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RESUMO

O presente trabalho aborda o gerenciamento do risco do mercado utilizando o Value at Risk
(VaR), o qual se tornou a ferramenta para a mensuracao do risco esperado mais utilizada,
tanto por instituigdes financeiras, quanto ndo financeiras. O VaR mede a maior perda esperada
em dado periodo de tempo, tal perda esperada ¢ baseada nas suposicdes sobre a distribui¢ao
de retorno dos fatores de risco.

A suposi¢do de mercado eficiente ¢ normalmente a justificativa para a baixa eficacia dos
modelos de gestdo do risco de ativos brasileiros. No entanto a forma como a hipdtese de
mercado eficiente ¢ incorporada aos modelos de previsdo e de gerenciamento do risco ndo ¢
explorada na literatura com a profundidade necessaria. O resultado sdo trabalhos empiricos
pouco conclusivos sobre a eficacia dos modelos de VaR aplicados ao mercado brasileiro.
Neste trabalho o objetivo foi modelar o mercado de agdes brasileiro sem abandonar a hipotese
de mercado eficiente. Para tal fez-se necessario a incorporagdo da dindmica do mercado,
caracterizada pela alta volatilidade, aos modelos de VaR. Obteve-se sucesso para a
modelagem das carteiras de agdes, entretanto os resultados para carteiras com opgcdes
mostraram que a hipdtese de mercado eficiente ndo ¢ suficiente para a modelagem no
mercado de opg¢des brasileiro.

O VaR foi analisado sob diversas suposi¢des, transitando entre os modelos paramétricos € nao
paramétricos, das acdes mais representativas do mercado aciondrio brasileiro: Telemar PN,
Petrobras PN e Vale do Rio Doce PNA; e das op¢des mais negociadas: as opgdes de compra
de acgoes da Telemar PN.

Os resultados mostraram que modelos de VaR dinamico fornecem a adaptabilidade necessaria
para que o VaR obtivesse resultados satisfatdrios. Isto ocorreu em fungdo da velocidade da
incorporagdao de novas informagdes ao modelo ratificando a hipotese de mercado eficiente.
Entre os modelos de VaR, o que se mostrou mais adequado foi o de simulagdo de Monte
Carlo pela flexibilidade de incorporag¢ao de novas suposigdes.

Ficou claro que a tarefa de gerenciar derivativos sofisticados, como opgdes, deve ser iniciado
pelo correto modelo de precificacao de tais derivativos. O modelo de precificacao de Black &
Scholes, na sua forma original, ndo foi capaz de predizer o comportamento das opgdes objeto
de estudo. Um ajuste ao modelo incorporando a aposta de alavancagem dos investidores em

opcao tornou a modelagem do risco via o VaR aceitavel.
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ABSTRACT

This thesis approaches the risk’s administration of the market using Value at Risk (VaR),
which became widely used technique for measuring future expected risk for both financial
and non-financial institutions. The VaR measures the largest expected loss in given period of
time that expected loss is depending of suppositions about the distribution of return of the risk
factors.

The efficiency market supposition is usually the reason for the lower effectiveness of the risk
management models to the Brazilian market. However, the form how the efficiency market
hypothesis is adapted in the prevision models and risk management is not well analyzed in the
literature. The results are empiric papers not conclusive about the effectiveness of the VaR’s
models applied to the Brazilian market.

The objective of this work was the approach of the Brazilian market but without forget the
efficiency market hypothesis. For that, it was made the dynamic incorporation of the market
movement, that has (in the case of Brazilian market) high volatility, to VaR’s models. The
success was achieved in the action’s portfolios without drop the efficiency market hypothesis,
but option’s portfolios did not work successful. Show off that the efficiency market
hypothesis is not sufficiency for that specific market.

The VaR has been analyzed under several suppositions, among the models parametric and not
parametric, in the most representative Brazilian’s actions stock market: Telemar PN,
Petrobras PN and Vale do Rio Doce PNA; and in the options more negotiated: the Telemar
PN call options.

The results have been showed that dynamic models VaR provide the necessary condition to
satisfactory results VaR. This happened because of the incorporation velocity of new
information in the model, ratifying the efficiency market hypothesis. Among the VaR models,
what showed more appropriate was the Monte Carlo simulation with GARCH volatility.

Of course, the task of managed sophisticated derivative, as options, should start for the correct
pricing model of such derivatives. The precification model of Black & Scholes, in his original
form, was not capable to predict the behavior of the options study object. An adjustment to
the model, incorporating the bet of the investor’s leverage in option became the modeling of

the risk to acceptable VaR.



SUMARIO:

INDICE DE FIGURAS ......cosvvutmiriiriieeiieeeeseseesessessesstsesssss st st ssses st sssessssessens viii
INDICE DE TABELAS ...ttt sis ettt X
1. INTRODUGAO. ... eeeenes 1
L1 ASPECLOS GETAIS ...uviieirieeiiieeieieeeiiteeeiteeetteeetteeeteeeesteeessseeessseeessseeessseesasseeesseeensseessseesnssens 1
L.1.T 0 O Value at RISK ...evviiiiieiie ettt e e enes 3
L1.2 A VOlatilidade ......ooveiiiiiiieiieieee e e 7
1.1.3  Analise Estatica X DINAMICA.......cccuiriiriieiieientieie ettt 8
1.1.4 A Estrutura do Trabalho .........ccccooiiiiiiii e 9
1.2 IMOLIVAGAO ..ttt e ettt ettt e e et e e e et e e e e ettt e e e eeaaaeeeeetaeeeeeeaaeaeeeeasseeeeeeaseeeeeansneeens 9
1.3 O Problema de PeSQUISA .......c.eecuiiriiieiieriieeiieeie ettt ettt et st et e s esaesnteeaee e 13
1.4 ODbjetivos da PeSQUISA......cciiiiieiieiiieiieeiie ettt ettt ettt e ssb e et e e s e eseessseensaessseenns 14
| T (510 (] Lo . F- H SRR 15
1.6 Os Dados e Delimitagao do Trabalho..........cc.eeecviiiiiiiiiciicciicce e 19

2 FUNDAMENTOS METODOLOGICOS E  ECONOMICOS PARA O
GERENCIAMENTO DO RISCO ...ttt st s 21
2.1 Fundamentos Econdmicos do Gerenciamento de RiSCO .......c.ccceviiiiiiiiiiniiiniiiiiienieeee 21
2.2 O Mercado Acionario Brasileiro num contexto de Gestao do Risco .......ccccvvveeevieennennnee. 31
2.3 Dinamica do Retorno do AtIVO........coeevieriirieienierieeieeitese ettt 32
2.3.1 O Processo A€ WICHET......ccueruieuieieniieieeieeiieie ettt ettt et eaeesteeaee et esbeeneeeneenees 34
2.3.2 A Formula do Preco do AtIVO .....eeeeeiiiieiceciec et 38
2.4 O Modelo de Precificagao de Opgodes de Black e Scholes ..........cccooueeiiiiiiiniiiniiiiies 41
2.4.1 A Analise de Black € SChOIes......cc.coveriiiiiiiiiiiiiiececeeeeee e 42
2.4.2 As Equagoes de Black e Scholes: uma Solugdo Explicita para Op¢des Européias... 46
2.5 A Estimacao da Volatilidade ...........c..oooiiiiiiiiiii e 48
2.5.1 A Volatilidade HiStOTICA........c.ueeiiuiiiiiiieeiie ettt e e e eveeearee e 49
2.5.2 A Familia GARCH ......cooiiiiiiiiieee et 51
3 O VAR = VALUE AT RISK ...ttt st 66
3.1 ORisco, 0 Value at Risk: ASPECtOS GETALS .....ccveeeruvieeieiieeiiieeiieeeie e eereeesreeeevee e 66
3.1.1  Apresentando 0 RISCO....cccuiiiiiiiiiiiiiiieeie ettt ettt 66

3.1.2 Coeréncia das Ferramentas de RISCO ....uuuuueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeeen 69



vi

3.1.3 Conceitualizag@0 do Value at RiSk .............cccoueeeeuveeeciiieeiieeieeecie et 71
3.2 Os Pardmetros Subjetivos do VaR........ccciiiiiiiiiiiiieiceceect e 75
3.3 O Método Delta — NOTMAL.......cc.eiiiiiiiiieieiieeeeeeee e 77

3.3.1 O Meétodo TradiCional ........oc.eeiuieiiiiiiiiie e et 77

3.3.2  Os MEtodos St7ess VAR  .....cccuiiiiiiiiiie ettt saae e saae e 83
3.4 As metodologias Analiticas Baseadas nas Gregas. .........ccocceeveeeciienieeiiienieeieesie e s 88
3.5 Mcétodo das Simulagdes Historicas (MSH). ......cooooviiiiiiiiiiieecieeeeee e 91

3.5.1 O MEOAO A€ BOOLSIFAP. ....oocuveeneeeeeieeiieeieeieeeie ettt st seaeesaessseenseesnnas 93

3.5.2 O Mirror CENATIOS. ...ceueieiieiuieeieeeie ettt ettt ettt ettt e st ebe e st e b e sabeebeesaees 94

3.5.3  Cenarios PONAErados. .........ccoiiieiiiieeiiiccie ettt e e e are e e aaeeen 94
3.6 O Mc¢étodo de Simulagdo de Monte Carlo (MSMOC). .......coovviieeiiieeieeeieeeeee e 95

3.6.1 A Simulagao de uma Trajetoria de Pregos. .....ccoeviieiierieeiieiieeieecieeee e 96

3.6.2 A Geragao de NUMEIos AlCatOriOs. ......cccuuieeieiiiieeeeiiiee ettt 98

3.6.3 Simulagdes de Monte Carlo com Multiplas Varidveis .......c..cceeeverveneenenicneenenne 100
3.7 Comparacdo entre 0s Diferentes MeEtodos. ........eevuieriieiiieniieiiieiieeiteeie e 101
3.8 Avaliando a Eficiéncia do VaR. .........cccooiiiiiiiiie e 103

3.8.1 Back Testing € Kupiec (1995) ..ccuuiiiiieeiieeeeeeeeee et 104

3.8.2 O Procedimento de LOPezZ. .....co.eevueriiiiiiiiiiiiicieiiecteee et 106
3.9 Evidencias EMPITICAS. ....ccceeviiiiiiiiiieiieriie ettt ettt ettt e et eteesaaeesbeessaeenneens 107

4 RESULTADOS EMPIRICOS.........oooimoimieieeeeeeeeeeeeeeeeeeeee oo 111
4.1 OS DAAOS .ttt ettt ettt et st beesaaas 111

1T AS AGOCS ittt e e e e e e e e e et aaa e e e e e atraraaaaaas 112

A.1.2  AS OPGOCS..eeeeuiieeeiiie ettt eeiiteettte ettt e ettt e sttt e et e e st e ettt e e it e e s bt e e e bt e e enbeeeebteenabeeenreas 122
4.2 Estacionariedade, Autocorrelagdo e Heterocedasticidade das Séries. .........ccovveevveeennen. 123
4.3 Sele¢ao dos Modelos de Volatilidade.............ccoeiieiiiiiiiiiiiii e 127
4.4 Definindo as Carteiras. ........cccuvieeiuireeiiieeeiieeeieeeeiteeesreeesaeeesaeeesaeeesaeeessseeesssesessseesssseens 130
4.5 Estimando o Value at Risk ESTAtICO. ...c..coviiiiiiiniiiiinieiicceeeceeee e 131

4.5.1 VaR EStAtiCO das AGOCS......eiieeiriieeieiiiie et eeteee et e e et e e e sae e e esaae e e e eareeaeeaes 132

4.5.2 VaR EStatico das OPCOES. ....cccureiirireeiireiiieesiieesteeesireessereesseeesseeessseeesseessssessnssens 140
4.6 O Value at RiSK DINAMICO. .......cccciiiiiiieeiiieecie ettt e e e e sveeeeveeeaaeeeaaeeens 140

4.6.1 VaR DINAmIcCO das AGOECS. .....ccuueeeriieiiieeiiieeciteeeciteeeireeeeieeeeeteeeetaeesreeesreeeeaseeeenes 140

4.6.2 VaR Dinamico das Opgoes e Carteira Hedgeada. ..........ccoeeveeiienieniienieeieeeeeen 143

4.7 ANALISE A0S RESUITAGOS ..ceeeeeeeeee et e et e e e e e e e e e raaeeaeaaaes 146



vil

4.8 Ajustes Metodologicos a Precificagdo de OpgOes. .......ccvveeverieriienierienienieeieneeneeeeeaen 151
5 CONCLUSOES ..ottt eee ettt 156
REFERENCIAS BIBLIOGRAFICAS .......ooovviiiieeeeeeeeeeeeeeeeeeeeeseeeseses e 160
APENDICES ..ot s st se s s s s eenes s eenaens 176

ANEXOS ettt ettt ettt ettt b e s n e e nanes 222



viil

iNDICE DE FIGURAS

Figura 1.1: Retorno Ibovespa Diério no periodo de 04/07/1994 a 27/10/2004.................c....... 11
Figura 1.2.: Retorno do Dow Jones Diario no periodo de 04/07/1994 a 27/10/2004............... 12
Figura 1.3: Fluxograma da metodologia............cccvieeiiieiiiiiiiieecieceee e 17
Figura 1.4: Ibovespa diério no periodo de 04/07/1994 a 27/10/2004..........cccceeveeeieineraieanen. 20
Figura 2.1: Aversao ao risco e curvas de indiferenca...........cocceeeueeriiiiiienieeciienie e, 22
Figura 2.2: Detalhe de um passeio aleatorio diSCreto. ..........eevvveriieiiieiieeiiierie e 33
Figura 2.3: Simulagdo de uma trajetdria do movimento browniano. ............ccceceevveeereenevennnen. 36
Figura 2.4: Processo €StOCASIICO (Zt, £ 2 () .eoveerrreerreenreenieenreeiteenreenseesreeseessneenseesnseeseesssesnsens 37
Figura 3.1: Retornos dos titulos C-Bond. ...........ccccoeiiiieiiiiiiiieeiieeeeeee e 72
Figura 3.2: A medi¢do do VaR dos titulos C-Bond...........ccccoeeuiriiniiiiniiniininicneeceicee 72
Figura 3.3: Comparagao entre as técnicas de VaR (acuracia x tempo de processamento)..... 103
Figura 4.1: Valor de fechamento diario da Telemar PN no periodo de 17/03/1999 a
L9/03/2004. ...ttt 113
Figura 4.2: Retorno diario da Telemar PN no periodo de 17/03/1999 a 19/03/2004............. 114
Figura 4.3: Gréficos de andlise de distribui¢do para o retorno da Telemar PN...................... 115
Figura 4.4: Valor de fechamento diario da Petrobras PN no periodo de 17/03/1999 a
L9/03/2004. ... bbbttt 116
Figura 4.5: Retorno diario da Petrobras PN no periodo de 17/03/1999 a 19/03/2004. .......... 117
Figura 4.6: Gréficos de andlise de distribui¢do para o retorno da Petrobras PN.................... 118
Figura 4.7: Valor de fechamento diario da Vale do Rio Doce PNA no periodo de 17/03/1999 a
19/03/2004. ...ttt 119
Figura 4.8: Retorno diario da Vale do Rio Doce PNA no periodo de 17/03/1999 a 19/03/2004.
........................................................................................................................................ 120
Figura 4.9: Graficos de analise de distribuicao para o retorno da Petrobras PNA. ................ 121

Figura 4.10: Fechamento didrio das opg¢des da Telemar PN no periodo de 17/03/2002 a
LO/03/2004. ...ttt ettt ettt ettt e ettt e e rt e te et e naenteeteenaenseenneeneas 122

Figura 4.11: Funcdo de autocorrelagdo do retorno para Vale do Rio Doce PNA, Petrobras PN
e Telemar PN; reSpeCtiVAMENTE. ......cc..eecvieriiieiieriieeieeeieeieeete et e eeeeeeeseeeeseeeeseeeeeeeseas 124

Figura 4.12: Funcao de autocorrelacao do retorno ao quadrado para Vale do Rio Doce PNA,

Petrobras PN e Telemar PN; respectivamente. ..........cccoeccveeerieeerieeenieeeieeceiee e 125



X

Figura 4.13: VaR de MSMC GARCH Modelo com 2 r constante para a carteira Vale do Rio

Doce + Telemar + PetrobIas.........coveviiiiiieniiiiieieriiesieeeseseee et 139
Figura 4.14: VaR de mirror cenarios para a carteira Telemar + Petrobras. .............ccoc....... 139
Figura 4.15: VaR de MSMC GARCH Modelo com 1 r constante ¢ MSH tradicional para a

carteira Vale do Rio Doce + Telemar...........cccueeeiiieeiiieciiieceeecee e 143

Figura 4.16: VaR MSMC GARCH com r constante para a carteira de opgoes call ratio..... 144
Figura 4.17: VaR MSMC GARCH com r constante para a carteira borboleta comprada. ... 144
Figura 4.18: VaR MSMC GARCH com r constante para a carteira de opgoes borboleta

VENALAA. .ottt sttt 145
Figura 4.19: VaR MSMC GARCH com r constante para a carteira sedge delta neutro da

TRICTIIAL. ...ttt sttt sttt et sbe e 146
Figura 5.1: VaR MSH cenarios ponderados para a carteira Petrobras + Telemar. ................ 147
Figura 5.2: Valor real da opcao dentro do dinheiro versus valor calculado............cc.cc........ 152

Figura 5.3: VaR MSMC GARCH dinamico para a carteira borboleta vendida. .................... 153



iNDICE DE TABELAS

Tabela 2.1: Persisténcia dos modelos GARCH. ........c.ccooiiiiiiiiiiieieeeeeeee e 58
Tabela 3.1: Resumo das principais ferramentas para avaliacao do risco de mercados (ativos)
31001 0] (TSP PR PSR 68
Tabela 3.2: Comparagao entre as técnicas de VaR........c.cccoeiieiiiiiiiiiiniicceececee e 102
Tabela 3.3: Intervalo de ndo rejeigdo da hipotese nula de que a proporgio de falhas p’ é igual
AP, 2 5% de CONTIANGA. .....eeuiiiieiiiieee et 105
Tabela 3.4: Nimero maximo do tamanho da amostra para que a hipdtese p = p* seja rejeitada
A 5% dE CONTIANGA. ....c.eviiiiiieeiiee ettt e et e e eb e e e b e e e aaeeebaeesaseeesaseeas 106
Tabela 4.1: Volume total negociado na BOVESPA no periodo de 1994 a 2003 em milhdes de

TRALS. ¢ttt eute et e et et e eat e e bt e e ab e e bt e e at e e bt e e ab e e bt e eab e e bt e e a bt e bt e e a bt e bt e eab e e bt e eab e e bt e et e e bt e eabeeneeen 111
Tabela 4.2: Estatisticas descritivas para os retornos da Telemar PN. ...........c.ccccoeeviiennnnnns 115
Tabela 4.3: Estatisticas descritivas para os retornos da Petrobras PN...........cc.cccccieiennnnen. 117
Tabela 4.4: Estatisticas descritivas para os retornos da Vale do Rio Doce PNA. .................. 121
Tabela 4.5: TEStE ADE ..ottt et sttt et nbeentesaeens 123
Tabela 4.6: Q-teste para 0S 1etornoS das SETICS.......eeiiieerieeeiiieeiieeeieeeeieeeeaeeesreeesreeesereeenns 125
Tabela 4.7: Q-teste para os retornos quadrado das SEries. .........cceevueeriierieerieeniienieeieesie e 126
Tabela 4.8: Teste de Engle proposto por Bourbonnais e Terraza (1998). ........cccceovevvenennnene 126
Tabela 4.9: Teste de assimetria de TMPACLOS. .....c.eevevieriierieeiiieeieeiee et eriee e e ere e ereeenas 127
Tabela 4.10: Quadro resumo com os melhores modelos ARMA-GARCH com janela de 255

QI8S ettt ettt et et e e et e e ae e e bt e atteenbeeeateenbeenaeeenneas 128
Tabela 4.11: Quadro resumo com os melhores modelos ARMA-GARCH com janela de 510

QIAS ettt ettt e b e st e bt e et e et e eaeeas 128
Tabela 4.12: Quadro resumo com os melhores modelos ARMA-EGARCH com janela de 255

€ 510 dIAS. .ttt et ettt e h e ettt e et eeaeeeabeenneas 129
Tabela 4.13: Quadro resumo com os melhores modelos ARMA-GARCH-L com janela de 255

€ 510 IS, .ttt ettt ettt ettt b e et esaeenees 129
Tabela 4.14: VaR estatico-1 da Vale do Rio Doce PN com 510 observagdes. ..................... 134
Tabela 4.15: VaR estatico-2 da Vale do Rio Doce PN com 510 observagoes. ...................... 135

Tabela 4.16: Quadro resumo com melhores modelos de VaR estatico para carteiras simples.



X1

Tabela 4.17: Quadro resumo com os melhores modelos de VaR estatico para carteiras com
OIS € tES ALIVOS. ...veiiiiiiiiiiiiite ettt sttt 138
Tabela 4.18: Quadro resumo com os melhores modelos de VaR dindmico para carteiras
31010 (1RSSR 141
Tabela 4.19: Quadro resumo com os melhores modelos de VaR dindmico para carteiras com
OIS € tIES ALIVOS. ...veuiiiiiiiiiiietcete ettt st 142

Tabela 5.1: Melhores modelos de VaR para as carteiras de acdes em fungao da volatilidade.

........................................................................................................................................ 149
Tabela 5.2: Quadro indicativo da coeréncia do VaR como medida de risco.............cc......... 150
Tabela 5.3: VaR dinamico ajustado para carteiras Com OPGOES. ........coveerververreeruereereeruennens 154

Tabela A. 1: Resultados dos teste de sele¢do de modelos ARMA (r, m) - GARCH (p,q); Vale
do Rio Doce PNA com janela de 252 dias (um ano). Em negrito os melhores.............. 177
Tabela A. 2: Resultados dos teste de selegao de modelos ARMA (r, m) — GARCH (p,q);
Petrobras PN com janela de 252 dias (um ano). Em negrito os melhores...................... 178
Tabela A. 3: Resultados dos teste de selegao de modelos ARMA (r, m) — GARCH (p,q);
Telemar PN com janela de 252 dias (um ano). Em negrito os melhores. ...................... 179
Tabela A. 4: Resultados dos teste de selegao de modelos ARMA (r, m) — GARCH (p,q); Vale
do Rio Doce PNA com janela de 504 dias (dois anos). Em negrito os melhores........... 180
Tabela A. 5: Resultados dos teste de selegao de modelos ARMA (r, m) — GARCH (p,q);
Petrobras PN com janela de 504 dias (dois anos). Em negrito os melhores.................. 181

Tabela A. 6: Resultados dos teste de selegdo de modelos ARMA (r, m) — GARCH (p,q);

Telemar PN com janela de 504 dias (dois anos). Em negrito os melhores. .................. 182
Tabela A. 7: VaR estatico —1 para a Vale do Rio Doce PNA. ..o, 183
Tabela A. 8: VaR estatico —2 para a Vale do Rio Doce PNA. .......cccoooiiviiiiniiiiiicnecenee 184
Tabela A. 9: VaR estatico —1 para a Petrobras PN com 255 observagoes. .........ccceeeveeenvennne. 185
Tabela A. 10: VaR estatico —2 para a Petrobras PN com 255 observagoes. .........cccccveeeveennne 186
Tabela A. 11: VaR estatico —1 para a Petrobras PN com 510 observagdes. ..........cccceeeuuenneen. 187
Tabela A. 12: VaR estatico —2 para a Petrobras PN com 510 observagdes. ........cc.ccoceevuennee 188
Tabela A. 13: VaR estatico —1 para a Telemar PN com 255 observagoes. ..........cceeuveeenennne. 189
Tabela A. 14: VaR estatico —2 para a Telemar PN com 255 observagoes. .........cccceeveeeneennne 190
Tabela A. 15: VaR estatico —1 para a Telemar PN com 510 observagoes. ..........ccceeueeeueenneen. 191

Tabela A. 16: VaR estatico —2 para a Telemar PN com 510 observagdes. ..........cccceveeruennene 192



xii

Tabela A. 17: VaR estatico-1 para a carteira com Vale do Rio Doce PNA e Petrobras PN..193
Tabela A. 18: VaR estatico-2 para a carteira com Vale do Rio Doce PNA e Petrobras PN. . 194
Tabela A. 19: VaR estatico-1 para a carteira com Vale do Rio Doce PNA e Telemar PN.... 195
Tabela A. 20: VaR estatico-2 para a carteira com Vale do Rio Doce PNA e Telemar PN.... 196
Tabela A. 21: VaR estatico-1 para a carteira com Telemar PN e Petrobras PN. ................... 197
Tabela A. 22: VaR estatico-2 para a carteira com Telemar PN e Petrobras PN. .................. 198
Tabela A. 23: VaR estatico-1 para a carteira com Vale do Rio Doce PNA, Telemar PN e
Petrobras PIN. ... 199
Tabela A. 24: VaR estatico-2 para a carteira com Vale do Rio Doce PNA, Telemar PN e
PetrobDIas PIN. ...ttt et ettt sttt 200

Tabela A. 25: VaR estatico para a carteira com opg¢des da Telemar PN estratégia call-ratio.

........................................................................................................................................ 201
Tabela A. 26: VaR estatico para a carteira com opgdes da Telemar PN estratégia borboleta

(670 1015] v 1o - TR OSSR 202
Tabela A. 27: VaR estatico para a carteira com opg¢des da Telemar PN estratégia borboleta

LS, 1 LTGRO PSRRI 203
Tabela A. 28: VaR dinamico —1 para a Vale do Rio Doce PNA..........ccccviiviiieiciiiiieeee, 204
Tabela A. 29: VaR dindmico —2 para a Vale do Rio Doce PNA..........cccciiiiiniiiiiieeeee, 205
Tabela A. 30: VaR dinamico —1 para a Petrobrds PN com 255 observagoes...........ccccevuenuee 206
Tabela A. 31: VaR dinamico —2 para a Petrobras PN com 255 observagdes..........cccecuveee... 207
Tabela A. 32: VaR dindmico —1 para a Telemar PN com 255 observagoes..........ccecuveerevennnne 208
Tabela A. 33: VaR dindmico —2 para a Telemar PN com 255 observagdes...........cccceevuuennee. 209
Tabela A. 34: VaR dindmico-1 para a carteira com Vale do Rio Doce PNA e Petrobras PN.

........................................................................................................................................ 210
Tabela A. 35: VaR dinadmico-2 para a carteira com Vale do Rio Doce PNA e Petrobras PN.

........................................................................................................................................ 211
Tabela A. 36: VaR dinamico-1 para a carteira com Vale do Rio Doce PNA e Telemar PN. 212
Tabela A. 37: VaR dinamico-2 para a carteira com Vale do Rio Doce PNA e Telemar PN. 213
Tabela A. 38: VaR dinamico-1 para a carteira com Telemar PN e Petrobras PN.................. 214
Tabela A. 39: VaR dindmico-2 para a carteira com Telemar PN e Petrobras PN................. 215
Tabela A. 40: VaR dindmico-1 para a carteira com Vale do Rio Doce PNA, Telemar PN e

PetrODIAS PIN . .ot e e e e e e e et e e e e e e e e e ea e aaeeeeeeeeaaannaas 216



xiil

Tabela A. 41: VaR dinadmico-2 para a carteira com Vale do Rio Doce PNA, Telemar PN e
Petrobras PIN. .....couiiiiiiiiieeeee et 217

Tabela A. 42: VaR dinamico para a carteira com op¢des da Telemar PN estratégia call-ratio.

Tabela A. 43: VaR dindmico para a carteira com op¢des da Telemar PN estratégia borboleta
(670 101) 1o - TR USROS 219

Tabela A. 44: VaR dinamico para a carteira com opgdes da Telemar PN estratégia borboleta
VEIAIAA. ..ottt sttt 220

Tabela A. 45: VaR dinamico para a carteira hedge delta neutro da Telemar PN................... 221



1. INTRODUGCAO

1.1 Aspectos Gerais

Parte da teoria economica ¢ baseada na suposi¢do que preco, renda e outras variaveis
sdo conhecidas com seguranga. No entanto, muitas das escolhas dos agentes econdmicos sao
realizadas em ambientes de incerteza' nas decisdes, mais ainda, ¢ necessario definir o grau de
risco no qual se esta disposto a assumir.

Ha uma grande quantidade e variedade de riscos envolvendo a condu¢do de qualquer
atividade econdmica. Por exemplo, uma atividade agricola deve estar constantemente atenta
aos riscos de quebra de safra, de falta de financiamento, de queda nos precos dos seus
produtos, aumento dos custos de matéria-prima, etc. Jorion (2003) define risco como a
volatilidade de resultados inesperados, normalmente relacionada ao valor de ativos ou
passivos de interesse.

Como se pode perceber os riscos fazem parte do dia a dia de qualquer atividade
econdmica. Estes ndo podem ser eliminados por completo, € possivel, no maximo, administrar
alguns deles. Risco ndo ¢ um conceito novo, mas ainda representa um dos grandes desafios
para os profissionais de finangas. O modelo proposto por Markowitz em 1952, dando base a
Teoria Moderna das Carteiras ¢ a base para os modelos de gestdo desde entdo.

Apesar de ndo ser um conceito novo, os riscos vém assumindo uma importancia
crescente, mais recentemente tornou-se destaque na literatura em funcdo de desastres
financeiros internacionais relacionados com o uso indevido de derivativos, exemplos de tais
desastres sdo o caso do Baring Bank, da Procter&Gamgle, Bankers Trust, Crédit Lyonnais,
Orange County, Metallgesellschaft, etc.”. Tais problemas corroboraram para o surgimento de
uma nova area do conhecimento, o gerenciamento de risco, cujo principal objetivo € a
minimizagao eficiente do risco, dentro de determinada restri¢do or¢amentaria.

Tal area do conhecimento apresenta um papel fundamental para o desenvolvimento
das atividades economicas. A introducdo cada vez crescente de novos instrumentos

derivativos sofisticados faz com que os aspectos tedricos e computacionais relacionados com

! Segundo Silva Neto (1998) incerteza é a situagio em que se partindo de um determinado conjunto de decisdes
obtém-se varios resultados possiveis. Os resultados sdo conhecidos, mas ndo a probabilidade destes. Quando se
conhecem as probabilidades tém-se as situagdes de risco.

? Estes escandalos financeiros estio apresentados em Jorion (2003).



0 hedge, combinados com as licdes dos recentes desastres financeiros envolvendo derivativos,
tornem o gerenciamento do risco uma atividade com importancia crescente.

O mercado de derivativos surge acompanhando a histéria da comercializagdo, cuja
finalidade inicial era o de facilitador das trocas e comercializa¢do. Entretanto, desde o inicio
da sua utilizacdo mostrou-se capaz de diminuir e diversificar os riscos.

Nao hd uma unanimidade com relacdo a origem do mercado de derivativos, alguns
autores consideram-na como sendo a China Antiga em fungdo da comercializagdo das
commodities de base, ou também a idade média com a especializagdo do comércio. No
entanto, o termo tal qual este o ¢ conhecido atualmente, surgiu no inicio da década de 1970,
com as primeiras swaps, usadas, no inicio, para a prote¢do contra os riscos de flutuacdo das
taxas de cambio (Bessada, 2000).

Segundo Silva Neto (1998), os derivativos prestam-se a gestdo dos riscos e estdo
intimamente ligados a vida das empresas e bancos. Segundo este autor, os derivativos sdao
contratos entre partes para trocar, unicamente, o valor dos ativos, dos indices ou das
commodities.

De acordo com Bessada (2000) os contratos derivativos dependem da existéncia de um
outro contrato ou de um ativo (conhecido como ativo objeto) de referéncia. Se o mercado em
referéncia ndo existir mais, o derivativo perde sua razdo de existir, j4 que ndo ha a
possibilidade de variagdo dos precos do ativo objeto.

Um outro aspecto sobre o mercado de derivativos € que os ativos de referéncia devem
ser comercializados livremente no mercado, livre de qualquer forma de controle de precos.

Sera identificado dentro deste trabalho um modelo relacionado a ativos de referéncia
(em particular agdes da IBOVESPA) e op¢des como derivativos para o controle de risco
do mercado. O desenvolvimento da area de produtos derivativos sofisticados requer um bom
controle de risco, que vai além da estratégia de diversificacao.

Nao ha regra geral para a determinag¢do dos riscos das instituicdes financeiras (e
empresas que operem com derivativos). No entanto, todas as metodologias minimamente
eficientes tém alguma sofisticagdo matematica, sistemas computacionais e informagdes
confiaveis. No caso dos riscos operacional e legal devem ser abordados caso a caso. Os riscos
de mercado e de crédito possuem algumas metodologias que j4 se encontram em uso €
explicadas na literatura.

O foco deste trabalho € o risco de mercado, um fato importante neste tipo de risco ¢ a
forma como este pode ser mensurado. Segundo Duarte Jr. (1997), ha duas formas de avaliar

os riscos de mercado:



e Risco de mercado relativo: ¢ a diferenca dos rendimentos de uma carteira de
investimentos em relagao a um indice utilizado como benchmark;
e Risco de mercado absoluto: medem-se as perdas de carteira de investimento sem

qualquer relagdo com um indice.

Para o célculo de risco de mercado absoluto de uma carteira pode-se utilizar diversas
medidas, por exemplo: desvio padrao dos retornos passados (Markowitz, 1952), downside risk
(média ou momentos parciais) dos retornos passados, o Value at Risk, condicional Value at
Risk (VaR); estes trés ultimos também podem ser utilizados para o calculo do risco relativo.

Segundo Artzner et al (1999) e West (2004) as medidas de risco devem ser coerentes
com alguns axiomas’. Segundo mostrado por Kato (2004) as medidas de risco baseadas no
VaR e no CVaR nao atendem ao axioma da subaditividade, baseado neste fato o mesmo autor
sugere a utilizagdo do downside risk como medida coerente de risco. Entretanto, este mesmo
trabalho mostra que em alguns casos o downside risk ndo se apresenta sensato para
investidores racionais. Um outro problema estd relacionado com a nao adequacgdo deste
modelo ao axioma da invariancia transacional.

West (2004) demostra que o problema da subaditividade do VaR ¢é possivel em alguns
casos, estes chamados pelo autor de exemplos “patolégicos”. Apesar das criticas de alguns
autores sobre o VaR, este ¢ o modelo mais utilizado tanto academicamente como na pratica.
Um aspecto que corrobora ¢ a exigéncia de capital minimo para as instituicdes que operam
nos mercado de derivativos, proposta pelo Comité de Basiléia. Tal requerimento de capital
deve ser baseado no VaR. Neste trabalho nos concentraremos na metodologia Value at Risk

(VaR).

1.1.1 O Value at Risk

O VaR ¢ uma medida de um quantil que quantifica o risco de uma posicdo de uma
instituicao financeira. Ele mensura o risco de mercado ao qual as instituigdes que operam nos
mercados financeiros estdo expostas. Rigorosamente falando, o VaR mede a pior perda
esperada para um dado horizonte de tempo dentro das condi¢des normais do mercado e a um

certo grau de confianca.



Sob a forma de perda o VaR pode ser entendido via a seguinte expressdo: “temos ¢
porcento de certeza que nao iremos perder mais que X reais nos proximos N dias”. A varidvel
X € 0 VaR, que ¢ funcgdo de dois parametros: o horizonte de tempo N e o nivel de confianca c.
Evidentemente, a qualidade do VaR para uma carteira depende das suposi¢cdes relativas a sua
distribuicao e o modelo de valoragao.

As suposicdes sobre a distribuicdo determinam o que o modelo de VaR assume sobre a
distribuicdo dos retornos da carteira, os lucros e perdas (L&P). Especifica ainda, o que o
modelo assume sobre a distribui¢do dos fatores de risco, sobre os quais o valor da carteira esta
relacionado.

O modelo de valoragao do VaR determina como ele relaciona o valor da carteira a
choques nos fatores de risco, ou a relagdo entre o valor da carteira e o valor dos elementos que
compdem essa carteira.

Em fung¢ao das possibilidades de valoracdo do VaR e da distribuicao dos retornos, ha
uma gama de diferentes formas de mensurar o VaR. A primeira delas supde que os fatores de
risco sdo normalmente distribuidos e que o valor da carteira ¢ fungdo linear destes fatores; a
partir desta suposicao deriva-se a metodologia de VaR conhecida como delta-normal ou da
variancia-covariancia.

Sob tais suposicdes a tarefa de calcular o VaR reduz-se a encontrar um multiplo do
desvio padrao da carteira, onde o desvio padrao ¢ funcdo linear das volatilidades e correlagdes
individuais dos fatores de risco. De uma forma sintética, o VaR normal é o produto do desvio
padrao da carteira pelo parametro do nivel de confianca e um escalar que representa o valor
da carteira.

Esta caracteristica no calculo confere ao VaR normal as propriedades da simplicidade
de implementagdo e a facilidade de informatividade (mudangas nos valores do VaR em
func¢do de alteragdao nos parametros).

Infelizmente a lista de criticas a tal método € extensa. A primeira esta associada com a
falta de capacidade que o modelo apresenta em capturar adequadamente o risco de evento, o
qual se associa com situagdes extremas ou incomuns, como crashes dos mercados acionarios
ou colapsos das taxas de cambio (Jorion, 2003).

Um segundo problema ¢ a suposi¢cdo de normalidade dos retornos, que nem sempre
corresponde a realidade dos dados financeiros reais. Segundo Jorion (1997), a maioria dos

ativos financeiros apresenta caudas grossas, estas sdo particularmente preocupantes, visto que

3 Os axiomas propostos por Artzner sdo: a monotonicidade, invaridncia transacional, homogeneidade positiva e
subaditividade.



o VaR tenta capturar o comportamento do retorno da cauda esquerda. Bollerslev (1986)
mostrou que a maioria dos retornos das variaveis financeiras ndo ¢ normalmente distribuida,
na verdade elas tentem a assimetria e a ser leptocurticas.

Por fim, o método calcula o risco de instrumentos néo lineares de forma inadequada. E
o caso dos riscos de opgdes e hipotecas. Segundo Jorion (1997), a aproximacgado linear para
valores de opg¢des ¢ valida apenas para pequena parcela de séries de pagamento a vista do
ativo objeto.

Uma alternativa a nao linearidade do método delta normal ¢é a utilizacao da série de
Taylor ou aproximacdes lineares dos retornos dos ativos, e utilizar esta aproximacdo para
mensurar o VaR. A primeira aproximagao de Taylor produz o método delta normal. O método
delta normal ¢ por definicdo a primeira ordem da série de Taylor do valor da carteira em
relacdo aos retornos dos ativos (ou dos ativos objetos, quando se trata de opgdes).

Alguns autores, como Telfah (2003) e Wilson (1996), argumentam que a aproximagao
simples delta normal produz resultados aceitaveis para pequenos periodos de tempo e quando
a carteira possui poucas opgdes (ou outros contratos nao lineares).

Para incrementar a acuracia do VaR para contratos ndo lineares alguns trabalhos
incluindo Wilson (1994 e 1996), Jamshidian e Zhu (1997), Zangari (1996 a e b) e Telfah
(2003), usaram o modelo quadratico ou o segundo termo da expansdo de Taylor, conhecido
como o método delta gama4. Jamshidian e Zhu (1996), Zangari (1996 a e b) e Fallon (1996)
relataram que a utilizagdo do método delta gama aumentou a eficiéncia do VaR
consideravelmente em comparagao ao método delta normal.

A suposicdo de normalidade na distribuicdo dos fatores de risco ou dos retornos da
carteira fatalmente afetard as estimativas de VaR o qual depende da distribui¢do da cauda (em
particular a esquerda). Logo, se a distribui¢ao real dos retornos tiver cauda mais grossa (fina)
que a distribuicdo normal, entdo o VaR baseado na distribui¢do normal serd subestimado
(sobreestimado). Como a maioria das séries financeiras possui caudas grossas ¢ de se esperar
que o VaR baseado na hipdtese de normalidade subestime as perdas.

De uma forma geral ha dois grupos de técnicas de VaR que minimizam ou eliminam
os efeitos da normalidade: os métodos paramétricos (metodologias analiticas) e os métodos

~ o . . ~ , . y, 5
ndo paramétricos (metodologias de simulacdo). No grupo das técnicas paramétricas’ uma

* Gama ¢ a primeira derivada do delta em relagdo ao retorno do ativo, esta grega mede a curvatura da relagio
entre o valor da carteira e o retorno do ativo. Quando o gama € positivo (negativo) as mudancas na carteira sdo
positivamente (negativamente) assimétricas.

> Convém lembrar que o método delta normal também ¢é classificado como uma metodologia analitica.



distribuicao alternativa é assumida em substituicdo a normal. Baseado nesta distribuicdo uma
formula para descrever o intervalo de confianga ¢ derivada.

Entre os métodos ndo paramétricos, ou de simulacdo, estdo os modelos de simulacao
histérica ¢ o0 método de Monte Carlo. Neste grupo de técnicas nenhuma suposi¢do sobre a
distribuicdo dos retornos ¢ necessaria. Assim sendo o VaR ¢ obtido via a teoria padrdo da
estatistica (como em Kupiec (1995)) ou simulagao de Monte Carlo.

Na técnica da simulacdo historica nao ha suposi¢ao sobre a distribui¢do dos retornos, a
unica suposi¢do ¢ que os retornos passados devem continuar no futuro. Segundo Jorion
(1996), ao se basear nos precos reais passados o método incorpora a ndo linearidade e
distribuicdes ndo normais. Segundo Accorsi e Panhosi (2003) o método da simulagdo
historica ¢ simples e intuitivo, podendo ser aplicado a qualquer distribuicdo de retornos.
Outros trabalhos com simulago historica para ativos lineares ¢ ndo lineares sdo encontrados
em Thérét e Rostan (2000), Barbedo et al (2004) e Duffie e Pan (1997).

Em resumo, conforme afirmou Khindanova e Rochev (2000), talvez uma das grandes
vantagens deste método seja a eliminacdo de qualquer viés de estimac¢do. No entanto, estas
vantagens ndo isentam o método de criticas, elas surgem em fun¢do da unica suposicao:
tendéncias de P&L no passado continuam no futuro. Esta forte hipdtese pode levar a erros de
amostragem, outro problema ¢ identificar o tamanho 6timo da amostra, entre outras criticas.
Alguns trabalhos como Holton (1998), Duffie e Pan (1997) e Boudoukh, Richardon e
Whitelaw (1998) sugeriram alteragcdes no método de simulacdo historica para minimizar as
desvantagens do modelo, por exemplo: a incorporagdo de mirrors cenarios, bootstrap e o
alisamento exponencial.

Em alguns casos os problemas do método de simulagao historica ndo sdo contornados,
fazendo com que analistas recorram a técnicas mais poderosas de simulagdo. Para Wierner
(1999) o0 método de simulagao de Monte Carlo ¢ uma das técnicas de analise sofisticada mais
popular entre analistas e académicos.

Segundo Telfah (2003) para calcular o VaR via o método de simulagdo de Monte
Carlo deve-se, inicialmente, especificar um processo estocastico e parametros do processo que
capturem a dindmica dos fatores de risco. A proxima etapa consiste na simulacdo das
trajetorias de precos para todos os fatores. Por fim, a partir dos precos simulados calcula-se o
VaR para o quantil desejado.

Apesar da simplicidade conceitual este método apresenta o problema da baixa
convergéncia. Segundo Wiener (1999) para aumentar a precisdo por um fator de 10, deve-se

simular 100 vezes mais trajetdrias de pregos. As vantagens deste método sdo inumeras (Telfah



(2003) e Jorion (2003)), desde a possibilidade de operacionalizacdo sob diferentes suposi¢cdes
até a habilidade de capturar fatores de risco de posi¢des ndo lineares.

O segundo grande problema com este método diz respeito a especificacdo do processo
estocastico para modelar os fatores de risco. Corre-se o risco da verdadeira distribui¢ao dos
retornos ser imperfeitamente captada pelo modelo (Jorge et al, 2001).

Além dos dois problemas do método de simulacdo de Monte Carlo citados nos
paragrafos anteriores ha um terceiro também importante, a ma especificacdo dos parametros
estocasticos. Problema este, ndo exclusivo do método de Monte Carlo. Todos os modelos
paramétricos também podem apresentar este problema. De todos os fatores de mercado, o que
apresenta a maior potencialidade de erros nas estimativas do VaR ¢ a volatilidade. O principal

motivo para tal possibilidade € o fato da volatilidade ndo ser um parametro observavel.

1.1.2 A Volatilidade

A importancia da volatilidade como fonte de erro ¢ tamanha que ha na literatura
importantes trabalhos analisando as conseqiiéncias para o VaR da especificacdo da
volatilidade, exemplos: Mollica (1999), Schittenkopf et al (2002) e Lehar (2000). A
relevancia da volatilidade para o calculo do VaR levou Barone-Adesi, Giannopoulos e
Volsper (1999) a incorporar a volatilidade no modelo de simulacdo histérica com o objetivo
de incrementar suas estimativas. Esta técnica ¢ conhecida como simulagdo histdrica filtrada.
Foi replicado em diversos mercados como em Fierli (2002) e Barbedo, Araujo e Lemgruber
(2004).

Os métodos para calcular a volatilidade sdo inimeros, o mais simples de todos ¢ o
método amostral, ou via o desvio padrao dos retornos dos fatores de risco, esta técnica ¢
usualmente conhecida como volatilidade padriao. A técnica da volatilidade padrdo apresenta
uma série de inconvenientes, entre eles a de dar importancia equivalente as observagoes,
independente do tempo em que ocorreu, ou seja, observacao antiga possui a mesma relevancia
que uma observagdo recente. Uma forma de contornar este grave problema ¢ a técnica de
suavisamento exponencial.

Uma das principais causas de criticas aos modelos de estimacdo da volatilidade
simples apresentada baseia-se no fato que o importante nao ¢ o valor histdrico da volatilidade,

mas sim a expectativa desta (Morais e Portugal, 2000).



Mollica (1999) apresenta uma lista de 9 fatos estilizados relacionados a distribuicao
dos retornos, as técnicas de estimagao da volatilidade ¢ com a volatilidade dos retornos dos
ativos financeiros. Entre estes fatores estdo a heterocedasticidade dos retornos e a
condicionalidade da volatilidade em relacdo aos fatos passados (Barbedo, Araujo e
Lemgruber, 2004).

Ha uma série de modelos que podem contemplar os fatos estilizados de forma mais ou
menos eficiente, entre os principais estio os modelos GARCH® e sua familia, o modelo de
volatilidade estocastico e a volatilidade implicita (que € baseada nas informagdes das opgdes).

Com a possibilidade de mudar a estratégia de VaR com uma simples mudanga na
especificacdo de um parametro (em particular a volatilidade), pode-se afirmar que hd uma
grande variedade de estratégias de VaR. Estas multiplas estratégias apresentam resultados
muitas vezes contraditorios € pouco conclusivos, em particular na tarefa de identificar qual
estratégia de VaR ¢ ideal em determinadas situagdes. Segundo Rogachev (2002), um dos
grandes problemas do VaR esta relacionado com as mudangas didrias do ambiente financeiro,

da economia e das condigdes sociais.

1.1.3 Analise Estatica x Dindmica

A maioria das técnicas de andlise de risco e em particular o VaR ¢, em sua maioria,
analisada na forma estética, o que os impede de capturar mudangas temporais nos fatores de
risco. Rogachev (2002) sugere a adogdo de técnicas de VaR dinamicos como forma de
incrementar as estimativas.

O célculo do VaR dinadmico ¢ feito adaptando-se as estimativas do VaR diariamente
em funcdo das mudancas didrias das condi¢des de mercado. O processo dinamico do VaR
pode ser aplicado para qualquer estratégia do VaR, seja ela paramétrica ou ndo paramétrica.

Do ponto de vista pratico o VaR dindmico resulta em problema para os traders, uma
vez que estes devem utilizar um sistema de monitorag¢do de risco para definir a composi¢ao da
sua carteira’. Se o VaR mudar diariamente, a composigdo da carteira também devera mudar
para manter o risco nos niveis esperados, assim sendo, o trader deve definir o trade off entre

a exposi¢ao ao risco ¢ o custo de mudanca da composicao da carteira.

% GARCH significa Generalized Autoregressive Condicional Heterocedasticity e foi desenvolvido por
Bollersleve em 1986.
7 Baseado na expectativa de retorno e grau de aversio ao risco.



1.1.4 A Estrutura do Trabalho

Os aspectos relacionados ao VaR estatico e dinamico, suas aplicagdes ao mercado
aciondrio e de opgoes brasileiro fazem parte do escopo deste trabalho, o qual esta dividido
como segue: dentro do primeiro capitulo, além da presente se¢do, ainda tém-se os aspectos
motivacionais do trabalho, o problema de pesquisa ¢ os objetivos da pesquisa € uma se¢ao
com o resumo da metodologia em forma de fluxograma.

O segundo capitulo aborda as questdes que ddo sustentacdo a andlise de risco, em
particular os pontos relacionados a incerteza econdomica a qual os agentes econdmicos estao
sujeitos, a dindmica do retorno do ativo, a precificacdo das opgdes (o modelo de Black e
Scholes) e os modelos de estimagdo da volatilidade.

No terceiro capitulo encontra-se a teoria do VaR, bem como os aspectos teoricos dos
modelos delta normal, analitico, simulacdo histérica e de Monte Carlo. Por fim este capitulo
também aborda os teste para verificar a eficiéncia das estratégias de VaR.

O objetivo do quarto capitulo ¢ aplicar as teorias apresentadas no segundo e terceiro
capitulo para o célculo do VaR de carteira de agdes e/ou opcdes do mercado aciondrio
brasileiro, fazendo comparagdes entre as estratégias.

O quinto capitulo ¢ dedicado a analise dos resultados e ajustes metodologicos em
fun¢ao de resultados nao satisfatorios.

E por fim o sexto capitulo ¢ dedicado as conclusdes, consideracdes finais e sugestdes

para futuros trabalhos.

1.2 Motivacao

A motivagdo deste trabalho surge da suposta ineficiéncia do mercado brasileiro e da
conseqiiente ineficiéncia® do gerenciamento de risco da maioria das instituicdes financeiras,
bem como dos orgdos reguladores. Segundo Duarte Jr. (2000), qualquer instituicdo agindo
como originador, market-maker ou corretora deve ter a capacidade de prevenir perdas

potenciais de suas posi¢des de derivativos.

% Uma parte consideravel das institui¢des utiliza modelos que supde eficiéncia do mercado.
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A literatura apresenta casos nao raros de elevados prejuizos sofridos por bancos como:
Daiwa, Showa Shell Sekiyu e Barings; no Brasil, o caso dos Bancos Garantia, Boa Vista e
Fonte Cindam. Estes casos reforcam a tese da ineficiéncia do gerenciamento de risco. Estes
casos tém demonstrado a ineficiéncia do gerenciamento de risco das instituicdes, bem como
dos orgaos reguladores (Bezerra, 2001). As exigéncias de capital no Brasil para operagdes
com derivativos, quando sdo feitas, sdo formuladas segundo as linhas preconizadas pelo
Comité de Basiléia (Barbedo e Aratijo, 2004).

A falta de regulamentacdo no mercado brasileiro bursatil pode estimular maiores
ganhos de capital’, entretanto, possibilita perdas consideraveis de somas de recursos. Em
particular, ao tratar do mercado brasileiro, Duarte Jr. (2000) apresenta algumas caracteristicas

importantes deste:

a) O mercado brasileiro possui uma volatilidade bem maior que aquela dos mercados
europeus e norte-americanos, onde técnicas de hedge e de gerenciamento do risco
simples sdo adequadas;

b) A volatilidade do mercado de juros brasileiro é superior ao dos mercados europeus

e norte-americanos;

A volatilidade do mercado brasileiro pode ser observada na Figura 1.1; na Figura 1.2
temos o retorno de um indice americano, o Dow Jones. O retorno do ibovespa'’ representado
pela Figura 1.1 mostra zonas de forte agitacao (alta volatilidade), em particular respondendo a
crises financeiras internacionais. J& no mercado americano uma simples andlise dos retornos
ndo ¢ suficiente para identificar conseqiiéncias em funcdo destas crises. A alta amplitude dos
retornos do Ibovespa em comparagdo ao Dow Jones mostra como o mercado acionario

brasileiro € mais volatil.

? Nio havera exigéncia de capital.
' Ibovespa ou indice Bovespa ¢ o mais importante indice da Bolsa de Valores de Sdo Paulo, calculado desde
04/06/1964 e as acdes que fazem parte deste sdo responsaveis por 80% do volume negociado na Bovespa.
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Figura 1.1: Retorno Ibovespa Diario no periodo de 04/07/1994 a 27/10/2004.
Fonte: Elaboracao propria, dados IPEA.

Airoldi (2001) sugere que caudas grossas estdo associadas com aumentos rapidos da
volatilidade; quanto mais dinamica ¢ a volatilidade, maior a cauda. Ainda de acordo com
Airoldi (2001), saltos e eventos extremos como crises financeiras causam aumento na
dinamicidade da volatilidade. Logo, a suposi¢ao de linearidade na relagdao entre dinamica da
volatilidade (fortes variagdes na volatilidade) e patamar de volatilidade ndo sdo observadas
quando hé saltos e eventos extremos, assim sendo, uma representacdo da dindmica da
volatilidade nao linear faz-se necessario.

Hsieh (1993) sugere que quando a ndo linearidade surge de dados financeiros os
modelos de volatilidade condicional promovem melhores descrigdes de movimentos de curto

prazo quando comparados a modelos ndo condicionais.
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Figura 1.2.: Retorno do Dow Jones Diario no periodo de 04/07/1994 a 27/10/2004.
Fonte: Elaboracao propria, dados IPEA.

Desta forma técnicas simples de VaR com a considera¢do de normalidade dos retornos
ndo devem ser suficientes para o bom gerenciamento do risco. Abrir mao da normalidade dos
retornos normalmente sugere abrir da hipotese de eficiéncia do mercado. Estimar o VaR sem
a hipotese de eficiéncia de mercado significa promover ajustes significativos nas estratégias
tradicionais de VaR. Mudancas estas ainda ndo exploradas na literatura, este trabalho ainda
propde incorporar estas situagdes a uma analise dindmica do risco.

