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RESUMO 

 

O presente trabalho aborda o gerenciamento do risco do mercado utilizando o Value at Risk 

(VaR), o qual se tornou a ferramenta para a mensuração do risco esperado mais utilizada, 

tanto por instituições financeiras, quanto não financeiras. O VaR mede a maior perda esperada 

em dado período de tempo, tal perda esperada é baseada nas suposições sobre a distribuição 

de retorno dos fatores de risco. 

A suposição de mercado eficiente é normalmente a justificativa para a baixa eficácia dos 

modelos de gestão do risco de ativos brasileiros. No entanto a forma como a hipótese de 

mercado eficiente é incorporada aos modelos de previsão e de gerenciamento do risco não é 

explorada na literatura com a profundidade necessária. O resultado são trabalhos empíricos 

pouco conclusivos sobre a eficácia dos modelos de VaR aplicados ao mercado brasileiro.  

Neste trabalho o objetivo foi modelar o mercado de ações brasileiro sem abandonar a hipótese 

de mercado eficiente. Para tal fez-se necessário a incorporação da dinâmica do mercado, 

caracterizada pela alta volatilidade, aos modelos de VaR. Obteve-se sucesso para a 

modelagem das carteiras de ações, entretanto os resultados para carteiras com opções 

mostraram que a hipótese de mercado eficiente não é suficiente para a modelagem no 

mercado de opções brasileiro. 

O VaR foi analisado sob diversas suposições, transitando entre os modelos paramétricos e não 

paramétricos, das ações mais representativas do mercado acionário brasileiro: Telemar PN, 

Petrobrás PN e Vale do Rio Doce PNA; e das opções mais negociadas: as opções de compra 

de ações da Telemar PN. 

Os resultados mostraram que modelos de VaR dinâmico fornecem a adaptabilidade necessária 

para que o VaR obtivesse resultados satisfatórios. Isto ocorreu em função da velocidade da 

incorporação de novas informações ao modelo ratificando a hipótese de mercado eficiente. 

Entre os modelos de VaR, o que se mostrou mais adequado foi o de simulação de Monte 

Carlo pela flexibilidade de incorporação de novas suposições. 

Ficou claro que a tarefa de gerenciar derivativos sofisticados, como opções, deve ser iniciado 

pelo correto modelo de precificação de tais derivativos. O modelo de precificação de Black & 

Scholes, na sua forma original, não foi capaz de predizer o comportamento das opções objeto 

de estudo. Um ajuste ao modelo incorporando a aposta de alavancagem dos investidores em 

opção tornou a modelagem do risco via o VaR aceitável. 
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ABSTRACT 

 

This thesis approaches the risk’s administration of the market using Value at Risk (VaR), 

which became widely used technique for measuring future expected risk for both financial 

and non-financial institutions. The VaR measures the largest expected loss in given period of 

time that expected loss is depending of suppositions about the distribution of return of the risk 

factors. 

The efficiency market supposition is usually the reason for the lower effectiveness of the risk 

management models to the Brazilian market. However, the form how the efficiency market 

hypothesis is adapted in the prevision models and risk management is not well analyzed in the 

literature. The results are empiric papers not conclusive about the effectiveness of the VaR’s 

models applied to the Brazilian market. 

The objective of this work was the approach of the Brazilian market but without forget the 

efficiency market hypothesis. For that, it was made the dynamic incorporation of the market 

movement, that has (in the case of Brazilian market) high volatility, to VaR’s models. The 

success was achieved in the action’s portfolios without drop the efficiency market hypothesis, 

but option’s portfolios did not work successful. Show off that the efficiency market 

hypothesis is not sufficiency for that specific market. 

The VaR has been analyzed under several suppositions, among the models parametric and not 

parametric, in the most representative Brazilian’s actions stock market: Telemar PN, 

Petrobrás PN and Vale do Rio Doce PNA; and in the options more negotiated: the Telemar 

PN call options.   

The results have been showed that dynamic models VaR provide the necessary condition to 

satisfactory results VaR. This happened because of the incorporation velocity of new 

information in the model, ratifying the efficiency market hypothesis. Among the VaR models, 

what showed more appropriate was the Monte Carlo simulation with GARCH volatility.   

Of course, the task of managed sophisticated derivative, as options, should start for the correct 

pricing model of such derivatives. The precification model of Black & Scholes, in his original 

form, was not capable to predict the behavior of the options study object. An adjustment to 

the model, incorporating the bet of the investor’s leverage in option became the modeling of 

the risk to acceptable VaR. 
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1. INTRODUÇÃO 
 

1.1 Aspectos Gerais 

 

Parte da teoria econômica é baseada na suposição que preço, renda e outras variáveis 

são conhecidas com segurança. No entanto, muitas das escolhas dos agentes econômicos são 

realizadas em ambientes de incerteza1 nas decisões, mais ainda, é necessário definir o grau de 

risco no qual se está disposto a assumir. 

Há uma grande quantidade e variedade de riscos envolvendo a condução de qualquer 

atividade econômica. Por exemplo, uma atividade agrícola deve estar constantemente atenta 

aos riscos de quebra de safra, de falta de financiamento, de queda nos preços dos seus 

produtos, aumento dos custos de matéria-prima, etc. Jorion (2003) define risco como a 

volatilidade de resultados inesperados, normalmente relacionada ao valor de ativos ou 

passivos de interesse. 

Como se pode perceber os riscos fazem parte do dia a dia de qualquer atividade 

econômica. Estes não podem ser eliminados por completo, é possível, no máximo, administrar 

alguns deles. Risco não é um conceito novo, mas ainda representa um dos grandes desafios 

para os profissionais de finanças. O modelo proposto por Markowitz em 1952, dando base à 

Teoria Moderna das Carteiras é a base para os modelos de gestão desde então. 

Apesar de não ser um conceito novo, os riscos vêm assumindo uma importância 

crescente, mais recentemente tornou-se destaque na literatura em função de desastres 

financeiros internacionais relacionados com o uso indevido de derivativos, exemplos de tais 

desastres são o caso do Baring Bank, da Procter&Gamgle, Bankers Trust, Crédit Lyonnais, 

Orange County, Metallgesellschaft, etc.2. Tais problemas corroboraram para o surgimento de 

uma nova área do conhecimento, o gerenciamento de risco, cujo principal objetivo é a 

minimização eficiente do risco, dentro de determinada restrição orçamentária. 

Tal área do conhecimento apresenta um papel fundamental para o desenvolvimento 

das atividades econômicas. A introdução cada vez crescente de novos instrumentos 

derivativos sofisticados faz com que os aspectos teóricos e computacionais relacionados com 

                                                 
1 Segundo Silva Neto (1998) incerteza é a situação em que se partindo de um determinado conjunto de decisões 
obtém-se vários resultados possíveis. Os resultados são conhecidos, mas não a probabilidade destes. Quando se 
conhecem as probabilidades têm-se as situações de risco. 
2 Estes escândalos financeiros estão apresentados em Jorion (2003). 
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o hedge, combinados com as lições dos recentes desastres financeiros envolvendo derivativos, 

tornem o gerenciamento do risco uma atividade com importância crescente. 

O mercado de derivativos surge acompanhando a história da comercialização, cuja 

finalidade inicial era o de facilitador das trocas e comercialização. Entretanto, desde o início 

da sua utilização mostrou-se capaz de diminuir e diversificar os riscos. 

Não há uma unanimidade com relação à origem do mercado de derivativos, alguns 

autores consideram-na como sendo a China Antiga em função da comercialização das 

commodities de base, ou também a idade média com a especialização do comércio. No 

entanto, o termo tal qual este o é conhecido atualmente, surgiu no início da década de 1970, 

com as primeiras swaps, usadas, no início, para a proteção contra os riscos de flutuação das 

taxas de câmbio (Bessada, 2000).   

Segundo Silva Neto (1998), os derivativos prestam-se à gestão dos riscos e estão 

intimamente ligados à vida das empresas e bancos. Segundo este autor, os derivativos são 

contratos entre partes para trocar, unicamente, o valor dos ativos, dos índices ou das 

commodities. 

De acordo com Bessada (2000) os contratos derivativos dependem da existência de um 

outro contrato ou de um ativo (conhecido como ativo objeto) de referência. Se o mercado em 

referência não existir mais, o derivativo perde sua razão de existir, já que não há a 

possibilidade de variação dos preços do ativo objeto.  

Um outro aspecto sobre o mercado de derivativos é que os ativos de referência devem 

ser comercializados livremente no mercado, livre de qualquer forma de controle de preços.  

Será identificado dentro deste trabalho um modelo relacionado a ativos de referência 

(em particular ações da IBOVESPA) e opções como derivativos para o controle de risco 

do mercado. O desenvolvimento da área de produtos derivativos sofisticados requer um bom 

controle de risco, que vai além da estratégia de diversificação. 

Não há regra geral para a determinação dos riscos das instituições financeiras (e 

empresas que operem com derivativos). No entanto, todas as metodologias minimamente 

eficientes têm alguma sofisticação matemática, sistemas computacionais e informações 

confiáveis. No caso dos riscos operacional e legal devem ser abordados caso a caso. Os riscos 

de mercado e de crédito possuem algumas metodologias que já se encontram em uso e 

explicadas na literatura. 

O foco deste trabalho é o risco de mercado, um fato importante neste tipo de risco é a 

forma como este pode ser mensurado. Segundo Duarte Jr. (1997), há duas formas de avaliar 

os riscos de mercado: 
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• Risco de mercado relativo: é a diferença dos rendimentos de uma carteira de 

investimentos em relação a um índice utilizado como benchmark; 

• Risco de mercado absoluto: medem-se as perdas de carteira de investimento sem 

qualquer relação com um índice. 

 

Para o cálculo de risco de mercado absoluto de uma carteira pode-se utilizar diversas 

medidas, por exemplo: desvio padrão dos retornos passados (Markowitz, 1952), downside risk 

(média ou momentos parciais) dos retornos passados, o Value at Risk, condicional Value at 

Risk (VaR); estes três últimos também podem ser utilizados para o cálculo do risco relativo.  

Segundo Artzner et al (1999) e West (2004) as medidas de risco devem ser coerentes 

com alguns axiomas3. Segundo mostrado por Kato (2004) as medidas de risco baseadas no 

VaR e no CVaR não atendem ao axioma da subaditividade, baseado neste fato o mesmo autor 

sugere a utilização do downside risk como medida coerente de risco. Entretanto, este mesmo 

trabalho mostra que em alguns casos o downside risk não se apresenta sensato para 

investidores racionais. Um outro problema está relacionado com a não adequação deste 

modelo ao axioma da invariância transacional. 

West (2004) demostra que o problema da subaditividade do VaR é possível em alguns 

casos, estes chamados pelo autor de exemplos “patológicos”. Apesar das críticas de alguns 

autores sobre o VaR, este é o modelo mais utilizado tanto academicamente como na prática. 

Um aspecto que corrobora é a exigência de capital mínimo para as instituições que operam 

nos mercado de derivativos, proposta pelo Comitê de Basiléia. Tal requerimento de capital 

deve ser baseado no VaR. Neste trabalho nos concentraremos na metodologia Value at Risk 

(VaR). 

 

1.1.1 O Value at Risk 

 

O VaR é uma medida de um quantil que quantifica o risco de uma posição de uma 

instituição financeira. Ele mensura o risco de mercado ao qual as instituições que operam nos 

mercados financeiros estão expostas. Rigorosamente falando, o VaR mede a pior perda 

esperada para um dado horizonte de tempo dentro das condições normais do mercado e a um 

certo grau de confiança. 
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Sob a forma de perda o VaR pode ser entendido via a seguinte expressão: “temos c 

porcento de certeza que não iremos perder mais que X reais nos próximos N dias”. A variável 

X é o VaR, que é função de dois parâmetros: o horizonte de tempo N e o nível de confiança c. 

Evidentemente, a qualidade do VaR para uma carteira depende das suposições relativas a sua 

distribuição e o modelo de valoração. 

As suposições sobre a distribuição determinam o que o modelo de VaR assume sobre a 

distribuição dos retornos da carteira, os lucros e perdas (L&P). Especifica ainda, o que o 

modelo assume sobre a distribuição dos fatores de risco, sobre os quais o valor da carteira está 

relacionado. 

O modelo de valoração do VaR determina como ele relaciona o valor da carteira à 

choques nos fatores de risco, ou a relação entre o valor da carteira e o valor dos elementos que 

compõem essa carteira. 

Em função das possibilidades de valoração do VaR e da distribuição dos retornos, há 

uma gama de diferentes formas de mensurar o VaR. A primeira delas supõe que os fatores de 

risco são normalmente distribuídos e que o valor da carteira é função linear destes fatores; a 

partir desta suposição deriva-se a metodologia de VaR conhecida como delta-normal ou da 

variância-covariância. 

Sob tais suposições a tarefa de calcular o VaR reduz-se a encontrar um múltiplo do 

desvio padrão da carteira, onde o desvio padrão é função linear das volatilidades e correlações 

individuais dos fatores de risco. De uma forma sintética, o VaR normal é o produto do desvio 

padrão da carteira pelo parâmetro do nível de confiança e um escalar que representa o valor 

da carteira. 

Esta característica no cálculo confere ao VaR normal as propriedades da simplicidade 

de implementação e a facilidade de informatividade (mudanças nos valores do VaR em 

função de alteração nos parâmetros). 

Infelizmente a lista de críticas a tal método é extensa. A primeira está associada com a 

falta de capacidade que o modelo apresenta em capturar adequadamente o risco de evento, o 

qual se associa com situações extremas ou incomuns, como crashes dos mercados acionários 

ou colapsos das taxas de câmbio (Jorion, 2003). 

Um segundo problema é a suposição de normalidade dos retornos, que nem sempre 

corresponde à realidade dos dados financeiros reais. Segundo Jorion (1997), a maioria dos 

ativos financeiros apresenta caudas grossas, estas são particularmente preocupantes, visto que 

                                                                                                                                                         
3 Os axiomas propostos por Artzner são: a monotonicidade, invariância transacional, homogeneidade positiva e 
subaditividade. 
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o VaR tenta capturar o comportamento do retorno da cauda esquerda. Bollerslev (1986) 

mostrou que a maioria dos retornos das variáveis financeiras não é normalmente distribuída, 

na verdade elas tentem a assimetria e a ser leptocúrticas. 

Por fim, o método calcula o risco de instrumentos não lineares de forma inadequada. É 

o caso dos riscos de opções e hipotecas. Segundo Jorion (1997), a aproximação linear para 

valores de opções é válida apenas para pequena parcela de séries de pagamento a vista do 

ativo objeto. 

Uma alternativa a não linearidade do método delta normal é a utilização da série de 

Taylor ou aproximações lineares dos retornos dos ativos, e utilizar esta aproximação para 

mensurar o VaR. A primeira aproximação de Taylor produz o método delta normal. O método 

delta normal é por definição a primeira ordem da série de Taylor do valor da carteira em 

relação aos retornos dos ativos (ou dos ativos objetos, quando se trata de opções). 

Alguns autores, como Telfah (2003) e Wilson (1996), argumentam que a aproximação 

simples delta normal produz resultados aceitáveis para pequenos períodos de tempo e quando 

a carteira possui poucas opções (ou outros contratos não lineares). 

Para incrementar a acurácia do VaR para contratos não lineares alguns trabalhos 

incluindo Wilson (1994 e 1996), Jamshidian e Zhu (1997),  Zangari (1996 a e b) e Telfah 

(2003), usaram o modelo quadrático ou o segundo termo da expansão de Taylor, conhecido 

como o método delta gama4. Jamshidian e Zhu (1996), Zangari (1996 a e b) e Fallon (1996) 

relataram que a utilização do método delta gama aumentou a eficiência do VaR 

consideravelmente em comparação ao método delta normal. 

A suposição de normalidade na distribuição dos fatores de risco ou dos retornos da 

carteira fatalmente afetará as estimativas de VaR o qual depende da distribuição da cauda (em 

particular a esquerda). Logo, se a distribuição real dos retornos tiver cauda mais grossa (fina) 

que a distribuição normal, então o VaR baseado na distribuição normal será subestimado 

(sobreestimado). Como a maioria das séries financeiras possui caudas grossas é de se esperar 

que o VaR baseado na hipótese de normalidade subestime as perdas. 

De uma forma geral há dois grupos de técnicas de VaR que minimizam ou eliminam 

os efeitos da normalidade: os métodos paramétricos (metodologias analíticas) e os métodos 

não paramétricos (metodologias de simulação). No grupo das técnicas paramétricas5 uma 

                                                 
4 Gama é a primeira derivada do delta em relação ao retorno do ativo, esta grega mede a curvatura da relação 
entre o valor da carteira e o retorno do ativo. Quando o gama é positivo (negativo) as mudanças na carteira são 
positivamente (negativamente) assimétricas. 
5 Convém lembrar que o método delta normal também é classificado como uma metodologia analítica. 
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distribuição alternativa é assumida em substituição à normal. Baseado nesta distribuição uma 

fórmula para descrever o intervalo de confiança é derivada. 

Entre os métodos não paramétricos, ou de simulação, estão os modelos de simulação 

histórica e o método de Monte Carlo. Neste grupo de técnicas nenhuma suposição sobre a 

distribuição dos retornos é necessária. Assim sendo o VaR é obtido via a teoria padrão da 

estatística (como em Kupiec (1995)) ou simulação de Monte Carlo. 

Na técnica da simulação histórica não há suposição sobre a distribuição dos retornos, a 

única suposição é que os retornos passados devem continuar no futuro. Segundo Jorion 

(1996), ao se basear nos preços reais passados o método incorpora a não linearidade e 

distribuições não normais. Segundo Accorsi e Panhosi (2003) o método da simulação 

histórica é simples e intuitivo, podendo ser aplicado a qualquer distribuição de retornos. 

Outros trabalhos com simulação histórica para ativos lineares e não lineares são encontrados 

em Thérêt e Rostan (2000), Barbedo et al (2004) e Duffie e Pan (1997). 

Em resumo, conforme afirmou Khindanova e Rochev (2000), talvez uma das grandes 

vantagens deste método seja a eliminação de qualquer viés de estimação. No entanto, estas 

vantagens não isentam o método de críticas, elas surgem em função da única suposição: 

tendências de P&L no passado continuam no futuro. Esta forte hipótese pode levar a erros de 

amostragem, outro problema é identificar o tamanho ótimo da amostra, entre outras críticas. 

Alguns trabalhos como Holton (1998), Duffie e Pan (1997) e Boudoukh, Richardon e 

Whitelaw (1998) sugeriram alterações no método de simulação histórica para minimizar as 

desvantagens do modelo, por exemplo: a incorporação de mirrors cenários, bootstrap e o 

alisamento exponencial. 

Em alguns casos os problemas do método de simulação histórica não são contornados, 

fazendo com que analistas recorram a técnicas mais poderosas de simulação. Para Wierner 

(1999) o método de simulação de Monte Carlo é uma das técnicas de análise sofisticada mais 

popular entre analistas e acadêmicos. 

Segundo Telfah (2003) para calcular o VaR via o método de simulação de Monte 

Carlo deve-se, inicialmente, especificar um processo estocástico e parâmetros do processo que 

capturem a dinâmica dos fatores de risco. A próxima etapa consiste na simulação das 

trajetórias de preços para todos os fatores. Por fim, a partir dos preços simulados calcula-se o 

VaR para o quantil desejado. 

Apesar da simplicidade conceitual este método apresenta o problema da baixa 

convergência. Segundo Wiener (1999) para aumentar a precisão por um fator de 10, deve-se 

simular 100 vezes mais trajetórias de preços. As vantagens deste método são inúmeras (Telfah 
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(2003) e Jorion (2003)), desde a possibilidade de operacionalização sob diferentes suposições 

até a habilidade de capturar fatores de risco de posições não lineares. 

 O segundo grande problema com este método diz respeito à especificação do processo 

estocástico para modelar os fatores de risco. Corre-se o risco da verdadeira distribuição dos 

retornos ser imperfeitamente captada pelo modelo (Jorge et al, 2001). 

 Além dos dois problemas do método de simulação de Monte Carlo citados nos 

parágrafos anteriores há um terceiro também importante, a má especificação dos parâmetros 

estocásticos. Problema este, não exclusivo do método de Monte Carlo. Todos os modelos 

paramétricos também podem apresentar este problema. De todos os fatores de mercado, o que 

apresenta a maior potencialidade de erros nas estimativas do VaR é a volatilidade. O principal 

motivo para tal possibilidade é o fato da volatilidade não ser um parâmetro observável. 

 

1.1.2 A Volatilidade 

 

 A importância da volatilidade como fonte de erro é tamanha que há na literatura 

importantes trabalhos analisando as conseqüências para o VaR da especificação da 

volatilidade, exemplos: Mollica (1999), Schittenkopf et al (2002) e Lehar (2000). A 

relevância da volatilidade para o cálculo do VaR levou Barone-Adesi, Giannopoulos e 

Volsper (1999) a incorporar a volatilidade no modelo de simulação histórica com o objetivo 

de incrementar suas estimativas. Esta técnica é conhecida como simulação histórica filtrada. 

Foi replicado em diversos mercados como em Fierli (2002) e Barbedo, Araújo e Lemgruber 

(2004). 

 Os métodos para calcular a volatilidade são inúmeros, o mais simples de todos é o 

método amostral, ou via o desvio padrão dos retornos dos fatores de risco, esta técnica é 

usualmente conhecida como volatilidade padrão. A técnica da volatilidade padrão apresenta 

uma série de inconvenientes, entre eles a de dar importância equivalente às observações, 

independente do tempo em que ocorreu, ou seja, observação antiga possui a mesma relevância 

que uma observação recente. Uma forma de contornar este grave problema é a técnica de 

suavisamento exponencial. 

 Uma das principais causas de críticas aos modelos de estimação da volatilidade 

simples apresentada baseia-se no fato que o importante não é o valor histórico da volatilidade, 

mas sim a expectativa desta (Morais e Portugal, 2000). 
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 Mollica (1999) apresenta uma lista de 9 fatos estilizados relacionados à distribuição 

dos retornos, às técnicas de estimação da volatilidade e com a volatilidade dos retornos dos 

ativos financeiros. Entre estes fatores estão a heterocedasticidade dos retornos e a 

condicionalidade da volatilidade em relação aos fatos passados (Barbedo, Araújo e 

Lemgruber, 2004). 

 Há uma série de modelos que podem contemplar os fatos estilizados de forma mais ou 

menos eficiente, entre os principais estão os modelos GARCH6 e sua família, o modelo de 

volatilidade estocástico e a volatilidade implícita (que é baseada nas informações das opções). 

 Com a possibilidade de mudar a estratégia de VaR com uma simples mudança na 

especificação de um parâmetro (em particular a volatilidade), pode-se afirmar que há uma 

grande variedade de estratégias de VaR. Estas múltiplas estratégias apresentam resultados 

muitas vezes contraditórios e pouco conclusivos, em particular na tarefa de identificar qual 

estratégia de VaR é ideal em determinadas situações. Segundo Rogachev (2002), um dos 

grandes problemas do VaR está relacionado com as mudanças diárias do ambiente financeiro, 

da economia e das condições sociais. 

 

1.1.3 Análise Estática x Dinâmica 

 

 A maioria das técnicas de análise de risco e em particular o VaR é, em sua maioria, 

analisada na forma estática, o que os impede de capturar mudanças temporais nos fatores de 

risco. Rogachev (2002) sugere a adoção de técnicas de VaR dinâmicos como forma de 

incrementar as estimativas. 

 O cálculo do VaR dinâmico é feito adaptando-se as estimativas do VaR diariamente 

em função das mudanças diárias das condições de mercado. O processo dinâmico do VaR 

pode ser aplicado para qualquer estratégia do VaR, seja ela paramétrica ou não paramétrica. 

 Do ponto de vista prático o VaR dinâmico resulta em problema para os traders, uma 

vez que estes devem utilizar um sistema de monitoração de risco para definir a composição da 

sua carteira7. Se o VaR mudar diariamente, a composição da carteira também deverá mudar 

para manter o risco nos níveis esperados, assim sendo, o trader deve definir o trade off  entre 

a exposição ao risco e o custo de mudança da composição da carteira. 

 

                                                 
6 GARCH significa Generalized Autoregressive Condicional Heterocedasticity e foi desenvolvido por 
Bollersleve em 1986. 
7 Baseado na expectativa de retorno e grau de aversão ao risco. 
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1.1.4 A Estrutura do Trabalho 

 

 Os aspectos relacionados ao VaR estático e dinâmico, suas aplicações ao mercado 

acionário e de opções brasileiro fazem parte do escopo deste trabalho, o qual está dividido 

como segue: dentro do primeiro capítulo, além da presente seção, ainda têm-se os aspectos 

motivacionais do trabalho, o problema de pesquisa e os objetivos da pesquisa e uma seção 

com o resumo da metodologia em forma de fluxograma. 

O segundo capítulo aborda as questões que dão sustentação à análise de risco, em 

particular os pontos relacionados à incerteza econômica a qual os agentes econômicos estão 

sujeitos, a dinâmica do retorno do ativo, a precificação das opções (o modelo de Black e 

Scholes) e os modelos de estimação da volatilidade. 

No terceiro capítulo encontra-se a teoria do VaR, bem como os aspectos teóricos dos 

modelos delta normal, analítico, simulação histórica e de Monte Carlo. Por fim este capítulo 

também aborda os teste para verificar a eficiência das estratégias de VaR. 

O objetivo do quarto capítulo é aplicar as teorias apresentadas no segundo e terceiro 

capítulo para o cálculo do VaR de carteira de ações e/ou opções do mercado acionário 

brasileiro, fazendo comparações entre as estratégias. 

O quinto capítulo é dedicado à análise dos resultados e ajustes metodológicos em 

função de resultados não satisfatórios. 

E por fim o sexto capítulo é dedicado às conclusões, considerações finais e sugestões 

para futuros trabalhos. 

 

 

1.2 Motivação 

 

A motivação deste trabalho surge da suposta ineficiência do mercado brasileiro e da 

conseqüente ineficiência8 do gerenciamento de risco da maioria das instituições financeiras, 

bem como dos órgãos reguladores. Segundo Duarte Jr. (2000), qualquer instituição agindo 

como originador, market-maker ou corretora deve ter a capacidade de prevenir perdas 

potenciais de suas posições de derivativos. 

                                                 
8 Uma parte considerável das instituições utiliza modelos que supõe eficiência do mercado. 
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A literatura apresenta casos não raros de elevados prejuízos sofridos por bancos como: 

Daiwa, Showa Shell Sekiyu e Barings; no Brasil, o caso dos Bancos Garantia, Boa Vista e 

Fonte Cindam. Estes casos reforçam a tese da ineficiência do gerenciamento de risco. Estes 

casos têm demonstrado a ineficiência do gerenciamento de risco das instituições, bem como 

dos órgãos reguladores (Bezerra, 2001). As exigências de capital no Brasil para operações 

com derivativos, quando são feitas, são formuladas segundo as linhas preconizadas pelo 

Comitê de Basiléia (Barbedo e Araújo, 2004). 

A falta de regulamentação no mercado brasileiro bursátil pode estimular maiores 

ganhos de capital9, entretanto, possibilita perdas consideráveis de somas de recursos. Em 

particular, ao tratar do mercado brasileiro, Duarte Jr. (2000) apresenta algumas características 

importantes deste: 

 

a) O mercado brasileiro possui uma volatilidade bem maior que aquela dos mercados 

europeus e norte-americanos, onde técnicas de hedge e de gerenciamento do risco 

simples são adequadas; 

b) A volatilidade do mercado de juros brasileiro é superior ao dos mercados europeus 

e norte-americanos; 

 

A volatilidade do mercado brasileiro pode ser observada na Figura 1.1; na Figura 1.2 

temos o retorno de um índice americano, o Dow Jones. O retorno do ibovespa10 representado 

pela Figura 1.1 mostra zonas de forte agitação (alta volatilidade), em particular respondendo a 

crises financeiras internacionais. Já no mercado americano uma simples análise dos retornos 

não é suficiente para identificar conseqüências em função destas crises. A alta amplitude dos 

retornos do Ibovespa em comparação ao Dow Jones mostra como o mercado acionário 

brasileiro é mais volátil. 

  

                                                 
9 Não haverá exigência de capital. 
10 Ibovespa ou índice Bovespa é o mais importante índice da Bolsa de Valores de São Paulo, calculado desde 
04/06/1964 e as ações que fazem parte deste são responsáveis por 80% do volume negociado na Bovespa. 
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Figura 1.1: Retorno Ibovespa Diário no período de 04/07/1994 a 27/10/2004. 
Fonte: Elaboração própria, dados IPEA. 
 
 Airoldi (2001) sugere que caudas grossas estão associadas com aumentos rápidos da 

volatilidade; quanto mais dinâmica é a volatilidade, maior a cauda. Ainda de acordo com 

Airoldi (2001), saltos e eventos extremos como crises financeiras causam aumento na 

dinamicidade da volatilidade. Logo, a suposição de linearidade na relação entre dinâmica da 

volatilidade (fortes variações na volatilidade) e patamar de volatilidade não são observadas 

quando há saltos e eventos extremos, assim sendo, uma representação da dinâmica da 

volatilidade não linear faz-se necessário. 

 Hsieh (1993) sugere que quando a não linearidade surge de dados financeiros os 

modelos de volatilidade condicional promovem melhores descrições de movimentos de curto 

prazo quando comparados a modelos não condicionais. 
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Figura 1.2.: Retorno do Dow Jones Diário no período de 04/07/1994 a 27/10/2004. 
Fonte: Elaboração própria, dados IPEA. 
 
 

Desta forma técnicas simples de VaR com a consideração de normalidade dos retornos 

não devem ser suficientes para o bom gerenciamento do risco. Abrir mão da normalidade dos 

retornos normalmente sugere abrir da hipótese de eficiência do mercado. Estimar o VaR sem 

a hipótese de eficiência de mercado significa promover ajustes significativos nas estratégias 

tradicionais de VaR. Mudanças estas ainda não exploradas na literatura, este trabalho ainda 

propõe incorporar estas situações a uma análise dinâmica do risco. 

A proposta da análise dinâmica é corroborada por Gibson (2001) e Lewis (2002) 

sugerindo que a modelagem de dados financeiros deve combinar dinâmica da volatilidade 

com eventos de risco. Tanto Gibson (2001), quanto Lewis (2002) consideram esta tarefa 

fundamental e desafiadora na modelagem do dinamismo dos fatores de risco. 

De acordo com Fama et al (1969), o mercado eficiente deve apresentar um passeio 

aleatório, o que pode não ser o caso do ibovespa entre 1994 e 2004, como se pode observar na 

Figura 1.1. Do apresentado, é evidente que o passeio aleatório deve ser melhor investigado, 

evitando-se uma fonte potencial de erros de especificação, em particular no modelo com 

simulações de Monte Carlo. 
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Segundo Duarte Jr. (2000), uma das razões que justifica o uso de modelos mais 

sofisticados para o gerenciamento do risco de carteiras de opções no Brasil é o anexo de 

janeiro de 1996 ao Acordo sobre Capital da Basiléia (Basle Capital Accord) por parte do 

Comitê de Basiléia para Supervisão Bancária (Basle Committee on Banking Supervision). 

Este diz que qualquer instituição que opere com derivativos sofisticados meça e controle pelo 

menos seus riscos delta, gama e vega. 

Por fim, outra motivação para este trabalho é o estimulo à definição de regras e limites 

por parte dos agentes reguladores brasileiros. Um conhecimento adequado do risco é por si só 

uma fonte inestimável de redução do risco. 

 

1.3 O Problema de Pesquisa 
 

Como já apresentado, o hedge é uma operação com derivativos que reduz a 

possibilidade de perdas futuras e, como conseqüência, diminui a possibilidade de ganhos 

futuros (Marshall, 1989). Esta tese tem o objetivo de trabalhar com o ferramental básico do 

hedge, a mensuração do risco de mercado. Evidentemente há eficientes maneiras de mensurar 

os riscos para cada mercado em particular. Entretanto, cada método está associado com um 

mercado e não pode ser aplicado diretamente a outros mercados. Já o VaR é uma maneira 

integrada de avaliar os riscos de diversos fatores e com os mais distintos mercados. 

Para Duarte Jr. (1997), a grande motivação para a utilização do VaR é o fato deste 

integrar todo o risco em um único valor, o risco total, facilitando a sua administração por 

parte dos gerentes e pessoas relacionadas com a gestão de risco. Por outro lado, tratar o risco 

como multidisciplinar requer um número elevado de simplificações. 

Por este fato e por outros é que o VaR vem se tornando a medida padrão para a 

avaliação de risco do mercado, sendo adotado por diversos bancos, corretoras e fundos 

mútuos. Os órgãos reguladores podem obrigar a implementação do VaR, nos Estados Unidos, 

as agências de rating como a Moody e Standard and Poor’s (S&P), e instituições como o 

Financial Accounting Standard Board (FASB) (Conselho de padrões financeiros contábeis) e 

a Securities and Exchange Comission (SEC) apóiam a utilização do VaR (Jorion, 2003). 

Já a utilização das opções para o gerenciamento de risco é motivada pelo fato de, 

segundo Silva Neto (1998), opções serem instrumentos muito versáteis, tanto para a 

especulação, para a arbitragem, quanto para o hedge. 
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Em contrapartida à versatilidade das operações com opções possue o inconveniente do 

alto custo na transação. Muitas vezes o custo da opção pode até inviabilizar a estratégia. Desta 

forma, entender bem as operações com opções é extremamente importante, sendo garantia de 

uma operação bem feita. 

Como visto, estratégias de hedge dinâmico exercem um papel importante para o 

gerenciamento do risco de produtos derivativos sofisticados. Diante do apresentado acima, 

surge o problema de pesquisa: A hipótese de mercado eficiente é relevante para o 

gerenciamento de risco pelo Value at Risk (VaR). Diante disto, como modelar o risco de 

mercado para carteiras com ações, opções e hedge negociadas no mercado financeiro 

brasileiro dada a dinâmica deste, a partir dos modelos de VaR existentes ou sugeri uma 

nova variante confiável o suficiente para  permitir a análise do risco para este mercado? 

 

1.4 Objetivos da Pesquisa 

 

O objetivo principal deste trabalho é verificar se a hipótese de mercado eficiente é 

relevante para o gerenciamento de risco pelo Value at Risk (VaR), para tal aplica-se a análise 

dinâmica; além de identificar qual variante do VaR (estático ou dinâmico) ou sugerindo uma, 

confiável o suficiente como para permitir a análise do risco do mercado brasileiro. Neste 

trabalho utilizar-se-á especificamente quatro tipos de metodologias: 

 

• A metodologia delta normal; 

• A metodologia analítica baseada nos métodos das “gregas” da carteira de opções; 

• A metodologia de simulação histórica; 

• A metodologia de simulação de Monte Carlo. 

 

Para atingir o objetivo principal, delineiam-se os seguintes objetivos intermediários: 

 

• Modelar o comportamento do preço da ação por um processo estocástico de Itô; 

• Simular a variação do prêmio da opção na carteira utilizando o modelo de 

precificação de Black & Scholes, onde apenas o preço da ação segue um processo 

estocástico; 

• Selecionar o modelo de volatilidade mais indicado à carteira (entre os modelos da 

família GARCH); 
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• Estimar o VaR estático e dinâmico segundo cada uma das metodologias; 

• Analisar o VaR de carteiras hedgeadas com opções tradicionalmente utilizadas no 

Brasil; 

• Propor uma estratégia de VaR que abra mão da eficiência de mercado (se for o 

caso); 

• Avaliar os resultados obtidos por cada uma das metodologias; 

• Aplicar, à avaliação das estimativas, o teste de hipóteses para proporções, 

desenvolvido por Kupiec (1995) atendendo o procedimento de backtesting 

proposto pelo Comitê de Basiléia e o modelo da função de perdas de Lopez; 

• Examinar uma estratégia de hedge compatível com os resultados obtidos nas 

etapas precedentes. 

 

1.5 Metodologia 

 

 Um resumo da metodologia está apresentado na Figura 1.3 a seguir. Nesta figura 

apresenta-se um fluxograma das etapas deste trabalho. O trabalho inicia-se (Capítulo 2) com a 

fundamentação econômica do gerenciamento de risco, discutindo os aspectos relacionados 

com a aversão ao risco, à economia sob incertezas e à eficiência de mercado. 

 O Capítulo 2 aborda inicialmente aspectos como o grau de aversão ao risco dos 

agentes econômicos, introduzindo a economia sob ambiente de incerteza. Tay (2000) mostra 

que com as preferências dos agentes econômicos e com o VaR determinado tem-se, no 

equilíbrio, a formulação econômica completa para o VaR. 

 Estes aspectos do VaR só são válidos quando as hipóteses de mercado completo são 

obedecidas, sendo, dessa forma, relevante uma discussão sobre eficiência de mercado, 

mostrando os conceitos de mercado eficiente nas formas fraca, semiforte e forte; convergindo 

ao conceito de caminho aleatório. 

 A partir do conceito de mercado eficiente (caminho aleatório) é possível avaliar a 

dinâmica de retorno do ativo. Utilizando as suposições do caminho (passeio) aleatório monta-

se uma equação diferencial estocástica (SDE) que representa a dinâmica de retorno do ativo. 

 A solução da SDE não é trivial, pois um dos termos da equação é um processo de 

Wiener, portanto faz-se necessário recorrer ao Lemma de Itô (ou fórmula de Itô). 

Ainda no Capítulo 2 tem-se uma seção dedicada à precificação de opções de Black & 

Scholes (B&S). A partir da análise de B&S obtém-se a equação diferencial parcial de B&S, 
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cuja solução, tanto para opções de compra quanto de venda (call e put), estão apresentadas no 

segundo capítulo. 

Por fim, mas não menos importante, a estimação da volatilidade. A volatilidade pode 

ser estimada tanto por métodos paramétricos quanto não paramétricos, entretanto, o foco deste 

trabalho serão os métodos paramétricos, em particular os modelos de volatilidade 

autoregressivo condicional heterocedástico (família ARCH). Os modelos tratados foram os 

ARCH e GARCH, modelos simétricos e EGARCH e GARCH-L, modelos não simétricos. 

Tais modelos são discutidos com relativo detalhe, incluindo uma descrição dos 

modelos, testes para verificar a adequação dos modelos às séries e as formas de estimação dos 

parâmetros. 

De posse dos parâmetros básicos do gerenciamento de risco, resta definir qual 

metodologia utilizar (no caso o Value at Risk), quais os prós e contra desta técnica, quais 

parâmetros utilizar, escolher e/ou calculá-los. O Capítulo 3, é o cerne metodológico deste 

trabalho. 

O gerenciamento de risco é tratado de forma a introduzir o VaR como uma ferramenta 

importante para a mensuração do risco de mercado, não esquecendo de abordar uma crítica 

aos modelos de gerenciamento de risco: a coerência das ferramentas de risco, onde a crítica 

mais relevante ao VaR é a falta teórica de subaditividade. 

Nesta fase do trabalho é conveniente uma definição formal do Value at Risk ilustrada 

com um exemplo real. As etapas para o cálculo do VaR em linhas gerais, segundo Wiener 

(1997), são apresentadas. 

Para as etapas do cálculo do VaR a seleção dos parâmetros subjetivos do Value at Risk 

é fundamental. Os parâmetros são: o nível de confiança, o tamanho da janela e o período de 

tempo. Com a arbitrariedade na seleção destes a escolha é feita com o intuito de permitir uma 

maior análise da eficiência comparativa entre os modelos de VaR. Neste trabalho fora 

escolhido um nível de confiança de 95%, tamanho de janela de 2 e 1 ano e VaR diário 

(período de tempo). 

As estratégias de VaR são aplicadas à carteiras de ações (Telemar PN, Petrobrás PN, 

Vale do Rio Doce PNA, Telemar PN + Petrobrás PN, Telemar PN + Vale do Rio Doce PNA, 

Petrobrás PN + Vale do Rio Doce PNA, Telemar PN + Petrobrás PN + Vale do Rio Doce 

PNA), carteira de opções da Telemar PN (call ratio, borboleta comprada e borboleta 

vendida), e uma estratégia de hedge delta-normal com ações e opções de compra da Telemar 

PN. 
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Figura 1.3: Fluxograma da metodologia  
Fonte: Elaboração própria. 
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A primeira das estratégias é o método delta-normal, este é baseado na hipótese que os 

retornos são normalmente distribuídos e é baseado nos parâmetros de tal distribuição. No 

entanto, é sabido que as séries financeiras normalmente não seguem a distribuição normal. 

Uma forma de atenuar esta crítica é substituir a volatilidade padrão (baseada na distribuição 

normal) pela volatilidade GARCH.  

Uma segunda crítica relaciona-se com a cauda esquerda das distribuições reais que são 

grandes em comparação à cauda da distribuição normal. Uma forma de atenuar tal crítica é o 

uso dos modelos stress VaR, em particular o stress VaR-x. 

Para carteiras com ativos não lineares, como opções, deve-se substituir o método 

delta-normal por outras metodologias analíticas baseadas nas gregas. Sugestões são os 

métodos delta-gama, delta-gama-delta, delta-delta-Johnson entre outras também descritas no 

Capítulo 3. 

Os métodos acima apresentados são metodologias paramétricas, entre as não 

paramétricas tem-se a simulação histórica e a simulação de Monte Carlo. Na simulação 

histórica não há suposições acerca da distribuição dos retornos, a única suposição é que o 

comportamento passado deve ser representativo do comportamento futuro. Algumas variantes 

deste modelo são: o método de bootstrap, mirror cenários e cenários ponderados. 

A ultima das técnicas é a simulação de Monte Carlo. Esta metodologia é 

particularmente poderosa pela adaptabilidade em função de permitir diferentes suposições, no 

entanto, apresenta o inconveniente da lentidão no processamento. A simulação de Monte 

Carlo é dividida em duas fases: a primeira é a trajetória de preços, neste supõe-se que o ativo 

objeto tem o comportamento de um movimento browniano geométrico. A segunda fase é a 

geração de números aleatórios, que podem ser aleatórios, pseudo-aleatórios e quase aleatórios. 

Quando o VaR com simulação de Monte Carlo é utilizado para carteiras adota-se a 

decomposição de Cholesky para adquirir a estrutura de correlação desejada. 

A eficácia de cada modelo é feita via o teste de Kupiec e de Lopez. O teste Kupiec 

verifica se o número de falhas de cada modelo está dentro de um intervalo de confiança. Já o 

teste de Lopez tem a finalidade de identificar entre os modelos eficazes (que passaram no 

teste de Kupiec), os que são mais eficientes. 

No Capítulo 4 encontram-se os resultados empíricos e ajustes metodológicos das 

metodologias aqui descritas. Todas as estimativas e testes são feitos nos modelos estáticos 

seguindo a recomendação do Comitê de Basiléia. 
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Para o VaR dinâmico a reavaliação dos parâmetros é feita diariamente com o intuito 

de incorporar novas informações ao modelo, estima-se e testa-se o VaR dinâmico, para os 

resultados não satisfatórios são feitas novas suposições e recalculado o VaR dinâmico. 

Por fim, no Capítulo 5 são apresentadas as conclusões finais e sugestões para futuros 

trabalhos. 

 

 

1.6 Os Dados e Delimitação do Trabalho 

 

Segundo a Companhia Brasileira de Liquidação e Custodia (CBLC), entre 2002 e 

2003, o mercado de opções (de ações e índices) no volume financeiro da Bovespa cresceu de 

6,2% para 7,96%, só as opções sobre ações responderam por 7,3% do volume total da 

Bovespa no ano de 2003. Mas ainda, segundo a CBLC, há muito espaço para o crescimento 

do mercado de opções em função da utilização para o hedge das carteiras. 

Entretanto, as negociações com opções são concentradas em poucos papéis, sendo a 

opções sobre ações da Telemar a mais negociada. As opções da Petrobrás e Vale do Rio Doce 

também são razoavelmente negociadas. A Bovespa11 também disponibiliza opções de outras 

empresas, como Bradesco, Itausa, Banco Itaú, Ambev, Embratel, Usiminas, Telefônica. 

Assim sendo este trabalho irá analisar carteira de ações e opções para ativos das 

empresas Telemar, Petrobrás e Vale do Rio Doce. Sendo o período de análise, para as ações, 

compreendido entre março/1999 a março/2004; cujos dados foram disponibilizados pela 

Economática. Para as opções o período de análise situa-se entre março de 2002 e março de 

2004, estes dados foram disponibilizados pela BOVESPA. 

 No período de análise há dois fenômenos (que podem ser identificados na Figura 1.4 a 

seguir), o primeiro é o período de crise motivado pela incerteza em relação ao destino político 

brasileiro na época da eleição presidencial. O segundo fenômeno é o crescimento espantoso 

no valor dos ativos negociados na bolsa de São Paulo, o índice da Bovespa apresentou uma 

alta de quase 100% no curto período de janeiro de 2003 a dezembro de 2003. 

 

                                                 
11 Segundo Cavalcanti e Misuno (2002) a Bovespa (Bolsa de valores de São Paulo) é o maior centro de 
negociações da América Latina e foi fundanda em 23 de agosto de 1890. 
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Figura 1.4: Ibovespa diário no período de 04/07/1994 a 27/10/2004. 
Fonte: Elaboração própria, dados IPEA. 
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2 FUNDAMENTOS METODOLÓGICOS E ECONÔMICOS 
PARA O GERENCIAMENTO DO RISCO 

 

A longa historia da dinâmica dos preços dos ativos teve início em 1900 quando o 

matemático francês Louis Bachelier12 deduziu uma fórmula para a dinâmica dos preços 

baseado na hipótese que os preços dos ativos seguiam um movimento browniano geométrico 

com drift zero. Outros nomes de peso contribuíram para o desenvolvimento do gerenciamento 

de risco, como é o caso de Markowitz em 1952, dando base a Teoria Moderna das Carteiras. 

Desde então, númerosos pesquisadores vêm contribuindo com a teoria e propondo modelos 

cada vez mais sofisticados e eficientes; inclusive analisando o risco de carteiras sofisticadas 

que são montadas com derivativos (como o caso de opções). 

Neste capítulo apresentar-se-á os fundamentos econômicos do moderno gerenciamento 

de risco, com os pressupostos tradicionais e uma crítica à adequação empírica deste, propondo 

alternativas a realidade econômica e financeira atual. Este capítulo inicia-se com os 

pressupostos econômicos tradicionais e suas conseqüências, logo após uma apresentação do 

movimento dos ativos, seguido da precificação das opções sob as hipóteses de Black e 

Scholes e por fim a questão da volatilidade. 

 

2.1 Fundamentos Econômicos do Gerenciamento de Risco 

 

 Da apresentação do Value at Risk (VaR) no capítulo introdutório ficou claro que esta 

medida de risco é simplesmente uma referência para julgamentos relativos. O cálculo do VaR 

típico envolve a probabilidade de uma perda extrema de reais (ou outra moeda) baseado na 

distribuição estatística dos preços de mercado. Tal medida não leva em consideração o fato 

que a mesma perda pode ter significados econômicos diferentes, dependendo das condições 

de negociação (Tay, 2000). 

 Tay (2000) e Aït-Sahalia e Lo (1998) afirmam que a noção estatística do VaR é, no 

máximo, uma medida incorreta do risco para investidores individuais e institucionais. De uma 

forma geral, apesar do VaR possuir informações sobre o grau de incerteza de uma carteira, a 

                                                 
12 Em sua dissertação de Doutorado em Paris “Theory de la spéculation” Bacheleir antecipou muito daquilo que 
seria padrão na teoria financeira: caminho aleatório para os preços do mercado, movimento Browiniano e 
martingales. 
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medida não fornece muito sobre a valoração econômica desta incerteza. Um exemplo disso é 

um VaR de R$ 15.000,00 com 5% de probabilidade para uma carteira com valor inicial de R$ 

100.000,00, o que equivale a uma perda de 15%, numa análise preliminar este número indica 

uma perda significativa. Entretanto, quando se compara com outros investimentos similares 

observa-se um VaR de 25%, assim sendo, pode-se concluir que um VaR de R$ 15.000,00 não 

é tão ruim. 

 Um outro aspecto relevante, mas ignorado com freqüência na análise do VaR é o grau 

de aversão ao risco13 do investidor. A medida de aversão ao risco é bem representada pelas 

curvas de indiferença de dois investidores com graus de aversão ao risco distinto. A Figura  

2.1 mostra tais curvas, cada uma mostra as combinações de retorno esperado e de risco (que 

pode ser calculado via o VaR) que proporcionam ao investidor o mesmo grau de satisfação. 

 

(a) Investidor com grande aversão ao risco (b) Investidor com baixa aversão ao risco 

Figura 2.1: Aversão ao risco e curvas de indiferença. 
Fonte: Pindyck e Rubinfeld, 2002. 
  

 A Figura 2.1 (a) descreve um investidor com grande aversão ao risco. Para o 

investidor aceitar correr maior risco é necessário um grande aumento no valor esperado para 

que este fique tão satisfeito quanto antes. O que não é verdade para o investidor com menor 

aversão ao risco, representado pela Figura 2.1 (b), neste caso um pequeno aumento no valor 

esperado é suficiente para compensar um aumento no risco. 

