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ABSTRACT 

 

In order to decrease the emission of greenhouse gases and propose alternatives to the 

environmental effect of it, the development and improvement of “green technologies” have 

received special attention due to their utility to prevent the impacts caused by those gases. Thus, 

electric vehicles (EVs) were, also, an important advancement in this area. To work, the EVs 

need a reliable battery source and, for most EVs, a lithium-ion battery is used as a power source. 

Some advantages of lithium-ion batteries are high specific energy density, high cycle life, and 

low self-discharge.  In the context of Prognostic and Health Management (PHM), estimation of 

the SOC (State of Charge) – which is the remaining charge within the battery and is defined as 

the ratio of the residual capacity of the battery to its nominal capacity – based on data-driven 

methods (e.g. Machine Learning – ML, Deep Neural Networks – DNN) and data storage (e.g. 

Big Data) has come as a suitable alternative to identify patterns in its degradation over time, 

also being much less time-consuming than physics of failure (e.g. coulomb counting and open 

circuit approaches) methods, which needs full discharging to estimate SOC. In this work, a 

methodology using DNN and Machine Learning (ML) algorithms is proposed to predict battery 

SOC. At first, the input – current and voltage – and the output – SOC – each given in the form 

of time series, are replicated using Maximum Entropy Bootstrap (MEB), a sampling technique 

used with non-stationary time series- this technique is used to further compute confidence 

interval of the remaining time until the next recharge. Afterward, the input dataset is processed 

using a windowing model as the pre-processing step; this processed dataset is used to train a 

DNN model. For purposes of comparison, the data is also fed into an ML model, with each 

replication training the model. Following the training phase, the predicted SOC, for both the 

DNN and ML model, is filtered by an Unscented Kalman Filter (UKF), which processes the 

predicted SOC time series in terms of its mean and covariance. Then, the remaining time until 

the next recharge is computed and compared with the real discharge time. Finally, the 

confidence interval of the remaining time until the next discharge is calculated for the DNN 

and ML models. Analyzing the results, the DNN model, which is performed by the Multi-Layer 

Perceptron, has better results compared with the other applied methods – Support Vector 

Machines, Random Forest and XGBoost – with lower root mean squared error results and 

percentage errors for the remaining time until the next discharge – for both non and post-

processed results. These results are achieved due to the complexity of the DNN model. 

However, further analysis in terms of the number of layers for the DNN method needs to be 



 

 

   

operated. For the Random Forest and XGBoost methods, which obtain the worst results, they 

are, generally applied for classification tasks, explaining the observed results. 

 

Keywords: Electric vehicles. State of charge. Machine learning. Prognostic. Health 

management. 

 



 

 

   

RESUMO 

 

A fim de diminuir a emissão de gases de efeito estufa e propor alternativas para os 

efeitos no meio ambiente causado pelos menos, o desenvolvimento de “tecnologias verdes” tem 

recebido uma atenção especial devido a sua importância para prevenir e evitar os impactos 

causados por esses gases. Então, os veículos elétricos (VEs) são um avanço nessa área. Para 

funcionar, os VEs precisam de uma bateria que seja confiável, sendo as baterias de lítio as mais 

utilizadas como fonte de energia. Algumas vantagens que as células de lítio possuem são a alta 

densidade energética específica, um alto ciclo de vida e baixa auto descarga. No contexto de 

Prognostic and Health Management (PHM), a estimação do estado da carga – que é a carga 

remanescente da bateria definida pela razão da capacidade residual da bateria e a capacidade 

nominal – baseada em métodos conduzidos por dados (e.g. Machine Learning – ML, Deep 

Neural Networks – DNN) e armazenamento de dados (e.g. Big Data) vem como uma alternativa 

para identificar padrões de degradação através do tempo, sendo um procedimento que usa 

menos modelos baseados em física de falha (e.g. contagem de coulomb e métodos de circuitos 

abertos), eles precisam da descarga total para realizar a estimativa do estado da carga. Nesse 

trabalho, uma metodologia usando DNN e ML foi proposta para fazer a estimativa do estado 

da carga. Primeiramente, a entrada – corrente e voltagem – e a saída – estado da carga – cada 

uma dada em formato de série temporal, e, posteriormente, replicada utilizando o Maximum 

Entropy Bootstrap (MEB), sendo utilizada para realizar a estimativa do intervalo de confiança 

do tempo até a próxima descarga. Depois, os dados de entrada são processados utilizando um 

modelo de janelamento como etapa de pré-processamento; estes dados pré-processados são 

utilizados para treinar o modelo DNN. Depois da previsão do estado da carga, os resultados dos 

modelos de DNN e ML serão filtrados utilizando o Unscented Kalman Filter (UKF), que 

processa a série temporal do estado da carga previsto em termos da sua média e covariância, 

Então, o tempo restante até a próxima descarga é calculado e comparado com o tempo de 

descarga real. Finalmente, o intervalo de confiança do tempo restante até a próxima descarga é 

computado para o DNN e o ML. Analisando os resultados e comparando com outros métodos 

utilizados, o modelo DNN, representado por um Multi-Layer Perceptron, obteve os melhores 

resultados se comparados com os outros métodos aplicados – Support Vector Machines, 

Random Forest e XGBoost – com um menor erro médio quadrático e um erro percentual menor 

para o tempo remanescente até a descarga – para os resultados sem e com pós-processamento. 

Esses resultados foram alcançados devido a complexidade do modelo DNN. Entretanto, 

análises posteriores necessitam ser executadas em termos do número de camadas da DNN, entre 



 

 

   

outros parâmetros. Para o Random Forest e o XGBoost, que obtiveram os piores resultados, eles 

são, geralmente, aplicados para tarefas de classificação, o que explica, em parte, os resultados 

obtidos. 

 

Palavras-chave: Veículos elétricos. Estado da carga. Machine learning. Prognóstico. Health 

management. 
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1 INTRODUCTION  

 

Electric Vehicles (EVs) use rechargeable batteries and electric energy as supply; thus, 

they are an important development in the automobile industry. If clean energy is used, the EV 

is an alternative to reduce the consumption of fossil fuels and, therefore, reduce pollution caused 

by these energy resources. EVs include road and rails vehicles, surface and underwater vessels, 

electric aircraft and spacecraft (HANNAN et al., 2017). 

The first electric car, a prototype, was built in 1835 by professor Sibrandus Straight of 

the University of Groningen, Netherlands (GUARNIERI, 2012). However, the improvement of 

the road infrastructure and the discovery of large petroleum storage made the industry of 

internal combustion cars (ICC) cheaper than the electric ones and another point to consider was 

the low potential of energy storage of the batteries from this epoch. Thus, it was hard for the 

EVs to attend long distances due to the low capacity of batteries back then in opposite of ICC 

(LOEB, 1885).  

Those vehicles use one or more electric motors or traction motors for propulsion and 

can be powered either by an electric collector system from off-vehicle source or a self-contained 

system with a battery, solar panels or an electric generator which converts fuel to electricity. 

Despite the many power sources for the EVs, the most common ones are batteries. Lithium, 

nickel-cadmium, lead-acid and alkaline are some of the types of electric batteries which can 

supply those vehicles, but lithium-ion batteries are the most promising ones because of its 

features such as high energy density, long life cycle, high efficiency and sustainable 

performance (HE et al., 2016) (LU et al., 2013) (CHENG et al., 2011). 

The battery is a critical component of an EV, so, for the entire electric system to work 

safely, it must have its reliability guaranteed. It requires continuous monitoring and control 

systems to prevent abnormal degradation and catastrophic failures. When the operational 

condition is not supervised properly, the equipment is susceptible to failure which can cause an 

explosion, fire, release of toxic gases, or other negative impacts (HENDRICKS et al., 2015).  

As an example, in 2013 the occurrence of two separate lithium-ion battery incidents lead to a 

grounding of an entire fleet of a Boeing 787 (TOPHAM; SCOTT, 2013) (WILLIARD et al., 

2013).  

Hence, to indicate the battery state and avoid its failure, a battery management system 

(BMS) works as a link between the battery and the vehicle. Using the concepts of Prognostics 

and Health Management (PHM) (ELATTAL et al., 2016) - a technology used to monitor 

degradation in engineering systems and to provide information such as fault detection and 
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failure prognostics - , one of the concerns of BMS is to estimate the battery state of charge 

(SOC) and the state of health (SOH). SOC measures the amount of usable energy at the present 

cycle and the SOH denotes the remaining performance of the battery over its entire life cycle.  

SOC acts as a “fuel gauge” in an EV, it shows how long the battery will be available 

before it is recharged. Also, it can ensure that batteries operate properly under the desired limits 

and consequently prolong the battery useful life preventing over-charging or over-discharging. 

However, battery SOC is inferred using observed variables such as current and voltage. Some 

SOC estimation techniques are: Coulomb counting via the integration of the loading current 

(KONGSOON et al., 2009) (ZHANG et al., 2014) (LENG et al., 2014), data-driven methods 

(e.g. Support Vector Machines (SVM) (VAPNIK; LERNER, 1963) (VAPNIK; 

CHERVONENKIS, 1964) (HANSEN; WANG, 2005), Neural Networks (NN) (HAYKIN, 

1999) (ZHAO et al., 2018) (LI et al., 2014)), and physical model-based methods via equivalent 

circuit models (ECM) and electrochemical models (GOMEZ et al., 2011) (CHO et al., 2012) 

(RAHMAN et al., 2016) (STETZEL et al., 2015) (DI DOMENICO et al., 2008).  

Data-driven methods, such as SVM and NN, are widely used with the purpose of 

estimating the SOC or SOH of a battery. These methods consider characteristics given by 

sensors such as temperature, voltage, current, and capacity. However, these sensors register a 

considerable amount of data, filtering and selecting the important features is an exhaustive job. 

To avoid this previous step, Deep Neural Networks (DNN) (LE CUN et al., 1998) (LE CUN et 

al., 2015) comes as a strategy due to its property to process and extract features from the data 

in terms of its spatial – Convolutional Neural Networks (CNN) (LE CUN et al., 1998) and its 

derivations – and time – Recurrent Neural Networks (RNN) (RUMELHART et al., 1986) and 

its derivations – characteristics (ZHAO et al., 2018) (CHEMALI et al., 2018). 

Chaoui & Ibe-Ekeoch (2017) present an application of dynamically driven recurrent 

networks (DDRN) in online EV battery analysis. They aim to estimate the SOC and SOH, 

promising to have both good computational intelligence and robustness while maintaining some 

simplicity due to the global feedback theorem (GFT). Zhao et al. (2018) model a BMS of a 

lithium-ion battery using the gated recurrent unit (GRU), a type of RNN, and deep feature 

selection (DFS). These works illustrate how wide are the possibilities of using data-driven 

methods. 

He et al. (2014) proposed an approach using NN and Unscented Kalman Filter (UKF) 

in order to predict the SOC. They mention how easy is to estimate SOC through a data-driven 

approach using only current and voltage as inputs. Then, to reduce the prediction error they 

applied UKF, which helps to smooth and predict time-series of nonlinear state-space systems. 
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UKF is also used to estimate and smooth the SOC in He et al. (2016), Partovibakhsh & Liu 

(2014) and Sun et al. (2011). On the other hand, data used to train these models is developed 

through simulation and, thus, data augmentation techniques can be explored as an approach to 

approximate better real-life scenarios. 

In order to estimate the confidence interval, the maximum entropy bootstrap (MEB) is 

applied. This method replicates nonstationary time-series, which are, basically, the inputs (e.g. 

current, voltage, impedance) of the data-driven algorithm applied in this work (VINOD; 

LOPEZ-DE-LACALLE, 2009).  

