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RESUMO 

 

A presente dissertação descreve duas abordagens que utilizam diferentes metodologias 

aplicadas ao monitoramento da produção de Biodiesel a partir da espectroscopia na região do 

infravermelho próximo (NIR), associada à quimiometria. Ambas as abordagens descrevem o 

monitoramento da reação de transesterificação do óleo de algodão refinado, por rota etílica e 

catálise alcalina, utilizando um espectrômetro NIR ultracompacto on-line para o processo em 

batelada. Na primeira abordagem foi construído um modelo de calibração multivariada PLS a 

partir dos dados espectrais para prever o teor de etil-ésteres em amostras provenientes da reação 

de transesterificação. O modelo foi construído a partir de misturas sintéticas obtidas em 

diferentes concentrações, constituídas por uma mistura quaternária de óleo, glicerina, biodiesel 

e etanol, e de amostras provenientes de reações em batelada. O modelo apresentou desempenho 

satisfatório com valor da raiz do erro médio quadrático de predição (RMSEP) de 1,51% m/m e 

coeficiente de determinação de predição (R2
pred) de 0,98, com a vantagem de se trabalhar com 

um equipamento portátil, relativo baixo custo e de fácil transporte. A segunda abordagem 

descreve a utilização da espectroscopia NIR para construção de cartas de controle estatístico 

multivariado a fim de capturar alterações promovidas na temperatura e concentração do 

catalisador na produção de biodiesel. Nesta abordagem foi realizada uma avaliação quanto a 

dois métodos de modelagem de dados de processos em batelada conhecido como: Nomikos-

MacGregor (NM) e Wold-Kettaneh-Friden-Holmberg (WKFH), em que o primeiro pôde ser 

avaliado na condição pós-batelada (após o término da batelada), e o segundo pôde ser avaliado 

tanto no modo pós-batelada quanto em tempo real. O conjunto de calibração foi construído com 

8 bateladas obtidas sob condições normais de operação (NOC) e o conjunto de predição foi 

composto por 2 bateladas NOC, uma batelada com alteração temporária da temperatura e uma 

batelada com alteração da concentração de catalisador. As cartas de distância ao modelo 

(DModX) e T2 de Hotelling foram utilizadas para a avaliação dos modelos de controle 

estatístico multivariado, os quais apresentaram resultados semelhantes quanto à capacidade de 

detecção das falhas intencionalmente provocadas por simulação. 

 

Palavras chave: Biodiesel. Espectroscopia NIR. Reação de transesterificação em batelada. 

Controle estatístico multivariado de processo. Monitoramento on-line. PAT. 

 

 

 



ABSTRACT 

 

The present work describes two approaches that use Near Infrared (NIR) spectroscopy 

and chemometrics, for the monitoring of Biodiesel production. Both approaches describe the 

on-line monitoring of transesterification reactions of cottonseed oil using a handheld NIR 

spectrometer (MicroNIR). The reactions were carried out in a batch system, using ethyl alcohol 

and alkaline catalysts. In the first approach, a Partial Least Square (PLS) multivariate 

calibration model was built based on the MicroNIR data to predict the ethyl-esters content of 

samples acquired from the transesterification reactions. The model was built using synthetic 

mixtures with different concentrations (composed of oil, glycerin, biodiesel and ethanol) and 

samples from the batch process. A satisfactory performance with root mean square error of 

prediction (RMSEP) of 1,51% w/w, and prediction determination coefficient (R2
pred) of 0,98 

was obtained. In addition, the use of a relatively low cost and easy transportation handheld 

spectrometer represented an advantage of this application. The second approach describes the 

use of NIR spectroscopy to build multivariate statistical control charts to detect disturbances in 

the temperature and catalyst content intentionally induced during biodiesel production. In this 

approach, two different methods to handle batch process data, referred to as Nomikos-

MacGregor (NM) and Wold-Kettaneh-Friden-Holmberg (WKFH), were evaluated. While the 

former was used for off-line monitoring, the second method was employed for both off-line and 

on-line process monitoring. The training dataset was formed by eight batches under normal 

operating condition (NOC). The test data consisted of two NOC batches, one batch to which a 

disturbance in the temperature was induced, and other batch produced with a different catalyst 

content. Distance to the model (DmodX) and Hotelling’s T2 control charts were used to evaluate 

the performance of the models. In general, they presented a similar performance in relation to 

their ability of detect the simulated failures. 

 

Keywords: Biodiesel. NIR spectroscopy. Batch transesterification reaction. Multivariate 

statistical process control. On-line monitoring. PAT. 
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1 INTRODUÇÃO 

 

O setor de transportes representa uma das maiores fontes antrópicas de emissão a nível 

mundial de gases que agravam o efeito estufa, cujo principal contribuinte é o dióxido de carbono 

(CO2), o qual é responsável por 23% do total emitido em relação às fontes energéticas. Nesta 

linha, o transporte rodoviário contribui com cerca de 74%, em média, do total emitido desses 

gases (YANG et al., 2018).   

Associadas ao cenário de poluição ambiental, a disponibilidade finita das fontes de 

combustíveis fósseis e o surgimento de regras mais rígidas quanto às diretrizes ambientais, 

motivaram a ampliação pela busca de combustíveis renováveis ao longo dos últimos anos. Nesta 

perspectiva, conforme Singh et al. (2019), o biodiesel apresenta-se como um biocombustível 

renovável, de emissão neutra de carbono. Além de ser um combustível biodegradável e atóxico, 

contribuindo assim para redução na emissão de poluentes, sendo capaz de aliar sustentabilidade 

ambiental e viabilidade econômica em sua utilização, por meio da geração de desenvolvimento 

econômico e social ao local de sua produção (VELICˇKOVIC´ et al., 2013).  

Segundo Velicˇkovic´ et al. (2013), o método mais utilizado para produção de biodiesel 

consiste na reação entre triacilgliceróis (compostos majoritários presentes na composição dos 

óleos vegetais ou gorduras animais), e um álcool de cadeia curta, em presença de catalisador. 

Em geral, a natureza do catalisador empregado pode ser: ácida, alcalina ou enzimática. 

No Brasil, o biodiesel vem ganhando cada vez mais destaque na composição da matriz 

energética nacional. Conforme a Resolução nº16, de 29 de outubro de 2018, do Conselho 

Nacional de Política Energética (CNPE), até 2023, a alíquota de biodiesel adicionada ao diesel 

mineral poderá atingir até 15% em volume (BRASIL, 2018). A fonte de triacilgliceróis mais 

empregada para a produção de Biodiesel no Brasil atualmente é composta por óleos vegetais, 

conforme descrito pelo relatório anual da Agência Nacional do Petróleo, Gás Natural e 

Biocombustíveis (ANP, 2019). O número expressivo e cada vez maior de trabalhos científicos 

voltados para a investigação de rotas alternativas, desenvolvimento de métodos de controle 

estatístico e, de maneira geral, o aumento da eficiência do processo de produção do biodiesel, 

mostra a importância desta matriz para o cenário energético mundial (MARJANOVIC´ et al., 

2010; DIAS et al., 2013; SALES et al., 2016; GÜNAY; TÜRKER; TAPAN, 2019; SINGH et 

al., 2019). 

O monitoramento do processo de produção do biodiesel é normalmente realizado por 

meio de técnicas de referência bem estabelecidas na literatura, como a cromatografia gasosa 

(GC, do inglês Gas Chromatography), e a cromatografia líquida de alta eficiência (HPLC, do 
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inglês High Performance Liquid Chromatography) (FREEDMAN; KWOLEK; PRYDE, 1986; 

KNOTHE, 2001; ARZAMENDI, 2006).  O processo de amostragem, em alguns casos, pode 

ser complexo e as análises são normalmente demoradas. Por isso, estas técnicas, são aplicadas 

geralmente após o término da reação ou via off-line, por meio da retirada de alíquotas durante 

o processo reacional. Por isso, algumas limitações estão relacionadas com a obtenção de 

informações em tempo real, prejudicando a eficiência da tomada de decisão e intervenções no 

processo de modo a corrigi-lo, quando necessário.  

A espectroscopia na região do infravermelho próximo (NIR, do inglês Near infrared) é 

uma técnica confiável, rápida, em geral de baixo custo, não destrutiva e que, comumente, não 

exige preparo de amostras (PASQUINI, 2003). Quando associada à quimiometria, a 

espectroscopia NIR torna possível a implementação de ferramentas analíticas, como o Controle 

Estatístico Multivariado de Processo (MSPC, do inglês Multivariate Statistical Process 

Control), para a realização do monitoramento da reação de transesterificação em tempo real. 

Além disso, também torna possível o desenvolvimento de modelos de calibração multivariada 

para acompanhamento em tempo real do teor de éster ao longo do processo de produção 

(RICHARD, et al., 2013; LIMA, 2014; SALES et al., 2019).  

Um importante conjunto de ferramentas analíticas que tem o objetivo de garantir a 

qualidade de processos, insumos e produtos é denominado de Tecnologias Analíticas de 

Processo (PAT, do inglês Process Analytical Technology). PAT vem sendo aplicado como um 

sistema capaz de projetar, analisar e controlar o processo produtivo por meio de aferições 

periódicas de atributos de qualidade e desempenho de materiais durante o processamento. 

Dentre essas ferramentas, destacam-se: as ferramentas multivariadas para aquisição e análise 

de dados; os analisadores de processo; as ferramentas de controle de processo; e as ferramentas 

baseadas no conceito de melhoria contínua e gestão de conhecimento (FDA, 2004). 

O desenvolvimento tecnológico associado às vantagens que envolve a utilização de 

sistemas microeletromecânicos (MEMS, do inglês Microelectromechanical Systems), nos 

últimos anos, contribuiu para a miniaturização de espectrômetros vibracionais, com 

consequente redução do custo e facilidade de transporte. Dentre os que ganharam escala 

comercial, destacam-se os espectrômetros raman, de infravermelho (IR, do inglês Infrared) e 

infravermelho próximo. Dentre os espectrofotômetros portáteis na região do NIR, o MicroNIR 

tem o seu tamanho reduzido principalmente devido ao desenvolvimento do filtro variável linear 

(LVF, do inglês Linear Variable Filter). Um componente formado por um filme fino dielétrico, 

disposto em uma direção específica, que é ligado diretamente a um conjunto de detectores 

lineares. Esse arranjo permite que cada pixel do detector responda a um diferente comprimento 
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de onda, resultando em um conjunto mecânico espectral ultracompacto e robusto (O’BRIEN et 

al., 2012). 

Vários trabalhos descritos na literatura demonstraram resultados satisfatórios quanto à 

aplicação da espectroscopia NIR ao controle de qualidade de combustíveis (PIMENTEL et al., 

2006; PAIVA et al., 2015; CORREIA et al., 2018), assim como para o monitoramento da reação 

de transesterificação para produção de biodiesel (RICHARD et al., 2013; KILLNER; 

ROHWEDDER; PASQUINI, 2011; LIMA, 2014; SALES et al., 2019). Entretanto, até o 

momento, não há relatos na literatura de trabalhos que utilizam um NIR ultracompacto, como 

o MicroNIR, para o monitoramento on-line da reação de transesterificação em batelada. 

O MicroNIR, por ser miniaturizado, é um equipamento de menor resolução e com faixa 

espectral reduzida, porém, é capaz de coletar informação em intervalos de tempo bastante 

reduzidos. Portanto, o dispositivo demonstra potencial para realização do monitoramento da 

reação de transesterificação no modo on-line, a qual apresenta mudanças rápidas logo no início. 

Pelo exposto, este trabalho traz como proposta as seguintes abordagens: 

 

a) Realizar o monitoramento da reação de transesterificação do óleo de algodão por rota etílica 

e catálise alcalina em batelada por meio da espectroscopia NIR no modo on-line, via utilização 

de um equipamento de infravermelho portátil (MicroNIR). 

 

b) Construir cartas de controle estatístico multivariadas de processos a partir de duas 

abordagens de desdobramento dos dados obtidos durante o monitoramento. 

 

c) Avaliar a eficiência das diferentes formas de construção das cartas de controle para detecção 

de falhas em novas bateladas em que perturbações foram intencionalmente efetuadas ao longo 

da reação. 

 

d) Construir um modelo de calibração multivariada por mínimos quadrados parciais (PLS, do 

inglês Partial Least Square) confiável, a partir dos dados espectrais do MicroNIR, a fim de 

realizar predições do teor de éster em amostras provenientes da reação de transesterificação em 

batelada.  
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2 FUNDAMENTAÇÃO TEÓRICA 

 

2.1 BIODISEL: UM COMBUSTÍVEL RENOVÁVEL 

 

 Do ponto de vista legal (Lei nº 11.097, de 13 de janeiro de 2005), o biodiesel é definido 

como um biocombustível derivado de biomassa renovável que pode ser utilizado em motores a 

combustão interna que operam com ignição por compressão ou ainda, para geração de outro 

tipo de energia, que possa substituir total ou parcialmente, os combustíveis fósseis (BRASIL, 

2005). Já a ANP, descreve o biodiesel em termos de composição química, como sendo um 

combustível composto de alquil ésteres de ácidos carboxílicos de cadeia longa, produzido a 

partir da transesterificação e/ou esterificação de matérias graxas, de gorduras de origem vegetal 

ou animal, e que atenda a especificação contida no regulamento técnico, presente na Resolução 

ANP nº 45, de 25 de agosto de 2014 (ANP, 2014). 

 Desde que o biodiesel começou a fazer parte da matriz energética nacional como aditivo 

obrigatório ao diesel mineral em 2008, houve um crescimento significativo da sua produção, 

como mostra a Figura 1 (ANP, 2019).  

 

Figura 1 – Evolução da produção de biodiesel (B100) no Brasil de 2009-2018. 

 

Fonte: Adaptado de ANP (2019). 
     

 Esse crescimento teve forte influência da demanda gerada pela exigência imposta pela 

Lei nº 11.097, de 13 de janeiro de 2005, que determinou a introdução de 2% em volume de 

biodiesel a ser incorporado ao diesel mineral, cuja mistura recebeu a denominação de (B2), em 
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caráter obrigatório a partir de 2008. Desde então a alíquota adicionada aumentou 

gradativamente até o patamar atual de 12% (B12), cuja regulação vem sendo feita pelo CNPE, 

amparado pela Lei nº 13.033, de 24 de setembro de 2014 e pela Lei nº 13.263, de 23 de março 

de 2016.  

 Essas medidas legais vieram como resposta à necessidade global de se buscar cada vez 

mais fontes renováveis de energia. Com o crescimento populacional e da indústria, associado à 

elevação no padrão de qualidade de vida das pessoas, espera-se um aumento no consumo de 

combustíveis fósseis por parte do setor de transportes da ordem de 60% até 2030, a nível 

mundial. Consequentemente, a emissão de gases causadores do efeito estufa também tende a 

aumentar, agravando a problemática ambiental já instalada atualmente. Nesse sentido, a 

utilização de fontes renováveis de energia tem mostrado ser uma saída atrativa para produção 

energética. O biodiesel por sua vez, tem demonstrado ser uma opção promissora para 

substituição total ou parcial do diesel mineral em motores do ciclo diesel, por ser um 

combustível renovável, biodegradável, devido à presença de moléculas oxigenadas que 

aceleram este processo, não tóxico e economicamente competitivo. Apresenta ainda viabilidade 

técnica para uso, visto que além de ser uma fonte energética também tem propriedades 

lubrificantes, reduzindo o desgaste dos motores. Não menos importante, é ambientalmente 

amigável, haja vista que é livre de compostos sulfurados e aromáticos, contribuindo para 

redução da emissão de gases poluentes (DEMIRBAS, 2009; YUSUF; KAMARUDIN; 

YAAKUB, 2011; BHUIYA et al., 2016). 

 

2.1.1 Produção do biodiesel 

 

 Diferentes rotas para produção de biodiesel têm sido reportadas como: pirólise, métodos 

baseados em microemulsões, transesterificação catalítica e não catalítica, etc. Dentre os 

métodos citados, a transesterificação é o mais comum, o qual envolve a reação entre 

triacilgliceróis (principal componente de fontes de matéria-graxa, como óleos vegetais e 

gordura animal) com um álcool de cadeia curta, normalmente metanol ou etanol, na presença 

de um catalisador homogêneo ou heterogêneo, de natureza ácida, alcalina ou enzimática. 

Normalmente, reações de transesterificação envolvem o uso de catalisadores alcalinos como 

NaOH, KOH e/ou seus respectivos alcoóxidos (YUSUF; KAMARUDIN; YAAKUB, 2011; 

SINGH et al., 2019; BHUIYA et al., 2016). 

 O biodiesel pode ser produzido a partir de diversos tipos de matérias-primas, as quais 

têm sido reportadas pela literatura como: óleos vegetais, gordura animal, óleos de fritura, dentre 

http://legislacao.planalto.gov.br/legisla/legislacao.nsf/Viw_Identificacao/lei%2013.033-2014?OpenDocument
http://legislacao.planalto.gov.br/legisla/legislacao.nsf/Viw_Identificacao/lei%2013.263-2016?OpenDocument
http://legislacao.planalto.gov.br/legisla/legislacao.nsf/Viw_Identificacao/lei%2013.263-2016?OpenDocument
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outros. Nesse sentido, Singh et al. (2019) classificou o biodiesel em 4 gerações com base no 

tipo de matéria-prima empregada para sua produção. O biodiesel de 4ª geração baseia-se em 

alteração biológica das fontes de matéria graxa, mas ainda está em fase inicial de pesquisas. 

Desse modo, na Tabela 1 estão descritas as principais fontes de ácidos graxos mais utilizadas 

para produção de biodiesel, as quais estão classificadas em 3 gerações. 

 

Tabela 1 – Classificação do biodiesel em função da origem da matéria-prima. 

1ª geração 

óleos vegetais 

comestíveis 

2ª geração 

óleos vegetais não 

comestíveis 

3ª geração 

gordura animal, óleos residuais e 

outros 

Soja Algodão Sebo bovino 

Côco Pinhão manso Gordura avícola 

Girassol Linhaça Microalga 

Oliva Neem Banha de porco 

Palma Pongâmia Óleo de fritura 

Amendoim Stillingia  

Colza   

Gergelim   

Amêndoa   

Mostarda   

Noz   

Fonte: Adaptado de Singh et al. (2019). 

 

 Em 2018 havia 51 plantas autorizadas pela ANP para produção de biodiesel no Brasil, 

das quais, 40 delas de fato produziram o biocombustível. A produção diária das plantas ativas 

naquele ano atingiu o patamar de 23.720 m3, utilizando como matéria-prima majoritária o óleo 

de soja (69,82%), que corresponde a uma fonte de 1ª geração, seguida de gordura animal 

(16,22%), óleo de algodão (0,93%) e outras fontes (13,03%), que incluem: óleo de palma, óleo 

de amendoim, óleo de nabo-forrageiro, óleo de girassol, óleo de mamona, óleo de sésamo, óleo 

de canola, óleo de milho, óleo de fritura usado e outros materiais graxos (ANP, 2019). 

  A escolha da matéria-prima para produção de biodiesel leva em consideração as 

condições geográficas, climáticas e econômicas, de modo particular em cada país. O uso de 

matérias-primas de 1ª geração para produção de biodiesel gera uma competição quanto ao 

destino da safra pós colheita com a cadeia alimentar, impactando fortemente nos custos para 
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aquisição da matéria-prima. Logo, é preferível a escolha de matérias-primas de 2ª ou 3ª geração, 

visto que em sua maioria ou são constituídas por subprodutos de uma atividade econômica já 

explorada ou não apresentam aproveitamento econômico direto como commodity.  