 Para incorporar ao VaR estes aspectos econômicos Aït-Sahari e Lo (1998) propuseram 

uma sistemática baseada em Arrow (1964) e Debreu (1959). Estes foram os primeiros a  

                                                 
13 Aversão ao risco é a preferência por uma renda certa em relação a uma renda incerta com o mesmo valor 
esperado. 
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formalizar a economia sob ambiente de incerteza introduzindo os ativos elementares14. 

Segundo Tay (2000), estes ativos são conhecidos como ativos de Arrow-Debreu. 

 

Definição 2.1: 

Ativos elementares são aqueles que pagam uma unidade monetária em um estado da natureza 

e zero em outro estado. 

 

 Como o objetivo deste trabalho não é a análise de Arrow-Debreu esta não será 

apresentada em detalhes, apenas mostrar-se-á os aspectos relacionantes entre gerenciamento 

do risco (em particular a ferramenta VaR) e a análise de Arrow-Debreu, aspecto esse 

normalmente ignorado. 

 

Definição 2.2: 

Um vetor de preços é dito ser um vetor de preços de equilíbrio geral de uma economia 

competitiva se as seguintes condições forem válidas: 

 

• Existe oferta para todos os bens; 

• Existe demanda para todos os bens; 

• A oferta agregada é pelo menos igual à demanda agregada. 

 

Por definição os preços dos ativos de Arrow-Debreu são determinados no equilíbrio 

pela oferta e demanda e segundo Tay (2000) possui a interpretação probabilística quando em 

ambiente de incerteza. O seguinte teorema garante a existência de pelo menos um vetor de 

preços de equilíbrio. 

 

Teorema 2.1: (Arrow-Debreu) 

Se os seguintes axiomas15 forem válidos para todos os consumidores e se todos os 

consumidores têm dotações contínuas de todos os bens, então existe vetor de preços de 

equilíbrio geral. 

 

• Comparatibilidade; 

                                                 
14 Mascolel et al. (1995) apresenta a Economia sob incerteza de forma mais detalhada. 
15 Estes axiomas estão detalhados em Mascolel et al. (1995) e Kreps (1990). 
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• Transitividade; 

• Convexidade; 

• Não saturação forte. 

 

Prova: 

Ver Mascolel et al. (1995) pág. 518. 

 

 Se os dois últimos axiomas forem substituídos por axiomas mais restritivos têm-se, 

conforme o Teorema 2.2, um único vetor de preços de equilíbrio. 

 

Teorema 2.2: (Unicidade do equilíbrio16) 

Se as funções de demanda agregada obedecem o axioma fraco da preferência revelada eo 

Teorema 2.1 for válido então o equilíbrio geral competitivo é único. 

  

Prova: 

Ver Wald (1951). 

 

 Para o cálculo do VaR os retornos (perdas ou ganhos) do ativo são normalmente 

baseados em probabilidades condicional obtidas de um processo de geração de dados (PGD) 

dos preços do ativo, sendo estes preços obtidos pela lei da demanda e oferta. Assim sendo um 

PGD, que é derivado do equilíbrio de preços, contêm uma quantidade enorme de informações 

sobre a condição do mercado e das preferências dos investidores, dados esses, fundamentais 

para o gerenciamento do risco. 

 Para obter uma formulação econômica do VaR, consideraremos uma economia de 

trocas dinâmica padrão (Lucas, 1978 e Rubinstein, 1976) onde o mercado dos ativos é 

dinamicamente completo. Neste modelo há um bem (ou um ativo) simples, não há rendas 

exógenas e todos os investidores objetivam maximizar sua utilidade temporal, sendo esta 

função independente do estado17 da natureza. O consumo pode ocorrer na data 0 ou numa data 

futura t, há uma ação (representando um ativo de risco) e um título do governo (ativo livre de 

risco) ambos disponíveis para negociação nas datas 0 e t. 

 Obedecendo aos pressupostos aplicáveis ao Teorema 2.2 e suposições sobre as 

preferências e o mercado de ações, é sabido que para um agente representativo com função de 

                                                 
16 Detalhes do Teorema em Wald (1951). 
17 As diversas possibilidades futuras da natureza, ou valores futuros possíveis para os ativos. 
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utilidade U (Romer, 2001) e preço do ativo na data 0 dado por S0, payoff do ativo com 

liquidez em t de ψ(Ct), uma função do consumo agregado Ct, o valor do ativo é dado por: 

 

[ ]ttt MCES ,00 )(ψ=         ( 2.1) 

)('
)('

0
,0 CU

CU
M t

t =          ( 2.2) 

 

 onde M0,t é o fator de desconto estocástico ou taxa marginal de substituição (TMS) 

entre o consumo na data 0 e na data t. Segundo Aït-Sahalia e Lo (1998), no equilíbrio, o 

investidor otimiza seu investimento adquirindo a ação no período antes de t e depois consome 

o valor da ação em t, Ct = St. 

 Assumindo a distribuição condicional do consumo futuro tendo densidade 

representativa dada por f0(.), pode-se representar a Expressão (2.1) como (Tay, 2000): 
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sendo r0,t  a taxa líquida de retorno entre 0 e t do ativo livre de risco. 

 Esta versão das equações de Euler mostra que o preço de qualquer ativo pode ser 

determinado como o valor esperado do ativo descontado à taxa de juros livre de risco. 

Entretanto, esta expectativa deve ser obtida em relação a f 
*, uma função de densidade de 

probabilidade ponderada via a TMS e não a função de densidade original f  do consumo 
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futuro. Esta função densidade f 

*é conhecida como densidade estado-preço (DEP)18 sendo 

uma versão para múltiplos estados contínuos dos preços de Arrow-Debreu para ativos 

elementares. 

 Sob a hipótese de mercados completos a f 
*é única. Em particular Arrow (1961) e 

Debreu (1959) mostraram que se há tantos estados contínuos19 para os ativos quanto para os 

estados, então o preço de qualquer ativo pode ser expresso como a soma ponderada dos 

preços nos estados contínuos, hoje conhecidos como preços Arrow-Debreu. No conjunto de 

estados contínuos, f *satisfaz a mesma propriedade, logo, qualquer ativo pode ser precificado 

como uma expectativa simples com respeito à f *. 

Estes fatos enfatizam a relevância do f *para o gerenciamento do risco; o DEP agrega 

todas as informações pertinentes sobre as preferências do consumidor, do ambiente, a 

dinâmica do preço dos ativos; enquanto a PGD não. No entanto, segundo Tay (2000), no 

equilíbrio, quaisquer dos dois itens a seguir implicam no terceiro: 

 

• Preferências do agente representativo; 

• Dinâmica de preços do ativo; 

• O PGD. 

 

A função f * claramente produz uma medida mais relevante para o VaR ao introduzir 

mais valores econômicos que a função de densidade de probabilidade do PGD. No entanto, de 

posse do PGD e das preferências do agente representativo têm-se informações completas para 

o gerenciamento do risco. 

Todos os pressupostos de Arrow-Debreu, bem como as Equações (2.1) e (2.3) são 

baseadas na hipótese que os mercados são completos, mercado completo significa que todos 

os agentes possuem todas as informações relevantes sobre os bens disponíveis, não há 

assimetria nas informações. Esta questão é normalmente analisada e discutida dentro da teoria 

financeira como a hipótese de mercado eficiente. 

                                                 
18 Em Harrison e Kreps (1979) pode ser encontrada a demonstração que f 

*
 é a densidade de probabilidade 

neutra ao risco. 
19 A caracterização completa de um bem (ou de um ativo) deve precisar os estados da natureza onde este bem 
está disponível. 
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Um dos assuntos que foi e continua sendo alvo de constantes debates entre acadêmicos 

e profissionais da área de finanças é a hipótese de mercado eficiente (HME). Fama em seu 

artigo de 1965 apresentou a seguinte definição de mercado eficiente. 

 

Definição 2.3: 

Um mercado eficiente é definido como um mercado onde há um grande número de agentes 

econômicos racionais20, maximizador do lucro em competição ativa, com cada agente 

tentando predizer o valor futuro do mercado de cada derivativo, e onde as informações 

correntes importantes são disponíveis livremente entre os participantes. 

 

 Outra definição coerente com a 2.3 acima apresentada e mais simples foi apresentada 

em 1969 por Fama et al. 

 

Definição 2.4 

Um mercado eficiente é aquele em que há um ajustamento rápido às novas informações. Ou 

seja, um mercado cujos preços sempre representam todas as informações disponíveis é 

chamado de eficiente. 

 

 Sob a hipótese do mercado eficiente, os participantes do mercado devem esperar obter 

um retorno nem maior, nem menor, que o retorno justo para o risco assumido. Entretanto esta 

definição é de tal forma geral que não há a possibilidade de testá-la empiricamente (Fama, 

1970). Para tornar o modelo testável, o processo de formação de preços deve ser especificado 

em mais detalhes. Essencialmente deve-se definir algo mais exato para o significado do termo 

“todas as informações disponíveis”. 

 Em função desta dificuldade com o conceito de mercado eficiente dado pelas 

Definições 2.3 e 2.4 surgiram três definições da hipótese de eficiência do mercado: a forma 

fraca, a semi-forte e a forte. No entanto, antes de apresentar tais formas da HME deve-se 

definir duas formas de análise de investimentos, tais formas estão intimamente relacionadas 

com as HME, são estas dadas pelas definições abaixo. 

 

                                                 
20 Agente racional é aquele que possui preferências de acordo com os axiomas do Teorema 2.1 e que preferem 
sempre mais a menos. 
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Definição 2.5: 

A análise de investimento fundamental baseia suas previsões do comportamento de preço dos 

ativos em fatores fundamentais ou internos à companhia, industria ou economia. 

 

Definição 2.6: 

A análise de investimento técnica é baseada na premissa que tais fatores fundamentais estão 

refletidos no comportamento de preço do ativo. 

 

 A partir das definições acima se pode apresentar as definições das três formas da HME 

(Hagin, 1979). 

 

Definição 2.7: 

A forma fraca afirma que as informações sobre os preços e volumes passados não podem ser 

usados para predizer preços futuros, ou seja, a forma fraca é diretamente oposta à análise 

técnica. 

 

Definição 2.8: 

A forma semi-forte afirma que todas as informações publicamente disponíveis estão refletidas 

nos preços dos ativos, ou seja, não há suporte à análise fundamental. 

 

Definição 2.9: 

A forma forte diz que nenhum investidor com informações privilegiadas pode obter lucro de 

estratégias de mercado. Em outras palavras, todas as informações estão totalmente refletidas 

nos preços dos ativos. 

 

 Uma observação pertinente a todas as definições de mercado eficiente é a referência ao 

termo “eficiência”. Tal referência é enganosa, pois ela está relacionada ao tratamento das 

informações pelo mercado e não de eficiência21 no sentido da palavra. 

 O foco do processo informativo produz uma conexão direta entre o preço dos ativos e 

a avaliação expectativa condicional. Especificando o preço do ativo, ou alguma transformação 

apropriada de um preço do ativo como uma expectativa condicional avaliada com relação a 

                                                 
21 Um exemplo da “correta” utilização do termo eficiência é a fronteira de eficiência da maximização de 
Markowitz e a eficiência de Pareto. 
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um conjunto particular de informações faz conexão direta para a teoria dos processos 

estocásticos, incluindo resultados em processos martingales. A definição mais simples do 

processo martingale é (Poitras, 2002): 

 

Definição 2.10: 

Um processo estocástico { },...2,1,0:)( =ttX  é martingale se para t = 1, 2, ...: 

 

i) ∞<))(( tXE ;         ( 2.5) 

ii) )())(),...,2(),1(),0()1(( tXtXXXXtXE =+      ( 2.6) 

 

 A primeira condição afirma que o valor condicional de X(t) deve ser finito e a segunda 

condição é a propriedade martingale que afirma que dada as informações de X(t) e dos 

períodos anteriores a t, a melhor previsão para o próximo período (t + 1) é a observação 

corrente (t). 

 A informação condicional pode ser sensivelmente expandida substituindo-se 

{ })(),...,2(),1(),0( tXXXX  por { })(),...,2(),1(),0( tYYYY  onde Y(t) é algum processo 

estocástico que inclui X(t). Assim a condição (2.6) torna-se: 

 

)())(),...,2(),1(),0()1(( tXtYYYYtXE =+      ( 2.7) 

 

 Ou seja, X(t) é um processo martingale com respeito ao conjunto condicional de 

informações {Y(t)}, onde X(t) é uma função de { })(),...,2(),1(),0( tYYYY . Com esta 

estrutura as formas fraca, semi-forte e forte da HME podem ser representadas pela expansão 

do conjunto condicional de informações associado com a expectativa condicional. Para a 

forma fraca, o passado histórico dos preços é o conjunto condicional de informações; para a 

semi-forte, o conjunto de informações é potencialmente todas as informações publicamente 

disponíveis; e para a forte todas as informações públicas ou privadas disponíveis. 

 Analisando a forma fraca sob a luz do processo martingale, pode-se representá-la 

matematicamente como: 
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ttt ePP += −1  22         ( 2.8) 

 

 ou seja, o preço do ativo de hoje é igual ao preço do ativo ontem mais um componente 

aleatório. Diz-se que se os preços obedecem à Equação (2.8) estes se comportam de acordo 

com um processo de formação de preços conhecido como caminho aleatório23. Assim sendo o 

movimento dos preços futuros não pode ser previsto com base em movimentos passados de 

preços, negando a rentabilidade da análise técnica. 

 

Proposição 2.1: 

O conjunto de informações formado pelos preços passados é um subconjunto de informações 

publicamente disponíveis, que por sua vez é um subconjunto de todas as informações 

disponíveis. Logo, a eficiência fraca pressupõe a semi-forte que pressupõe a forte. 

 

Prova: 

A prova desta proposição é conclusão direta das definições 2.7, 2.8 e 2.9. 

 

 No tocante às evidências empíricas que apóiam ou refutam a HME, Ross (2001) 

apresenta diversos trabalhos em ambas as direções, o que nos leva a conclusão que tal questão 

ainda possui diversos fatores empíricos a serem explicados. 

 Em conclusão, segundo Fama et al (1969) o argumento que o preço corrente de um 

ativo reflete todas as informações disponíveis implica que as mudanças sucessivas nos preços 

são independentes. Adicionalmente, é normalmente assumido que as mudanças sucessivas nos 

retornos são identicamente distribuídas. Juntas, estas hipóteses constituem o modelo do 

caminho aleatório (random walk). 

 

                                                 
22 No caso de uma ação que apresenta dividendos, ou outro ativo com características semelhantes, a equação 
torna-se: 

ttt edividendosPP ++= −1
. 

23 Caminho aleatório ou random walk, estão na próxima seção. 
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2.2 O Mercado Acionário Brasileiro num contexto de Gestão do 

Risco 

 

A hipótese de mercado eficiente é fundamental em diversos modelos que avaliam os 

mercados acionários e de derivativos. Entretanto, mercado eficiente nem sempre é observado 

na prática. É o caso de alguns mercados brasileiros. Uma forma de testar a eficiência do 

mercado é verificar se o conceito de passeio aleatório é válido. 

 A discussão deve levar em consideração o fator tempo. Mais precisamente a qual fase 

da historia econômica brasileira considera-se. Segundo Torres et al (2002) há uma diferença 

significativa no comportamento do mercado brasileiro de ações antes e pós plano real. Neste 

mesmo trabalho mostrou-se que as ações brasileiras tornam-se mais líquidas, facilitando a 

incorporação de informações ao conjunto de informações disponíveis ao público. 

 A questão da liquidez mostra-se fundamental na eficiência do mercado. Brito e 

Manazes (1981) via o teste de autocorrelação dos retornos mostraram que o mercado 

brasileiro é previsível. No entanto, segundo evidenciado por Torres et al (2002), tal fenômeno 

pode ser conseqüência da base de dados utilizada, a qual era composta de ações pouco 

liquidas. Uma segunda razão para o resultado é o período de estudo: retorno diário de ações 

entre 1973 a 1980. 

 A partir de uma equação semelhante à (2.8), mas incluindo uma tendência. E com 

dados diários de ações com importância relativa heterogênea (tamanho da firma diferente), e o 

índice Ibovespa, no período de 4/3/1986 a 15/4/1998 para diversos horizontes temporais que 

vai do curto ao longo prazo. Torres et al (2002), utilizando diversos testes a partir do conceito 

de passeio aleatório, mostrou que o mercado brasileiro não são muito menos eficiente que o 

mercado americano. Com relação ao tamanho da firma, quanto menores, mais ineficiente o 

mercado (no sentido de Fama). 

 Avaliando o tamanho das empresas e sua relação com o desempenho das suas 

respectivas ações, Braga e Leal (2002) compararam carteiras cuja composição segregava 

ações de diferentes razões: valor patrimonial sobre o preço da ação e o tamanho das firmas 

(VPA/P). Os resultados mostraram que quanto maior a razão VPA/P maiores os retornos e 

risco. Mas não há evidencia do efeito tamanho, indicando ineficiência. No entanto, este 

resultado não é corroborado por Costa Jr. e Neves (2000) que trabalharam com dados de 

painel. 
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 Como pode ser observado, trabalhos semelhantes, com dados semelhantes, mas com 

metodologia diferentes para avaliar a eficiência de mercado possuem conclusões distintas 

sobre o assunto. Reforçando a hipótese de que este tema está longe de uma definição 

fielmente conclusiva. 

 Um aspecto que chama a atenção no mercado acionário brasileiro é a estrutura de 

controle x estrutura de propriedade. Ou seja, a distinção entre ações preferenciais (sem a 

estrutura de controle) e as ações ordinárias. De uma forma geral, no Brasil e segundo 

Valadares (2002), há uma grande concentração das ações tipo ON (ordinárias) nas mãos de 

poucos acionistas, dando a estes o controle. E ações PN (preferenciais) mais pulverizadas. 

Esta questão vem sendo discutida no âmbito da CVM e BOVESPA, inclusive com a criação 

de mercado específicos para empresas com boa governança coorporativas. 

 A concentração de controle provoca uma menor taxa de crescimento do mercado, no 

entanto surge uma questão. Este efeito pode significar pressões para um mercado ineficiente? 

As evidências não mostram conclusões a respeito, mesmo comparando mercados com 

estrutura semelhante (como o italiano, por exemplo). 

 

2.3 Dinâmica do Retorno do Ativo 

 

Sabe-se que é difícil, ou quase impossível, antecipar o preço de um ativo, no entanto, a 

precificação de um contrato de opções e o bom gerenciamento do risco requerem o 

conhecimento do preço ou distribuição de probabilidade dos preços do ativo objeto na data do 

vencimento. Partindo-se da hipótese que o preço futuro é desconhecido, faz-se necessário 

construir um modelo que apresente a dinâmica dos preços ou retornos do ativo objeto na data 

de exercício. 

Segundo Wilmott, Howinson e Dewynne (1997), a grande maioria dos modelos de 

precificação de opções são baseados em um modelo simples para o movimento dos preços do 

ativo objeto. Estes modelos envolvem parâmetros derivados, por exemplo, de dados 

históricos. 

Alguns dos modelos adotados neste trabalho são baseados na hipótese de eficiência do 

mercado24, assim sendo segue-se o conceito de passeio aleatório (random walk). Existem 

                                                 
24 Assim como inúmeros trabalhos que utilizam a dinâmica de preços do ativo, como Sassatani e Siqueira (1998), 
Mao (1997), Rochman (2002) e Hokayem, Abdallah e Dorato (2003) entre outros. 
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diferentes formas de apresentar esta hipótese, com diversas suposições de restrições, mas 

todas suposições podem ser resumidas em dois pontos: 

 

• O passado histórico é totalmente representado pelo preço presente, que não retem 

informação muito defasada; 

• Os mercados respondem imediatamente a qualquer nova informação sobre o preço do 

ativo. 

 

Supondo verdadeiras as suposições acima, então o modelo para o preço do ativo deve 

ser baseado na incorporação de novas informações ao modelo. Com as duas suposições, as 

mudanças no preço de um ativo são um processo de Markov. 

Inicialmente nota-se que as mudanças absolutas de um ativo não são uma boa medida 

quantitativa. Ou seja, uma alteração de 1p (uma unidade) é muito mais significante quando o 

preço é 20p que quando este é 200p. Desta forma utilizaremos para cada alteração do ativo os 

retornos, que é a mudança do preço dividido pelo seu preço original. 

De acordo com a Figura 2.2 a seguir, no tempo t o preço do ativo era S. Considerando 

um período de tempo muito pequeno – subseqüentemente dt, teremos uma variação no valor 

do ativo de dS. Sob esta suposição, como modelar o retorno do ativo dS/S? Este modelagem 

terá dois componentes, um para cada hipótese do mercado eficiente. 

 

t

S dS

d t

 
Figura 2.2: Detalhe de um passeio aleatório discreto. 
Fonte: Elaboração própria. 
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 O primeiro componente é o fator previsível, que estar relacionado com a 1a hipótese, 

este pode ser comparado ao rendimento de um ativo livre de risco e é dado por µdt. Onde µ é 

a medida da taxa média de aumento do preço do ativo. Nos modelos mais simples µ é uma 

constante, já nos modelos mais sofisticados µ pode ser uma função de S e t. 

 A segunda hipótese sugere que o modelo tenha um elemento relacionado com a 

chegada de novas informações. Esta é representada pelo termo σdzt, onde σ é a volatilidade e 

a medida dzt é uma variável aleatória oriunda de uma distribuição normal, esta variável será 

tratada em mais detalhes na próxima seção. Neste caso também podemos ter σ em função de S 

e t para modelos mais sofisticados. 

 Colocando os dois termos juntos, teremos a equação diferencial estocástica (SDE): 

 

t
t

t dzdt
S

dS σµ +=           ( 2.9) 

t
t

t dztSdttS
S

dS ),(),( σµ +=        ( 2.10) 

 

 Onde o modelo (2.9) representa o modelo mais simples e a Equação (2.10) o modelo 

mais sofisticado. 

 

2.3.1 O Processo de Wiener 

 

O termo dz das Equações (2.9) e (2.10), que contêm a randomicidade do preço do 

ativo é conhecido como um processo de Wiener. Este tipo de processo é utilizado na física 

para descrever o movimento de uma partícula sujeita a choques de outras partículas, fato 

também denominado movimento browniano. O primeiro trabalho a utilizar este modelo para o 

preço dos ativos foi desenvolvido por Louis Bachelier em 1900. 

Para a construção de modelos de precificação de derivativos baseados em processos 

estocásticos faz-se necessário o conhecimento das propriedades da variável aleatória. As 

propriedades são as seguintes (Wilmott, Howinson e Dewynne, 1997 e Sassatani e Siqueira, 

1998): 
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• dz é uma variável randômica, derivada de uma distribuição normal; 

• A média de dzt é zero; 

• A variância de dzt é dt; 

• As variáveis dzt para dois intervalos de tempo distintos (dt) são independentes. 

 

Assim, pode-se escrever dzt como: 

 

dtdz tt ε=           ( 2.11) 

 

Onde εt ~ N(0, 1). Ross (1997), complementa que para dzt seguir um processo aleatório 

deve satisfazer: 

 

• O processo inicial em 0: dz0=0; 

• O conjunto dos possíveis valores para zt, para 0≥t , possuem incrementos 

independentes e estacionários. 

 

A Figura 2.3 a seguir ilustra uma possível trajetória das variáveis zt no tempo que 

seguem um processo Wiener padrão. 
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Figura 2.3: Simulação de uma trajetória do movimento browniano. 
Fonte: Elaboração própria. 
 

 Observando o comportamento do processo estocástico pelo gráfico acima, nota-se uma 

série de bicos produzidos pelo processo aleatório. Uma função deste tipo não pode ser 

integrada ou derivada por métodos convencionais. 

 Um processo estocástico corresponde ao conjunto de todas as trajetórias percorridas 

pelas variáveis zt, como ilustra a Figura 2.4 a seguir: 
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Figura 2.4: Processo estocástico (zt, 0≥t ) 
Fonte: Elaboração própria. 
 
 

 A partir das propriedades e particularidades da variável dzt, pode-se analisar algumas 

características da Equação (2.9). A primeira é que a Equação (2.9) não se refere ao passado 

histórico do ativo; o próximo preço do ativo (S + dS) depende somente do preço atual. Esta 

independência do passado é conhecida como propriedade de Markov. 

 A segunda propriedade é a média de dS, que é obtida a seguir: 

 

SdtSdtESdtSdzEdSE µµµσ ==+= )()()(      ( 2.12) 

 

 Já que E(dz) = 0. Na média, o próximo valor de S é maior que o valor anterior por um 

termo de Sdtµ . 

 Por fim consideraremos a variância de dS: 

 

22222222 )()()()( dzSdzSEdSEdSEdSVAR σσ ==−=    ( 2.13) 
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2.3.2 A Fórmula do Preço do Ativo 

 

A questão pertinente, a esta altura do trabalho é: Pode-se resolver a equação 

diferencial estocástica para se obter um resultado exato para o preço do ativo? A resposta é 

sim, mas para tal solução faz-se necessário à aplicação da fórmula de Itô, também conhecida 

como Lemma de Itô. 

Se a Equação diferencial estocástica (2.9) fosse uma equação diferencial ordinária 

(com σ = 0), seria fácil encontrar a solução por meio de integração. Desta forma, poderia-se 

isolar a variável St e obter uma função deterministica S(µ,t), como a dedução a seguir: 

 

t
t

t dzdt
S

dS σµ +=  

 

com σ = 0 na Equação (2.9) acima repetida, tem-se: 

 

tSdu
S

dSdt
S

dS t
u

tt

u

u

t

t .ln.
0

00

µµµ =⇒=⇒= ∫∫  

 

Finalmente a partir da expressão acima se obtêm o resultado para o preço de ativo subjacente: 

 

t
t eSS µ

0=           (2.14) 

 

 Analogamente, fazendo-se 0≠σ , ou seja, incluindo a componente estocástica na 

equação diferencial e integrando tem-se: 

 

∫∫∫ +=
t

u

tt

u

u dzdu
S

dS

000

.σµ         (2.15) 

 

 Contudo a resolução da equação acima não segue as regras básicas do cálculo clássico. 

Como já dito, para efetuar esta operação utilizar-se-á o Lemma de Itô. 
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 Neste trabalho fora utilizado a fórmula de Itô para o caso unidimensional, para o caso 

multidimensional observar o trabalho de Mao (1997). Para utilizar a fórmula de Itô defini-se 

um processo unidimensional. 

 

Definição 2.11: 

Um processo unidimensional de Itô é um processo estocástico contínuo x(t) o qual tem um 

diferencial estocástico dx(t) em 0≥t  dado por: 

 

dwtgdttftdx )()()( +=  

 

onde tanto f como g são processos estocásticos com propriedades tais: 

 

∫ ∞<
t

dssf
0

)(   e ∫ ∞<
t

dssg
0

2)(   0>∀t  

 

A diferencial estocástica significa que: 

 

∫∫ ++=
tt

sdwsgdssftxtx
00

0 )()()()()(  

 

mantido para qualquer ∞<≤≤ tt00 . 

 

 Seja );(1,2 ℜℜℜ +xC  a denotação da família das funções de valores reais V(x,t) 

definidas em +ℜℜx  tal que elas sejam duas vezes diferenciáveis em x e uma vez 

diferenciável em t. Se );(1,2 ℜℜℜ∈ +xCV , por conveniência: 

 

t
VVt ∂
∂

= ,   
x
VVx ∂
∂

= ,   
2

2

x
VVxx ∂

∂
=   ( 2.16) 
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Teorema 2.3 (a fórmula unidimensional de Itô): 

Seja x(t) um processo de Itô com 0≥t  e com a diferencial estocástica: 

 

dwtgdttftdx )()()( +=  

 

onde tanto f quanto g são processos estocásticos com propriedades tais que: 

 

∫ ∞<
t

dssf
0

)(   e ∫ ∞<
t

dssg
0

2)(   0>∀t  

 

Seja );(1,2 ℜℜℜ +xC . Então V(x(t),t) também é um processo de Itô com a diferencial 

estocástica dada por: 

 

[ ]

dwtgttxV

dttgttxVtfttxVttxVttxdV

x

xxxt

)()),((

)()),((
2
1)()),(()),(());(( 2

+

++=    ( 2.17) 

 

Prova: A prova deste teorema encontra-se no Anexo A1. 

 

 Apresentado o Lemma de Itô retorna-se ao problema do modelo matemático (2.9) do 

preço do ativo. O teorema a seguir mostrar como aplicar o teorema de Itô na precificação do 

ativo. 

 

Teorema 2.4 (a fórmula de Itô na precificação de um ativo): 

Suponha que o preço inicial do ativo S(t0)= S0>0 no tempo 0tt 0 ≥= . Então o preço do ativo 

no tempo 0tt ≥  é dado por: 

 





 −+−−= ))()(())(

2
1(exp)( 00

2
0 tztzttStS σσµ     ( 2.18) 

 

Prova: A prova deste teorema encontra-se no Anexo A2. 
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 Utilizando a propriedade de que em to=0 o valor de zo=0, é possivel simplificar a 

Equação (2.18), para a expressão do preço do ativo: 

 





 +−= tdztStS σσµ )

2
1(exp)( 2

0        ( 2.19) 

 

 A Expressão (2.19) é fundamental para modelar o comportamento do ativo no cálculo 

das opções. A variável estocástica St segue uma distribuição log-normal, pois o seu logaritmo 

é uma variável aleatória com distribuição normal. De acordo com Luenberger (1998), dada 

uma variável µ(t)=ew(t), se w(t) for normal, então diz-se que µ(t) segue uma distribuição log-

normal. 

 Na Expressão (2.19), supondo-se conhecido o parâmetro So em t = 0, e como esta 

segue o movimento geométrico browniano, então temos: 

 

t
t eSSE µ

0)( =          ( 2.20) 

)1()( 2 −= zt
ot eeSSVAR σµ         ( 2.21) 

 

2.4 O Modelo de Precificação de Opções de Black e Scholes 

 

Como já comentado, o valor de uma opção está intimamente ligado ao valor do ativo 

objeto (descrito na Seção 2.2).  Esta seção do trabalho apresenta como esta relação se forma e 

principalmente quais as condições de contorno que as expressões para o cálculo das opções 

necessita satisfazer. A seguir uma definição formal de uma opção segundo Araújo (2000). 

 

Definição 2.12: 

Opção é um instrumento que dá ao seu titular, ou comprador, um direito futuro sobre algo, 

mas não uma obrigação; e ao seu vendedor, uma obrigação futura, caso solicitado pelo 

comprador da opção. 

 
Dado o princípio da arbitragem, os valores de uma opção de compra (call) e uma 

opção de venda (put) no vencimento devem ser representados respectivamente por: 
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[ ]
[ ]T

T

SkkTSp
kSkTSc

−=
−=

;0max),,(
;0max),,(         ( 2.22) 

 

onde: 

ST ≡  valor do ativo em T; 

k ≡  preço de exercício. 

 

 Observe que as expressões anteriores mostram o valor das opções no instante terminal 

T. Neste instante, inclusive, o valor das opções européias é igual às americanas25. O problema 

reside na correta avaliação do prêmio das opções (valor da opção) num instante anterior ao 

vencimento. Neste caso St passa a ser uma variável aleatória, logo é necessário assumir uma 

hipótese sobre a distribuição da probabilidade dos preços ou taxas de retorno futuro do ativo 

objeto. 

Um aspecto fundamental para a avaliação dos valores das opções é a chamada 

condição de contorno ou valor intrínseco26. Sassatani e Siqueira (1998) afirmam que a 

condição de contorno é o núcleo da expressão matemática que define uma opção. As 

Equações (2.22), são representações dos valores terminais das opções de compra e venda 

expressas sob a forma de condições de contorno, que definem os limites do domínio da 

função prêmio da opção. 

 

2.4.1 A Análise de Black e Scholes 

 

Antes de descrever a análise de Black e Scholes (Black e Scholes, 1973), cujo objetivo 

principal é precificar as opções, listaremos algumas suposições importantes para a análise 

propriamente dita: 

 

• O ativo subjacente segue o caminho aleatório descrito pela Equação (2.9); 

                                                 
25Opções européias são aquelas que só podem ser exercidas em uma data especifica, já a americana pode ser 
exercida desde o primeiro dia útil após sua compra, até a data de vencimento do contrato. 
26 As restrições racionais das opções de compra estão no anexo A4 e das opções de venda no A5, mais detalhes 
em Merton (1990) 
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• A taxa de juros livre de risco r e a volatilidade do ativo subjacente σ são funções 

conhecidas durante o tempo de vida da opção; 

• Não há custos de transação associados ao hedging da carteira; 

• O ativo subjacente não paga dividendos durante o tempo de vida da opção; 

• Não há possibilidades de arbitragem. Isto significa que todas as carteiras livres de 

risco possuem o mesmo retorno; 

• A negociação dos ativos subjacentes pode ser feita continuamente no tempo; 

• O ativo é divisível, logo podem ser negociadas pequenas quantidades e/ou partes 

do ativo subjacente. 

 

Supor uma opção cujo valor V(S, t) depende apenas de S e de t. Neste estágio da 

análise não é necessário especificar se a opção é de compra ou de venda; de fato, V pode ser 

determinado para uma carteira formado por diversas opções, por simplicidade pode-se pensar 

em opções de compra ou de venda simples. 

Usando o lemma de Itô, Equação (2.17), escreve-se: 

 

dtVVSSVdwVtSdV tSSSS 



 +++= 22

2
1)( σµσ      ( 2.23) 

 

 A expressão acima indica o caminho aleatório seguido por V. Observa-se a 

necessidade de que V tenha ao menos a primeira derivada em t e que tenha duas derivadas em 

S. 

 Agora se constrói uma carteira formada por uma opção e um número -∆ do ativo 

objeto. Este número é por hora não especificado. O valor desta carteira é: 

 

SV ∆−=π           ( 2.24) 

 

 A derivação desta carteira em um período é dada por: 

 

dSdVd ∆−=π          ( 2.25) 
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 Onde ∆ é mantido fixo durante o período em questão; se não o fosse, então dπ poderia 

ter termos em d∆. Substituindo (2.9) e (2.23) em (2.25), encontra-se o caminho aleatório para 

π. Ou seja: 

 

[ ]dtVVSVSdzVSd tSSSS ++∆−+∆−= 22

2
1)()( σµσπ     ( 2.26) 

 

 Como demonstrado no Anexo 3, pode-se eliminar a randomicidade desta expressão 

escolhendo S
VVS ∂
∂==∆ . Observe que ∆  é o valor inicial de 

S
V
∂
∂

 em dt. Isto resulta que a 

carteira é completamente deterministico, logo: 

 

[ dt
S
VS

2
1

t
Vdt]VS

2
1Vd 2

2
22

SS
22

t












∂

∂
σ+

∂
∂

=σ+=π      ( 2.27) 

 

 Neste momento o conceito de arbitragem e de oferta e demanda é utilizado, com a 

suposição de que não há custos de transação. O retorno de um investimento com um valor 

equivalente a π em um ativo livre de risco renderia r.π.dt no tempo dt. Se o lado direito da 

Equação (2.27) fosse maior que este valor, um investidor poderia tomar emprestado uma 

quantia π para investir nesta carteira e assim teria um retorno superior à sua tomada de 

empréstimo. 

 Inversamente, se o lado direito de (2.27) fosse menor que rπdt, então o investidor 

poderia se desfazer da carteira e investir em um banco. Os dois caminhos de arbitragem 

levariam a um lucro instantâneo, sem risco e sem custos. A existência de tal arbitragem, com 

a habilidade de negociar com baixos custos, garante que a carteira e o investimento sem risco 

sejam mais ou menos iguais. Diante disso: 

 

dt
S
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2
1

t
Vdtr 2

2
22













∂

∂
σ+

∂
∂
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 Substituindo S
VVS ∂
∂==∆  em (2.24) e o resultado em (2.28) e dividindo-se por dt, 

chega-se a: 
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      ( 2.29) 

 

 Esta é a Equação diferencial parcial de Black e Scholes.  

 A Equação (2.29) demonstra que, sob as suposições apresentadas, todos os derivativos 

cujo valor está relacionado apenas com S e t, bem como, que tenham um valor de pagamento 

adiantado (como as opções), devem satisfazer a equação de Black e Scholes (ou uma variante 

desta). 

 Antes de partir para a próxima seção, deve-se analisar três pontos importantes sobre as 

derivações feitas até o presente momento. Inicialmente, o delta dado por: 

 

S
VVS ∂
∂==∆  

 

 É a taxa de mudança de valor da opção ou da carteira de opções com respeito a S. Este 

ponto é de fundamental importância tanto na teoria como na prática, e será tratada com mais 

atenção em breve. No momento pode-se defini-lo como a medida da correlação entre o 

movimento da opção ou opções e o movimento do ativo subjacente. 

 O segundo ponto diz respeito ao operador diferencial linear dado por: 

 

r
S

rS
S

S
t

−
∂
∂

+
∂
∂

+
∂
∂

= 2

2
22

BS 2
1L σ       ( 2.30) 

 

 Tem como interpretação financeira a medida da diferença entre o retorno de uma 

carteira de opções hedgeado (os dois primeiros termos) e o retorno do depósito em banco (os 

dois últimos termos). 

 Por fim, pode-se notar que a Equação (2.29) não contém o termo de crescimento µ. 

Em outras palavras, o valor de uma opção é independente do quão rápido ou lento é o 

crescimento do ativo. O único parâmetro relevante da Equação diferencial (2.9) do ativo 

subjacente que afeta o valor da opção é a sua volatilidade, σ. A conseqüência prática para isto 

é que se dois indivíduos possuírem duas estimações diferentes para µ, estes ainda podem ter o 

mesmo valor nas suas posições de opções. 
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2.4.2 As Equações de Black e Scholes: uma Solução Explícita para 
Opções Européias 

 

 Como mostrado na seção anterior, se o ativo subjacente segue a SDE (2.9), então o 

valor c(S, t) (ou c(S, t, k)) de uma opção de compra européia em função do ativo S e do tempo 

t, satisfaz a seguinte equação de Black e Scholes (PDE), onde se substituiu o V de uma opção 

genérica, por c na Equação (2.29): 

 

0
2
1

2

2
22 =−

∂
∂

+
∂

∂
+

∂
∂ rc

S
crS

S
cS

t
c σ       ( 2.31) 

 

 Além disso, o valor da opção de compra deve obedecer à condição final, expressa pela 

Expressão (2.22) reapresentada a seguir: 

 

[ ]kSkTSc T −= ;0max),,(   

 

 Para precificar a opção de compra européia, segundo Mao (1997), é suficiente resolver 

a Equação (2.31) com a condição de contorno final (2.22). Se for possível obter a solução 

explícita V para a PDE desde que se conheça o preço do ativo subjacente S no tempo t, então 

o valor da opção será simplesmente V(S, t). 

 

Teorema 2.5: (A fórmula de Black e Scholes para a opção de compra européia): 

A solução explícita para a PDE (2.31) é dado por 

 

[ ] )()(exp)(),( 21 dNtTrkdSNtSc −−−=       ( 2.32) 

 

onde N(x) é a função de distribuição de probabilidade acumulada da distribuição normal 

padrão, ou seja: 
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Enquanto: 
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Prova: 

A prova do teorema acima se encontra no Anexo 6. 

 

Uma vez obtida a fórmula para a opção de compra européia torna-se fácil obter a 

equivalente para a opção de venda européia. O valor da opção de venda européia na data de 

vencimento pode ser escrito como (Equação 2.22): 

 

[ ]
[ ]SkkSp

SkkTSp T

−=
=−=

;0max),(
;0max),,(  

 

 Usando a paridade opção de compra – opção de venda (Sassatani e Siqueira, 1998), 

tem-se: 

 

)(),(),( tkQSkSckSp +−=  

SkSckekSp tTr −+= −− ),(),( )(  

 

 Substituindo (2.32) na expressão acima se obtém: 

 

SdNkedSNkekSp tTrtTr −−+= −−−− )()(),( 2
)(

1
)(  

   )()( 12
)( dSNdNke tTr −−−= −−  

 

 Logo, deriva-se a fórmula de Black e Scholes para opções de venda européia 

apresentada no teorema seguinte: 

 

Teorema 2.6 (A fórmula de Black e Scholes para a opção de venda européia): 

O valor da opção de venda européia no tempo t e com o preço de exercício S é dado por: 
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)()(),( 12
)( dSNdNketSp tTr −−−= −−       ( 2.33) 

 

onde N(x) é a função de distribuição de probabilidade acumulada da distribuição normal 

padrão e d1 e d2 são como antes apresentados, ou seja: 
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2.5 A Estimação da Volatilidade 

 

Como pode ser observado tanto para a dinâmica de um ativo simples quanto para um 

derivativo sofisticado, a volatilidade representa um parâmetro fundamental. Tal conceito é de 

importância ímpar quando se trata de derivativos, em particular na precificação de opções, 

visto que, no modelo de B&S a volatilidade27 é o único parâmetro não observável. 

A correta previsão da volatilidade é importante não só nos esboços de estratégias 

ótimas de hedge, mas também, esta permite captar momentos de grandes incertezas no 

mercado. Quanto mais incerto estiver o mercado, mais os preços variam e maior a variância 

dos retornos implicando possibilidade de grandes perdas e ganhos. Logo, o correto 

gerenciamento passa pela boa previsão das oscilações de preço dos ativos no mercado, toda 

boa ferramenta de análise de risco deve levar em consideração a volatilidade, como é o caso 

do Value at Risk. 

Há diferentes métodos para estimar a volatilidade dos retornos, pode-se dividi-los em 

dois grupos distintos: métodos paramétricos e não-paramétricos. Um exemplo de métodos 

não-paramétricos é a estimação da volatilidade por meio de redes neurais28. 

Nesta seção são tratados os seguintes métodos paramétricos: modelos de volatilidade 

determinísticas (em particular os modelos da família GARCH) e os modelos de volatilidade 

histórica. 

 

                                                 
27 A volatilidade 2σ  é a medida da incerteza no que se concerne aos retornos ocasionais do ativo objeto. 
28 Para uma análise dos métodos não-paramétricos para modelar a volatilidade dos retornos ver Pagan e Schwert 
(1990). 
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2.5.1 A Volatilidade Histórica 

 

A maneira padrão e mais simples de medir a volatilidade de um ativo é através da 

estimação do desvio padrão dos seus retornos. Esta medida é usualmente conhecida como 

volatilidade histórica. Este método supõe que o retorno segue uma distribuição probabilística 

normal, assim a volatilidade (ou o desvio padrão) pode ser estimada via a máxima 

verossimilhança da variância mínima (ou pelo método dos mínimos quadrados). 

Chamando de ui o retorno do ativo i (i = 1, 2, ..., n), ū  o retorno médio e tendo n 

observações, pode-se estimar σ: 

 

∑
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        ( 2.34) 

 

onde : 
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t
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u           ( 2.35) 

    

 

Uma primeira dificuldade com o estimador acima é  a escolha adequada do tamanho 

da amostra n. É sabido que quanto maior o valor de n, maior será a precisão. No entanto, se n 

é estendido, as informações antigas podem não ser relevantes na estimativa da volatilidade 

futura. 

Este estimador apresenta alguns problemas, um dos mais relevantes é a 

homogeneidade de importância atribuída a todas as observações (não há diferença entre 

informações recentes e antigas). Tal fato não permite ao estimador responder agilmente a 

mudanças dos preços dos ativos. 

Uma alternativa a esta crítica é o estimador de média móvel com amortecimento 

exponencial (EWMA – exponentially weighted moving average). Uma estimativa da 

volatilidade segundo este método é (Bezerra, 2001): 
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 O parâmetro λ é conhecido como parâmetro de decaimento e determina todos os pesos 

das observações passadas. Observe-se que quanto mais afastada da data em questão menor é o 

peso da observação. O fator de decaimento também está relacionado com a quantidade de 

dados histórico, quanto menor o fator, menor a quantidade de dados necessários para uma boa 

estimativa. 

Um variante deste estimador foi desenvolvido pelo J. P. Morgan, o RiskmetricsTM, em 

1995, para o gerenciamento do risco. Neste método é utilizado um fator de decaimento de 

0.94, segundo Bezerra (2001), determinado a partir de critérios de minimização do erro 

quadrático médio da volatilidade de diversos países. 

O principal problema tanto do EWMA quanto do método simples de estimação da 

volatilidade, segundo Morais e Portugal (2000), é o fato da informação importante não ser o 

valor histórico da variância e sim a expectativa desta. 

Assim sendo, a volatilidade pode ou não estar condicionada às informações passadas. 

De uma maneira geral os estimadores da volatilidade devem ser construídos levando-se em 

conta as regularidades empíricas das séries financeiras. No seu trabalho Taylor (1986) 

apresenta tais fatos estilizados: 

 

• O pico em torno da média é mais alto que em uma distribuição normal; 

• As distribuições dos retornos apresentam excesso de curtoses; 

• Os retornos dos ativos apresentam-se em assimetria negativa; 

• Os retornos dos ativos apresentam pequenas autocorrelações; e os quadrados dos 

retornos apresentam fortes correlações, o que implica em relações não lineares; 

• A heterocedasticidade; 

• A volatilidade dos retornos tem tendência de reversão à média, contradizendo a 

hipótese de que os preços seguem um movimento do tipo browniano; 
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• A volatilidade dos retornos tende a se agrupar (volatility clustering). 

 

Os modelos tradicionais revelaram dificuldades de se adequar à essas regularidades 

empíricas. Somente com os modelos auto-regressivos é possível incorporar, em alguns casos, 

estas características aos modelos. 

 

2.5.2 A Família GARCH 

 

Nos últimos anos, os modelos de volatilidade condicional ganharam grande destaque 

tanto no meio acadêmico, quanto no meio financeiro. Tais modelos são extensões dos 

modelos ARCH (autoregressive condicional heterocedasticity) proposto por Engle em 1982 e 

estendido por diversos autores. 

Os modelos GARCH (generalized autoregressive condicional heterocedasticity) e 

EGARCH (exponencial GARCH), introduzidos respectivamente por Bollerslev (1986) e 

Nelson (1991) são os modelos que mais ganharam destaque, sendo mais abrangentes e gerais 

que o modelo ARCH. Segundo Gouriénox (1997) estes modelos reproduzem algumas das 

principais características das séries financeiras, dentre elas: os conglomerados de 

heterocedasticidade e caudas pesadas. 

Segundo Almeida e Pereira (1999), o modelo EGARCH é uma outra variante do 

modelo GARCH, o modelo GARCH-L (GARCH com leverage effect), introduzido por 

Glosten et al (1989), tentam captar assimetrias nas respostas de séries financeiras a choques 

positivos e negativos. 

 

2.5.2.1 A Descrição dos Modelos 

 

A heterocedasticidade foi freqüentemente associada com dados de cross-section, e as 

séries temporais estudadas no contexto de processos homocedásticos. Em análises 

macroeconômicas Engle (1982) encontrou evidências que para alguns tipos de dados, a 

variação da volatilidade dos modelos de séries temporais eram menos estáveis do que se 

pensava. Tal fenômeno pode ser facilmente visualizado observando-se a variação dos retornos 

dos ativos no Capítulo 4. Engle (1982) sugeriu então o modelo “autoregressive, condicionally 

heteroscedastic” – ARCH. 
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Este modelo expressa a variância condicional como uma defasagem distribuída do 

quadrado dos retornos passados. Seja o modelo ARCH (q) abaixo apresentado: 
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 Onde ut  tem uma distribuição normal padrão e onde têm-se: 
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 A partir de (2.38) pode-se obter facilmente a variância condicional de εt, obtêm-se: 
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22 εαασ            ( 2.39) 

 

 Conseqüentemente εt é condicionalmente heterocedástico, mas não em relação a xt, e 

sim com relação a εt-1. Tomando-se o modelo AR para yt e combinando com o termo de erro 

ARCH(1), obtêm-se de (2.37) e (2.39): 

 

ttt yy εφ += −1          ( 2.40) 

2
11

2
−+= to εαασ          ( 2.41) 

 

 A variância não condicional do modelo ARCH(1) é observada pelos Teoremas 2.7 e 

2.8 a seguir e pela Definição 2.13. 
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Teorema 2.7 (Variância não condicional de um processo ARCH(1)): 

A variância não condicional de um processo ARCH(1) é: 

 

[ ] [ ]11 −+= tot VarVar εααε        ( 2.42) 

 

Prova: 

Sabe-se que a variância pode ser apresentada em forma da variância condicional, ou seja: 

 

[ ] [ ])/()/()( xyVarExyEVaryVar +=  

 

Substituindo y por εt e x por εt-1, a expressão acima se torna: 

 

[ ] [ ])/()/()( 11 −− += ttttt VarEEVarVar εεεεε  

 

E como 0),...,,/( 21 =−−− qttttE εεεε  e de (5.3): 

 

[ ] [ ]1/ −= ttt EVarVar εεε  

[ ] [ ]11 −+= tot VarVar εααε  

 

o que conclui a prova. 

