1
Pooling 256 x 3 x 3 Stride = 2
Fully Connected (FC6) 2048
Fully Connected (FC7) 2048
Fully Connected + Softmax (𝑃 (y|𝑋)) M

In the paper by (HAFEMANN; SABOURIN; OLIVEIRA, 2017a), the authors present an-
other DCNN architecture, called as SigNet-f, which uses skilled forgeries during the feature
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learning process. Our option of using the SigNet is due to the fact that it is not reasonable
to expect skilled forgeries to be available in the training phase for all users enrolled in the
system.

In SigNet the features are learned from the development set of the GPDS dataset. For
new writers (from the GPDS dataset itself or from another dataset), this approach is used
to project the signature images onto the new representation space, by using feed-forward
propagation until the FC7 layer, obtaining feature vectors with 2048 dimensions. Also, as
a writer-independent approach, it has the advantage of not being specific for a particular
set of writers, it can even be used to extract features for writers from other databases.

In their study, (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) analysed the local structure
of the learned feature space, by using the t-SNE algorithm in a subset containing 50 writers
from the development set of the GPDS-300 dataset (referred to as the validation set
for verification 𝑉𝑣). Figure 3 represents this analysis (HAFEMANN; SABOURIN; OLIVEIRA,
2017a).

Fig. 3 – t-SNE 2D feature vector projections from the 50 writers of 𝑉𝑣. While blue points
represent genuine signatures, orange points represent skilled forgeries

As depicted in Figure 3, in this feature space, for each writer, genuine signatures form
compact clusters. According to (HOUMANI et al., 2011), the forgery quality measures the
proximity of a forgery to a target signature. Thus, as highlighted, skilled forgeries come
up with two different behaviors: (i) in some cases they have a larger separation from the
genuine signatures. These forgeries are referred to as “bad quality skilled forgeries” in this
thesis. (ii) For some writers, the skilled forgeries are closer to the genuine signatures - we
call them “good quality skilled forgeries”.

In this work, our original feature space is represented by the 2048 features obtained
from the FC7 layer of the SigNet (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) (no training
or updating of SigNet has been carried out by us, the features for the considered datasets
are available online1). This model was chosen mainly because of its behavior, characterized
by different writers clustered in separate regions of the feature space.
1 <http://en.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Projets/

Signature-Verification>

http://en.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Projets/Signature-Verification
http://en.etsmtl.ca/Unites-de-recherche/LIVIA/Recherche-et-innovation/Projets/Signature-Verification
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2.3 PROTOTYPE SELECTION (PS)

Prototype Selection (PS) approaches generally aim to obtain a representative training
subset, with a lower number of samples as compared to the original one (𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑢𝑏𝑠𝑒𝑡 ⊆
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑆𝑒𝑡) (GARCIA et al., 2012). Using the selected subset (from PS) can result in a
similar or even higher classification accuracy for new incoming data (GARCIA et al., 2012).

According to Pekalska et al. (PEKALSKA; DUIN; PACLIK, 2006), prototype selection
is an important aspect that should be considered for dissimilarity-based classification. In
their paper, the authors showed that by using a few but well-chosen selected prototypes, it
is possible to speed up the classifier training and still achieve a classification performance
that is similar to or better than what is obtained by using all the training samples together.
The authors also showed that, in general, a systematic prototypes selection approach
works better than a random subsampling. To the best of our knowledge, this analysis has
never been conducted specifically for the dichotomy transformation scenario.

According to (GARCIA et al., 2012), one segmentation when dealing with prototype
selection techniques is related to the type of search. In this scenario, the concern is whether
the PS approach seeks to keep the samples in the border region, samples that are far from
the border, or some other set of samples. Thus, these approaches can be divided into:
Condensation, Edition and Hybrid approaches.

• Condensation Approaches: These strategies aim to retain the samples which are
closer to the decision boundaries, since internal samples do not affect the decision
boundaries as much as border samples, and thus can be removed with relatively
little effect on classification. One characteristic of this kind of approach is that the
reduction capability is normally high due to the fact that there are fewer border
points than internal points in most of the data.

• Edition Approaches: In contrast to condensation approaches, edition approaches
try to remove border samples. The idea is to remove samples that do not agree with
their neighbors, as they have a higher risk of being noise. Thus, the editing process
occurs in regions of the space with a high degree of overlap between classes, aiming
to obtain a smoother decision boundaries.

• Hybrid Approaches: The idea of this kind of approach is to combine the removal
of both border and internal samples, based on the two previous strategies.

Both the papers by Garcia et al. (GARCIA et al., 2012) and Triguero et al. (Triguero et

al., 2012) present a list of methods for each of these approaches.
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2.4 TRANSFER LEARNING (TL)

Transfer Learning (TL) methods are based on the idea of utilizing the knowledge
acquired from previously learned tasks and applying them to solve newer, related ones
(SHAO; ZHU; LI, 2015). (PAN; YANG, 2010) present a formal definition for transfer learning.
Given a source domain 𝐷𝑆 and a learning task 𝑇𝑆, a target domain 𝐷𝑇 and a learning task
𝑇𝑇 , transfer learning aims to help improve the learning of the target predictive function
𝑓𝑇 (·) in 𝐷𝑇 using the knowledge obtained from 𝐷𝑆 and 𝑇𝑆, where 𝐷𝑆 ̸= 𝐷𝑇 , or 𝑇𝑆 ̸= 𝑇𝑇 .

Following their notation, our context is related to the scenario where the target and
the source domains are the same, i.e., 𝐷𝑆 = 𝐷𝑇 , and the learning tasks 𝑇𝑆 and 𝑇𝑇 are dif-
ferent. Specifically our case is that in which the conditional probability distributions of the
domains are different, i.e., 𝑃 (𝑌𝑆|𝑋𝑆) ̸= 𝑃 (𝑌𝑇 |𝑋𝑇 ), where 𝑌𝑆𝑖

and 𝑌𝑇𝑖
belong to the same

label space formed by the positive and negative classes of the dichotomy transformation.
(PAN; YANG, 2010) suggest the following issues when dealing with transfer learning:

• What to transfer: the concern is related to which part of the knowledge may be
common between the different domains, and so, may actually be useful to improve
the performance in the target domain.

• How to transfer: methodologies need to be developed to deal with problems that
may appear, such as the data distribution mismatch. Mining shared patterns from
different domains, for instance, can significantly reduce the difference in the distri-
bution between the target and the source domains

• When to transfer: considers in which situations TL should be used. When the do-
mains are not related to each other, brute-force transfer may not succeed and/or
even negatively affect the performance of learning in the target domain (situation
knows as negative transfer).

2.5 INSTANCE HARDNESS (IH)

The Instance Hardness (IH) measure is used to identify hard to classify samples
(SMITH; MARTINEZ; GIRAUD-CARRIER, 2014). According to the paper by (LORENA et

al., 2019), an advantage of using the IH is to understand the difficulty of a problem at the
instance level, rather than at the aggregated level with the entire dataset. Also, Smith et
al. (SMITH; MARTINEZ; GIRAUD-CARRIER, 2014) argue that understanding why instances
are misclassified can lead to the development of learning algorithms that tackles directly
the causes of the misclassification.

For instance, in (SMITH; MARTINEZ; GIRAUD-CARRIER, 2014), the author uses the
instance hardness to decrease the chance of overfitting the data and, thereby, obtain a
more representative boundary of the data. For this, the authors remove the instances with
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a high instance hardness (i.e., a high degree of overlap between classes) from the data
sets before training the classifiers.

In the paper by (CRUZ et al., 2017), the authors used IH to identify the scenarios where
an ensemble with dynamic selection techniques outperform the K-NN classifier.

In (WALMSLEY et al., 2018), the authors propose an ensemble generation method based
on Bagging and instance hardness. The main idea is to remove outliers and noisy instances
from the training set, maintaining instances that are close to border regions. Thus, the
probability of an instance being picked to compose the bootstrapped training sets is
defined to be inversely proportional to its hardness.

To empirically analyze hard-to-classify instances, the paper by (SMITH; MARTINEZ;

GIRAUD-CARRIER, 2014) designed a set of seven heuristics (hardness heuristics).

• The k-Disagreeing Neighbors (kDN) gives the percentage of the k nearest neighbors
that do not share the label of a given instance.

• The Disjunct Size (DS) corresponds to the size of a disjunct that covers an example
divided by the largest disjunct produced. The disjuncts are obtained using a C4.5
decision tree learning algorithm.

• The Disjunct Class Percentage (DCP) can be computed by dividing the number
of data points in a disjunct that belong to a same class by the total number of
examples in the disjunct.

• The Class Likelihood (CL) global measure of overlap of a given instance belonging
to a especific class.

• Class Likelihood Difference (CLD) is obtained by computing the difference between
the class likelihood of an instance and the maximum likelihood for all of the other
classes.

• The Minority Value (MV) is the ratio of the number of instances that shares the
class value of a given instance to the number of instances in the majority class. This
metric is used to obtain the skewness of the class to which an instance belongs.

• The Class Balance (CB) computes the balance between classes. If the data set is
completely balanced the class balance value will be 0.

2.6 FEATURE SELECTION (FS)

In general, real-world machine learning problems involve a large number of features.
However, not all features are essential and may have redundant or irrelevant information.
In a classification algorithm, for instance, redundant features may reduce the performance
of the classifier. Feature selection (FS) techniques deal with this problem by selecting only
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a subset of relevant features from the original large set of features (XUE et al., 2015). The
motivations for using this approach include: reduction of the computational complexity,
reduction of dimensionality, removal of non-informative features, enhanced generalization
power by reducing overfitting (CRUZ; SABOURIN; CAVALCANTI, 2017).

The feature selection task is becoming more challenging as the number of features
and the complexity of the problems are increasing in many areas with the advances in
the data collection techniques. An exhaustive search for the best subset of features is too
costly and practically impossible for most problems. Some feature selection techniques,
such as complete search, greedy search, heuristic search, and random search have been
used (XUE et al., 2015). However, these techniques still suffer from problems of having a
high computational cost and/or getting stuck in local optima (UNLER; MURAT, 2010) and,
so, an efficient global search approach is need. The Particle Swarm Optimization (PSO)
is well-known for it global search ability and have received a lot of attention in the feature
selection scenario.

Based on the evaluation criteria, feature selection algorithms are generally classified
into two categories: 1) filter approaches and 2) wrapper approaches (GUYON; ELISSE-

EFF, 2003). While filter methods evaluate features based on their intrinsic characteristics
(independent of any classification algorithm), wrapper methods use the classification ac-
curacy of a trained classifier to evaluate the feature subset. Although wrapper methods
are typically more time consuming than filter methods, in general, they achieve better
classification performance (TRAN; ZHANG; XUE, 2016).

In the paper by (TRAN; ZHANG; XUE, 2016), the authors developed an approach that
combines wrapper and filter strategies and uses PSO. For this, the authors made changes
in the fitness function and in the local search. A new hybrid fitness function, based on both
classification accuracy and distance to promote higher discriminating feature subsets, is
used to better evaluate candidate solutions. The local search is guided by a filter measure
responsible for adding more relevant features to the current 𝑝𝑏𝑒𝑠𝑡 of each solution.

In (CRUZ; SABOURIN; CAVALCANTI, 2017) the authors used a Binary PSO (BPSO)
to select the relevant features in a meta-learning context. In this way, the meta-feature
selection scheme based on BPSO is applied to optimize the performance of the meta-
classifier in a wrapper mode.

The paper by (TRAN; XUE; ZHANG, 2018) proposes a variable-length PSO representa-
tion for feature selection. In this way, each particle from the swarm may have a different
number of dimensions when compared to the others, which improves the performance of
PSO. By sorting features in a descending order of importance, the proposed approach
facilitate particles with a lower number of dimension to achieve better classification per-
formance. Also, using the proposed variable-length mechanism, PSO can jump out of local
optima, focusing its search on smaller and more fruitful area. Thus, this strategy enables
PSO to reach better solutions in a shorter time.
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2.6.1 Binary Particle Swarm Optimization (BPSO)

Particle Swarm Optimisation (PSO) (KENNEDY; EBERHART, 1995) is a global search
technique that simulates the social behaviors of birds flocking. In PSO, a swarm consists of
a set of candidate solutions (particles) moving in the solution search space. Each particle is
encoded as its position (p𝑖) and move through the space based on its velocity (v𝑖), seeking
to find better solutions (evaluated by a fitness function). During the search process, each
particle has access to information about the best position found by it so far (𝑝𝐵𝑒𝑠𝑡) and
the best position found throughout the cluster (𝑔𝑏𝑒𝑠𝑡).

In a context of feature selection, particle swarm optimization algorithms are used
in their binary version - Binary Particle Swarm Optimization (BPSO) - and have been
obtaining good results when compared to other optimization algorithms used for this task
(CHUANG; TSAI; YANG, 2011). The transformation of the continuous search space into a
binary space is conducted by using a transfer function, 𝑇 (MIRJALILI; LEWIS, 2013).

Mirjalili et al. (MIRJALILI; LEWIS, 2013) state that an important aspect to obtain good
performance on convergence is the choice of the well suited transfer function. According
to the authors, in general, the V-Shaped transfer functions present better behavior both
in terms of avoiding local minima and convergence speed (MIRJALILI; LEWIS, 2013). Also,
in Cruz et al. (CRUZ; SABOURIN; CAVALCANTI, 2017), the V-Shaped function presented
the best overall performance.

For a formal definition, given a binary search space with 𝐷 dimensions and a swarm
with 𝑁 particles, the 𝑖-th particle of the swarm can be represented by a 𝐷-dimensional
vector p𝑖 = [𝑝𝑖1; 𝑝𝑖2; ...; 𝑝𝑖𝐷], which corresponds to the position of the particle in space. In
this work context, each dimension 𝑝𝑖𝑑 represents a single feature and value “1” means that
the respective feature is selected and “0” otherwise. The particle velocity consists of v𝑖 =
[𝑣𝑖1; 𝑣𝑖2; ...; 𝑣𝑖𝐷]; the best position found by the particle as pBest𝑖 = [𝑝𝐵𝑒𝑠𝑡𝑖1; 𝑝𝐵𝑒𝑠𝑡𝑖2; ...;
𝑝𝐵𝑒𝑠𝑡𝑖𝐷] and the best position obtained by the swarm as gBest = [𝑔𝐵𝑒𝑠𝑡1; 𝑔𝐵𝑒𝑠𝑡2; ...;
𝑔𝐵𝑒𝑠𝑡𝐷]. Then, for each iteration, the update of the velocity and the position are com-
puted, respectively, by equations 2.1 and 2.2 (ZHANG; XIONG; ZHANG, 2013).

v𝑖(𝑡 + 1) = 𝑤 · v𝑖(𝑡) + 𝑐1 · 𝑟𝑎𝑛𝑑 · (pBest𝑖 − p𝑖(𝑡))
+ 𝑐2 · 𝑅𝑎𝑛𝑑 · (gBest𝑖 − p𝑖(𝑡))

(2.1)

p𝑖(𝑡 + 1) =

⎧⎪⎨⎪⎩p𝑖(𝑡)−1 𝐼𝑓 𝑟𝑎𝑛𝑑𝑝 < 𝑇 (v𝑖(𝑡 + 1))

p𝑖(𝑡) 𝐼𝑓 𝑟𝑎𝑛𝑑𝑝 ≥ 𝑇 (v𝑖(𝑡 + 1))
(2.2)

where, 𝑐1 and 𝑐2 represent acceleration factors and are positive constants; 𝑟𝑎𝑛𝑑, 𝑅𝑎𝑛𝑑

and 𝑟𝑎𝑛𝑑𝑝 are random variables with uniform distribution within the interval [0, 1], and
𝑤 is the weight of inertia. In the velocity equation, the first factor represents inertia, the
second factor the cognitive component and the third factor the social component.
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As we are dealing with a binary search space, updating the position of a particle
means switching between selecting the feature (“1”) or not (“0”). The particle velocity is
responsible for driving this, thus, the higher the velocity, the higher the probability of the
particle to change its position.

The good overall performance in previous works (MIRJALILI; LEWIS, 2013) motivated
our option to use the V-Shaped transfer function in this work. It can be computed through
equation 2.3.

𝑇 (𝑥) =
⃒⃒⃒⃒

2
𝜋
𝑎𝑟𝑐𝑡𝑎𝑛(𝜋

2 𝑥)
⃒⃒⃒⃒

(2.3)

An important aspect is that this transfer function encourage particles to stay in their
current positions when their velocity values are low or switch to their complements when
the velocity values are high.
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3 PROPOSED METHOD

We listed the challenges in dealing with the HSV problem in Section 1. Among them:
(𝐶1) the high number of writers (classes), (𝐶2) the high-dimensional feature space, (𝐶3)
small number of training samples per writer with high intra-class variability, (𝐶4) the
heavily imbalanced class distributions, (𝐶5) no skill forgeries during training, even though
they are the most similar to genuine signatures, in general, they are not available for
training purposes in real HSV applications, (𝐶6) new incoming writers.

In this section we provide a deep analysis on the writer-independent (WI) dichotomy
transformation applied to the offline handwritten signature verification problem. Having
a better understanding of the generated dissimilarity space allowed us to make choices of
methods that best fit our problem.

3.1 WRITER-INDEPENDENT DICHOTOMY TRANSFORMATION FOR HANDLING HSV
DATA DIFFICULTIES

The Dichotomy Transformation (DT) approach (CHA; SRIHARI, 2000), allows to trans-
form a multi-class pattern recognition problem into a 2-class problem. In this approach, a
dissimilarity (distance) measure is used to determine whether a given reference signature
and a questioned signature as belonging to the same writer or not (ESKANDER; SABOURIN;

GRANGER, 2013).
Formally, let x𝑞 and x𝑟 be two feature vectors in the feature space, the dissimilarity

vector resulting from the Dichotomy Transformation, u, is computed by equation 3.1:

u(x𝑞, x𝑟) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

|𝑥𝑞1 − 𝑥𝑟1|

|𝑥𝑞2 − 𝑥𝑟2|
...

|𝑥𝑞𝑛 − 𝑥𝑟𝑛|

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.1)

where | · | represents the absolute value of the difference, 𝑥𝑞𝑖 and 𝑥𝑟𝑖 are the 𝑖-th features
of the signatures x𝑞 and x𝑟 respectively, and 𝑛 is the number of features. Hence, each
dimension of the u vector is equal to the distance between the corresponding dimensions
of the vectors x𝑞 and x𝑟, and therefore all these vectors have the same dimensionality
(BERTOLINI; OLIVEIRA; SABOURIN, 2016).

As mentioned, regardless of the number of writers, after applying DT, only two classes
are present in the dissimilarity space:

• The within/positive class 𝑤+: the intraclass dissimilarity vectors, i.e., obtained when
the questioned and the reference signatures belong to the same writer.
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• The between/negative class 𝑤−: the interclass dissimilarity vectors, i.e., obtained
when the questioned and the reference signatures belong to different writers.

Once the data is transposed into the dissimilarity space, a 2-class classifier (known as
dichotomizer) is trained and used to perform the verification task. A common practice for
WI systems is to use disjoint subsets of writers to train the classifier and to perform the
verification. In general, the training set is known as the development set 𝐷 and the test
set as exploitation set 𝜀 (CHA; SRIHARI, 2000).