 A reação de transesterificação de óleos vegetais geralmente envolve catálise alcalina, 

em que um equilíbrio endotérmico ocorre na proporção estequiométrica de 1 mol de óleo para 

3 mols de um álcool de cadeia curta, geralmente metanol ou etanol, cujo processo passa a ser 

chamado de metanólise ou etanólise, de acordo com o álcool utilizado, respectivamente. A 

reação ocorre em 3 etapas reversíveis, em que diacilgliceróis e monoacilgliceróis são obtidos 

como intermediários, glicerol como subproduto, e o alquil-éster como produto de interesse em 

cada etapa. De modo que para se obter altas conversões normalmente a razão álcool:óleo é 

mantida elevada. O mecanismo das etapas reacionais, bem como a reação global para a 

transesterificação alcalina pode ser evidenciada pelas Equação de 1 – 5. (GÜNAY; TÜRKER; 

TAPAN, 2019; THANH et al., 2012; DARNOKO; CHERYAN, 2000). 

 

 

      B = catalisador alcalino. 
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 Um dos fatores principais a ser considerado para a escolha do tipo de catalisador em uma 

reação de transesterificação é a quantidade de água e ácidos graxos livres (FFA, do inglês Free 

Fatty Acids) na matéria-prima. Em relação aos óleos vegetais, aqueles que apresentam alta 

quantidade de FFA e água, principalmente para os de resíduo de fritura, a catálise ácida mostra-

se mais apropriada, em detrimento à utilização de um catalisador alcalino diretamente, que 

promoveria altas taxas de saponificação, reduzindo o rendimento da conversão. Entretanto, a 

catálise ácida exige temperaturas relativamente maiores e mais tempo de reação como 

condições experimentais. Por outro lado, para óleos com baixa quantidade de FFA e água, a 

utilização direta da catálise alcalina mostra resultados vantajosos em termos de rendimento e 

tempo de reação (THANH et al., 2012). 

 Outros fatores determinantes são o tipo de álcool e a razão (álcool:óleo) utilizada na 

reação de transesterificação, geralmente metanol seguido do etanol são os álcoois mais comuns. 

O metanol apresenta maior polaridade, custo mais baixo que o etanol em outros países, e 

geralmente taxas de conversão rápidas, o que pode variar de acordo com o tipo de matéria-

prima, a interação do mesmo com o catalisador e a temperatura utilizada. Por outro lado, o 

etanol tem baixa toxicidade e sua utilização tornaria toda a cadeia produtiva de biodiesel 

renovável, além de que em países como o Brasil, a utilização de etanol torna-se viável 

economicamente devido à alta produção de etanol de cana-de-açúcar (GHESTI et al., 2009; 

MENEGHETTI et al., 2006).  

 Outra vantagem para o uso de etanol é observada quando o óleo de algodão é usado 

como substrato para produção de biodiesel por rota etílica. O etanol promove maior retenção 

de gossipol na fase éster, se comparado com metanol. O gossipol é um pigmento de natureza 

fenólica presente do caroço do algodão que apresenta propriedades antioxidantes, com 

potencial para aumentar a estabilidade à oxidação do biodiesel, atuando como retardante sobre 

sua degradação (JOSHI; TOLER; WALKER, 2008). Isto se torna interessante, particularmente 

no Brasil, devido à recente exigência de aditivação do biodiesel com antioxidantes antes da 

liberação para comercialização, conforme a Resolução nº 798, de 1 de agosto de 2019. 

 

2.2 TECNOLOGIAS ANALÍTICAS DE PROCESSO E A ESPECTROSCOPIA NA REGIÃO 

DO INFRAVERMELHO PRÓXIMO  

 

2.2.1 Tecnologias analíticas de processo 
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 O desenvolvimento tecnológico acelerado vem transformando a forma de aquisição de 

informação que, atualmente, vem sendo obtida de modo mais rápido, amplo e contínuo. Assim, 

o desenvolvimento de ferramentas analíticas voltadas para auxiliar o processamento de dados 

vem se tornando uma demanda em comum entre a academia e a indústria. Neste sentido, as 

Tecnologias Analíticas de Processo (PAT) consistem em um conjunto de ferramentas com foco 

na aplicação de sistemas para análise, projeção e controle de processos, por meio da aquisição 

de medidas de parâmetros de qualidade e desempenho de materiais durante o processo 

produtivo. Dentre essas ferramentas, estão as ferramentas multivariadas para aquisição e análise 

de dados; os analisadores de processo; as ferramentas de controle de processo de melhoria 

contínua, cuja aplicação visa sempre a busca pela qualidade do produto final, entre outras (FDA, 

2004; SANDEN et al., 2019). 

  Trabalhos reportados pela literatura ressaltam a aplicação de ferramentas de análises 

multivariadas para aquisição e análise de dados como uma opção para avaliação de processos 

produtivos, e auxílio na tomada de decisão em tempo real, bem como para o desenvolvimento 

de métodos de controle de qualidade (ROUCHI et al., 2019; PAIVA et al., 2015; SALES et al., 

2016; LIMA, 2014; CORREIA et al., 2018). Nesse contexto, métodos baseados em 

espectrometria vibracional, como Raman e NIR, tendem a ganhar destaque pela sua capacidade 

de aquisição de dados de forma rápida, não destrutiva e confiável, bem como pelo processo de 

miniaturização que eles vêm sofrendo, tornando-os cada vez mais compactos e versáteis 

(PASQUINI, 2003; O’BRIEN et al., 2012).   

 

2.2.2 Espectroscopia na região do infravermelho próximo (NIR) 

 

 A espectroscopia estuda a interação da radiação eletromagnética com a matéria, de 

modo que os métodos espectroscópicos se baseiam na determinação da quantidade de radiação 

emitida ou absorvida por moléculas ou espécies atômicas na forma de fótons. As técnicas 

espectroscópicas apresentam alta versatilidade, podendo ser aplicadas tanto em análises 

qualitativas quanto para quantificação de espécies atômicas e moleculares. Conforme descrito 

pela Figura 2, essas técnicas podem ser classificadas de acordo com a região do espectro 

eletromagnético em que é feita a medida, cuja intensidade e tipo da alteração provocada a partir 

da interação da radiação com as espécies químicas, dependerá da energia característica de cada 

região. Observa-se que a intensidade da alteração sobre as espécies químicas é proporcional à 

quantidade de energia associada à frequência da radiação eletromagnética, tornando possível 
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acessar informações específicas por meio das técnicas espectroscópicas que utilizam faixas 

distintas do espectro. 

 

 

A região do infravermelho no espectro eletromagnético apresenta uma subdivisão em 3 

faixas, denominadas de infravermelho: próximo, médio (MIR, do inglês Mid Infrared) e 

distante (FIR, do inglês Far Infrared), cujos respectivos intervalos no espectro eletromagnético, 

se encontram descritos na Tabela 2.        

 

Tabela 2 – Faixas espectrais da radiação infravermelha. 

Faixa espectral Comprimento de onda – λ (nm) Número de onda (cm-1) 

NIR 780 – 2.500 12.800 – 4.000 

MID 2.500 – 50.000 4000 – 200 

FAR 50.000 – 1.000.000 200 – 10 

Fonte: Adaptado de Skoog, Holler e Crouch (2017). 
 

A energia proveniente da radiação infravermelha não é energética o suficiente para 

causar transições eletrônicas, porém, pode induzir transições nos estados vibracionais e 

rotacionais das moléculas. Portanto, a espectroscopia na região do infravermelho é uma técnica 

de espectroscopia molecular. Para uma determinada ligação química ser capaz de absorver 

radiação na região do infravermelho, ela precisa sofrer variação no seu momento dipolo, em 

função dos seus movimentos naturais de vibração e/ou rotação, ou seja, é preciso respeitar a 

regra de seleção. 

Figura 2 – Regiões do espectro eletromagnético. 

 

Fonte: Skoog et al. (2008). 
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Tal condição considera que, para ligações químicas que apresentam momento dipolar 

diferente de zero, o movimento de aproximação e distanciamento dos átomos devido à vibração, 

gera um campo elétrico oscilante ao redor da ligação química, tornando-o capaz de interagir 

com a radiação eletromagnética incidente. Se a frequência da vibração natural da ligação 

coincidir com a frequência da radiação incidente, ocorre então a absorção de energia pela 

ligação química, o que resulta em uma variação na amplitude vibracional desta ligação. 

(SKOOG; HOLLER; CROUCH, 2017).  

Na região do infravermelho próximo, a informação espectral é basicamente composta 

por bandas de absorção de sobretons e combinações das bandas de absorção fundamentais 

localizadas na faixa do infravermelho médio, conforme evidenciado na Figura 3 (WORKMAN; 

WEYER, 2012). 

 

Figura 3 – Diagrama de bandas de absorção na região do infravermelho próximo. 

 

Fonte: Adaptado de Zitting (2017). 
 

 Os sobretons correspondem a fenômenos de absorção de energia em que a molécula ao 

receber energia radiante é capaz de migrar do estado fundamental diretamente para níveis 

energéticos mais elevados, como o segundo, terceiro ou quarto estado excitado, 

correspondentes ao 1°, 2° e 3° sobretom respectivamente, considerando uma transição de 

número quântico vibracional maior que um (Δν = ± 2; ± 3 ou ± 4). Já as bandas de combinação 

ocorrem quando dois ou mais modos vibracionais são excitados ao mesmo tempo por um 
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mesmo fóton. A frequência das bandas de combinação é aproximadamente igual à soma ou à 

diferença de ambas as frequências fundamentais para os dois modos vibracionais (SKOOG; 

HOLLER; CROUCH, 2017; SILVA, 2017).  

 Segundo Pasquini (2003), a intensidade de absorção da radiação NIR é dependente do 

grau de anarmonicidade dos modos vibracionais e da diferença no momento dipolo presente 

nas ligações de espécies químicas. Estes aspectos são muito característicos de grupos funcionais 

que envolvem principalmente a presença de átomos como (C, O, N e S) ligados ao átomo de 

hidrogênio, como observado nas bandas de absorção apresentadas na Figura 3, para as ligações 

químicas ativas na região do infravermelho próximo. Esta condição viabiliza aplicações da 

espectroscopia NIR tanto em termos qualitativos como quantitativos para uma ampla faixa de 

compostos orgânicos, dentre eles os combustíveis.  

 Embora a intensidade de absorção de radiação NIR seja de 10 – 1.000 vezes menor do 

que na região do infravermelho médio, com o avanço tecnológico, a geração de fontes cada vez 

mais potentes associadas a detectores mais sensíveis promovem uma atenuação dessa 

deficiência, tornando as análises nessa faixa espectral confiáveis. Neste sentido, a 

espectroscopia NIR pode ser apontada como uma técnica com aplicação universal, visto que é 

não destrutiva, não invasiva, rápida e em geral requer pouco ou nenhum tratamento prévio de 

amostras. 

 Outra característica interessante desta técnica é a utilização de acessórios específicos 

junto aos equipamentos, tanto de bancada quanto portáteis, que permitem a aquisição de 

informação em tempo real diretamente do meio estudado. Nesta condição, destacam-se os 

modos de aquisição espectral in-line e on-line. No primeiro, um sensor analítico permanece 

diretamente em contato com o meio reacional, proporcionando maior sensibilidade a 

perturbações no sistema, gerando respostas mais representativas, além de tornar desnecessária 

uma etapa de amostragem. O segundo modo de aquisição de informação em tempo real, que 

cada vez mais é empregado, é o on-line, em que parte do volume do meio reacional é coletado, 

de forma contínua ou intermitente, por meio de uma linha de amostragem integrada ao meio 

reacional, de onde o fluxo é então condicionado em célula específica para coleta dos dados e 

processamento (TREVISAN; POPPI, 2006). 

 A grande quantidade de informação obtida por meio da rápida aquisição de espectros 

NIR, associada com a característica sobreposição de bandas de absorção no espectro, gera 

complexidade no processamento e interpretação das informações espectrais para fins analíticos 

qualitativos e quantitativos. Dessa forma, a utilização de quimiometria para extrair a informação 
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e correlacioná-la às características físicas e químicas da amostra é geralmente requerida 

(PASQUINI, 2018; WORKMAN; WEYER, 2012). 

 

2.3 QUIMIOMETRIA  

 

 De modo genérico, a quimiometria pode ser definida como a aplicação de ferramentas 

matemáticas e estatísticas à química (KOWALSKI, 1975). A importância do uso dessas 

ferramentas está relacionada com o crescente desenvolvimento tecnológico e a inovação na 

instrumentação química, que trouxe desafios pelo fato da geração de dados em larga escala por 

sistemas, muitas vezes integrados, trazer complexidade à interpretação da resposta 

instrumental. Tais dificuldades são observadas tanto do ponto de vista matemático e estatístico, 

quanto para associação desses dados com as propriedades de interesse das amostras analisadas.  

 A aplicação de técnicas quimiométricas apresentam grandes vantagens, dentre as 

principais estão a otimização das condições para obtenção de medidas experimentais, a extração 

da maior quantidade possível de informação por análise química, bem como a correção de 

desvios associados ao processo de obtenção das medidas. Neste sentido, para correção dos 

efeitos de desvios de linha de base em espectros NIR, por exemplo, é necessária a aplicação de 

técnicas quimiométricas descritas como pré-processamentos. Esta etapa do tratamento dos 

dados é responsável por reduzir variações presentes nos espectros que não são diretamente 

correlacionadas com as propriedades de interesse mensuradas, a fim de tornar a análise química 

mais confiável (BRUNS; FAIGLE, 1984; BAPTISTA et al., 2008). 

 

2.3.1 Pré-processamento de dados espectroscópicos. 

 

 Nesta seção serão introduzidas as técnicas mais comumente utilizadas para a correção 

de desvios associados aos espectros NIR, a fim de esclarecer sua aplicação ao longo da 

discussão do trabalho. Inicialmente, para fins de exemplificação, uma matriz de espectros (X) 

foi considerada.  Cada linha da matriz corresponde a uma amostra, neste caso, a um espectro 

NIR, e cada coluna corresponde à uma variável, ou seja, um comprimento de onda. 

Considerando que nas linhas são observadas I amostras e nas colunas, J variáveis, cada 

elemento dessa matriz é denotado por (𝒙𝒊𝒋), conforme exemplificado na Equação 6 

(FERREIRA, 2015). 
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𝐗 =

[
 
 
 
 
𝒙𝟏𝟏 𝒙𝟏𝟐 ⋯
𝒙𝟐𝟏 𝒙𝟐𝟐 ⋯
⋮
⋮

𝒙𝑰𝟏

⋮
⋮

𝒙𝑰𝟐

⋱

⋯

    

⋯ 𝒙𝟏𝑱

⋯ 𝒙𝟐𝑱

⋱
⋯

⋮
⋮

𝒙𝑰𝑱 ]
 
 
 
 

                                                                                                           (6) 

 

 

2.3.1.1 Pré-processamento nas variáveis 

 

 A centragem na média é sem dúvida uma das principais técnicas de pré-processamento 

aplicado às variáveis. É calculada, para todas as 𝐽 colunas da matriz X, a partir da subtração de 

cada um dos valores que compõem a coluna pelo valor médio de cada variável, conforme 

descrito pela Equação 7. 

 

𝒙𝒊𝒋 (𝒄𝒎) =  𝒙𝒊𝒋 − 𝒙̅𝒋                                                                                                                                 (7) 

 

 Em que: (𝒙𝒊𝒋 (𝒄𝒎)) é o valor de cada elemento da variável centrada na média e (𝒙̅𝒋) é a 

média para cada coluna, calculada de acordo com Equação 8.  

 

𝒙 ̅𝒋
= 

𝟏

𝑰
 ∑𝒙𝒊𝒋

𝑰

𝒊=𝟏

                                                                                                                                        (8) 

 

 Este pré-processamento promove apenas uma translação de eixos para o valor médio de 

cada um deles, sem, no entanto, alterar sua estrutura (FERREIRA, 2015).   

 

2.3.1.2 Pré-processamento nas amostras 

 

  Várias técnicas de pré-processamento são aplicadas aos espectros NIR para fins de 

redução da variabilidade em termos de espalhamento da radiação, efeito físico geralmente 

indesejado para avaliação da informação espectral. Dentre eles, a variação normal padrão 

(SNV, do inglês Standart Normal Variate), a correção de espalhamento multiplicativo (MSC, 

do inglês Multiplicative Scatter Correction), e a derivação espectral têm apresentado resultados 

positivos (FEARN et al., 2009).  

Variável (comprimento de onda) 

 

Amostra (espectro) 
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 A variação normal padrão é um dos métodos mais comuns para correção de desvios 

espectrais. SNV atua de modo individual, removendo a variação do deslocamento da linha de 

base, bem como efeitos de inclinação espectral, espectro por espectro. Tais efeitos são 

conhecidos como aditivo e multiplicativo, respectivamente. Dessa forma, os desvios gerados 

pelo espalhamento são eliminados sem haver alteração do perfil espectral, o que favorece o 

procedimento de identificação de bandas em etapas posteriores ao pré-processamento. 

Matematicamente, essa correção é efetuada através da subtração de todos os valores de cada 

espectro (𝒙𝒊 ), pelo valor médio (𝒙̅𝒊 ) (uma centragem na média para as amostras), e posterior 

divisão pelo desvio padrão do respectivo espectro (𝒔𝒊), conforme demonstrado na Equação 9 

(BARNES; DANHOA; LISTER, 1989, FERREIRA, 2015). 

 

𝒙𝒊 𝑺𝑵𝑽 = 
(𝒙𝒊 − 𝒙̅𝒊)

𝒔𝒊
                                                                                                                              (9) 

 

 Em que (𝒙̅𝒊) é denotado pela Equação 10: 

 

𝒙 ̅𝒊
= 

𝟏

𝑱
 ∑𝒙𝒊𝒋

𝑱

𝒋=𝟏

                                                                                                                                     (10) 

 

 A correção de espalhamento multiplicativo também é utilizada para correção de efeitos 

de espalhamento da radiação. Embora apresente resultados de correção espectral semelhantes 

ao SNV, essa técnica corrige cada espectro em função da média de todos os espectros da matriz 

de dados (ou outro espectro usado como referência), e não através do valor médio de cada 

espetro, como faz o SNV. Nesta técnica, é feita uma regressão de cada espectro em relação ao 

espectro de referência, geralmente o espectro médio do conjunto de calibração (𝒙𝒎). Assim, 

cada espectro (𝒙𝒊) pode ser descrito como uma função linear do espectro médio (𝒙𝒎), com 

coeficiente angular (𝒃𝒊) e coeficiente linear (𝒂𝒊), ambos constantes para todos os comprimentos 

de onda, conforme a Equação 11. 

 

𝒙𝒊 = 𝒂𝒊 + 𝒃𝒊𝒙𝒎 + 𝒆𝒊                                                                                                                         (11) 

 

 O espetro corrigido denotado por (𝒙𝒊 𝑴𝑺𝑪) é obtido por meio da diferença entre a 

absorbância do espetro original (𝒙𝒊) e o coeficiente linear (𝒂𝒊), gerando a correção do efeito 
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aditivo, e pela posterior divisão deste resultado pelo coeficiente angular (𝒃𝒊), corrigindo agora 

o efeito multiplicativo. O resultado desta correção aplicado para a i-ésima amostra da matriz 

descrita na Equação 6, pode ser observada na Equação 12 (FERREIRA, 2015; SILVA, 2017). 

 

𝒙𝒊  𝑴𝑺𝑪 = 
𝒙𝒊 − 𝒂𝒊

𝒃𝒊
=  𝒙𝒎 + 

𝒆𝒊 

𝒃𝒊
                                                                                                        (12) 

 

 Em que (𝒆𝒊) é o resíduo do processo de modelagem do espectro original (𝒙𝒊). 

 

 Outra estratégia de pré-processamento amplamente utilizada para correção de efeitos 

físicos em espectros NIR é a derivação espectral. Os métodos derivativos têm a habilidade de 

corrigir tanto o efeito aditivo, a partir do uso da primeira derivada, quanto o multiplicativo, que 

corrige além de deslocamento de linha de base, a inclinação presente nos espectros, conforme 

exemplificado na Figura 4.  

