
UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM ESTATÍSTICA

TATIANE FONTANA RIBEIRO

ESSAYS ON THE UNIT BURR XII DISTRIBUTION: REGRESSION AND TIME

SERIES MODELS

Recife

2020



TATIANE FONTANA RIBEIRO

ESSAYS ON THE UNIT BURR XII DISTRIBUTION: REGRESSION AND TIME

SERIES MODELS

Master’s thesis submitted to the Programa
de Pós-Graduação em Estatística, Centro de
Ciências Exatas e da Natureza, Universidade
Federal de Pernambuco, as a partial requirement
to obtain a Master’s degree in Statistics.

Area of concentration: Applied Statistics

Advisor: Prof. Gauss Moutinho Cordeiro

Co-Advisor: Prof. Fernando A. Peña-Ramírez

Recife

2020



           

 

 
 

  

 

 

 

 

 
 

 

 
 
 
 

Catalogação na fonte 
Bibliotecária Mariana de Souza Alves CRB4-2105 

 

R484e   Ribeiro, Tatiane Fontana  
Essays on the unit Burr XII distribution: regression and time series models / 

Tatiane Fontana Ribeiro. – 2020.  
  96f.: il., fig., tab. 
 
Orientador: Gauss Moutinho Cordeiro. 

    Dissertação (Mestrado) – Universidade Federal de Pernambuco. CCEN, 
Estatística, Recife, 2020.   

  Inclui referências e apêndices. 
 

 
       1. Estatística Aplicada. 2. Aprendizado estatístico. 3. Distribuições de 
probabilidade no intervalo unitário. 4. Regressão beta. I. Cordeiro, Gauss Moutinho.  
(orientador) II. Título. 

   
    310            CDD (22. ed.)                    UFPE-CCEN 2020-200  



TATIANE FONTANA RIBEIRO

ESSAYS ON THE UNIT BURR XII DISTRIBUTION: REGRESSION AND TIME

SERIES MODELS

Dissertação apresentada ao Programa de
Pós-Graduação  em  Estatística  da
Universidade  Federal  de  Pernambuco,
como requisito parcial para a obtenção do
título de Mestre em Estatística.

Aprovada em: 28 de outubro de 2020.

BANCA EXAMINADORA

____________________________________________________________________
Prof. Gauss Moutinho Cordeiro

UFPE

_____________________________________________________________________
Prof. Maria do Carmo Soares de Lima

UFPE

_____________________________________________________________________
Prof. Edwin Moises Marcos Ortega

ESALQ/USP



To my parents, Teodomiro e Sirlei.



ACKNOWLEDGEMENTS

Initially, I would like to express my gratitude to my advisors Prof. Dr. Gauss Moutinho Cordeiro

and Prof. Dr. Fernando A. Peña-Ramírez for their valuable corrections and suggestions about

the dissertation, which help improve its quality. I am very grateful for their safe orientation and

patience.

In special, I would like to thank my co-advisor, Prof. Dr. Fernando A. Peña-Ramírez, for his

huge disposition and unique intelligence to clarify every question that arose in the elaboration of

this dissertation. You ever provided me great motivation and immensely contributed to writing

this manuscript in English. This is proof you are a great professional, professor, and researcher.

To Prof. Dra Renata Rojas Guerra, who is being my example since 2018. If I got here, it is

because you have crossed my path. Also, I am immensely grateful to you by valuable contribution

to these chapters of this dissertation.

To my favorite doctorate student, friend, and colleague José Jairo, I am immensely grateful to

you for your beautiful friendship, for helping me in my adapting to Recife, and for your immense

help and motivation so that I could finish this dissertation in time.

To my parents Teodomiro and Sirlei, for their support, who has always encouraged me to pursue

my dreams. Without their support, I wouldn’t have come this far. To my dear brothers Taiane,

Teodomiro Júnior, and Thiago, for their trust, and so love. I love you guys so much.

To all my friends and colleagues for many and many hours of study shared. I will not cite names,

but I would like to thank everyone for so good moments shared and memories that would never

be erased from my mind.

I would also like to thank all professors at UFPE, especially professors Francisco Cribari-Neto,

Audrey Cysneiros, and Maria do Carmo Soares de Lima.

Finally, I thank to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for

the financial support.



ABSTRACT

There is an interest in modeling bounded random variables to the standard unit interval

in many practical situations, such as rates, proportions, and indexes. We propose two new

probability distributions to deal with the uncertainty involved by variables of this type and

develop its associated regression models. Both distributions are based on a transformation of

the Burr XII random variable. We also introduce a new dynamic model for time series data

with support in the interval (0,1). This dissertation is composed of three main and independent

chapters. In the first, we define the unit Burr XII (UBXII) distribution and its quantile regression

model. Some of its mathematical and statistical properties are investigated. In the second, the

reflexive UBXII distribution is obtained, and the regression model is proposed. The maximum

likelihood (ML) method is considered for parameters estimation of both regression models.

In the third, we propose the dynamic class of models: UBXII autoregressive moving average

(UBXII-ARMA) for time series taking values in the unit interval. The conditional ML method

is used to estimate and construct asymptotic confidence intervals of the parameters that index

the UBXII-ARMA model. Closed-form expressions for the conditional score vector are derived.

Furthermore, Monte Carlo simulation studies, diagnostic analysis tools, model selection criteria,

and applications to the real data are presented and discussed for the three proposed models.

Keywords: Beta regression. Quantile regression. Statistical learning. Time series. Unit

probability distributions.



RESUMO

Em muitas situações práticas, há interesse em modelar variáveis aleatórias limitidas

no intervalo unitário padrão, tais como taxas, proporções e índices. Propomos duas novas

distribuições de probabilidade para lidar com a incerteza envolvida por variáveis deste tipo e de-

senvolvemos seus modelos de regressão associados. Ambas as distribuições são baseadas em uma

transformação da variável aleatória Burr XII. Também introduzimos um novo modelo dinâmico

para dados de séries temporais com suporte no intervalo (0,1). Esta dissertação é composta

por três capítulos principais e independentes. Na primeira parte, definimos a distribuição Burr

XII unitária (UBXII) e o modelo de regressão quantílica associado. Algumas das propriedades

estatísticas e matemáticas são investigadas. Na segunda, a distribuição UBXII reflexiva é obtida

e o modelo de regressão é proposto. O método de máxima verossimilhança (ML) é considerado

para estimação dos parâmetros de ambos os modelos de regressão. Na terceira parte, propomos a

classe de modelos dinâmicos: UBXII autorregressivos de médias móveis (UBXII-ARMA) para

séries temporais que tomam valores no intervalo unitário. O método de ML condicional é usado

para estimar e construir intervalos de confiança dos parâmetros que indexam o model UBXII-

ARMA. Expressões em forma fechada para o vetor escore condicional são derivadas. Além disso,

estudos de simulação de Monte Carlo, ferramentas de análise de diagnóstico, critérios de seleção

demodelos e aplicações a dados reais são apresentadas e discutidas para os trêsmodelos propostos.

Palavras-chave: Aprendizado estatístico. Distribuições de probabilidade no intervalo unitário.

Regressão beta. Regressão quantílica.



LIST OF FIGURES

Figure 1 – Plots of the UBXII density (with g = 0.5). . . . . . . . . . . . . . . . . . 18

Figure 2 – The Bowley skewness and Moors kurtosis of the UBXII distribution. . 20

Figure 3 – Boxplots of the first hundred estimates of the Monte Carlo simulation

for some sample sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 4 – Total absolute RB%s and total RMSE of the MLEs from UBXII distri-

bution with different sample sizes. . . . . . . . . . . . . . . . . . . . . . 27

Figure 5 – Total absolute RB%s and total RMSE of the MLEs from UBXII regres-

sion with different sample sizes. . . . . . . . . . . . . . . . . . . . . . . 32

Figure 6 – QQ-plots of the UBXII, Kw, UW, and beta regressions’ residuals. . . . 38

Figure 7 – Plots of the RUBXII density (g = 0.5). . . . . . . . . . . . . . . . . . . . 45

Figure 8 – Histogram of the MR and box plots of the MR after 30, 60, 90, and 120

days after the 20th confirmed case. . . . . . . . . . . . . . . . . . . . . . 52

Figure 9 – Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 10 – Dispersion plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 11 – Residuals plots for the fitted RUBXII regression. . . . . . . . . . . . . . 57

Figure 12 – Residuals plots for the fitted Kw regression. . . . . . . . . . . . . . . . . 58

Figure 13 – Observed proportions of stocked hydroelectric energy time series in

Southeast of Brazil. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 14 – Residual diagnostic plots of the fitted UBXII-AR model for proportion

of stocked hydroelectric energy in Southeast Brazil. . . . . . . . . . . . 75

Figure 15 – Forecasting performance plots from the UBXII-AR(2) model. . . . . . 76



LIST OF TABLES

Table 1 – RB%s and RMSEs from the UBXII distribution. . . . . . . . . . . . . . 25

Table 2 – RB%s and RMSEs for the UBXII regression. . . . . . . . . . . . . . . . 32

Table 3 – Descriptive statistics from the response variable and quantitative covari-

ates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Table 4 – Goodness-of-fit measures and LOOCV statistic for the fitted regressions 37

Table 5 – Fitted UBXII regression for the dropout proportion in the Brazilian

zootechnics course. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 6 – Simulation results from the RUBXII regression. . . . . . . . . . . . . . . 47

Table 7 – Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Table 8 – ?-values of the Spearman correlation test between all variables. . . . . . 52

Table 9 – Goodness-of-fit measures for the final fitted regressions. . . . . . . . . . 56

Table 10 – Fitted regressions for themedian of theMRbyCOVID-19 in the U.S. states. 56

Table 11 – Performance of the CMLEs for the UBXII-ARMA(?, @) model under

different ARMA structures and parameter values. . . . . . . . . . . . . . 69

Table 12 – Estimated coverage probability from the asymptotic confidence intervals

for U, q1, q2, \1, \2, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 13 – Descriptive statistics of the monthly average proportions of stocked en-

ergy in the Southeast of Brazil. . . . . . . . . . . . . . . . . . . . . . . . 72

Table 14 – FittedUBXII-AR, VAR, andKARMAmodels for the proportion of stocked

hydroelectric energy in Southeast Brazil. . . . . . . . . . . . . . . . . . . 74

Table 15 – Forecasting performance comparison amongdifferent the best fittedmod-

els in each class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 16 – Response variable and covariates with its respective description . . . . . 92

Table 17 – Estimates and p-values of the fitted Kw, UW, and beta regressions for the

dropout proportion in the Brazilian zootechnics courses. . . . . . . . . . 94

Table 18 – Some final fitted regressions for the MR by coronavirus in the U.S. states. 96



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1 INITIAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . 12

2 THE UNIT BURR XII REGRESSION: PROPERTIES, SIMULATION

AND APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 THE UNIT BXII DISTRIBUTION . . . . . . . . . . . . . . . . . . . . . . 16

2.3 STRUCTURAL PROPERTIES . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Ordinary moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Incomplete moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Generating function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 SIMULATION STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 THE UBXII REGRESSION . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.3 Diagnostic measures and model selection . . . . . . . . . . . . . . . . . . 33

2.7 APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 A NEW REGRESSION MODEL FOR THE COVID-19 MORTALITY

RATES IN THE UNITED STATES . . . . . . . . . . . . . . . . . . . . . 40

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 COVID-19 IN THE U.S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 THE PROPOSED REGRESSION . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.3 Regression model adequacy . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1 Descriptive statistical analysis . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.1.1 Correlation analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.2 Fitted regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



4 UNIT BURR XII AUTOREGRESSIVE MOVING AVERAGE MODEL

FOR TIME SERIES DATA RESTRICTED IN THE UNIT INTERVAL 60

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2 THE PROPOSED MODEL . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 PARAMETER ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Conditional score vector . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 SIMULATION STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 DIAGNOSTIC ANALYSIS AND FORECASTING . . . . . . . . . . . . . 70

4.6 APPLICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . 78

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

APPENDIX A – OBSERVEDINFORMATIONMATRICESANDCHAP-

TER 2 APPLICATION SUPPLEMENT . . . . . . . . 87

APPENDIX B – SCORE VECTOR AND OTHER FITTED REGRES-

SIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



12

1 INTRODUCTION

1.1 INITIAL CONSIDERATIONS

This dissertation is composed of three main and independent chapters. The dissertation’s

subject is new classes of models for random variables restricted to the unit interval from

transformations of the Burr XII random variable pioneered by (BURR, 1942). Variables with

domain in the interval (0,1) are commonly found in several fields of knowledge. In the context

of regression analysis, they are typically studied by the beta regression (FERRARI; CRIBARI-

NETO, 2004) and Kumaraswamy regression models. Some alternatives have been introduced

in the literature to expand the range of models available as the unit Weibull (UW) quantile

regression (MAZUCHELI et al., 2020). We introduce two new classes of quantile regression

models. Similarly, dynamic models to analyze bounded-double conditional-response variables

have been proposed in the literature, such as beta autoregressive moving average (VARMA)

models (ROCHA; CRIBARI-NETO, 2009) and Kumaraswamy autoregressive moving average

(KARMA) models (BAYER; BAYER; PUMI, 2017). In this sense, we propose a new time series

model for data that assume values in the standard unit interval to the scarce classes of time series

models available. In what follows, we present a brief outline of this dissertation.

In Chapter 2, we define the unit Burr XII (UBXII) distribution and its quantile regression

model. We provide some of its structural properties. To estimate the parameters that index the

model, we consider the maximum likelihood (ML) method and carried out a simulation study to

analyze its performance on finite samples. Besides, we derive expressions for the score function

and observed information matrix. General techniques of diagnostic analysis and model selection

are presented and discussed for the regression model. We empirically show the new model’s

importance and flexibility through an application to a real dataset, in which the dropout rate

of Brazilian undergraduate animal sciences courses is analyzed. Finally, we use a statistical

learning method for comparing the proposed model with the Kumaraswamy, unit-Weibull, and

beta regressions.