Thus, to avoid accidents and losing profits, BMS is essential to know the behavior of 

the studied system and to building appropriated maintenance policies. Hence, this work 

proposes an applied methodology using ML and DNN - which are data-driven and uses data 

from monitoring systems (e.g. current, voltage, temperature) to estimate SOC and other metrics 

related to BMS; the data-driven approach is generally used to continuous monitoring systems 

due to its practicality and it does not require full battery discharge as Coulomb Counting and 

models based of thermochemistry and thermodynamics data. Therefore, the proposed 

methodology uses data from a Li-ion battery monitoring system to estimate SOC and the 

remaining time until the next recharge. As a further step, the estimated SOC results are going 

to be post-processed using an Unscented Kalman Filter (UKF) to minimize the effect prediction 

error and the confidence interval of the remaining time until the next discharge is going to be 

calculated using Maximum Entropy Bootstrap (MEB).  

 Justification 

With the growing awareness of global warming and climate changes, the concern of the 

consumption of fossil fuels and vehicles based on this power source has grown due to GHG 

emissions (HANNAN et al., 2014) (BUDZIANOWSKI et al., 2012) (SULAIMAN, 2015). 

Furthermore, with the effects caused by these emissions (e.g. overheating, flooding and melting 

glaciers), the petroleum-based industry, including the automotive, is trying to develop 

alternative solutions that use other energy sources (POULLIKKAS, 2015) (HOFMANN et al., 

2016) (ABDUL-MANN, 2015) (CANALS CASALS et al., 2016). Thus, EVs come as an 

alternative to reduce the impact of these pollutants.  

Nowadays, lithium-ion batteries are the most common energy storage because of their 

advantages, such as high energy densities, cycling durability, no memory effect, and low self-

discharge. However, some physical-chemical events such as thermal and electrochemical 

instability of the electrode and the flammability of the electrolyte can cause catastrophic 
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failures. When a battery fails, fires and explosions are some of the effects of these events 

causing accidents for the consumers.  

Research on EV is mainly focused on increase vehicle efficiency, reduce price of 

components and develop methods for an effective and efficient charging system. A recent 

survey conducted by IEA (International Energy Agency) – Global EV Outlook 2019 – discusses 

recent developments in electric mobility around the world. This survey is supported by the 

Electric Vehicles Initiative and combines projections, policy recommendations and other 

economics perspectives. According to this survey, electric mobility is expanding rapidly; in 

2018, for example, the global EVs fleet exceeded 5.1 million – almost doubling the number of 

new sales in this field, being China the largest market, having 45% of the fleet, followed by 

Europe, with 24%, and United States, with 22% (Figure 1).  

 

Figure 1 - Number of EVs with a projection until 2030. 

 

Source: IEA, 2017. 

 

This research also does an outlook of growth of EV – passenger light duty vehicles, light 

commercial vehicles, buses and trucks – with and without hybrid systems; thus, around 300 

million vehicles will compose the fleet of EVs. However, even if all these advantages are 

considered, only a few countries are fully included in the EV market, being the limiting the high 

cost and the production numbers. Considering the producers perspective to reduce the impacts 

limitations, they set a production target (IEA, 2017; DAS et al., 2019), and according to the 

same survey – from IEA – the production is set to 548 million by 2040 (DAS et al., 2019). 



22 

 

The evolution of GHG emissions from EV fleet is given by the combined evolution of 

the energy used by an EV and the carbon intensity of electricity generation; thus, if the grid 

becomes less carbon intensive, also the EVs are. Even though is well-known that EVs are a 

progress in decreasing GHG emissions, it requires a decarbonization of power systems (Figure 

2) (IEA (2017)). 

 

Figure 2 - A well-to-wheel net and avoided GHG emissions form EV fleets by transport sectors based 

on the IEA scenario – until 2030. 

 

Source: IEA, 2017. 

 

To build a PHM strategy, some steps are required including the choice of the method 

that will process the data. Due to the increasing power of data storage and computer processing, 

ML methods (including DNN and SVM) - with the right data preprocessing - are arising due to 

their capability of processing a large amount of data while also being precise during machine 

prognosis and diagnosis.  These methods are widely used due to the possibility of updating 

continuously the model and the predictions using new data and training. Also, compared to 

other models such as coulomb counting, adaptative filters (e.g. UKF) and thermochemical 

models – which requires the full discharge of the system or accumulates errors through the 

predictions – a data-driven approach is constantly trained and updated, which allows precision 

and effectiveness during the equipment’s operation.   

 Objectives 

In the following topics are presented the General Objective and the Specific Objectives.  
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1.2.1 General Objectives 

The main purpose of this study is to develop a data-driven prognostic strategy 

comparing different DNN and ML methods to estimate the SOC of lithium-ion batteries and 

compare its results and performance. 

1.2.2 Specific Objectives 

a) Literature review: a study about battery management systems (BMS), types of batteries, 

how to proceed with BMS studies, DNN and ML. 

b) Data collection: search for EVs batteries data sets, with the focus being on prognostics 

data sets; 

c) Feature selection: analyze what type of metrics (e.g. current, voltage, temperature) are 

important to develop the DNN and ML models from the selected battery dataset; 

d) Data Augmentation: perform the data augmentation using MEB; 

e) Algorithm implementation: implement the DNN and ML algorithms to estimate the 

SOC; 

f) Test the model efficiency: compare different models, their metrics and prediction 

results, considering their processing (train and test) time and choose the more efficient 

one; 

g) Estimate SOC and its prediction error; 

h) Calculate the confidence interval of the remaining time until the next discharge using 

Maximum Entropy Bootstrap (MEB); 

i) Improve the output (SOC) and predicted time through a filtering strategy such as 

Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). 

 Methodology 

Conforming to Fontelles et al. (2009), this research can be classified as applied. The 

approach is considered quantitative research owing to work with data that can be translated in 

numbers to be classified and evaluated. According to the objectives, the study can be classified 

as explanatory. As technical procedures, this work is documentary research. 

This study aims to develop a BMS focused on prognostics of EVs batteries based on 

DNN and ML to estimate SOC. Firstly, the dataset from train and test is going to be replicated 

to calculate the confidence interval and perform data augmentation for the DNN network. Then, 

an autoregressive model is going to work as a preprocessing step, and, for the DNN network is 
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going to, also, work as data augmentation. After the preprocessing step, the ML and DNN 

algorithms are going to be trained and this training process is going to be evaluated. As a result, 

the SOC and the remaining time until the next discharge is going to be estimate and evaluated.  

To achieve this purpose the study will involve the following steps: 

a) Literature review; 

b) Data collection; 

c) Feature selection; 

d) Feature extraction; 

e) Algorithm implementation; 

f) Test model efficiency; 

g) Estimate SOC; 

h) Compare models; 

i) Process the output; 

j) Evaluate the methodology; 

k) Write the master’s thesis. 

 Thesis’ Structure 

The content of the following chapters of this dissertation are briefly described below:  

Chapter 2: the theoretical background and literature review of essential concepts 

related to BMS, ML, DNN, UKF, and MEB. 

Chapter 3: gives a detailed description of the proposed methodology for predicting 

SOC; 

Chapter 4: presents the results of the implementation of the proposed method on a 

battery dataset; 

Chapter 5 provides some concluding remarks and comments about future works. 
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2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 

 

In this section, are presented the following topics: Battery Electric Vehicles – Lithium-

ion Batteries and Battery Management System -, Machine Learning – Neural Networks and 

Multi-layer Perceptron, Support Vector Machine, Random Forest Regression and Extreme 

Gradient Boosting Regression -, Unscented Kalman Filter, Maximum Entropy Bootstrap and a 

brief Literature Review. 

 Battery Electric Vehicle  

According to 2016, Special Report Energy and Air Pollution made by World Energy 

Outlook, in 2015 half of all pollution caused by nitrogen oxide were attributed to the 

transportation sector. Also, 50% of the overall health-related economic cost (about $865 billion) 

is due to air pollution. Norway and some other countries are acting in order to prevent the 

negative effects by prohibiting new fossil-based vehicles by 2030. Thus, electric vehicles (EVs) 

and hybrid electric vehicles (HEVs) (Figure 3) are one of the promises of green travel where 

fuel-based transports will be gradually substituted by electric-based ones reducing the 

dependence and consumption of fossil energy which reduces the GHG emission. These vehicles 

can be easily charged with a structure that can be plugged in the streets with power source 

stations at parking lots during the day or overnight at home with energy generated by a power 

station or renewable energy. However, the key component is the battery which can store the 

energy that will help using EVs (REN et al., 2017).  

Figure 3 - The charging station of EVs 

 

Source: LOFGREN, 2013. 
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Li-ion batteries are the common choice for portable electronic devices such as 

cellphones, personal computers, tablets as well as EVs because of its high energy-to-weight and 

power-to-weight ratios and low self-discharge rates (LINDEN; REDDY, 2002) (CAPASSO; 

VENERI, 2014). Also, considering all rechargeable electrochemical systems, Li-ion batteries 

are the ones chosen as power source of EVs and HEVs. Even though these batteries have a 

certain number of advantages, issues such as safety, cost, recycling, and infrastructure are still 

a concern nowadays. 

In order to ensure the safety of the battery, a battery management system (BMS) is 

necessary for an EV, and it is composed of sensors, controllers, actuators, which are controlled 

by algorithms, and signal. According to Xiang et al. (2011), BMS has two structures (Figure 

4): hardware and software. The hardware part is basically the sensors and controllers which 

guarantee to measure, control and communicate the state of the battery. The software part is 

responsible for controlling the hardware operation, making decisions and estimating the states 

of all sensors; furthermore, it performs the data analysis determining fault identification and 

state estimation – including estimating SOC – helping the user to extract information from the 

battery health condition through an interface. 

 

Figure 4 - BMS elements to identify system failure. 

 

Source: adapted from Hannan et al., 2017. 

2.1.1 Lithium-Ion Batteries 

The first lithium-ion (li-ion) battery was made in 1962 and it was composed of a 

negative electrode and a positive electrode made of manganese dioxide; however, the first 

rechargeable battery was released in 1985 by the Moli Energy. This kind of battery was 

successfully used in 1991 by SONY in mobile devices due to its high energy density, high 
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operating voltage, and low self-discharging rate. Besides, it is found in different types of models 

such as cylindrical, coin, pouch and prismatic (Figures 7 to 10) (Figure 5). In the automotive 

industry, li-ion batteries are applied in different kinds of hybrid vehicles, plug-in hybrid 

vehicles, buses and trucks and electric vehicles (DU, CAO, ZHANG, 2018). 

 

Figure 5 - Battery structure. 

 

Source: Cui et al., 2017. 

 

A lithium-ion battery can be charged and discharged repeated times; though, the amount 

of electrical charge that it can store decreases over time. It happens due to different degradation 

phenomena such as chemical side reactions or loss of conductivity (WRIGHT et al., 2003) 

(WANG et al., 2015). Also, catastrophic failures can occur unexpectedly as a result of fire or 

explosion and this often happens owing to overstress conditions (the battery operates outside 

the recommended conditions of current, voltage or temperature). So, this type of equipment 

requires continuous monitoring and control, i.e., a good BMS (KORTHAUER, 2018). 

Figure 6 shows how a rechargeable li-ion battery works. At first, an ion electrolyte with 

dissociated lithium conducting salt, which is a conductor, is between the two electrodes. A 

separator - a porous membrane that electrically isolates that allows ion transportation 

(HENDRICKS et al., 2015). Consequently, lithium ions flow between the electrodes of the 

battery during the charging and the discharging process.  

The discharging process is when the lithium from the negative electrode (anode) is 

deintercalated and electrons are released. Thus, these electrons carrying electricity migrates via 

an external connection (a cable) to the positive electrode (cathode). The anode can be made of 

graphite or carbon compounds and the cathode can be made of mixed oxides. When the 
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charging occurs, this process is reversed. Depending on the application, how batteries are 

designed is important to guarantee efficiency, reliability, and safety on the vehicle. A single 

battery can be used (e.g., cellphones) or multiple batteries are organized in series or parallel. 

 

Figure 6 - How a rechargeable li-ion battery works. 

 

 Source: Korthauer, 2018. 

 

Figure 7 - Cylindrical cell. 

 

Source: CALCE, 2014. 

 

Figure 8 - Coin cell. 