 

Definição 2.13: 

Um processo estocástico yt é fracamente estacionário ou covariância estacionária se este 

satisfizer as seguintes condições: 

 

1. E(yt) é independente de t; 

2. Var(yt) é uma constante positiva, finita e independente de t; 

3. Cov(yt, ys) é uma função finita de t-s, mas de t ou s. 
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Teorema 2.8 (Variância não condicional de um processo ARCH(1) de um processo 

fracamente estacionário): 

Se o fator gerador do distúrbio é fracamente estacionário, então: 

 

[ ]
11 α

αε
−

= o
tVar          ( 2.43) 

 

Prova: 

A prova deste teorema é obtida diretamente do Teorema 2.7 e pela recorrência de εt-1, εt-2, 

etc., logo: 

 

[ ] [ ]11 −+= tot VarVar εααε  

[ ] [ ]211 −− += tot VarVar εααε  

  ׃ ׃ ׃ ׃

 ׃ ׃ ׃ ׃

[ ] [ ]qtoqt VarVar −+− += εααε 11
 

 

Assim sendo: 

[ ]
11 α

αε
−

= o
tVar  

 

o que conclui a prova. 

 

 Para que o resultado (2.43) seja positivo e finito, |α1| tem que ser menor que 1. Então 

incondicionalmente, εt é normalmente distribuído com média zero e variância dada por (2.43). 

Logo, o modelo obedece as suposições clássicas, e o estimador dos mínimos quadrados é o 

mais eficiente estimador linear de β (Greene, 2000). 

 O resultado (2.43) pode ser expandido para o ARCH (q), segundo Engle (1985) um 

modelo com a variância condicional dada por (2.39) tem como variância não-condicional: 
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[ ]
∑−

=

=

q

i
i

o
tVar

1
1 α

α
ε

         ( 2.44) 

  

 se 0,...,,,0 21 ≥> qo αααα  e se todas as raízes associadas à equação característica 

estiverem dentro do círculo unitário, então 1<∑α . 

 Conforme já apresentado, os modelos ARCH foram estendidos por diversos autores, 

tornando tais modelos mais flexíveis e aplicáveis à diversas particularidades empíricas das 

séries financeiras. A seguir apresentam-se algumas destas variantes, a começar pelos modelos 

GARCH. 

Bollerslev (1986) afirmou que em muitas aplicações os modelos ARCH(q) necessitam 

de grandes q para evitar problemas de variâncias negativas, conseqüentemente uma 

defasagem fixa devia ser imposta (Engle, 1982). Os modelos GARCH(p, q) podem ser 

classificados como uma extensão dos modelos ARCH, permitindo tanto uma memória longa, 

como uma estruturada de defasagem flexível, sem ter que, a priori, fixar nenhuma defasagem. 

Em termos de persistência, nos modelos ARCH(q), como normalmente possuem um 

grande valor de q, conseqüentemente elevadas persistências. Já o modelo GARCH(p, q) 

constitui uma tentativa de expressar de forma parcimoniosa a dependência temporal da 

variância condicional. 

O modelo padrão do GARCH(p,q) é apresentado a seguir: 

 

ttt xy εβ += '           ( 2.45) 

∑∑
=

−
=

− εα+σδ+α=σ
q

ji

2
jti

p

1i

2
itio

2
t        ( 2.46) 

 

A primeira equação é a equação da média, onde yt é a taxa de retorno da ação, xt é uma 

matriz de regressores e εt é o termo de erro. Já a Equação (2.46), função de variância 

condicional é função de três fatores: 

 

• A média αo; 

• Informações sobre a volatilidade passada mensurada pelo termo defasado quadrado 
2

it−ε (o termo ARCH); 
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• Variância dos períodos anteriores, 2

it−σ  (o termo GARCH). 

 

O modelo acima é conhecido como GARCH(p, q), onde p se refere à ordem de 

autoregressão (p se refere ao período de tempo em que as volatilidades passadas ainda afetam 

o tempo presente t) e q aos efeitos dos erros passados sobre a volatilidade presente (Greene, 

2000). 

Esta especificação é freqüentemente interpretada dentro de um contexto financeiro, 

onde um agente ou trader prever a variância do período pela formulação de um termo médio 

de longo prazo (a constante), a previsão de variância dos últimos períodos (termo GARCH), e 

a informação sobre a volatilidade nos últimos períodos (ARCH). Se o retorno do ativo tiver 

expectativa de grandes variações, tanto para cima, como para baixo, então o trader irá 

aumentar sua estimativa de variância para o próximo período. 

A condição de não negatividade da variância condicional neste modelo é dada por αo > 

0, δi > 0, αj > 0 para i = 1, ..., p e j = 1, ..., q. Analisando a estrutura da Equação (2.46) 

percebe-se que o modelo GARCH(p,q) é um modelo ARMA(p,q) no quadrado dos retornos. 

Esta característica permite a utilização de técnicas convencionais dos modelos da classe 

ARMA para a identificação de p e q. 

Para garantir que este processo ARMA para quadrado dos retornos tenha covariância 

estacionária, devemos ter a seguinte condição: 

 

1
11

<∑+∑
==

p

j
j

q

i
i αδ          ( 2.47)  

 

Sendo válida, a condição acima, a variância não condicional de 2
ty  é dada por: 

 

∑∑ −−
=== q

j
j

p

i
i

o
tt EyE

αδ

α
σσ

1
)()( 222       ( 2.48) 

 

Resumindo, a condição necessária de estacionariedade assintótica de um modelo 

GARCH(p, q) com αo > 0, δi > 0, αj > 0 para i = 1, ..., p e j = 1, ..., q é dada pela Expressão 

(2.47). 
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A especificação GARCH atende a uma grande quantidade de características das séries 

financeiras como: o excesso de curtose, heterocedasticidade, reversão à média, volatilidade 

dos retornos com tendência a se reagrupar. 

No entanto, com os modelos GARCH, choques (ou inovações) positivos e negativos 

têm o mesmo efeito sobre a volatilidade. Esta característica contradiz a evidência empírica de 

assimetria negativa, ou seja, nas séries financeiras empíricas os efeitos dos choques negativos 

são significantemente mais elevados em termos absolutos sobre a volatilidade que choques 

positivos. Assim, os choques positivos são superestimados pelo modelo GARCH e os choques 

negativos subestimados. 

De uma forma geral, os modelos onde 2
tσ  respondem assimetricamente a choques 

positivos e negativos devem ser preferidos aos modelos GARCH’s padrões. 

Almeida e Pereira (1999), apresentaram os modelos EGARCH e GARCH-L29. O 

modelo GARCH-L  (assim como o EGARCH) apresenta resposta diferente para choques nos 

retornos, caso seja positivo ou negativo. São feitas algumas restrições nos seus parâmetros: 

00 >α , 0, ≥ii βα , 1
11

<+∑∑ ==

p

j j
q

i i βα  e dt-1 = 1 se 01 ≤−tε ; e 01 =−td  se 01 >−tε . Daí 

para o modelo GARCH-L a expressão para σt é: 
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O modelo EGARCH não impõe restrições sobre os seus parâmetros, então σt: 
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A assimetria deste modelo é dado pelo γi. Sendo γi < 0 teremos um choque positivo 

diminuindo a volatilidade e vice-versa. 

Outro aspecto importante é a persistência dos choques, tal fator é inclusive critério de 

seleção entre os modelos da família GARCH. A tabela a seguir apresenta a persistência - λ 

para alguns modelos. 
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Tabela 2.1: Persistência dos modelos GARCH. 

Modelos Persistências – λ 

ARCH (q) 
∑=
=

q

i
i

1
αλ  

GARCH (p, q) 
∑ ∑+=
= =

q

i

p

j
ji

1 1
δαλ  

GARCH-L (p, q) 
ξδαλ +∑ ∑+=

= =

q

i

p

j
ji

1 1

EGARCH (p, q) 
∑=
=

p

j
j

1
βλ  

Fonte: Elaboração própria a partir de Almeida e Pereira (1999). 

 

 A meia vida de uma série financeira fornece uma idéia do tempo que a volatilidade 

leva para estabilizar-se após um choque significativo. 

 

Definição 2.14: 

A meia vida de uma série financeira é o tempo necessário para que o efeito do choque seja 

reduzido à metade. A meia vida pode se calculada como sendo: 

 

λlog
2log1−=HL          ( 2.51) 

 
 
 
2.5.2.2 Testes dos Modelos ARCH 

 

Nesta subseção são tratados os testes preliminares à estimação dos modelos. Iniciando-

se com os testes de verificação do processo ARCH e de sua ordem, e em seguida o teste do 

modelo GARCH.  

 

                                                                                                                                                         
29 O modelo GARCH-L também é conhecido como modelo GJR em função dos seus criadores – Glosten, 
Jagannathan e Runkle (1989). 
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A. Verificando se o modelo é do tipo ARCH e a ordem de q do ARCH(q) 

 

Seja um modelo ARCH dado por (2.37) e (2.39). Pode-se testar a hipótese de que a 

variância dos erros é constante oασ =2 , contra a hipótese alternativa de erros seguindo um 

processo ARCH, de ordem a determinar. Segue, portanto, as hipóteses: 

 

Ho: 0...10 ==== qααα  

H1: 0≠iα , para pelo menos algum i = 1, ..., q 

 

 O teste é fundamentado seja pelo teste de Fisher clássico, seja pelo teste do 

multiplicador de Lagrange (LM). Bourbonnais e Terraza (1998) apresentaram uma forma 

prática para o teste, este é feito pelas etapas que seguem: 

 

1. Determinação dos et, o resíduo da regressão (2.37); 

2. Cálculo dos 2
te ; 

3. Regressão auto-regressiva dos resíduos sobre q defasagens (resíduos defasados), onde 

somente os termos significantes serão considerados, 

 

∑+=
=

−

q

i
itiot ee

1

22 αα ;       ( 2.52) 

 

4. Cálculo da estatística do multiplicador de Lagrange,  

 

2RnLM ×=         ( 2.53) 

 
 

onde:  n = número de observações que servem ao cálculo da etapa 3, e 

 R2 = coeficiente de determinação da etapa 3. 

 

 Se )(2 qLM χ> , ou seja com q graus de liberdade a um nível de confiança fixo (por 

exemplo 5%), rejeita-se Ho; justificando o uso do modelo ARCH. 
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 A determinação da ordem de q do processo ARCH é obtida via o teste acima, onde se 

busca um determinado q, para αq significante, ou seja, faz-se a regressão de 2
te  sobre 2

qte − . 

Uma observação importante foi feita por Bourbonnais e Terraza (1998), um processo ARCH 

só é justificado até a ordem q = 3, a partir de 3 usam-se os modelos GARCH que apresentam 

resultados pelo menos tão bons quanto, porém mais parcimoniosos. 

 Uma técnica alternativa é o cálculo do correlograma dos resíduos ao quadrado do 

modelo inicial. Se os termos deste correlograma forem significantemente diferentes de zero 

conclui-se que se trata de uma especificação ARCH. 

 

B. Testando a especificação GARCH contra a ARCH 

 

Supondo-se que o modelo em análise é um caso de heterocedasticidade condicional, 

pode-se testar a especificação ARCH contra a GARCH. A hipótese nula é que os erros são do 

tipo ARCH, já a hipótese alternativa é que os erros são GARCH. As duas hipóteses são as 

seguintes (supondo-se o modelo GARCH dado por (2.46)): 

 

Ho: 0...10 ==== pδδδ  

H1: 0≠iδ , para pelo menos algum i = 1, ..., p 

 

 O teste mais eficiente neste caso é o método do multiplicador de Lagrange, acima 

apresentado. Substituindo-se q por p na Equação (2.53) e R2 sendo obtido via a substituição 

da Equação (2.52) por: 
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q

ji

2
jti
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2
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2
t ˆˆˆ        ( 2.54) 

 

Se )(2 pLM χ> , ou seja com q graus de liberdade a um nível de confiança fixo (por 

exemplo 5%), rejeita-se a hipótese Ho; logo os erros obedecem a um processo GARCH(p, q). 
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C. Testes de assimetria dos impactos (EGARCH e GARCH-L) 

 

A verificação da assimetria das séries pode ser feita via a estimação dos modelos 

EGARCH ou GARCH-L e testando a significância dos termos assimétricos. Para o modelo 

EGARCH(p, q), verifica-se se os termos γi são significantemente negativos. Para os modelos 

GARCH-L checa-se a significância de ξ. 

Uma alternativa é observar a correlação cruzada entre o quadrado dos resíduos 

padronizados 2
2 





=

t
t

tz σ
ε  e o resíduo padronizado defasado 






=

−
−

−
kt

kt
ktz σ

ε . Essa 

correlação cruzada deve ser zero para o GARCH simétrico e negativa para os modelos não 

simétricos EGARCH e GARCH-L. 

 

2.5.2.3 A Estimação dos Modelos ARCH 

 

Segundo Greene (2000) o estimador dos mínimos quadrados (MQO) é o estimador 

linear mais eficiente dos parâmetros, no entanto, há um estimador não linear que é mais 

eficiente que o MQO, este estimador é o estimador de Máximo Verossimilhança. A seguir 

apresenta-se um procedimento para estimação dos modelos ARCH baseados no MQO, em 

seqüência a aplicação da máxima verossimilhança aplicada aos modelos ARCH’s. 

  

A. A estimação do ARCH e GARCH em quatro etapas com o método dos mínimos 

quadrados generalizados 

 

Engle (1982) e Judge et al. (1985) sugeriram um procedimento simples em quatro 

etapas baseados no método dos mínimos quadrados generalizados: 

 

1. Estimação do modelo ARMA ou do modelo ttt xy εβ += '  e determinação dos et; 

2. A partir dos resíduos de et, deve-se efetuar uma regressão pelo MQO com os dados 

variando de t = 2,..., T, obtêm-se os estimadores via a seguinte regressão: 
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q
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22 ˆˆ αα        ( 2.55) 
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3. Considera-se a aproximação da variância dos erros εt por σt

2, estima-se novamente os 

parâmetros do modelo via o método dos mínimos quadrados generalizado (MQG): 

 

( ) YXXXa 11 ''ˆ −− ΩΩ=        ( 2.56) 

 
isto é o equivalente a fazer uma regressão ponderada com os fatores de ponderação 

dados por: 

 

)( 2
tdiag σ=Ω ;        ( 2.57) 

 
 

4. Estimação dos coeficientes α pelo MQG: 

 

  ∑+=
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q

i
itiot e
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22 ˆˆ αασ , com 

 ( ) σα 11 ''ˆ −− ΩΩ= eee         ( 2.58) 

 

Apesar da semelhança com o modelo ARCH, as particularidades do modelo GARCH 

tornam a estimação deste mais difícil, exigindo algumas alterações na sua forma de estimação. 

Gourieroux (1992) apresentou uma adaptação ao modelo GARCH de forma a estimá-lo sem 

contar com uma grande sofisticação matemática. 

Seja o modelo GARCH (p, q) reapresentado a seguir: 

 

ttt xy εβ += '  
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 De uma maneira clara a expressão da variância condicional em termo dos parâmetros e 

das variáveis observadas é dado por: 
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 Assim sendo, 2
tσ  depende de todos os seus valores passados. Como o processo é 

observado durante um período de tempo limitado é necessário substituir ou atribuir valores a 
2
tσ  por uma aproximação truncada onde os valores de 2

tε  correspondem a datas negativas, em 

tais situações 2
tσ  é tomado igual a zero. Logo se tem uma nova equação de recorrência: 

 

1t,~~~
q

1j

2
jti

p

1i

2
itio

2
t ≥εα+σδ+α=σ ∑∑

=
−

=
−        ( 2.59) 

 

com: 

 

;0tse,0~
t ≤=ε   ;1tse,~

tt ≥ε=ε   ;0tse,0~
t ≤=σ  

 

 Na prática, a otimização é feita pelos mesmos procedimentos numéricos. A estimação 

deste modelo pela técnica em quatro etapas de Engle (1982) pode ser realizada substituindo-se 

(2.55) e (2.58) respectivamente por: 
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B. A máxima verossimilhança aplicada aos modelos ARCH e GARCH 

 

Como apresentado anteriormente a maioria das séries financeiras não seguem a 

distribuição normal. O modelo GARCH padrão pode ser estimado mesmo que haja uma 

suspeita que os erros não estejam condicionalmente normalmente distribuídos, para tal, 

frequentemente se utiliza o método de quase máxima verossimilhança descrito por Bollerslev 

e Wooldridge (1992). 

Há condições suficientes de regularidade permitindo a obtenção das propriedades de 

convergências e de normalidade assintótica estabelecidas por Weiss (1984) dentro dos casos 

dos modelos ARCH lineares. A mais restringente destas regularidades, raramente se encontra 

na prática, tal regularidade é a existência de momentos de ordem quatro para os resíduos. 

Lumsdaine (1990) mostrou que os estimadores de quase verossimilhança dos 

diferentes parâmetros são convergentes e assintoticamente normais. 

Lardic e Mignon (2002) observaram que quando a verdadeira densidade condicional é 

normal, os estimadores da média e da variância (condicional) são assintoticamente não 

correlacionados, conseqüentemente podem ser estimados separadamente sem perda de 

eficácia. 

Assim sendo, a distribuição condicional para a taxa de retorno neste trabalho será a 

normal, apesar de ser uma simplificação do processo gerador de dados dos retornos 

condicionais. Este procedimento é amplamente utilizado na estimação dos modelos de 

volatilidade. A função log-verossimilhança, derivada da normal e condicional nas primeiras 

observações, usando T observações independentes, é igual para os modelos GARCH e 

modelo ARCH, ou seja, a expressão: 
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 Considere o modelo GARCH a ser estimado dado pela Expressão (2.45) e (2.46). A 

maximização da função de log-verossimilhança se dá pelas condições de primeira ordem de α, 

δ e β30.  

 Para os modelos ARCH e GARCH a solução é obtida resolvendo as equações de 

primeira ordem. A solução numérica pode ser obtida via diversos algoritmos, como os 

                                                 
30 As condições de primeira ordem e as hessianas são apresentadas por Lardic e Mignon (2002). 
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modelos de classificação ao algoritmo BHHH31 (Berndt, Hall, Hall e Hausman, 1974). Para os 

casos do ARCH, o modelo de classificação pode ser usado facilmente, já para os modelos 

GARCH é preferido o algorítmo BHHH. 

As estimações dos modelos EGARCH e GARCH-L também podem ser feitas via  

função de máxima verossimilhança. Mais detalhes em Hamilton  e Susmel (1994). 

 

                                                 
31 Lardic e Mignon (2002) apresentam uma descrição do algoritmo BHHH. 
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3 O VAR – VALUE AT RISK 
 

3.1 O Risco, o Value at Risk: Aspectos Gerais 

 

As últimas décadas foram caracterizadas pelo crescente desenvolvimento do mercado 

de derivativos financeiros, tal desenvolvimento fora motivado pela necessidade de proteção e 

especulação dos agentes financeiros. Dentro do universo do mercado financeiro três conceitos 

são da maior importância: retorno, incerteza e risco. Retorno pode ser entendido como a 

apreciação de capital ao final de um horizonte de investimento. Já as incertezas estão 

associadas com os retornos, tornando-os de certa forma imprevisíveis. E qualquer medida da 

incerteza pode ser chamada de risco. 

Nesta seção será abordada a questão do risco, em particular o risco de mercado, a 

forma de mensurá-lo, quais as características de uma boa medida de risco. Além de introduzir 

formalmente o VaR. 

 

3.1.1 Apresentando o Risco 

 

O conceito de risco é apresentado formalmente abaixo, segundo Jorion (1997). 

 

Definição 3.1: 

O risco pode ser definido como a volatilidade de resultados inesperados, normalmente 

relacionados ao valor de ativos (ou passivos) de interesse. 

 

 Os riscos vêm assumindo uma importância crescente, mais recentemente tornou-se 

destaque na literatura em função de desastres financeiros internacionais relacionados com o 

uso indevido de derivativos, exemplos de tais desastres são o caso do Baring Bank, da 

Procter&Gamgle, Bankers Trust, Crédit Lyonnais, Orange County, Metallgesellschaft, etc. 

Tais problemas corroboraram para o surgimento de uma nova área do conhecimento, o 

gerenciamento de risco, cujo principal objetivo é a minimização eficiente do risco, dentro de 

determinada restrição orçamentária. 
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 Na verdade risco está associado a toda operação no mercado financeiro. O risco é um 

conceito multidimensional cobrindo quatro grandes grupos: risco de mercado, risco de 

crédito, risco operacional e risco legal32. A seguir a definição de cada um destes riscos 

(Duarte Jr., 1997). 

 

Definição 3.2: 

O risco de mercado é a medida das incertezas associadas às possibilidades de alteração dos 

valores esperados de um investimento em razão de variações de fatores como taxas de juros, 

taxas de câmbio, preço de ações e commodities. Pode-se associar tais variações a riscos de 

mercado específicos, como por exemplo, risco de taxas de juros. 

Já o risco de crédito está associado à medida da incerteza relacionada com o recebimento de 

valor contratado a ser pago por um tomador de empréstimo. 

O risco operacional está relacionado com possíveis perdas como resultado de sistemas e/ou 

controles inadequados, falhas de gerenciamento e erros humanos. 

Por fim, o risco legal, que está associado às incertezas de uma instituição caso seus contratos 

não possam ser legalmente amparados por falta de representatividade por parte do 

negociador, por documentação insuficiente, insolvência, ou ilegalidade. 

 

 Não há regra geral para a determinação dos riscos das instituições financeiras (e 

empresas que operem com derivativos). No entanto, todas as metodologias minimamente 

eficientes têm alguma sofisticação matemática, e sistemas computacionais e de informações 

confiáveis. No caso dos riscos operacional e legal deve ser abordado caso a caso. Os riscos de 

mercado e de crédito possuem algumas metodologias que já se encontram em uso e 

explicadas na literatura. 

O foco deste trabalho é o risco de mercado. Um aspecto importante neste tipo de risco 

é a forma como este pode ser mensurado, que é a origem de boa parte dos desastres 

financeiros da atualidade. 

Evidentemente há eficientes maneiras de mensurar os riscos para todos os mercados 

em particular. Entretanto, cada método está associado com um mercado e não pode ser 

aplicado diretamente a outros mercados. Já o VaR é uma maneira integrada de avaliar os 

riscos de diversos fatores e com os mais distintos mercados. 

                                                 
32 Jorion (2003) apresenta ainda o risco de liquidez; para uma boa classificação dos riscos financeiros veja a 
OCC Banking Circular (1993). 
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 A tabela a seguir apresenta alguns ativos e suas equivalentes medidas de riscos 

simples. Por exemplo, um título do governo (c-bond, ou outro) possui como medida de risco a 

duration, e esta pode ser utilizada para comparar os riscos de diversos títulos. No entanto, se 

este título é incorporado a uma carteira de ações a utilização da duration perde o sentido. 

Assim sendo, percebe-se que a utilidade das medidas simples de avaliar os riscos são 

limitadas. 

 Analisando as carteiras de instituições financeiras como o J. P. Morgan Chase & Co., 

CitiCorp, ou no Brasil: Itaú, Bradesco, Unibanco, etc., apresentadas nos seus relatórios 

regularmente publicados, sugere-se duas observações: a grande diversidade das posições em 

carteira e a dificuldade em combinar todas as classes de risco para esta diversidade de 

posições em uma única medida. 

  

Tabela 3.1: Resumo das principais ferramentas para avaliação do risco de mercados (ativos) 
simples. 

Ativos Medida de risco 

Bonds Duration, convexidade, modelos de estrutura de termos 

Crédito Classificação (rating), modelos padrão 

Ações Volatilidade, correlação, beta 

Derivativos Delta, gama, vega 
Fonte: Wiener (1997). 

 

 Além de tais fontes de risco, ainda temos as apresentadas na Definição 3.2. Mesmo 

focando no risco de mercado observa-se a diversidade de medidas de risco que impede ou 

pelo menos dificulta a comparação entre risco de uma ação e um c-bond, por exemplo. 

 Linsmeier e Pearson (1999) observaram que estas dificuldades aumentaram a partir de 

1973, com o colapso do sistema de câmbio fixo (sistema de Bretton Woods) e a publicação da 

fórmula de precificação de opções de Black & Scholes. Estes eventos resultaram em alta 

volatilidade das taxas de câmbio, das taxas de juros, do preço dos commodities. A proliferação 

de instrumentos derivativos para hedgear o risco surgiram das taxas de mercado e da 

dinâmica de preços. Com essas mudanças as instituições financeiras aumentaram suas 

posições em derivativos com propósitos tanto de proteção (hedge) quanto de especulação. 

 Estes fatos fizeram com que nos últimos tempos ocorresse um aumento na demanda 

por medidas quantitativas do risco de mercado para carteiras. Crouhy, Galai e Mark (2001) 
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argumentaram que os recentes desastres financeiros mundiais tiveram como motivo primário 

a busca de uma ferramenta simples (mas não eficiente) de mensurar o risco. 

A variedade de modelos específicos continua sem fornecer resposta a uma simples 

questão. Qual o risco corrente? Pergunta esta que cada instituição financeira deve responder. 

Como já apresentado, há diversas razões pela qual tal pergunta não seja respondida de uma 

maneira simples. Mas a mais importante de todas é que não existe uma resposta simples, risco 

é algo infinitamente adimensional, depende de todos os eventos possíveis do mundo. Um 

exemplo é a seguinte pergunta, qual a perda máxima que se pode ter em um horizonte de 

tempo? A resposta é: tudo. No entanto, a probabilidade deste evento é muito pequena, mas 

muito pequena deve ser quantificada, neste contexto de certa forma entra o VaR (Wiener, 

1997). 

Para Duarte Jr. (1997), a grande motivação para a utilização do VaR é o fato deste 

integrar todo o risco em um único valor, o risco de mercado total, facilitando a sua 

administração por parte dos gerentes e pessoas relacionadas com a gestão de risco. Por outro 

lado, tratando-se o risco como multidisciplinar requer um número elevado de simplificações. 

No entanto, algumas considerações sobre o VaR e sobre as diversas ferramentas de risco são 

feitas a seguir. 

 

3.1.2 Coerência das Ferramentas de Risco 

 

O número de alternativas para a mensuração do risco vem aumentando 

significativamente nos últimos anos. Artzer et al (1999), diante desta diversidade de 

alternativas, considera o problema do gerenciamento do risco sob a ótica axiométrica. Os mais 

relevantes apresentados por Artzer et al (1999) e Tay (2001 a) são: 

 

Axioma 3.1 (Monotonicidade): 

Sejam dadas as carteiras X, Y ⊂ G (G é o conjunto de carteiras disponíveis); se X ≤  Y então 

f(X) ≤  f(Y). Se a medida f(.) de risco for monotônica. 
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Axioma 3.2 (Translação invariante): 

Seja dada a carteira X ⊂ G e r como taxa de juros livre de risco, então: f( X + r) =  f(X) + r 

para todo r ∈ R. 

 

Axioma 3.3 (Homogeneidade Positiva): 

Sejam λ ≥  0  e  a carteira X ⊂ G; então f(λX)  = λ f(X). Se a medida f(.) de risco for 

homogênea de grau 1. 

 

Axioma 3.4 (Subaditividade): 

Sejam dadas as carteiras X, Y ⊂ G ; se  f(X + Y) ≤  f(X) + f(Y). Então  a medida f(.) de risco 

obedece a subaditividade. 

 

 As medidas de risco que satisfazem os quatro axiomas anteriores são chamados de 

medidas de risco coerentes. O mais crítico dos axiomas para o VaR é o Axioma 3.4 onde 

afirma que o risco de uma carteira formada por sub carteiras deve ser menor ou igual a soma 

dos riscos individuais das duas sub carteiras. 

 Segundo West (2004) e Tay (2001 a), para algumas carteiras o VaR não é uma medida 

de risco coerente por violar o Axioma 3.4. Estes autores sugerem a utilização do Expect 

Shortfall (ES) ou o Expect Tail Loss (ETL) para carteiras bastante diversificadas. 

 Entretanto, segundo alguns trabalhos, entre os quais Rootzén e Klüppelberg (1999), hà 

argumentos contra a utilidade da subaditividade. Segundo estes autores a não subaditividade 

do VaR ocorre em casos extremos dos mercados, como crashes e crises financeiras 

internacionais. Assim Rootzén e Klüppelberg (1999) afirmam que não se deve abandonar o 

VaR simplesmente em função da subaditividade. 

 Uma das finalidades das ferramentas de gerenciamento do risco é avaliar o risco em 

situações extremas, fato este corroborante para que o Comitê de Basiléia sugira o VaR como 

ferramenta de risco padrão. Não obstante, a consciência das limitações do VaR e da sua 

consistência não deve ser irrelevadas. 
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3.1.3 Conceitualização do Value at Risk 

 

Pelos fatos citados e por outros é que o VaR vem se tornando a medida padrão para a 

avaliação de risco do mercado, sendo adotado por diversos bancos, corretoras e fundos 

mútuos. Os órgãos reguladores podem obrigar a implementação do VaR, nos Estados Unidos, 

as agências de rating como a Moody e Standard and Poor’s (S&P), o Financial Accounting 

Standard Board (FASB) (Conselho de padrões financeiros contábeis) e a Securities and 

Exchange Comission (SEC) apóiam a utilização do VaR (Jorion, 2003). 

Esta preocupação dos órgãos reguladores vem crescendo em particular por causa dos 

consecutivos desastres financeiros durantes os anos 1980’s e 1990’s. O Comitê de Basiléia 

para supervisão bancária permite que os bancos calculem seu requerimento de capital para o 

risco de mercado baseado em modelos próprios33 de Value at Risk (VaR). 

Então o que é o VaR? Abaixo uma definição de Jorion (2003): 

 

Definição 3.3: 

O Value at Risk (VaR) sintetiza a maior (ou pior) perda esperada dentro de determinado 

período de tempo e intervalo de confiança. 

 

 Considere a Figura 3.1 a seguir, ela representa o retorno dos títulos do governo 

brasileiro C-bond no período de 30/12/1998 a 31/12/2002. Observe que, com exceção do 

começo da série, os retornos estão entre 0,135 e –0,17 (aproximadamente). Construindo uma 

distribuição de probabilidade a partir da Figura 3.1 tem-se a Figura 3.2 em seguida. 

 

                                                 
33 O requerimento de capital como função do VaR encontra-se na seção 3.7, mais detalhes em Jorion (2003) e 
Crouhy, Galai e Mark (2001). 
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Figura 3.1: Retornos dos títulos C-Bond. 
Fonte: Elaboração própria a apartir de dados do IPEA. 
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Figura 3.2: A medição do VaR dos títulos C-Bond. 
Fonte: Elaboração própria. 



 73

 
 

 A partir da Definição 3.3 pode-se determinar o VaR, inicialmente os parâmetros 

devem ser determinados, o intervalo de tempo será de 30/12/1998 a 31/12/2002 e um nível de 

confiança de 96,6%. Assim sendo, serão avaliados os 34 piores eventos (sobre 1000, ou seja 

3.4%), analisando a figura observam-se que 96.6% dos retornos estão acima de -0,05, ou seja 

em apenas 3,4% dos casos ocorrem perdas superiores a -0,05, logo o VaR para este ativo 

neste período de tempo e com este grau de confiança é de -0,05. 

O VaR calculado acima é o absoluto, mas pode ser calculado o VaR relativo, por 

exemplo, utilizando a média do rendimento do ativo, neste caso 0,00025 (0,025%), tem-se um 

VaR relativo de -0,05025. 

O VaR também pode ser definido34 de forma mais formal e matemática, evitando a 

possibilidade de ambigüidade da definição anterior, como a seguir: 

 

Definição 3.4: 

Para um dado horizonte de tempo, um nível de significância α, considerando X como o 

retorno de uma série financeira e f(x) como função de distribuição de probabilidade f(x) = 

Prob (X ≤  x), o Value at Risk (VaR) pode ser definido como: 

 

{ }XxfxXVaR >−= )(inf)(α        ( 3.1) 

 

 O sinal negativo é relativo ao fato do VaR ser definido como a diferença entre o ponto 

zero (para o VaR absoluto) e o valor da abscissa para o quantil especificado. 

 Existem inúmeras técnicas diferentes para calcular o VaR de uma carteira (ou de um 

título simples), entretanto todas devem seguir uma seqüência, ou lógica. Para Wiener (1997) 

todas seguem a seguinte seqüência. 

 

1. Seleção dos parâmetros básicos (horizonte de tempo, grau de confiança e tempo de 

mensuração); 

2. Seleção dos fatores relevantes do mercado; 

3. Acompanhamento do risco; 

4. Cálculo do VaR. 

                                                 
34 Esta definição pode ser encontrada em Artzner et al (1999) e Kato (2004). 
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Todas estas etapas serão objeto de estudo das próximas seções. A seguir uma 

apresentação do VaR para distribuições gerais. 

Jorion (2003), também define VaR como a perda da carteira relativa ao seu valor 

esperado (VC* é o valor esperado mínimo), sendo VC o valor da carteira no momento em 

questão (VCo é o valor no momento inicial) e a taxa de retorno obtida e esperada R e R*, 

respectivamente: 

 

)( ** RRVCVCVCVaR o −=−=        ( 3.2) 

 

Em algumas situações pode-se calcular o VaR para o retorno da carteira, por exemplo, 

quando se deseja comparar métodos de VaR: 

 

*
Re RRVaR torno −=          ( 3.3) 

 

Já o VaR absoluto da carteira, esta forma é a mais utilizada no meio acadêmico e no 

mercado pois representa a perda real da carteira em relação ao momento em que está medindo 

o VaR (Bezerra, 2001), é dado por: 

 

** RVCVCVCVaR oo −=−=        ( 3.4) 

 

Para encontrar o valor mínimo esperado é necessário um nível de confiança e a 

distribuição de probabilidade futura da carteira de ativos ou do retorno da carteira. O ponto 

crucial deste método é a determinação da distribuição de probabilidade. 

Chamando a função de distribuição de probabilidade futura da carteira de ativos ou de 

retorno - f(x), deseja-se calcular qual a probabilidade de encontrar um valor menor que VC*: 

 

∫
∞−

=≤=
*

)()( *
VC

dxxfVCxPp        ( 3.5) 

 

Tem-se, portanto VC* = F-1(p), onde F-1 é a função inversa de densidade absoluta. 

Podemos reescrever a Equação (3.5) como: 
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)(1* pFVCVCVCVaR oo
−−=−=        ( 3.6) 

 

Neste ponto percebe-se que a maior dificuldade do VaR está na determinação da 

função de distribuição de probabilidade35. Tal questão será abordada nas seções que tratam 

dos modelos específicos de VaR, enquanto na Seção 3.2 são discutidos os parâmetros 

subjetivos. 

 

3.2 Os Parâmetros Subjetivos do VaR 

 

Calcular o VaR implica definir, a priori, três parâmetros arbitrários: o nível de 

confiança, o tamanho da janela e o período de tempo. Todos são elementos subjetivos e não 

há um consenso sobre a definição destes. Por exemplo, a abordagem do modelo interno, 

proposto pelo Comitê de Basiléia, estabelece um intervalo de confiança de 99%, um período 

de tempo de 10 dias e uma janela de 250 dias (um ano). O VaR resultante é então 

multiplicado por um fator de 3 para fornecer a exigência mínima de capital para fins de 

regulamentação. 

O comitê escolheu, presumivelmente, um período de 10 dias, visto que ele reflete o 

trade-off entre os custos de monitoramento freqüente e os benefícios da detecção antecipada 

das perdas potenciais (Jorion, 2003). 

Na verdade, o período de tempo depende do objetivo do VaR, se o objetivo é o VaR 

para um relatório interno, VaR diário; se para um relatório para os acionistas, VaR mensal. 

Outro fator é a liquidez dos ativos que compõem a carteira. Ativos mais líquidos implicam 

que os investidores devem liquidar suas posições o mais rápido em função de más 

perspectivas do cenário econômico. Para ativos menos líquidos é necessário um maior tempo 

para liquidação dos ativos, pode ser o caso de um VaR mensal. 

No tocante ao nível de confiança há poucas diretrizes, o Comitê de Basiléia sugere 

99%, o mesmo é utilizado pelo Banker Trust; já o Chemical e o Chase o nível é de 97,5%; o 

Citibank, de 94,5%; e o J. P. Morgan, de 95%. Níveis maiores do VaR implicam em maiores 

requisitos de capital. 

                                                 
35 Um fator fundamental para a determinação da função de distribuição de probabilidade é a volatilidade (já 
apresentada no capítulo 2) como será demonstrado. 
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Segundo Jorge et al (2001), qualquer que seja o nível de confiança adotado, este deve 

levar em conta os seguintes aspectos: 

 

• Os requisitos de capital aumentam com o grau de confiança; 

• O nível de confiança escolhido deve obedecer a certos critérios contabilísticos 

uniformes de modo a permitir a comparação entre as instituições; 

• O nível escolhido deve enquadrar-se nas práticas de controle e gestão de risco que 

forneçam aos líderes da instituição uma visão realista da empresa. 

 

Ao se escolher um nível de confiança de 95%, significa uma expectativa de que a cada 

20 dias uma perda supere o VaR, já um nível de 99% é o mesmo que aguardar uma perda a 

cada 100 dias. Assim sendo, para 99% de confiança são necessários no mínimo 100 dias para 

confirmar a concordância do modelo, é um tempo longo em relação a 95% de confiança, por 

tal razão neste trabalho adotar-se-á 95% de confiança para o cálculo do VaR. 

De uma forma geral, a escolha do nível de significância deve ser feita de acordo com a 

recomendação de Beder (1995). Segundo este autor, a escolha é feita de acordo com o 

propósito da utilização do VaR. Se for para a determinação de capital, a escolha depende do 

grau de aversão ao risco do investidor. Quanto mais avesso menor o nível. Se o objetivo é 

comparar técnicas a escolha é irrelevante, devendo, no entanto manter a consistência entre os 

métodos. 

O tamanho da janela é o tamanho da amostra (o período de observação) usada na 

estimação dos parâmetros do VaR. O tamanho da janela está relacionado com o objetivo da 

estimação e disponibilidade dos dados. De uma forma geral os trabalhos acadêmicos mostram 

que quanto maior a janela, melhores são os resultados, exemplo de trabalho que ratifica isto: 

Beder (1995). 

As expressões (3.5) e (3.6) dadas são bem gerais, a correta mensuração do VaR passa 

pela função de distribuição de probabilidades do ativo (ou da carteira). A quantidade 

relativamente grande de opções de cálculo do VaR dar-se exatamente pelas possibilidades 

distintas de especificação das funções de distribuição de probabilidade (FDP) futura. As 

seções a seguir tratam das mais relevantes variações do VaR presentes na literatura. 
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3.3 O Método Delta – Normal 

 

Este método é baseado na hipótese que os retornos são normalmente distribuídos. 

Dados históricos da janela de observação são normalmente usados para mensurar os 

parâmetros: média, desvio padrão, correlações. A distribuição é construída com estes 

parâmetros. 

 

3.3.1 O Método Tradicional 

 

Considerando uma distribuição normal caracterizada por µ e σ (média e desvio padrão 

do retorno, respectivamente), a função de distribuição de probabilidades é dada por: 

 
2))((

2
1

2
1)( σ

µ

πσ

−−

=
x

exf         ( 3.7) 

 

Assim a função de distribuição normal cumulativa de probabilidade é: 

 

∫=Φ
∞−







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2
1

2
1)( σ

µ

πσ
       ( 3.8) 

 

Desta forma o quantil genérico p é a função inversa Φ-1(p). A resolução do modelo 

acima é feita por meio da utilização de integração numérica. A função normal padronizada 

tem seus valores tabulados em livros e pode-se derivar o VaR. Que é obtido: 

 

σαZVCVaR o=          ( 3.9) 

 

onde α é o desvio normalizado para a significância selecionada, σ é o desvio padrão e VCo é o 

valor inicial da carteira, por exemplo, para α de 95% de significância, têm-se Zα de 1,9636. 

                                                 
36 Estes valores podem ser encontrados nas tabelas da distribuição normal padrão. 
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A estimação de σ pode ser obtida diretamente da Expressão (2.34). Entretanto, pode-se 

substituir a hipótese de retornos normais para um caso mais realístico com as séries 

financeiras, ou seja, assumir a distribuição condicional dos retornos, os modelos ARCH, 

GARCH; apresentados na Seção 2.4.2. 

A mensuração do VaR para um único ativo, conforme a metodologia acima 

apresentada, é relativamente simples. Um pouco de dificuldade matemática e computacional 

surgem quando se calcula o VaR para grandes carteiras (supor N ativos), neste caso o retorno 

é dado por: 

 

∑=
=

++
N

i
tititp RwR

1
1,,1,

  ou 

11, ++ = tttp RwR          ( 3.10) 

 

onde os pesos tiw ,  (wt na forma de vetor) são indexados ao tempo, a fim de 

caracterizar a natureza dinâmica das carteiras. Como o retorno das carteiras é uma 

combinação linear de variáveis normais, ele também será normalmente distribuído. Utilizando 

notação matricial, a variância da carteira será dada por: 

 

tttp ww 1
'

+Σ=σ          ( 3.11) 

 

Assim o VaR pode ser obtido pela expressão: 

 

ttto wwZVCVaR 1' +Σ= α         ( 3.12) 

 

Desta forma é possível acomodar uma grande quantidade de ativos, basta estimar a 

matriz de covariância Σt+1. 

Evidentemente quando o número de ativo é grande há um crescimento exponencial do 

tamanho da matrix com o número de ativos, alguns modelos37 oferecem uma estrutura mais 

simples para a matrix de covariância, um deles é o modelo diagonal, proposto no contexto de 

carteiras de opções. 
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Suposição 3.1: 

Supondo-se que a movimentação conjunta dos ativos é oriundo de um único fator, o mercado. 

Pode-se apresentar o retorno de cada ativo como: 

 

imiii RR εβα ++=          ( 3.13) 

 
[ ] 0=iE ε    [ ] 0=mi RE ε  

[ ] 0=jiE εε    [ ] 2
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O retorno do ativo i é determinado pelo mercado Rm e pelo termo aleatório εi.  

 

Conseqüentemente a variância de cada ativo i é dada por: 

 

2
,

222
imii εσσβσ +=          ( 3.14) 

 

E a covariância entre dois ativos é: 

 

2
, mjiji σββσ =          ( 3.15) 

 

A partir de (3.14) e (3.15) pode-se construir a matriz de covariância total (colocando 

em notação matricial): 

 

εσββ Dm +=Σ 2'          ( 3.16) 

 

Como a matrix Dε é diagonal, a quantidade de parâmetros é reduzida de N(N+1)/2 

para 2N+1. 

Para carteira com um grande número de ativo e bem diversificada a variância da 

carteira é: 

 

wDwwwwwRw mp εσββσ ')''(')'var( 2 +=Σ==      ( 3.17) 

                                                                                                                                                         
37 Jorion (1997) apresenta dois outros modelos: as medidas de VaR zero e o modelo de fatores. 
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Corolário 3.1: 

O segundo termo da Expressão (3.17) torna-se muito pequeno à medida que cresce o número 

de ativos, assim sendo a variância da carteira pode ser expressa como: 

 

2)''( mp ww σββσ =          ( 3.18) 

 

Prova: 

Supondo que todas as variâncias são idênticas e que cada ativo possua peso idêntico, o 

segundo termo da Expressão (3.17) será: 
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que converge para zero com o aumento de N. 

 

3.3.1.1 O VaR Incremental 

 

 Uma característica importante deste método de cálculo do VaR é a capacidade de 

identificar, dentro de uma carteira, qual a participação de cada ativo no risco total da carteira. 

Com esta informação há a possibilidade de redução do VaR pela simples eliminação ou 

substituição do ativo de grande risco. 

 O VaR de cada ativo em particular não é suficiente para tal avaliação, o que importa é 

a contribuição de cada ativo para o risco total. 

 

 

 

Definição 3.5: 

O β de um ativo mede a contribuição deste para o risco total da carteira, também é chamado 

de risco sistêmico do ativo i relativo à carteira p. O β em notação matricial é dado por: 
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 O VaR total pode ser decomposto no VaR incremental de cada ativo, ou seja: 

 

...  21
1
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




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=

VaRVaRwVaRVaR
N

i
iitotaltotal β      ( 3.20)  

 

3.3.1.2 O Método Delta-Normal Aplicado às Opções 

 

 O método da variância-covariância (também conhecido como método delta-normal) 

para funções não-lineares, como as opções, não possui bons resultados práticos pelo fato 

(principalmente) de tal método assumir uma distribuição normal38. 

 Supondo que a única fonte de risco é o preço do ativo objeto (S) e expressando o valor 

de uma opção como uma série de Taylor, tem-se em uma aproximação de primeira ordem: 

 

dS
S
VdV
∂
∂

=  

 

dSdV δ=           ( 3.21) 

 

 Calculando a variância39: 

 

)var()var()var( 2 dSdSdV δδ ==        ( 3.22) 

 

 Como var (dS) é dado por S2σ2, então a Expressão (3.22) torna-se: 

 

222)var( σδ SdV =          ( 3.23) 

 

 E o VaR é dado por: 

 

                                                 
38 Uma alternativa para contornar esse problema é a metodologia analítica, histórica e o método de monte Carlo; 
que consideram outras gregas. 
39 A expressão do delta para opções de compra e venda foi apresentada no capitulo 2. 
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SZVaR δσα=          ( 3.24)  

 

 Para uma carteira de contratos não lineares, têm-se: 
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 Logo, para pequenas variações do valor da carteira (∆Rp) obtêm-se: 

 

RR T
p δ=∆          ( 3.25) 

 

 Supondo uma distribuição normal dos retornos: 

 

),0(~ δδ Σ∆ T
p NR         ( 3.26) 

 

 Assim, sendo o VaR é definido por: 

 

δδα Σ= TVCoZVaR         ( 3.27) 

 

 Apesar da simplicidade metodológica e facilidade de implantação, Jorge et al (2001) 

apresentam três críticas à aproximação delta-normal. A primeira (que é apresentada por todos 

os métodos que usam séries históricas), é relativa a incapacidade de acomodar dentro das 

distribuições de probabilidade eventos extremos. 

 O segundo problema são os retornos caracterizados por um achatamento da 

distribuição, fenômeno conhecido por “fat tails”. Este fator torna-se fundamental porque o 
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VaR procura captar o comportamento dos retornos da carteira na cauda da distribuição 

esquerda40. 

Por fim, a terceira debilidade, que para Jorge et al. (2001) é a mais importante, é a 

incapacidade do VaR delta-normal de medir, pelo menos de forma adequada, o VaR para 

instrumentos financeiros não lineares (como as opções). 

 

3.3.2 Os Métodos Stress VaR. 

 

 O cálculo do VaR é determinado com base em uma distribuição de probabilidade dos 

retornos esperados de uma carteira. Entretanto, as suposições feitas com relação à distribuição 

de probabilidade podem não ser válidas em determinadas situações, como nos crashes no 

mercado acionário e em choques econômicos. O procedimento de VaR utilizado para capturar 

o risco em tais situações é chamado de stress VaR; este modelo é o objeto de estudo da 

Subseção 3.3.2.1.. 

 O maior atrativo na utilização do stress VaR para mensurar o risco é que este permite 

incorporar cenários subjetivos à estrutura de VaR normal, assim as comparações entre o VaR 

normal e o stress Var podem ser realizadas sem perda de consistência. A principal crítica ao 

stress VaR são as suposições de normalidade que este assume, visto que é derivado do VaR 

normal. 

 Uma forma de contornar alguns problemas do pressuposto de normalidade, em 

particular as grossas caudas das distribuições de retorno das séries financeiras, é utilizar a 

distribuição t de student; esta metodologia é o objeto da Subseção 3.3.2.2.. Na verdade, 

integra-se a distribuição t de student no modelo stress VaR para formar o modelo stress VaR-

x. 

 

3.3.2.1 Incorporando o Stress ao Modelo Delta Normal. 

 

 Supondo uma variação no valor da carteira dada pela Equação (3.10) e o VaR normal 

calculado pela Expressão (3.12) e utilizando um nível de significância de 95%, a estimativa 

de perda da carteira é dada por: 

                                                 
40 Como já apresentado, uma maneira de minimizar este efeito é o uso da volatilidade obtida pelos métodos 
autoregressivos condicionais. 
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ttto wwVCVaR 1'65.1)95( +Σ−=        ( 3.28) 

 

 Uma forma simples de avaliar uma carteira sob uma situação de stress é aumentar o 

nível de confiança do VaR, para por exemplo 99%. Esta forma de calcular o VaR é 

caracterizada pelo fato de submeter todos os fatores a um patamar de stress; na prática, 

procura-se utilizar o stress VaR aplicado a apenas um (ou alguns) choque, como choques nas 

taxas de juros, choques cambiais, etc.. Logo, o modelo mais útil será aquele que permita ao 

administrador de risco especificar um ou mais eventos e gerar um conjunto de estatísticas que 

capturem as correlações nos movimentos dos fatores de preços. 

 Para permitir ao administrador de risco a flexibilidade na seleção e escolha de 

choques, Kupiec (1998) decompõe o vetor retorno de preços (3.10) em dois grupos: o 

primeiro é formado pelos fatores que representam e/ou que são afetados pelo choque, ou seja 

o cenário de stress R2t (um vetor (k x 1)), o segundo grupo é o dos fatores de preços que não 

pertencem ao cenário de stress R1t (um vetor (N – k x 1)). Se a matrix de covariância é 

dividida seguindo este raciocínio, então a distribuição de fatores de preço condicional pode 

ser escrita como: 
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      ( 3.29) 

 

 Onde os retornos médios µ1t e µ2t são ambos zero sob as suposições padrões do VaR. 