A proposta da analise dindmica ¢ corroborada por Gibson (2001) e Lewis (2002)
sugerindo que a modelagem de dados financeiros deve combinar dindmica da volatilidade
com eventos de risco. Tanto Gibson (2001), quanto Lewis (2002) consideram esta tarefa
fundamental e desafiadora na modelagem do dinamismo dos fatores de risco.

De acordo com Fama et al (1969), o mercado eficiente deve apresentar um passeio
aleatorio, o que pode ndo ser o caso do ibovespa entre 1994 e 2004, como se pode observar na
Figura 1.1. Do apresentado, ¢ evidente que o passeio aleatdrio deve ser melhor investigado,
evitando-se uma fonte potencial de erros de especificacdo, em particular no modelo com

simulag¢des de Monte Carlo.
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Segundo Duarte Jr. (2000), uma das razdes que justifica o uso de modelos mais
sofisticados para o gerenciamento do risco de carteiras de opgdes no Brasil ¢ o anexo de
janeiro de 1996 ao Acordo sobre Capital da Basiléia (Basle Capital Accord) por parte do
Comité de Basiléia para Supervisdao Bancaria (Basle Committee on Banking Supervision).
Este diz que qualquer instituicdo que opere com derivativos sofisticados mega e controle pelo
menos seus riscos delta, gama e vega.

Por fim, outra motivagdo para este trabalho ¢ o estimulo a defini¢ao de regras e limites
por parte dos agentes reguladores brasileiros. Um conhecimento adequado do risco € por si sO

uma fonte inestimavel de reducao do risco.

1.3 O Problema de Pesquisa

Como ja apresentado, o hedge ¢ uma operacdo com derivativos que reduz a
possibilidade de perdas futuras e, como conseqiiéncia, diminui a possibilidade de ganhos
futuros (Marshall, 1989). Esta tese tem o objetivo de trabalhar com o ferramental basico do
hedge, a mensuragdo do risco de mercado. Evidentemente ha eficientes maneiras de mensurar
os riscos para cada mercado em particular. Entretanto, cada método estd associado com um
mercado e ndo pode ser aplicado diretamente a outros mercados. J4 o VaR ¢ uma maneira
integrada de avaliar os riscos de diversos fatores e com os mais distintos mercados.

Para Duarte Jr. (1997), a grande motivagdo para a utilizacdo do VaR ¢ o fato deste
integrar todo o risco em um unico valor, o risco total, facilitando a sua administragcdo por
parte dos gerentes e pessoas relacionadas com a gestdo de risco. Por outro lado, tratar o risco
como multidisciplinar requer um numero elevado de simplificagdes.

Por este fato e por outros ¢ que o VaR vem se tornando a medida padrdo para a
avaliagdo de risco do mercado, sendo adotado por diversos bancos, corretoras e fundos
mutuos. Os orgados reguladores podem obrigar a implementagao do VaR, nos Estados Unidos,
as agéncias de rating como a Moody e Standard and Poor’s (S&P), e instituigdes como o
Financial Accounting Standard Board (FASB) (Conselho de padrdes financeiros contabeis) e
a Securities and Exchange Comission (SEC) ap6iam a utilizagdo do VaR (Jorion, 2003).

Ja a utilizacao das opgdes para o gerenciamento de risco ¢ motivada pelo fato de,
segundo Silva Neto (1998), opg¢des serem instrumentos muito versateis, tanto para a

especulagdo, para a arbitragem, quanto para o hedge.
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Em contrapartida a versatilidade das operagdes com opgdes possue o inconveniente do
alto custo na transacdo. Muitas vezes o custo da op¢do pode até inviabilizar a estratégia. Desta
forma, entender bem as operagdes com opgdes € extremamente importante, sendo garantia de
uma operacao bem feita.

Como visto, estratégias de hedge dindmico exercem um papel importante para o
gerenciamento do risco de produtos derivativos sofisticados. Diante do apresentado acima,
surge o problema de pesquisa: A hipotese de mercado eficiente é relevante para o
gerenciamento de risco pelo Value at Risk (VaR). Diante disto, como modelar o risco de
mercado para carteiras com agoes, op¢oes e hedge negociadas no mercado financeiro
brasileiro dada a dinamica deste, a partir dos modelos de VaR existentes ou sugeri uma

nova variante confidavel o suficiente para permitir a andlise do risco para este mercado?

1.4 Objetivos da Pesquisa

O objetivo principal deste trabalho ¢ verificar se a hipdtese de mercado eficiente ¢
relevante para o gerenciamento de risco pelo Value at Risk (VaR), para tal aplica-se a andlise
dindmica; além de identificar qual variante do VaR (estatico ou dinamico) ou sugerindo uma,
confiavel o suficiente como para permitir a analise do risco do mercado brasileiro. Neste

trabalho utilizar-se-a especificamente quatro tipos de metodologias:

¢ A metodologia delta normal,
¢ A metodologia analitica baseada nos métodos das “gregas” da carteira de opg¢des;
¢ A metodologia de simulacao historica;

¢ A metodologia de simulacdo de Monte Carlo.

Para atingir o objetivo principal, delineiam-se os seguintes objetivos intermediarios:

e Modelar o comportamento do preco da agdo por um processo estocastico de Ito;

e Simular a variagdo do prémio da op¢do na carteira utilizando o modelo de
precificacdo de Black & Scholes, onde apenas o preco da agdo segue um processo
estocastico;

e Selecionar o modelo de volatilidade mais indicado a carteira (entre os modelos da

familia GARCH);
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e Estimar o VaR estatico e dinamico segundo cada uma das metodologias;

e Analisar o VaR de carteiras hedgeadas com opgdes tradicionalmente utilizadas no
Brasil;

e Propor uma estratégia de VaR que abra mao da eficiéncia de mercado (se for o
caso);

e Auvaliar os resultados obtidos por cada uma das metodologias;

e Aplicar, a avaliagdo das estimativas, o teste de hipoteses para proporgdes,
desenvolvido por Kupiec (1995) atendendo o procedimento de backtesting
proposto pelo Comité de Basiléia e 0 modelo da funcao de perdas de Lopez;

e Examinar uma estratégia de hedge compativel com os resultados obtidos nas

etapas precedentes.

1.5 Metodologia

Um resumo da metodologia estd apresentado na Figura 1.3 a seguir. Nesta figura
apresenta-se um fluxograma das etapas deste trabalho. O trabalho inicia-se (Capitulo 2) com a

fundamenta¢do econdémica do gerenciamento de risco, discutindo os aspectos relacionados

com a aversao ao risco, a economia sob incertezas e a eficiéncia de mercado.

O Capitulo 2 aborda inicialmente aspectos como o grau de aversdo ao risco dos
agentes econdmicos, introduzindo a economia sob ambiente de incerteza. Tay (2000) mostra
que com as preferéncias dos agentes econdmicos € com o VaR determinado tem-se, no
equilibrio, a formulagdo econdmica completa para o VaR.

Estes aspectos do VaR s6 sdo validos quando as hipoteses de mercado completo sdo
obedecidas, sendo, dessa forma, relevante uma discussdo sobre eficiéncia de mercado,
mostrando os conceitos de mercado eficiente nas formas fraca, semiforte e forte; convergindo
ao conceito de caminho aleatorio.

A partir do conceito de mercado eficiente (caminho aleatério) é possivel avaliar a

dinamica de retorno do ativo. Utilizando as suposi¢des do caminho (passeio) aleatério monta-
se uma equacao diferencial estocastica (SDE) que representa a dindmica de retorno do ativo.

A solugdo da SDE nao ¢ trivial, pois um dos termos da equacdo ¢ um processo de
Wiener, portanto faz-se necessario recorrer ao Lemma de It6 (ou formula de It6).

Ainda no Capitulo 2 tem-se uma se¢do dedicada a precificacdo de op¢des de Black &

Scholes (B&S). A partir da analise de B&S obtém-se a equagdo diferencial parcial de B&S,
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cuja solucdo, tanto para op¢des de compra quanto de venda (call e put), estdo apresentadas no
segundo capitulo.

Por fim, mas ndo menos importante, a estimagdo da volatilidade. A volatilidade pode

ser estimada tanto por métodos paramétricos quanto nao paramétricos, entretanto, o foco deste
trabalho serdo os métodos paramétricos, em particular os modelos de volatilidade
autoregressivo condicional heterocedastico (familia ARCH). Os modelos tratados foram os
ARCH e GARCH, modelos simétricos e EGARCH e GARCH-L, modelos ndo simétricos.

Tais modelos sao discutidos com relativo detalhe, incluindo uma descri¢do dos
modelos, testes para verificar a adequacdo dos modelos as séries e as formas de estimagdo dos
parametros.

De posse dos parametros basicos do gerenciamento de risco, resta definir qual
metodologia utilizar (no caso o Value at Risk), quais os pros e contra desta técnica, quais
parametros utilizar, escolher e/ou calculd-los. O Capitulo 3, ¢ o cerne metodologico deste
trabalho.

O gerenciamento de risco € tratado de forma a introduzir o VaR como uma ferramenta

importante para a mensuragdo do risco de mercado, ndo esquecendo de abordar uma critica
aos modelos de gerenciamento de risco: a coeréncia das ferramentas de risco, onde a critica
mais relevante ao VaR ¢ a falta tedrica de subaditividade.

Nesta fase do trabalho ¢ conveniente uma definicdo formal do Value at Risk ilustrada
com um exemplo real. As etapas para o calculo do VaR em linhas gerais, segundo Wiener
(1997), sao apresentadas.

Para as etapas do calculo do VaR a sele¢do dos pardmetros subjetivos do Value at Risk

¢ fundamental. Os parametros sdo: o nivel de confianca, o tamanho da janela e o periodo de
tempo. Com a arbitrariedade na selecdo destes a escolha ¢ feita com o intuito de permitir uma
maior analise da eficiéncia comparativa entre os modelos de VaR. Neste trabalho fora
escolhido um nivel de confianga de 95%, tamanho de janela de 2 e 1 ano e VaR didrio
(periodo de tempo).

As estratégias de VaR sdo aplicadas a carteiras de acdes (Telemar PN, Petrobras PN,
Vale do Rio Doce PNA, Telemar PN + Petrobras PN, Telemar PN + Vale do Rio Doce PNA,
Petrobras PN + Vale do Rio Doce PNA, Telemar PN + Petrobras PN + Vale do Rio Doce

PNA), carteira de opgdes da Telemar PN (call ratio, borboleta comprada e borboleta

vendida), e uma estratégia de hedge delta-normal com agdes e opcdes de compra da Telemar

PN.
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Figura 1.3: Fluxograma da metodologia

Fonte: Elaboragao propria.
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A primeira das estratégias ¢ o método delta-normal, este ¢ baseado na hipotese que os
retornos sdo normalmente distribuidos e ¢ baseado nos parametros de tal distribuicdo. No
entanto, ¢ sabido que as séries financeiras normalmente nao seguem a distribuicdo normal.
Uma forma de atenuar esta critica ¢ substituir a volatilidade padrao (baseada na distribui¢ao
normal) pela volatilidade GARCH.

Uma segunda critica relaciona-se com a cauda esquerda das distribui¢des reais que sao
grandes em comparagdo a cauda da distribui¢do normal. Uma forma de atenuar tal critica é o
uso dos modelos stress VaR, em particular o stress VaR-x.

Para carteiras com ativos ndo lineares, como opg¢des, deve-se substituir o método

delta-normal por outras metodologias analiticas baseadas nas gregas. Sugestdes sdo o0s

métodos delta-gama, delta-gama-delta, delta-delta-Johnson entre outras também descritas no
Capitulo 3.

Os métodos acima apresentados sdao metodologias paramétricas, entre as nao
paramétricas tem-se a simulag¢do histérica e a simulagdo de Monte Carlo. Na simulacio
historica ndo ha suposicdes acerca da distribui¢do dos retornos, a unica suposi¢do € que o
comportamento passado deve ser representativo do comportamento futuro. Algumas variantes
deste modelo sdo: o método de bootstrap, mirror cenarios e cendrios ponderados.

A ultima das técnicas ¢ a simulacido de Monte Carlo. Esta metodologia ¢
particularmente poderosa pela adaptabilidade em func¢do de permitir diferentes suposicdes, no
entanto, apresenta o inconveniente da lentiddo no processamento. A simulacdo de Monte
Carlo ¢ dividida em duas fases: a primeira ¢ a trajetoria de pregos, neste supde-se que o ativo
objeto tem o comportamento de um movimento browniano geométrico. A segunda fase ¢ a
geracdo de numeros aleatdrios, que podem ser aleatorios, pseudo-aleatdrios e quase aleatorios.
Quando o VaR com simulacio de Monte Carlo ¢ utilizado para carteiras adota-se a
decomposi¢ao de Cholesky para adquirir a estrutura de correlagdo desejada.

A eficacia de cada modelo ¢ feita via o teste de Kupiec e de Lopez. O teste Kupiec

verifica se o numero de falhas de cada modelo esta dentro de um intervalo de confianga. J4 o
teste de Lopez tem a finalidade de identificar entre os modelos eficazes (que passaram no
teste de Kupiec), os que sdo mais eficientes.

No Capitulo 4 encontram-se os resultados empiricos e ajustes metodologicos das
metodologias aqui descritas. Todas as estimativas e testes sdo feitos nos modelos estaticos

seguindo a recomendagdo do Comité de Basiléia.
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Para o VaR dindmico a reavaliagdo dos parametros ¢ feita diariamente com o intuito
de incorporar novas informacgdes ao modelo, estima-se e testa-se o VaR dindmico, para os

resultados nao satisfatorios sdo feitas novas suposicdes e recalculado o VaR dindmico.

Por fim, no Capitulo 5 sdo apresentadas as conclusdes finais e sugestdes para futuros

trabalhos.

1.6 Os Dados e Delimitagao do Trabalho

Segundo a Companhia Brasileira de Liquidagdao e Custodia (CBLC), entre 2002 e
2003, o mercado de opgdes (de acdes e indices) no volume financeiro da Bovespa cresceu de
6,2% para 7,96%, s6 as opgdes sobre agdes responderam por 7,3% do volume total da
Bovespa no ano de 2003. Mas ainda, segundo a CBLC, ha muito espago para o crescimento
do mercado de opgdes em fungao da utilizagdo para o hedge das carteiras.

Entretanto, as negociagdes com opgodes sdo concentradas em poucos papéis, sendo a
opcdes sobre acdes da Telemar a mais negociada. As op¢des da Petrobras e Vale do Rio Doce
também sdo razoavelmente negociadas. A Bovespa'' também disponibiliza op¢des de outras
empresas, como Bradesco, [tausa, Banco Itati, Ambev, Embratel, Usiminas, Telefonica.

Assim sendo este trabalho ird analisar carteira de agdes e opgdes para ativos das
empresas Telemar, Petrobras e Vale do Rio Doce. Sendo o periodo de andlise, para as agdes,
compreendido entre mar¢o/1999 a mar¢o/2004; cujos dados foram disponibilizados pela
Economatica. Para as opcdes o periodo de andlise situa-se entre marco de 2002 e margo de
2004, estes dados foram disponibilizados pela BOVESPA.

No periodo de analise ha dois fendmenos (que podem ser identificados na Figura 1.4 a
seguir), o primeiro € o periodo de crise motivado pela incerteza em relagdo ao destino politico
brasileiro na época da eleicao presidencial. O segundo fendmeno ¢ o crescimento espantoso
no valor dos ativos negociados na bolsa de Sao Paulo, o indice da Bovespa apresentou uma

alta de quase 100% no curto periodo de janeiro de 2003 a dezembro de 2003.

"' Segundo Cavalcanti e Misuno (2002) a Bovespa (Bolsa de valores de Sio Paulo) é o maior centro de
negociagdes da América Latina e foi fundanda em 23 de agosto de 1890.
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2 FUNDAMENTOS METODOLOGICOS E ECONOMICOS
PARA O GERENCIAMENTO DO RISCO

A longa historia da dinamica dos precos dos ativos teve inicio em 1900 quando o
matematico francés Louis Bachelier'? deduziu uma formula para a dindmica dos pregos
baseado na hipotese que os precos dos ativos seguiam um movimento browniano geométrico
com drift zero. Outros nomes de peso contribuiram para o desenvolvimento do gerenciamento
de risco, como ¢ o caso de Markowitz em 1952, dando base a Teoria Moderna das Carteiras.
Desde entdo, nimerosos pesquisadores vém contribuindo com a teoria e propondo modelos
cada vez mais sofisticados e eficientes; inclusive analisando o risco de carteiras sofisticadas
que s3o montadas com derivativos (como o caso de opgdes).

Neste capitulo apresentar-se-a os fundamentos econdmicos do moderno gerenciamento
de risco, com os pressupostos tradicionais e uma critica a adequacgao empirica deste, propondo
alternativas a realidade econdémica e financeira atual. Este capitulo inicia-se com o0s
pressupostos econdmicos tradicionais e suas conseqiiéncias, logo apos uma apresentagao do
movimento dos ativos, seguido da precificagdo das opcdes sob as hipdteses de Black e

Scholes e por fim a questdo da volatilidade.

2.1 Fundamentos Econémicos do Gerenciamento de Risco

Da apresentacao do Value at Risk (VaR) no capitulo introdutorio ficou claro que esta
medida de risco é simplesmente uma referéncia para julgamentos relativos. O céalculo do VaR
tipico envolve a probabilidade de uma perda extrema de reais (ou outra moeda) baseado na
distribuicdo estatistica dos precos de mercado. Tal medida ndo leva em consideracdo o fato
que a mesma perda pode ter significados econdmicos diferentes, dependendo das condigdes
de negociacao (Tay, 2000).

Tay (2000) e Ait-Sahalia e Lo (1998) afirmam que a nocdo estatistica do VaR ¢, no
maximo, uma medida incorreta do risco para investidores individuais e institucionais. De uma

forma geral, apesar do VaR possuir informagdes sobre o grau de incerteza de uma carteira, a

"2 Em sua dissertagdo de Doutorado em Paris “Theory de la spéculation” Bacheleir antecipou muito daquilo que
seria padrdo na teoria financeira: caminho aleatdrio para os precos do mercado, movimento Browiniano e
martingales.
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medida ndo fornece muito sobre a valoragdo econdmica desta incerteza. Um exemplo disso €
um VaR de R$ 15.000,00 com 5% de probabilidade para uma carteira com valor inicial de R$
100.000,00, o que equivale a uma perda de 15%, numa andlise preliminar este numero indica
uma perda significativa. Entretanto, quando se compara com outros investimentos similares
observa-se um VaR de 25%, assim sendo, pode-se concluir que um VaR de R$ 15.000,00 nao
¢ tdo ruim.

Um outro aspecto relevante, mas ignorado com freqii€ncia na analise do VaR ¢ o grau
de aversdo ao risco’® do investidor. A medida de aversdo ao risco ¢ bem representada pelas
curvas de indiferenca de dois investidores com graus de aversdo ao risco distinto. A Figura
2.1 mostra tais curvas, cada uma mostra as combinacdes de retorno esperado e de risco (que

pode ser calculado via o VaR) que proporcionam ao investidor o mesmo grau de satisfagao.

Us

esperado esperado

= —

/ Uz

Ui

> >

VaR VaR

(a) Investidor com grande aversdo ao risco (b) Investidor com baixa aversao ao risco

Figura 2.1: Aversao ao risco e curvas de indiferenca.
Fonte: Pindyck e Rubinfeld, 2002.

A Figura 2.1 (a) descreve um investidor com grande aversdo ao risco. Para o
investidor aceitar correr maior risco é necessario um grande aumento no valor esperado para
que este fique tao satisfeito quanto antes. O que ndo ¢ verdade para o investidor com menor
aversdo ao risco, representado pela Figura 2.1 (b), neste caso um pequeno aumento no valor
esperado ¢ suficiente para compensar um aumento no risco.

Para incorporar ao VaR estes aspectos econdmicos Ait-Sahari e Lo (1998) propuseram

uma sistematica baseada em Arrow (1964) e Debreu (1959). Estes foram os primeiros a

13 Aversio ao risco ¢ a preferéncia por uma renda certa em relagdo a uma renda incerta com o mesmo valor
esperado.



23

. . . . . . . 14
formalizar a economia sob ambiente de incerteza introduzindo os ativos elementares .

Segundo Tay (2000), estes ativos sdo conhecidos como ativos de Arrow-Debreu.

Definicao 2.1:

Ativos elementares sdao aqueles que pagam uma unidade monetdria em um estado da natureza

e zero em outro estado.

Como o objetivo deste trabalho ndo ¢ a andlise de Arrow-Debreu esta ndo sera
apresentada em detalhes, apenas mostrar-se-a os aspectos relacionantes entre gerenciamento
do risco (em particular a ferramenta VaR) e a andlise de Arrow-Debreu, aspecto esse

normalmente ignorado.

Definicao 2.2:

Um vetor de precos é dito ser um vetor de precos de equilibrio geral de uma economia

competitiva se as seguintes condigoes forem validas:

e FExiste oferta para todos os bens;
e FExiste demanda para todos os bens;

o A oferta agregada é pelo menos igual a demanda agregada.

Por defini¢do os precos dos ativos de Arrow-Debreu sdo determinados no equilibrio
pela oferta e demanda e segundo Tay (2000) possui a interpretagdo probabilistica quando em
ambiente de incerteza. O seguinte teorema garante a existéncia de pelo menos um vetor de

precos de equilibrio.

Teorema 2.1: (Arrow-Debreu)

. . 15 rq. .
Se os seguintes axiomas'~ forem vdlidos para todos os consumidores e se todos os
consumidores tém dotagoes continuas de todos os bens, entdo existe vetor de precos de

equilibrio geral.

o  Comparatibilidade;

' Mascolel et al. (1995) apresenta a Economia sob incerteza de forma mais detalhada.
' Estes axiomas estdo detalhados em Mascolel et al. (1995) e Kreps (1990).
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e Transitividade;
e Convexidade;

e Ndo saturagdo forte.

Prova:

Ver Mascolel et al. (1995) pag. 518.

Se os dois ultimos axiomas forem substituidos por axiomas mais restritivos tém-se,

conforme o Teorema 2.2, um tnico vetor de precos de equilibrio.

Teorema 2.2: (Unicidade do equilibrio’®)
Se as fungoes de demanda agregada obedecem o axioma fraco da preferéncia revelada eo

Teorema 2.1 for valido entdo o equilibrio geral competitivo é unico.

Prova:

Ver Wald (1951).

Para o céalculo do VaR os retornos (perdas ou ganhos) do ativo s@o normalmente
baseados em probabilidades condicional obtidas de um processo de geracdo de dados (PGD)
dos precos do ativo, sendo estes pregos obtidos pela lei da demanda e oferta. Assim sendo um
PGD, que ¢ derivado do equilibrio de precos, contém uma quantidade enorme de informacdes
sobre a condicdo do mercado e das preferéncias dos investidores, dados esses, fundamentais
para o gerenciamento do risco.

Para obter uma formulagdo econdémica do VaR, consideraremos uma economia de
trocas dinamica padrao (Lucas, 1978 e Rubinstein, 1976) onde o mercado dos ativos ¢
dinamicamente completo. Neste modelo hd um bem (ou um ativo) simples, ndo hé rendas
exdgenas e todos os investidores objetivam maximizar sua utilidade temporal, sendo esta
funcio independente do estado'’ da natureza. O consumo pode ocorrer na data 0 ou numa data
futura t, hd uma acao (representando um ativo de risco) e um titulo do governo (ativo livre de
risco) ambos disponiveis para negociacao nas datas 0 e t.

Obedecendo aos pressupostos aplicaveis ao Teorema 2.2 e suposigdes sobre as

preferéncias e o mercado de agdes, ¢ sabido que para um agente representativo com fungao de

' Detalhes do Teorema em Wald (1951).
'7 As diversas possibilidades futuras da natureza, ou valores futuros possiveis para os ativos.



25

utilidade U (Romer, 2001) e preco do ativo na data 0 dado por Sy, payoff do ativo com

liquidez em t de y(C;), uma func¢do do consumo agregado C;, o valor do ativo ¢ dado por:

So :Eth(Ct)Mo,zJ (2.1)
_U(C)
" TUC) =

onde My, ¢ o fator de desconto estocdstico ou taxa marginal de substituicdo (TMS)
entre o consumo na data 0 e na data t. Segundo Ait-Sahalia e Lo (1998), no equilibrio, o
investidor otimiza seu investimento adquirindo a a¢do no periodo antes de t e depois consome
o valor da agdo emt, C; = S..

Assumindo a distribuicdo condicional do consumo futuro tendo densidade

representativa dada por fi(.), pode-se representar a Expressao (2.1) como (Tay, 2000):

u'€)

U'(C, )fo(Ct)dCt

Elwcom,, )= [w(c)

=™ [ y(C)fo(C)dC,

Elw(C)M,,|=eE"|p(C)M,,] (23)
c

: My, fo(C,)

fo(C)=——>2 (2.4)

[ M, £,(Cdc,

sendo 1o, a taxa liquida de retorno entre 0 e t do ativo livre de risco.
Esta versdo das equagdes de Euler mostra que o preco de qualquer ativo pode ser

determinado como o valor esperado do ativo descontado a taxa de juros livre de risco.
*
Entretanto, esta expectativa deve ser obtida em relagdo a f , uma fun¢do de densidade de

probabilidade ponderada via a TMS e ndo a fun¢do de densidade original f do consumo
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*
futuro. Esta fungdo densidade f ¢é conhecida como densidade estado-prego (DEP)"® sendo

uma versdo para multiplos estados continuos dos precos de Arrow-Debreu para ativos

elementares.

*
Sob a hipotese de mercados completos a f ¢ unica. Em particular Arrow (1961) e

Debreu (1959) mostraram que se ha tantos estados continuos'’ para os ativos quanto para os
estados, entdo o prego de qualquer ativo pode ser expresso como a soma ponderada dos

precos nos estados continuos, hoje conhecidos como precos Arrow-Debreu. No conjunto de

%
estados continuos, f satisfaz a mesma propriedade, logo, qualquer ativo pode ser precificado
. . . *
como uma expectativa simples com respeito a f .

*
Estes fatos enfatizam a relevancia do f para o gerenciamento do risco; o DEP agrega

todas as informagdes pertinentes sobre as preferéncias do consumidor, do ambiente, a
dindmica do preco dos ativos; enquanto a PGD ndo. No entanto, segundo Tay (2000), no

equilibrio, quaisquer dos dois itens a seguir implicam no terceiro:

e Preferéncias do agente representativo;
e Dinamica de precos do ativo;

e OPGD.

%
A funcdo f claramente produz uma medida mais relevante para o VaR ao introduzir

mais valores econdmicos que a fun¢do de densidade de probabilidade do PGD. No entanto, de
posse do PGD e das preferéncias do agente representativo tém-se informagdes completas para
o gerenciamento do risco.

Todos os pressupostos de Arrow-Debreu, bem como as Equacdes (2.1) e (2.3) sdo
baseadas na hipdtese que os mercados sdo completos, mercado completo significa que todos
os agentes possuem todas as informagdes relevantes sobre os bens disponiveis, ndo ha
assimetria nas informacdes. Esta questdo ¢ normalmente analisada e discutida dentro da teoria

financeira como a hipotese de mercado eficiente.

%
' Em Harrison e Kreps (1979) pode ser encontrada a demonstragdo que f ¢ a densidade de probabilidade
neutra ao risco.
19 A caracterizagio completa de um bem (ou de um ativo) deve precisar os estados da natureza onde este bem
esta disponivel.
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Um dos assuntos que foi e continua sendo alvo de constantes debates entre académicos
e profissionais da area de finangas ¢ a hipdtese de mercado eficiente (HME). Fama em seu

artigo de 1965 apresentou a seguinte definicdo de mercado eficiente.

Definicdo 2.3:

Um mercado eficiente é definido como um mercado onde hda um grande numero de agentes

A . . . 20 .. .~ .
econoémicos racionais™, maximizador do lucro em competi¢do ativa, com cada agente
tentando predizer o valor futuro do mercado de cada derivativo, e onde as informagoes

correntes importantes sdo disponiveis livremente entre os participantes.

Outra definicdo coerente com a 2.3 acima apresentada e mais simples foi apresentada

em 1969 por Fama et al.

Definicao 2.4

Um mercado eficiente é aquele em que ha um ajustamento rdpido as novas informagoes. Ou

seja, um mercado cujos precos sempre representam todas as informagdes disponiveis é

chamado de eficiente.

Sob a hipotese do mercado eficiente, os participantes do mercado devem esperar obter
um retorno nem maior, nem menor, que o retorno justo para o risco assumido. Entretanto esta
definicdo ¢ de tal forma geral que ndo hé a possibilidade de testd-la empiricamente (Fama,
1970). Para tornar o modelo testavel, o processo de formagao de pregos deve ser especificado
em mais detalhes. Essencialmente deve-se definir algo mais exato para o significado do termo
“todas as informagdes disponiveis”.

Em fungdo desta dificuldade com o conceito de mercado eficiente dado pelas
Defini¢des 2.3 e 2.4 surgiram trés defini¢des da hipotese de eficiéncia do mercado: a forma
fraca, a semi-forte e a forte. No entanto, antes de apresentar tais formas da HME deve-se
definir duas formas de analise de investimentos, tais formas estdo intimamente relacionadas

com as HME, sdo estas dadas pelas defini¢cdes abaixo.

20 Agente racional é aquele que possui preferéncias de acordo com os axiomas do Teorema 2.1 e que preferem
sempre mais a menos.
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Definicdo 2.5:

A andlise de investimento fundamental baseia suas previsoes do comportamento de prego dos

ativos em fatores fundamentais ou internos a companhia, industria ou economia.

Definicdo 2.6:

A andlise de investimento técnica é baseada na premissa que tais fatores fundamentais estdo

refletidos no comportamento de prego do ativo.

A partir das defini¢des acima se pode apresentar as defini¢des das trés formas da HME

(Hagin, 1979).

Defini¢cao 2.7:
A forma fraca afirma que as informagoes sobre os pregos e volumes passados ndo podem ser
usados para predizer pregos futuros, ou seja, a forma fraca é diretamente oposta a andlise

técnica.

Definigdo 2.8:

A forma semi-forte afirma que todas as informagoes publicamente disponiveis estdo refletidas

nos pregos dos ativos, ou seja, ndo ha suporte a andlise fundamental.

Definicao 2.9:
A forma forte diz que nenhum investidor com informagoes privilegiadas pode obter lucro de
estratégias de mercado. Em outras palavras, todas as informagoes estdo totalmente refletidas

nos pregos dos ativos.

Uma observacgao pertinente a todas as definicdes de mercado eficiente ¢ a referéncia ao
termo “‘eficiéncia”. Tal referéncia ¢ enganosa, pois ela estd relacionada ao tratamento das
informagdes pelo mercado e ndo de eficiéncia®' no sentido da palavra.

O foco do processo informativo produz uma conexao direta entre o preco dos ativos e
a avaliag@o expectativa condicional. Especificando o preco do ativo, ou alguma transformagao

apropriada de um preco do ativo como uma expectativa condicional avaliada com relagdo a

2l Um exemplo da “correta” utilizago do termo eficiéncia ¢ a fronteira de eficiéncia da maximizacdo de
Markowitz e a eficiéncia de Pareto.



29

um conjunto particular de informagdes faz conexdo direta para a teoria dos processos
estocasticos, incluindo resultados em processos martingales. A defini¢do mais simples do

processo martingale é (Poitras, 2002):

Definig¢do 2.10:
Um processo estocdstico {X(z) f = 0,1’2,___} é martingale se parat =1, 2, ...:

i) E(X(t)) <> (2.5)
i) E(X(t+1)X(0),X(1),X(2),...X ()= X () (2.6)

A primeira condi¢@o afirma que o valor condicional de X(t) deve ser finito ¢ a segunda
condi¢do ¢ a propriedade martingale que afirma que dada as informacdes de X(t) e dos
periodos anteriores a t, a melhor previsdo para o proximo periodo (t + 1) ¢ a observacao
corrente (t).

A informacdo condicional pode ser sensivelmente expandida substituindo-se
{X(0), X(1),X(2),.... X(¢)} por {¥Y(0),Y(1),Y(2),...,Y(t)} onde Y(t) ¢ algum processo

estocastico que inclui X(t). Assim a condigao (2.6) torna-se:

E(X(t+D]Y(0),Y(1),Y(2),...Y () = X (t) (2.7)

Ou seja, X(t) ¢ um processo martingale com respeito ao conjunto condicional de
informagdes {Y(t)}, onde X(t) ¢ uma fungdo de {¥(0),Y(1),Y(2),...,Y(¢)}. Com esta
estrutura as formas fraca, semi-forte e forte da HME podem ser representadas pela expansao
do conjunto condicional de informagdes associado com a expectativa condicional. Para a
forma fraca, o passado histérico dos precos € o conjunto condicional de informacdes; para a
semi-forte, o conjunto de informacdes € potencialmente todas as informagdes publicamente
disponiveis; e para a forte todas as informagdes publicas ou privadas disponiveis.

Analisando a forma fraca sob a luz do processo martingale, pode-se representa-la

matematicamente como:
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P=P_ +e " (2.8)

ou seja, o preco do ativo de hoje € igual ao preco do ativo ontem mais um componente
aleatorio. Diz-se que se os precos obedecem a Equacdo (2.8) estes se comportam de acordo
com um processo de formacio de pregos conhecido como caminho aleatorio™. Assim sendo o
movimento dos pregos futuros ndo pode ser previsto com base em movimentos passados de

precos, negando a rentabilidade da analise técnica.

Proposigdo 2.1:
O conjunto de informagoes formado pelos pregos passados é um subconjunto de informagoes
publicamente disponiveis, que por sua vez é um subconjunto de todas as informagoes

disponiveis. Logo, a eficiéncia fraca pressupoe a semi-forte que pressupoe a forte.

Prova:

A prova desta proposicdo é conclusdo direta das defini¢oes 2.7, 2.8 e 2.9.

No tocante as evidéncias empiricas que apodiam ou refutam a HME, Ross (2001)
apresenta diversos trabalhos em ambas as dire¢des, o que nos leva a conclusao que tal questao
ainda possui diversos fatores empiricos a serem explicados.

Em conclusdo, segundo Fama et al (1969) o argumento que o preco corrente de um
ativo reflete todas as informacdes disponiveis implica que as mudancgas sucessivas nos pregos
sao independentes. Adicionalmente, ¢ normalmente assumido que as mudangas sucessivas nos
retornos sdo identicamente distribuidas. Juntas, estas hipdteses constituem o modelo do

caminho aleatorio (random walk).

22 No caso de uma agio que apresenta dividendos, ou outro ativo com caracteristicas semelhantes, a equagio
torna-se: p = P _, + dividendos+e,-
¥ Caminho aleatdrio ou random walk, estdo na proxima se¢ao.
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2.2 O Mercado Acionario Brasileiro num contexto de Gestao do

Risco

A hipdtese de mercado eficiente ¢ fundamental em diversos modelos que avaliam os
mercados aciondrios e de derivativos. Entretanto, mercado eficiente nem sempre ¢ observado
na pratica. E o caso de alguns mercados brasileiros. Uma forma de testar a eficiéncia do
mercado ¢ verificar se o conceito de passeio aleatorio € valido.

A discussdo deve levar em consideragdo o fator tempo. Mais precisamente a qual fase
da historia econdmica brasileira considera-se. Segundo Torres et al (2002) h4a uma diferenca
significativa no comportamento do mercado brasileiro de a¢des antes e pos plano real. Neste
mesmo trabalho mostrou-se que as acdes brasileiras tornam-se mais liquidas, facilitando a
incorporagao de informagdes ao conjunto de informagdes disponiveis ao publico.

A questdo da liquidez mostra-se fundamental na eficiéncia do mercado. Brito e
Manazes (1981) via o teste de autocorrelagdo dos retornos mostraram que o mercado
brasileiro € previsivel. No entanto, segundo evidenciado por Torres et al (2002), tal fendmeno
pode ser conseqiiéncia da base de dados utilizada, a qual era composta de agdes pouco
liquidas. Uma segunda razao para o resultado ¢ o periodo de estudo: retorno diario de ac¢des
entre 1973 a 1980.

A partir de uma equagdo semelhante a (2.8), mas incluindo uma tendéncia. E com
dados didrios de acdes com importancia relativa heterogénea (tamanho da firma diferente), e o
indice Ibovespa, no periodo de 4/3/1986 a 15/4/1998 para diversos horizontes temporais que
vai do curto ao longo prazo. Torres et al (2002), utilizando diversos testes a partir do conceito
de passeio aleatdrio, mostrou que o mercado brasileiro ndo sdo muito menos eficiente que o
mercado americano. Com relacdo ao tamanho da firma, quanto menores, mais ineficiente o
mercado (no sentido de Fama).

Avaliando o tamanho das empresas e sua relagdo com o desempenho das suas
respectivas acoes, Braga ¢ Leal (2002) compararam carteiras cuja composicdo segregava
acoOes de diferentes razdes: valor patrimonial sobre o pre¢o da acdo e o tamanho das firmas
(VPA/P). Os resultados mostraram que quanto maior a razdo VPA/P maiores os retornos e
risco. Mas ndo ha evidencia do efeito tamanho, indicando ineficiéncia. No entanto, este
resultado ndo é corroborado por Costa Jr. e Neves (2000) que trabalharam com dados de

painel.
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Como pode ser observado, trabalhos semelhantes, com dados semelhantes, mas com
metodologia diferentes para avaliar a eficiéncia de mercado possuem conclusdes distintas
sobre o assunto. Refor¢ando a hipotese de que este tema estd longe de uma defini¢do
fielmente conclusiva.

Um aspecto que chama a aten¢do no mercado acionario brasileiro ¢ a estrutura de
controle x estrutura de propriedade. Ou seja, a distingdo entre acdes preferenciais (sem a
estrutura de controle) e as agdes ordindrias. De uma forma geral, no Brasil e segundo
Valadares (2002), ha uma grande concentracao das agdes tipo ON (ordinarias) nas maos de
poucos acionistas, dando a estes o controle. E acdes PN (preferenciais) mais pulverizadas.
Esta questdo vem sendo discutida no ambito da CVM e BOVESPA, inclusive com a criagao
de mercado especificos para empresas com boa governanga coorporativas.

A concentracdo de controle provoca uma menor taxa de crescimento do mercado, no
entanto surge uma questdo. Este efeito pode significar pressdes para um mercado ineficiente?
As evidéncias ndo mostram conclusdes a respeito, mesmo comparando mercados com

estrutura semelhante (como o italiano, por exemplo).

2.3 Dinamica do Retorno do Ativo

Sabe-se que ¢ dificil, ou quase impossivel, antecipar o preco de um ativo, no entanto, a
precificagdo de um contrato de opgdes € o bom gerenciamento do risco requerem o
conhecimento do prego ou distribuicao de probabilidade dos pregos do ativo objeto na data do
vencimento. Partindo-se da hipotese que o preco futuro ¢ desconhecido, faz-se necessario
construir um modelo que apresente a dindmica dos pregos ou retornos do ativo objeto na data
de exercicio.

Segundo Wilmott, Howinson ¢ Dewynne (1997), a grande maioria dos modelos de
precificagdo de opgdes sao baseados em um modelo simples para o movimento dos precos do
ativo objeto. Estes modelos envolvem pardmetros derivados, por exemplo, de dados
historicos.

Alguns dos modelos adotados neste trabalho sdo baseados na hipdtese de eficiéncia do

24 . . . , . .
mercado”’, assim sendo segue-se o conceito de passeio aleatorio (random walk). Existem

2 Assim como inumeros trabalhos que utilizam a dindmica de precos do ativo, como Sassatani e Siqueira (1998),
Mao (1997), Rochman (2002) e Hokayem, Abdallah e Dorato (2003) entre outros.
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diferentes formas de apresentar esta hipotese, com diversas suposi¢des de restrigdes, mas

todas suposi¢des podem ser resumidas em dois pontos:

e O passado histérico é totalmente representado pelo prego presente, que ndo retem
informag¢do muito defasada;
e Os mercados respondem imediatamente a qualquer nova informagao sobre o prego do

ativo.

Supondo verdadeiras as suposi¢des acima, entdo o modelo para o prego do ativo deve
ser baseado na incorporacdo de novas informagdes ao modelo. Com as duas suposi¢des, as
mudangas no pre¢o de um ativo sdo um processo de Markov.

Inicialmente nota-se que as mudangas absolutas de um ativo ndo sao uma boa medida
quantitativa. Ou seja, uma alteragdo de 1p (uma unidade) ¢ muito mais significante quando o
prego € 20p que quando este ¢ 200p. Desta forma utilizaremos para cada altera¢do do ativo os
retornos, que ¢ a mudanca do prego dividido pelo seu prego original.

De acordo com a Figura 2.2 a seguir, no tempo t o prego do ativo era S. Considerando
um periodo de tempo muito pequeno — subseqiientemente dt, teremos uma variacao no valor
do ativo de dS. Sob esta suposi¢do, como modelar o retorno do ativo dS/S? Este modelagem

terd dois componentes, um para cada hipotese do mercado eficiente.

dt

Figura 2.2: Detalhe de um passeio aleatorio discreto.
Fonte: Elaboragao propria.
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O primeiro componente ¢ o fator previsivel, que estar relacionado com a 1% hipotese,
este pode ser comparado ao rendimento de um ativo livre de risco e ¢ dado por pudt. Onde p é
a medida da taxa média de aumento do preco do ativo. Nos modelos mais simples p ¢ uma
constante, ja nos modelos mais sofisticados p pode ser uma fungdo de S e t.

A segunda hipotese sugere que o modelo tenha um elemento relacionado com a
chegada de novas informagdes. Esta ¢ representada pelo termo cdz, onde o ¢ a volatilidade e
a medida dz; ¢ uma variavel aleatéria oriunda de uma distribuicdo normal, esta varidvel serd
tratada em mais detalhes na proxima secdo. Neste caso também podemos ter ¢ em fungdo de S
e t para modelos mais sofisticados.

Colocando os dois termos juntos, teremos a equagao diferencial estocastica (SDE):

%% e 29
S
d;, = u(S,t)dt + o(S,1)dz, (2.10)

t

Onde o modelo (2.9) representa 0 modelo mais simples e a Equacgao (2.10) o modelo

mais sofisticado.

2.3.1 O Processo de Wiener

O termo dz das Equacdes (2.9) e (2.10), que contém a randomicidade do preco do
ativo ¢ conhecido como um processo de Wiener. Este tipo de processo € utilizado na fisica
para descrever o movimento de uma particula sujeita a choques de outras particulas, fato
também denominado movimento browniano. O primeiro trabalho a utilizar este modelo para o
preco dos ativos foi desenvolvido por Louis Bachelier em 1900.

Para a construcdo de modelos de precificacdo de derivativos baseados em processos
estocasticos faz-se necessario o conhecimento das propriedades da varidvel aleatoria. As
propriedades sdo as seguintes (Wilmott, Howinson e Dewynne, 1997 e Sassatani e Siqueira,

1998):
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e dz ¢ uma variavel randomica, derivada de uma distribuicdao normal;
e A média de dz é zero;
e A variancia de dz ¢é dt;

e As variaveis dz; para dois intervalos de tempo distintos (dt) sdo independentes.

Assim, pode-se escrever dz; como:

dz, = g,\/dt (2.11)

Onde &~ N(0, 1). Ross (1997), complementa que para dz seguir um processo aleatorio

deve satisfazer:

e O processo inicial em 0: dzy=0;
e O conjunto dos possiveis valores para z, para ¢>(, possuem incrementos

independentes e estacionarios.

A Figura 2.3 a seguir ilustra uma possivel trajetéria das varidveis z; no tempo que

seguem um processo Wiener padrao.
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0.6

Tempo

Figura 2.3: Simulac¢do de uma trajetdria do movimento browniano.
Fonte: Elaboragao propria.

Observando o comportamento do processo estocastico pelo grafico acima, nota-se uma
série de bicos produzidos pelo processo aleatorio. Uma funcdo deste tipo ndo pode ser
integrada ou derivada por métodos convencionais.

Um processo estocastico corresponde ao conjunto de todas as trajetdrias percorridas

pelas variaveis z; como ilustra a Figura 2.4 a seguir:
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Figura 2.4: Processo estocastico (z, 1 > 0)

Fonte: Elaboragéo propria.

A partir das propriedades e particularidades da varidvel dz, pode-se analisar algumas
caracteristicas da Equacdo (2.9). A primeira ¢ que a Equacdo (2.9) ndo se refere ao passado
historico do ativo; o proximo prego do ativo (S + dS) depende somente do preco atual. Esta
independéncia do passado ¢ conhecida como propriedade de Markov.

A segunda propriedade ¢ a média de dS, que ¢ obtida a seguir:

E(dS) = E(oSdz + pSdt) = E(uSdt) = uSdt (2.12)
Ja que E(dz) = 0. Na média, o proximo valor de S é maior que o valor anterior por um

termo de ySdt .

Por fim consideraremos a variancia de dS:

VAR(dS) = E(dS*)— E(dS)* = E(c%8%dz?) = 08°dz? (2.13)
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2.3.2 A Férmula do Preco do Ativo

A questdo pertinente, a esta altura do trabalho ¢é: Pode-se resolver a equagdo
diferencial estocéstica para se obter um resultado exato para o preco do ativo? A resposta ¢
sim, mas para tal solucdo faz-se necessario a aplicacdo da formula de It6, também conhecida
como Lemma de It6.

Se a Equacao diferencial estocastica (2.9) fosse uma equacgdo diferencial ordinaria
(com ¢ = 0), seria facil encontrar a solucdo por meio de integracdo. Desta forma, poderia-se

isolar a variavel S; e obter uma funcao deterministica S(p,t), como a dedugdo a seguir:

6?’ = udt + odz,

t

com ¢ = 0 na Equagdo (2.9) acima repetida, tem-se:

dsS “dS ' ¢
L= udt = L= u=1InlS | = wut
5 7 ! 3 !ﬂd o = H

Finalmente a partir da expressdo acima se obtém o resultado para o preco de ativo subjacente:

S, = Sye” (2.14)

Analogamente, fazendo-se o # (0, ou seja, incluindo a componente estocastica na

equacdo diferencial e integrando tem-se:

£ ds,
IS

0 u

=j[ﬂdu+j<7-d2u (2.15)
0 0

Contudo a resolu¢ao da equagdo acima nado segue as regras basicas do calculo cléssico.

Como ja dito, para efetuar esta operacdo utilizar-se-4 o Lemma de It6.
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Neste trabalho fora utilizado a féormula de It6 para o caso unidimensional, para o caso
multidimensional observar o trabalho de Mao (1997). Para utilizar a formula de 1t6 defini-se

um processo unidimensional.

Defini¢do 2.11:
Um processo unidimensional de Ito é um processo estocdstico continuo x(t) o qual tem um

diferencial estocdastico dx(t) em ¢ > () dado por:
dx(t) = £(D)dt + g(t)dw

onde tanto f como g sdo processos estocasticos com propriedades tais:

t t )

[|£(s)lds < o0 e [lg(s)["ds <o V>0
0 0

A diferencial estocdstica significa que:

t t

x(t) = x(ty) + [| £ (s)|ds +[|g(s)|dw(s)
0 0

mantido para qualquer () < ty <t <oo.

Seja CZ’I(SRXER SR) a denotagdo da familia das fungdes de valores reais V(x,t)
definidas em RxR, tal que eclas sejam duas vezes diferenciaveis em x ¢ uma vez

diferencidvel em t. Se J e C*!(RxR , ;R), por conveniéncia:

Vt=aV’ szaV, y oV (2.16)
ot ox T on?
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Teorema 2.3 (a formula unidimensional de It6):

Seja x(t) um processo de Ito com t > 0 e com a diferencial estocastica:
dx(t) = f(t)dt + g(t)dw

onde tanto f quanto g sdo processos estocdsticos com propriedades tais que:

t t
JIf (s)lds <0 ¢ lg(s) ds <o vi>0
0 0

Seja Cz’l(ﬂ%xﬁ%Jr;i}{). Entdao V(x(t),t) também é um processo de Ito com a diferencial

estocastica dada por:

1
4V (x(0:0) = [V, (50,0 + Ve (0010 4 Ve (0.0 (O (2.17)
+ Ve (x(2),0) g (t)dw
Prova: A prova deste teorema encontra-se no Anexo Al.
Apresentado o Lemma de It6 retorna-se ao problema do modelo matematico (2.9) do

preco do ativo. O teorema a seguir mostrar como aplicar o teorema de [t6 na precificacdo do

ativo.

Teorema 2.4 (a formula de It6 na precificagdo de um ativo):

Suponha que o prego inicial do ativo S(tg)= Sp>0 no tempo ¢ = to > 0- Entdo o prego do ativo

no tempo t >t é dado por:

S =S5, exp[(# - %02)0 — 1) +o(z(t) - Z(to))} (2.18)

Prova: A prova deste teorema encontra-se no Anexo A2.
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Utilizando a propriedade de que em t,=0 o valor de z,=0, ¢ possivel simplificar a

Equacao (2.18), para a expressao do preco do ativo:

S(t) =S, ex (,u—%az)t+az’zt} (2.19)

A Expressao (2.19) ¢ fundamental para modelar o comportamento do ativo no calculo
das opgdes. A varidvel estocastica S; segue uma distribui¢ao log-normal, pois o seu logaritmo
¢ uma variavel aleatoria com distribuicdo normal. De acordo com Luenberger (1998), dada

uma variavel p(t)=e""

, se w(t) for normal, entdo diz-se que p(t) segue uma distribuicao log-
normal.
Na Expressao (2.19), supondo-se conhecido o pardmetro S, em t = 0, ¢ como esta

segue o movimento geométrico browniano, entdo temos:

E(S,) = Spe*’ (2.20)

VAR(S,) = S2e" (e™ - 1) (2.21)

2.4 O Modelo de Precificacdao de Opcgées de Black e Scholes

Como ja comentado, o valor de uma opg¢do estd intimamente ligado ao valor do ativo
objeto (descrito na Se¢do 2.2). Esta se¢do do trabalho apresenta como esta relagdo se forma e
principalmente quais as condi¢des de contorno que as expressdes para o calculo das opgdes

necessita satisfazer. A seguir uma defini¢ao formal de uma opg¢ao segundo Araujo (2000).

Defini¢do 2.12:

Opc¢do é um instrumento que da ao seu titular, ou comprador, um direito futuro sobre algo,
mas ndo uma obrigagdo; e ao seu vendedor, uma obrigagdo futura, caso solicitado pelo

comprador da opgao.

Dado o principio da arbitragem, os valores de uma op¢ao de compra (call) e uma

opcao de venda (puf) no vencimento devem ser representados respectivamente por:
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(S, T,k) = max|0;S; — k] (2.22)
p(S,T,k)=max|0;k — S|

onde:
St = valor do ativo em T;

k = prego de exercicio.

Observe que as expressdes anteriores mostram o valor das opgdes no instante terminal
T. Neste instante, inclusive, o valor das op¢des européias é igual as americanas™. O problema
reside na correta avaliagdo do prémio das opgdes (valor da op¢do) num instante anterior ao
vencimento. Neste caso S; passa a ser uma variavel aleatoria, logo ¢ necessario assumir uma
hipotese sobre a distribui¢do da probabilidade dos precos ou taxas de retorno futuro do ativo
objeto.

Um aspecto fundamental para a avaliagdo dos valores das opgdes ¢ a chamada
condi¢io de contorno ou valor intrinseco’®. Sassatani e Siqueira (1998) afirmam que a
condicdo de contorno ¢ o nucleo da expressio matematica que define uma opg¢do. As
Equacdes (2.22), sdo representagdes dos valores terminais das opg¢des de compra e venda
expressas sob a forma de condigdes de contorno, que definem os limites do dominio da

funcao prémio da opgao.

2.4.1 A Analise de Black e Scholes

Antes de descrever a analise de Black e Scholes (Black e Scholes, 1973), cujo objetivo
principal é precificar as opgdes, listaremos algumas suposi¢des importantes para a analise

propriamente dita:

o O ativo subjacente segue o caminho aleatorio descrito pela Equagao (2.9);

»Opgdes européias sio aquelas que s6 podem ser exercidas em uma data especifica, ja a americana pode ser
exercida desde o primeiro dia util apds sua compra, até a data de vencimento do contrato.

%% As restrigdes racionais das op¢des de compra estdo no anexo A4 e das opgdes de venda no A5, mais detalhes
em Merton (1990)
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. A taxa de juros livre de risco r e a volatilidade do ativo subjacente o sdo fungdes

conhecidas durante o tempo de vida da opgao;

. Nao ha custos de transagdo associados ao hedging da carteira;
. O ativo subjacente nao paga dividendos durante o tempo de vida da opgao;
o Nao ha possibilidades de arbitragem. Isto significa que todas as carteiras livres de

risco possuem 0 mesmo retorno;
o A negociagao dos ativos subjacentes pode ser feita continuamente no tempo;

o O ativo ¢ divisivel, logo podem ser negociadas pequenas quantidades e/ou partes

do ativo subjacente.

Supor uma opgao cujo valor V(S, t) depende apenas de S e de t. Neste estdgio da
analise ndo € necessario especificar se a op¢do ¢ de compra ou de venda; de fato, V pode ser
determinado para uma carteira formado por diversas op¢des, por simplicidade pode-se pensar
em opgoes de compra ou de venda simples.

Usando o lemma de 1t6, Equagdo (2.17), escreve-se:

dv =oS(t)dwV, + {;JSVS + %azSZVSS + Vt}dt (2.23)

A expressdo acima indica o caminho aleatério seguido por V. Observa-se a

necessidade de que V tenha ao menos a primeira derivada em t e que tenha duas derivadas em
S.