The Dichotomy Transformation has already been used in various contexts, such as:
bird species identification (ZOTTESSO et al., 2018), forest species recognition (MARTINS

et al., 2015), writer identification (BERTOLINI; OLIVEIRA; SABOURIN, 2016) and also for
handwritten signature verification (RIVARD; GRANGER; SABOURIN, 2013; ESKANDER;

SABOURIN; GRANGER, 2013; SOUZA; OLIVEIRA; SABOURIN, 2018).
Based on the DT definition we can highlight the following points: (𝐶1) first of all, the

DT reduces the high number of classes (writers) to a 2-class problem, and only one model
is trained to perform the verification for all writers from the dissimilarity space (DS)
generated by the dichotomy transformation (ESKANDER; SABOURIN; GRANGER, 2013).
(𝐶6) The WI verification only depends on the reference signature used as input to the
classifier; it means that the WI framework is scalable and can easily manage new incoming
writers without requiring additional training or updating of the model (unlike the WD
approach, where a new classifier needs to be trained). In this way, a WI classifier trained in
one dataset can be used to verify signatures from other datasets in a transfer learning task.
In this scenario, the different datasets would represent samples that belong to the same
domain (signature representations in DS). As defined before, given that the development
set 𝐷 and the exploitation set 𝜀 are disjoint, by default this approach already operates
by using transfer learning.

An important property of the dichotomy transformation is its ability to increase the
number of samples in the dissimilarity space since it is composed of each pairwise com-
parisons of signatures. Thus, if 𝑀 writers provide a set of 𝑅 reference signatures each,
Equation 3.1 generates up to (𝑀𝑅

2 ) different distances vectors. Of these, 𝑀(𝑅
2 ) are from

the positive class and (𝑀
2 )𝑅2 belong to the negative class (RIVARD; GRANGER; SABOURIN,

2013). Therefore, even with a small number of reference signatures per writer, DT can
generate a large amount of samples in DS.

In this way, the model can handle the small number of samples per class. Also, by
increasing the number of samples, the model may be able to obtain sufficient information
to capture the full range of signature variations, reducing the effects of the intra-class
variability (HAFEMANN; SABOURIN; OLIVEIRA, 2017b) (𝐶3). Besides, by generating the
same number of samples for both the positive class (questioned signatures are the genuine
signatures from the writers) and the negative class (questioned signatures are the random
forgeries), the model can manage the dataset imbalance (𝐶4).
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However, many of the samples generated by DT in the WI-HSV scenario represent
redundant information and therefore have little importance for training purposes. In this
way, prototype selection (PS) techniques can be used in the dissimilarity space to re-
duce the complexity and the training time of the classifier used without degrading its
generalization (GARCIA et al., 2012).

Another aspect is faced when writers have more than one reference signature. In this
case, the pairwise comparison of DT is applied considering the questioned signature and
each of the references, producing a set of dissimilarity vectors {u𝑟}𝑅

1 , where 𝑅 is the
number of reference signatures belonging to the writer. Thus, the dichotomizer evaluates
each dissimilarity vector individually and produces a set of partial decisions {𝑓(u𝑟)}𝑅

1

(RIVARD; GRANGER; SABOURIN, 2013). The final decision about the questioned signature
is based on the fusion of all partial decisions by a function 𝑔(·) and depends on the output
of the dichotomizer. For discrete output classifiers, the majority vote can be used; whereas
for distance or probability outputs, the max, mean, median, min and sum functions may
be applied (RIVARD; GRANGER; SABOURIN, 2013).

Finally, one possible drawback of DT is that, perfectly grouped writers in the feature
space may not be perfectly separated in the dissimilarity space (CHA; SRIHARI, 2000).
Thus, the greater the dispersion between sample distributions among the writers, the less
the dichotomizer is able to detect real differences between similar signatures (RIVARD;

GRANGER; SABOURIN, 2013).
Summarizing, based on the main properties of the WI dichotomy transformation, this

approach can handle some data difficulties of the HSV problems that WD systems are not
capable of. Other characteristics of DT can be found in (CHA; SRIHARI, 2000; RIVARD;

GRANGER; SABOURIN, 2013).
To facilitate the understanding of DT, Figure 4 (left) depicts a synthetic 2D feature

space with synthetic data (containing genuine signatures and skilled forgeries from 3
different writers); on the right the respective dichotomy transformation is shown. The
skilled forgeries in the feature space for each writer are presented in red with the same
marker. These data were generated based on what was observed in Figure 3. The reader
should keep in mind that although the negative samples in the dissimilarity space are
represented by different colors (red for the ones generated by the skilled forgeries and
green for the random forgeries), they are part of the same class. This separation was
made to support further discussions that will be held later.

Signatures that belong to the same writer are close to each other in the feature space.
Hence, they will form a cluster located close to the origin in DS. The quality of a forgery
can be measured by its proximity to a target signature (HOUMANI et al., 2011); this prox-
imity should be considered in the feature space. When transposed to the DS, it is expected
that, while bad quality skilled forgeries generate negative samples more distant to the ori-
gin, good quality skilled forgeries generate samples closer to the origin, and may even be
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within the positive cluster.

Fig. 4 – On the left, the feature space containing genuine signatures and skilled forgeries
from 3 different writers (the skilled forgeries for each writer are presented in
red with the same marker). On the right, the dissimilarity space generated after
applying the dichotomy transformation.

3.1.1 Lessons learned

In the handwritten signature verification problem, the WI framework based on the
dichotomy transformation (DT) is scalable, adaptable and presents the benefit of being
able to handle some of the challenges faced when dealing with the HSV problem. Among
them, (𝐶1) the high number of writers (classes), (𝐶3) the small number of training sam-
ples per writer with high intra-class variability and (𝐶4) the heavily imbalanced class
distributions.

Another advantage of the WI framework is that it can easily manage new incoming
writers (𝐶6), and may even be used in a transfer learning context since the different
datasets would represent samples that belong to the same domain (signature represen-
tations in the dissimilarity space). However with different acquisition protocol (scanner,
writing space, writing tool etc). Therefore, a single model already trained can be used to
verify the signatures of new incoming writers without any further transfer adaptation.

This analysis already answers the research question 1 presented in Chapter 1.

3.2 SYSTEM OVERVIEW

Figure 5 depicts a block diagram containing the overview of the proposed approach.
The top part of Figure 5 contains the training phase. The first step is to obtain the feature
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Fig. 5 – Block diagram containing the overview of the proposed approach.

vectors x𝑞 and x𝑟 extracted, respectively, from the images of the questioned signature 𝑆𝑞

and the reference signature 𝑆𝑟 belonging to the writers of the development dataset (𝐷).
This feature extraction is performed by using SigNet (model is available online1). Next, the
dichotomy transformation is applied to obtain the dissimilarity vector u. After obtaining
the set of dissimilarity vectors for all considered signatures of 𝐷, the Condensed Nearest
Neighbors (CNN) is applied to discard redundant samples and then the dichotomizer is
1 <https://github.com/luizgh/sigver_wiwd>

https://github.com/luizgh/sigver_wiwd
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trained with the selected samples. The SVM with RBF kernel was chosen as dichotomizer
because it is considered one of the best classification methods for both WD and WI
signature verification tasks (HAFEMANN; SABOURIN; OLIVEIRA, 2017b).

The generalization phase of the proposed approach is presented in the bottom part
of Figure 5. Again, the first step is to extract the feature vectors through SigNet. One
difference from the training phase is that, here, a set of reference signatures {𝑆𝑟}𝑅

1 is con-
sidered for each questioned signature 𝑆𝑞, {𝑆𝑟}𝑅

1 and 𝑆𝑞 are obtained from the exploitation
dataset (𝜀). Consequently a set of reference signatures, {x𝑟}𝑅

1 , is considered in the di-
chotomy transformation. In this way, DT is applied considering the feature vector of the
writer’s questioned signature x𝑞 and the features vector set of his/her reference signatures
{x𝑟}𝑅

1 and produces the set of dissimilarity vectors {u𝑟}𝑅
1 . Next, the dichotomizer evalu-

ates each dissimilarity vector individually and outputs a set of partial decisions {𝑓(u𝑟)}𝑅
1 .

The final decision of the approach about the questioned signature is based on the fusion
of all partial decisions by a function 𝑔(x𝑞).

Our approach is centered on the dichotomy transformation. Thus, it presents the
advantages and suffer the same weaknesses as this transformation (which were discussed
and analysed in section 3.1).

3.2.1 Feature Representation

It is important to mention that DT has already been used in the handwritten signa-
ture verification scenario (RIVARD; GRANGER; SABOURIN, 2013; ESKANDER; SABOURIN;

GRANGER, 2013), but using older feature representations. An important aspect of this
transformation is the need for a good feature representation, as the one used in this
paper. The motivation for this statement is as follows: (i) signatures that are close in
the feature space will be close to the origin in the dissimilarity space. This behavior is
expected for genuine signatures. (ii) the further away two signatures are in the feature
space, the farther the vector resulting from the dichotomy transformation will be from
the origin. It is expected to find this second behavior for the forgeries (CHA; SRIHARI,
2000). To complete the reasoning, as depicted in Figure 16, this scenario can actually be
found in the feature space from SigNet (HAFEMANN; SABOURIN; OLIVEIRA, 2017a), as
different writers are clustered in separate regions. This feature representation is discussed
in section 2.2.

Another aspect is that, regardless of the signature image, 𝑆𝑖𝑔𝑛𝑒𝑡 will generate feature
vectors containing 2048 dimensions. This fact, facilitates the use of this feature represen-
tation in a context of transfer learning.

3.2.2 Fusion function and the number of references

SVM with RBF kernel was chosen as dichotomizer because it is considered one of the
best classification methods for both WD and WI signature verification tasks (HAFEMANN;
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SABOURIN; OLIVEIRA, 2017b). In the experiments we show the needing for a strong dis-
criminant classifier that can model complex distributions. That’s why the SVM with RBF
kernel is a good choice.

The signed distance of the samples to the classifier’s hyperplane are used as classifiers
output (HAFEMANN; SABOURIN; OLIVEIRA, 2017a). So, in the experiments we analyse
which partial decisions fusion functions is the best (functions MAX, MEAN, MEDIAN
and MIN are tested). We also investigate the influence of the number of signatures used
in the reference set.

3.2.3 Prototype Selection

Since each sample generated by the DT is formed by the distance of each pair of sig-
natures, this approach is able to increase the number of samples in the WI-HSV scenario.
However, many of these samples are redundant and have little influence during the train-
ing of the verification model. Thus, the use of prototype selection (PS) techniques in the
dissimilarity space may allow the reduction of the complexity and the training time of
the used classifier without degrade its results.

Considering the dissimilarity space behavior, if two samples are far in the feature
space the resulted dissimilarity vector will also be far from the origin after applying
the dichotomy transformation. The more distant from origin the minor the influence of
the sample during the training of the WI-classifier, since the sample will be far from the
border region in the dissimilarity space. In this scenario, a Condensation Approach should
be used to retain the samples which are closer to the decision boundaries.

Fig. 6 – The Condensed Nearest Neighbors (CNN) method maintains the samples located
in the decision boundaries.

In this work, the classical Condensed Nearest Neighbors is used as systematic proto-
types selection method. This approach maintains the instances that are misclassified by
a 1-NN classifier (1-nearest neighbor classifier), discarding them otherwise (HART, 1968).
Its goal is to reduce the dataset size by removing redundant instances, maintaining the
samples in the decision boundaries (GARCIA et al., 2012). This behavior is depicted in
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Figure 6. In the left the original space, on the right, the samples kept after CNN being
applied.

3.2.4 Transfer Learning

As the verification only depends on the input reference signature, by using the DT
in a writer-independent approach, the dichotomizer can verify signatures of writers for
whom the classifier was not trained (transfer learning). The used feature representation
already keeps the same number of features for all the considered datasets. Thus, in the
transfer learning scenarios, the same normalization from the training set is used for the
other datasets (so the data is on the same scale). No further transfer adaptation is needed.

3.2.5 Instance Hardness

We propose to use an analysis based on the Instance Hardness of the samples in
the dissimilarity space to obtain a better understanding of the space. The kDisagreeing
Neighbors (kDN) measure is used herein to estimate IH. It represents the percentage of
the 𝐾 nearest neighbors that do not share the label of a target instance. This metric was
chosen because it is able to capture the occurrence of class overlap and is also correlated
with the frequency of a given instance being misclassified (SMITH; MARTINEZ; GIRAUD-

CARRIER, 2014). In a more formal definition, the kDN measure, 𝑘𝐷𝑁(𝑥𝑞), of a query
instance 𝑥𝑞, whose K nearest neighbors are denoted by 𝐾𝑁𝑁(𝑥𝑞), is defined as:

𝑘𝐷𝑁(𝑥𝑞) = |𝑥𝑘 : 𝑥𝑘 ∈ 𝐾𝑁𝑁(𝑥𝑞) ∧ 𝑙𝑎𝑏𝑒𝑙(𝑥𝑘) ̸= 𝑙𝑎𝑏𝑒𝑙(𝑥𝑞)|
𝐾

(3.2)

where 𝑥𝑘 represents a neighborhood instance and, 𝑙𝑎𝑏𝑒𝑙(𝑥𝑞) and 𝑙𝑎𝑏𝑒𝑙(𝑥𝑘) represent the
class labels of the instances 𝑥𝑞 and 𝑥𝑘 respectively (SMITH; MARTINEZ; GIRAUD-CARRIER,
2014).

We also use the IH to characterize the good and the bad quality when considering
the skilled forgeries. In the experiments we show that class overlap may not occur when
considering only genuine signatures and random forgeries. For this reason, this character-
ization of good and bad quality was only conducted based on the skilled forgeries. Figure
7 depicts examples of good and bad skilled forgeries at the image level, for the MCYT
dataset. On the left, the genuine signature used as a reference is shown; the skilled forgeries
are shown on the right. Forgery index represents its index (recall, for the MCYT dataset,
each writer has 15 skilled forgeries). It is expected that good quality skilled forgeries be
more similar to the genuine signature than the bad ones. We are using the K-Nearest
Neighbors (KNN) limit to characterize the “bad” quality skilled forgeries (𝐼𝐻 <= 0.5)
and the “good” quality skilled forgeries (𝐼𝐻 > 0.5).

As previously presented, it is expected that the negative samples from the good skilled
forgeries be close to the DS origin (as depicted in figure 4). Therefore, these negative
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samples may have more neighbors belonging to the positive class, i.e., higher IH values.
On the other hand, as the negative samples from bad skilled forgeries are more distant
to the origin, they may have more neighbors belonging to the negative class, i.e., lower
IH values. These aspects can also be seen in Figure 7. Further discussions about these
aspects are done in Section 4.4 and in Appendix A.

Fig. 7 – Good and bad skilled forgeries at image level

3.3 SYSTEM OVERVIEW WITH FEATURE SELECTION

One more step can be added to complement our initial approach, namely, the appli-
cation of feature selection in the dissimilarity space (as depicted in Figure 8).

The option of using a Binary Particle Swarm Optimization (BPSO) algorithm for
feature selection in this work comes from the good results it has obtained when compared
to other optimization algorithms used for this task (CHUANG; TSAI; YANG, 2011).

In this binary swarm optimization scenario, we propose to use a BPSO-based feature
selection for WI handwritten signature verification in a wrapper mode. Wrapper methods
consider the selection as a search problem, where different combinations are prepared,
evaluated and compared. Then, a predictive model is used to evaluate a combination of
features and assign a score based on model accuracy (RADTKE; WONG; SABOURIN, 2006).

To decrease the chance of overfitting, we propose to use a global validation strategy,
where the validation of the candidate solutions is executed in all iterations of the optimiza-
tion process and an external archive is responsible to store the best validated solutions
(RADTKE; WONG; SABOURIN, 2006).

3.3.1 Variation on BPSO

Research has shown that the three parameters 𝑤, 𝑐1 and 𝑐2 have a significant impact
on the algorithm performance (HASSAN et al., 2005). In a variation of PSO, the Improved
Self-Adaptive Particle Swarm Optimization Algorithm (IDPSO) (ZHANG; XIONG; ZHANG,
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Fig. 8 – Block diagram containing the overview of the proposed approach with feature
selection.

2013), the algorithm itself adjusts 𝑤, 𝑐1 and 𝑐2 dynamically over iterations, promoting
global search in the beginning and local search in the final iterations. The dynamic ad-
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justment of these parameters occurs through a detection function 𝜙(𝑡), which is defined
by Eq. 3.3:

𝜙(𝑡) = |(gBest − p𝑖(𝑡 − 1))/(pBest𝑖 − p𝑖(𝑡 − 1))| (3.3)

where |(gBest − p𝑖(𝑡 − 1))| represents the Euclidean distance between the best position
found by the swarm and the previous position found by the 𝑖-th particle. |(pBest𝑖 −
p𝑖(𝑡 − 1))| represents the Euclidean distance between the best position found by the 𝑖-th
particle and its previous position.

Once the detection function is computed, the values of 𝑐1 and 𝑐2 are dynamically
updated (respectively, Eqs. 3.4 and 3.5). The inertia is computed based on 𝜙(𝑡) and on a
sigmoid function through Eq. 3.6 (ZHANG; XIONG; ZHANG, 2013):

𝑐1 = 𝑐1 · 𝜙(𝑡)−1 (3.4)

𝑐2 = 𝑐2 · 𝜙(𝑡) (3.5)

𝑤(𝑡) = 𝑤𝑖𝑛𝑖𝑐𝑖𝑎𝑙 − 𝑤𝑓𝑖𝑛𝑎𝑙

1 + 𝑒𝜙(𝑡)·(𝑡−((1+𝑙𝑛(𝜙(𝑡)))·𝑘𝑚𝑎𝑥)/𝜇) + 𝑤𝑓𝑖𝑛𝑎𝑙 (3.6)

where 𝑤𝑖𝑛𝑖𝑐𝑖𝑎𝑙 and 𝑤𝑓𝑖𝑛𝑎𝑙 respectively present the initial and the final values of the inertia
𝑤 (values in the range 0 < 𝑤 < 2). 𝐾𝑚𝑎𝑥 is the maximum number of iterations used in
the algorithm, 𝑡 is the current iteration of the algorithm, 𝜙(𝑡) is the detection function
and 𝜇 is an adjustment factor (ZHANG; XIONG; ZHANG, 2013).

By using this dynamic update, the IDPSO presents the following behavior:

• In initial iterations: 𝜙(𝑡) ≥ 1 and so the value of 𝑐1 is reduced and value of 𝑐2

is increased. With this, the algorithm improves the exchange of information and
cooperation of the particles, emphasizing the global search in the whole space.

• In final iterations: 𝜙(𝑡) < 1 and so so the value of 𝑐1 is increased and value of 𝑐2 is re-
duced. Thus, the algorithm improves the influence of the particle itself, emphasizing
local search capability (refinement of the solution found)

Thus, IDPSO displays all PSO advantages and also improves both the ability of global
search in initial iterations and local search in final iterations. Another advantage is that
IDPSO is not dependent on the parameters w, 𝑐1 and 𝑐2 (ZHANG; XIONG; ZHANG, 2013).
Algorithm 1 presents IDPSO Pseudocode.