  

Source: BBC- UK. 
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Figure 9 - Prismatic cell. 

 

Source: CALCE. 

 

Figure 10 - Pouch cell. 

 

Source: CALCE.  

 

The batteries can also be modeled using two types of design: block and modular design 

(Figures 11 and 12). On one hand, the block design and the storage components, altogether, 

build a single block with structures such as collectors, sensors and other components. On the 

other hand, in the modular design, some individual cells are combined to build a sub-unit, which 

are used in the battery units, that constitute a module. 

 

Figure 11 - Li-ion battery system with block design 

 

Source: KORTHAUER, 2018.  
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Figure 12 - Li-ion battery system with a modular design. 

 

Source: KORTHAUER, 2018.  

 

The useful life of a battery relies on how the system operates, how they are made and 

how good the production process is. Hence, the BMS works as a condition controller that 

monitors the cell system (e.g. voltage, current, and temperature), allowing safety by using on 

and off systems and controlling the temperature with cooling and heating systems. 

2.1.2 Battery Management System 

One of the functions of a BMS is to estimate the SOC which is the remaining charge 

capacity of the battery. The SOC is basically the ratio between the residual capacity and the 

nominal capacity and when estimated, it is dependent on the temperature and on the current 

(CHEMALI et al., 2016) (AHMED et al., 2014) (LI et al., 2017). The capacity is a measurement 

of how much electric charge a power source can give under certain discharge conditions; also, 

it depends on the discharge current, the cut-off voltage, the temperature and the type of material 

which it is made of.  

As already defined before, SOC is the relation between the remaining capacity and the 

nominal or the maximum capacity of the battery. It is represented by Equation 2.1, for 

continuous measurements, being: 𝑆𝑂𝐶𝑡 the present SOC, 𝑆𝑂𝐶0 the initial SOC, 𝐼𝐿,𝜏 the 

instantaneous load current, 𝜂𝑖 the Coulomb efficiency and 𝐶𝑎 the maximum available capacity  

(KORTHAUER, 2018). 

𝑆𝑂𝐶𝑡  =  𝑆𝑂𝐶0 − ∫
𝜂𝑖𝐼𝐿,𝜏𝑑𝜏

𝐶𝑎

𝑡

0
        (2.1) 

For discrete measurements, a sample period △ 𝑡 is considered and Equation 2.2 

represents the SOC in each time interval 𝑘. 
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𝑆𝑂𝐶𝑘 =  𝑆𝑂𝐶𝑘−1 −  𝜂𝑖𝐼𝐿,𝑘
∆𝑡

𝐶𝑎
                (2.2) 

The SOC can be estimated through a diverse number of methods from chemical methods 

(e.g. Open Circuit Voltage – OCV) to data-driven methods (e.g. SVM, RF); thus, some of them 

can be emphasized. However, due to, firstly, try to estimate this metric without experiments, 

ML models are used – because of its data-driven characteristics; also, this approach can be 

rearranged to fit new monitoring data, which allows parameters recalculating and model 

updates. To compute the SOC, the following equation was used: 𝑆𝑂𝐶𝑘 = 1 −
𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑘 (𝐴ℎ)

𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
, 

being the capacity in 𝑡 = 𝑘 and the nominal capacity given by the chosen dataset. 

 Open Circuit Voltage (OCV) method: a method to estimate SOC using an open 

circuit. In order to do the estimative, a linear approximation is used between SOC 

and OCV, being this relationship depend on the type of battery (SNIHIR et al., 

2006) (DONG et al., 2011) (TANG et al., 2015) (ZHENG et al., 2016). It depends 

on capacity and material of the battery. Even though it is a simple method with 

high precision, the main disadvantage of this method is that is takes a long time 

to reach for the reaction to reach the equilibrium. Hence, for purposes of testing 

driving profiles, this method is only applied when the vehicle is placed in a 

parking, which do not allow the evaluation during operational time.  

 Coulomb Counting method: being the easiest way to estimate SOC, the Coulomb 

counting method is implemented with low computational power and is based on 

the integration of battery current with respect to time while the battery is charging 

or discharging (ZHANG et al., 2014) (LENG et al., 2014) (KONGSOON et al., 

2009). However, this method can incur in inaccuracies caused by uncertain 

disturbances and variables such as noise, temperature and current. Other difficulty 

that was found is the determination of the initial SOC causing a cumulative effect. 

Also, this method needs the complete discharge of the cell and periodic capacity 

calibration to achieve the maximum capacity, which decrease the lifespan of the 

battery. 

 Model-based SOC estimation: since the OCV cannot do online estimation and 

needs a long pause to monitor the SOC, this method does not have a good 

performance while the vehicle is operating. Therefore, a model is built to estimate 

SOC. These models are, mostly, electrochemical or uses equivalent circuit model 

(GOMEZ et al., 2011) (CHO et al., 2012) (RAHMAN et al., 2016) (STETZEL et 

al., 2015) (DI DOMENICO et al., 2008); they are, also, used to analyze the 
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performance related to the internal material and consider the effects of 

electrodynamics and thermodynamics. One of the disadvantages of this model is 

the lack of detailed explanation on the electrochemical reactions of the battery; 

also, is a complex and not easy to generalize. 

 Adaptative filter algorithm (e.g. Kalman Filter, Extended Kalman Filter and 

Unscented Kalman Filter): The Kalman Filter (KF) is widely used to estimate the 

dynamic state of charge of the battery (XU et al., 2012) (TING et al., 2014) 

(URBAIN et al., 2007) (YATSUI et al., 2011) (HU et al., 2013) (PLETT et al., 

2004, Parts 1, 2 and 3) (LEE et al., 2007) (CHEN et al., 2013) (MASTALI et al., 

2013) (ZHU et al., 2012) (HE et al., 2011) (XIONG et al., 2013) (HE et al., 2012) 

(HE et al., 2013). This method filters the parameters from observation with noise 

having a self-correcting nature, which helps to tolerate a high variation of current. 

However, KF is not able to perform accurate estimative in non-linear application; 

thus, the Extended Kalman Filter (EKF) is applied. The main difference between 

these two methods is that the EKF uses partial derivatives and first order Taylor 

series expansion to linearize the battery model. Even though, EKF has a better 

performance compared to KF, the linearization error can occur if the system in 

highly non-linear condition. Considering that the EKF only operates in the first 

and second order of a non-linear model, which results in a significant error in non-

linear state-space models, the Unscented Kalman Filter (UKF) come as an 

alternative to these problems. The UKF is a version of KF which applies discrete-

time filtering algorithm and unscented transform (UT) to solve the filtering 

problem. Thus, this method is better than the EKF because it can predict 

accurately the system state until the third order of any non-linear system. For this 

reason, the UKF can perform the filtering without needing the computation of the 

Jacobian matrix and noise of the process does not need to be Gaussian; hence, 

performing in highly non-linear system. On the other hand, this method suffers 

from poor robustness because of the modeling uncertainty and system 

disturbances. These methods are, generally, applied as a recursive TS filter – 

predicting the next SOC – or as a preprocessing step, in hybrid methods, to 

minimize the effects of prediction error. 

 Data-driven methods (e.g. Neural Networks, Support Vector Machines): these 

methods are based on condition monitoring data (SALKIND et al., 1999) 

(CHARKHGARD et al., 2011) (CHEN et al., 2011) (XUAN et al., 2011) 
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(ANTÓN et al., 2013). They work well to solve the nonlinearity problem; 

however, a large amount of data is needed to train and test these models. Machine 

Learning (ML) methods such as Neural Networks (NN) and Support Vector 

Machines (SVM) were applied (HE et al., 2014), (LI et al., 2018).  

 Hybrid methods:  these methods are, basically, the combination of two or three 

algorithms in order to increase the efficiency and accuracy of the battery model 

(CHENG et al., 2011) (LI et al., 2013) (XU et al., 2009). This results in effective 

and reliable results, also decreasing the cost of the BMS. However, these methods 

have high computational cost and require memory from the device. This approach 

was the one chosen in this work. 

 Machine Learning 

As can be seen in Kumar (2017), artificial intelligence (AI) techniques were developed 

in order to reproduce human characteristics such as perception, analysis, reasoning, and others  

(LI; ZHANG, 2017). For Jordan and Mitchell (2015), it aims to improve the performance 

measurements using the training step as a basis to model the technique. Thus, ML learn 

knowledge from the real world and represents it through its learning ability (PORTUGAL; 

ALENCAR; COWAN, 2018). 

ML methods consider inductive inference to learn a set of examples from an 

environment, which can be used in supervised and unsupervised learning methods. The first 

step, the training, used a set of 𝑛 examples (e.g. 𝐷 = {(𝒙𝟏, 𝑦1), (𝒙𝟐, 𝑦2), … , (𝒙𝒏, 𝑦𝑛)}) to infer a 

function 𝑓. In supervised problems, the mapping function 𝑓 learns the patterns of inputs and 

outputs and, generally, returns a function that represents the behavior of such data (CHAPELLE 

et al., 2002) (LINS et al., 2013). So, the learning problem can be defined based on the output: 

Regression problems: assumes that the output are real values; 

Classification problems: assumes that the output is a set of categories. It can characterize 

a binary classification when there are only two categories or a multi-class problem. 

In this work, regression models of ML were used in order to predict the SOC of li-ion 

batteries in different temperature, current and voltage conditions. 

2.2.1 Neural Networks and Multi-Layer Perceptron 

A Neural Network (NN) has as main motivation the functioning of the human brain 

which has some typical characteristic such as high complexity, nonlinearity and the capacity of 

parallel processing; it also has the capacity to organize its basic structure, the neuron, in order 
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to perform activities like pattern recognition, perception, and motor control. Thus, an NN can 

be described as a heavily parallel distributed processor made of simple processing units that 

have the power to store knowledge through a learning process with weights that save this 

acquired knowledge (HAYKIN, 2008). 

The NN has some properties and capabilities as nonlinearity – the artificial neuron can 

be either linear or nonlinear -, input-output mapping – which is the capacity to learn a unique 

input and link it with the desired output -, adaptivity – the capacity to change the synaptic 

weights and adapt it to the new environment, and other properties (HAYKIN, 1998) Hence, as 

an information-processing unit, the neuron, is basic for the fundamental operation of a NN and 

has a structure composed of: 

 A set of synapses or connecting links which are characterized by a weight; 

 A sum of the input signal and the weights by a linear combiner; 

 And an activation function in order to restrict the output of the neuron. 

NN whose simplest component is a neuron. Figure 13 shows how a neuron operates; it 

receives information as an input 𝑥𝑛, being 𝑛 = 1, 2, 3, …, and this input is multiplied by a 

weight 𝑤𝑛. Then, all these inputs are summed up and added to a bias 𝑏. This constitutes the cell 

body of a neuron; the activation function 𝑓 will process this input and give the output that will 

enter the next neuron. 
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Figure 13 - Basic neuron mode. 

 

Source: LI et al., 2018. 

Thus, the multilayer perceptrons (MLPs), is a variant of the perceptron model proposed 

by Rosenblatt (1950), come as an advancement of the NN theory and is consisted of a set of 

sensory units, known as nodes, which is the input layer, a set of hidden layers, which can be 

one or more, and an output layer to compute the results from the nodes. So, the input propagates 

through the network in a forward direction within each layer. The MLPs have several 

applications and are well-known for their backpropagation algorithm, which is based on the 

error-correction learning rule (HINTON, 2012). 

The error back-propagation learning has two basic steps: the forward step and the 

backward step. The forward step is when the input data is applied to the nodes of the network 

and the effects of it are propagated layer by layer and a response is the output of the network. 

In this step, the weights are fixed. Then, in the backward step, the weights are adjusted obeying 

the error-correction rule and the output is subtracted from the desired value producing an error. 

Thus, this error is propagated back through the network and the synaptic weights are adjusted 

to predict better results. This algorithm is a so-called backpropagation (RUMELHART et al., 

2016). 