 

Figura 4 – Resultados da derivação espectral. A linha verde corresponde 

ao erro aditivo e a vermelha ao multiplicativo. 

 

Fonte: Adaptado de RINNAN; BERG; ENGELSEN (2009). 
  

 Conforme o grau de complexidade da derivada aplicada aumenta, há uma redução da 

intensidade do sinal e o surgimento de mais lobos como resultado intrínseco ao processo 

derivativo. Juntos, esses fatores contribuem para diminuição da razão sinal/ruído. Para correção 

desse problema, geralmente esses métodos são acompanhados de filtros de suavização, dentre 

eles um dos mais conhecidos e utilizados é o de Savitzky-Golay. Neste método, um polinômio 
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de grau n é ajustado para suavizar intervalos móveis ao longo de todo o espectro, chamados de 

janelas, cujo tamanho depende do número de pontos escolhidos. O valor central da janela é 

então substituído por uma média ponderada de seus valores, cujos pesos são obtidos pelo ajuste 

polinomial. Tanto o grau n do polinômio quanto o tamanho da janela devem ser ajustados, 

decisão que requer conhecimento sobre a natureza dos dados e das características técnicas do 

equipamento que gerou a resposta instrumental. A alteração do perfil espectral original devido 

ao pré-processamento a partir da derivada, no entanto, tem como principal desvantagem a 

dificuldade introduzida ao processo de atribuição de bandas, visto que após a correção, elas se 

tornam deslocadas em relação à posição original. (BARNES; DANHOA; LISTER, 1989; 

RINNAN; BERG; ENGELSEN, 2009; FERREIRA, 2015). 

 

2.3.2 Análise de Componentes Principais (PCA) 

 

 A análise de componentes principais (PCA, do inglês Principal Component Analysis) é 

um dos métodos mais importantes da quimiometria. Frequentemente é utilizada como uma 

poderosa ferramenta para visualização da estrutura dos dados, bem como para reduzir a 

dimensionalidade do conjunto amostral. A PCA é classificada como um método de análise 

exploratória não supervisionado, que permite a interpretação de dados sem a necessidade de 

possuir conhecimento prévio sobre sua natureza. Este método torna viável o reconhecimento 

de padrões entre as amostras, de acordo com a apresentação de possíveis tendências, diferenças 

e/ou formação de agrupamentos naturais (SOUZA; POPPI, 2012; FERREIRA, 2015).   

 Inicialmente, as amostras que constituem o conjunto de dados original apresentam-se 

como pontos dispersos em um espaço de n dimensões. A PCA representa estes dados em um 

novo sistema de eixos ortogonais entre si, chamados de componentes principais (PC, do inglês 

Principal Component), que permitem a observação da informação de modo não correlacionado 

em cada PC. Desse modo, as amostras passam a estar distribuídas de acordo com a direção da 

sua máxima variância sobre essa nova forma de projeção. Cada PC resulta da combinação linear 

das variáveis originais. De modo que a primeira PC (PC1) é direcionada no sentido da maior 

variabilidade, a segunda componente (PC2), que é ortogonal à primeira, aponta no sentido da 

segunda maior variabilidade, explicando a variação que PC1 não foi capaz, e assim por diante. 

A representação das amostras sobre os eixos das PCs pode ser observada na Figura 5 (SOUZA; 

POPPI, 2012).   
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Figura 5 – Projeção das amostras sobre os eixos de máxima variância (PCs). 

 

Fonte: O autor (2020). 
 

 Do ponto de vista matemático, a PCA decompõe a matriz X (Equação 6), em duas outras 

matrizes, a de escores (T) e a de loadings ou pesos (P), mais uma matriz de erros (E), conforme 

descrito na Equação 13. 

 

𝐗 = 𝐓𝐏t + 𝐄                                                                                                                                          (13) 

 

 Os escores representam as coordenadas das amostras no sistema de eixos formado a 

partir das componentes principais, em que essa relação no novo subespaço delimitado pelas 

PCs pode evidenciar informações acerca de semelhanças entre as amostras. Os pesos são 

obtidos a partir do cosseno do ângulo formado entre a componente principal e o eixo da variável 

original. Sua avaliação contribui para identificação do grau de importância de cada variável 

sobre a distribuição das amostras nas componentes principais  

 Por outro lado, a matriz de erros (E) corresponde ao desvio entre a projeção e as 

coordenadas originais, ou seja, nela estão contidas as informações que não foram descritas pelas 

PCs. Como cada componente principal apresenta um percentual de variância explicada, o 

número de PCs utilizado na modelagem é adotado de acordo com o máximo de informação 
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possível a ser capturada do conjunto de dados (SOUZA; POPPI, 2012; WOLD; ESBENSEN; 

GELADI, 1987). 

 

2.3.3 Calibração multivariada 

 

2.3.3.1 Regressão pelos mínimos quadrados parciais PLS 

 

 Para construção do modelo de regressão multivariada, a abordagem PLS utiliza as 

informações tanto da matriz de dados espectrais X (Equação 6), quanto de um vetor y ou matriz 

Y, que contém as informações da propriedade de interesse que se deseja estabelecer uma 

correlação linear. Os modelos são denominados de PLS 1 quando existe apenas uma 

propriedade de interesse, a qual é descrita como um vetor y, e PLS 2 quando há mais de uma 

propriedade em que se deseja correlacioná-las simultaneamente com a matriz de dados X. Nesse 

caso, as propriedades de interesse são dispostas em uma matriz Y. A relação entre os dois 

conjuntos de dados é promovida por meio de fatores, denominados de variáveis latentes (VL) 

(NAES et al., 2002; SOUZA et al., 2013).   

 Na etapa de modelagem pelo método dos mínimos quadrados parciais, a decomposição 

da matriz X e da matriz Y nas variáveis latentes segue um processo análogo ao descrito para a 

PCA, item 2.3.2. No entanto, nesse caso, as variáveis latentes promovem a maximização da 

covariância entre os escores da matriz X e da matriz Y, e o número de variáveis latentes 

utilizadas para o processo de modelagem é escolhido, em geral, de acordo com a minimização 

do erro de validação cruzada. Esta decomposição é descrita pelas Equações 14 e 15 (SOUZA 

et al., 2013; GELADI; KOWALKI, 1986). 

 

𝐗 = 𝐓𝐏𝐭 + 𝐄 =  ∑𝒕𝒉𝒑
𝒕
𝒉
+ 𝐄                                                                                                        (14) 

𝐘 = 𝐔𝐐𝐭 + 𝐅 = ∑𝒖𝒉𝒒𝒕
𝒉

+ 𝐅                                                                                                        (15) 

 

 Em que P e Q correspondem aos pesos e T e U são os escores da matriz X e da matriz 

Y, respectivamente. Assim como E e F são os resíduos da matriz X e da matriz Y, 

respectivamente. Uma vez que os escores de X e Y são correlacionados (T e U, 

respectivamente), é possível estabelecer uma relação linear entre as matrizes X e Y, 

representada pelos coeficientes de regressão.   
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 Os escores da matriz X e da matriz Y são relacionados por meio do coeficiente b para 

as h variáveis latentes, conforme descrito na Equação 16. 

 

𝒖𝒉 = 𝒃𝒉𝒕𝒉                                                                                                                                              (16) 

 

 O agrupamento dos valores de 𝒃𝒉 em uma matriz diagonal B, dá origem à matriz de 

coeficientes de regressão entre a matriz de escores U da matriz Y e os escores T da matriz X. 

A melhor relação linear entre a matriz X e a matriz Y é obtida através dos coeficientes de 

regressão, que também estabelecem uma relação com os loadings de X e Y, por meio de um 

fator de peso W conforme descrito pela Equação 17 (NAES et al., 2002).   

 

𝑩 = 𝑾(𝑷𝒕𝑾)−𝟏𝑸                                                                                                                                (17) 

 

 Cada nova predição é então obtida a partir da Equação 18.  

 

𝒀̂ = 𝑿𝑩                                                                                                                                                   (18) 

 

 Após a construção do modelo é necessário testar sua capacidade preditiva. Esta etapa é 

chamada de validação, e consiste em verificar se a resposta do modelo corresponde a valores 

coerentes com a respectiva propriedade do analito, a partir de parâmetros e testes estatísticos 

que comprovem seu desempenho (FERREIRA et al., 1999).  

 

2.3.3.2 Validação de modelos de regressão multivariados e figuras de mérito 

 

 Para avaliação da capacidade preditiva dos modelos de regressão multivariados, 

comumente são utilizados parâmetros estatísticos, conhecidos como figuras de mérito. Dentre 

elas, a raiz quadrada do erro médio quadrático (RMSE, do inglês Root Mean Squared Error) e 

o bias são comumente utilizadas. Esses parâmetros são calculados a partir dos valores preditos 

pelo modelo e os valores de referência. Já a comparação quanto ao desempenho entre os 

modelos construídos é realizada através dos testes de Fisher e t-student (NAES et al., 2002). 

 O parâmetro RMSE é demonstrado pela Equação 19, e corresponde à raiz quadrada da 

razão entre o somatório do quadrado da diferença entre o valor predito de cada amostra (𝑦̂𝑖) e 

o respectivo valor de referência (𝑦𝑖), e o número (N) de amostras para um modelo. É importante 
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destacar que a unidade do erro calculado pela Equação 19 é a mesma das medidas originais 

realizadas, facilitando a avaliação do resultado. 

 

𝑹𝑴𝑺𝑬 = √
∑ (𝒚̂𝒊 − 𝒚𝒊)𝟐𝑵

𝒊=𝟏

𝑵
                                                                                                              (19) 

  

 Quando essa estimativa é realizada sobre o conjunto de dados de calibração utilizados 

para construção do modelo, um dos parâmetros utilizados é a raiz quadrada do erro médio 

quadrático de calibração (RMSEC, do inglês Root Mean Squared Error of Calibration), 

calculado a partir da Equação 20. Nesta etapa, as mesmas amostras utilizadas para construção 

do modelo são empregadas para testá-lo. 

 

𝑹𝑴𝑺𝑬𝑪 =  √
∑ (𝒚̂𝒊 − 𝒚𝒊)𝟐𝑵

𝒊=𝟏

(𝑵 − 𝒉 − 𝟏)
                                                                                                          (20)  

 

 Em que (𝑦̂𝑖) é o valor predito para cada amostra, tendo como respectivo valor de 

referência (𝑦𝑖), (N) é o número de amostras de calibração, e (h) é o número de variáveis latentes 

utilizadas pelo modelo. 

 Como o RMSEC estima apenas o erro correspondente às amostras de calibração, ou 

seja, sem qualquer informação do conjunto de predição, a estimativa dos erros dos coeficientes 

de regressão são desconsiderados, não sendo, portanto, um parâmetro confiável para qualquer 

estimativa sobre a predição. Nesse sentido, a fim de proporcionar maior confiança à verificação 

dos dados de calibração quanto à capacidade preditiva, faz-se necessária a utilização de 

alternativas mais eficazes como processos de validação e predição.   

 Um dos métodos mais utilizados para validação interna é a validação cruzada (CV, do 

inglês Cross-Validation). Nesse método, são realizadas sucessivas retiradas de amostras do 

conjunto de calibração, e a cada retirada, um modelo é ajustado para as amostras restantes, o 

qual é então testado para predição das amostras previamente removidas. Na sequência, aquelas 

primeiras amostras retiradas são devolvidas ao conjunto de calibração e o processo é repetido 

até que todas as amostras tenham sido removidas e tenha sido feita a sua predição. O número 

de amostras removidas de cada vez pode variar desde apenas uma, até a remoção de um grupo 

de amostras. Se o primeiro modo for escolhido, a técnica de validação cruzada é chamada de 

leave-one-out. Já no segundo caso, as amostras que compõem os grupos podem ser escolhidas 
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por blocos de amostras aleatórios, sendo descrita por Contiguos Blocks, ou em quantidades 

definidas, cujos blocos são formados a partir da retirada de posições especificadas previamente, 

sendo então chamado de Venetian blinds, ou ainda de modo personalizado Custom, cuja escolha 

é feita manualmente, além de outras variantes desses métodos (NAES et al., 2002). 

 Assim, a estimativa do erro para o método de validação cruzada é dada pela raiz 

quadrada do erro médio quadrático de validação cruzada (RMSECV, do inglês Root Mean 

Squared Error of Cross-Validation). O RMSECV é obtido pela Equação 21 (NAES et al., 

2002). 

 

𝑹𝑴𝑺𝑬𝑪𝑽 = √
∑ (𝒚̂𝑪𝑽,𝒊 − 𝒚𝒊)

𝟐𝑵
𝒊=𝟏

(𝑵)
                                                                                                   (21) 

 

 Já para a etapa de predição, o erro é calculado como a raiz quadrada do erro médio 

quadrático de predição (RMSEP, do inglês Root Mean Squared of Prediction), conforme descrito 

na Equação 22. 

 

𝑹𝑴𝑺𝑬𝑷 =  √
∑ (𝒚̂ 𝒊 − 𝒚𝒊)𝟐𝑵𝒑

𝒊=𝟏

(𝑵𝒑)
                                                                                                          (22) 

 

 Em que (𝑁𝑝) corresponde ao número de amostras do conjunto de predição, (𝑦̂ 𝑖) e (𝑦𝑖) 

são: o valor predito pelo modelo e o valor de referência para cada amostra do conjunto de 

predição, respectivamente. 

 Nesta etapa por meio do RMSEP estima-se a capacidade preditiva do modelo em termos 

de exatidão entre as respostas preditas pelo modelo e as de referência. Essa resposta é avaliada 

para um conjunto de dados diferente daquele utilizado para construção do modelo de calibração, 

sendo uma referência de quão bem o modelo funciona. A desvantagem apresentada por este 

tipo de validação, é apenas a necessidade de reservar uma parte considerável do conjunto de 

dados original para esta finalidade, visto que a variabilidade dessas amostras, deixa de fazer 

parte dos dados de calibração (NAES et al., 2002). 

   A fim de avaliar o desempenho entre os modelos de predição construídos, o teste 

estatístico de Fisher, teste F, é uma das ferramentas normalmente utilizadas para comparação 

entre os valores de RMSEP (SILVA, 2017; LIMA, 2014), haja vista que ele é capaz de testar 
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hipóteses relativas às variâncias populacionais. A expressão matemática que descreve o teste é 

apresentada na Equação 23 (BRUNS; SCARMINIO; NETO, 2006).  

 

 
𝑆2

𝐴

𝑆2
𝐵
 ≅  

𝜎2
𝐴

𝜎2
𝐵
 𝐹𝜈𝐴,𝜈𝐵                                                                                                                               (23) 

 

 Em que, 𝑆2
𝐴 e 𝑆2

𝐵 correspondem às variâncias amostrais, 𝜎2
𝐴 e 𝜎2

𝐵 são as variâncias 

populacionais e 𝜈𝐴 𝑒 𝜈𝐵 são os graus de liberdade para cada conjunto. Nesse sentido, através de 

um teste de hipóteses, é possível avaliar se as variâncias populacionais são de fato idênticas ou 

não para cada modelo construído, Para isso, faz-se necessário testar a hipótese de que as 

variâncias amostrais 𝑆2
𝐴 e 𝑆2

𝐵  são capazes de estimar a variância populacional. Assim, o teste 

de Fischer é aplicado a fim de obter o valor de F calculado (Fcalc) a partir da Equação 24. 

 

𝐹𝑐𝑎𝑙𝑐 = 
𝑆2

𝐴

𝑆2
𝐵
                                                                                                                                           (24) 

 

 O resultado da equação 24 é então comparado com o valor de referência tabelado (Ftab), 

levando em consideração os respectivos graus de liberdade 𝜈𝐴 𝜈𝐵. Uma vez que (Fcalc) é maior 

que (Ftab), não é possível afirmar que as variâncias são estatisticamente equivalentes, 

considerando um certo nível de confiança. Logo, pode-se afirmar que há diferença significativa 

entre os valores de RMSEP comparados. 

 Outro parâmetro utilizado para avaliação de modelos multivariados é a identificação da 

presença de erros sistemáticos, por meio do bias, o qual é calculado a partir da Equação 25 

(NAES et al., 2002). 

 

𝑏𝑖𝑎𝑠 =  
∑ (𝑦̂ 𝑖 − 𝑦𝑖)

𝑁𝑝

𝑖=1

(𝑁𝑝)
                                                                                                                        (25) 

 

 O bias corresponde basicamente à diferença média entre o valor predito pelo modelo 

(𝑦̂ 𝑖) e o valor de referência (𝑦𝑖) para o conjunto de predição com (𝑁𝑝) amostras.  

 A presença de erros sistemáticos em modelos PLS é apontada, em geral, quando o valor 

do bias é significativo para o nível de 95% de confiança. Essa estimativa é obtida utilizando o 

teste t-student, conforme normalizado pela American Society for Testing and Materials (ASTM 

E1655-05), cuja expressão matemática está mostrada na Equação 26. 
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𝑡𝑐𝑎𝑙𝑐 =  
|𝑏𝑖𝑎𝑠|√𝑁𝑝 

𝑆𝐷𝑉
                                                                                                                             (26) 

  

 Em que (𝑁𝑝) é o número de amostras do conjunto de predição, e SDV corresponde ao 

desvio padrão do erro de validação (SDV, do inglês Standard Deviation of Validation). O SDV 

pode ser calculado pela Equação 27. 

 

𝑆𝐷𝑉 = √𝑅𝑀𝑆𝐸𝑃2 − 𝑏𝑖𝑎𝑠2                                                                                                             (27) 

 

 O valor de (𝑡𝑐𝑎𝑙𝑐) é então comparado com o valor tabelado (𝑡𝑡𝑎𝑏), e caso o valor de t 

calculado for maior que o valor de t crítico, o modelo apresenta bias significativo considerando 

𝑣 graus de liberdade para o nível de 95% de confiança.  

 Um outro parâmetro estatístico utilizado para avaliação de modelos multivariados é o 

coeficiente de determinação (R2). Essa estatística representa o grau de ajuste do modelo aos 

dados, e está descrito pela Equação 28 (FERREIRA, 2015). 

 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝐼
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)2𝐼
𝑖=1

                                                                                                                  (28) 

 

 Em que (𝑦𝑖) é o valor de referência, (𝑦̂𝑖) é o valor estimado pelo modelo multivariado e 

(𝑦̅𝑖) é a resposta de referência média. O coeficiente de determinação (R2) pode adotar valores 

no intervalo de 0 ≤  𝑅2 ≤ 1, sendo estimado para cada etapa de modelagem, ou seja, serão 

obtidos valores de R2 para os modelos de calibração e validação interna e predição. 

 

2.3.3.3 Seleção de variáveis pelo algoritmo interval PLS 

 

 O algoritmo dos mínimos quadrados parciais por intervalos (iPLS, do inglês Interval 

Partial Least Squares) promove a construção iterativa de modelos locais PLS a partir de faixas 

de comprimentos de onda selecionadas do espectro inteiro. Este método de seleção de variáveis 

apresenta como principal objetivo fornecer uma visão geral das informações mais importantes 

do espectro, destacando aquelas regiões com maior relevância para construção do modelo PLS, 

em relação ao modelo desenvolvido com uso do espectro inteiro. Essa comparação é balizada 

pelo valor da raiz quadrada do erro médio quadrático de validação cruzada (RMSECV). Duas 
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importantes vantagens da utilização deste método são: a possibilidade de melhora na capacidade 

preditiva da regressão PLS, assim como a demanda de menor tempo de análise devido à 

avaliação de um número menor de variáveis analisadas. Esta segunda, em particular, é 

fundamental para utilização de dados obtidos através de medições on-line aplicadas a controle 

de processos em tempo real (NØRGAARD et al., 1999). 