In Chapter 3, a regression model is constructed to identify the variables that affect

the mortality rates by COVID-19 in the U.S. states. The mortality rates in these states are

computed by considering the total of deaths recorded on 30, 60, 90, and 120 days from the

20th confirmed case. From the reflection of the UBXII variable introduced in Chapter 2, we

define the reflexive UBXII distribution and its associated regression model. In the application to
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the COVID-19 mortality rates, it is compared to the well-known beta, simplex (JØRGENSEN,

1997b), Kumaraswamy (KUMARASWAMY, 1980), and UW (MAZUCHELI et al., 2020)

regressions, which are useful in modeling proportional data. The parameters are estimated by the

ML method. We conduct Monte Carlo simulation studies to assess the finite-sample performance

of the maximum likelihood estimators. Furthermore, we adapt some regression model adequacy

measures and consider an approach of cross-validation to compare the final fitted regression

models.

Chapter 4 address a new class of time series models for continuous random variates that

assume values in the unit interval. The model arises from the assumption that the random com-

ponent has conditional UBXII distribution, and it is defined as the UBXII autoregressive moving

average. In the introduced model, any quantile can be modeled by a dynamic structure containing

autoregressive and moving average terms, time-varying regressors, unknown parameters, and a

link function. We consider the conditional ML method for parameter estimation and conduct

simulation studies to evaluate the estimates’ performance and estimated coverage rates from

asymptotic confidence intervals for finite samples. We discuss the goodness-of-fit assessment and

forecasting of the newmodel. We give explicit-form expressions for the conditional score function.

To demonstrate our proposal’s suitability, an application that uses stocked hydroelectric energy

time series data is presented and discussed. Furthermore, we carry out-of-sample forecasting

comparisons of the introduced model with the VARMA and KARMA models available for time

series taking values in the double bounded interval (0, 1).

The notation and terminology used are consistent within each chapter. We consider the R

programming language (R Core Team, 2020) for Monte Carlo simulations, figures generating,

and all remain statistical analysis.
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2 THE UNIT BURRXII REGRESSION: PROPERTIES, SIMULATION ANDAPPLI-

CATION

2.1 INTRODUCTION

Variables like rate, proportions, percentages, and indices which lie on the standard

unit interval are commonly found in several fields of knowledge. These variables exhibit

extra variation since often present asymmetry and heteroscedasticity; see some examples of

them in Kieschnick and McCullough (2003) and Cribari-Neto and Souza (2013). Continuous

distributions widely used in the modeling of double-bounded random variables are the Beta

and Kumaraswamy (KUMARASWAMY, 1980). However, in some situations, our interest is to

know how a set of covariates impact the behavior of a double-bounded response variable in the

interval (0,1). Such influence on the response’s mean is usually modeled with the well-known

beta regressions (FERRARI; CRIBARI-NETO, 2004). It stands out, mainly due to its flexibility,

being able to accommodate asymmetries that are typical to responses of this kind.

Other alternatives to the beta regression to model the response’s mean are the sim-

plex (JØRGENSEN, 1997b), Log-Lindley (GÓMEZ-DÉNIZ; SORDO; CALDERÍN-OJEDA,

2014), unit gamma (MOUSA; EL-SHEIKH; ABDEL-FATTAH, 2016), and unit-Lindley regres-

sions (MAZUCHELI; MENEZES; CHAKRABORTY, 2019). Nevertheless, when the dependent

variable presents some atypical observations, modeling its median can be more appropriate than

its mean, which is more sensitive to outliers (LEMONTE; BAZÁN, 2016). Furthermore, the

median-based regression presents desirable properties such as the equivariance-to-monotone

transformation and robustness in asymmetrical data (PUMI; RAUBER; BAYER, 2020). A clas-

sical alternative in this context is the Kumaraswamy regression under parameterization proposed

by Mitnik and Baek (2013). In a more general way, we can also be interested in modeling any

quantile of a response in the unit interval to know how covariates impact its different levels.

Studies like in Dehbi, Cortina-Borja and Geraci (2016) and Lachos et al. (2015), and more

recently, the unit-Weibull quantile regression (MAZUCHELI et al., 2020), show that quantile

regressions have attracted many researchers’ attention. The main advantage of this approach

is that it provides classes of regressions quite flexible for modeling data with heterogeneous

conditional distributions (BAYES; BAZÁN; CASTRO, 2017), since any quantile of the response,

in addition to the median, can be modeled as a function of covariates. However, in many areas

and several empirical applications, there is a clear need for new flexible alternatives to the scarce

regression classes available.
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In this context, we use an approach based on a quantile parameterization to introduce a

new probability distribution with the bounded domain on the interval (0,1), and its associated

regression. We consider the Burr XII (BXII) distribution, which was pioneered by Burr (1942).

Let - be a positive continuous random variable having the BXII distribution. The cumulative

distribution function (cdf) and probability density function (pdf) of - are

�- (G;2, 3) = 1− (1+ G2)−3 G > 0, (2.1)

and

5- (G;2, 3) = 2 3 G2−1 (1+ G2)−(3+1) , (2.2)

respectively, where 2 > 0 and 3 > 0 are shape parameters. The pdf in Equation (2.2) is unimodal

with mode equal to [(2−1)/(2 3 +1)]1/2.

For 2 = 1, the BXII distribution is called the Lomax (or Pareto Type II) distribution,

mainly in applications to the analysis of business failure data (WATKINS, 2011). By taking

3 = 1, it is a special case of the log-logistic distribution. The BXII distribution is a very popular

distribution for modeling lifetime data and for modeling phenomenon with monotone failure

rates. Our proposal is based on a transformation on - , more specifically, ) (-) : (0,∞) → (0,1).

We provide at least four motivations for this work. First, we propose a new distribution

to model bounded random variables in the unit interval, in which one of its parameters is a

distribution’s quantile. Second, we consider a regression structure for this quantile by assuming

that it can be expressed as a function of covariates and, hence, a more general class of regressions

is obtained. The third motivation is to use a statistical learning tool for comparing the prediction

performance of non-nested models and selecting the most suitable for the data at hand. The

fourth motivation is referring to the usefulness of the new regression for modeling the dropout

proportion of undergraduate animal science in Brazil.

We are interested in analyzing the university dropout phenomenon because it is a problem

with academic, social, and economic implications due to the high cost it inflicts on the students

themselves, their families, universities and government (RODRÍGUEZ-MUÑIZ et al., 2019).

Organizational variables of the educational institutions provide an explicative approach to the

dropout phenomenon (TINTO, 1986). In that idea, several authors studied how aspects of

the organizational structure of universities affect student outcomes (see, for instance, Berger

(2002) and Sneyers and Witte (2017)). On the other hand, data mining aspects also have been

studied. Salloum et al. (2020) discusses and reviews the forms of data mining and its importance
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in educational research, and Rodríguez-Muñiz et al. (2019) uses machine learning techniques to

undertake the analysis of dropout in the University of Oviedo (Spain). In the Brazilian scenario,

the efficiency and affirmative action policy adoption in higher education institutions (HEIs) are

discussed by Zoghbi, Rocha and Mattos (2013) and Vieira and Arends-Kuenning (2019).

In this chapter, we use mining data techniques to obtain the dropout proportion and

related institutional variables about Brazilian undergraduate animal science courses. This course

has received attention in the literature; see, for instance, Peffer (2011), who sought to identify

demographic variables as well as their relation to students’ performance and interest areas, and

factors associated with enrollment in an introductory animal sciences course.

The rest of chapter is outlined as follows. In Section 2.2, we define a new distribution for

modeling bounded random variables on the unit interval as well as a reparametrization in terms of

the quantiles. Some of its mathematical and statistical properties are investigated in Section 2.3.

We obtain the maximum likelihood of the parameters in Section 2.4. We provide a simulation

study in Section 2.5 to evaluate the performance of the estimators. In Section 2.6, we define a

regression from the new distribution, discuss the estimation of the parameters and conduct a

simulation study, present some diagnostic analysis methods and regression selection criteria. In

special, we present a statistical learning tool (cross-validation approach) to compare non-nested

regressions. In Section 2.7, we perform an application of the new regression to dropout in

Brazilian undergraduate animal sciences courses. We offer some conclusions in Section 2.8.

Finally, we provide the observed matrix for the new distribution and Fisher’s observed information

matrix, and information about data’s extraction used in application; see Appendix A.

2.2 THE UNIT BXII DISTRIBUTION

We introduce a new distribution with support on the unit interval based on the BXII

distribution. Suppose that - is a random variable having the BXII distribution with cdf and pdf

given by (2.1) and (2.2), respectively. We define the unit Burr XII (UBXII) distribution through

the transformation . = e−- . Hence, the cdf and pdf of the UBXII distribution are

�. (H;2, 3) =
(
1+ log2 H−1

)−3
, 0 < H < 1, (2.3)

and

5. (H;2, 3) = 2 3 H−1 log2−1 H−1
(
1+ log2 H−1

)−(3+1)
, (2.4)
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respectively, where 2 > 0 and 3 > 0 are shape parameters. Henceforth, if . is a random variable

with pdf (2.4), we write . ∼ UBXII (2, 3). The quantile function (qf) of . follows by inverting

Equation (2.3), namely

&. (g) = exp [−(g−1/3 −1)1/2 ], 0 < g < 1. (2.5)

The UBXII quantiles can be found from (2.5) by setting values for g. In particular, the

median of . comes with g = 0.5. So, we can generate UBXII variates using (2.5). For doing this,

we require . =&. (T ), where T ∼U(0,1).

Distributions with direct interpretation parameters are desirable in empirical applications,

and for this purpose, several authors have adopted reparameterizations on well-know distributions;

see Jørgensen (1997a), Ferrari and Cribari-Neto (2004), Lemonte and Bazán (2016), Mousa,

El-Sheikh and Abdel-Fattah (2016) and Mazucheli et al. (2020). In general, the mean of the

random variable is modeled as proposed by Ferrari and Cribari-Neto (2004); Jørgensen (1997a);

and Mousa, El-Sheikh and Abdel-Fattah (2016). However, it is an outlier-sensitive measure,

and for the UBXII distribution, we can not obtain a closed-form expression for the mean. Thus,

modeling the quantiles is an interesting approach for asymmetric data because they can be

outlier-resistant measures (LEMONTE; BAZÁN, 2016), and a smart alternative since the qf of .

has a closed-form. Hence, any quantile can be computed in explicit form. Further, one of the

parameters of the UBXII distribution (under a quantile-parameterization) can be interpreted as

the gth quantile of . . Thus, we shall reparameterize Equation (2.3) in terms of the gth quantile

@ =&. (g). By inverting (2.5) and solving for 3, we have

3 = logg−1/log(1+ log2 @−1). (2.6)

By replacing (2.6) in Equations (2.3) and (2.4), the cdf and pdf of the UBXII distribution (under

this parametrization) have the forms

�. (H;@, 2) =
(
1+ log2 H−1

) logg/log(1+log2 @−1)
, 0 < H < 1, (2.7)

and

5. (H;@, 2) =
logg−2 log2−1 H−1

H log
(
1+ log2 @−1) (

1+ log2 H−1
) logg/log(1+log2 @−1)−1

, (2.8)

respectively. Henceforth, we denote by . ∼ UBXII (2, @) a random variable with density (2.8).

Some UBXII densities (for g = 0.5) are displayed in Figure 1, which reveal different shapes

such as decreasing, increasing, reverse J-shaped, U-shaped, reverse tilde-shaped (decreasing-

increasing-decreasing), non-skewed and skewed-left. It is noteworthy that the UBXII density can
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accommodate several skew-left shapes and has a reverse tilde-shaped, which is not presented by

classical unit distributions.

Figure 1 – Plots of the UBXII density (with g = 0.5).
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The qf of . on the new parameterization has the form

&. (D) = exp
{
−[Dlog(1+log2 @−1)/logg −1]1/2

}
, 0 < g < 1. (2.9)

So, the UBXII quantiles can be obtained from (2.9) by setting D values. Further, we can

generate occurrences for this distribution using (2.9) by the inversion method.
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2.3 STRUCTURAL PROPERTIES

In this section, we present some structural properties from the reparameterized UBXII

distribution given by (2.8).

2.3.1 Ordinary moments

The ordinary moments are useful to obtain various important characteristics of a conti-

nuous distribution. The ℎth moment of . is defined as IE(. ℎ) =
∫ 1
0 Hℎ 5. (H;2, @) dH. We have

the following proposition for the UBXII ordinary moments.

Proposition 2.3.1 The ℎth ordinary moment of the UBXII distribution has the form

IE(. ℎ) = logg−2

log(1+ log2 @−1)

∞∑
9=0

(
logg/log(1+ log2 @−1) −1

9

) (
ℎ−2( 9+1)W (2( 9 +1), ℎ)

+ℎ2 [ 9+logg−1/log(1+log2 @−1)]Γ
(
−2 [ 9 + logg−1/log(1+ log2 @−1)], ℎ

))
, (2.10)

where W(0,G) =
∫ G

0 C
0−1 e−C dC and Γ(0,G) =

∫ ∞
G
C0−1 e−C dC are the lower and upper incomplete

gamma function,respectively.

Proof. By using the transformation . = e−- , we can write IE(. ℎ) = IE(e−ℎ-) = "- (−ℎ), where

"- (C) =
∫ ∞
0 eCG 5- (G) dG is the moment generating function (mgf) of - ∼ BXII (2, 3), and 3 is

given by (2.6). Thus, evaluating the mgf of - in −ℎ (see Equation (11) in Guerra et al. (2020)),

we obtain (2.10). �

The ℎth cumulant of . can be expressed as

^ℎ = IE(. ℎ) −
ℎ−1∑
==1

(
ℎ−1
=−1

)
^= IE(. ℎ−=),

where ^1 = IE(. ) and ^2 are the mean and variance of . , respectively. The skewness and kurtosis

are W1 = ^3/^3/2
2 , and W2 = ^4/^2

2, respectively.