Os pesos de cada ativo na carteira wt, também podem ser particionados. Assim a expressão 

pode ser reescrita como: 
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 Pode-se expressar o conjunto dos fatores chaves para o cenário de stress como R2: 

 

[ ]kt rrrRR ,...,, 2122 ==         ( 3.31) 
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 A magnitude dos valores de R2 será um conjunto de acordo com os julgamentos do 

administrador de risco baseado na análise dos fatores econômicos e informações que estão 

apresentados no histórico dos fatores de preços que se dispõe. 

 O método mais comum do stress VaR é fazer R1t = 0, e estimar as potenciais perdas 

como W2tR2. 

 Uma forma para construir o cenário de stress é assumir que a matrix de covariância, 

Σt, é inalterada no cálculo do VaR. A suposição que o retorno dos fatores de risco possuem 

uma função de distribuição normal multivariada permite que se calcule a distribuição de 

probabilidade dos fatores de risco fora do cenário de stress (R1t), condicional aos fatores R2 

tomando os valores exogenamente. Sob esta ótica os fatores fora do cenário de stress são 

distribuídos como (Kupiec, 1998): 

 

[ ]cRtR Σ,N~ c1 2
µ          ( 3.32) 

 

 onde 

 

21
1

2212 ΣΣΣ= −
cµ          ( 3.33) 

 

 e 

 

( )21
1

221211 ΣΣΣ−Σ=Σ −
c         ( 3.34) 

 

 Sob esta suposição, o valor esperado do retorno da carteira é dado por: 
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 com um desvio padrão de tct ww Σ' . 

 Logo o VaR para um nível de significância de α, é obtido de: 
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tctctt wwZwRwStressVaR Σ−+= '122 αµ      ( 3.36) 

 

 Alternativamente é possível ignorar as perdas geradas pelos fatores não sujeitos ao 

cenário, e utilizar o valor esperado do stress VaR para mensurar as perdas: 

 

ctt wRwStressVaRE µ122)( +=        ( 3.37) 

 

3.3.2.2 O Modelo Stress VaR-X. 

 

 Como já apresentado à distribuição t de student promove uma alternativa viável à 

distribuição normal para minimizar os efeitos das caudas grossas. A redução da espessura da 

cauda da distribuição t de student é medida pelo índice λ41, que reflete a velocidade na qual a 

espessura da cauda da distribuição se aproxima de zero. Quanto menor o índice, maior é a 

cauda. Especificamente tratando-se da distribuição t de student, o índice λ é igual ao número 

de graus de liberdade. 

 Huisman et al. (1998) demonstrou que os estimadores do VaR-x (stress VaR-x) 

obtidos da distribuição t de student capturam os risco de forma mais eficiente quando estes 

estão associados a retornos negativos. Seguindo a metodologia de Hill (1975), estima-se o λ 

via o seguinte algoritmo: 
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1 )ln(ln1)(γ        ( 3.38) 

 

 Onde γ é chamado de estimador de Hill e corresponde ao inverso de λ. k é o número 

de observações da cauda grossa, e xi é o enésimo incremento do retorno de ordem absoluta, ou 

seja, 
1−≥ ii xx . 

 Huisman (1998) modificou a metodologia de Hill, permitindo estimar via regressão γ 

em  λ para amostras pequenas: 

 

                                                 
41 Alguns autores usam a letra α. 
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)()( 10 KKK εββγ ++=   ),...,1( kK =      ( 3.39) 

 

 Onde k é a metade do tamanho da amostra. Segundo Tan e Chan (2003) o inverso do 

intercepto β0 é um estimador não viesado de λ. 

 O procedimento para a obtenção do stress VaR-x é o seguinte: 

 

1. Determinar o tamanho da amostra para n retornos negativos; 

2. Ranquear os retornos absolutos em ordem crescente; 

3. Estimar o λ dos fatores de preço que não estão sob stress de acordo com as Equações 

(3.38) e (3.39); 

4. Com o índice λ igual ao número de graus de liberdade, obter o valor crítico S* da 

distribuição t de student (de acordo com o nível de significância); 

5. Como a distribuição t de student tem média zero e desvio padrão igual a (λ - 2)/ λ, 

converter a matrix de covariância da Equação (3.34) via a seguinte expressão: 

 

cc Σ
−
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λα 2         ( 3.40) 

 

6. A etapa final é calcular o stress VaR como em (3.36), usando a seguinte expressão: 

 

tctctt wwSwRwxStressVaR
α

µ Σ−+=− '*)( 122    ( 3.41) 
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3.4 As metodologias Analíticas Baseadas nas Gregas. 

 

 Um dos grandes benefícios do método delta normal é o fato de requerer o cálculo do 

valor da carteira apenas uma vez, a partir da posição VCo, que depende dos preços dos ativos 

que compõem a carteira no tempo inicial, assim o delta normal se adapta bem a grandes 

carteiras. 

 Entretanto, quando se trata de carteiras com opções, ou com qualquer derivativo não 

linear, apenas ocorre uma baixa performance da aproximação delta normal, a explicação para 

tal fato baseia-se na relação entre os retornos da carteira e os fatores de risco não serem 

lineares (mesmo que a distribuição dos fatores de risco seja normal). Assim sendo, a função 

de distribuição dos retornos (F(p)) não deve ser considerada normal. 

 Jorion (2003) apresenta os seguintes problemas na abordagem delta para carteiras com 

opções: 

 

• O delta da carteira poderá mudar muito depressa (gama elevado); 

• O delta da carteira poderá ser diferente para movimentos ascendentes ou 

descendentes; 

• A pior perda poderá não equivaler às realizações extremas do preço do ativo-

objeto. 

 

Em termos gerais, para gama positivo a distribuição do retorno apresentará uma 

tendência a evidênciar um elevado grau de enviesamento positivo, enquanto para valores de 

gama negativo, o enviesamento será negativo, afastando-se também da normalidade. 

As implicações do enviesamento da distribuição tem conseqüências importantes para o 

cálculo do VaR, visto que este depende diretamente da cauda esquerda da F(p). Assim sendo, 

assumindo-se erroneamente que a F(p) segue uma distribuição normal, tende-se a exceder o 

valor real do VaR42. 

Verifica-se que as estimativas do VaR levando em conta as estimativas do método 

delta normal levam a um erro considerável, exceto quando a aproximação é local, sendo, desta 

forma, necessário recorrer a métodos mais sofisticados. 

Entretanto, ainda não abrindo mão da hipótese de normalidade, é possível minimizar 

alguns efeitos indesejáveis, como o “efeito gama”, isto é feito incorporando a grega gama no 



 89

 
modelo. Assim, para uma carteira de opções uma alternativa são as metodologias analíticas as 

quais são baseadas na modelização do comportamento do mercado. Os métodos para 

avaliação do VaR podem utilizar diversas alternativas, por exemplo, os modelos de Black & 

Scholes para a modelização do mercado.  

O ponto de partida desta metodologia é a expansão de Taylor da modelização do 

mercado. A flexibilidade destes métodos é o seu ponto forte. Podem-se incorporar, além dos 

fatores da decomposição de Taylor alguns fatores do mercado. Como realizado por Duarte Jr 

(2000). 

Tomando a expansão da série de Taylor e sabendo que o valor da carteira é dado por 

Rp e é função43 do ativo subjacente e do tempo até o vencimento, tem-se que a variação do 

valor da carteira é: 
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observe que os termos superiores (que não foram apresentados) tendem a zero assim como o 

termo cruzado (o quarto fator apresentado) também pode ser considerado nulo. Neste ponto é 

possível fazer analogia com as gregas das opções.  

Sabe-se que o preço de uma opção padrão (plain vanilla) em ações depende do preço 

do ativo objeto (S), da volatilidade do ativo objeto (σ), do preço de exercício (K), da taxa de 

juros (r) e do tempo de vencimento (T). Se denotarmos o valor da opção (ou da carteira) por 

Rp(S,σ,K,r,T), então para pequenas variações no preço do ativo objeto, na volatilidade, na 

taxa de juros e no tempo para vencimento, obteremos (Duarte jr., 2000): 

 

)()()()(
2

)( 2 TddrddSdSdRp θρσκγδ ++++=      ( 3.43) 

 

onde δ, γ, κ, ρ, θ são as “gregas” da opção, o Anexo 7 trata especificamente do 

comportamento das opções e de suas “gregas”. 

 Se apenas o primeiro termo da Equação (3.42) ou da (3.43) fossem levados em 

consideração obteria-se o método delta normal, e o VaR seria obtido pela Expressão (3.24). 

                                                                                                                                                         
42 Em função da posição e do tipo de opção (compra ou venda) o VaR estará sendo subestimado. 
43 Pode ser função também da volatilidade, taxa de juros, etc.. 
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 Para tornar a estimação mais precisa para posições não lineares (como é o caso das 

opções)44 utiliza-se o método quadrático ou a expansão da série de Taylor (3.43) até a 

segunda ordem, esta expansão é conhecida como o método delta gama. Logo, as mudanças da 

carteira tornam-se: 

 

2)(
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)( dSdSdRp
γδ +=         ( 3.44) 

 

 Segundo Jorion (1998) o VaR derivado de (3.44) é: 

 

2)S(
2

)S(VaR ασ
γ

−ασδ=         ( 3.45) 

 

 Essa fórmula é válida tanto para posições compradas quanto vendidas (independente 

se a opção é de compra ou de venda). Se o gama for positivo, correspondendo a uma posição 

líquida comprada em opções, o segundo termo reduzirá o VaR. 

Supondo a volatilidade não constante45, a Expressão (3.45) deve ser modificada para 

permitir a inclusão de mais um termo: 

 

σκασγασδ SdSSVaR ++= 2)(
2

)(        ( 3.46) 

 

 Evidentemente a Equação (3.46) produz um melhor resultado quando todos os 

parâmetros são bem estimados (em comparação às Equações (3.45) e (3.23)). Entretanto, a 

correta estimativa da volatilidade é por si só uma grande fonte de enviesamento do resultado, 

quando se tem situações com grande número de opções é necessário um método de avaliação 

plena, como as simulações de Monte Carlo. 

 As estimativas dos parâmetros podem ser realizadas de diferentes formas. Pritsker 

(1996) estima tomando a variância de ambos os lados de (3.44), esta técnica é chamada de 

método delta – gama – delta. Se dS é normalmente distribuído então todos os momentos 

impares serão zero. Com a suposição de que dS e dS2 são conjuntamente normalmente 

distribuídos, logo dRp é normalmente distribuído e o VaR pode ser calculado diretamente. 

                                                 
44 Este método foi utilizado em Wilson (1994, 1996), Pritsker (1996), Jamshidian e Zhu (1996), e Zagari 
(1996a). 
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 Pritsker (1996) usou outro método para estimar o Var via a aproximação delta gama. 

Em seu método, conhecido como delta – gama – Monte Carlo, o autor criou inicialmente 

simulações aleatórias do fator de risco S. Depois ele usou a expansão de Taylor para criar 

simulações dos movimentos das opções. O VaR foi calculado da distribuição empírica do 

valor da carteira. 

 Zangari (1996), Fallon (1996) e Pritsker (1996) melhoraram o método delta – gama 

com a expansão de Cornish – Fisher46 que incluía a assimetria. Neste método o α (da 

distribuição normal) é substituído por α’: 

 

 ( )ψααα 1
6
1' 2 −−=         ( 3.47) 

 

 e ψ é o parâmetro de assimetria. 

 Zangari (1996) e Pritsker (1996) incluíram outra modificação ao modelo delta – gama, 

o delta – gama – Johnson. Este método escolhe uma função de distribuição para F(p) e estima 

seus parâmetros para coincidir com os quatro primeiros momentos da aproximação delta – 

gama. 

 Jamshidian e Zhu (1996), Zagari (1996) e Fallon (1996) relataram que os modelos 

delta – gama incrementam as estimativas do VaR significantemente quando comparados com 

o delta normal. 

 

3.5 Método das Simulações Históricas (MSH). 

 

 Este é o método de simulação e estimação do VaR mais simples, não há suposições 

complexas sobre a estrutura do mercado. A idéia consiste em utilizar as variações passadas 

dos fatores de risco para gerar cenários, simular a função de distribuição de probabilidade 

para os retornos da carteira e estimar o VaR. Assim, este método surge como uma alternativa 

à necessidade de formular hipóteses sobre a forma como os fatores de risco se distribuem. 

 O valor projetado dos fatores de risco que compõem a carteira é obtido via a aplicação 

de cada uma das variações passadas do fator de risco sobre o seu valor atual. A única 

suposição deste modelo é que as tendências passadas de ganhos e perdas irão continuar no 

                                                                                                                                                         
45 Substituindo o modelo de B&S como referencia e utilizando o Hull e White da volatilidade não constante. 
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futuro. Segundo Khindanova e Rochev (2000) uma das vantagens deste método é que este 

está livre de qualquer viés de estimação. 

 Jorge et al (2001) propõe as seguintes etapas para aplicar esta metodologia : 

 

1. Identificar os fatores de risco que afetam a carteira; 

2. Construir a base de dados com os preços e retornos dos fatores de risco identificados 

na etapa 1; 

3. Definir uma janela de observação fixa para as observações passadas a utilizar na 

construção de cenários; 

4. Gerar cenários para os fatores de risco a partir da amostra de dados históricos; 

5. Reavaliar o valor da carteira (completamente ou aproximadamente), obtendo uma 

distribuição de hipotéticos retornos para a carteira; 

6. Transformar os retornos em ganhos e perdas para a carteira; 

7. Construir um histograma para os retornos, e a partir deste selecionar o percentil 

correspondente ao VaR desejado. 

 

Um dos problemas dessa metodologia é a relação tamanho da amostra e a relevância 

dos dados. Segundo Wiener (1997) é importante usar dados históricos tão grandes quanto 

possível, de forma a abordar qualquer evento raro ocorrido no passado e que possa gerar 

perdas significantes. Ao mesmo tempo o autor afirma que quanto mais distante do presente 

são os dados, menos relevantes estes o são para as informações presentes do mercado. Outro 

problema observado do MSH é o fato deste não ser aplicável para estratégias de mercado 

desenvolvidas com base em dados históricos. Isto ocorre porque não se pode utilizar os 

mesmos dados para mensurar o VaR e para calibrar a estratégia de mercado. 

Evidentemente a utilização de uma janela fixa (etapa 3) acarreta em erros de medição 

e enviesamento do VaR, a principal causa destes erros reside no chamado efeito roll-off, este 

efeito corresponde ao fato de a cada dia ser necessário descartar o último dia da amostra e 

substituir pela observação mais recente, o que contradiz com a observação de quanto mais 

melhor de Wiener. 

 Uma outra justificativa para os erros de amostragem, reside na possibilidade dos 

cenários gerados via uma janela de observação fixa experimentar uma tendência líquida 

ascendente ou descendente. Quando isto ocorre, as estimativas dos retornos da carteira irão 

incorporar esta tendência. 

                                                                                                                                                         
46 Mais detalhes da expansão de Cornish – Fisher em Hull (1998). 
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 Uma solução para este problema foi sugerida por Holton (1998), Down (1998) e 

outros; esta solução é utilizar os denominados mirror cenários. Esta técnica está apresentada 

na subseção 3.5.2. 

 O problema dos dados antigos foi minimizado no trabalho de Duffie e Pan (1997). 

Estes sugeriram o método de bootstrap para gerar cenários dos retornos dos fatores de risco. 

Este método também está descrito numa subseção em separado. 

 Outra alteração ao MSH foi proposta por Boudoukh, Richardon e Whitelaw (1998), a 

MSH foi combinada com o alisamento exponencial (Subseção 3.5.3), assim os autores 

definiram pesos decrescentes a partir dos dados mais recentes e até os mais antigos. Esta 

técnica também é conhecida como híbrida. 

 Boudoukh, Richardon e Whitelaw (1998) compararam a metodologia híbrida para 

diferentes séries com a MSH tradicional. Os resultados mostraram para um VaR com 99% de 

significância uma redução do erro absoluto de estimativa de 30 a 40%, já a metodologia 

tradicional o erro absoluto foi reduzido entre 14 a 28%. Os autores relataram que a técnica 

híbrida funciona melhor para séries de juros e para séries com grandes caudas. 

 

3.5.1 O Método de Bootstrap47.  

 

 O método de bootstrap consiste na geração de cenários para os fatores de risco a partir 

dos dados históricos. Entretanto ao invés de obedecer à ordenação histórica, adota-se a 

amostragem aleatória com reposição. Assim é possível obter tantos cenários quanto se deseje. 

 Jorion (2003) mostra que uma vantagem essencial do método está no fato de poder 

abranger saltos, caudas grossas e qualquer divergência da distribuição normal. O método 

também incorpora as correlações entre as séries, uma vez que uma retirada consiste em 

retornos simultâneos de N séries, como preços de ações, títulos públicos e moedas. 

 Apesar das vantagens apresentadas, o método possui algumas limitações. Para 

amostras de tamanho pequeno, a distribuição obtida pode ser uma aproximação imprecisa da 

real distribuição, logo, deve-se ter uma base de dados ampla. Outra desvantagem é a perda da 

dinâmica temporal dos dados, uma vez que o bootstrap supõe que os retornos são 

independentes. 

                                                 
47 Esta técnica também é aplicável à metodologia de Monte Carlo. 
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 Jorion (2003) afirma que as vantagens do método superam as desvantagens. Dado que 

o objetivo do VaR é capturar o comportamento da cauda esquerda e que os dados históricos 

apresentam caudas mais grossas que uma distribuição normal, o bootstrap se adapta 

idealmente ao cálculo do valor no risco. 

 

3.5.2 O Mirror Cenários.  

 

 Holton (1998) sugere a utilização do mirror cenários como forma de eliminar o 

problema da tendência implícita da utilização do MSH para o cálculo do VaR. O 

procedimento consiste nas seguintes etapas: 

 

1. Geram-se os cenários a partir dos dados históricos; 

2. Para cada um destes cenários, multiplica-se o retorno dos fatores de risco por (-1) para 

obter seu simétrico; 

3. Aplica-se este retorno fictício ao valor da posição atual, obtendo um novo cenário 

(mirror). 

 

Esta técnica permite não apenas eliminar o problema da tendência implícita, como 

também, duplicar o número de cenários usados para estimar o VaR reduzindo desta forma, o 

erro de convergência. 

 

3.5.3 Cenários Ponderados. 

 

 Uma outra forma de conseguir que os cenários construídos a partir de dados históricos 

representem as atuais condições do mercado é o método dos cenários ponderados (ou método 

do alisamento exponencial), descrito por Down (1998) e Holton (1998). 

 A ponderação maior dos eventos recentes em relação aos eventos mais antigos, 

significa que qualquer observação terá seu efeito máximo sobre o VaR imediatamente após 

sua ocorrência, reduzindo a influência com o passar do tempo. Esta técnica pode ser 

implementada tanto no MSH como no método de Monte Carlo. 
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 A estrutura de ponderação permite que se altere a característica da distribuição dos 

retornos dos fatores de risco, de forma a refletir as propriedades desejadas. Uma vantagem 

deste método é o fato dele levar em conta a variação da volatilidade, o que interessa para 

séries com caudas grossas. 

 

3.6 O Método de Simulação de Monte Carlo (MSMC). 

 

 Em muitos casos as técnicas analíticas não podem ser utilizadas e os resultados da 

simulação histórica não são satisfatórios. Necessita-se utilizar métodos numéricos de 

integração.  Uma das técnicas possíveis é o método de simulação de Monte Carlo (MSMC). O 

MSMC é um dos métodos mais popular entre as análises sofisticadas (Wiener, 1997). Tal 

método apresenta um número de semelhanças com o método de simulação histórica, a maior 

diferença entre os dois métodos é que o MSMC utiliza as observações passadas para gerar 

simulações de cenários hipotéticos. 

 Como o MSMC simula o comportamento dos fatores de risco e dos preços dos ativos 

pela simulação do movimento dos preços, ele constrói N possíveis valores da carteira para 

uma dada data futura. Assim o VaR pode ser determinado diretamente a partir da distribuição 

dos valores simulados da carteira. 

O método de Monte Carlo cobre grande quantidade de possíveis valores das variáreis 

financeiras e dão conta por completo das correlações. O método é basicamente dividido em 

duas etapas. A primeira corresponde à especificação de um processo estocástico para as 

variáveis financeiras, bem como os parâmetros deste processo. Na segunda etapa, são 

simuladas trajetórias fictícias de preço para todas as variáveis de interesse. 

A análise de Monte Carlo é o método mais potente de cálculo do valor no risco 

(Jorion, 1997), pois é capaz de capturar grande variedade de risco, inclusive os não lineares, 

os de volatilidade e, até mesmo, os de modelo, podendo incorporar a variação temporal da 

volatilidade, caudas grossas e cenários extremos. Entretanto o maior inconveniente do método 

é o número de simulações necessárias para se reduzir o erro da estimativa da solução 

procurada, o que tende, na prática, a tornar o método lento. 

Jorge et al (2001), apresenta um roteiro para implementação do MSMC, muito 

semelhante ao da simulação histórica : 
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1. Identificação das posições de cada ativo e fator de risco; 

2. Seleção do modelo, que se julgue melhor, para explicar o comportamento dos fatores 

de risco; 

3. Escolhido o modelo, deve-se estimar os parâmetros (via dados históricos); 

4. Geração, através do mecanismo de produção de números aleatórios, de cenários para 

os fatores de risco; 

5. Reavaliar o valor da carteira (completamente ou aproximadamente), obtendo uma 

distribuição de hipotéticos retornos para a carteira; 

6. Transformar os retornos em ganhos e perdas para a carteira; 

7. Construir um histograma para os retornos, e a partir deste selecionar o percentil 

correspondente ao VaR desejado. 

 

A metodologia de simulação de Monte Carlo consiste, em suma, na geração aleatória 

de cenários para os fatores de risco, cenários estes que devem ser condizentes com a matriz de 

variância-covariância histórica. Ou seja, a essência deste método está baseada na 

especificação dos processos aleatórios e na geração de números aleatórios. 

 

3.6.1 A Simulação de uma Trajetória de Preços. 

 

A primeira e mais importante etapa da simulação consiste em escolher determinado 

modelo estocástico para o comportamento dos preços. Abordando este problema inicialmente 

sob a ótica de uma ação (ou outro ativo de natureza linear). O modelo normalmente utilizado 

é o movimento browniano geométrico, que serve de base para grande parte da teoria de 

precificação das opções. Conforme demonstrado no Capítulo 2, o preço de um ativo é dado 

por: 

 

t
t

t dztSdttS
S

dS ),(),( σµ +=        ( 3.48) 

 

 onde σ é a volatilidade e a medida dzt é uma variável aleatória oriunda de uma 

distribuição normal com média zero e variância dt. 

 A solução da Equação 3.48, conforme já apresentado é dado por: 
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       ( 3.49 ) 

 

 Substituindo dzt por εdt onde ε é uma variável aleatória normal padronizada com 

média zero e variância 1. Ou seja: 

 





 +−= dttStS σεσµ )

2
1(exp)( 2

0
       ( 3.50) 

 

 Para a simulação de uma trajetória de preços para S(t), inicia-se com So e se gera uma 

seqüência de ε para t = 1, 2, 3, ..., n, posteriormente calcula-se S(1), S(2), ...S(n). 

 Para ativos não lineares deve-se fazer alterações para verificar a trajetória de preços. 

Supondo inicialmente o caso de opções européias o modelo mais utilizado é o de Black e 

Scholes. Diversos autores como Tay (2000 e 2001a), Ammann (2001) e Glasserman et al 

(2000) utilizaram este modelo. 

 Tal modelo partiu da Equação (3.50) para simular o movimento do ativo subjacente. 

Após N simulações com k passos (k determinado para atingir o tempo de análise) obtêm-se a 

estimativa para o valor da opção dado por (c é uma opção de compra e p uma opção de 

venda): 

 

[ ]
[ ]T

T

SkkTSp
kSkTSc

−=
−=

;0max),,(
;0max),,(         ( 3.51) 

 

onde: 

ST ≡  valor do ativo em T; 

k ≡  preço de exercício. 

 

 Já com relação às opções americanas, segundo Boyle, Broadie e Glasserman (1997), a 

precificação de tais opções era considerada fora do escopo da simulação de Monte Carlo, 

devido à dificuldade de se determinar os períodos ótimos de exercício destas. 

 Entretanto, trabalhos como os de Tiller (1993) e Brodie e Glasserman (1997), propõem 

formas para o emprego da simulação de Monte Carlo na avaliação de opções americanas. 
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 Ainda segundo Boyle, Broadie e Glasserman (1997), os maiores problemas do método 

proposto por Tiller (1993) são os grandes requerimentos de memória, a dificuldade de 

generalização para o caso de múltiplas variáveis, a geração de preços tendenciosos, e a falta 

de demonstração de convergência. Já o modelo proposto por Barraquand e Martineau (1995), 

apesar da possível falta de convergência, mostra resultados melhores que o de Tiller (1993). 

 Por fim Brodie e Glasserman (1997) desenvolveram um algoritmo baseado em árvores 

simuladas, onde os preços dos ativos são simulados em cada ramo da árvore, e para cada nó 

são obtidos estimadores para cima e para baixo (constituindo um intervalo de confiança), de 

tal forma que ambos os estimadores convergem para o valor da árvore no nó inicial. Brodie, 

Glasserman e Jain (1997) sugerem melhorias quanto à velocidade e à convergência deste 

método através da “poda” da árvore simulada. O modelo de Brodie e Glasserman (1997) está 

descrito em Rochman (2002). 

 

3.6.2 A Geração de Números Aleatórios. 
 

Para simular as trajetórias de preço faz-se necessário gerar números aleatórios, 

exemplos de métodos de obtenção de números aleatórios podem ser obtidos no trabalho de 

Sobol (1994), Gentle (1998). De uma forma geral podem-se classificar os números aleatórios 

em três grupos: 

 

1. Aleatórios: obtidos de maneira aleatória, são selecionados por meios não 

deterministico, normalmente por meios naturais ou físicos; 

2. Pseudo-aleatório: obtidos por meio de algoritmos, de forma a apresentar um ciclo de 

repetição tão alto quanto possível, de modo a simular uma distribuição 

verdadeiramente randômica; 

3. Quase-aleatórios: conhecidos como seqüências de baixa discrepância. 

 

O grupo aleatório apresenta algumas desvantagens: dificuldade em checar qualidade 

dos números produzidos e impossibilidade de reproduzir a mesma seqüência de números, a 

não ser que esta seja gravada. 

Os números pseudo-aleatórios, Paskov e Traub (1995) e demonstrado por Bezerra 

(2001), não preenchem regularmente os espaços entre dois pontos, ou seja, os números 
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pseudo-aleatórios não são distribuídos uniformemente no espaço, ou ainda, apresentam alta 

discrepância. 

 

Definição 3.6: 

A discrepância mede o desvio de uniformidade de um conjunto de pontos em uma dimensão 

d48. 

 

Neste trabalho a geração dos valores será feita por uma seqüência quase-aleatória. 

Segundo Rochman (2002), uma seqüência quase-aleatória (ou sub-aleatória) é uma seqüência 

de amostras representativas de uma distribuição de probabilidades. Essas amostras são 

deterministicas e não aleatórias, o que impede a repetição de valores, reduzindo desta forma, o 

desvio-padrão da simulação de Monte Carlo e aumentando a velocidade de convergência. Esta 

técnica também é conhecida como de baixa discrepância. 

 Boyle, Joy e Tan (1996) apresentam a seqüência de Faure de números quase-aleatórios 

e a aplicam para opções tipo rainbow e asiáticas. Brotherton e Ratcliffe (1994) aplicam a 

seqüência de Sobol na avaliação de opções asiáticas de média geométrica. Ambas as obras 

concluem que as seqüências quase-aleatórias são superiores em acurácia e tempo de 

processamento que a técnica pseudo-aleatória. 

 Hokayem, Abdallah e Dorato (2003) apresentam e comparam outras técnicas de 

geração de números quase-aleatórios, a saber: Van der Corput, seqüência de Halton, 

seqüência de Hammerslev, seqüência (t, s) e método dos pontos de Lattice. 

 Li e Winker (2000) compararam o método de seqüência (t, s) com o pseudo-aleatório, 

concluindo que o método de Monte Carlo com esta metodologia específica comporta-se 

melhor que a pseudo-aleatória. 

 Algoritmos computacionais para a implementação das seqüências de Faure, Halton e 

Sobol podem ser encontradas em Fox (1986) e Bratley e Fox (1988), respectivamente. 

 Uma vez obtido uma distribuição uniforme deve-se convertê-la numa distribuição 

normal. Para tal utilizar-se-á do algoritmo desenvolvido e apresentado em Moro (1995).  

 

                                                 
48 Detalhes do cálculo da discrepância podem ser encontrados em Hokayem, Abdallah e Dorato (2003). 
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3.6.3 Simulações de Monte Carlo com Múltiplas Variáveis 

 

Infelizmente a Equação (3.50) não é suficiente para a simulação de preços quando se 

trata de ativos com mais de uma fonte de risco. É o que ocorre na prática mesmo para ativos 

simples, como títulos privados, os quais dependem da combinação de duas ou mais variáveis 

financeiras. Felizmente a metodologia de Monte Carlo pode ser facilmente estendida a um 

caso multivariado mais genérico, que considera N fontes de risco. 

Se as variáveis (fatores de risco) não forem correlacionadas pode-se aplicar a Equação 

(3.50) diretamente sobre cada variável e assim montar as perdas e/ou ganhos para a carteira. 

Quando as variáveis são correlacionadas, faz-se necessário modelar essa correlação (Jorion, 

2003). De uma forma geral Saliby e Araújo (2001) sugerem que se gerem as variáveis de 

forma independente e se aplique a essas variáveis uma transformação de modo que as novas 

variáveis venham a ter a estrutura de correlação desejada. 

Neste trabalho utilizou-se a fatoração de Cholesky. Os passos são os seguintes para se 

chegar à transformação necessária (Saliby e Araújo, 2001): 

 

1. Para uma determinada estrutura de correlação desejada, define-se a matriz de 

covariância Σ. Decompõe-se essa matriz em Σ = P * PT, onde P é a matriz triangular 

baixa e PT é sua transposta; 

2. Define-se um vetor η, composto de variáveis independentes e variância unitária 

(obtido em 3.6.2). Este vetor terá sua matriz de covariância igual à matriz identidade I. 

3. Multiplicando-se a matriz P pelo vetor η, encontra-se o vetor ε (ε = P * η), o vetor 

transformado, cuja matriz de covariância é Σ. 

 

A título de exemplo, tem-se para duas variáveis: 

 

2
2

12
12

11

)1( ηρρηε

ηε

++=

=         ( 3.52) 

 

onde ρ é o coeficiente de correlação entre os fatores de risco. 
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3.7 Comparação entre os Diferentes Métodos. 

 

 Diferentes resultados do VaR são obtidos para diversas técnicas, mesmo quando os 

parâmetros são iguais. De uma forma geral, a escolha do método depende da composição da 

carteira. Telfah (2003) apresenta alguns critérios, os quais são freqüentemente utilizados na 

comparação do VaR: 

 

1. Capacidade do VaR em capturar os fatores de risco subentendido no retorno da 

carteira, com a suposição que a carteira inclua opções e ativos livres de risco; 

2. Facilidade de implementação; 

3. Velocidade de processamento. 

 

Outra consideração usual é a facilidade explicativa do modelo. A Tabela 3.2 apresenta 

um resumo da comparação entre os diversos métodos de VaR. No entanto, o mais relevante 

critério é a relação entre acurácia, custo computacional (tempo de processamento) e facilidade 

de implementação. 

O método delta - normal torna-se ineficiente quando o número de posições da carteira 

aumenta, porque há a necessidade de calcular a matriz de covariância e a matrix de correlação 

da posição, a qual cresce exponencialmente com o número de posições. Na implementação do 

método de Monte Carlo há um ganho em acurácia e perda no tempo de processamento, assim 

sendo, deve-se avaliar a relevância destes critérios em conjunto. Uma das vantagens do 

método de Monto Carlo é a possibilidade de alterar suposições, o que não é possível para as 

outras metodologias. Entretanto o método está sujeito a erros de mensuração e ao modelo de 

risco. Tais erros surgem porque os parâmetros devem ser calculados utilizando os dados 

históricos (que nem sempre representam fielmente o desempenho futuro) e a utilização de um 

processo estocástico e este processo pode ser mal especificado. 
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Tabela 3.2: Comparação entre as técnicas de VaR. 

Critérios Variância – 
covariância 

Metodologia 
analítica 

Simulação 
histórica 

Simulação de 
Monte Carlo 

Habilidade em 
capturar fatores 
de riscos (com 
dependência não 
linear) 

Ineficiente Pode capturar 
mas sua 
eficiência cai 
com o aumento 
de fatores não 
lineares 

Eficiente Eficiente 

Suposições Distribuição 
normal 

Distribuição 
normal 

Retornos 
passados 
continuando no 
futuro 

Impõe modelos 
estocásticos aos 
fatores de risco 

Comportam 
caudas grossas 

Não Não Sim, se os 
retornos passados 
o tiverem 

Sim, se o modelo 
de risco o 
incorporar 

Facilidade de 
implementação 

Fácil, mas a 
facilidade 
diminui com o 
aumento do 
número de 
posições 

Fácil, com a 
disponibilidade 
de dados e 
poucas posições 

Fácil, com a 
disponibilidade 
de dados 

Fácil, com 
programas 
complexos 

Tempo de 
processamento 

Rápido, 
dependendo do 
número de 
posições 

Rápido, 
dependendo do 
número de 
posições 

Rápido Lento 

Facilidade 
explicativa 

Não Não Sim Não 

Performance com 
diferentes 
suposições 

Não Não Não Sim 

Acurácia Pouca quando a 
carteira tem 
caudas grossas e 
quando o 
passado recente é 
anormal 

Pouca quando a 
carteira tem 
caudas grossas e 
quando o 
passado recente é 
anormal 

Depende da 
qualidade dos 
dados 

Boa, a depender 
do modelo 

Necessidade de 
distribuição de 
probabilidade 

Sim Sim Não Sim 

Fonte: Telfah (2003) e Chaia e Ferreira (1999). 

 

 Pearson e Smithson (2000) montaram uma figura semelhante à Figura 3.3 para 

facilitar a comparação entre as técnicas de VaR. Tal figura mostra que o método de Monte 

Carlo é o mais preciso e que consome mais tempo. Por outro lado o delta – normal apresenta-

se mais impreciso e mais rapidamente implementado. De acordo com Pearson e Smithson 

(2000), o método delta – gama Monte Carlo apresenta a melhor relação precisão x tempo de 
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processamento. Evidentemente, esta relação deve sempre ser avaliada em função do crescente 

aumento da velocidade dos processadores, o que torna cada vez menos relevante o aspecto 

tempo de processamento como indicador de desempenho das técnicas de VaR. 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 3.3: Comparação entre as técnicas de VaR (acurácia x tempo de processamento). 
Fonte: Pearson e Simthson (2000). 

 

3.8 Avaliando a Eficiência do VaR. 
 

 Há na literatura um gama de trabalhos que buscam verificar a precisão de modelos que 

fazem previsões pontuais sobre uma determinada variável. Tais modelos visam prever o valor 

da variável alvo num determinado instante. Entretanto, para avaliar as previsões de intervalo 

para uma variável, o número de método ainda é reduzido (Mollica, 1999). Este é o caso do 

VaR. 

 Uma previsão de um intervalo significa encontrar um subconjunto do espaço onde a 

variável toma valores associados a uma probabilidade de ocorrência. Supondo um VaR com 

nível se significância de 95%, ou seja 5% dos casos devem ultrapassar o VaR. Certamente,  

não serão observados exatos 5% de violações, um percentual maior (6 a 8%) poderá ocorrer 

por mera causalidade. Mas se em um dado momento o número de violações for muito grande, 

como 10 a 20%, os órgãos reguladores deveram concluir que a alta taxa de violações não são 

em função da causalidade e sim da má especificação do modelo. 

Acurácia 

Tempo de processamento 

Monte 
Carlo 

Delta normal 

Delta – Gama 
Monte Carlo 

Delta – Gama - Delta 
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 Os usuários do VaR terão o mesmo dilema, o que seu modelo só será útil se este 

prever corretamente o número de falhas. Caso haja muitas violações do modelo de VaR, este 

modelo devera ser reavaliado e talvez substituido. Nas subseções a seguir apresentamos 

técnicas para verificar a acurácia dos modelos de VaR. 

 

3.8.1 Back Testing e Kupiec (1995) 

 

 O Comitê de Basiléia requer das instituições financeiras uma verificação de back 

testing para seus modelos internos de VaR. Back testing é um procedimento a posteriori sobre 

o qual as instituições financeiras checam quanto das perdas superaram o valor previsto no 

VaR. Se uma instituição possui um VaR com 99% de confiança suas perdas não devem 

ultrapassar 1%. Para um ano (250 dias), a instituição deve observar no máximo 3 perdas 

superiores ao VaR. 

 O capital que as instituições devem possuir como garantia do risco de mercado, 

segundo o comitê de Basiléia, no tempo t deve ser: 

 

t
i

tittt SRVaRVaRAC +

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 ∑=
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60
1max       ( 3.53) 

 

 Onde Ct é o capital requerido no tempo t, At é fator multiplicativo que varia entre 3 e 4 

e SRt é um capital específico de risco. 

 O capital específico de risco é parte do risco de mercado. De acordo com os novos 

requerimentos de capital de risco, este é classificado entre riscos gerais e específicos (ou 

sistemáticos e não sistemáticos). 

 Na Equação (3.53) o valor de At depende da acurácia do modelo interno de VaR 

durante os últimos períodos, por exemplo, um ano. Segundo Telfah (2003), o Comitê de 

Basiléia divide o número de violações em três zonas: zona verde, amarela e vermelha. A zona 

verde é aplicada quando o número de violações (para um VaR de 99% e para um ano) ocorre 

em 1,6% dos casos, assim At assume um valor de 3. A zona amarela significa um número de 

violações entre 2 e 3,6% (de 5 a 9 violações neste caso), At assume um valor entre 3 e 4. E a 

zona vermelha equivale a mais de 4% de violações, tomando At um valor de 4. Se o modelo 

estiver na zona vermelha, então este deverá ser revisado. 



 105

 
 Wiener (1997) argumenta que este procedimento previne que os bancos apresentem 

baixos valores de VaR, reduzindo o capital colocado como garantia, os bancos só 

apresentariam valores baixos de VaR se estes correspondessem à realidade. 

 Kupiec (1995) comenta que o Comitê de Basiléia recomenda o back testing, no 

entanto não fornece detalhes para verificar sua eficácia. Kupiec (1995) desenvolveu um 

modelo para verificar o número de vezes que as perdas efetivas podem superar o VaR de 

modo que este ainda seja considerado aceitável. 

 Segundo Bezerra (2001), Kupiec considerando a razão de log-verossimilhança dada 

pela Equação (3.54) a seguir, desenvolveu para vários períodos, intervalos de não rejeição da 

hipótese nula de que p é a correta proporção de falhas49, 
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    ( 3.54) 

 
que possui uma distribuição qui-quadrado com um grau de liberdade, sob a hipótese que p é a 

verdadeira probabilidade e onde x é o número de falhas observadas em uma amostra de 

tamanho n. Portanto, rejeita-se a hipótese nula se LR>3,84 (Jorion, 2003). A Tabela 3.3 

fornece regiões de não rejeição de erros ao nível de 0,05. 

 

Tabela 3.3: Intervalo de não rejeição da hipótese nula de que a proporção de falhas p* é igual 
a p, a 5% de confiança. 

p = p* (%) n  = 255 dias n  = 510 dias n  = 1000 dias 
1,0 x < 7 1 < x < 11 4 < x < 17 
2,5 2 < x < 12 6 < x < 21 15 < x < 36 
5,0 6 < x < 21 16 < x < 36 37 < x < 65 
7,5 11 < x < 28 27 < x < 51 59 < x < 92 
10,0 16 < x < 36 38 < x < 65 81 < x < 120 

Fonte: Jorion (2003), adaptado de kupiec (1995). 

 

 Na Tabela 3.3 o número x indica a quantidade de insucessos que poderiam ser 

observados numa amostra de tamanho n, sem rejeitar a hipótese nula de p é a correta 

probabilidade a um nível de significância de 5%. 

                                                 
49 Observe que Kupiec utiliza p como o número de falhas real dividido pelo total de dias. Já p* é relativo ao nível 
de confiança do VaR, ou seja para um VaR de 99%, o p*  seria 0,01. 
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 Kupiec também fornece uma outra forma de testar o modelo de VaR. A Tabela 3.4 

fornece o tamanho da amostra para uma quantidade máxima de violações para que a hipótese 

nula seja rejeitada. 

 

Tabela 3.4: Número máximo do tamanho da amostra para que a hipótese p = p* seja rejeitada 
a 5% de confiança. 

Número de falhas p* = 0,01 p* = 0,02 p* = 0,03 p* = 0,04 p* = 0,05 
1 6 3 - - - 
2 34 17 11 9 - 
3 75 38 26 19 16 
4 125 63 42 32 26 
5 180 91 61 46 37 
6 240 121 81 61 49 
7 302 152 102 77 62 
8 367 184 124 93 75 
9 434 218 146 110 88 
10 501 253 169 127 102 

Fonte: Bezerra (2001). 

 

3.8.2 O Procedimento de Lopez. 
 

 Lopez (1996) apresenta um procedimento para avaliar os modelos de risco baseado em 

uma função de perda, tornando-se uma viável alternativa aos modelos que se baseiam em 

estatísticas de teste como o de Kupiec (1995)50. A idéia de Lopez (1996) foi criar uma função 

de perda que incorpore os critérios julgados importantes pelos órgãos de regulamentação. O 

melhor modelo seria aquele que minimizasse essa função. 

 No presente trabalho fez-se a opção de utilizar a função de perda apresentada por 

Lopez (1998)51, a qual para um modelo m qualquer tem a seguinte forma: 

 

∑=
=

T

t
tmm C

T
C

1
,

1          ( 3.55) 

 

 onde, 

 

                                                 
50 Outros modelos que levam em conta estatísticas de teste estão em Mollica (1999), como o modelo de 
Christoffersen (1996) e Chrkovic e Drachman (1996). 
51 Ou alguma adaptação deste, conforme a conveniência. 
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 Sendo VaRm,t o VaR estimado pelo modelo m para o período t e Pt a variação 

monetária no valor de mercado da carteira efetivamente observada em t. Esta função é 

semelhante à medida de erro quadrático médio utilizado na avaliação da precisão de previsões 

pontuais. Com a diferença que na Equação (3.55) a magnitude do erro só influência a função 

quando o VaR é extrapolado.  

Esta medida de erro avalia a magnitude da perda quando o VaR é extrapolado, além de 

levar em conta a freqüência do erro. O melhor modelo será aquele que apresentar uma 

freqüência de erro mais próxima do esperado e no qual os erros são menores em relação ao 

VaR estimado. 

 A grande vantagem deste método sobre os que utilizam estatísticas de teste é a não 

necessidade de aplicar qualquer tipo de teste de hipóteses para verificar a adequação dos 

modelos. Com isso, evita-se o problema de baixa potência52 dos testes dos métodos apoiados 

em critérios estatísticos (Mollica, 1996). 

 

3.9 Evidências Empíricas. 

 

 Esta seção irá tratar de uma revisão sintética de alguns trabalhos sobre a avaliação de 

estimativas de VaR, seja por métodos paramétricos ou não paramétricos, seja comparando o 

mesmo modelo mas com variáveis diferentes, notadamente a volatilidade. 

 Théorêt e Rostan (2000) realizaram um estudo das estimativas de VaR obtidos pela 

simulação histórica e pela simulação de Monte Carlo. Para tal, os autores utilizaram títulos do 

governo canadense de 10 anos de posse de um investidor americano, esta carteira era exposta 

a dois fatores de risco: taxa de câmbio e taxa de juros. O VaR histórico foi montado de duas 

formas: com volatilidade constante (como a da Equação (2.34)) e utilizando a volatilidade 

EWMA. Já a técnica de Monte Carlo utilizou a suposição de normalidade para os dois fatores 

de risco em um primeiro momento adotando-se a decomposição de Cholesky; em um segundo 

momento foi suposto a não normalidade dos fatores de risco, admitindo que a correlação entre 

os fatores era respeitada naturalmente pelos dados. Os autores mostraram que o método onde 
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a proporção de violações do VaR estava mais próxima do nível de confiança utilizado foi o 

método de Monte Carlo com a suposição de distribuição normal, este com 5,03% de 

violações, contra 4,70% do método de simulação histórica com volatilidade constante, 6,71% 

para os outros dois modelos (simulação histórica com volatilidade do modelo EWMA e 

Monte Carlo sem a suposição de distribuição normal dos fatores de risco). 

 Ammann e Reich (2001) estruturaram um trabalho para comparar a eficiência 

preditiva do VaR de instrumentos não lineares via aproximações lineares e o método de 

Monte Carlo. Os métodos de aproximação linear utilizados foram: o método da variância – 

covariância, o delta normal, e algumas extensões; os métodos de Monte Carlo foram: o 

método tradicional e o método de quase Monte Carlo. Os autores mostraram que os modelos 

simples de aproximação linear são razoavelmente eficazes em muitos casos. Mas para 

carteiras com um número razoável de opções os métodos de Monte Carlo tradicionais são 

mais eficientes. De uma forma geral eles encontraram: 

 

• Para carteiras sem opções (e sem instrumentos lineares) a metodologia delta-

normal representou uma boa aproximação do método de Monte Carlo; O resultado 

deteriora-se quando aumenta o tempo de horizonte do VaR e o nível de confiança; 

• Para carteiras com posições não lineares mais acentuadas os resultados diferem 

substancialmente entre o VaR delta – normal e o de Monte Carlo, esta discrepância 

aumenta com o tempo de horizonte do VaR e o nível de confiança; 

• A diferença entre aproximações lineares e a metodologia de Monte Carlo aumenta 

com o uso de opções com pequeno tempo de vencimento. 

 

Um outro trabalho envolvendo o VaR para uma carteira que possui opções foi 

desenvolvido por Pichler e Selitsch (1999), estes compararam modelos analíticos de VaR 

focando na segunda ordem da expansão de Taylor dada pela Equação (3.45). Foram 

analisadas diferentes combinações de momentos. Para comparação foi utilizado o 

procedimento de backtesting baseado na geração aleatória de fatores de riscos para os 

retornos. Os autores concluíram que os modelos dependedentes apenas dos quatro primeiros 

momentos das perdas e ganhos são pouco eficientes. A inclusão de maiores momentos, neste 

trabalho a expansão de Cornish-Fisher com seis momentos mostrou-se mais apropriada. 

Bezerra (2001) utilizando ações e opções da Petrobrás elaborou uma comparação entre 

as metodologias analíticas e de Monte Carlo. A comparação e validação dos modelos foram 

                                                                                                                                                         
52 Alta probabilidade de aceitar uma hipótese nula falsa. 
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realizadas via o teste de proporção de falhas de Kupiec (1995), apresentado na Seção 3.8.1.. 

Todos os modelos analíticos testados foram rejeitados pelo teste de falhas, a explicação do 

autor é que as opções da Petrobrás utilizadas, possuem grandes variações no seu valor e o 

modelo analítico pressupõe pequenas variações deste. Entretanto, quando o número de ativos 

da carteira é muito elevado o autor recomenda as metodologias analíticas em função do baixo 

custo de processamento numérico. 

Os métodos de Monte Carlo adotados no trabalho utilizaram o modelo de precificação 

de Black & Scholes, o modelo de precificação de Hull & White e o método de Hull& White 

com juros estocásticos.  Para todos os modelos os resultados obtidos foram compatíveis, não 

acrescentando aumento de eficiência à inclusão de volatilidade implícita e de juros 

estocásticos. 

No grupo de trabalhos que visam identificar sob que tipo de volatilidade o VaR possui 

o melhor comportamento pode-se destacar Mollica (1999), este trabalho foi realizado com o 

VaR delta normal, tendo como aspecto crucial à estimação da matriz de covariâncias. As 

volatilidades foram estimadas pelos modelos EWMA, GARCH e volatilidade estocástica. O 

autor também utilizou a simulação histórica para comparar com os modelos anteriores. Para 

comparar os resultados a metodologia adotada foi à desenvolvida por Lopez (1998). Como 

resultados os modelos com a volatilidade EWMA e simulação histórica apresentaram-se 

pouco adaptativos. Já os modelos com volatilidade estocástica possuíram maior 

adaptatividade.  

Em termos da função de perda de Lopez (1998) os resultados obtidos foram diferentes 

para cada uma das duas carteiras de ativos sem risco e de risco do mercado brasileiro 

analisadas (ambas sem ativos não lineares). Para a primeira carteira o delta normal com 

volatilidade estocástica foi superior, na segunda carteira o modelo preferido é o delta normal 

com a volatilidade EWMA. 

Um trabalho semelhante foi realizado por Schittenkopf et al. (2002), neste caso, 

entretanto, as carteiras eram compostas por opções. Três volatilidades: a constante, a 

estocástica e a condicional (GARCH), foram comparadas via o VaR de Monte Carlo. Ao 

contrário de Mollica (1999), os autores não encontraram evidências de superioridade de uma 

técnica para outra. 