3.3.2 Fitness function

The wrapper-based optimization is conducted by minimizing of the Equal Error Rate
(EER) of the SVM. The 𝐸𝐸𝑅 metric is the error obtained when False Rejection Rate
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Algorithm 1: IDPSO Pseudocode.
1 begin
2 Generate an initial population of particles (swarm): S
3 Randomly initialize the initial position (p) and velocity (v) of each particle i that belongs

to the swarm S.
4 for each particle i of S do
5 Compute fitness 𝑓𝑖 through the chosen fitness function
6 Compute the best particle position i so far: pBest𝑖

7 end
8 Select the particle with best fitness of the swarm: gBest
9 for each particle i of S do

10 Compute detection function 𝜙(𝑡). Eq. 3.3
11 Update inertia. Eq. 3.6
12 Update the variables 𝑐1 and 𝑐2. Eq. 3.4 and Eq. 3.5
13 Update particle velocity: Eq. 2.1
14 Update particle position: Eq. 2.2
15 end
16 if stopping criteria is not reached then
17 Return to line 4.
18 end

(𝐹𝑅𝑅) is equal to False Acceptance Rate (𝐹𝐴𝑅) (SOUZA; OLIVEIRA; SABOURIN, 2018).
The user threshold (considering just the genuine signatures and the skilled forgeries) was
employed (SOUZA; OLIVEIRA; SABOURIN, 2018). As mentioned, the motivation for using
Support Vector Machines (SVM) as the classifier is because it is one of the most effec-
tive classifiers for both writer-dependent (WD) and writer-independent (WI) signature
verification tasks (HAFEMANN; SABOURIN; OLIVEIRA, 2017b).

3.3.3 Overfitting control

In the feature selection scenario, overfitting occurs when the optimized feature set
memorizes the training set instead of producing a general model. Hence, it may fail to
generalize well to unseen data. In the wrapper-based approach, the swarm optimization
process becomes another learning process and may be subject to overfitting. To decrease
the chance of overfitting, a validation procedure can be used during the optimization
process in order to select solutions with good generalization power.

According to Santos et al. (SANTOS; SABOURIN; MAUPIN, 2009), one possible validation
strategy is to validate final candidate solutions on another set of unknown observations
– the selection set. By using this approach, the optimization routine produces better
results than selecting solutions based solely on the accuracy of the optimization set alone.
However, this strategy has the disadvantage that the solution is validated only once, after
the optimization process is completed.

Another approach is the global validation strategy (RADTKE; WONG; SABOURIN, 2006),
where the validation of the candidate solutions are executed in all iterations of the opti-
mization process. This can be accomplished by storing the best validated solutions in an
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external (auxiliary) archive.
The studies by Radtke et al. (RADTKE; WONG; SABOURIN, 2006) and Santos et al.

(SANTOS; SABOURIN; MAUPIN, 2009) formulated the problem of classifier ensemble selec-
tion as an optimization problem and applied these strategies to control the overfitting. In
both scenarios, the global validation strategy was able to detect overfitting and outper-
formed the other overfitting control methods. So, in this work, we use this approach since
it has shown better results in the literature.

Algorithm 2: Pseudocode of the global validation strategy to control overfitting.
Result: External archive 𝐴

1 Creates initial population 𝑃 (1) with 𝑁 individuals
2 Replaces optimization set by the selection set for objective function evaluation
3 Calculate objective functions for all solutions in 𝑃 (𝑡)
4 𝐴 = ∅
5 𝑡 = 1
6 while t < maximum iterations do
7 Evolve 𝑃 (𝑡) to 𝑃 (𝑡 + 1)
8 Validate 𝑃 (𝑡 + 1) with the selection set
9 Update the external archive 𝐴 with the individuals from 𝑃 (𝑡 + 1) based on

their fitness from the validation process
10 t=t+1
11 end

Algorithm 2 presents the pseudo-code for the global validation strategy. As can be
seen, an empty external archive 𝑆 is created at the beginning and updated at each iter-
ation according to the validated solutions. During this routine, the Optimization set is
temporarily replaced by the Selection set to evaluate the fitness function. At each itera-
tion, all the best solutions previously found are grouped with the population of the new
swarm and then ranked. Finally, the external archive maintains the 𝑁 best candidate
solutions.

Figure 9 depicts the global validation strategy overview. The Optimization set is used
to guide the search during the iterations of the BPSO. In turns, the Selection set is used
in the validation stage for any of the methods used to control the overfitting.

3.3.4 Limitations of the proposed approach

The error in the experiments is computed considering an user threshold. So, although
the proposed model being writer-independent, the decision is carried out in at the user’s
context, not using a global threshold to compute the error.

The user threshold was used to compare the results with those found in the literature
under the same conditions.
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Fig. 9 – Global validation strategy overview.
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4 EXPERIMENTS

In this chapter we describe the experiments performed in order to evaluate the pro-
posed method discussed in Chapter 3. The dataset used in the experiments are described
and the segmentation into training, validation and test datasets is explained. Also, the
experimental setup is discussed and we present and analyze the main results obtained in
these experiments and how they answer the research questions formulated in Chapter 1.

4.1 DATASETS

The experiments are carried out using the GPDS, BRAZILIAN, MCYT and CEDAR
datasets, which are summarized in Table 2.

Table 5 – Summary of the used datasets.

Dataset Name Users Genuine signatures (per user) Forgeries per user
BRAZILIAN 60 + 108 40 10 simple, 10 skilled

CEDAR 55 24 24
MCYT 75 15 15

GPDS-300 881 24 30

To enable comparison with other works, the GPDS-300 segmentation was used. In this
case, the first 300 writers from the GPDS-300 dataset form the exploitation set 𝜀 and the
development set 𝐷 is composed by the remaining 581 writers (HAFEMANN; SABOURIN;

OLIVEIRA, 2017a). It is worth noting that these subsets are disjoint, hence both of them
are composed of different writers.

The training set is generated by using a subset of 14 genuine signatures for each
writer from 𝐷 (RIVARD; GRANGER; SABOURIN, 2013; ESKANDER; SABOURIN; GRANGER,
2013). Samples belonging to the positive class are generated by applying the DT on the
genuine signatures from every writer in 𝐷, as in Table 6. To have an equivalent number
of counterexamples, the negative samples are generated by using 13 genuine signatures
(references signatures) against one selected from a genuine signature of 7 different writers
(7 random forgeries), as in Table 6. Thus, the same number of samples for both positive
and negative classes are generated to be part of the training set.

Table 6 – GPDS-300 dataset: Development set 𝐷

Training set (14 signatures per writer)
Negative Class Positive Class

Pairwise comparisons among 13 signatures per
writer and 7 random signatures of other writers

Pairwise comparisons among the 14 signatures
per writer

581 · 13 · 7 = 52, 871 negative samples 581 · 14 · 13/2 = 52, 871 positive samples

In this study, the IH analyses are performed considering the neighborhood of the
GPDS-300 training set (after applying CNN preprocessing). So, to compute the IH value,
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each test sample is considered alone with the whole training set. Thus, we can observe
the behavior of the test samples from different datasets in relation to the same training
set neighborhood and, consequently, obtain a better understanding in a transfer learning
scenario. The motivation for using the GPDS-300 base training set is as follows: (i) GPDS-
300 has the largest training set, and (ii) as explained in section 2.2, the features of the
other datasets are obtained from a Deep Convolutional Neural Networks (DCNN) trained
using the GPDS-300 dataset.

The same methodology was used for the BRAZILIAN dataset, and the division is
summarized in Table 7. For CEDAR and MCYT datasets, we used a 5x2 fold cross-
validation (i.e., 5 runs using 2-fold CV each). Hence, as the MCYT dataset has 75 writers,
each fold would have 37 or 38 writers. For the training folds, from the 15 genuine signatures
of each writer in 𝐷, 10 signatures are randomly selected to generate the training set (Table
9). For the CEDAR dataset, the 55 writers were split into 27 or 28 writers per fold. For the
training folds, the 24 genuine signatures of each writer in 𝐷, 14 signatures are randomly
selected to generate the training set (Table 8). The other fold is used for testing in both
scenarios.

In its turn, in the transfer learning scenario, the whole set of writers are used to obtain
the development sets, but we keep the number of genuine signatures and random forgeries.

Table 7 – BRAZILIAN dataset: Development set 𝐷

Training set
Positive Class Negative Class

Distances between the 30 signatures for each
writer (𝐷)

Distances between the 29 signatures for each
writer and 15 random signatures from other

writers
108 · 30 · 29/2 = 46, 980 samples 108 · 29 · 15 = 46, 980 samples

Table 8 – CEDAR dataset: Development set 𝐷

Training set
Positive Class Negative Class

Distances between the 14 signatures for each
writer (𝐷)

Distances between the 13 signatures for each
writer and 7 random signatures from other

writers
(27 𝑜𝑟 28) · 14 · 13/2 samples (27 𝑜𝑟 28) · 13 · 7 samples

Table 9 – MCYT dataset: Development set 𝐷

Training set
Positive Class Negative Class

Distances between the 10 signatures for each
writer (𝐷)

Distances between the 9 signatures for each
writer and 5 random signatures from other

writers
(37 𝑜𝑟 38) · 10 · 9/2 samples (37 𝑜𝑟 38) · 9 · 5 samples

Considering that each dataset has a different number of writers and signature per
writers and to be able to compare the results with the state-of-the-art the testing set
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is acquired using a methodology similar to that described in (HAFEMANN; SABOURIN;

OLIVEIRA, 2017a). The BRAZILIAN dataset contains simple and skilled forgeries for the
first 60 writers. Thus only these writers were used. For the MCYT and the CEDAR
datasets all the writers were used. Table 10 summarizes the used Exploitation set 𝜀 for
each dataset.

Table 10 – Exploitation set 𝜀

Dataset #Samples #questioned signatures (per writer)
BRAZILIAN 2400 10 genuine, 10 random, 10 simple, 10 skilled

CEDAR 1650 10 genuine, 10 skilled, 10 random
MCYT 2250 5 genuine, 15 skilled, 10 random

GPDS-300 9000 10 genuine, 10 skilled, 10 random

4.1.1 General experimental setup

For all sections of the experiments, as first step, the distance vectors u (in the dis-
similarity space) are standardized (zero mean and unit variance). In the transfer learning
scenarios, the same normalization from the training set is used for the other datasets (so
the data is on the same scale).

In this study, the SVM is used as writer-independent classifier with the following
settings: 𝑅𝐵𝐹 kernel, 𝛾 = 2−11 and 𝐶 = 1.0 (𝐶 and 𝛾 were selected based on a grid
search: 𝐶𝑔𝑟𝑖𝑑 = {0.0001, 0.001, 0.01, 0.1, 1, 10, 100} and 𝛾𝑔𝑟𝑖𝑑 = {2−11, 0.0001, 0.001, 0.01,
0.1, 1, 10, 100}). The signed distance of the samples to the classifier’s hyperplane are used
as classifiers output (HAFEMANN; SABOURIN; OLIVEIRA, 2017a).

The Equal Error Rate (𝐸𝐸𝑅) metric, using user thresholds (considering just the gen-
uine signatures and the skilled forgeries) was used in the evaluation of the verification
models (HAFEMANN; SABOURIN; OLIVEIRA, 2017a). 𝐸𝐸𝑅 is the error obtained when
𝐹𝑅𝑅 = 𝐹𝐴𝑅, where (i) FRR (False Rejection Rate), represents the percentage of genuine
signatures that are rejected by the system, and (ii) FAR (False Acceptance Rate), rep-
resents the percentage of forgeries that are accepted (HAFEMANN; SABOURIN; OLIVEIRA,
2017a).

All data were randomly selected, and a different SVM was trained for each replication
(ten replications were performed for each experimental configuration). To evaluate the
effectiveness of the results, we conducted the Wilcoxon paired signed-rank test with a 5%
level of significance to confirm whether the two methods were significantly different in
terms of 𝐸𝐸𝑅.

4.2 DEEP CONVOLUTIONAL NEURAL NETWORK (DCNN) FEATURES FOR WI HSV

The main objective of this section is to investigate whether SigNet (HAFEMANN;

SABOURIN; OLIVEIRA, 2017a) can also lead to good results in a writer-independent HSV
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context. To this end, it is proposed the use of the dichotomy transformation (RIVARD;

GRANGER; SABOURIN, 2013) combined with an SVM as a writer-independent classifier to
perform the signature verification.

The results are organized as follows: (i) initially, the number of signatures in the
reference set 𝑅 is fixed and an analysis of which fusion function is the best is carried
out (functions max, mean, median and min are tested), (ii) In the sequence, the analysis
about the influence of the number of signatures used in the reference set 𝑅 is presented.
(iii) Finally, the comparison with the state-of-the-art for the used datasets is discussed (as
the present work uses SigNet features, Hafemann et al. results are also presented using
only these features (HAFEMANN; SABOURIN; OLIVEIRA, 2017a)).

In this section we answer the research questions 2 and 3 presented in Chapter 1.

4.2.1 Detailed experimental setup

In the experiments reported in this Section, we use the Equal Error Rate (𝐸𝐸𝑅)
metric, using both global and user thresholds (considering just the genuine signatures and
the skilled forgeries) for the evaluation of the verification models (HAFEMANN; SABOURIN;

OLIVEIRA, 2017a).
Some analyses are also carried out considering the Average Error Rate (𝐴𝐸𝑅) metric,

which is the average error considering 𝐹𝑅𝑅, 𝐹𝐴𝑅𝑟𝑎𝑛𝑑𝑜𝑚, 𝐹𝐴𝑅𝑠𝑖𝑚𝑝𝑙𝑒, 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑. The
𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 metric, which is the average error considering just 𝐹𝑅𝑅 and 𝐹𝐴𝑅𝑠𝑘𝑖𝑙𝑙𝑒𝑑,
is also used.

4.2.2 Results and discussion

4.2.2.1 BRAZILIAN dataset: Fusion function analysis

To measure the impact of the fusion function, in this section the number of references
per writer is fixed in 30 (highest number of references). The tested fusion functions are:
(i) mean, (ii) max, (iii) median and (iv) min.

Figure 10 depicts the boxplots for 𝐴𝐸𝑅 and 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 for the tested functions
(max, mean, median, min). As can be seen, the max function obtained the best results
for both metrics (this settings will be referenced as 𝑆𝑉 𝑀𝑚𝑎𝑥). In the opposite direction,
the min function had the worst results in both cases.

The Wilcoxon paired signed-rank test with 5% significance level for both 𝐴𝐸𝑅 and
𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 metrics shows that the max function outperforms the other functions
with statistical relevance.

For the 𝐸𝐸𝑅 metric, the Wilcoxon paired signed-rank test also showed that the max
function is statistically better when compared to the median and the min. However, there
is no statistical difference to the mean function (this behavior can be observed in Figure
11).
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Fig. 10 – Boxplots for 𝐴𝐸𝑅 (left) and 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 (right) metrics on the BRAZIL-
IAN dataset, using 30 references per writer.

Fig. 11 – Boxplots for 𝐸𝐸𝑅 (user threshold) metric on the BRAZILIAN dataset, using
30 references per writer.

4.2.2.2 BRAZILIAN dataset: Number of reference signatures analysis

In the previous section it was shown that the max obtained better results when com-
pared to other functions. In this section, to measure the impact of the reference set
cardinality, the max function was fixed and the number of references per writer varies. To
this end, reference subsets containing [1, 5, 10, 15, 20, 25, 30] randomly selected signatures
are used as references for the verification task.

Figure 12 depicts the boxplots for 𝐴𝐸𝑅 and 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 for different number
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Fig. 12 – Boxplots for AER (left) and 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 (right) metrics on the BRAZIL-
IAN dataset, using max function.

of reference signatures. As can be seen, using more references per writer produces bet-
ter results (the worst cases are with number of references = 1 and = 5). However, the
variation among results decreases as the number of references increases. For instance, the
experiments using 15 or 20 references present similar results; the same can be observed
with 25 and 30.

The Wilcoxon paired signed-rank test with 5% significance level for both metrics,
using n_reference = 30 as baseline, shows that results are statistically better only when
compared with the cases where number of references = 1 and = 5. There is no statistical
difference to n = 10, 15, 20 or 25.

4.2.2.3 BRAZILIAN dataset: Comparison with the state-of-the-art

Table 11 – Comparison of 𝐸𝐸𝑅 with the state-of-the-art on the BRAZILIAN dataset,
using max function (errors in %).

Type Reference #references 𝐸𝐸𝑅

WD (HAFEMANN; SABOURIN; OLIVEIRA, 2016) 15 4.17
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 5 2.92 (0.44)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 15 2.07 (0.63)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 30 2.01 (0.43)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using a global threshold) 5 5.95 (0.68)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using a global threshold) 15 5.13 (0.23)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using a global threshold) 30 4.90 (0.27)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using an user threshold) 5 2.58 (0.72)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using an user threshold) 15 1.70 (0.40)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using an user threshold) 30 1.47 (0.36)

As can be observed in Table 11, the results of 𝑆𝑉 𝑀𝑚𝑎𝑥 (using an user threshold)
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outperforms the other models. Also, the 𝑆𝑉 𝑀𝑚𝑎𝑥 achieved better results when com-
pared both to (HAFEMANN; SABOURIN; OLIVEIRA, 2016) and (HAFEMANN; SABOURIN;

OLIVEIRA, 2017a) for the 𝐸𝐸𝑅 metric, considering models with the same number of
references. It worth to notice that the proposed method performs writer-independent ver-
ification and both Hafemann’s models operate in a writer-dependent way and, even so,
our WI approach was able to improve the results.

4.2.2.4 GPDS-300 dataset

For the GPDS-300 datasets, the same fusion functions were tested. As the highest
value for the number of references is 12, reference subsets containing [1, 2, 3, 4, 5, 10, 12]
randomly selected signatures were tested as references for the verification.

As in the BRAZILIAN dataset, in the GPDS-300 dataset the best results are obtained
using the max function with the highest value for the number of references (in this case,
n_reference = 12) for both global and user threshold scenarios. Figures 13 and 14 depict,
respectively, the boxplots for 𝐴𝐸𝑅 and 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 metrics (i) varying the fusion
functions and (ii) varying the number of references, for the GPDS-300 dataset.

For the GPDS-300 dataset, performing the Wilcoxon paired signed-rank test for both
metrics: (i) max function outperforms the other functions with statistical relevance. (ii)
Using n_reference = 12 is statistically better when compared to the other cases.

Fig. 13 – Boxplots for 𝐴𝐸𝑅 (left) and 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 (right) metrics on the GPDS-300
dataset, using n_reference = 12.

Table 12 presents the results when 𝑆𝑉 𝑀𝑚𝑎𝑥 is used and compares the obtained results
with those from Table 7 of Hafemann et al. paper (HAFEMANN; SABOURIN; OLIVEIRA,
2017a), for the GPDS-300 dataset.
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Fig. 14 – Boxplots for AER (left) and 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 (right) metrics on the GPDS-300
dataset, using max function.

Table 12 – Comparison of 𝐸𝐸𝑅 with the state-of-the-art on the GPDS-300 dataset, using
Max function (errors in %).