Agora se constrdi uma carteira formada por uma opcao e um numero -A do ativo

objeto. Este nimero € por hora ndo especificado. O valor desta carteira ¢:
1=V —-AS (2.24)

A derivacao desta carteira em um periodo ¢ dada por:

dn=dV - AdS (2.25)
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Onde A ¢ mantido fixo durante o periodo em questdo; se nao o fosse, entdo dn poderia
ter termos em dA. Substituindo (2.9) e (2.23) em (2.25), encontra-se o caminho aleatorio para

7. Ou seja:

dr =oS(Vs - A)dz+[uS(Vs —A)+;02S2VSS+ V, dt (2.26)

Como demonstrado no Anexo 3, pode-se eliminar a randomicidade desta expressdo
oV
escolhendo A = Vg = a%S' Observe que A ¢ o valor inicial de Y em dt. Isto resulta que a

carteira ¢ completamente deterministico, logo:

2

dn=[V L6282y qdt = | Y4 L5262 OV g (2.27)

t SS
2 ot 2 0s2

Neste momento o conceito de arbitragem e de oferta e demanda ¢ utilizado, com a
suposicdo de que ndo ha custos de transagdo. O retorno de um investimento com um valor
equivalente a m em um ativo livre de risco renderia r.m.dt no tempo dt. Se o lado direito da
Equacdo (2.27) fosse maior que este valor, um investidor poderia tomar emprestado uma
quantia 7 para investir nesta carteira e assim teria um retorno superior a sua tomada de
empréstimo.

Inversamente, se o lado direito de (2.27) fosse menor que rrdt, entdo o investidor
poderia se desfazer da carteira e investir em um banco. Os dois caminhos de arbitragem
levariam a um lucro instantaneo, sem risco ¢ sem custos. A existéncia de tal arbitragem, com
a habilidade de negociar com baixos custos, garante que a carteira e o investimento sem risco

sejam mais ou menos iguais. Diante disso:
08>

2
rrdt = l:@_V + lcs2$2 6—V}dt (2.28)
ot 2

Substituindo A = Vg = a%s em (2.24) e o resultado em (2.28) e dividindo-se por dt,

chega-se a:
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2
NV 1229V L gV vop (2.29)
o 2 as26S

Esta é a Equacéao diferencial parcial de Black e Scholes.

A Equacgdo (2.29) demonstra que, sob as suposi¢des apresentadas, todos os derivativos
cujo valor esta relacionado apenas com S e t, bem como, que tenham um valor de pagamento
adiantado (como as opgdes), devem satisfazer a equacao de Black e Scholes (ou uma variante
desta).

Antes de partir para a proxima secao, deve-se analisar trés pontos importantes sobre as

derivagdes feitas até o presente momento. Inicialmente, o delta dado por:

A=Vs =/ g

E a taxa de mudanca de valor da opgéo ou da carteira de opgdes com respeito a S. Este
ponto ¢ de fundamental importancia tanto na teoria como na préatica, e serd tratada com mais
atencdo em breve. No momento pode-se defini-lo como a medida da correlacdo entre o
movimento da op¢do ou opgdes € 0 movimento do ativo subjacente.

O segundo ponto diz respeito ao operador diferencial linear dado por:

Lo _0. 1 20t (0 (2.30)
o 2

Tem como interpretacao financeira a medida da diferenga entre o retorno de uma
carteira de opg¢des hedgeado (os dois primeiros termos) e o retorno do deposito em banco (os
dois ultimos termos).

Por fim, pode-se notar que a Equagdo (2.29) ndo contém o termo de crescimento L.
Em outras palavras, o valor de uma opc¢ao ¢ independente do qudo rapido ou lento ¢ o
crescimento do ativo. O Unico parametro relevante da Equacdo diferencial (2.9) do ativo
subjacente que afeta o valor da op¢do ¢ a sua volatilidade, 6. A conseqiiéncia pratica para isto
¢ que se dois individuos possuirem duas estimagdes diferentes para p, estes ainda podem ter o

mesmo valor nas suas posi¢oes de opgoes.
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2.4.2 As Equacoes de Black e Scholes: uma Solugao Explicita para

Opcoes Européias

Como mostrado na se¢do anterior, se o ativo subjacente segue a SDE (2.9), entdo o
valor c(S, t) (ou ¢(S, t, k)) de uma opgao de compra européia em funcdo do ativo S e do tempo
t, satisfaz a seguinte equacao de Black e Scholes (PDE), onde se substituiu o V de uma opg¢ao

genérica, por ¢ na Equacdo (2.29):

2
@+102S2£+1"S@—1’C:O (2.31)
o 2 oS?

Além disso, o valor da op¢ao de compra deve obedecer a condi¢do final, expressa pela

Expressdo (2.22) reapresentada a seguir:
c(S,T,k) = max[0;S; — k]

Para precificar a op¢ao de compra européia, segundo Mao (1997), ¢ suficiente resolver
a Equagdo (2.31) com a condi¢ao de contorno final (2.22). Se for possivel obter a solug¢ao
explicita V para a PDE desde que se conheca o preco do ativo subjacente S no tempo t, entdo

o valor da opgao sera simplesmente V(S, t).

Teorema 2.5: (A formula de Black e Scholes para a opgdo de compra européia):

A solugdo explicita para a PDE (2.31) ¢ dado por

c(S,t) = SN(d,) — kexp[— (T —t)[N(d,) (232)

onde N(x) é a fung¢do de distribuicdo de probabilidade acumulada da distribui¢cdo normal

padrdo, ou seja:

NGO = [ exp(— )
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Enquanto:

log(%)+(r+;az)(T—t) . log(%)Jr(r—;az)(T—t)
“s oNT -1 = oNT 1

Prova:

A prova do teorema acima se encontra no Anexo 6.

Uma vez obtida a férmula para a op¢do de compra européia torna-se facil obter a
equivalente para a op¢do de venda européia. O valor da op¢do de venda européia na data de

vencimento pode ser escrito como (Equacao 2.22):

p(S,T,k) = max[0;k - S ] =
p(S, k) =max[0;k - S]

Usando a paridade opg¢ao de compra — op¢do de venda (Sassatani e Siqueira, 1998),

tem-se:

(S, k) =c(S,k)— S +kO(t)
p(S,k)=ke "I 4 (S, k)-S

Substituindo (2.32) na expressdo acima se obtém:

p(S.k)y=ke ™" L SN(d))—ke " T"IN(d,) - S
= ke " T IN(~=d,)— SN(~d,)

Logo, deriva-se a formula de Black e Scholes para opcdes de venda européia

apresentada no teorema seguinte:

Teorema 2.6 (A formula de Black e Scholes para a opg¢do de venda européia):

O valor da op¢do de venda européia no tempo t e com o prego de exercicio S ¢ dado por:
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p(S,0)=ke " T N(-d,)— SN(~d)) (233)

onde N(x) é a fungdo de distribui¢do de probabilidade acumulada da distribui¢do normal

padrao e d; e d> sdo como antes apresentados, ou seja:

log(%)+(r+;02)(T—t) ) 10g(%)+(r—;02)(T—t)
h = oNT -t 2 T —t

2.5 A Estimacgao da Volatilidade

Como pode ser observado tanto para a dindmica de um ativo simples quanto para um
derivativo sofisticado, a volatilidade representa um parametro fundamental. Tal conceito ¢ de
importancia impar quando se trata de derivativos, em particular na precificacdo de opgdes,
visto que, no modelo de B&S a volatilidade®’” é o tnico pardmetro ndo observavel.

A correta previsao da volatilidade ¢ importante ndo s6 nos esbogos de estratégias
Otimas de hedge, mas também, esta permite captar momentos de grandes incertezas no
mercado. Quanto mais incerto estiver o mercado, mais 0s precos variam e maior a variancia
dos retornos implicando possibilidade de grandes perdas e ganhos. Logo, o correto
gerenciamento passa pela boa previsao das oscilagdes de prego dos ativos no mercado, toda
boa ferramenta de analise de risco deve levar em consideragdo a volatilidade, como € o caso
do Value at Risk.

Ha diferentes métodos para estimar a volatilidade dos retornos, pode-se dividi-los em
dois grupos distintos: métodos paramétricos e nao-paramétricos. Um exemplo de métodos
ndo-paramétricos ¢ a estimagio da volatilidade por meio de redes neurais™.

Nesta secdo sdo tratados os seguintes métodos paramétricos: modelos de volatilidade
deterministicas (em particular os modelos da familia GARCH) e os modelos de volatilidade

historica.

o 2, . . . . . .
7 A volatilidade o~ é a medida da incerteza no que se concerne aos retornos ocasionais do ativo objeto.
% Para uma analise dos métodos ndo-paramétricos para modelar a volatilidade dos retornos ver Pagan e Schwert
(1990).
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2.5.1 A Volatilidade Historica

A maneira padrao e mais simples de medir a volatilidade de um ativo ¢ através da
estimacdo do desvio padrdo dos seus retornos. Esta medida ¢ usualmente conhecida como
volatilidade historica. Este método supde que o retorno segue uma distribuicao probabilistica
normal, assim a volatilidade (ou o desvio padrao) pode ser estimada via a maxima
verossimilhanca da variancia minima (ou pelo método dos minimos quadrados).

Chamando de u; o retorno do ativoi (i=1, 2, ..., n), i o retorno médio e tendo n

observagdes, pode-se estimar c:

1 & -
s = \/—Z(ui —u)’ (2.34)
n—-173
onde :
S
=In—+ 2.35
0 =i (235)

Uma primeira dificuldade com o estimador acima ¢ a escolha adequada do tamanho
da amostra n. E sabido que quanto maior o valor de n, maior serd a precisdo. No entanto, se n
¢ estendido, as informagdes antigas podem ndo ser relevantes na estimativa da volatilidade
futura.

Este estimador apresenta alguns problemas, um dos mais relevantes ¢ a
homogeneidade de importancia atribuida a todas as observac¢des (ndo ha diferenca entre
informagdes recentes e antigas). Tal fato ndo permite ao estimador responder agilmente a
mudangas dos precos dos ativos.

Uma alternativa a esta critica ¢ o estimador de média mével com amortecimento
exponencial (EWMA — exponentially weighted moving average). Uma estimativa da

volatilidade segundo este método ¢ (Bezerra, 2001):
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6= |2 wiu,— )’ (2.36)
i=1

onde:

Wl. (X:ﬂn—i+l, O<>\4<1, Zwi :1, ﬁ:zwlx

O parametro A ¢ conhecido como parametro de decaimento e determina todos os pesos
das observagdes passadas. Observe-se que quanto mais afastada da data em questdo menor € o
peso da observacdo. O fator de decaimento também estd relacionado com a quantidade de
dados historico, quanto menor o fator, menor a quantidade de dados necessarios para uma boa
estimativa.

Um variante deste estimador foi desenvolvido pelo J. P. Morgan, o Riskmetrics™, em
1995, para o gerenciamento do risco. Neste método ¢ utilizado um fator de decaimento de
0.94, segundo Bezerra (2001), determinado a partir de critérios de minimiza¢ao do erro
quadratico médio da volatilidade de diversos paises.

O principal problema tanto do EWMA quanto do método simples de estimacdo da
volatilidade, segundo Morais ¢ Portugal (2000), é o fato da informagao importante ndo ser o
valor histérico da variancia e sim a expectativa desta.

Assim sendo, a volatilidade pode ou nao estar condicionada as informagdes passadas.
De uma maneira geral os estimadores da volatilidade devem ser construidos levando-se em
conta as regularidades empiricas das séries financeiras. No seu trabalho Taylor (1986)

apresenta tais fatos estilizados:

e O pico em torno da média ¢ mais alto que em uma distribui¢do normal;

e As distribuicdes dos retornos apresentam excesso de curtoses;

e Os retornos dos ativos apresentam-se em assimetria negativa;

e Os retornos dos ativos apresentam pequenas autocorrelagdes; e os quadrados dos
retornos apresentam fortes correlagdes, o que implica em relagdes ndo lineares;

e A heterocedasticidade;

e A volatilidade dos retornos tem tendéncia de reversao a média, contradizendo a

hipotese de que os precos seguem um movimento do tipo browniano;
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e A volatilidade dos retornos tende a se agrupar (volatility clustering).

Os modelos tradicionais revelaram dificuldades de se adequar a essas regularidades
empiricas. Somente com os modelos auto-regressivos € possivel incorporar, em alguns casos,

estas caracteristicas aos modelos.

2.5.2 A Familia GARCH

Nos ultimos anos, os modelos de volatilidade condicional ganharam grande destaque
tanto no meio académico, quanto no meio financeiro. Tais modelos sdo extensdes dos
modelos ARCH (autoregressive condicional heterocedasticity) proposto por Engle em 1982 e
estendido por diversos autores.

Os modelos GARCH (generalized autoregressive condicional heterocedasticity) e
EGARCH (exponencial GARCH), introduzidos respectivamente por Bollerslev (1986) e
Nelson (1991) sdo os modelos que mais ganharam destaque, sendo mais abrangentes e gerais
que o modelo ARCH. Segundo Gouriénox (1997) estes modelos reproduzem algumas das
principais caracteristicas das séries financeiras, dentre elas: os conglomerados de
heterocedasticidade e caudas pesadas.

Segundo Almeida e Pereira (1999), o modelo EGARCH ¢ uma outra variante do
modelo GARCH, o modelo GARCH-L (GARCH com /leverage effect), introduzido por
Glosten et al (1989), tentam captar assimetrias nas respostas de séries financeiras a choques

positivos e negativos.

2.5.2.1 A Descri¢cao dos Modelos

A heterocedasticidade foi freqlientemente associada com dados de cross-section, e as
séries temporais estudadas no contexto de processos homocedésticos. Em andlises
macroecondmicas Engle (1982) encontrou evidéncias que para alguns tipos de dados, a
variagdo da volatilidade dos modelos de séries temporais eram menos estdveis do que se
pensava. Tal fendmeno pode ser facilmente visualizado observando-se a variagdo dos retornos
dos ativos no Capitulo 4. Engle (1982) sugeriu entdo o modelo “autoregressive, condicionally

heteroscedastic” — ARCH.
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Este modelo expressa a variancia condicional como uma defasagem distribuida do

quadrado dos retornos passados. Seja o modelo ARCH (q) abaixo apresentado:

vy, =Bx, +¢, (2.37)

q

2

& = ”z\/ao + Zlaigt—i (23%)
1=

Onde u; tem uma distribui¢do normal padrao ¢ onde t€ém-se:

E(e/x;,6,.)=0
E(s,/x,)=0

E(e, /61,6 0506_4) =0

E(y,/x))=p'x,

A partir de (2.38) pode-se obter facilmente a varidncia condicional de &, obtém-se:

Varle, /6, ]= Ele, 15, ]= Elu? S a6, |=a, + Yae?
arlg l & 1 |= L& 1 & |= LY, ao+zlaigt—l _ao+zlaigt—l
= =

q
o’ = a, + Zaigf_i (2.39)
i=1

Conseqiientemente & ¢ condicionalmente heterocedastico, mas nao em relacdo a xy, e
sim com relagdo a €. Tomando-se o modelo AR para y; ¢ combinando com o termo de erro
ARCH(1), obtém-se de (2.37) e (2.39):

V=@ tE ( 2.40)

ol =a,+asl, (2.41)

A variancia ndo condicional do modelo ARCH(1) ¢ observada pelos Teoremas 2.7 e

2.8 a seguir e pela Definicao 2.13.
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Teorema 2.7 (Varidncia ndo condicional de um processo ARCH(1)):

A varidncia ndo condicional de um processo ARCH(1) é:

Varle,|= a, + alVarlgt_IJ (2.42)

Prova:

Sabe-se que a variancia pode ser apresentada em forma da variancia condicional, ou seja:
Var(y) = Var[E(y/x)]Jr E[Var(y/x)]
Substituindo y por & e x por €.;, a expressdo acima se torna:

Var(s,)=Var|E(e, /&, )|+ E[Var(s, / &, ;)]

ECOmO E(gt /8t—1’gt—2""’8t—q) — O e de (53)

Varle,|= EVar|_8t /gt—IJ

Varle,|= a, + alVar[gZ_l J
o que conclui a prova.

Defini¢do 2.13:

Um processo estocdstico y; é fracamente estaciondrio ou covaridncia estaciondria se este

satisfizer as seguintes condigoes:

1. E(y,) ¢ independente de t;
2. Var(y,) é uma constante positiva, finita e independente de t;

3. Cov(y, ys) é uma fungdo finita de t-s, mas de t ou s.
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Teorema 2.8 (Varidncia ndo condicional de um processo ARCH(1) de um processo

fracamente estaciondario):

Se o fator gerador do disturbio é fracamente estacionario, entdo:

a
Varle,|= 1_; (2.43)
1

Prova:
A prova deste teorema é obtida diretamente do Teorema 2.7 e pela recorréncia de &, €.,

etc., logo:

Varle,|= a, + alVarlgt_l J

Var[sH ] =a,+ alVar[EZQ]

Var[g,_q 4 J =a,+ alVarlet_q J

Assim sendo:

Var[gt] = o aoa
-

o que conclui a prova.

Para que o resultado (2.43) seja positivo e finito, |o;| tem que ser menor que 1. Entdo
incondicionalmente, & ¢ normalmente distribuido com média zero e variancia dada por (2.43).
Logo, o modelo obedece as suposicoes classicas, e o estimador dos minimos quadrados ¢ o
mais eficiente estimador linear de B (Greene, 2000).

O resultado (2.43) pode ser expandido para o ARCH (q), segundo Engle (1985) um

modelo com a variancia condicional dada por (2.39) tem como variancia ndo-condicional:
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2.44
Varle,]= % ( )

q
1-> ¢
i=1

¢ a, >0,00,ay,..., a,> (0 ¢ se todas as raizes associadas a equagdo caracteristica

estiverem dentro do circulo unitario, entdo ¥ ¢ < 1.

Conforme ja apresentado, os modelos ARCH foram estendidos por diversos autores,
tornando tais modelos mais flexiveis e aplicaveis a diversas particularidades empiricas das
séries financeiras. A seguir apresentam-se algumas destas variantes, a comecar pelos modelos
GARCH.

Bollerslev (1986) afirmou que em muitas aplicagdes os modelos ARCH(q) necessitam
de grandes q para evitar problemas de varidncias negativas, conseqiientemente uma
defasagem fixa devia ser imposta (Engle, 1982). Os modelos GARCH(p, q) podem ser
classificados como uma extensdo dos modelos ARCH, permitindo tanto uma memoria longa,
como uma estruturada de defasagem flexivel, sem ter que, a priori, fixar nenhuma defasagem.

Em termos de persisténcia, nos modelos ARCH(q), como normalmente possuem um
grande valor de ¢, conseqlientemente elevadas persisténcias. Ja& o modelo GARCH(p, q)
constitui uma tentativa de expressar de forma parcimoniosa a dependéncia temporal da
variancia condicional.

O modelo padrao do GARCH(p,q) ¢ apresentado a seguir:

v, =Bx +e, (2.45)
2 £ 2 J 2
of =0, +26i6t—i +20‘i8t_j (2.46)
i=1 i=j

A primeira equagdo ¢ a equagdo da média, onde y; ¢ a taxa de retorno da agdo, x; ¢ uma
matriz de regressores € & ¢ o termo de erro. J4 a Equacdo (2.46), funcdo de variancia

condicional é funcdo de trés fatores:

e A média a,;
e Informacgdes sobre a volatilidade passada mensurada pelo termo defasado quadrado

& . (o termo ARCH);
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e Varincia dos periodos anteriores, o, (o termo GARCH).

O modelo acima ¢ conhecido como GARCH(p, q), onde p se refere a ordem de
autoregressao (p se refere ao periodo de tempo em que as volatilidades passadas ainda afetam
o tempo presente t) e q aos efeitos dos erros passados sobre a volatilidade presente (Greene,
2000).

Esta especificagdo ¢ freqiientemente interpretada dentro de um contexto financeiro,
onde um agente ou trader prever a variancia do periodo pela formulagdo de um termo médio
de longo prazo (a constante), a previsao de variancia dos ultimos periodos (termo GARCH), e
a informacao sobre a volatilidade nos ultimos periodos (ARCH). Se o retorno do ativo tiver
expectativa de grandes variacdes, tanto para cima, como para baixo, entdo o frader irad
aumentar sua estimativa de variancia para o proximo periodo.

A condicdo de nao negatividade da variancia condicional neste modelo ¢ dada por a, >
0,06>0,a;>0para1=1,..,pej=1, .. q Analisando a estrutura da Equagio (2.46)
percebe-se que o modelo GARCH(p,q) ¢ um modelo ARMA(p,q) no quadrado dos retornos.
Esta caracteristica permite a utilizagdo de técnicas convencionais dos modelos da classe
ARMA para a identificacio de p € q.

Para garantir que este processo ARMA para quadrado dos retornos tenha covariancia

estacionaria, devemos ter a seguinte condicao:

Y6+ Y a; <l (247)

=1 =l

Sendo valida, a condigdo acima, a varidncia ndo condicional de y’ ¢ dada por:

E(y})=E(c?)=0" = =t (2.48)

P 9
1-2.6,-2a,
; j

Resumindo, a condi¢do necessaria de estacionariedade assintotica de um modelo
GARCH(p, q) com 0, >0, 6;>0,0;>0parai=1,..,pej=1, .., q¢ dada pela Expressdo
(2.47).
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A especificacio GARCH atende a uma grande quantidade de caracteristicas das séries
financeiras como: o excesso de curtose, heterocedasticidade, reversdo a média, volatilidade
dos retornos com tendéncia a se reagrupar.

No entanto, com os modelos GARCH, choques (ou inovacdes) positivos € negativos
tém o mesmo efeito sobre a volatilidade. Esta caracteristica contradiz a evidéncia empirica de
assimetria negativa, ou seja, nas séries financeiras empiricas os efeitos dos choques negativos
sdo significantemente mais elevados em termos absolutos sobre a volatilidade que choques
positivos. Assim, os choques positivos sao superestimados pelo modelo GARCH e os choques
negativos subestimados.

De uma forma geral, os modelos onde o2 respondem assimetricamente a choques

positivos e negativos devem ser preferidos aos modelos GARCH’s padrdes.
Almeida e Pereira (1999), apresentaram os modelos EGARCH e GARCH-L*. O
modelo GARCH-L (assim como o EGARCH) apresenta resposta diferente para choques nos

retornos, caso seja positivo ou negativo. Sao feitas algumas restrigdes nos seus parametros:
q p ’
a,>0, a,,p, 20, Zizlai +Zj:1,6’j <leduy=1se¢  <0;ed =0se ¢ >0.Dai

para o modelo GARCH-L a expressao para o, ¢:

q P
2 2 2
o, =a,+ Y el + Y Biol v, 8l (2.49)
i=1 Jj=1

O modelo EGARCH nao impde restrigdes sobre os seus parametros, entao oy

d g, . Z £, . ta
ln(o-tz) = ao + Zyz O_t__l + zai | i | +Z ﬁj ln(o-tz_j) ( 250)
i=1 j=1

t=j = t=J

A assimetria deste modelo ¢ dado pelo y;. Sendo y; < 0 teremos um choque positivo
diminuindo a volatilidade e vice-versa.

Outro aspecto importante ¢ a persisténcia dos choques, tal fator ¢ inclusive critério de
selecdo entre os modelos da familia GARCH. A tabela a seguir apresenta a persisténcia - A

para alguns modelos.
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Tabela 2.1: Persisténcia dos modelos GARCH.

Modelos Persisténcias — A
ARCH q
(@) i=Ya
i=1
GARCH (p, q
(P, Q) i=Ya,+ %6,

GARCHL®. 9|, _ ¢, $5 4z
i J
i=1 Jj=1

EGARCH (p, q) ’
1=38,
j=1ﬂ’

Fonte: Elaboragdo propria a partir de Almeida e Pereira (1999).

A meia vida de uma série financeira fornece uma idéia do tempo que a volatilidade

leva para estabilizar-se apos um choque significativo.

Definicao 2.14:
A meia vida de uma série financeira é o tempo necessario para que o efeito do choque seja

reduzido a metade. A meia vida pode se calculada como sendo:

HL =1 1082 (2.51)
logA

2.5.2.2 Testes dos Modelos ARCH

Nesta subsecdo sdo tratados os testes preliminares a estimagdo dos modelos. Iniciando-
se com os testes de verificagdo do processo ARCH e de sua ordem, e em seguida o teste do

modelo GARCH.

? O modelo GARCH-L também ¢ conhecido como modelo GJR em funcdo dos seus criadores — Glosten,
Jagannathan e Runkle (1989).
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A. Verificando se o modelo é do tipo ARCH e a ordem de q do ARCH(q)

Seja um modelo ARCH dado por (2.37) e (2.39). Pode-se testar a hipotese de que a

variancia dos erros ¢ constante 52 — a,» contra a hipdtese alternativa de erros seguindo um

processo ARCH, de ordem a determinar. Segue, portanto, as hipoteses:

H: = = = =
coy=a=..=a,=0

H;: a; #0, para pelo menos algumi=1, ..., q

O teste ¢ fundamentado seja pelo teste de Fisher classico, seja pelo teste do
multiplicador de Lagrange (LM). Bourbonnais e Terraza (1998) apresentaram uma forma

pratica para o teste, este ¢ feito pelas etapas que seguem:

1. Determinagdo dos ey, o residuo da regressao (2.37);

2. Calculo dos e

3. Regressdo auto-regressiva dos residuos sobre q defasagens (residuos defasados), onde

somente os termos significantes serdo considerados,

q
2 2
e =a,+ .Zlaief—i ; (2.52)
1=

4. Calculo da estatistica do multiplicador de Lagrange,

LM =nxR? (2.53)

onde: n=numero de observagdes que servem ao calculo da etapa 3, e

R? = coeficiente de determinagdo da etapa 3.

Se LM > ZZ(Q)’ ou seja com q graus de liberdade a um nivel de confianga fixo (por

exemplo 5%), rejeita-se H,; justificando o uso do modelo ARCH.
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A determinacdo da ordem de q do processo ARCH ¢ obtida via o teste acima, onde se

2
t—q°

busca um determinado q, para o4 significante, ou seja, faz-se a regressdo de ef sobre ¢
Uma observagao importante foi feita por Bourbonnais e Terraza (1998), um processo ARCH
s € justificado até a ordem q = 3, a partir de 3 usam-se os modelos GARCH que apresentam
resultados pelo menos tao bons quanto, porém mais parcimoniosos.

Uma técnica alternativa ¢ o calculo do correlograma dos residuos ao quadrado do
modelo inicial. Se os termos deste correlograma forem significantemente diferentes de zero

conclui-se que se trata de uma especificagio ARCH.
B. Testando a especificagdo GARCH contra a ARCH

Supondo-se que o modelo em analise ¢ um caso de heterocedasticidade condicional,
pode-se testar a especificagdo ARCH contra a GARCH. A hipétese nula ¢ que os erros sdo do
tipo ARCH, ja a hipdtese alternativa ¢ que os erros s30 GARCH. As duas hipoteses sdo as

seguintes (supondo-se o modelo GARCH dado por (2.46)):

Ho 6y =6,=..=8,=0

Hi: 6, # 0, para pelo menos algumi=1, .., p

O teste mais eficiente neste caso ¢ o método do multiplicador de Lagrange, acima
apresentado. Substituindo-se q por p na Equagio (2.53) e R* sendo obtido via a substitui¢io

da Equacao (2.52) por:
2 _ A & 2 Lo o
of =0, + Z5i0t—i + Zaist_j (2.54)
: o

Se LM > ;(2( p)> ou seja com q graus de liberdade a um nivel de confianga fixo (por

exemplo 5%), rejeita-se a hipotese Ho; logo os erros obedecem a um processo GARCH(p, q).
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C. Testes de assimetria dos impactos (EGARCH e GARCH-L)

A verificacdo da assimetria das séries pode ser feita via a estimacdo dos modelos
EGARCH ou GARCH-L e testando a significancia dos termos assimétricos. Para o modelo
EGARCH(p, q), verifica-se se os termos vy; sdo significantemente negativos. Para os modelos
GARCH-L checa-se a significancia de &.

Uma alternativa ¢ observar a correlacdo cruzada entre o quadrado dos residuos

padronizados 22_(¢y )2 e o residuo padronizado defasado . _(gt% . Essa
/o ok Ok

t

correlacdo cruzada deve ser zero para o GARCH simétrico ¢ negativa para os modelos nao

simétricos EGARCH e GARCH-L.
2.5.2.3 A Estimaciao dos Modelos ARCH

Segundo Greene (2000) o estimador dos minimos quadrados (MQO) ¢ o estimador
linear mais eficiente dos parametros, no entanto, hd um estimador ndo linear que ¢ mais
eficiente que o MQO, este estimador ¢ o estimador de Maximo Verossimilhanca. A seguir
apresenta-se um procedimento para estimag¢do dos modelos ARCH baseados no MQO, em

seqiiéncia a aplicagdo da maxima verossimilhanca aplicada aos modelos ARCH’s.

A. A estimagdo do ARCH e GARCH em quatro etapas com o método dos minimos

quadrados generalizados

Engle (1982) e Judge et al. (1985) sugeriram um procedimento simples em quatro

etapas baseados no método dos minimos quadrados generalizados:
1. Estimagdo do modelo ARMA ou do modelo y, = B x, + &, e determinagdo dos e;

2. A partir dos residuos de e, deve-se efetuar uma regressao pelo MQO com os dados

variando de t = 2,..., T, obtém-se os estimadores via a seguinte regressao:

q
+ Zo?-ef . (2.55)



62

. . ~ AL s 2 :
3. Considera-se a aproximagao da variancia dos erros &t por Gy, estima-se novamente oS

parametros do modelo via o método dos minimos quadrados generalizado (MQG):

a=x0'xlxQly (2.56)
( Jx

isto ¢ o equivalente a fazer uma regressao ponderada com os fatores de ponderacao

dados por:
Q= diag(atz); (2.57)

4. Estimacao dos coeficientes a pelo MQG:

a= (e'Q_le)e'Q_IO' (2.58)

Apesar da semelhanga com o modelo ARCH, as particularidades do modelo GARCH
tornam a estimagao deste mais dificil, exigindo algumas alteragdes na sua forma de estimagao.
Gourieroux (1992) apresentou uma adaptagao ao modelo GARCH de forma a estimé-lo sem
contar com uma grande sofisticagdo matematica.

Seja 0 modelo GARCH (p, q) reapresentado a seguir:
vi=Bx +e,

P q
2 2 2
G =0, +26i0t_i +Z°°i8t—j
i=1 =

De uma maneira clara a expressdo da varidncia condicional em termo dos pardmetros e

das variaveis observadas ¢ dado por:
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q
2
o, + Zaist_j
j=1

p

2 : 2
1- SiGt—i

i=1

2
Gt:

Assim sendo, Gt2 depende de todos os seus valores passados. Como o processo €
observado durante um periodo de tempo limitado ¢ necessario substituir ou atribuir valores a

o2 por uma aproximagao truncada onde os valores de &> correspondem a datas negativas, em

tais situacdes Gt2 ¢ tomado igual a zero. Logo se tem uma nova equagao de recorréncia:

p q
St =0 + D88 + D 0] 121 (2.59)
i=1 =
com:
£ =0, se t<0; g =g, se t> 6y =0, se t<0

Na pratica, a otimizagdo ¢ feita pelos mesmos procedimentos numéricos. A estimagao

deste modelo pela técnica em quatro etapas de Engle (1982) pode ser realizada substituindo-se

(2.55) e (2.58) respectivamente por:
2 A Sa o )
ef =0, + ZSiGt—j + Z(Xiet_i (2.60)

p q
2 A & ~2 X 2
Gp =0+ ) 08+ Y 0 (2.61)
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B. A méxima verossimilhanga aplicada aos modelos ARCH e GARCH

Como apresentado anteriormente a maioria das séries financeiras ndo seguem a
distribuicao normal. O modelo GARCH padrao pode ser estimado mesmo que haja uma
suspeita que os erros ndo estejam condicionalmente normalmente distribuidos, para tal,
frequentemente se utiliza o método de quase maxima verossimilhanga descrito por Bollerslev
e Wooldridge (1992).

Hé condigdes suficientes de regularidade permitindo a obtengao das propriedades de
convergéncias e de normalidade assintotica estabelecidas por Weiss (1984) dentro dos casos
dos modelos ARCH lineares. A mais restringente destas regularidades, raramente se encontra
na pratica, tal regularidade ¢ a existéncia de momentos de ordem quatro para os residuos.

Lumsdaine (1990) mostrou que os estimadores de quase verossimilhanca dos
diferentes parametros sdo convergentes e assintoticamente normais.

Lardic e Mignon (2002) observaram que quando a verdadeira densidade condicional ¢
normal, os estimadores da média e da varidncia (condicional) sdo assintoticamente nao
correlacionados, conseqiientemente podem ser estimados separadamente sem perda de
eficacia.

Assim sendo, a distribui¢do condicional para a taxa de retorno neste trabalho serd a
normal, apesar de ser uma simplificacdio do processo gerador de dados dos retornos
condicionais. Este procedimento ¢ amplamente utilizado na estimacdo dos modelos de
volatilidade. A funcdo log-verossimilhanga, derivada da normal e condicional nas primeiras
observacdes, usando T observagdes independentes, ¢ igual para os modelos GARCH e

modelo ARCH, ou seja, a expressao:

T 1\Z 2 1 82 (262)
logL=— — |lo (2%)—()20‘ ——>-L
¢ (2) & 2)a" 25067

Considere o modelo GARCH a ser estimado dado pela Expressao (2.45) e (2.46). A
maximizac¢do da fun¢do de log-verossimilhanga se da pelas condi¢des de primeira ordem de a,
§ep.

Para os modelos ARCH e GARCH a solugdo ¢ obtida resolvendo as equagdes de

primeira ordem. A solugdo numérica pode ser obtida via diversos algoritmos, como os

3% As condigdes de primeira ordem e as hessianas sdo apresentadas por Lardic e Mignon (2002).
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modelos de classifica¢do ao algoritmo BHHH?! (Berndt, Hall, Hall e Hausman, 1974). Para os
casos do ARCH, o modelo de classificacdo pode ser usado facilmente, ja para os modelos
GARCH ¢ preferido o algoritmo BHHH.

As estimagdes dos modelos EGARCH e GARCH-L também podem ser feitas via

funcdo de maxima verossimilhanca. Mais detalhes em Hamilton e Susmel (1994).

3! Lardic e Mignon (2002) apresentam uma descri¢ao do algoritmo BHHH.
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3 O VAR -VALUE AT RISK

3.1 O Risco, o Value at Risk: Aspectos Gerais

As ultimas décadas foram caracterizadas pelo crescente desenvolvimento do mercado
de derivativos financeiros, tal desenvolvimento fora motivado pela necessidade de protecao e
especulacdo dos agentes financeiros. Dentro do universo do mercado financeiro trés conceitos
sdo da maior importancia: retorno, incerteza e risco. Retorno pode ser entendido como a
apreciagdo de capital ao final de um horizonte de investimento. J4 as incertezas estdo
associadas com os retornos, tornando-os de certa forma imprevisiveis. E qualquer medida da
incerteza pode ser chamada de risco.

Nesta secdo sera abordada a questdo do risco, em particular o risco de mercado, a
forma de mensura-lo, quais as caracteristicas de uma boa medida de risco. Além de introduzir

formalmente o VaR.

3.1.1 Apresentando o Risco

O conceito de risco ¢ apresentado formalmente abaixo, segundo Jorion (1997).

Definicao 3.1:
O risco pode ser definido como a volatilidade de resultados inesperados, normalmente

relacionados ao valor de ativos (ou passivos) de interesse.

Os riscos vém assumindo uma importancia crescente, mais recentemente tornou-se
destaque na literatura em fungdo de desastres financeiros internacionais relacionados com o
uso indevido de derivativos, exemplos de tais desastres sdo o caso do Baring Bank, da
Procter&Gamgle, Bankers Trust, Crédit Lyonnais, Orange County, Metallgesellschaft, etc.
Tais problemas corroboraram para o surgimento de uma nova area do conhecimento, o
gerenciamento de risco, cujo principal objetivo ¢ a minimizacao eficiente do risco, dentro de

determinada restricado or¢amentaria.
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Na verdade risco esta associado a toda operagdo no mercado financeiro. O risco ¢ um
conceito multidimensional cobrindo quatro grandes grupos: risco de mercado, risco de
, g . . . 2 . v~ .
crédito, risco operacional e risco legal®>. A seguir a defini¢io de cada um destes riscos

(Duarte Jr., 1997).

Defini¢cao 3.2:

O risco de mercado é a medida das incertezas associadas as possibilidades de alteragdo dos

valores esperados de um investimento em razdo de variagoes de fatores como taxas de juros,
taxas de cambio, preco de agoes e commodities. Pode-se associar tais variagoes a riscos de
mercado especificos, como por exemplo, risco de taxas de juros.

Ja o risco de crédito esta associado a medida da incerteza relacionada com o recebimento de

valor contratado a ser pago por um tomador de empréstimo.

O risco operacional esta relacionado com possiveis perdas como resultado de sistemas e/ou

controles inadequados, falhas de gerenciamento e erros humanos.
Por fim, o risco legal, que esta associado as incertezas de uma institui¢do caso seus contratos
ndo possam ser legalmente amparados por falta de representatividade por parte do

negociador, por documentagdo insuficiente, insolvéncia, ou ilegalidade.

Nao ha regra geral para a determinagdo dos riscos das institui¢des financeiras (e
empresas que operem com derivativos). No entanto, todas as metodologias minimamente
eficientes tém alguma sofisticacdo matematica, e sistemas computacionais e de informagdes
confiaveis. No caso dos riscos operacional e legal deve ser abordado caso a caso. Os riscos de
mercado e de crédito possuem algumas metodologias que ja se encontram em uso e
explicadas na literatura.

O foco deste trabalho ¢ o risco de mercado. Um aspecto importante neste tipo de risco
¢ a forma como este pode ser mensurado, que ¢ a origem de boa parte dos desastres
financeiros da atualidade.

Evidentemente ha eficientes maneiras de mensurar os riscos para todos os mercados
em particular. Entretanto, cada método estd associado com um mercado e ndo pode ser
aplicado diretamente a outros mercados. J4 o VaR ¢ uma maneira integrada de avaliar os

riscos de diversos fatores e com os mais distintos mercados.

32 Jorion (2003) apresenta ainda o risco de liquidez; para uma boa classificagdo dos riscos financeiros veja a
OCC Banking Circular (1993).
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A tabela a seguir apresenta alguns ativos e suas equivalentes medidas de riscos
simples. Por exemplo, um titulo do governo (c-bond, ou outro) possui como medida de risco a
duration, ¢ esta pode ser utilizada para comparar os riscos de diversos titulos. No entanto, se
este titulo ¢ incorporado a uma carteira de agdes a utilizacdo da duration perde o sentido.
Assim sendo, percebe-se que a utilidade das medidas simples de avaliar os riscos sdo
limitadas.

Analisando as carteiras de institui¢des financeiras como o J. P. Morgan Chase & Co.,
CitiCorp, ou no Brasil: Itau, Bradesco, Unibanco, etc., apresentadas nos seus relatorios
regularmente publicados, sugere-se duas observacdes: a grande diversidade das posigdes em
carteira ¢ a dificuldade em combinar todas as classes de risco para esta diversidade de

posi¢des em uma Unica medida.

Tabela 3.1: Resumo das principais ferramentas para avaliacao do risco de mercados (ativos)
simples.

Ativos Medida de risco

Bonds Duration, convexidade, modelos de estrutura de termos
Crédito Classificacdo (rating), modelos padrio

Acodes Volatilidade, correlagao, beta

Derivativos Delta, gama, vega

Fonte: Wiener (1997).

Além de tais fontes de risco, ainda temos as apresentadas na Defini¢ao 3.2. Mesmo
focando no risco de mercado observa-se a diversidade de medidas de risco que impede ou
pelo menos dificulta a comparagdo entre risco de uma ag¢ao e um c-bond, por exemplo.

Linsmeier e Pearson (1999) observaram que estas dificuldades aumentaram a partir de
1973, com o colapso do sistema de cambio fixo (sistema de Bretton Woods) e a publicagao da
formula de precificagdo de opgdes de Black & Scholes. Estes eventos resultaram em alta
volatilidade das taxas de cambio, das taxas de juros, do preco dos commodities. A proliferacao
de instrumentos derivativos para hedgear o risco surgiram das taxas de mercado ¢ da
dindmica de pregos. Com essas mudangas as instituicdes financeiras aumentaram suas
posigdes em derivativos com propositos tanto de protecao (hedge) quanto de especulacao.

Estes fatos fizeram com que nos ultimos tempos ocorresse um aumento na demanda

por medidas quantitativas do risco de mercado para carteiras. Crouhy, Galai e Mark (2001)
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argumentaram que os recentes desastres financeiros mundiais tiveram como motivo primario
a busca de uma ferramenta simples (mas nao eficiente) de mensurar o risco.

A variedade de modelos especificos continua sem fornecer resposta a uma simples
questdo. Qual o risco corrente? Pergunta esta que cada institui¢ao financeira deve responder.
Como ja apresentado, ha diversas razdes pela qual tal pergunta ndo seja respondida de uma
maneira simples. Mas a mais importante de todas ¢ que ndo existe uma resposta simples, risco
¢ algo infinitamente adimensional, depende de todos os eventos possiveis do mundo. Um
exemplo ¢ a seguinte pergunta, qual a perda méxima que se pode ter em um horizonte de
tempo? A resposta ¢é: tudo. No entanto, a probabilidade deste evento ¢ muito pequena, mas
muito pequena deve ser quantificada, neste contexto de certa forma entra o VaR (Wiener,
1997).

Para Duarte Jr. (1997), a grande motiva¢ao para a utilizagdo do VaR ¢ o fato deste
integrar todo o risco em um Unico valor, o risco de mercado total, facilitando a sua
administracdo por parte dos gerentes e pessoas relacionadas com a gestdo de risco. Por outro
lado, tratando-se o risco como multidisciplinar requer um numero elevado de simplificagdes.
No entanto, algumas consideragdes sobre o VaR e sobre as diversas ferramentas de risco sdo

feitas a seguir.

3.1.2 Coeréncia das Ferramentas de Risco

O nUmero de alternativas para a mensuragdo do risco vem aumentando
significativamente nos ultimos anos. Artzer et al (1999), diante desta diversidade de
alternativas, considera o problema do gerenciamento do risco sob a dtica axiométrica. Os mais

relevantes apresentados por Artzer et al (1999) e Tay (2001 a) sdo:

Axioma 3.1 (Monotonicidade):

Sejam dadas as carteiras X, Y < G (G é o conjunto de carteiras disponiveis); se X < Y entdo

S(X) < f(Y). Se a medida f{.) de risco for monoténica.
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Axioma 3.2 (Translagdo invariante):

Seja dada a carteira X < G e r como taxa de juros livre de risco, entdo: f( X +r) = f(X) +r

para todor € R.

Axioma 3.3 (Homogeneidade Positiva):

Sejam A > 0 e a carteira X < G, entio f(AX) = A f(X). Se a medida f(.) de risco for

homogénea de grau 1.

Axioma 3.4 (Subaditividade):
Sejam dadas as carteiras X, Y < G ; se fiX +Y) < f(X) + f(Y). Entdo a medida f{.) de risco

obedece a subaditividade.

As medidas de risco que satisfazem os quatro axiomas anteriores sao chamados de
medidas de risco coerentes. O mais critico dos axiomas para o VaR ¢ o Axioma 3.4 onde
afirma que o risco de uma carteira formada por sub carteiras deve ser menor ou igual a soma
dos riscos individuais das duas sub carteiras.

Segundo West (2004) e Tay (2001 a), para algumas carteiras o VaR nao é uma medida
de risco coerente por violar o Axioma 3.4. Estes autores sugerem a utilizagdo do Expect
Shortfall (ES) ou o Expect Tail Loss (ETL) para carteiras bastante diversificadas.

Entretanto, segundo alguns trabalhos, entre os quais Rootzén e Kliippelberg (1999), ha
argumentos contra a utilidade da subaditividade. Segundo estes autores a ndo subaditividade
do VaR ocorre em casos extremos dos mercados, como crashes e crises financeiras
internacionais. Assim Rootzén e Kliippelberg (1999) afirmam que ndo se deve abandonar o
VaR simplesmente em func¢ao da subaditividade.

Uma das finalidades das ferramentas de gerenciamento do risco € avaliar o risco em
situagdes extremas, fato este corroborante para que o Comité de Basiléia sugira o VaR como
ferramenta de risco padrdo. Ndo obstante, a consciéncia das limitagdes do VaR e da sua

consisténcia ndo deve ser irrelevadas.
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3.1.3 Conceitualizagcao do Value at Risk

Pelos fatos citados e por outros ¢ que o VaR vem se tornando a medida padrao para a
avaliacdo de risco do mercado, sendo adotado por diversos bancos, corretoras e fundos
mutuos. Os orgdos reguladores podem obrigar a implementagdo do VaR, nos Estados Unidos,
as agéncias de rating como a Moody e Standard and Poor’s (S&P), o Financial Accounting
Standard Board (FASB) (Conselho de padrdes financeiros contdbeis) e a Securities and
Exchange Comission (SEC) apdiam a utilizagdo do VaR (Jorion, 2003).

Esta preocupag@o dos 6rgdos reguladores vem crescendo em particular por causa dos
consecutivos desastres financeiros durantes os anos 1980’s e 1990’s. O Comité de Basiléia
para supervisao bancaria permite que os bancos calculem seu requerimento de capital para o
risco de mercado baseado em modelos proprios® de Value at Risk (VaR).

Entdo o que ¢ o VaR? Abaixo uma defini¢ao de Jorion (2003):

Definicao 3.3:
O Value at Risk (VaR) sintetiza a maior (ou pior) perda esperada dentro de determinado

periodo de tempo e intervalo de confianga.

Considere a Figura 3.1 a seguir, ela representa o retorno dos titulos do governo
brasileiro C-bond no periodo de 30/12/1998 a 31/12/2002. Observe que, com excec¢do do
comeco da série, os retornos estdo entre 0,135 e —0,17 (aproximadamente). Construindo uma

distribuicao de probabilidade a partir da Figura 3.1 tem-se a Figura 3.2 em seguida.

33 0 requerimento de capital como fungdo do VaR encontra-se na se¢do 3.7, mais detalhes em Jorion (2003) e
Crouhy, Galai e Mark (2001).
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A partir da Definicdo 3.3 pode-se determinar o VaR, inicialmente os parametros
devem ser determinados, o intervalo de tempo sera de 30/12/1998 a 31/12/2002 e um nivel de
confianga de 96,6%. Assim sendo, serdo avaliados os 34 piores eventos (sobre 1000, ou seja
3.4%), analisando a figura observam-se que 96.6% dos retornos estdo acima de -0,05, ou seja
em apenas 3,4% dos casos ocorrem perdas superiores a -0,05, logo o VaR para este ativo
neste periodo de tempo e com este grau de confianga ¢ de -0,05.

O VaR calculado acima ¢ o absoluto, mas pode ser calculado o VaR relativo, por
exemplo, utilizando a média do rendimento do ativo, neste caso 0,00025 (0,025%), tem-se um
VaR relativo de -0,05025.

O VaR também pode ser definido®® de forma mais formal e matematica, evitando a

possibilidade de ambigiiidade da defini¢do anterior, como a seguir:

Definicdo 3.4:

Para um dado horizonte de tempo, um nivel de significancia a, considerando X como o

retorno de uma série financeira e f(x) como fun¢do de distribui¢do de probabilidade f(x)

Prob (X < x), o Value at Risk (VaR) pode ser definido como.
VaR,(X)=—inf{x| f(x) > X | (3.1)

O sinal negativo ¢ relativo ao fato do VaR ser definido como a diferenga entre o ponto
zero (para o VaR absoluto) e o valor da abscissa para o quantil especificado.

Existem intimeras técnicas diferentes para calcular o VaR de uma carteira (ou de um
titulo simples), entretanto todas devem seguir uma seqiiéncia, ou légica. Para Wiener (1997)

todas seguem a seguinte seqiliéncia.

1. Selecdo dos parametros basicos (horizonte de tempo, grau de confianga e tempo de
mensuragao);

2. Selec¢ao dos fatores relevantes do mercado;

3. Acompanhamento do risco;

4. Calculo do VaR.

34 Esta defini¢io pode ser encontrada em Artzner et al (1999) e Kato (2004).
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Todas estas etapas serdo objeto de estudo das proximas secdes. A seguir uma
apresentacdo do VaR para distribuigdes gerais.

Jorion (2003), também define VaR como a perda da carteira relativa ao seu valor
esperado (VC* ¢ o valor esperado minimo), sendo VC o valor da carteira no momento em
questdo (VCo € o valor no momento inicial) e a taxa de retorno obtida e esperada R e R*,

respectivamente:

VaR=VC—-VC =VC,(R-R") (3.2)

Em algumas situag¢des pode-se calcular o VaR para o retorno da carteira, por exemplo,

quando se deseja comparar métodos de VaR:

VaR =R-R (3.3)

Retorno
Ja o VaR absoluto da carteira, esta forma é a mais utilizada no meio académico e no

mercado pois representa a perda real da carteira em relagdo ao momento em que esta medindo

o VaR (Bezerra, 2001), ¢ dado por:

VaR=VC, ~VC =-VC,R" (3.4)

Para encontrar o valor minimo esperado ¢ necessario um nivel de confianga e a
distribui¢do de probabilidade futura da carteira de ativos ou do retorno da carteira. O ponto
crucial deste método ¢ a determinagdo da distribuicdo de probabilidade.

Chamando a fungdo de distribui¢do de probabilidade futura da carteira de ativos ou de

retorno - f(x), deseja-se calcular qual a probabilidade de encontrar um valor menor que VC*:

yc*
p=P(x<VCT)= [ f(x)dx (3.5)

Tem-se, portanto VC* = F'(p), onde F"' ¢ a fungdo inversa de densidade absoluta.

Podemos reescrever a Equacao (3.5) como:
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VaR=VC, —VC =VC, —F'(p) (3.6)

Neste ponto percebe-se que a maior dificuldade do VaR esta na determinagdo da
fungio de distribuicio de probabilidade™. Tal questio serd abordada nas segdes que tratam
dos modelos especificos de VaR, enquanto na Secdo 3.2 sdo discutidos os parametros

subjetivos.

3.2 Os Parametros Subjetivos do VaR

Calcular o VaR implica definir, a priori, trés parametros arbitrarios: o nivel de
confianga, o tamanho da janela e o periodo de tempo. Todos sdo elementos subjetivos e ndo
ha um consenso sobre a defini¢do destes. Por exemplo, a abordagem do modelo interno,
proposto pelo Comité de Basiléia, estabelece um intervalo de confianga de 99%, um periodo
de tempo de 10 dias e uma janela de 250 dias (um ano). O VaR resultante ¢ entdo
multiplicado por um fator de 3 para fornecer a exigéncia minima de capital para fins de
regulamentacao.

O comité escolheu, presumivelmente, um periodo de 10 dias, visto que ele reflete o
trade-off entre os custos de monitoramento freqiiente e os beneficios da deteccdo antecipada
das perdas potenciais (Jorion, 2003).

Na verdade, o periodo de tempo depende do objetivo do VaR, se o objetivo ¢ o VaR
para um relatorio interno, VaR didrio; se para um relatério para os acionistas, VaR mensal.
Outro fator ¢ a liquidez dos ativos que compdem a carteira. Ativos mais liquidos implicam
que os investidores devem liquidar suas posicdes o mais rdpido em funcdo de mas
perspectivas do cendrio econdmico. Para ativos menos liquidos ¢ necessario um maior tempo
para liquidagdo dos ativos, pode ser o caso de um VaR mensal.

No tocante ao nivel de confianca hd poucas diretrizes, o Comité de Basiléia sugere
99%, o mesmo ¢ utilizado pelo Banker Trust; j4 o Chemical e o Chase o nivel ¢ de 97,5%; o
Citibank, de 94,5%; e o J. P. Morgan, de 95%. Niveis maiores do VaR implicam em maiores

requisitos de capital.

3 Um fator fundamental para a determinagdo da funcio de distribui¢do de probabilidade é a volatilidade (ja
apresentada no capitulo 2) como sera demonstrado.
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Segundo Jorge et al (2001), qualquer que seja o nivel de confianca adotado, este deve

levar em conta os seguintes aspectos:

e Os requisitos de capital aumentam com o grau de confianga;

e O nivel de confianca escolhido deve obedecer a certos critérios contabilisticos
uniformes de modo a permitir a comparagdo entre as instituigoes;

¢ O nivel escolhido deve enquadrar-se nas praticas de controle e gestdo de risco que

fornegam aos lideres da instituicdo uma visao realista da empresa.

Ao se escolher um nivel de confianca de 95%, significa uma expectativa de que a cada
20 dias uma perda supere o VaR, ja um nivel de 99% ¢ o mesmo que aguardar uma perda a
cada 100 dias. Assim sendo, para 99% de confianga sdo necessarios no minimo 100 dias para
confirmar a concordancia do modelo, ¢ um tempo longo em relagdo a 95% de confianga, por
tal razdo neste trabalho adotar-se-4 95% de confianca para o célculo do VaR.

De uma forma geral, a escolha do nivel de significancia deve ser feita de acordo com a
recomendacdo de Beder (1995). Segundo este autor, a escolha ¢ feita de acordo com o
proposito da utilizacdo do VaR. Se for para a determinacdo de capital, a escolha depende do
grau de aversdo ao risco do investidor. Quanto mais avesso menor o nivel. Se o objetivo €
comparar técnicas a escolha ¢ irrelevante, devendo, no entanto manter a consisténcia entre os
métodos.

O tamanho da janela é o tamanho da amostra (o periodo de observacdo) usada na
estimagao dos parametros do VaR. O tamanho da janela estd relacionado com o objetivo da
estimacao e disponibilidade dos dados. De uma forma geral os trabalhos académicos mostram
que quanto maior a janela, melhores sdo os resultados, exemplo de trabalho que ratifica isto:
Beder (1995).

As expressoes (3.5) e (3.6) dadas sao bem gerais, a correta mensuragao do VaR passa
pela funcdo de distribuicdo de probabilidades do ativo (ou da carteira). A quantidade
relativamente grande de opg¢odes de calculo do VaR dar-se exatamente pelas possibilidades
distintas de especificacdo das fun¢des de distribui¢do de probabilidade (FDP) futura. As

segOes a seguir tratam das mais relevantes variacoes do VaR presentes na literatura.
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3.3 O Método Delta — Normal

Este método ¢ baseado na hipotese que os retornos sdo normalmente distribuidos.
Dados histéricos da janela de observagdo sdo normalmente usados para mensurar os
parametros: média, desvio padrdo, correlagcdes. A distribuicdo ¢ construida com estes

parametros.