 

2.3.3.4 Seleção de amostras pelo algoritmo SPXY 

 

 Conforme descrito por Galvão et al. (2005), este método é utilizado para particionar as 

amostras do conjunto de dados originais em dois subconjuntos, o de calibração e o de predição. 

Para esta etapa, é necessário que os dados já tenham sido pré-tratados, e que amostras que 

apresentarem comportamento anômalo (outliers) tenham sido removidos. A divisão das 

amostras leva em consideração a variabilidade conjunta da matriz de dados espectroscópicos X 

e do vetor y que contém os valores de referência.  

 O algoritmo calcula a distância Euclidiana na matriz X e na variável y e seleciona 

iterativamente um par de amostras (p,q) que apresenta a maior distância entre si, dxy(p,q), de 

modo que para as novas iterações, a segunda maior distância mínima é tomada entre duas outras 

amostras, e assim sucessivamente. A distância dxy(p,q) corresponde, portanto, a soma das 

distâncias Euclidianas em X e y, divididas pelo valor máximo de cada conjunto, a fim de que 

uma distância normalizada seja obtida. O cálculo de dxy(p,q) está descrito na Equação 29.  

 

𝑑𝑥𝑦(𝑝, 𝑞)  =  
𝑑𝑥(𝑝, 𝑞)

𝑚𝑎𝑥𝑝,𝑞 ∈ [1,𝑁] 𝑑𝑥(𝑝, 𝑞)
 +  

𝑑𝑦(𝑝, 𝑞)

𝑚𝑎𝑥𝑝,𝑞 ∈ [1,𝑁] 𝑑𝑦(𝑝, 𝑞)
;  𝑝, 𝑞 ∈  [1,𝑁]                   (29) 

 

2.4 CONTROLE ESTATÍSTICO MULTIVARIADO DE PROCESSOS EM BATELADA 

BASEADO EM VARIÁVEIS LATENTES 

 

 Processos produtivos convencionais em batelada têm a característica comum de 

apresentar duração finita. Basicamente ocorrem em três etapas gerais: introdução da matéria-

prima, processamento dos componentes sob condições físicas controladas e descarga do 

produto. Em alguns casos, apenas ao final do processo, ensaios de aferição da qualidade do 

produto são realizadas. No entanto, variações normalmente ocorrem nas características dos 

produtos obtidos entre uma batelada e outra, podendo ser atribuídas a desvios nas variáveis de 

processo, à qualidade da matéria-prima empregada, e até mesmo a flutuações naturais do 
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processo. Nesse sentido, monitorar apenas a qualidade do produto de cada batelada torna-se 

uma maneira de avaliação parcial, visto que alterações que possam vir a ocorrer nas variáveis 

de processo ao longo da batelada podem alterar o seu desempenho, sendo detectadas muitas 

vezes só após uma ou algumas bateladas serem terminadas. Assim, a realização do 

monitoramento em tempo real das variáveis de processo e dos atributos de qualidade, torna-se 

necessária e dá origem a uma abordagem de avaliação robusta capaz de fornecer uma impressão 

digital da trajetória das variáveis de processo para cada batelada (NOMIKOS; MACGREGOR, 

1995). 

 Nesse sentido, com o desenvolvimento acelerado da tecnologia, principalmente com a 

implantação da automação industrial, uma grande quantidade de medidas passou a ser coletada 

simultaneamente por diferentes instrumentos e compilada por computadores. Desse modo, a 

interpretação univariada dessa gama de informação vem se tornando cada vez mais inviável 

para interpretação e atuação corretiva em tempo real, quando necessária. Sendo assim, gráficos 

de controle estatístico multivariado de processos baseados em métodos de projeção 

multivariada como PCA e PLS vêm sendo empregados como uma ferramenta para reduzir a 

dimensionalidade das variáveis originais por meio da exploração da variabilidade e/ou estrutura 

de correlação entre estas. A informação correlacionada das variáveis originais é então projetada 

em um subespaço de baixa dimensionalidade definido pelas variáveis latentes. Portanto, esta é 

uma alternativa atrativa para aplicação em ambientes ricos em dados (KOURTI; 

MACGREGOR, 1996; FERRER, 2007; SALES, 2016; CATELANI et al., 2018). 

 Para aplicação da abordagem multivariada, é necessário conhecer o processo 

tecnicamente e obter um conjunto de dados de processo que seja representativo com relação ao 

comportamento esperado do processo estudado. Por isso, os dados históricos das variáveis de 

processo são muito valiosos durante a fase inicial do desenvolvimento de estratégias de MSPC. 

A condição padrão de um determinado processo, estabelecida levando-se em conta as 

especificações técnicas do processo e a qualidade do produto obtido, é denominada de condição 

normal de operação (NOC, do inglês Normal Operating Condition), e serve como referência 

para produção de outras bateladas. A partir dos dados de processos obtidos em bateladas sob 

condições normais de operação, gráficos ou cartas de controle podem ser construídos e 

utilizados para avaliar a dinâmica das variáveis de processo na produção de bateladas futuras.  

 Assim, o desenvolvimento de cartas de controle baseadas nas estratégias MSPC 

normalmente ocorrem em duas etapas. Na etapa I, conhecida como etapa de calibração, um 

modelo multivariado é construído a partir de dados históricos provenientes de bateladas NOC. 

Nessa etapa são estipulados os limites de controle, levando em consideração a variação natural 



41 
 

 

entre as bateladas, bem como a correlação entre as variáveis. Na etapa II, a etapa de predição, 

os dados obtidos em novas bateladas são projetados no modelo multivariado desenvolvido com 

as bateladas NOC. Assim, a detecção de possíveis falhas nesse novo conjunto de bateladas pode 

ser realizada (NOMIKOS; MACGREGOR, 1995; FERRER, 2007). 

 

2.4.1 Abordagens de desdobramento da matriz de dados espectroscópicos 

  

 Durante o monitoramento em tempo real do processo em batelada, J variáveis são 

medidas durante K intervalos de tempo. Considerando a produção de N bateladas, esses dados 

podem ser agrupados em uma matriz tridimensional (N x J x K), conforme a Figura 6. Ao longo 

da direção vertical estão as bateladas, no eixo horizontal as variáveis (dados de processo, dados 

espectroscópicos, etc.) e na terceira dimensão, os intervalos de tempo. 

 

Figura 6 – Agrupamento dos dados oriundos do monitoramento de N bateladas. 

 

Fonte: Adaptado de Nomikos e Macgregor (1995). 
 

 O tipo de informação extraída da matriz tridimensional e a interpretação dos dados 

presentes no arranjo da Figura 6 depende do tipo de tratamento aplicado a esta matriz. A matriz 

tridimensional pode ser manipulada de diferentes formas que podem ser adotadas de acordo 

com o objetivo da análise realizada. Para construção das cartas de controle através dos métodos 

de projeção multivariados, é necessário desdobrar esses dados organizados em 3 dimensões em 

uma matriz bidimensional, para que posteriormente seja possível aplicar métodos de projeção 

de dados, como PCA ou PLS (NOMIKOS; MACGREGOR, 1995). 

 Duas abordagens de desdobramento e modelagem dos dados são mais comumente 

utilizadas para extração da informação presente na matriz tridimensional. Uma delas foi 
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proposta por Nomikos e Macgregor, (1995), em que a matriz de dados da Figura 6 sofre 

inicialmente cortes verticais no sentido do eixo das bateladas. Este tipo de desdobramento é 

chamado de batch-wise, visto que o eixo das bateladas permanece inalterado para cada intervalo 

de tempo. A segunda abordagem foi proposta por Wold et al. (1998), e promove inicialmente o 

rearranjo da matriz de dados a partir de cortes horizontais da matriz tridimensional em relação 

ao eixo do tempo. Esse desdobramento é descrito como variable-wise, haja vista que o eixo das 

variáveis fica inalterado. Essas abordagens, descritas com mais detalhe a seguir, são 

apresentadas, respectivamente, como NM e WKFH (Wold, Kettaneh, Friden e Holmberg), em 

referência aos autores. 

 Ambas as abordagens são utilizadas tanto para análises de bateladas após o seu término 

(do inglês: end of batch) quanto para avaliação em tempo real (do inglês: real time). Na 

abordagem end of batch, é possível diagnosticá-las quanto ao desempenho esperado, através da 

comparação com as bateladas NOC. Por outro lado, na abordagem real time, é possível 

monitorar a batelada durante a sua evolução. Assim, quando verificado um desvio anormal 

significativo em relação às condições normais de operação, é possível tomar medidas corretivas 

a fim de conduzir o processo de volta para a condição desejável (GONZÁLEZ-MARTINEZ; 

CAMACHO; FERRER, 2018). 

 

2.4.1.1 Desdobramento e análise da matriz tridimensional baseado na abordagem NM 

 

 Na abordagem NM, a matriz tridimensional da Figura 6 é inicialmente rearranjada a 

partir de cortes verticais ao longo do eixo das bateladas, como pode ser evidenciado na Figura 

7. Cada camada correspondente a um intervalo de tempo é então agrupada lado a lado, tornando 

o eixo das bateladas inalterado (batch-wise). Após o rearranjo, é obtida então uma matriz 

bidimensional (N x JK), na qual cada linha corresponde às informações de uma batelada inteira, 

possibilitando a observação da dinâmica do processo ao longo do tempo (NOMIKOS; 

MACGREGOR, 1995).  
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Figura 7 – Desdobramento da matriz tridimensional por meio da abordagem NM. 

 

Fonte: Adaptado de Nomikos e Macgregor (1995). 

  

 Conforme descrito por Nomikos e Macgregor (1995), após a operação de rearranjo da 

matriz tridimensional, a etapa de centragem dos dados na média é de suma importância para 

remoção da não-linearidade dos dados. Nesse sentido, por meio da subtração da média dos 

valores de cada coluna, é possível remover a trajetória média de cada variável. Em seguida, 

aplica-se a PCA aos dados pré-processados e obtidos sob condições normais de operação 

(bateladas que compõem o conjunto de calibração). Como resultado, cada elemento dos escores 

corresponde a uma única batelada completa e representa a variabilidade desta em relação às 

demais. Já o vetor de pesos fornece as direções de maior variabilidade do conjunto de dados. 

 Conforme discutido anteriormente, o monitoramento de um processo em batelada pode 

ser efetuado após seu término ou em tempo real. Para a estratégia de desdobramento NM, cada 

linha de matriz 2D representa as medidas em todos os tempos de uma determinada batelada. 

Assim, para aplicar o modelo a uma nova batelada (nova linha), é necessário esperar o fim de 

sua operação para que sejam adquiridas as medidas em todos os tempos. Entretanto, alguns 

métodos para realizar o preenchimento de valores futuros para as medidas, durante o andamento 

da batelada, podem ser utilizados para habilitar a utilização das cartas de controle em tempo 

real. Nomikos e Macgregor, (1995) descrevem algumas alternativas com esta finalidade, como: 

preencher as observações futuras com zeros, efetuar o preenchimento com valores que 

mantenham os desvios das trajetórias médias ao longo da batelada, e a aplicação do modelo 

PCA aos dados de referência (conjunto de calibração) para estimar as observações futuras.  

Todos esses métodos pressupõem que as observações futuras respeitam as trajetórias médias 

das bateladas do conjunto de calibração.  

 

2.4.1.2 Desdobramento e análise da matriz tridimensional baseado na abordagem WKFH 
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 Na abordagem WKFH, proposta por Wold et al. (1998), a matriz de dados da Figura 6 

é inicialmente rearranjada a partir de cortes horizontais ao longo do eixo dos intervalos de 

tempo. Em seguida, as camadas são agrupadas uma abaixo da outra, de modo que o eixo das 

variáveis permanece inalterado (variable-wise), conforme ilustrado na Figura 8. Depois do 

rearranjo executado, uma matriz bidimensional (NK x J) é obtida, em que cada coluna 

representa a intensidade do sinal referente a uma variável para todas as bateladas, neste caso, a 

matriz é composta pelos valores de absorbância para cada comprimento de onda (variáveis).  

 

Figura 8 – Desdobramento da matriz tridimensional por meio da abordagem WKFH. 

 

Fonte: Adaptado de Wold et al. (1998). 
 

 Diferentemente do que acontece na abordagem de desdobramento NM, na abordagem 

WKFH a centragem na média da matriz bidimensional remove apenas a grande média do 

conjunto de dados, mantendo a variabilidade relacionada com a trajetória média. 

Posteriormente, para realização do monitoramento de bateladas em tempo real, um modelo PLS 

é construído, conforme descrito no item 2.3.3.1. A construção do modelo PLS ocorre a partir 

dos dados da matriz bidimensional desdobrada e um vetor que indique o tempo local ou índice 

de maturidade para as bateladas, de modo que o vetor predito pelo modelo PLS indica a 

evolução da batelada.  

 Os escores do modelo PLS são então utilizados para construção das cartas de controle. 

Para isso, os vetores de escores para cada batelada, para cada variável latente, são agrupados 

lado a lado, formando uma matriz com N linhas (bateladas) e HK colunas. Em que H é o número 

de variáveis latentes utilizadas e K são os intervalos de tempo. Dessa matriz são estimados os 

limites de controle para cada intervalo de tempo de acordo com os valores da média e do desvio 

padrão calculados para cada coluna. Esta etapa está representada na Figura 9. Uma grande 
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vantagem dessa abordagem é o fato de não ser necessário a imputação de valores futuros para 

predição de bateladas em processamento, como exigido pela abordagem NM. Conforme 

descrito por Flores-Cerrillo e Macgregor, (2004), outro ponto positivo é o fato de a modelagem 

ser realizada a partir dos escores da matriz desdobrada, frente à utilização dos dados originais 

como faz a abordagem NM. Assim, reduz-se o tempo de trabalho computacional, visto que 

devido à alta correlação entre as variáveis de processo, estas podem ser representadas em um 

espaço de poucas dimensões, através dos métodos projeção.   

  

Figura 9 – Rearranjo dos escores do modelo PLS para construção dos gráficos de controle exemplificado para 

as duas primeiras VL. 

 

Fonte: Adaptado de Wold et al. (1998). 
 

 O monitoramento do processo em batelada além de efetuado em tempo real, conforme 

descrito acima, também ocorre no modo pós-batelada. Para este último, os escores provenientes 

do modelo PLS, desenvolvido anteriormente, são rearranjados de acordo com a abordagem NM 

(Figura 7), sendo submetidos posteriormente a uma PCA, conforme descrito por Wold et al. 

(1998).  

 

2.4.2 Diagnóstico de falhas em processos em batelada 

 

 Uma vez construídas as cartas de controle baseadas em métodos de projeção PCA e/ou 

PLS sobre os dados de bateladas obtidas em condições normais de operação (conjunto de 

calibração), é possível monitorar as novas observações referentes às bateladas do conjunto de 

predição por meio da projeção dos escores dos novos dados pré-processados sobre o plano do 

modelo de referência construído. Nesse sentido, por meio dos dados referentes aos escores e os 

resíduos da modelagem, eventos anômalos podem ser detectados principalmente por meio de 

cartas de controle referentes a duas estatísticas, o erro quadrático de predição (SPE, do inglês 

Squared Prediction Error) e o T2 de Hotelling. A primeira representa o quadrado da distância 

Euclidiana (distância perpendicular) de uma nova observação em relação ao plano do modelo 

construído com as bateladas NOC. Quando uma observação na carta da estatística SPE supera 

o limite de controle para um dado nível de confiança, observa-se que tal batelada apresenta um 
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comportamento diferente do apresentado pelo conjunto de calibração. Assim, é factível afirmar 

que houve uma quebra na estrutura de correlação das variáveis no modelo. O cálculo da 

estatística SPE pode ser evidenciado na Equação 30 (FERRER, 2007). 

 

𝑺𝑷𝑬 = 𝒆𝒊
𝒕𝒆𝒊 =  (𝒙𝒊 − 𝒙𝒊

∗)𝒕(𝒙𝒊 − 𝒙𝒊
∗)                                                                                         (30) 

 

 Em que (𝒆𝑖) é vetor de resíduo da i-ésima observação, (𝒙𝒊
∗) é o valor predito pelo 

método de projeção adotado, a partir da observação (𝒙𝒊). Outra forma de expressar a distância 

de novas observações frente ao plano do modelo é em termos da distância absoluta corrigida 

pelo desvio padrão, através da estatística DModX descrita pela Equação 31. 

 

𝑫𝑴𝒐𝒅𝑿 = 𝒄√
𝑺𝑷𝑬

(𝑱 − 𝒉)
                                                                                                                       (31) 

 

 Em que (𝑐) corresponde a um fator de correção, que depende do número de observações 

e do número de componentes. O mesmo apenas é considerado no cálculo da carta de DModX 

quando o número de observações do conjunto de calibração é pequeno. Já na etapa de predição, 

o cálculo de DModX é efetuado considerando c = 1. Como já mencionado anteriormente, (J) é 

o número de variáveis, e (h) é o número de varáveis latentes. 

 Por outro lado, segundo Kourti, (2005), a estatística T2 de Hotelling avalia se a projeção 

de um novo vetor de medidas observado para as (J) variáveis de processo, está dentro do 

subespaço latente definido na etapa de predição. Esta avaliação leva em consideração a 

distância de Mahalanobis estimada do centro do subespaço latente até a projeção da nova 

observação. Portanto, quando uma nova observação ultrapassa o limite de controle estabelecido 

pela carta T2 de Hotelling, é um indicativo de que as variáveis apresentam valores anômalos 

em relação às condições normais de operação. No entanto, ao contrário da carta DModX, isso 

não é um indicativo de que houve uma quebra de correlação entre as variáveis.   

A estatística T2 de Hotelling pode ser calculada através da Equação 32 (FERRER, 2007). 

 

𝑻𝟐 𝑯𝒐𝒕𝒆𝒍𝒍𝒊𝒏𝒈 = ∑
𝒕𝟐

𝒉

𝒔𝟐
𝒕𝒉

𝑯

𝒉=𝟏

                                                                                                                (32) 
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 Em que 𝒕𝒉 podem ser os escores de um modelo PCA ou PLS construídos com às 

variáveis de processo, e 𝒔𝟐𝒕𝒉 é a variância estimada da variável latente correspondente a 𝒕𝒉. 

 

2.4.3 Controle estatístico multivariado de processos como uma ferramenta de PAT 

 

 Vários trabalhos vêm descrevendo a aplicação do controle estatístico multivariado como 

uma ferramenta analítica de processo para detecção e análise de falhas em uma ampla faixa de 

processos em batelada, inclusive no monitoramento da produção de biodiesel.  

 Castelani et al. (2018) descreveram a utilização de MSPC associado à espectroscopia 

NIR in-line como uma ferramenta analítica de processo para realizar o monitoramento em 

tempo real do processo de torra do café em batelada. Neste estudo, a matriz tridimensional de 

dados foi rearranjada via variable wise, e na etapa de modelagem, uma PCA foi aplicada sobre 

a nova matriz de dados, mostrando-se uma estratégia eficaz para detecção de falhas para o 

sistema estudado. 

 Aguado et al. (2007) avaliaram a aplicação de MSPC ao processo de tratamento de 

efluentes em batelada. Neste trabalho, os autores realizaram uma comparação em relação ao 

desempenho do monitoramento nos modos pós-batelada e em tempo real. Para isto aplicaram a 

abordagem NM, e WKFH para o desdobramento da matriz de dados, de modo que o método de 

monitoramento mais eficaz foi observado quando utilizaram a abordagem NM para ambos os 

modos pós batelada e em tempo real em um esquema combinado entre os dois modos. As cartas 

de SPE, e T² de Hotelling foram empregadas para detecção de falhas, demonstrando resultados 

satisfatórios para monitoramento em estudo. 