Given an input layer with 𝑛0 neurons and input vector 𝑋 = (𝑥0, 𝑥1, … , 𝑥𝑛0
) and an 

activation function called sigmoid 𝑓(𝑥) = 1/1 + 𝑒−𝑥, to compute the network output of each 

unit in each layer, it is necessary to consider a set of hidden layers (ℎ1, ℎ2, … , ℎ𝑁) and to 

presume that 𝑛𝑖 is the number of neurons by each layer ℎ𝑖. So, the output of the hidden layer is 

given by Equation (2.3): 

ℎ𝑖
𝑗 = 𝑓(∑ 𝑤𝑘,𝑗

0 𝑥𝑘
𝑛𝑖−1
𝑘=1 )           𝑗 = 1, …,   𝑛𝑖                  (2.3) 
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And it can also be represented as (Equation (2.4)): 

ℎ𝑖
𝑗 = 𝑓(∑ 𝑤𝑘,𝑗

𝑖−1ℎ𝑖−1
𝑘𝑛𝑖−1

𝑘=1 ) 𝑖 = 2, … , 𝑁 𝑎𝑛𝑑  𝑗 = 1, …,   𝑛𝑖            (2.4) 

The 𝑤𝑘,𝑗
𝑖  is the weight between the neuron 𝑘 in the hidden layer 𝑖 and the neuron 𝑗 in 

the hidden layer 𝑖 + 1, and 𝑛𝑖 is the number of neurons in the 𝑖th hidden layer. So, the output 

can be represented as follows: 

ℎ𝑖 = (ℎ𝑖
1, ℎ𝑖

2, … , ℎ𝑖
𝑛𝑖)                   (2.5) 

So, the network output is 

𝑦𝑖 = 𝑓(∑ 𝑤𝑘,𝑗
𝑁 ℎ𝑁

𝑘𝑛𝑁
𝑘=1 )         (2.6) 

𝑌 = (𝑦1, … , 𝑦𝑗, … , 𝑦𝑁+1) = 𝐹(𝑊, 𝑋)      (2.7)

  

 The 𝑤𝑘,𝑗
𝑁  is the weight between the neuron 𝑘 in the 𝑁th hidden layer and the 

neuron 𝑗 in the output layer, 𝑛𝑁 is the number of neurons of the 𝑁th hidden layer, 𝑌 is the vector 

of the output layer, 𝐹 is the transfer function and 𝑊 is the matrix of weights, which is defined 

by the following formulation: 

𝑊 = [𝑊0, … , 𝑊𝑗 , … , 𝑊𝑁]       (2.8) 

𝑊𝑖 = (𝑤𝑗,𝑘
𝑖 )          (2.9) 

𝑤𝑗,𝑘
𝑖 ∈ ℝ                    (2.10) 

0 ≤ 𝑖 ≤ 𝑁         (2.11) 

1 ≤ 𝑗 ≤ 𝑛𝑖+1         (2.12) 

1 ≤ 𝑘 ≤ 𝑛𝑖         (2.13) 

For simplicity, 𝑛 = 𝑛𝑖 , 𝑖 = 1, … , 𝑁 can be considered, the 𝑋 as the input of the NN, 𝑓 

as the activation function, 𝑊𝑖  as the matrix of weights between consecutive hidden layers, 𝑊0 

as the matrix of weights between the input layer and the first hidden layer and 𝑊𝑁 as the matrix 

of weights between the last layer and the output layer. Figure 14 shows the scheme of an NN.  
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Figure 14 - MLP structure. 

 

 

Source: RAMCHOU et al., 2016. 

 

2.2.2 Support Vector Machine 

The SVM (Support Vector Machines) is a supervised and unsupervised learning method 

widely used to recognize patterns and regression. This algorithm was, firstly, developed in 

Russia on the 60’s by Vapnik and Lerner (1963) and Vapnik and Chervonenkis (1964) and is 

based on statistical learning theory (SLT) developed by Vapnik and Chervonenkis (1974) and 

Vapnik (1995). In this work, a regression problem is considered, thus, specifically SVR 

(Support Vector Regression) is described below. 

SVR is a version of SVM for regression problems. Thus, after the learning phase, the 

input data from the SVM are used in a quadratic mathematical programming problem which is 

convex (SCHÖLKOPF & SMOLA, 2002). The KKT (Karush Kuhn Tucker) conditions 

guarantee the global optimum, the first-order conditions are needed to solve the linear 

programming problem satisfying the regularization conditions (ZHAO & DIMIROVKI, 2004). 
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The principal aim is to find the hyper plan that best represents the regressors given a 

dataset D. The mapping representation of the data must be the most fitting in order to optimize 

the SVR objective function. Thus, the regression equation of the hyperplan is given by 

(Equation 2.14): 

𝑓(𝑥) =  𝑤𝑇𝑥 + 𝑏             (2.14) 

Being x the input data and  wT and b the coefficients that will be estimated by the 

following regularized risk function (Equation 2.15): 

𝑅(𝐶) = 𝐶
1

𝑚
∑ 𝜓𝜀(𝑦𝑖 , 𝑓𝑖) +

1

2

𝑚
𝑖=0 𝑤𝑇𝑤      (2.15) 

Where 

ψε(yi, fi) = {
|yi − fi| − εif|yi − fi| ≥ ε

0     otherwise
     (2.16) 

Being yi − wTxi − b ≤ ε + ξi and fi the estimated values for the same variable at the 

same time. Equation (2.16) is called the 𝜀- insensitive loss function and it indicates the estimated 

points that are inside the boundaries of the SVM with a ray of ε that do not suffer penalization. 

To facilitate the calculations, 𝜉𝑖 is defined when they are above the boundaries and  𝜉𝑖
∗ is when 

it is under the boundaries. Thus, ε is a predefined tolerance. 

The second part of Equation (2.17) is used as a smooth function since one of the aims 

of the SVM is to obtain a function 𝑓(𝑥) as flatter as possible to minimize 𝑤𝑇𝑤 which is related 

to the capacity of the ML model. Therefore, C measures the trade-off between the empiric risk 

and the model smoothness. The primal formulation can be given by: 

min
w,b,ξ,ξ∗

1

2
wTw + C ∗ ∑ (ξi + ξi

∗)l
i=0                 (2.17) 

where i express the number of penalized points and is subject to (Equations 2.18, 2.19, 

2.20, 2.21):   

𝑦𝑖 − 𝑤𝑇𝑥𝑖 − 𝑏 ≤ 𝜀 + 𝜉𝑖                                                                                       (2.18)                                   

𝑤𝑇𝑥𝑖 + 𝑏 − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
∗                (2.19) 

𝜉𝑖 ≥ 0                  (2.20) 

𝜉𝑖
∗ ≥ 0                  (2.21) 

Being the primal Lagrangean function (Equation 2.22):  

𝐿(𝑤, 𝑏, 𝜉, 𝜉∗, 𝛼, 𝛼∗, 𝛽, 𝛽∗) =
1

2
𝑤𝑇𝑤 + 𝐶 ∑ (𝜉𝑖 + 𝜉𝑖

∗)𝑙
𝑖=0 − ∑ (𝛽𝑖𝜉𝑖 + 𝜉𝑖

∗𝛽𝑖
∗) −𝑙

𝑖=0

∑ 𝛼𝑖(𝑤𝑇𝑥𝑖 + 𝑏– 𝑦𝑖 + 𝜀 + 𝜉𝑖)𝑙
𝑖=0 − ∑ 𝛼𝑖

∗(𝑦𝑖, 𝑤𝑇𝑥𝑖 − 𝑏 + 𝜀 + 𝜉𝑖
∗)𝑙

𝑖=0       (2.22)   

Where 𝛼, 𝛼∗, 𝛽, 𝛽∗are the vectors of dimension 𝑙 of the Lagrangean multipliers 

associated with the constraints (Equations 2.18, 2.19, 2.20, 2.21). Equation (2.22) needs to be 
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reduced with respect to the primal variables 𝑤, 𝑏, 𝜉𝑖, 𝜉𝑖
∗and maximized with respect to the dual 

variables 𝛼, 𝛼∗, 𝛽, 𝛽∗. Satisfying the remain KKT conditions, the initial problem becomes in a 

dual problem with αiand αi
∗variables. The dual problem is modeled as following (Equation 

2.23): 

𝑚𝑎𝑥𝐿𝐷(𝛼, 𝛼∗) =
−1

2
∑ (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗 − 𝛼𝑗
∗)𝑥𝑖

𝑇𝑥𝑗𝑖,𝑗 − ∑ (𝜀 − 𝑦𝑖)𝛼𝑖𝑖 − ∑ (𝜀 + 𝑦𝑖)𝛼𝑗
∗

𝑖    (2.23)  

Subject to (Equations 2.24, 2.25, 2.26): 

∑ (𝛼𝑖 − 𝛼𝑖
∗)𝑖 = 0        (2.24) 

0 ≤ 𝛼𝑖 ≤ 𝐶         (2.25) 

0 ≤ 𝛼𝑖
∗ ≤ 𝐶                                                                                                   (2.26)                     

The solution of the dual problem is the following regression (Equation 2.27): 

𝑓(𝑥) =  ∑ (𝛼𝑖 + 𝛼𝑖
∗)𝑥𝑖

𝑇𝑥 + 𝑏𝑙
𝑖=1                                                                                          (2.27) 

 To solve the linear regression of the SVR is necessary to calculate 𝑥𝑖
𝑇𝑥𝑗 and 𝑥𝑖

𝑇𝑥 

(equations (2.23) and (2.27)), called the mapping functions. To decrease the computational 

effort caused by the searching of the best mapping function, 𝑥𝑖
𝑇𝑥𝑗 and 𝑥𝑖

𝑇𝑥 are replaced by a 

kernel function 𝐾(𝑥𝑖 , 𝑥𝑗). The regression problem can be solved by this kernel function and is 

represented by (Equation 2.28): 

𝑓(𝑥, 𝛼, 𝛼∗) = ∑ (𝛼𝑖 − 𝛼𝑖
∗)𝐾(𝑥𝑜, 𝑥𝑖) + 𝑏𝑁

𝑖=1                                                             (2.28) 

 The kernel function adopted is “Gaussian Radial Basis” (GRB), given by 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

), where 𝛾 = 1 2𝜎2⁄  is also a model parameter. After the 

parameter is chosen, is necessary to evaluate the estimated function. Consequently, the 

prediction errors are compared with the original values yi and the predicted values 𝑦̂𝑖. One of 

the measurements of error more common is given by the Mean Squared Error (MSE) (Equation 

2.29), which is described by a dataset with size 𝑚 as: 

MSE = (
1

m
) ∑  (yi − ŷi)

2m
i=0               (2.29) 

The performance of the SVR depends on the parameters C, ε, and γ, which are defined 

a priori.  

2.2.3 Random Forest Regression 

Random Forest (RF), firstly proposed by Breiman (2001), is a ML algorithm that is a 

combination of tree predictors in which each of them depends on the value of a random vector 

that is sampled independently and has the same distribution of all the trees in the forest. Its 

generalization error depends on how the trees converge and on the strength of the individual 
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trees in the forest and their correlation. Thus, the RF is an ensemble technique that generates 

multiple independent decision trees from a given random vector of parameters.  

Each input vector gives to its correspondent tree an output related to classification or 

regression. For regression problems, as the one related to this work, the random forest are 

composed by trees depending on a random vector Θ, in which the tree predictor ℎ(𝑥, Θ) is a 

numerical value opposed to the class labels. The outputs are numerical, and it is assumed that 

the training set is independent from the distribution of the random vector (𝑋, 𝑌). It can be 

characterized as an ensemble of 𝐵 decisions trees {𝑇1(𝑋), … , 𝑇𝐵(𝑋)}, where 𝑋 = {𝑥1, … , 𝑥𝐵} is 

a 𝑝-dimensional vector. Its predictor is formed by calculating the average over 𝐵 of the trees 

{ℎ(𝑥, Θ𝐵)} 

2.2.4 Extreme Gradient Boosting Regression 

Extreme Gradient Boosting (XGBoost) (CHEN & GUESTRIN, 2016) is an ML 

algorithm based on decision-trees ensemble that uses Gradient Boosting (GB) (FRIEDMAN et 

al., 2000; FRIEDMAN, 2001) as its framework. XGBoost is considered an optimized and 

scalable ML system for tree boosting, which can perform parallel processing, handle missing 

values and avoid overfitting and bias. This method is widely applied for problems involving 

unstructured data (e.g. images, text), yet it is also used to solve basic problems such as 

classification and regression – which is applied in this work. 