Alternatively, the flexibility of the new distribution can be proved from the Bowley

skewness and Moors kurtosis formulas, namely

� =
&. (3/4) −2&. (1/2) +&. (1/4)

&. (3/4) −&. (1/4)

and

" =
&. (7/8) −&. (5/8) +&. (3/8) −&. (1/8)

&. (3/4) −&H (1/4)
,
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respectively, where &. (·) is the qf given by (2.9). These measures provide a simple way to

figure out the skewness and tail shapes of the distribution. For more details, readers are referred

to Kenney and Keeping (1962) and Moors (1988). Figure 2 displays plots for both measures �

and " which show that they are sensible to variations of 2 and @ for fixed g = 0.5.

Figure 2 – The Bowley skewness and Moors kurtosis of the UBXII distribution.
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2.3.2 Incomplete moments

Another important statistical measure is the ℎth incomplete moment of . defined as

)ℎ (I) =
∫ I

0 H
ℎ 5. (H;2, @) dH. We can write from Equation (2.8),

)ℎ (I) =
logg−2

log(1+ log2 @−1)

∫ I

0
Hℎ−1 log2−1 H−1

(
1+ log2 H−1

) logg/log(1+log2 @−1)−1
dH.

Setting D = log2 H−1, we have dD/dH = −2 H−1 log2−1 H−1 and then

)ℎ (I) =
logg−1

log(1+ log2 @−1)

∫ ∞

log2 I−1
exp (−ℎD1/2) (1+D)logg/log(1+log2 @−1)−1 dD. (2.11)

The general case of the binomial theorem is the power series identity

(G + 0)a =
∞∑
9=0

(
a

9

)
G 90a− 9 , (2.12)

where
(a
9

)
= Γ(a + 1)/[Γ( 9 + 1)Γ(a − 9 + 1)] is the generalized binomial coefficient with real

arguments, a ∈ IR, and Γ(I) =
∫ ∞
0 GI−1 e−G dG is the gamma function. This power series converges
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since |G/0 | < 1. We can write from (2.12)

(1+D)logg/log(1+log2 @−1)−1 =
∞∑
9=0

(
logg/log(1+ log2 @−1) −1

9

)
×

[
Dlogg/log(1+log2 @−1)−1− 9111(log2 I−1,1] (D) +D 9111(1,∞] (D)

]
, (2.13)

where 111j (G) denotes the indicator function over a given set j, i.e., 111j (G) = 1 if G ∈ j and

111j (G) = 0 elsewhere. Combining (2.13) and (2.11), we obtain

)ℎ (I) =
logg−1

log(1+ log2 @−1)

∞∑
9=0

(
logg/log(1+ log2 @−1) −1

9

)
×

[∫ 1

log2 I−1
D 9 exp(−ℎD1/2) dD +

∫ ∞

1
Dlogg/log(1+log2 @−1)−1− 9 exp(−ℎD1/2) dD

]
.

Setting < = ℎD1/2 and, after some algebraic manipulation, we have

)ℎ (I) =
logg−2

log (1+ log2 @−1)

∞∑
9=0

(
logg/log (1+ log2 @−1) −1

9

) (
ℎ−2 ( 9+1)

×
{
Γ

(
2 ( 9 +1), ℎ log I−1

)
−Γ (2 ( 9 +1), ℎ )

}
+ ℎ2 [ logg−1/log (1+log2 @−1)+ 9 ]

Γ

(
−2 [ logg−1/log (1+ log2 @−1) + 9 ], ℎ

))
. (2.14)

Equation (2.14) gives the ℎth incomplete moment of . in terms of incomplete gamma

functions, which is the main result of this section.

For empirical purposes, the shapes of many distributions can be described by the first

incomplete moment such as the Lorenz and Bonferroni curves and the mean deviations. The

Bonferroni and Lorenz curves are given by �(c) = )1(?)/(c `′1) and ! (c) = )1(?)/(`′1), re-

spectively, where ? = &. (c) comes from (2.5) for a given probability c. These curves have

applications in engineering, medicine, economics and several other areas.

Finally, the deviations from the mean `′1 = IE(. ) and median " =&. (0.5) of . can be

calculated from well-known formulas

X1 = 2`′1� (`
′
1) −2)1(`′1) a=3 X2 = `

′
1−2)1("),

where �. (`′1) and )1(?) follow from Equations (2.7) and (2.14), respectively.

2.3.3 Generating function

The mgf of a random variable . is defined by M. (C) ≡ IE(eC. ) =
∫ 1
0 eCH 5. (H;2, @) dH

wherever this expectation exists. It is quite used to find the moments of a given random variable.



22

By considering the pdf (2.8), the UBXII mgf has the form

". (C) =
logg−2

log
(
1+ log2 @−1) ∫ 1

0
H−1eCH log2−1 H−1

(
1+ log2 H−1

)−1+logg/log(1+log2 @−1)
dH.

Setting D = log2 H−1, dD/dH = − 2
H

log2−1 H−13H, and D = exp(−D1/2), it follows that

". (C) =
logg−1

log(1+ log2 @−1)

∫ ∞

0
exp [C exp(−D1/2)] (1+D)logg/log(1+log2 @−1)−1 dD.

By using the well-known power series: eG =
∑∞
:=1 G

:/:!, and the generalized binomial

theorem in Equation (2.12), we have

". (C) =
logg−2

log(1+ log2 @−1)

∞∑
:=0

C:

:!

∞∑
9=0

(
logg/log(1+ log2 @−1) −1

9

) (
:−2 ( 9+1)W ( 2 ( 9 +1), :)

+ :2 [ log g−1/log(1+log2 @−1)+ 9 ]Γ
(
−2

[
logg−1/log(1+ log2 @−1) + 9

]
, :

))
,

which is the main result of this section.

2.4 ESTIMATION

Various methods can be used to estimate the parameters of a distribution. The maximum

likelihood (ML) method is the most commonly used. In what follows, we shall use this method

for estimating the parameters of the UBXII distribution.

Let H1, . . . , H= be a random sample of size = from the UBXII distribution, the parameter

vector \\\ = (2, @)>, and a known g ∈ (0,1) specified. Based on this sample, the log-likelihood

function for \\\, ℓ (\\\; HHH) ≡ ℓ (\\\), has the form

ℓ(\\\) == log(logg−2) −= log{log[C (@)]} −
=∑
8=1

log H8 + (2−1)
=∑
8=1

log(log H−1
8 )

−
[
1+ logg−1

log[C (@)]

] =∑
8=1

log[C (H8)], (2.15)

where C (G) = 1+ log2 G−1.

Equation (2.15) can be maximized either directly by using well-known plataforms such as

the R (optim function), SAS (PROC NLMIXED), Ox program (MaxBFGS sub-routine) or by solving

the nonlinear likelihood equations from the differentiation of ℓ(\\\). By maximizing (2.15), we

obtain the MLE \̂\\ of \\\.

The components of the score vector are* (\\\) = [*2 (\\\), *@ (\\\)]>, where*2 (\\\) = mℓ(\\\)/m2

and*@ (\\\) = mℓ(\\\)/m@. Setting these components to zero and solving them simultaneously gives
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\̂\\. The score components are

*2 (\\\) =
=

2
+

=∑
8=1

log(log H−1
8 ) −

= log(log@−1) [C (@) −1]
C (@) log[C (@)] −

=∑
8=1

[C (H8) −1] log(log H−1
8
)

C (H8)

− logg−1 log[C (@)]
log2 [C (@)]

=∑
8=1
[C (H8)]−1 [C (H8) −1] log(log H−1

8 )

+ logg−1 [C (@) −1] log(log@−1)
C (@) log2 [C (@)]

=∑
8=1

log[C (H8)],

and

*@ (\\\) =
=2 log2−1 @−1

@ C (@) log[C (@)] −
logg−2 log2−1 @−1

@ C (@) log2 [C (@)]

=∑
8=1

log[C (H8)] .

The MLE of \\\ can not be expressed in closed-form by setting* (\\\) |\\\=\̂\\ = 0. However, for

fixed 2, we note that a MLE semi-closed form of @ follows by taking*@ (\\\) |@=@̂ = 0. Hence, it is

the solution of

@̂(2) = exp©­«−
{

exp

[
1
=

logg−1
=∑
8=1

log[C (H8)]
]
−1

}1/2ª®¬ .
By replacing @ by @̂(2) in Equation (2.15), we obtain the profile log-likelihood function

ℓ(2) = −=+= log(logg−2) −
=∑
8=1

log H8 −
=∑
8=1

log[C (H8)] + (2−1)
=∑
8=1

log(log H−1
8 )

−= log

{
1
=

logg−1
=∑
8=1

log[C (H8)]
}
. (2.16)

We can compute the score function for 2 from (2.16)

*2 (2) =
=

2
+

=∑
8=1

log(log H−1
8 ) −

=∑
8=1

[C (H8) −1] log(log H−1
8
)

C (H8)
−
=
∑=
8=1
[C (H8)−1] log(log H−1

8
)

C (H8)∑=
8=1 log[C (H8)]

.

However, it is necessary to use a nonlinear optimization method to maximize numerically the

profile log-likelihood function (2.16). Typically for the numerical computation of the MLEs,

the quasi-Newton algorithm such as Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is

adopted.

Approximate confidence intervals and hypothesis tests for \\\ can be constructed by

considering its asymptotic distribution of the MLEs. For large samples, \̂\\ ∼ N(0, �−1(\\\))

approximately assuming that standard regularity conditions (SRCs) hold (see Lehmann and

Casella (2011)), where � (\\\) is the expected information matrix defined by

� (\\\) = IE
(
−mℓ(\

\\)
m\\\

mℓ(\\\)
m\\\>

)
.
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The computation of � (\\\) may be cumbersome. Nevertheless, when the SRCs are valid, it follows

that � (\\\) = IE[� (\\\)], where � (\\\) = −m2ℓ(\\\)/m\\\m\\\> is the observed information matrix. For the

UBXII distribution, we can write � (\\\) as

� (\\\) = −

*22 (\\\) *2@ (\\\)

*@2 (\\\) *@@ (\\\)

 ,
where *22 (\\\) = m2ℓ(\\\)/m22, *@@ (\\\) = m2ℓ(\\\)/m@2, and *2@ (\\\) = m2ℓ(\\\)/(m2 m@) = *@2 (\\\).

The elements of the matrix � (\\\) are given in Appendix A.

Lindsay and Li (1997) proved that the estimated observed information matrix � (\̂\\) is

a consistent estimator of � (\\\) when the sample size is large. It is then possible to obtain the

standard errors (SEs) of the MLEs by computing the square roots of the diagonal elements

of � (\̂\\)−1. For instance, we can do large sample inference by building asymptotic confidence

intervals with 100%(1−U) nominal coverage for \\\ making \̂\\± I1−U/2(� (\̂\\), where I1−U/2 is the

1−U/2 standard normal quantile.

2.5 SIMULATION STUDY

AMonte Carlo simulation study is carried out in the R programming language to evaluate

the performance of the MLEs of the UBXII parameters that index the distribution. The Optim

routine (with BFGS quasi-Newton nonlinear optimization algorithm and analytical derivative)

is used for maximizing (2.16). The profile log-likelihood function involves a numerical max-

imization simpler than by using (2.15) since it depends only on the parameter 2. We start the

root-finding algorithm, using 2 = 1 for the shape parameter.

Different values for the parameter vector \\\ are considered according to those presented in

Figure 1. Therefore, various combinations of skewness and kurtosis coefficients and density shapes

are contemplated. A total of eight scenarios is considered for the sample size = ∈ {25,75,150,300}.

The inversion method is employed for generating observations, i.e., the qf (2.9) is evaluated in

D ∼U(0,1), being &. (D) = H and, hence, a sample of size = from . ∼ UBXII (2, @) is generated.

Each one of the sample sizes is replicated ' = 10,000 times. We compute quantities as percentage

relative bias (RB%) and root mean squared error (RMSE) of the MLEs.

Table 1 reports results from the simulation schemes. As expected, the consistency property

of the MLEs holds, i.e., the RMSEs tend to decrease when the sample size increases. Also, it

can be noted that the RB%s are smaller for sample size higher, thus indicating that the overall

performance of the MLEs is appropriate, as well as they are more accurate and less biased when
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= increases. Notice that the biggest RB%s for 2̂ and @̂ are less than 7.38 and 1.62, respectively,

even with = = 25. In general, the estimate @̂ is more accurate when compared with 2̂. In the

scenarios two to six, all the RB%s of @̂ are below of 0.84 in absolute value.

Table 1 – RB%s and RMSEs from the UBXII distribution.