Type Reference #samples 𝐸𝐸𝑅

WD (SOLEIMANI; ARAABI; FOULADI, 2016) 10 20.94
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2016) 12 12.83
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 5 3.92 (0.18)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 12 3.15 (0.18)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using a global threshold) 5 9.05 (0.34)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using a global threshold) 12 7.96 (0.26)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using an user threshold) 5 4.40 (0.34)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 (using an user threshold) 12 3.69 (0.18)

As presented in Table 12, 𝑆𝑉 𝑀𝑚𝑎𝑥 was able to outperform (SOLEIMANI; ARAABI;

FOULADI, 2016) and (HAFEMANN; SABOURIN; OLIVEIRA, 2016) using both global and user
thresholds. However, the proposed approach using an user threshold obtained slightly in-
ferior results in comparison with the WD model from (HAFEMANN; SABOURIN; OLIVEIRA,
2017a) for the 𝐸𝐸𝑅 metric.

4.2.2.5 Dynamic reference selection through MAX funcion

We are using the signed distance of a sample to the classifier’s hyperplane as classifiers
output. An important aspect related to the signed distance is that it indicates in which
side of the hyperplane generated by the classifier the sample is located and how far it
is from this hyperplane. Figure 15 depicts this property. Given the dissimilarity space
and the blue line representing a decision hyperplane with the left side as its positive side
(because it is closer to the origin), then, for each fusion function, the distance used for
the final decision would be:
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• MAX: the distance from the sample farthest from the hyperplane on the positive
side;

• MIN: the distance from the sample farthest from the hyperplane on the negative
side;

• MEAN and MEDIAN: respectively, the mean and median of all distances.

Fig. 15 – Dissimilarity space with the highlight on the selected reference, when MAX is
used as a fusion function.

As we are in the dissimilarity space, the sample farthest from the hyperplane on the
positive side represents the one that is closest to the DS origin, and, hence, the one
generated by the DT of the reference signature and the questioned signature that are
closest in the feature space. This happens when applying the MAX as fusion function
and then, in the scenario of Figure 15, sample 7 would be the one used to perform the
verification.

On the other hand, the sample farthest from the hyperplane on the negative side
represents the one that is further away from the DS origin, i.e., the one generated by the
DT of the reference signature and the questioned signature that are farther apart from
each other in the feature space. This represents the scenario of MIN as fusion function
and therefore, in Figure 15, sample 8 would be the one used to perform the verification.
In MEAN and MEDIAN, there is no specific sample selected since the mean and median
of all distances are respectively used in each case.

Thus, when we apply the MAX as fusion function, the approach dynamically selects
the sample closest to the origin in the dissimilarity space. Hence, it dynamically selects
the reference (from the set of references) that is most similar to the questioned signature
and uses it to perform the verification.
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4.2.3 Lessons learned

In this section, the results of the experiments showed that, in general, for the tested
datasets, the best results are obtained using the MAX as fusion function (research question
3) with the highest number of references (research question 2).

Moreover, in the global threshold scenario, the proposed approach was able to out-
perform (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) in the BRAZILIAN dataset. For the
user threshold scenario, the proposed approach was able to obtain performance compara-
ble to (HAFEMANN; SABOURIN; OLIVEIRA, 2017a). This was the case even with the pro-
posed method performing writer-independent verification and (HAFEMANN; SABOURIN;

OLIVEIRA, 2017a) operating in a writer-dependent way. In the BRAZILIAN dataset our
proposed approach was slightly superior and in the GPDS-300 dataset slightly inferior.
However, for both datasets, the proposed approach was able to outperform other methods
from the literature that use WD classification and the WI dissimilarity representation with
different features and more complex classification architectures (for instance, ensembles
of classifiers).

We also showed that, by using MAX as fusion function, the approach dynamically
selects the reference (from the set of references) that is most similar to the questioned
signature and uses it to perform the verification.

4.3 PROTOTYPE SELECTION AND TRANSFER LEARNING

The objective of the experiments is to analyze whether: (i) prototype selection prepro-
cessing techniques can be used without degrading the performance of the classifier; (ii)
preprocessing based on a systematic prototype selection technique is better than a random
selection for the WI-HSV problem; and (iii) WI-SVM trained in the GPDS-300 dataset
can be used to verify signatures in the other datasets (in a transfer learning approach).

The aim was also to explain these objectives based on the main characteristics of the
dissimilarity space resulting from the dichotomy transformation for WI-HSV. The instance
hardness distribution of genuine signatures, random forgeries and skilled forgeries, was
used to this end.

In this section we answer the research questions 4 and 5 presented in Chapter 1.

4.3.1 Detailed experimental setup

In the experiments reported in this section, the classical Condensed Nearest Neighbors
(CNN) approach is used for systematic prototype selection. This approach maintains
the instances that are misclassified by a 1-NN classifier (1-nearest neighbor classifier),
discarding them otherwise (HART, 1968). CNN was chosen because its goal is to reduce
the dataset size by removing redundant instances, maintaining the samples in the decision
boundaries (GARCIA et al., 2012).
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As presented in Section 4.2, for the tested datasets, the best results are generally
obtained using the highest number of references and max as the fusion function. Therefore,
only this approach is considered in this Section.

For the instance hardness (IH) analysis, 𝐾 = 7 is used for the estimation of the kDN
(CRUZ et al., 2017).

4.3.2 Using Prototype Selection

The following experiments evaluate the application of prototype selection before train-
ing the SVM. The %_𝑆𝑉 𝑀 represents the models with uniform random subsampling of
the training set. We use 1.0%, 5.0% and 10.0% of the original training set. The Condensed
Nearest Neighbors is referred to as 𝐶𝑁𝑁_𝑆𝑉 𝑀 in the tables.

4.3.2.1 GPDS-300 dataset

Table 13 presents a comparative analysis of the results obtained by the SVMs (with
and without prototype selection) versus those obtained with state of the art models, con-
sidering the 𝐸𝐸𝑅 metric. Tables 14 and 15 respectively present the comparative analysis
of the number of samples and the number of support vectors (SV) obtained by the SVMs
(with and without prototype selection), for the GPDS-300 dataset.

Table 13 – Comparison of 𝐸𝐸𝑅 with the state of the art in the GPDS-300 dataset, using
max function (errors in %)

Type Model #references 𝐸𝐸𝑅

WD (SOLEIMANI; ARAABI; FOULADI, 2016) 10 20.94
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2016) 12 12.83
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 5 3.92 (0.18)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 12 3.15 (0.18)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 12 3.69 (0.18)
WI 1%_𝑆𝑉 𝑀𝑚𝑎𝑥 12 3.54 (0.26)
WI 5%_𝑆𝑉 𝑀𝑚𝑎𝑥 12 3.62 (0.32)
WI 10%_𝑆𝑉 𝑀𝑚𝑎𝑥 12 3.48 (0.12)
WI 𝐶𝑁𝑁_𝑆𝑉 𝑀𝑚𝑎𝑥 12 3.47 (0.15)

Table 14 – Comparison of the number of training samples in the GPDS-300 dataset

Model #Positive Samples #Negative Samples #Retained Samples (%)
𝑆𝑉 𝑀 52871 52871 100.00 (0.00)
1%_𝑆𝑉 𝑀 531.70 (17.04) 526.30 (17.04) 1.00 (0.00)
5%_𝑆𝑉 𝑀 2648.10 (24.78) 2639.90 (24.78) 5.00 (0.00)
10%_𝑆𝑉 𝑀 5289.30 (31.69) 5285.70 (31.69) 10.00 (0.00)
𝐶𝑁𝑁_𝑆𝑉 𝑀 345.90 (15.25) 4437.80 (125.11) 4.52 (0.13)

As presented in Tables 13 and 14, the use of the prototype selection methods allows the
SVM to be trained with a much smaller number of samples, while keeping performance in
terms of 𝐸𝐸𝑅. This also results in a large reduction in the number in the support vectors
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Table 15 – Comparison of the number of support vectors (SV) in the GPDS-300 dataset

Model #SV #Positive SV #Negative SV
𝑆𝑉 𝑀 3398.40 (95.01) 1640.30 (45.90) 1758.10 (53.46)
1%_𝑆𝑉 𝑀 194.60 (8.92) 78.70 (4.61) 115.90 (9.87)
5%_𝑆𝑉 𝑀 481.30 (16.78) 208.50 (12.15) 272.80 (11.39)
10%_𝑆𝑉 𝑀 720.90 (23.64) 309.80 (9.35) 411.10 (16.88)
𝐶𝑁𝑁_𝑆𝑉 𝑀 928.20 (28.44) 312.90 (12.32) 615.30 (19.34)

used by the SVM (Table 15), which in turn reduces the complexity and computational
cost of training a SVM in the offline WI-HSV context.

In Table 13, a simple random subsampling with 1% of the training samples provides
similar results to what is obtained with the SVM trained with the complete training set.
This shows that the samples resulting from the dichotomy transformation are redundant
for this dataset.

For Table 13, considering the WD model from Hafemann et al. (HAFEMANN; SABOURIN;

OLIVEIRA, 2017a) for the GPDS-300 dataset, both the models, with and without prepro-
cessing, obtained comparable results for the 𝐸𝐸𝑅 metric, even operating in a writer-
independent fashion. When compared to the other models, the proposed approach ob-
tained better results.

Given these results, we can see that for the GPDS-300 dataset, the dichotomy trans-
formation was able to increase the number of samples in the WI-HSV scenario, and yet
many of them were redundant. This therefore means that the use of prototype selection in
the dissimilarity space allowed a reduction of the complexity of the classifier used without
degrading its results.

4.3.2.2 BRAZILIAN dataset

Tables 16, 17 and 18 respectively present, a comparative analysis of the classification
metrics, the number of samples and the number of support vectors (SV) obtained by the
SVMs (with and without prototype selection) in the BRAZILIAN dataset.

Table 16 – Comparison of 𝐸𝐸𝑅 with the state of the art in the BRAZILIAN dataset,
using max function (errors in %)

Type Model #references 𝐸𝐸𝑅

WD (HAFEMANN; SABOURIN; OLIVEIRA, 2016) 15 4.17
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 5 2.92 (0.44)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 15 2.07 (0.63)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 30 2.01 (0.43)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 30 1.47 (0.36)
WI 1%_𝑆𝑉 𝑀𝑚𝑎𝑥 30 1.21 (0.45)
WI 5%_𝑆𝑉 𝑀𝑚𝑎𝑥 30 1.19 (0.42)
WI 10%_𝑆𝑉 𝑀𝑚𝑎𝑥 30 1.23 (0.51)
WI 𝐶𝑁𝑁_𝑆𝑉 𝑀𝑚𝑎𝑥 30 1.26 (0.33)

Much as in the GPDS-300 scenario, Tables 16 and 17 show that a simple random
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subsampling with 1% of the samples maintains similar results as those obtained with the
SVM trained with the complete training set.

Once again, this demonstrates that the samples resulting from the dichotomy trans-
formation are redundant for this database. The data from Brazilian dataset are probably
more redundant when compared to what we have in the GPDS-300 dataset. This can
be observed from the greater reduction secured by the CNN approach: while 4.52% of
the samples are needed to represent the border region in the GPDS-300, only 1.47% are
needed for the BRAZILIAN dataset.

Table 17 – Comparison of the number of training samples in the BRAZILIAN dataset

Model #Positive Samples #Negative Samples #Retained Samples (%)
𝑆𝑉 𝑀 46980 46980 100.00 (0.00)
1%_𝑟𝑎𝑛𝑑𝑜𝑚 474.20 (14.60) 465.80 (14.60) 1.00 (0.00)
5%_𝑟𝑎𝑛𝑑𝑜𝑚 2336.50 (35.63) 2361.50 (35.63) 5.00 (0.00)
10%_𝑟𝑎𝑛𝑑𝑜𝑚 4681.60 (38.21) 4714.40 (38.21) 10.00 (0.00)
𝐶𝑁𝑁_𝑆𝑉 𝑀 379.30 (41.22) 1005.10 (33.65) 1.47 (0.07)

Table 18 – Comparison of the number of support vectors (SV) in the BRAZILIAN dataset

Model #SV #Positive SV #Negative SV
𝑆𝑉 𝑀 3368.80 (72.96) 1627.40 (40.70) 1741.40 (41.29)
1%_𝑆𝑉 𝑀 259.70 (17.25) 92.70 (7.44) 167.00 (11.09)
5%_𝑆𝑉 𝑀 688.00 (33.79) 267.80 (13.67) 420.20 (28.61)
10%_𝑆𝑉 𝑀 1014.20 (43.57) 420.20 (14.23) 594.00 (31.38)
𝐶𝑁𝑁_𝑆𝑉 𝑀 658.40 (34.84) 261.00 (18.77) 397.40 (20.93)

Still in Table 16, for this dataset, even operating in a writer-independent fashion, both
the models with and without preprocessing (prototype selection) obtained better results
considering the 𝐸𝐸𝑅 metric, when compared to the other WD models.

4.3.2.3 MCYT dataset

Tables 19, 20 and 21 respectively present a comparative analysis on the classification
metrics, the number of samples and the number of support vectors (SV) obtained by the
SVMs (with and without prototype selection) in the MCYT dataset.

As presented in Table 19, unlike with the CNN, the use of random subsampling resulted
in the degradation of the performance of the classifier. Used as the prototype selection
method, the Condensed Nearest Neighbors provided results comparable to those obtained
with the SVM trained with all the data; additionally the CNN allowed the SVM to be
trained with only about 8% of the training samples (as presented in Table 20). This
also resulted in an almost 28% reduction in the number of the support vectors used by
the SVM (Table 21). Unlike with random subsampling, using the Condensed Nearest
Neighbors allowed more attention to be paid to border samples, which removed the need
to store more instances than were necessary for an accurate generalization.
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Table 19 – Comparison of 𝐸𝐸𝑅 with the state of the art in the MCYT dataset, using
max function (errors in %)

Type Model #references 𝐸𝐸𝑅

WD (GILPEREZ et al., 2008) 10 6.44
WD (WEN et al., 2009) 5 15.02
WD (VARGAS et al., 2011) 10 7.08
WD (OOI et al., 2016) 10 9.87
WD (SOLEIMANI; ARAABI; FOULADI, 2016) 10 9.86
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 10 2.87 (0.42)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 10 2.73 (0.20)
WI 1%_𝑆𝑉 𝑀𝑚𝑎𝑥 10 3.67 (0.11)
WI 5%_𝑆𝑉 𝑀𝑚𝑎𝑥 10 3.27 (0.26)
WI 10%_𝑆𝑉 𝑀𝑚𝑎𝑥 10 3.19 (0.20)
WI 𝐶𝑁𝑁_𝑆𝑉 𝑀𝑚𝑎𝑥 10 2.99 (0.16)

Table 20 – Comparison of the number of training samples in the MCYT dataset

Model #Positive Samples #Negative samples #Retained Samples (%)
𝑆𝑉 𝑀 1687.50 (22.50) 1687.50 (22.50) 100.00 (0.00)
1%_𝑟𝑎𝑛𝑑𝑜𝑚 16.78 (3.29) 17.72 (3.13) 1.00 (0.00)
5%_𝑟𝑎𝑛𝑑𝑜𝑚 83.22 (6.19) 85.78 (6.00) 5.00 (0.00)
10%_𝑟𝑎𝑛𝑑𝑜𝑚 167.78 (9.02) 169.72 (9.51) 10.00 (0.00)
𝐶𝑁𝑁_𝑆𝑉 𝑀 38.29 (5.19) 224.93 (21.08) 7.80 (0.75)

Table 21 – Comparison of the number of support vectors (SV) in the MCYT dataset

Model #SV #Positive SV #Negative SV
𝑆𝑉 𝑀 567.77 (38.61) 251.29 (18.93) 316.48 (22.14)
1%_𝑆𝑉 𝑀 32.47 (1.66) 14.78 (2.32) 17.69 (3.09)
5%_𝑆𝑉 𝑀 105.63 (5.61) 42.54 (3.57) 63.09 (4.56)
10%_𝑆𝑉 𝑀 161.89 (9.79) 64.27 (4.42) 97.62 (7.47)
𝐶𝑁𝑁_𝑆𝑉 𝑀 160.49 (15.66) 38.22 (5.14) 122.27 (12.53)

Also in Table 19, for the MCYT dataset, when compared to the other models, the
proposed approach obtained better results for the 𝐸𝐸𝑅 metric. The only exception was
for the comparison with the model proposed in Hafemann et al. (HAFEMANN; SABOURIN;

OLIVEIRA, 2017a).

4.3.2.4 CEDAR dataset

Tables 22, 23 and 24 respectively present a comparative analysis on the classification
metrics, the number of samples and the number of support vectors (SV) obtained by the
SVMs (with and without prototype selection) in the CEDAR dataset.

In Table 22, for the CEDAR dataset while the use of random subsampling resulted
in the degradation of the model, using the CNN did not affect the performance of the
WI classifier. Used as the prototype selection method, the Condensed Nearest Neighbors
provided results comparable to those obtained with the SVM trained with all the data;
additionally the CNN allowed the SVM to be trained with only about 3% of the training
samples (Table 23). This also results in an almost 18% reduction in the number of the
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Table 22 – Comparison of 𝐸𝐸𝑅 with the state of the art in the CEDAR dataset, using
max function (errors in %)

Type Model #references 𝐸𝐸𝑅

WI (KUMAR et al., 2010) 1 11.81
WI (KUMAR; SHARMA; CHANDA, 2012) 1 8.33
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 12 4.76 (0.36)
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 12 5.78 (0.38)
WI 1%_𝑆𝑉 𝑀𝑚𝑎𝑥 12 7.22 (0.27)
WI 5%_𝑆𝑉 𝑀𝑚𝑎𝑥 12 6.45 (0.23)
WI 10%_𝑆𝑉 𝑀𝑚𝑎𝑥 12 6.02 (0.32)
WI 𝐶𝑁𝑁_𝑆𝑉 𝑀𝑚𝑎𝑥 12 5.86 (0.50)

support vectors used by the SVM (Table 24).

Table 23 – Comparison of the number of training samples in the CEDAR dataset

Model #Positive Samples #Negative Samples #Retained Samples (%)
𝑆𝑉 𝑀 2502.50 (45.50) 2502.50 (45.50) 100.00 (0.00)
1%_𝑟𝑎𝑛𝑑𝑜𝑚 24.81 (3.48) 25.69 (3.50) 1.00 (0.00)
5%_𝑟𝑎𝑛𝑑𝑜𝑚 124.31 (7.85) 126.19 (7.67) 5.00 (0.00)
10%_𝑟𝑎𝑛𝑑𝑜𝑚 251.07 (12.57) 249.93 (11.72) 910.00 (0.00)
𝐶𝑁𝑁_𝑆𝑉 𝑀 30.78 (7.43) 115.13 (18.26) 2.91 (0.49)

Table 24 – Comparison of the number of support vectors (SV) in the CEDAR dataset

Model #SV #Positive SV #Negative SV
𝑆𝑉 𝑀 676.37 (64.57) 390.30 (35.63) 286.07 (32.22)
1%_𝑆𝑉 𝑀 39.46 (2.97) 14.45 (2.03) 25.01 (2.98)
5%_𝑆𝑉 𝑀 117.60 (10.30) 40.63 (4.33) 76.97 (7.32)
10%_𝑆𝑉 𝑀 181.44 (13.98) 65.09 (5.68) 116.35 (10.16)
𝐶𝑁𝑁_𝑆𝑉 𝑀 119.75 (19.37) 30.66 (7.29) 89.09 (13.57)

Still in Table 22, for this dataset, the proposed approach obtained worse results when
compared to the model proposed by Hafemann et al. (HAFEMANN; SABOURIN; OLIVEIRA,
2017a) and better results in the comparison with the others WI classifiers. However, the
comparative results were obtained by a model using just one reference signature.