XGBoost is widely applied to solve a different range of problems – such as store sales 

prediction, high energy physics event classification, web text classification, customer behavior 

prediction, motion detection, hazard risk prediction and other fields (LE et al., 2019) (WANG 

et al., 2017) (TORLAY et al., 2017). One of the most important factors that helps the success 

of XGBoost is the scalability due to several important systems and algorithmic optimizations. 

It applies the principle of boosting weak learners using gradient descent architecture.   

 Unscented Kalman Filter 

The Kalman filter (KF) is well-known for formulating state-space linear dynamical 

systems and can be sum up as a recursive solution to linear optimal filtering problems. It can 

be applied for stationary and nonstationary systems and gives a recursive solution in which each 

updated estimate of the state is calculated from the last estimate and the new input data; so, it 

is only required to store the previous data. The KF is more efficient compared to the direct 

estimation through the whole entire dataset (KALMAN et al., 1960) (LEWIS et al., 1986) 

(GREWAL & ANDREWS, 1993). 
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A linear, discrete-time dynamical system is exposed in the following block diagram 

(Figure 15). As a first step to describe the KF, there are a few concepts that need to be clarified. 

The state vector or state, given by 𝑥𝑘 , is the minimal set of that which is enough to describe the 

unforced dynamical behavior of the system and 𝑘 is the discrete time. Thus, the state is the 

minimum amount of data that is needed to predict its future behavior of the input data. 

Generally, the state 𝑥𝑘 is undefined; so, to estimate the observed data 𝑦𝑘 is used (HAYKIN, 

2001). 

Thus, Figure 2.13 can be explained as follows. Firstly, there is the process equation 

(Equation 2.30) in which 𝐹𝑘+1,𝑘 is the transition matrix that takes the state 𝑥𝑘 from time 𝑘 to 

time 𝑘 + 1. The process has a noise which is assumed as 𝑤𝑘 and is additive, white and Gaussian, 

with zero mean and covariance given by Equation 2.31. 

𝑥𝑘+1 =  𝐹𝑘+1,𝑘𝑥𝑘 + 𝑤𝑘       (2.30) 

𝐸[𝑤𝑛𝑤𝑘
𝑇] =  {

𝑄𝑘, 𝑛 = 𝑘
0, 𝑛 ≠ 𝑘

       (2.31) 

𝑇 is the notation for matrix transposition and the dimension of the state space being 𝑀. 

Then, there is the measurement equation (Equation 2.32), given by 𝑦𝑘, and 𝐻𝑘 is the 

measurement matrix. The measurement noise is 𝑣𝑘 and has the same properties as 𝑤𝑘. Its 

covariance is formulated as following (Equation 2.33): 

𝑦𝑘 =  𝐻𝑘𝑥𝑘 + 𝑣𝑘        (2.32) 

𝐸[𝑣𝑛𝑣𝑘
𝑇] =  {

𝑅𝑘, 𝑛 = 𝑘
0, 𝑛 ≠ 𝑘

       (2.33) 

The measurement noise, 𝑣𝑘 , is not correlated with the process noise 𝑤𝑘, and the 

dimension of the measurement space is 𝑁. This problem can be classified as filtering if 𝑖 = 𝑘, 

prediction if 𝑖 > 𝑘 and smoothing if 1 ≤ 𝑖 ≤ 𝑘. 
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Figure 15 - Block diagram of a dynamical process. 

 

Adapted from (HAYKIN, 2001). 

In this work, was applied the unscented Kalman filter (UKF). UKF was proposed by 

Julier et al. (JULIER et al., 1995) (JULIER & UHLMANN, 1996) and developed by  Wan and 

van der Merwe JULIER & UHLMANN, 1997) (WAN et al., 2000) (WAN & VAN DER 

MERWE, 2000) (VAN DER MERWE et al., 2000)  to correct the faults that has been noticed  

in the extended Kalman filter (EKF) -which the difference between them and the UKF is that 

the last one uses a sample of specific points to calculate the mean and the covariance of the 

Gaussian random variables (GRV). Then, this is propagated through the system, which captures 

the following mean and covariance precisely to the second order of a Taylor series expansion 

in which learns the nonlinearity of the system. Thus, the basis of the UKF is the unscented 

transformation (UT) (HAYKIN, 2001). 

The UT is used to calculate statistics of random variables that pass through nonlinear 

transformation. So, propagating a random variable 𝑥, with dimension 𝐿, in a nonlinear function 

𝑦 = 𝑓(𝑥) and if 𝑥 has a mean 𝑥̅ and a covariance 𝑃𝑥. To compute the statistics of 𝑦, there is the 

matrix 𝒳 of 2𝐿 + 1 sigma vectors 𝒳𝑖 are represented in (Equations 2.34, 2.35., 2.36): 

𝒳0 = 𝑥̅          (2.34) 

𝒳𝑖= 𝑥̅ + (√(𝐿 + 𝜆)𝑃𝑥)𝑖            𝑖 = 1, … , 𝐿     (2.35) 

𝒳𝑖= 𝑥̅ −  (√(𝐿 + 𝜆)𝑃𝑥)𝑖−𝐿            𝑖 = 𝐿 + 1, … ,2𝐿    (2.36) 

Being 𝜆 =  𝛼2(𝐿 + 𝜅) − 𝐿 a scaling parameter. The constant 𝛼 sets the spread of sigma 

points around 𝑥̅ and is, generally, a small positive value between 10−4 1. Then, the constant  𝜅 
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is a secondary scaling parameter, which is, in general, set to 3 − 𝐿, and 𝛽 incorporates the prior 

knowledge of the 𝑥, and (√(𝐿 + 𝜆)𝑃𝑥)𝑖 is the 𝑖th column of the matrix square root. Thus, the 

sigma vectors are propagated through the nonlinear function (Equation 2.37) 

𝒴𝑖 = 𝑓(𝒳𝑖),             𝑖 = 0, … , 2𝐿       (2.37) 

The mean and the covariance of 𝑦 are approximated through a weighted sample mean 

and covariance of the subsequent sigma points (Equations 2.38 and 2.39),  

𝑦̅ ≈ ∑ 𝑊𝑖
(𝑚)

𝒴𝑖
2𝐿
𝑖=0         (2.38) 

𝑃𝑦 ≈ ∑ 𝑊𝑖
(𝑐)

(2𝐿
𝑖=0 𝒴𝑖 − 𝑦̅)(𝒴𝑖 − 𝑦̅)𝑇      (2.39) 

And the weights are given by (Equations 2.40, 2.41, 2.42), 

𝑊𝑜
(𝑚)

=
𝜆

𝐿+𝜆
,         (2.40) 

𝑊𝑜
(𝑐)

=
𝜆

𝐿+𝜆
+ 1 − 𝛼2 + 𝛽,       (2.41) 

𝑊𝑖
(𝑚)

= 𝑊𝑖
(𝑐)

=
𝜆

𝐿+𝜆
,                          𝑖 = 1, … , 2𝐿.    (2.42) 

Hence, the UKF is an extension of the UT for the KF, and, for a nonlinear discrete-time 

system state equation and measurement equation (Equations 2.43 and 2.44): 

𝑥𝑘+1 = 𝐹(𝑥𝑘, 𝑢𝑘 , 𝑣𝑘)        (2.43) 

𝑦𝑘 = 𝐻(𝑥𝑘 , 𝑛𝑘)        (2.44). 

𝐹 and 𝐻 are nonlinear system function, and 𝑥𝑘 is the unobserved state vector, 𝑢𝑘is the 

external input, 𝑦𝑘 is the observed measurement signal, 𝑣𝑘 is the process noise and 𝑛𝑘 is the 

observed noise – the noises are, in general, assumed as additive Gaussian white noise. So, 𝑥𝑎 =

[𝑥𝑇 𝑣𝑇 𝑛𝑇]𝑇 and 𝑥𝑎 = [(𝑥𝑥)𝑇 (𝑥𝑣)𝑇 (𝑥𝑛)𝑇]𝑇; so, the UKF equation is as follows: 

The initialization is (Equations 2.45, 2.46, 2.47, 2.48) 

𝑥̂0 = 𝐸[𝑥0]         (2.45) 

𝑃0 = 𝐸[(𝑥0 − 𝑥̂0)(𝑥0 − 𝑥̂0)𝑇]      (2.46) 

𝑥̂0
𝛼 = [𝑥̂0

𝑇      0         0 ]𝑇       (2.47) 

𝑃0
𝛼 = 𝐸[(𝑥0

𝛼 −  𝑥̂0
𝑇)(𝑥0

𝛼 −  𝑥̂0
𝑇 )𝑇] = [

𝑃0     0      0
0      𝑅𝑣     0
0      0      𝑅𝑛

]    (2.48) 

Computing the matrix 𝒳𝑘
𝛼, 𝑘 =  1, 2, … ∞, with sigma points (Equation 2.49) 

𝒳𝑘−1
𝛼 = [𝑥̂𝑘−1

𝛼            𝑥̂𝑘−1
𝛼 + √(𝐿 + 𝜆)𝑃𝑘−1

𝛼              𝑥̂𝑘−1
𝛼 − √(𝐿 + 𝜆)𝑃𝑘−1

𝛼  ] (2.49) 

And the time-update equations are Equations 2.50, 2.51, 2.52, 2.53, 2.54, 

𝒳𝑘 𝑘−1⁄
𝑥 = 𝐹(𝒳𝑘−1

𝑥 , 𝑢𝑘−1, 𝒳𝑘−1
𝑣 )      (2.50) 

𝑥̂𝑘 𝑘−1⁄ = ∑ 𝑊𝑖
𝑚𝒳𝑖,𝑘 𝑘−1⁄

𝑥2𝐿
𝑖=0        (2.51) 
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𝑃𝑘 𝑘−1⁄ = ∑ 𝑊𝑖
𝑐(𝒳𝑖,𝑘 𝑘−1⁄

𝑥2𝐿
𝑖=0 − 𝑥̂𝑘 𝑘−1⁄ )(𝒳𝑖,𝑘 𝑘−1⁄

𝑥 −𝑥̂𝑘 𝑘−1⁄ )𝑇  (2.52) 

𝑌𝑘 𝑘−1⁄ = 𝐻(𝒳𝑘 𝑘−1⁄
𝑥 , 𝒳𝑘−1

𝑛 )       (2.53) 

𝑦̂𝑘 = ∑ 𝑊𝑖
𝑚𝑌𝑖,𝑘 𝑘−1⁄

𝑥2𝐿
𝑖=0        (2.54) 

And the measurement equations are given by Equations 2.55, 2.56, 2.57, 2.58, 2.59. 

𝑃𝑦̃ = ∑ 𝑊𝑖
𝑐(𝑌𝑖,𝑘 𝑘−1⁄

2𝐿
𝑖=0 − 𝑦̂𝑘 𝑘−1⁄ )(𝑌𝑖,𝑘 𝑘−1⁄ − 𝑦̂𝑘 𝑘−1⁄ )𝑇   (2.55) 

𝑃𝑥𝑘,𝑦𝑘
= ∑ 𝑊𝑖

𝑐(𝒳𝑖,𝑘 𝑘−1⁄
𝑥2𝐿

𝑖=0 − 𝑥̂𝑘 𝑘−1⁄ )(𝑌𝑖,𝑘 𝑘−1⁄ − 𝑦̂𝑘 𝑘−1⁄ )𝑇  (2.56) 

𝐾𝑘 = 𝑃𝑥𝑘 ,𝑦𝑘
𝑃𝑦̃

−1        (2.57) 

𝑥̂𝑘 = 𝑥̂𝑘 𝑘−1⁄ + 𝐾𝑘[𝑦𝑘 − 𝑦̂𝑘 𝑘−1⁄ ]      (2.58) 

𝑃𝑘 = 𝑃𝑘 𝑘−1⁄ − 𝐾𝑘𝑃𝑦̃𝑘
𝐾𝑘

𝑇       (2.59) 

 Maximum Entropy Bootstrap 

Bootstrap is a well-known statistic technique that has diverse applications such as 

confidence interval construction, bias, and standard deviation estimation; also, one of the 

advantages of this method is that it does not need an assumption over the dataset distribution. 