Scenario 2 @ =
RB% RMSE
2̂ @̂(2̂) 2̂ @̂(2̂)

1 1.5 0.3

25 7.3773 1.6170 0.3682 0.0751
75 2.3671 0.8954 0.1823 0.0440
150 1.1971 0.5372 0.1251 0.0310
300 0.6399 0.3746 0.0872 0.0225

2 0.9 0.7

25 5.1296 −0.8436 0.1598 0.0758
75 1.6937 −0.2415 0.0845 0.0434
150 0.7708 −0.1126 0.0585 0.0311
300 0.4013 −0.0741 0.0409 0.0221

3 1.1 0.4

25 6.3920 0.6669 0.2370 0.0967
75 2.1153 0.6017 0.1216 0.0569
150 1.1037 0.3580 0.0833 0.0402
300 0.6429 0.3446 0.0583 0.0290

4 2.0 0.4

25 6.0735 0.2902 0.4203 0.0541
75 1.9732 0.1424 0.2169 0.0313
150 0.8997 0.0865 0.1496 0.0224
300 0.4774 0.0212 0.1049 0.0159

5 1.7 0.6

25 5.0479 −0.1864 0.2940 0.0481
75 1.6641 −0.0366 0.1555 0.0276
150 0.7552 −0.0085 0.1075 0.0198
300 0.3920 −0.0157 0.0755 0.0140

6 3.5 0.5

25 5.0270 0.0122 0.5975 0.0262
75 1.6559 0.0203 0.3157 0.0150
150 0.7520 0.0171 0.2182 0.0108
300 0.3894 0.0012 0.1532 0.0076

Source: Author (2020)

Figure 3 displays boxplots from the first 100 Monte Carlo replications (to favor easy

viewing) of the eight current scenarios. We can note that, in most cases, the presence of outliers

overestimates the estimates for small sample sizes. However, this fact is attenuated when =

increases. Besides, the dispersion of the estimates decreases, and the precision is achieved for

larger sample sizes.
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Figure 3 – Boxplots of the first hundred estimates of the Monte Carlo simulation for some
sample sizes.
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Figure 4 contains plots of total absolute RB% and total RMSE versus sample sizes for

all these scenarios. These quantities are obtained from the sum of the RB% and RMSE of both

parameters for each sample size and scenario. Note that those measures decay to zero when =

increases in the six scenarios. This shows that the properties of the MLEs (such as asymptotically

unbiased and consistent) are held.
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Figure 4 – Total absolute RB%s and total RMSE of the MLEs from UBXII distribution
with different sample sizes.
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2.6 THE UBXII REGRESSION

Let.1, . . . ,.= be = independent random variables, where.8 ∼UBXII (@8, 2) for 8 = 1, . . . , =

with shape parameter 2 and quantile parameter @8 (both unknown) for 0 < g < 1 assumed known.

We propose the UBXII regression imposing that the quantile @8 of .8 satisfies the functional

relation

[[[ = 6(@@@) = ---VVV, (2.17)

where [[[ = ([1, . . . , [=)> ∈ IR= is the =-dimensional vector of linear predictors, @@@ = (@1, . . . , @=)>

is the vector of quantiles with @8 ∈ (0,1), VVV = (V1, . . . , V: )> ∈ IR: is a :-dimensional vector of

unknown regression coefficients (: < =), --- = (GGG>1 , . . . , GGG
>
= )> is the =× : full column rank matrix,

GGG>
8
= (G81, . . . , G8: ) denotes the 8th observation on : covariates which are assumed known, and

G81 = 1,∀8. Finally, we shall assume that 6(·) is a strictly monotonic and twice differentiable link

function which maps (0,1) into IR. By inverting each component of (2.17), we can write

@8 = 6
−1 ©­«

:∑
9=1
G8 9 V 9

ª®¬ = 6−1([8).
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There are various possible choices for the link function 6(·) such as

• logit: 6(@8) = log[@8/(1− @8)];

• probit: 6(@8) = Φ−1(@8), where Φ−1(·) is the qf of the standard normal random variable;

• complementary log-log: 6(@8) = log[− log(1− @8)];

• log-log: 6(@8) = − log[− log(@8)];

• Cauchy: 6(@8) = tan[c(@C −1/2)].

McCullagh McCullagh and Nelder (1989) provides a comparison among some of them.

The choice of the logit link function is the most common by practitioners since the

interpretation of the regression parameters becomes quite interesting. Consider increasing the 9 th

regressor at one unit, while the others are kept constant. Let @∗ be the quantile of . under the new

value of GGG 9 , whereas @ denotes the quantile of . under the original value of this regressor. It can

be shown that with the logit link function, we have V 9 = log {@∗(1− @∗)/[@(1− @)]}, i.e., V 9 is

the log odds ratio (FERRARI; CRIBARI-NETO, 2004). In this context, we will consider the logit

link function for 6(·) in the UBXII regression. Then, the 8th quantile of .8 is @8 = e[8/(1+ e[8 ).

2.6.1 Estimation

The parameters estimation in the UBXII regression can also be performed by the ML

method. Let \\\ = (VVV>, 2)> be the vector of : + 1 unknown parameters to be estimated. The

log-likelihood function based on a sample of = independent observations having the UBXII

distribution, i.e., .8 ∼ UBXII (@8, 2), can be expressed as

ℓ(\\\) ≡ ℓ(VVV, 2) =
=∑
8=1
ℓ8 (@8, 2), (2.18)

where ℓ8 (@8, 2) is the logarithm of 5. (H8;@8, 2) given in Equation (2.8). Hence,

ℓ8 (@8, 2) = log(logg−2) − log H8 + (2−1) log(log H−1
8 ) − log[C (H8)] − log{log[C (@8)]}

− logg−1 log[C (H8)]
log[C (@8)]

.

The score vector, obtained by differentiating the log-likelihood function (2.18) with respect

to the unknown parameters V 9 , 9 = 1, . . . , : , and 2, is expressed as*** =
[
*VVV (VVV, 2)>,*2 (VVV, 2)

]>.
The components of *** can be written in matrix notation. For doing this, we now define some

quantities.

Let @★
8
= log2−1 @−1

8
/{@8 C (@8) log[C (@8)]}, @†8 = logg−1 log2−1 @−1

8
/{@8 C (@8) log2 [C (@8)]},
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H★
8
= log[C (H8)], and

H
♯

8
=

1
2
+ log(log H−1

8 ) −
log(log@−1

8
) [C (@8) −1]

C (@8) log[C (@8)]
−
[C (H8) −1] log(log H−1

8
)

C (H8)

−
logg−1 log[C (@8)] [C (H8)]−1 [C (H8) −1] log(log H−1

8
)

log2 [C (@8)]

+
logg−1 [C (@8) −1] log(log@−1

8
) log[C (H8)]

C (@8) log2 [C (@8)]
.

Then, we have

*VVV ≡*VVV (VVV, 2) = 2 --->��� ( @@@★− @@@† HHH★), (2.19)

and

*2 ≡*2 (VVV, 2) = tr(... ♯), (2.20)

where --- is an = × : matrix whose 8th row is GGG>
8
, ��� = diag {1/6′(@1), . . . ,1/6′(@=)}, @@@★ =

(@★1 , . . . , @
★
= )>, @@@† = (@†1, . . . , @

†
1)
>, HHH★ = (H★1 , . . . , H

★
= )>, and... ♯ = diag{H♯1, . . . , H

♯
=}. We provide the

calculations of the score components in Appendix A.

Again, the nonlinear Equations*VVV |VVV=V̂VV = 0 and*2 |2=2̂ = 0 can not be expressed in closed-

form. Hence, a nonlinear optimization method must be used for maximizing the function (2.18)

and determine the MLEs ( V̂VV>, 2̂)>. We also provide the observed information matrix for (VVV>, 2)>.
To simplify the notation of its components, other quantities are defined as follows

<8 =

{
2 log2 @−1

8

@8 C (@8)
+

2 log2 @−1
8

@8 C (@8) log[C (@8)]
−

log@−1
8

@8
− (2−1)

@8

}
2 log2−2 @−1

8

@8 C (@8) log[C (@8)]
,

?8 =

{
(2−1)

@8 log[C (@8)]
+

log@−1
8

@8 log[C (@8)]
−

22 log2 @−1
8

@8 C (@8) log2 [C (@8)]
−

2 log2 @−1
8

@8 C (@8) log[C (@8)]

}
2 logg−1 log2−2 @−1

8

@8 C (@8) log[C (@8)]
,

A8 =

{
log2−1 @−1

8 +
log2−1 @−1

8

2 log(log@−1
8
)
−

log22−1 @−1
8

C (@8)
−

log22−1 @−1
8

C (@8) log[C (@8)]

}
2 log(log@−1

8
)

@8 C (@8) log[C (@8)]
,

D8 =

{
2log22−1 @−1

8

C (@8) log2 [C (@8)]
+

log22−1 @−1
8

C (@8) log[C (@8)]
−

log2−1 @−1
8

2 log(log@−1
8
) log[C (@8)]

−
log2−1 @−1

8

log[C (@8)]

}
×
2 log(log@−1

8
) logg−1

@8 C (@8) log[C (@8)]
,

B8 =
2 logg−1 log2−1 @−1

8

@8 C (@8) log2 [C (@8)]
and H

†
8
= log(log H−1

8 ) [C (H8) −1] [C (H8)]−1.
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Therefore, the observed information matrix can be expressed as (see Appendix A)

��� = −©­«
���VVVVVV ���2VVV

���VVV2 �22

ª®¬ .
The quantities ���VVVVVV ≡ m2ℓ(VVV, 2)/(mVVVmVVV>) and ���VVV 2 = ���>2 VVV ≡ ℓ(VVV, 2)/(m2mVVV), and �22 ≡

m2ℓ(VVV, 2)/m22 are

���VVVVVV = ---
> [ (""" +%%%...★)��� − 2 (&&&★−&&&†...★)))) ���>��� ]��� ---, (2.21)

���>2 VVV = (AAA − BBB HHH
‡ +DDD HHH★)>��� ---, (2.22)

and

�22 = tr(...�), (2.23)

where """ = diag {<1, . . . ,<=}, %%% = diag {?1, . . . , ?=}, &&&★ = diag {@★1 , . . . , @
★
= }, &&&† = diag {@†1, . . . ,

@
†
=}, ...★ = diag {H★1 , . . . , H

★
= }, ))) = diag {6′′(@1), . . . , 6′′(@=)}, AAA = (A1, . . . , A=)>, BBB = (B1, . . . , B=)>,

HHH‡ = (H‡1, . . . , H
‡
=)>, and DDD = (D1, . . . , D=)>.

We note that the parameters VVV and 2 are not orthogonal as in the beta (FERRARI;

CRIBARI-NETO, 2004), gamma (MOUSA; EL-SHEIKH; ABDEL-FATTAH, 2016), Johnson

S� (LEMONTE; BAZÁN, 2016) regressions for modeling bounded random variables to the

standard unit interval and unlike to the generalized linear models discussed by Nelder and

Wedderburn Nelder and Wedderburn (1972).

As mentioned in Section 2.4, the matrix ��� is quite useful for interval estimation and

hypothesis testing inference. Assuming that the SRCs hold and the sample size is large,

©­«
V̂VV

2̂

ª®¬ ∼ N:+1 ©­«©­«
VVV

2

ª®¬ , ���−1ª®¬ ,
where ���−1 is the inverse of ��� ≡ IE(���) is the expected information matrix. It can be estimated of

the consistent way by �̂��, which is computed after replacing the unknown parameters (VVV>, 2)> by

the corresponding MLEs.

2.6.2 Simulation study

In this section, a Monte Carlo simulation study is conducted in order to numerically

evaluate the finite sample behavior of the MLEs of the UBXII regression’s parameters. The
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Monte Carlo experiments are performed using the R programming language (R Core Team,

2020). Maximization of the log-likelihood function in (2.18) is carried out using the BFGS

quasi-Newton nonlinear optimization algorithm implemented at the optim function available

in R. We consider the ordinary least squares estimates (OLSEs) as an initial guess for VVV obtained

from a linear regression of the transformed responses: III = [6(@1), . . . , 6(@=)]>, i.e., the initial

point estimate of VVV is ṼVV = (--->---)−1--->III. For the shape parameter 2, we take the same initial

guess in Section 2.5.

The simulations are based on the UBXII regression:

logit(@8) = V1 + V2G82, 8 = 1, . . . , =. (2.24)

The covariate GGG222 is randomly generated from a standard normal. We combine various values

of the parameter vector \\\ = (V1, V2, 2)> at six different scenarios. The Monte Carlo replications

number adopted and the sample sizes considered are the same from Section 2.5. In each Monte

Carlo replication, the inversion method is used to generate = occurrences of a random variable

.8 ∼ UBXII (@8, 2). By assuming the regression structure defined in Equation (2.24), it follows

that

@8 =
exp(V1 + V2 G82)

1+ exp(V1 + V2 G82)
,

i.e., @8 is equal to the logistic cdf evaluated at (V1 + V2 G82). The statistical quantities computed

are also the same of Section 2.5.

Table 2 presents the results of the Monte Carlo simulations. As expected, the RMSEs

decrease for all scenarios considered when = increases, thus indicating that the MLEs are

consistent. In general, the RB%s are smaller for larger sample sizes. We can note that the most

RB% is equal to 10.02 in scenario four for the smallest sample size, and it refers to the estimate

of 2. For estimates of the parameters V1 and V2, all RB%s are below 6.25. In addition, even for

= = 25, the RMSE values are quite low in any scheme.