Também na linha de raciocínio acima, Lehar (2000) compara os modelos de Black & 

Scholes (volatilidade constante) e o modelo de Hull & White (volatilidade estocástica) com 

dados do mercado de ações austríaco. Os modelos de avaliação do VaR foram o delta normal, 

a simulação de Monte Carlo e o método conhecido como delta plus. A avaliação obtida a luz 
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de várias variáveis de teste mostra que os resultados obtidos podem variar em função da 

perspectiva de observação, a colocação da volatilidade como fonte de risco incrementa o 

resultado do VaR, os modelos funcionam melhor com as opções de compra, de uma forma 

geral o modelo de Monte Carlo com volatilidade estocástica (Hull & White) saiu-se melhor 

no teste de proporção de falhas.  
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4 RESULTADOS EMPÍRICOS  
 

 

Este capítulo contempla a aplicação dos métodos e conceitos, já descritos, aos dados 

do mercado acionário brasileiro. Inicialmente apresenta os dados utilizados bem como 

descreve os ajustes iniciais e informações gerais sobre tais conjuntos de dados. Em um 

segundo momento  tais dados e informações são utilizados para calcular o Value at Risk nas 

suas diversas possibilidades, sejam estáticas ou dinâmicas, sejam paramétricas ou não 

paramétricas.  

 

4.1 Os Dados 

 

Neste trabalho o objetivo é analisar o mercado acionário brasileiro a luz da teoria 

econômica – financeira verificando como descrever corretamente os riscos de mercado a 

partir da metodologia do VaR. O mercado acionário brasileiro, como pode ser constatado na 

Tabela 4.1 a seguir, ao longo dos últimos 10 anos vem se desenvolvendo e se consolidando. A 

Bolsa de Valores de São Paulo (BOVESPA) encerrou o ano de 2003 com um volume 

financeiro de R$ 204,5 bilhões, o que representa uma alta de 47,2% em relação ao ano de 

2002. 

 

Tabela 4.1: Volume total negociado na BOVESPA no período de 1994 a 2003 em milhões de 
reais. 

Período À vista Termo Opções Total 
1994 48.386,20 153,10 12.054,90 60.594,20
1995 52.993,50 283,20 10.273,80 63.550,60
1996 87.929,00 558,20 9.991,30 98.478,50
1997 187.116,10 1.186,50 18.138,00 206.440,60
1998 148.323,20 982,00 12.539,20 161.844,30
1999 143.340,80 1.916,40 8.821,50 154.078,70
2000 169.704,80 7.247,60 8.238,20 185.190,60
2001 135.441,10 6.443,10 8.420,50 150.304,70
2002 125.728,50 5.110,40 8.130,20 138.969,10
2003 181.936,30 6.443,90 16.202,30 204.582,50

Fonte: Bovespa 
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 Em 2002 o mercado a vista correspondeu a 88,93% do volume no ano, seguido pelo de 

opções com 7,92% e por fim o mercado a termo com 3,15%. Os dois primeiros são objetos de 

estudo deste trabalho; destaque especial deve ser dado ao mercado de opções que teve sua 

participação elevada de 6,2% em 2002 para os 7,92% de 2003. Das operações com opções R$ 

14,9 bilhões foram de opções sobre ações, em particular opções de compra e venda de ações 

da Telemar, sendo também relevantes as opções sobre ações da Petrobrás e Vale do Rio Doce 

(Segundo a CBLC). 

 Historicamente (praticamente desde o seu lançamento) a ação com maior volume 

financeiro de negócios foi a Telemar PN (tnlp4), em 2003 seu volume de negócios foi de R$ 

28,89 bilhões, a da Petrobrás PN (petr4) foi de R$ 16,18 bilhões, a Vale do Rio Doce PNA 

(vale5) R$ 6,79 bilhões (segundo a própria BOVESPA). Estas três juntas correspondem a 

28,50% de todo o volume de negócios de mercado a vista da BOVESPA, por este motivo 

estas ações e suas equivalentes opções são o objeto específico de estudo deste trabalho. 

 

4.1.1 As Ações 

 

 As séries das ações utilizadas correspondem ao período de  17/03/1999 a 19/03/2004, 

totalizando 1244 observações para cada ação. Os raros casos de “missing value” foram 

corrigidos utilizando-se o conceito de passeio aleatório. Os dados foram divididos em dois 

grupos: o primeiro que vai de 17/03/1999 a 18/03/2002 é utilizado para o cálculo dos 

parâmetros, testes, e estimativas necessárias; o segundo grupo de 19/03/2002 a 19/03/2003 

para verificação da eficácia dos modelos. Para algumas carteiras o VaR foi calculado e 

verificado num período de 2 anos, assim sendo, o segundo grupo foi alterado para 19/03/2001 

a 19/03/2003 (obviamente o primeiro grupo foi reduzido para 14/03/1999 a 18/03/2001). A 

fonte de dados para as ações foi o da empresa Economática. Os códigos utilizados foram 

programados na plataforma do Matlab 6.13. 

 A Figura 4.1 a seguir mostra a variação do preço de fechamento da tnlp4 ao longo do 

período de análise, já a Figura 4.2 mostra o retorno diário da ação. O retorno diário de todas 

as ações foram calculados a partir da Equação 2.35 já apresentada. 
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Figura 4.1: Valor de fechamento diário da Telemar PN no período de 17/03/1999 a 
19/03/2004. 
Fonte: Elaboração própria. 
 

 A partir da análise dos preços de fechamento da tnlp4 pode-se concluir que há fases de 

alta, de baixa e algumas quebras de tendência, como por exemplo no início do ano de 2003, 

aproximadamente por volta da observação 950. 

 Já com relação ao retorno desta ação para o período o que se pode concluir é que ele é 

caracterizado por uma relativa baixa volatilidade visto que um intervalo de confiança de ±5% 

incorpora quase todos os retornos, indicando que uma análise baseada na hipótese de 

normalidade dos retornos pode ser suficiente para o cálculo do VaR. 

 O primeiro passo deste trabalho é verificar os fatos estilizados observados por Taylor 

(1986) e já apresentados53. O primeiro dos fatos estilizados é a tendência ao agrupamento da 

volatilidade facilmente observada na Figura 4.2. 

 

                                                 
53 Observar seção 2.4.1 
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Figura 4.2: Retorno diário da Telemar PN no período de 17/03/1999 a 19/03/2004. 
Fonte: Elaboração própria. 
 
 

A Tabela 4.2 apresenta estatísticas básicas que corroboram ou não com Taylor (1986). 

A distribuição apresenta excesso de curtose, mas a assimetria não é negativa. Já o teste de 

Jarque-Bera confirma a não normalidade do retorno, não normalidade também confirmada 

pelas Figuras 4.3. A Figura 4.3 a) mostra que a distribuição dos retornos tem caudas maiores 

que a da distribuição normal, tanto à direita quanto a esquerda. E a Figura 4.3 b) confirma que 

o pico em torno da média é mais alto que em uma distribuição normal. Em ambas, a 

distribuição real é indicada em azul e a normal em vermelho. 

No entanto, quando a comparação é feita com os demais ativos observa-se que este 

ativo apresenta a distribuição mais próxima à distribuição normal. O que pode ou não ser 

confirmada nas análise posteriores. 
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Tabela 4.2: Estatísticas descritivas para os retornos da Telemar PN. 

  Estimativa P. Value   Estimativa P. Value 
Média 0,00080 0,3230 Desvio Padrão 0,02855 - 
Mediana -0,00022 - Assimetria 0,17723 - 
Mínimo -0,09146 - Curtose 3,95684 - 
Máximo 0,13362 - Jarque-Bera 53,28000 0,0000 
Fonte: Elaboração própria. 
 

-0.05 0 0.05 0.1

0.001
0.003
0.01 
0.02 
0.05 
0.10 

0.25 

0.50 

0.75 

0.90 
0.95 
0.98 
0.99 
0.997
0.999

Dados

P
ro

ba
bi

lid
ad

e

-0.1 0 0.1 0.2 0.3
0

50

100

150

200

250

 
a) Gráfico de probabilidade normal.     b) Histograma da distribuição. 

Figura 4.3: Gráficos de análise de distribuição para o retorno da Telemar PN. 
Fonte: Elaboração própria. 
 

A próxima Figura (4.4) é relativa à variação do preço de fechamento da petr4 ao longo 

do período de estudo, e a Figura 4.2 mostra o retorno diário da ação. 
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Figura 4.4: Valor de fechamento diário da Petrobrás PN no período de 17/03/1999 a 
19/03/2004. 
Fonte: Elaboração própria. 
 

 A partir da análise dos preços de fechamento da petr4 observa-se uma maior tendência 

de alta, todavia ocorre um período relativamente longo de aparente estabilidade, entre a 

observação 200 e a 800. Entretanto, a exemplo da Telemar PN, há uma forte quebra de 

tendência no início do ano de 2003, aproximadamente por volta da observação 950. 

 Já com relação ao retorno desta ação para o período, apresentado na Figura 4.5, pode-

se perceber o fenômeno de agrupamento da volatilidade. 
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Figura 4.5: Retorno diário da Petrobrás PN no período de 17/03/1999 a 19/03/2004. 
Fonte: Elaboração própria. 
 

Na Tabela 4.3 estão as estatísticas básicas com comportamento semelhante ao da 

Telemar PN. Confirmando a não normalidade da distribuição do retorno, não normalidade 

também confirmada pelas Figuras 4.6. A única diferença é a média que não pode ser 

considerada estatisticamente igual a zero a 5%. 

 

Tabela 4.3: Estatísticas descritivas para os retornos da Petrobrás PN. 

  Estimativa P. Value   Estimativa P. Value 
Média 0,00129 0,0466 Desvio Padrão 0,02290 - 
Mediana 0,00060 - Assimetria 0,19944 - 
Mínimo -0,09811 - Curtose 4,87909 - 
Maximo 0,11952 - Jarque-Bera 189,57 0,0000 
Fonte: Elaboração própria. 
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a) Gráfico de probabilidade normal.     b) Histograma da distribuição. 

Figura 4.6: Gráficos de análise de distribuição para o retorno da Petrobrás PN. 
Fonte: Elaboração própria. 

 

Por fim a variação do preço de fechamento da vale5 ao longo do período de análise é 

apresentado na Figura 4.7 a seguir. Uma simples análise do gráfico mostra que o 

comportamento da Vale do Rio Doce PNA é diferente dos comportamentos das demais ações 

estudadas, nesta ação há uma nítida tendência de alta em todo o período de análise, mas com 

uma forte ruptura de tendência no fim da série. 

Apesar da diferença de comportamento das ações, o que torna a presente análise mais 

rica em detalhes, uma observação deve ser feita. Há uma mudança de comportamento no fim 

de 2002 e no início de 2003 baseado nas expectativas. No fim de 2002 incertezas políticas 

quanto ao futuro do País fizeram com que os investidores mudassem suas carteiras. No 

entanto, em 2003 com a definição da política econômica brasileira e com a gradativa queda 

dos juros da economia houve um fortalecimento do mercado de capitais brasileiro, 

especialmente importante por que não houve apenas uma valorização dos papéis, mas 

principalmente porque ela foi acompanhada por um aumento no volume de negociações (ver 

Tabela 4.1). 
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Figura 4.7: Valor de fechamento diário da Vale do Rio Doce PNA no período de 17/03/1999 a 
19/03/2004. 
Fonte: Elaboração própria. 
 

 Tal avaliação corrobora com a teoria das expectativas54 sobre o mercado de capitais, o 

desafio é modelar esta expectativa, em especial, como modelar um mercado onde ocorrem 

tantas mudanças de perspectivas por parte dos agentes econômicos, mudanças estas nem 

sempre compartilhadas em todo o mercado em função de diferenças inerentes dentro de cada 

companhia que lança suas ações na bolsa. 

 Quanto ao retorno da ação da Vale do Rio Doce não existem diferenças significativas 

visíveis no gráfico apresentado na Figura 4.8; resta analisar as estáticas descritivas desta 

distribuição dos retornos. 

  

                                                 
54 Segundo esta teoria as decisões são tomadas com base no que o agente acredita que possa acontecer no futuro, 
tais decisões baseiam-se muitas vezes nas emoções e na falta de conhecimento pleno sobre a situação. 
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Figura 4.8: Retorno diário da Vale do Rio Doce PNA no período de 17/03/1999 a 19/03/2004. 
Fonte: Elaboração própria. 
 

 A Tabela 4.4 demonstra que a série de retornos da Vale do Rio Doce PNA também 

não segue uma distribuição de freqüência normal, confirmada pelas Figuras 4.9.  

Uma ressalva deve ser feita com relação ao teste de normalidade das séries financeiras, 

principalmente quando se trata de mercados aparentemente não eficientes como o brasileiro. 

Os testes levam em consideração todos os dados, não raro são as presenças de outliers neste 

tipo de série, muitas vezes motivadas por eventos sistêmicos da economia local como também 

a perturbações em indústrias locais (como vazamento de uma rede de distribuição de 

petróleo), ou para o caso da Petrobrás e Vale do Rio Doce55 instabilidade no mercado 

internacional de commodities. Entretanto, estes fenômenos são fundamentais em um trabalho 

que visa identificar perdas extremas, que é o caso. 

 

 

 

 

                                                 
55 A Vale do Rio Doce é uma empresa tipicamente exportadora. 
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Tabela 4.4: Estatísticas descritivas para os retornos da Vale do Rio Doce PNA. 

  Estimativa P. Value   Estimativa P. Value 
Média 0,0016 0,0129 Desvio Padrão 0,0222 - 
Mediana 0,0003 - Assimetria 0,2809 - 
Mínimo -0,0983 - Curtose 5,2689 - 
Maximo 0,1074 - Jarque-Bera 280,9279 0,0000 
Fonte: Elaboração própria. 
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a) Gráfico de probabilidade normal.     b) Histograma da distribuição. 

Figura 4.9: Gráficos de análise de distribuição para o retorno da Petrobrás PNA. 
Fonte: Elaboração própria. 
 

 Apresentadas as três séries de ações uma observação é pertinente, nem a Telemar PN, 

Petrobrás PN e Vale do Rio Doce PNA apresentaram os fatos estilizados das séries 

financeiras dos mercados mais desenvolvidos, sendo um indício que modelos criados para 

estes mercados podem não funcionar plenamente no mercado brasileiro. 
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4.1.2 As Opções 

 

As bases de dados de opções foram obtidas junto a BOVESPA e correspondem ao 

período de 17/03/2002 a 19/03/2004, somente opções com liquidez igual ou acima de 5 

negócios por dia foram utilizadas neste trabalho, mesmo critério utilizado por Barros e 

Lemgruber (1997) e Araújo, Barbedo e Lemgruber (2004). Entre as séries foram selecionadas 

as mais no dinheiro, mais fora do dinheiro e mais dentro do dinheiro que atendessem ao 

critério de liquidez. Segundo estes critérios apenas constitui-se uma base de dados razoável as 

opções de compra da Telemar PN, compreendendo para o período 21 vencimentos diferentes 

num total de 526 observações para cada série. 

A figura a seguir apresenta a variabilidade do valor de fechamento das três séries de 

opções utilizadas neste trabalho. 
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Figura 4.10: Fechamento diário das opções da Telemar PN no período de 17/03/2002 a 
19/03/2004. 
Fonte: Elaboração própria. 
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 O retorno de um investidor de uma carteira de opções (independente da estratégia) 

deve ser calculado levando em consideração se a  posição total é mais comprada ou mais 

vendida, essa posição é identificada no momento da definição da carteira. Se a posição líquida 

é comprada, o investidor ganhará com o aumento no valor da carteira, se a posição é vendida 

há ganhos com a desvalorização da carteira. 

 

4.2 Estacionariedade, Autocorrelação e Heterocedasticidade das 
Séries. 

 

A primeira etapa na análise das séries financeiras em questão é avaliar aspectos 

fundamentais e críticos das séries temporais. Iniciando pela avaliação da presença de raiz 

unitária para os retornos. A Tabela 4.5 a seguir apresenta as estatísticas do teste de Augmented 

Dickey-Fuller t-test56 (ADF) para avaliar a presença de raiz unitária das séries de ações 

consideradas. Como pode ser observado, os resultados indicam a ausência de raízes unitárias 

já que o valor calculado do teste é menor que o valor crítico, ou seja, a série pode ser 

considerada estacionária. 

 

Tabela 4.5: Teste ADF 

Série ADF calculado 
Telemar PN -23,23 
Petrobrás PN -27,50 
Vale do Rio Doce PNA -30,45 

  Valor crítico a 5%: -2,86 
Fonte: Elaboração própria. 
 

 Como as séries não possuem raiz unitária não há necessidade de realizar 

diferenciações, o que é normal para a maioria das séries financeiras, lembrando que o próprio 

cálculo do retorno é uma diferenciação. A principal implicativa econômica é que não havendo 

raízes unitárias os choques não terão efeitos permanentes (Greene, 2000). Sabendo que as 

séries são estacionárias deve-se avaliar a presença de autocorrelações, ou correlação serial dos 

erros entre períodos de tempo. 

                                                 
56 A distribuição do teste ADF é a τ, construída através de experimento de Monte Carlo por Dickey e Fuller 
(Enders, 1995). 
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 A autocorrelação pode ser verificada qualitativamente por meio de funções de 

autocorrelação, as quais são apresentadas na Figura 4.11. A análise gráfica mostra que não há 

autocorrelação para a série da Vale do Rio Doce PNA, entretanto, o gráfico deixa dúvida com 

respeito a Telemar PN e Petrobrás PN. Para eliminar tal dúvida uma avaliação quantitativa é 

necessária. No entanto antes se analisar a autocorrelação dos retornos quadráticos com a 

Figura 4.12. 
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Figura 4.11: Função de autocorrelação do retorno para Vale do Rio Doce PNA, Petrobrás PN 
e Telemar PN; respectivamente. 
Fonte: Elaboração própria. 
 

 Os gráficos da Figura 4.12 mostram autocorrelação do retorno ao quadrado para a 

Vale do Rio Doce PNA e para a Telemar PN, mas não para a Petrobrás PN, com estes 

resultados uma análise quantitativa também se mostra necessária. 

 Para quantificar as verificações quantitativas de autocorrelação é possível utilizar um 

teste de hipóteses formal como o Ljung-Box-Pierce Q-teste57, o Q-teste é usualmente utilizado 

na pós-análise aplicado aos resíduos. Entretanto, neste caso, adota-se este teste na análise 

prévia supondo que num modelo GARCH (1,1) simples o retorno é obtido por uma constante 

                                                 
57 Veja Box, Jenkins e Reinsel (1995) pág. 314. 
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simples e um processo de inovação puro58. Sob a hipótese nula de autocorrelação o Q-teste 

tem uma distribuição assintoticamente Q-quadrado. 
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Figura 4.12: Função de autocorrelação do retorno ao quadrado para Vale do Rio Doce PNA, 
Petrobrás PN e Telemar PN; respectivamente. 
Fonte: Elaboração própria. 
 

 A Tabela 4.6 a seguir verifica, ao menos aproximadamente, autocorrelação não 

significante dos retornos quando testados com 10, 15 e 20 defasagens (lags) da função de 

autocorrelação com 5% de significância. O mesmo é feito na Tabela 4.7, mas com relação aos 

erros quadrados. 

 

Tabela 4.6: Q-teste para os retornos das séries. 

  Vale do rio Doce PNA Petrobrás PN Telemar PN   
Defasagens P-Value Estatística P-Value Estatística P-Value Estatística Valor Crítico 

10 0,2656 12,299 0,0007 30,606 0,0527 18,134 18,307 
15 0,5019 14,314 0,0015 36,489 0,0896 22,750 24,9958 
20 0,5103 19,178 0,0052 39,868 0,0630 30,445 31,4104 

Fonte: Elaboração própria. 
 

                                                 
58 Assim os testes são feitos com Cytt −=ε , logo um teste no retorno equivale ao teste sobre o erro no 
modelo padrão. 
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 Os resultados da Tabela 4.6 mostram que não há autocorrelação para a Vale do Rio 

Doce PNA e para a Telemar PN, já a Petrobrás PN possui autocorrelação serial no seu retorno 

(erro). A Tabela 4.7 a seguir mostra que todas as séries apresentam autocorrelação no 

quadrado dos retornos (quadrado do erro), indicando que a modelagem no quadrado do erro 

pode ser viável. 

 

Tabela 4.7: Q-teste para os retornos quadrado das séries. 

  Vale do rio Doce PNA Petrobrás PN Telemar PN   
Defasagens P-Value Estatística P-Value Estatística P-Value Estatística Valor Crítico 

10 0,0000 87,730 0,0116 22,774 0,0000 100,552 18,307 
15 0,0000 113,407 0,0448 25,404 0,0000 120,054 24,9958 
20 0,0000 119,990 0,0391 32,416 0,0000 148,815 31,4104 

Fonte: Elaboração própria. 
 

 Tão ou até mais importante que os testes já feitos são os testes relacionados com o 

desenho da variância (e do desvio padrão por conseqüência), esta questão passa pelo aspecto 

da heterocedasticidade. Na Seção 2.4.2.2 item A está descrito o teste feito cujo resultado 

encontra-se na Tabela 4.8 a seguir. 

 

Tabela 4.8: Teste de Engle proposto por Bourbonnais e Terraza (1998). 

 Vale do rio Doce PNA Petrobrás PN Telemar PN  
Defasagens P-Value Estatística P-Value Estatística P-Value Estatística Valor Crítico 

10 0,0000 62,782 0,0483 18,421 0,0000 60,783 18,307 
15 0,0000 72,568 0,2063 19,167 0,0000 69,705 24,9958 
20 0,0000 79,658 0,1771 25,667 0,0000 76,782 31,4104 

Fonte: Elaboração própria. 
 

 Os resultados da Tabela 4.8 mostram que há pelo menos 5 defasagens do modelo 

ARCH para a Petrobrás PN e 20 defasagens para as demais séries e mostra significativas 

evidências de suporte aos efeitos heterocedásticos, confirmando mais um dos fatos estilizados 

de Taylor (1986). Entretanto esta quantidade de defasagens tornaria o modelo de previsão da 

volatilidade pouco parcimonioso, a alternativa é o modelo GARCH que apresenta de forma 

mais parcimoniosa a dependência temporal da variância condicional. Para verificar a presença 

de termos significativos do modelo GARCH em acréscimo aos termos do modelo ARCH 

utiliza-se o teste proposto na Seção 2.4.2.2 item B. 

 Este teste é o mesmo Q-teste para o quadrado dos resíduos descrito na Tabela 4.7 

confirmando a possibilidade de estimar a variância condicional via modelos GARCH. 
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 Por fim, o teste de assimetria dos impactos, ou seja, se há respostas diferentes para 

choques nos retornos, caso positivo ou negativo. Esta verificação é feita pelo teste proposto na 

Seção 2.4.2.2 item C, cujos resultados estão na tabela a seguir (Tabela 4.9), nesta observa-se 

que não existe sustentação a hipótese de assimetria negativa visto que a correlação entre os 

quadrados dos resíduos padronizados e os resíduos padronizados defasados não são 

significativamente diferentes de zero, tanto para a Vale do Rio Doce PNA quanto para a 

Telemar PN. Já a Petrobrás PN por possuir correlação negativa e significativamente diferente 

de zero a 5% mostra que modelos que capturam a assimetria como EGARCH e GARCH-L 

tendem a melhores resultados. 

 

Tabela 4.9: Teste de assimetria de impactos. 

 Correlação P-Value

Vale do Rio Doce PNA 0,0354 0,2650 

Petrobrás PN -0,0775 0,0147 

Telemar PN -0,0046 0,8847 
Fonte: Elaboração própria. 
 

4.3 Seleção dos Modelos de Volatilidade 
 

Uma vez identificado que os modelos autoregressivos heterocedásticos são os mais 

indicados às séries objetos de estudo, resta selecionar entre estes os mais eficientes, para tal, 

utilizou-se de técnicas já consolidadas na literatura, o Q-teste, a metodologia de Akaike (AIC) 

e a Baysian (BIC) descritas por Box, Jenkins e Reinsel (1994). 

Em função das defasagens r, m, p e q59 há diversas variações de modelos referentes a 

cada família (GARCH, EGARCH e GARCH-L), a seleção dentro de cada família é feita entre 

os modelos com defasagens variando entre 0 e 4 para as equações de volatilidade e 0 e 1 para 

equações de médias. O tamanho da janela de observações tem papel fundamental nesta parte 

do trabalho, por duas razões: a primeira é a fundamentação teórica de quanto maior a janela, 

melhores os resultados, conforme apresentado em 3.2. A segunda razão é a variação dinâmica 

do comportamento conforme observado nos gráficos de retorno das ações. Por tal razão testar-

se-á dois tamanhos de janelas: um ano e dois anos60. 

                                                 
59 Ver seção 2.4.2 para detalhes dos modelos GARCH, EGARCH e GARCH-L. 
60 Testaram-se janelas maiores, no entanto, houve problemas de convergência para maiores defasagens. 
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Os resultados completos do teste Q, do AIC e BIC estão no Apêndice 1. Na Tabela 4.10 

um quadro resumo dos modelos ARMA (r,m) – GARCH (p,q) selecionados para uma janela 

de um ano (255 dias). Analisando o Apêndice 1 percebe-se que não há diferenças 

significativas entre os modelos selecionados pelos testes baseados no Q-teste e os modelos 

mais parcimoniosos ARMA (0,0)-GARCH (1,1). Desta forma os modelos que melhor se 

ajustam às séries pelos critérios BIC e Q-teste são os modelos ARMA (0,0)-GARCH (1,1). 

 

Tabela 4.10: Quadro resumo com os melhores modelos ARMA-GARCH com janela de 255 
dias. 

 Q – teste (4) Q – teste (8) AIC BIC 

Vale do Rio Doce PNA (0,0) (1,2) (0,0) (2,2) (1,0) (1,1) (0,0) (1,1) 

Petrobrás PN (0,0) (1,3) (0,0) (1,1) (0,1) (1,2) (0,0) (1,1) 

Telemar PN (0,0) (1,4) (0,0) (1,1) (1,1) (1,3) (0,0) (1,1) 
Fonte: Elaboração própria. 
 

Quando se avalia a janela de 510 dias o resultado indica superioridade dos modelos 

parcimoniosos, a exemplo do caso anterior. A única ressalva é o caso da Petrobrás PN que 

teve como indicado no teste AIC e BIC o modelo ARMA (0,1)-GARCH (1,2). Entretanto 

como no Q-teste o melhor foi o ARMA (0,0)-GARCH (1,1), este foi o selecionado, tanto para 

a Petrobrás PN quanto para as demais ações. Deve ser ressaltado que no teste de assimetria a 

Petrobrás PN indicava um melhor ajuste aos modelos assimétricos como o modelo EGARCH 

e GARCH-L, assim sendo uma análise destes dois modelos em relação a este ativo faz-se 

necessário. 

 

Tabela 4.11: Quadro resumo com os melhores modelos ARMA-GARCH com janela de 510 
dias. 

 Q – teste (4) Q – teste (8) AIC BIC 

Vale do Rio Doce PNA (0,0) (1,1) (0,0) (1,1) (1,1) (1,1) (0,0) (1,1) 

Petrobrás PN (0,0) (1,1) (0,0) (1,1) (0,1) (1,2) (0,1) (1,2) 

Telemar PN (0,0) (1,2) (0,0) (1,2) (0,1) (1,1) (0,0) (1,1) 
Fonte: Elaboração própria. 
 

 Uma análise comparativa entre as Tabelas 4.10 e 4.11 demonstra que não há uma 

uniformidade de comportamento das séries ao longo do tempo, e mais, a utilização de séries 
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muito longas pode gerar um enviesamento do modelo. Por tal razão a janela 

preferencialmente utilizada no cômputo do VaR será a de 255 dias. 

 A Tabela (4.12) a seguir mostra um quadro resumo com os resultados dos modelos 

assimétricos EGARCH para as ações em análise com 255 dias e 510 dias de janelas, enquanto 

que na Tabela 4.13 estão os resultados para o GARCH-L.  

 

Tabela 4.12: Quadro resumo com os melhores modelos ARMA-EGARCH61 com janela de 
255 e 510 dias. 

 Q – teste (4) Q – teste (8) AIC BIC 

Vale do Rio Doce PNA (252 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,3) (0,0) (1,1)

Petrobrás PN (252 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,1) (0,1) (1,1)

Telemar PN (252 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (2,2) (0,1) (1,1)

Vale do Rio Doce PNA (504 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,3) (0,0) (1,2)

Petrobrás PN (504 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,3) (0,1) (1,3)

Telemar PN (504 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,3) (0,1) (1,3)
Fonte: Elaboração própria. 
 

Tabela 4.13: Quadro resumo com os melhores modelos ARMA-GARCH-L com janela de 255 
e 510 dias. 

 Q – teste (4) Q – teste (8) AIC BIC 

Vale do Rio Doce PNA (252 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,1) (0,1) (1,1)

Petrobrás PN (252 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,1) (0,1) (1,1)

Telemar PN (252 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,1) (0,1) (1,1)

Vale do Rio Doce PNA (504 dias) (0,0) (1,1) (0,0) (1,1) (1,1) (1,1) (1,1) (1,1)

Petrobrás PN (504 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,1) (0,1) (1,1)

Telemar PN (504 dias) (0,0) (1,1) (0,0) (1,1) (0,1) (1,1) (0,1) (1,1)
Fonte: Elaboração própria. 
 

 Os resultados indicaram que os modelos parcimoniosos foram superiores. Uma 

observação é pertinente: os Q-testes mostraram-se pouco sensíveis as mudanças dos modelos 

assimétricos e os testes AIC e BIC pouco sensíveis nos modelos GARCH-L. Em função 

destes resultados foi utilizado o modelo ARMA (0,1)-EGARCH (1,1,1) para representar os 

modelos assimétricos para a Petrobrás PN. Observa-se que a Petrobrás PN possui um 

                                                 
61 O modelo ARMA (0,0)-EGARCH (1,1) é na verdade o modelo ARMA (0,0)-EGARCH (1,1,1). 
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componente de tendência no seu comportamento, isto pode ser observado tanto nos gráficos 

quanto nas equações mais adaptativas relativas a esta ação. 

 

4.4 Definindo as Carteiras. 

 

Com a modelagem do principal parâmetro (a volatilidade) definida, o passo seguinte é a 

estimação do VaR. Esta estimação será realizada para carteiras com ações, para carteiras com 

opções e carteiras mistas (carteiras hedgeadas).  

Para as ações serão sete carteiras, uma para cada ativo simples, totalizando 3; três 

carteiras com dois ativos cada uma; e uma carteira com os três ativos. A participação de cada 

ativo nas carteiras é feita eqüitativamente para que cada ativo tenha uma contribuição 

idêntica; desta forma o valor inicial da carteira passa a ter um papel secundário. A principal 

ressalva com relação a esta questão é o princípio da divisibilidade dos ativos, entretanto, este 

efeito pode ser minimizado aumentando-se o valor da carteira inicial ou com pequenos ajustes 

na participação relativa de cada ativo; assim sendo este efeito foi ignorado neste trabalho. 

As estratégias de opções avaliadas são: call ratio, borboleta com posição comprada, 

borboleta com posição vendida, todas para opções de compra da Telemar PN por terem 

maiores liquidez. Na estratégia call ratio, ou posição vendida, o investidor espera que o ativo-

objeto se mova acentualmente em qualquer direção, por esta característica é classificada 

também como compra de volatilidade. A estratégia é obtida com uma posição comprada de 

uma opção no dinheiro e uma fora do dinheiro, mais uma posição vendida dentro do dinheiro. 

Esta estratégia permite um baixo risco de perdas mas com razoável potencial de ganho. 

Quando um investidor opta por uma estratégia borboleta com posição comprada é 

porque está com expectativa de estabilidade de preços do ativo-objeto. Quando há variações 

acentuadas de preços o investidor perde dinheiro, por tal razão o mercado chama esta 

estratégia de venda de volatilidade. É formada pela compra de uma opção de compra dentro 

do dinheiro e uma fora do dinheiro e duas posições vendidas no dinheiro·. 

Já a estratégia inversa, borboleta com posição vendida, também é uma opção de compra 

de volatilidade, e o investidor perde dinheiro quando o valor do ativo-objeto atinge um 

patamar de preço superior à opção de fora do dinheiro ou inferior à opção dentro do dinheiro. 

Assim ela é formada por uma posição vendida de uma opção de compra dentro do dinheiro e 

uma fora do dinheiro e duas posições compradas no dinheiro. 
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Para cada uma destas estratégias há na verdade 12 carteiras diferentes, uma para cada 

vencimento e as opções que compõe cada carteira são as de maior liquidez  (mais próximas ao 

vencimento), neste experimento não se verifica superposição de observações. 

Por fim, as estratégias de hedge contemplam carteiras de ações que possuam a Telemar 

PN na sua composição sendo acrescida de opções no dinheiro da Telemar PN, na proporção 

do inverso do seu delta, como apresentado a seguir: 

 

2
1 CSRP 





+=
δ

         ( 4.1) 

 
 onde S é o ativo-objeto, C2 a opção no dinheiro e δ o delta da opção. Esta estratégia é 

conhecida como delta neutro. 

 Para cada uma destas estratégias (carteiras), os diversos modelos de VaR serão 

avaliados sob duas perspectivas: a estática e a dinâmica. 

 

4.5 Estimando o Value at Risk Estático. 

 

O Comitê de Basiléia sugere que os parâmetros do VaR sejam revistos a cada três 

meses, este será portanto, a freqüência de reajustes dos parâmetros, como, médias, variâncias, 

parâmetros dos modelos GARCH, EGARCH, etc. Logo, esta seção irá descrever os resultados 

obtidos quando os parâmetros são reajustados a cada 66 dias úteis (três meses 

aproximadamente), entretanto, o VaR será verificado diariamente para o período estipulado. 

Nas carteiras só com ações o VaR normal e suas variações62 representa o VaR 

paramétrico, para estratégias com opções, o VaR paramétrico é representado pelo VaR das 

gregas. As metodologias não paramétricas são a histórica e de Monte Carlo (com suas 

variações), no entanto, para as estratégias apenas com opções não há justificativas para o uso 

do VaR histórico em função da quantidade reduzida de dados para cada carteira particular 

(aproximadamente 22 observações). 

 

                                                 
62 As variações do modelo delta-normal são obtidos com mudanças na forma de estimar a volatilidade. 
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4.5.1 VaR Estático das Ações. 

 

Os modelos de VaR para carteiras de ações testados foram: VaR delta-normal com 

volatilidade tradicional (padrão) dada pela Equação (2.36), VaR delta-normal com erros 

heterocedásticos do tipo GARCH e do tipo EGARCH; o método de simulação histórica 

(MSH) tradicional (conforme a Seção 3.5), com bootstrap (Subseção 3.5.1), com mirror 

cenários (Subseção 3.5.2), e de cenários ponderados (Subseção 3.5.3); o método de simulação 

de Monte Carlo (MSMC) com volatilidade tradicional dada pela Equação (2.36), MSMC com 

erros heterocedásticos do tipo GARCH e do tipo EGARCH. 

Na metodologia do MSMC foram adotadas duas soluções para a trajetória de preços: 

uma dada pela solução da Equação (3.48) onde µ é substituindo por r, a taxa de juros livre de 

risco63, obtendo assim a precificação exata de Euler de opções européias para volatilidade 

constante (Equação (4.2) a seguir). A segunda é uma extensão da primeira conhecida como 

solução exata de Milstein para volatilidade constante (Abe, 2002), Equação (4.3). 

 

[ ]ttttt ztrSS ∆+∆+=∆+ σ1.         ( 4.2) 
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 Além das duas soluções acima utilizando r como médias dos modelos ainda estimou-

se o VaR  com o µ obtido por estimação da média obtida diretamente da equação da média 

dos modelos autoregressivos dados pela Equação (2.45), para o VaR com os modelos 

GARCH e EGARCH, já para o VaR com volatilidade tradicional a média foi calculada via 

um modelo autoregressivo ARMA (0,1). 

 Nos modelos que utilizaram a volatilidade estimada via o GARCH ou EGARCH a 

volatilidade diária variou, no entanto os parâmetros para calcular esta volatilidade foram 

mantidos inalterados durante as 66 observações, após as 66 observações novos parâmetros 

formam determinados e um novo grupo de 66 volatilidades estimado. 

                                                 
63 Taxa de juros SELIC (Sistema Especial de Liquidação e Custódia), que reflete o custo médio das operações 
com títulos públicos federais. 
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 O método de simulação histórica de bootstrap foi realizado com amostra de tamanho 

10.000 com reposição para cada janela de 255 observações. 

 Já o método de Monte Carlo foi estimado com 24 passos (simulando as 24 horas 

diárias) e 10.000 repetições para cada dia de simulação, ou seja, para um ano teve-se 61,2 

milhões de simulações64 (para dois anos 122,4 milhões). 

Em função da mudança temporal de comportamento das séries, utilizaram-se dois 

tamanhos de amostra para a verificação da eficiência do modelo: um ano e dois anos. Assim é 

possível checar se um modelo é eficiente no médio prazo.  

 Os primeiros resultados estão apresentados na Tabela 4.14 a seguir com as estimativas 

do VaR delta-normal e de simulação histórica para a Vale do Rio Doce PNA para o período 

de 2 anos, e na Tabela 4.15 as estimativas do modelo de simulação de Monte Carlo. 

 O teste de Kupiec foi realizado comparando o número de violações com o intervalo de 

confiança a 5% da Tabela 3.3, já o teste de Lopez 1 foi calculado segundo a metodologia 

descrita na Seção 3.8.2. Entretanto, observa-se um problema com esta medida: o valor desta 

coincide com a taxa de violações, tornando a medida de caráter secundário e beneficiando os 

modelos com menor taxa de violações, deixando para um segundo plano a distância entre o 

VaR e a perda real. 

 Para minimizar este problema foi sugerido um novo teste (Perda de Lopez 2) baseado 

numa modificação do teste padrão de Lopez, no qual a Equação (3.56) é substituída pela 

Equação (4.4) abaixo. 
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64 Fora as estimações da volatilidade. 
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Tabela 4.14:  VaR estático-1 da Vale do Rio Doce PN com 510 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

224 43,92 R 0,4392 1,3749x10-4 -5,2635 x10-4 1,1549x10-5 -5,2635 x10-4 -5,2635 x10-4 

Delta-normal 
GARCH  (0,0) (1,1) 224 43,92 R 0,4394 1,3675x10-4 -5,8733 x10-4 4,4053x10-5 -6,6590 x10-4 -5,2445 x10-4 

Delta-normal 
EGARCH  (0,0) (1,1,1) 223 43,73 R 0,4374 1,3569x10-4 -6,7172 x10-4 8,2101x10-5 -8,1771 x10-4 -5,7029 x10-4 

MSH  
Tradicional 25 4,90 A 0,04902 5,5401x10-6 -0,02846 2,6046x10-16 -0,02846 -0,02846 

MSH  
Bootstrap 127 24,90 R 0,2490 5,0226x10-5 -0,01074 7,8407x10-4 -0,01196 -9,5085 x10-3 

MSH  
Mirror cenários 17  3,33 A 0,03333 3,3670x10-6 -0,03160 1,8059x10-16 -0,03160 -0,03160 

MSH  
Cenários ponderados 13 2,55 R 0,02549 1,8714x10-6 -0,03479 2,4435x10-3 -0,03573 -0,02846 

Obs.: A significa aceito no teste de Kupiec com 95% de significância e R reprovado. 
Fonte: Elaboração própria. 
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Tabela 4.15: VaR estático-2 da Vale do Rio Doce PN com 510 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

25 4,96 A 0,04960 5,5896x10-6 -0,02783 2,9667x10-4 -0,02814 -0,02743 

MSMC Tradicional 
Modelo 2 com r constante 

25 4,96 A 0,04960 5,6845x10-6 -0,02772 2,9433x10-4 -0,02802 -0,02732 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

26 5,16 A 0,05159 6,1715x10-6 -0,02721 6,6165x10-5 -0,02724 -0,02686 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

26 5,16 A 0,05159 6,2694x10-6 -0,02711 6,5656x10-5 -0,02713 -0,02675 

MSMC EGARCH  (0,0) (1,1,1) 
Modelo 1 com r constante 

12 2,35 R 0,02353 1,8587x10-6 -0,03594 4,5795x10-3 -0,04433 -0,03048 

MSMC EGARCH  (0,0) (1,1,1) 
Modelo 2 com r constante 

12 2,35 R 0,02353 1,9292x10-6 -0,03575 4,5309x10-3 -0,04405 -0,03035 

MSMC Tradicional 
Modelo 1 com r variável 

29 5,69 A 0,05689 5,9975x10-6 -0,02780 2,6702x10-3 -0,03104 -0,02212 

MSMC Tradicional 
Modelo 2 com r variável 

29 5,69 A 0,05689 6,1024x10-6 -0,02769 2,6697x10-3 -0,03092 -0,02200 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

25 4,96 A 0,04960 5,9072x10-6 -0,02743 4,5361x10-4 -0,03153 -0,02673 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

25 4,96 A 0,04960 6,0047x10-6 -0,02731 4,5056x10-4 -0,03139 -0,02665 

MSMC EGARCH  (0,0) (1,1,1) 
Modelo 1 com r variável 

10 1,96 R 0,01961 1,7345x10-6 -0,03741 5,4128x10-3 -0,04736 -0,03057 

MSMC EGARCH  (0,0) (1,1,1) 
Modelo 2 com r variável 

11 2,16 R 0,02157 1,7760x10-6 -0,03722 5,5361x10-3 -0,04708 -0,03044 

Fonte: Elaboração própria.
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O VaR médio foi colocado nas tabelas não só pela importância da medida de risco, 

mas também, por que a partir dela as instituições devem definir o capital requerido como 

garantia do risco de mercado (Equação (3.53)). Quanto menor o VaR, desde que ele não 

ultrapasse o limite de Kupiec, melhor. Por fim, as medidas do desvio padrão, o mínimo e 

máximo VaR são medidas que indicam o grau de variabilidade do VaR; o que não significa  

quanto menor a variabilidade, melhor. Na verdade é esperado que o VaR tenha uma 

variabilidade acompanhando as mudanças do valor da carteira, minimizando a possibilidade 

de superestimação do VaR. 

Os resultados da Tabela 4.14 mostram que os modelos baseados na metodologia delta-

normal não são eficientes para estimar o VaR da ação da Vale do Rio Doce PNA para o 

período em questão. Para o MSH apenas as técnicas tradicionais e Mirror cenários foram 

satisfatórias, onde Mirror cenários foi superior segundo o teste de Kupiec 2, mas a técnica 

tradicional apresentou um menor VaR médio, reduzindo o capital requerido. 

Com relação aos modelos MSMC todos tiveram bons desempenhos, com exceção aos 

com volatilidade EGARCH. Em relação à função de perda o melhor modelo foi o VaR de 

Monte Carlo com volatilidade tradicional e com o modelo de Euler definindo a trajetória de 

preços e com média constante. 

 Com relação ao menor VaR, o melhor com tal característica foi o MSMC – GARCH 

modelo 2 (Milstein) e com µ constante. De uma forma geral os melhores modelos formam a 

simulação histórica tradicional e o MSMC – GARCH modelo 2 com µ constante. 

 No Apêndice 2 encontram-se os resultados de um ano do VaR da Vale do Rio Doce 

PNA, neste observa-se uma piora em relação à análise de 2 anos, já os melhores modelos 

foram o MSMC – EGARCH modelo 1 com µ constante (igual a r) e o MSH – Bootstrap, 

respectivamente em função da perda de Lopez 2 e da média. 

 No Apêndice 3 estão os resultados detalhados da Petrobrás PN e Apêndice 4 os 

resultados da Telemar PN. Na Tabela 4.16 encontra-se um quadro resumo com as melhores 

metodologias para as carteiras simples. 
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Tabela 4.16: Quadro resumo com melhores modelos de VaR estático para carteiras simples. 

Função de Perda Menor VaR médio 
Carteira 

255 observações 510 observações 255 observações 510 observações 

Vale do Rio Doce  MSMC EGARCH.

Mod. 1 r cte. 

MSH 

Mirror cenários 

MSH 

Bootstrap 

MSMC GARCH 

Mod. 2 r cte. 

Petrobrás MSMC EGARCH 

Mod. 1 r cte. 

MSH cenários 

Ponderados 

MSMC trad. 

Mod. 2 r var. 

MSMC EGARCH

Mod. 2 r cte. 

Telemar MSMC EGARCH 

Mod. 1 r cte. 

MSH 

Mirror cenários 

MSMC trad. 

Mod. 2 r var. 

MSMC trad. 

Mod. 2 r cte. 
Fonte: Elaboração própria. 
 

 Os resultados mostram que o VaR delta – normal não é adequado para as séries em 

análise. Em função disto, nas carteiras com mais ativos estes modelos não serão considerados, 

uma vez que quanto maior a quantidade de ativos menor a probabilidade de boas taxas de 

acerto dos modelos. Foi feita uma tentativa de melhorar o modelo delta-normal via a inclusão 

da análise com cenários de stress, entretanto este melhorou o modelo no máximo em 2%, 

resultado pouco satisfatório para modelos cujas taxas de acerto são de aproximadamente 50%. 

 A Tabela 4.16 mostra que os modelos MSH e MSMC são eficientes para determinar o 

VaR destas carteiras, no entanto, as metodologias MSH formam eficientes em poucos casos, 

enquanto o MSMC conseguiu cobrir uma gama maior de carteiras e situações. A diferença 

entre a análise de 1 e 2 anos reforça a idéia que um comportamento diferenciado das séries 

pode levar às diferenças na avaliação de risco. Entre os modelos MSMC o mais adequado foi 

o MSMC – EGARCH modelo 1 com média constante e igual à taxa de juros livre do risco. 

 Na Tabela 4.17 a seguir estão os melhores modelos de VaR aplicados às carteiras com 

dois e três ativos. Destaque para o Mirror cenários que foi o preferível para carteiras com dois 

ativos pelo critério da função de perda. 
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Tabela 4.17: Quadro resumo com os melhores modelos de VaR estático para carteiras com 
dois e três ativos. 

Carteira Função de Perda Menor VaR médio 

Vale do Rio Doce + Petrobrás  MSH Mirror 

Cenários 

MSH Mirror 

Cenários 

Vale do Rio Doce + Telemar MSH Mirror 

Cenários 

MSMC GARCH 

Mod. 2 r variável 

Telemar  + Petrobrás MSH Mirror 

Cenários 

MSMC tradicional 

Mod. 2 r variável 

Vale do Rio Doce + Telemar + Petrobrás MSMC GARCH 

Mod. 2 r constante

MSMC tradicional 

Mod. 1 r variável 
Fonte: Elaboração própria. 
 

 A Figura 4.13 a seguir mostra um gráfico com os valores reais da carteira (em 

vermelho) e o VaR calculado segundo MSMC GARCH modelo 2 com r constante para a 

carteira com os três ativos. E na figura seguinte (4.14), o VaR segundo o mirror cenários para 

a carteira Telemar + Petrobrás. 

 Comparando-se as figuras é nítido que o VaR mirror cenários tem pouquíssima 

adaptatividade quando comparado com o MSMC. 

Um detalhe relevante deve ser mencionado, não há um padrão de escolha dos modelos 

de VaR estáticos para as carteiras e períodos em questão, cada caso é um caso. E mais, os 

modelos com maiores taxas de eficiência explicativa65 do VaR foram os MSMC com 

volatilidade EGARCH, com 85,71% e os MSMC - GARCH com 71%. Já o MSMC com 

volatilidade tradicional o patamar de eficiência ficou entre 57 e 71%; entre os modelos MSH 

o melhor desempenho foi do mirror cenários com 43%. Outra curiosidade é que na carteira 

Vale do Rio Doce PNA + Petrobrás PN os únicos modelos que atenderam ao teste de Kupiec 

com 95% de significância formam o MSH mirror cenários e os MSMC EGARCH com média 

variável.  

 

                                                 
65 Definindo eficiência explicativa como a taxa de não rejeição do modelo pelo teste de Kupiec. Exemplo: o 
mirror cenários foi aceito em 3 das 7 carteiras, ou seja, 43% aproximadamente de eficiência explicativa. 
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Figura 4.13: VaR de MSMC GARCH Modelo 2 com r constante para a carteira Vale do Rio 

Doce + Telemar + Petrobrás 
Fonte: Elaboração própria. 
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Figura 4.14: VaR de mirror cenários  para a carteira Telemar + Petrobrás. 
Fonte: Elaboração própria. 
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4.5.2 VaR Estático das Opções. 
 
 

Os modelos de VaR para opções utilizados foram os métodos das gregas (como 

metodologia paramétrica) e o MSMC com volatilidade tradicional, com volatilidade GARCH 

e EGARCH. Os resultados completos encontram-se no Apêndice 6, para a metodologia das 

gregas seguiu-se o procedimento apresentado na Seção 3.4 e os modelos de MSMC a 

metodologia com a solução do modelo de precificação do ativo 1. 