Given the above results for the tested datasets, the dichotomy transformation was thus
able to increase the number of samples in the offline WI-HSV scenario; however, many of
these samples are redundant. Using prototype selection in the dissimilarity space allowed
a reduction of the complexity of the classifier used without degrading its performance.
Furthermore, using a systematic PS, such as the CNN, allows more attention to be paid to
border samples. Consequently, prototype selection may thus be used without degrading
the performance of the WI classifier, while removing the need to store more instances
than are necessary for an accurate generalization.

Unlike with the CEDAR dataset, the models with and without preprocessing for the
other datasets obtained results comparable to those of the WD models for the 𝐸𝐸𝑅

metric, even operating in a writer-independent fashion.
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4.3.3 Using Transfer Learning and Prototype Selection

For the BRAZILIAN, MCYT and CEDAR datasets, in addition to investigating the
use of prototype selection, we also analyze if a WI-SVM trained in the GPDS-300 can
be used to verify signatures from other datasets, akin to a transfer learning (PAN; YANG,
2010). The associated results are presented in Table 25.

In our scenario, no adaptation is required in the classifier or in the features. We only
get the WI-SVM trained in the GPDS-300 and use it to verify signatures in the other
datasets (𝐺𝑃𝐷𝑆𝑚𝑎𝑥 results in Table 25). On the other hand, 𝑆𝑉 𝑀𝑚𝑎𝑥 results in this
table were obtained by training and testing the classifier on the same dataset. It should
be recalled that: (i) all datasets have the same number of features; (ii) the features used
for all datasets are based on the Convolutional Neural Network trained in the GPDS-
300, and (iii) the same normalization/standardization is used, and therefore, all data are
within the same interval.

Table 25 – Comparison of 𝐸𝐸𝑅 for the models with and without transfer learning on the
BRAZILIAN, MCYT and CEDAR datasets, using max function (errors in %)

Dataset Model #references 𝐸𝐸𝑅

𝑆𝑉 𝑀𝑚𝑎𝑥 30 1.47 (0.36)
BRAZILIAN 𝐶𝑁𝑁_𝑆𝑉 𝑀𝑚𝑎𝑥 30 1.26 (0.33)

𝐺𝑃 𝐷𝑆𝑚𝑎𝑥 30 1.35 (0.40)
𝐶𝑁𝑁_𝐺𝑃 𝐷𝑆𝑚𝑎𝑥 30 1.11 (0.37)

𝑆𝑉 𝑀𝑚𝑎𝑥 10 2.73 (0.20)
MCYT 𝐶𝑁𝑁_𝑆𝑉 𝑀𝑚𝑎𝑥 10 2.99 (0.16)

𝐺𝑃 𝐷𝑆𝑚𝑎𝑥 10 2.97 (0.20)
𝐶𝑁𝑁_𝐺𝑃 𝐷𝑆𝑚𝑎𝑥 10 2.89 (0.13)

𝑆𝑉 𝑀𝑚𝑎𝑥 12 5.78 (0.38)
CEDAR 𝐶𝑁𝑁_𝑆𝑉 𝑀𝑚𝑎𝑥 12 5.86 (0.50)

𝐺𝑃 𝐷𝑆𝑚𝑎𝑥 12 3.42 (0.28)
𝐶𝑁𝑁_𝐺𝑃 𝐷𝑆𝑚𝑎𝑥 12 3.32 (0.22)

In Table 25, for the BRAZILIAN and MCYT datasets, the WI-SVM trained in the
GPDS-300 obtained results comparable to the SVMs being trained and tested on their
own dataset, for the 𝐸𝐸𝑅 metric. More interesting results are presented for the CEDAR
dataset, since the WI-SVM was trained in another dataset, and still obtained better
results than the classifiers trained and tested on the same dataset. These results also
show that using the CNN for transfer learning (𝐶𝑁𝑁_𝐺𝑃𝐷𝑆𝑚𝑎𝑥) slightly improved the
results versus the case with transfer learning without PS (𝐺𝑃𝐷𝑆𝑚𝑎𝑥).

4.3.4 Instance hardness analysis

Herein, we analyze the results obtained by using the instance hardness measure.
Hafemann et al. (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) performed an analysis to

examine the local structure of the learned feature space (WD), using the t-SNE algorithm
in a subset of the development set of the GPDS-300 dataset, called the validation set for
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verification 𝑉𝑣. Figure 16 herein is the same as Fig. 5 (b) in their paper (HAFEMANN;

SABOURIN; OLIVEIRA, 2017a), and is going to be used here to describe our feature space
(as we are using the same features).

Fig. 16 – t-SNE 2D projections of the feature vectors from the 50 users in the validation
set for verification 𝑉𝑣. The blue points represent genuine signatures and the
orange ones represent skilled forgeries

As can be seen in Figure 16, (i) genuine signatures from different users are clustered
and occupy different regions of the feature space; (ii) for some writers, the model achieves
a good separation between skilled forgeries and genuine signatures, but this is not the
case for all writers, and (iii) some writers still have skilled forgeries which are close to
genuine signatures.

With regard to the dissimilarity space representation: (i) signatures that are close in
the feature space will be close to the origin in the dissimilarity space, and (ii) the further
away two signatures are in the feature space, the farther the vector resulting from the
dichotomy transformation will be from the origin (CHA; SRIHARI, 2000). Based on the
feature space shown in Figure 16, it is expected that the resulting dissimilarity space will
have the following characteristics:

• 𝐹1: Since genuine signatures from the writers form dense clusters in the feature
space, positive samples will be close to the origin, forming a dense cluster in the
dissimilarity space.

• 𝐹2: As random forgeries are genuine signatures from other writers and different
writers occupy different regions of the feature space, negative samples from random
forgeries will be far from the origin of the dissimilarity space.

• 𝐹3: For the writers with a larger separation between skilled forgeries and genuine
signatures, negative samples will be far from the origin in the dissimilarity space.

• 𝐹4: For the writers that have skilled forgeries close to the genuine signatures, negative
samples will be closer to the origin in the dissimilarity space (when compared to the
other negative samples), and may even be within the space occupied by the positive
samples.
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To show that this behavior is actually present, we analyze the instance hardness of
the samples in the dissimilarity space using the kDN metric (Eq. 3.2) in the validation set
for verification 𝑉𝑣. A methodology similar to the one applied to obtain the exploitation
dataset (section 4.1) is used here to obtain the dissimilarity space: (i) the reference set 𝑅

is composed of just 1 (one) randomly selected genuine signature from each writer of the
𝑉𝑣 set, and (ii) the questioned set 𝑄 is composed of 10 of the remaining genuine signatures
and 10 skilled forgeries from each writer, plus 10 random forgeries, each one selected from
a genuine signature of 10 different writers.

Figures 17, 18 and 19 present, for the GPDS-300 dataset, the histograms of the instance
hardness considering: (i) all the data, (ii) just positive samples and negative samples
from random forgeries, and (iii) just positive samples and negative samples from skilled
forgeries, respectively.

Fig. 17 – Instance hardness considering all selected data from the 𝑉𝑣 segmentation of
GPDS-300 dataset

As can be seen in Figure 17, for almost all the positive samples, 𝐼𝐻 < 0.3. So, in
the dissimilarity space, since we are considering the kDN with 𝐾 = 7, at least 5 of the 7
neighbors of the positive samples are from the positive class itself (𝐹1).

As shown in Figure 18, the following points can be seen when considering just the
positive samples and the negative samples from the random forgeries: (i) The IH of all the
positive samples are in the IH = 0.0 bin. Hence, for this scenario, all the neighbors of the
positive samples are from the positive class itself. For this to occur, the positive samples
should be concentrated in a dense region of the dissimilarity space, and no positive samples
can go to the negative side of the space. Additionally, no negative sample is within the
positive cluster (𝐹1). (ii) The IH of the negative samples are arranged along the histogram,
and so the negative samples (random) should be in a sparse region of the dissimilarity
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Fig. 18 – Instance hardness considering only the positive samples and negative samples
(random forgeries) from the 𝑉𝑣 segmentation of GPDS-300 dataset

Fig. 19 – Instance hardness considering only the positive samples and negative samples
(skilled forgeries) from the 𝑉𝑣 segmentation of GPDS-300 dataset

space, and some samples should be in a region closer to the dense positive region of the
space, since some samples have IH = 1.0 (𝐹2).

It is worth noting that the representation was able to actually separate positive samples
from negative (random) ones, as all the positive samples were in the IH = 0.0 bin, i.e.,
there was no class overlap.

As can be seen in Figure 19, all the positive samples with 𝐼𝐻 ̸= 0.0 from Figure 17
are derived from skilled forgeries. Thus, here, unlike in the negative samples (random)
scenario, there should be class overlapping in the dissimilarity space (𝐹4). This behavior
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is expected, since, in theory, the skilled forgeries are more similar to the genuine ones,
when compared to random forgeries.

The following aspects must also be highlighted: (i) as the positive samples are concen-
trated on the left side and the negative samples (skilled) are arranged along the histogram,
the negative samples should be more sparse than the positive ones in the dissimilarity
space (𝐹3), and (ii) as the negative samples have samples with higher IH, the overlap of
the classes should be in the positive region of the dissimilarity space (𝐹4).

If this same methodology is applied to the rest of the Development dataset (i.e., for
the other 531 writers), the data will have a similar IH behavior with a larger number of
samples. Making a uniform random selection to pick up the same number of samples as
in 𝑉𝑣 and performing the Kolmogorov-Smirnov test with a 5% level of significance, we
see that both scenarios are drawn from the same continuous distribution in all scenarios.
Therefore, the validation set for verification is representative of the Development set.

Generally speaking, positive samples are located in a dense cluster close to the origin
and the negative samples are scattered throughout the dissimilarity space. Moreover, the
clusters are disjointed, with a small overlap area, based on the concentration of the IH with
low values. Considering that hard to classify samples are in the border region, the use of
a condensation PS technique such as CNN has been shown to produce good experimental
results because it retains samples in the decision boundaries (GARCIA et al., 2012). This
IH analysis is also in line with the findings from the previous section regarding the use of
transfer learning.

4.3.5 Lessons learned

In this section, we evaluated the use of prototype selection in a WI-SVM approach
applied to the dissimilarity space resulting from dichotomy transformation.

The experimental results showed that, in the transfer learning scenario, with the fea-
tures used, a WI-SVM trained in the GPDS-300 can be employed to verify signatures in
the other datasets without any further transfer adaptation in the WI-HSV context and
still obtain similar results when compared to both WD and WI classifiers trained and
tested in their own datasets (research question 5).

Additionally, dichotomy transformation is able to increase the number of samples in
the offline WI-HSV scenario, but many of the samples are redundant. By using proto-
type selection, it is possible to discard redundant training samples and still achieve a
classification performance that is similar to or better than what is obtained by using all
the training samples. Even being a classic and simple technique, the Condensed Nearest
Neighbors (HART, 1968) applied systematically was able to select fewer prototypes and
still maintain high performance levels when compared to both the SVM trained with the
complete original training set and the random subsampling approach (research question
4).
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Analyses performed using the IH measure have shown that, in general, positive sam-
ples are located in a dense cluster close to the origin, and negative ones are scattered
throughout the dissimilarity space generated by the dichotomy transformation.

4.4 INSTANCE HARDNESS ANALYSES

The objectives of these experiments are: (i) analyse the accuracy as a function of the
IH in the GPDS-300 dataset and in transfer learning; (ii) characterize “good” and “bad”
quality skilled forgeries; (iii) extend the transfer learning analysis from Section 4.3, by
training and testing the models in all the considered datasets (not just the model trained
at GPDS).

In this section we answer the research questions 5 and 6 presented in Chapter 1.

4.4.1 Detailed experimental setup

The experiments in this section consider the training set after the Condensed Nearest
Neighbors (CNN) preprocessing (SOUZA et al., 2019b; SOUZA et al., 2019a). Also, we fixed
MAX as the fusion function and the highest number of references, since this results in
better performance.

For the instance hardness (IH) analysis, 𝐾 = 7 is used for the estimation of the kDN
(CRUZ et al., 2017).

4.4.2 Results and discussion

4.4.2.1 Comparison with the state of the art

In this section we present the results on the GPDS-300 exploitation set, comparing
the results with the state-of-the-art.

Table 26 contains both the comparison with the state of the art methods for the
GPDS-300 dataset and also the results obtained by the WI-SVMs (with and without the
CNN prototype selection).

In general, our WI approach obtains low 𝐸𝐸𝑅 that outperforms almost all other meth-
ods (eight of fourteen models), being comparable to (HAFEMANN; SABOURIN; OLIVEIRA,
2017a) and (HAFEMANN; OLIVEIRA; SABOURIN, 2018). It is overpassed only by the mod-
els reported in (HAFEMANN; OLIVEIRA; SABOURIN, 2018) (fine-tuned), (YILMAZ; OZTURK,
2018) and (ZOIS et al., 2019). Although these models presented the best results, they are
writer-dependent (WD); thus, our approach offers the advantage of being much more scal-
able, since only one classifier is used, while theirs requires 300. Compared to the other WI
models, our approach was able to outperform almost them all, except the model proposed
by (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019). It is worth noting that there is still room
for improvement in our approach, such as, using ensemble or feature selection, which are
approaches used in the paper by (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019).
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Table 26 – Comparison of 𝐸𝐸𝑅 with the state of the art in the GPDS-300 dataset (errors
in %)

Type HSV Approach #Ref #Models 𝐸𝐸𝑅

WD (HAFEMANN; SABOURIN; OLIVEIRA, 2016) 12 300 12.83
WD (SOLEIMANI; ARAABI; FOULADI, 2016) 10 300 20.94
WD (ZOIS; ALEWIJNSE; ECONOMOU, 2016) 5 300 5.48
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 5 300 3.92 (0.18)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 12 300 3.15 (0.18)
WD (SERDOUK; NEMMOUR; CHIBANI, 2017) 10 300 9.30
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) 12 300 3.15 (0.14)
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) (fine-tuned) 12 300 0.41 (0.05)
WD (YILMAZ; OZTURK, 2018) 12 300 0.88 (0.36)
WD (ZOIS et al., 2019) 12 300 0.70
WI (KUMAR; SHARMA; CHANDA, 2012) 1 1 13.76
WI (ESKANDER; SABOURIN; GRANGER, 2013) 1 1 17.82
WI (DUTTA; PAL; LLADOS, 2016) N/A 1 11.21
WI (HAMADENE; CHIBANI, 2016) 5 1 18.42
WI (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019) 5 1 3.06
WI 𝑆𝑉 𝑀𝑚𝑎𝑥 12 1 3.69 (0.18)
WI 𝐶𝑁𝑁_𝑆𝑉 𝑀𝑚𝑎𝑥 12 1 3.47 (0.15)

4.4.2.2 Extended instance hardness analysis

In this section, some error evaluations considering the instance hardness are presented.
For the skilled forgeries, some analysis considering the good and bad quality skilled forg-
eries were also carried out.

Unlike previous section (Section 4.3), where the instance hardness was computed con-
sidering the test set, in this section, the IH analyses are performed considering the neigh-
borhood in the training set itself. By fixing the neighborhood in the training set itself,
we can extrapolate the analysis to all the considered datasets (since for all of them, we
are using the same classifier trained in the GPDS-300 dataset). Thus, to compute the IH
value, each test sample is considered alone with the whole training set. Hence, in Equa-
tion 3.2, the query instance, 𝑥𝑞, is a test sample and the K nearest neighbors, 𝐾𝑁𝑁(𝑥𝑞),
belong to the training set.

We also extended the IH analyses to have a better understanding of the decision
boundary (class overlap region). To this end, we present the relationship of IH values and
the accuracy (%) of the model when the user threshold of EER is used as the decision
threshold.

Tables 27, 28 and 29 present the relationship of the IH and the accuracy (%) of the
model when the user threshold of EER is used as decision threshold, respectively for the
positive samples, negative samples from the random forgeries and negative samples from
the skilled forgeries (for the GPDS-300 dataset). In the tables, the first column lists the
IH values (𝐾 = 7) and the second column, the number of samples for the respective IH
value. The other columns represent the accuracy (%) when considering the CNN-SVM
and using, respectively, one (R1), five (R5𝑚𝑎𝑥), and twelve (R12𝑚𝑎𝑥) reference signatures.
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First of all, we analyse the number of samples per IH value (second column). As can
be seen in Table 27, positive samples presented a major concentration in the 𝐼𝐻 = 0.0
bin and almost all of them had 𝐼𝐻 <= 0.14, which shows that the positive samples form
a compact cluster.

On the other hand, the negative samples were distributed along the IH values (Tables
28 and 29); this indicates that they are more sparsely distributed in the dissimilarity space
than the positive samples. As the negative samples present higher IH values, including
𝐼𝐻 = 1.0, there may be an overlap of the classes, i.e., negative samples located inside the
positive region of the dissimilarity space (all the negative sample neighbors belong to the
positive class). These aspects are illustrated in the right part of Figure 4.

Moreover, the dashed line represents the limit where a kNN with 𝐾 = 7 classifier
performs the correct classification (that is, most of the neighborhood belong to the test
samples belong to the correct class). As can be seen, a kNN classifier would obtain good
results for the positive samples (due to the dense positive cluster), but it does not perform
very well for the negative samples. For the negative samples, the high dimensionality, the
data sparsity, the class overlap, and the presence of negative samples in the positive
region of the dissimilarity space indicate the need for a strong discriminant classifier that
can model complex distributions. That is why a kNN classifier fails on the classification.
However, the CNN-SVM with RBF kernel can deal with it and obtains better results even
operating with one reference (R1 columns).

Table 27 – Relationship between IH and accuracy (%) for the positive samples, for the
GPDS-300 dataset

IH #Samples R1 R5𝑚𝑎𝑥 R12𝑚𝑎𝑥

0.00 2330 95.02 96.26 97.03
0.14 591 90.18 94.07 94.75
0.28 69 71.01 84.05 88.40
0.42 6 66.66 83.33 100.00
0.57 3 0.00 33.33 66.66
0.71 1 100.00 100.00 100.00
0.85 0 - - -
1.00 0 - - -

Table 28 – Relationship between IH and accuracy (%) for the negative samples from
the random forgeries, for the GPDS-300 dataset

IH #Samples R1 R5𝑚𝑎𝑥 R12𝑚𝑎𝑥

0.00 498 100.00 100.00 100.00
0.14 488 100.00 100.00 100.00
0.28 461 100.00 100.00 100.00
0.42 415 100.00 100.00 100.00
0.57 418 100.00 100.00 100.00
0.71 323 99.38 99.69 99.69
0.85 276 99.27 100.00 100.00
1.00 121 99.17 100.00 100.00
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Table 29 – Relationship between IH and accuracy (%) for the negative samples from
the skilled forgeries, for the GPDS-300 dataset

IH #Samples R1 R5𝑚𝑎𝑥 R12𝑚𝑎𝑥

0.00 420 100.00 100.00 100.00
0.14 284 100.00 100.00 100.00
0.28 219 100.00 100.00 100.00
0.42 208 100.00 100.00 99.51
0.57 239 99.58 97.90 99.16
0.71 348 95.86 97.70 97.98
0.85 562 90.92 93.41 94.30
1.00 720 81.52 88.05 90.69

The overlap in the positive region of the DS and the necessity of a more complex
decision boundary can also be observed in the first row of Table 27 and the last row of Table
29 (as highlighted). From Table 27, first line, notice that all neighborhood instances from
the positive samples belong to the positive class itself (𝐼𝐻 = 0.0). Even so, the classifier
did not achieve a perfect classification. In the same way, from Table 29, the classifier
can correctly classify most of the negative (skilled) samples presenting the neighborhood
formed by the positive class (𝐼𝐻 = 1.0).