3.3.1 O Método Tradicional

Considerando uma distribui¢do normal caracterizada por p e ¢ (média e desvio padrdo

do retorno, respectivamente), a fung¢do de distribuicdo de probabilidades ¢ dada por:

1 -1 (=) >

_ PR
f(x) oy e (3.7)

Assim a funcao de distribuicao normal cumulativa de probabilidade ¢:

) i (3.8)

Desta forma o quantil genérico p ¢ a fungdo inversa @'(p). A resolugdo do modelo
acima ¢ feita por meio da utilizacdo de integracdo numérica. A fun¢do normal padronizada

tem seus valores tabulados em livros e pode-se derivar o VaR. Que ¢ obtido:

VaR=VC,Z ,0 (3.9)

onde a ¢ o desvio normalizado para a significancia selecionada, ¢ ¢ o desvio padrdo e VC, ¢ o

valor inicial da carteira, por exemplo, para o de 95% de significancia, tém-se Z, de 1,96°°.

36 Estes valores podem ser encontrados nas tabelas da distribui¢do normal padrao.
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A estimacao de ¢ pode ser obtida diretamente da Expressao (2.34). Entretanto, pode-se
substituir a hipotese de retornos normais para um caso mais realistico com as séries
financeiras, ou seja, assumir a distribui¢cdo condicional dos retornos, os modelos ARCH,
GARCH; apresentados na Secao 2.4.2.

A mensuragdo do VaR para um unico ativo, conforme a metodologia acima
apresentada, ¢ relativamente simples. Um pouco de dificuldade matematica e computacional

surgem quando se calcula o VaR para grandes carteiras (supor N ativos), neste caso o retorno

¢ dado por:
N
Rp,t+l = lei,tRi,Hl ol
1=
R, i1 = Wiy (3.10)

onde os pesos w., (w; na forma de vetor) sdo indexados ao tempo, a fim de

caracterizar a natureza dinamica das carteiras. Como o retorno das carteiras € uma
combinacdo linear de varidveis normais, ele também serd normalmente distribuido. Utilizando

notagdo matricial, a variancia da carteira serd dada por:

o, =W W (3.11)

Assim o VaR pode ser obtido pela expressao:

VaR =VC,Z W, 2, W, (3.12)

Desta forma ¢ possivel acomodar uma grande quantidade de ativos, basta estimar a
matriz de covariancia .

Evidentemente quando o niimero de ativo ¢ grande h4 um crescimento exponencial do
tamanho da matrix com o niimero de ativos, alguns modelos®’ oferecem uma estrutura mais
simples para a matrix de covariancia, um deles ¢ o modelo diagonal, proposto no contexto de

carteiras de opgdes.
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Suposicdo 3.1:
Supondo-se que a movimentagdo conjunta dos ativos é oriundo de um unico fator, o mercado.

Pode-se apresentar o retorno de cada ativo como:

Ry =0;+ fiR, +¢& (3.13)
E[gi]:O E[giRm]:O
E[el-gjjzo Elgin:aii

O retorno do ativo i é determinado pelo mercado R,, e pelo termo aleatorio &,

Conseqiientemente a variancia de cada ativo i1 ¢ dada por:

o) =pBlon+o2, (3.14)

E a covariancia entre dois ativos é:

2
O, j :,Biﬂjo'm (3.15)

A partir de (3.14) e (3.15) pode-se construir a matriz de covariancia total (colocando

em notagdo matricial):

S =pB'c +D, (3.16)

Como a matrix D, ¢ diagonal, a quantidade de parametros ¢ reduzida de N(N+1)/2

para 2N+1.

Para carteira com um grande niimero de ativo e bem diversificada a variancia da

carteira é:

o, =Var(w'R):W'Zw:(w'ﬂﬁ'w)ai +w'D,w (3.17)

37 Jorion (1997) apresenta dois outros modelos: as medidas de VaR zero e o modelo de fatores.
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Corolario 3.1:
O segundo termo da Expressdo (3.17) torna-se muito pequeno a medida que cresce o numero

de ativos, assim sendo a variancia da carteira pode ser expressa como:

o =(w',B,B'w)0'3, (3.18)

Prova:
Supondo que todas as variancias sdo idénticas e que cada ativo possua peso idéntico, o

segundo termo da Expressao (3.17) sera:

> (14 fo?

—

que converge para zero com o aumento de N.

3.3.1.1 O VaR Incremental

Uma caracteristica importante deste método de célculo do VaR ¢ a capacidade de
identificar, dentro de uma carteira, qual a participagdo de cada ativo no risco total da carteira.
Com esta informagdo ha a possibilidade de reducdo do VaR pela simples eliminagdo ou
substitui¢do do ativo de grande risco.

O VaR de cada ativo em particular nao € suficiente para tal avaliagdao, o que importa ¢

a contribuicdo de cada ativo para o risco total.

Defini¢do 3.5:
O fde um ativo mede a contribuigdo deste para o risco total da carteira, também é chamado

de risco sistémico do ativo i relativo a carteira p. O f em notagdo matricial é dado por:

w (3.19)
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O VaR total pode ser decomposto no VaR incremental de cada ativo, ou seja:

N 3.20
VaRtotal = VaRtotal (zlwzﬂlj = VaRl + VCIR2 +... ( )
i=

3.3.1.2 O Método Delta-Normal Aplicado as Opc¢oes

O método da variancia-covariancia (também conhecido como método delta-normal)
para fungdes ndo-lineares, como as opg¢des, ndo possui bons resultados praticos pelo fato
(principalmente) de tal método assumir uma distribui¢io normal®®.

Supondo que a tnica fonte de risco € o preco do ativo objeto (S) e expressando o valor

de uma opg¢ao como uma série de Taylor, tem-se em uma aproximac¢ao de primeira ordem:

dea—VdS
oS
dV =&dS (3.21)

Calculando a variancia®:
var(dV) = var(&dS) = 5% var(dS) (3.22)
Como var (dS) é dado por S?6?, entdo a Expressdo (3.22) torna-se:

var(dV)=5%S2c? (3.23)

E o VaR ¢ dado por:

3¥ Uma alternativa para contornar esse problema ¢ a metodologia analitica, historica e 0 método de monte Carlo;
que consideram outras gregas.

¥ A expressdo do delta para op¢des de compra e venda foi apresentada no capitulo 2.
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VaR = 7,508 (3.24)

Para uma carteira de contratos ndo lineares, tém-se:

ln%
_51 | Y
0, e R= :
o= : S
: In—
Oy L S

Logo, para pequenas variagdes do valor da carteira (AR;) obtém-se:

AR, = STR (3.25)

Supondo uma distribui¢do normal dos retornos:

T
AR, ~ N(0,57%8) (326)

Assim, sendo o VaR ¢ definido por:

VaR =VCoZ N6'S6 (3.27)

Apesar da simplicidade metodoldgica e facilidade de implantagdo, Jorge et al (2001)
apresentam trés criticas a aproximagao delta-normal. A primeira (que ¢ apresentada por todos
os métodos que usam séries historicas), ¢ relativa a incapacidade de acomodar dentro das
distribui¢des de probabilidade eventos extremos.

O segundo problema s3ao os retornos caracterizados por um achatamento da

distribuicdo, fendmeno conhecido por “fat tails”. Este fator torna-se fundamental porque o
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VaR procura captar o comportamento dos retornos da carteira na cauda da distribuicao
esquerda.

Por fim, a terceira debilidade, que para Jorge et al. (2001) ¢ a mais importante, ¢ a
incapacidade do VaR delta-normal de medir, pelo menos de forma adequada, o VaR para

instrumentos financeiros nao lineares (como as opgdes).

3.3.2 Os Métodos Stress VaR.

O calculo do VaR ¢ determinado com base em uma distribui¢do de probabilidade dos
retornos esperados de uma carteira. Entretanto, as suposi¢des feitas com relagdo a distribuicao
de probabilidade podem ndo ser validas em determinadas situagdes, como nos crashes no
mercado acionario € em choques econdmicos. O procedimento de VaR utilizado para capturar
o risco em tais situagdes ¢ chamado de stress VaR; este modelo ¢ o objeto de estudo da
Subsecao 3.3.2.1..

O maior atrativo na utilizagdo do stress VaR para mensurar o risco ¢ que este permite
incorporar cenarios subjetivos a estrutura de VaR normal, assim as comparacgdes entre o VaR
normal e o stress Var podem ser realizadas sem perda de consisténcia. A principal critica ao
stress VaR sdo as suposi¢des de normalidade que este assume, visto que ¢ derivado do VaR
normal.

Uma forma de contornar alguns problemas do pressuposto de normalidade, em
particular as grossas caudas das distribui¢des de retorno das séries financeiras, ¢ utilizar a
distribuicdo t de student; esta metodologia é o objeto da Subsecdo 3.3.2.2.. Na verdade,
integra-se a distribui¢do t de student no modelo stress VaR para formar o modelo stress VaR-

X.

3.3.2.1 Incorporando o Stress ao Modelo Delta Normal.

Supondo uma variagdo no valor da carteira dada pela Equacdo (3.10) e o VaR normal
calculado pela Expressao (3.12) e utilizando um nivel de significAncia de 95%, a estimativa

de perda da carteira ¢ dada por:

4 Como j4 apresentado, uma maneira de minimizar este efeito é o uso da volatilidade obtida pelos métodos
autoregressivos condicionais.
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VaR(95) = —1.65VC,\Jw', 2, 1w, (3.28)

Uma forma simples de avaliar uma carteira sob uma situagdo de stress ¢ aumentar o
nivel de confianca do VaR, para por exemplo 99%. Esta forma de calcular o VaR ¢
caracterizada pelo fato de submeter todos os fatores a um patamar de stress; na pratica,
procura-se utilizar o stress VaR aplicado a apenas um (ou alguns) choque, como choques nas
taxas de juros, choques cambiais, etc.. Logo, o0 modelo mais util serd aquele que permita ao
administrador de risco especificar um ou mais eventos e gerar um conjunto de estatisticas que
capturem as correlagcdes nos movimentos dos fatores de precos.

Para permitir ao administrador de risco a flexibilidade na selecdo e escolha de
choques, Kupiec (1998) decompde o vetor retorno de pregos (3.10) em dois grupos: o
primeiro ¢ formado pelos fatores que representam e/ou que sao afetados pelo choque, ou seja
o cendrio de stress Ry (um vetor (k x 1)), o segundo grupo € o dos fatores de pre¢os que nao
pertencem ao cendario de stress Ry; (um vetor (N — k x 1)). Se a matrix de covariancia ¢
dividida seguindo este raciocinio, entdo a distribuicdo de fatores de preco condicional pode

ser escrita como:

th - Il’llt let let ( 329)
Ry, Hor | | 2o Zooy

Onde os retornos médios ¢ € Ly SA0 ambos zero sob as suposigdes padroes do VaR.
Os pesos de cada ativo na carteira w;, também podem ser particionados. Assim a expressao

pode ser reescrita como:

R =[w, w, ]{RI’} (3.30)

Pode-se expressar o conjunto dos fatores chaves para o cenario de stress como Ry:

Ry =Ry =[K,r5,000] (331)
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A magnitude dos valores de R; serd um conjunto de acordo com os julgamentos do
administrador de risco baseado na andlise dos fatores econdmicos e informagdes que estdo
apresentados no historico dos fatores de pregos que se dispde.

O método mais comum do stress VaR ¢ fazer Ry, = 0, e estimar as potenciais perdas
como Wy R,.

Uma forma para construir o cenario de stress ¢ assumir que a matrix de covariancia,
%, € inalterada no célculo do VaR. A suposi¢do que o retorno dos fatores de risco possuem
uma fun¢do de distribui¢do normal multivariada permite que se calcule a distribuicdo de
probabilidade dos fatores de risco fora do cenario de stress (Rj¢), condicional aos fatores R,
tomando os valores exogenamente. Sob esta Otica os fatores fora do cendrio de stress sao

distribuidos como (Kupiec, 1998):

Ry|s, ~Nlp..2 ] (3.32)
onde
-1
He = 21220029 (3.33)
e
Lo =2y - (21225%221) (3.34)
Sob esta suposi¢do, o valor esperado do retorno da carteira ¢ dado por:
H.
E(R) =[w, wh}{ } (3.35)
R2

com um desvio padrdo de ./ Wtzcwt .

Logo o VaR para um nivel de significancia de a, ¢ obtido de:
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StressVaR = w, R, + w, u, — Z W', Z.w, (3.36)

Alternativamente ¢ possivel ignorar as perdas geradas pelos fatores ndo sujeitos ao

cenario, e utilizar o valor esperado do stress VaR para mensurar as perdas:

E(StressVaR) =w, R, + w, 1. (3.37)

3.3.2.2 O Modelo Stress VaR-X.

Como ja apresentado a distribui¢do t de student promove uma alternativa viavel a
distribuicao normal para minimizar os efeitos das caudas grossas. A reducdo da espessura da
cauda da distribuicdo t de student ¢ medida pelo indice A*!, que reflete a velocidade na qual a
espessura da cauda da distribuicdo se aproxima de zero. Quanto menor o indice, maior ¢ a
cauda. Especificamente tratando-se da distribui¢do t de student, o indice A ¢ igual ao nimero
de graus de liberdade.

Huisman et al. (1998) demonstrou que os estimadores do VaR-x (stress VaR-x)
obtidos da distribuicdo t de student capturam os risco de forma mais eficiente quando estes
estdo associados a retornos negativos. Seguindo a metodologia de Hill (1975), estima-se o A

via o seguinte algoritmo:

1 £
y(k) = ; Zl(lnx"‘”l ~Inx, ;) (3.38)
]:

Onde y é chamado de estimador de Hill e corresponde ao inverso de A. k ¢ o nimero
de observacoes da cauda grossa, € X; € o enésimo incremento do retorno de ordem absoluta, ou
seja, x> x, |-

Huisman (1998) modificou a metodologia de Hill, permitindo estimar via regressao y

em A para amostras pequenas:

I Alguns autores usam a letra o..
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y(K)=fy + K +&(K) (K =1,....k) (3.39)

Onde k ¢ a metade do tamanho da amostra. Segundo Tan e Chan (2003) o inverso do
intercepto 3o € um estimador ndo viesado de A.

O procedimento para a obtengdo do stress VaR-x ¢ o seguinte:

1. Determinar o tamanho da amostra para n retornos negativos;

2. Ranquear os retornos absolutos em ordem crescente;

3. Estimar o A dos fatores de preco que ndo estdo sob stress de acordo com as Equagdes
(3.38) e (3.39);

4. Com o indice A igual ao nimero de graus de liberdade, obter o valor critico S* da
distribuicdo t de student (de acordo com o nivel de significancia);

5. Como a distribuicdo t de student tem média zero e desvio padrdo igual a (A - 2)/ A,

converter a matrix de covariancia da Equacao (3.34) via a seguinte expressao:

C_A-2s (3.40)

6. A etapa final ¢ calcular o stress VaR como em (3.36), usando a seguinte expressao:

StressVaR (—x) = w,, R, + w,u, — S *\w', Z_w, (3.41)
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3.4 As metodologias Analiticas Baseadas nas Gregas.

Um dos grandes beneficios do método delta normal ¢ o fato de requerer o calculo do
valor da carteira apenas uma vez, a partir da posicdo VCo, que depende dos pregos dos ativos
que compdem a carteira no tempo inicial, assim o delta normal se adapta bem a grandes
carteiras.

Entretanto, quando se trata de carteiras com opg¢des, ou com qualquer derivativo ndo
linear, apenas ocorre uma baixa performance da aproximagao delta normal, a explicagdo para
tal fato baseia-se na relacdo entre os retornos da carteira ¢ os fatores de risco nao serem
lineares (mesmo que a distribuicao dos fatores de risco seja normal). Assim sendo, a fungdo
de distribui¢do dos retornos (F(p)) ndo deve ser considerada normal.

Jorion (2003) apresenta os seguintes problemas na abordagem delta para carteiras com

opcoes:

e O delta da carteira podera mudar muito depressa (gama elevado);

e O delta da carteira podera ser diferente para movimentos ascendentes ou
descendentes;

e A pior perda poderda ndo equivaler as realizagdes extremas do pre¢o do ativo-

objeto.

Em termos gerais, para gama positivo a distribuicdo do retorno apresentard uma
tendéncia a evidénciar um elevado grau de enviesamento positivo, enquanto para valores de
gama negativo, o enviesamento sera negativo, afastando-se também da normalidade.

As implicacdes do enviesamento da distribui¢do tem conseqiiéncias importantes para o
calculo do VaR, visto que este depende diretamente da cauda esquerda da F(p). Assim sendo,
assumindo-se erronecamente que a F(p) segue uma distribuicdo normal, tende-se a exceder o
valor real do VaR™,

Verifica-se que as estimativas do VaR levando em conta as estimativas do método
delta normal levam a um erro consideravel, exceto quando a aproximagao € local, sendo, desta
forma, necessario recorrer a métodos mais sofisticados.

Entretanto, ainda nao abrindo mao da hipotese de normalidade, ¢ possivel minimizar

alguns efeitos indesejaveis, como o “efeito gama”, isto ¢ feito incorporando a grega gama no
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modelo. Assim, para uma carteira de op¢des uma alternativa sdo as metodologias analiticas as
quais sao baseadas na modelizacdo do comportamento do mercado. Os métodos para
avaliagao do VaR podem utilizar diversas alternativas, por exemplo, os modelos de Black &
Scholes para a modelizagao do mercado.

O ponto de partida desta metodologia ¢ a expansdao de Taylor da modelizacdo do
mercado. A flexibilidade destes métodos € o seu ponto forte. Podem-se incorporar, além dos
fatores da decomposi¢ao de Taylor alguns fatores do mercado. Como realizado por Duarte Jr
(2000).

Tomando a expansdo da série de Taylor e sabendo que o valor da carteira ¢ dado por
R,eé funcio® do ativo subjacente e do tempo até o vencimento, tem-se que a variagio do

valor da carteira ¢:

OR 0°R OR 0°R
dR, =P as + 1200 452+ T g 7 sy (3.42)
oS 288 or oot

observe que os termos superiores (que nao foram apresentados) tendem a zero assim como o
termo cruzado (o quarto fator apresentado) também pode ser considerado nulo. Neste ponto ¢
possivel fazer analogia com as gregas das opgdes.

Sabe-se que o prego de uma opc¢ao padrao (plain vanilla) em agdes depende do prego
do ativo objeto (S), da volatilidade do ativo objeto (c), do preco de exercicio (K), da taxa de
juros (r) e do tempo de vencimento (T). Se denotarmos o valor da opc¢ao (ou da carteira) por
Ry(S,0,K,1,T), entdo para pequenas variagdes no preco do ativo objeto, na volatilidade, na

taxa de juros e no tempo para vencimento, obteremos (Duarte jr., 2000):

dR, = 5(dS)+ ; (dS)? +x(do) + p(dr)+6d(T) (3.43)

onde o, v, k, p, 0 sdo as “gregas” da opcdo, o Anexo 7 trata especificamente do
comportamento das opgoes e de suas “gregas”.
Se apenas o primeiro termo da Equagdo (3.42) ou da (3.43) fossem levados em

consideracdo obteria-se 0 método delta normal, e o VaR seria obtido pela Expressao (3.24).

*2 Em fungo da posi¢éo e do tipo de op¢do (compra ou venda) o VaR estara sendo subestimado.
# Pode ser fungio também da volatilidade, taxa de juros, etc..
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Para tornar a estimacdo mais precisa para posi¢cdes ndo lineares (como € o caso das

o 44 J , . ~ = ,
opgdes)” utiliza-se o método quadratico ou a expansdo da série de Taylor (3.43) até a
segunda ordem, esta expansdo ¢ conhecida como o método delta gama. Logo, as mudancgas da

carteira tornam-se:

dR, = 5(dS) + g (dS)> (3.44)

Segundo Jorion (1998) o VaR derivado de (3.44) ¢:

VaR = 3](aoS) - %(acsf ( 3.45)

Essa formula é valida tanto para posi¢des compradas quanto vendidas (independente
se a opg¢ao ¢ de compra ou de venda). Se o gama for positivo, correspondendo a uma posi¢ao
liquida comprada em opgdes, o segundo termo reduzird o VaR.

Supondo a volatilidade ndo constante®, a Expressdo (3.45) deve ser modificada para

permitir a inclusdo de mais um termo:

VaR = 5(aoS) + g (205)? + KSdo (3.46)

Evidentemente a Equacdo (3.46) produz um melhor resultado quando todos os
parametros sdo bem estimados (em comparagao as Equacdes (3.45) e (3.23)). Entretanto, a
correta estimativa da volatilidade € por si s6 uma grande fonte de enviesamento do resultado,
quando se tem situagdes com grande niumero de opcdes € necessario um método de avaliagdo
plena, como as simulagdes de Monte Carlo.

As estimativas dos parametros podem ser realizadas de diferentes formas. Pritsker
(1996) estima tomando a variancia de ambos os lados de (3.44), esta técnica ¢ chamada de
método delta — gama — delta. Se dS ¢ normalmente distribuido entdo todos os momentos
impares serdo zero. Com a suposicio de que dS e dS® sio conjuntamente normalmente

distribuidos, logo dR,, ¢ normalmente distribuido e o VaR pode ser calculado diretamente.

# Este método foi utilizado em Wilson (1994, 1996), Pritsker (1996), Jamshidian e Zhu (1996), e Zagari
(1996a).
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Pritsker (1996) usou outro método para estimar o Var via a aproximagdo delta gama.
Em seu método, conhecido como delta — gama — Monte Carlo, o autor criou inicialmente
simulacdes aleatorias do fator de risco S. Depois ele usou a expansdo de Taylor para criar
simulacdoes dos movimentos das opgdes. O VaR foi calculado da distribuicdo empirica do
valor da carteira.

Zangari (1996), Fallon (1996) e Pritsker (1996) melhoraram o método delta — gama
com a expansdo de Cornish — Fisher*® que incluia a assimetria. Neste método o o (da

distribui¢do normal) € substituido por a.’:

a':a—é(az—l)// (3.47)

e \y ¢ o parametro de assimetria.

Zangari (1996) e Pritsker (1996) incluiram outra modificagdo ao modelo delta — gama,
o delta — gama — Johnson. Este método escolhe uma fungdo de distribui¢do para F(p) e estima
seus parametros para coincidir com os quatro primeiros momentos da aproximagao delta —
gama.

Jamshidian e Zhu (1996), Zagari (1996) e Fallon (1996) relataram que os modelos
delta — gama incrementam as estimativas do VaR significantemente quando comparados com

o delta normal.

3.5 Método das Simulagées Historicas (MSH).

Este ¢ o método de simulagdo e estimagao do VaR mais simples, ndo hé suposigoes
complexas sobre a estrutura do mercado. A idéia consiste em utilizar as variagdes passadas
dos fatores de risco para gerar cenarios, simular a fungdo de distribuicdo de probabilidade
para os retornos da carteira e estimar o VaR. Assim, este método surge como uma alternativa
a necessidade de formular hipoteses sobre a forma como os fatores de risco se distribuem.

O valor projetado dos fatores de risco que compdem a carteira ¢ obtido via a aplicacdo
de cada uma das varia¢des passadas do fator de risco sobre o seu valor atual. A tnica

suposi¢cdo deste modelo ¢ que as tendéncias passadas de ganhos e perdas irdo continuar no

> Substituindo 0 modelo de B&S como referencia e utilizando o Hull e White da volatilidade ndo constante.
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futuro. Segundo Khindanova e Rochev (2000) uma das vantagens deste método ¢ que este
esta livre de qualquer viés de estimacgao.

Jorge et al (2001) propde as seguintes etapas para aplicar esta metodologia :

1. Identificar os fatores de risco que afetam a carteira;

2. Construir a base de dados com os pregos e retornos dos fatores de risco identificados
na etapa 1;

3. Definir uma janela de observagdo fixa para as observacdes passadas a utilizar na
construcao de cenarios;

4. Gerar cendrios para os fatores de risco a partir da amostra de dados histdricos;

5. Reavaliar o valor da carteira (completamente ou aproximadamente), obtendo uma
distribuicdo de hipotéticos retornos para a carteira;

6. Transformar os retornos em ganhos e perdas para a carteira;

7. Construir um histograma para os retornos, ¢ a partir deste selecionar o percentil

correspondente ao VaR desejado.

Um dos problemas dessa metodologia ¢ a relagdo tamanho da amostra e a relevancia
dos dados. Segundo Wiener (1997) é importante usar dados historicos tdo grandes quanto
possivel, de forma a abordar qualquer evento raro ocorrido no passado e que possa gerar
perdas significantes. Ao mesmo tempo o autor afirma que quanto mais distante do presente
sdao os dados, menos relevantes estes o sdo para as informagdes presentes do mercado. Outro
problema observado do MSH ¢ o fato deste ndo ser aplicavel para estratégias de mercado
desenvolvidas com base em dados historicos. Isto ocorre porque ndo se pode utilizar os
mesmos dados para mensurar o VaR e para calibrar a estratégia de mercado.

Evidentemente a utilizagdo de uma janela fixa (etapa 3) acarreta em erros de medicao
e enviesamento do VaR, a principal causa destes erros reside no chamado efeito ro/l-off, este
efeito corresponde ao fato de a cada dia ser necessario descartar o ultimo dia da amostra e
substituir pela observacao mais recente, o que contradiz com a observacdo de quanto mais
melhor de Wiener.

Uma outra justificativa para os erros de amostragem, reside na possibilidade dos
cenarios gerados via uma janela de observacdo fixa experimentar uma tendéncia liquida
ascendente ou descendente. Quando isto ocorre, as estimativas dos retornos da carteira irdo

incorporar esta tendéncia.

% Mais detalhes da expansdo de Cornish — Fisher em Hull (1998).
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Uma solugdo para este problema foi sugerida por Holton (1998), Down (1998) e
outros; esta solugdo ¢ utilizar os denominados mirror cenérios. Esta técnica esta apresentada
na subsecdo 3.5.2.

O problema dos dados antigos foi minimizado no trabalho de Duffie e Pan (1997).
Estes sugeriram o método de bootstrap para gerar cendrios dos retornos dos fatores de risco.
Este método também esta descrito numa subsecao em separado.

Outra alteragdo ao MSH foi proposta por Boudoukh, Richardon e Whitelaw (1998), a
MSH foi combinada com o alisamento exponencial (Subsecao 3.5.3), assim os autores
definiram pesos decrescentes a partir dos dados mais recentes e até os mais antigos. Esta
técnica também ¢ conhecida como hibrida.

Boudoukh, Richardon e Whitelaw (1998) compararam a metodologia hibrida para
diferentes séries com a MSH tradicional. Os resultados mostraram para um VaR com 99% de
significancia uma reducdo do erro absoluto de estimativa de 30 a 40%, ja4 a metodologia
tradicional o erro absoluto foi reduzido entre 14 a 28%. Os autores relataram que a técnica

hibrida funciona melhor para séries de juros e para séries com grandes caudas.

3.5.1 O Método de Bootstrap®'.

O método de bootstrap consiste na geragdo de cenarios para os fatores de risco a partir
dos dados historicos. Entretanto ao invés de obedecer a ordenagdo histérica, adota-se a
amostragem aleatoria com reposi¢cdo. Assim ¢ possivel obter tantos cenarios quanto se deseje.

Jorion (2003) mostra que uma vantagem essencial do método estd no fato de poder
abranger saltos, caudas grossas e qualquer divergéncia da distribuicdo normal. O método
também incorpora as correlagdes entre as séries, uma vez que uma retirada consiste em
retornos simultdneos de N séries, como precos de acdes, titulos publicos e moedas.

Apesar das vantagens apresentadas, o método possui algumas limitacdes. Para
amostras de tamanho pequeno, a distribui¢cdo obtida pode ser uma aproximagdo imprecisa da
real distribuicdo, logo, deve-se ter uma base de dados ampla. Outra desvantagem ¢ a perda da
dindmica temporal dos dados, uma vez que o bootstrap supde que os retornos sao

independentes.

47 Esta técnica também é aplicavel a metodologia de Monte Carlo.
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Jorion (2003) afirma que as vantagens do método superam as desvantagens. Dado que
o objetivo do VaR ¢ capturar o comportamento da cauda esquerda e que os dados historicos
apresentam caudas mais grossas que uma distribuicdo normal, o bootstrap se adapta

idealmente ao calculo do valor no risco.

3.5.2 O Mirror Cenarios.

Holton (1998) sugere a utilizagdo do mirror cenarios como forma de eliminar o
problema da tendéncia implicita da utilizagdo do MSH para o célculo do VaR. O

procedimento consiste nas seguintes etapas:

1. Geram-se os cenarios a partir dos dados histéricos;

2. Para cada um destes cenarios, multiplica-se o retorno dos fatores de risco por (-1) para
obter seu simétrico;

3. Aplica-se este retorno ficticio ao valor da posi¢do atual, obtendo um novo cenario

(mirror).

Esta técnica permite ndo apenas eliminar o problema da tendéncia implicita, como
também, duplicar o nimero de cenarios usados para estimar o VaR reduzindo desta forma, o

erro de convergéncia.

3.5.3 Cenarios Ponderados.

Uma outra forma de conseguir que os cendrios construidos a partir de dados histdricos
representem as atuais condi¢cdes do mercado ¢ o método dos cenarios ponderados (ou método
do alisamento exponencial), descrito por Down (1998) e Holton (1998).

A ponderacdo maior dos eventos recentes em relacdo aos eventos mais antigos,
significa que qualquer observagado tera seu efeito maximo sobre o VaR imediatamente apds
sua ocorréncia, reduzindo a influéncia com o passar do tempo. Esta técnica pode ser

implementada tanto no MSH como no método de Monte Carlo.
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A estrutura de ponderacdo permite que se altere a caracteristica da distribuicdo dos
retornos dos fatores de risco, de forma a refletir as propriedades desejadas. Uma vantagem
deste método ¢ o fato dele levar em conta a variacdo da volatilidade, o que interessa para

séries com caudas grossas.

3.6 O Metodo de Simulagcdo de Monte Carlo (MSMC).

Em muitos casos as técnicas analiticas ndo podem ser utilizadas e os resultados da
simulagdo historica ndo sdo satisfatérios. Necessita-se utilizar métodos numéricos de
integracdo. Uma das técnicas possiveis ¢ o método de simulagdo de Monte Carlo (MSMC). O
MSMC ¢ um dos métodos mais popular entre as andlises sofisticadas (Wiener, 1997). Tal
método apresenta um nimero de semelhangas com o método de simulagdo histdrica, a maior
diferenca entre os dois métodos ¢ que o MSMC utiliza as observagdes passadas para gerar
simulagdes de cenarios hipotéticos.

Como o MSMC simula o comportamento dos fatores de risco e dos precos dos ativos
pela simulagdo do movimento dos pregos, ele constrdi N possiveis valores da carteira para
uma dada data futura. Assim o VaR pode ser determinado diretamente a partir da distribuicao
dos valores simulados da carteira.

O método de Monte Carlo cobre grande quantidade de possiveis valores das varidreis
financeiras e dao conta por completo das correlagdes. O método ¢ basicamente dividido em
duas etapas. A primeira corresponde a especificagdo de um processo estocdstico para as
variaveis financeiras, bem como os parametros deste processo. Na segunda etapa, sdo
simuladas trajetorias ficticias de preco para todas as varidveis de interesse.

A andlise de Monte Carlo ¢ o método mais potente de calculo do valor no risco
(Jorion, 1997), pois ¢ capaz de capturar grande variedade de risco, inclusive os ndo lineares,
os de volatilidade e, até mesmo, os de modelo, podendo incorporar a variagdo temporal da
volatilidade, caudas grossas e cenarios extremos. Entretanto o maior inconveniente do método
¢ o numero de simulagdes necessarias para se reduzir o erro da estimativa da solugdo
procurada, o que tende, na pratica, a tornar o método lento.

Jorge et al (2001), apresenta um roteiro para implementacio do MSMC, muito

semelhante ao da simulacao historica :
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Identificacdo das posicdes de cada ativo e fator de risco;

Selecdo do modelo, que se julgue melhor, para explicar o comportamento dos fatores
de risco;

Escolhido o modelo, deve-se estimar os parametros (via dados historicos);

Geragao, através do mecanismo de produgdo de nimeros aleatdrios, de cenarios para
os fatores de risco;

Reavaliar o valor da carteira (completamente ou aproximadamente), obtendo uma
distribuicao de hipotéticos retornos para a carteira;

Transformar os retornos em ganhos e perdas para a carteira;

Construir um histograma para os retornos, e a partir deste selecionar o percentil

correspondente ao VaR desejado.

A metodologia de simulacao de Monte Carlo consiste, em suma, na geragao aleatoria

de cenarios para os fatores de risco, cendrios estes que devem ser condizentes com a matriz de

variancia-covariancia historica. Ou seja, a esséncia deste método estd baseada na

especificagdo dos processos aleatorios e na geracdo de nimeros aleatorios.

3.6.1 A Simulacao de uma Trajetéria de Precos.

A primeira e mais importante etapa da simulagdo consiste em escolher determinado

modelo estocastico para o comportamento dos precos. Abordando este problema inicialmente

sob a otica de uma agao (ou outro ativo de natureza linear). O modelo normalmente utilizado

¢ 0 movimento browniano geométrico, que serve de base para grande parte da teoria de

precificagdo das opgdes. Conforme demonstrado no Capitulo 2, o preco de um ativo ¢ dado

por:

ds,

t

= u(S,t)dt + o (S,t)dz, (3.48)

onde o é a volatilidade ¢ a medida dz; ¢ uma variavel aleatoria oriunda de uma

distribui¢cdo normal com média zero e variancia dt.

A solu¢do da Equacao 3.48, conforme ja apresentado ¢ dado por:
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S@) =S5, eXp[(,u—;O'z)t+0dzt} (3.49)

Substituindo dz; por edt onde € ¢ uma varidvel aleatoria normal padronizada com

média zero e variancia 1. Ou seja:

S@)=S5, exp[(y—;az)Hagdt} (3.50)

Para a simulagdo de uma trajetéria de precos para S(t), inicia-se com S, € se gera uma
seqliéncia de e parat=1, 2, 3, ..., n, posteriormente calcula-se S(1), S(2), ...S(n).

Para ativos ndo lineares deve-se fazer alteracdes para verificar a trajetoria de precos.
Supondo inicialmente o caso de op¢des européias o modelo mais utilizado ¢ o de Black e
Scholes. Diversos autores como Tay (2000 e 2001a), Ammann (2001) e Glasserman et al
(2000) utilizaram este modelo.

Tal modelo partiu da Equagao (3.50) para simular o movimento do ativo subjacente.
Apo6s N simulacdes com k passos (k determinado para atingir o tempo de andlise) obtém-se a
estimativa para o valor da op¢do dado por (¢ ¢ uma op¢ao de compra ¢ p uma opgao de

venda):

c(S,T,k) = max|[0;S; — k] (3.51)
p(S,T,k) = max[0;k — S; |

onde:
St = valor do ativo em T;

k = prego de exercicio.

Ja com relagdo as opgdes americanas, segundo Boyle, Broadie e Glasserman (1997), a
precificagdo de tais opgdes era considerada fora do escopo da simulagdo de Monte Carlo,
devido a dificuldade de se determinar os periodos 6timos de exercicio destas.

Entretanto, trabalhos como os de Tiller (1993) e Brodie e Glasserman (1997), propdem

formas para o emprego da simulagdo de Monte Carlo na avaliacdo de op¢des americanas.
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Ainda segundo Boyle, Broadie e Glasserman (1997), os maiores problemas do método
proposto por Tiller (1993) sdo os grandes requerimentos de memoria, a dificuldade de
generalizacdo para o caso de multiplas variaveis, a gera¢ao de precos tendenciosos, ¢ a falta
de demonstragdo de convergéncia. J4 o modelo proposto por Barraquand e Martineau (1995),
apesar da possivel falta de convergéncia, mostra resultados melhores que o de Tiller (1993).

Por fim Brodie e Glasserman (1997) desenvolveram um algoritmo baseado em arvores
simuladas, onde os pregos dos ativos sdo simulados em cada ramo da arvore, ¢ para cada n6
sdo obtidos estimadores para cima e para baixo (constituindo um intervalo de confianca), de
tal forma que ambos os estimadores convergem para o valor da arvore no né inicial. Brodie,
Glasserman e Jain (1997) sugerem melhorias quanto a velocidade e a convergéncia deste
método através da “poda” da arvore simulada. O modelo de Brodie e Glasserman (1997) esta

descrito em Rochman (2002).

3.6.2 A Geragao de Numeros Aleatérios.

Para simular as trajetorias de prego faz-se necessdrio gerar nuimeros aleatorios,
exemplos de métodos de obtencao de numeros aleatorios podem ser obtidos no trabalho de
Sobol (1994), Gentle (1998). De uma forma geral podem-se classificar os numeros aleatorios

em trés grupos:

1. Aleatorios: obtidos de maneira aleatoria, sdo selecionados por meios nao
deterministico, normalmente por meios naturais ou fisicos;

2. Pseudo-aleatdrio: obtidos por meio de algoritmos, de forma a apresentar um ciclo de
repeticdo tdo alto quanto possivel, de modo a simular uma distribui¢do
verdadeiramente randdmica;

3. Quase-aleatorios: conhecidos como seqiiéncias de baixa discrepancia.

O grupo aleatorio apresenta algumas desvantagens: dificuldade em checar qualidade
dos numeros produzidos e impossibilidade de reproduzir a mesma seqiiéncia de nimeros, a
ndo ser que esta seja gravada.

Os numeros pseudo-aleatérios, Paskov e Traub (1995) e demonstrado por Bezerra

(2001), ndo preenchem regularmente os espagos entre dois pontos, ou seja, 0s numeros
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pseudo-aleatdrios ndo sdo distribuidos uniformemente no espaco, ou ainda, apresentam alta

discrepancia.

Definicao 3.6:
A discrepdncia mede o desvio de uniformidade de um conjunto de pontos em uma dimensdo

d*.

Neste trabalho a geracdo dos valores serd feita por uma seqiiéncia quase-aleatoria.
Segundo Rochman (2002), uma seqiiéncia quase-aleatdria (ou sub-aleatoria) ¢ uma seqiiéncia
de amostras representativas de uma distribuicdo de probabilidades. Essas amostras sao
deterministicas e nao aleatorias, o que impede a repeticao de valores, reduzindo desta forma, o
desvio-padrdo da simula¢do de Monte Carlo e aumentando a velocidade de convergéncia. Esta
técnica também ¢ conhecida como de baixa discrepancia.

Boyle, Joy e Tan (1996) apresentam a seqiiéncia de Faure de nimeros quase-aleatorios
e a aplicam para opg¢des tipo rainbow e asiaticas. Brotherton e Ratcliffe (1994) aplicam a
seqliéncia de Sobol na avaliacdo de opgdes asidticas de média geométrica. Ambas as obras
concluem que as seqiiéncias quase-aleatérias sdo superiores em acurdcia e tempo de
processamento que a técnica pseudo-aleatoria.

Hokayem, Abdallah ¢ Dorato (2003) apresentam e comparam outras técnicas de
geracdo de numeros quase-aleatorios, a saber: Van der Corput, seqiiéncia de Halton,
seqiiéncia de Hammerslev, seqiiéncia (t, s) e método dos pontos de Lattice.

Li e Winker (2000) compararam o método de seqiiéncia (t, s) com o pseudo-aleatorio,
concluindo que o método de Monte Carlo com esta metodologia especifica comporta-se
melhor que a pseudo-aleatoria.

Algoritmos computacionais para a implementagdo das seqiiéncias de Faure, Halton e
Sobol podem ser encontradas em Fox (1986) e Bratley e Fox (1988), respectivamente.

Uma vez obtido uma distribuicdo uniforme deve-se converté-la numa distribuicao

normal. Para tal utilizar-se-4 do algoritmo desenvolvido e apresentado em Moro (1995).

* Detalhes do calculo da discrepancia podem ser encontrados em Hokayem, Abdallah e Dorato (2003).
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3.6.3 Simulacdes de Monte Carlo com Multiplas Variaveis

Infelizmente a Equacao (3.50) ndo ¢ suficiente para a simulagdo de pregos quando se
trata de ativos com mais de uma fonte de risco. E o que ocorre na pratica mesmo para ativos
simples, como titulos privados, os quais dependem da combinacdo de duas ou mais varidveis
financeiras. Felizmente a metodologia de Monte Carlo pode ser facilmente estendida a um
caso multivariado mais genérico, que considera N fontes de risco.

Se as variaveis (fatores de risco) ndo forem correlacionadas pode-se aplicar a Equacdo
(3.50) diretamente sobre cada varidvel e assim montar as perdas e/ou ganhos para a carteira.
Quando as variaveis sdo correlacionadas, faz-se necessario modelar essa correlacdo (Jorion,
2003). De uma forma geral Saliby e Aratjo (2001) sugerem que se gerem as variaveis de
forma independente e se aplique a essas variaveis uma transformacdo de modo que as novas
variaveis venham a ter a estrutura de correlacdo desejada.

Neste trabalho utilizou-se a fatora¢do de Cholesky. Os passos sdo os seguintes para se

chegar a transformagao necessaria (Saliby e Araujo, 2001):

1. Para uma determinada estrutura de correlagdo desejada, define-se a matriz de
covaridncia £. Decompde-se essa matriz em £ = P * P, onde P ¢ a matriz triangular
baixa e P ¢ sua transposta;

2. Define-se um vetor m, composto de varidveis independentes e varidncia unitaria
(obtido em 3.6.2). Este vetor tera sua matriz de covariancia igual a matriz identidade 1.

3. Multiplicando-se a matriz P pelo vetor n, encontra-se o vetor € (¢ = P * 1), o vetor

transformado, cuja matriz de covaridncia ¢ X.

A titulo de exemplo, tem-se para duas variaveis:

&1=" (3.52)
1
& =pm+1+ Pz)éﬂz

onde p € o coeficiente de correlacdo entre os fatores de risco.
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3.7 Comparacao entre os Diferentes Méetodos.

Diferentes resultados do VaR sdo obtidos para diversas técnicas, mesmo quando os
parametros sdo iguais. De uma forma geral, a escolha do método depende da composicao da
carteira. Telfah (2003) apresenta alguns critérios, os quais sdo freqlientemente utilizados na

comparacao do VaR:

1. Capacidade do VaR em capturar os fatores de risco subentendido no retorno da
carteira, com a suposicao que a carteira inclua opgdes e ativos livres de risco;
2. Facilidade de implementacao;

3. Velocidade de processamento.

Outra consideragdo usual € a facilidade explicativa do modelo. A Tabela 3.2 apresenta
um resumo da comparagdo entre os diversos métodos de VaR. No entanto, o mais relevante
critério ¢ a relagdo entre acuricia, custo computacional (tempo de processamento) e facilidade
de implementagao.

O método delta - normal torna-se ineficiente quando o niumero de posigdes da carteira
aumenta, porque hé a necessidade de calcular a matriz de covariancia e a matrix de correlagao
da posicao, a qual cresce exponencialmente com o numero de posi¢des. Na implementagdao do
método de Monte Carlo ha um ganho em acurécia e perda no tempo de processamento, assim
sendo, deve-se avaliar a relevancia destes critérios em conjunto. Uma das vantagens do
método de Monto Carlo ¢ a possibilidade de alterar suposicdes, o que nao ¢ possivel para as
outras metodologias. Entretanto o método est4 sujeito a erros de mensuracdao e ao modelo de
risco. Tais erros surgem porque os parametros devem ser calculados utilizando os dados
historicos (que nem sempre representam fielmente o desempenho futuro) e a utilizagdo de um

processo estocastico e este processo pode ser mal especificado.



Tabela 3.2: Comparacdo entre as técnicas de VaR.
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Critérios Variancia — Metodologia Simulagao Simulacao de
covariancia analitica historica Monte Carlo
Habilidade em Ineficiente Pode capturar Eficiente Eficiente
capturar fatores mas sua
de riscos (com eficiéncia cai
dependéncia nao com o aumento
linear) de fatores nao
lineares
Suposicdes Distribui¢ao Distribuicao Retornos Impde modelos
normal normal passados estocasticos aos
continuando no | fatores de risco
futuro
Comportam Nao Nao Sim, se oS Sim, se o modelo
caudas grossas retornos passados | de risco o
o0 tiverem incorporar
Facilidade de Facil, mas a Facil, com a Facil, com a Facil, com
implementagao | facilidade disponibilidade |disponibilidade |programas
diminui com o de dados e de dados complexos
aumento do poucas posicoes
numero de
posigdes
Tempo de Répido, Répido, Répido Lento
processamento | dependendo do | dependendo do
nimero de numero de
posigdes posi¢des
Facilidade Nao Nao Sim Nao
explicativa
Performance com | Nao Nao Nao Sim
diferentes
suposicoes
Acurécia Pouca quando a |Pouca quando a |Depende da Boa, a depender
carteira tem carteira tem qualidade dos do modelo
caudas grossas e |caudas grossas e |dados
quando o quando o
passado recente ¢ | passado recente €
anormal anormal
Necessidade de|Sim Sim Nao Sim
distribuicdo  de
probabilidade

Fonte: Telfah (2003) e Chaia e Ferreira (1999).

Pearson e Smithson (2000) montaram uma figura semelhante a Figura 3.3 para

facilitar a comparacdo entre as técnicas de VaR. Tal figura mostra que o método de Monte

Carlo ¢ o mais preciso e que consome mais tempo. Por outro lado o delta — normal apresenta-

se mais impreciso ¢ mais rapidamente implementado. De acordo com Pearson e Smithson

(2000), o método delta — gama Monte Carlo apresenta a melhor relagdo precisao x tempo de
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processamento. Evidentemente, esta relagdo deve sempre ser avaliada em fungdo do crescente
aumento da velocidade dos processadores, o que torna cada vez menos relevante o aspecto

tempo de processamento como indicador de desempenho das técnicas de VaR.

Acuracia
Monte
Carlo

A

Delta — Gama
Monte Carlo

Delta — Gama - Delta

Delta normal

Tempo de processamento

Figura 3.3: Comparagao entre as técnicas de VaR (acuracia x tempo de processamento).
Fonte: Pearson e Simthson (2000).

3.8 Avaliando a Eficiéncia do VaR.

Ha na literatura um gama de trabalhos que buscam verificar a precisdo de modelos que
fazem previsdes pontuais sobre uma determinada varidvel. Tais modelos visam prever o valor
da variavel alvo num determinado instante. Entretanto, para avaliar as previsdes de intervalo
para uma variavel, o nimero de método ainda ¢ reduzido (Mollica, 1999). Este ¢ o caso do
VaR.

Uma previsao de um intervalo significa encontrar um subconjunto do espago onde a
varidvel toma valores associados a uma probabilidade de ocorréncia. Supondo um VaR com
nivel se significancia de 95%, ou seja 5% dos casos devem ultrapassar o VaR. Certamente,
ndo serdo observados exatos 5% de violagdes, um percentual maior (6 a 8%) podera ocorrer
por mera causalidade. Mas se em um dado momento o nimero de violagdes for muito grande,
como 10 a 20%, os orgdos reguladores deveram concluir que a alta taxa de violagdes ndo sio

em func¢do da causalidade e sim da ma especificacdo do modelo.
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Os usuarios do VaR terdo o mesmo dilema, o que seu modelo s6 sera util se este
prever corretamente o nimero de falhas. Caso haja muitas violagdes do modelo de VaR, este
modelo devera ser reavaliado e talvez substituido. Nas subseg¢des a seguir apresentamos

técnicas para verificar a acuracia dos modelos de VaR.

3.8.1 Back Testing e Kupiec (1995)

O Comité de Basiléia requer das instituigdes financeiras uma verificagdo de back
testing para seus modelos internos de VaR. Back testing ¢ um procedimento a posteriori sobre
o qual as institui¢des financeiras checam quanto das perdas superaram o valor previsto no
VaR. Se uma institui¢do possui um VaR com 99% de confianga suas perdas ndo devem
ultrapassar 1%. Para um ano (250 dias), a instituicdo deve observar no maximo 3 perdas
superiores ao VaR.

O capital que as instituicdes devem possuir como garantia do risco de mercado,

segundo o comité de Basiléia, no tempo t deve ser:

60
C, =4, max[go > VaR, ;,VaR, } +SR, (3.53)
i=1

Onde C; ¢ o capital requerido no tempo t, A; é fator multiplicativo que varia entre 3 ¢ 4
e SR; ¢ um capital especifico de risco.

O capital especifico de risco ¢ parte do risco de mercado. De acordo com os novos
requerimentos de capital de risco, este ¢ classificado entre riscos gerais e especificos (ou
sistematicos e nao sistematicos).

Na Equagdo (3.53) o valor de A; depende da acuricia do modelo interno de VaR
durante os ultimos periodos, por exemplo, um ano. Segundo Telfah (2003), o Comité de
Basiléia divide o numero de violagdes em trés zonas: zona verde, amarela ¢ vermelha. A zona
verde ¢ aplicada quando o niimero de violagdes (para um VaR de 99% e para um ano) ocorre
em 1,6% dos casos, assim A; assume um valor de 3. A zona amarela significa um nimero de
violagdes entre 2 e 3,6% (de 5 a 9 violacdes neste caso), A; assume um valor entre 3 e 4. E a
zona vermelha equivale a mais de 4% de violagdes, tomando A; um valor de 4. Se o modelo

estiver na zona vermelha, entdo este devera ser revisado.
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Wiener (1997) argumenta que este procedimento previne que os bancos apresentem
baixos valores de VaR, reduzindo o capital colocado como garantia, os bancos sé
apresentariam valores baixos de VaR se estes correspondessem a realidade.

Kupiec (1995) comenta que o Comité de Basiléia recomenda o back testing, no
entanto ndo fornece detalhes para verificar sua eficacia. Kupiec (1995) desenvolveu um
modelo para verificar o numero de vezes que as perdas efetivas podem superar o VaR de
modo que este ainda seja considerado aceitavel.

Segundo Bezerra (2001), Kupiec considerando a razdo de log-verossimilhanga dada
pela Equacdo (3.54) a seguir, desenvolveu para varios periodos, intervalos de ndo rejeicdo da

hipotese nula de que p é a correta propor¢io de falhas®,

(3.54)

=l 61 w13 )

que possui uma distribuicao qui-quadrado com um grau de liberdade, sob a hipdtese que p € a
verdadeira probabilidade e onde x ¢ o nimero de falhas observadas em uma amostra de
tamanho n. Portanto, rejeita-se a hipdtese nula se LR>3,84 (Jorion, 2003). A Tabela 3.3

fornece regides de nao rejei¢do de erros ao nivel de 0,05.

Tabela 3.3: Intervalo de nao rejei¢do da hipotese nula de que a proporcao de falhas p* ¢ igual
ap, a 5% de confianca.

p=p (%) | n =255dias | n =510dias | n =1000 dias
1,0 x <7 I <x<I1lI 4<x<17
2,5 2<x<12 6<x<21 15<x<36
5,0 6<x<2l 16 <x <36 37 <x<65
7,5 11 <x<28 27 <x <S5l 59<x<92
10,0 16 <x <36 38 <x <65 81 <x <120

Fonte: Jorion (2003), adaptado de kupiec (1995).

Na Tabela 3.3 o niimero x indica a quantidade de insucessos que poderiam ser
observados numa amostra de tamanho n, sem rejeitar a hipdtese nula de p € a correta

probabilidade a um nivel de significancia de 5%.

* Observe que Kupiec utiliza p como o niimero de falhas real dividido pelo total de dias. Ja p” é relativo ao nivel
de confianca do VaR, ou seja para um VaR de 99%, o p* seria 0,01.
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Kupiec também fornece uma outra forma de testar o modelo de VaR. A Tabela 3.4
fornece o tamanho da amostra para uma quantidade maxima de violagdes para que a hipotese

nula seja rejeitada.

Tabela 3.4: Namero maximo do tamanho da amostra para que a hipotese p=p  seja rejeitada

a 5% de confianca.

Numero de falhas| p =0,01 | p =002 | p =0,03 | p =0,04 | p =0,05
1 6 3 - - -
2 34 17 11 9 -
3 75 38 26 19 16
4 125 63 42 32 26
5 180 91 61 46 37
6 240 121 81 61 49
7 302 152 102 77 62
8 367 184 124 93 75
9 434 218 146 110 88
10 501 253 169 127 102

Fonte: Bezerra (2001).

3.8.2 O Procedimento de Lopez.

Lopez (1996) apresenta um procedimento para avaliar os modelos de risco baseado em
uma funcdo de perda, tornando-se uma vidvel alternativa aos modelos que se baseiam em
estatisticas de teste como o de Kupiec (1995)°°. A idéia de Lopez (1996) foi criar uma funcio
de perda que incorpore os critérios julgados importantes pelos 6rgaos de regulamentagdao. O
melhor modelo seria aquele que minimizasse essa fungao.

No presente trabalho fez-se a opgdo de utilizar a funcdo de perda apresentada por

Lopez (1998)°', a qual para um modelo m qualquer tem a seguinte forma:

17 (3.55)

*% Outros modelos que levam em conta estatisticas de teste estdo em Mollica (1999), como o modelo de
Christoffersen (1996) e Chrkovic e Drachman (1996).
> Ou alguma adaptagdo deste, conforme a conveniéncia.
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1+(P, ~VaR,,,)*, se u, <VaR,, (3.56)

0, se u,2VaR,,

m,t

Sendo VaRy; o VaR estimado pelo modelo m para o periodo t e P; a variacdo
monetaria no valor de mercado da carteira efetivamente observada em t. Esta funcdo ¢
semelhante a medida de erro quadratico médio utilizado na avaliagdo da precisdo de previsdes
pontuais. Com a diferenca que na Equacgao (3.55) a magnitude do erro sé influéncia a funcao
quando o VaR ¢ extrapolado.

Esta medida de erro avalia a magnitude da perda quando o VaR ¢ extrapolado, além de
levar em conta a freqiiéncia do erro. O melhor modelo serd aquele que apresentar uma
freqliéncia de erro mais préxima do esperado e no qual os erros sdo menores em relagdo ao
VaR estimado.

A grande vantagem deste método sobre os que utilizam estatisticas de teste ¢ a ndo
necessidade de aplicar qualquer tipo de teste de hipoteses para verificar a adequagdo dos
modelos. Com isso, evita-se o problema de baixa poténcia® dos testes dos métodos apoiados

em critérios estatisticos (Mollica, 1996).