Figure ?? displays plots for the total RB% and total RMSE versus sample sizes. They

reveal that the MLEs are consistent, and their biases quickly tend to zero when the sample size

grows. Further, the most RB% is about 20, but it decays to less than 5 to the = = 75. Thus, as

expected, the ML asymptotic properties remain.
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Table 2 – RB%s and RMSEs for the UBXII regression.
Scenario V1 V2 2 =

RB% RMSE
V̂1 V̂2 2̂ V̂1 V̂2 2̂

1 1.3 1.4 2.0

25 −0.3323 0.7091 9.4106 0.1760 0.1499 0.4270
75 −0.0978 0.3527 2.7208 0.0929 0.0913 0.1975
150 −0.0392 0.1676 1.2937 0.0644 0.0570 0.1323
300 −0.0068 0.1248 0.6621 0.0455 0.0451 0.0918

2 0.7 0.4 1.3

25 −1.6493 2.8842 7.8287 0.2680 0.2073 0.2504
75 −0.1791 1.5523 2.5257 0.1462 0.1397 0.1246
150 −0.0765 0.8871 1.1396 0.1043 0.0902 0.0843
300 −0.0671 0.3218 0.5765 0.0732 0.0637 0.0584

3 −0.2 −0.6 1.8

25 6.2548 3.7917 9.8991 0.2599 0.1545 0.4274
75 1.0153 0.9514 0.1454 0.1454 0.1264 0.1900
150 0.0641 0.5987 1.3144 0.1001 0.0951 0.1324
300 0.3399 0.2976 0.6825 0.0724 0.0590 0.0898

4 −0.7 0.4 2.3

25 1.7725 3.1922 10.0246 0.2625 0.2104 0.5838
75 0.3187 2.0428 3.1417 0.1391 0.1240 0.2780
150 0.0243 0.7296 1.4848 0.0979 0.0777 0.1894
300 −0.0512 0.1449 0.7751 0.0691 0.0603 0.1317

5 1.2 −0.5 1.6

25 −0.1732 2.9301 7.9394 0.1860 0.1217 0.3028
75 −0.0054 0.7715 2.5134 0.1039 0.1069 0.1470
150 0.0099 0.3839 1.1571 0.0748 0.0663 0.0992
300 −0.0200 0.2634 0.5976 0.0529 0.0486 0.0687

6 0.4 1.2 2.6

25 −1.4705 0.9087 9.6420 0.1666 0.1364 0.5731
75 −0.2535 0.4271 2.7730 0.0854 0.0776 0.2673
150 −0.0936 0.1443 1.3345 0.0597 0.0543 0.1779
300 0.0397 0.0499 0.6723 0.0431 0.0417 0.1237
Source: Author (2020)

Figure 5 – Total absolute RB%s and total RMSE of the MLEs from UBXII regression
with different sample sizes.
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2.6.3 Diagnostic measures and model selection

In order to check the goodness-of-fit and validate the UBXII regression assumptions, we

adopt some well-known diagnostic tools that are now discussed. Initially, we use the randomized

quantile residuals introduced by Dunn and Smyth (1996). These residuals allow to verify if the

model assumptions are satisfied and identifying when the parameter estimations are considerably

affected by the presence of atypical observations in the response. If the model is correctly

specified, the randomized quantile residuals are standard normally distributed. For the UBXII

regression, they are given by

A8 = Φ
−1 [�. (H8; @̂8, 2̂)],

where �. (·) is the UBXII cdf given in Equation (2.7).

An incorrect functional form specification of the regression and the covariates omission

can be identified through the RESET test. This test was initially introduced by Ramsey (1969)

as a general misspecification test for the normal linear regression. Afterward, variants of the

RESET test for classes of more general regressions were proposed by McCullagh and Nelder

(1989) and Pereira and Cribari-Neto (2014). Thus, to determine whether a UBXII regression is

misspecified, we propose using a RESET-like misspecification test. Next, we explain how this

test can be performed.

The RESET-like test is carried out in two steps. Let @̂@@ be the predicted values vector

obtained after fitting a UBXII regression. First, we build testing variables matrix as ))) = [@̂@@2 , @̂@@3],

where the vectors @̂@@2 and @̂@@3 are formed by @̂@@ squared and cubed components, respectively. We

define the augmented regression

6(@@@) = ---VVV+)))XXX, (2.25)

where ))) is the =×2 matrix of testing variables, and XXX is a 2×1 vector of parameters. Second,

we estimate Equation (2.25) and test the null hypothesis H0 : XXX = 0 against the alternative

hypothesisH1 : XXX ≠ 0 by using the likelihood ratio (LR) statistic. We compute the LR statistic

as l = 2[ℓ(\̂\\ − ℓ(\̃\\)], where ℓ(·) is the log-likelihood function and \̂\\ = (X̂XX>, V̂VV>, 2̂)> is the

unrestricted MLE of \\\, and \̃\\ = (0>, ṼVV>, 2̃)> is the restricted MLE of \\\ under the null hypothesis.

Under H0 and the SRCs, l converge in distribution to chi-square, j2
a , where a is the number

of testing covariates added to the regression (a = 2 in this case). The non-rejection of the null

hypothesis suggests that the regression is correctly specified.
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The proportion of the response variable’s variability explained by a fitted UBXII regression

can be assessed using the generalized (pseudo) R-squared ('2
�
). Nagelkerke et al. (1991) defined

it as

'2
� = 1− exp

{
−2/= [ℓ(\̂\\) − ℓ(\̂\\0)]

}
,

where ℓ(\̂\\0) is the log-likelihood of the null regression, i.e., obtained from the modeling of

the response in the covariates absence, and ℓ(\̂\\) is the log-likelihood of the full regression. A

regression with a higher value of '2
�
provides a larger explanation power of the response variable

variation.

To select the more suitable model between several nested models, the information criteria

such as Akaike information criterion (AIC) (AKAIKE, 1973) and Schwarz information criterion

(BIC) (SCHWARZ et al., 1978) can be considered. Both criteria are widely used in practical

applications and they are defined by AIC(q) = 2 [ ?− ℓ(\̂\\)] and BIC = ? log =−2ℓ(\̂\\), where ?

is the number of estimated parameters.

A way of selecting the best one between different non-nested regressions is to assess

its performance in the prediction of the response through statistical learning tools such as the

cross-validation approach. Let HHH = (H1, . . . , H=)> the vector of = observations of a response

variable and --- the covariates matrix like in (2.17). In statistical learning methods, a training data

set is the observations set in which a model is initially adjusted. An accuracy measure is the test

error, that result from applying the model fitted to test observations that were not used in training.

For example, if we use (HHH, ---) as training observations, the test error is IE[! (.0, Ĥ0)], where ! (·)

is the loss function and Ĥ0 is the predicted value using the fitted model from (HHH, ---) evaluated

in the predictors GGG>000 (that does not belong to ---). To estimate the test error with absolute and

quadratic loss, respectively, we consider the mean square error (MSE) defined as

MSE =
1
=

=∑
8=1
(H8 − Ĥ8)2,

where Ĥ8 is the 8th predict value by the regression for the 8th observation. This statistical measure

is small if the predictions of the responses are very close to its true values, and it is large if for

some of the observations, the predicted and true responses differ substantially (JAMES et al.,

2013).

As cross-validation method we propose the use of the leave-one-out cross-validation

(LOOCV). In this approach, we split the 8th observation (8th row of a data set in which the

response and covariates are disposed by columns) of the other =−1 observations that represent

the training set whereas the row 8 is the validation set.
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For each removed observation, we use the fitted model with the training set to predict the

8th observation of the validation set. After, we estimate the test error by computing the MSE8.

Repeating those procedure = times, we obtain MSE1, . . . ,MSE=. The final estimate of the test

errors are computed through average of those = statistics as follows (JAMES et al., 2013)

CV(=) =
1
=

=∑
8=1

MSE8 .

Hence, we select the regression which provides smaller values for CV(=) .

2.7 APPLICATION

In this section, we assess the UBXII regression performance on real data. The analysis is

carried out using the R statistical computing environment (R Core Team, 2020). We fit the UBXII

regression and compare it with the Kumaraswamy (Kw), unit-Weibull (UW) (MAZUCHELI et

al., 2020), and beta (FERRARI; CRIBARI-NETO, 2004) regressions, which are well-known in

the analysis of limited data.

Let . be a random variable Kw distributed under a median-dispersion parameteriza-

tion (MITNIK; BAEK, 2013), say . ∼ Kw(l, 3?). The pdf of . is

5 (H;l, 3?) =
log0.5

3? log(1−l1/3? )
H1/3? (1− H1/3? )log0.5/log(1−l1/3? )−1, H ∈ (0,1)

where 0 < l < 1 is the median of . and 3? > 0 is a dispersion parameter.

The UW quantile regression was recently introduced by Mazucheli et al. (2020). Let

. ∼ UW(`,W) be a random variable having the UW distribution under the parameterization given

in Mazucheli et al. (2020). For H ∈ (0,1), the random variable . has density

5 (H;@, W) = W
H

(
logg
log@

) (
log H
log@

)W−1
g(log H/log@)W ,

where 0 < @ < 1 is the gth quantile, W > 0 is a shape parameter, and g ∈ (0,1) is assumed known.

Here, it will be considered that g = 0.5 in order to model the median of . .

Ferrari and Cribari-Neto (2004) pioneered the beta regression. Different parameter-

izations can be considered for the beta distribution. We consider a mean-dispersion based

parameterization. Let . be a random variable that follows a beta distribution, say . ∼ Beta(`,f).

For H ∈ (0,1), the . density is

5 (H;`,f) =
Γ

(
1/f2−1

)
Γ

(
`(1/f2−1)

)
Γ

(
(1− `) (1/f2−1)

) H`(1/f2−1)−1(1− H) (1−`) (1/f2−1)−1,
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where 0 < ` < 1 is the mean of . , 0 < f < 1 is a dispersion parameter and Γ(U) =
∫ ∞
0 GU−1e−GdG

is the complete gamma function. Under this parameterization the variance of . is f2`(1− `).

The regression structure for the Kw, UW, and beta distributions is analogous to (2.24).

The main differences are the assumptions under the random components and modeled location

parameters. To get theKw regression, @@@must be replaced by themedian (lll) in Equation (2.24) and

supposed that. ∼Kw(l8, 3?). The UW regression is obtained by considering the structure (2.24)

and assuming that . ∼ UW(@8, W). In the beta regression, the location parameter is the mean (`).

Thus, in Equation (2.24), @@@ must be replaced by `̀̀ and supposed that . ∼ Beta(`8,f).

We get the data from the higher education census conducted yearly by the Brazilian

National Institute for Educational Studies and Research “Anísio Teixeira”. We are interested in

the dropout proportion for animal sciences courses and factors associated with their enrollment

and organizational structure. However, the response variable is not directly obtained from the

original dataset, and we use mining data techniques to obtain it from other reported variables.

After preprocessing and cleaning steps, we select 40 covariates as possible predictors. A detailed

description of the data mining tools employed and the final data set are available in appendix A.

The UBXII, Kw, UW, and beta regressions also are used as data mining tools to select a

subset of predictors that properly fits the dropout proportion. We test several combinations of

predictors using the measures described in Section 6.3. to define the final regressions on each

class. In what follows, we describe the response variable and predictive covariates used in our

regression analysis.

The response variable is the dropout proportion from 2009 until 2017 of 77 Brazilian

undergraduate animal sciences courses. For each course 8 (8 = 1, . . . ,77), we consider three

covariates as follows: i) quantity of vacancies offered in the morning shift, denoted by G82; ii) a

dummy variable that equals one if the course guarantees conditions of accessibility for people

with disabilities, and zero otherwise, denoted by G83; and iii) a dummy variable, denoted by G84,

that equals one if the course works on the night shift, and zero otherwise.

Let HHH = (H1, . . . , H77)> be the vector of the response variable and --- = (GGG1, . . . , GGG4) the

covariates matrix, where GGG1 is a vector column with 77 ones and GGG 999 = (G1 9 , . . . , G77 9 )>, with

9 = 2, . . . ,4. Table 3 provides a descriptive summary of the response variable (HHH) and quantitative

covariate (GGG222), revealing that HHH has negatively skewed distribution and lighter tails than a normal

distribution. Further, its mean is close to the median, the standard deviation (SD) is low, and the

values range is sizeable because the minimum and maximum are 0.1077 and 0.9714, respectively.

The covariate GGG2 presents different degrees of variability, skewness, and kurtosis.
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Table 3 – Descriptive statistics from the response variable and quantitative covariates.

Var. Statistics
Mean Median SD Skewness Kurtosis Min. Max.

HHH 0.5736 0.5965 0.1818 −0.3449 0.0854 0.1077 0.9714
GGG2 13.7532 0.0000 29.5449 2.0533 3.2902 0.0000 120.0000

Source: Author (2020)

To study the covariates’ effects on the median dropout proportion, we determine g = 0.5

and specify the UBXII regression as

logit(@8) = [8 = V1 + V2 G82 + V3 G83 + V4 G84,

For comparison purposes, we also fit the Kw, UW, and beta regressions considering the same

covariates combination and link function.

Table 4 brings some goodness-of-fit measures such as AIC, BIC, and '2
�
, the ?-values of

the Anderson-Darling test (AD) (STEPHENS, 1974) to validate the null hypothesis that errors

are normally distributed, the p-values from RESET-like test (RES), and the statistic obtained

from the LOOCV approach (CV(77)) that allows assessing the prediction performance of the

fitted regressions. We consider U = 0.05 as a significance level for all performed hypothesis tests.

According to the RESET-like tests, all models are correctly specified. Similarly, the p-values from

Anderson-Darling tests indicate is reasonable supposing normality of the errors at each class.

It is noteworthy that most of some goodness-of-fit measures suggest that the UBXII regression

is more suitable to fit the dropout proportion in the Brazilian zootechnics course between 2009

and 2017 than other considered class of regressions. Moreover, the �+(77) estimate for the fitted

UBXII regression is the smallest among all other fitted regressions. This means that the proposed

regression leads to better predictions than the classical regressions used in the context of restricted

response to the unit interval. Indeed, in Figure 6 it is possible to note that the UBXII regression

provides the best fit for this data set since about 97% of the points are under the red line in the

QQ-plot of fitted UBXII regression’s residuals.

Table 4 – Goodness-of-fit measures and LOOCV statistic for the fitted regressions
Regression AIC BIC R2

�
AD RES CV(77)

UBXII −55.8423 −44.1233 0.2348 0.8229 0.4334 0.0259
Kw −48.8064 −37.0873 0.1898 0.2765 0.8354 0.0260
UW −52.6329 −40.9139 0.2565 0.2795 0.5764 0.0266
BETA −52.0595 −40.3405 0.2235 0.5433 0.8383 0.0285

Source: Author (2020)
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Figure 6 – QQ-plots of the UBXII, Kw, UW, and beta regressions’ residuals.
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In Table 5, we provide the estimates of the parameters, standard errors, t statistic value,

and p-values for the UBXII regression. The effect of the three considered covariates under the

response’s median is positive. Further, according to the estimate of V4, the covariate G84 presents

the most impact on the median. That is, the odds ratio increases substantially if the course works

on the night shift. Results from other fitted regressions are given in Appendix A; see Table 17.