Os resultados mostraram que nenhum dos modelos de VaR estático foi satisfatório 

para as estratégias com opções em estudo, mostrando que a metodologia estática não é uma 

boa alternativa para a análise do VaR de opções do mercado brasileiro, assim sendo não será 

avaliado o VaR estático de carteiras mistas, já que não existe confiabilidade dos resultados em 

relação às opções. 

 

4.6 O Value at Risk Dinâmico. 
 

Os modelos estimados são os mesmos da abordagem estática, tanto para carteiras com 

ações, quanto para carteira com opções. A diferença fundamental está na natureza dinâmica 

das estimações. Todos os parâmetros do VaR diário são calculados via uma janela de 

observações de 255 dias móveis, ou seja, diariamente uma nova informação é adicionada à 

janela e a informação mais antiga é desprezada. 

 

4.6.1 VaR Dinâmico das Ações. 
 
 

A Tabela 4.18 a seguir apresenta um resumo com os melhores modelos para carteiras 

simples com metodologia dinâmica, cujos resultados completos estão nos Apêndices 7, 8 e 9. 

Na tabela é evidente a adequação dos modelos de Monte Carlo para tais carteiras (ou ativos 

simples), onde os modelos heterocedásticos segundo a modelagem tipo 2 e com o r variável 

mostraram os menores valores de VaR médio. Já quando o critério é a função de perda o 

resultado não é homogêneo, os modelos Monte Carlo heterocedástico simétrico, o de 

simulação histórica com mirror cenários e o MSMC tradicional foram preferíveis 

respectivamente para a Vale, a Petrobrás e a Telemar. 
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Tabela 4.18: Quadro resumo com os melhores modelos de VaR dinâmico para carteiras 
simples. 

Carteira Função de Perda Menor VaR médio 

Vale do Rio Doce  PNA MSMC GARCH 

Mod. 1 com r constante

MSMC EGARCH 

Mod. 2 com r variável 

Petrobrás PN MSH Mirror 

Cenários 

MSMC EGARCH 

Mod. 2 r variável 

Telemar PN MSMC tradicional 

Mod. 1 com r variável  

MSMC GARCH 

Mod. 2 r variável 
Fonte: Elaboração própria. 
 

 Os resultados mostram que mesmo com um ajuste dinâmico dos dados os modelos 

delta-normal não tiveram bons resultados (mesmo com a análise de stress). 

 Quanto a carteiras com dois e três ativos, os resultados mostram que o comportamento 

individual do ativo é diferente caso ele esteja inserido numa carteira, isto pode ser observado 

com as ações da Vale do Rio Doce e da Petrobrás. Para cada ativo individualmente, o modelo 

que apresenta o menor VaR médio é o MSMC EGARCH, no entanto, para uma carteira com 

estas duas ações igualmente divididas o melhor modelo é o MSH tradicional. 

 A Tabela 4.19 mostra os melhores modelos para as carteiras duplas e triplas, dois 

aspectos devem ser ressaltados: o primeiro é relacionado com o método de bootstrap, a única 

carteira onde este modelo não foi rejeitado pelo teste de Kupiec foi exatamente a que ele se 

apresentou como a melhor opção pelo critério do VaR médio (a Telemar mais a Petrobrás); o 

segundo aspecto é que o modelo MSMC EGARCH tipo 2 e 1 com r variável teve um 

resultado muito próximo ao do MSH tradicional na Vale do Rio Doce + Petrobrás. 
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Tabela 4.19: Quadro resumo com os melhores modelos de VaR dinâmico para carteiras com 
dois e três ativos. 

Carteira Função de Perda Menor VaR médio 

Vale do Rio Doce + Petrobrás  MSMC GARCH 

Mod. 1 r constante 

MSH  

Tradicional 

Vale do Rio Doce + Telemar MSMC GARCH 

Mod. 1 r constante 

MSH 

Tradicional 

Telemar  + Petrobrás MSMC Tradicional

Mod.1 r constante 

MSH 

Bootstrap 

Vale do Rio Doce + Telemar + Petrobrás MSH Mirror 

Cenários  

MSMC EGARCH 

Mod. 1 r variável 
Fonte: Elaboração própria. 
 

 Houve uma elevação da taxa de capacidade explicativa dos modelo, os modelos MSH 

tradicional e mirror cenários, MSMC GARCH (todos os tipos), MSMC tradicional r constante 

e MSMC EGARCH r variável, tiveram 100% de eficiência. E os modelos MSMC tradicional 

r variável e MSMC EGARCH r constante, 85,71%; os demais não tiveram resultados 

satisfatórios. 

 A Figura 4.15  mostra os valores reais da carteira da Vale do Rio Doce + Telemar (em 

vermelho), bem como o VaR MSMC GARCH modelo tipo 1 com r constante (em verde) e 

MSH tradicional (em preto). Observa-se uma relativa adaptatividade dos modelos de VaR de 

MSMC aos valores reais da carteira. 
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Figura 4.15: VaR de MSMC GARCH Modelo com 1 r constante e MSH tradicional para a 
carteira Vale do Rio Doce + Telemar. 
Fonte: Elaboração própria. 
 

4.6.2 VaR Dinâmico das Opções e Carteira Hedgeada. 

 

Os resultados do VaR dinâmico para as carteiras com opções estão no Apêndice 11. A 

exemplo do modelo paramétrico delta-normal para ações, o VaR paramétrico delta-gama 

também não foi suficientemente explicativo, mesmo com a modelagem dinâmica. Já com os 

modelos não paramétricos MSMC houve melhoras. 

Das três carteiras de opções a única com bons resultados foi a carteira borboleta 

vendida, apenas os modelos MSMC tradicional e GARCH com r variável não foram 

aprovados pelo teste de Kupiec. Na carteira call ratio o único modelo aprovado foi o modelo 

MSMC EGARCH com r constante. Nas demais carteiras o VaR foi sub estimado. 

Nas Figuras 4.16 e 4.17 (em preto o VaR) a seguir, é observado uma razoável 

adaptabilidade do VaR MSMC GARCH com r constate à variação do retorno das carteiras, 

apesar do VaR não apresentar um resultado satisfatório. 
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Figura 4.16: VaR MSMC GARCH  com r constante para a carteira de opções call ratio. 
Fonte: Elaboração própria. 

 
Figura 4.17: VaR MSMC GARCH  com r constante para a carteira borboleta comprada. 

Fonte: Elaboração própria. 



 145

 
 
 A Figura 4.18 mostra a eficiência e capacidade de adaptação do VaR MSMC GARCH 

r constante à dinâmica da carteira borboleta vendida. No entanto, a eficiência do VaR é 

contraditória com os resultados das demais carteiras. Todas as carteiras de opções são 

formadas pelos mesmos ativos, apenas a proporção destes é diferente. Uma análise mais 

detalhada deste fenômeno será apresentada na próxima seção. 

 

 

Figura 4.18: VaR MSMC GARCH  com r constante para a carteira de opções borboleta 
vendida. 
Fonte: Elaboração própria. 
 

 O resultado da carteira hedgeada é semelhante ao da carteira borboleta vendida, 

indicando que o bom desempenho do VaR pode ser motivado por uma escolha “adequada” da 

proporção dos ativos. A Figura 4.19 mostra que apesar do resultado o VaR MSMC GARCH 

com r constante não é adaptativo, assim sendo o VaR é super estimado e uma instituição que 

utilize esta metodologia estará alocando recursos acima da real necessidade.  
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Figura 4.19: VaR MSMC GARCH  com r constante para a carteira hedge delta neutro da 
Telemar. 
Fonte: Elaboração própria. 
 
 

4.7 Análise dos Resultados 

 

Uma análise dos resultados passa necessariamente por uma comparação dos resultados 

obtidos, seja com diferentes modelos de volatilidade, seja com modelos de precificação dos 

ativos ou freqüência de ajuste dos parâmetros. A primeira avaliação é sobre a capacidade dos 

modelos paramétricos e não paramétricos em capturar o risco do mercado acionário brasileiro. 

Os modelos paramétricos tiveram resultados aquém daqueles obtidos por trabalhos com 

ações de mercados mais desenvolvidos como Ammann e Reich (2001), mas igualmente 

insatisfatórios como no trabalho de Pichler e Selitsch (1999). No caso do mercado brasileiro 

os resultados estão coerentes com os achados por Bezerra (2001). Em suma, pelo menos para 

o período de análise e para as ações e carteiras estudadas o VaR baseado nas técnicas delta-

normal não são satisfatórios, tanto para a técnica estática quanto a dinâmica. 

Quanto aos modelos não paramétricos os resultados foram de uma forma geral 

satisfatórios. Em particular a metodologia de simulação histórica com a sistemática estática 
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não conseguiu acompanhar a dinâmica dos ativos. Houve uma melhora quando a amostra 

passou para 510 observações, incorporando um período de relativa estabilidade. Ao permitir 

um ajuste diário, o MSH nas modalidades tradicional e de mirror cenários se ajustaram bem à 

dinâmica de retorno das carteiras. 

O modelo mirror cenários foi superior, pelo critério da função de perda 2, ao MSH 

tradicional. Corroborando com um jargão comum no mundo dos investimentos “rentabilidade 

passada não é garantia de ganhos futuros”, no entanto, o desempenho passado pode ser 

utilizado para balizar o futuro e se este balizamento utilizar o comportamento da série mas 

abrindo mão da tendência incutida nos dados esperam-se resultados melhores. 

Com relação aos cenários ponderados um maior peso dos fatores de risco passados pode 

melhorar o desempenho. Neste trabalho o evento mais recente teve peso 255 e o mais antigo 

1, os eventos intermediários uma combinação linear dos extremos. Na Figura 4.20 a seguir, os 

maiores valores locais do VaR estão próximos das maiores perdas reais locais, mas defasados, 

sendo esta a maior crítica ao MSH com cenários ponderados. 
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Figura 4.20: VaR MSH cenários ponderados para a carteira Petrobrás + Telemar. 
Fonte: Elaboração própria. 
 

Os modelos de simulação de Monte Carlo foram os que obtiveram melhores resultados 

sob qualquer situação. Entretanto, como já foi afirmado, com a sistemática dinâmica a 
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capacidade explicativa do VaR teve um aumento significante. Os resultados quando se utiliza 

o modelo tipo 1 ou 2 são coerentes com os resultados esperados: o modelo tipo 1 aproxima-se 

mais da distribuição real, tendendo a um menor valor da função de perda; enquanto que o 

modelo tipo 2 ao se afastar da função de perda fornece um menor VaR médio. A relação 

função de perda x VaR médio deve ser avaliada em função do objetivo do VaR. Para uma 

instituição financeira, por exemplo, o modelo tipo 2 é mais adequado. 

Uma segunda mudança aos modelos padrões de Monte Carlo foi a incorporação de 

tendências aos modelos. Os resultados mostram que não há melhoras nos resultados das 

funções de perdas, apesar de haver uma redução no VaR médio. 

Com relação aos modelos de volatilidade a análise prévia indicava que os ativos vale5 e 

tnlp4 teriam melhores resultados com modelos GARCH, enquanto que a petr4 teria com 

modelos de volatilidade EGARCH. Na tabela abaixo estão indicados os melhores modelos em 

função da forma de estimar a volatilidade para grupos de avaliação estática x dinâmica e 

tendências constantes x variáveis. 

 Os resultados mostram que apenas a Vale do Rio Doce (e suas carteiras derivadas) 

tiveram resultados coerentes com o esperado (conforme Seção 4.2) e que o comportamento 

individual do ativo nem sempre é o mesmo quando este está num contexto de uma carteira. 

Há uma maior coerência dos resultados em função da análise prévia do comportamento da 

heterocedasticidade quando a situação é dinâmica. 
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Tabela 4.20: Melhores modelos de VaR para as carteiras de ações em função da volatilidade. 

Simulação estática Simulação dinâmica 
Carteira Volatilidade

Constante Variável Constante Variável 

Tradicional  X   

GARCH   X X Vale do Rio Doce 

EGARCH X    

Tradicional  X X X 

GARCH     Petrobrás 

EGARCH X    

Tradicional  X  X 

GARCH     Telemar 

EGARCH X  X  

Tradicional     

GARCH   X X 
Vale do Rio Doce +

Petrobrás 
EGARCH  X   

Tradicional     

GARCH  X X X 
Vale do Rio Doce +

Telemar 
EGARCH X    

Tradicional   X X 

GARCH X X   
Petrobrás + 

Telemar 
EGARCH     

Tradicional     

GARCH X X X X 

Vale do Rio Doce +

Petrobrás + 

Telemar EGARCH     
Fonte: Elaboração própria. 
 

Por fim, a comparação entre análise estática x dinâmica. Comparando-se um a um, em 

relação ao teste de Kupiec e da função de perda 2, nos modelos de VaR estáticos com os seus 

equivalentes dinâmicos, encontram-se 80 resultados favoráveis ao VaR dinâmico contra 

apenas 49 ao VaR estático. Em termos de capacidade explicativa apenas os modelos 

dinâmicos MSMC GARCH tiveram 100% de eficiência. 

Diante do apresentado acima, a melhor alternativa às carteiras objetos do estudo é o 

VaR MSMC  com volatilidade GARCH (1,1) modelo tipo 1 com r constante e igual à taxa de 
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juros livre de risco com ajustes dinâmicos. As demais alternativas de volatilidade também 

constituem boas alternativas, mas com menor poder explicativo. 

Os resultados também servem para testar se o Value at Risk é uma medida de risco 

coerente para o mercado de ações em questão. A Tabela 4.21 mostra os resultados do VaR 

médio e indicam que o VaR dinâmico calculado obedece ao axioma da subaditividade. 

 

Tabela 4.21: Quadro indicativo da coerência do VaR como medida de risco 

 VaR (A+B+C) VaR A + VaR B + VaR C 

Vale5 + Petr4 -0,02565 -0,02668 

Vale5 + Tnlp4 -0,02451 -0,02988 

Petr4 + Tnlp4 -0,02913 -0,03052 

Vale5 + Petr4 + Tnlp4 -0,02211 -0,02903 
Fonte: Elaboração própria. 

 

O bom desempenho do MSMC dinâmico sem incorporar variações ao modelo (4.2) 

mostra que o mercado das ações da Vale do Rio Doce PNA, da Petrobrás PN e da Telemar PN 

é eficiente, visto que o modelo (4.2) é baseado no conceito de mercado eficiente. 

A Definição 2.4 de Fama et al (1969) afirma que mercado eficiente é aquele que se 

adequa rapidamente às novas informações. A forte volatilidade do mercado brasileiro mostra 

que os preços dos ativos ajustam-se às informações por meio das expectativas dos agentes 

econômicos. A questão é modelar o termo “rapidamente” de Fama, tarefa feita neste trabalho 

com o ajuste diário do VaR. 

Com a informação precisa do risco e do retorno esperado, um agente econômico diante 

de suas preferências bem definidas (grau de aversão ao risco) tem informações suficientes 

para trilhar  num ambiente de incerteza. 

Para as carteiras com opções os resultados não foram satisfatórios segundo o teste de 

Kupiec para o VaR estático. Já para o VaR dinâmico a carteira borboleta vendida teve os 

VaRs MSMC66 aprovados no teste de Kupiec e as demais carteiras reprovadas. 

Uma avaliação criteriosa das Figuras 4.16, 4.17 e 4.18 indica que de uma forma geral 

houve uma correlação entre o valor real das carteiras e os VaRs MSMC destas. Demonstra 

que o VaR, apesar de ineficiente, tem um comportamento atrelado ao valor das carteiras. 

Com relação ao hedge não há uma correlação entre o VaR e o retorno da carteira, no 

entanto, como não há problemas com relação à modelagem do ativo objeto ao se identificar 

                                                 
66 Menos os MSMC tradicional e GARCH com r variável. 
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uma alternativa de especificação do modelo da opção há uma possibilidade de ajustamento do 

VaR de hedge delta-neutro. 

Os resultados obtidos com as carteiras com opções estão de acordo com o trabalho de 

Araújo et al (2004)67, no qual todas as carteiras foram reprovadas. 

Diante do apresentado não se pode afirmar que o mercado de opções da Telemar é 

eficiente. Porém, o motivo da não conclusão pode está atrelado à má modelagem do VaR para 

ativos não lineares brasileiros. Uma investigação deste aspecto será objeto da próxima seção. 

 

4.8 Ajustes Metodológicos à Precificação de Opções. 

 

As Figuras 4.16, 4.17 e 4.18 mostram que o VaR, apesar de não eficiente, apresenta 

capacidade adaptativa à série real. A Figura 4.18 é uma prova deste fato, sugerindo que uma 

melhora na precificação das opções brasileiras é uma possibilidade para a adequação do VaR. 

A análise de Black e Scholes afirma que o prêmio de uma opção européia é função do 

valor do ativo objeto, do tempo até o vencimento, da volatilidade, do preço de exercício e da 

taxa de juros livre de risco. Entretanto, para o caso da Telemar no período de estudo, o 

comportamento também depende de outro fator: do comportamento histórico das opções. A 

figura a seguir ilustra este fato, é um gráfico com o valor real da opção dentro do dinheiro e o 

valor da opção calculado segundo a Equação (4.2), em vermelho o valor real do ativo. 

                                                 
67 Apesar do VaR da carteira borboleta comprada ter sido reprovado foi o que teve o melhor resultado. 
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Figura 4.21: Valor real da opção dentro do dinheiro versus valor calculado. 
Fonte: Elaboração própria. 
 

 O valor real da opção é maior que o calculado, mas esta diferença segue um 

comportamento que pode ser definido como um prêmio ao risco. Apesar do valor esperado 

menor que o valor real os investidores estão dispostos a pagar pela diferença por razões 

inerentes ao hábito de jogar ou falta de conhecimento sobre o derivativo em questão. 

 A avaliação mais simples do prêmio ao risco é obtida via a regressão representada pela 

Equação (4.5) abaixo. Nesta o prêmio de risco tem dois componentes, o primeiro representado 

por “a” é a expectativa atrelada ao valor esperado e “b” o prêmio de risco mínimo pago, 

independente do valor do ativo objeto e do preço de exercício da opção. 

 

bKSaC +−= ))0,(max(         (4.5) 

 
 Foi mantida para a regressão a janela móvel de um ano para incorporar mudanças 

estruturais e a avaliação foi baseada no menor valor da estatística a seguir: 
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 Há três possibilidades: a = 1, b = 0 ou sem restrições aos parâmetros. O método para 

estimação destes parâmetros foi o método dos mínimos quadrados ordinários. A avaliação foi 

realizada para cada opção nas posições compradas e vendidas. Para as opções dentro do 

dinheiro a melhor alternativa foi o modelo sem restrições, já a opção no dinheiro a melhor 

alternativo foi com b = 0 para a posição comprada, já para as posições vendidas a = 1. O valor 

médio dos parâmetros “a” foram 0,76 e 1,72 e para o parâmetro “b” 2,89 para  

respectivamente para a opção dentro do dinheiro e no dinheiro e a = 0,76; a = 1; b = 1,61 e b = 

1,89 nas posições vendidas. 

 Para as opções fora do dinheiro não há sentido em calcular o prêmio de risco, visto 

que o valor médio tanto da opção calculada quanto a real é próximo de zero. 

 Os resultados para as carteiras call ratio, borboleta comprada, borboleta vendida e do 

hedge delta neutro estão na Tabela 4.22. Na Figura 4.22 abaixo uma representação do 

resultado para a carteira borboleta vendida. 
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Figura 4.22: VaR MSMC GARCH dinâmico para a carteira borboleta vendida. 
Fonte: Elaboração própria.
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Tabela 4.22: VaR dinâmico ajustado para carteiras com opções. 

 Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

MSMC Tradicional 
com r constante 

8 3,14 A 0,03676 0,0054 -0,6935 0,9313 -8,3606 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 

11 4,31 A 0,04887 5,7356x10-3 -0,6694 0,9174 -8,2588 0,0000 

C
al

l r
at

io
 

MSMC EGARCH  (0,0) (1,1,1)
com r constante 

14 5,49 A 0,06018 5,2776x10-3 -0,6824 0,93456 -8,2762 0,0000 

MSMC Tradicional 
com r constante 

31 12,16 R 0,23539 0,11382 -3,2250 10,8480 -117,1400 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 

32 12,55 R 0,24108 0,11559 -3,1233 10,7580 -116,1800 0,0000 

B
or

b.
 c

om
pr

ad
a 

MSMC EGARCH  (0,0) (1,1,1)
com r constante 

27 10,59 R 0,34218 0,23630 -3,6159 10,3700 -119,3700 0,0000 

MSMC Tradicional 
com r constante 

14 5,49 A 0,14467 0,08977 -4,3828 11,2380 -130,4500 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 

16 6,27 A 0,16992 0,10718 -4,2882 11,1750 -129,9600 0,0000 

B
or

b.
 v

en
di

da
 

MSMC EGARCH  (0,0) (1,1,1)
com r constante 

19 7,45 A 0,23778 0,16327 -4,1187 10,7280 -129,3300 0,0000 

MSMC Tradicional 
com r constante 

19 7,45 A 0,07497 4,6101x10-4 -0,1047 0,07653 -0,5921 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 

20 7,84 A 0,07941 9,8403x10-4 -0,1042 0,08254 -0,6988 0,0000 

D
el

ta
 n

eu
tro

 

MSMC EGARCH  (0,0) (1,1,1)
com r constante 

17 6,67 A 0,06746 7,9601x10-4 -0,1024 0,07873 -0,6727 0,0000 

Fonte: Elaboração própria.
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Os resultados para as estratégias com opções mostram que o ajuste do modelo 

promoveu uma melhora significativa nos resultados, sem perda de aderência do modelo. No 

entanto, os ajustes não foram suficientes para que a estratégia borboleta comprada tivesse um 

VaR eficiente. Houve melhoria discreta no modelo para esta carteira, mas não o suficiente 

para que o VaR pudesse ser considerado eficiente a 5% de significância.  

Com relação à redução de risco esperada em relação à carteira não hedgeada, isto não 

aconteceu, contrariando a expectativa de redução do risco com a carteira hedgeada. O que 

sugere que o hedge delta-neutro não é uma boa forma para reduzir o risco no mercado 

brasileiro. 

 Entre os modelos o que mais se adequou às séries em estudo foi o MSMC com a 

volatilidade tradicional por possuir um menor valor da perda de Lopez 2, entretanto para a 

estratégia borboleta vendida a melhor alternativa, segundo os critérios da perda de Lopez 2, 

foi o modelo com volatilidade EGARCH. 

 Apesar da melhora dos resultados em função dos ajustes não se pode afirmar que estes 

foram suficientes para justificar sua utilização, entretanto, tal análise não inválida o conceito 

incorporado na teoria das opções brasileiras, o prêmio ao risco pago pelos investidores 

brasileiros. Inclusive tal prêmio é um dos motivos para a ineficácia do hedge delta-neutro para 

minimização do risco. 
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5 CONCLUSÕES 
 

O objetivo principal deste trabalho foi analisar e estimar o risco de mercado via o 

Value at Risk (VaR) de carteiras de ações, opções e hedge do mercado brasileiro e verificar 

qual o VaR mais adequado às carteiras. Os resultados mostraram que o VaR dinâmico se 

adapta melhor à dinâmica do mercado e que as análises paramétricas não são suficientes para 

gerenciar o risco. Entre as técnicas não paramétricas, as que mais se adequaram foram as 

simulações de Monte Carlo (MSMC), notadamente com volatilidade GARCH. 

Dentre as principais conclusões deste trabalho, temos: 

 

1. Os preços das ações analisadas seguem o processo estocástico de Itô, logo há 

evidências que o mercado das ações estudadas, pelo menos para o período em análise, 

é eficiente. Com a alta volatilidade do mercado, faz-se necessário modelos que 

incorporem com rapidez as novas informações implícitas nos preços. 

A formulação inicial do processo estocástico de Itô não precisou de ajuste, visto que o 

mercado acionário brasileiro possui algum grau de desenvolvimento. Foi necessária 

apenas uma releitura dos principais conceitos econômicos básicos que norteiam o 

gerenciamento de risco, visando identificar lacunas na literatura aplicadas a mercados 

emergentes. 

O primeiro aspecto econômico sob o qual é baseado o modelo do VaR é a eficiência 

de mercado no sentido de Fama. Para o mercado brasileiro não há evidências 

empíricas conclusivas na literatura a este respeito. Boa parte dos trabalhos utilizam o 

conceito do caminho aleatório para verificar a eficiência de mercado. 

Um dos argumentos da eficiência de mercado de Fama é que as informações 

disponíveis são rapidamente incorporadas aos mercados. Neste trabalho as 

informações foram incorporadas ao modelo com atraso máximo de um dia. Logo, as 

mudanças das expectativas dos agentes econômicos indicados nos preços dos ativos, 

faziam parte do modelo numa análise de investimentos técnica. Tais modelos foram 

chamados de modelos de VaR dinâmicos pois, não só novos parâmetros eram 

incorporados, mas novas estimações eram realizadas, sejam da volatilidade, processo 

de Wiener, ou do próprio VaR. 

Os resultados mostraram um ganho da capacidade explicativa para os MSMC de 71% 

na análise estática com volatilidade GARCH para 100% na análise dinâmica. Além de 
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uma redução do VaR médio de 10% para a carteira vale5+petr4+tnlp4, reduzindo 

desta forma o requerimento de capital como garantia do risco de mercado. 

2. Os modelos heterocedásticos de volatilidade condicional adequaram-se bem às ações, 

no entanto, não houve diferenças significativas nos resultados em função da utilização 

de modelos assimétricos de volatilidade. 

Os testes de assimetria indicaram o modelo EGARCH como o ideal para a carteira 

Petrobrás PN. Mas não houve resultados conclusivos do VaR sobre a superioridade da 

volatilidade EGARCH  para esta carteira. 

Já para carteiras com 2 ou 3 ativos, onde um deles é a Petrobrás PN, o modelo 

EGARCH não foi o mais adequado. De uma forma geral os modelos GARCH foram 

os que apresentaram os melhores desempenhos. Dentre estes os preferidos foram os 

parcimoniosos. 

3. Os modelos paramétricos tiveram desempenhos inferiores aos modelos não 

paramétricos (de simulação). A suposição que a distribuição dos retornos é 

normalmente distribuída, não teve suporte empírico para as séries estudadas. De uma 

forma geral, todos os modelos paramétricos foram rejeitados. 

Os modelos não paramétricos com volatilidade padrão não tiveram resultados 

inferiores significativamente ao da volatilidade GARCH a ponto de se rejeitar tais 

modelos, indicando que um modelo paramétrico, mesmo com a suposição de 

distribuição normal dos retornos, mais sofisticado com capacidade de capturar mais 

fatores de risco podem ter resultados satisfatórios. 

4. Os modelos de precificação de Black & Scholes não foram adequados às opções em 

estudo. Aparentemente o investidor utiliza o mercado de opções brasileiro como um 

jogo de sorte, cujas expectativas estão baseadas mais no aspecto emocional que 

racional. Assim sendo, ajustes na análise de Black & Scholes são relevantes para 

incorporar tais características. 

A análise dinâmica, apesar de melhorar o desempenho, não foi suficiente às carteiras 

de opções. A justificativa neste trabalho é que o modelo de Black & Scholes não 

funciona, pelo menos na forma originalmente proposta, no mercado brasileiro de 

opções de compra da Telemar PN no período estudado. 

No modelo do B&S foi incluído um novo conjunto de informações: os preços dos 

prêmios das opções68. Este novo conjunto de informações traz as expectativas dos 

agentes que participam deste mercado. 

                                                 
68 No modelo original de B&S os preços dos ativos objeto tinham todas as informações necessárias. 
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Esta informação é inserida no contexto do modelo de B&S como um prêmio de risco 

pago pelo investidor (para posições compradas) numa aposta de forte alavancagem do 

seu investimento, mesmo contrariando a racionalidade econômica. 

Os resultados empíricos mostraram que o ajuste ao modelo de B&S é uma solução 

viável no mercado de opções de compra da Telemar PN no período analisado. Apesar 

do baixo desempenho para carteira borboleta comprada. 

5. O modelo Hedge delta-normal não foi suficiente para reduzir o risco de mercado 

medido via o VaR da carteira com ação da Telemar PN. Na verdade o risco médio foi 

triplicado. 

Como era esperado, um hedge com apenas o delta não é suficiente para o mercado 

brasileiro. Os resultados mostraram que ao invés de reduzir o risco, a opção foi mais 

um fator de risco. Provavelmente isto foi motivado, pelo preço dos prêmios das opções 

ou pelo gama elevado. 

6. A diversidade das carteiras foi capaz de reduzir o risco. O VaR atendeu ao axioma da 

subaditividade, sendo, portanto, uma medida coerente de risco (ao menos para as 

séries e períodos estudados). Sendo por conseqüência, entre as alternativas de 

investimento, a carteira com as ações da Vale do Rio Doce PNA, Telemar PN e 

Petrobrás PN. 

7. A análise dinâmica traz resultados superiores à análise estática. Este resultado decorre 

da possibilidade de se incorporar novas informações ao modelo com defasagem tão 

pequena quanto o tempo para se dispor das novas informações. Tal aspecto levanta a 

seguinte questão: os estudos que demonstram a ineficiência do mercado estão corretos, 

ou o instrumental de análise não tem capacidade de captar a dinâmica e as 

informações do mercado? 

 

Assim sendo, neste trabalho os resultados obtidos mostram que modelos de 

gerenciamento de risco desenvolvidos para os países de primeiro mundo, em particular para 

os mercados americanos, não funcionam plenamente no Brasil. Não que os modelos estejam 

incorretos, visto que algumas das premissas básicas e teorias são válidas para o mercado 

brasileiro, mas principalmente porque algumas particularidades locais devem ser incorporadas 

aos modelos. 

Diante dos resultados, fica como sugestão para futuros trabalhos de pesquisa uma 

melhor precificação das opções brasileiras, no qual o “prêmio de risco” pago ao investidor 

também seja uma função do tempo até o vencimento e do preço de exercício, desde que estes 
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tenham poder explicativo. Outra possibilidade para o mercado de opções é a análise com 

outras estratégias e com opções de compra e venda de outros ativos como ações da Petrobrás, 

e de commodities como café e soja.  

Os ajustes na precificação de opções podem ser realizados segundo o conceito de 

independência em relação aos eventos passados, com exceção do último evento. Ou seja, o 

seguindo um processo de Markov. 

Outra sugestão é a incorporação da volatilidade estocástica e análise de saltos 

estocásticos da volatilidade. Esta possibilidade fornece uma maior capacidade de ajustes do 

modelo ao longo do dia (se os ajustes forem diários). A busca de carteiras com ativos mais 

voláteis e/ou períodos mais críticos no tocante à influência de eventos de risco também 

fortalecem a análise. 
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Apêndice 1 
 
Resultados dos testes de seleção de modelos de volatilidade modelos GARCH (p,q): 

 

Tabela A. 1: Resultados dos teste de seleção de modelos ARMA (r, m) – GARCH (p,q); Vale 
do Rio Doce PNA com janela de 252 dias (um ano). Em negrito os melhores. 

Modelo Testes Mode Testes 
r m p q Q (4)69 Q (8)70 AIC BIC r mp q Q (4) Q (8) AIC BIC
0 0 1 1 8,9908 11,8634 -1281,22 -1261,62 1 0 1 1 7,309 11,6062 -1283,153 -1258,654
0 0 1 2 8,9908 11,8634 -1279,22 -1254,72 1 0 1 2 7,3091 11,6061 -1281,153 -1251,754
0 0 1 3 8,9908 11,8634 -1277,23 -1247,83 1 0 1 3 7,3095 11,6048 -1279,165 -1244,867
0 0 1 4 8,9908 11,8634 -1275,23 -1240,93 1 0 1 4 7,3095 11,6047 -1277,165 -1237,967
0 0 2 1 8,9908 11,8634 -1279,57 -1255,07 1 0 2 1 7,316 11,5702 -1281,244 -1251,846
0 0 2 2 8,9908 11,8634 -1277,58 -1248,18 1 0 2 2 7,3139 11,5783 -1279,29 -1244,992
0 0 2 3 8,9908 11,8634 -1275,76 -1241,46 1 0 2 3 7,3173 11,572 -1277,433 -1238,236
0 0 2 4 8,9908 11,8634 -1273,76 -1234,56 1 0 2 4 7,3172 11,5722 -1275,433 -1231,336
0 0 3 1 8,9908 11,8634 -1277,57 -1248,17 1 0 3 1 7,316 11,5701 -1279,244 -1244,946
0 0 3 2 8,9908 11,8634 -1275,58 -1241,29 1 0 3 2 7,3139 11,5784 -1277,29 -1238,092
0 0 3 3 8,9908 11,8634 -1274,13 -1234,93 1 0 3 3 7,3159 11,5758 -1275,827 -1231,729
0 0 3 4 8,9908 11,8634 -1272,13 -1228,03 1 0 3 4 7,3159 11,5757 -1273,827 -1224,829
0 0 4 1 8,9908 11,8634 -1275,57 -1241,27 1 0 4 1 7,3074 11,6044 -1277,308 -1238,11
0 0 4 2 8,9908 11,8634 -1273,58 -1234,39 1 0 4 2 7,3068 11,632 -1275,46 -1231,362
0 0 4 3 8,9908 11,8634 -1272,41 -1228,31 1 0 4 3 7,3185 11,5658 -1273,971 -1224,973
0 0 4 4 8,9908 11,8634 -1270,41 -1221,41 1 0 4 4 7,3186 11,5655 -1271,971 -1218,074
0 1 1 1 5,5972 9,3013 -1282,36 -1257,87 1 1 1 1 5,0049 9,29434 -1282,035 -1252,636
0 1 1 2 5,5975 9,30138 -1280,36 -1250,97 1 1 1 2 5,002 9,29193 -1280,035 -1245,737
0 1 1 3 5,592 9,29986 -1278,41 -1244,11 1 1 1 3 4,9229 9,2041 -1278,13 -1238,933
0 1 1 4 5,5921 9,29987 -1276,41 -1237,21 1 1 1 4 4,9236 9,20502 -1276,13 -1232,033
0 1 2 1 5,622 9,30909 -1280,51 -1251,11 1 1 2 1 4,9643 9,22248 -1280,256 -1245,958
0 1 2 2 5,6189 9,30794 -1278,54 -1244,24 1 1 2 2 4,971 9,23245 -1278,267 -1239,069
0 1 2 3 5,6147 9,30648 -1276,74 -1237,54 1 1 2 3 4,8578 9,10304 -1276,576 -1232,478
0 1 2 4 5,6149 9,30656 -1274,74 -1230,64 1 1 2 4 4,8582 9,10347 -1274,576 -1225,579
0 1 3 1 5,6213 9,30885 -1278,51 -1244,22 1 1 3 1 4,9635 9,22142 -1278,256 -1239,059
0 1 3 2 5,6192 9,30803 -1276,54 -1237,34 1 1 3 2 4,972 9,2335 -1276,267 -1232,169
0 1 3 3 5,6016 9,30264 -1275,21 -1231,11 1 1 3 3 4,8163 9,05796 -1275,073 -1226,076
0 1 3 4 5,602 9,30274 -1273,21 -1224,21 1 1 3 4 4,8162 9,05777 -1273,073 -1219,177
0 1 4 1 5,622 9,30907 -1276,51 -1237,32 1 1 4 1 4,9205 9,16786 -1276,232 -1232,134
0 1 4 2 5,6189 9,30793 -1274,54 -1230,44 1 1 4 2 4,9721 9,23376 -1274,267 -1225,269
0 1 4 3 5,6295 9,31146 -1273,26 -1224,27 1 1 4 3 4,8505 9,07484 -1273,131 -1219,234
0 1 4 4 5,63 9,31165 -1271,26 -1217,37 1 1 4 4 4,8563 9,08223 -1271,131 -1212,334

                                                 
69 Q-4 = Q-teste com 4 defasagens; 
70 Q-8 = Q-teste com 8 defasagens. 
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Tabela A. 2: Resultados dos teste de seleção de modelos ARMA (r, m) – GARCH (p,q); 
Petrobrás PN com janela de 252 dias (um ano). Em negrito os melhores. 

Modelo Testes Modelo Testes 
r m p q Q (4) Q (8) AIC BIC r m p q Q (4) Q (8) AIC BIC 
0 0 1 1 13,4704 26,504 -1161,89 -1142,29 1 0 1 1 5,37141 16,5908 -1164,8 -1140,3
0 0 1 2 13,4704 26,504 -1163,72 -1139,23 1 0 1 2 5,35458 16,535 -1168,33 -1138,94
0 0 1 3 13,4704 26,504 -1163,61 -1134,21 1 0 1 3 5,36648 16,573 -1168,01 -1133,72
0 0 1 4 13,4704 26,504 -1161,96 -1127,66 1 0 1 4 5,3695 16,5814 -1166,27 -1127,07
0 0 2 1 13,4704 26,504 -1159,89 -1135,39 1 0 2 1 5,37141 16,5908 -1162,8 -1133,4
0 0 2 2 13,4704 26,504 -1161,72 -1132,33 1 0 2 2 5,35452 16,5348 -1166,33 -1132,04
0 0 2 3 13,4704 26,504 -1161,61 -1127,31 1 0 2 3 5,36654 16,5732 -1166,01 -1126,82
0 0 2 4 13,4704 26,504 -1159,96 -1120,76 1 0 2 4 5,3695 16,5814 -1164,27 -1120,17
0 0 3 1 13,4704 26,504 -1157,89 -1128,49 1 0 3 1 5,37139 16,5908 -1160,8 -1126,5
0 0 3 2 13,4704 26,504 -1159,72 -1125,43 1 0 3 2 5,35455 16,5349 -1164,33 -1125,14
0 0 3 3 13,4704 26,504 -1159,61 -1120,41 1 0 3 3 5,36648 16,573 -1164,01 -1119,92
0 0 3 4 13,4704 26,504 -1157,96 -1113,86 1 0 3 4 5,36952 16,5815 -1162,27 -1113,27
0 0 4 1 13,4704 26,504 -1155,89 -1121,59 1 0 4 1 5,3713 16,5906 -1158,8 -1119,6
0 0 4 2 13,4704 26,504 -1157,72 -1118,53 1 0 4 2 5,35449 16,5346 -1162,33 -1118,24
0 0 4 3 13,4704 26,504 -1157,61 -1113,51 1 0 4 3 5,36653 16,5732 -1162,01 -1113,02
0 0 4 4 13,4704 26,504 -1155,96 -1106,96 1 0 4 4 5,36955 16,5816 -1160,27 -1106,37
0 1 1 1 4,8131 15,3251 -1166,03 -1141,53 1 1 1 1 5,12507 16,1485 -1162,83 -1133,43
0 1 1 2 4,74776 15,1411 -1169,78 -1140,38 1 1 1 2 5,01256 15,9087 -1166,39 -1132,1
0 1 1 3 4,75989 15,1801 -1169,42 -1135,12 1 1 1 3 5,03529 15,9711 -1166,07 -1126,87
0 1 1 4 4,76586 15,1983 -1167,67 -1128,48 1 1 1 4 5,03302 15,9704 -1164,32 -1120,23
0 1 2 1 4,81329 15,3255 -1164,03 -1134,63 1 1 2 1 5,12436 16,1476 -1160,83 -1126,53
0 1 2 2 4,74784 15,1414 -1167,78 -1133,48 1 1 2 2 5,01234 15,9084 -1164,39 -1125,2
0 1 2 3 4,75996 15,1804 -1167,42 -1128,22 1 1 2 3 5,03479 15,9699 -1164,07 -1119,97
0 1 2 4 4,76591 15,1984 -1165,67 -1121,58 1 1 2 4 5,03268 15,9697 -1162,32 -1113,33
0 1 3 1 4,81319 15,3253 -1162,03 -1127,73 1 1 3 1 5,12428 16,1475 -1158,83 -1119,63
0 1 3 2 4,74774 15,141 -1165,78 -1126,58 1 1 3 2 5,01274 15,9091 -1162,39 -1118,3
0 1 3 3 4,76002 15,1805 -1165,42 -1121,32 1 1 3 3 5,03458 15,9696 -1162,07 -1113,07
0 1 3 4 4,76573 15,1979 -1163,67 -1114,68 1 1 3 4 5,03308 15,9705 -1160,32 -1106,43
0 1 4 1 4,81316 15,3252 -1160,03 -1120,83 1 1 4 1 5,12325 16,1455 -1156,83 -1112,73
0 1 4 2 4,74766 15,1407 -1163,78 -1119,68 1 1 4 2 5,01251 15,9087 -1160,39 -1111,4
0 1 4 3 4,75981 15,1799 -1163,42 -1114,42 1 1 4 3 5,03516 15,9707 -1160,07 -1106,17
0 1 4 4 4,76583 15,1982 -1161,67 -1107,78 1 1 4 4 5,0334 15,9713 -1158,32 -1099,53
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Tabela A. 3: Resultados dos teste de seleção de modelos ARMA (r, m) – GARCH (p,q); 
Telemar PN com janela de 252 dias (um ano). Em negrito os melhores. 

Modelo Testes Modelo Testes 
r m p q Q (4) Q (8) AIC BIC r m p q Q (4) Q (8) AIC BIC 
0 0 1 1 3,7705 8,0075 -1111,25 -1091,66 1 0 1 1 2,9781 7,1816 -1110,78 -1086,28
0 0 1 2 3,7705 8,0075 -1110,74 -1086,24 1 0 1 2 2,9653 7,1835 -1110,64 -1081,24
0 0 1 3 3,7705 8,0075 -1112,83 -1083,43 1 0 1 3 2,9659 7,1827 -1112,76 -1078,47
0 0 1 4 3,7705 8,0075 -1111,35 -1077,05 1 0 1 4 2,9723 7,1794 -1111,17 -1071,97
0 0 2 1 3,7705 8,0075 -1108,91 -1084,41 1 0 2 1 2,9782 7,1816 -1108,78 -1079,38
0 0 2 2 3,7705 8,0075 -1108,74 -1079,34 1 0 2 2 2,9654 7,1834 -1108,64 -1074,34
0 0 2 3 3,7705 8,0075 -1110,83 -1076,53 1 0 2 3 2,9659 7,1827 -1110,76 -1071,57
0 0 2 4 3,7705 8,0075 -1109,55 -1070,35 1 0 2 4 2,9709 7,1796 -1109,4 -1065,3
0 0 3 1 3,7705 8,0075 -1108,16 -1078,76 1 0 3 1 3,0327 7,209 -1107,41 -1073,12
0 0 3 2 3,7705 8,0075 -1106,16 -1071,86 1 0 3 2 3,0316 7,2082 -1105,41 -1066,22
0 0 3 3 3,7705 8,0075 -1108,83 -1069,63 1 0 3 3 2,9659 7,1827 -1108,76 -1064,67
0 0 3 4 3,7705 8,0075 -1109,22 -1065,12 1 0 3 4 2,9649 7,1846 -1109,28 -1060,29
0 0 4 1 3,7705 8,0075 -1104,91 -1070,61 1 0 4 1 2,9779 7,1816 -1104,78 -1065,58
0 0 4 2 3,7705 8,0075 -1103,35 -1064,15 1 0 4 2 2,9803 7,1821 -1102,82 -1058,72
0 0 4 3 3,7705 8,0075 -1106,83 -1062,73 1 0 4 3 2,9659 7,1827 -1106,76 -1057,77
0 0 4 4 3,7705 8,0075 -1107,22 -1058,22 1 0 4 4 2,9645 7,1860 -1107,29 -1053,4
0 1 1 1 2,6017 6,9717 -1110,49 -1086,00 1 1 1 1 1,9207 6,5983 -1111,31 -1081,91
0 1 1 2 2,6007 6,9748 -1110,31 -1080,91 1 1 1 2 1,9535 6,6851 -1111,22 -1076,92
0 1 1 3 2,6013 6,979 -1112,49 -1078,19 1 1 1 3 1,9991 6,7822 -1113,47 -1074,27
0 1 1 4 2,6018 6,9715 -1110,84 -1071,64 1 1 1 4 1,9563 6,6973 -1111,62 -1067,53
0 1 2 1 2,6017 6,9717 -1108,49 -1079,10 1 1 2 1 1,9205 6,5978 -1109,31 -1075,01
0 1 2 2 2,6007 6,9747 -1108,31 -1074,01 1 1 2 2 1,919 6,5942 -1107,37 -1068,17
0 1 2 3 2,6013 6,979 -1110,49 -1071,29 1 1 2 3 1,9992 6,7822 -1111,47 -1067,37
0 1 2 4 2,6013 6,9721 -1109,06 -1064,96 1 1 2 4 1,9577 6,6995 -1109,85 -1060,85
0 1 3 1 2,6193 6,9756 -1107,08 -1072,78 1 1 3 1 1,8994 6,5564 -1107,96 -1068,77
0 1 3 2 2,6191 6,9756 -1105,08 -1065,88 1 1 3 2 1,8995 6,5566 -1105,96 -1061,87
0 1 3 3 2,6013 6,979 -1108,49 -1064,39 1 1 3 3 2,0544 6,8837 -1109,54 -1060,54
0 1 3 4 2,6043 6,9866 -1108,98 -1059,98 1 1 3 4 2,1421 7,0468 -1110,26 -1056,37
0 1 4 1 2,6017 6,9717 -1104,49 -1065,3 1 1 4 1 1,8996 6,5572 -1105,96 -1061,87
0 1 4 2 2,602 6,9714 -1102,55 -1058,45 1 1 4 2 1,919 6,5942 -1103,37 -1054,37
0 1 4 3 2,6013 6,979 -1106,49 -1057,49 1 1 4 3 2,1818 7,1021 -1107,77 -1053,87
0 1 4 4 2,6069 6,9918 -1107,00 -1053,10 1 1 4 4 2,259 7,2439 -1108,47 -1049,68
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Tabela A. 4: Resultados dos teste de seleção de modelos ARMA (r, m) – GARCH (p,q); Vale 
do Rio Doce PNA com janela de 504 dias (dois anos). Em negrito os melhores. 

Modelo Testes Modelo Testes 
r m p q Q (4) Q (8) AIC BIC r m p q Q (4) Q (8) AIC BIC 
0 0 1 1 23,1727 30,1165 -2567,61 -2548,01 1 0 1 1 21,4643 28,9802 -2565,72 -2541,22
0 0 1 2 23,1727 30,1165 -2565,64 -2541,14 1 0 1 2 21,4788 28,9905 -2563,75 -2534,35
0 0 1 3 23,1727 30,1165 -2563,78 -2534,39 1 0 1 3 21,5252 29,0228 -2561,91 -2527,62
0 0 1 4 23,1727 30,1165 -2561,78 -2527,49 1 0 1 4 21,5250 29,0227 -2559,91 -2520,72
0 0 2 1 23,1727 30,1165 -2565,61 -2541,11 1 0 2 1 21,4644 28,9802 -2563,72 -2534,32
0 0 2 2 23,1727 30,1165 -2563,96 -2534,56 1 0 2 2 21,5013 29,0058 -2561,95 -2527,65
0 0 2 3 23,1727 30,1165 -2562,97 -2528,67 1 0 2 3 21,7262 29,1700 -2560,75 -2521,55
0 0 2 4 23,1727 30,1165 -2560,97 -2521,77 1 0 2 4 21,7259 29,1698 -2558,75 -2514,65
0 0 3 1 23,1727 30,1165 -2563,61 -2534,21 1 0 3 1 21,4637 28,9798 -2561,72 -2527,42
0 0 3 2 23,1727 30,1165 -2561,64 -2527,34 1 0 3 2 21,5019 29,0062 -2559,95 -2520,75
0 0 3 3 23,1727 30,1165 -2561,02 -2521,82 1 0 3 3 21,7151 29,1616 -2558,82 -2514,72
0 0 3 4 23,1727 30,1165 -2559,02 -2514,92 1 0 3 4 21,7149 29,1615 -2556,82 -2507,82
0 0 4 1 23,1727 30,1165 -2561,61 -2527,31 1 0 4 1 21,4637 28,9798 -2559,72 -2520,52
0 0 4 2 23,1727 30,1165 -2559,96 -2520,76 1 0 4 2 21,5019 29,0062 -2557,95 -2513,85
0 0 4 3 23,1727 30,1165 -2559,02 -2514,92 1 0 4 3 21,7148 29,1614 -2556,82 -2507,82
0 0 4 4 23,1727 30,1165 -2557,02 -2508,02 1 0 4 4 21,7149 29,1615 -2554,82 -2500,92
0 1 1 1 20,5220 27,9129 -2566,57 -2542,07 1 1 1 1 19,0264 23,3132 -2569,76 -2540,36
0 1 1 2 20,5431 27,9292 -2564,57 -2535,17 1 1 1 2 19,0366 23,3317 -2567,77 -2533,47
0 1 1 3 20,6024 27,9754 -2562,66 -2528,37 1 1 1 3 19,0548 23,3435 -2565,96 -2526,77
0 1 1 4 20,6022 27,9752 -2560,66 -2521,47 1 1 1 4 19,0545 23,3438 -2563,96 -2519,87
0 1 2 1 20,5217 27,9126 -2564,57 -2535,17 1 1 2 1 19,0254 23,3123 -2567,76 -2533,46
0 1 2 2 20,5492 27,9340 -2562,87 -2528,57 1 1 2 2 19,0022 23,2321 -2566,21 -2527,01
0 1 2 3 20,9423 28,2447 -2561,58 -2522,39 1 1 2 3 19,1170 23,4126 -2565,00 -2520,90
0 1 2 4 20,9427 28,2450 -2559,58 -2515,49 1 1 2 4 19,1173 23,4129 -2563,00 -2514,00
0 1 3 1 20,5212 27,9123 -2562,56 -2528,27 1 1 3 1 18,9501 23,1263 -2565,68 -2526,48
0 1 3 2 20,5498 27,9344 -2560,87 -2521,67 1 1 3 2 19,0362 23,3310 -2563,77 -2519,67
0 1 3 3 20,9322 28,2366 -2559,64 -2515,54 1 1 3 3 19,1154 23,4103 -2563,06 -2514,06
0 1 3 4 20,9320 28,2364 -2557,64 -2508,64 1 1 3 4 19,1051 23,4464 -2560,19 -2506,30
0 1 4 1 20,5209 27,9120 -2560,56 -2521,37 1 1 4 1 19,0256 23,3125 -2563,76 -2519,66
0 1 4 2 20,5498 27,9345 -2558,87 -2514,77 1 1 4 2 19,0028 23,2321 -2562,21 -2513,21
0 1 4 3 20,9322 28,2366 -2557,64 -2508,64 1 1 4 3 19,1156 23,4108 -2561,06 -2507,16
0 1 4 4 20,9324 28,2367 -2555,64 -2501,75 1 1 4 4 19,0834 23,3099 -2558,88 -2500,08
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Tabela A. 5: Resultados dos teste de seleção de modelos ARMA (r, m) – GARCH (p,q); 
Petrobrás  PN com janela de 504 dias (dois anos). Em negrito os melhores. 