 Kona et al. (2013) descreveram a utilização de MSPC associada a espectroscopia NIR 

in-line, para monitorar o processo em batelada de granulação e secagem em leito fluidizado de 

mistura de ativos utilizados pela indústria farmacêutica, a partir da obtenção de medidas de 

umidade e temperatura. Os autores utilizaram os gráficos dos escores, DModX e T2 de Hotelling 

para realizar a detecção e análise de falhas a partir da abordagem WKFH para o monitoramento 

em tempo real. Esta estratégia de monitoramento foi capaz de identificar anomalias presentes 

no processo, contribuindo também para a compreensão das possíveis causas atribuíveis.  

 Li et al. (2016) descreveram a aplicação de MSPC associado a espectroscopia NIR in-

line para monitorar o processo produtivo de medicamentos tradicionais chineses. Eles 

utilizaram o método variable wise para realizar o desdobramento da matriz tridimensional de 

dados. Em seguida, uma PCA foi aplicada sobre a nova matriz obtida, e o monitoramento do 

processo em batelada foi realizado a partir do gráfico dos escores e das estatísticas DModX e 
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T² de Hotelling. As cartas apresentaram desempenho satisfatório para detecção de diferentes 

tipos de desvios simulados sobre a temperatura e agitação do meio reacional nas bateladas de 

predição. Das quais, a carta DModX apresentou maior sensibilidade na detecção de falhas, e 

nas demais, tais desvios foram percebidas com algum atraso. 

 Lima et al. (2014) descreveram a utilização de cartas de controle multivariada de 

processo associado a espectroscopia NIR in-line, para monitorar a reação de transesterificação 

do óleo de soja por rota metílica e em batelada, para produção de biodiesel. A matriz de dados 

originais foi desdobrada apenas pela abordagem WKFH, em que a partir do gráfico dos escores 

foi possível detectar de modo eficiente a falha intencionalmente produzida a partir de alteração 

na temperatura durante a reação para avaliação do modelo construído. 

 Sales et al. (2016) descreveram a aplicação de MSPC para monitorar a reação de 

transesterificação do óleo de soja por rota metílica e em batelada para obtenção de biodiesel, 

utilizando a espectroscopia NIR in-line, empregando uma sonda de transflectância e um 

equipamento de bancada. Os autores avaliaram os modos de desdobramento da matriz de dados 

NM e WKFH para construção de cartas de controle, para fins comparativos em termos de 

desempenho na detecção e análise de falhas em tempo real e no modo pós batelada. Segundo 

os autores, ambas as abordagens apresentaram desempenho semelhantes para identificação dos 

desvios nas bateladas de predição para o modo pós batelada. Por outro lado, a abordagem NM 

na análise em tempo real demonstrou melhores resultados para detecção das perturbações 

provocadas nas bateladas de predição, provavelmente devido a esta abordagem ter a capacidade 

de capturar a dinâmica da reação. 

 O presente trabalho está inserido neste contexto no sentido de demonstrar o potencial 

de um espectrômetro NIR ultracompacto, de menor faixa espectral, custo e resolução que um 

equipamento de bancada, para aplicação no monitoramento on-line da reação de 

transesterificação de biodiesel, fornecendo informações em tempo real sobre desvios no 

processo e auxiliando a tomada de decisão.  
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3 MATERIAIS E MÉTODOS 

 

3.1 MONTAGEM DO SISTEMA REACIONAL 

 

O sistema empregado para realização das reações de transesterificação foi composto por 

um reator equipado com controles integrados de temperatura e velocidade de agitação, modelo 

OptiMax™ 1001 (Mettler Toledo), utilizando um vaso de 1000 mL. Tais variáveis foram 

monitoradas in-line por meio do software da Mettler Toledo (iControl 5.2) com valores 

registrados a cada 2 s. Na saída do vaso reacional foi adaptada uma linha de amostragem em 

fluxo para aquisição espectral a partir do equipamento portátil utilizado: MicroNIR™ PRO 

1700 (VIAVI Solutions Inc.), no modo on-line. O MicroNIR foi conectado a um outro 

computador para viabilização da aquisição dos espectros, sendo anexado em um acessório para 

análise por transmitância (PAIVA et al. 2015). Esse acessório suporta uma mini-lâmpada de 

tungstênio como fonte de luz, a qual é alimentada via conexão USB do computador, e dá suporte 

a uma cubeta, empregada como célula de residência do volume de amostragem para medida em 

fluxo contínuo dos espectros NIR pelo equipamento portátil. A linha de amostragem que 

conecta o sistema, composta por mangueiras de silicone, após a medida on-line, é novamente 

direcionada ao reator, recompondo o volume removido temporariamente por meio de uma 

bomba peristáltica (Ismatec IPC – 4) em vazão constante. Um esquema do sistema integrado 

descrito está representado na Figura 10.   

 

Figura 10 – Sistema experimental utilizado para obtenção das bateladas. 

 

Fonte: O autor (2020). 
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3.2 PRODUÇÃO DE BIODIESEL EM BATELADA 

 

 A reação de transesterificação foi promovida utilizando óleo de algodão refinado (Flor 

de algodão), etanol P.A (Neon – 98%) e hidróxido de sódio (NaOH) (Neon, de pureza 99,2%). 

Considerou-se a composição do óleo de algodão descrita por Pinto et al. (2005), uso de excesso 

de etanol na razão molar de 12:1 (álcool:óleo) e concentração de catalisador igual a 0,5% de 

hidróxido de sódio em massa em relação à massa de óleo; assim como temperatura de 50ºC e a 

velocidade de agitação de 250 rpm. As condições reacionais empregadas foram adaptadas do 

trabalho de Joshi e colaboradores (JOSHI; TOLER; WALKER, 2008). 

Com o auxílio de um béquer de 500 mL e um bastão de vidro, procedeu-se a pesagem 

de 245,24 g do óleo vegetal em balança semi-analítica (Mettler Toledo – PB3002-S), sendo 

reservado posteriormente. Na sequência, utilizando um béquer de 50 mL e com o auxílio de 

uma espátula de alumínio, pesou-se 1,2361 g de NaOH em balança analítica (Sartorius – 

BL210S), o qual foi dissolvido em etanol, e transferido para um balão volumétrico de 200 mL, 

sendo aferido na sequência com etanol até o menisco. 

 A seguir, o óleo pesado foi inserido no reator utilizando um funil simples para 

transferência, sendo acionada a agitação em sequência, bem como o aquecimento. 

Paralelamente, a solução de catalisador também foi aquecida até 50ºC, sendo monitorada por 

um termômetro. Após estabilização da agitação e da temperatura no reator, bem como da 

temperatura da solução etílica, a solução catalisadora (etanol + hidróxido de sódio) foi 

introduzida ao reator, A seguir iniciou-se o monitoramento com a aquisição espectral por cerca 

de 60 minutos. 

 Foram realizadas 10 bateladas em condições estáveis, sem quaisquer alterações durante 

a reação, 1 batelada com alteração simulada na variável temperatura, correspondendo ao 

aumento de 5°C durante 5 minutos após estabilização da temperatura na mistura reacional, e 1 

batelada com aumento da concentração do catalisador para 0,9%. Todas monitoradas on-line 

pelo MicroNIR. As 10 primeiras foram definidas como bateladas em condições normais de 

operação. 

 Os espectros coletados ao longo das bateladas foram utilizados para a construção de 

cartas de controle multivariadas e os últimos 10 espectros de 11 bateladas foram empregados 

para construção de um modelo de calibração multivariada, cujo procedimento detalhado está 

descrito no item 3.3. Os produtos de todas as bateladas foram submetidos ao processo de 

purificação, sendo posteriormente analisados por cromatografia gasosa para estimar o 

percentual de conversão de etil-ésteres. 
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3.2.1 Aquisição dos espectros NIR 

 

O equipamento portátil empregado para aquisição dos espectros opera na faixa de 908 

– 1676 nm, funciona via conexão USB junto a um computador e é composto por: 2 lâmpadas 

de tungstênio como fonte de radiação interna, um filtro variável linear (LVF), usado como 

elemento dispersivo, assim como um detector de 128 elementos (InGaAs), apresentando 

resolução de 12,5 nm em 1000 nm.  A medida dos espectros durante a reação foi realizada por 

transmitância, mantendo a fonte do MicroNIR desligada e utilizando a lâmpada de tungstênio 

(1W e 5V) do acessório de transmitância, que é alimentada via conexão USB (PAIVA et al., 

2015). O aparato para realização das medidas on-line de transmitância e os detalhes do 

espectrômetro estão mostrados na Figura 11. O background (“dark” 0% de transmitância) foi 

medido por meio da obstrução da passagem de radiação para o detector do instrumento; e o 

espectro de referência que corresponde a 100% de transmitância foi obtido com a cubeta de 

fluxo vazia, com caminho óptico de 10 mm. Utilizando-se o software MicroNIRTM PRO versão 

2.2, os espectros foram adquiridos no modo contínuo, resultando em uma medida a cada 3 

segundos em média durante 1 hora. 

 

Figura 11 – Ilustração do (a) equipamento portátil MicroNIR 1700 e (b) equipamento portátil acoplado ao 

acessório de transmitância. 

  

Fonte: Adaptado de Paiva et al. (2015). 
 

3.2.2 Purificação do biodiesel produzido  

 

Após o término de cada batelada, foram adicionados cerca de 250 mL de uma solução 

de ácido clorídrico (HCl – 0,5 mol.L-1) ao reator, sendo acionada a agitação por cerca de 30 

segundos e desligada em seguida. Na sequência, aguardou-se a separação das fases e a fase 

inferior aquosa, rica em glicerina, foi removida na saída inferior do reator. O procedimento de 

lavagem foi repetido a 75ºC, utilizando a mesma solução de HCL diluída na proporção de 1:1 
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(v/v), em seguida, a lavagem foi repetida por aproximadamente três vezes com água destilada, 

até o pH do meio se igualar ao pH da água destilada (BAPTISTA et al., 2008). 

A fase rica em éster e óleo, foi submetida à agitação a 250 rpm e aquecimento à 

temperatura de 120ºC, ainda no mesmo reator, por cerca de 1 hora e 15 minutos para evaporação 

da água proveniente da etapa de lavagem. Após o resfriamento, adicionou-se ao biodiesel uma 

quantidade de aproximadamente 10% da massa do biodiesel produzido de sulfato de sódio 

anidro (Na2SO4), para remoção da umidade restante. Na sequência, a mistura (biodiesel + 

Na2SO4) foi filtrada à vácuo, com auxílio de uma bomba à vácuo (Prismatec – 121), utilizando 

papel de filtro qualitativo (80g Unifil, diâmetro 12,5 cm, teor de cinzas máx 0,1%). (LIMA, 

2014). 

 

3.2.3 Análise cromatográfica 

 

O biodiesel produzido nas bateladas, devidamente purificado, foi avaliado por uma 

metodologia padronizada para biodiesel, em que o teor de éster foi analisado em um 

cromatógrafo a gás (GC) modelo 17-A da SHIMADZU com injeção automática, e detector de 

ionização de chama (FID, do inglês Flame ionization detector), segundo a European Standard 

(EN-14103) (EUROPEAN STANDARD, 2003) utilizando o padrão interno C17 (metil 

heptadecanoato). 

 

3.3 MISTURAS SINTÉTICAS  

 

Um planejamento de misturas foi realizado para a preparação de misturas quaternárias 

sintéticas contendo glicerina, óleo, biodiesel e etanol. Durante a preparação, as massas foram 

pesadas em ordem crescente de volatilidade em frasco âmbar, com auxílio de uma balança 

analítica. A faixa de concentração dos componentes das amostras sintéticas em (% m/m) foram: 

4 – 31% de óleo de algodão, 30 – 34% de etanol, 31 – 60% de biodiesel e 3 – 6% de glicerina.  

Amostras em proporções estequiométricas também foram incorporadas ao planejamento 

de misturas, o qual está descrito no Apêndice A. Para adquirir os espectros das amostras 

sintéticas foi utilizado um sistema em fluxo de modo a reproduzir uma condição mais próxima 

possível das medidas realizadas no sistema integrado ao reator (Figura 12), seguindo o mesmo 

procedimento experimental descrito em 3.2.1 para obtenção do background. Uma representação 

do sistema experimental pode ser observada na Figura 12.  
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Figura 12 – Representação do sistema operacional para aquisição dos espectros para as misturas sintéticas. 

 
Fonte: O autor (2020). 

 

Como observado na Figura 12, os espectros NIR das misturas sintéticas também foram 

obtidos por transmitância, e em fluxo, utilizando uma cubeta de fluxo de caminho óptico igual 

10 mm, porém, a aquisição espectral foi realizada manualmente, em que cada amostra foi 

analisada 3 vezes à temperatura de 50ºC, condição similar as bateladas NOC, e 10 delas foram 

obtidas também à 60ºC. Posteriormente, a média das triplicatas foi utilizada na construção de 

modelos de calibração. 

 

3.3.1 Tratamento dos dados e construção do modelo multivariado 

 

O conjunto de dados utilizados nos modelos de calibração multivariada é composto por 

65 espectros, no total, sendo 54 espectros adquiridos das amostras sintéticas e 1 espectro de 

cada batelada. Os espectros das bateladas foram obtidos como a média dos últimos 10 espectros 

de cada batelada. 

Os teores de éster de referência para todas as amostras foram determinados 

considerando-se a mistura quaternária de óleo de algodão, biodiesel, etanol e glicerina. No caso 

das amostras das bateladas o teor de éster foi determinado por cromatografia na mistura binária 

biodiesel/óleo, obtida após a purificação, e posteriormente convertido considerando a mistura 

quaternária por meio da relação estequiométrica utilizada nas reações. 

Foram utilizadas diferentes estratégias de pré-processamento de dados, como: primeira 

derivada com filtro de Savitzky-Golay (considerando-se um polinômio de segunda ordem com 
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tamanho da janela de 5, 7 e 9 pontos), Correção de Espalhamento Multiplicativo e Variação 

Normal Padrão. Todos os modelos foram construídos com os dados centrados na média. A 

seleção de amostras para os conjuntos de calibração e predição foi realizada utilizando o 

algoritmo SPXY para as amostras sintéticas (GALVÃO et al., 2005). Adicionalmente, espectros 

de duas bateladas foram inseridos no conjunto de calibração. Espectros de outras 9 bateladas 

foram incluídos no conjunto de predição.  

Para a construção do modelo de calibração multivariada, considerou-se 2 abordagens 

diferentes: 

 

a) Modelo PLS utilizando dos espectros NIR na faixa completa de aquisição. 

b) Modelo PLS construídos por faixas do espectro selecionadas pelo algoritmo de seleção de 

variáveis iPLS. 

 

Os modelos construídos baseados nas estratégias acima foram avaliados de acordo com 

os erros de validação cruzada (RMSECV), de predição (RMSEP), assim como pelo número de 

variáveis latentes utilizado e pela melhor estratégia de pré-processamento capaz de minimizar 

as diferenças entre os espectros das bateladas e os espectros das misturas sintéticas. O número 

adequado de variáveis latentes para os modelos PLS construídos foi determinado utilizando-se 

o método de validação cruzada venetian blinds. Para a verificação da existência de diferença 

significativa ente os valores de RMSEP entre diferentes modelos, para o nível de confiança de 

95%, foi realizado teste F. Neste teste, o valor de F calculado (Fcalc) corresponde à relação entre 

os quadrados dos maiores e menores valores de RMSEP. Também foi avaliada a existência de 

erros sistemáticos significativos (bias) por meio do teste t-student, para o mesmo nível de 

confiança. 

 

3.4 CONTROLE ESTATÍSTICO MULTIVARIADO DO PROCESSO DE 

TRANSESTERIFICAÇÃO EM BATELADA 

 

O monitoramento da reação de transesterificação, foi realizado para as 10 bateladas 

produzidas sob condições normais de operação (1 – 10), 1 batelada com aumento de 5°C na 

temperatura por 5 minutos após estabilização inicial da mistura no vaso reacional. E mais 1 

batelada com concentração de catalisador igual 0,9%, bateladas 11 e 12, respectivamente. 
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3.4.1 Bateladas em Condição Normal de Operação: Etapa de calibração 

 

Para a construção das cartas multivariadas de controle, foram utilizadas 8 bateladas (1-

3, 5-7, 9 e 10) (NOC), isto é, sem quaisquer alterações provocadas intencionalmente durante a 

reação, conforme as condições descritas no item 3.2. Nesta etapa procurou-se incluir toda a 

variabilidade natural presente ao longo do processo reacional, de modo a criar um conjunto de 

dados robusto e representativo desta condição. 

 

3.4.2 Etapa de predição 

 

O conjunto de dados de predição é formado por 2 bateladas produzidas em condições 

normais de operação (extraídas aleatoriamente do conjunto de calibração) e 2 bateladas que 

sofreram perturbações nas variáveis de processo ao longo de sua operação. Este conjunto de 4 

bateladas foi utilizado para avaliar a capacidade das cartas de controle desenvolvidas em 

identificar falhas relacionadas às variações de temperatura e concentração de catalisador. Todas 

as perturbações nas variáveis de processo das bateladas produzidas fora de controle foram 

realizadas cerca de 90 segundos após a mistura dos reagentes no reator. Os tipos de perturbações 

simuladas para as bateladas da etapa de predição estão resumidos na Tabela 3. O tempo de 

duração de todas as bateladas foi cerca de 60 minutos. A perturbação da batelada 11 deu-se por 

meio de uma rampa de temperatura programada no próprio controlador do reator, cuja 

automação proporcionou um controle de início e fim das alterações. 

 

Tabela 3 – Perturbações simuladas na preparação e durante as bateladas de predição. 

Batelada Perturbações 

4 - 

8 - 

11 Aumento de temperatura do vaso em 5ºC por cerca de 5 min. 

12 Uso de 0,9% de catalisador em massa  

Fonte: O autor (2020). 

 

3.4.3 Desenvolvimento das cartas de controle multivariadas 

 

Durante as reações, a faixa de comprimentos de onda em estudo é formada por 125 

varáveis que foram adquiridas em 916 intervalos de tempo. Considerando ainda que foram 

produzidas 12 bateladas (tanto do conjunto de calibração quanto da etapa de predição), esse 
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conjunto de dados forma uma matriz com dimensões 12 x 916 x 125. A partir das abordagens 

de desdobramento NM e WKFW as matrizes puderam ser reorganizadas, em que à priori, fez-

se uma comparação para análise pós-batelada para ambas as abordagens. Também foi realizado 

o modo de análise em tempo real apenas para a abordagem WKFH (NOMIKOS; 

MACGREGOR, 1995; WOLD et al., 1998). 

Antes do arranjo tridimensional ser efetuado, e utilizando o software MATLAB®, as 

matrizes bidimensionais, cujo número de linhas é dado por (N x K) e J colunas foram 

submetidas a diferentes pré-processamentos: 1ª derivada com filtro de Savitzky-Golay (janela 

de 5 pontos, ajustado a um polinômio de 2º grau), MSC e SNV.  

Após escolha do melhor pré-processamento, as matrizes de dados de cada batelada 

foram concatenadas para o desenvolvimento das cartas de controle multivariadas, que foram 

construídas a partir dos dados das bateladas do conjunto de calibração. Posteriormente, esses 

modelos foram empregados para a identificação de falhas nas bateladas que compõem a etapa 

de predição. O desempenho das cartas de controle foi avaliado utilizando as estatísticas 

distância ao modelo DModX e T2 Hotelling (FERRER, 2007). 