Firstly, i.i.d. (independent and identically distributed) bootstrap was proposed by Efron in 1979 

and it is a powerful tool for statistical inference and is appropriated for complex problems where 

traditional confidence intervals are difficult to construct and are unreliable when it is not known 

the distribution of the dataset. 

However, if the studied data is not i.i.d., a Maximum Entropy Bootstrap (MEB) is more 

indicated. Vinod (2006) says that, in the 1930s, time-series inference was based on the Wiener-

Kolmogorov-Khintchine (WKK) theory where, based on this theory, was constructed a 

population called ensemble Ω, which was heavily relied on stationary assumptions. Then, the 

MEB comes as new computer-intensive construction of  Ω. MEB can be applied when the time 

series are short, non-stationary, with some regime changes and jump discontinuities. It is a tool 

for highly dependent non-stationary time series (THEIL, 1980) (THEIL & LAITINEN, 1980). 

MEB, developed by Vinod & Lopez-de-Lacalle (2009), is an adequate method to 

replicate non-stationary time-series (TS) and it is applied to study real-world situations. In 

addition to these characteristics, MEB also does a more precise analysis due to its tests based 

on asymptotic theory and just uses transformations that do not destroy the TS format. 

The initial population which will be analyzed is the original TS, MEB will generate 

many replicas of the dataset using the algorithm given below in which the original format will 
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be maintained at the replica and, also, the time dependence of autocorrelation function (ACF). 

The step-by-step is given below (VINOD & LOPEZ-DE-LACALLE, 2009): 

a) Sort the original data, obtaining a new TS, 𝑥𝑡, and save the position if these values 

before the transformation; 

b) Calculates the medians between the sorted TS value using 𝑧𝑡 =
(𝑥𝑡−𝑥𝑡−1)

2
, 𝑡 =

2, 3, … , 𝑇 − 1; 

c) Compute the trimmed mean of the errors 𝑥𝑡 − 𝑥𝑡−1 and compute the value of 𝑧1 and 𝑧𝑡 

using: 𝑧1 =  𝑥1 − 𝑚𝑡𝑟𝑚 e 𝑧𝑡 =  𝑥𝑇 −  𝑚𝑡𝑟𝑚; 

d) Build a Maximum Entropy density function using the values of 𝑧 as limits of the 

intervals. The distribution is constructed under a uniform distribution of the intervals. 

The distribution with equal probabilities (Figure 16) and it grants that the mean of any 

interval satisfies the mean preservation constraints which obey the ergodic theorem; 

e) Simulate, using inverse transform method, 𝑇 values of constructed TS and soft them in 

ascending order; 

f) Sort the original values again using the saved position in step 1. Maintaining the original 

format of the TS according to its dimension, i.e. the biggest point at the original and 

replicated TS will be at the same location; 

g) Repeat steps 2 to 6 for analysis until it is necessary. 

Figure 16 - Distribution from MEB. 

 

Source: VINOD & LOPEZ-DE-LACALLE, 2009. 

 Literature Review 

As mentioned before in the Theoretical Background section, the estimation of the SOC 

can occur through a diversity of methods such as data-driven methods (e.g. NN, SVM, RF), 
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adaptative filters (e.g. EKF and UKF) traditional methods and hybrid methods. Thus, this step 

of the BMS is important in order to prevent further accidents and unwanted costs. Since the 

vehicles are continuously monitored, data-driven approaches are preferable than other methods 

due to its rapiDNNy adaptability and generalization power. Then, in this section, some previous 

works in the field of data-driven methods are discussed. 

He et al. (2014) proposed a SOC estimation for li-ion batteries using NN and UKF to 

filter the prediction error. Firstly, they used as training set a dataset from a Dynamic Stress 

Profile (DST) with temperature of 0ºC, 10ºC, 20ºC, 30ºC, 40ºC and 50ºC and, as test set , they 

used two different profiles with the same temperature as the training set: the US06 Driving 

Schedule and the Federal Urban Driving Schedule. This train and test set were processed 

through a time series autoregressive model with step 4, and this processing was optimized with 

the NN model. After the predictions were done, the SOC time was processed by a UKF in order 

to reduce the prediction error. This work is the main basis for this dissertation, thus contributing 

with the windowing and filtering ideas. However, due the simulating characteristics of the 

dataset, real-life patterns might not have been identified by the trained model. Thus, the 

confidence interval of the remaining time until the next discharge is estimated using Maximum 

Entropy Bootstrap (MEB), which allows a better range of prediction and confidence in the 

estimative. 

Li et al. (2018) proposed a battery capacity estimation using RF regression, in which 

this technique was able to learn the dependencies of the features, such as charging voltage and 

capacity measurements, based on a signal that was available during typical battery operation. 

This method is applied and validated using lithium nickel manganese cobalt oxide batteries 

with diverse aging patterns. The results showed that the proposed methodology was able to 

evaluate the health states of different batteries under diverse cycling conditions with promising 

applications for online battery capacity estimation. This work shows that traditional ML models 

can lead to great performances even on diverse cycling conditions, contributing to this 

dissertation as an encouragement to try different models, such as SVM. 

Tao et al. (2017) proposed a five-state nonhomogeneous Markov chain model to design 

Li-ion batteries and investigate the capacity fading dynamic of different formulations. Thus, 

the state and the behavior of the active materials in the Li-ion battery were modeled and to 

verify its efficiency a dataset of almost 3 years of cycling capacity fading experiments was used.  

Zhao et al. (2018) investigated the modeling of Li-ion batteries using RNN which were 

trained with dynamic battery data (e.g. vehicle cycle test results). This was used to simplify the 

process of battery modeling because there was no need for battery parameterization and 
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specialized characterization of tests. Thus, a model consisting of an RNN with a gated recurrent 

unit (GRU) and a deep feature selection (DFS) were implemented. Therefore, two RNNs were 

performed, one with current as input and the other with power as input and, then, were compared 

with equivalent circuit models (ECMs). 

 Tao and Chen (2017) proposed a methodology that considers the capacity recovery 

effect in dynamic fading processes. Some features that effects this process were analyzed and 

extracted and, then, a Random Forest (RF) was applied to model and predict the capacity 

degradation recovery effect. 

Chemali et al. (2018) used DNN to estimate the SOC and the training data was from a 

drive cycle loads of Li-ion at various temperatures. The DNN can encode the dependencies in 

time into the network weights and provide an accurate estimation. Batteries exposed between -

20ºC to 25ºC were used as input. In Chen et al. (2011) proposed an EKF based battery model, 

which considered the effects of hysteresis in an open circuit voltage, that was integrated with 

an NN in order to estimate the SOC. 

Li et al. (2007) used a merged Fuzzy Neural Network, that has a superior performance 

compared with traditional neural networks, to estimate SOC of a li-ion battery combined with 

a reduced form of a genetic algorithm. The proposed methodology used twelve inputs and one 

output to approximate a continuous non-linear function. Thus, the validation results showed 

that the method is effective and accurate. Then, a more advanced algorithm was implied, which 

was named adaptative neuro-fuzzy inference system, being more efficient than the previous one 

described (AWADALLAH & VENKATESH, 2016).   

Hansen & Wang (2005) used SVM to estimate the SOC of a large-scale li-ion-polymer 

battery pack, and it proposed to remove the drawbacks of traditional methods to estimate the 

SOC (e.g. coulomb counting). They used measurements such as voltage and current as input of 

SVM.  Antón et al. (2013) also estimates the SOC of a 𝐿𝑖𝐹𝑒𝑃𝑂4 battery cell using SVM and 

obtained effective and accurate results. 

Zheng et al. (2016)  proposed an estimation of SOC using online inference of battery 

OCV. Two types of OCV were tested – low-current and incremental OCV – and this method 

observes the relationship between OCV and SOC; also, in these two experiments, three 

temperatures were tested and two SOC estimators were compared in terms of accuracy, 

convergence, time, and robustness for online estimation. Even though their results were good, 

OCV-SOC estimation is done when the battery is fully discharged, which does not allow the 

prediction during operational time of the EV. The data-driven approach, however, allows to 
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perform continuous training with new data and predict more precisely the present conditions of 

the battery.  

Sbarufatti et al. (2017) proposed a method for prognosis of Li-ion batteries using 

particle filter combined with a radial basis NN. This proposed methodology can be trained 

online which allows flexibility and adaptability to new information. As well as this 

methodology, this present work also allows an online estimation due to the fact of applying 

data-driven techniques. 

Zou et al. (2015) suggested a methodology to estimate SOC and SOH (State of Health). 

As a first step, the dependency of the nominal parameters of a first-order resistor-capacitor 

model is determined, and the degradation is quantified. Secondly, two EKF with different time 

scales are used to combine SOC/SOH monitoring – with SOC being estimated in real-time, and 

SOH updated online. Even though this present work does not propose the SOH prediction, the 

combined approach proposed is easily reproduced due to the characteristics of data-driven 

models, which does not require a wide knowledge about the physics of failures and the 

degradation process of the battery.   

As a contradiction to most methodologies presented above, due to simulating 

characteristics of some datasets used, using methods such as Maximum Entropy Bootstrap 

(MEB), the confidence interval of the predicted time until the next recharge can be performed 

in order to approximate even better real-life conditions and its variance. Also, filtering 

techniques have proven to be effective in reducing prediction’s errors and increasing model’s 

performance (He et al., 2014) and, thus, could be explored by most methodologies presented
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3 APPLIED METHODOLOGY 

The following sections is going to present the dataset description and the proposed 

methodology applied in this work. 

 Dataset Description 

The dataset used to validate the proposed methodology was from the CALCE (Center 

for Advanced Life Cycle Engineering) Battery Research Group – University of Maryland. This 

research group is focused on developing state of art BMS to single and multi-cell systems, 

estimating the SOC and the state of health (SOH) of batteries and studying the degradation 

process.  

Thus, to model data-driven methodologies, the conditions of the measurements are 

important. It is advisable to simulate the dataset with real-life conditions such as road 

conditions, speeds, and driving styles in order to cover as many conditions as possible in terms 

of current, voltage, loading charging rates, and SOC. Hence, the dataset provided by the 

CALCE group use battery testing simulating driving cycles. The training data was collected 

using the dynamical stress testing (DST) profile (Figure 18), which is specified by the US 

Advanced Battery Consortium (USABC). This test consists of various current steps with 

different amplitudes and lengths being a simplification of real-life conditions. The DST was 

conducted under 0 °C, 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C. The test dataset was collected 

under the Federal Driving Urban Driving Schedule (FUDS) - FUDS an urban driving profile - 

which uses the same profile as DST, but simulates a driving condition schedule based on an 

operation of a vehicle in a urban road - (Figures 19) and these tests were conducted under 0 °C, 

10 °C, 20 °C, 30 °C, 40 °C. FUDS is more complex than the DST in order to provide robustness 

and generalization to the proposed methodology. The index in the Figures 3.3 and 3.4 indicates 

the number of registered points by the test platform. 

The batteries cells are composed of 𝐿𝑖𝐹𝑒𝑃𝑂4 (Lithium Ion Phosphate) with 76g and a 

rating capacity of 2230 mAh (Figure 17). It was placed in a temperature chamber and an Arbin 

BT2000, a battery test equipment, was controlling the charging and discharging (Figure 20).  
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Figure 17 - Studied battery. 