3.9 Evidéncias Empiricas.

Esta se¢do ir4 tratar de uma revisdo sintética de alguns trabalhos sobre a avaliagdo de
estimativas de VaR, seja por métodos paramétricos ou nao paramétricos, seja comparando o
mesmo modelo mas com variaveis diferentes, notadamente a volatilidade.

Théorét e Rostan (2000) realizaram um estudo das estimativas de VaR obtidos pela
simulagdo historica e pela simulacdo de Monte Carlo. Para tal, os autores utilizaram titulos do
governo canadense de 10 anos de posse de um investidor americano, esta carteira era exposta
a dois fatores de risco: taxa de cambio e taxa de juros. O VaR historico foi montado de duas
formas: com volatilidade constante (como a da Equacao (2.34)) e utilizando a volatilidade
EWMA. J4 a técnica de Monte Carlo utilizou a suposi¢ao de normalidade para os dois fatores
de risco em um primeiro momento adotando-se a decomposicao de Cholesky; em um segundo
momento foi suposto a ndo normalidade dos fatores de risco, admitindo que a correlacdo entre

os fatores era respeitada naturalmente pelos dados. Os autores mostraram que o método onde
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a propor¢do de violagdes do VaR estava mais proxima do nivel de confianca utilizado foi o
método de Monte Carlo com a suposicdo de distribui¢do normal, este com 5,03% de
violagoes, contra 4,70% do método de simulagado histérica com volatilidade constante, 6,71%
para os outros dois modelos (simulacdo historica com volatilidade do modelo EWMA e
Monte Carlo sem a suposi¢ao de distribuicao normal dos fatores de risco).

Ammann e Reich (2001) estruturaram um trabalho para comparar a eficiéncia
preditiva do VaR de instrumentos ndo lineares via aproximagdes lineares e o método de
Monte Carlo. Os métodos de aproximagdo linear utilizados foram: o método da variancia —
covariancia, o delta normal, e algumas extensdes; os métodos de Monte Carlo foram: o
método tradicional e o0 método de quase Monte Carlo. Os autores mostraram que os modelos
simples de aproximacdo linear sdo razoavelmente eficazes em muitos casos. Mas para
carteiras com um numero razoavel de opcdes os métodos de Monte Carlo tradicionais sao

mais eficientes. De uma forma geral eles encontraram:

e Para carteiras sem opgdes (e sem instrumentos lineares) a metodologia delta-
normal representou uma boa aproximacao do método de Monte Carlo; O resultado
deteriora-se quando aumenta o tempo de horizonte do VaR e o nivel de confianga;

e Para carteiras com posi¢cdes nao lineares mais acentuadas os resultados diferem
substancialmente entre o VaR delta — normal e o de Monte Carlo, esta discrepancia
aumenta com o tempo de horizonte do VaR e o nivel de confianga;

e A diferenga entre aproximagdes lineares e a metodologia de Monte Carlo aumenta

com o uso de opgdes com pequeno tempo de vencimento.

Um outro trabalho envolvendo o VaR para uma carteira que possui opgdes foi
desenvolvido por Pichler e Selitsch (1999), estes compararam modelos analiticos de VaR
focando na segunda ordem da expansao de Taylor dada pela Equacdo (3.45). Foram
analisadas diferentes combinagcdes de momentos. Para comparacdo foi utilizado o
procedimento de backtesting baseado na geragdo aleatoria de fatores de riscos para os
retornos. Os autores concluiram que os modelos dependedentes apenas dos quatro primeiros
momentos das perdas e ganhos sdo pouco eficientes. A inclusdo de maiores momentos, neste
trabalho a expansdo de Cornish-Fisher com seis momentos mostrou-se mais apropriada.

Bezerra (2001) utilizando agdes e opcdes da Petrobras elaborou uma comparacao entre

as metodologias analiticas e de Monte Carlo. A comparacao e validagdo dos modelos foram

52 Alta probabilidade de aceitar uma hipétese nula falsa.
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realizadas via o teste de propor¢do de falhas de Kupiec (1995), apresentado na Secdo 3.8.1..
Todos os modelos analiticos testados foram rejeitados pelo teste de falhas, a explicagdo do
autor € que as opgoes da Petrobras utilizadas, possuem grandes variagdes no seu valor e o
modelo analitico pressupde pequenas variagdes deste. Entretanto, quando o niimero de ativos
da carteira ¢ muito elevado o autor recomenda as metodologias analiticas em fun¢do do baixo
custo de processamento numérico.

Os métodos de Monte Carlo adotados no trabalho utilizaram o modelo de precificacao
de Black & Scholes, o modelo de precificagdo de Hull & White e o método de Hull& White
com juros estocasticos. Para todos os modelos os resultados obtidos foram compativeis, ndo
acrescentando aumento de eficiéncia a inclusdo de volatilidade implicita e de juros
estocasticos.

No grupo de trabalhos que visam identificar sob que tipo de volatilidade o VaR possui
o melhor comportamento pode-se destacar Mollica (1999), este trabalho foi realizado com o
VaR delta normal, tendo como aspecto crucial a estimagdo da matriz de covariancias. As
volatilidades foram estimadas pelos modelos EWMA, GARCH e volatilidade estocéstica. O
autor também utilizou a simulagdo histdrica para comparar com os modelos anteriores. Para
comparar os resultados a metodologia adotada foi a desenvolvida por Lopez (1998). Como
resultados os modelos com a volatilidade EWMA e simulagdo histérica apresentaram-se
pouco adaptativos. Ja os modelos com volatilidade estocéstica possuiram maior
adaptatividade.

Em termos da funcao de perda de Lopez (1998) os resultados obtidos foram diferentes
para cada uma das duas carteiras de ativos sem risco e de risco do mercado brasileiro
analisadas (ambas sem ativos ndo lineares). Para a primeira carteira o delta normal com
volatilidade estocastica foi superior, na segunda carteira o modelo preferido é o delta normal
com a volatilidade EWMA.

Um trabalho semelhante foi realizado por Schittenkopf et al. (2002), neste caso,
entretanto, as carteiras eram compostas por opgdes. Trés volatilidades: a constante, a
estocastica e a condicional (GARCH), foram comparadas via o VaR de Monte Carlo. Ao
contrario de Mollica (1999), os autores ndo encontraram evidéncias de superioridade de uma
técnica para outra.

Também na linha de raciocinio acima, Lehar (2000) compara os modelos de Black &
Scholes (volatilidade constante) ¢ o modelo de Hull & White (volatilidade estocastica) com
dados do mercado de acdes austriaco. Os modelos de avaliacao do VaR foram o delta normal,

a simulacdo de Monte Carlo e o método conhecido como delta plus. A avalia¢do obtida a luz
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de varias varidveis de teste mostra que os resultados obtidos podem variar em fungdo da
perspectiva de observagdo, a colocacdo da volatilidade como fonte de risco incrementa o
resultado do VaR, os modelos funcionam melhor com as op¢des de compra, de uma forma
geral o modelo de Monte Carlo com volatilidade estocéstica (Hull & White) saiu-se melhor

no teste de proporc¢do de falhas.
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4 RESULTADOS EMPIRICOS

Este capitulo contempla a aplicacdo dos métodos e conceitos, ja descritos, aos dados
do mercado aciondrio brasileiro. Inicialmente apresenta os dados utilizados bem como
descreve os ajustes iniciais e informagdes gerais sobre tais conjuntos de dados. Em um
segundo momento tais dados e informacdes sdo utilizados para calcular o Value at Risk nas
suas diversas possibilidades, sejam estdticas ou dindmicas, sejam paramétricas ou nao

paramétricas.

4.1 Os Dados

Neste trabalho o objetivo ¢ analisar o mercado acionario brasileiro a luz da teoria
econdmica — financeira verificando como descrever corretamente os riscos de mercado a
partir da metodologia do VaR. O mercado acionario brasileiro, como pode ser constatado na
Tabela 4.1 a seguir, ao longo dos ultimos 10 anos vem se desenvolvendo e se consolidando. A
Bolsa de Valores de Sao Paulo (BOVESPA) encerrou o ano de 2003 com um volume
financeiro de R$ 204,5 bilhdes, o que representa uma alta de 47,2% em relagdo ao ano de

2002.

Tabela 4.1: Volume total negociado na BOVESPA no periodo de 1994 a 2003 em milhdes de
reais.

Periodo | A vista Termo | Opgdes Total

1994 48.386,20 153,101 12.054,90,  60.594,20

1995 52.993,500 283,20 10.273,80, 63.550,60

1996 87.929,000 558,20, 9.991,30, 98.478,50

1997 | 187.116,10, 1.186,50] 18.138,00, 206.440,60

1998 | 148.323,200 982,00 12.539,20 161.844,30

1999 143.340,80, 1.916,40, 8.821,50| 154.078,70

2000 | 169.704,80 7.247,60] 8.238,20] 185.190,60

2001 135.441,10] 6.443,10 8.420,50] 150.304,70

2002 | 125.728,50 5.110,40 8.130,20] 138.969,10

2003 | 181.936,30 6.443,90| 16.202,30] 204.582,50

Fonte: Bovespa
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Em 2002 o mercado a vista correspondeu a 88,93% do volume no ano, seguido pelo de
op¢des com 7,92% e por fim o mercado a termo com 3,15%. Os dois primeiros sdo objetos de
estudo deste trabalho; destaque especial deve ser dado ao mercado de opgdes que teve sua
participacdo elevada de 6,2% em 2002 para os 7,92% de 2003. Das operacdes com opcdes RS
14,9 bilhdes foram de opgdes sobre acdes, em particular op¢des de compra e venda de agdes
da Telemar, sendo também relevantes as opgdes sobre acdes da Petrobras e Vale do Rio Doce
(Segundo a CBLC).

Historicamente (praticamente desde o seu langamento) a a¢do com maior volume
financeiro de negocios foi a Telemar PN (tnlp4), em 2003 seu volume de negocios foi de R$
28,89 bilhoes, a da Petrobras PN (petr4) foi de R$ 16,18 bilhoes, a Vale do Rio Doce PNA
(vale5) R$ 6,79 bilhdes (segundo a propria BOVESPA). Estas trés juntas correspondem a
28,50% de todo o volume de negdcios de mercado a vista da BOVESPA, por este motivo

estas acoes e suas equivalentes opcoes sdo o objeto especifico de estudo deste trabalho.

411 As Acoes

As séries das acdes utilizadas correspondem ao periodo de 17/03/1999 a 19/03/2004,
totalizando 1244 observacdes para cada agdo. Os raros casos de “missing value” foram
corrigidos utilizando-se o conceito de passeio aleatorio. Os dados foram divididos em dois
grupos: o primeiro que vai de 17/03/1999 a 18/03/2002 ¢ utilizado para o calculo dos
parametros, testes, e estimativas necessarias; o segundo grupo de 19/03/2002 a 19/03/2003
para verificacdo da eficicia dos modelos. Para algumas carteiras o VaR foi calculado e
verificado num periodo de 2 anos, assim sendo, o segundo grupo foi alterado para 19/03/2001
a 19/03/2003 (obviamente o primeiro grupo foi reduzido para 14/03/1999 a 18/03/2001). A
fonte de dados para as agdes foi o da empresa Economadtica. Os cddigos utilizados foram
programados na plataforma do Matlab 6.13.

A Figura 4.1 a seguir mostra a variacao do prego de fechamento da tnlp4 ao longo do
periodo de analise, ja a Figura 4.2 mostra o retorno didrio da ag¢do. O retorno diario de todas

as acodes foram calculados a partir da Equagdo 2.35 ja apresentada.
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Figura 4.1: Valor de fechamento diario da Telemar PN no periodo de 17/03/1999 a
19/03/2004.

Fonte: Elaboragao propria.

A partir da andlise dos precos de fechamento da tnlp4 pode-se concluir que ha fases de
alta, de baixa e algumas quebras de tendéncia, como por exemplo no inicio do ano de 2003,
aproximadamente por volta da observagao 950.

Ja com relagdo ao retorno desta agdo para o periodo o que se pode concluir € que ele é
caracterizado por uma relativa baixa volatilidade visto que um intervalo de confianca de £5%
incorpora quase todos os retornos, indicando que uma andlise baseada na hipotese de
normalidade dos retornos pode ser suficiente para o calculo do VaR.

O primeiro passo deste trabalho ¢ verificar os fatos estilizados observados por Taylor
(1986) ¢ ja apresentados™. O primeiro dos fatos estilizados é a tendéncia ao agrupamento da

volatilidade facilmente observada na Figura 4.2.

33 Observar se¢do 2.4.1
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Figura 4.2: Retorno diario da Telemar PN no periodo de 17/03/1999 a 19/03/2004.

Fonte: Elaboragdo propria.

A Tabela 4.2 apresenta estatisticas basicas que corroboram ou ndo com Taylor (1986).
A distribui¢do apresenta excesso de curtose, mas a assimetria ndo ¢ negativa. Ja o teste de
Jarque-Bera confirma a ndo normalidade do retorno, ndo normalidade também confirmada
pelas Figuras 4.3. A Figura 4.3 a) mostra que a distribui¢do dos retornos tem caudas maiores
que a da distribuicdo normal, tanto a direita quanto a esquerda. E a Figura 4.3 b) confirma que
0 pico em torno da média ¢ mais alto que em uma distribuicdo normal. Em ambas, a
distribuicdo real é indicada em azul e a normal em vermelho.

No entanto, quando a comparacao ¢ feita com os demais ativos observa-se que este
ativo apresenta a distribui¢do mais proxima a distribui¢do normal. O que pode ou nao ser

confirmada nas analise posteriores.



Tabela 4.2: Estatisticas descritivas para os retornos da Telemar PN.

Estimativa |P. Value Estimativa|P. Value
Média 0,00080 0,3230 [Desvio Padrao| 0,02855 -
Mediana -0,00022 - Assimetria 0,17723 -
Minimo -0,09146 - Curtose 3,95684 -
Maximo 0,13362 - Jarque-Bera | 53,28000 | 0,0000

Fonte: Elaboracao propria.
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Figura 4.3: Gréficos de analise de distribui¢do para o retorno da Telemar PN.

Fonte: Elaboragdo propria.
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A proxima Figura (4.4) ¢ relativa a variacao do preco de fechamento da petr4 ao longo

do periodo de estudo, e a Figura 4.2 mostra o retorno diario da acao.
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Figura 4.4: Valor de fechamento didrio da Petrobras PN no periodo de 17/03/1999 a
19/03/2004.

Fonte: Elaboragao propria.

A partir da andlise dos precos de fechamento da petr4 observa-se uma maior tendéncia
de alta, todavia ocorre um periodo relativamente longo de aparente estabilidade, entre a
observacao 200 e a 800. Entretanto, a exemplo da Telemar PN, hd uma forte quebra de
tendéncia no inicio do ano de 2003, aproximadamente por volta da observagao 950.

Ja com relagdo ao retorno desta ag¢do para o periodo, apresentado na Figura 4.5, pode-

se perceber o fendmeno de agrupamento da volatilidade.
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Figura 4.5: Retorno diario da Petrobras PN no periodo de 17/03/1999 a 19/03/2004.

Fonte: Elaboragdo propria.

Na Tabela 4.3 estdo as estatisticas basicas com comportamento semelhante ao da

Telemar PN. Confirmando a nao normalidade da distribui¢do do retorno, ndo normalidade

também confirmada pelas Figuras 4.6. A unica diferenca ¢ a média que ndo pode ser

considerada estatisticamente igual a zero a 5%.

Tabela 4.3: Estatisticas descritivas para os retornos da Petrobras PN.

Estimativa | P. Value Estimativa | P. Value
Média 0,00129 0,0466 |Desvio Padrao| 0,02290 -
Mediana 0,00060 - Assimetria 0,19944 -
Minimo -0,09811 - Curtose 4,87909 -
Maximo 0,11952 - Jarque-Bera 189,57 0,0000

Fonte: Elaboracao propria.
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Figura 4.6: Gréficos de anélise de distribui¢do para o retorno da Petrobras PN.

Fonte: Elaboragao propria.

Por fim a variagdo do preco de fechamento da vale5 ao longo do periodo de anélise ¢
apresentado na Figura 4.7 a seguir. Uma simples andlise do grafico mostra que o
comportamento da Vale do Rio Doce PNA ¢ diferente dos comportamentos das demais a¢des
estudadas, nesta acdo ha uma nitida tendéncia de alta em todo o periodo de analise, mas com
uma forte ruptura de tendéncia no fim da série.

Apesar da diferenga de comportamento das agdes, o que torna a presente analise mais
rica em detalhes, uma observagao deve ser feita. H4 uma mudanga de comportamento no fim
de 2002 e no inicio de 2003 baseado nas expectativas. No fim de 2002 incertezas politicas
quanto ao futuro do Pais fizeram com que os investidores mudassem suas carteiras. No
entanto, em 2003 com a defini¢do da politica econdmica brasileira e com a gradativa queda
dos juros da economia houve um fortalecimento do mercado de capitais brasileiro,
especialmente importante por que ndo houve apenas uma valorizagdo dos papéis, mas
principalmente porque ela foi acompanhada por um aumento no volume de negociacdes (ver

Tabela 4.1).
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Figura 4.7: Valor de fechamento diario da Vale do Rio Doce PNA no periodo de 17/03/1999 a
19/03/2004.

Fonte: Elaboragao propria.

Tal avaliagdo corrobora com a teoria das expectativas™* sobre o mercado de capitais, o
desafio ¢ modelar esta expectativa, em especial, como modelar um mercado onde ocorrem
tantas mudancas de perspectivas por parte dos agentes econdOmicos, mudancas estas nem
sempre compartilhadas em todo o mercado em fun¢do de diferengas inerentes dentro de cada
companhia que lanca suas agdes na bolsa.

Quanto ao retorno da a¢do da Vale do Rio Doce ndo existem diferengas significativas
visiveis no grafico apresentado na Figura 4.8; resta analisar as estaticas descritivas desta

distribui¢ao dos retornos.

>4 Segundo esta teoria as decisdes sdo tomadas com base no que o agente acredita que possa acontecer no futuro,
tais decisdes baseiam-se muitas vezes nas emogdes e na falta de conhecimento pleno sobre a situagao.
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Figura 4.8: Retorno didrio da Vale do Rio Doce PNA no periodo de 17/03/1999 a 19/03/2004.

Fonte: Elaboragdo propria.

A Tabela 4.4 demonstra que a série de retornos da Vale do Rio Doce PNA também
nao segue uma distribuicdo de freqii€ncia normal, confirmada pelas Figuras 4.9.

Uma ressalva deve ser feita com relagdo ao teste de normalidade das séries financeiras,
principalmente quando se trata de mercados aparentemente ndo eficientes como o brasileiro.
Os testes levam em consideragao todos os dados, ndo raro sdo as presencas de outliers neste
tipo de série, muitas vezes motivadas por eventos sistémicos da economia local como também
a perturbagdes em industrias locais (como vazamento de uma rede de distribuicdo de
petroleo), ou para o caso da Petrobras e Vale do Rio Doce™ instabilidade no mercado
internacional de commodities. Entretanto, estes fendmenos sdo fundamentais em um trabalho

que visa identificar perdas extremas, que € o caso.

> A Vale do Rio Doce é uma empresa tipicamente exportadora.
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Tabela 4.4: Estatisticas descritivas para os retornos da Vale do Rio Doce PNA.

Estimativa| P. Value Estimativa| P. Value
Média 0,0016 0,0129 |Desvio Padrao| 0,0222 -
Mediana | 0,0003 - Assimetria 0,2809 -
Minimo | -0,0983 - Curtose 5,2689 -
Maximo | 0,1074 - Jarque-Bera |280,9279| 0,0000

Fonte: Elaboracao propria.
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Figura 4.9: Gréficos de andlise de distribui¢do para o retorno da Petrobras PNA.

Fonte: Elaboragao propria.

Apresentadas as trés séries de agdes uma observagdo ¢ pertinente, nem a Telemar PN,
Petrobrdas PN e Vale do Rio Doce PNA apresentaram os fatos estilizados das séries
financeiras dos mercados mais desenvolvidos, sendo um indicio que modelos criados para

estes mercados podem ndo funcionar plenamente no mercado brasileiro.
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4.1.2 As Opcgoes

As bases de dados de opgdes foram obtidas junto a BOVESPA e correspondem ao
periodo de 17/03/2002 a 19/03/2004, somente opg¢des com liquidez igual ou acima de 5
negocios por dia foram utilizadas neste trabalho, mesmo critério utilizado por Barros e
Lemgruber (1997) e Aratjo, Barbedo e Lemgruber (2004). Entre as séries foram selecionadas
as mais no dinheiro, mais fora do dinheiro e mais dentro do dinheiro que atendessem ao
critério de liquidez. Segundo estes critérios apenas constitui-se uma base de dados razoavel as
opc¢des de compra da Telemar PN, compreendendo para o periodo 21 vencimentos diferentes
num total de 526 observagdes para cada série.

A figura a seguir apresenta a variabilidade do valor de fechamento das trés séries de

opcoes utilizadas neste trabalho.
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Figura 4.10: Fechamento diario das op¢des da Telemar PN no periodo de 17/03/2002 a
19/03/2004.

Fonte: Elaboragdo propria.
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O retorno de um investidor de uma carteira de opcdes (independente da estratégia)
deve ser calculado levando em consideracdo se a posi¢do total ¢ mais comprada ou mais
vendida, essa posic¢ao ¢ identificada no momento da defini¢do da carteira. Se a posigdo liquida
¢ comprada, o investidor ganhara com o aumento no valor da carteira, se a posi¢ao ¢ vendida

ha ganhos com a desvalorizacdo da carteira.

4.2 Estacionariedade, Autocorrelacao e Heterocedasticidade das
Séries.

A primeira etapa na andlise das séries financeiras em questdo ¢ avaliar aspectos
fundamentais e criticos das séries temporais. Iniciando pela avaliagdo da presenca de raiz
unitaria para os retornos. A Tabela 4.5 a seguir apresenta as estatisticas do teste de Augmented
Dickey-Fuller t-test’® (ADF) para avaliar a presenca de raiz unitaria das séries de acdes
consideradas. Como pode ser observado, os resultados indicam a auséncia de raizes unitarias
j4 que o valor calculado do teste ¢ menor que o valor critico, ou seja, a série pode ser

considerada estaciondaria.

Tabela 4.5: Teste ADF

Série ADF calculado
Telemar PN -23,23
Petrobras PN -27,50
Vale do Rio Doce PNA -30,45

Valor critico a 5%: -2,86
Fonte: Elaboragdo propria.

Como as séries ndao possuem raiz unitdria ndo ha necessidade de realizar
diferenciagdes, o que ¢ normal para a maioria das séries financeiras, lembrando que o proprio
calculo do retorno ¢ uma diferenciag@o. A principal implicativa econdmica ¢ que ndo havendo
raizes unitarias os choques nao terdo efeitos permanentes (Greene, 2000). Sabendo que as
séries sdo estacionarias deve-se avaliar a presenca de autocorrelagdes, ou correlacao serial dos

erros entre periodos de tempo.

>% A distribui¢io do teste ADF é a 7, construida através de experimento de Monte Carlo por Dickey e Fuller
(Enders, 1995).
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A autocorrelacdo pode ser verificada qualitativamente por meio de fungdes de
autocorrelacdo, as quais sdo apresentadas na Figura 4.11. A andlise grafica mostra que ndo ha
autocorrelagdo para a série da Vale do Rio Doce PNA, entretanto, o grafico deixa duvida com
respeito a Telemar PN e Petrobras PN. Para eliminar tal davida uma avaliagdo quantitativa ¢

necessaria. No entanto antes se analisar a autocorrelagdo dos retornos quadraticos com a

Figura 4.12.

Funcao de Autocorrelagao (ACF)
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Figura 4.11: Fun¢ao de autocorrelagdo do retorno para Vale do Rio Doce PNA, Petrobras PN
e Telemar PN; respectivamente.

Fonte: Elaboragdo propria.

Os graficos da Figura 4.12 mostram autocorrelagdo do retorno ao quadrado para a
Vale do Rio Doce PNA e para a Telemar PN, mas ndo para a Petrobras PN, com estes
resultados uma anélise quantitativa também se mostra necessaria.

Para quantificar as verificagdes quantitativas de autocorrelagdo ¢ possivel utilizar um
teste de hipoteses formal como o Ljung-Box-Pierce Q-teste’’, o Q-teste é usualmente utilizado
na pos-analise aplicado aos residuos. Entretanto, neste caso, adota-se este teste na analise

prévia supondo que num modelo GARCH (1,1) simples o retorno ¢ obtido por uma constante

> Veja Box, Jenkins e Reinsel (1995) pag. 314.
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simples e um processo de inovagdo puro’". Sob a hipétese nula de autocorrelagio o Q-teste

tem uma distribui¢do assintoticamente Q-quadrado.

Fungao de Autocorrelagao
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Figura 4.12: Funcao de autocorrelacao do retorno ao quadrado para Vale do Rio Doce PNA,
Petrobras PN e Telemar PN; respectivamente.

Fonte: Elaboragao propria.

A Tabela 4.6 a seguir verifica, ao menos aproximadamente, autocorrelagdo nao

significante dos retornos quando testados com 10, 15 e 20 defasagens (lags) da funcdo de

autocorrelagcdo com 5% de significancia. O mesmo ¢ feito na Tabela 4.7, mas com relacdo aos

erros quadrados.

Tabela 4.6: Q-teste para os retornos das séries.

Vale do rio Doce PNA Petrobras PN Telemar PN
Defasagens|P-Value| Estatistica | P-Value | Estatistica | P-Value | Estatistica | Valor Critico
10 0,2656 12,299 0,0007 | 30,606 | 0,0527 18,134 18,307
15 0,5019 14,314 0,0015 36,489 | 0,0896 | 22,750 24,9958
20 0,5103 19,178 0,0052 | 39,868 | 0,0630 | 30,445 31,4104

Fonte: Elaboragao propria.

%% Assim os testes sdo feitos com g, =y, — C,logo um teste no retorno equivale ao teste sobre 0 erro no
modelo padrio.




126

Os resultados da Tabela 4.6 mostram que ndo héa autocorrelagdo para a Vale do Rio
Doce PNA e para a Telemar PN, j4 a Petrobras PN possui autocorrelagdo serial no seu retorno
(erro). A Tabela 4.7 a seguir mostra que todas as séries apresentam autocorrelagdo no
quadrado dos retornos (quadrado do erro), indicando que a modelagem no quadrado do erro

pode ser vidvel.

Tabela 4.7: Q-teste para os retornos quadrado das séries.

Vale do rio Doce PNA Petrobras PN Telemar PN
Defasagens|P-Value| Estatistica |[P-Value| Estatistica [P-Value| Estatistica | Valor Critico
10 0,0000 87,730 0,0116| 22,774 10,0000 | 100,552 18,307
15 0,0000 113,407 10,0448 | 25,404 |0,0000| 120,054 24,9958
20 0,0000 119,990 10,0391 32,416 10,0000 | 148,815 31,4104

Fonte: Elaboragdo propria.

Tao ou até mais importante que os testes ja feitos sdo os testes relacionados com o
desenho da variancia (e do desvio padrdo por conseqiiéncia), esta questao passa pelo aspecto
da heterocedasticidade. Na Secdo 2.4.2.2 item A estd descrito o teste feito cujo resultado

encontra-se na Tabela 4.8 a seguir.

Tabela 4.8: Teste de Engle proposto por Bourbonnais e Terraza (1998).

Vale do rio Doce PNA Petrobras PN Telemar PN
Defasagens|P-Value| Estatistica |P-Value| Estatistica |P-Value| Estatistica | Valor Critico
10 0,0000 62,782 0,0483 18,421 0,0000| 60,783 18,307
15 0,0000 72,568 0,2063 19,167 10,0000 | 69,705 24,9958
20 0,0000 79,658 0,1771 25,667 10,0000 | 76,782 31,4104

Fonte: Elaboragdo propria.

Os resultados da Tabela 4.8 mostram que hd pelo menos 5 defasagens do modelo
ARCH para a Petrobras PN e 20 defasagens para as demais séries e mostra significativas
evidéncias de suporte aos efeitos heterocedasticos, confirmando mais um dos fatos estilizados
de Taylor (1986). Entretanto esta quantidade de defasagens tornaria o modelo de previsdo da
volatilidade pouco parcimonioso, a alternativa ¢ o modelo GARCH que apresenta de forma
mais parcimoniosa a dependéncia temporal da variancia condicional. Para verificar a presenca
de termos significativos do modelo GARCH em acréscimo aos termos do modelo ARCH
utiliza-se o teste proposto na Secdo 2.4.2.2 item B.

Este teste ¢ o mesmo Q-teste para o quadrado dos residuos descrito na Tabela 4.7

confirmando a possibilidade de estimar a variancia condicional via modelos GARCH.
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Por fim, o teste de assimetria dos impactos, ou seja, se ha respostas diferentes para
choques nos retornos, caso positivo ou negativo. Esta verificagdo ¢ feita pelo teste proposto na
Secdo 2.4.2.2 item C, cujos resultados estdo na tabela a seguir (Tabela 4.9), nesta observa-se
que nao existe sustentacao a hipdtese de assimetria negativa visto que a correlagdao entre os
quadrados dos residuos padronizados e os residuos padronizados defasados nio sdo
significativamente diferentes de zero, tanto para a Vale do Rio Doce PNA quanto para a
Telemar PN. Ja a Petrobras PN por possuir correlagao negativa e significativamente diferente
de zero a 5% mostra que modelos que capturam a assimetria como EGARCH e GARCH-L

tendem a melhores resultados.

Tabela 4.9: Teste de assimetria de impactos.

Correlagao | P-Value

Vale do Rio Doce PNA | 0,0354 |0,2650

Petrobras PN -0,0775 10,0147

Telemar PN -0,0046 |0,8847

Fonte: Elaboragéo propria.

4.3 Selecao dos Modelos de Volatilidade

Uma vez identificado que os modelos autoregressivos heterocedasticos sdo os mais
indicados as séries objetos de estudo, resta selecionar entre estes os mais eficientes, para tal,
utilizou-se de técnicas ja consolidadas na literatura, o Q-teste, a metodologia de Akaike (AIC)
e a Baysian (BIC) descritas por Box, Jenkins e Reinsel (1994).

Em funcdo das defasagens r, m, p e q° ha diversas variacdes de modelos referentes a
cada familia (GARCH, EGARCH e GARCH-L), a sele¢do dentro de cada familia ¢ feita entre
os modelos com defasagens variando entre 0 e 4 para as equacdes de volatilidade e 0 e 1 para
equacdes de médias. O tamanho da janela de observagdes tem papel fundamental nesta parte
do trabalho, por duas razdes: a primeira ¢ a fundamentagao tedrica de quanto maior a janela,
melhores os resultados, conforme apresentado em 3.2. A segunda razdo ¢ a variagdo dindmica
do comportamento conforme observado nos graficos de retorno das acdes. Por tal razio testar-

se-4 dois tamanhos de janelas: um ano e dois anos®.

% Ver secdo 2.4.2 para detalhes dos modelos GARCH, EGARCH ¢ GARCH-L.
60 Testaram-se janelas maiores, no entanto, houve problemas de convergéncia para maiores defasagens.
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Os resultados completos do teste Q, do AIC e BIC estdo no Apéndice 1. Na Tabela 4.10
um quadro resumo dos modelos ARMA (r,m) — GARCH (p,q) selecionados para uma janela
de um ano (255 dias). Analisando o Apéndice 1 percebe-se que nao ha diferencas
significativas entre os modelos selecionados pelos testes baseados no Q-teste e os modelos
mais parcimoniosos ARMA (0,0)-GARCH (1,1). Desta forma os modelos que melhor se
ajustam as séries pelos critérios BIC e Q-teste sdo os modelos ARMA (0,0)-GARCH (1,1).

Tabela 4.10: Quadro resumo com os melhores modelos ARMA-GARCH com janela de 255
dias.

Q —teste (4) | Q — teste (8) AIC BIC
Vale do Rio Doce PNA | (0,0) (1,2) | (0,0)(2,2) |(1,0)(1,1)|(0,0) (1,1)
Petrobras PN (0,0) (1,3) | (0,0) (1,1) |(0,1)(1,2)](0,0) (1,1)
Telemar PN (0,0) (1,4) | (0,0) (1,1) [(1,1)(1,3)](0,0) (1,1)

Fonte: Elaboragao propria.

Quando se avalia a janela de 510 dias o resultado indica superioridade dos modelos
parcimoniosos, a exemplo do caso anterior. A Unica ressalva ¢ o caso da Petrobrds PN que
teve como indicado no teste AIC e BIC o modelo ARMA (0,1)-GARCH (1,2). Entretanto
como no Q-teste o melhor foi o ARMA (0,0)-GARCH (1,1), este foi o selecionado, tanto para
a Petrobras PN quanto para as demais agdes. Deve ser ressaltado que no teste de assimetria a
Petrobras PN indicava um melhor ajuste aos modelos assimétricos como o modelo EGARCH
e GARCH-L, assim sendo uma analise destes dois modelos em relagdo a este ativo faz-se

necessario.

Tabela 4.11: Quadro resumo com os melhores modelos ARMA-GARCH com janela de 510
dias.

Q —teste (4) | Q —teste (8)| AIC BIC
Vale do Rio Doce PNA | (0,0) (1,1) | (0,0) (1,1) |(1,1)(1,1)|(0,0) (1,1)
Petrobras PN (0,0) (1,1) | (0,0) (1,1) [(0,1)(1,2)|(0,1)(1,2)
Telemar PN (0,0) (1,2) | (0,0)(1,2) [(0,1)(1,1)](0,0) (1,1)

Fonte: Elaboracao propria.

Uma analise comparativa entre as Tabelas 4.10 e 4.11 demonstra que ndo ha uma

uniformidade de comportamento das séries ao longo do tempo, e mais, a utilizagdo de séries
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muito longas pode gerar um enviesamento do modelo. Por tal razio a janela
preferencialmente utilizada no computo do VaR sera a de 255 dias.

A Tabela (4.12) a seguir mostra um quadro resumo com os resultados dos modelos
assimétricos EGARCH para as a¢des em analise com 255 dias e 510 dias de janelas, enquanto

que na Tabela 4.13 estdo os resultados para o GARCH-L.

Tabela 4.12: Quadro resumo com os melhores modelos ARMA-EGARCH®' com janela de
255 ¢ 510 dias.

Q —teste (4)|Q —teste (8)| AIC BIC
Vale do Rio Doce PNA (252 dias)| (0,0) (1,1) | (0,0) (1,1) |(0,1)(1,3)|(0,0) (1,1)
Petrobras PN (252 dias) (0,0) (1,1) | (0,0) (1,1) |(0,1) (1,1)|(0,1) (1,1)
Telemar PN (252 dias) (0,0) (1,1) | (0,0) (1,1) [(0,1)(2,2)](0,1) (1,1)
Vale do Rio Doce PNA (504 dias)| (0,0) (1,1) | (0,0) (1,1) |(0,1)(1,3)](0,0) (1,2)
Petrobras PN (504 dias) (0,0) (1,1) | (0,0) (1,1) |(0,1)(1,3)|(0,1)(1,3)
Telemar PN (504 dias) (0,0) (1,1) | (0,0) (1,1) [(0,1)(1,3)](0,1)(1,3)

Fonte: Elaboracao propria.

Tabela 4.13: Quadro resumo com os melhores modelos ARMA-GARCH-L com janela de 255

e 510 dias.
Q —teste (4) | Q —teste (8)| AIC BIC

Vale do Rio Doce PNA (252 dias)| (0,0) (1,1) | (0,0) (1,1) |(0,1)(1,1)](0,1)(1,1)
Petrobras PN (252 dias) (0,0) (1,1) | (0,0) (1,1) |(0,1)(1,1)|(0,1)(1,1)
Telemar PN (252 dias) (0,0) (1,1) | (0,0) (1,1) [(0,1) (1,1)](0,1) (1,1)
Vale do Rio Doce PNA (504 dias)| (0,0) (1,1) | (0,0) (1,1) |(1,1)(1,1)|(1,1)(1,1)
Petrobras PN (504 dias) (0,0) (1,1) | (0,0) (1,1) |(0,1)(1,1)|(0,1)(1,1)
Telemar PN (504 dias) (0,0) (1,1) | (0,0) (1,1) [(0,1) (1,1)](0,1) (1,1)

Fonte: Elaboragao propria.

Os resultados indicaram que os modelos parcimoniosos foram superiores. Uma
observagao ¢ pertinente: os Q-testes mostraram-se pouco sensiveis as mudangas dos modelos
assimétricos e os testes AIC e BIC pouco sensiveis nos modelos GARCH-L. Em fungao
destes resultados foi utilizado o modelo ARMA (0,1)-EGARCH (1,1,1) para representar os

modelos assimétricos para a Petrobras PN. Observa-se que a Petrobras PN possui um

' 0 modelo ARMA (0,0)-EGARCH (1,1) é na verdade o modelo ARMA (0,0)-EGARCH (1,1,1).
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componente de tendéncia no seu comportamento, isto pode ser observado tanto nos graficos

quanto nas equagdes mais adaptativas relativas a esta agao.

4.4 Definindo as Carteiras.

Com a modelagem do principal parametro (a volatilidade) definida, o passo seguinte ¢ a
estimacdo do VaR. Esta estimagdo sera realizada para carteiras com agdes, para carteiras com
opgdes e carteiras mistas (carteiras hedgeadas).

Para as agOes serdo sete carteiras, uma para cada ativo simples, totalizando 3; trés
carteiras com dois ativos cada uma; e uma carteira com os trés ativos. A participacao de cada
ativo nas carteiras ¢ feita eqiiitativamente para que cada ativo tenha uma contribui¢do
idéntica; desta forma o valor inicial da carteira passa a ter um papel secundario. A principal
ressalva com relagdo a esta questdo € o principio da divisibilidade dos ativos, entretanto, este
efeito pode ser minimizado aumentando-se o valor da carteira inicial ou com pequenos ajustes
na participagdo relativa de cada ativo; assim sendo este efeito foi ignorado neste trabalho.

As estratégias de opgdes avaliadas sdo: call ratio, borboleta com posicdo comprada,
borboleta com posi¢do vendida, todas para opgdes de compra da Telemar PN por terem
maiores liquidez. Na estratégia call ratio, ou posicao vendida, o investidor espera que o ativo-
objeto se mova acentualmente em qualquer direcdo, por esta caracteristica ¢ classificada
também como compra de volatilidade. A estratégia ¢ obtida com uma posi¢do comprada de
uma op¢ao no dinheiro e uma fora do dinheiro, mais uma posi¢ao vendida dentro do dinheiro.
Esta estratégia permite um baixo risco de perdas mas com razoavel potencial de ganho.

Quando um investidor opta por uma estratégia borboleta com posicdo comprada ¢
porque estd com expectativa de estabilidade de precos do ativo-objeto. Quando hé variagdes
acentuadas de pregos o investidor perde dinheiro, por tal razdo o mercado chama esta
estratégia de venda de volatilidade. E formada pela compra de uma opgio de compra dentro
do dinheiro e uma fora do dinheiro e duas posi¢cdes vendidas no dinheiro-.

J& a estratégia inversa, borboleta com posi¢do vendida, também é uma opg¢ao de compra
de volatilidade, e o investidor perde dinheiro quando o valor do ativo-objeto atinge um
patamar de preco superior a opgao de fora do dinheiro ou inferior & opgao dentro do dinheiro.
Assim ela ¢ formada por uma posi¢ao vendida de uma opg¢ao de compra dentro do dinheiro e

uma fora do dinheiro e duas posi¢cdes compradas no dinheiro.
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Para cada uma destas estratégias hd na verdade 12 carteiras diferentes, uma para cada
vencimento e as opgdes que compde cada carteira sdo as de maior liquidez (mais préximas ao
vencimento), neste experimento ndo se verifica superposicao de observagdes.

Por fim, as estratégias de hedge contemplam carteiras de agdes que possuam a Telemar
PN na sua composi¢do sendo acrescida de opc¢des no dinheiro da Telemar PN, na proporcao

do inverso do seu delta, como apresentado a seguir:

1
R, _S+(gjcz (4.1)

onde S ¢ o ativo-objeto, C; a opgao no dinheiro e o o delta da opgdo. Esta estratégia ¢
conhecida como delta neutro.
Para cada uma destas estratégias (carteiras), os diversos modelos de VaR serdo

avaliados sob duas perspectivas: a estatica e a dindmica.

4.5 Estimando o Value at Risk Estatico.

O Comité de Basiléia sugere que os parametros do VaR sejam revistos a cada trés
meses, este serd portanto, a freqiiéncia de reajustes dos pardmetros, como, médias, variancias,
parametros dos modelos GARCH, EGARCH, etc. Logo, esta se¢do ira descrever os resultados
obtidos quando os parametros s3o reajustados a cada 66 dias Ttteis (trés meses
aproximadamente), entretanto, o VaR sera verificado diariamente para o periodo estipulado.

Nas carteiras s6 com a¢des o VaR normal ¢ suas Variag:(N)esé2 representa 0 VaR
paramétrico, para estratégias com opgodes, 0 VaR paramétrico ¢ representado pelo VaR das
gregas. As metodologias ndo paramétricas sdo a historica e de Monte Carlo (com suas
variagdes), no entanto, para as estratégias apenas com opg¢oes nao ha justificativas para o uso
do VaR historico em funcdo da quantidade reduzida de dados para cada carteira particular

(aproximadamente 22 observagoes).

62 As varia¢des do modelo delta-normal sdo obtidos com mudancas na forma de estimar a volatilidade.
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4.5.1 VaR Estatico das Acgoes.

Os modelos de VaR para carteiras de agdes testados foram: VaR delta-normal com
volatilidade tradicional (padrao) dada pela Equagdo (2.36), VaR delta-normal com erros
heterocedasticos do tipo GARCH e do tipo EGARCH; o método de simulagdo historica
(MSH) tradicional (conforme a Se¢do 3.5), com bootstrap (Subsegdo 3.5.1), com mirror
cenarios (Subsecao 3.5.2), e de cendrios ponderados (Subsegdo 3.5.3); o método de simulagdo
de Monte Carlo (MSMC) com volatilidade tradicional dada pela Equag¢ado (2.36), MSMC com
erros heterocedasticos do tipo GARCH e do tipo EGARCH.

Na metodologia do MSMC foram adotadas duas solugdes para a trajetdria de precos:
uma dada pela solu¢do da Equacdo (3.48) onde u ¢é substituindo por r, a taxa de juros livre de
risco™, obtendo assim a precificacdo exata de Euler de opc¢des européias para volatilidade
constante (Equagdo (4.2) a seguir). A segunda ¢ uma extensdo da primeira conhecida como

solugdo exata de Milstein para volatilidade constante (Abe, 2002), Equacao (4.3).

S, =S [1+7At+ 0,Az, | (42)

t+A.t

t+A.t

S, = S{l+rAz+ogAzt +%af ((Az,)? —At)} (4.3)

Além das duas solugdes acima utilizando r como médias dos modelos ainda estimou-
se 0 VaR com o p obtido por estimacdo da média obtida diretamente da equagdo da média
dos modelos autoregressivos dados pela Equagdo (2.45), para o VaR com os modelos
GARCH e EGARCH, ja para o VaR com volatilidade tradicional a média foi calculada via
um modelo autoregressivo ARMA (0,1).

Nos modelos que utilizaram a volatilidade estimada via o GARCH ou EGARCH a
volatilidade diaria variou, no entanto os parametros para calcular esta volatilidade foram
mantidos inalterados durante as 66 observacgdes, apos as 66 observacdes novos parametros

formam determinados e um novo grupo de 66 volatilidades estimado.

% Taxa de juros SELIC (Sistema Especial de Liquidagdo e Custodia), que reflete o custo médio das operagdes
com titulos publicos federais.
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O método de simulagdo historica de bootstrap foi realizado com amostra de tamanho
10.000 com reposicdo para cada janela de 255 observagdes.

J4 o método de Monte Carlo foi estimado com 24 passos (simulando as 24 horas
diarias) e 10.000 repeticoes para cada dia de simulagdo, ou seja, para um ano teve-se 61,2
milhdes de simula¢des® (para dois anos 122,4 milhdes).

Em funcdo da mudanca temporal de comportamento das séries, utilizaram-se dois
tamanhos de amostra para a verificagdo da eficiéncia do modelo: um ano e dois anos. Assim ¢
possivel checar se um modelo ¢ eficiente no médio prazo.

Os primeiros resultados estdo apresentados na Tabela 4.14 a seguir com as estimativas
do VaR delta-normal e de simulagdo histdrica para a Vale do Rio Doce PNA para o periodo
de 2 anos, ¢ na Tabela 4.15 as estimativas do modelo de simula¢dao de Monte Carlo.

O teste de Kupiec foi realizado comparando o nimero de violagdes com o intervalo de
confianga a 5% da Tabela 3.3, ja o teste de Lopez 1 foi calculado segundo a metodologia
descrita na Se¢do 3.8.2. Entretanto, observa-se um problema com esta medida: o valor desta
coincide com a taxa de violagdes, tornando a medida de carater secundario e beneficiando os
modelos com menor taxa de violagdes, deixando para um segundo plano a distancia entre o
VaR e a perda real.

Para minimizar este problema foi sugerido um novo teste (Perda de Lopez 2) baseado

numa modificagdo do teste padrdo de Lopez, no qual a Equagdo (3.56) ¢ substituida pela

Equacao (4.4) abaixo.
P —VaR ), se u, <VaR
» — ( t m,t) t m,t (44)
’ 0, se u,2VaR,,

% Fora as estimagdes da volatilidade.
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Tabela 4.14: VaR estatico-1 da Vale do Rio Doce PN com 510 observagdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 M¢édio Desvio Padrdo| Maéximo Minimo

Delta-normal 224 43,92 R | 04392 |1,3749<10%|-5,2635x107*| 1,1549<107 |-5,2635x10"|-5,2635x10

Tradicional

Delta-normal 4 4 5 4 4

GARCH (0,0) (1.1) 224 43,92 R 0,4394 |1,3675x107"|-5,8733x10™"| 4,4053x10” |[-6,6590x107"|-5,2445x10

Delta-normal 4 4 5 4 4

EGARCH (0,0) (1.1.1) 223 43,73 R 0,4374 | 1,3569x107"|-6,7172x107"| 8,2101x10™ |[-8,1771x107"|-5,7029x10

MSH. . 25 4,90 A 0,04902 | 5,5401x10° | -0,02846 | 2,6046x10™° -0,02846 -0,02846

Tradicional

MSH 127 24,90 R 0,2490 |5,0226x107| -0,01074 7,8407x10™ -0,01196 [-9,5085x107

Bootstrap

MSH ' 17 3.33 A 0,03333 |3,3670x10°| -0,03160 1,8059x107'° -0,03160 -0,03160

Mirror cenarios ’

MSH . 13 2,55 R 0,02549 | 1,8714x10°| -0,03479 2,4435x107 -0,03573 -0,02846

Cenarios ponderados

Obs.: A significa aceito no teste de Kupiec com 95% de significancia e R reprovado.
Fonte: Elaboragao propria.



Tabela 4.15: VaR estatico-2 da Vale do Rio Doce PN com 510 observagdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo | Maximo | Minimo

MSMC Tradicional 25 4,96 A |0,04960 | 5,5896x10°|-0,02783 | 2.9667:10™ |-0,02814]-0,02743

Modelo 1 com r constante

MSMC Tradicional 25 4,96 A |0,04960 | 5,6845x10°]-0,02772| 2,9433:10* [-0,02802 |-0,02732

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 26 5.16 A [0,05159|6,1715x10°]-0,02721| 6.6165:10° |-0,02724|-0,02686

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 26 5.16 A |0,05159 |6,2694x10°|-0,02711| 6,5656:10° |-0,02713|-0,02675

Modelo 2 com r constante

MSMC EGARCH (0,0) (1,1,1) 12 2.35 R [0,02353 | 1,8587x10°|-0,03594| 4,5795:107 |-0,04433|-0,03048

Modelo 1 com r constante

MSMC EGARCH (0,0) (1,1,1) 12 2.35 R [0,02353 |1,9292,10°|-0,03575| 4,5309:107 |-0,04405 |-0,03035

Modelo 2 com r constante

MSMC Tradicional 29 5,69 A | 0,05689 |5,9975:10°|-0,02780| 2,6702:10° |-0,03104 |-0,02212

Modelo 1 com r variavel

MSMC Tradicional 29 5,69 A |0,05689 | 6,1024x10°]-0,02769| 2,6697x10° [-0,03092 |-0,02200

Modelo 2 com r variavel

MSMC GARCH (0,0) (1.1) 25 4,96 A ]0,04960 [5,9072:10(-0,02743 | 4,5361x10% |-0,03153 |-0,02673

Modelo 1 com r variavel

MSMC GARCH (0,0) (1.1) 25 4,96 A ]0,04960 | 6,0047x10°(-0,02731| 4,5056:10% |-0,03139 |-0,02665

Modelo 2 com r variavel

MSMC EGARCH (0,0) (L.LL)| 1,96 R |0,01961 | 1,7345:10°(-0,03741| 5,4128:10° |-0,04736|-0,03057

Modelo 1 com r variavel

MSMC EGARCH (0,0) (1,1,1) 11 2.16 R [0,02157 |1,7760x10°|-0,03722| 5,5361:107 |-0,04708 |-0,03044

Modelo 2 com r variavel

Fonte: Elaboragao propria.
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O VaR médio foi colocado nas tabelas ndo s6 pela importancia da medida de risco,
mas também, por que a partir dela as instituicdes devem definir o capital requerido como
garantia do risco de mercado (Equacdo (3.53)). Quanto menor o VaR, desde que ele nao
ultrapasse o limite de Kupiec, melhor. Por fim, as medidas do desvio padrdo, o minimo e
maximo VaR sdo medidas que indicam o grau de variabilidade do VaR; o que nao significa
quanto menor a variabilidade, melhor. Na verdade ¢ esperado que o VaR tenha uma
variabilidade acompanhando as mudangas do valor da carteira, minimizando a possibilidade
de superestimacao do VaR.

Os resultados da Tabela 4.14 mostram que os modelos baseados na metodologia delta-
normal ndo sdo eficientes para estimar o VaR da acdo da Vale do Rio Doce PNA para o
periodo em questdo. Para o MSH apenas as técnicas tradicionais e Mirror cenarios foram
satisfatorias, onde Mirror cenarios foi superior segundo o teste de Kupiec 2, mas a técnica
tradicional apresentou um menor VaR médio, reduzindo o capital requerido.

Com relagdo aos modelos MSMC todos tiveram bons desempenhos, com excecao aos
com volatilidade EGARCH. Em relacdo a func¢do de perda o melhor modelo foi o VaR de
Monte Carlo com volatilidade tradicional e com o modelo de Euler definindo a trajetéria de
precos € com média constante.

Com relagao ao menor VaR, o melhor com tal caracteristica foi o MSMC — GARCH
modelo 2 (Milstein) e com p constante. De uma forma geral os melhores modelos formam a
simulagdo histdrica tradicional e 0 MSMC — GARCH modelo 2 com p constante.

No Apéndice 2 encontram-se os resultados de um ano do VaR da Vale do Rio Doce
PNA, neste observa-se uma piora em relacdo a analise de 2 anos, j4 os melhores modelos
foram o MSMC — EGARCH modelo 1 com p constante (igual a r) e o MSH — Bootstrap,
respectivamente em fungdo da perda de Lopez 2 e da média.

No Apéndice 3 estdo os resultados detalhados da Petrobras PN e Apéndice 4 os
resultados da Telemar PN. Na Tabela 4.16 encontra-se um quadro resumo com as melhores

metodologias para as carteiras simples.
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Tabela 4.16: Quadro resumo com melhores modelos de VaR estatico para carteiras simples.

Cartoira Funcéo de Perda Menor VaR médio
255 observagoes | 510 observacoes | 255 observagoes | 510 observagdes
Vale do Rio Doce | MSMC EGARCH. | MSH MSH MSMC GARCH
Mod. 1 r cte. Mirror cenarios | Bootstrap Mod. 2 r cte.
Petrobras MSMC EGARCH | MSH cenérios | MSMC trad. MSMC EGARCH
Mod. 1 r cte. Ponderados Mod. 2 r var. Mod. 2 r cte.
Telemar MSMC EGARCH | MSH MSMC trad. MSMC trad.
Mod. 1 r cte. Mirror cenarios | Mod. 2 r var. Mod. 2 r cte.

Fonte: Elaboragao propria.

Os resultados mostram que o VaR delta — normal ndo ¢ adequado para as séries em
analise. Em func¢ao disto, nas carteiras com mais ativos estes modelos ndo serdo considerados,
uma vez que quanto maior a quantidade de ativos menor a probabilidade de boas taxas de
acerto dos modelos. Foi feita uma tentativa de melhorar o modelo delta-normal via a inclusdo
da analise com cenarios de stress, entretanto este melhorou o modelo no maximo em 2%,
resultado pouco satisfatorio para modelos cujas taxas de acerto sdo de aproximadamente 50%.

A Tabela 4.16 mostra que os modelos MSH e MSMC sdo eficientes para determinar o
VaR destas carteiras, no entanto, as metodologias MSH formam eficientes em poucos casos,
enquanto o MSMC conseguiu cobrir uma gama maior de carteiras e situagdes. A diferenca
entre a analise de 1 e 2 anos refor¢a a idéia que um comportamento diferenciado das séries
pode levar as diferengas na avaliagdo de risco. Entre os modelos MSMC o mais adequado foi
0 MSMC — EGARCH modelo 1 com média constante e igual a taxa de juros livre do risco.

Na Tabela 4.17 a seguir estdo os melhores modelos de VaR aplicados as carteiras com
dois e trés ativos. Destaque para o Mirror cendrios que foi o preferivel para carteiras com dois

ativos pelo critério da func¢ao de perda.




Tabela 4.17: Quadro resumo com os melhores modelos de VaR estatico para carteiras com

dois e trés ativos.

Carteira Funcao de Perda | Menor VaR médio

Vale do Rio Doce + Petrobras MSH Mirror MSH Mirror
Cenarios Cenarios

Vale do Rio Doce + Telemar MSH Mirror MSMC GARCH
Cenarios Mod. 2 r variavel

Telemar + Petrobras MSH Mirror MSMC tradicional
Cenarios Mod. 2 r variavel

Vale do Rio Doce + Telemar + Petrobras | MSMC GARCH | MSMC tradicional
Mod. 2 r constante | Mod. 1 r variavel
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Fonte: Elaboracao propria.