Fig. 20 – Synthetic decision frontiers: in (a) the scenario where the seven neighbors belong
to the positive class and the model was able to correctly classify the sample from
the negative class (𝐼𝐻 = 1.0) but wrongly classified the positive test sample. In
(b) the opposite scenario.
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Figure 20 depicts this behavior in a synthetic representation. Considering the presented
WI-classifier decision frontier, (a) ilustrattes the cases where the seven neighbors belong
to the positive class the model was able to correctly classify the sample from the negative
class (𝐼𝐻 = 1.0) but wrongly classified the positive test sample (𝐼𝐻 = 0.0). Figure 20 (b)
illustrates the opposite scenario. In Appendix A, more analyses on this topic are carried
out.

Specifically for the negative (skilled) forgeries, if we consider this same kNN limit to
characterize the “bad quality skilled forgeries” (𝐼𝐻 <= 0.5) and the “good quality skilled
forgeries” (𝐼𝐻 > 0.5), we can see that the CNN-SVM has an almost perfect performance
for the bad quality skilled forgeries, independently of the number of references used (see
the first four lines of Table 29). However, the higher the number of references used, the
better the verification for the good quality skilled forgeries (the last four lines of Table
29).

From Table 28, the negative (random) samples are arranged along the IH values. This
indicates that these samples are located in a sparse region of the dissimilarity space and
some samples are closer to the region of the compact positive cluster in the space, because
of the 𝐼𝐻 = 1.0 samples. However, the positive and the negative (random) sets may be
disjoint, as the classifier presents an almost perfect verification performance. These aspects
can also be seen in the right part of Figure 4.

4.4.2.3 Extended transfer learning analysis

In Section 4.3, we experimentally showed that a WI-SVM trained in the GPDS-300
can be employed to verify signatures in the other datasets without any further transfer
adaptation in the WI-HSV context and still obtain similar results when compared to both
WD and WI classifiers trained and tested in their own datasets.

In addition of using the CNN-SVM trained in the GPDS-300 dataset (referred to as
CNN-SVM𝑔𝑝𝑑𝑠 in this section), we also extend the transfer learning analysis by train-
ing WI-SVM models in BRAZILIAN (CNN-SVM𝑏𝑟𝑎𝑧𝑖𝑙𝑖𝑎𝑛), CEDAR (CNN-SVM𝑐𝑒𝑑𝑎𝑟) and
MCYT (CNN-SVM𝑚𝑐𝑦𝑡) datasets and testing them in the other datasets. Table 30 presents
the comparison of these models.

As can be seen in Table 30, for the proposed approach, transfer learning models were
able to outperform the models trained and tested in the own datasets for the CEDAR
dataset and obtained similar results for the MCYT and GPDS-300 datasets. This shows
that the proposed approach can actually be used in a transfer learning context, reinforcing
the scalability and adaptability of the WI systems.

In the paper by (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019), the authors also used a
transfer learning methodology. In this scenario, our approach obtains comparable results,
being better in the MCYT dataset and worse when CEDAR and GPDS-300 datasets are
considered.
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Table 30 – Comparison of 𝐸𝐸𝑅 for both scenarios where models are trained and tested
in their own datasets and transfer learning, for the considered datasets (errors
in %). CNN-SVM𝑏𝑟𝑎𝑧𝑖𝑙𝑖𝑎𝑛, CNN-SVM𝑐𝑒𝑑𝑎𝑟, CNN-SVM𝑚𝑐𝑦𝑡 and CNN-SVM𝑔𝑝𝑑𝑠

are respectively the models trained in the BRAZILIAN, CEDAR, MCYT
and GPDS-300 datasets. The models from (ZOIS; ALEXANDRIDIS; ECONOMOU,
2019) follow the same terminology, so, 𝑃2𝐴𝐷−𝑐𝑒𝑑𝑎𝑟, 𝑃2𝐴𝐷−𝑚𝑐𝑦𝑡, 𝑃2𝐴𝐷−𝑔𝑝𝑑𝑠 are re-
spectively the models trained in the CEDAR, MCYT and GPDS-300 datasets.

Model #Ref 𝐸𝐸𝑅𝐵𝑅𝐴𝑍𝐼𝐿𝐼𝐴𝑁 𝐸𝐸𝑅𝐶𝐸𝐷𝐴𝑅 𝐸𝐸𝑅𝑀𝐶𝑌 𝑇 𝐸𝐸𝑅𝐺𝑃 𝐷𝑆−300

𝑃2𝐴𝐷−𝑐𝑒𝑑𝑎𝑟 5 - 3.1 3.7 3.3
𝑃2𝐴𝐷−𝑚𝑐𝑦𝑡 5 - 2.9 4.6 2.9
𝑃2𝐴𝐷−𝑔𝑝𝑑𝑠 5 - 2.8 3.4 3.7

CNN-SVM𝑏𝑟𝑎𝑧𝑖𝑙𝑖𝑎𝑛 30 1.26 (0.33) 3.12 (0.41) 6.57 (0.33) 7.35 (0.34)
CNN-SVM𝑐𝑒𝑑𝑎𝑟 12 0.72 (0.14) 5.86 (0.50) 4.22 (0.77) 5.42 (0.26)
CNN-SVM𝑚𝑐𝑦𝑡 12 1.16 (0.29) 4.21 (0.37) 2.99 (0.16) 3.57 (0.10)
CNN-SVM𝑔𝑝𝑑𝑠 10 1.11 (0.37) 3.32 (0.22) 2.89 (0.13) 3.47 (0.15)

Tables 31, 32 and 33 show some state-of-the-art results as well as the results obtained
by the CNN-SVM𝑔𝑝𝑑𝑠 model (respectively, BRAZILIAN, CEDAR and MCYT as testing
datasets), since the IH analysis will be performed through it (the motivation of using this
model was presented in section 4.1).

Table 31 – Comparison of 𝐸𝐸𝑅 with the state of the art in the BRAZILIAN dataset
(errors in %)

Type HSV Approach #Ref #Models 𝐸𝐸𝑅

WD (HAFEMANN; SABOURIN; OLIVEIRA, 2016) 15 60 4.17
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 5 60 2.92 (0.44)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 15 60 2.07 (0.63)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 30 60 2.01 (0.43)
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) 15 60 1.33 (0.65)
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) (finetuned) 15 60 1.35 (0.60)
WI CNN-SVM𝑔𝑝𝑑𝑠 30 1 1.11 (0.37)

From Tables 31, 32 and 33, even operating in a transfer learning scenario our approach
was able to obtain low verification errors that are at least comparable to the models
derived from other state-of-the-art methods. For the BRAZILIAN dataset, our approach
was able to outperform the state of the art methods. When compared to the WD models,
our approach outperforms seven out of fourteen methods in CEDAR and is overpassed
by only one of sixteen models in MCYT dataset. Still, our approach has the advantage
of being scalable and using only one classifier to perform the verification. For the WI
scenario, in the CEDAR dataset our approach presents better results than six of the nine
models. When considering the MCYT dataset, our approach outperformed the results by
(ZOIS; ALEXANDRIDIS; ECONOMOU, 2019).

It is worth noting that when our WI-classifier is used in the transfer learning scenario,
it never had access to data from other datasets different from the one in which it was
trained. Thus, combining DT and the used features representation allowed the model
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Table 32 – Comparison of 𝐸𝐸𝑅 with the state of the art in the CEDAR dataset (errors
in %)

Type HSV Approach #Ref #Models 𝐸𝐸𝑅

WD (BHARATHI; SHEKAR, 2013) 12 55 7.84
WD (GANAPATHI; NADARAJAN, 2013) 14 55 6.01
WD (SHEKAR; BHARATHI; PILAR, 2013) 16 55 9.58
WD (OKAWA, 2016) 16 55 1.60
WD (NEW. . . , 2016) 16 55 3.52
WD (ZOIS; ALEWIJNSE; ECONOMOU, 2016) 5 55 4.12
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 12 55 4.76 (0.36)
WD (ZOIS; THEODORAKOPOULOS; ECONOMOU, 2017) 5 55 2.07
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) 10 55 3.60 (1.26)
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) (fine-tuned) 10 55 2.33 (0.88)
WD (OKAWA, 2018) 16 55 1.00
WD (TSOUROUNIS et al., 2018) 5 55 2.82
WD (ZOIS et al., 2018) 5 55 2.30
WD (ZOIS et al., 2019) 10 55 0.79
WI (KALERA; SRIHARI; XU, 2004) 16 1 21.9
WI (CHEN; SRIHARI, 2006) 16 1 7.90
WI (KUMAR et al., 2010) 1 1 11.81
WI (KUMAR; SHARMA; CHANDA, 2012) 1 1 8.33
WI (KUMAR; PUHAN, 2014) 16 1 6.02
WI (GUERBAI; CHIBANI; HADJADJI, 2015) 12 1 5.60
WI (DUTTA; PAL; LLADOS, 2016) N/A 1 0.00
WI (HAMADENE; CHIBANI, 2016) 5 1 2.11
WI (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019) 5 1 2.90
WI CNN-SVM𝑔𝑝𝑑𝑠 12 1 3.32 (0.22)

Table 33 – Comparison of 𝐸𝐸𝑅 with the state of the art in the MCYT dataset (errors in
%)

Type HSV Approach #Ref #Models 𝐸𝐸𝑅

WD (FIERREZ-AGUILAR et al., 2004) 10 75 9.28
WD (ALONSO-FERNANDEZ et al., 2007) 5 75 22.4
WD (GILPEREZ et al., 2008) 10 75 6.44
WD (WEN et al., 2009) 5 75 15.02
WD (VARGAS et al., 2011) 10 75 7.08
WD (OOI et al., 2016) 10 75 9.87
WD (SOLEIMANI; ARAABI; FOULADI, 2016) 10 75 9.86
WD (ZOIS; ALEWIJNSE; ECONOMOU, 2016) 5 75 6.02
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 10 75 2.87 (0.42)
WD (SERDOUK; NEMMOUR; CHIBANI, 2017) 10 75 18.15
WD (ZOIS; THEODORAKOPOULOS; ECONOMOU, 2017) 5 75 3.97
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) 10 75 3.64 (1.04)
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) (fine-tuned) 10 75 3.40 (1.08)
WD (OKAWA, 2018) 10 75 6.40
WD (ZOIS et al., 2018) 5 75 3.52
WD (ZOIS et al., 2019) 10 75 1.37
WI (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019) 5 1 3.50
WI CNN-SVM𝑔𝑝𝑑𝑠 10 1 2.89 (0.13)

to remove the bias from signature acquisition protocols of the different datasets (e.g.,
scanner, writing space, type of writing tool).
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4.4.2.4 IH analysis in transfer learning

Tables 34, 35 and 36 present the relationship of IH and the accuracy (%) of the model
when the user threshold of EER is used as decision threshold, respectively for the positive
samples, negative samples from the random forgeries and negative samples from the skilled
forgeries, for the MCYT dataset. In these tables, the first column represents the possible
IH values (𝐾 = 7) and the second column shows the number of samples for the respective
IH value. The other columns present the accuracy (%) when using one (R1), five (R5𝑚𝑎𝑥)
and ten (R10𝑚𝑎𝑥) references to perform the verification.

Table 34 – Relationship between IH and accuracy (%) for the positive samples, for the
MCYT dataset

IH #Samples R1 R5𝑚𝑎𝑥 R10𝑚𝑎𝑥

0.00 357 94.95 97.19 97.75
0.14 16 62.50 100.00 100.00
0.28 1 0.00 100.00 100.00
0.42 0 - - -
0.57 0 - - -
0.71 1 0.00 100.00 100.00
0.85 0 - - -
1.00 0 - - -

Table 35 – Relationship between IH and accuracy (%) for the negative samples from
the random forgeries, for the MCYT dataset

IH #Samples R1 R5𝑚𝑎𝑥 R10𝑚𝑎𝑥

0.00 9 100.00 100.00 100.00
0.14 51 100.00 100.00 100.00
0.28 63 100.00 100.00 100.00
0.42 94 100.00 100.00 100.00
0.57 109 100.00 100.00 100.00
0.71 123 100.00 100.00 100.00
0.85 160 99.37 100.00 100.00
1.00 141 100.00 100.00 100.00

Table 36 – Relationship between IH and accuracy (%) for the negative samples from
the skilled forgeries, for the MCYT dataset

IH #Samples R1 R5𝑚𝑎𝑥 R10𝑚𝑎𝑥

0.00 0 - - -
0.14 2 100.00 100.00 100.00
0.28 9 100.00 100.00 100.00
0.42 22 100.00 100.00 100.00
0.57 34 97.05 100.00 100.00
0.71 101 99.00 99.00 99.00
0.85 255 96.47 98.43 98.43
1.00 702 88.31 95.86 96.29

As discussed before, we can consider that the dissimilarity space from different datasets
as samples that belong to the same domain (signature representations in DS). Even the
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data here presenting different concentration of samples per IH value, the used CNN-
SVM presented similar behavior in the error analysis, when compared to the GDPS-
300 scenario. From the first row of Table 34, the classifier did not achieve a perfect
classification, even the positive samples presenting all their neighbor from the positive
class (𝐼𝐻 = 0.0). From the last row of Table 36, the classifier was able to correctly classify
most of the negative (skilled), even the samples presenting the neighborhood formed by
the positive class (𝐼𝐻 = 1.0). Thus, this confirms the overlap in the positive region of the
DS and the need for a more complex decision boundary.

From Table 35, the negative (random) samples are arranged along the IH values. This
indicates the sparsity of these data in the dissimilarity space and that some samples are
located closer to the compact positive region of the space, because of the samples with
𝐼𝐻 = 1.0. However, there is no overlap in the positive region, as the model achieved a
perfect verification performance.

As can be seen in Appendix B and C, the WI approach also presented similar behavior,
respectively, for the BRAZILIAN and CEDAR datasets. Thus, in all the scenarios, positive
samples form a dense cluster (almost all positive samples have 𝐼𝐻 ≤ 0.14), and the
negative samples are scattered throughout space. The negative (random) samples may
be disjoint to the positive set. The negative samples formed by the “good quality skilled
forgeries” overlap the positive region of the DS, resulting in the need for a classifier with
complex decision boundary.

4.4.3 Lessons learned

The experimental evaluations carried out in this section, were based on both the EER
and IH metric, which allowed us to understand the difficulty of the HSV problem at the
instance level.

Here we extended the transfer learning analysis from Section 4.3, using models trained
and tested in all databases considered. The results obtained consolidate those found pre-
viously. This reaffirms the ability to use the proposed approach in a context of transfer
learrning. Therefore, a single model already trained can be used to verify the signatures
of new incoming writers without any further transfer adaptation (research question 5).

The reported IH analysis showed that the samples belonging to the positive class form
a compact cluster located close to the origin and the negative samples are sparsely dis-
tributed in the dissimilarity space generated by the dichotomy transformation. In addition,
based on the IH analysis, the overlap between positive and negative (skilled) samples is
still present, so feature selection could be applied in the dissimilarity space in the attempt
to separate these sets of samples.

Furthermore, we were able to characterize the “good” and “bad” quality skilled forg-
eries using the IH analysis and also the frontier between the hard to classify samples,
which are genuine signatures and “good” skilled forgeries close to the frontier (research
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question 6). And so, having a good feature representation of the signatures, like the one
used in this study (characterized by different writers clustered in separate regions of the
feature space) is very important for DT. The greater the separation between writers in
the feature space, the smaller the overlap between the positive and negative classes in the
dissimilarity space.

4.5 FEATURE SELECTION

These experiments aim to investigate both the use of feature selection through BPSO
and the effectiveness of the overfitting control strategy. Thus, the experiments are con-
ducted for four different situations: (i) the model without feature selection (i.e., the 2048
features are used); (ii) the model with feature selection using just the optimization and no
validation stage; (iii) the model with feature selection using the validation stage, where
candidate solutions are validated at the last iteration using the Selection set; (iv) the
model with feature selection using the external archive, where candidate solutions are
validated at all iterations using the Selection set (global validation).

The same analysis is also carried out to check whether the space generated by the
feature selection can be used in a transfer learning context.

In this section we answer the research question 7 and 8 presented in Chapter 1.

4.5.1 Specifics in the dataset for this section

In the experiments the whole set of steps are carried out using GPDS-300 dataset,
specifically in the GPDS-300 stratification (HAFEMANN; SABOURIN; OLIVEIRA, 2017b).
MCYT and CEDAR datasets are considered only for test purpose on the transfer learning
scenario. Figure 21 depicts the segmentation of the writers on the GPDS-300 dataset.

Fig. 21 – GPDS-300 dataset segmentation
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As can be seen in Figure 21, (i) the Exploitation set, where the tested set is acquired,
is composed of writers 1 to 300. (ii) The Development set is formed by the other 581
writers, from these: 146 writers are randomly selected to compose the train set (𝑡𝑟𝑎𝑖𝑛),
another 145 for the validation set (𝑉 𝑎𝑙), another 145 for the optimization set (𝑂𝑝𝑡) and
the remaining 145 for the selection set (𝑆𝑒𝑙).

As in Section 4.4, we use the highest value for the number of references, i.e., 12
references per writer, and the Max function as the partial decisions. In the training step
(training and validation sets), the model uses genuine signatures and random forgeries.
For each writer, 10 genuine signatures and 10 random forgeries are used as questioned
signatures to obtain respectively the positive samples and the negative samples. In its
turn, during optimization (optimization and selection sets), the proposed approach needs
genuine signatures and skilled forgeries. As mentioned, the fitness function minimizes the
𝐸𝐸𝑅 with user threshold considering only genuine signatures and skilled forgeries. In
this case, for each writer, 10 genuine signatures and 10 skilled forgeries are used. These
operations are performed in the space with reduced samples, i.e., after prototype selection
through Condensed Nearest Neighbors (CNN).

4.5.2 Detailed experimental setup

The experiments in this section consider the training set after the Condensed Nearest
Neighbors (CNN) preprocessing.

The IDPSO parameters are set to their default values, as presented by Zhang et
al. (ZHANG; XIONG; ZHANG, 2013). The population size is equal to 20, the acceleration
constants are set to 𝑐1 = 𝑐2 = 2.0; 𝑤𝑖𝑛𝑖𝑐𝑖𝑎𝑙 = 0.9 , 𝑤𝑓𝑖𝑛𝑎𝑙 = 0.4 and 𝜇 = 100. The maximum
number of iterations was set to 40. In Figure 22 column (a), we can see that 40 iterations
were enough for the swarm to converge.

4.5.3 Results and discussions

Table 37 presents the results obtained by the following models: (i) without feature se-
lection; (ii) with feature selection using just the optimization and no validation stage; (iii)
with feature selection using the validation stage, where candidate solutions are validated
at the last iteration using the Selection set; (iv) with feature selection using the external
archive, where candidate solutions are validated at all iterations using the Selection set
(global validation).