 

3.5 SOFTWARES 

  

 Todos os cálculos envolvendo pré-processamento de dados, seleção de amostras e 

variáveis e construção dos modelos de calibração multivariada foram realizados utilizando 

rotinas próprias implementadas no software MATLAB® (Math Works, Inc., Natick, MA) e o 

pacote de ferramentas PLS-Toolbox versão 8.6.2, em ambiente MATLAB. O planejamento de 

misturas foi realizado no software Minitab® versão teste. O desenvolvimento dos métodos de 

controle estatístico multivariado de processo foi realizado no software SIMCA versão 13.0. 
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4 RESULTADOS E DISCUSSÃO 

 

Nas reações de transesterificação, durante os instantes iniciais da mistura da matéria-

graxa, composta majoritariamente por triacilgliceróis, e um álcool de cadeia curta, há formação 

de uma emulsão no meio reacional, afetando diretamente a transferência de massa no meio 

(GÜNAY; TÜRKER; TAPAN, 2019). Como consequência dessa heterogeneidade observa-se 

também o espalhamento da radiação, que gera desvios na linha de base dos espectros NIR 

obtidos durante a reação em batelada. A Figura 13.a ilustra o espalhamento observado nos 

espectros adquiridos durante 60 minutos de monitoramento da batelada número 4, produzida 

em condições normais de operação. Estes são espectros brutos, típicos da reação de 

transesterificação do óleo de algodão por via etílica. 

Como a espectroscopia NIR fundamenta-se na vibração molecular, os espectros NIR 

são afetados pela variação da temperatura. Para minimizar o efeito da variação de temperatura 

provocado durante a mistura dos reagentes no reator, todos os reagentes foram incorporados à 

mistura reacional à mesma temperatura, aproximadamente 50ºC. 

 

Figura 13 – Espectros NIR obtidos durante uma batelada típica de produção de biodiesel pela rota etílica (a) 

espectros brutos (ordem de aquisição espectral de baixo para cima). (b) último espectro adquirido da batelada. 

  

Fonte: O autor (2020). 

 

Na Figura 13.b, observa-se o espectro da mistura reacional de uma batelada produzida 

em condições normais de operação, após 60 minutos de operação. Nos espectros da Figura 13.b 

é possível observar bandas de absorção nas regiões de segundo sobretom (1120-1250 nm), bem 

como na região do primeiro sobretom das combinações (1300-1400 nm) devido ao estiramento 

das ligações C–H. Também destaca-se as regiões de terceiro e quarto sobretom da ligação C=O 

em torno de (1100-1200nm e 1400-1450 nm) respectivamente. Também pode-se considerar o 
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primeiro sobretom correspondente à ligação O–H (1450-1600 nm), cujas bandas aparecem bem 

pronunciadas, visto que há excesso de etanol e glicerina (WORKMAN; WEYER, 2012).  

 

4.1 CALIBRAÇÃO MULTIVARIADA 

 

4.1.1 Pré-processamento dos espectros NIR 

  

A Figura 14 apresenta os espectros brutos de 65 amostras, sendo 54 amostras sintéticas 

e 11 amostras da mistura reacional das bateladas de 1 a 11. 

 

Figura 14 – Espectros brutos de 54 misturas sintéticas (espectros em preto), e espectro médio dos 10 

últimos espectros das bateladas de 1 a 11 (em vermelho) para a reação de transesterificação do óleo de 

algodão por rota etílica das bateladas. 

 
Fonte: O autor (2020). 

 

É possível observar alta semelhança entre o perfil espectral acima (Figura 14) com o 

espectro final de uma típica reação em batelada de transesterificação do óleo de algodão por 

rota etílica apresentado na Figura 13.b. Esta similaridade demonstra que o sistema de aquisição 

espectral das amostras sintéticas apresenta representatividade satisfatória quando comparada as 

condições de produção das bateladas no reator.  Fatores como as diferentes temperaturas entre 

as misturas sintéticas (50 e 60º C) e a presença de amostras com concentração de óleo e/ou 

glicerina mais altas, tornado essas misturas mais turvas, contribuem para o espalhamento da 

radiação neste sistema. Este efeito também foi observado por Sales et al. (2019).  

Para corrigir o efeito da variação de linha de base presente na matriz espectral 

representada na Figura 14, foram testados os pré-processamentos: SNV, MSC e 1ª derivada 
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com filtro de Savitzky Golay para um polinômio de 2º grau com janelas de 5, 7 e 9 pontos. 

Ambos os pré-processamentos SNV e MSC foram capazes de corrigir os efeitos de linha de 

base de forma satisfatória, apontando resultados semelhantes conforme demonstra a Figura 15. 

 

Figura 15 – Espectros pré-processados com (a) SNV e (b) MSC. 

  

Fonte: O autor (2020). 
 

A aplicação da primeira derivada com filtro de Savitzky-Golay utilizando janelas de 5,7 

e 9 pontos foi capaz de eliminar o efeito da variação de linha de base, entretanto, apenas a 

derivada com janelas de 5 e 7 pontos foi capaz de preservar as principais bandas de absorção, 

(Figura 16). Observou-se que a utilização de janelas a partir de 9 pontos promove suavização 

excessiva em bandas presentes na região de (1100-1200 nm), cujo intervalo apresenta bandas 

importantes para a identificação da molécula de éster como visto no item 4, anteriormente. 

Dessa forma, essa suavização poderia mascarar uma fonte de informação relevante para o 

problema estudado.  

Vale salientar que o método da derivação espectral gera um efeito de sobreposição 

cruzada nas bordas dos espectros derivados. Logo, para este pré-processamento, optou-se por 

cortar os intervalos dos respectivos comprimentos de onda (908-940 nm e 1670-1676 nm). 

Como esses intervalos correspondem a faixas muito pequenas, não houve perdas de informação 

química relevante para os componentes da mistura reacional, visto que também coincidem com 

a faixa de limite de aquisição do equipamento, apresentando uma baixa relação sinal ruído.  

O pré-processamento mais adequado aos dados foi escolhido levando-se em 

consideração, além da discussão acima, o desempenho da capacidade preditiva dos modelos 

desenvolvidos, bem como a melhor correção das diferenças entre os espectros das amostras 

sintéticas e dos espectros provenientes das bateladas.  
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Figura 16 – Espectros pré-processados com 1ª derivada com filtro de Savitzky-Golay e ajuste de polinômio de 

2º grau utilizando (a) uma janela de 5 pontos, (b) uma janela de 7 pontos, (c) uma janela de 9 pontos. 

  

 
Fonte: O autor (2020). 

 

4.1.2 Construção do modelo de calibração multivariada para o teor de etil-ésteres (EE) 

 

Para construção do modelo de predição do teor de EE, as 65 amostras foram distribuídas 

em um conjunto de calibração e outro de predição. Essa seleção foi feita através da utilização 

do algoritmo SPXY que selecionou 40 amostras de calibração e 25 de predição. A seleção de 

amostras foi realizada conforme recomendado pela norma ASTM E1655-05, que dentre as 

recomendações previstas, estão as regras para seleção das amostras dos conjuntos de calibração 

e validação para construção de modelos de calibração multivariada a partir da espectroscopia 

NIR. Posteriormente foram construídos modelos de calibração a partir de abordagens descritas 

a seguir. 

 

4.1.3 Construção de modelos PLS utilizando a faixa espectral completa 

 

Os modelos de regressão PLS para determinação do teor de ésteres etílicos construídos 

a partir da utilização de diferentes pré-processamentos da matriz espectral, considerando a faixa 

de varredura completa do MicroNIR (908-1676 nm), com exceção do corte das bordas para os 

espectros derivados, são mostrados na Tabela 4. 
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Tabela 4 – Figuras de mérito para os modelos PLS para estimar o teor de EE construídos utilizando a faixa 

espectral completa. 

Pré-proc. Filtro de 

suav. 

VL R2 

cal 

RMSECV 

(%m) 

bias 

cv 

R2 

pred 

RMSEP 

(%m) 

bias 

pred 

SNV - 5 0,97 2,24 -0,06 0,97 1,60 0,13 

MSC - 5 0,97 2,26 -0,05 0,97 1,62 0,25 

(1ª Derivada) 

Savitzky-

Golay 

Janela de 

5 pts 

5 0,97 2,37 -0,31 0,93 2,66 -0,66 

Janela de 

7 pts 

7 0,98 1,43 -0,09 0,95 2,16 -0,21 

Janela de 

9 pts 

7 0,98 1,59 -0,12 0,95 2,22 -0,24 

VL: variáveis latentes; pts = pontos; R2
cal e R2

pred: coeficientes de determinação para as etapas de calibração e 

predição, respectivamente; Pré-proc. = pré-processamento; suav. = suavização. 

Fonte: O autor (2020). 

 

De acordo com os dados da Tabela 4, pode-se observar que os modelos construídos após 

correção dos desvios espectrais, apresentaram valores de RMSECV entre 1,43 e 2,37%, e de 

RMSEP na faixa de 1,60 a 2,66%, sendo portanto menores que a reprodutibilidade do método 

de referência de 3,10% m/m. (EUROPEAN STANDARD, 2003). Os modelos construídos 

utilizando os pré-processamentos SNV e MSC apresentaram resultados muito semelhantes, 

desde a complexidade, visto que o número de variáveis latentes foi o mesmo para ambos, assim 

como os valores de RMSEP e RMSECV. Por outro lado, entre os modelos construídos 

utilizando a 1ª derivada como estratégia de pré-processamento, observou-se que o modelo que 

usou uma janela de 5 pontos foi o que apresentou menor complexidade. Visto que 5 variáveis 

latentes foram necessárias para construção do modelo, em detrimento de 7 LV como 

apresentado pelos modelos que usaram janelas de 7 e 9 pontos na derivada, respectivamente.  

Em relação aos modelos construídos a partir de espectros derivados, embora não tenham 

apresentado diferença significativa para os valores de RMSEP entre si, segundo o teste F para 

95% de confiança, apresentaram desempenho inferior em relação aos modelos construídos com 

os pré-processamentos MSC e SNV, de acordo com um teste F para os valores de RMSEP, com 

95% de confiança. Logo, como os valores são muito próximos e não apresentam diferença 

significativa, os dois pré-processamentos apresentam desempenho equivalentes, para os 

modelos desenvolvidos com a faixa espectral completa. Não foram observados erros 
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sistemáticos significativos (bias) para os modelos avaliados, de acordo com os resultados do 

teste t-student com significância de 0,05. 

 

4.1.4 Modelos PLS construídos utilizando o algoritmo de seleção de variáveis iPLS 

 

Na utilização do algoritmo iPLS, os espectros foram divididos em 23 intervalos iguais 

de 5 comprimentos de onda cada, conforme mostrado na Figura 17. Cada barra representa os 

valores de RMSECV para os modelos PLS locais construídos para cada intervalo, com o 

número de LVs necessárias. Esses resultados são balizados pelo RMSECV do modelo 

construído considerando toda a faixa espectral, representado pela linha tracejada horizontal.  

A Figura 17 apresenta os resultados obtidos com a utilização do algoritmo iPLS nos 

espectros pré-processados com 1ª derivada com filtro de Savikzy-Golay e janela de 5 pontos 

com ajuste de polinômio de segundo grau. As barras destacadas em verde correspondem aos 

intervalos cujos modelos PLS apresentaram melhor desempenho. Observa-se que estas faixas 

além de apresentarem valores de RMSECV abaixo do erro esperado para o modelo construído 

com a faixa inteira (linha tracejada), também estão relacionados com os intervalos de 

comprimentos de onda em que aparecem bandas com informação química relevante. As quais 

são características de etil-ésteres (composto de interesse), como foi discutido no item 4. 

 

Figura 17 – Faixas espectrais selecionadas pelo algoritmo iPLS (barras verdes) para modelos de EE. 

 
Fonte: O autor (2020). 

 

As figuras de mérito para o modelo PLS construído para estimar o teor de EE utilizando 

o conjunto dos intervalos selecionados mostrados na Figura 17 (em verde), utilizando a 1ª 



63 
 

 

derivada com filtro de Savikzy-Golay e janela de 5 pontos com ajuste de polinômio de segundo 

grau, estão apresentadas na Tabela 5. Nessas condições o modelo apresentou valores de R2
cal = 

0,98; RMSECV = 1,64%; R2
pred = 0,98; RMSEP = 1,46% e bias = 0,08, utilizando 5 variáveis 

latentes. Para esta estratégia de pré-processamento, o modelo acima, obtido a partir da seleção 

de variáveis por meio do algoritmo iPLS apresentou figuras de mérito com valores 

significativamente menores do que o seu respectivo modelo construído com a faixa espectral 

completa, mostrado na Tabela 4.  

Na Tabela 5, são apresentados de forma mais detalhada, os parâmetros referentes aos 

modelos PLS para determinação do teor de EE construídos a partir do uso do algoritmo iPLS 

como abordagem de seleção de variáveis, para as diferentes estratégias de pré-processamento 

adotadas, respectivamente às que foram apresentadas na Tabela 4.  

 

Tabela 5 – Parâmetros dos modelos PLS para o teor de EE construídos com os intervalos espectrais selecionados 

pelo algoritmo iPLS. 

Pré-proc. Filtro 

suav 

Faixa* VL R2 

cal 

RMSECV 

(%m) 

bias 

cv 

R2 

pred 

RMSEP 

(%m) 

bias 

pred 

SNV/iPLS - [11:45 51:55 

76:80 86:90 

116:125] 

5 0,98 1,93 -0,20 0,93 2,63 -0,43 

MSC/iPLS - [16:25 31:45 

66:70 76:80 

86:90 111:115 

121:125] 

7 0,99 1,58 -0,11 0,95 2,28 -0,20 

(1ª Deriv.) 

Savitzky-

Golay e 

iPLS 

Jan. 5 

pts 

[1:5 21:25 

36:50 66:75 

81:85 

111:115] 

5 0,98 1,64 -0,20 0,98 1.46 0,08 

Jan. 7 

pts 

[41:50 56:70 

76:85 91:95 

111:115] 

5 0,98 1,83 -0,09 0,94 2,37 -0,30 

Jan. 9 

pts 

[16:20 41:45 

51:65 76:80 

111:115] 

6 0,97 1,80 0,15 0,95 2,11 0,01 

*Os intervalos correspondem as posições dos comprimentos de onda selecionadas pelo algoritmo iPLS na matriz 

de comprimentos de onda (vide Apêndice B); pts = pontos. 
Fonte: O autor (2020). 

 

A partir da avaliação dos parâmetros resumidos na Tabela 5, os modelos pré-

processados com SNV e MSC construídos a partir da abordagem de seleção de variáveis iPLS 
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demonstram de forma clara uma piora no desempenho em termos de valores absolutos, quando 

comparados ao uso da faixa espectral completa (Tabela 4). No entanto, há diferença 

significativa, segundo um teste F para 95% de confiança, apenas entre os valores de RMSEP 

para o modelo construído utilizando o pré-processamento SNV. Este modelo, portanto, 

apresentou melhor desempenho quando construído com a faixa espectral completa.   

Já para o modelo obtido utilizando MSC como pré-processamento não houve diferença 

significativa para os valores de RMSEP entre a utilização da faixa completa ou a selecionada 

pelo iPLS, entretanto, com iPLS a modelagem exigiu mais variáveis latentes, tornando-o mais 

complexo. Ambos os modelos construídos com iPLS não apresentaram erros sistemáticos 

significativos (bias), de acordo com um teste t. 

Em relação aos modelos construídos a partir do uso da 1ª derivada como pré-

processamento, destaca-se aquele com janela de 5 pontos, que apresentou uma redução 

considerável nos valores absolutos de RMSECV e RMSEP. De acordo com um teste F, há 

diferença significativa, para 95% de confiança, comparando-se esse valor de RMSEP com os 

valores de RMSEP dos modelos utilizando janelas de 7 e 9 pontos respectivamente. Dessa 

forma, o modelo construído com 1ª derivada com filtro de Savitzky-Golay com janela de 5 

pontos e seleção de variáveis por iPLS obteve melhor desempenho em relação aos demais 

modelos construídos com espectros derivados, quer utilizando a faixa espectral completa ou 

seleção de variáveis iPLS.  

A partir da comparação das figuras de mérito, observou-se que para os modelos obtidos 

até o momento, aquele construído a partir da 1ª derivada com janela de 5 pontos e iPLS, e os 

construídos a partir da faixa espectral completa com os dados pré-processados por SNV e MSC, 

apresentaram desempenho semelhantes em termos de RMSEP para 95% de confiança, 

conforme teste F executado. Assim como, ambos não apresentam erros sistemáticos 

significativos (bias).  

Nesse sentido, a fim de definir a abordagem mais adequada para o pré-processamento 

dos dados, avaliou-se de forma conjunta os gráficos de influência, o gráfico de valores preditos 

versus observados e os coeficientes de regressão (Figuras 18 – 20). Desta forma, é possível 

avaliar a eficiência de cada abordagem em relação às variáveis (comprimentos de onda) que 

deve coincidir com a informação química presente na matriz espectral. Bem como com as 

amostras, que por serem obtidas em sistemas experimentais diferentes, naturalmente 

apresentam variabilidade intrínseca a cada modo de aquisição. Entretanto, deseja-se observar 

comportamento semelhante entre elas, visto que para construção do modelo, todas devem 
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pertencer a um mesmo grupo amostral. Assim, espera-se que as estratégias de pré-

processamento forneçam uma minimização das diferenças entre amostras sintéticas e bateladas.  

 

Figura 18 – Parâmetros do modelo pré-processado com SNV para determinação do teor de EE (a) vetores de 

regressão; (b) valores preditos versus observados; (c) gráfico de influências. 

  

 

Fonte: O autor (2020). 
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Figura 19 – Parâmetros do modelo pré-processado com MSC para determinação do teor de EE (a) vetores de 

regressão; (b) valores preditos versus observados; (c) gráfico de influências. 

  

 

Fonte: O autor (2020). 
 

Figura 20 – Parâmetros do modelo pré-processado com 1ª derivada e janela de 5 pontos/iPLS para 

determinação do teor de EE (a) vetores de regressão; (b) valores preditos versus observados; (c) gráfico de 

influências. 

  

 

Fonte: O autor (2020). 
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De acordo com as Figuras (18.a, 19.a e 20.a), é possível observar que embora os modelos 

sejam construídos por abordagens distintas de pré-processamentos, os respectivos vetores de 

regressão demonstraram, em geral, importância para as mesmas regiões do espectro. Entre elas, 

podemos destacar as regiões de terceiro e quarto sobretom da ligação C=O referente ao éster, 

composto de interesse que se forma ao longo da reação em torno de 1200 nm e 1450 nm 

respectivamente. Outras regiões relevantes nos gráficos dos vetores de regressão foram as de 

segundo sobretom (1120-1250 nm), bem como a região do primeiro sobretom das combinações 

(1300-1400 nm) do estiramento das ligações C–H. Estas regiões apresentaram intensidades 

relevantes em todos os respectivos gráficos, visto que os compostos presentes na reação de 

transesterificação são majoritariamente formados por ligações deste tipo. Devido à elevada 

razão álcool:óleo utilizada na reação, bem como pela presença de glicerina como subproduto, 

também é possível perceber a presença de uma região intensa em torno de 1450 nm nos gráficos 

dos vetores de regressão, referente ao primeiro sobretom da ligação O–H. 

Por outro lado, o modelo obtido com a derivada/iPLS foi o único capaz de minimizar as 

diferenças entre os espectros das bateladas e os espectros das misturas sintéticas. Um reflexo 

disso pode ser observado nos gráficos de influência das Figuras (18.c, 19.c e 20.c). Por esse 

motivo o modelo com derivada foi considerado o modelo mais robusto, ou seja, que sofre menos 

com a diferença nas características das amostras. Além de demonstrar a manutenção da 

estrutura de correlação entre os dados devido à proximidade entre os scores das amostras 

sintéticas e das bateladas. 

Tal abordagem foi capaz de demonstrar que há expressiva reprodutibilidade entre as 

respostas espectrais obtidas a partir da utilização de sistemas experimentais distintos (misturas 

sintéticas vs. bateladas). Além de obter melhores resultados em termos de valores absolutos 

para os erros de validação e predição para o teor de EE. 