A Figura 4.13 a seguir mostra um grafico com os valores reais da carteira (em
vermelho) e o VaR calculado segundo MSMC GARCH modelo 2 com r constante para a
carteira com os trés ativos. E na figura seguinte (4.14), o VaR segundo o mirror cenarios para
a carteira Telemar + Petrobras.

Comparando-se as figuras ¢ nitido que o VaR mirror cendrios tem pouquissima
adaptatividade quando comparado com o MSMC.

Um detalhe relevante deve ser mencionado, ndo had um padrdo de escolha dos modelos
de VaR estaticos para as carteiras e periodos em questdo, cada caso é um caso. E mais, os
modelos com maiores taxas de eficiéneia explicativa® do VaR foram os MSMC com
volatilidade EGARCH, com 85,71% ¢ os MSMC - GARCH com 71%. Ja o MSMC com
volatilidade tradicional o patamar de eficiéncia ficou entre 57 e 71%; entre os modelos MSH
o melhor desempenho foi do mirror cenarios com 43%. Outra curiosidade ¢ que na carteira
Vale do Rio Doce PNA + Petrobras PN os Uinicos modelos que atenderam ao teste de Kupiec
com 95% de significincia formam o MSH mirror cenérios e os MSMC EGARCH com média

variavel.

% Definindo eficiéncia explicativa como a taxa de ndo rejei¢do do modelo pelo teste de Kupiec. Exemplo: o
mirror cenarios foi aceito em 3 das 7 carteiras, ou seja, 43% aproximadamente de eficiéncia explicativa.
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Figura 4.13: VaR de MSMC GARCH Modelo 2 com r constante para a carteira Vale do Rio

Doce + Telemar + Petrobras

Fonte: Elaboragao propria.
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Figura 4.14: VaR de mirror cenarios para a carteira Telemar + Petrobras.

Fonte: Elaboracao propria.
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4.5.2 VaR Estatico das Opg¢oes.

Os modelos de VaR para opg¢des utilizados foram os métodos das gregas (como
metodologia paramétrica) e o MSMC com volatilidade tradicional, com volatilidade GARCH
e EGARCH. Os resultados completos encontram-se no Apéndice 6, para a metodologia das
gregas seguiu-se o procedimento apresentado na Secdo 3.4 e os modelos de MSMC a
metodologia com a solu¢ao do modelo de precificagdo do ativo 1.

Os resultados mostraram que nenhum dos modelos de VaR estatico foi satisfatorio
para as estratégias com opcdes em estudo, mostrando que a metodologia estatica ndo ¢ uma
boa alternativa para a analise do VaR de opg¢des do mercado brasileiro, assim sendo ndo sera
avaliado o VaR estatico de carteiras mistas, ja que ndo existe confiabilidade dos resultados em

relacdo as opgoes.

4.6 O Value at Risk Dinamico.

Os modelos estimados sd3o os mesmos da abordagem estatica, tanto para carteiras com
acoOes, quanto para carteira com opgoes. A diferenca fundamental estd na natureza dindmica
das estimacdes. Todos os pardmetros do VaR didrio sdo calculados via uma janela de
observagdes de 255 dias moveis, ou seja, diariamente uma nova informag¢do ¢ adicionada a

janela e a informagdo mais antiga ¢ desprezada.

4.6.1 VaR Dinamico das A¢oes.

A Tabela 4.18 a seguir apresenta um resumo com os melhores modelos para carteiras
simples com metodologia dindmica, cujos resultados completos estdo nos Apéndices 7, 8 e 9.
Na tabela ¢ evidente a adequag¢do dos modelos de Monte Carlo para tais carteiras (ou ativos
simples), onde os modelos heterocedasticos segundo a modelagem tipo 2 e com o r variavel
mostraram os menores valores de VaR médio. J& quando o critério ¢ a fung¢do de perda o
resultado ndo ¢ homogéneo, os modelos Monte Carlo heteroceddstico simétrico, o de
simulagdo histérica com mirror cenarios ¢ o MSMC tradicional foram preferiveis

respectivamente para a Vale, a Petrobras e a Telemar.
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Tabela 4.18: Quadro resumo com os melhores modelos de VaR dindmico para carteiras
simples.

Carteira Funcgao de Perda Menor VaR médio

Vale do Rio Doce PNA | MSMC GARCH MSMC EGARCH

Mod. 1 com r constante | Mod. 2 com r variavel

Petrobras PN MSH Mirror MSMC EGARCH
Cenarios Mod. 2 r variavel
Telemar PN MSMC tradicional MSMC GARCH

Mod. 1 com r variavel |Mod. 2 r variavel

Fonte: Elaboragao propria.

Os resultados mostram que mesmo com um ajuste dindmico dos dados os modelos
delta-normal ndo tiveram bons resultados (mesmo com a analise de stress).

Quanto a carteiras com dois e trés ativos, os resultados mostram que o comportamento
individual do ativo ¢ diferente caso ele esteja inserido numa carteira, isto pode ser observado
com as agoes da Vale do Rio Doce e da Petrobras. Para cada ativo individualmente, o modelo
que apresenta o menor VaR médio ¢ o MSMC EGARCH, no entanto, para uma carteira com
estas duas a¢des igualmente divididas o melhor modelo ¢ o MSH tradicional.

A Tabela 4.19 mostra os melhores modelos para as carteiras duplas e triplas, dois
aspectos devem ser ressaltados: o primeiro € relacionado com o método de bootstrap, a inica
carteira onde este modelo ndo foi rejeitado pelo teste de Kupiec foi exatamente a que ele se
apresentou como a melhor op¢ao pelo critério do VaR médio (a Telemar mais a Petrobras); o
segundo aspecto ¢ que o modelo MSMC EGARCH tipo 2 e 1 com r variavel teve um

resultado muito proximo ao do MSH tradicional na Vale do Rio Doce + Petrobras.
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Tabela 4.19: Quadro resumo com os melhores modelos de VaR dindmico para carteiras com

dois e trés ativos.

Carteira Funcao de Perda | Menor VaR médio
Vale do Rio Doce + Petrobras MSMC GARCH |MSH
Mod. I r constante | Tradicional
Vale do Rio Doce + Telemar MSMC GARCH |MSH
Mod. 1 r constante | Tradicional
Telemar + Petrobras MSMC Tradicional | MSH
Mod.1 r constante | Bootstrap
Vale do Rio Doce + Telemar + Petrobras | MSH Mirror MSMC EGARCH
Cenarios Mod. 1 r variavel

Fonte: Elaboracao propria.

Houve uma elevagao da taxa de capacidade explicativa dos modelo, os modelos MSH

tradicional e mirror cendrios, MSMC GARCH (todos os tipos), MSMC tradicional r constante
e MSMC EGARCH r variavel, tiveram 100% de eficiéncia. E os modelos MSMC tradicional

r variavel e MSMC EGARCH r constante, 85,71%; os demais ndo tiveram resultados

satisfatorios.

A Figura 4.15 mostra os valores reais da carteira da Vale do Rio Doce + Telemar (em

vermelho), bem como o0 VaR MSMC GARCH modelo tipo 1 com r constante (em verde) e

MSH tradicional (em preto). Observa-se uma relativa adaptatividade dos modelos de VaR de

MSMC aos valores reais da carteira.
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Figura 4.15: VaR de MSMC GARCH Modelo com 1 r constante e MSH tradicional para a
carteira Vale do Rio Doce + Telemar.

Fonte: Elaboragao propria.

4.6.2 VaR Dinamico das Opg¢odes e Carteira Hedgeada.

Os resultados do VaR dindmico para as carteiras com opgdes estdo no Apéndice 11. A
exemplo do modelo paramétrico delta-normal para acdes, o VaR paramétrico delta-gama
também nao foi suficientemente explicativo, mesmo com a modelagem dindmica. J4 com os
modelos ndo paramétricos MSMC houve melhoras.

Das trés carteiras de opg¢des a Unica com bons resultados foi a carteira borboleta
vendida, apenas os modelos MSMC tradicional ¢ GARCH com r variavel ndo foram
aprovados pelo teste de Kupiec. Na carteira call ratio o tnico modelo aprovado foi o modelo
MSMC EGARCH com r constante. Nas demais carteiras o VaR foi sub estimado.

Nas Figuras 4.16 ¢ 4.17 (em preto o VaR) a seguir, ¢ observado uma razoavel
adaptabilidade do VaR MSMC GARCH com r constate a variacdo do retorno das carteiras,

apesar do VaR ndo apresentar um resultado satisfatorio.
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Figura 4.16: VaR MSMC GARCH com r constante para a carteira de opgoes call ratio.

Fonte: Elaboragao propria.

RetornofaR
]

-10 .

_1 :2 | | | 1 |
a a0 100 150 200 240
Tempo

Figura 4.17: VaR MSMC GARCH com r constante para a carteira borboleta comprada.

Fonte: Elaboragao propria.
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A Figura 4.18 mostra a eficiéncia e capacidade de adaptacio do VaR MSMC GARCH
r constante a dindmica da carteira borboleta vendida. No entanto, a eficiéncia do VaR é
contraditoria com os resultados das demais carteiras. Todas as carteiras de opgdes sdo
formadas pelos mesmos ativos, apenas a propor¢do destes ¢ diferente. Uma andlise mais

detalhada deste fenomeno serd apresentada na préxima segao.

Fetorno™faR
]
]
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.12 1 1 1 1
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Figura 4.18: VaR MSMC GARCH com r constante para a carteira de opgoes borboleta
vendida.

Fonte: Elaboragdo propria.

O resultado da carteira hedgeada ¢ semelhante ao da carteira borboleta vendida,
indicando que o bom desempenho do VaR pode ser motivado por uma escolha “adequada” da
propor¢ao dos ativos. A Figura 4.19 mostra que apesar do resultado o VaR MSMC GARCH
com r constante ndo ¢ adaptativo, assim sendo o VaR ¢ super estimado € uma institui¢do que

utilize esta metodologia estard alocando recursos acima da real necessidade.
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Figura 4.19: VaR MSMC GARCH com r constante para a carteira hedge delta neutro da
Telemar.

Fonte: Elaboragéo propria.

4.7 Analise dos Resultados

Uma analise dos resultados passa necessariamente por uma comparagao dos resultados
obtidos, seja com diferentes modelos de volatilidade, seja com modelos de precificagdo dos
ativos ou freqiiéncia de ajuste dos parametros. A primeira avaliagdo ¢ sobre a capacidade dos
modelos paramétricos € ndo paramétricos em capturar o risco do mercado acionario brasileiro.

Os modelos paramétricos tiveram resultados aquém daqueles obtidos por trabalhos com
acOes de mercados mais desenvolvidos como Ammann e Reich (2001), mas igualmente
insatisfatorios como no trabalho de Pichler e Selitsch (1999). No caso do mercado brasileiro
os resultados estdo coerentes com os achados por Bezerra (2001). Em suma, pelo menos para
o periodo de andlise e para as agdes e carteiras estudadas o VaR baseado nas técnicas delta-
normal ndo sdo satisfatorios, tanto para a técnica estatica quanto a dindmica.

Quanto aos modelos ndao paramétricos os resultados foram de uma forma geral

satisfatorios. Em particular a metodologia de simulacdo historica com a sistematica estatica
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ndo conseguiu acompanhar a dindmica dos ativos. Houve uma melhora quando a amostra
passou para 510 observagdes, incorporando um periodo de relativa estabilidade. Ao permitir
um ajuste diario, o MSH nas modalidades tradicional e de mirror cenérios se ajustaram bem a
dindmica de retorno das carteiras.

O modelo mirror cendrios foi superior, pelo critério da funcdo de perda 2, ao MSH
tradicional. Corroborando com um jargdo comum no mundo dos investimentos “rentabilidade
passada ndo ¢ garantia de ganhos futuros”, no entanto, o desempenho passado pode ser
utilizado para balizar o futuro e se este balizamento utilizar o comportamento da série mas
abrindo mao da tendéncia incutida nos dados esperam-se resultados melhores.

Com relagdo aos cenarios ponderados um maior peso dos fatores de risco passados pode
melhorar o desempenho. Neste trabalho o evento mais recente teve peso 255 ¢ o mais antigo
1, os eventos intermediarios uma combinagdo linear dos extremos. Na Figura 4.20 a seguir, os
maiores valores locais do VaR estdo proximos das maiores perdas reais locais, mas defasados,

sendo esta a maior critica a0 MSH com cenarios ponderados.
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Figura 4.20: VaR MSH cenérios ponderados para a carteira Petrobras + Telemar.
Fonte: Elaboragao propria.

Os modelos de simulagdo de Monte Carlo foram os que obtiveram melhores resultados

sob qualquer situacdo. Entretanto, como ja foi afirmado, com a sistematica dindmica a
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capacidade explicativa do VaR teve um aumento significante. Os resultados quando se utiliza
o modelo tipo 1 ou 2 sdo coerentes com os resultados esperados: o modelo tipo 1 aproxima-se
mais da distribui¢do real, tendendo a um menor valor da fun¢do de perda; enquanto que o
modelo tipo 2 ao se afastar da func¢dao de perda fornece um menor VaR médio. A relagao
fun¢do de perda x VaR médio deve ser avaliada em fun¢do do objetivo do VaR. Para uma
instituicao financeira, por exemplo, o modelo tipo 2 ¢ mais adequado.

Uma segunda mudanga aos modelos padroes de Monte Carlo foi a incorporacdo de
tendéncias aos modelos. Os resultados mostram que nao ha melhoras nos resultados das
fungdes de perdas, apesar de haver uma redu¢ao no VaR médio.

Com relagdo aos modelos de volatilidade a anélise prévia indicava que os ativos vale5 e
tnlp4 teriam melhores resultados com modelos GARCH, enquanto que a petr4 teria com
modelos de volatilidade EGARCH. Na tabela abaixo estdo indicados os melhores modelos em
funcdo da forma de estimar a volatilidade para grupos de avaliacdo estatica x dindmica e
tendéncias constantes x variaveis.

Os resultados mostram que apenas a Vale do Rio Doce (e suas carteiras derivadas)
tiveram resultados coerentes com o esperado (conforme Secdo 4.2) e que o comportamento
individual do ativo nem sempre ¢ o mesmo quando este esta num contexto de uma carteira.
Hé uma maior coeréncia dos resultados em funcdo da andlise prévia do comportamento da

heterocedasticidade quando a situacdo ¢ dindmica.
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Tabela 4.20: Melhores modelos de VaR para as carteiras de a¢des em fun¢do da volatilidade.

. . Simulagdo estatica | Simulagdo dindmica
Carteira Volatilidade
Constante | Variavel | Constante | Variavel
Tradicional X
Vale do Rio Doce | GARCH X X
EGARCH X
Tradicional X X X
Petrobras GARCH
EGARCH X
Tradicional X X
Telemar GARCH
EGARCH X X
Tradicional
Vale do Rio Doce +
GARCH X X
Petrobras
EGARCH X
Tradicional
Vale do Rio Doce +
GARCH X X X
Telemar
EGARCH X
Tradicional X X
Petrobras +
GARCH X X
Telemar
EGARCH
Vale do Rio Doce + | Tradicional
Petrobras + GARCH X X X X
Telemar EGARCH

Fonte: Elaboragao propria.

Por fim, a comparacao entre andlise estatica x dinamica. Comparando-se um a um, em
relacdo ao teste de Kupiec e da fungdo de perda 2, nos modelos de VaR estaticos com os seus
equivalentes dinamicos, encontram-se 80 resultados favoraveis ao VaR dindmico contra
apenas 49 ao VaR estatico. Em termos de capacidade explicativa apenas os modelos
dinamicos MSMC GARCH tiveram 100% de eficiéncia.

Diante do apresentado acima, a melhor alternativa as carteiras objetos do estudo ¢ o

VaR MSMC com volatilidade GARCH (1,1) modelo tipo 1 com r constante e igual a taxa de
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juros livre de risco com ajustes dindmicos. As demais alternativas de volatilidade também
constituem boas alternativas, mas com menor poder explicativo.

Os resultados também servem para testar se o Value at Risk ¢ uma medida de risco
coerente para o mercado de agdes em questdo. A Tabela 4.21 mostra os resultados do VaR

médio e indicam que o VaR dindmico calculado obedece ao axioma da subaditividade.

Tabela 4.21: Quadro indicativo da coeréncia do VaR como medida de risco

VaR (A+B+C) VaR A+VaRB+VaR C
Vale5 + Petr4 -0,02565 -0,02668
Vale5 + Tnlp4 -0,02451 -0,02988
Petr4 + Tnlp4 -0,02913 -0,03052
Vale5 + Petr4 + Tnlp4 -0,02211 -0,02903

Fonte: Elaboragdo propria.

O bom desempenho do MSMC dindmico sem incorporar variacdes ao modelo (4.2)
mostra que o mercado das agdes da Vale do Rio Doce PNA, da Petrobras PN e da Telemar PN
¢ eficiente, visto que o modelo (4.2) ¢ baseado no conceito de mercado eficiente.

A Definicdo 2.4 de Fama et al (1969) afirma que mercado eficiente ¢ aquele que se
adequa rapidamente as novas informacdes. A forte volatilidade do mercado brasileiro mostra
que os precos dos ativos ajustam-se as informacdes por meio das expectativas dos agentes
econdmicos. A questdo ¢ modelar o termo “rapidamente” de Fama, tarefa feita neste trabalho
com o ajuste diario do VaR.

Com a informagao precisa do risco e do retorno esperado, um agente econdmico diante
de suas preferéncias bem definidas (grau de aversdo ao risco) tem informagdes suficientes
para trilhar num ambiente de incerteza.

Para as carteiras com opgdes os resultados ndo foram satisfatorios segundo o teste de
Kupiec para o VaR estatico. Ja para o VaR dinamico a carteira borboleta vendida teve os
VaRs MSMC® aprovados no teste de Kupiec e as demais carteiras reprovadas.

Uma avaliagdo criteriosa das Figuras 4.16, 4.17 e 4.18 indica que de uma forma geral
houve uma correlagdo entre o valor real das carteiras ¢ os VaRs MSMC destas. Demonstra
que o VaR, apesar de ineficiente, tem um comportamento atrelado ao valor das carteiras.

Com relagdo ao hedge nao ha uma correlagdo entre o VaR e o retorno da carteira, no

entanto, como ndo ha problemas com relagdo a modelagem do ativo objeto ao se identificar

% Menos os MSMC tradicional e GARCH com r variavel.
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uma alternativa de especificacdo do modelo da op¢ao ha uma possibilidade de ajustamento do
VaR de hedge delta-neutro.

Os resultados obtidos com as carteiras com opgoes estdo de acordo com o trabalho de
Aratjo et al (2004)%’, no qual todas as carteiras foram reprovadas.

Diante do apresentado ndo se pode afirmar que o mercado de opg¢des da Telemar ¢
eficiente. Porém, o motivo da nao conclusdo pode esta atrelado a ma modelagem do VaR para

ativos nao lineares brasileiros. Uma investigacao deste aspecto sera objeto da proxima segao.

4.8 Ajustes Metodolégicos a Precificagdo de Opgoes.

As Figuras 4.16, 4.17 e 4.18 mostram que o VaR, apesar de ndo eficiente, apresenta
capacidade adaptativa a série real. A Figura 4.18 é uma prova deste fato, sugerindo que uma
melhora na precificagdo das opg¢des brasileiras ¢ uma possibilidade para a adequagao do VaR.

A analise de Black e Scholes afirma que o prémio de uma opg¢do européia ¢ funcdo do
valor do ativo objeto, do tempo até o vencimento, da volatilidade, do preco de exercicio e da
taxa de juros livre de risco. Entretanto, para o caso da Telemar no periodo de estudo, o
comportamento também depende de outro fator: do comportamento historico das opgoes. A
figura a seguir ilustra este fato, ¢ um grafico com o valor real da op¢ao dentro do dinheiro e o

valor da op¢ao calculado segundo a Equagdo (4.2), em vermelho o valor real do ativo.

67 Apesar do VaR da carteira borboleta comprada ter sido reprovado foi o que teve o melhor resultado.
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Figura 4.21: Valor real da op¢ao dentro do dinheiro versus valor calculado.

Fonte: Elaboragao propria.

O valor real da opg¢do ¢ maior que o calculado, mas esta diferenca segue um
comportamento que pode ser definido como um prémio ao risco. Apesar do valor esperado
menor que o valor real os investidores estdo dispostos a pagar pela diferenca por razdes
inerentes ao habito de jogar ou falta de conhecimento sobre o derivativo em questao.

A avalia¢dao mais simples do prémio ao risco € obtida via a regressdo representada pela
Equagao (4.5) abaixo. Nesta o prémio de risco tem dois componentes, o primeiro representado

¢ a expectativa atrelada ao valor esperado e “b” o prémio de risco minimo pago,

% A

por “a
independente do valor do ativo objeto e do preco de exercicio da opgao.

C = a(max(S - K,0)) + b (4.5)

Foi mantida para a regressao a janela mével de um ano para incorporar mudangas

estruturais e a avaliagdo foi baseada no menor valor da estatistica a seguir:
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255

Z (Creal,i - Ccalc,i )2
i=1
255

(4.6)

Ha trés possibilidades: a = 1, b = 0 ou sem restri¢gdes aos parametros. O método para
estimacao destes parametros foi o método dos minimos quadrados ordinarios. A avaliagao foi
realizada para cada opg¢do nas posigdes compradas e vendidas. Para as op¢des dentro do
dinheiro a melhor alternativa foi o modelo sem restri¢cdes, ja a op¢do no dinheiro a melhor
alternativo foi com b = 0 para a posi¢cdo comprada, ja para as posi¢des vendidas a = 1. O valor
médio dos parametros “a” foram 0,76 e 1,72 e para o pardmetro “b” 2,89 para
respectivamente para a op¢ao dentro do dinheiro e no dinheiroea=0,76;a=1;b=1,61eb=
1,89 nas posi¢des vendidas.

Para as opgoes fora do dinheiro ndo ha sentido em calcular o prémio de risco, visto
que o valor médio tanto da op¢ao calculada quanto a real é préximo de zero.

Os resultados para as carteiras call ratio, borboleta comprada, borboleta vendida e do
hedge delta neutro estdo na Tabela 4.22. Na Figura 4.22 abaixo uma representacdo do

resultado para a carteira borboleta vendida.

Retorno/VaR

1 1 1
0 50 100 150 200 250
Tempo

Figura 4.22: VaR MSMC GARCH dinamico para a carteira borboleta vendida.

Fonte: Elaboragao propria.
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Metodologia Numero de | Percentual de | Teste de | Perda de| Perdade | VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Méaximo |Minimo
MSMC Tradicional 8 3,14 A |0,03676| 0,0054 |-0.6935| 09313 -8,3606 | 0,0000
IS com r constante
S | MSMC GARCH (0,0) (1.1) 11 431 A |0,04887 |5,7356x107|-0,6694|  0,9174 -8,2588 | 0,0000
% com r constante
S
MSMC EGARCH (0,0) (1,1,1) 14 5.49 A 006018 52776:107|-0,6824| 0,93456 | -8.2762 | 0,0000
com r constante
< |MSMC Tradicional 31 12,16 R |023539| 0,11382 |-3,2250| 10,8480  [-117,1400| 0,0000
s com r constante
Q
£ |[MSMC GARCH (0,0) (1,1) 32 12,55 R |024108| 0,11559 |-3,1233| 10,7580  |-116,1800 0,0000
S | com r constante
o
5 |MSMC EGARCH (0,0) (LLI)| 57 10,59 R |034218| 023630 |-3,6159| 103700 [-119.3700| 0,0000
M | com r constante
MSMC Tradicional 14 5.49 A |0,14467| 0,08977 |-43828| 11,2380 |-130,4500]| 0,0000
_g com r constante
= |MSMC GARCH (0,0) (1.) 16 6,27 A ]0,16992| 0,10718 |-42882| 11,1750  |-129,9600| 0,0000
> | com r constante
o
5 |MSMC EGARCH (0,0) (LLI)} 9 7.45 A 023778 016327 |-41187| 10,7280 |-129,3300| 0,0000
M | com r constante
MSMC Tradicional 19 7.45 A | 0,07497 |4,6101,10*(-0,1047|  0,07653 | -0,5921 | 0,0000
g com r constante
=
2 IMSMC GARCH (0,0) (1,1) 20 7.84 A ]0,07941 [9,8403x107|-0,1042|  0,08254 20,6988 | 0,0000
& |comr constante
()
A |MSMC EGARCH (0,0) (1,1,1) 17 6,67 A |0,06746 |7.9601x10*|-0,1024|  0,07873 20,6727 | 0,0000
com r constante

Fonte: Elaboragao propria.
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Os resultados para as estratégias com opc¢des mostram que o ajuste do modelo
promoveu uma melhora significativa nos resultados, sem perda de aderéncia do modelo. No
entanto, os ajustes nao foram suficientes para que a estratégia borboleta comprada tivesse um
VaR eficiente. Houve melhoria discreta no modelo para esta carteira, mas ndao o suficiente
para que o VaR pudesse ser considerado eficiente a 5% de significancia.

Com relagdo a reducdo de risco esperada em relagdo a carteira ndo hedgeada, isto ndo
aconteceu, contrariando a expectativa de reducdo do risco com a carteira hedgeada. O que
sugere que o hedge delta-neutro ndo ¢ uma boa forma para reduzir o risco no mercado
brasileiro.

Entre os modelos o que mais se adequou as séries em estudo foi o MSMC com a
volatilidade tradicional por possuir um menor valor da perda de Lopez 2, entretanto para a
estratégia borboleta vendida a melhor alternativa, segundo os critérios da perda de Lopez 2,
foi 0 modelo com volatilidade EGARCH.

Apesar da melhora dos resultados em fun¢do dos ajustes nao se pode afirmar que estes
foram suficientes para justificar sua utilizacdo, entretanto, tal anélise ndo invalida o conceito
incorporado na teoria das opg¢des brasileiras, o prémio ao risco pago pelos investidores
brasileiros. Inclusive tal prémio ¢ um dos motivos para a ineficicia do hedge delta-neutro para

minimizacao do risco.
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5 CONCLUSOES

O objetivo principal deste trabalho foi analisar e estimar o risco de mercado via o

Value at Risk (VaR) de carteiras de agdes, op¢des e hedge do mercado brasileiro e verificar

qual o VaR mais adequado as carteiras. Os resultados mostraram que o VaR dinamico se

adapta melhor a dindmica do mercado e que as analises paramétricas ndo sao suficientes para

gerenciar o risco. Entre as técnicas ndo paramétricas, as que mais se adequaram foram as

simulagdes de Monte Carlo (MSMC), notadamente com volatilidade GARCH.

1.

Dentre as principais conclusdes deste trabalho, temos:

Os precos das acdes analisadas seguem o processo estocastico de Itd, logo ha
evidéncias que o mercado das acdes estudadas, pelo menos para o periodo em analise,
¢ eficiente. Com a alta volatilidade do mercado, faz-se necessario modelos que
incorporem com rapidez as novas informagdes implicitas nos precos.

A formulagao inicial do processo estocastico de It ndo precisou de ajuste, visto que o
mercado aciondrio brasileiro possui algum grau de desenvolvimento. Foi necessaria
apenas uma releitura dos principais conceitos econdomicos bdsicos que norteiam o
gerenciamento de risco, visando identificar lacunas na literatura aplicadas a mercados
emergentes.

O primeiro aspecto econdmico sob o qual ¢ baseado o modelo do VaR ¢ a eficiéncia
de mercado no sentido de Fama. Para o mercado brasileiro ndo héd evidéncias
empiricas conclusivas na literatura a este respeito. Boa parte dos trabalhos utilizam o
conceito do caminho aleatorio para verificar a eficiéncia de mercado.

Um dos argumentos da eficiéncia de mercado de Fama ¢ que as informagdes
disponiveis sdo rapidamente incorporadas aos mercados. Neste trabalho as
informagdes foram incorporadas ao modelo com atraso maximo de um dia. Logo, as
mudangas das expectativas dos agentes econdmicos indicados nos precos dos ativos,
faziam parte do modelo numa andlise de investimentos técnica. Tais modelos foram
chamados de modelos de VaR dinamicos pois, ndo sé novos pardmetros eram
incorporados, mas novas estimacgdes eram realizadas, sejam da volatilidade, processo
de Wiener, ou do proprio VaR.

Os resultados mostraram um ganho da capacidade explicativa para os MSMC de 71%

na andlise estatica com volatilidade GARCH para 100% na andlise dindmica. Além de
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uma redu¢do do VaR médio de 10% para a carteira valeS+petr4+tnlp4, reduzindo
desta forma o requerimento de capital como garantia do risco de mercado.

2. Os modelos heterocedasticos de volatilidade condicional adequaram-se bem as agoes,
no entanto, nao houve diferengas significativas nos resultados em fun¢ao da utilizacao
de modelos assimétricos de volatilidade.

Os testes de assimetria indicaram o modelo EGARCH como o ideal para a carteira
Petrobras PN. Mas ndo houve resultados conclusivos do VaR sobre a superioridade da
volatilidade EGARCH para esta carteira.

J& para carteiras com 2 ou 3 ativos, onde um deles ¢ a Petrobras PN, o modelo
EGARCH nao foi o mais adequado. De uma forma geral os modelos GARCH foram
os que apresentaram os melhores desempenhos. Dentre estes os preferidos foram os
parcimoniosos.

3. Os modelos paramétricos tiveram desempenhos inferiores aos modelos nao

paramétricos (de simulacdo). A suposi¢do que a distribuicdo dos retornos ¢
normalmente distribuida, ndo teve suporte empirico para as séries estudadas. De uma
forma geral, todos os modelos paramétricos foram rejeitados.
Os modelos ndao paramétricos com volatilidade padrao ndo tiveram resultados
inferiores significativamente ao da volatilidade GARCH a ponto de se rejeitar tais
modelos, indicando que um modelo paramétrico, mesmo com a suposicdo de
distribuicdo normal dos retornos, mais sofisticado com capacidade de capturar mais
fatores de risco podem ter resultados satisfatorios.

4. Os modelos de precificagdo de Black & Scholes ndo foram adequados as opc¢des em
estudo. Aparentemente o investidor utiliza o mercado de opg¢des brasileiro como um
jogo de sorte, cujas expectativas estdo baseadas mais no aspecto emocional que
racional. Assim sendo, ajustes na analise de Black & Scholes sdo relevantes para
incorporar tais caracteristicas.

A andlise dindmica, apesar de melhorar o desempenho, ndo foi suficiente as carteiras
de opgoes. A justificativa neste trabalho ¢ que o modelo de Black & Scholes nao
funciona, pelo menos na forma originalmente proposta, no mercado brasileiro de
opgoes de compra da Telemar PN no periodo estudado.

No modelo do B&S foi incluido um novo conjunto de informagdes: os precos dos
prémios das opg¢des®™. Este novo conjunto de informagdes traz as expectativas dos

agentes que participam deste mercado.

% No modelo original de B&S os pregos dos ativos objeto tinham todas as informagdes necessérias.
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Esta informacdo ¢ inserida no contexto do modelo de B&S como um prémio de risco
pago pelo investidor (para posi¢des compradas) numa aposta de forte alavancagem do
seu investimento, mesmo contrariando a racionalidade econdmica.

Os resultados empiricos mostraram que o ajuste ao modelo de B&S ¢ uma solugdo
viavel no mercado de opgdes de compra da Telemar PN no periodo analisado. Apesar
do baixo desempenho para carteira borboleta comprada.

5. O modelo Hedge delta-normal ndo foi suficiente para reduzir o risco de mercado

medido via o VaR da carteira com a¢ao da Telemar PN. Na verdade o risco médio foi
triplicado.
Como era esperado, um hedge com apenas o delta ndo ¢ suficiente para o mercado
brasileiro. Os resultados mostraram que ao invés de reduzir o risco, a op¢ao foi mais
um fator de risco. Provavelmente isto foi motivado, pelo preco dos prémios das opgdes
ou pelo gama elevado.

6. A diversidade das carteiras foi capaz de reduzir o risco. O VaR atendeu ao axioma da
subaditividade, sendo, portanto, uma medida coerente de risco (a0 menos para as
séries e periodos estudados). Sendo por conseqiiéncia, entre as alternativas de
investimento, a carteira com as ac¢des da Vale do Rio Doce PNA, Telemar PN e
Petrobras PN.

7. A analise dindmica traz resultados superiores a andlise estatica. Este resultado decorre
da possibilidade de se incorporar novas informag¢des ao modelo com defasagem tdo
pequena quanto o tempo para se dispor das novas informagdes. Tal aspecto levanta a
seguinte questdo: os estudos que demonstram a ineficiéncia do mercado estdo corretos,
ou o instrumental de andlise ndo tem capacidade de captar a dindmica e as

informagdes do mercado?

Assim sendo, neste trabalho os resultados obtidos mostram que modelos de
gerenciamento de risco desenvolvidos para os paises de primeiro mundo, em particular para
os mercados americanos, ndo funcionam plenamente no Brasil. Nao que os modelos estejam
incorretos, visto que algumas das premissas basicas e teorias sdo validas para o mercado
brasileiro, mas principalmente porque algumas particularidades locais devem ser incorporadas
aos modelos.

Diante dos resultados, fica como sugestdo para futuros trabalhos de pesquisa uma
melhor precificagdo das opgdes brasileiras, no qual o “prémio de risco” pago ao investidor

também seja uma funcdo do tempo até o vencimento e do preco de exercicio, desde que estes
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tenham poder explicativo. Outra possibilidade para o mercado de opgdes ¢ a andlise com
outras estratégias e com opgdes de compra e venda de outros ativos como agdes da Petrobras,
e de commodities como café e soja.

Os ajustes na precificacdo de opcdes podem ser realizados segundo o conceito de
independéncia em rela¢do aos eventos passados, com excec¢do do ultimo evento. Ou seja, o
seguindo um processo de Markov.

Outra sugestdo ¢ a incorporagdo da volatilidade estocastica e analise de saltos
estocasticos da volatilidade. Esta possibilidade fornece uma maior capacidade de ajustes do
modelo ao longo do dia (se os ajustes forem didrios). A busca de carteiras com ativos mais

volateis e/ou periodos mais criticos no tocante a influéncia de eventos de risco também

fortalecem a analise.
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Apéndice 1

Resultados dos testes de selecdo de modelos de volatilidade modelos GARCH (p.q):

Tabela A. 1: Resultados dos teste de sele¢ao de modelos ARMA (r, m) - GARCH (p,q); Vale
do Rio Doce PNA com janela de 252 dias (um ano). Em negrito os melhores.
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<
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Testes Testes

Q¥ Q@®)"°] AIC BIC
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8,9908|11,8634|-1279,22|-1254,72 7,3091|11,6061|-1281,153|-1251,754

8,9908|11,8634|-1277,23|-1247,83 7,3095|11,6048|-1279,165|-1244,867

8,9908|11,8634|-1275,23|-1240,93 7,3095|11,6047|-1277,165]-1237,967

8,9908|11,8634|-1279,57|-1255,07 7,316 |11,5702|-1281,244|-1251,846

8,9908/11,8634|-1277,58|-1248,18 7,3139|11,5783| -1279,29 |-1244,992

8,9908/11,8634|-1275,76|-1241,46 7,3173| 11,572 |-1277,433|-1238,236

8,9908/11,8634|-1273,76|-1234,56 7,3172|11,5722|-1275,433|-1231,336

8,9908|11,8634|-1277,57|-1248,17
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el el el el el el el el e e e e e e e e [l [l [l [l el el [l el el el (ol ol ol la ) fa Y (e
B[R PD[W[W[W[WIN N[N [ = DB DB W [W[W W [N NN [ = T
AW~ [DR[WIN [~ [ AR{WIN [ [WIN— [ AR[W[N[— [DR[WIN |~ |[ARWIN [~ (DLW~ |

5,63 19,31165]-1271,26]-1217,37 4,856319,08223]-1271,131[-1212,334

% Q-4 = Q-teste com 4 defasagens;
70 Q-8 = Q-teste com 8 defasagens.
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Tabela A. 2: Resultados dos teste de selecdo de modelos ARMA (r, m) — GARCH (p,q);
Petrobras PN com janela de 252 dias (um ano). Em negrito os melhores.

Modelo Testes Modelo Testes

rimiplq Q@) | Q(8) AIC BIC r implg Q@) | Q(8) AIC BIC

0] 0 (1/1/113,4704| 26,504 |-1161,89(-1142,29| 1 | 0 [1{1|5,37141|16,5908| -1164,8 | -1140,3
0] 0 (1|12/13,4704| 26,504 |-1163,72{-1139,23| 1 | 0 (1|2|5,35458| 16,535 |-1168,33|-1138,94
0] 0 (1|3]13,4704| 26,504 |-1163,61(-1134,21| 1 | 0 (1|3|5,36648| 16,573 |-1168,01(-1133,72
0] 0 (1/14/13,4704| 26,504 |-1161,96(-1127,66] 1 | 0 (1|4| 5,3695 |16,5814|-1166,27|-1127,07
0] 0 2/11]113,4704| 26,504 |-1159,89(-1135,39| 1 | 0 (2(1|5,37141]16,5908| -1162,8 | -1133,4
0] 0 2/12/13,4704| 26,504 |-1161,72{-1132,33| 1 | 0 2|2|5,35452|16,5348|-1166,33|-1132,04
0] 0 2|3]13,4704| 26,504 |-1161,61(-1127,31| 1 | 0 (2|3|5,36654|16,5732|-1166,01|-1126,82
0] 0 2/14/13,4704| 26,504 |-1159,96(-1120,76] 1 | 0 [2|4| 5,3695 |16,5814|-1164,27|-1120,17
0] 0 3|11/113,4704| 26,504 |-1157,89(-1128,49] 1 | 0 (3|1|5,37139|16,5908| -1160,8 | -1126,5
0] 0 3/12/13,4704| 26,504 |-1159,72(-1125,43| 1 | 0 (3|2|5,35455|16,5349|-1164,33|-1125,14
0] 0 [3|3]13,4704| 26,504 |-1159,61(-1120,41| 1 | 0 (3|3|5,36648| 16,573 |-1164,01|-1119,92
0] 0 3/14/13,4704| 26,504 |-1157,96|-1113,86| 1 | 0 3|4/5,36952|16,5815|-1162,27|-1113,27
0] 0 |4/1]113,4704| 26,504 |-1155,89(-1121,59| 1 | 0 4|1| 5,3713 |16,5906| -1158,8 | -1119,6
0] 0 |4/2|/13,4704| 26,504 |-1157,72|-1118,53| 1 | 0 4|2|5,35449|16,5346|-1162,33|-1118,24
0] 0 |4/3]13,4704| 26,504 |-1157,61|-1113,51| 1 | 0 4|3|5,36653|16,5732|-1162,01|-1113,02
0] 0 |4/4/13,4704| 26,504 |-1155,96(-1106,96| 1 | 0 |4|4/5,36955|16,5816|-1160,27|-1106,37
O 1 (1/1| 4,8131 [15,3251|-1166,03|-1141,53| 1 |1 (1|1|5,12507]|16,1485|-1162,83|-1133,43
0| 1 (1|2|4,74776(15,1411|-1169,78(-1140,38]| 1 | 1 [1|2|5,01256{15,9087|-1166,39| -1132,1
0] 1 (1|3]4,75989(15,1801|-1169,42(-1135,12] 1 |1 (1|3|5,03529|15,9711|-1166,07|-1126,87
0| 1 (1/4/4,76586[15,1983|-1167,67|-1128,48| 1 |1 (1|4/5,03302|15,9704|-1164,32|-1120,23
0] 1 [2/1|14,81329(15,3255|-1164,03[-1134,63| 1 |1 (2[1|5,12436|16,1476|-1160,83|-1126,53
0| 1 [2|12|14,74784(15,1414|-1167,78|-1133,48| 1 |1 (2|2|5,01234|15,9084|-1164,39| -1125,2
0] 1 [2|3|4,75996(15,1804|-1167,42{-1128,22] 1 |1 (2|3|5,03479|15,9699|-1164,07|-1119,97
0] 1 [2/14/4,76591[15,1984|-1165,67|-1121,58| 1 | 1 {2|4/5,03268|15,9697|-1162,32|-1113,33
0| 1 (3/1|14,81319(15,3253|-1162,03|-1127,73| 1 | 1 (3|1|5,12428]16,1475|-1158,83|-1119,63
0| 1 (3|12|14,74774| 15,141 |-1165,78|-1126,58| 1 | 1 (3|2|5,01274]|15,9091|-1162,39| -1118,3
0 1 |3/3|4,76002[15,1805|-1165,42(-1121,32] 1 | 1 (3|3|5,03458|15,9696|-1162,07|-1113,07
0| 1 (3/14/4,76573[15,1979|-1163,67|-1114,68| 1 | 1 (3|4/5,03308|15,9705|-1160,32|-1106,43
O] 1 |4/1|14,81316]15,3252|-1160,03(-1120,83| 1 | 1 [4|1|5,12325]16,1455|-1156,83|-1112,73
0| 1 |4/2|14,74766(15,1407|-1163,78|-1119,68| 1 | 1 (42/5,01251|15,9087|-1160,39| -1111,4
O 1 |4/3|4,75981(15,1799|-1163,42(-1114,42] 1 | 1 |4|3|5,03516{15,9707|-1160,07|-1106,17
0| 1 |4/4/4,76583]15,1982|-1161,67|-1107,78| 1 |1 (44| 5,0334 |15,9713|-1158,32|-1099,53
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Tabela A. 3: Resultados dos teste de selecdo de modelos ARMA (r, m) — GARCH (p,q);
Telemar PN com janela de 252 dias (um ano). Em negrito os melhores.

Modelo Testes Modelo Testes

rim|p|q/ Q@4 | Q@) | AIC BIC |rimip|q] Q@4) | Q)| AIC BIC
0/0(1{1]3,7705|8,0075(-1111,25|-1091,66|1|0 |{1]1/2,9781|7,1816|-1110,78|-1086,28
0] 0(1{2]3,7705|8,0075(-1110,74|-1086,2411|0{1]2/2,9653|7,1835|-1110,64|-1081,24
0] 0(1{3]3,7705|8,0075(-1112,83|-1083,43|1|0(1(3/2,9659|7,1827|-1112,76|-1078,47
0/0(1({4/3,7705|8,0075(-1111,35|-1077,05|1|0|1(4|2,9723|7,1794|-1111,17|-1071,97
0] 0(2(1]3,7705|8,0075(-1108,91|-1084,41|1|0(2(1/2,9782(7,1816|-1108,78(-1079,38
0] 0(2(2]3,7705|8,0075(-1108,74|-1079,3411| 0 {2]2|2,9654|7,1834|-1108,64 |-1074,34
0] 02{3]3,7705|8,0075(-1110,83|-1076,53|1| 0 {2(3|2,9659|7,1827|-1110,76|-1071,57
0] 0(2(4(3,7705|8,0075(-1109,55|-1070,35|1| 0 (2|4(2,9709|7,1796| -1109,4 | -1065,3
01 0|3(1]3,7705|8,0075(-1108,16(-1078,76|1| 0 |3|1|3,0327| 7,209 |-1107,41|-1073,12
01 03{2]3,7705|8,0075(-1106,16|-1071,86|1| 0 |{3]2|3,0316|7,2082|-1105,41|-1066,22
01 03({3]3,7705|8,0075(-1108,83|-1069,63|1| 0 (3[3|2,9659|7,1827|-1108,76|-1064,67
0] 0(3(4/3,7705|8,0075(-1109,22|-1065,12|1| 0 |3]4|2,9649|7,1846|-1109,28 |-1060,29
01 04(1]3,7705|8,0075(-1104,91|-1070,61|1|0 |4]1|2,9779|7,1816|-1104,78|-1065,58
0] 0(4(2]3,7705|8,0075(-1103,35|-1064,15]|1| 0 |4]2|2,9803|7,1821|-1102,82|-1058,72
010 (4(3/3,7705|8,0075(-1106,83|-1062,73|1| 0 |4|3|2,9659|7,1827|-1106,76|-1057,77
010 (4(4]3,7705|8,0075(-1107,22|-1058,2211| 0 |4|4|2,9645|7,1860|-1107,29| -1053,4
0/1/1(1]2,6017|6,9717(-1110,49|-1086,00|1|1 |1]1/1,9207(6,5983|-1111,31|-1081,91
0/1(1{2]2,6007|6,9748(-1110,31(-108091|1|1 |1]2/1,9535/6,6851|-1111,22{-1076,92
0]11({3]2,6013]| 6,979 (-1112,49|-1078,19|1|1 |1|3/1,9991|6,7822|-1113,47|-1074,27
0/11(4/2,60186,9715(-1110,84|-1071,64|1|1(1|4/1,9563|6,6973|-1111,62|-1067,53
0/12(1]2,6017|6,9717(-1108,49-1079,10]|1|1 {2]1/1,9205[6,5978(-1109,31|-1075,01
0]112(2]2,6007|6,9747(-1108,31|-1074,01|1|1 {2|2| 1,919 [6,5942|-1107,37|-1068,17
0]12(3]2,6013]| 6,979 (-1110,49|-1071,29]1|1 {2|3/1,9992|6,7822|-1111,47|-1067,37
0]12(4]2,6013|6,9721(-1109,06|-1064,96|1|1 |2|4|1,9577|6,6995|-1109,85|-1060,85
0]1(3(1]2,6193]6,9756(-1107,08|-1072,78|1|1 (3]|1|1,8994|6,5564|-1107,96|-1068,77
0]1(3(2(2,6191]6,9756(-1105,08|-1065,88]1|1 {3]|2/1,8995|6,5566|-1105,96|-1061,87
0]1(3({3]2,6013]| 6,979 [-1108,49|-1064,39|1|1 |{3|3|2,0544|6,8837|-1109,54|-1060,54
0] 13(4]2,6043]/6,9866(-1108,98|-1059,98|1|1 |3]|4|2,1421|7,0468|-1110,26|-1056,37
0]14/1]2,6017|6,9717(-1104,49| -1065,3 |1|1 |4]|1/1,8996|6,5572|-1105,96|-1061,87
0] 14(2] 2,602 16,9714(-1102,55|-1058,45]1|1 |4|2| 1,919 [6,5942|-1103,37|-1054,37
0| 14(3]2,6013]| 6,979 [-1106,49|-1057,49]1|1 |4|3|2,1818|7,1021|-1107,77|-1053,87
0] 14(4]2,6069|6,9918(-1107,00(-1053,10|1| 1 |4|4| 2,259 [7,2439|-1108,47|-1049,68




180

Tabela A. 4: Resultados dos teste de selegao de modelos ARMA (r, m) - GARCH (p,q); Vale
do Rio Doce PNA com janela de 504 dias (dois anos). Em negrito os melhores.

Modelo Testes Modelo Testes

rmiplql Q@) | Q) | AIC BIC |rimplq Q#4) | Q(8) AIC BIC
0/0(1{1]23,1727|30,1165|-2567,61|-2548,01|1| 0 |1{1{21,4643|28,9802|-2565,72|-2541,22
0/0(1(2]23,1727|30,1165|-2565,64|-2541,14|1| 0 |1{2({21,4788|28,9905|-2563,75[-2534,35
0/0(1(3]23,1727|30,1165|-2563,78|-2534,39(1| 0 |1|3]21,5252|29,0228|-2561,91 |-2527,62
0/0(1{4]23,1727|30,1165|-2561,78|-2527,49|1| 0 |1{4/21,5250(29,0227|-2559,91 [-2520,72
0/01(2(1]23,1727|30,1165|-2565,61|-2541,11|1| 0 |2{1{21,4644 28,9802 |-2563,72(-2534,32
0/012(2]23,1727|30,1165|-2563,96|-2534,56|1| 0 |2|2{21,5013|29,0058 |-2561,95|-2527,65
0/012(3]23,1727|30,1165|-2562,97|-2528,67|1| 0 |2|3(21,7262|29,1700|-2560,75[-2521,55
0/01(2(4]23,1727|30,1165|-2560,97|-2521,77|1| 0 |2|4{21,7259|29,1698 |-2558,75[-2514,65
0/01(3(1]23,1727|30,1165|-2563,61|-2534,21|1| 0 |3{1{21,4637|28,9798 |-2561,72|-2527,42
0/01(3(2(23,1727|30,1165|-2561,64|-2527,34|1| 0 |3|2(21,5019|29,0062 |-2559,95 |-2520,75
0/01(3(3]23,1727|30,1165|-2561,02|-2521,82|1| 0 |3|3|21,7151|29,1616|-2558,82(-2514,72
0/01(3(4]23,1727|30,1165|-2559,02|-2514,92|1| 0 |3|4/21,7149|29,1615|-2556,82(-2507,82
0/01(4(1]23,1727|30,1165|-2561,61|-2527,31|1| 0 |4{1{21,4637 28,9798 |-2559,72(-2520,52
0/01(4(2]23,1727|30,1165|-2559,96|-2520,76(1| 0 |4{2{21,5019|29,0062 |-2557,95|-2513,85
0/01(4(3]23,1727|30,1165|-2559,02|-2514,92|1| 0 |43|21,7148|29,1614|-2556,82(-2507,82
0/01(4(4|23,1727|30,1165|-2557,02|-2508,02(1| 0 |4{4{21,7149|29,1615|-2554,82(-2500,92
0/1]1{1]20,5220(27,9129|-2566,57|-2542,07|1| 1 |1{1{19,0264|23,3132|-2569,76 |-2540,36
011(1(2]20,5431|27,9292|-2564,57|-2535,17|1| 1 |1{2{19,0366|23,3317|-2567,77|-2533,47
011(1(3]20,6024|27,9754|-2562,66|-2528,37|1| 1 |1|3/19,0548|23,3435[-2565,96(-2526,77
0/11(1(4]20,6022(27,9752|-2560,66|-2521,47|1| 1 |1/4/19,0545|23,3438|-2563,96(-2519,87
0/112(1]20,5217|27,9126|-2564,57|-2535,17|1| 1 |2|1{19,0254|23,3123|-2567,76|-2533,46
0/112(2]20,5492(27,9340(-2562,87|-2528,57|1| 1 |2|2{19,0022|23,2321|-2566,21 [-2527,01
0(11(2(3]20,9423|28,2447|-2561,58|-2522,39|1| 1 |2|3/19,1170(23,4126|-2565,00(-2520,90
0(11(2(4]20,9427|28,2450(-2559,58|-2515,49|1| 1 |2/4{19,1173|23,4129|-2563,00 (-2514,00
011(3(1]20,5212(27,9123|-2562,56|-2528,27|1| 1 |3|1{18,9501|23,1263|-2565,68 |-2526,48
0(11(3(2]20,5498|27,9344|-2560,87|-2521,67|1| 1 |3|2/19,0362|23,3310(-2563,77(-2519,67
0(11(3(3]|20,9322|28,2366|-2559,64|-2515,54|1| 1 |3|3/19,1154|23,4103|-2563,06(-2514,06
0(11(3(4]20,9320(28,2364|-2557,64|-2508,64|1| 1 |3]4/19,1051|23,4464|-2560,19 (-2506,30
0(11]4{1]20,5209(27,9120|-2560,56|-2521,37|1| 1 |4{1{19,0256|23,3125|-2563,76(-2519,66
0|11(4(2]20,5498(27,9345|-2558,87|-2514,77|1| 1 |4{2{19,0028|23,2321|-2562,21(-2513,21
0(11(4(3|20,9322(28,2366|-2557,64|-2508,64(1| 1 |4{3/19,1156|23,4108|-2561,06(-2507,16
0/11]4(4120,9324(28,2367|-2555,64|-2501,75|1| 1 |4/4/19,0834|23,3099|-2558,88[-2500,08
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Tabela A. 5: Resultados dos teste de selecdo de modelos ARMA (r, m) — GARCH (p,q);
Petrobras PN com janela de 504 dias (dois anos). Em negrito os melhores.