As can be seen, when the BPSO feature selection is used without validation the over-
fitting actually happened, and the lack of generalization power resulted in a worse 𝐸𝐸𝑅

when compared to the scenario without feature selection, 3.76 against 3.47.
In terms of validation strategy, results indicate that not using a validation stage is

worse than using validation at the last iteration, which in turn is worse than using the
global validation strategy. Thus, by using the global validation strategy it is possible to
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Table 37 – Comparison of 𝐸𝐸𝑅 considering the presented models, in the GPDS-300
dataset (errors in %)

Approach #features 𝐸𝐸𝑅

No feature selection 2048 3.47 (0.15)
Feature selection and no validation 1124 3.76 (0.07)

Feature selection and last iteration validation 1120 3.64 (0.08)
Feature selection and global validation (external archive) 1140 3.46 (0.08)

control the overfitting of the model and, thereby, improve the performance of the BPSO-
based feature selection approach.

Another aspect that can be observed is the presence of redundant features in the
dissimilarity space generated by the dichotomy transformation. To this end, notice that
the model with feature selection and external archive uses only almost 55% of the total
number of features and still manages to obtain similar 𝐸𝐸𝑅 when compared to the model
trained with all the 2048 features.

Table 38 contains the comparison of the presented models with the state of the art
methods for the GPDS-300 dataset. “(SOUZA et al., 2020) - Section 4.4” represents the
WI-SVM trained in the original feature space, and, 𝑆𝑉 𝑀𝑔𝑙𝑜𝑏𝑎𝑙−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛, the model with
feature selection and global validation.

Table 38 – Comparison of 𝐸𝐸𝑅 with the state of the art, in the GPDS-300 dataset (errors
in %)

Type HSV Approach #Ref #Models 𝐸𝐸𝑅

WD (HAFEMANN; SABOURIN; OLIVEIRA, 2016) 12 300 12.83
WD (SOLEIMANI; ARAABI; FOULADI, 2016) 10 300 20.94
WD (ZOIS; ALEWIJNSE; ECONOMOU, 2016) 5 300 5.48
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 5 300 3.92 (0.18)
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 12 300 3.15 (0.18)
WD (SERDOUK; NEMMOUR; CHIBANI, 2017) 10 300 9.30
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) 12 300 3.15 (0.14)
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) (fine-tuned) 12 300 0.41 (0.05)
WD (YILMAZ; OZTURK, 2018) 12 300 0.88 (0.36)
WD (ZOIS et al., 2019) 12 300 0.70
WI (KUMAR; SHARMA; CHANDA, 2012) 1 1 13.76
WI (ESKANDER; SABOURIN; GRANGER, 2013) 1 1 17.82
WI (DUTTA; PAL; LLADOS, 2016) N/A 1 11.21
WI (HAMADENE; CHIBANI, 2016) 5 1 18.42
WI (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019) 5 1 3.06
WI (SOUZA et al., 2020) - Section 4.4 12 1 3.47 (0.15)
WI CNN-SVM𝑔𝑙𝑜𝑏𝑎𝑙−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 12 1 3.46 (0.08)

In general, our CNN-SVM𝑔𝑙𝑜𝑏𝑎𝑙−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 approach obtains low 𝐸𝐸𝑅. In the WI sce-
nario, it was able to outperform almost all the other methods. However, it presents similar
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Fig. 22 – At first column (a) swarm behavior on the optimization set; in the second column
(b) the swarm behavior when projected on the selection set; and in the third
column (c) the swarm behavior in the external archive.

results to (SOUZA et al., 2020) and is worse when compared to the model proposed by (ZOIS;

ALEXANDRIDIS; ECONOMOU, 2019).
In the comparison with WD models, was outperformed only by Hafemann et al. (HAFE-

MANN; OLIVEIRA; SABOURIN, 2018) (fine-tuned), Yilmaz and Ozturk (YILMAZ; OZTURK,
2018) and Zois et al. (ZOIS et al., 2019), being better or comparable than the other method
of Table 38. It is important to point out that, as a WI model, our approach has greater
scalability than these other models, since only one classifier is needed to perform signature
verification.

4.5.4 Overfitting analysis

Figure 22 depicts the convergence of the swarm (iterations 1, 10 and 40 are presented).
Gray dots represent the whole set of candidate solutions, considering all iterations. Red
dots represent the particles in the respective iteration. Blue diamond represents the in-
formation of the best solution (gBest) from the optimization set. The green diamond
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represents the information of the best solution found in the selection set.
We initialize the particles randomly in the intervals between [500, 1000] and [1500,

2048] dimensions. The objective was to extend the search space as much as possible.
However, the particles soon converge into the space containing around half the maximum
number of features (i.e., 1024).

The first column details algorithm convergence during the optimization process, con-
sidering the own optimization set. In the second column, the same solutions are projected
on the validation objective function space, i.e., on the selection set (corresponding to the
validation at the last iteration strategy). Finally, the third column simulates the con-
vergence in the external archive obtained by validating all the candidate solutions on a
selection set at each generation 𝑡 (which corresponds to the global validation strategy).

As can be seen in the second column of Figure 22, considering the iteration 40, the
overfitting actually happened when solutions are validated only at the last iteration. We
can get an estimated overfitting of about 0.3 of 𝐸𝐸𝑅, when compared to the lowest
error rate in the external archive. The second column also indicates that some candidate
solutions that perform well in the selection set are discarded by the algorithm. This
observation also confirms the needing of a validation stage at each iteration 𝑡.

As depicted in the third column of Figure 22, considering iteration 40, we can also
see the overfitting happening when solutions do not use any validation stage. The best
candidate solution from the optimization set is almost 0.4 overfitted when compared to
the lowest error rate in the external archive.

4.5.5 Transfer learning analysis

In Section 4.3, we experimentally showed that a WI-SVM trained in the GPDS-300
can be employed to verify signatures in the other datasets without any further transfer
adaptation. Herein, we investigate whether the space generated by the feature selection
approach can also be used in a transfer learning context.

Table 39 shows the results obtained when the models from Table 37, trained in the
GPDS-300 dataset, are used to perform the verification in the CEDAR and MCYT
databases.

Table 39 – Comparison of 𝐸𝐸𝑅 considering the presented models, in a transfer learning
conxtext in the CEDAR and MCYT datasets (errors in %)

Approach #features 𝐸𝐸𝑅𝐶𝐸𝐷𝐴𝑅 𝐸𝐸𝑅𝑀𝐶𝑌 𝑇

No feature selection 2048 3.32 (0.22) 2.89 (0.13)
Feature selection and no validation 1124 4.00 (0.17) 2.69 (0.13)

Feature selection and last iteration validation 1120 3.98 (0.25) 2.56 (0.05)
Feature selection and global validation (external archive) 1140 3.27 (0.22) 2.48 (0.23)

As can be seen, in terms of validation strategy, results indicate that not using a
validation stage is worse than using validation at the last iteration, which in turn is worse
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than using the global validation strategy (external archive). Thus, by using the global
validation strategy it is possible to control the overfitting of the model and, thereby,
improve the performance of the BPSO-based feature selection approach. This, behavior
similar to that found in the GPDS-300 database (Table 37).

In the CEDAR dataset, the model with all the features obtained the better results,
except the model with global validation strategy. In its turn, for the MCYT dataset, all
models with feature selection obtained better results when compared to the one using the
whole set of features, the model with global validation being the best. Recall that these
models with feature selection use only almost 55% of the total number of features.

Table 40 – Comparison of 𝐸𝐸𝑅 with the state of the art in the CEDAR dataset (errors
in %)

Type HSV Approach #Ref #Models 𝐸𝐸𝑅

WD (BHARATHI; SHEKAR, 2013) 12 55 7.84
WD (GANAPATHI; NADARAJAN, 2013) 14 55 6.01
WD (SHEKAR; BHARATHI; PILAR, 2013) 16 55 9.58
WD (OKAWA, 2016) 16 55 1.60
WD (NEW. . . , 2016) 16 55 3.52
WD (ZOIS; ALEWIJNSE; ECONOMOU, 2016) 5 55 4.12
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 12 55 4.76 (0.36)
WD (ZOIS; THEODORAKOPOULOS; ECONOMOU, 2017) 5 55 2.07
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) 10 55 3.60 (1.26)
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) (fine-tuned) 10 55 2.33 (0.88)
WD (OKAWA, 2018) 16 55 1.00
WD (TSOUROUNIS et al., 2018) 5 55 2.82
WD (ZOIS et al., 2018) 5 55 2.30
WD (ZOIS et al., 2019) 10 55 0.79
WI (KALERA; SRIHARI; XU, 2004) 16 1 21.9
WI (CHEN; SRIHARI, 2006) 16 1 7.90
WI (KUMAR et al., 2010) 1 1 11.81
WI (KUMAR; SHARMA; CHANDA, 2012) 1 1 8.33
WI (KUMAR; PUHAN, 2014) 16 1 6.02
WI (GUERBAI; CHIBANI; HADJADJI, 2015) 12 1 5.60
WI (DUTTA; PAL; LLADOS, 2016) N/A 1 0.00
WI (HAMADENE; CHIBANI, 2016) 5 1 2.11
WI (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019) 5 1 2.90
WI (SOUZA et al., 2020) - Section 4.4 12 1 3.32 (0.22)
WI CNN-SVM𝑔𝑙𝑜𝑏𝑎𝑙−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 12 1 3.27 (0.22)

From Tables 40 and 41, even operating in a transfer learning scenario the CNN-
SVM𝑔𝑙𝑜𝑏𝑎𝑙−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 model was able to obtain low verification errors, comparable to the
other state of the art models. In the WD scenario, CNN-SVM𝑔𝑙𝑜𝑏𝑎𝑙−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 outperforms
half of the listed methods in CEDAR and is overpassed by only one method in MCYT
dataset. Still, our approach has the advantage of being adaptable (since it is being used
in a transfer learning context) and using only one classifier to perform the verification.
For the WI comparison, in the CEDAR dataset our approach presents better results than
seven of the ten models. When considering the MCYT dataset, our approach outperformed
the results by both (SOUZA et al., 2020) and (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019).
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Table 41 – Comparison of 𝐸𝐸𝑅 with the state of the art in the MCYT dataset (errors in
%)

Type HSV Approach #Ref #Models 𝐸𝐸𝑅

WD (FIERREZ-AGUILAR et al., 2004) 10 75 9.28
WD (ALONSO-FERNANDEZ et al., 2007) 5 75 22.4
WD (GILPEREZ et al., 2008) 10 75 6.44
WD (WEN et al., 2009) 5 75 15.02
WD (VARGAS et al., 2011) 10 75 7.08
WD (OOI et al., 2016) 10 75 9.87
WD (SOLEIMANI; ARAABI; FOULADI, 2016) 10 75 9.86
WD (ZOIS; ALEWIJNSE; ECONOMOU, 2016) 5 75 6.02
WD (HAFEMANN; SABOURIN; OLIVEIRA, 2017a) 10 75 2.87 (0.42)
WD (SERDOUK; NEMMOUR; CHIBANI, 2017) 10 75 18.15
WD (ZOIS; THEODORAKOPOULOS; ECONOMOU, 2017) 5 75 3.97
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) 10 75 3.64 (1.04)
WD (HAFEMANN; OLIVEIRA; SABOURIN, 2018) (fine-tuned) 10 75 3.40 (1.08)
WD (OKAWA, 2018) 10 75 6.40
WD (ZOIS et al., 2018) 5 75 3.52
WD (ZOIS et al., 2019) 10 75 1.37
WI (ZOIS; ALEXANDRIDIS; ECONOMOU, 2019) 5 1 3.50
WI (SOUZA et al., 2020) - Section 4.4 10 1 2.89 (0.13)
WI CNN-SVM𝑔𝑙𝑜𝑏𝑎𝑙−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 10 1 2.48 (0.23)

4.5.6 Instance hardness analysis

In this section, a comparative study based on the IH metric is performed to better
understand the data difficulty in the optimized dissimilarity space (resulted from the
model with feature selection and external archive, i.e., 1140 features) and the original
dissimilarity space (no feature selection, i.e., 2048 features).

A methodology similar to that used in the previous section (Section 4.4) was used.
Thus, to compute the IH value, each test sample is considered alone with the whole
training set. Hence, in Equation 3.2, the query instance, 𝑥𝑞, is a test sample and the K
nearest neighbors, 𝐾𝑁𝑁(𝑥𝑞), belong to the training set.

Tables 42, 43 and 44 present the relationship of the IH and the accuracy (%) of the
model when the user threshold of EER is used as decision threshold, respectively for the
positive samples, negative samples from the random forgeries and negative samples from
the skilled forgeries (for the GPDS-300 dataset). In the tables, the first column lists the IH
values (𝐾 = 7), the second and third columns contain respectively the number of samples
and the accuracy (%) when considering the model using twelve reference signatures, for
each IH value in the original space. The fourth and fifth columns, the same information
in the optimized space.

Tables 45, 46 and 47 present the relationship of IH and the accuracy (%) of the model
when the user threshold of 𝐸𝐸𝑅 is used as decision threshold, respectively for the positive
samples, negative samples from the random forgeries and negative samples from the skilled
forgeries, for the MCYT dataset. They follow the same structure as the previous tables.
These evaluations consider the CNN-SVM trained using the training set of GPDS-300
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Table 42 – Relationship between IH and accuracy (%) for the positive samples, for the
GPDS-300 dataset

Original Space Optimized Space
IH #Samples R12𝑚𝑎𝑥 #Samples R12𝑚𝑎𝑥

0.00 2330 97.03 2387 96.19
0.14 591 94.75 443 93.45
0.28 69 88.40 117 87.18
0.42 6 100.00 37 97.30
0.57 3 66.66 10 100.00
0.71 1 100.00 4 75.00
0.85 0 - 2 100.00
1.00 0 - 0 -

Table 43 – Relationship between IH and accuracy (%) for the negative samples from
the random forgeries, for the GPDS-300 dataset

Original Space Optimized Space
IH #Samples R12𝑚𝑎𝑥 #Samples R12𝑚𝑎𝑥

0.00 498 100.00 436 100.00
0.14 488 100.00 537 100.00
0.28 461 100.00 519 100.00
0.42 415 100.00 441 100.00
0.57 418 100.00 423 100.00
0.71 323 99.69 349 100.00
0.85 276 100.00 199 100.00
1.00 121 100.00 96 100.00

Table 44 – Relationship between IH and accuracy (%) for the negative samples from
the skilled forgeries, for the GPDS-300 dataset

Original Space Optimized Space
IH #Samples R12𝑚𝑎𝑥 #Samples R12𝑚𝑎𝑥

0.00 420 100.00 316 100.00
0.14 284 100.00 270 100.00
0.28 219 100.00 233 100.00
0.42 208 100.00 270 100.00
0.57 239 99.58 294 100.00
0.71 348 95.86 376 97.61
0.85 562 90.92 533 95.50
1.00 720 81.52 708 89.12

dataset in both original and optimized space.
As can be seen from the presented tables, even with different number of features in

each space, in general, for both the GPDS-300 and MCYT datasets, there is no significant
difference between the frequencies of the number of samples for each IH value, for both
spaces. This analysis can be observed for positive, negative (random) or for negative
(skilled) samples. As can be seen in Appendix D, this approach also presented similar
behavior for the CEDAR datasets.

In this context, given that the frequency of negative (skilled) samples has not changed,
there has been no change in the number of “good” quality skilled forgeries. Thus, for
the considered datasets, the proposed feature selection technique was able to reduce the
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Table 45 – Relationship between IH and accuracy (%) for the positive samples, for the
MCYT dataset

Original Space Optimized Space
IH #Samples R10𝑚𝑎𝑥 #Samples R10𝑚𝑎𝑥

0.00 357 97.75 347 97.12
0.14 16 100.00 22 90.91
0.28 1 100.00 5 80.00
0.42 0 - 1 100.00
0.57 0 - 0 -
0.71 1 100.00 0 -
0.85 0 - 0 -
1.00 0 - 0 -

Table 46 – Relationship between IH and accuracy (%) for the negative samples from
the random forgeries, for the MCYT dataset

Original Space Optimized Space
IH #Samples R10𝑚𝑎𝑥 #Samples R10𝑚𝑎𝑥

0.00 9 100.00 14 100.00
0.14 51 100.00 29 100.00
0.28 63 100.00 75 100.00
0.42 94 100.00 76 100.00
0.57 109 100.00 100 100.00
0.71 123 100.00 129 100.00
0.85 160 100.00 176 100.00
1.00 141 100.00 151 100.00

Table 47 – Relationship between IH and accuracy (%) for the negative samples from
the skilled forgeries, for the MCYT dataset

Original Space Optimized Space
IH #Samples R10𝑚𝑎𝑥 #Samples R10𝑚𝑎𝑥

0.00 0 - 1 100.00
0.14 2 100.00 0 -
0.28 9 100.00 5 100.00
0.42 22 100.00 28 100.00
0.57 34 100.00 65 98.46
0.71 101 99.00 121 99.17
0.85 255 98.43 269 97.77
1.00 702 96.29 636 95.44

redundancy of the features, but did not result in a space with greater separation between
the positive and negative samples. This may explain the similar results presented by
the model in the original space (models from Section 4.3) and in the optimized space
(CNN-SVM𝑔𝑙𝑜𝑏𝑎𝑙−𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛), as presented in Tables 38, 40 and 41.

4.5.7 Lessons learned

In this section, we evaluated the use of BPSO-based feature selection for offline writer-
independent handwritten signature verification. The optimization was conducted based
on the minimization of the Equal Error Rate (𝐸𝐸𝑅) of the SVM in a wrapper mode.

Experimental results showed the presence of overfitting when no validation is used,



91

given that the lack of generalization power resulted in a worse 𝐸𝐸𝑅 when compared to
the scenario without feature selection.

Results also showed that not using a validation stage is worse than using validation
at the last iteration, which in turn is worse than using the global validation strategy.
Thus, by using the global validation strategy it is possible to control the overfitting of
the model and, thereby, improve the performance of the BPSO-based feature selection
approach (research question 8).

Another aspect that can be observed is the presence of redundant features in the
dissimilarity space generated by the dichotomy transformation, since the models with
a validation stage managed to obtain a better 𝐸𝐸𝑅 using only almost 55% of the total
number of features (research question 7). However, it did not result in a space with greater
separation between the positive and negative samples, as presented in the IH analysis.

Finally, the experiments demonstrated that the space generated after feature selection
can actually be used in a transfer learning context.
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5 CONCLUSION

In this study, we proposed and investigated a novel writer-independent (WI) frame-
work for handwritten signatures verification (HSV). The proposed method is based on a
deep understanding of the dichotomy transformation (DT) applied in a WI framework
for handwritten signatures verification. The experimental evaluations, carried out in four
datasets, were based on both the EER and IH metric, which allowed us to understand
the difficulty of the HSV problem at the instance level.

Understanding of why the instances are misclassified (IH analysis) led us to the de-
velopment of an approach well suited to our WI-HSV scenario, by directly addressing the
causes of the misclassification.

The first choice was which features representation to use. An important aspect of
DT is the needing for a good feature representation, the 𝑆𝑖𝑔𝑛𝑒𝑡, used in this paper,
is well adapted to this scenario as different writers are clustered in separate regions of
the feature space. Another aspect is that, regardless of the signature image, 𝑆𝑖𝑔𝑛𝑒𝑡 will
generate feature vectors containing 2048 dimensions. This fact, facilitates the use of this
feature representation in a context of transfer learning.