A fim de melhorar a representatividade do modelo que obteve o melhor desempenho 

analítico em relação às condições de temperatura utilizadas, substituiu-se 2 amostras sintéticas 

analisadas à 50ºC do conjunto de predição por 2 amostras sintéticas analisadas à 60ºC presentes 

no conjunto de calibração. Trazendo assim, ainda mais robustez para o modelo PLS quanto ao 

efeito da variação de temperatura.  

Aplicando a mesma estratégia de pré-processamento associada a seleção de variáveis 

por iPLS, obteve-se um novo modelo PLS construído na faixa de 31 – 60% para o teor de EE 

que apresentou valores de R2
cal = 0,98; RMSECV = 1,63%; R2

pred = 0,98; e RMSEP = 1,51% e 

bias = 0,09, utilizando 5 variáveis latentes. De acordo com as figuras de mérito, observa-se que 

este modelo também demonstrou resultados abaixo da reprodutibilidade do método de 
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referência, apresentando ainda desempenho um pouco melhor quanto à predição do teor de etil-

ésteres (EUROPEAN STANDARD, 2003). O modelo e o respectivo gráfico dos vetores de 

regressão estão descritos na Figura 21. É possível observar uma distribuição satisfatória dos 

pontos em torno da bissetriz (Figura 21.a), e o gráfico dos vetores de regressão (Figura 21.b) 

também destaca regiões de relevância química, coerente com os compostos presentes na reação 

conforme discutido anteriormente. 

 

Figura 21 – Modelo PLS/iPLS (1ª derivada de Savitzky-Golay com janela de 5 pontos) construído na faixa de 

concentração de 31 – 60% para teor de ésteres etílicos (a), e gráfico dos vetores de regressão (b).  

 
 

Fonte: O autor (2020). 

 

Em comparação com a literatura, este trabalho mostrou melhor capacidade preditiva 

para o teor de EE que os resultados reportados por Sales et al. (2019). O modelo dos referidos 

autores apresentou RMSEP igual a 2,15% para a predição do teor de etil-ésteres em mistura 

quaternária, quando monitoraram a reação de transesterificação etílica do óleo de algodão, em 

modo contínuo e on-line numa coluna de destilação reativa, com equipamento NIR portátil 

semelhante ao utilizado neste trabalho. Também é valido destacar que o modelo PLS do 

presente trabalho apresentou valor de RMSEP menor, associado a uma faixa maior de 

concentração de EE que o obtido pelo referido autor, cuja faixa do modelo foi de 0 – 23% m/m,  

Richard et al. (2013) realizaram o monitoramento da reação de etanólise do óleo de 

girassol via espectroscopia NIR. Os autores apresentaram dois modelos de predição do teor de 

EE na faixa de concentração de 0 – 100% para mistura binária (óleo-éster), que apresentaram 

valores de RMSEP iguais a 4,10% e 3,52%, quando os dados espectrais foram adquiridos por 

sondas de reflectância e transflectância, respectivamente. O modelo apresentado pelo presente 

trabalho demonstrou RMSEP menor, associado a uma faixa de faixa de concentração de éster 

mais restrita, e a utilização de um equipamento de menor resolução. Por outro lado, os 

resultados reportados pelos autores foram resultantes da aquisição de dados espectroscópicos 

a) b) 
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obtidos por um equipamento de bancada, no modo on-line e utilizando um microrreator em 

processo contínuo. 

No trabalho reportado por Pinzi et al. (2012), que realizaram o monitoramento off-line 

da reação de transesterificação por rota metílica de 3 tipos de óleos vegetais diferentes: girassol, 

milho e de bagaço de azeitona, a partir da espectroscopia NIR utilizando um equipamento de 

bancada. Embora tenha obtido um modelo com apenas 3 variáveis latentes, o mesmo apresentou 

RMSEP = 2,55% para o teor de metil-éster, na faixa de concentração 86,5 – 97% m/m para 

mistura binária (óleo-éster). O referido autor agregou maior variabilidade ao respectivo modelo 

devido à utilização de diferentes óleos vegetais no processo reacional. No entanto, obteve 

menor capacidade preditiva, associado a uma menor faixa de concentração de éster, que o 

modelo PLS proposto pelo presente trabalho. 

Quando comparado ao resultado obtido por Lima, (2014), que monitorou a reação de 

transesterificação do óleo de soja por rota metílica, para a faixa de concentração de 64,4 – 

97,1% m/m para teor de ésteres metílicos (ME), em mistura binária, usando espectroscopia NIR 

com equipamento de bancada, no modo in-line e em batelada. Observa-se desempenho 

semelhante quanto às figuras de mérito, com RMSEP de 1,60%, porém o modelo construído no 

presente trabalho exigiu o uso de uma variável latente a mais.  

Killner, Rohwedder e Pasquini, (2011) que realizaram o monitoramento on-line da 

reação de transesterificação do óleo de soja pela rota metílica e em batelada, obtiveram modelos 

com valores de RMSEP iguais a 0,74% e 1,27% de conversão para duas bateladas distintas na 

faixa de concentração de metil-ésteres entre 60 – 100% para a mistura binária (óleo-éster).  

Vale salientar que além dos resultados descritos pelo presente trabalho terem sido 

obtidos no modo on-line, e a partir do uso de um equipamento portátil, que apresenta baixa 

resolução quando comparado a um equipamento de bancada, também foram utilizadas amostras 

coletadas em diferentes bateladas e amostras sintéticas. A utilização de amostras sintéticas para 

calibração simplifica bastante o processo, reduzindo a necessidade de produzir muitas bateladas 

em diferentes condições para aumentar a variabilidade da faixa de calibração, bem como 

redução do número de análises cromatográficas.  

Para reforçar a confiança sobre os valores preditos pelo modelo, na Tabela 6 estão 

dispostos os valores de referência do teor de EE para as 9 amostras das bateladas presentes no 

conjunto de predição obtidos por cromatografia gasosa, conforme a norma europeia EN-14103, 

assim como seus respectivos valores preditos pelo modelo, em que os mesmos foram 

convertidos de (% m/m) de EE na mistura quaternária para (% m/m) na mistura binária 



70 
 

 

(éster/óleo), pela via estequiométrica. Tal conversão fez-se necessária porque os valores de 

referência foram obtidos nessa última condição. 

 

Tabela 6 – Resultados para a conversão de etil-ésteres estimados pelo modelo PLS e o obtido por análise 

cromatográfica para amostras do conjunto de predição. 

ID batelada Teor de EE – GC* (%m/m) 
Teor de EE – modelo PLS 

(%m/m)  

Erro relativo 

(%m/m) 

1 91,83 92,35 0,57 

2 93,36 87,46 6,32 

3 91,93 91,43 0,55 

4 91,87 89,03 3,09 

5 90,66 90,04 0,69 

6 90,42 92,68 2,50 

7 90,58 91,28 0,78 

8 91,67 93,95 2,49 

9 91,87 88,31 3,87 

*GC = Cromatografia gasosa. 

Fonte: O autor (2020). 
 

Pode-se observar que com exceção do resultado da batelada 2, todas as outras bateladas 

tiveram seus valores de conversão de EE estimados pelo modelo multivariado com erro relativo 

menor que 5%, sendo, portanto, comparáveis ao resultado obtido pelo método de referência. O 

erro relativo percentual foi calculado através do módulo da diferença entre o valor de referência 

e o predito pelo modelo, divido pelo valor de referência, sendo esse resultado multiplicado por 

100.  

 

4.2 CONTROLE ESTATÍSTICO MULTIVARIADO DO PROCESSO DE 

TRANSESTERIFICAÇÃO EM BATELADA 

 

Os espectros brutos de uma típica batelada em condições normais de operação, obtidos 

a partir do equipamento portátil MicroNIR, no modo on-line e sob aquisição contínua de 

espectros ao longo do tempo foram apresentados na Figura 13.a. Como observado nesta Figura, 

e discutido anteriormente, o efeito do espalhamento da luz provocado, entre outros fatores, pela 

turbidez nos momentos iniciais da reação gera uma grande variação de linha de base nos 

espectros. Faz-se, então, necessária a correção desses desvios por meio de técnicas de pré-
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processamento, as quais tem por objetivo remover os efeitos físicos para que a informação 

química contida nos espectros possa ser interpretada adequadamente. Foram avaliadas como 

estratégias de correção as seguintes técnicas: 1ª derivada com filtro de suavização Savitzky-

Golay e ajuste de polinômio de segundo grau associado a uma janela de 5 pontos, variação 

normal padrão (SNV), e correção do espalhamento multiplicativo (MSC). Os espectros pré-

processados estão descritos na Figura 22 e os que utilizaram derivada tiveram as bordas cortadas 

devido ao efeito de sobreposição cruzada. 

 

Figura 22 – Espectros de uma batelada comum em condições normais de operação pré-processados com (a) 

MSC (b) SNV, (c) primeira derivada Savitzky-Golay. 

 

Fonte: O autor (2020). 

 

De acordo com a Figura 22, observa-se que tanto o MSC quanto o SNV não foram 

capazes de corrigir os desvios de linha de base adequadamente. Por outro lado, os espectros 

derivados apresentaram redução significativa dos desvios originais, demonstrando maior 

eficiência na correção. A técnica da 1ª derivada com filtro de Savitzky-Golay foi então 

selecionada para desenvolvimento dos gráficos de controle apresentados a seguir.  

 

4.2.1 Construção dos gráficos de controle multivariados de processo 

 

A construção dos gráficos de controle multivariados foi realizada a partir da organização 

e avaliação dos dados espectrais conforme as abordagens NM e WKFH. Os parâmetros dos 

modelos multivariados construídos foram resumidos na Tabela 7, tanto para as avaliações em 

tempo real quanto para a análise pós-batelada.  
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Tabela 7 – Resultados para as avaliações dos modelos multivariados em tempo real e pós-batelada. 

Abordagem 
Modo de 

avaliação 

Pré-

processamento 

Número de 

componentes 
R² X (%) Q² (%) 

WKFH Tempo real 
Primeira 

derivada 

5 96,4 77,3 

WKFH Pós-batelada 4 95,1 69,0 

NM Pós-batelada 2 70,0 36,0 

Fonte: O autor (2020). 
 

R2X representa o percentual de variância explicada pelo modelo, o qual está relacionado 

com a qualidade do ajuste aos dados experimentais. E o valor de Q2 representa o percentual de 

variação prevista pelo modelo de acordo com a validação cruzada, e indica quão bem o modelo 

prevê dados novos (AGUADO et al., 2007). 

Os modelos multivariados descritos neste trabalho foram construídos considerando que 

as bateladas do conjunto de calibração foram desenvolvidas em condições normais de operação, 

e sob controle. Esses modelos foram analisados previamente para identificação de possíveis 

eventos anômalos a partir das estatísticas DModX e T2 de Hotelling. Os gráficos de controle 

para o conjunto de bateladas de calibração obtidas de acordo com as abordagens descritas na 

Tabela 7 podem ser observados no Apêndice C. 

 

4.2.1.1 Avaliação da detecção de falhas via análise em tempo real pela abordagem WKFH  

 

Para a construção de cartas de controle levando-se em consideração a abordagem 

WKFH, os dados das bateladas foram rearranjados e pré-processados com 1ª derivada. Em 

seguida, um modelo PLS foi desenvolvido considerando os dados gerados pelo monitoramento 

das bateladas do conjunto de calibração e o vetor com informação do tempo das bateladas. Este 

modelo PLS foi gerado utilizando-se cinco variáveis latentes, obtendo-se 96,4% da variação 

dos dados do conjunto de calibração, além de apresentar capacidade preditiva de 77,3% em 

relação ao conjunto de predição (Tabela 7).  

 O conjunto de calibração, composto por oito bateladas obtidas sob condições normais 

de operação, apresentou bateladas NOC dentro do limite de controle, tanto para as cartas de 

Distância ao modelo (DModX) quanto para de T2 de Hotelling (Apêndice C), como esperado. 

A seguir, serão apresentadas as cartas de controle do conjunto de predição, as quais são 

compostas por duas bateladas NOC selecionadas aleatoriamente (4 e 8), uma batelada com 
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alteração simulada durante seu processo de monitoramento (11) e uma batelada com 

concentração de catalisador diferente (12).  

Na batelada 11, o comando da alteração da temperatura ocorreu cerca de 2 minutos após 

a alimentação no reator. Foi então efetuado um aumento de 50°C para 55°C na temperatura, 

mantendo-se nessa temperatura por um período de 5 minutos, e posterior redução para 

temperatura normal de operação (50°C). Já na batelada 12, trabalhou-se com a concentração de 

catalisador igual 0,9%, valor superior à concentração em NOC (0,5%). As cartas de controle de 

DModX e de T² de Hotelling para a abordagem WKFH e análise em tempo real estão 

apresentados na Figura 23. 

 

Figura 23 – Cartas de controle de (a) DModX, e (b) T² de Hotelling, para as bateladas 4, 8, 11 e 12 

submetidas a perturbações na temperatura e concentração do catalisador (NaOH). 

 

 

Fonte: O autor (2020). 
 

Observa-se em ambas as cartas que as bateladas NOC (4 e 8) apresentaram-se dentro do 

limite de controle (95% de confiança), demonstrando coerência com sua origem. Também é 
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possível observar que em ambos os gráficos de controle, a variação de temperatura na batelada 

11 (em vermelho), embora sutil, foi percebida de modo intenso pelo MicroNIR, mesmo com a 

aquisição espectral no modo on-line, em que a captura de informação dá-se a uma certa 

distância do vaso reacional, através de uma linha de amostragem (Figura 10). Esse fenômeno 

pode ser explicado devido à sensibilidade da espectroscopia NIR a variações de temperatura, 

segundo Workman e Weyer (2012). Essa alteração já foi suficiente para a batelada sair de 

controle temporariamente nas duas cartas. Destaca-se que, para a batelada 11, tanto a distância 

ao modelo quanto a estatística T2 de Hotelling excederam o limite de controle para 95% de 

confiança durante a alteração, evidenciando uma quebra na estrutura de correlação das variáveis 

nesse período. No entanto, houve uma recuperação da trajetória da batelada em ambas as cartas 

após cessada a alteração e retorno para a temperatura normal da reação (50°C). Esse fato pode 

ser corroborado pela avaliação da qualidade do produto final da reação, visto que a 

determinação do teor de etil-ésteres por análise cromatográfica efetuado após o término da 

batelada e posterior purificação, apresentou teor de 90,40% (m/m) para mistura binária (éster-

óleo). Este resultado é semelhante aos obtidos para as bateladas NOC (Tabela 6). 

 Outra batelada presente nos gráficos de controle descritos na Figura 23 foi a batelada 

12, produzida com uma concentração do catalisador maior (0,9% em relação a massa de óleo). 

Observa-se que houve uma quebra na estrutura de correlação das variáveis, apontada pela carta 

DModX desde os instantes iniciais da reação. Conforme descrito por Marjanovic´ et al., (2010), 

com o aumento da concentração de catalisador, há um aumento na taxa de reação, com efeito 

mais intenso principalmente nos instantes iniciais, alterando assim a composição da mistura. 

Essa mudança pôde ser detectada pela espectroscopia NIR, o que refletiu nos gráficos DmodX 

e T2 de Hotelling. Particularmente para o gráfico de T2 de Hotelling, embora a batelada 12 tenha 

apresentado oscilação da trajetória ao redor do limite de confiança de 95%, a alteração não foi 

suficiente para exceder o limite de 99% como aconteceu para as alterações na carta de DModX. 

Por outro lado, a alteração na concentração de catalisador não teve um impacto grande sobre o 

teor de etil-ésteres para esta batelada, a qual apresentou um rendimento de 88% (m/m), que não 

é muito diferente do teor de EE observado para bateladas NOC, descritos na Tabela 6.   

  

4.2.1.2 Avaliação da detecção de falhas via análise pós-batelada  

 

Na detecção de falhas via análise pós-batelada pôde ser realizada uma comparação entre 

as estatísticas DModX e T2 de Hotelling para as duas abordagens de desdobramento (NM e 

WKFH).  As cartas de controle construídas com a abordagem NM foram obtidas a partir de um 
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modelo PCA construído com os dados originais do processo, após rearranjo e pré-

processamento com 1ª derivada. O modelo utilizou 2 variáveis latentes, obtendo 70% da 

variância dos dados do conjunto de calibração, e 36% de capacidade preditiva para o conjunto 

de predição (Tabela 7). O valor baixo apresentado pelos parâmetros descritos possivelmente 

está associado à baixa variabilidade apresentada pelas bateladas de calibração, especialmente 

pelo fato da abordagem NM analisar os dados de uma batelada completa como uma única 

amostra.  

Por outro lado, os modelos construídos a partir da abordagem WKFH após pré-

processamento com 1ª derivada, foram obtidos como resultado de um modelo PCA efetuado 

sobre os escores obtidos do modelo PLS desenvolvido pela análise em tempo real para esta 

mesma abordagem. O mesmo utilizou 4 variáveis latentes para obtenção de 95,1% da variância 

dos dados do conjunto de calibração e 69% de capacidade preditiva para o conjunto de predição 

(Tabela 7). 

As cartas de controle da distância ao modelo para as bateladas do conjunto de predição 

estão descritas na Figura 24.  Nesta carta, cada barra que excede o limite de controle, representa 

uma quebra do padrão na estrutura de correlação das variáveis, em relação aquelas utilizadas 

para a construção dos modelos do conjunto de calibração, segundo Ferrer, (2007). 

Considerando um nível de confiança de 95%, de acordo com a estatística DModX, as 

bateladas de predição (11 e 12) foram corretamente detectadas como bateladas fora de controle 

para as duas abordagens. Demonstrando que as estatísticas foram capazes de capturar a 

alteração temporária na temperatura (batelada 11) e o aumento da concentração do catalisador 

(batelada 12). Observa-se que a abordagem NM (Figura 24.a) também identificou corretamente 

as bateladas NOC presentes no conjunto de predição (bateladas 4 e 8), como bateladas dentro 

de controle. Esta condição não foi identificada para a batelada 8 quando utilizada a abordagem 

WKFH, a qual classificou a batelada 8 como uma batelada fora de controle para o nível de 0,05 

de significância. Isto pode estar associado ao fato de o conjunto de calibração não contemplar 

totalmente a variabilidade do processo em NOC, visto que a distância desta batelada em relação 

ao plano do modelo não é tão grande, quando comparado com as bateladas em que houveram 

de fato alterações promovidas (11 e 12). 
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Figura 24 – Gráficos de controle de distância ao modelo para as bateladas de predição, 

utilizando-se a abordagem (a) NM e (b) WKFH. O símbolo ($) à frente da descrição das 

bateladas para a abordagem WKFH indica que o gráfico foi construído a partir dos escores 

do modelo PLS, e não pelos dados originais. 

 

 
Fonte: O autor (2020). 

 

Os gráficos de controle T2 de Hotelling para as bateladas do conjunto de predição estão 

descritas na Figura 25. Para este gráfico, cada barra corresponde a distância de Mahalanobis de 

uma batelada em relação ao centro do plano que representa o modelo (FERRER, 2007). As 

bateladas NOC (bateladas 4 e 8) foram preditas corretamente, dentro de controle. No entanto, 

para a abordagem NM (Figura 25.a), as bateladas em que foram promovidas alterações 

(bateladas 11 e 12) não foram detectadas como bateladas fora de controle. Por outro lado, a 

batelada 12 (alteração na concentração do catalisador) ultrapassou o limite de confiança de 95% 

para a abordagem WKFH. Já a variação temporária da temperatura (batelada 11) não foi 

detectada por ambas as cartas. 
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Figura 25 – Gráficos de controle de T² de Hotelling para as bateladas de predição, 

utilizando-se a abordagem (a) NM e (b) WKFH. O símbolo ($) à frente da descrição das 

bateladas para a abordagem WKFH indica que o gráfico foi construído a partir dos 

escores do modelo PLS, e não pelos dados originais. 