Modelo Testes Modelo Testes

rimplq] Q&) | Q(8) AIC BIC |rimplg] Q@) | Q(8) AIC BIC
0|0[1{1|28,2577| 29,6227| -2380,28| -2360,68| 1|0 1| 1| 12,1805| 14,0615| -2390,99(-2366,49
0|0[1{2| 28,2577| 29,6227| -2384,85| -2360,35]1|0] 1|2| 12,2165| 14,0874 -2398,26(-2368,86
00| 1]3] 28,2577| 29,6227 -2384,12| -2354,72| 1{0[1{3| 12,2884 14,1431| -2396,80|-2362,50
0|0[1{4| 28,2577 29,6227| -2382,12| -2347,83|1|0| 14| 12,2884 14,1431 -2394,80(-2355,60
0[0[2[1| 28,2577| 29,6227| -2378,28| -2353,78[1|0]|2| 1| 12,1805| 14,0614| -2388,99(-2359,59
0[{0]2]|2| 28,2577| 29,6227 -2382,85| -2353,45|1{0{2(2| 12,2164| 14,0874| -2396,26|-2361,96
0]0[2(3| 28,2577| 29,6227| -2383,75| -2349,45]1|0]|2|3| 12,3885 14,2246| -2395,56(-2356,36
0{0|2|4| 28,2577| 29,6227| -2381,75| -2342,55|1{0{2(4| 12,3891| 14,2251| -2393,56|-2349,46
0[{0|3] 1] 28,2577| 29,6227| -2376,28| -2346,88| 1{0{3[ 1| 12,1805| 14,0615| -2386,99|-2352,69
0]0[3(2| 28,2577| 29,6227| -2380,85| -2346,55]1|0|3|2| 12,2165| 14,0874 -2394,26(-2355,06
0[0|3]|3]| 28,2577| 29,6227| -2381,75| -2342,55| 1{0{3|3| 12,3886| 14,2247| -2393,56|-2349,46
0]0[3(4| 28,2577 29,6227| -2379,75| -2335,65|1|0|3|4| 12,3886 14,2247| -2391,56(-2342,56
0|0[4|1| 28,2577| 29,6227| -2374,28| -2339,98]1|0]|4| 1| 12,1806| 14,0615 -2384,99(-2345,79
0{0]4|2| 28,2577| 29,6227| -2378,85| -2339,65|1{0{4|2| 12,2166| 14,0875| -2392,26|-2348,16
0]0[4(3| 28,2577| 29,6227| -2379,75| -2335,65/1|0]|4|3| 12,3899| 14,2258 -2391,56(-2342,56
0{0|4|4| 28,2577| 29,6227| -2377,75| -2328,75|1{0[4|4| 12,3884 14,2246| -2389,56|-2335,66
O[1{1{1|10,1513| 11,9839|-2393,00|-2368,50{1|1|1{1| 10,0510{ 11,8645|-2390,35{-2360,96
0[1]1{2] 10,2426| 12,0542| -2400,06| -2370,66| 1| 1| 12| 10,1180| 11,9087( -2397,56(-2363,26
0{1]1]3]10,3169| 12,1156 -2398,52(-2364,23|1{1{1{3| 10,1707| 11,9454| -2396,06|-2356,86
O[1{1{4|10,3170| 12,1157|-2396,52| -2357,33|1|1|1|{4| 10,1722| 11,9472| -2394,06{-2349,96
0{1|2|1] 10,1514| 11,9839 -2391,00( -2361,60]1{1{2{1] 10,0511| 11,8645|-2388,35|-2354,06
0{1]2]|2] 10,2424| 12,0541 -2398,06| -2363,76|1{1{2(2| 10,1183| 11,9091| -2395,56|-2356,36
0[1{2{3| 10,4260| 12,2091| -2397,60| -2358,41]1|1|2|3| 10,2199 11,9736| -2394,91{-2350,81
0{1]|2|4]| 10,4257| 12,2089 -2395,60( -2351,51|1{1{2{4| 10,2199 11,9736| -2392,91|-2343,91
O[1{3{1|10,1517| 11,9842|-2389,00| -2354,70{1|1|3|1| 10,0511| 11,8646 -2386,35(-2347,16
0[1{3(2] 10,2427| 12,0543| -2396,06| -2356,86|1|1|3|2| 10,1183| 11,9090( -2393,56{-2349,46
0[1]3]3] 10,4258| 12,2089 -2395,60( -2351,51|1{1{3{3| 10,2200( 11,9736| -2392,91|-2343,91
0[1{3{4| 10,4259| 12,2090| -2393,60| -2344,61{1|1|3|4| 10,2196| 11,9733| -2390,91{-2337,02
0{1|4|1] 10,1514| 11,9839 -2387,00( -2347,80]1{1{4[1] 10,0512| 11,8646| -2384,35|-2340,26
0{1|4]|2] 10,2425| 12,0541 -2394,06| -2349,96| 1{1{4(2| 10,1179| 11,9087| -2391,56|-2342,56
0[1{4{3| 10,4261| 12,2091| -2393,60| -2344,61|1|1|4|3| 10,2203| 11,9739 -2390,91{-2337,02
0{1|4|4]| 10,4272| 12,2101 -2391,60( -2337,71|1{1{4|4| 10,2203| 11,9740| -2388,91|-2330,12
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Tabela A. 6: Resultados dos teste de selecdo de modelos ARMA (r, m) — GARCH (p,q);
Telemar PN com janela de 504 dias (dois anos). Em negrito os melhores.

Modelo Testes Modelo Testes

rimip|lql Q@) | Q) AIC BIC |rim|p|q] Q@) | Q(8) AIC BIC
0/0(1(1]7,6340|11,7069 |-2187,23 |-2167,63 (1|0 |1]|1]3,3712(8,5816|-2189,66 |-2165,16
0/0(1(2]7,6340| 11,7069 |-2185,40 (-2160,90 (1|0 |1{2]3,3723|8,5853|-2188,03 |-2158,63
0[0(1(3]7,6340|11,7069 -2183,93 |-2154,53 1|0 |1|3]3,3883|8,6318|-2186,80|-2152,51
0[0(1(4]7,6340|11,7069 (-2181,93 [-2147,63 1|0 |1|4|3,3881|8,6314|-2184,80|-2145,61
0[02(1]7,6340|11,7069 |-2185,23 [-2160,73 (1|0 |2]|1]3,3712|8,5816|-2187,66 |-2158,26
0[012(2]7,6340| 11,7069 | -2183,95 |-2154,55(1|0 |2]|2|3,3634|8,5483|-2186,41 | -2152,12
0[0(2(3]7,6340|11,7069 |-2182,13 (-2147,84 (1|0 |2|3|3,3927|8,6433|-2185,05|-2145,85
0[02(4]7,6340|11,7069 |-2180,13 [ -2140,94 (1|0 |2|4|3,3685|8,5689 | -2183,54 | -2139,44
0/0(3]1]7,6340|11,7069 |-2183,23 [-2153,83 (1|0 |3]|1]3,3712|8,5816|-2185,66|-2151,36
0/0(3]2]7,6340|11,7069 |-2181,95 [ -2147,65 (1|0 |3]|2|3,3634|8,5484|-2184,41 |-2145,22
0/03(3]7,6340|11,7069 |-2181,38 [-2142,18 (1|0 |3|3|3,4266|8,7211|-2184,70|-2140,60
0/0(3]4]7,6340|11,7069 [-2179,78 | -2135,68 (1|0 |3|4|3,4420|8,7519|-2183,38 | -2134,38
0/04(1]7,6340|11,7069 |-2181,23 [-2146,93 (1|0 |4]|1]3,3712|8,5816|-2183,66 |-2144,46
0/04(2]7,6340|11,7069 | -2179,95 | -2140,75 (1|0 |4|2|3,3634|8,5485|-2182,41 | -2138,32
0/04|3]7,6340|11,7069 -2179,40 | -2135,30 (1|0 |4|3|3,4261|8,7199|-2182,72 |-2133,72
0[04|4]7,6340|11,7069 |-2178,67 | -2129,67 (1|0 |4|4|3,4419|8,7517|-2182,42|-2128,52
0[11(1]2,5234| 7,9516 |-2191,02 |-2166,52 (1|1 |1|1]1,7266|7,4214|-2189,10|-2159,71
0[1(1]2]2,5224| 7,9464 |-2189,39(-2159,99 (1|1 |1|2]1,7223|7,4380|-2187,53|-2153,23
0[1(1(3]2,5450| 8,0289 |-2188,26 (-2153,96 (1|1 |1|3|1,7585|7,5806|-2186,53|-2147,33
0[1(1]4]2,5450| 8,0288 [-2186,26|-2147,06 (1|1 |1|4|1,7581|7,5795|-2184,53|-2140,43
0[1(2(1]2,5235| 7,9517 [-2189,02 (-2159,62 (1|1 |2]|1|1,7266|7,4214|-2187,10|-2152,81
0[1(2]2]2,5165]| 7,9034 |-2187,69 |-2153,40 (1|1 |2|2|1,7251|7,3633|-2185,75|-2146,55
0[1/2(3]2,5557| 8,0590 |-2186,56|-2147,36 (1|1 |2|3|1,7857|7,6647|-2184,93 | -2140,83
01/2(4]2,5557| 8,0591 |-2184,56(-2140,46 (1|1 |2|4|1,7248|7,4350|-2183,02 |-2134,03
01|3[1]2,5235| 7,9519 |-2187,02(-2152,72 (1|1 |3|1]1,7265|7,4213|-2185,10|-214591
01|3(2]2,5165| 7,9034 |-2185,69 (-2146,50 (1|1 |3|2|1,7251|7,3632|-2183,75|-2139,65
01|3(3]2,6278| 8,2222 (-2186,37 |-2142,28 (1|1 |3|3|1,9345|7,9959|-2185,09 | -2136,09
01|3]4]2,6296| 8,2258 (-2184,96 (-2135,96 (1|1 |3|4|1,9270|7,9704|-2183,60 |-2129,71
014[1]2,5236| 7,9524 |-2185,02 (-2145,82 (1|1 |4|1|1,7265|7,4213|-2183,10|-2139,01
014]2/2,5165| 7,9033 [-2183,69 (-2139,60 (1|1 |4|2|1,7252|7,3633|-2181,75|-2132,75
014|3]2,6335| 8,2335 (-2184,43(-2135,43 (1|1 |4]|3]1,9860(8,1032|-2183,24|-2129,34
014|4/2,6570| 8,2792 |-2184,15(-2130,26 (1|1 |4]|4|2,0629|8,2437|-2183,09 | -2124,30
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Apéndice 2

Modelos de VaR estaticos para Vale do Rio Doce PNA com 255 observacoes.

Tabela A. 7: VaR estéatico —1 para a Vale do Rio Doce PNA.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 Médio Desvio Padrdo| Maéximo Minimo

Delta-normal 118 46,27 R | 04628 |1,2379x10™*|-3,6355x107"| 4,3009x10° |-3,7028x10*|-3,5948x10™

Tradicional

Delta-normal 4 4 6 4 4

GARCH (0,0) (1.1) 118 46,27 R 0,4628 |1,2403x107"|-3,4450x10™"| 4,4301x10™ |-3,4813x107"|-3,3687x10

Delta-normal 4 4 5 4 4

EGARCH (0.1 (1,1.1) 118 46,27 R 0,4629 |1,2325x107"|-4,1237x10™"| 4,4831x10” |[-4,8310x107"|-3,7951x10

MSH. . 6 2,35 R 0,02353 2,7055x10°| -0,03184 9,7336x10™"7 -0,03184 -0,03184

Tradicional

MSH 16 6,27 A 0,06275 |9,1075x10°| -0,02340 8,0401x10™ -0,02455 -0,02260

Bootstrap

MSH ' 3 1.18 R 0,01178 | 1,6795x10°| -0,03496 9,0383x10™" -0,03496 -0,03496

Mirror cenarios ’

MSH. 6 2,35 R 0,02353 2,7055x10°| -0,03184 9,7336x10™"7 -0,03184 -0,03184

Cenarios ponderados




Tabela A. 8: VaR estatico —2 para a Vale do Rio Doce PNA.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional 9 3,53 A 0,03530 |4,4181x10°[-0,02841| 1,2668x10* |-0,02862 |-0,02830

Modelo 1 com r constante

MSMC Tradicional 9 3,53 A 0,03530 | 4,4890x10°[-0,02829| 1,2566x10* |-0,02850 |-0,02819

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 10 3,92 A ]0,03922 |4,8025:10°]-0,02772| 2.8801:10™ |-0,02786|-0,02649

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 10 3,92 A |0,03922 [4,8754x10°|-0,02761 | 2.8577x107* |-0,02774|-0,02639

Modelo 2 com r constante

MSMC EGARCH (0,1) (1,1,1) 7 2,74 A |0,02745 |3,5385x10°|-0,03235 | 3.5552:107 |-0,03828-0,02970

Modelo 1 com r constante

MSMC EGARCH (0,1) (1,1,1) 8 3,14 A |0,03138[3,6025x10°(-0,03220| 3.5211:10° |-0,03807]-0,02957

Modelo 2 com r constante

MSMC Tradicional 4 1,57 R | 0,01568 | 1,8095¢10[-0,03664| 1,2805x10° |-0,03780-0,03450

Modelo 1 com r variavel

MSMC Tradicional 4 1,57 R |0,01568 [1,8433410°]-0,03652| 1,2806x10° |-0,03769 |-0,03438

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 12 471 A |0,04706 [5,9120x10°|-0,02627 | 2.8147x107 |-0,02655 | -0,02489

Modelo 1 com r variavel

MSMC GARCH (0,0) (1,1) 12 471 A |0,04706 [5,9993:10°|-0,02616| 2,7951x10 |-0,02644 |-0,02479

Modelo 2 com r variavel

MSMC EGARCH (0.1) (L.LD)| 4 431 A |0,04314 |5,6278x10°|-0,02888 | 3,8613x107 [-0,03532|-0,02585

Modelo 1 com r variavel

MSMC EGARCH (0,1) (1,1,1) 11 431 A |0,04314 |5,7243x10°|-0,02872| 3.8272:10° |-0,03511-0,02572

Modelo 2 com r variavel
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Apéndice 3

Modelos de VaR estaticos para a Petrobras PN.

Tabela A. 9: VaR estatico —1 para a Petrobrds PN com 255 observagoes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 Médio Desvio Padrdo| Mdéximo Minimo
Delta-normal 101 39,61 R 0,3962 |1,2574x10™|-9,7617x10*| 1,6143x10”° [-9,6548x10™|-9,6548x10™
Tradicional
Delta-normal 4 4 5 3 4
GARCH (0,0) (1.1) 101 39,61 R 0,3962 |1,2595x107|-9,4822x10 6,4073x10 -1,0140x10™ |-8,5612x10
Delta-normal 4 4 4 3 4
EGARCH (0.1 (1,1.1) 102 40,00 R 0,4001 |1,2632x107|-9,5566x10 1,2206x10 -1,0789x10™ |-7,7385x10
MSH 6 2,35 R |0,02353|2,7677x10°| -0,03879 | 6,9525x10"® | -0,03879 | -0,03879
Tradicional
MSH 5 4
34 13,33 R 0,1333 |3,2526x10 -0,01646 9,2197x10 -0,01770 -0,01547

Bootstrap
MSH ' 4 1.57 R 0,01569 1,1027x10'6 -0,04415 1,1124x10'4 -0,04415 -0,04415
Mirror cenarios ’
MSH 6 -18

L. 6 2,35 R 0,02353 [2,7677x10 -0,03879 6,9525x10 -0,03879 -0,03879
Cenarios ponderados




Tabela A. 10: VaR estatico —2 para a Petrobras PN com 255 observagdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional 6 235 R |0,02353 [3.8268:10°|-0,03657| 5,6873x10° |-0,03667 |-0,03654

Modelo 1 com r constante

MSMC Tradicional 6 2,35 R 0,02353 3,9315x10°[-0,03638 | 5,6289x10° |-0,03648 |-0,03634

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 6 235 R |0,02353[2,5812:10°(-0,03944| 8.4865x10° |-0,04018 |-0,03697

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 6 235 R |0,02353 [2,6736:10°(-0,03922| 8,3942x10"° |-0,03995 |-0,03678

Modelo 2 com r constante

MSMC EGARCH (0,1) (1,1,1) 9 3,53 A |0,03530|7,3066x10°|-0,03585| 5,0632:10° |-0,04074 |-0,02798

Modelo 1 com r constante

MSMC EGARCH (0,1) (1,1,1) 9 3,53 A ]0,03530|7,4160x10°|-0,03566| 501405107 |-0,04050|-0,02787

Modelo 2 com r constante

MSMC Tradicional 10 3,92 A 10,03923]1,0938:10°[-0,02936| 2,4117x10° |-0,03257|-0,02577

Modelo 1 com r variavel

MSMC Tradicional 10 3,92 A |0,03923 |1,1149:10°(-0,02917| 2,4121x10° [-0,03238 |-0,02559

Modelo 2 com r variavel

MSMC GARCH (0,0) (1.1) 6 2,35 R |0,02353 |2,7930x10°[-0,03906| 1,5385x10° [-0,04077 |-0,03216

Modelo 1 com r variavel

MSMC GARCH (0,0) (1,1) 6 235 R |0,02353 [2,8871:10°|-0,03884| 1,5221x10° |-0,04053 |-0,03201

Modelo 2 com r variavel

MSMC EGARCH (0.1) (L.LD)| 4 431 A |0,04315|1,1866x107 |-0,03419| 7,2114x10° [-0,04039 |-0,02221

Modelo 1 com r variavel

MSMC EGARCH (0,1) (1,1,1) 11 431 A |0,04315[1,2013x10°[-0,03400| 7.1628x107 |-0,04013 |-0,02209

Modelo 2 com r variavel
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Tabela A. 11: VaR estatico —1 para a Petrobras PN com 510 observagdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 M¢édio Desvio Padrdo| Maéximo Minimo

Delta-normal 233 45,69 R 0,4571 |2,1777x10™|-7,6574x10*| 1,5425x10° [-7,9911x10™|-7,4895 10"
Tradicional
Delta-normal 4 4 5 4 4
GARCH (0,0) (1,1) 233 45,69 R 0,4571 |2,1938x107"|-6,5004x10 2,9405x10 -6,7114x107 |-6,1913 x10
Delta-normal 4 4 5 4 4
EGARCH (0.1) (1,1,1) 233 45,69 R 0,4571 |2,1850x107"|-7,2184x10 9,8971x10 -8,8898x107" [-5,9149x10
MSH. ) 20 3,92 A 0,03923 [1,4996x10| -0,04089 3,2645x1071¢ -0,04089 -0,04089
Tradicional
MSH 145 28,43 R 0,2844 |1,1928x107%]-9,4451x107| 7,3272x10* | -0,01020 |-8,0717x107
Bootstrap
MSH . 21 4.12 A 0,04119 [2,0035x107°| -0,03643 3,8101x10° -0,03643 -0,03643
Mirror cenarios ’
MSH 5 -16

L. 20 3,92 A 0,03921 | 1,4996x10 -0,04059 3,2645x10 -0,04059 -0,04059
Cenarios ponderados




Tabela A. 12: VaR estatico —2 para a Petrobras PN com 510 observagdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional 30 5,88 A 0,05885 2,6116x107 | -0,03253 | 4,0964x107 |-0,03262|-0,03248

Modelo 1 com r constante

MSMC Tradicional 32 6,27 A 0,06277 |2,6386x107 | -0,03239 | 4,0588x10° |-0,03247 |-0,03233

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 33 6,47 A |0,06473 |2,8022x107]-0,03185| 122315107 |-0,03250]-0,02693

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 33 6,47 A |0,06473 |2,8292x10°]-0,03170| 121265107 |-0,03235]-0,02683

Modelo 2 com r constante

MSMC EGARCH (0,1) (L,LI)| 35 6,27 A |0,06278 |3,2424x10°|-0,03067 | 4.6774:10° |-0,03884 |-0,02465

Modelo 1 com r constante

MSMC EGARCH (0,1) (L,LI)| 37 6,27 A |0,06278 |3,2688x10°|-0,03053 | 4.6360:10° |-0,03862]-0,02456

Modelo 2 com r constante

MSMC Tradicional 43 8,43 R | 0,08435|4,4356¢10°[-0,02534| 1,6342<10° |-0,02777|-0,02294

Modelo 1 com r variavel

MSMC Tradicional 44 8,63 R | 0,08631|4,4797x10°[-0,02519| 1,6345¢10° |-0,02762 |-0,02279

Modelo 2 com r variavel

MSMC GARCH (0,0) (1.1) 32 6,27 A |0,06277 [2,7738:10°|-0,03171| 1,2045:10° |-0,03251|-0,02514

Modelo 1 com r variavel

MSMC GARCH (0,0) (1.1) 33 6,47 A |0,06473 [2,8016:10°[-0,03160| 1,1945:10° |-0,03256 | -0,02504

Modelo 2 com r variavel

MSMC EGARCH (0.1) (L.LD)| 3¢ 7,06 R |0,07062 |3,5988:10°|-0,02912| 5,071910° |-0,03732|-0,02161

Modelo 1 com r variavel

MSMC EGARCH (0,1) (1,LI)| 37 725 R |0,07258 [3,6278:107[-0,02895| 5,0311x107 |-0,03711[-0,02152

Modelo 2 com r variavel
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Apéndice 4

Modelos de VaR estaticos para a Telemar PN

Tabela A. 13: VaR estatico —1 para a Telemar PN com 255 observagdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 M¢édio Desvio Padrdo| Méximo Minimo
Delta-normal 105 41,18 R | 04120 |2,0550x107*|-1,8133x107| 3,6216x10" |-1,8838x107 |-1,7862x10"
Tradicional
Delta-normal 4 3 5 3 3
GARCH (0,0) (1.1) 105 41,18 R 0,4120 [2,0630x107"|-1,7275x107| 5,9028x10™ |[-1,8175x107|-1,6678x10
Delta-normal 4 3 4 3 3
EGARCH (0.1 (1,1.1) 106 41,57 R 0,4159 [2,0558x107"|-1,7175x107| 4,3082x10™ |[-2,2039x107|-1,3022x10
MSH. . 5 1,96 R 0,01961 |3,3887x10°| -0,04659 | 4,8668x10" -0,04659 -0,04659
Tradicional
MSH 5 4
50 19,61 R 0,1961 |6,7845x10 -0,01611 8,3686x10 -0,01707 -0,01480

Bootstrap
MSH ' 5 1,96 R 0,01961 |3,8535x10°| -0,04563 1,3210x107'° -0,04563 -0,04563
Mirror cenarios
MSH -6 -17

. 5 1,96 R 0,01961 |3,3887x10 -0,04659 | 4,8668x10 -0,04659 -0,04659
Cenarios ponderados




Tabela A. 14: VaR estatico —2 para a Telemar PN com 255 observagdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional 9 3,53 A |0,03530|7,5200x10°|-0,04001| 5,7102:10° |-0,04006 |-0,03992

Modelo 1 com r constante

MSMC Tradicional 9 3,53 A 10,03530|7,7137:10°[-0,03978 | 5.6465x10°° |-0,03984 | -0,03969

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 9 3,53 A ]0,03530|7,8727x10°|-0,03951| 3.2553:10* |-0,03917]-0,03861

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 9 3,53 A ]0,03530|8,0701x10°]-0,03928 | 3.2196:10* |-0,03959|-0,03840

Modelo 2 com r constante

MSMC EGARCH (0,1) (1,1,1) 13 5.10 A ]0,05099 | 6,6540x10°|-0,03771| 9.4866:10° |-0,04787]-0,02851

Modelo 1 com r constante

MSMC EGARCH (0,1) (1,1,1) 13 5.10 A ]0,05099 | 6,8431x10°|-0,03749 | 938565107 |-0,04754]-0,02840

Modelo 2 com r constante

MSMC Tradicional 19 7,45 A |0,074532,5287:10°|-0,03019| 2,7976:10° [-0,03317-0,02588

Modelo 1 com r variavel

MSMC Tradicional 19 7,45 A |0,07453|2,5749:10°-0,02996 | 2,7975x10° |-0,03294|-0,02565

Modelo 2 com r variavel

MSMC GARCH (0,0) (1.1) 9 3,53 A ]0,03530 [7,4756:10°(-0,03993 | 6,0002:10% |-0,04059 | -0,03744

Modelo 1 com r variavel

MSMC GARCH (0,0) (1.1) 9 3,53 A ]0,03530 [7,6660x10|-0,03971| 5,9369:10% |-0,04036 |-0,03725

Modelo 2 com r variavel

MSMC EGARCH (0.1) (I.LI)| 45 5,88 A |0,05853 [7,5869:10°(-0,03731| 9,3536x10° |-0,04829 | -0,02808

Modelo 1 com r variavel

MSMC EGARCH (0,1) (1,1,1) 16 6,27 A |0,06275 |7,7967x10°|-0,03710| 9.2530510° |-0,04797]-0,02796

Modelo 2 com r variavel
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Tabela A. 15: VaR estatico —1 para a Telemar PN com 510 observagdes.

191

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 M¢édio Desvio Padrdo| Maéximo Minimo

Delta-normal 235 46,08 R | 04611 |2,7522x107*|-1,7275x107| 3,5369x10° |-1,7776x107 |-1,6717x10"
Tradicional
Delta-normal 4 3 5 3 3
GARCH (0,0) (1,1) 231 45,29 R 0,4532 2,6781x107" | -1,9189x10 7,4212x10” |-2,0480x107 [-1,8093 x10
Delta-normal 4 3 4 3 3
EGARCH (0.1) (1,1,1) 231 45,29 R 0,4532 |2,6720x107|-2,1573x107 | 3,4254x10™ |-2,8200x107 | -1,744410
MSH 5 -17

- 18 3,53 A 0,03531 | 1,2750x107 | -0,046583 | 4,1674x10 -0,046583 | -0,046583
Tradicional
MSH 5 3

98 19,22 R 0,1922 [7,8519x10| -0,020676 1,2548x10 -0,02268 -0,018798

Bootstrap
MSH _ 18 3,53 A ]0,03531(1,1088x107| -0,046773 | 3,1950x10"° | -0,046773 | -0,046773
Mirror cenarios
MSH 18 3,53 A 0,03531 | 1,1275x107 | -0,046583 | 4,1674x10"7 | -0,046583 | -0,046583

Cenarios ponderados




Tabela A. 16: VaR estatico —2 para a Telemar PN com 510 observagdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional 22 431 A |0,04315[1,5031x10° [-0,04328 | 4,0901x107° |-0,04339|-0,04324

Modelo 1 com r constante

MSMC Tradicional 2 431 A |0,04315 | 1,5373x10°]-0,04301 | 4,0408:10° |-0,04312|-0,04298

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 18 3,53 A |0,03531 | 1,1401x10°|-0,04645| 1,2612:10™* |-0,04676-0,04631

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 18 3,53 A [0,03531 | 1,1721x10°|-0,04614 | 1245010 |-0,04645 | -0,04600

Modelo 2 com r constante

MSMC EGARCH (0,1) (LLLLD)| g3 18,23 R | 01825 [9.2674:10°(-0,01949| 5,6759x107 |-0,04522|-0,01678

Modelo 1 com r constante

MSMC EGARCH (0,1) (LLLLD)| g3 18,23 R | 01825 [92987:10°(-0,01943| 5,6316x10° |-0,04493 |-0,01674

Modelo 2 com r constante

MSMC Tradicional 16 3,14 R |0,03138|8,6618x10°|-0,05096 | 3,1706x107 |-0,05704 |-0,04568

Modelo 1 com r variavel

MSMC Tradicional 16 3,14 R |0,031388,8811x10[-0,05070| 3,1704x10° |-0,05677 |-0,04541

Modelo 2 com r variavel

MSMC GARCH (0,0) (1.1) 16 3,14 R |0,03138 |8,3361x10°[-0,04936| 1,1704x10° |-0,05449 |-0,04790

Modelo 1 com r variavel

MSMC GARCH (0,0) (1.1) 16 3,14 R |0,03138 |8,5943x10[-0,04905 | 1,1549x10° [-0,05410 |-0,04760

Modelo 2 com r variavel

MSMC EGARCH (0.1) (L.LD)| 3 2,55 R |0,02550 |3,6965¢10°|-0,05459 | 9,7652:107 |-0,07250 |-0,04263

Modelo 1 com r variavel

MSMC EGARCH (0,1) (1,1,1) 14 2,74 R [0,02745 |3.9176:x10°|-0,05416 | 9,6105:10° |-0,07177|-0,04237

Modelo 2 com r variavel

192



Apéndice 5

Modelos de VaR estaticos para carteiras com duas e trés acoes € 255 observacoes

Tabela A. 17: VaR estatico-1 para a carteira com Vale do Rio Doce PNA e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrio | Méaximo | Minimo

MSH 4 1,56 R |0,01569 |3,7800x10°(-0,02853 | 4,1715x10™"" |-0,02853 |-0,02853

Tradicional

MSH 45 17,65 R [0,17649 [2,2781x107 [-0,01155| 9,5090x10™* |-0,01296-0,01053

Bootstrap

MSH _ 7 2,74 A ]0,02746 |5,0331x10°(-0,02556 | 1,1819x10"° |-0,02556 |-0,02556

Mirror cenarios

MSH 4 1,56 R |0,01569 |3,7800x10°(-0,02853 | 4,1715x10™"" |-0,02853 |-0,02853

Cenarios ponderados

MSMC Tradicional 3 1,18 R |0,01177 |2,8829x10°|-0,03114| 3.9366x10% [-0,03200]-0,03021

Modelo 1 com r constante

MSMC Tradicional 3 1,18 R |0,01177 |2.8899:10°|-0,03112| 3.9244x10* |-0,03198 |-0.03018

Modelo 2 com r constante

MSMC GARCH (0.0) (1.1) 3 1,18 R |0,01177 |2,7073x10°| -0,03153| 5.2065¢10% [-0,03243 |-0,02976

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 3 1,18 R [0,01177 |2,9137x10°(-0,03151| 5,1978x10™* |-0,03241|-0,02975

Modelo 2 com r constante

MSMC EGARCH (0,1) (1,1,1) ] X

Modelo 1 com r constante 3 1,18 R [0,01177 |3,6950x10°|-0,03333| 3,6819x107 |-0,03870-0,02834

MSMC EGARCH (0,1) (1,1,1) 3 1,18 R ]0,01177|3,7027x10°|-0,03330| 3,6765x10° |-0,03866-0,02831

Modelo 2 com r constante
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Tabela A. 18: VaR estatico-2 para a carteira com Vale do Rio Doce PNA e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional - 3 1,18 R |0,01177 |3.6859x10°|-0,03163| 1.8485x10° [-0,03435-0,02702

Modelo 1 com r variavel

MSMC Tradicional - 3 1,18 R |0,01177 [3,6942x10°]-0,03160| 1,8478x107 |-0,03433-0,02700

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 3 1,18 R |0,01177 |2.9678x10°|-0,03070 | 6,5735x10% |-0,03190 |-0,02809

Modelo 1 com r variavel

MSMC GARCH (0,0) (L1) 3 1,18 R |0.01177]2.9746x10°|-0,03068| 6.5673x10™ |-0,03188 | -0,02806

Modelo 2 com r variavel

MSMC EGARCH (0,1) (1,1,1) P R

Modelo 1 com r variavel 8 3,14 A ]0,03138|5,6877x10°(-0,03076| 4,7445x107 |-0,03732-0,02362

MSMC EGARCH (0,1) (1,1,1) . R

Modelo 2 com r varidvel 8 3,14 A |0,031385,6990x10°|-0,03073 | 4,7395x10° |-0,03729|-0,02360
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Tabela A. 19: VaR estatico-1 para a carteira com Vale do Rio Doce PNA e Telemar PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSH 10 3,92 A ]0,03926]9,2571x10°|-0,02540| 1,0776x10'® |-0,02540 |-0,02540

Tradicional

MSH 46 18,04 R |0,18043 |3,4369x107|-0,01280| 3,4784x10™* |-0,01314-0,01229

Bootstrap

MSH _ 7 2,74 A [0,02746 |6,1984x10°(-0,02919 | 1,7381x10"° |-0,02919 [-0,02919

Mirror cenarios

MSH. 10 3,92 A ]0,0392319,2571x10°|-0,02540| 1,0775x10'® |-0,02540 |-0,02540

Cenarios ponderados

MSMC Tradicional 16 6,27 A ]0,06275|1,1809x107|-0,02308 | 9,2955x10* |-0,02510-0,02168

Modelo 1 com r constante

MSMC Tradicional 16 6,27 A 1006276 | 1,1822:10°-0,02307| 9.2895:10° |-0.02509-0,02164

Modelo 2 com r constante

MSMC GARCH (0,0) (11) 16 6.27 A | 006276 |1.2140:107 |-0,02274| 9.3980.10° |-0,02471[-0,02111

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 16 6.27 A 1006276 |1.2616:10°[-0,02272| 9.3807:10°* |-0.02496-0,02110

Modelo 2 com r constante

MSMCEGARCH (0,1) (1L1)| 4 6.67 A | 006667 [9.5600:10°|-0,02362| 3.745910° |-0,02895 |-0,01702

Modelo 1 com r constante

MSMC EGARCH (0,1) (1,L1y| 5 6.67 A | 006667 [9,6106:10°|-0,02356| 3,7705:10° |-0,02890 [-0,01696

Modelo 2 com r constante
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Tabela A. 20: VaR estatico-2 para a carteira com Vale do Rio Doce PNA e Telemar PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional - 21 8.23 R |0,08237(1,5917x10%|-0,02256| 1.8590x10° |-0,02523 |-0,01869

Modelo 1 com r variavel

MSMC Tradicional - 21 8.23 R | 0,08237 |1,5936x107|-0,02255| 1,8590x10° |-0,02520 |-0,01868

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 18 7.06 A | 007060 [1,2910:107 |-0,02215| 1.0206:10° |-0,02452 |-0,01991

Modelo 1 com r variavel

MSMC GARCH (0,0) (L1) 18 7.06 A | 007060 [1,2925:107|-0,02214| 1,0200:10° |-0,02450 [-0,01987

Modelo 2 com r variavel

MSMC EGARCH (0.1) (LLL)| 8.63 R |0,08629 | 1.2636x10%-0,02165| 3.7700x10° |-0,02750|-0,01477

Modelo 1 com r variavel

MSMC EGARCH (0,1) (LL1)| 8.63 R |0,08629 |1.2705:10°|-0,02160| 3,7707x10° |-0,02745 |-0,01476

Modelo 2 com r variavel
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Tabela A. 21: VaR estatico-1 para a carteira com Telemar PN e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo
MSH 6 2.35 R | 0,02353 [2.3996x10°|-0,04031 | 6,9525x10" |-0,04031 |-0,04031
Tradicional
MSH -5 3
31 1218 R | 0,12161 |3,7798:107|-0,01665| 1,3355:10° |-0,01821|-0,01440
Bootstrap
MSH _ 8 3,17 A |0,03138(3.3092:10|-0,03813 | 4.8668x10"7 |-0,03813|-0,03813
Mirror cenarios
MSH 6 -18
L 6 2.35 R | 0,02353 [2.3996x10°|-0,04031| 6,9525x10"% |-0,04031 |-0,04031
Cenarios ponderados
MSMC Tradicional 8 3,14 A |0,03137(4.0120:10|-0,03673| 7.4857:10°° |-0,03691]-0,03650
Modelo 1 com r constante
MSMC Tradicional 8 3,14 A |0,03137(4.0278:10°|-0,03670| 7.4324:10°° |-0,03687|-0,03647
Modelo 2 com r constante
MSMC GARCH (0,0) (11) 8 3.14 A |0,03137 3.4697:10°|-0,03770| 5232110 |-0,03820(-0,03616
Modelo 1 com r constante
MSMC GARCH (0,0) (1,1) 8 3,14 A |0,03138 [3.4840,10°|-0,03767| 5.2263:10* |-0,03817[-0,03610
Modelo 2 com r constante
MSMC EGARCH (0,1) (1,1,1) 8 3.14 A 10,03140 |6,1276:10°|-0,03445| 4.8815:10° |-0,04249 -0,02956
Modelo 1 com r constante
MSMC EGARCH (0,1) (1,1,1) 8 3,14 A 10,03140 |6,1526:10°[-0,03442| 4.8681x10° |-0,04245|-0,02955

Modelo 2 com r constante
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Tabela A. 22: VaR estatico-2 para a carteira com Telemar PN e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional - 13 5,10 A | 0,05100|1,4428x107 |-0,02823 | 2.5889x10" |-0,03140-0,02417

Modelo 1 com r variavel

MSMC Tradicional - 13 5,10 A ]0,05100 | 1,4468x107]-0,02821| 2,5888x10™ |-0,03137[-0,02419

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 8 3.14 A | 003138 [3.4101:10°|-0,03773| 9.6376:10* |-0,03884 |-0,03345

Modelo 1 com r variavel

MSMC GARCH (0,0) (L1) 8 3.14 A | 003138 [3.4241,10°|-0,03771| 9.6281x10% |-0,03881 |-0,03342

Modelo 2 com r variavel

MSMC EGARCH (0.1) (LLL)| 3.92 A 10,03922 |8,6593:10°(-0,03342| 5.4446:10° |-0,04251-0,02867

Modelo 1 com r variavel

MSMC EGARCH (0,1) (LL1)| 3,92 A |0,03922 [8.6922:10°|-0,03340| 54351107 |-0,04246 |-0,02865

Modelo 2 com r variavel
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Tabela A. 23: VaR estatico-1 para a carteira com Vale do Rio Doce PNA, Telemar PN e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSH 13 5,10 A | 0,05099 |8.2125x10°[-0,02432| 6,2573x10"7 |-0,02432-0,02432

Tradicional

MSH 46 18,04 R |0,18043 [3,4558<107|-0,01140| 7,6674x10* [-0,01238|-0,01054

Bootstrap

MSH _ 5 1,96 R |0,01961 [5,2021x10°]-0,02880| 1,0429x10™'® [-0,02880 |-0,02880

Mirror cenarios

MSH 13 5,10 A | 0,05099 |8.2125x10°[-0,02432| 6,2573x10"7 |-0,02432-0,02432

Cenarios ponderados

MSMC Tradicional 13 5,10 A 10,05099 |9,2188x10°(-0,02394| 1,5652x10° |-0,02780 |-0,02240

Modelo 1 com r constante

MSMC Tradicional 12 471 A 10,04707 |8,1988:10°[-0,02510| 2.0250x10° |-0,02793|-0,02236

Modelo 2 com r constante

MSMC GARCH (0,0) (11) 1 431 A | 004315 [8.3288:10°|-0,02463 | 11779107 |-0,02846 |-0,02241

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 1 431 A 10,04315 |8,1392:10°[-0,02512| 1.5180:10° |-0,02846 |-0,02238

Modelo 2 com r constante

MSMCEGARCH (0,1) (1L1)| 4 5.10 A |0,05099 |8.7840.10°|-0,02517| 3,1436:10° |-0,03159 -0,02063

Modelo 1 com r constante

MSMC EGARCH (0,1) (1L1y| -, 471 A | 004707 [8,7677:107|-0,02539 | 32639107 |-0,03134 [-0,02060

Modelo 2 com r constante
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Tabela A. 24: VaR estatico-2 para a carteira com Vale do Rio Doce PNA, Telemar PN e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional - 19 7.45 A | 007453 [1,5829:107|-0,02113| 2.5574x107 |-0,02691 |-0,01682

Modelo 1 com r variavel

MSMC Tradicional - 18 7,06 A ]0,07060 | 1,3944x107]-0,02219| 3,0331x107 |-0,02706 |-0,01684

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 12 471 A | 004707 [8,7365:10°|-0,02407 | 1,2988:10° |-0,02819 |-0,02032

Modelo 1 com r variavel

MSMC GARCH (0,0) (L1) 12 471 A 1004707 |8,5118:10°[-0,02453 | 1.5856:10° |-0.02869 |-0,02028

Modelo 2 com r variavel

MSMC EGARCH (0.1) (LLD)| ¢ 7.06 A 1007060 | 1,2237:10°[-0,02331 3.7022:10° |-0.03007 |-0.01808

Modelo 1 com r variavel

MSMC EGARCH (0.1) (1LL1)| ¢ 7.06 A |0.07060 [1.2111:107|-0,02353| 3,7928:10° |-0,03004 [-0,01810

Modelo 2 com r variavel
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Apéndice 6

Modelos de VaR estaticos para carteiras de opcoes com 255 observacdes e modelo de precificacdo de ativos tipo 1

Tabela A. 25: VaR estatico para a carteira com opgdes da Telemar PN estratégia call-ratio.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perdade | VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio | Desvio Padrdo | Maximo | Minimo

Gregas 115 45.10 R |048404| 003305 | 0 0 0 0

MSMC Tradicional 2 8.63 R |009675| 001048 |-04526| 023122 | -0.6662 |-0.08367

com r constante

MSMC GARCH (0,0) (1,1) 23 9,02 R |010132] 001112 |-04143| 021935 |-0,6632 |-0,08320

com r constante

MSMC EGARCH (0,1) (1,1,1) 3 1,17 R |0,01183 |63134¢10°|-1,1825| 05370 | -1,9736 |-0.53181

com r constante

MSMC Tradicional 41 16,08 R |0,17364| 0,01286 |-0.6815| 057684 |-1.3639 | 0,0000

com r variavel

MSMC GARCH (0,0) (L1) 60 23.53 R 025731 002202 |-02541| 028568 | -0.6929 | 0,0000

com r variavel

MSMC EGARCH (0.1) (LLD)| 4 5.49 R |0,05690 |2,0014x107|-1,0312| 0,60682 | -1,8284 | -0,1257

com r variavel
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Tabela A. 26: VaR estatico para a carteira com opg¢des da Telemar PN estratégia borboleta comprada.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perdade | VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1 | Lopez2 | Médio |Desvio Padrio| Méximo | Minimo

Gregas 129 50,59 R | 53217 | 48158 |-001493| 0014236 |-0,03310| 0,0000

MSMC Tradicional 26 10,20 R | 01144 | 001245 | -5.0479 |  6,6865 |-16,1720]-0,0255

com r constante

MSMC GARCH (0,0) (1.1) 31 12.16 R | 01347 | 001311 | -47812 | 62965  |-15.2250]-0,0247

com r constante

MSMC EGARCH (0.1) (1,LL)| 0,00 R | 0,0000 | 00000 |-8,1496 | 7.5747  |-20.8543|-2,7970

com r constante

MSMC Tradicional 50 19.61 R 021621 0,02013 |-0,55086| 05401 | -1.1869 | 0,0000

com r variavel

MSMC GARCH (0,0) (1,1) 17 6.67 A 007249 [5.82410° | -4.6873 | 69148  |-16.3410]-0.2322

com r variavel

MSMC EGARCH (0.1) (1,LD)| 0,00 R | 0,0000 | 00000 |-82716 | 87943  |-23,0250|-2,1093

com r variavel
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Tabela A. 27: VaR estatico para a carteira com opg¢des da Telemar PN estratégia borboleta vendida.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perdade | VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio | Desvio Padrdo | Méximo | Minimo

Gregas 102 40 R | 19234 | 15234 |-0,0068| -6,8298:10° |-0,02639| 0,0000

MSMC Tradicional 26 10,20 R | 0,1091 |7,1404x107|-0,6740| 047241 | -1,2987 | 0,0000

com r constante

MSMC GARCH (0,0) (1,1) 26 10,20 R | 01091 |7.1419¢107|-0.6761| 044227 | -1.2075 | 0,0000

com r constante

MSMCEGARCH (0.1) (1,LL)| 4 1,96 R |0,02001 |4,0633x10%|-4.3792|  3.6699  |-10,0630 | -0,3571

com r constante

MSMC Tradicional 0 0 R 0 0 9.6460| 141510  |-33.5250-0,6229

com r variavel

MSMC GARCH (0,0) (11) 30 11,76 R | 0,1257 |8.0501x107|-0,5398| 04239 | -1.1638 | 0,0000

com r variavel

MSMC EGARCH (0,1) (1,L1y| 44 11,76 R | 01251 |7.4556x107-54912|  5.9006  |-15.1290 0,0000

com r variavel
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Apéndice 7

Modelos de VaR dindmicos para Vale do Rio Doce PNA com 255 observacoes.

Tabela A. 28: VaR dindmico —1 para a Vale do Rio Doce PNA.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 M¢édio Desvio Padrdo| Mdéximo Minimo
Delta-normal 118 46,27 R | 04629 |1,2294x10™|-4,0402x107"| 8,8590x10” |-5,8941x10*(-3,0475x10™
Tradicional
Delta-normal 4 4 4 4 4
GARCH (0,0) (1.1) 118 46,27 R 0,4628 |1,2239x10™ |-4,2732x10 1,7502x10™ |-8,0547x10™ [-1,9791 x10
Delta-normal 4 4 4 4 4
EGARCH (0.1 (1,1.1) 118 46,27 R 0,4629 |1,2242x10™ |-4,3064 x10 1,6600x10™ |-8,7916x10™ [-1,5915x10
MSH -6 -3
.. 16 6,27 A 0,06245 |19,2386x10 -0,02654 3,9754x10 -0,03184 -0,02093
Tradicional
MSH -6 -3
22 8,63 R 0,08628 [6,9658x10 -0,02130 7,1006x10 -0,03974 -0,01188
Bootstrap
MSH ' ] 3.14 A 0,03178 |4,6007x10°| -0,02773 3,1598x107 -0,03496 -0,02383
Mirror cenarios ’
MSH 5 3 -4
33 12,94 R 0,12943 | 1,8347x10 -0,02042 9,7890x10 -0,04846 | 6,2483 <10

Cenarios ponderados




Tabela A. 29: VaR dindmico —2 para a Vale do Rio Doce PNA.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez 2 M¢édio |Desvio Padrdo | Maximo | Minimo

MSMC Tradicional 13 5,10 A 0,05099 | 6,6662x107°|-0,02563 | 1,7788x107 |-0,02839 |-0,02290

Modelo 1 com r constante

MSMC Tradicional 13 5.10 A 10,05099 | 6,7477:10° |-0,02554| 1,7658:10° |-0,02827-0,02282

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 11 431 A |0,04314 | 3,7633x10° |-0,02604 | 4,8905x10° |-0,03118 [-0,01604

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 11 431 A |0,04314 | 3,.8355:10° |-0,02594 | 4,8530x107 |-0,03696 |-0,01600

Modelo 2 com r constante

MSMC EGARCH (0,1) (1,1,1) 10 3,92 A |0,03922 [ 52164x10° |-0,02645| 5,0155:107 |-0,04095 [-0,01333

Modelo 1 com r constante

MSMC EGARCH (0,1) (1,1,1) 10 3,92 A [0,03922 5275410 [-0,02641| 4,9747x10° |-0,04071|-0,01331

Modelo 2 com r constante

MSMC Tradicional 19 7,45 A |0,07452 | 1,1949¢10° |-0,02486 | 6,9140:10° |-0,04136]-0,02697

Modelo 1 com r variavel

MSMC Tradicional 19 7,45 A 10,07452 | 1,2074x10°]-0,02476 | 6,9054x10° |-0,04126 |-0,02613

Modelo 2 com r variavel

MSMC GARCH (0,0) (1.1) 11 431 A |0,04314 | 4,3782:10° | -0,02535| 4,6806x107 |-0,03629 |-0,01589

Modelo 1 com r variavel

MSMC GARCH (0,0) (1,1) 1 431 A |0,04314 | 4,4591x10° |-0,02525| 4,6431x10° |-0,03661-0,01586

Modelo 2 com r variavel

MSMC EGARCH (0.1) (1.LI)| g 7,06 A ]0,07060 | 8,0811x10° |-0,02390| 4,6545x107 |-0,03644 |-0,01118

Modelo 1 com r variavel

MSMC EGARCH (0,1) (1,1,1) 18 7.06 A |0,07060 | 8,1820:10° [-0,02379| 4,6192x10° |-0,03622|-0,01115

Modelo 2 com r variavel
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Apéndice 8

Modelos de VaR dindmicos para a Petrobras PN.

Tabela A. 30: VaR dindmico —1 para a Petrobras PN com 255 observacgdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 Médio Desvio Padrdo| Mdéximo Minimo

Delta-normal 101 39,61 R | 03962 |1,2312x107*|-1,1845x107| 1,2160x10* |-1,4927x107 |-9,7039x10™

Tradicional

Delta-normal 4 3 4 3 4

GARCH (0,0) (1.1) 101 39,61 R 0,3962 |1,2522x107"|-1,0579x10™| 2,6383x10™ |[-2,0549x107|-7,2975x10

Delta-normal 4 4 4 4 4

EGARCH (0.1 (1,1.1) 100 39,22 R 0,3923 | 1,2351x107" |-1,1303x107™"| 2,6242x10™ |[-2,0790x107"|-6,8245x10

MSH. . 9 3,53 A 0,03530 9,1554x10°| -0,03287 6,3306x107 -0,03879 -0,02193

Tradicional

MSH 22 8,63 R 0,08629 | 1,6759x107| -0,02152 5,8021x10™ -0,03693 -0,01339

Bootstrap

MSH ' 7 775 A 0,02746 | 7,6598x10°| -0,03582 7,0672x107 -0,04415 -0,02562

Mirror cenarios ’

MSH. 25 9,8039 R 0,09808 |3,5522x107 | -0,02139 0,01209 -0,05789 [-2,3547x10™

Cenarios ponderados
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Tabela A. 31: VaR dindmico —2 para a Petrobras PN com 255 observacgdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo | Maximo | Minimo

MSMC Tradicional 9 3,53 A [0,03530]9,4670x10°|-0,03141| 4,5986x10° [-0,03730| -0,02536

Modelo 1 com r constante

MSMC Tradicional 9 3,53 A 10,03529(9,5806x10°[-0,03127| 4,5578x10° |-0,03710| -0,02528

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 9 3,53 A [0,03531|1,3051x107]-0,02732| 3.8978:10° [-0,04081| -0,01944

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 9 3,53 A [0,03531|1,3159:10°]-0,02721| 3.8669:10° |-0,04057| -0,01938

Modelo 2 com r constante

MSMC EGARCH (0,1) (1,1,1) 10 3,92 A |0,03923 [1,1481x10°-0,02948 | 5.5776x107 |-0,04785| -0,01796

Modelo 1 com r constante

MSMC EGARCH (0,1) (1,1,1) 10 3,92 A [0,03923 |1,1591x10°]-0,02935| 5,5282:10° |-0,04752| -0,01791

Modelo 2 com r constante

MSMC Tradicional 14 5,49 A |0,05491 | 1,1801x10°|-0,02926| 6,8088x10° |-0,04516|-8,8430x107

Modelo 1 com r variavel

MSMC Tradicional 14 5,49 A |0,05491 | 1,1949:10°|-0,02911| 6,7818:10° |-0,04494 | -8,8325x107

Modelo 2 com r variavel

MSMC GARCH (0,0) (1.1) 11 431 A |0,04315|1,5307x10° |-0,02589 | 4,1745x10° |-0,03889| -0,01789

Modelo 1 com r variavel

MSMC GARCH (0,0) (1.1) 12 4,71 A |0,04707 |1,5429x107 |-0,02578 | 4,1438x107 [-0,03867| -0,01784

Modelo 2 com r variavel

MSMC EGARCH (0.1) (I.LI)| 45 5,88 A ]0,05884 [1,5313:10°(-0,02679| 5,8012:10° [-0,04522| -0,01560

Modelo 1 com r variavel

MSMC EGARCH (0.1) (1.LI)| 45 5,88 A |0,05884 | 1,5458:10°(-0,02662| 5,7543x10° |-0,04492| -0,01555

Modelo 2 com r variavel
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Apéndice 9

Modelos de VaR dindmicos para a Telemar PN

Tabela A. 32: VaR dindmico —1 para a Telemar PN com 255 observacdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violacdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 Médio Desvio Padrdo| Maéximo Minimo

Delta-normal 104 40,78 R | 0,4080 |1,9718x107*(-2,3199x107| 2,0810x107* |-2,8122x107 |-1,7844x10"

Tradicional

Delta-normal 4 3 4 3 3

GARCH (0,0) (1.1) 104 40,78 R 0,4080 |1,9837x107"|-2,2414x107| 3,5475x107" |[-3,5119x107|-1,6220x10

Delta-normal 4 3 4 3 3

EGARCH (0.1 (1,1.1) 104 40,78 R 0,4080 |1,9616x107"|-2,3346x107| 5,8141x10™ |[-4,3392x107|-1,0614x10

MSH. . 12 4,71 A 0,04707 | 1,4668x107 | -0,036675 | 6,6784x107 -0,04659 -0,02828

Tradicional

MSH 33 12,94 R 0,1295 |3,3721x107| -0,02417 4,6642x10™ -0,03158 -0,01386

Bootstrap

MSH ' 9 3,53 A 0,03531 | 1,0624x107 | -0,04035 4,4089x107 -0,04563 -0,03479

Mirror cenarios

MSH 35 13,76 R 0,13728 [2,9204x10°| -0,02657 0,01409 -0,06382  [-8,7345x10™

Cenarios ponderados




Tabela A. 33: VaR dindmico —2 para a Telemar PN com 255 observacdes.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional 11 431 A |0,04315[1,5704x107° [-0,03532| 3.8926x107 [-0,04100-0,03033

Modelo 1 com r constante

MSMC Tradicional 11 431 A |0,04315|1,5911x10°|-0,03513 | 3.8536:10° |-0,04076-0,03019

Modelo 2 com r constante

MSMC GARCH (0,0) (1,1) 13 5.10 A [0,05100 | 1,5346x10°]-0,03389| 4,3206:10° [-0,05010-0,02432

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 13 5.10 A [0,05100 | 1,5563x10°|-0,03372| 4.2779:10° |-0,04975|-0,02423

Modelo 2 com r constante

MSMC EGARCH (0,1) (1,1,1) 17 6,67 A |0,06667 |8,7273x10°|-0,03506| 7.5161:10° |-0,06079-0,01954

Modelo 1 com r constante

MSMC EGARCH (0,1) (1,1,1) 17 6,67 A |0,06667 |8,9380x10°|-0,03488| 7.4355:10° |-0,06027|-0,01948

Modelo 2 com r constante

MSMC Tradicional 15 5,88 A |0,05884 | 1,5732:10°]-0,03387| 6,6901x10 |-0,04908-0,01797

Modelo 1 com r variavel

MSMC Tradicional - 15 5,88 A [0,05884 [ 1,5956:10°|-0,03369| 6,6734:10 |-0,04885-0,01783

Modelo 2 com r variavel

MSMC GARCH (0,0) (1.1) 16 6,27 A ]0,06276 [1,8152:10°(-0,03268 | 4,5272:10° |-0,04809 | -0,02254

Modelo 1 com r variavel

MSMC GARCH (0,0) (1.1) 16 6,27 A ]0,06276 [1,8399:107°|-0,03251| 4,5852:107° |-0,04773 | -0,02245

Modelo 2 com r variavel

MSMC EGARCH (0.1) (L.LI)| - 5 7,84 A |0,07844 [1,0226:10°|-0,03365| 7,5935x10° |-0,05918 |-0,01944

Modelo 1 com r variavel

MSMC EGARCH (0,1) (LLI)| 5 7.84 A |0,07844 | 1,0464x107° |-0,03347| 7.5132:10° |-0,05866|-0,01938

Modelo 2 com r variavel
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Apéndice 10

Modelos de VaR dindmicos para carteiras com duas e trés acdes € 255 observacoes

Tabela A. 34: VaR dinamico-1 para a carteira com Vale do Rio Doce PNA e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrao| Maximo | Minimo

MSH 15 5,88 A |0,08553 |8,5844:10°|-0,02299| 3,8020x10° |[-0,02853 | -0,01728
Tradicional
MSH 23 9,02 R |0,09020 |6,1030<10(-0,01834| 7,5150x10° |-0,03684 |-0,01041
Bootstrap
MSH 12 4,71 A |0,04706 | 6,2844:10°]-0,02368 | 1,9212x107 |-0,02556 | -0,01969
Mirror cenarios
MSH 30 11,77 R |0,11767|2,0105<10°|-0,01698 | 9,855810° |-0,05131(0,000176
Cenarios ponderados
MSMC Tradicional 7 2,75 A | 0,02746 | 5,6507:10°|-0,02672 | 2,4217x10° |-0,03111-0,02314
Modelo 1 com r constante
MSMC Tradicional 7 2,75 A | 0,02746 | 5,6560:10°|-0,02671| 2,4183x10° |-0,03108 | -0,02314
Modelo 2 com r constante
MSMC GARCH (0,0) (1,1) 7 2,75 A | 0,02746 | 4,6812:10°|-0,02565| 3,3904x10° |-0,03406 | -0,01750
Modelo 1 com r constante
MSMC GARCH (0,0) (1,1) 7 2,75 A | 0,02746 | 4,6944:10°|-0,02563 | 3,3794x107 |-0,03407 | -0,01749
Modelo 2 com r constante
MSMC EGARCH (0,1) (1,1,1) . B
Modelo | com 1 constante 5 1,96 R |0,01961 |5,6720<10°|-0,02672| 3,3932x107 |-0,03645 | -0,01727
MSMC EGARCH (0,1) (1,1,1 _ _