 

Source: CALCE. 

Figure 18 - Current profile of DST at 0ºC and SOC = 

50%. 

Source: The Author, 2019. 

 

Figure 19 - Current profile of FUDS at 0ºC and 

SOC = 50%. 

 

Source: The Author, 2019. 

 

Figure 20 - Test procedure. 

 

Source: HE et al., 2014. 

 This dataset has, originally, 8084 registered points for the DST – which was used 

for training – and 9057 points for the FUDS – which was used for testing the proposed 
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methodology. In the training phase, 20% of the training dataset (DST) was used to validate the 

algorithm (HE et al., 2014) (HU et al., 2012) (HU et al., 2012) (XIONG et al., 2014) 

 

 Methodology 

In order to predict the SOC, the methodology in Figure 21 is proposed. Firstly, the input 

is composed of current and voltage and the output is the SOC. Each input and output are 

replicated 5000 times using MEB. It maintains the main characteristics of a non-stationary time-

series and works as a data augmentation strategy to reproduce the train and test data in order to 

calculate multiple predictions using an ML algorithm or accurately estimate the SOC using 

DNN. The main objective of the bootstrap technique applied in this work is to estimate the 

confidence interval of the predicted remaining time until the next discharge. The replication is 

not only used to predict the confidence interval of the recharge time, but also to guarantee a 

better generalization of the tested algorithms. 

 
Figure 21 - Proposed methodology. 

 

Source: The Author, 2019.  
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Then, due to the capacitive resistance in the battery, both current and voltage in previous 

stages will affect the present state of the battery. Thus, a windowing time-series model is used 

as preprocessing. It uses steps of size 5 – the step size was chosen due to empirical tests 

evaluating the prediction performance, which was tested a size of 30, proposed by He et al. 

(2014), of 7, 10 and 6, obtaining better results to size length 4  - is applied to the current and 

voltage replicated data to assess the time dependencies between each measurement. So, the 

inputs at a time 𝑖 are [ 𝐼(𝑖), 𝐼(𝑖 − 4), … , 𝐼(𝑖 − 4𝑘), 𝑉(𝑖), 𝑉(𝑖 − 4), … , 𝑉(𝑖 − 4𝑘)] (He et al., 

2014) – 𝑘 is a parameter to determine the size of the input vector -and the output is 𝑆𝑂𝐶(𝑖).  

This approach is applied because of the capacitive resistance in the battery, which the 

current and voltage of previous samples has effect on the present battery state. Hence, due to 

the windowing processing, each of the 5000 samples of the input and output loses the first 20 – 

the multiplication of the size length versus the windowing steps. 

 This approach is also applied in He et al. (2014), however, in this work, only the 

windowing model is applied without the ML parameters optimization. Also, for propose of a 

better performance, testing different lengths of windowing through each proposed data-driven 

algorithm allows to evaluate individually each performance during training. As a further step, 

the implementation of this optimization algorithm evaluating the performance of each algorithm 

simultaneously is required. 

After pre-processing the data through the windowing model, these replicated datasets 

are going to enter two models: the ML and the DNN. The parameters of the DNN and the ML 

methods are selected by means of randomized grid search cross-validation (CV). This search 

method uses random hyper parameters in a chosen set to test the ML algorithm; thus, not all 

parameters are tried out, but a fixed number of parameters settings is sampled from the specified 

distributions. The randomized search CV was chosen over the grid search cross validation due 

to its computational cost and better performance. Figure 22 shows the grid search CV versus 

the randomized search CV, which demonstrate how both of them performs the parameters 

search – the first one only combines each of the suggested parameters and test their performance 

during the validation phase; however, the randomized search CV combine random values of a 

given interval and test these parameters during the validation phase. 

The results are given in Tables 1, 2, 3 and 4 for the SVM, MLP, RF and XGBoost, 

respectively. Then, the SOC is predicted for each replication and a histogram with the results 

is built to construct the confidence interval.  
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Figure 22 - Randomized Search Cross Validation 

 

 Source: Bergstra; Bengio, 2012.  

 

Table 1 - SVM hyperparameters 

 SVM 

Kernel RBF 

C 6.5643 

epsilon 0.0192 

gamma 0.0010 

Source: The Author, 2019. 

Table 2 - MLP hyperparameters 

 MLP 

Activation ReLU 

𝜷𝟏 0.9000 

𝜷𝟐 0.9990 

Ε 1× 10−8 

Hidden Layers 15 

Learning Rate Constant, 0.001 

Validation Split 0.1 

Source: The Author, 2019. 
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Table 3 - RF Hyperparameters. 

 RF 

Number of Estimators 1400 

Minimum Sample Split 2 

Minimum Sample Leaf 1 

Maximum Features ‘Auto’ 

Maximum Depth 100 

Bootstrap ‘True’ 

Source: The Author, 2019. 

Table 4 - XGBoost Hyperparameters. 

 XGBoost 

Random State 42 

Column Sample by Tree 0.9041 

Gamma 0.2252 

Learning Rate 0.03398 

Maximum Depth 3 

Number of Estimators 113 

Subsample 0.9233 

Source: The Author, 2019. 

 

To implement these algorithms, Python language, using Anaconda as API (Application 

Program Interface), and the following packages were used: sklearn (PEDREGOSA et al., 2006), 

numpy (OLIPHANT, 2006), matplotlib (HUNTER, 2007), seaborn (WASKON et al., 2018) 

and keras (CHOLLET, 2016). The replications were made in R (RStudio) using the package 

meboot (VINOD & LÓPEZ-DE-LACALLE, 2009). All experiments were performed in a GPU 

GEFORCE GTX 2080 Ti. 
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4 RESULTS 

As a first step, the inputs, which are current and voltage for a given temperature and 

SOC, are replicated using MEB. The chosen conditions, of the 𝐿𝑖𝐹𝑒𝑃𝑂4 battery, were a 

temperature of 0 ºC and a SOC of 50 %, in other words, the battery is half discharge; however 

there are other conditions offered by the data basis, that condition was chosen due to the fact of 

being the first one of the dataset and to validate, in a simpler way, the DNN and ML methods. 

Furthermore, in order to test the generalization power of the proposed methodology, other 

temperature and SOC conditions will be tested including other datasets of accelerated tests of 

EVs batteries. 

Thus, the replication step is to calculate the confidence intervals. Then, these replicated 

time series (TS) are pre-processed through a windowing model based on He et al. (2014). Also, 

according to this author, this type of model, to pre-process battery data, can capture the 

thermodynamic and physicochemical behavior of the device. Thus, with the proposed 

windowing (HE et al., 2014) of size 4, this process was performed with a step size of 5. This 

step size was chosen under several tests with the dataset and the artificial intelligence 

algorithms. 

Then, with the original training dataset, the Randomized Grid Search CV was performed 

and the hyperparameters were calculated. After that, each replicated sample from the training 

set enters the DNN – MLP model – and the ML models – SVM, RF and XGBoost. So, the SOC 

is estimated and the time until the next recharge for each sample. And, finally, the confidence 

interval is computed. In order to post-process the SOC results, the UKF is applied in each of 

the samples. Then, the filtered SOC, the remaining time until the next discharge and the 

confidence interval are calculated after the post-processing. Figures 23, 24, 25 and 26 show the 

comparison of the predicted SOC, filtered SOC, and actual SOC for MLP, SVM, RF and 

XGBoost for the sample number 500.  
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Figure 23 - Predicted and actual SOC – Without and 

With UKF - MLP. 

 

Source: The Author, 2019. 

 

Figure 24 - Predicted and actual SOC – Without 

and With UKF - SVM. 

 

Source: The Author, 2019. 

 

Figure 25 - Predicted and actual SOC – Without and 

With UKF - RF. 

 

Source: The Author, 2019. 

 

Figure 26 - Predicted and actual SOC – Without 

and With UKF - XGB 

 

Source: The Author, 2019. 

Observing Figures 27 to 34, for the SVM, two outliers were found in the model without 

UKF, and when the predicted SOC were post-processed, the number of outliers increased to 

seven. However, as well as the MLP the RMSE values decreased and the range of this values 

also reduced. In the RF was observed a considerable decrease in the numbers of outliers when 

the UKF is applied, and as the two previous models, the RMSE also reduced with the post-

processing. For the XGBoost, the same behavior was observed – the RMSE values reduced – 

which can partially validate the application of UKF as a post-processing method. 

Figures 35 to 42 show the distribution of the RMSE for the estimated SOC without and 

with UKF. For all the tested data-driven methods, the RMSE value range reduced. If all the 

tested method is visually compared, considering the predictions without and with UKF, the 

MLP obtained better results in terms of RMSE than the other methods. If the graphics of each 

method is analyzed, some outliers can be found, which is good considering that the RMSE is a 

metric that analyses the performance of the training phase. The RMSE is, basically, the 

difference between the predicted value and the real observed value and evaluate the trained 

model and its accuracy. For the MLP, Figures 27 and 28, due to the application of the filter, is 
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observed a decay of the number of outliers samples – the outliers samples are those ones which 

had the worst results if compared with the average samples -; also, the values of the RMSE and 

the range of these values reduced if compared with the ones without filter.  

Thus, analyzing the range between the maximum and the minimum RMSE for the 

proposed algorithms (Table 5), the MLP was 0.0467, SVM was 0.1034, the RF was 5718.7119 

and for the XGBoost was 0.021. As for the filtered output, the MLP still performs better than 

the SVM, with the range between the maximum and the minimum 0.028291 and 0.036202, 

respectively. The results for the RF and XGBoost had worst results due to two reasons, the first 

one was that the discrepant value is an outlier – which was not taken off to respect the original 

number of the proposed samples – and this can occur as a result of algorithm initialization. 

Other reason is the fact that RF and XGBoost are generally applied for classification models 

rather that regressions – they are models based on decisions trees, which are commonly used 

for classification. The MLP and SVM, however, are more versatile in terms of which task is 

chosen to perform – classification or regression – which leads to better results. This result shows 

that the post-processing technique had a great influence on the improvement of the predicted 

SOC.  

Table 5 - Maximum and minimum values between each sample - RMSE - SOC = 50% - 0ºC – MLP, SVM, RF 

and XGBoost. 

 MLP SVM RF XGBoost 

Maximum – 

Without UKF 

0.0994 0.1803 5718.7951 0.0881 

Minimum – 

Without UKF 

0.0526 0.0769 0.7285 0.0671 

Maximum – 

With UKF 

0.0611 0.0809 5718.7967 5718.7921 

Minimum – 

With UKF  

0.0328 0.0447 0.05887 0.05637 

Source: The Author, 2019. 
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Figure 27 - RMSE Test – considering each sample - 

Without UKF- MLP. 

Source: The Author, 2019. 
 

Figure 28 - RMSE Test – considering each sample - 

With UKF- MLP. 

 

Source: The Author, 2019. 

Figure 29 - RMSE Test – considering each sample - 

Without UKF- SVM. 

 
Source: The Author, 2019. 

Figure 30 - RMSE Test – considering each sample - 

With UKF- SVM. 

Source: The Author, 2019. 

Figure 31 - RMSE Test – considering each sample – 

Without UKF- RF. 

Source: The Author, 2019. 

 

Figure 32 - RMSE Test – considering each sample – 

With UKF- RF. 

 
Source: The Author, 2019. 
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Figure 33 - RMSE Test – considering each sample – 

Without UKF- XGBoost 

 
Source: The Author, 2019. 

Figure 34 - RMSE Test – considering each sample – 

With UKF- XGBoost. 

Source: The Author, 2019. 

 

Figure 35 - Test RMSE distribution – considering each 

sample - Without UKF - MLP. 

Source: The Author, 2019. 

Figure 36 - Test RMSE distribution – considering 

each sample - With UKF - MLP. 

 
Source: The Author, 2019. 

 

Figure 37 - Test RMSE distribution – considering each 

sample – Without UKF- SVM. 

 
Source: The Author, 2019. 

 

Figure 38 - Test RMSE distribution – considering 

each sample - With UKF - SVM. 