Table 5 – Fitted UBXII regression for the dropout proportion in the Brazilian zootechnics
course.

Parameter Estimate Std. Error t value Pr(>|t|)
V1 −0.0509 0.1294 −0.3932 0.6953
V2 0.0082 0.0024 3.4429 0.0010
V3 0.5389 0.1560 3.4535 0.0009
V4 0.8310 0.2665 3.1183 0.0026
2 2.3780 0.2032 − −

Source: Author (2020)
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2.8 CONCLUSIONS

In this chapter, we define the unit Burr XII (UBXII) distribution and its associated

regression, which are useful to model continuous random variables in the interval (0,1). The

new distribution is quite flexible, and its density can assume many shapes, including the reverse

tilde-shaped. A highlight of this distribution is that one of its parameters, @(g), represents

the gth quantile of the random variable. The researcher defines the g value, and assumes a

regression structure on @(g). Further, we provide structural properties such as ordinary and

incomplete moments, and generating function. The maximum likelihood method is used for

parameter estimation, and Monte Carlo simulations show that its properties remain. Closed-form

expressions for score functions and observed information matrix are also derived. We adapt

several diagnostic analysis and model selection techniques that can be employed to check the

goodness-of-fit of the estimated model. Finally, the utility of the proposed regression is illustrated

with an application to the dropout proportion of Brazilian undergraduate animal sciences courses.

The fit of the UBXII regression is superior to the fit of the Kumaraswamy, unit-Weibull, and beta

regressions since it provides better prediction performance to the data set at hand. Thus, the

UBXII regression is an alternative quite competitive for modeling data that are restricted to the

unit interval and can be used when the classical regressions are not suitable.
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3 A NEW REGRESSION MODEL FOR THE COVID-19 MORTALITY RATES IN

THE UNITED STATES

3.1 INTRODUCTION

Coronavirus disease-2019 (COVID-19), initially so-called 2019-nCoV, belongs to the

coronavirus family that are enveloped positive-strand RNA viruses and that have the largest

known RNA genomes. This illness infects several species of animals and also humans, causing

respiratory tract infections, liver, neurological and gastrointestinal problems, and can range from

mild to lethal (GUAN et al., 2003). Its initial source was identified inWuhan City, Hubei Province

of China, in persons exposed to seafood and wet animal wholesale market. The first case was

detected in December 2019 (COMMISSION et al., 2019) and has quickly spread all over the

world.

In the past two decades, the COVID-19 is the third coronavirus to emerge in the human

population, likely characterizing a potentially more novel and severe infectious disease to be

revealed. Due to the rapid spread and increase in the number of cases, there are evidence that it

is more contagious than the severe acute respiratory syndrome coronavirus (SARS-CoV) and

the Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks, which occurred in

2002 and 2012, respectively (HUANG et al., 2020; MUNSTER et al., 2020). Inclusive, since its

similarity with the SARS-CoV, the COVID-19 is also named by SARS-CoV-2.

According to the World Health Organization (WHO) (World Health Organization, 2020b),

the COVID-19 spreads through person-to-person transmission (direct contact), contaminated

objects or surfaces (indirect contact), or close contact with infected people via mouth and nose

secretions. Moreover, some studies show that on surfaces such as plastics and metals, this

virus can survive for up to three days, and even in the air, it can survive for more than three

hours (CARRATURO et al., 2020; DOREMALEN et al., 2020).

Effective treatment or preventive vaccines have yet not been developed for infections

resulting from this virus (HUANG et al., 2020). However, some preventative measures can be

taken. The main prophylaxis strategies include social distancing, hand hygiene, and cleaning and

disinfection of high-touch surfaces; see Gharpure et al. (2020) and Lewnard and Lo (2020), for

more details. The WHO (World Health Organization, 2020b) highlights that peoples in close

contact with an infected, around one meter, can catch COVID-19 from infectious droplets that

may get into their mouth, nose, or eyes.

In April 2020, due to a large number of cases and deaths by the new coronavirus,
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New York City has become the new epicenter of the disease in the United States of America

(U.S.) (RADMANESH et al., 2020), after Italy. Thenceforward, several other states have

experienced a substantial increase in the number of cases and deaths. From January 20 to

August 14, 2020, the total of confirmed cases passed five million in the country, being equal to

5,150,407. In this same period was recorded 164,826 deaths. Those numbers are equivalent to

about 25% of the recorded cases total and 22% of deaths by coronavirus in the world (World

Health Organization, 2020a).

Some recent studies present statistical applications to pandemic data in the U.S. Bashir

et al. (2020) analyzed the correlation between the virus and climate indicators in New York

City. They identified that the temperature and air quality are significantly associated with the

coronavirus pandemic. Regressive and autoregressive spatial models were examined by Mollalo,

Vahedi and Rivera (2020) in order to explain variations of coronavirus in the whole country,

considering several environmental, topographic, socioeconomic, behavioral, and demographic

factors as predictor variables. Other similar studies can be found in Andersen (2020) and Zhang

and Schwartz (2020). However, to our best knowledge, a regression analysis modeling the

mortality rate by coronavirus across the U.S. states has no been carried out.

In this context, some regressions are fitted to the coronavirus mortality rates in the

50 American states to determine the demographic, socioeconomic, behavioral, and meteoro-

logical explanatory variables (covariates) that affect these rates. Since the response variable

has a restricted domain, a new parametric regression is constructed to fit these data. The new

regression, based on a transformation on the Burr XII (BXII) random variable, is compared to

the beta, simplex, Kumaraswamy (Kw), and unit-Weibull (UW) regressions, which are feasible

alternatives to model this kind of data.

The rest of the chapter is structured as follows. In Section 3.2, the incidence of coronavirus

disease in the U.S. is reviewed. A new regression to model the mortality rates in the American

states is defined in Section 3.3. Further, the estimation of the parameters, a simulation study, and

some goodness-of-fit measures to check the adequacy of the proposed regression are discussed.

Section 3.4 contains some basic statistics of the data set, carries out the empirical analysis by

identifying the best regression to fit the mortality rates, and provides some useful findings. Finally,

in Section 3.5, some concluding remarks are addressed.
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3.2 COVID-19 IN THE U.S.

The first COVID-19 case in the U.S. was recorded on January 21, 2020. The diagnosed

with the coronavirus patient has traveled to Wuhan, China. In Japan, South Korea, and Thailand,

the first cases also were reported one day prior (SCHUMAKER, 2020). Nine days after, it was

confirmed in the U.S. the first case of person-to-person transmission by the Centers for Disease

Control and Prevention (CDC) (Centers for Disease Control and Prevention, 2020). On January

31, several events occurred in response to the COVID-19 outbreak, such as: i) the Coronavirus

was declared a public health emergency in the U.S. by the Health and Human Services (HHS)

and a federal quarantine for 14 days addressed to the 195 American evacuees from Wuhan was

decreed; ii) U.S. Airlines suspended all flights between the U.S. and China temporarily; iii)

President Donald Trump signed an order whose aim was to deny the entry of foreign nationals to

American soil, who had traveled to China during the previous two weeks. On the other hand,

on January 31, New York City health officials vehemently denied the rumor about a COVID-19

case in the city. However, on February 02, the mandatory 14 days quarantine was extended to

the U.S. citizens, permanent residents, and immediate family who have visited China’s Hubei

province (Worldometer, 2020).

According to the CDC (Centers for Disease Control and Prevention, 2020) since March 1

until August 15, in the U.S. occurred two peaks in the hospitalization rates among all ages, being

the first during the week ending April 18 (10.1 per 100 thousand population) and the second

during the week ending July 18 (8.0 per 100 thousand).

From first known deaths recorded in February 2020, the total of confirmed cases had

increased in all fifty U.S. states. However, each U.S. state has followed a different SARS-CoV-2

trajectory. During the pandemic’s early days, the states of NewYork andWashington were hit hard.

New York quickly became a new epicenter of the pandemic, recording 12,274 new coronavirus

cases on April 4, which after one-day, was surpassed by the state of Florida that recorded 15,300

new cases (FREYTAS-TAMURA; ROJAS; FINK, 2020). Nevertheless, from the start of the U.S.

pandemic until July 22, New York remained accounting the highest number of confirmed cases,

being after was first surpassed by California and later by Florida and Texas (LEWIS, 2020). From

this, although in a way more slowly, the total of cases and deaths have risen also in other states.

Until August 25, the five U.S. states with the highest reported death rates are New Jersey,

New York, Massachusetts, Connecticut, and Louisiana with 180, 169, 130, 125, and 103 deaths

per 100 thousand people (HERNANDEZ et al., 2020). These states count with about 9%, 18%,
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5%, 3%, and 3%, respectively, regarding the total of deaths in the country.

After the federal government has noted the threat posed by the coronavirus, on April

11, disaster declarations were approved for all states (GOOD, 2020). Moreover, measures as

prohibitions and cancelation of large-scale gatherings, stay-at-home orders, and the closure of

schools were taken as state and local responses to the pandemic (DEB; CACCIOLA; STEIN,

2020).

Beginning late April 2020, some U.S. states have begun to reopen their economies after

the country into lockdown starting in March. Zhang et al. (2020) analyzed the setting of the

number of confirmed cases, hospitalizations, and deaths for 11 countries and 40 American states

after reopening their commercial activities. They evidenced that 75% of U.S. states increased

the number of recorded cases, whereas 17.5% had observed an increase in the total of deaths

after reopening. Similarly, according to the American Academy of Pediatrics and the Children’s

Hospital Association, the total of Coronavirus confirmed cases among children in the U.S.

increased at 90% since the reopening of the American schools (CHAVEZ, 2020).

In August 2020, the restrictions on business and social activity have varied by state (Wash-

ington Post, 2020). For example, Alaska and West Virginia have not suffered any kind of

restriction, contrary to California, which has suffered them more strictly. Thirty-two states

present minor restrictions, whereas 15 states are classified at moderate restrictions category.

Until effective vaccine and validated treatments against COVID-19 are developed, it is essential

to maintain preventive strategies that favor avoiding the exposition to this virus to contain this

disease’s spread.

3.3 THE PROPOSED REGRESSION

This section aims to introduce a new regression that has much broader applicability in

coronavirus mortality rates. This approach’s particular feature is that it accommodates double-

bounded variables in the unit interval with several types of asymmetry. The proposal is based on

the transformation / = 1−e−- , where - is a BXII random variable having cumulative distribution

function (cdf) and probability density function (pdf)

�- (G;2, 3) = 1− (1+ G2)−3 , G > 0,

and

5- (G;2, 3) = 2 3 G2−1 (1+ G2)−(3+1) ,
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respectively, where 2 > 0 and 3 > 0 are shape parameters. It is worth noting that / can also be

seen as a reflexive transformation on , , / = 1−, , where , is a random variable following

a unit Burr XII (UBXII) distribution introduced in Chapter 2. Hence, the cdf and pdf of the

reflexive unit Burr XII (RUBXII) distribution can be expressed as (for I ∈ (0,1))

�/ (I;2, 3) = 1− [1+ log2 (1− I)−1 ] −3 , (3.1)

and

5/ (I;2, 3) = 2 3
(I−1)−1 log2−1(1− I)−1

[1+ log2 (1− I)−1]3+1
, (3.2)

respectively. By inverting (3.1), the quantile function (qf) of / is

&/ (D;2, 3) = 1− exp
{
−[(1−D)−1/3 −1]1/2

}
. (3.3)

Both the UBXII and RUBXII distributions are special cases of the unit extended Weibull family;

see Guerra et al. (2020).

In order to introducing a systematic component on a location parameter, the RUBXII

distribution is reparameterized in terms of its quantiles. Let @(g) =&/ (g;2, 3) be the gth quantile

of / . By evaluating Equation (3.3) in g and inverting for 3,

3 = log(1− g)−1/log
{
1+ log2 [1− @(g)]−1} . (3.4)

Notwithstanding the quantiles are functions of g, @(g) is just denoted as @ to simplify the

notation. Then, by replacing (3.4) in Equations (3.1) and (3.2), the cdf and pdf of the RUBXII

distribution expressed in terms of a quantile-based parameterization are (for (H ∈ (0,1)))

�/ (I;@, 2) = 1−
[
1+ log2 (1− I)−1] log(1−g)

log[1+log2 (1−@)−1] , (3.5)

and

5/ (I;@, 2) =
log(1− g)−2 log2−1(1− I)−1

(1− I) log
[
1+ log2 (1− @)−1

] [
1+ log2 (1− I)−1] log(1−g)

log[1+log2 (1−@)−1] −1
, (3.6)

respectively, where 2 > 0 is a shape parameter and the quantile order g ∈ (0,1) is chosen by the

researcher. For example, in the coronavirus mortality rates application of Section 3.4, g = 0.5,

and therefore @ = @(0.5) is the median of / . Henceforth, let / ∼ RUBXII(@, 2) be a random

variable having density (3.6).

Figure 7 displays plots of the RUBXII density with g = 0.5, which have the following

forms: U, symmetric, right-skewed, increasing, and increasing-decreasing-increasing. Thus, it is

useful for modeling variables with different types of skewness and heavy tails.
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Figure 7 – Plots of the RUBXII density (g = 0.5).
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On the proposed reparameterization, the qf of / is

&/ (D) = 1− exp
{
−

[
(1−D)log[1+log2 (1−@)−1]/log(1−g) −1

]1/2
}
. (3.7)

It is useful to generate observation from the RUBXII distribution by the inversion method since

it has a closed-form. So, if* is a random variable having a standard uniform distribution, then

/ =&/ (*) follows the RUBXII law.