Modelo Testes Modelo Testes 
r m p q Q (4) Q (8) AIC BIC r m p q Q (4) Q (8) AIC BIC 
0 0 1 1 28,2577 29,6227 -2380,28 -2360,68 1 0 1 1 12,1805 14,0615 -2390,99 -2366,49
0 0 1 2 28,2577 29,6227 -2384,85 -2360,35 1 0 1 2 12,2165 14,0874 -2398,26 -2368,86
0 0 1 3 28,2577 29,6227 -2384,12 -2354,72 1 0 1 3 12,2884 14,1431 -2396,80 -2362,50
0 0 1 4 28,2577 29,6227 -2382,12 -2347,83 1 0 1 4 12,2884 14,1431 -2394,80 -2355,60
0 0 2 1 28,2577 29,6227 -2378,28 -2353,78 1 0 2 1 12,1805 14,0614 -2388,99 -2359,59
0 0 2 2 28,2577 29,6227 -2382,85 -2353,45 1 0 2 2 12,2164 14,0874 -2396,26 -2361,96
0 0 2 3 28,2577 29,6227 -2383,75 -2349,45 1 0 2 3 12,3885 14,2246 -2395,56 -2356,36
0 0 2 4 28,2577 29,6227 -2381,75 -2342,55 1 0 2 4 12,3891 14,2251 -2393,56 -2349,46
0 0 3 1 28,2577 29,6227 -2376,28 -2346,88 1 0 3 1 12,1805 14,0615 -2386,99 -2352,69
0 0 3 2 28,2577 29,6227 -2380,85 -2346,55 1 0 3 2 12,2165 14,0874 -2394,26 -2355,06
0 0 3 3 28,2577 29,6227 -2381,75 -2342,55 1 0 3 3 12,3886 14,2247 -2393,56 -2349,46
0 0 3 4 28,2577 29,6227 -2379,75 -2335,65 1 0 3 4 12,3886 14,2247 -2391,56 -2342,56
0 0 4 1 28,2577 29,6227 -2374,28 -2339,98 1 0 4 1 12,1806 14,0615 -2384,99 -2345,79
0 0 4 2 28,2577 29,6227 -2378,85 -2339,65 1 0 4 2 12,2166 14,0875 -2392,26 -2348,16
0 0 4 3 28,2577 29,6227 -2379,75 -2335,65 1 0 4 3 12,3899 14,2258 -2391,56 -2342,56
0 0 4 4 28,2577 29,6227 -2377,75 -2328,75 1 0 4 4 12,3884 14,2246 -2389,56 -2335,66
0 1 1 1 10,1513 11,9839 -2393,00 -2368,50 1 1 1 1 10,0510 11,8645 -2390,35 -2360,96
0 1 1 2 10,2426 12,0542 -2400,06 -2370,66 1 1 1 2 10,1180 11,9087 -2397,56 -2363,26
0 1 1 3 10,3169 12,1156 -2398,52 -2364,23 1 1 1 3 10,1707 11,9454 -2396,06 -2356,86
0 1 1 4 10,3170 12,1157 -2396,52 -2357,33 1 1 1 4 10,1722 11,9472 -2394,06 -2349,96
0 1 2 1 10,1514 11,9839 -2391,00 -2361,60 1 1 2 1 10,0511 11,8645 -2388,35 -2354,06
0 1 2 2 10,2424 12,0541 -2398,06 -2363,76 1 1 2 2 10,1183 11,9091 -2395,56 -2356,36
0 1 2 3 10,4260 12,2091 -2397,60 -2358,41 1 1 2 3 10,2199 11,9736 -2394,91 -2350,81
0 1 2 4 10,4257 12,2089 -2395,60 -2351,51 1 1 2 4 10,2199 11,9736 -2392,91 -2343,91
0 1 3 1 10,1517 11,9842 -2389,00 -2354,70 1 1 3 1 10,0511 11,8646 -2386,35 -2347,16
0 1 3 2 10,2427 12,0543 -2396,06 -2356,86 1 1 3 2 10,1183 11,9090 -2393,56 -2349,46
0 1 3 3 10,4258 12,2089 -2395,60 -2351,51 1 1 3 3 10,2200 11,9736 -2392,91 -2343,91
0 1 3 4 10,4259 12,2090 -2393,60 -2344,61 1 1 3 4 10,2196 11,9733 -2390,91 -2337,02
0 1 4 1 10,1514 11,9839 -2387,00 -2347,80 1 1 4 1 10,0512 11,8646 -2384,35 -2340,26
0 1 4 2 10,2425 12,0541 -2394,06 -2349,96 1 1 4 2 10,1179 11,9087 -2391,56 -2342,56
0 1 4 3 10,4261 12,2091 -2393,60 -2344,61 1 1 4 3 10,2203 11,9739 -2390,91 -2337,02
0 1 4 4 10,4272 12,2101 -2391,60 -2337,71 1 1 4 4 10,2203 11,9740 -2388,91 -2330,12
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Tabela A. 6: Resultados dos teste de seleção de modelos ARMA (r, m) – GARCH (p,q); 
Telemar  PN com janela de 504 dias (dois anos). Em negrito os melhores. 

Modelo Testes Modelo Testes 
r m p q Q (4) Q (8) AIC BIC r m p q Q (4) Q (8) AIC BIC 
0 0 1 1 7,6340 11,7069 -2187,23 -2167,63 1 0 1 1 3,3712 8,5816 -2189,66 -2165,16
0 0 1 2 7,6340 11,7069 -2185,40 -2160,90 1 0 1 2 3,3723 8,5853 -2188,03 -2158,63
0 0 1 3 7,6340 11,7069 -2183,93 -2154,53 1 0 1 3 3,3883 8,6318 -2186,80 -2152,51
0 0 1 4 7,6340 11,7069 -2181,93 -2147,63 1 0 1 4 3,3881 8,6314 -2184,80 -2145,61
0 0 2 1 7,6340 11,7069 -2185,23 -2160,73 1 0 2 1 3,3712 8,5816 -2187,66 -2158,26
0 0 2 2 7,6340 11,7069 -2183,95 -2154,55 1 0 2 2 3,3634 8,5483 -2186,41 -2152,12
0 0 2 3 7,6340 11,7069 -2182,13 -2147,84 1 0 2 3 3,3927 8,6433 -2185,05 -2145,85
0 0 2 4 7,6340 11,7069 -2180,13 -2140,94 1 0 2 4 3,3685 8,5689 -2183,54 -2139,44
0 0 3 1 7,6340 11,7069 -2183,23 -2153,83 1 0 3 1 3,3712 8,5816 -2185,66 -2151,36
0 0 3 2 7,6340 11,7069 -2181,95 -2147,65 1 0 3 2 3,3634 8,5484 -2184,41 -2145,22
0 0 3 3 7,6340 11,7069 -2181,38 -2142,18 1 0 3 3 3,4266 8,7211 -2184,70 -2140,60
0 0 3 4 7,6340 11,7069 -2179,78 -2135,68 1 0 3 4 3,4420 8,7519 -2183,38 -2134,38
0 0 4 1 7,6340 11,7069 -2181,23 -2146,93 1 0 4 1 3,3712 8,5816 -2183,66 -2144,46
0 0 4 2 7,6340 11,7069 -2179,95 -2140,75 1 0 4 2 3,3634 8,5485 -2182,41 -2138,32
0 0 4 3 7,6340 11,7069 -2179,40 -2135,30 1 0 4 3 3,4261 8,7199 -2182,72 -2133,72
0 0 4 4 7,6340 11,7069 -2178,67 -2129,67 1 0 4 4 3,4419 8,7517 -2182,42 -2128,52
0 1 1 1 2,5234 7,9516 -2191,02 -2166,52 1 1 1 1 1,7266 7,4214 -2189,10 -2159,71
0 1 1 2 2,5224 7,9464 -2189,39 -2159,99 1 1 1 2 1,7223 7,4380 -2187,53 -2153,23
0 1 1 3 2,5450 8,0289 -2188,26 -2153,96 1 1 1 3 1,7585 7,5806 -2186,53 -2147,33
0 1 1 4 2,5450 8,0288 -2186,26 -2147,06 1 1 1 4 1,7581 7,5795 -2184,53 -2140,43
0 1 2 1 2,5235 7,9517 -2189,02 -2159,62 1 1 2 1 1,7266 7,4214 -2187,10 -2152,81
0 1 2 2 2,5165 7,9034 -2187,69 -2153,40 1 1 2 2 1,7251 7,3633 -2185,75 -2146,55
0 1 2 3 2,5557 8,0590 -2186,56 -2147,36 1 1 2 3 1,7857 7,6647 -2184,93 -2140,83
0 1 2 4 2,5557 8,0591 -2184,56 -2140,46 1 1 2 4 1,7248 7,4350 -2183,02 -2134,03
0 1 3 1 2,5235 7,9519 -2187,02 -2152,72 1 1 3 1 1,7265 7,4213 -2185,10 -2145,91
0 1 3 2 2,5165 7,9034 -2185,69 -2146,50 1 1 3 2 1,7251 7,3632 -2183,75 -2139,65
0 1 3 3 2,6278 8,2222 -2186,37 -2142,28 1 1 3 3 1,9345 7,9959 -2185,09 -2136,09
0 1 3 4 2,6296 8,2258 -2184,96 -2135,96 1 1 3 4 1,9270 7,9704 -2183,60 -2129,71
0 1 4 1 2,5236 7,9524 -2185,02 -2145,82 1 1 4 1 1,7265 7,4213 -2183,10 -2139,01
0 1 4 2 2,5165 7,9033 -2183,69 -2139,60 1 1 4 2 1,7252 7,3633 -2181,75 -2132,75
0 1 4 3 2,6335 8,2335 -2184,43 -2135,43 1 1 4 3 1,9860 8,1032 -2183,24 -2129,34
0 1 4 4 2,6570 8,2792 -2184,15 -2130,26 1 1 4 4 2,0629 8,2437 -2183,09 -2124,30
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Apêndice 2 
 
Modelos de VaR estáticos para Vale do Rio Doce PNA com 255 observações. 
 

Tabela A. 7: VaR estático –1 para a Vale do Rio Doce PNA. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

118 46,27 R 0,4628 1,2379x10-4 -3,6355 x10-4 4,3009x10-6 -3,7028 x10-4 -3,5948 x10-4 

Delta-normal 
GARCH  (0,0) (1,1) 118 46,27 R 0,4628 1,2403x10-4 -3,4450 x10-4 4,4301x10-6 -3,4813 x10-4 -3,3687 x10-4 

Delta-normal 
EGARCH  (0,1) (1,1,1) 118 46,27 R 0,4629 1,2325x10-4 -4,1237 x10-4 4,4831x10-5 -4,8310 x10-4 -3,7951 x10-4 

MSH  
Tradicional 6 2,35 R 0,02353 2,7055x10-6 -0,03184 9,7336x10-17 -0,03184 -0,03184 

MSH  
Bootstrap 16 6,27 A 0,06275 9,1075x10-6 -0,02340 8,0401x10-4 -0,02455 -0,02260 

MSH  
Mirror cenários 3  1,18 R 0,01178 1,6795x10-6 -0,03496 9,0383x10-17 -0,03496 -0,03496 

MSH  
Cenários ponderados 6 2,35 R 0,02353 2,7055x10-6 -0,03184 9,7336x10-17 -0,03184 -0,03184 
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Tabela A. 8: VaR estático –2 para a Vale do Rio Doce PNA. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

9 3,53 A 0,03530 4,4181x10-6 -0,02841 1,2668x10-4 -0,02862 -0,02830 

MSMC Tradicional 
Modelo 2 com r constante 

9 3,53 A 0,03530 4,4890x10-6 -0,02829 1,2566x10-4 -0,02850 -0,02819 

MSMC GARCH (0,0) (1,1) 
Modelo 1 com r constante 

10 3,92 A 0,03922 4,8025x10-6 -0,02772 2,8801x10-4 -0,02786 -0,02649 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

10 3,92 A 0,03922 4,8754x10-6 -0,02761 2,8577x10-4 -0,02774 -0,02639 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 

7 2,74 A 0,02745 3,5385x10-6 -0,03235 3,5552x10-3 -0,03828 -0,02970 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 

8 3,14 A 0,03138 3,6025x10-6 -0,03220 3,5211x10-3 -0,03807 -0,02957 

MSMC Tradicional 
Modelo 1 com r variável 

4 1,57 R 0,01568 1,8095x10-6 -0,03664 1,2805x10-3 -0,03780 -0,03450 

MSMC Tradicional 
Modelo 2 com r variável 

4 1,57 R 0,01568 1,8433x10-6 -0,03652 1,2806x10-3 -0,03769 -0,03438 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

12 4,71 A 0,04706 5,9120x10-6 -0,02627 2,8147x10-4 -0,02655 -0,02489 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

12 4,71 A 0,04706 5,9993x10-6 -0,02616 2,7951x10-4 -0,02644 -0,02479 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 

11 4,31 A 0,04314 5,6278x10-6 -0,02888 3,8613x10-3 -0,03532 -0,02585 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 

11 4,31 A 0,04314 5,7243x10-6 -0,02872 3,8272x10-3 -0,03511 -0,02572 
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Apêndice 3 
 
Modelos de VaR estáticos para a Petrobrás PN. 
 

Tabela A. 9: VaR estático –1 para a Petrobrás PN com 255 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

101 39,61 R 0,3962 1,2574x10-4 -9,7617 x10-4 1,6143x10-5 -9,6548 x10-4 -9,6548 x10-4 

Delta-normal 
GARCH  (0,0) (1,1) 101 39,61 R 0,3962 1,2595x10-4 -9,4822 x10-4 6,4073x10-5 -1,0140 x10-3 -8,5612 x10-4 

Delta-normal 
EGARCH  (0,1) (1,1,1) 102 40,00 R 0,4001 1,2632x10-4 -9,5566 x10-4 1,2206x10-4 -1,0789 x10-3 -7,7385 x10-4 

MSH  
Tradicional 6 2,35 R 0,02353 2,7677x10-6 -0,03879 6,9525x10-18 -0,03879 -0,03879 

MSH  
Bootstrap 34 13,33 R 0,1333 3,2526x10-5 -0,01646 9,2197x10-4 -0,01770 -0,01547 

MSH  
Mirror cenários 4  1,57 R 0,01569 1,1027x10-6 -0,04415 1,1124x10-4 -0,04415 -0,04415 

MSH  
Cenários ponderados 6 2,35 R 0,02353 2,7677x10-6 -0,03879 6,9525x10-18 -0,03879 -0,03879 
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Tabela A. 10: VaR estático –2 para a Petrobrás PN com 255 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

6 2,35 R 0,02353 3,8268x10-6 -0,03657 5,6873x10-5 -0,03667 -0,03654 

MSMC Tradicional 
Modelo 2 com r constante 

6 2,35 R 0,02353 3,9315x10-6 -0,03638 5,6289x10-5 -0,03648 -0,03634 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

6 2,35 R 0,02353 2,5812x10-6 -0,03944 8,4865x10-5 -0,04018 -0,03697 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

6 2,35 R 0,02353 2,6736x10-6 -0,03922 8,3942x10-5 -0,03995 -0,03678 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 

9 3,53 A 0,03530 7,3066x10-6 -0,03585 5,0632x10-3 -0,04074 -0,02798 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 

9 3,53 A 0,03530 7,4160x10-6 -0,03566 5,0140x10-3 -0,04050 -0,02787 

MSMC Tradicional 
Modelo 1 com r variável 

10 3,92 A 0,03923 1,0938x10-5 -0,02936 2,4117x10-3 -0,03257 -0,02577 

MSMC Tradicional 
Modelo 2 com r variável 

10 3,92 A 0,03923 1,1149x10-5 -0,02917 2,4121x10-3 -0,03238 -0,02559 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

6 2,35 R 0,02353 2,7930x10-6 -0,03906 1,5385x10-3 -0,04077 -0,03216 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

6 2,35 R 0,02353 2,8871x10-6 -0,03884 1,5221x10-3 -0,04053 -0,03201 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 

11 4,31 A 0,04315 1,1866x10-5 -0,03419 7,2114x10-3 -0,04039 -0,02221 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 

11 4,31 A 0,04315 1,2013x10-5 -0,03400 7,1628x10-3 -0,04013 -0,02209 
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Tabela A. 11: VaR estático –1 para a Petrobrás PN com 510 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

233 45,69 R 0,4571 2,1777x10-4 -7,6574 x10-4 1,5425x10-5 -7,9911 x10-4 -7,4895 x10-4 

Delta-normal 
GARCH  (0,0) (1,1) 233 45,69 R 0,4571 2,1938x10-4 -6,5004 x10-4 2,9405x10-5 -6,7114 x10-4 -6,1913 x10-4 

Delta-normal 
EGARCH  (0,1) (1,1,1) 233 45,69 R 0,4571 2,1850x10-4 -7,2184 x10-4 9,8971x10-5 -8,8898 x10-4 -5,9149 x10-4 

MSH  
Tradicional 20 3,92 A 0,03923 1,4996x10-5 -0,04089 3,2645x10-16 -0,04089 -0,04089 

MSH  
Bootstrap 145 28,43 R 0,2844 1,1928x10-4 -9,4451 x10-3 7,3272x10-4 -0,01020 -8,0717 x10-3 

MSH  
Mirror cenários 21  4,12 A 0,04119 2,0035x10-5 -0,03643 3,8101x10-6 -0,03643 -0,03643 

MSH  
Cenários ponderados 20 3,92 A 0,03921 1,4996x10-5 -0,04059 3,2645x10-16 -0,04059 -0,04059 
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Tabela A. 12: VaR estático –2 para a Petrobrás PN com 510 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

30 5,88 A 0,05885 2,6116x10-5 -0,03253 4,0964x10-5 -0,03262 -0,03248 

MSMC Tradicional 
Modelo 2 com r constante 

32 6,27 A 0,06277 2,6386x10-5 -0,03239 4,0588x10-5 -0,03247 -0,03233 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

33 6,47 A 0,06473 2,8022x10-5 -0,03185 1,2231x10-3 -0,03250 -0,02693 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

33 6,47 A 0,06473 2,8292x10-5 -0,03170 1,2126x10-3 -0,03235 -0,02683 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 

32 6,27 A 0,06278 3,2424x10-5 -0,03067 4,6774x10-3 -0,03884 -0,02465 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 

32 6,27 A 0,06278 3,2688x10-5 -0,03053 4,6360x10-3 -0,03862 -0,02456 

MSMC Tradicional 
Modelo 1 com r variável 

43 8,43 R 0,08435 4,4356x10-5 -0,02534 1,6342x10-3 -0,02777 -0,02294 

MSMC Tradicional 
Modelo 2 com r variável 

44 8,63 R 0,08631 4,4797x10-5 -0,02519 1,6345x10-3 -0,02762 -0,02279 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

32 6,27 A 0,06277 2,7738x10-5 -0,03171 1,2045x10-3 -0,03251 -0,02514 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

33 6,47 A 0,06473 2,8016x10-5 -0,03160 1,1945x10-3 -0,03256 -0,02504 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 

36 7,06 R 0,07062 3,5988x10-5 -0,02912 5,0719x10-3 -0,03732 -0,02161 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 

37 7,25 R 0,07258 3,6278x10-5 -0,02895 5,0311x10-3 -0,03711 -0,02152 
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Apêndice 4 
 
Modelos de VaR estáticos para a Telemar PN 
 

Tabela A. 13: VaR estático –1 para a Telemar PN com 255 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

105 41,18 R 0,4120 2,0550x10-4 -1,8133 x10-3 3,6216x10-5 -1,8838 x10-3 -1,7862 x10-3 

Delta-normal 
GARCH  (0,0) (1,1) 105 41,18 R 0,4120 2,0630x10-4 -1,7275 x10-3 5,9028x10-5 -1,8175 x10-3 -1,6678 x10-3 

Delta-normal 
EGARCH  (0,1) (1,1,1) 106 41,57 R 0,4159 2,0558x10-4 -1,7175 x10-3 4,3082x10-4 -2,2039 x10-3 -1,3022 x10-3 

MSH  
Tradicional 5 1,96 R 0,01961 3,3887x10-6 -0,04659 4,8668x10-17 -0,04659 -0,04659 

MSH  
Bootstrap 50 19,61 R 0,1961 6,7845x10-5 -0,01611 8,3686x10-4 -0,01707 -0,01480 

MSH  
Mirror cenários 

5 1,96 R 0,01961 3,8535x10-6 -0,04563 1,3210x10-16 -0,04563 -0,04563 

MSH  
Cenários ponderados 5 1,96 R 0,01961 3,3887x10-6 -0,04659 4,8668x10-17 -0,04659 -0,04659 
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Tabela A. 14: VaR estático –2 para a Telemar PN com 255 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

9 3,53 A 0,03530 7,5200x10-6 -0,04001 5,7102x10-5 -0,04006 -0,03992 

MSMC Tradicional 
Modelo 2 com r constante 

9 3,53 A 0,03530 7,7137x10-6 -0,03978 5,6465x10-5 -0,03984 -0,03969 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

9 3,53 A 0,03530 7,8727x10-6 -0,03951 3,2553x10-4 -0,03917 -0,03861 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

9 3,53 A 0,03530 8,0701x10-6 -0,03928 3,2196x10-4 -0,03959 -0,03840 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 

13 5,10 A 0,05099 6,6540x10-6 -0,03771 9,4866x10-3 -0,04787 -0,02851 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 

13 5,10 A 0,05099 6,8431x10-6 -0,03749 9,3856x10-3 -0,04754 -0,02840 

MSMC Tradicional 
Modelo 1 com r variável 

19 7,45 A 0,07453 2,5287x10-5 -0,03019 2,7976x10-3 -0,03317 -0,02588 

MSMC Tradicional 
Modelo 2 com r variável 

19 7,45 A 0,07453 2,5749x10-5 -0,02996 2,7975x10-3 -0,03294 -0,02565 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

9 3,53 A 0,03530 7,4756x10-6 -0,03993 6,0002x10-4 -0,04059 -0,03744 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

9 3,53 A 0,03530 7,6660x10-6 -0,03971 5,9369x10-4 -0,04036 -0,03725 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 

15 5,88 A 0,05853 7,5869x10-6 -0,03731 9,3536x10-3 -0,04829 -0,02808 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 

16 6,27 A 0,06275 7,7967x10-6 -0,03710 9,2530x10-3 -0,04797 -0,02796 
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Tabela A. 15: VaR estático –1 para a Telemar PN com 510 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

235 46,08 R 0,4611 2,7522x10-4 -1,7275 x10-3 3,5369x10-5 -1,7776 x10-3 -1,6717 x10-3 

Delta-normal 
GARCH  (0,0) (1,1) 231 45,29 R 0,4532 2,6781x10-4 -1,9189x10-3 7,4212x10-5 -2,0480 x10-3 -1,8093 x10-3 

Delta-normal 
EGARCH  (0,1) (1,1,1) 231 45,29 R 0,4532 2,6720x10-4 -2,1573 x10-3 3,4254x10-4 -2,8200 x10-3 -1,744410-3 

MSH  
Tradicional 18 3,53 A 0,03531 1,2750x10-5 -0,046583 4,1674x10-17 -0,046583 -0,046583 

MSH  
Bootstrap 98 19,22 R 0,1922 7,8519x10-5 -0,020676 1,2548x10-3 -0,02268 -0,018798 

MSH  
Mirror cenários 

18 3,53 A 0,03531 1,1088x10-5 -0,046773 3,1950x10-16 -0,046773 -0,046773 

MSH  
Cenários ponderados 18 3,53 A 0,03531 1,1275x10-5 -0,046583 4,1674x10-17 -0,046583 -0,046583 
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Tabela A. 16: VaR estático –2 para a Telemar PN com 510 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

22 4,31 A 0,04315 1,5031x10-5 -0,04328 4,0901x10-5 -0,04339 -0,04324 

MSMC Tradicional 
Modelo 2 com r constante 

22 4,31 A 0,04315 1,5373x10-5 -0,04301 4,0408x10-5 -0,04312 -0,04298 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

18 3,53 A 0,03531 1,1401x10-5 -0,04645 1,2612x10-4 -0,04676 -0,04631 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

18 3,53 A 0,03531 1,1721x10-5 -0,04614 1,2450x10-4 -0,04645 -0,04600 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 

93 18,23 R 0,1825 9,2674x10-5 -0,01949 5,6759x10-3 -0,04522 -0,01678 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 

93 18,23 R 0,1825 9,2987x10-5 -0,01943 5,6316x10-3 -0,04493 -0,01674 

MSMC Tradicional 
Modelo 1 com r variável 

16 3,14 R 0,03138 8,6618x10-6 -0,05096 3,1706x10-3 -0,05704 -0,04568 

MSMC Tradicional 
Modelo 2 com r variável 

16 3,14 R 0,03138 8,8811x10-6 -0,05070 3,1704x10-3 -0,05677 -0,04541 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

16 3,14 R 0,03138 8,3361x10-6 -0,04936 1,1704x10-3 -0,05449 -0,04790 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

16 3,14 R 0,03138 8,5943x10-6 -0,04905 1,1549x10-3 -0,05410 -0,04760 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 

13 2,55 R 0,02550 3,6965x10-6 -0,05459 9,7652x10-3 -0,07250 -0,04263 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 

14 2,74 R 0,02745 3,9176x10-6 -0,05416 9,6105x10-3 -0,07177 -0,04237 
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Apêndice 5 
 
Modelos de VaR estáticos para carteiras com duas e três ações e 255 observações 
 

Tabela A. 17: VaR estático-1 para a carteira com Vale do Rio Doce PNA e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSH  
Tradicional 4 1,56 R 0,01569 3,7800x10-6 -0,02853 4,1715x10-17 -0,02853 -0,02853 

MSH  
Bootstrap 

45 17,65 R 0,17649 2,2781x10-5 -0,01155 9,5090x10-4 -0,01296 -0,01053 

MSH  
Mirror cenários 

7 2,74 A 0,02746 5,0331x10-6 -0,02556 1,1819x10-16 -0,02556 -0,02556 

MSH  
Cenários ponderados 4 1,56 R 0,01569 3,7800x10-6 -0,02853 4,1715x10-17 -0,02853 -0,02853 

MSMC Tradicional 
Modelo 1 com r constante 3 1,18 R 0,01177 2,8829x10-6 -0,03114 3,9366x10-4 -0,03200 -0,03021 

MSMC Tradicional 
Modelo 2 com r constante 3 1,18 R 0,01177 2,8899x10-6 -0,03112 3,9244x10-4 -0,03198 -0,03018 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 3 1,18 R 0,01177 2,7073x10-6 -0,03153 5,2065x10-4 -0,03243 -0,02976 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 3 1,18 R 0,01177 2,9137x10-6 -0,03151 5,1978x10-4 -0,03241 -0,02975 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 3 1,18 R 0,01177 3,6950x10-6 -0,03333 3,6819x10-3 -0,03870 -0,02834 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 3 1,18 R 0,01177 3,7027x10-6 -0,03330 3,6765x10-3 -0,03866 -0,02831 
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Tabela A. 18: VaR estático-2 para a carteira com Vale do Rio Doce PNA e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r variável 3 1,18 R 0,01177 3,6859x10-6 -0,03163 1,8485x10-3 -0,03435 -0,02702 

MSMC Tradicional 
Modelo 2 com r variável 3 1,18 R 0,01177 3,6942x10-6 -0,03160 1,8478x10-3 -0,03433 -0,02700 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 3 1,18 R 0,01177 2,9678x10-6 -0,03070 6,5735x10-4 -0,03190 -0,02809 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 3 1,18 R 0,01177 2,9746x10-6 -0,03068 6,5673x10-4 -0,03188 -0,02806 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 8 3,14 A 0,03138 5,6877x10-6 -0,03076 4,7445x10-3 -0,03732 -0,02362 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 8 3,14 A 0,03138 5,6990x10-6 -0,03073 4,7395x10-3 -0,03729 -0,02360 
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Tabela A. 19: VaR estático-1 para a carteira com Vale do Rio Doce PNA e Telemar PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSH  
Tradicional 10 3,92 A 0,03926 9,2571x10-6 -0,02540 1,0776x10-16 -0,02540 -0,02540 

MSH  
Bootstrap 46 18,04 R 0,18043 3,4369x10-5 -0,01280 3,4784x10-4 -0,01314 -0,01229 

MSH  
Mirror cenários 

7 2,74 A 0,02746 6,1984x10-6 -0,02919 1,7381x10-16 -0,02919 -0,02919 

MSH  
Cenários ponderados 10 3,92 A 0,03923 9,2571x10-6 -0,02540 1,0775x10-16 -0,02540 -0,02540 

MSMC Tradicional 
Modelo 1 com r constante 16 6,27 A 0,06275 1,1809x10-5 -0,02308 9,2955x10-4 -0,02510 -0,02168 

MSMC Tradicional 
Modelo 2 com r constante 16 6,27 A 0,06276 1,1822x10-5 -0,02307 9,2895x10-4 -0,02509 -0,02164 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 16 6,27 A 0,06276 1,2140x10-5 -0,02274 9,3980x10-4 -0,02471 -0,02111 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 16 6,27 A 0,06276 1,2616x10-5 -0,02272 9,3807x10-4 -0,02496 -0,02110 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 17 6,67 A 0,06667 9,5600x10-6 -0,02362 3,7459x10-3 -0,02895 -0,01702 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 17 6,67 A 0,06667 9,6106x10-6 -0,02356 3,7705x10-3 -0,02890 -0,01696 
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Tabela A. 20: VaR estático-2 para a carteira com Vale do Rio Doce PNA e Telemar PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r variável 21 8,23 R 0,08237 1,5917x10-5 -0,02256 1,8590x10-3 -0,02523 -0,01869 

MSMC Tradicional 
Modelo 2 com r variável 21 8,23 R 0,08237 1,5936x10-5 -0,02255 1,8590x10-3 -0,02520 -0,01868 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 18 7,06 A 0,07060 1,2910x10-5 -0,02215 1,0206x10-3 -0,02452 -0,01991 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 18 7,06 A 0,07060 1,2925x10-5 -0,02214 1,0200x10-3 -0,02450 -0,01987 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 22 8,63 R 0,08629 1,2636x10-5 -0,02165 3,7700x10-3 -0,02750 -0,01477 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 22 8,63 R 0,08629 1,2705x10-5 -0,02160 3,7707x10-3 -0,02745 -0,01476 

 



 197 

 

Tabela A. 21: VaR estático-1 para a carteira com Telemar PN e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSH  
Tradicional 6 2,35 R 0,02353 2,3996x10-6 -0,04031 6,9525x10-18 -0,04031 -0,04031 

MSH  
Bootstrap 31 12,18 R 0,12161 3,7798x10-5 -0,01665 1,3355x10-3 -0,01821 -0,01440 

MSH  
Mirror cenários 

8 3,17 A 0,03138 3,3092x10-6 -0,03813 4,8668x10-17 -0,03813 -0,03813 

MSH  
Cenários ponderados 6 2,35 R 0,02353 2,3996x10-6 -0,04031 6,9525x10-18 -0,04031 -0,04031 

MSMC Tradicional 
Modelo 1 com r constante 8 3,14 A 0,03137 4,0120x10-6 -0,03673 7,4857x10-5 -0,03691 -0,03650 

MSMC Tradicional 
Modelo 2 com r constante 8 3,14 A 0,03137 4,0278x10-6 -0,03670 7,4324x10-5 -0,03687 -0,03647 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 8 3,14 A 0,03137 3,4697x10-6 -0,03770 5,2321x10-4 -0,03820 -0,03616 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 8 3,14 A 0,03138 3,4840x10-6 -0,03767 5,2263x10-4 -0,03817 -0,03610 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 8 3,14 A 0,03140 6,1276x10-6 -0,03445 4,8815x10-3 -0,04249 -0,02956 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 8 3,14 A 0,03140 6,1526x10-6 -0,03442 4,8681x10-3 -0,04245 -0,02955 
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Tabela A. 22: VaR estático-2 para a carteira com Telemar PN e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r variável 13 5,10 A 0,05100 1,4428x10-5 -0,02823 2,5889x10-3 -0,03140 -0,02417 

MSMC Tradicional 
Modelo 2 com r variável 13 5,10 A 0,05100 1,4468x10-5 -0,02821 2,5888x10-3 -0,03137 -0,02419 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 8 3,14 A 0,03138 3,4101x10-6 -0,03773 9,6376x10-4 -0,03884 -0,03345 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 8 3,14 A 0,03138 3,4241x10-6 -0,03771 9,6281x10-4 -0,03881 -0,03342 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 10 3,92 A 0,03922 8,6593x10-6 -0,03342 5,4446x10-3 -0,04251 -0,02867 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 10 3,92 A 0,03922 8,6922x10-6 -0,03340 5,4351x10-3 -0,04246 -0,02865 

 
 
 
 
 
 
 
 
 
 
 
 



 199 

 

Tabela A. 23: VaR estático-1 para a carteira com Vale do Rio Doce PNA, Telemar PN e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSH  
Tradicional 13 5,10 A 0,05099 8,2125x10-6 -0,02432 6,2573x10-17 -0,02432 -0,02432 

MSH  
Bootstrap 46 18,04 R 0,18043 3,4558x10-5 -0,01140 7,6674x10-4 -0,01238 -0,01054 

MSH  
Mirror cenários 

5 1,96 R 0,01961 5,2021x10-6 -0,02880 1,0429x10-16 -0,02880 -0,02880 

MSH  
Cenários ponderados 13 5,10 A 0,05099 8,2125x10-6 -0,02432 6,2573x10-17 -0,02432 -0,02432 

MSMC Tradicional 
Modelo 1 com r constante 13 5,10 A 0,05099 9,2188x10-6 -0,02394 1,5652x10-3 -0,02780 -0,02240 

MSMC Tradicional 
Modelo 2 com r constante 12 4,71 A 0,04707 8,1988x10-6 -0,02510 2,0250x10-3 -0,02793 -0,02236 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 11 4,31 A 0,04315 8,3288x10-6 -0,02463 1,1779x10-3 -0,02846 -0,02241 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 11 4,31 A 0,04315 8,1392x10-6 -0,02512 1,5180x10-3 -0,02846 -0,02238 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 13 5,10 A 0,05099 8,7840x10-6 -0,02517 3,1436x10-3 -0,03159 -0,02063 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 12 4,71 A 0,04707 8,7677x10-5 -0,02539 3,2639x10-3 -0,03134 -0,02060 
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Tabela A. 24: VaR estático-2 para a carteira com Vale do Rio Doce PNA, Telemar PN e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r variável 19 7,45 A 0,07453 1,5829x10-5 -0,02113 2,5574x10-3 -0,02691 -0,01682 

MSMC Tradicional 
Modelo 2 com r variável 18 7,06 A 0,07060 1,3944x10-5 -0,02219 3,0331x10-3 -0,02706 -0,01684 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 12 4,71 A 0,04707 8,7365x10-6 -0,02407 1,2988x10-3 -0,02819 -0,02032 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 12 4,71 A 0,04707 8,5118x10-6 -0,02453 1,5856x10-3 -0,02869 -0,02028 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 18 7,06 A 0,07060 1,2237x10-5 -0,02331 3,7022x10-3 -0,03007 -0,01808 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 18 7,06 A 0,07060 1,2111x10-5 -0,02353 3,7928x10-3 -0,03004 -0,01810 
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Apêndice 6 
 
 
Modelos de VaR estáticos para carteiras de opções com 255 observações e modelo de precificação de ativos tipo 1 
 

Tabela A. 25: VaR estático para a carteira com opções da Telemar PN estratégia call-ratio. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

Gregas 115 45,10 R 0,48404 0,03305 0 0 0 0 

MSMC Tradicional 
com r constante 22 8,63 R 0,09675 0,01048 -0,4526 0,23122 -0,6662 -0,08367 

MSMC GARCH  (0,0) (1,1) 
com r constante 23 9,02 R 0,10132 0,01112 -0,4143 0,21935 -0,6632 -0,08320 

MSMC EGARCH  (0,1) (1,1,1) 
com r constante 3 1,17 R 0,01183 6,3134x10-5 -1,1825 0,5370 -1,9736 -0,53181 

MSMC Tradicional 
com r variável 41 16,08 R 0,17364 0,01286 -0,6815 0,57684 -1,3639 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r variável 60 23,53 R 0,25731 0,02202 -0,2541 0,28568 -0,6929 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r variável 14 5,49 R 0,05690 2,0014x10-3 -1,0312 0,60682 -1,8284 -0,1257 
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Tabela A. 26: VaR estático para a carteira com opções da Telemar PN estratégia borboleta comprada. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

Gregas 129 50,59 R 5,3217 4,8158 -0,01493 0,014236 -0,03310 0,0000 

MSMC Tradicional 
com r constante 26 10,20 R 0,1144 0,01245 -5,0479 6,6865 -16,1720 -0,0255 

MSMC GARCH  (0,0) (1,1) 
com r constante 31 12,16 R 0,1347 0,01311 -4,7812 6,2965 -15,2250 -0,0247 

MSMC EGARCH  (0,1) (1,1,1) 
com r constante 0 0,00 R 0,0000 0,0000 -8,1496 7,5747 -20,8543 -2,7970 

MSMC Tradicional 
com r variável 50 19,61 R 0,21621 0,02013 -0,55086 0,5401 -1,1869 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r variável 17 6,67 A 0,07249 5,824x10-3 -4,6873 6,9148 -16,3410 -0,2322 

MSMC EGARCH  (0,1) (1,1,1) 
com r variável 0 0,00 R 0,0000 0,0000 -8,2716 8,7943 -23,0250 -2,1093 
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Tabela A. 27: VaR estático para a carteira com opções da Telemar PN estratégia borboleta vendida. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

Gregas 102 40 R 1,9234 1,5234 -0,0068 -6,8298x10-3 -0,02639 0,0000 

MSMC Tradicional 
com r constante 26 10,20 R 0,1091 7,1404x10-3 -0,6740 0,47241 -1,2987 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 26 10,20 R 0,1091 7,1419x10-3 -0,6761 0,44227 -1,2075 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r constante 5 1,96 R 0,02001 4,0633x10-4 -4,3792 3,6699 -10,0630 -0,3571 

MSMC Tradicional 
com r variável 0 0 R 0 0 -9,6460 14,1510 -33,5250 -0,6229 

MSMC GARCH  (0,0) (1,1) 
com r variável 30 11,76 R 0,1257 8,0501x10-3 -0,5398 0,4239 -1,1638 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r variável 30 11,76 R 0,1251 7,4556x10-3 -5,4912 5,9006 -15,1290 0,0000 
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Apêndice 7 
 
Modelos de VaR dinâmicos para Vale do Rio Doce PNA com 255 observações. 
 

Tabela A. 28: VaR dinâmico –1 para a Vale do Rio Doce PNA. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

118 46,27 R 0,4629 1,2294x10-4 -4,0402 x10-4 8,8590x10-5 -5,8941 x10-4 -3,0475 x10-4 

Delta-normal 
GARCH  (0,0) (1,1) 118 46,27 R 0,4628 1,2239x10-4 -4,2732 x10-4 1,7502x10-4 -8,0547 x10-4 -1,9791 x10-4 

Delta-normal 
EGARCH  (0,1) (1,1,1) 118 46,27 R 0,4629 1,2242x10-4 -4,3064 x10-4 1,6600x10-4 -8,7916 x10-4 -1,5915 x10-4 

MSH  
Tradicional 16 6,27 A 0,06245 9,2386x10-6 -0,02654 3,9754x10-3 -0,03184 -0,02093 

MSH  
Bootstrap 22 8,63 R 0,08628 6,9658x10-6 -0,02130 7,1006x10-3 -0,03974 -0,01188 

MSH  
Mirror cenários 8 3,14 A 0,03178 4,6007x10-6 -0,02773 3,1598x10-3 -0,03496 -0,02383 

MSH  
Cenários ponderados 33 12,94 R 0,12943 1,8347x10-5 -0,02042 9,7890x10-3 -0,04846 6,2483 x10-4 
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Tabela A. 29: VaR dinâmico –2 para a Vale do Rio Doce PNA. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

13 5,10 A 0,05099 6,6662x10-6 -0,02563 1,7788x10-3 -0,02839 -0,02290 

MSMC Tradicional 
Modelo 2 com r constante 

13 5,10 A 0,05099 6,7477x10-6 -0,02554 1,7658x10-3 -0,02827 -0,02282 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

11 4,31 A 0,04314 3,7633x10-6 -0,02604 4,8905x10-3 -0,03118 -0,01604 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

11 4,31 A 0,04314 3,8355x10-6 -0,02594 4,8530x10-3 -0,03696 -0,01600 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 

10 3,92 A 0,03922 5,2164x10-6 -0,02645 5,0155x10-3 -0,04095 -0,01333 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 

10 3,92 A 0,03922 5,2754x10-6 -0,02641 4,9747x10-3 -0,04071 -0,01331 

MSMC Tradicional 
Modelo 1 com r variável 

19 7,45 A 0,07452 1,1949x10-5 -0,02486 6,9140x10-3 -0,04136 -0,02697 

MSMC Tradicional 
Modelo 2 com r variável 

19 7,45 A 0,07452 1,2074 x10-5 -0,02476 6,9054x10-3 -0,04126 -0,02613 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

11 4,31 A 0,04314 4,3782x10-6 -0,02535 4,6806x10-3 -0,03629 -0,01589 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

11 4,31 A 0,04314 4,4591x10-6 -0,02525 4,6431x10-3 -0,03661 -0,01586 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 

18 7,06 A 0,07060 8,0811x10-6 -0,02390 4,6545x10-3 -0,03644 -0,01118 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 

18 7,06 A 0,07060 8,1820x10-6 -0,02379 4,6192x10-3 -0,03622 -0,01115 
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Apêndice 8 
 
Modelos de VaR dinâmicos para a Petrobrás PN. 
 