 
Source: The Author, 2019. 
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Figure 39 - Test RMSE distribution – considering each 

sample – Without UKF - RF. 

 

Source: The Author, 2019. 

Figure 40 - Test RMSE distribution – considering 

each sample – With UKF - RF. 

 

 

Source: The Author, 2019. 

Figure 41 - Test RMSE distribution – 

considering each sample – Without UKF - XGBoost. 

 

Source: The Author, 2019. 

Figure 42 - Test RMSE distribution – considering 

each sample– With UKF - SVM. 

 

Source: The Author, 2019. 

 

Then, the remaining time until the battery discharge, which is considered as failure, is 

predicted. In this case, the SOC reaches 0% and the actual value of time for when this SOC is 

reached is 28020.6105 s. Table 6 shows the maximum, minimum and mean of the percentage 

error of this predicted time at SOC = 0%, for the non-filtered and filtered output. 

 Comparing these results, it can be assured that the MLP has a better performance than 

the SVM, the RF, and the XGBoost, with a mean percentage error of 3.2604% for MLP for the 

non-filtered output. For the filtered output, there is a mean percentage error of 2.0788 %, also 

a better result than the others ML approaches, reassuring the better performance of the MLP 

and ensuring the improvement of the results by using UKF. The SVM had the second better 

performance with a percentage error of 4.5681% for the non-filtered prediction and 3.1341% 
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for the filtered prediction. These results occur since the MLP model is more complex, being a 

DNN model, and the RF and XGBoost are more adapted to classification tasks even though 

they also perform regression. However, as a further step, a sensitive analysis considering the 

number of layers of the MLP need to be evaluated. Figures 43 to 50 show the distribution of 

the percentage error for the non-filtered and the filtered results, which also reaffirm the 

effectiveness of the UKF in reducing the errors and improving the prediction performance.  

Table 6 - Percentage error – maximum, minimum and mean between each sample – SOC = 50% - 0ºC – 

MLP, SVM, RF and XGBoost. 

 MLP SVM RF XGBoost 

Maximum – 

Without UKF 

3.5039 % 5.6875 % 10.0395 % 10.0395 % 

Mean _ 

Without UKF 

3.2604 % 4.5681 % 9.3776 % 9.3776 % 

Minimum – 

Without UKF 

2.5193 % 4.1258 % 8.8476 % 8.8476 % 

Maximum – 

With UKF 

2.2872 % 4.3350 % 8.6549 % 7.6150 % 

Mean – With 

UKF 

2.0788 % 3.1341 % 7.9633 % 6.7158 % 

Minimum – 

With UKF  

1.4996 % 2.7368 % 7.4920 % 6.2594 % 

Source: The Author, 2019. 
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Figure 43 - Distribution of Percentage error – 

considering each sample - Without UKF- MLP. 

Source: The Author, 2019. 

 

Figure 44 - Distribution of Percentage error – 

considering each sample - With UKF - MLP. 

Source: The Author, 2019. 

 

Figure 45 - Distribution of Percentage error – 

considering each sample - Without UKF - SVM. 

Source: The Author, 2019. 

Figure 46 - Distribution of Percentage error – 

considering each sample - With UKF – SVM. 

 

Source: The Author, 2019. 
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Figure 47 - Distribution of Percentage error – 

considering each sample - Without UKF – RF. 

Source: The Author, 2019. 

 

Figure 48 - Distribution of Percentage error – 

considering each sample - With UKF – RF. 

Source: The Author, 2019. 

 

Figure 49 - Distribution of Percentage error 

– considering each sample - Without UKF – 

XGBoost. 

 
Source: The Author, 2019. 

 

Figure 50 - Distribution of Percentage error – 

considering each sample - With UKF – XGBoost. 

Source: The Author, 2019. 

Table 7 shows the maximum, mean, and minimum values of a confidence interval of 

95% for all the tested methods, and Table 8 shows the range of the confidence interval for each 

method. If each method is compared in terms of the mean value of the predicted remaining time 

until the next discharge and the absolute range of each confidence interval, there is a proximity 

in terms of the original value – 28020.6105 s -, and the range is the smallest if compared with 

the other methods, which assigned a lower variability during the SOC and the remaining time 

until the next recharge prediction. However, there are still some modifications that need to be 

done in order to improve the proposed predictions, such as test other types of hyperparameters 

optimization methods and link the pre and post processing with the algorithm performance in 

order to run each sample and achieve better results. 
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Table 7 - Predicted SOC- Confidence Interval of 95% - maximum, minimum and mean between each sample –  

SOC = 50% - 0ºC – MLP, SVM, RF and XGBoost. 

 MLP SVM RF XGBoost 

Upper Limit – 

Without UKF 

29002.4432s 29614.2873s 30154.3876s 30833.7596s 

Mean _ 

Without UKF 

28934.1956s 29300.6436s 30648.2715s 30648.2715s 

Lower Limit – 

Without UKF 

28726.5416s 29176.6894s 29774.5443s 30499.7750s 

Upper Limit – 

With UKF 

28661.5054s 29235.2931s 30445.7743s 30154.3876s 

Mean – With 

UKF 

28603.1301s 28898.8085s 30251.9770s 29902.4412s 

Lower Limit – 

With UKF  

28440.8245s 28787.4842s 30119.9256s 29774.5443s 

Source: The Author, 2019. 

Table 8 - Absolute range of the predicted confidence interval for each method - Confidence Interval of 

95%. 

 MLP SVM RF XGBoost 

Without UKF 275.9016s 437.5979s 379.8433s 333.9846s 

With UKF 220.6809s 447.8089s 325.8487s 379.8433s 

Source: The Author, 2019. 

Figures 51 to 58 show distribution of the remaining time until the next discharge for 

each of the proposed methods. 
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Figure 51 - Distribution of the predicted remaining 

time until the next recharge – considering each sample 

- Without UKF - MLP. 

 
 Source: The Author, 2019. 

 

Figure 52 - Distribution of the predicted remaining 

time until the next recharge – considering each 

sample - With UKF - MLP. 

Source: The Author, 2019. 

 

Figure 53 - Distribution of the predicted remaining 

time until the next recharge – considering each sample 

- Without UKF - SVM. 

 

Source: The Author, 2019. 

 

Figure 54 - Distribution of the predicted remaining 

time until the next recharge – considering each 

sample - With UKF - SVM. 

 

Source: The Author, 2019. 

 

Figure 55 - Distribution of the predicted remaining 

time until the next recharge – considering each sample 

- Without UKF - RF. 

 

Source: The Author, 2019. 

Figure 56 - Distribution of the predicted remaining 

time until the next recharge – considering each 

sample - With UKF - RF. 

 

Source: The Author, 2019. 
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Figure 57 - Distribution of the predicted remaining 

time until the next recharge – considering each sample 

- Without UKF – XGBoost. 

 

Source: The Author, 2019. 

 

Figure 58 - Distribution of the predicted remaining 

time until the next recharge – considering each 

sample - With UKF - XGBoost. 

 

Source: The Author, 2019. 

 

 To test performance of the proposed methodology, the Kruskal- Wallis test was 

done (KRUSKAL, WILLIAM, WALLIS, 1952) (MCKIGHT & NAJAB, 2010) (Table 4.5 and 

4.6). This test is an extension of the Wilcoxon-Mann-Whitney test and is a non-parametric test 

used to compare three or more populations, it is used to test if all populations that have the same 

distributions against the null hypothesis, which indicates that the population have different 

distributions. This test is the nonparametric counterpart of the ANOVA with factor 1.  

 Test results are given by Table 9 and 10. The test was performed for the RMSE 

results, without and with UKF, and for the percentage error of the predicted remaining time 

until the next recharge. For all of them the null hypothesis was rejected, which means that each 

of these results are from different distributions, ensuring the different performance and results 

between models. 

Table 9 - Results of the Kruskal-Wallis test for the RMSE. 

 Statistics 𝑷 − 𝒗𝒂𝒍𝒖𝒆 

Without UKF 18027.2021 0.0 

With UKF 13424.5837 0.0 

Source: The Author, 2019. 

Table 10 - Results of the Kruskal-Wallis test for the percentage error. 

 Statistics 𝑷 − 𝒗𝒂𝒍𝒖𝒆 

Without UKF 16872.6573 0.0 

With UKF 18749.0529 0.0 

Source: The Author, 2019. 

Thus, to compare the tested models, a box plot is outlined using RMSE, to refer the SOC 

estimation, and PE, to refer the remaining time until the nest discharge. Therefore, to compare 
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each of the performed models - at the training and test step, without and with UKF – a box plot, 

from each of these conditions, it is indicated in Figures 59 to 62. Through each box plot, it is 

observed that MLP had better results if compared with the other three models.  

Observing only RMSE results, it can be concluded that XGBoost had better results if 

compared with SVM and RF, which shows that XGBoost is more effective in training process 

than SVM and RF; however, MLP stills has better results than the other three, which reinforce 

choosing MLP as the best performed model. If PE is compared between models, MLP and SVM 

are the ones with better results, which shows that training performance not always indicates 

good performance at testing.  

Figure 59 - Model Comparison - RMSE - 

Without UKF. 

 

Source: The Author, 2019. 

Figure 60 - Model Comparison - RMSE - 

With UKF. 

 

Source: The Author, 2019. 

Figure 61 - Model Comparison - PE - 

Without UKF. 

 

Source: The Author, 2019. 

Figure 62 - Model Comparison - PE - With 

UKF. 

 

Source: The Author, 2019. 
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5 CONCLUSIONS AND FURTHER WORKS  

 

EVs are one of the possibilities in the automobile industry to reduce the use of fossil 

fuel and the pollution caused by GHG. Thus, they can be an alternative, also, because of the 

rechargeable batteries, which can use clean power sources as hydroelectric or eolic and can be 

applied not only in EVs but surface and underwater vessels, electric aircraft, and spacecraft. 

Hence, as a critical component of an EV, the battery needs extra care and monitoring in 

order to guarantee the safety and reliability of the system. It must be continuously monitored 

and controlled to avoid abnormal degradation and catastrophic failures. Thus, if the conditions 

are not properly supervised, the car is susceptible to explosion, fire, release of toxic gases. 

Thus, monitoring and knowing when the battery will be discharged is a function of the 

BMS. Its main function is to show the current conditions of the EV and forecast conditions such 

as SOC and SOH. So, this work aims to predict the SOC and the remaining time until the next 

recharging using ML – SVM, RF and XGBoost - and DNN – MLP - techniques. In order to 

predict the remaining time until the next discharge was predicted using a linear regression of 

SOC – as ordinate – and remaining time as abscissa. To estimate confidence interval, was used 

MEB with 95% of confidence.  

For the performed techniques, as can be seen, by the results, the MLP had a better 

performance with higher scores on the test and an interval with an RMSE of 0.046798. Then, 

the confidence interval of the SOC prediction had a better performance for the MLP with a 

mean percentage error of 3.260404%.  

After these predictions, the UKF was applied to post-process the output in order to 

decrease the prediction errors. The MLP still had better performance than the other approaches, 

as expected, with an RMSE of 0.028291 for the MLP. Also, the mean percentage error for the 

prediction of the failure time decreased being 2.0788 % for the MLP, which validates the 

efficiency of the UKF. 

Thus, as expected, the applied DNN method, MLP, had better results if compared with 

the ML methods. However, for generalization proposes, another statistical metrics need to be 

evaluated to guarantee the efficiency of the proposed methodology. Also, other conditions of 

temperature, SOC, and dataset need to be tested. 

As further steps, another DNN architectures – such as CNN and RNN – will be tested. 

Other ML methods – for example, Adaboost, Gradient Boosting and K-nearest neighbors – 

should be applied to test the efficiency of the data processing. For the hyperparameters search 
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of the DNN and ML methods, the windowing pre-processing and the UKF parameters, 

heuristics techniques (e.g. Genetic Algorithms, Particle Swarm Optimization) can be applied to 

find the optimum parameters for these each methodology phases. 
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