Let III = (I1, . . . , I=)> be a vector of = independent observations of the variables /8 ∼

RUBXII(@8, 2) (for 8 = 1, . . . , =). The new regression is proposed assuming that the parameters @8
can be expressed as a function of covariates under the systematic component

6(@8) = [8 =
:∑
9=1
G8 9 b 9 = GGG

>
8 bbb, (3.8)

where 6 : (0,1) → IR is a strictly monotonic and twice differentiable link function, [8 is the

linear predictor, and bbb = (b1, . . . , b: )> is the parameter vector associated with the covariates

GGG8 = (G81, . . . , G8: )>. The quantities @8 can be obtained by inverting (3.8) as @8 = 6−1([8).

Several link functions can be chosen for 6(·) such as the logit, probit, and complementary

log-log. In applications, the logit link function is generally considered due to the useful interpre-

tation of the regression coefficients as an odds ratio. It is defined as 6(?) = log[?/(1− ?)], and

it is used in all fitted regressions in this chapter.

3.3.1 Estimation

The estimation of the parameters that index the RUBXII regression is done by the

maximum likelihood (ML) method. Let \\\ = (bbb>, 2)> be the (: +1)-dimensional parameter vector.
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The log-likelihood function based on a sample of = independent observations is

ℓ(\\\) ≡ ℓ(bbb, 2) =
=∑
8=1
ℓ8 (@8, 2), (3.9)

where @8 satisfies the systematic component (3.8) and ℓ8 (@8, 2) is the logarithm of the density

5/ (I8;@8, 2) given in Equation (3.6), i.e.,

ℓ8 (@8, 2) = log(1− I8)−1− log [ A (@8) ] + log [ log(1− g)−2 ] + log [ log2−1(1− I8)−1]

+[log(1− g)/A (@8) −1] A (I8),

and A (G) = log [1+ log2 (1− G)−1].

The components of the score vector* (\\\), given in Appendix B, are defined as the partial

derivatives of (3.9) with respect to each element of the parameter vector \\\. Equalizing its

components to zero,* (\\\) = 000, and solving the system simultaneously, the maximum likelihood

estimators (MLEs) \̂\\ = (b̂bb>, 2̂)>of \\\ can be found. However, the system of equations is non-linear

and cannot be solved analytically. In such a way, the estimators must be obtained through

numerical optimization algorithms using well-known programming languages such as the R

(optim function), SAS (PROC NLMIXED), and Ox program (MaxBFGS sub-routine).

3.3.2 Simulation study

Some Monte Carlo experiments are carried out to assess the performance of the MLEs

on the finite sample. Consider the systematic component for @8:

log
(
@8

1− @8

)
= [8 = b1 + b2 G82, 8 = 1, . . . , =.

Four scenarios with different simulation schemes, combining various values for the parameter

vector \\\ = (b1, b2, 2)>, are considered. To evaluate the performance of theMLEs, for each scenario,

the samples {(I1, G12) , . . . , (I=, G=2)} are simulated 10,000 times with = ∈ {30,90,160,300}. The

occurrences of the response /8 ∼ RUBXII(@8, 2) are obtained by the inversion method through

the qf in Equation (3.7). The covariate G82 is generated from a uniform distribution on the interval

(−3,3) (scenarios 1 and 2), and a standard normal distribution (scenarios 3 and 4). The R

programming language (R Core Team, 2020) is used to perform the simulation study.

The percentage relative bias (RB%) and root mean squared error (RMSE) of the estimates

in \\\ are determined. Table 6 lists the results for these measures. Low RB values are noted even

for small sample sizes. Considering all the scenarios and sample sizes, the RBs of the estimates
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of b1 and b2 are less than 4%, and those of 2 are less than 15%. On the other hand, the RMSE

quickly goes to zero when = increases, thus in agreement with the asymptotic properties of the

MLEs.

Table 6 – Simulation results from the RUBXII regression.

Scenario b1 b2 2 =
RB% RMSE

b̂1 b̂2 2̂ b̂1 b̂2 2̂

1 −1.6 1.2 2.3

30 −0.0122 0.4027 7.6418 0.1293 0.0753 0.4343
90 0.0998 −0.1007 2.4591 0.0757 0.0431 0.2124
160 0.1782 −0.1204 1.3935 0.0551 0.0336 0.1546
300 0.1585 −0.1431 0.7695 0.0422 0.0234 0.1098

2 2.5 3.1 3.2

30 −2.9889 −0.9241 13.3777 0.3581 0.1647 0.8805
90 −2.4068 −0.9072 4.0566 0.1829 0.0874 0.4272
160 −2.6012 −0.9774 1.6314 0.1445 0.0689 0.2888
300 −2.7385 −1.0250 0.6371 0.1180 0.0552 0.2042

3 −0.5 −2.8 3.2

30 −3.2219 −0.4907 14.7059 0.2350 0.1103 1.1643
80 −2.6410 −1.2360 4.6612 0.1528 0.1263 0.6492
160 −3.9155 −1.9756 1.6002 0.1217 0.0922 0.3960
300 −4.3493 −2.5438 0.3910 0.1031 0.0878 0.2848

4 1.6 2.3 4.2

30 0.4497 0.1082 8.0971 0.1273 0.1096 0.6221
90 1.6508 −0.2845 2.7237 0.0731 0.0897 0.3342
160 1.3309 −0.1371 1.4408 0.0558 0.0512 0.2522
300 1.8395 −0.2971 0.7331 0.0418 0.0373 0.1709

Source: Author (2020)

3.3.3 Regression model adequacy

In this section, some methods are presented to analyze whether a fitted regression is

suitable for a data set. As diagnostic analysis tools of the RUBXII regression, the randomized

quantile residuals (qrs) (DUNN; SMYTH, 1996), the generalized pseudo-R2 (R2
�
), a RESET-type

test, and a information criterion are discussed. A cross-validation approach is adopted to assess

the prediction performance of the proposed regression and it is compared with other suitable

regressions for proportional data.

The randomized qrs for the RUBXII regression are

AAA = Φ−1 [�/ (III; @̂@@, 2̂)],
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where �/ (·) is the cdf of the RUBXII distribution given in Equation (3.5) and Φ−1(·) is the qf of

the standard normal distribution. If the fit is adequate, it is expected that the distribution of the qrs

be close to the standard normal. To check whether this assumption is satisfied, the well-known

Anderson-Darling (AD) test (STEPHENS, 1974) can be performed. The null hypothesis for this

test is that the errors are normally distributed. In R, the AD test is implemented in the nortest

package.

The R2
�
is useful to assess the proportion of the response variable’s variation which may

be explained by the regression instead of the simple model. It is defined by Nagelkerke et al.

(1991) as

'2
� = 1− exp

{
−2/= [ℓ(\̂\\) − ℓ(\̂\\0)]

}
,

where ℓ(\̂\\0) is the log-likelihood for the null model, i.e., from modeling the response without

covariates, and ℓ(\̂\\) is the log-likelihood of the fitted regression. A regression with a higher

value of '2
�
provides a larger explanation power of the response variable’s variation.

A RESET-type test introduced by Pereira and Cribari-Neto (2014) can be adopted to

detect possible specification errors in the regression. The null hypothesis of this test is that the

regression is correctly specified. It may be carried out in the following way: i) fit the regression

and obtain the fitted values @̂@@ = (@̂1, . . . , @̂=)> of @@@ = (@1, . . . , @=)> using (3.8); ii) compute powers

of second and third degrees of @̂@@, i.e., get @̂@@2 = (@̂2
1, . . . , @̂

2
=)> and @̂@@3 = (@̂3

1, . . . , @̂
3
=)>; and iii) using

these powers as additional covariates, fit the augmented regression, and test the significance of

them through the likelihood ratio (LR) test.

The LR statistic is ^ = 2[ℓ(\̂\\) − ℓ(\̃\\)], where ℓ(\̂\\) and ℓ(\̃\\) are the unrestricted and re-

stricted maximized log-likelihood functions, respectively. Under the null hypothesis, ^ converges

in distribution to a chi-squared with a degree of freedom, where a is the number of added test

variables (a = 2 in this case).

The Akaike information criterion (AIC) defined as AIC = −2ℓ(\\\) +2q is commonly used

for comparing regressions, where q is the number of parameters of the fitted regression (AKAIKE,

1973). The regression that provides the smallest value of AIC is selected. The goodness-of-fit

performance of non-nested regressions can be assessed using the leave-one-out cross-validation

(LOOCV) approach; see James et al. (2013) for details. It involves sequential splitting the data set

into two parts. Let {(I1, GGG1), . . . , (I=, GGG=)} be the set of the response / and its associated vectors

of : covariates GGG8 = (G81, . . . , G8: )> (for 8 = 1, . . . , =). Further, let Î−8 be the estimated value of I8,

excluding the 8th observation in the fit, i.e., fitting a regression using
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{(I1, GGG1), . . . , (I8−1, GGG8−1), . . . , (I8+1, GGG8+1), . . . , (I=, GGG=)},

and then substituting GGG8 into the fitted regression structure to obtain an estimate of I8 (Î−8).

The mean absolute error (MAE) defined asMAE = 1/=∑=
8=1 |I8− Î−8 | is taken as a measure

of the accuracy of the regression. The lower is theMAE value, the better is the prediction provided

by the regression. All techniques discussed in this section can be extended analogously to other

regression models as will be addressed in Section 3.4.

3.4 RESULTS AND DISCUSSION

In approximately eight months of the coronavirus advance since its inception, on August

19, 2020 in the U.S., the CDC reported a total of 5,650,176 confirmed cases and 175,789 deaths,

putting the disease with 3.1% lethality (Centers for Disease Control and Prevention, 2020). Also,

the adoption of systematic non-pharmaceutical interventions seems to have led to a decrease in

mortality. Thus, understanding the relationship between demographic, socioeconomic, behavioral,

and meteorological variables with the mortality rate became a crucial task. In this sense, this

section presents the RUBXII regression’s application, concurrently with four other well-known

regression models, thus associating the mortality rate with relevant demographic, socioeconomic,

behavioral, and meteorological variables.

The amount of information available on the disease is as abundant as it is scattered

and unreliable. Therefore, before the analysis, a data mining is built to construct a database

described at the beginning of the section, informing the sources from which they are obtained.

The regression models chosen in this study consider an essential characteristic of the mortality

rate that it belongs to the interval (0,1).

3.4.1 Descriptive statistical analysis

The response variable is the COVID-19 deaths rate in the U.S. states. This rate is calculated

in the 50 states from data available by the Institute for Health Metrics and Evaluation (IHME)

(2020). For all states, it is considered the total of deaths per hundred people on 30, 60, 90, and

120 days after the 20th detected case to ensure that the comparisons are made to the same period.

In this way, a panel with four observations for each state is structured.

For all states, the population density, Human Development Index, Gini coefficient, hospital
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beds, poverty rate, smoking rate, average temperature, and median age, are obtained from the

following sources: World Population Review, Global Data Lab, World Atlas, Kaiser Family

Foundation, and Iowa Community Indicators Program of the Iowa State University. The response

variable and covariates are defined below:

1. MR1: Mortality rate (response variable).

2. PD2: Population density (p/mi2).

3. HDI3: Human Development Index.

4. GINI4: Gini coefficient.

5. BEDS5: Hospital beds per 100 thousand inhabitants.

6. PR6: Poverty rate (data of 2020).

7. SR7: Smoking rate by state (data of 2020).

8. AT8: Average temperature (measured in degrees Fahrenheit, >F).

9. MA9: Median age (data of 2020).

10. T60: dummy that is equal to one if the response observation corresponds to mortality rate

after 60 days of the 20th confirmed case, and zero otherwise.

11. T90: dummy that is equal to one if the response observation corresponds to mortality rate

after 90 days of the 20th confirmed case, and zero otherwise.

12. T120: dummy that is equal to one if the response observation corresponds to mortality rate

after 120 days of the 20th confirmed case, and zero otherwise.

Table 7 gives some descriptive measures of these variables. The MR has a high coefficient

of variation (CV) for all current time periods, being the most at 60 days with a CV of about 141%.

Also, in the four time periods (30, 60, 90, and 120 days), the response presents positive skewness,

the mean is not close to the median, and its kurtosis is greater than three indicating that it has a

leptokurtic distribution. The HDI, GINI, and MA covariates have the lowest variabilities with

CV ranging between about 2% and 6%. On the other hand, the PD covariate has the most CV

about at 130% and takes values on a sizeable range since the minimum and maximum are around
1 It is built from available data at <https://covid19.healthdata.org/united-states-of-america>
2 <https://worldpopulationreview.com/states>
3 <https://globaldatalab.org/shdi/shdi/USA/?levels=1%2B4&interpolation=0&extrapolation=0&nearest_real=

0&years=2018>
4 <https://www.worldatlas.com/articles/us-states-by-gini-coefficient.html>
5 <https://www.kff.org/other/state-indicator/beds-by-ownership/?currentTimeframe=0&selectedDistributions=

total&sortModel=%7B%22colId%22:%22Location%22,%22sort%22:%22asc%22%7D>
6 <https://worldpopulationreview.com/state-rankings/poverty-rate-by-state>
7 <https://worldpopulationreview.com/state-rankings/smoking-rates-by-state>
8 <https://worldpopulationreview.com/state-rankings/average-temperatures-\by-state>
9 <https://worldpopulationreview.com/state-rankings/median-age-by-state>

https://covid19.healthdata.org/united-states-of-america
https://worldpopulationreview.com/states
https://globaldatalab.org/shdi/shdi/USA/?levels=1%2B4&interpolation=0&extrapolation=0&nearest_real=0&years=2018 
https://globaldatalab.org/shdi/shdi/USA/?levels=1%2B4&interpolation=0&extrapolation=0&nearest_real=0&years=2018 
https://www.worldatlas.com/articles/us-states-by-gini-coefficient.html
https://www.kff.org/other/state-indicator/beds-by-ownership/?currentTimeframe=0&selectedDistributions=total&sortModel=%7B%22colId%22:%22Location%22,%22sort%22:%22asc%22%7D
https://www.kff.org/other/state-indicator/beds-by-ownership/?currentTimeframe=0&selectedDistributions=total&sortModel=%7B%22colId%22:%22Location%22,%22sort%22:%22asc%22%7D
https://worldpopulationreview.com/state-rankings/poverty-rate-by-state
https://worldpopulationreview.com/state-rankings/smoking-rates-by-state
https://worldpopulationreview.com/state-rankings/average-temperatures- \ by-state
https://worldpopulationreview.com/state-rankings/median-age-by-state
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1p/mi2 (referring to the Alaska state) and 1,215p/mi2, respectively. The BEDS, PR, SR, and

AT covariates have close CVs varying from around 16% to 27%. Moreover, they have a mean

close to the median, and kurtosis lower than three. Only the HDI, AT, and MA covariates have

negative skewness.