 

 

Fonte: O autor (2020). 

 

De acordo com a análise pós-batelada para o conjunto de predição, a partir das 

abordagens de desdobramento NM e WKFH, observou-se a partir do gráfico de DModX, que 

ambas as abordagens foram capazes de detectar corretamente as falhas intencionalmente 

provocadas (aumento temporário da temperatura – batelada 11 e aumento da concentração do 

catalisador – batelada 12), fato também observado por Sales, (2016) que monitorou a reação de 

transesterificação por rota metílica no modo in-line via cartas de controle multivariado, 

utilizando um equipamento NIR de bancada. Apenas a batelada 12 pôde ser detectada pela 

estatística T2 de Hotelling com a abordagem WKFH. 
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Ambas as abordagens (NM e WKFH) foram capazes de detectar as bateladas produzidas 

em condições diferentes da NOC. Em geral, as diferenças impostas a essas bateladas geraram 

uma quebra na estrutura de correlação das variáveis e permitiram a detecção pela carta da 

distância ao modelo. Por fim, para o monitoramento off-line, ambas as abordagens apresentaram 

desempenho semelhante. Isso está relacionado ao fato de que, no modo off-line, a abordagem 

WKFH, assim como a abordagem NM, são capazes de capturar a dinâmica do processo. 
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5 CONCLUSÃO 

 

A espectroscopia NIR associada à quimiometria mostrou desempenho satisfatório como 

uma ferramenta de PAT para o monitoramento da produção de biodiesel, através da reação de 

transesterificação em batelada do óleo de algodão por rota etílica e catálise alcalina. A utilização 

do espectrômetro NIR ultracompacto no modo on-line possibilitou a aquisição de dados em 

tempo real, de forma confiável, rápida, reprodutível e sem a necessidade de realização de 

tratamento nas amostras. As medidas foram obtidas com intervalo de tempo menor, cerca de 3 

segundos, e por um equipamento de baixa resolução quando comparado a um equipamento NIR 

de bancada.  

O modelo de calibração multivariada PLS construído para determinação do teor de etil-

ésteres (EE), a partir de misturas sintéticas e de amostras reais, apresentou capacidade preditiva 

satisfatória quando comparado com a literatura, com RMSEP = 1,51% m/m, considerando a 

mistura quaternária. Tal resultado foi obtido por meio do pré-processamento dos dados com 1ª 

derivada com filtro de Savitzky-Golay e tamanho de janela igual a 5 pontos, associado ao 

método de seleção de variáveis iPLS. A utilização de amostras sintéticas para a etapa de 

calibração trouxe simplicidade ao processo, reduzindo a necessidade de produzir muitas 

bateladas em condições distintas para aumentar a variabilidade da faixa de calibração, bem 

como a redução da quantidade de análises cromatográficas.  

 Já em relação ao controle estatístico multivariado de processos aplicado ao 

monitoramento da reação de transesterificação em batelada, de modo geral, as cartas de controle 

construídas de acordo com as abordagens NM e WKFH demonstraram resultados semelhantes 

quanto ao potencial em detectar falhas para a avaliação pós-batelada. A carta de distância ao 

modelo foi capaz de diagnosticar as falhas de forma mais eficiente, visto que a quebra na 

estrutura de correlação é refletida neste gráfico de controle. 

Para a abordagem WKFH aplicada ao monitoramento em tempo real, quase todas as 

perturbações foram detectadas de modo satisfatório por ambas as cartas de controle. Este modo de 

monitoramento apresenta como principal vantagem para controle de processos industriais, a 

detecção de possíveis falhas durante o decorrer do processo, tornando viável a tomada de decisão 

para correção destas tão logo forem detectadas. Dessa forma, podem ser corrigidas antes do final 

do processo de fabricação, evitando custos com retrabalho e/ou perdas de matéria-prima e mão-de-

obra. 

De modo geral, Quase todas as falhas puderam ser detectadas por ambas as cartas de 

controle para as duas abordagens de organização e avaliação: NM e WKFH, com destaque para 
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a carta de distância ao modelo. Isto mostra que o sistema de monitoramento foi capaz de 

capturar mudanças importantes que ocorrem principalmente na fase inicial da reação de 

transesterificação.  

Vale salientar que a sensibilidade da espectroscopia NIR frente à variação na 

temperatura da reação permitiu detectar uma mudança de apenas 5°C, configurando uma 

condição de alta sensibilidade para os métodos de monitoramento utilizados neste trabalho. 
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6 PERSPECTIVAS FUTURAS 

 

Para a primeira abordagem do trabalho, relativa ao monitoramento da reação de 

transesterificação etílica em batelada do óleo de algodão, através de um modelo multivariado 

PLS, espera-se estender a faixa de concentração do modelo a fim de promover maior 

representatividade ao mesmo e testar outros aspectos relativos à modelagem, envolvendo mais 

métodos de pré-processamentos e seleção de variáveis. 

Em relação ao monitoramento da reação por meio da aplicação da espectroscopia NIR 

com uma ferramenta de PAT para a construção de cartas de controle estatístico multivariado de 

processos (MSPC), espera-se: 

 

a)  Produzir e monitorar mais bateladas em condições normais de operação a fim de atribuir 

ainda mais representatividade na variabilidade capturada pelos gráficos de controle a serem 

construídos; 

 

b) Promover outros tipos de alteração durante o monitoramento das reações, como alterações 

na temperatura ao longo da batelada, alteração da vazão de fluxo da linha de amostragem no 

retorno ao reator controlada via bomba peristáltica, alteração da velocidade de agitação, bem 

como simular defeito nos controladores desses parâmetros por meio de oscilações propositais, 

a fim de verificar a capacidade das cartas de controle em detectar essas falhas de processo; 

  

c)  Comparar o desempenho de diferentes gráficos de controle para o monitoramento da reação 

de transesterificação em batelada no modo on-line, via utilização do MicroNIR, com o modo 

in-line, através do uso de equipamento de bancada com maior resolução, o qual já tem sido 

utilizado no monitoramento das bateladas já produzidas.  
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APÊNDICE A – TABELA DO PLANEJAMENTO DAS MISTURAS SINTÉTICAS 

 

Amostra 
Planejamento de misturas 

Pureza 

bio (%) 

Cálculo das massas 

T (°C) 

Massas reais (g) 

Óleo Etanol Biodiesel Glicerol Óleo (g) 
Etanol 

(g) 

Biodiesel 

(g) 

Glicerol 

(g) 
Óleo (g) Etanol (g) 

Biodiesel 

(g) 

Glicerol 

(g) 

1 0,30 0,34 0,31 0,05 94,90 5,6668 6,8000 6,5332 1,0000 50 5,6701 6,8000 6,5402 1,0085 

2 0,04 0,34 0,60 0,03 94,90 0,2006 8,3750 15,6744 0,7500 50 0,2076 8,3768 15,6848 0,7529 

3 0,19 0,32 0,44 0,04 91,83 5,2021 11,2955 16,9434 1,5591 50 5,2292 11,2953 16,9500 1,5594 

4 0,13 0,31 0,52 0,04 93,36 3,2181 10,8977 19,5796 1,3045 50 3,2296 10,8048 19,5801 1,3048 

5/6 0,31 0,31 0,32 0,06 89,66 9,5584 10,8500 12,4916 2,1000 50/60 9,5677 10,8514 12,4956 2,1023 

7 0,18 0,30 0,47 0,06 91,87 4,6848 10,5000 17,7152 2,1000 50 4,6919 10,5213 17,7226 2,1039 

8/9 0,21 0,33 0,42 0,04 93,36 6,4175 11,4765 15,6255 1,4840 50/60 6,4206 11,4780 15,6292 1,4852 

10 0,31 0,30 0,35 0,05 91,83 9,7757 10,5000 13,1493 1,5750 50 9,7772 10,5210 13,1566 1,5758 

11 0,11 0,33 0,52 0,04 89,66 1,8851 11,4227 20,3876 1,3045 50 1,8876 11,4289 20,3930 1,3113 

12/13 0,04 0,33 0,60 0,03 94,90 0,1939 8,2500 15,8061 0,7500 50/60 0,2000 8,2552 15,8082 0,7511 

14 0,30 0,33 0,31 0,05 91,87 9,6565 11,6667 11,8102 1,8667 50 9,6698 11,6695 11,8107 1,8672 

15 0,09 0,31 0,55 0,06 89,66 0,9957 10,7905 21,2748 1,9390 50 1,0019 10,7945 21,2765 1,9399 

16 0,04 0,34 0,56 0,06 93,36 0,0060 11,9000 20,9940 2,1000 50 0,0168 11,9167 20,9958 2,1000 

17/18 0,11 0,31 0,52 0,05 93,36 2,6931 10,8977 19,5796 1,8295 50/60 2,7002 10,9023 19,5803 1,8296 

19 0,18 0,34 0,46 0,03 91,83 4,7082 11,9000 17,3418 1,0500 50 4,7159 11,9050 17,3493 1,0503 

20 0,15 0,32 0,48 0,05 92,00 3,8599 11,1335 18,2951 1,7115 50 3,8655 11,1355 18,3171 1,7115 

21 0,06 0,30 0,60 0,05 91,87 0,0666 10,5000 22,8584 1,5750 50 0,0700 10,6386 22,8630 1,5761 

22 0,24 0,33 0,38 0,04 90,00 7,0229 11,6480 14,9606 1,3685 50 7,0309 11,6487 14,9653 1,3697 

23 0,31 0,34 0,31 0,04 89,66 9,5987 11,9000 12,1013 1,4000 50 9,6006 11,9017 12,1027 1,4030 

24/25 0,19 0,30 0,48 0,03 91,83 5,1553 10,5000 18,2947 1,0500 50/60 5,1700 10,5052 18,2952 1,0502 

26 0,25 0,33 0,38 0,04 93,36 7,7666 11,5977 14,3311 1,3045 50 7,7696 11,5992 14,3338 1,3045 
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APÊNDICE A – CONTINUAÇÃO 

 

27 0,31 0,34 0,31 0,03 89,66 9,5923 12,0260 12,2652 1,1165 50 9,6046 12,0265 12,2687 1,1175 

28/29 0,07 0,30 0,60 0,03 91,87 0,5916 10,5000 22,8584 1,0500 50/60 0,5980 10,5080 22,8625 1,0519 

30 0,06 0,30 0,58 0,06 92,00 0,3751 10,6225 21,9549 2,0510 50 0,3780 10,6250 21,9816 2,0517 

31 0,31 0,34 0,32 0,03 90,00 9,6056 11,9000 12,4444 1,0500 50 9,6212 11,9060 12,4481 1,0523 

32 0,25 0,33 0,38 0,04 90,00 7,2510 11,5977 14,6717 1,4795 50 7,2514 11,5980 14,6761 1,4815 

33 0,04 0,34 0,59 0,03 94,90 0,2073 8,5000 15,5427 0,7500 50 0,2181 8,5030 15,5498 0,7506 

34 0,31 0,32 0,34 0,03 89,66 9,4776 11,2000 13,2724 1,0500 50 9,4884 11,2000 13,2763 1,0511 

35/36 0,27 0,34 0,35 0,04 91,87 8,4909 11,8195 13,4331 1,2530 50/60 8,4986 11,8195 13,4442 1,2535 

37 0,04 0,33 0,59 0,05 94,90 0,2107 8,1875 15,4768 1,1250 50 0,2113 8,1892 15,4848 1,1254 

38 0,20 0,34 0,42 0,04 91,87 5,6353 11,9000 15,9247 1,5400 50 5,6415 11,9000 15,9318 1,5402 

39 0,18 0,30 0,47 0,05 91,83 4,9162 10,5000 18,0088 1,5750 50 4,9283 10,5030 18,0119 1,5759 

40 0,31 0,30 0,33 0,06 91,83 9,8224 10,5000 12,5776 2,1000 50 9,8260 10,5024 12,5801 2,1003 

41 0,18 0,32 0,45 0,05 90,00 4,6422 11,3050 17,4533 1,5960 50 4,6544 11,3355 17,4647 1,5968 

42 0,25 0,31 0,39 0,05 90,00 7,2121 10,8977 15,0606 1,8295 50 7,2194 10,8977 15,0654 1,8295 

43/44 0,31 0,32 0,33 0,04 92,00 9,8578 11,2000 12,4022 1,5400 50/60 9,8695 11,2133 12,4086 1,5405 

45 0,06 0,32 0,60 0,03 92,00 0,0989 11,0250 22,8261 1,0500 50 0,0989 11,0348 22,8307 1,0512 

46 0,04 0,30 0,60 0,06 93,36 0,0066 10,5175 22,3549 2,1105 50 0,0165 10,5235 22,3588 2,1105 

47 0,25 0,31 0,40 0,04 90,00 7,1538 10,8977 15,6439 1,3045 50 7,1578 10,8999 15,6451 1,3049 

48 0,05 0,31 0,60 0,04 93,36 0,2564 10,8500 22,4936 1,4000 50 0,2684 10,8710 22,4936 1,4011 

49 0,31 0,33 0,31 0,05 89,66 9,5987 11,5500 12,1013 1,7500 50 9,6012 11,5540 12,1017 1,7514 

50 0,11 0,33 0,50 0,05 91,83 2,4292 11,5977 19,1436 1,8295 50 2,4356 11,5620 19,1470 1,8306 

51/52 0,11 0,33 0,52 0,04 91,87 2,3910 11,5977 19,7067 1,3045 50/60 2,4018 11,6039 19,7106 1,3056 

53/54 0,24 0,33 0,38 0,05 91,83 7,1934 11,5977 14,3793 1,8295 50/60 7,1938 11,5990 14,3824 1,8297 

Fonte: O autor (2020). 
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APÊNDICE B – CORRELAÇÃO ENTRE AS FAIXAS ADOTAS PELO IPLS E OS 

RESPECTIVOS COMPRIMENTOS DE ONDA PARA DIFERENTES PRÉ-

PROCESSAMENTOS UTILIZADOS 

 

Tabela B.1 – Correlação entre as faixas adotas pelo iPLS e os respectivos comprimentos de onda para o pré-

processamento com SNV e MSC. 

 Pré-processamento 

SNV/ MSC 

Posição da 

linha 

Comprimento de 

onda (nm) 

Posição da 

linha 

Comprimento de 

onda (nm) 

Posição da 

linha 

Comprimento de 

onda (nm) 

1 908 45 1181 89 1453 

2 914 46 1187 90 1459 

3 920 47 1193 91 1466 

4 927 48 1199 92 1472 

5 933 49 1205 93 1478 

6 939 50 1212 94 1484 

7 945 51 1218 95 1490 

8 951 52 1224 96 1497 

9 958 53 1230 97 1503 

10 964 54 1236 98 1509 
11 970 55 1243 99 1515 

12 976 56 1249 100 1521 

13 982 57 1255 101 1528 

14 989 58 1261 102 1534 

15 995 59 1267 103 1540 

16 1001 60 1274 104 1546 

17 1007 61 1280 105 1552 

18 1013 62 1286 106 1559 

19 1020 63 1292 107 1565 

20 1026 64 1298 108 1571 

21 1032 65 1305 109 1577 
22 1038 66 1311 110 1583 

23 1044 67 1317 111 1589 

24 1051 68 1323 112 1596 

25 1057 69 1329 113 1602 

26 1063 70 1336 114 1608 

27 1069 71 1342 115 1614 

28 1075 72 1348 116 1620 

29 1082 73 1354 117 1627 

30 1088 74 1360 118 1633 

31 1094 75 1366 119 1639 

32 1100 76 1373 120 1645 

33 1106 77 1379 121 1651 
34 1113 78 1385 122 1658 

35 1119 79 1391 123 1664 

36 1125 80 1397 124 1670 

37 1131 81 1404 125 1676 

38 1137 82 1410   

39 1143 83 1416   

40 1150 84 1422   

41 1156 85 1428   

42 1162 86 1435   

43 1168 87 1441   

44 1174 88 1447   

Fonte: O autor (2020). 
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Tabela B.2 – Correlação entre as faixas adotas pelo iPLS e os respectivos comprimentos de onda para o pré-

processamento com 1ª derivada. 

 Pré-processamento 

1ª Derivada 

Posição da 

linha 

Comprimento de 

onda (nm) 

Posição da 

linha 

Comprimento de 

onda (nm) 

Posição da 

linha 

Comprimento de 

onda (nm) 

1 945 45 1218 89 1490 

2 951 46 1224 90 1497 
3 958 47 1230 91 1503 

4 964 48 1236 92 1509 

5 970 49 1243 93 1515 

6 976 50 1249 94 1521 

7 982 51 1255 95 1528 

8 989 52 1261 96 1534 

9 995 53 1267 97 1540 

10 1001 54 1274 98 1546 

11 1007 55 1280 99 1552 

12 1013 56 1286 100 1559 

13 1020 57 1292 101 1565 
14 1026 58 1298 102 1571 

15 1032 59 1305 103 1577 

16 1038 60 1311 104 1583 

17 1044 61 1317 105 1589 

18 1051 62 1323 106 1596 

19 1057 63 1329 107 1602 

20 1063 64 1336 108 1608 

21 1069 65 1342 109 1614 

22 1075 66 1348 110 1620 

23 1082 67 1354 111 1627 

24 1088 68 1360 112 1633 
25 1094 69 1366 113 1639 

26 1100 70 1373 114 1645 

27 1106 71 1379 115 1651 

28 1113 72 1385 116 1658 

29 1119 73 1391 117 1664 

30 1125 74 1397   

31 1131 75 1404   

32 1137 76 1410   

33 1143 77 1416   

34 1150 78 1422   

35 1156 79 1428   

36 1162 80 1435   
37 1168 81 1441   

38 1174 82 1447   

39 1181 83 1453   

40 1187 84 1459   

41 1193 85 1466   

42 1199 86 1472   

43 1205 87 1478   

44 1212 88 1484   

Fonte: O autor (2020). 
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APÊNDICE C – GRÁFICOS DE CONTROLE DO CONJUNTO DE CALIBRAÇÃO 

REFERENTE AS ABORDAGENS DE DESDOBRAMENTO NM E WKFH PARA 

ANÁLISE PÓS-BATELADA E EM TEMPO REAL 

 

Figura C1 – Gráfico da distância ao modelo para as bateladas do conjunto de calibração produzidas em 

condições normais de operação pela abordagem WKFH em tempo real. 

 
Fonte: O autor (2020). 

 

Figura C2 – Gráfico de T2 de Hotelling para as bateladas do conjunto de calibração produzidas em condições 

normais de operação pela abordagem WKFH em tempo real. 

 
Fonte: O autor (2020). 
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Figura C3 – Gráfico de distância ao modelo para as bateladas do conjunto de calibração produzidas em NOC 

pela abordagem WKFH pós-batelada O símbolo ($) à frente da descrição das bateladas indica que o gráfico foi 

construído a partir dos escores do modelo PLS, e não pelos dados originais. 

 

Fonte: O autor (2020). 

 

Figura C4 – Gráfico de T2 de Hotelling para as bateladas do conjunto de calibração produzidas em NOC pela 

abordagem WKFH pós-batelada. O símbolo ($) à frente da descrição das bateladas indica que o gráfico foi 

construído a partir dos escores do modelo PLS, e não pelos dados originais. 

 
Fonte: O autor (2020). 
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Figura C5 – Gráfico da distância ao modelo para as bateladas do conjunto de calibração produzidas em 

condições normais de operação pela abordagem NM pós-batelada. 

 
Fonte: O autor (2020). 

 

Figura C6 – Gráfico de T2 de Hotelling para as bateladas do conjunto de calibração produzidas em condições 

normais de operação pela abordagem NM em pós-batelada. 

 

Fonte: O autor (2020). 

 

 