O.h (L.LD 5 1,96 R |0,01961 |5,675910°|-0,02672| 3,3581x10° |-0,03641|-0,01727

Modelo 2 com r constante
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Tabela A. 35: VaR dindmico-2 para a carteira com Vale do Rio Doce PNA e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional - 1 431 A 10,04314 |7.1957:10°-0,02516| 5.4215:10° |-0.03532 |-0,00882

Modelo 1 com r variavel

MSMC Tradicional - 11 431 A [0,04314(7,203010°|-0,02515| 5,4191x10° |-0,03530[-0,00881

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 7 2,74 A | 002746 [5.5202:10°|-0,02455 | 32530107 |-0,03241 |-0,01632

Modelo 1 com r variavel

MSMC GARCH (0,0) (L1) 7 2,74 A | 002746 | 5.5354:10°|-0,02453 | 32424107 |-0,03242 [-0,01631

Modelo 2 com r variavel

MSMC EGARCH (0,1) (1,1,1) P R

Modelo 1 com r variavel 9 3,53 A 10,03530|7,5042x10°]-0,02409 | 3,3121x10° |-0,03329[-0,01539

MSMC EGARCH (0,1) (1,1,1) . R

Modelo 2 com r varidvel 9 3,53 A ]0,03530|7,5101x10° | -0,02409 | 3,2867x107 |-0,03326(-0,01538
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Tabela A. 36: VaR dinamico-1 para a carteira com Vale do Rio Doce PNA e Telemar PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR

Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo
MSH 18 7,06 A | 0,07060 | 1,1754x10° [-0,02323 | 2.2125x10° |-0,02625|-0,02030
Tradicional
MSH -5 3

31 12,16 R |0,12158 [1,0963x107]-0,01903| 5,6851x107 [-0,03310/-0,01097

Bootstrap
MSH _ 15 5,88 A | 0,05883(9.3929x10°|-0,02436| 2.2873x10" [-0,02919|-0,02193
Mirror cenarios
MSH 29 11,37 R |0,11374 [1,8801x107]-0,01973| 1,0480x102 [-0,05019 |-0,02234
Cenarios ponderados
MSMC Tradicional 13 5,10 A 10,05099 |8,3050x10°(-0,02476| 1,3427x10° |-0,02804 [-0,02270
Modelo 1 com r constante
MSMC Tradicional 13 5.10 A 10,05099 |8.3288:10°[-0,02473 | 1.3426:10° |-0,02802 |-0.02267
Modelo 2 com r constante
MSMC GARCH (0,0) (11) 13 5.10 A |0,05099 6491010 |-0,02451| 41691107 |-0,03903 [-0,01936
Modelo 1 com r constante
MSMC GARCH (0,0) (1,1) 13 5.10 A 10,05099 |6,5071:10°|-0,02448 | 4.1689:10° |-0.03898 |-0.01932
Modelo 2 com r constante
MSMCEGARCH (0,1) (LL1)| |, 471 A 1004707 | 7.8728:10°(-0,02516| 4.8718:10° |-0.04157|-0,01363
Modelo 1 com r constante
MSMC EGARCH (0,1) (1L1y| -, 471 A 1004707 |7.9011:10°[-0,02521 | 4.8918:10° |-0.04151 |-0,01358

Modelo 2 com r constante
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Tabela A. 37: VaR dinamico-2 para a carteira com Vale do Rio Doce PNA e Telemar PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional - 18 7.06 A | 007060 [7,9907:10°|-0,02358 | 5.3407:10° |-0,04005 [-0,01027

Modelo 1 com r variavel

MSMC Tradicional - 18 7,06 A ]0,07060 | 8,0203x10°(-0,02354 | 5,3408x10™ |-0,04003 [-0,01024

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 17 6.67 A | 006667 |7.6594:10°|-0,02353| 3.9160x10° |-0,03756 |-0,01852

Modelo 1 com r variavel

MSMC GARCH (0,0) (L1) 17 6.67 A | 006667 |7.6786:10°1-0,02350| 3.9154:10° |-0,03752 [-0,01849

Modelo 2 com r variavel

MSMC EGARCH (0,1) (LLL)| 7.84 A 1007844 |1,0019:10°[-0,02325| 4.7640,10° |-0.03977 |-0.01228

Modelo 1 com r variavel

MSMC EGARCH (0,1) (LL1)| 7.84 A | 007844 [ 1,0056:107 |-0,02325 | 47665107 |-0,03970[-0,01223

Modelo 2 com r variavel
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Tabela A. 38: VaR dindmico-1 para a carteira com Telemar PN e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSH 1 431 A |0,04315(1.2622:10°]-0,03272| 6.8228:10° |-0,04031]-0,02300

Tradicional

MSH 18 7.06 A |0,07061 | 1,8689:10°|-0,02262| 4.8765:10° |-0,03313|-0,01386

Bootstrap

MSH _ 11 431 A |0,04315(1.0517:10°-0,03332| 4.6911:10° |-0,03813|-0,02547

Mirror cenarios

MSH 28 10,98 R | 0,10985 [4,1723x107|-0,02117| 0,013037 |-0.05654 | 0.00000

Cenarios ponderados

MSMC Tradicional 1 431 A |0,04315(9.1195:10°]-0,03227| 3.7005:10° |-0,03722]-0,02732

Modelo 1 com r constante

MSMC Tradicional 1 431 A |0,04315(9.1384:10|-0,03224| 3.6930x10° |-0,03719|-0,02730

Modelo 2 com r constante

MSMC GARCH (0,0) (11) 10 3.92 A |0,03923 [1,1027:107|-0,02913| 3.4119:107 |-0,03842 |-0,02321

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 10 3.92 A 1003923 |1,1049:10°[-0,02911| 3.4084:10° |-0,03841-0,02320

Modelo 2 com r constante

MSMCEGARCH (0.1) (1LL)| 431 A 1004315 |9,1936:10°[-0,03051| 4.2517:10° |-0,04858 -0,02154

Modelo 1 com r constante

MSMCEGARCH (0.1) (1L1)| 431 A 10,04315 |9.2048:10°[-0,03049 | 4.2463:10° |-0,04851-0,02153

Modelo 2 com r constante
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Tabela A. 39: VaR dindmico-2 para a carteira com Telemar PN e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional - 1 431 A 0,04315 | 1,0797:10°[-0,03041| 5.8027x10° |-0,04488|-0,01391

Modelo 1 com r variavel

MSMC Tradicional - 11 431 A [0,04315(1,0822x107(-0,03039 | 5,7990x10™ |-0,04484 [-0,01389

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 14 5,49 A 10,05492 | 13144107 [-0,02781| 3.3696:10° |-0.03726|-0.02181

Modelo 1 com r variavel

MSMC GARCH (0,0) (L1) 14 5.49 A 10,05492 | 131694107 [-0,02779| 3.6925:10° |-0.03723|-0,02180

Modelo 2 com r variavel

MSMC EGARCH (0.1) (LLD)| 5 5.88 A 1005883 | 1,1615:10°[-0,02845| 42724107 |-0.04367|-0,01975

Modelo 1 com r variavel

MSMC EGARCH (0.1) (LLD)| 5 5.88 A |0,05883 [ 1,1627:107 |-0,02843 | 4.2665:10° |-0,04360[-0,01974

Modelo 2 com r variavel
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Tabela A. 40: VaR dindmico-1 para a carteira com Vale do Rio Doce PNA, Telemar PN e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSH 16 6,27 A | 0,06276 | 1,0176x10° [-0,02283 | 1,8809x10" |-0,02460 |-0,01946

Tradicional

MSH 22 8,63 R |0,08628 [8,6844x10°|-0,01943| 6,1041x107 [-0,03340|-0,01006

Bootstrap

MSH _ 13 5,10 A ]0,05099 | 7.6656x10°]-0,02525| 3,1338x10" |-0,02880 [-0,01999

Mirror cenarios

MSH 25 9.80 R |0,09806 [2,5722x10°|-0,01809 | 1,0738x107 |-0,05266 | 0,00000

Cenarios ponderados

MSMC Tradicional 17 6,67 A ]0,06667 | 1,0908x107]-0,02259| 2,0821x10° |-0,02586[-0,01970

Modelo 1 com r constante

MSMC Tradicional 17 6.67 A 1006667 |9.9368:10°[-0,02263| 2.0961x10° |-0,02589-0,01966

Modelo 2 com r constante

MSMC GARCH (0,0) (11) 12 471 A 10,04707 |8,7322:10°[-0,02211| 3.4343:10° |-0.03362|-0,01636

Modelo 1 com r constante

MSMC GARCH (0,0) (1,1) 12 471 A 10,04707 |7.9075:10°-0,02235| 3.7287:10° |-0.03376|-0,01634

Modelo 2 com r constante

MSMCEGARCH (0,1) (LL1)| |, 471 A 1004707 |9.8847:10°[-0,02308 | 3.4387:10° |-0.03247-0,01604

Modelo 1 com r constante

MSMC EGARCH (0,1) (1L1y| -, 471 A 10,04707 |7.9920:10°[-0,02327| 3.5031:10° |-0,03275|-0,01601

Modelo 2 com r constante
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Tabela A. 41: VaR dindmico-2 para a carteira com Vale do Rio Doce PNA, Telemar PN e Petrobras PN.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1| Lopez2 | Médio |Desvio Padrdo| Maximo | Minimo

MSMC Tradicional - 22 8,63 R |0,08629 |1,2482x10°]-0,02103 | 4.8603x107 |-0,03214 |-0,00677

Modelo 1 com r variavel

MSMC Tradicional - 21 8,23 R |0,08236 [1,1219x10°]-0,02110| 4,9912x10° |-0,03331 |-0,00673

Modelo 2 com r variavel

MSMC GARCH (0,0) (1,1) 17 6.67 A | 006667 |1,0267:107|-0,02097| 3.2363:10° |-0,03197[-0,01503

Modelo 1 com r variavel

MSMC GARCH (0,0) (L1) 17 6.67 A | 006667 [9.3812:10°|-0,02121| 3.5047:10° |-0,03207 |-0,01501

Modelo 2 com r variavel

MSMC EGARCH (0.1) (LLD)| ¢ 7.06 A 1007060 | 1,2816:10°[-0,02087| 3.2216:10° |-0,02960-0,01431

Modelo 1 com r variavel

MSMC EGARCH (0,1) (LL1)| 4 7.45 A | 007452 [1,0777:107 |-0,02107| 32810107 |-0,02669 [-0,01410

Modelo 2 com r variavel
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Apéndice 11

Modelos de VaR dindmicos para carteiras de opcoes e hedge delta neutro com 255 observacdes e modelo de precificacdo de ativos tipo 1

Tabela A. 42: VaR dinamico para a carteira com opgdes da Telemar PN estratégia call-ratio.

Metodologia Numero de | Percentual de | Teste de | Perda de| Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1 | Lopez?2 M¢édio |Desvio Padrao | Maximo | Minimo

Gregas 115 45.10 R | 048404 | 0033055 | 0,0001 | 2,559x10" | 0,0003 | 0,0000

MSMC Tradicional 28 10,98 R |0.11124 | 00014394 |-0,45372| 0.66139 | -3.4364 | 0,0000

com r constante

MSMC GARCH (0,0) (1,1) 31 12.16 R |0.12345| 0001880 [-0.42098| 061541 | -3,2092 | 0,0000

com r constante

MSMC EGARCH (0.1) (LLL)| ¢ 6.27 A |0,06350 |7.5896x107| -13239 | 2.6957 | -21.481 | 0,0000

com r constante

MSMC Tradicional 40 15,69 R 0,16196[5.1011:10%| -0,5055 |  0,7077 | -3.4395 | 0,0000

com r variavel

MSMC GARCH (0,0) (L1) 53 20,78 R | 021450 |6,6590x107 |-0.38604|  0.61993 | -3.1969 | 0,0000

com r variavel

MSMC EGARCH (0,1) (LL1)| 59 1137 R |0,11559 | 1.8614:107| -13047 | 27264 | -21.477 | 0,0000

com r variavel
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Tabela A. 43: VaR dinamico para a carteira com opgdes da Telemar PN estratégia borboleta comprada.

Metodologia Numero de | Percentual de | Teste de | Perda de | Perda de| VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1 | Lopez2 | Médio |Desvio Padrdo | Mdximo | Minimo

Gregas 99 38.82 R | 1.9088 | 1,5206 |-0,01095| 0,01522  |-0,04709| 0,0000

MSMC Tradicional 36 1412 R |025636|0,11519| -2,6081 | 84057 | -78.561 | 0,0000

com r constante

MSMC GARCH (0,0) (1,1) 42 16,47 R |028289]0.11818] -2.5176 | 83415 | -78.549 | 0,0000

com r constante

MSMC EGARCH (0,1) (1,L,1)| 44 12,94 R | 01543 | 0,02488 ] -14255 | 63514  |-523.100| 0,0000

com r constante

MSMC Tradicional 46 18,04 R | 07030 |0,52263 | -2.9066 | 89244 | -76.863 | 0,0000

com r variavel

MSMC GARCH (0,0) (1,1) 48 18,82 R |034031]0.15207| 22928 | 77556 | -78.001 | 0,0000

com r variavel

MSMC EGARCH (0,1) (1L1)| 45 13,73 R |0.16976 | 003250 | -13.895 | 60,789  |-472.860| 0,0000

com r variavel
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Tabela A. 44: VaR dinamico para a carteira com opg¢des da Telemar PN estratégia borboleta vendida.

Metodologia Numero de | Percentual de | Teste de | Perda de | Perda de| VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1 | Lopez2 | Médio |Desvio Padrdo | Mdximo | Minimo

Gregas 97 38,04 R | 1.8987 | 1,5183 |-0,01581| 0,015457 | -0,0418 | 0,0000

MSMC Tradicional 14 5.49 A |0,16554]0.11063 | 33589 | 92135 | -98.801 | 0,0000

com r constante

MSMC GARCH (0,0) (1,1) 18 7.06 A 0172731017273 | -3.2599 | 91306 | -98.399 | 0,0000

com r constante

MSMC EGARCH (0.1) (1LLD)| 5 5.88 A | 018761 ]0,12879 |-13.6980|  64.161 | 720,01 | 0,0000

com r constante

MSMC Tradicional 26 10,20 R | 02387 |0,13677| -3.2080 |  8.9499 | -91,103 | 0,0000

com r variavel

MSMC GARCH (0,0) (1,1) 23 9,02 R |021047]0.12027] -3.0331 | 85364  |-113.270] 0,0000

com r variavel

MSMC EGARCH (0.1) (1,L1y| 5 6.67 A 022006 ]0,15340 |-13.2710| 60475 | -705.02 | 0,0000

com r variavel
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Tabela A. 45: VaR dinamico para a carteira hedge delta neutro da Telemar PN.

Metodologia Numero de | Percentual de | Teste de | Perda de | Perda de VaR VaR VaR VaR
Violagdes | Violagdes | Kupiec | Lopez 1 | Lopez 2 M¢édio |Desvio Padrao | Maximo | Minimo

Gregas 58 22.75 R | 022756 |1,0495:107[-0.04060| 0,048073 |-0.17395| 0,0000

MSMC Tradicional 8 3.14 A 10,031651|2,7881x107|-0,12000| 0,068389 |-0.59213 | 0,0000

com r constante

MSMC GARCH (0,0) (L,1) 8 3.14 A 10,032153|7.8003x10%|-0,11988| 0,073890  |-0,69883 | 0,0000

com r constante

MSMC EGARCH (0.1) (1,LD)| ¢ 235 R |0,023605|7,5542x107[-0.17547|  0.153730  |-0.81974 | 0,0000

com r constante

MSMC Tradicional 14 5,49 A | 0,05986 |4.9598x107| -0,1586 |  0,14199  |-0.84310| 0,0000

com r variavel

MSMC GARCH (0,0) (L,1) 8 3.14 A 10,031890|5.1721x10%|-0,11986| 0,082885 |-0,76331| 0,0000

com r variavel

MSMC EGARCH (0,1) (LL1)| 4 2,74 A |0,027525(7.4199,10°[-0.17678|  0.15350  |-0.79303 | 0,0000

com r variavel
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ANEXOS
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Anexo 1

Foérmula de 1t6

Seja x(t) um processo de Itd com ¢ > () e com a diferencial estocdstica:
dx(t) = f(t)dt + g(t)dw

onde tanto f quanto g sdo processos estocasticos com propriedades tais que:

y
Hf(s)\ds <0 © ﬂg(s)\zds <o Vi>0
0 0

Seja CZ’I(SRXER +3R). Entdo V(x(t),t) também ¢ um processo de It6 com a diferencial

estocastica dada por:

dV (x(t);t) = [V, (x(£),1) + V. (x(0),2) £ (£) +;Vxx (x(t),0)g” (t)Jdt (A.1)
+ V. (x(2),t)g(t)dw
Prova:

Esta prova estd sendo apresentada em linhas gerais, para maiores detalhes observar Mao
(1997).

Assumindo que x(t) ¢ limitado, dado por uma constante K onde os valores de V(x,t) para
x¢[-K,K] sdo irrelevantes. Por outro lado, para cada n maior ou igual a 1 define-se:

T, = inf{t >0: |x(t)| > n}

Também se define o processo estocastico:

5,0 =[-nvxOan+ [ ], s+ [ g} (HTHS)
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para ¢t > 0. Entdo |xn (t)| <n, ouseja, x,(¢) ¢ limitado. Mais ainda, para todo t >0 ¢ w e Q

existe um inteiro n, = n,(t,w) tal que
x,(s,w)=x(t,w) para 0<s<t¢

desde que n > n,. Por conseguinte, se € possivel estabelecer (A.1) para x, (¢), logo:

V5, (00 =V O050) = [ 06,9094V, 3, 6515 ) 1 (945 Vo (3, 51,508 () s

[ V.06, (9),9)() ., ()W (5)
Em seqliéncia, obtém-se o resultado desejado fazendo n — .

Assumindo que V(x,t) € C? pode-se encontrar uma seqiiéncia {Vn (x,t)} de fungdes C? tal que:

V. (x,t) > V(x,t), gV” (x,t) > V. (x,1),
0 0?

—V (x,t) >V (x,0), V (x,t) >V _(x,t)
ox X2 -

Conseguindo mostrar que a formula de It6 para cada V,, ¢

2

Y, (x, (050~ V, (x(00) = [ % (5, (51,97, (3, (51,91 () 1 5) %6% V,(x,(5).9)g* () s

27, (0,50 9)8 g V)

e depois fazendo n — oo, obtém-se o resultado desejado (A.1).
Se ficar mostrado (A.l) para o caso em que f e g sdo etapas de um processo simples
(explicados a seguir), entdo o caso geral pode ser obtido pelo procedimento de aproximagao.

Isto porque tanto f'quanto g podem ser aproximados por etapas de um processo simples.
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Fixando t > 0 arbitrariamente, e assumindo que V, Vi, Vi, Vi, Vi € Vi s@o limitados em
Rx[0,1] e f(s) e g(s) sido processos simples em s € [0,7]. Seja TT = {tost,51, .ot | uma particio

de [0,t] suficientemente fina para que f(s) e g(s) sejam “aleatdrio constante” para todo (ti, ti+1].

Usando a expansao de Taylor, tém-se:

V(x(t),t) =V (x(0),0) = Z (et st =V (x(2),t,)] =

k-1

V() 1), +§V(x(r,+l>,r,+l>Ax o1 Z )t AL (A2)

k-1

* 2 Vnl) b B A ZV,C(x(r,.H),t,-H)(AxJZ+§R,-

seja |H| =max,.,., , At,. E facil perceber que quando |H| — 0, com probabilidade 1:

kz_lth(x(tiH )t )AL — th(x(S),S)ds, (A.3)

k-

-1

V(x(t,,)1,, )AL, = j V. (x(s),s)ds =

X

O

) (A.4)
v, (x(s),s)f(s)ds+IVx (x(5),5)g(s)dn(s)s

ot—~

k-1

k-1
DV (5t )AL =0, e DR >0 (A.5)
i=0

i=0

observa-se que

k‘

-1

Vt (x(tz+l) tHl)At Ax

»N
T
—_— O

Vi (x(t,0),1,..) 1, (At )2+z o (X(0)51,0) 8 AL AW,

=0
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quando |H| — 0, o primeiro termo tende a 0, embora o segundo tenda a 0 em L? desde que

k-1 k-1
EQV, (x(t,)st,)8 A Aw, P = Y E[V, (x(t,.).,,)g, ] (At)’ =0
=0

i=0

em outras palavras:

f—

2Vt t)ALAY, — 0 em L? (A.6)
i=0

Note também que:

?:‘

-1

Vxx (x(t1+1)7t1+1 )(AX )2 =

>v~
»—O

7, (X(f1+1),f,+1)[f (Ax;)* +2 f,8,At,Aw, ]+ ZVX(X(L-H)JM )g! (Aw,)?

=0

o primeiro termo tende a 0 em L? com |H| — 0, pelas mesmas razdes que antes. O segundo
termo tende a Ier (x(s),5)g”(s)ds em L. A ser mostrado depois, seja h(t) =V_(x(t),t)g> ()
0

e h. =V_(x(t,).t,)g}, e calculando:

E[ik i [aw)? - an Joaw ) - ar, ]j
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_ @n)l(AL)’

onde foi usado o fato de E(Aw, )”” Logo:
Q2" nl)
k-1 t
> h(Aw)? - j h(s)ds em L
i=0 0
ou seja, foi mostrado que
k-1 t
DV (Xt )u i )AL = [V (x(),9)g7 (s)ds, em L2 (A7)
i=0 0

Substituindo de (A.3) a (A.7) em (A.2), tem-se:

V5, 00~V (010) = [ 06,99 V.3, 651:5) ) )45 Vo (3, 51,51 () W

+ V06,9, 9)2(8) o, (5)AW (5)

que ¢ equivalente a (A.1), concluindo a prova.
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Anexo 2

A férmula de It na precificacdo de um ativo

Suponha que o prego inicial do ativo S(to)= S¢>0 no tempo t =t, > 0. Entdo o prego do ativo

no tempo t > t, ¢ dado por:

S(t) =38, exp{(,u — ;O-Z)(t —t))+o(z(t) - Z(fo)} (A.8)

Prova:
Pela teoria das equagdes diferenciais estocasticas (Mao, 1997), a Equac¢do (2.9), dado o valor

inicial S(t,)=S,>0, tem uma unica solugdo S(t) em ¢ > ¢ ,€a solucdo sera positiva. Entdo para
aplicar a formula de Itd, precisa-se definir a funcao C*!' em (0,00)xR, tanto que RxR .

Definir agora " : (0,0) xR, — R por:

V(S,t)=logsS
logo:
1 1
V ZO’ = — —
! Vs S Vss = g

e a partir da Equagao (2.9), pode-se definir f(t) e g(t) como sendo:
f(t) =t g=cdz, ¢  dw=dz

pela formula de It6:
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AV (S(0);t) =[V,(S(t),0) + Vs (S(),0) uS(t) +; Vs (S(0),1)a*S? (¢)dt
+ Vg (S(2),1)oS (t)dw

logo:

1 1
dlogS(t) = %ﬂS(f)— 25%(0)

o282 (t) |dt + LGS(r)dz
S(t)
dlogS(t) = (u —;Uz)dt + odz

integrando ambos os lados de t, a t, obtem-se:

log S(6)~10g S(tg) = (1= &)t ~19) + (=~ 2)

Substituindo o valor inicial S(t,)=S, reorganizamos a expressao anterior para obter:

1
log S(t) =log Sy + (1 — 502)0 —ty)+0(z - z)) (A.9)

= log(SO exp[( e ;0'2)(t —t))+o(z - ZO)D

que leva a Equacdo (A.8), o que conclui a prova.
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Anexo 3:

A Fliminacdo da Aleatoriedade

Os dois caminhos aleatérios em S (Equagdo 2.9) e em V (Equacdo 2.17) sdo ambos
derivados de uma tUnica variavel aleatéria dw (ou dz). Pode-se explorar esta situagdo para
construir uma terceira variavel M, cuja variagdo dM ¢ totalmente deterministica durante o
pequeno periodo de tempo dt.

Para o0 momento esta se¢do parece nao ter importancia ou sentido dentro do contexto,
entretanto sera de extrema importancia quando retornarmos a precificagdo das opgoes.

Seja A um ntimero a nossa disposic¢ao e seja também:

M=V -AS (A.10)
onde A ¢ mantido constante durante o espacgo de tempo dt. Logo pode-se escrever:

dM =dV — AdS

dM = oSV gdz + [ SV +;o-2S2VSS +V,]dt — A(oSdz, + pSd)

dM = aS (Vs ~ A)dz +[uS (Vs —A)+;02S2VSS+Vt]dt (A.11)

Fazendo-se: A _ Ve :61 (antes do salto, ou seja do tempo t), faze-se com que o

oS
coeficiente dw desapareca. Isto permite um valor para dM que ¢ conhecido: o caminho
aleatorio de M ¢ puramente deterministico.
Essencialmente, este “truque” usa o fato de que os dois caminhos aleatorios, para V e
S, sdo correlacionados e nao independentes. Desde que este comportamento randémico seja
proporcional, entdo tomando a combinacdo linear correta entre V e S, pode-se eliminar a

aleatoriedade mutuamente.
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Anexo 4:

RestricGes racionais das opcoes de compra

As condi¢des de contorno sdo o resultado de teoremas que regem a formagdo de
precos sob o ponto de vista de um investidor racional’’. Tais teoremas e defini¢des serdo a
seguir apresentados. Por notagdo defini-se C1(S,t,k) como uma opgdo de compra americana
no tempo <7 ¢ c(S,t,k) uma opcdo de compra européia. Inicialmente tratar-se-4 das
condi¢des de contorno para as opg¢des de compra (quando ndo for necessario o indice T, este
sera suprimido para simplificar a notac¢ao).

Pela defini¢cao das opgdes:

C(S,t,k)=0 e e(S,t,k)=0 (A.12)

e quando t =T, ou seja, no vencimento, ambos os contratos devem satisfazer:

C(S,T,k) = c(S,T,k) = max[0;S; — k] (A.13)

logo, a partir das condigdes de arbitragem e das expressoes (A.12) e (A.13), tem-se:

C(S,t,k) > max[0; S, — k] (A.14)

Em geral a relacdo (A.14) ndo funciona para opgdes de compra européias, visto que
com estes nao pode haver o exercicio antecipado da opgao a qualquer momento, o que poderia

gerar beneficios ao seu titular (Merton, 1990).

Definicao A.1:
O ativo (ou carteira) A é dominante sobre o ativo (ou carteira) B se, para alguma data

conhecida no futuro, o retorno de A exceder o retorno de B para algum possivel estado da

"' Aquele que procura maximizar sua utilidade.
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natureza, e que seja pelo menos igual ao retorno de B para todos os outros estados da

natureza.

Note que no mercado perfeito, sem custo de transagdo e restrigdes a tomada e oferta de
empréstimos, a existéncia de ativos dominantes seria equivalente a possibilidade de
arbitragem. No entanto, ¢ possivel a existéncia de ativos dominantes mesmo numa situagao
sem arbitragem em mercados ndo perfeitos. Para este trabalho serd apresentada a seguinte

suposicao feita por Merton (1999):

Suposicdo A.1
Uma condig¢do necessdria para a teoria da precificagdo racional das opgoes é que as opgoes

sejam precificadas sem a presenca de ativos dominantes e dominados.

A partir da suposicao acima se pode tira algumas conclusdes sobre as opcdes, uma que
segue diretamente da suposicao é: dadas duas op¢des de compra americana do mesmo ativo e

com mesmo prego de exercicio, tém-se:

Cr(S,ty,k) = Cp(S,t, k), se  Ty—t,>T 4 (A.15)
e que:
C(S.1,k) > c(S,1,k) (A.16)

Outra conclusao ¢ que, admitindo duas opgdes idénticas em todos os parametros, com excegao

ao prego de exercicio, tais op¢des devem obedecer:

C(S,t,ky)) < C(S,t,k) se k2 >k1 (A.17)
c(S,t,ky) < e(S,t,k)

Como um ativo comum ¢ igual a uma op¢ao de compra perpétua com preco de exercicio zero,

dai segue de (A.15) e (A.17) que:
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S>C(S,t,k) (A.18)

e de (A.15) e de (A.17), a opcdo deve ser sem valor se o ativo também o for, ou seja:

C(0,2,k) = c(0,¢,k) =0 (A.19)

Seja Q(t) o prego de um titulo sem risco (um titulo c-bond) e que paga uma unidade
monetdria no seu vencimento. Assumindo que as taxas de juros presente e futura sejam

positivas, entdo, para um dado ponto do calendério:

1=0(T) > 0(t,) > ...> O(t,) > O(1)) (A.20)

T'>t,>..>t,>4

Teorema A.1:
Se o preco de exercicio de uma opgdo de compra européia é k e se nenhum pagamento (como
dividendos) ¢ feito sobre o ativo objeto no periodo até o vencimento da op¢do (ou

alternativamente se a op¢do esta protegida contra tais pagamentos), entdo:

c(S,t,k) > max[0;S; — kQ(1)] (A21)

Prova:
Considere as duas possibilidades de investimento:
A: comprar a op¢do por c(S,t,k);
comprar k titulos ao prego de Q(t) por titulo.
Investimento total: c(S,t,k) + Q(t).
B: comprar o ativo objeto por S.
Investimento total: S.
Supondo que no fim do periodo (T) o ativo objeto tenha valor S". Conseqiientemente o
investimento B terd valor S". Vamos avaliar duas situa¢ées para o investimento A ao fim do

periodo:
Se §* < k., entdo a op¢do ndo serd exercida e o valorde A = 0 + k = k.

Se S* > k, entdo a opgdo serd exercida e o valor de A = (S -k)+k=5"
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Assim sendo, o valor corrente de A é ao menos igual a B. Logo A é dominante sobre B. E

junto com a suposi¢do A.1, teremos:

c(S,T,k)+kQ(t)= S (A22)
(4.22) junto com (A.12) implica que:

o(S,T, k) >max[0;S; — kO(t)]

0 que conclui a prova.

De (A.16) e do Teorema A.1 obtém-se que o valor de uma opc¢ao de compra americana
com um prego de exercicio fixo também pode ser obtido via a Equacgdo (A.21). Outro aspecto
oriundo deste teorema ¢ o fato de que o direito de exercer antes da data de vencimento a
opc¢do tem sempre um valor ndo negativo. Este fato ¢ importante para poder concluir que
quando este direito tem valor zero, entdo ¢ o caso onde a op¢do de compra americana e
européia tem o mesmo valor. A partir do Teorema A.1 podem-se obter os dois proximos

teoremas.

Teorema A.2:
Sob as premissas do Teorema A.l, entdo uma opg¢do de compra americana nunca serd
exercida antes da sua data de vencimento, significa também afirmar que esta tera o mesmo

valor que uma op¢do européia.

Prova:

Se a op¢do de compra americana é exercida, seu valor sera Max(0, S — k). Mas pelo Teorema
1, C(S,t,k)> maX[O; Sr - kQ(z)], que é maior que Max(0, S — k) para t<T porque de (4.24),

O(t)<I1. Conseqiientemente, a op¢do tem sempre um valor mais “vivo” que “morto”.

O Teorema A.2 sugere que se ha uma diferenca entre uma opg¢ao americana e européia

implicando numa probabilidade positiva de um exercicio prematuro, deve ser proveniente de
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mudangas desfavoraveis no preco de exercicio ou diferenca de protecdo contra os pagamentos
do ativo objeto.

Comumente refere-se ao Max(0, S — k) como o valor intrinseco da opg¢do, ou seja, a
opc¢ao deve ser sempre vendida ao menos por este valor intrinseco. A luz dos Teoremas A.1 e
A.2, faz mais sentido definir o valor intrinseco como Max(0, S — kQ(t)). Essa defini¢do reflete
o fato de que o prego de exercicio ndo precisa ser pago antes da data de vencimento, e que
kQ(t) ¢ o valor presente deste pagamento.. A diferenga entre estes dois pagamentos pode ser
grande, em particular com op¢des com grandes tempos de vencimento, que € o que o proximo

teorema demonstra:

Teorema A.3:
Sob as premissas d o Teorema A.1, o valor de uma opg¢do perpetua (T = o) deve ser igual ao

valor do ativo objeto.

Prova:

Pelo Teorema A.1, C,(S,t,k)>max|[0;S; —kQ(w)] Mas O(o0) = 0, desde que a taxa de
juros seja positiva, logo teremos C.(S,t,k)> max[O;ST]Z S Mas de (4.24)
S>C,(S,t,k). Logo C(S,t,k)=S.
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Anexo 5:

RestricGes racionais das opcoes de venda

As opgoes de venda tém recebido pouca atengdo na literatura por ter uma popularidade
menor que as opg¢des de compra e porque se acredita que, dado o preco de uma opcao de
compra e do ativo objeto, o valor da op¢do de venda ¢ prontamente determinada. Segundo
Merton (1990) esta afirmacdo ¢ falsa para opgdes de venda americanas, e as aplicagdes
matematicas das opgdes de venda sdao mais sofisticadas que as correspondentes para as opgoes
de compra.

Usando uma notagdo semelhante do Anexo 4, onde P ¢ uma op¢do de venda americana

e p uma opgao de venda européia, na data de vencimento:

P(S,T,k) = p(S, T, k) = max[0;k — St] (A.23)

Iniciando a analise pelas opgdes européias. Para determinar a posi¢do de uma opg¢ao
de venda européia duas posi¢des em carteira (H) sdo examinadas: considere que se assuma
uma posi¢do longa em um ativo a S unidades monetarias, uma longa posi¢do em uma opgao
de venda européia em t como p(S, t, k) unidades monetarias, ¢ a tomada de empréstimo de
kQ’(t) unidades onde Q’(t) € o valor corrente de uma unidade pagével (T — t) anos a partir de t

a uma dada taxa de juros de empréstimo. Supondo que o ativo objeto esteja valendo S™ ao fim

de (T —t) anos.

Primeiro caso:
S'<k—>H=S8 +(k-S)-k=0
Segundo caso:

S >k>H=S +0)-k=8 —k

A estrutura de retorno ¢ idéntica em todos os estados da natureza para uma opg¢ao de
compra européia com mesmo prego de exercicio e tempo de vencimento. Conseqiientemente,
para se evitar que a op¢ao de compra seja um derivativo dominado a op¢ao de compra e de

venda devem ser precificadas de forma que:
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p(S,1,k)+ S —kO'(t) = (S, 1,k) (A.24)

Considerando agora uma posi¢do curta em um ativo, uma longa posi¢do em uma
op¢do de compra, e o empréstimo de kQ(t) unidades. Supondo que o ativo objeto esteja

valendo S” ao fim de (T — t) anos. Logo tem-se duas posi¢des:

Primeiro caso:
S <k—>H=0-S +k=k-S"
Segundo caso:

S >k—>H=(S -k)-S +k=0

A estrutura de retorno ¢ idéntica em todos os estados da natureza para uma opgao de
venda européia com mesmo preco de exercicio e tempo de vencimento. Se a opcao de venda

ndo ¢ um derivativo dominado, entdo deve funcionar a seguinte relacao:

o(S,t,k) =S + kO(t) = p(S,t,k) (A25)

Teorema A.4:
Se forem validas as suposicoes A.1, e se as taxas de tomada de empréstimos e de empréstimo

sdo iguais entdo: Q(t) = Q’(t), entdo:
D(S,1,k) = c(S,1,k) — S + kO(t) (4.26)

Prova:

A prova segue diretamente da aplica¢do simultanea de (A.23) e (A.25) quando Q(t) = Q’(1).

Conseqlientemente, o valor de uma op¢ao de venda européia pode ser precificada
utilizando as informacdes da sua equivalente opcdo de venda e do ativo objeto. Dois

corolarios podem ser obtidos diretamente do teorema anterior.

Corolario A.6a:

kQ(t) = p(S,t,k)
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Prova:
De (4.16) e (A.18) temos: c(S,t,k)—S<0e de (4.25) kQ(l‘) > p(S,t,k)O que conclui a

prova.

A intuicdo para este resultado ¢ imediata. Em fun¢do do limite de seguranca dado pelo
ativo objeto, o valor méximo da opcao é k e como a opgao ¢ européia, nao se pode ter receita
antes do vencimento. A opcdo ndo pode ter um valor maior que o valor presente do

pagamento certo do seu valor maximo.

Corolario A.6b:

O valor de uma opg¢do de venda européia perpetua (T = ©) é zero.

Prova:
A opgao de venda tem um limite minimo seguro de p(S,t,k)>0. Do Corolario 6a e da

condi¢do Q(0) =0, temos (0 > p_(S,t,k), 0 que conclui a prova.

A andlise das opgdes de venda americanas inicia-se pelo fato destas puderem ser

exercidas a qualquer momento, e seu prego deve satisfazer a condi¢do de arbitragem, dai:

P(S.,t,k)>max|0;k — ] (A.27)

Da expressdao acima se pode observar que se o valor do ativo S tender para infinito, o

valor da opg¢ao tende a zero, ou seja:

P(e0,T,k) =p(,T,k) =0 (A.28)

Pelos mesmos argumentos usados para derivar (A.16) pode-se mostrar que:

P(S,t,k) > p(S,t,k) (A.29)
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Onde a inequacdo estrita acontecera somente se houver uma probabilidade positiva de
exercicio antecipado.

Como mostrado no Anexo 4, as op¢des americanas e européias devem ter o mesmo
valor se o pre¢co de exercicio for constante e estes forem protegidos contra pagamentos do
ativo subjacente. Mesmo sob tais condi¢des, hd sempre probabilidade positiva de exercicio
antecipado de uma op¢do de venda americana, assim sendo uma op¢do de venda americana
terd um valor superior a sua equivalente européia. Uma indicacdo positiva sobre este fato
segue diretamente do Corolario A.6b e da condicao de arbitragem (A.26).

Ao contrario de uma op¢do européia, uma op¢do americana sempre ¢ uma fun¢do nao
decrescente da sua data de vencimento. Se ndo ha a possibilidade de um exercicio prematuro,
o valor da op¢ao americana sera igual a sua equivalente européia. Pelo Corolario A6b o valor
de uma opg¢do de venda americana perpetua serd igual a zero, e pelo argumento de
monotonicidade ao longo do tempo até o vencimento todas as op¢des americanas deveriam ter
valor zero. Este resultado absurdo viola as condig¢des de arbitragem (A.26) para S <k.

Para deixar este ponto mais claro vamos reconstituir a analise de duas carteiras
utilizadas para opg¢des européias, no entanto, com opg¢des americanas. A primeira carteira
contém uma posi¢do longa em um ativo ao pre¢o S, uma longa posicdo em uma opg¢ao de
venda americana ao pre¢o P(S, t, k), e a tomada de empréstimo de kQ’(t). Como ja mostrado,
se mantida até o vencimento, o rendimento da carteira serd igual ao resultado obtido ao se
manter uma opg¢ao de compra até o vencimento. Como a op¢ao americana de venda pode ser
exercida antes do vencimento devemos analisar este caso com mais detalhes.

Se, para todos os periodos antes do vencimento, a carteira tiver valor maior que a
opcao de compra americana, S — k, entdo para evitar dominancia da op¢do de compra, o valor
corrente da carteira deve exceder ou ser igual ao valor corrente da op¢do de compra
americana.

O valor intrinseco da carteira a (T —t) periodos antes do vencimento quando o valor do

ativo subjacente for S” é:

S +P(S",1,k)—kQ (1) = (A30)
P(S"0,k)+ (S —k)+k(1-0'(1)> S —k

Conseqiientemente se a condig@o (A.24) for valida para op¢des americanas para evitar

dominancia da opg¢do de compra americana, temos:
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P(S,t,k)+ S —kQ'(t) = C(S,,k) (A31)

O segundo carteira tem uma longa posi¢cdo de uma opc¢do de compra americana ao
preco C(S, t, k), uma posi¢cdo curta em um ativo, ¢ o empréstimo de kQ(t) unidades. Se for
mantido até o vencimento, esta carteira ird replicar o resultado de uma opcao de venda
européia, entretanto, esta deve ter ao menos o mesmo valor em qualquer ponto do periodo. O
valor intrinseco da carteira (T — t) periodos antes do vencimento e com o preco do ativo

subjacente igual a S’ é:

C(S",t,k)- S +kO@t) = (A.32)
(k=SHY+C(S",t,k)-k(1-0()) > k-8

Se C(S*,t,k) <k(1-0(t)), que € possivel para pequenos valores de S*. De (A.27)
P(S*,t, k)>k— S*. Entdo o valor intrinseco da carteira serd menor que o valor da opgio de

. . * . ~
venda americana para valores suficientemente pequenos de S . Assim se uma opg¢ao de venda
americana for vendida para fazer frente a este carteira, e se o dono da opcao decidir exercer-la

antecipadamente, o valor da carteira deve ser menor que o valor de exercicio da opgao.
Este resultado seria certamente obtido se §* < k(1—Q(t))- Neste caso, a carteira nao

iria dominar a op¢do de venda americana se a Inequacdo (A.25) ndo fosse valida, e um
teorema andlogo ao Teorema A.4, que determina o valor de uma opg¢do de venda americana
em termo de uma opcao de compra, ndo existiria. A andlise da segunda carteira ndo apresenta

vantagem a ndo ser a inequagao:

P(S,t,k)<k—-S+C(S,t,k) (A33)
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Teorema A.5:

Se para algum t” < t, existir a probabilidade positiva que p(S,t' k) < k(1-Q(t")), entdo ha
uma probabilidade positiva que a opg¢do de venda americana seja exercida antes do

vencimento e que o valor desta seja estritamente superior a sua equivalente européia.

Prova:
A unica razao para a op¢do de venda americana ser vendida por um prémio superior ao da

sua equivalente européia é se existir uma probabilidade positiva de exercé-la antes do
vencimento. Logo é suficiente provar que p(S,l‘,k) < P(S)t)k).

Da suposigdo A.1, se para todo periodo antes do vencimento p(S *,t‘,k) < P(S *,z',k) para
algum(ns) valor(es) de S" entdo p(S*,t,k) <P(S*,t,k). Do Teorema A.3,
p(S™, 0 k) =c(S", 1, k) = S" + kQ('), de (4.20) P(S",¢'k)>max|0;k - §*| Mas
("1 k)< P(S",t' k) ¢ implicado se k-8 >c(S .t k)—S +kO(t"), que ¢é
possivel se p(S*,t',k)<k(l— o(t"))- Pela hipotese do teorema, como S" ¢ um valor

possivel.

Como ha sempre uma chance de exercicio prematuro nas opc¢des de venda americanas,
o Teorema A.5 ou as equacdes de Black & Scholes (as quais serdo apresentadas em detalhes
mais adiante) ndo sugere uma modelagem analitica para a precificagdo de uma opgao de

venda americana.
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Anexo 6

A formula de Black e Scholes para a opcdo de compra européia:

A solugdo explicita para a PDE (2.31) ¢ dada por

c(S,t) = SN(d,) — kexp[- (T —t)[N(d,) (A.34)

onde N(x) é a fun¢do de distribuicdo de probabilidade acumulada da distribui¢cdo normal

padrdo, ou seja:
N () = [* exp(—s22)dz
N2 P

Enquanto que:

:log(%)+(r+;az)(T—t) . d_log(%)+(r—;02)(T—t)

o T —t 27 o T —t

1

Prova:
O teorema acima pode ser provado utilizando a técnica de PDE (como descrito em Friedman,

1996), neste trabalho, entretanto, utilizaremos a técnica probabilistica (conforme Mao,
1997).
Dado um par qualquer de S>0 et € [0, T], pode-se introduzir a SDE

dx(u) =rx(u)du + ox(u)dm(u) com t<u<T (A.35)

com valor inicial x(t) = S em u = t. Na se¢do 2.2.2 foi mostrado que a expressdo acima pode

ser resolvida analiticamente. Em particular:

x(T)=S§ exp{(,u - ;62 T —t,)+o(mT)—-w(t, ))} (A.36)
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Definindo a fung¢io C*':

V(x,u)=c(x,u)e ™, (x,u) € (0,00)x(¢,T)

Onde c(x, u) satisfaz a equagdo PDE de Black e Scholes, ou seja (com x e u em lugar

aSet:

2
@+102x22+r5@—r020 (A37)
ou 2 o2 ox

Calculando:

2 2
v _ (50 _ rcjer(“”, oV _8c yr-wy, OV _0%C 4
ou \Ou ox 0Ox ou’  ou’

Pela formula de Ito, temos:

2
dV(x(u)u) = {GV(x(u),u) + OV (x(u),u) rx(u) +1M o2x? (u)]du
ou Ox 2 0%x
i Mox(u)dw(u)

ox

dV(x(u);u) = e’ [80(x(u),u) —re(x(u),u) + rx(u)M +
ou ou

8% e(x(u),u)
2

+ 1o_2x2 ) }du " ox(u)er(T_t) de(u)
7 ox

usando (4.35) pode-se observar que:

oV (x(u),u)

dV (x(u);u) = ~

ox(u)dw(u)

integrando ambos os lados de u =t a u = T, teremos
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Tov (x(u),u)

V(x(T),T) =V (x(),1)= | (u)dw(u)

Aplicando o operador esperanca e reaplicando a propriedade da integral de It6 nos

obtemos
EV(x(T),T)-EV(x(¢),t)=0

Note que:
V(x(T),T)=c(x(T), T)=max(x(T)—-k,0), e

V(x(t),t)= c(x(t),t)er(T") _ C(S’t)er(T—t)

logo
E[max(x(T) —k,0)]-¢(S,1)e™ "~ =0
ou seja:

e(S,0) = e "TE[max(x(T) - k,0)]
Observa-se que:

E[max(x(T) - k,0)]= E[(x(T) = k,0) } ,(r)>4)

= E[x(D) x(7ys 1y | = ElR sy |
= B[x(D) o7y 4y |- KPIx(T) > K]

onde {x(T) S k} ¢ a fun¢do indicador do conjunto {x(T) > k}, ou seja,

1 se x(T)>k

I =
t(T)>k} {O caso contrario

Assim sendo, pode-se escrever:



245

c(S,0)= e " T BT 1y yopy |- kPIX(T) > &) (A.38)

Introduzindo a variavel aleatoria & =log x(T)- Pela Equagao (A.36), teremos:
1
E=logS +(r— E(;2)(T — 1)+ o(W(T) — w(t))
Logo a variavel & segue uma distribui¢do normal com média:
1 5
log S +(r—56 WT —1t)

o (W(T) - w(t))

Por conveniéncia tomaremos:
X 1 e 52 = 52 (w(T) - wlt
,uzlogS+(r—50 )T —t,) 6 =o0"(WT)-w(t,))

Entdo ¢ ~ N(ﬂ,&z). Utilizando as tradicionais propriedades das distribuigoes

padroes, sabe-se:

z=2"F_ Ny
&

com a fun¢do de densidade de probabilidade:

1

I
e ? em zeR

f(2)= 5

g

com esta nova notagdo e propriedade, calcula-se:



Pix(T) >k} = P{¢ > logh) = P{Z > logk_”} = P{Z < —W}

(o3 (o3

recalculando a defini¢cdo de d,,

P At

) - o~NT —t =4
logo:
1 1
Pix(T)>k}=P{Z<d,}= Nl j exp(——z )dz = N(d,)

também calculando:

E[X(T)I{x(r)>k}]: E[egl{blogk}]: k e&Z+ﬂI{Z>(logk_m}

é

74 i
E[X(T M {x(T)>k}]: Elea T {z>d2}J
recalculando o valor de d,, usando a expressdo acima se tem:

oft d2
E[x(T)I{x(T)>k}] N | eXP(UZ—*Z )dz

A A
exp(fi+6%) ., L
=2 | exp(—z°)dz
N2rx —di—& 2

X 1
exp(1+ - 67%) yovs

= T j exp(— —z%)dz

= exp([z+;6'2)N(d2 + &)

(A.39)

246
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mas pela definig¢do de d|,

logo:

N SN
E[(T) (7o ]= expla + EGZ)N (dy) ( A.40)

Substituindo (4.39) e (A.40) em (4.38), tem-se:

o(S,t) = e_r(T_t){exp( i+ ;J‘Z)N(dl)— EN(d, )}
= N(dl)exp[— (T —t)logS + (r — ;02)(T —1)+ ;02 (T - t)} —Ee " TIN(d,)

e(S,8)=SN(d,) - Ee”" "= N(d,)

O que conclui a prova.
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Anexo 7

O modelo de precificacdo de opgdes de Black e Scholes apresentado no Capitulo 2,
partiu de algumas premissas, como a ndo variabilidade dos juros e da volatilidade, logo ¢ =
f(S, o, r, k) assim sendo para pequenas variagdes do valor da relaciona o valor de uma opgao a

varios fatores de risco:

Definicdo A.2:
O 0 mede o quanto o prémio da op¢do deve variar para cada varia¢do no valor do ativo

objeto. Sendo formalmente:

oc
S =-"—- ‘A.41
S (4.41)

Proposigao A.1:
Sob as suposigoes de Black e Scholes onde N(x) é uma func¢do cumulativa normal, ¢ como a
volatilidade expressa na forma decimal, r como a taxa de juros e 1 <t < T, entdo o delta para

~ . .. 72 ’
uma opg¢do de compra e de venda (respectivamente) com dividendos'= a uma taxa D, é:

s=e 2T IN@,) (4.42)
§=e PID(Nd,)-1) (4.43)
onde:
log[Sj + (r -D, + 102 ](T - t)
d,-——k 2 (4.44)
oNT —t

72 Para o caso sem dividendos basta fazer D, = 0, tanto para o delta quanto para as demais gregas que seguem
(Proposicdes A.1, A2, A3 e A4)
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Prova:

A prova é obtida diretamente da primeira derivada em relagdo a S das Expressoes (2.32) e

(2.33).

A utilizagdo do delta tem a finalidade de tornar a carteira imune a pequenas mudangas
no preco do ativo subjacente no préoximo intervalo de tempo, tal uso do delta para o hedge ¢
conhecido como hedge delta.

Apesar do hedge delta mostrar-se eficiente para a protecao da carteira, a utilizagdo do
delta para a administracdo do risco pode se tornar inviavel em fun¢do dos custos relacionados

a cada mudanca de posi¢ao. Uma alternativa € o uso da grega gamma.

Defini¢do A.3:
O vy indica qudo rapido o o ira mudar, ou seja o y de uma carteira de derivativos ¢ a taxa de

variagdo de seu 0 com relagdo ao prego do ativo subjacente.

_ fic (4.45)
0S?

v
Y pequenos proporcionam menos riscos, porque estes proporcionam 6 menos sujeitos a

mudangas.

Proposicdo A.2:
Sob as mesmas suposi¢oes da proposi¢do 6.1, tém-se o y para uma op¢do de compra e venda

com dividendos:

d,
. exp(z—D0 (T—t)j (4.46)
= V27SoNT —t
Prova:

A prova é obtida diretamente da segunda derivada em relagdo a S das Expressoes (2.32) e

(2.33).
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Além da sensibilidade ao preco do ativo subjacente, as opcdes e outros derivativos sao
sensiveis a variacdo do tempo de vencimento, taxas de juros e sobretudo a volatilidade. A

seguir defini¢des formais destas gregas.

Definicdao A.4:
A terceira grega ¢ o 0 de uma carteira de derivativos, que ¢ a taxa de variagao de seu valor ao

longo do tempo, com todas as demais variaveis constantes. Ou seja:

5.0 (4.47)
ot

Proposigdo A..3:

Para uma opg¢do de compra e venda (respectivamente) com dividendos, que segue o modelo

de B&S, o teta é dado por:

S exp(déojae_[) W(T=1)
0= + DySN(dyg)e 2T —rKe T (N(dy)-1) A4

2«/27[(T—t5

S exp(déojae_[) W(T=0)

2«/27[(T—t5

0= — DySN(dyp)e 2T 4+ ke T (N(dyg)~1) A4

Prova:
A prova é obtida diretamente da primeira derivada em rela¢do a t das Expressoes (2.32) e

(2.33).

Para a maioria das opgdes, 0 ¢ geralmente negativo, significando que as opg¢des
perdem valor conforma o tempo avanga. A derivada ¢ sempre negativa para opgoes

americanas, que dao ao seu detentor a possibilidade de exercicio antecipado.
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Definicao A.5:
. . ~ .7 ’ 73 .
A grega que avalia a variag¢do da volatilidade no tempo é k. O k"> de uma carteira de
opgoes ou de uma opg¢do, é a taxa de variagdo do valor da carteira com relagdo a

volatilidade do ativo objeto.

oc (A.50)
oo

Proposigdao A.4:
Para uma opgao de compra ou de venda sobre uma ag¢do com dividendos e que segue B&S, o

K é dado por:

Kk=8VT -t eXp(déOje_D“(T_t) (4.51)

Prova:
A prova pode ser obtida diretamente da primeira derivada em relagdo a volatilidade das

Expressoes (2.32) e (2.33).

Como o x deve ser positivo, as posicdes compradas em opgdes respondem
positivamente aos aumentos da volatilidade a apresentam perda de valor conforme a
volatilidade diminui. Como o k acompanha a forma de sino, as opgdes no dinheiro sdo mais

sensiveis a volatilidade.

Definicdo A.6:
A ultima “grega” é o p Co*), que mede a taxa de mudancga do valor da carteira com relagdo a

taxa de juros (dividendos). Sendo dado por:

dc (A.52)

73 Esta grega algumas vezes ¢ denominada vega (v), ou labda (1).
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Para uma opg¢dao de compra e venda (respectivamente) de uma ag¢do com dividendos

(calculada via o modelo de B&S), temos:
p=K(T-0e"T(N(dyp)-1)
p=—K(T-0e" " (N(~d)y)-1)
E para a variagdo nos dividendos:

p =-K([T-1)e »TN(,)

p =K(T-)e T IN(-dy)

Prova:

(4.53)

(A.54)

(A.55)

(A.56)

A prova pode ser obtida diretamente da primeira derivada em relagdo a r (Dy) das

Expressoes (2.32) e (2.33).