Tabela A. 30: VaR dinâmico –1 para a Petrobrás PN com 255 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

101 39,61 R 0,3962 1,2312x10-4 -1,1845 x10-3 1,2160x10-4 -1,4927 x10-3 -9,7039 x10-4 

Delta-normal 
GARCH  (0,0) (1,1) 101 39,61 R 0,3962 1,2522x10-4 -1,0579 x10-3 2,6383x10-4 -2,0549 x10-3 -7,2975 x10-4 

Delta-normal 
EGARCH  (0,1) (1,1,1) 100 39,22 R 0,3923 1,2351x10-4 -1,1303 x10-4 2,6242x10-4 -2,0790 x10-4 -6,8245 x10-4 

MSH  
Tradicional 9 3,53 A 0,03530 9,1554x10-6 -0,03287 6,3306x10-3 -0,03879 -0,02193 

MSH  
Bootstrap 22 8,63 R 0,08629 1,6759x10-5 -0,02152 5,8021x10-4 -0,03693 -0,01339 

MSH  
Mirror cenários 7  2,75 A 0,02746 7,6598x10-6 -0,03582 7,0672x10-3 -0,04415 -0,02562 

MSH  
Cenários ponderados 25 9,8039 R 0,09808 3,5522x10-5 -0,02139 0,01209 -0,05789 -2,3547 x10-4 
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Tabela A. 31: VaR dinâmico –2 para a Petrobrás PN com 255 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

9 3,53 A 0,03530 9,4670x10-6 -0,03141 4,5986x10-3 -0,03730 -0,02536 

MSMC Tradicional 
Modelo 2 com r constante 

9 3,53 A 0,03529 9,5806x10-6 -0,03127 4,5578x10-3 -0,03710 -0,02528 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

9 3,53 A 0,03531 1,3051x10-5 -0,02732 3,8978x10-3 -0,04081 -0,01944 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

9 3,53 A 0,03531 1,3159x10-5 -0,02721 3,8669x10-3 -0,04057 -0,01938 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 

10 3,92 A 0,03923 1,1481x10-5 -0,02948 5,5776x10-3 -0,04785 -0,01796 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 

10 3,92 A 0,03923 1,1591x10-5 -0,02935 5,5282x10-3 -0,04752 -0,01791 

MSMC Tradicional 
Modelo 1 com r variável 

14 5,49 A 0,05491 1,1801x10-5 -0,02926 6,8088x10-3 -0,04516 -8,8430 x10-3 

MSMC Tradicional 
Modelo 2 com r variável 

14 5,49 A 0,05491 1,1949x10-5 -0,02911 6,7818x10-3 -0,04494 -8,8325 x10-3 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

11 4,31 A 0,04315 1,5307x10-5 -0,02589 4,1745x10-3 -0,03889 -0,01789 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

12 4,71 A 0,04707 1,5429x10-5 -0,02578 4,1438x10-3 -0,03867 -0,01784 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 

15 5,88 A 0,05884 1,5313x10-5 -0,02679 5,8012x10-3 -0,04522 -0,01560 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 

15 5,88 A 0,05884 1,5458x10-5 -0,02662 5,7543x10-3 -0,04492 -0,01555 
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Apêndice 9 
 
Modelos de VaR dinâmicos para a Telemar PN 
 

Tabela A. 32: VaR dinâmico –1 para a Telemar PN com 255 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de
Lopez 1

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo 

VaR 
Mínimo 

Delta-normal 
Tradicional 

104 40,78 R 0,4080 1,9718x10-4 -2,3199 x10-3 2,0810x10-4 -2,8122 x10-3 -1,7844 x10-3 

Delta-normal 
GARCH  (0,0) (1,1) 104 40,78 R 0,4080 1,9837x10-4 -2,2414 x10-3 3,5475x10-4 -3,5119 x10-3 -1,6220 x10-3 

Delta-normal 
EGARCH  (0,1) (1,1,1) 104 40,78 R 0,4080 1,9616x10-4 -2,3346 x10-3 5,8141x10-4 -4,3392 x10-3 -1,0614 x10-3 

MSH  
Tradicional 12 4,71 A 0,04707 1,4668x10-5 -0,036675 6,6784x10-3 -0,04659 -0,02828 

MSH  
Bootstrap 33 12,94 R 0,1295 3,3721x10-5 -0,02417 4,6642x10-4 -0,03158 -0,01386 

MSH  
Mirror cenários 

9 3,53 A 0,03531 1,0624x10-5 -0,04035 4,4089x10-3 -0,04563 -0,03479 

MSH  
Cenários ponderados 35 13,76 R 0,13728 2,9204x10-5 -0,02657 0,01409 -0,06382 -8,7345 x10-4 
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Tabela A. 33: VaR dinâmico –2 para a Telemar PN com 255 observações. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r constante 

11 4,31 A 0,04315 1,5704x10-5 -0,03532 3,8926x10-3 -0,04100 -0,03033 

MSMC Tradicional 
Modelo 2 com r constante 

11 4,31 A 0,04315 1,5911x10-5 -0,03513 3,8536x10-3 -0,04076 -0,03019 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

13 5,10 A 0,05100 1,5346x10-5 -0,03389 4,3206x10-3 -0,05010 -0,02432 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

13 5,10 A 0,05100 1,5563x10-5 -0,03372 4,2779x10-3 -0,04975 -0,02423 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 

17 6,67 A 0,06667 8,7273x10-6 -0,03506 7,5161x10-3 -0,06079 -0,01954 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 

17 6,67 A 0,06667 8,9380x10-6 -0,03488 7,4355x10-3 -0,06027 -0,01948 

MSMC Tradicional 
Modelo 1 com r variável 

15 5,88 A 0,05884 1,5732x10-6 -0,03387 6,6901x10-3 -0,04908 -0,01797 

MSMC Tradicional 
Modelo 2 com r variável 

15 5,88 A 0,05884 1,5956x10-6 -0,03369 6,6734x10-3 -0,04885 -0,01783 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 

16 6,27 A 0,06276 1,8152x10-5 -0,03268 4,5272x10-3 -0,04809 -0,02254 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 

16 6,27 A 0,06276 1,8399x10-5 -0,03251 4,5852x10-3 -0,04773 -0,02245 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 

20 7,84 A 0,07844 1,0226x10-5 -0,03365 7,5935x10-3 -0,05918 -0,01944 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 

20 7,84 A 0,07844 1,0464x10-5 -0,03347 7,5132x10-3 -0,05866 -0,01938 
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Apêndice 10 
 
Modelos de VaR dinâmicos para carteiras com duas e três ações e 255 observações 
 

Tabela A. 34: VaR dinâmico-1 para a carteira com Vale do Rio Doce PNA e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSH  
Tradicional 

15 5,88 A 0,08553 8,5844x10-6 -0,02299 3,8020x10-3 -0,02853 -0,01728 

MSH  
Bootstrap 

23 9,02 R 0,09020 6,1030x10-6 -0,01834 7,5150x10-3 -0,03684 -0,01041 

MSH  
Mirror cenários 

12 4,71 A 0,04706 6,2844x10-6 -0,02368 1,9212x10-3 -0,02556 -0,01969 

MSH  
Cenários ponderados 

30 11,77 R 0,11767 2,0105x10-5 -0,01698 9,8558x10-3 -0,05131 0,000176 

MSMC Tradicional 
Modelo 1 com r constante 

7 2,75 A 0,02746 5,6507x10-6 -0,02672 2,4217x10-3 -0,03111 -0,02314 

MSMC Tradicional 
Modelo 2 com r constante 

7 2,75 A 0,02746 5,6560x10-6 -0,02671 2,4183x10-3 -0,03108 -0,02314 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 

7 2,75 A 0,02746 4,6812x10-6 -0,02565 3,3904x10-3 -0,03406 -0,01750 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 

7 2,75 A 0,02746 4,6944x10-6 -0,02563 3,3794x10-3 -0,03407 -0,01749 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 5 1,96 R 0,01961 5,6720x10-6 -0,02672 3,3932x10-3 -0,03645 -0,01727 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 5 1,96 R 0,01961 5,6759x10-6 -0,02672 3,3581x10-3 -0,03641 -0,01727 
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Tabela A. 35: VaR dinâmico-2 para a carteira com Vale do Rio Doce PNA e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r variável 11 4,31 A 0,04314 7,1957x10-6 -0,02516 5,4215x10-3 -0,03532 -0,00882 

MSMC Tradicional 
Modelo 2 com r variável 11 4,31 A 0,04314 7,2030x10-6 -0,02515 5,4191x10-3 -0,03530 -0,00881 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 7 2,74 A 0,02746 5,5202x10-6 -0,02455 3,2530x10-3 -0,03241 -0,01632 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 7 2,74 A 0,02746 5,5354x10-6 -0,02453 3,2424x10-3 -0,03242 -0,01631 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 9 3,53 A 0,03530 7,5042x10-6 -0,02409 3,3121x10-3 -0,03329 -0,01539 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 9 3,53 A 0,03530 7,5101x10-6 -0,02409 3,2867x10-3 -0,03326 -0,01538 
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Tabela A. 36: VaR dinâmico-1 para a carteira com Vale do Rio Doce PNA e Telemar PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSH  
Tradicional 18 7,06 A 0,07060 1,1754x10-5 -0,02323 2,2125x10-3 -0,02625 -0,02030 

MSH  
Bootstrap 31 12,16 R 0,12158 1,0963x10-5 -0,01903 5,6851x10-3 -0,03310 -0,01097 

MSH  
Mirror cenários 

15 5,88 A 0,05883 9,3929x10-6 -0,02436 2,2873x10-3 -0,02919 -0,02193 

MSH  
Cenários ponderados 29 11,37 R 0,11374 1,8801x10-5 -0,01973 1,0480x10-2 -0,05019 -0,02234 

MSMC Tradicional 
Modelo 1 com r constante 13 5,10 A 0,05099 8,3050x10-6 -0,02476 1,3427x10-3 -0,02804 -0,02270 

MSMC Tradicional 
Modelo 2 com r constante 13 5,10 A 0,05099 8,3288x10-6 -0,02473 1,3426x10-3 -0,02802 -0,02267 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 13 5,10 A 0,05099 6,4910x10-6 -0,02451 4,1691x10-3 -0,03903 -0,01936 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 13 5,10 A 0,05099 6,5071x10-6 -0,02448 4,1689x10-3 -0,03898 -0,01932 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 12 4,71 A 0,04707 7,8728x10-6 -0,02516 4,8718x10-3 -0,04157 -0,01363 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 12 4,71 A 0,04707 7,9011x10-6 -0,02521 4,8918x10-3 -0,04151 -0,01358 
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Tabela A. 37: VaR dinâmico-2 para a carteira com Vale do Rio Doce PNA e Telemar PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r variável 18 7,06 A 0,07060 7,9907x10-6 -0,02358 5,3407x10-3 -0,04005 -0,01027 

MSMC Tradicional 
Modelo 2 com r variável 18 7,06 A 0,07060 8,0203x10-6 -0,02354 5,3408x10-3 -0,04003 -0,01024 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 17 6,67 A 0,06667 7,6594x10-6 -0,02353 3,9160x10-3 -0,03756 -0,01852 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 17 6,67 A 0,06667 7,6786x10-6 -0,02350 3,9154x10-3 -0,03752 -0,01849 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 20 7,84 A 0,07844 1,0019x10-5 -0,02325 4,7640x10-3 -0,03977 -0,01228 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 20 7,84 A 0,07844 1,0056x10-5 -0,02325 4,7665x10-3 -0,03970 -0,01223 
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Tabela A. 38: VaR dinâmico-1 para a carteira com Telemar PN e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSH  
Tradicional 11 4,31 A 0,04315 1,2622x10-5 -0,03272 6,8228x10-3 -0,04031 -0,02300 

MSH  
Bootstrap 18 7,06 A 0,07061 1,8689x10-5 -0,02262 4,8765x10-3 -0,03313 -0,01386 

MSH  
Mirror cenários 

11 4,31 A 0,04315 1,0517x10-5 -0,03332 4,6911x10-3 -0,03813 -0,02547 

MSH  
Cenários ponderados 28 10,98 R 0,10985 4,1723x10-5 -0,02117 0,013037 -0,05654 0,00000 

MSMC Tradicional 
Modelo 1 com r constante 11 4,31 A 0,04315 9,1195x10-6 -0,03227 3,7005x10-3 -0,03722 -0,02732 

MSMC Tradicional 
Modelo 2 com r constante 11 4,31 A 0,04315 9,1384x10-6 -0,03224 3,6930x10-3 -0,03719 -0,02730 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 10 3,92 A 0,03923 1,1027x10-5 -0,02913 3,4119x10-3 -0,03842 -0,02321 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 10 3,92 A 0,03923 1,1049x10-5 -0,02911 3,4084x10-3 -0,03841 -0,02320 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 11 4,31 A 0,04315 9,1936x10-6 -0,03051 4,2517x10-3 -0,04858 -0,02154 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 11 4,31 A 0,04315 9,2048x10-6 -0,03049 4,2463x10-3 -0,04851 -0,02153 
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Tabela A. 39: VaR dinâmico-2 para a carteira com Telemar PN e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r variável 11 4,31 A 0,04315 1,0797x10-5 -0,03041 5,8027x10-3 -0,04488 -0,01391 

MSMC Tradicional 
Modelo 2 com r variável 11 4,31 A 0,04315 1,0822x10-5 -0,03039 5,7990x10-3 -0,04484 -0,01389 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 14 5,49 A 0,05492 1,3144x10-5 -0,02781 3,3696x10-3 -0,03726 -0,02181 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 14 5,49 A 0,05492 1,3169x10-5 -0,02779 3,6925x10-3 -0,03723 -0,02180 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 15 5,88 A 0,05883 1,1615x10-5 -0,02845 4,2724x10-3 -0,04367 -0,01975 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 15 5,88 A 0,05883 1,1627x10-5 -0,02843 4,2665x10-3 -0,04360 -0,01974 

 
 
 
 
 
 
 
 
 
 
 
 



 216 

 

Tabela A. 40: VaR dinâmico-1 para a carteira com Vale do Rio Doce PNA, Telemar PN e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSH  
Tradicional 16 6,27 A 0,06276 1,0176x10-5 -0,02283 1,8809x10-3 -0,02460 -0,01946 

MSH  
Bootstrap 22 8,63 R 0,08628 8,6844x10-6 -0,01943 6,1041x10-3 -0,03340 -0,01006 

MSH  
Mirror cenários 

13 5,10 A 0,05099 7,6656x10-6 -0,02525 3,1338x10-3 -0,02880 -0,01999 

MSH  
Cenários ponderados 25 9,80 R 0,09806 2,5722x10-5 -0,01809 1,0738x10-2 -0,05266 0,00000 

MSMC Tradicional 
Modelo 1 com r constante 17 6,67 A 0,06667 1,0908x10-5 -0,02259 2,0821x10-3 -0,02586 -0,01970 

MSMC Tradicional 
Modelo 2 com r constante 17 6,67 A 0,06667 9,9368x10-6 -0,02263 2,0961x10-3 -0,02589 -0,01966 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r constante 12 4,71 A 0,04707 8,7322x10-6 -0,02211 3,4343x10-3 -0,03362 -0,01636 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r constante 12 4,71 A 0,04707 7,9075x10-6 -0,02235 3,7287x10-3 -0,03376 -0,01634 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r constante 12 4,71 A 0,04707 9,8847x10-6 -0,02308 3,4387x10-3 -0,03247 -0,01604 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r constante 12 4,71 A 0,04707 7,9920x10-6 -0,02327 3,5031x10-3 -0,03275 -0,01601 

 
 
 
 



 217 

 

Tabela A. 41: VaR dinâmico-2 para a carteira com Vale do Rio Doce PNA, Telemar PN e Petrobrás PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

MSMC Tradicional 
Modelo 1 com r variável 22 8,63 R 0,08629 1,2482x10-5 -0,02103 4,8603x10-3 -0,03214 -0,00677 

MSMC Tradicional 
Modelo 2 com r variável 21 8,23 R 0,08236 1,1219x10-5 -0,02110 4,9912x10-3 -0,03331 -0,00673 

MSMC GARCH  (0,0) (1,1) 
Modelo 1 com r variável 17 6,67 A 0,06667 1,0267x10-5 -0,02097 3,2363x10-3 -0,03197 -0,01503 

MSMC GARCH  (0,0) (1,1) 
Modelo 2 com r variável 17 6,67 A 0,06667 9,3812x10-6 -0,02121 3,5047x10-3 -0,03207 -0,01501 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 1 com r variável 18 7,06 A 0,07060 1,2816x10-5 -0,02087 3,2216x10-3 -0,02960 -0,01431 

MSMC EGARCH  (0,1) (1,1,1) 
Modelo 2 com r variável 19 7,45 A 0,07452 1,0777x10-5 -0,02107 3,2810x10-3 -0,02669 -0,01410 
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Apêndice 11 
 
 
Modelos de VaR dinâmicos para carteiras de opções e hedge delta neutro com 255 observações e modelo de precificação de ativos tipo 1 
 

Tabela A. 42: VaR dinâmico para a carteira com opções da Telemar PN estratégia call-ratio. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

Gregas 115 45,10 R 0,48404 0,033055 0,0001 2,559 x10-15 0,0003 0,0000 

MSMC Tradicional 
com r constante 28 10,98 R 0,11124 0,0014394 -0,45372 0,66139 -3,4364 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 31 12,16 R 0,12345 0,001880 -0,42098 0,61541 -3,2092 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r constante 16 6,27 A 0,06350 7,5896 x10-4 -1,3239 2,6957 -21,481 0,0000 

MSMC Tradicional 
com r variável 40 15,69 R 0,16196 5,1011 x10-3 -0,5055 0,7077 -3,4395 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r variável 53 20,78 R 0,21450 6,6590 x10-3 -0,38604 0,61993 -3,1969 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r variável 29 11,37 R 0,11559 1,8614 x10-3 -1,3047 2,7264 -21,477 0,0000 
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Tabela A. 43: VaR dinâmico para a carteira com opções da Telemar PN estratégia borboleta comprada. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de
Lopez 2

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

Gregas 99 38,82 R 1,9088 1,5206 -0,01095 0,01522 -0,04709 0,0000 

MSMC Tradicional 
com r constante 36 14,12 R 0,25636 0,11519 -2,6081 8,4057 -78,561 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 42 16,47 R 0,28289 0,11818 -2,5176 8,3415 -78,549 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r constante 33 12,94 R 0,1543 0,02488 -14,255 63,514 -523,100 0,0000 

MSMC Tradicional 
com r variável 46 18,04 R 0,7030 0,52263 -2,9066 8,9244 -76,863 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r variável 48 18,82 R 0,34031 0,15207 -2,2928 7,7556 -78,001 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r variável 35 13,73 R 0,16976 0,03250 -13,895 60,789 -472,860 0,0000 
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Tabela A. 44: VaR dinâmico para a carteira com opções da Telemar PN estratégia borboleta vendida. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de
Lopez 2

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

Gregas 97 38,04 R 1,8987 1,5183 -0,01581 0,015457 -0,0418 0,0000 

MSMC Tradicional 
com r constante 14 5,49 A 0,16554 0,11063 -3,3589 9,2135 -98,801 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 18 7,06 A 0,17273 0,17273 -3,2599 9,1306 -98,399 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r constante 15 5,88 A 0,18761 0,12879 -13,6980 64,161 -720,01 0,0000 

MSMC Tradicional 
com r variável 26 10,20 R 0,2387 0,13677 -3,2080 8,9499 -91,103 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r variável 23 9,02 R 0,21047 0,12027 -3,0331 8,5364 -113,270 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r variável 17 6,67 A 0,22006 0,15340 -13,2710 60,475 -705,02 0,0000 
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Tabela A. 45: VaR dinâmico para a carteira hedge delta neutro da Telemar PN. 

Metodologia Número de
Violações 

Percentual de
Violações 

Teste de
Kupiec 

Perda de 
Lopez 1 

Perda de 
Lopez 2 

VaR 
Médio 

VaR 
Desvio Padrão

VaR 
Máximo

VaR 
Mínimo 

Gregas 58 22,75 R 0,22756 1,0495 x10-4 -0,04060 0,048073 -0,17395 0,0000 

MSMC Tradicional 
com r constante 8 3,14 A 0,031651 2,7881 x10-3 -0,12000 0,068389 -0,59213 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r constante 8 3,14 A 0,032153 7,8003 x10-4 -0,11988 0,073890 -0,69883 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r constante 6 2,35 R 0,023605 7,5542 x10-4 -0,17547 0,153730 -0,81974 0,0000 

MSMC Tradicional 
com r variável 14 5,49 A 0,05986 4,9598 x10-3 -0,1586 0,14199 -0,84310 0,0000 

MSMC GARCH  (0,0) (1,1) 
com r variável 8 3,14 A 0,031890 5,1721 x10-4 -0,11986 0,082885 -0,76331 0,0000 

MSMC EGARCH  (0,1) (1,1,1) 
com r variável 7 2,74 A 0,027525 7,4199 x10-5 -0,17678 0,15350 -0,79303 0,0000 
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Anexo 1 

 

Fórmula de Itô 

 

Seja x(t) um processo de Itô com 0≥t  e com a diferencial estocástica: 

 

dwtgdttftdx )()()( +=  

 

onde tanto f quanto g são processos estocásticos com propriedades tais que: 

 

∫ ∞<
t

dssf
0

)(   e ∫ ∞<
t

dssg
0

2)(   0>∀t  

 

Seja );(1,2 ℜℜℜ +xC . Então V(x(t),t) também é um processo de Itô com a diferencial 

estocástica dada por: 

 

[ ]

dwtgttxV

dttgttxVtfttxVttxVttxdV

x

xxxt

)()),((

)()),((
2
1)()),(()),(());(( 2

+

++=    (A.1) 

 

Prova: 

Esta prova está sendo apresentada em linhas gerais, para maiores detalhes observar Mao 

(1997). 

Assumindo que x(t) é limitado, dado por uma constante K onde os valores de V(x,t) para  

x∉[-K,K] são irrelevantes. Por outro lado, para cada n maior ou igual a 1 define-se: 

 

{ }ntxtn ≥≥= )(:0infτ  

 

Também se define o processo estocástico: 

 

[ ] [ ][ ] [ ][ ]∫∫ ++∧∨−=
tt

n sdWsIsgdssIsfnxntx
nn 0 ,00 ,0 )()()()()()0()( ττ  
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para 0≥t . Então ntxn ≤)( , ou seja, )(txn  é limitado. Mais ainda, para todo 0≥t  e Ω∈ω  

existe um inteiro ),(00 ωtnn =  tal que 

 

),(),( ωω txsxn =     para  ts ≤≤0   

 

desde que 0nn ≥ . Por conseguinte, se é possível estabelecer (A.1) para )(txn , logo: 
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Em seqüência, obtêm-se o resultado desejado fazendo ∞→n . 

 

Assumindo que V(x,t) é C², pode-se encontrar uma seqüência { }),( txVn  de funções C² tal que: 

 

),(),( txVtxVn → ,   ),(),( txVtxV
t tn →
∂
∂ , 

),(),( txVtxV
x xn →
∂
∂  ,  ),(),(

²
² txVtxV

x xxn →
∂
∂  

 

Conseguindo mostrar que a fórmula de Itô para cada Vn é 
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e depois fazendo ∞→n , obtém-se o resultado desejado (A.1). 

Se ficar mostrado (A.1) para o caso em que f e g são etapas de um processo simples 

(explicados a seguir), então o caso geral pode ser obtido pelo procedimento de aproximação. 

Isto porque tanto f quanto g podem ser aproximados por etapas de um processo simples. 
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Fixando t > 0 arbitrariamente, e assumindo que V, Vt, Vtt, Vx, Vtx e Vxx são limitados em 

[ ]tx ,0ℜ  e f(s) e g(s) são processos simples em [ ]ts ,0∈ . Seja { }ktttt ,...,,, 210=Π  uma partição 

de [0,t] suficientemente fina para que f(s) e g(s) sejam “aleatório constante” para todo (ti, ti+1]. 

 

Usando a expansão de Taylor, têm-se: 
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seja iki t∆=Π −≤≤ 10max . É fácil perceber que quando 0→Π , com probabilidade 1: 
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observa-se que 

 

∑∑

∑
−

=
++

−

=
++

−

=
++

∆∆+∆

=∆∆

1

0
11

1

0
11

1

0
11

)),(()²()),((

)),((

k

i
iiiiitx

k

i
iiiitx

k

i
iiiitx

wtgttxVtfttxV

xtttxV
 

 



 226

 
quando 0→Π , o primeiro termo tende a 0, embora o segundo tenda a 0 em L² desde que 
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em outras palavras: 
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Note também que: 
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o primeiro termo tende a 0 em L² com 0→Π , pelas mesmas razões que antes. O segundo 

termo tende a ∫
t

xx dssgssxV
0
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onde foi usado o fato de ( )
)!2(
)()!2(2

n
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wE n

n
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i
∆

=∆ . Logo: 
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ou seja, foi mostrado que 
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Substituindo de (A.3) a (A.7) em (A.2), tem-se: 
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que é equivalente a (A.1), concluindo a prova. 
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Anexo 2 

 

A fórmula de Itô na precificação de um ativo 

 

Suponha que o preço inicial do ativo S(t0)= S0>0 no tempo 0tt 0 ≥= . Então o preço do ativo 

no tempo 0tt ≥  é dado por: 

 





 −+−−= )()(())(

2
1(exp)( 00

2
0 tztzttStS σσµ     (A.8) 

 

Prova:  

Pela teoria das equações diferenciais estocásticas (Mao, 1997), a Equação (2.9), dado o valor 

inicial S(to)=So>0, tem uma única solução S(t) em 0tt ≥  e a solução será positiva. Então para 

aplicar a formula de Itô, precisa-se definir a função C2,1 em +ℜ∞ x),0(  tanto que +ℜℜx . 

Definir agora ℜ→ℜ∞ +xV ),0(:  por: 

 
StSV log),( =  

 

logo: 

 

0=tV ,   
S

VS
1

= ,   
2

1
S

VSS −=  

 

e a partir da Equação (2.9), pode-se definir f(t) e g(t) como sendo: 

 

dttf µ=)( ,   tdztg σ=)(  e dzdw =  

 

pela fórmula de Itô: 
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integrando ambos os lados de to a t, obtem-se: 
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Substituindo o valor inicial S(to)=So reorganizamos a expressão anterior para obter: 
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que leva a Equação (A.8), o que conclui a prova. 
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Anexo 3: 

 

A Eliminação da Aleatoriedade 

 

Os dois caminhos aleatórios em S (Equação 2.9)  e em V (Equação 2.17) são ambos 

derivados de uma única variável aleatória dw (ou dz). Pode-se explorar esta situação para 

construir uma terceira variável M, cuja variação dM é totalmente deterministica durante o 

pequeno período de tempo dt. 

Para o momento esta seção parece não ter importância ou sentido dentro do contexto, 

entretanto será de extrema importância quando retornarmos a precificação das opções. 

Seja ∆ um número a nossa disposição e seja também: 

 

SVM ∆−=           ( A.10) 

 

 onde ∆ é mantido constante durante o espaço de tempo dt. Logo pode-se escrever: 
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[ ]dtVVSVSdzVSdM tSSSS ++∆−+∆−= 22

2
1)()( σµσ     ( A.11) 

 

Fazendo-se: 
S
VVS ∂
∂

==∆  (antes do salto, ou seja do tempo t), faze-se com que o 

coeficiente dw desapareça. Isto permite um valor para dM que é conhecido:  o caminho 

aleatório de M é puramente determinístico. 

Essencialmente, este “truque” usa o fato de que os dois caminhos aleatórios, para V e 

S, são correlacionados e não independentes. Desde que este comportamento randômico seja 

proporcional, então tomando a combinação linear correta entre V e S, pode-se eliminar a 

aleatoriedade mutuamente. 
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Anexo 4: 

 

Restrições racionais das opções de compra 

 

 As condições de contorno são o resultado de teoremas que regem a formação de 

preços sob o ponto de vista de um investidor racional71. Tais teoremas e definições serão a 

seguir apresentados. Por notação defini-se CT(S,t,k) como uma opção de compra americana 

no tempo Tt ≤  e cT(S,t,k) uma opção de compra européia. Inicialmente tratar-se-á das 

condições de contorno para as opções de compra (quando não for necessário o índice T, este 

será suprimido para simplificar a notação). 

 Pela definição das opções: 

 

0),,( ≥ktSC   e  0),,( ≥ktSc      ( A.12) 

 

e quando t = T, ou seja, no vencimento, ambos os contratos devem satisfazer: 

 

[ ]kSkTSckTSC T −== ;0max),,(),,(       ( A.13) 

 

logo, a partir das condições de arbitragem e das expressões (A.12) e (A.13), tem-se: 

 

[ ]kSktSC T −≥ ;0max),,(         ( A.14) 

 

 Em geral a relação (A.14) não funciona para opções de compra européias, visto que 

com estes não pode haver o exercício antecipado da opção a qualquer momento, o que poderia 

gerar benefícios ao seu titular (Merton, 1990). 

 

Definição A.1: 

O ativo (ou carteira) A é dominante sobre o ativo (ou carteira) B se, para alguma data 

conhecida no futuro, o retorno de A exceder o retorno de B para algum possível estado da 

                                                 
71 Aquele que procura maximizar sua utilidade. 
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natureza, e que seja pelo menos igual ao retorno de B para todos os outros estados da 

natureza. 

 

 Note que no mercado perfeito, sem custo de transação e restrições à tomada e oferta de 

empréstimos, a existência de ativos dominantes seria equivalente à possibilidade de 

arbitragem. No entanto, é possível a existência de ativos dominantes  mesmo numa situação 

sem arbitragem em mercados não perfeitos. Para este trabalho será apresentada a seguinte 

suposição feita por Merton (1999): 

 

Suposição A.1 

Uma condição necessária para a teoria da precificação racional das opções é que as opções 

sejam precificadas sem a presença de ativos dominantes e dominados. 

 

 A partir da suposição acima se pode tira algumas conclusões sobre as opções, uma que 

segue diretamente da suposição é: dadas duas opções de compra americana do mesmo ativo e 

com mesmo preço de exercício, têm-se: 

 

),,(),,( 12 ktSCktSC TT ≥ , se 1122 tTtT −>−    ( A.15) 

 

e que: 

 

),,(),,( ktScktSC ≥         ( A.16) 

 

Outra conclusão é que, admitindo duas opções idênticas em todos os parâmetros, com exceção 

ao preço de exercício, tais opções devem obedecer: 

 

),,(),,(
),,(),,(

12

12

ktScktSc
ktSCktSC

≤
≤   se 12 kk >     ( A.17) 

 

Como um ativo comum é igual a uma opção de compra perpétua com preço de exercício zero, 

daí segue de (A.15) e (A.17) que: 
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),,( ktSCS ≥           ( A.18) 

 

e de (A.15) e de (A.17), a opção deve ser sem valor se o ativo também o for, ou seja: 

 

0),,0(),,0( == ktcktC         ( A.19) 

 

 Seja Q(t) o preço de um título sem risco (um título c-bond) e que paga uma unidade 

monetária no seu vencimento. Assumindo que as taxas de juros presente e futura sejam 

positivas, então, para um dado ponto do calendário: 

 

12

12

...
)()(...)()(1

tttT
tQtQtQTQ

n

n

>>>>
>>>>=        ( A.20) 

 

Teorema A.1: 

Se o preço de exercício de uma opção de compra européia é k e se nenhum pagamento (como 

dividendos) é feito sobre o ativo objeto no período até o vencimento da opção (ou 

alternativamente se a opção está protegida contra tais pagamentos), então: 

 

[ ])(;0max),,( tkQSktSc T −≥        ( A.21) 

 

Prova: 

Considere as duas possibilidades de investimento: 

A: comprar a opção por c(S,t,k); 

 comprar k títulos ao preço de Q(t) por título. 

  Investimento total: c(S,t,k) + Q(t). 

B: comprar o ativo objeto por S. 

  Investimento total: S. 

 Supondo que no fim do período (T) o ativo objeto tenha valor S*. Conseqüentemente o 

investimento B terá valor S*. Vamos avaliar duas situações para o investimento A ao fim do 

período: 

Se kS ≤* , então a opção não será exercida e o valor de A = 0 + k = k. 

Se kS >* , então a opção será exercida e o valor de A = (S* - k) + k = S*. 
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Assim sendo, o valor corrente de A é ao menos igual a B. Logo A é dominante sobre B.  E 

junto com a suposição A.1, teremos: 

 

StkQkTSc ≥+ )(),,(         ( A.22) 

 

(A.22) junto com (A.12) implica que: 

 

[ ])(;0max),,( tkQSkTSc T −≥  

 

o que conclui a prova. 

 

 De (A.16) e do Teorema A.1 obtém-se que o valor de uma opção de compra americana 

com um preço de exercício fixo também pode ser obtido via a Equação (A.21). Outro aspecto 

oriundo deste teorema é o fato de que o direito de exercer antes da data de vencimento a 

opção tem sempre um valor não negativo. Este fato é importante para poder concluir que 

quando este direito tem valor zero, então é o caso onde a opção de compra americana e 

européia tem o mesmo valor. A partir do Teorema A.1 podem-se obter os dois próximos 

teoremas. 

 

Teorema A.2: 

Sob as premissas do Teorema A.1, então uma opção de compra americana nunca será 

exercida antes da sua data de vencimento, significa também afirmar que esta terá o mesmo 

valor que uma opção européia. 

 

 

Prova: 

Se a opção de compra americana é exercida, seu valor será Max(0, S – k). Mas pelo Teorema 

1, [ ])(;0max),,( tkQSktSC T −≥ , que é maior que Max(0, S – k) para t<T porque de (4.24), 

Q(t)<1. Conseqüentemente, a opção tem sempre um valor mais “vivo” que “morto”. 

 

 O Teorema A.2 sugere que se há uma diferença entre uma opção americana e européia 

implicando numa probabilidade positiva de um exercício prematuro, deve ser proveniente de 
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mudanças desfavoráveis no preço de exercício ou diferença de proteção contra os pagamentos 

do ativo objeto. 

 Comumente refere-se ao Max(0, S – k) como o valor intrínseco da opção, ou seja, a 

opção deve ser sempre vendida ao menos por este valor intrínseco. A luz dos Teoremas A.1 e 

A.2, faz mais sentido definir o valor intrínseco como Max(0, S – kQ(t)). Essa definição reflete 

o fato de que o preço de exercício não precisa ser pago antes da data de vencimento, e que 

kQ(t) é o valor presente deste pagamento.. A diferença entre estes dois pagamentos pode ser 

grande, em particular com opções com grandes tempos de vencimento, que é o que o próximo 

teorema demonstra: 

 

Teorema A.3: 

Sob as premissas d o Teorema A.1, o valor de uma opção perpetua (T = ∞) deve ser igual ao 

valor do ativo objeto. 

 

Prova: 

Pelo Teorema A.1, [ ])(;0max),,( ∞−≥∞ kQSktSC T . Mas Q(∞) = 0, desde que a taxa de 

juros seja positiva, logo teremos [ ] TT SSktSC ≥≥∞ ;0max),,( . Mas de (4.24) 

),,( ktSCS ∞≥ . Logo SktSC =∞ ),,( . 
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Anexo 5: 

 

Restrições racionais das opções de venda 

 

 As opções de venda têm recebido pouca atenção na literatura por ter uma popularidade 

menor que as opções de compra e porque se acredita que, dado o preço de uma opção de 

compra e do ativo objeto, o valor da opção de venda é prontamente determinada. Segundo 

Merton (1990) esta afirmação é falsa para opções de venda americanas, e as aplicações 

matemáticas das opções de venda são mais sofisticadas que as correspondentes para as opções 

de compra. 

 Usando uma notação semelhante do Anexo 4, onde P é uma opção de venda americana 

e p uma opção de venda européia, na data de vencimento: 

 

[ ]TSk;0max)k,T,S(p)k,T,S(P −==       ( A.23) 

 

  Iniciando a análise pelas opções européias. Para determinar a posição de uma opção 

de venda européia duas posições em carteira (H) são examinadas: considere que se assuma 

uma posição longa em um ativo a S unidades monetárias, uma longa posição em uma opção 

de venda européia em t como p(S, t, k) unidades monetárias, e a tomada de empréstimo de 

kQ’(t) unidades onde Q’(t) é o valor corrente de uma unidade pagável (T – t) anos a partir de t 

a uma dada taxa de juros de empréstimo. Supondo que o ativo objeto esteja valendo S* ao fim 

de (T – t) anos. 

 

 Primeiro caso:  

0)( *** =−−+=→≤ kSkSHkS  

 Segundo caso: 

 kSkSHkS −=−+=→> *** )0(  

 

 A estrutura de retorno é idêntica em todos os estados da natureza para uma opção de 

compra européia com mesmo preço de exercício e tempo de vencimento. Conseqüentemente, 

para se evitar que a opção de compra seja um derivativo dominado a opção de compra e de 

venda devem ser precificadas de forma que: 
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),,()('),,( ktSctkQSktSp ≥−+       ( A.24) 

 

 Considerando agora uma posição curta em um ativo, uma longa posição em uma 

opção de compra, e o empréstimo de kQ(t) unidades. Supondo que o ativo objeto esteja 

valendo S* ao fim de (T – t) anos. Logo tem-se duas posições: 

 

Primeiro caso:  
*** 0 SkkSHkS −=+−=→≤  

 Segundo caso: 

 0)( *** =+−−=→> kSkSHkS  

 

 A estrutura de retorno é idêntica em todos os estados da natureza para uma opção de 

venda européia com mesmo preço de exercício e tempo de vencimento. Se a opção de venda 

não é um derivativo dominado, então deve funcionar a seguinte relação:  

 

),,()(),,( ktSptkQSktSc ≥+−       (A.25) 

 

Teorema A.4: 

Se forem válidas as suposições A.1, e se as taxas de tomada de empréstimos e de empréstimo 

são iguais então: Q(t) = Q’(t), então: 

 

)(),,(),,( tkQSktScktSp +−=       ( A.26) 

 

Prova: 

A prova segue diretamente da aplicação simultânea de (A.23) e (A.25) quando Q(t) = Q’(t). 

 

 Conseqüentemente, o valor de uma opção de venda européia pode ser precificada 

utilizando as informações da sua equivalente opção de venda e do ativo objeto. Dois 

corolários podem ser obtidos diretamente do teorema anterior. 

 

Corolário A.6a: 

),,()( ktSptkQ ≥  
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Prova: 

De (A.16) e (A.18) temos: 0),,( ≤− SktSc  e de (A.25) ),,()( ktSptkQ ≥ o que conclui a 

prova. 

 

 A intuição para este resultado é imediata. Em função do limite de segurança dado pelo 

ativo objeto, o valor máximo da opção é k e como a opção é européia, não se pode ter receita 

antes do vencimento. A opção não pode ter um valor maior que o valor presente do 

pagamento certo do seu valor máximo. 

 

Corolário A.6b: 

O valor de uma opção de venda européia perpetua )( ∞=T  é zero. 

 

Prova: 

A opção de venda tem um limite mínimo seguro de 0),,( ≥ktSp . Do Corolário 6a e da 

condição 0)( =∞Q , temos ),,(0 ktSp∞≥ , o que conclui a prova. 

 

 A análise das opções de venda americanas inicia-se pelo fato destas puderem ser 

exercidas a qualquer momento, e seu preço deve satisfazer a condição de arbitragem, daí: 

 

[ ]SkktSP −≥ ;0max),,(         ( A.27) 

 

 Da expressão acima se pode observar que se o valor do ativo S tender para infinito, o 

valor da opção tende a zero, ou seja: 

 

0)k,T,(p)k,T,(P =∞=∞         ( A.28) 

 

 Pelos mesmos argumentos usados para derivar (A.16) pode-se mostrar que: 

 

),,(),,( ktSpktSP ≥         ( A.29) 
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 Onde a inequação estrita acontecerá somente se houver uma probabilidade positiva de 

exercício antecipado. 

 Como mostrado no Anexo 4, as opções americanas e européias devem ter o mesmo 

valor se o preço de exercício for constante e estes forem protegidos contra pagamentos do 

ativo subjacente. Mesmo sob tais condições, há sempre probabilidade positiva de exercício 

antecipado de uma opção de venda americana, assim sendo uma opção de venda americana 

terá um valor superior a sua equivalente européia. Uma indicação positiva sobre este fato 

segue diretamente do Corolário A.6b e da condição de arbitragem (A.26). 

 Ao contrário de uma opção européia, uma opção americana sempre é uma função não 

decrescente da sua data de vencimento. Se não há a possibilidade de um exercício prematuro, 

o valor da opção americana será igual a sua equivalente européia. Pelo Corolário A6b o valor 

de uma opção de venda americana perpetua será igual à zero, e pelo argumento de 

monotonicidade ao longo do tempo até o vencimento todas as opções americanas deveriam ter 

valor zero. Este resultado absurdo viola as condições de arbitragem (A.26) para S < k. 

 Para deixar este ponto mais claro vamos reconstituir a análise de duas carteiras 

utilizadas para opções européias, no entanto, com opções americanas. A primeira carteira 

contém uma posição longa em um ativo ao preço S, uma longa posição em uma opção de 

venda americana ao preço P(S, t, k), e a tomada de empréstimo de kQ’(t). Como já mostrado, 

se mantida até o vencimento, o rendimento da carteira será igual ao resultado obtido ao se 

manter uma opção de compra até o vencimento. Como a opção americana de venda pode ser 

exercida antes do vencimento devemos analisar este caso com mais detalhes. 

 Se, para todos os períodos antes do vencimento, a carteira tiver valor maior que a 

opção de compra americana, S – k, então para evitar dominância da opção de compra, o valor 

corrente da carteira deve exceder ou ser igual ao valor corrente da opção de compra 

americana. 

 O valor intrínseco da carteira a (T – t) períodos antes do vencimento quando o valor do 

ativo subjacente for S* é: 

 

kStQkkSktSP

tkQktSPS

−>−+−+

=−+
***

**

))('1()(),,(

)('),,(      ( A.30) 

 

 Conseqüentemente se a condição (A.24) for válida para opções americanas para evitar 

dominância da opção de compra americana, temos: 
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),,()('),,( ktSCtkQSktSP ≥−+       ( A.31) 

 

 O segundo carteira tem uma longa posição de uma opção de compra americana ao 

preço C(S, t, k), uma posição curta em um ativo, e o empréstimo de kQ(t) unidades. Se for 

mantido até o vencimento, esta carteira irá replicar o resultado de uma opção de venda 

européia, entretanto, esta deve ter ao menos o mesmo valor em qualquer ponto do período. O 

valor intrínseco da carteira (T – t) períodos antes do vencimento e com o preço do ativo 

subjacente igual a S*, é: 

 

***

**

))(1(),,()(

)(),,(

SktQkktSCSk

tkQSktSC

−>−−+−

=+−      ( A.32) 

 

 Se ))(1(),,( * tQkktSC −< , que é possível para pequenos valores de S*. De (A.27) 

** ),,( SkktSP −≥ . Então o valor intrínseco da carteira será menor que o valor da opção de 

venda americana para valores suficientemente pequenos de S*. Assim se uma opção de venda 

americana for vendida para fazer frente a este carteira, e se o dono da opção decidir exercer-la 

antecipadamente, o valor da carteira deve ser menor que o valor de exercício da opção. 

 Este resultado seria certamente obtido se ))(1(* tQkS −< . Neste caso, a carteira não 

iria dominar a opção de venda americana se a Inequação (A.25) não fosse válida, e um 

teorema análogo ao Teorema A.4, que determina o valor de uma opção de venda americana 

em termo de uma opção de compra, não existiria. A análise da segunda carteira não apresenta 

vantagem a não ser a inequação: 

 

),,(),,( ktSCSkktSP +−≤        ( A.33) 
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Teorema A.5: 

Se para algum t’ < t, existir a probabilidade positiva que ))'(1(),',( tQkktSp −< , então há 

uma probabilidade positiva que a opção de venda americana seja exercida antes do 

vencimento e que o valor desta seja estritamente superior a sua equivalente européia. 

 

Prova: 

A única razão para a opção de venda americana ser vendida por um prêmio superior ao da 

sua equivalente européia é se existir uma probabilidade positiva de exercê-la antes do 

vencimento. Logo é suficiente provar que ),,(),,( ktSPktSp < . 

Da suposição A.1, se para todo período antes do vencimento ),',(),',( ** ktSPktSp <  para 

algum(ns) valor(es) de S*, então ),,(),,( ** ktSPktSp < . Do Teorema A.3, 

)'(),',(),',( *** tkQSktScktSp +−= , de (A.20) [ ]** ;0max),',( SkktSP −≥ . Mas 

),',(),',( ** ktSPktSp <  é implicado se )'(),',( *** tkQSktScSk +−>− , que é 

possível se ))'(1(),',( * tQkktSp −< . Pela hipótese do teorema, como S* é um valor 

possível. 

 

 Como há sempre uma chance de exercício prematuro nas opções de venda americanas, 

o Teorema A.5 ou as equações de Black & Scholes (as quais serão apresentadas em detalhes 

mais adiante) não sugere uma modelagem analítica para a precificação de uma opção de 

venda americana. 
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Anexo 6 
 

A fórmula de Black e Scholes para a opção de compra européia: 

 

A solução explícita para a PDE (2.31) é dada por 

 

[ ] )()(exp)(),( 21 dNtTrkdSNtSc −−−=       (A.34) 

 

onde N(x) é a função de distribuição de probabilidade acumulada da distribuição normal 

padrão, ou seja: 

 

∫ −= ∞−
x dzzxN )

2
1exp(

2
1)( 2

π
 

 

Enquanto que: 

 

tT

tTrk
S

d
−

−++
=

σ

σ ))(
2
1()log( 2

1
 e 

tT

tTrk
S

d
−

−−+
=

σ

σ ))(
2
1()log( 2

2
 

 

Prova: 

O teorema acima pode ser provado utilizando a técnica de PDE (como descrito em Friedman, 

1996), neste trabalho, entretanto, utilizaremos a técnica probabilística (conforme Mao, 

1997). 

 Dado um par qualquer de S>0 e ∈t  [0, T], pode-se introduzir a SDE 

 

)()()()( udwuxduurxudx σ+=  com  Tut ≤≤     ( A.35) 

 

com valor inicial x(t) = S em u = t. Na seção 2.2.2 foi mostrado que a expressão acima pode 

ser resolvida analiticamente. Em particular: 

 





 −+−−= ))()(())(

2
1(exp)( 2

oo twTwtTSTx σσµ     ( A.36) 
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 Definindo a função C2,1: 

 

)(),(),( uTreuxcuxV −= ,  ),(),0(),( Ttxux ∞∈  

 

 Onde c(x, u) satisfaz a equação PDE de Black e Scholes, ou seja (com x e u em lugar 

a S e t): 

 

0
2
1

2

2
22 =−

∂
∂

+
∂
∂

+
∂
∂ rc

x
crS

x
cx

u
c σ        ( A.37) 

 

 Calculando: 

 

)( uTrerc
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u
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 Pela formula de Itô, temos: 
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usando (A.35) pode-se observar que: 

 

)()()),(());(( udwux
x

uuxVuuxdV σ
∂

∂
=  

 

integrando ambos os lados de u = t a u = T, teremos 
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)()()),(()),(()),(( udwux
x

uuxVttxVTTxV
T

t
σ∫

∂
∂

=−  

 

 Aplicando o operador esperança e reaplicando a propriedade da integral de Itô nos 

obtemos 

 

0)),(()),(( =Ε−Ε ttxVTTxV  

 

Note que: 

)0,)(max()),(()),(( kTxTTxcTTxV −== , e 

)()( ),()),(()),(( tTrtTr etScettxcttxV −− ==  

 

logo 

[ ] 0),()0,)(max( )( =−−Ε −tTretSckTx  

ou seja: 

[ ])0,)(max(),( )( kTxetSc tTr −Ε= −−  

 

 Observa-se que: 

 

[ ] [ ] { }kTxIkTxkTx >−Ε=−Ε )()0,)(()0,)(max(  

   { }[ ] { }[ ]kTxkTx kIITx >> Ε−Ε= )()()(  

   { }[ ] [ ]kTxkPITx kTx >−Ε= > )()( )(  

 

onde I{ }k)T(x >  é a função indicador do conjunto { }kTx >)( , ou seja, 

 

{ }


 >

=> contrariocaso
kTxse

I kTx 0
)(1

)(
 

 

 Assim sendo, pode-se escrever: 
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{ }[ ] { }( )kTxkPITxetSc kTx
tTr >−Ε= >

−− )()(),( )(
)(     (A.38) 

 

 Introduzindo a variável aleatória )(log Tx=ξ . Pela Equação (A.36), teremos: 

 

))()(())(
2
1(log 2 twTwtTrS −+−−+= σσξ  

 

 Logo a variável ξ segue uma distribuição normal com média: 

 

 ))(
2
1(log 2 tTrS −−+ σ   

 

e variância 

 

 ))()((2 twTw −σ   

 

Por conveniência tomaremos: 

 

))(
2
1(logˆ 2

otTrS −−+= σµ   e  ))()((ˆ 22
otwTw −= σσ  

 

 Então )ˆ,ˆ(~ 2σµξ N . Utilizando as tradicionais propriedades das distribuições 

padrões, sabe-se: 
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com a função de densidade de probabilidade: 
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com esta nova notação e propriedade, calcula-se: 
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recalculando a definição de d2, 
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logo: 
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também calculando: 
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recalculando o valor de d2, usando a expressão acima se tem: 
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mas pela definição de d1, 

 

122 ˆ dtTdd =−+=+ σσ  
 

logo: 
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      ( A.40) 

 

 Substituindo (A.39) e (A.40) em (A.38), tem-se: 
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 O que conclui a prova. 
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Anexo 7 
 

 

O modelo de precificação de opções de Black e Scholes apresentado no Capítulo 2, 

partiu de algumas premissas, como a não variabilidade dos juros e da volatilidade, logo c = 

f(S, σ, r, k) assim sendo para pequenas variações do valor da relaciona o valor de uma opção a 

vários fatores de risco: 

 

Definição A.2: 

O δ mede o quanto o prêmio da opção deve variar para cada variação no valor do ativo 

objeto. Sendo formalmente: 

 

S
c

∂
∂

=δ           (A.41) 

 

Proposição A.1: 

Sob as suposições de Black e Scholes onde N(x) é uma função cumulativa normal, σ como a 

volatilidade expressa na forma decimal, r como a taxa de juros e 1 ≤ t ≤ T, então o delta para 

uma opção de compra e de venda (respectivamente) com dividendos72 a uma taxa Do é: 

 

)( 10
)(0 dNe tTD −−=δ          (A.42) 

)1)(( 10
)(0 −= −− dNe tTDδ         (A.43) 

 

onde: 
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72 Para o caso sem dividendos basta fazer D0 = 0, tanto para o delta quanto para as demais gregas que seguem 
(Proposições A.1, A.2, A.3 e A.4) 
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Prova: 

A prova é obtida diretamente da primeira derivada em relação à S das Expressões (2.32) e 

(2.33). 

 

A utilização do delta tem a finalidade de tornar a carteira imune a pequenas mudanças 

no preço do ativo subjacente no próximo intervalo de tempo, tal uso do delta para o hedge é 

conhecido como hedge delta. 

Apesar do hedge delta mostrar-se eficiente para a proteção da carteira, a utilização do 

delta para a administração do risco pode se tornar inviável em função dos custos relacionados 

a cada mudança de posição. Uma alternativa é o uso da grega gamma. 

 

Definição A.3: 

O γ indica quão rápido o δ irá mudar, ou seja o γ de uma carteira de derivativos é a taxa de 

variação de seu δ com relação ao preço do ativo subjacente. 

 

2

2

S
c

∂
∂

=γ            (A.45) 

 

γ pequenos proporcionam menos riscos, porque estes proporcionam δ menos sujeitos a 

mudanças. 

 

Proposição A.2: 

Sob as mesmas suposições da proposição 6.1, têm-se o γ  para uma opção de compra e venda 

com dividendos: 
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         (A.46) 

 

Prova: 

A prova é obtida diretamente da segunda derivada em relação à S das Expressões (2.32) e 

(2.33). 
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 Além da sensibilidade ao preço do ativo subjacente, as opções e outros derivativos são 

sensíveis à variação do tempo de vencimento, taxas de juros e sobretudo à volatilidade. A 

seguir definições formais destas gregas. 

 

Definição A.4: 
A terceira grega é o θ de uma carteira de derivativos, que é a taxa de variação de seu valor ao 

longo do tempo, com todas as demais variáveis constantes. Ou seja: 

 

t
c
∂
∂

=δ           (A.47) 

 

Proposição A..3: 

Para uma opção de compra e venda (respectivamente) com dividendos, que segue o modelo 

de B&S, o teta é dado por: 
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π
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Prova: 

A prova é obtida diretamente da primeira derivada em relação à t das Expressões (2.32) e 

(2.33). 

 

Para a maioria das opções, θ é geralmente negativo, significando que as opções 

perdem valor conforma o tempo avança. A derivada é sempre negativa para opções 

americanas, que dão ao seu detentor a possibilidade de exercício antecipado. 
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Definição A.5: 

A grega que avalia a variação da volatilidade no tempo é κ. O κ73 de uma carteira de 

opções ou de uma opção, é a taxa de variação do valor da carteira com relação à 

volatilidade do ativo objeto. 

 

σ
κ

∂
∂

=
c           ( A.50) 

 

Proposição A.4: 

Para uma opção de compra ou de venda sobre uma ação com dividendos e que segue B&S, o 

κ é dado por: 

 

)(10 0

2
exp tTDedtTS −−






−=κ         ( A.51) 

 

Prova: 

A prova pode ser obtida diretamente da primeira derivada em relação à volatilidade das 

Expressões (2.32) e (2.33). 

 

 Como o κ deve ser positivo, as posições compradas em opções respondem 

positivamente aos aumentos da volatilidade a apresentam perda de valor conforme a 

volatilidade diminui. Como o κ acompanha a forma de sino, as opções no dinheiro são mais 

sensíveis à volatilidade. 

 

Definição A.6: 

A ultima “grega” é o ρ (ρ*), que mede a taxa de mudança do valor da carteira com relação à 

taxa de juros (dividendos). Sendo dado por: 

 

r
c
∂
∂

=ρ            ( A.52) 

 
 

                                                 
73 Esta grega algumas vezes é denominada vega (ν), ou labda (λ). 
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Proposição A.5: 

Para uma opção de compra e venda (respectivamente) de uma ação com dividendos 

(calculada via o modelo de B&S), temos: 

 

)1)(()( 10
)( −−= −− dNetTK tTrρ        ( A.53) 

)1)(()( 10
)( −−−−= −− dNetTK tTrρ       ( A.54) 

 

E para a variação nos dividendos: 

 

)()( 10
)(* 0 dNetTK tTD −−−−=ρ        ( A.55) 

)()( 10
)(* 0 dNetTK tTD −−= −−ρ        ( A.56) 

 

Prova: 

A prova pode ser obtida diretamente da primeira derivada em relação à r (D0) das 

Expressões (2.32) e (2.33). 

 

 

 

 

 
 