We also showed that, by using the highest number of references and MAX as fusion
function, the approach dynamically selects the reference (from the set of references) that
is most similar to the questioned signature and uses it to perform the verification.

Another aspect in this work was the use of the classical Condensed Nearest Neigh-
bors as systematic prototypes selection. This approach maintains the instances that are
misclassified by a 1-NN classifier, discarding them otherwise. Its goal is to reduce the
dataset size by removing redundant instances, maintaining the samples in the decision
boundaries.

As the verification only depends on the input reference signature, WI systems have
the advantages of being scalable and adaptable. By using the DT in a writer-independent
approach, the dichotomizer (classifier) can verify signatures of writers for whom the clas-
sifier was not trained in a transfer learning context. Therefore, a single model already
trained can be used to verify the signatures of new incoming writers without any further
transfer adaptation.

The option of using a Binary Particle Swarm Optimization algorithm for feature se-
lection, was that it has obtained good results in different classification problems when
compared to other optimization algorithms used for this task. In this binary swarm op-
timization scenario, we propose to use a BPSO-based feature selection for WI handwrit-
ten signature verification in a wrapper mode. To decrease the chance of overfitting, we
proposed a global validation strategy, where the validation of the candidate solutions is
executed in all iterations of the optimization process and an external archive is responsible
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to store the best validated solutions
Also, the reported IH analysis showed that the samples belonging to the positive

class form a compact cluster located close to the origin and the negative samples are
sparsely distributed in the dissimilarity space generated by the dichotomy transformation.
Furthermore, we were able to characterize “good” and “bad” quality skilled forgeries using
the IH analysis and also the frontier between the hard to classify samples, which are
genuine signatures and “good” skilled forgeries close to the frontier.

To conclude, in Chapter 1 the following research questions were presented:

1. How the writer-independent dichotomy transformation can handle the HSV data
difficulties?

• In Section 3.1.1 we present how the proposed WI approach handle the chal-
lenges faced when dealing with the HSV problem. Among them, (𝐶1) the high
number of writers (classes), (𝐶3) the small number of training samples per
writer with high intra-class variability, (𝐶4) the heavily imbalanced class dis-
tributions and manage new incoming writers (𝐶6)

2. Does the number of reference signatures used influence the ability to verify signa-
tures in the writer-independent model?

• By using the highest number of available reference signatures, the WI model
achieves better verification performance (a more detailed answer is presented
in Section 4.2). For instance, for the GPDS-300 dataset we have an average
error (when considering a global threshold) 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 = 8.0 for the
model using 12 references against 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 = 13.1, when using only
one reference.

3. What is the best fusion function to be used to combine partial decisions in a scenario
with multiple reference signatures?

• The best results are obtained using the MAX as fusion function (a more de-
tailed answer is presented in Section 4.2). For the GPDS-300 dataset, we have
an average error (when considering a global threshold) 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 = 8.0
for the model using MAX as fusion function against 𝐴𝐸𝑅𝑔𝑒𝑛𝑢𝑖𝑛𝑒+𝑠𝑘𝑖𝑙𝑙𝑒𝑑 = 13.6,
when using only one reference.

4. Does the dissimilarity space generated by the dichotomy transformation have sam-
ples with redundant information, i.e., with little importance for training purposes?
Can we use prototype selection methods for eliminating redundant training data?

• The Condensed Nearest Neighbors (CNN) applied systematically is able to
select fewer prototypes and still maintain high performance levels when com-
pared to the SVM trained with the complete original training set (a more
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detailed answer is presented in Section 4.3). For the GPDS-300 dataset, the
CNN_SVM was trained with almost 5% of the total number of samples and
obtained 𝐸𝐸𝑅 = 3.47, agains an 𝐸𝐸𝑅 = 3.69 from the SVM trained using
the whole training set.

5. Can the writer-independent approach be used in the context of transfer learning
and still obtain good verification performance?

• A WI-classifier trained in one dataset can be employed to verify signatures
in the other datasets without any further transfer adaptation in the WI-HSV
context (a more detailed answer is presented in Section 4.3). For instance, the
SVM trained in the GPDS-300 dataset and used to verify signatures from the
CEDAR dataset obtained an 𝐸𝐸𝑅 = 3.42 while the SVM trained and tested
in the own CEDAR obtained an 𝐸𝐸𝑅 = 5.78.

6. Can skilled forgeries be characterized as having “good” or “bad” quality based on
the measure of instance hardness?

• In the skilled forgeries scenarios, we can consider the same kNN limit to charac-
terize the “bad quality skilled forgeries” (𝐼𝐻 <= 0.5) and the “good” quality
skilled forgeries ( 𝐼𝐻 > 0.5) (a more detailed answer is presented in Sec-
tion 4.4). Bad quality skilled forgeries are located far from the positive cluster
(𝐼𝐻 = 0.0) and are easily classified, the good quality ones are difficult to
classify and can even located within the positive class cluster (𝐼𝐻 = 1.0).

7. Does the generated dissimilarity space have redundant features?

• There are redundant features in the dissimilarity space generated by the di-
chotomy transformation, since the models with a global validation stage man-
aged to obtain a better verification performance using only almost 55% of the
total number of features (a more detailed answer is presented in Section 4.5).

8. Can overfitting control improve the performance of the optimization in the feature
selection scenario?

• By using the global validation with external archive strategy it is possible to
control the overfitting and, thereby, improve the performance of the BPSO-
based feature selection approach (a more detailed answer is presented in Sec-
tion 4.5). For the GPDS-300 dataset, not using an overfitting control strategy
resulted in 𝐸𝐸𝑅 = 3.76 against 𝐸𝐸𝑅 = 3.46 obtained by the model using the
proposed global strategy with external archive.
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5.1 FUTURE WORKS

The DT characteristics and the analyses reported in this study serve as motivation
for future works aiming at improving the discrimination between genuine signatures and
forgeries, focusing mainly on discriminating between good quality skilled forgeries. Some
suggestions for future work include:

• A cascade classification structure, with a rejection mechanism;

• Ensemble learning and dynamic selection adapted to work on the Dissimilarity
Space;

• The use of multiobjective algorithms for feature selection, in order to minimize both
the 𝐸𝐸𝑅 and the number of features during the optimization;

• The use of feature selection combined with prototype selection in a single optimiza-
tion process, to deal with the redundancy in the dissimilarity at both the feature
and the sample levels.
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APPENDIX A – STUDY ON “GOOD” AND “BAD” QUALITY SKILLED
FORGERIES

In this section we present a complementary study on the Figure 20 of this thesis,
including the instance hardness analysis. In addition, an image-level analysis is also carried
out for an easier and better understanding of the scenarios. Figure 23 depicts the same
behaviour as in Figure 20 , highlighting key instances, which are:

• Positive sample: Genuine signature

• Negative sample: Random forgery

• Negative sample: “Bad quality” skilled forgery

• Negative sample (correctly classified): “Good quality” skilled forgery

• Negative sample (wrongly classified): “Good quality” skilled forgery

Fig. 23 – Synthetic decision frontiers. The same as in Figure 20 of this thesis.

As presented in Figure 23, while the negative region of space is located on the right
of the decision boundary, the positive region is located on the left side. So, all correctly
classified instances are colored in green, the wrongly classified one is presented in red.

Figures 24, 25, 26, 27 and 28 present, respectively, the behavior of genuine signature,
random forgery, “bad quality” skilled forgery, “good quality” skilled forgery (correctly
classified) and “good quality” skilled forgery (wrongly classified) at the image level for
the GPDS dataset (VARGAS-BONILLA et al., 2007).

In all these figures, while left side presents the tested sample, the right side (in purple)
contains the neighborhood of the tested sample in the training set (same methodology as
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in the original article). Recall, to obtain a dissimilarity vector we need a reference signature
and a query. That is the reason why in each sample two signatures are presented. Each
sample, also contains the index of the writer and the index of the signature.

On the top of each figure, the instance hardness value related to the tested sample
is presented. Also, in the lower left corner of each figure, the location of the respective
instance in Figure 23 is depicted.

Fig. 24 – A positive tested sample on the left and its neighborhood on the right.

As depicted in Figure 24, the tested positive sample is formed by two genuine signa-
tures from the same writer (index 349). As can be seen, all instances of the neighborhood
belong to the positive class, since both signatures used to obtain the dissimilarity vector
are from the same writer. So, the 𝐼𝐻 = 0.0. Finally, as both references and queries are
formed by similar signatures all these dissimilarity vectors are located close to the origin
(as highlighted in lower left corner of the figure).

As depicted in Figure 25, the tested negative sample is formed by two signatures
from different writers (index 349 and 481), which clearly have different formats. The
same behavior can also be seen in all instances that belong to the neighborhood. As all
neighbors belong to the negative class, then 𝐼𝐻 = 0.0. Finally, as both references and
queries are formed by signatures from different writers and have different formats all these
dissimilarity vectors are located far from the origin (as highlighted in lower left corner of
the figure).
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Fig. 25 – A negative tested sample (random forgery) on the left and its neighborhood on
the right.

As depicted in Figure 26, the tested negative sample is formed by genuine signature
as reference and a “bad quality” skilled forgery. It can be cleary seen that the forgery is
not good. Thus, the “bad quality” skilled forgery behaves similarly to a random forgery
in the dissimilarity space. So that, as can be seen, all neighbors belong to the negative
class and are formed by dissimilarity vectors formed by signatures of different writers and
different formats (𝐼𝐻 = 0.0). As highlighted in lower left corner of the figure, it is located
far from the origin.

As presented in Figures 27 and 28, a “good quality” skilled forgery actually looks like
the genuine signature. Thus, the “good quality” skilled forgery behaves similarly to a
genuine signature in the dissimilarity space. So that, as can be seen, all neighbors belong
to the positive class and are formed by dissimilarity vectors formed by signatures from
the same writers (𝐼𝐻 = 1.0).

The fact of being located close to the WI decision boundary results in hard to classify
instances. Consequently, correct (Figure 27) and wrong (Figure 28) classification may
occur for this type of test samples.
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Fig. 26 – A negative tested sample (“Bad quality” skilled forgery) on the left and its
neighborhood on the right.

Fig. 27 – A negative tested sample correctly classified (“Good quality” skilled forgery) on
the left and its neighborhood on the right.



107

Fig. 28 – A negative tested sample wrongly classified (“Good quality” skilled forgery) on
the left and its neighborhood on the right.
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APPENDIX B – BRAZILIAN RESULTS

Tables 48, 49, 50 and 51 present the relationship of IH and the accuracy (%) of the
model when the user threshold of EER is used as decision threshold, respectively for the
positive samples, negative samples from the random forgeries, negative samples from the
simple forgeries and negative samples from the skilled forgeriess, for the BRAZILIAN
dataset. In the tables, the first column represents the possible IH values (𝐾 = 7), in the
second column the number of samples for the respective IH value. The other columns
represent the accuracy (%) when considering the CNN-SVM trained using the training
set of GPDS-300 dataset and using respectively one (R1), five (R5𝑚𝑎𝑥), fifteen (R15𝑚𝑎𝑥)
and thirty references (R30𝑚𝑎𝑥).

As in the other datasets, positive samples form a dense cluster (almost all positive
samples have 𝐼𝐻 ≤ 0.14), and the negative samples are scattered throughout space. The
negative (random) samples may be disjoint to the positive set. The negative samples
formed by the “good quality skilled forgeries” overlap the positive region of the DS,
resulting in the need for a classifier with complex decision boundary.

Table 48 – Relationship between IH and accuracy (%) for the positive samples, for the
BRAZILIAN dataset

IH #Samples R1 R5𝑚𝑎𝑥 R15𝑚𝑎𝑥 R30𝑚𝑎𝑥

0.00 591 96.27 97.63 99.49 99.66
0.14 7 57.14 71.42 71.42 85.71
0.28 1 100.00 100.00 100.00 100.00
0.42 0 - - - -
0.57 1 0.00 0.00 100.00 100.00
0.71 0 - - - -
0.85 0 - - - -
1.00 0 - - - -

Table 49 – Relationship between IH and accuracy (%) for the negative samples from
the random forgeries, for the BRAZILIAN dataset

IH #Samples R1 R5𝑚𝑎𝑥 R15𝑚𝑎𝑥 R30𝑚𝑎𝑥

0.00 79 100.00 100.00 100.00 100.00
0.14 122 100.00 100.00 100.00 100.00
0.28 96 100.00 100.00 100.00 100.00
0.42 72 100.00 100.00 100.00 100.00
0.57 55 100.00 100.00 100.00 100.00
0.71 47 100.00 100.00 100.00 100.00
0.85 52 100.00 100.00 100.00 100.00
1.00 77 100.00 100.00 100.00 100.00
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Table 50 – Relationship between IH and accuracy (%) for the negative samples from
the simple forgeries, for the BRAZILIAN dataset

IH #Samples R1 R5𝑚𝑎𝑥 R15𝑚𝑎𝑥 R30𝑚𝑎𝑥

0.00 69 100.00 100.00 100.00 100.00
0.14 98 100.00 100.00 100.00 100.00
0.28 69 100.00 100.00 100.00 100.00
0.42 45 100.00 100.00 100.00 100.00
0.57 62 100.00 100.00 100.00 100.00
0.71 69 100.00 100.00 100.00 100.00
0.85 76 100.00 100.00 100.00 100.00
1.00 112 98.21 100.00 100.00 100.00

Table 51 – Relationship between IH and accuracy (%) for the negative samples from
the skilled forgeries, for the BRAZILIAN dataset

IH #Samples R1 R5𝑚𝑎𝑥 R15𝑚𝑎𝑥 R30𝑚𝑎𝑥

0.00 5 100.00 100.00 100.00 100.00
0.14 9 100.00 100.00 100.00 100.00
0.28 29 100.00 100.00 100.00 100.00
0.42 23 100.00 100.00 100.00 100.00
0.57 39 100.00 100.00 100.00 100.00
0.71 63 100.00 100.00 100.00 100.00
0.85 115 100.00 100.00 100.00 100.00
1.00 317 93.05 95.89 98.42 98.73



110

APPENDIX C – CEDAR RESULTS

Tables 52, 53 and 54 present the relationship of IH and the accuracy (%) of the model
when the user threshold of EER is used as decision threshold, respectively for the positive
samples, negative samples from the random forgeries and negative samples from the skilled
forgeries, for the CEDAR dataset. In the tables, the first column represents the possible
IH values (𝐾 = 7), in the second column the number of samples for the respective IH
value. The other columns represent the accuracy (%) when considering the CNN-SVM
trained using the training set of GPDS-300 dataset and using respectively one (R1), five
(R5𝑚𝑎𝑥) and twelve (R12𝑚𝑎𝑥) references.

As in the other datasets, positive samples form a dense cluster (almost all positive
samples have 𝐼𝐻 ≤ 0.14), and the negative samples are scattered throughout space. The
negative (random) samples may be disjoint to the positive set. The negative samples
formed by the “good quality skilled forgeries” overlap the positive region of the DS,
resulting in the need for a classifier with complex decision boundary.

Table 52 – Relationship between IH and accuracy (%) for the positive samples, for the
CEDAR dataset

IH #Samples R1 R5𝑚𝑎𝑥 R12𝑚𝑎𝑥

0.00 482 92.53 94.60 95.85
0.14 60 80.00 93.33 95.00
0.28 1 0.00 0.00 100.00
0.42 0 - - -
0.57 0 - - -
0.71 2 50.00 100.00 100.00
0.85 1 0.00 100.00 100.00
1.00 4 0.00 100.00 100.00

Table 53 – Relationship between IH and accuracy (%) for the negative samples from
the random forgeries, for the CEDAR dataset

IH #Samples R1 R5𝑚𝑎𝑥 R12𝑚𝑎𝑥

0.00 11 100.00 100.00 100.00
0.14 68 95.58 100.00 100.00
0.28 89 95.50 100.00 100.00
0.42 58 98.27 100.00 100.00
0.57 69 100.00 100.00 100.00
0.71 79 100.00 100.00 100.00
0.85 110 100.00 100.00 100.00
1.00 66 100.00 100.00 100.00
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Table 54 – Relationship between IH and accuracy (%) for the negative samples from
the skilled forgeries, for the CEDAR dataset

IH #Samples R1 R5𝑚𝑎𝑥 R12𝑚𝑎𝑥

0.00 1 100.00 100.00 100.00
0.14 15 80.00 100.00 100.00
0.28 16 100.00 100.00 100.00
0.42 18 100.00 100.00 100.00
0.57 29 100.00 100.00 100.00
0.71 35 97.14 97.14 100.00
0.85 147 96.59 95.91 97.95
1.00 289 87.54 93.42 94.46
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APPENDIX D – CEDAR RESULTS OPTIMIZED SPACE

Tables 55, 56 and 57 present the relationship of the IH and the accuracy (%) of the
model when the user threshold of EER is used as decision threshold, respectively for the
positive samples, negative samples from the random forgeries and negative samples from
the skilled forgeries (for the CEDAR dataset).

The CNN-SVM trained in the training set of GPDS-300 dataset the model responsible
for carrying out the verification. In the tables, the first column lists the IH values (𝐾 = 7),
the second and third columns contain respectively the number of samples and the accuracy
(%) when considering the model using twelve reference signatures, for each IH value in
the original space. The fourth and fifth columns, the same information in the optimized
space (using the BPSO method as in Section 4.5).

As can be seen from the presented tables, even with different number of features in
each space, in general, for the CEDAR dataset, there is no significant difference between
the frequencies of the number of samples for each IH value, for both spaces. This analysis
can be observed for positive, negative (random) or for negative (skilled) samples. This
behavior is similar to that presented in other databases

Table 55 – Relationship between IH and accuracy (%) for the positive samples, for the
CEDAR dataset

Original Space Optimized Space
IH #Samples R12𝑚𝑎𝑥 #Samples R12𝑚𝑎𝑥

0.00 482 95.85 499 96.79
0.14 60 95.00 41 85.37
0.28 1 100.00 2 50.00
0.42 0 - 0 -
0.57 0 - 1 100.00
0.71 2 100.00 0 -
0.85 1 100.00 5 100.00
1.00 4 100.00 2 100.00

Table 56 – Relationship between IH and accuracy (%) for the negative samples from
the random forgeries, for the CEDAR dataset

Original Space Optimized Space
IH #Samples R12𝑚𝑎𝑥 #Samples R12𝑚𝑎𝑥

0.00 11 100.00 55 100.00
0.14 68 100.00 71 100.00
0.28 89 100.00 67 100.00
0.42 58 100.00 67 100.00
0.57 69 100.00 73 100.00
0.71 79 100.00 93 100.00
0.85 110 100.00 51 100.00
1.00 66 100.00 43 100.00
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Table 57 – Relationship between IH and accuracy (%) for the negative samples from
the skilled forgeries, for the CEDAR dataset

Original Space Optimized Space
IH #Samples R12𝑚𝑎𝑥 #Samples R12𝑚𝑎𝑥

0.00 1 100.00 9 100.00
0.14 15 100.00 13 100.00
0.28 16 100.00 20 100.00
0.42 18 100.00 21 100.00
0.57 29 100.00 25 100.00
0.71 35 100.00 61 100.00
0.85 147 97.95 130 98.46
1.00 289 94.46 271 95.44
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