Table 7 – Descriptive statistics

Variable Statistics
Mean Median Skewness Kurtosis Min. Max. CV(%)

MR (30) 0.0044 0.0024 2.3833 4.9741 0.0003 0.0257 131.8649
MR (60) 0.0198 0.0092 2.4975 5.9940 0.0012 0.1299 141.4140
MR (90) 0.0289 0.0145 2.1803 4.3017 0.0012 0.1593 126.7096
MR (120) 0.0340 0.0199 2.0824 3.9428 0.0016 0.1739 114.7390
PD 203.9010 107.7835 2.2166 4.5102 1.2863 1,215.1980 130.1561
HDI 0.9178 0.9220 −0.5294 −0.5138 0.8630 0.9560 2.4331
GINI 0.4522 0.4530 0.1342 −0.4728 0.4190 0.4990 3.9132
BEDS 2.6000 2.4500 0.9717 0.5761 1.6000 4.8000 27.2756
PR 0.1323 0.1322 0.4566 −0.3789 0.0762 0.2007 21.3061
SR 0.1733 0.1715 0.2748 −0.1011 0.0890 0.2600 20.0359
AT 51.9460 51.2000 −0.0132 0.1874 26.6000 70.7000 16.6352
MA 38.3240 38.3000 −0.1342 1.5281 30.7000 44.6000 6.1734

Source: Author (2020)

Figure 8 displays the histogram of the MR and box plots from four panel’s observations,

i.e., MR for 30, 60, 90, and 120 days. The histogram and the four box plots agree to those figures

in Table 7. The MR on 30, 60, 90, and 120 days have skewed-right distribution, and it presents

quite outliers. Clearly, after 60, 90, and 120 days of the 20th recorded case, the mortality rate has

increased substantially according to the box plots.

3.4.1.1 Correlation analysis

The correlation matrix for the current variables is displayed in Figure 9. All correlations

are computed by the Spearman method. The response variable is positively correlated to PD

which is the most correlation value among the MR and other covariates.

Figure 10 displays dispersion plots of the MR versus each covariate. It can be noted that

there is no indication of a linear relationship among them. In this way, to study the significance

of the correlations provided in Figure 9, it is carried out a Spearman correlation test and a

non-parametric analysis. The null hypothesis (H0) of this test is that the populational correlation

coefficient between two variables is equal to zero, i.e., there is no statistically significant correlation.

UnderH0, the computed test statistic converges in distribution to a Student’s t-distribution with
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Figure 8 – Histogram of the MR and box plots of the MR after 30, 60, 90, and 120 days
after the 20th confirmed case.
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(=−2) degrees of freedom, where = is the sample size. The p-values of the test are given in

Table 8. In a first analysis, note that there is a statistically significant correlation among the

mortality rate and the covariates PD, GINI, and MA.

Table 8 – ?-values of the Spearman correlation test between all variables.
Variables MR PD HDI GINI BEDS PR SR AT MA
MR < 0.0001 0.1390 < 0.0001 0.6555 0.8885 0.1259 0.3104 0.0036
PD 0.0215 < 0.0001 0.0005 0.2868 < 0.0001 < 0.0001 < 0.0001
HDI < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
GINI 0.6394 < 0.0001 0.3871 < 0.0001 0.0591
BEDS < 0.0001 < 0.0001 0.7085 0.6714
PR < 0.0001 < 0.0001 0.1638
SR 0.0069 0.8619
AT 0.1732
MA

Source: Author (2020)

3.4.2 Fitted regressions

It is explored more deeply the relationship between covariates and the MR through

regression analysis. The prediction performance and goodness-of-fit measures are investigated

for the RUBXII regression defined in Section 3.3 with four competitive systematic components

to study the effects of some covariates on the mortality rate by coronavirus in the U.S. states. The

beta, simplex, and Kw regressions are considered, all of them well-known in the literature, and
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Figure 9 – Correlation matrix
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the UW quantile regression recently introduced Mazucheli et al. (2020).

The beta regression (FERRARI; CRIBARI-NETO, 2004) is typically the most used to

study proportional data. Its density is quite flexible since it has many shapes able to accommo-

dating several types of asymmetry. Some applications of this class of regression can be found

in Cribari-Neto and Souza (2013) and Ghosh (2019).

For the beta distribution, it is adopted the parameterization based on the mean parameter

` and dispersion parameter f. Let . ∼ Beta(`,f) be a random variable having the beta density

(for H ∈ (0,1))

5 (H;`,f) =
Γ

(
1/f2−1

)
Γ

(
`(1/f2−1)

)
Γ

(
(1− `) (1/f2−1)

) H`(1/f2−1)−1(1− H) (1−`) (1/f2−1)−1, (3.10)

where 0 < ` < 1 is the mean of . , 0 < f < 1 is a dispersion parameter and Γ(U) =
∫ ∞
0 GU−1e−GdG

is the complete gamma function. Under this parameterization the variance of . is f2`(1− `).

Another know regression for response in the unit interval with a systematic component

in the mean is the simplex regression defined from Barndorff-Nielsen and Jørgensen (1991). If
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Figure 10 – Dispersion plots
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. ∼ (−(`,f2) is a random variable following a simplex distribution, its density is (for H ∈ (0,1))

5 (H;`,f2) = {2cf2 [H(1− H)]3}−1/2exp
{
− (H− `)2

2f2`2H(1− H) (1− `)2

}
, (3.11)

where 0 < ` < 1 is the mean of . and f2 is a dispersion parameter. Further, the unit variance

function is + (`) = `3(1− `)3.

A classical alternative to the beta and simplex regressions is the Kw regression. Its main

advantage over the beta and simplex regressions is that it is parameterized in terms of the median.

Median-based regressions are more robust against the presence of atypical observations in the

response and asymmetries than mean-based (PUMI; RAUBER; BAYER, 2020). Let . be a

random variable that follows a Kw distribution on median-dispersion parameterization proposed

by (MITNIK; BAEK, 2013), say . ∼ Kw(l, 3?), with pdf (for H ∈ (0,1))

5 (H;l, 3?) =
log0.5

3? log(1−l1/3? )
H1/3? (1− H1/3? )log0.5/log(1−l1/3? )−1, (3.12)

where 0 < l < 1 is the median of . and 3? > 0 is a dispersion parameter.

Recently,Mazucheli et al. (2020) proposed the UWquantile regression. Let. ∼UW(`, V)

be a random variable having the UW density (under the parameterization given in Mazucheli et

al. (2020)) (for H ∈ (0,1))

5 (H;@, V) = V
H

(
logg
log@

) (
log H
log@

) V−1
g(log H/log@)V , (3.13)
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where 0 < @ < 1 is the gth quantile and g ∈ (0,1) is assumed known. Here, it will be considered

that g = 0.5 in order to model the median of . .

The four models discussed in this section have a systematic component analogous to that

one given in Equation (3.8). They differ only on the assumption of the response distribution and

the location parameter. The beta and simplex regressions are parameterized in the mean and

defined by replacing @8 by `8 in Equation (3.8), whereas their random component are given by

Equations (3.10) and (3.11), respectively. The beta and simplex regressions are implemented in R

in the gamlss package (RIGBY; STASINOPOULOS, 2005). In a different way, the Kw and UW

(when g = 0.5) regressions have a median-based parametrization, and their associated systematic

components are obtained by evaluating Equation (3.8) in l8 and @8, respectively. Besides, their

random component follow of (3.12) and (3.13), respectively.

The goodness-of-fit measures of the final fitted regressions are reported in Table 9. It is

adopted the significance of the estimates as a criterion to choose the variables in the final fits.

The RUBXII and Kw regressions are the most competitive to explain the MR, since they have the

best adequacy measures. However, the MAE and AIC values for the RUBXII regression are the

lowest, showing its superiority in terms of model fit to the current data. The difference of 0.0001

among the MAE values of the RUBXII and Kw regressions is substantial given the scale of the

MR as indicated in the histogram in Figure 8. The quotient between the MAE and the mean

of the MR (MR) is calculated to counteract this effect and obtain a quantity independent of the

unit of measurement. The results of the ratio MAE/MR favor to the RUBXII more clearly than

those MAE values regards its prediction performance. Further, its R2
�
is the greatest indicating

that the fitted RUBXII regression explains 74.05% of the variability of the median response.

The ?-value of the AD test for the simplex regression’s residuals is the only one among the five

models lower than 0.05. So, the null hypothesis that the errors’ distribution is normal is rejected

at a significance level of 5%, and then this regression is not adequate to the current data. On the

other hand, according to the ?-values of the RESET-type (RES) tests, all fitted regressions are

specified correctly at a significance level of 5%.

Table 10 gives the estimates of the parameters, their standard errors, and ?-values of the

final fitted RUBXII and Kw regressions since they provide the best fits to the coronavirus death

rates across the U.S. states according to the adequacy measures in Table 9. For the fitted RUBXII

regression, most of the covariates are significant at a significance level of 1%, except for the HDI

and BEDS, which are significant at the 5% and 10%, respectively. Otherwise, HDI, BEDS, and

PR are not statistically significant in the fitted Kw regression. The remaining covariates are the
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Table 9 – Goodness-of-fit measures for the final fitted regressions.
Regression AIC R2

�
p-val (AD) p-val (RES) MAE MAE/MR

RUBXII(@8, 2) −1,400.6280 0.7405 0.1055 0.9999 0.0101 0.4652
Kw(l8, 3?) −1,396.6400 0.7325 0.0521 0.5484 0.0102 0.4679
Beta(`8,f) −1,332.0810 0.6471 0.3467 0.4778 0.0112 0.5134
UW(@8, V) −1,271.8390 0.4079 0.1078 0.9999 0.0121 0.5551
Simplex(`8,f2) −1,281.9750 0.4733 < 0.0001 0.9799 0.0160 0.7340

Source: Author (2020)

same as the RUBXII regression, and all are significant at the level of 1%. The fitted UW quantile

and simplex regressions (final models) are addressed in Appendix B; see Table 18.

Table 10 – Fitted regressions for the median of the MR by COVID-19 in the U.S. states.
RUBXII(@8 , 2) Kw(l8 , 3?)

Coeff. Estimate Std. Error p-value Coeff. Estimate Std. Error p-value
Int. −30.1410 6.3543 < 0.0001 Int. −17.4302 1.2385 < 0.0001
PD 0.0025 0.0002 < 0.0001 PD 0.0025 0.0002 < 0.0001
HDI 17.3367 7.0366 0.0146 GINI 25.6770 3.1104 < 0.0001
GINI 13.4863 4.4055 0.0025 SR 7.6878 1.7282 < 0.0001
BEDS −0.1673 0.0946 0.0788 AT −0.0345 0.0073 < 0.0001
PR 14.8157 5.1112 0.0042 T60 1.3236 0.1302 < 0.0001
SR 10.7263 2.6557 0.0001 T90 1.7687 0.1309 < 0.0001
AT −0.0299 0.0091 0.0013 T120 2.0033 0.1319 < 0.0001
T60 1.3426 0.1254 < 0.0001 3? 0.6416 0.0357 −
T90 1.7952 0.1264 < 0.0001 − − − −
T120 2.0243 0.1270 < 0.0001 − − − −
2 1.6052 0.0917 − − − − −

Source: Author (2020)

The residuals from the fitted RUBXII and Kw regressions are now analyzed graphically.

Figure 11 provides some residuals plots for the RUBXII regression. The four plots indicate that

this fitted regression is suitable. According to the histogram, the residuals have distribution quite

close to the standard normal. All points are inside of the confidence bands close to the central

line in the worm plot without any trend; see Buuren and Fredriks (2001). In the qrs against

the index plot (residual plot), they appear to be randomly scattered around zero. The sample

quantiles are within the confidence bands of the quantile-quantile plot (QQ-plot). Analogously,

Figure 12 displays residual plots for the fitted Kw regression. The four plots indicate that this

fitted regression is suitable, although it is possible to note a lack-of-fit of the residuals to the
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standard normal distribution in the histogram. Some substantial departures from the confidence

bands and a superior-left-trend can be seen in the worm plot.

Figure 11 – Residuals plots for the fitted RUBXII regression.
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After the above analysis, there are evidence that the RUBXII regression really provides

a better quality fit. The smallest value for the considered statistic in the LOOCV approach

(see Table 9) indicates that its predictions are more accurate than those of the Kw regression.

Therefore, from the estimates of the parameters of the RUBXII regression reported in Table 10,

its regression equation can be expressed as

log [@̂8/(1− @̂8)] =−30.1410+0.0025PD8 +17.3367HDI8 +13.4863GINI8 −0.1673BEDS8

+14.8157PR8 +10.7263SR8 −0.0299AT8 +1.3426T608 +1.7952T908

+2.0243T1208 .

Based on the fitted RUBXII regression, some findings of the modeling mortality rate’s

median by COVID-19 in the U.S. states are now presented.

• The PD presents a ?-value lower than 0.0001, and its associated estimate is positive, which

indicates that the MR is higher in states most densely populated.
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Figure 12 – Residuals plots for the fitted Kw regression.
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• The HDI is significant at any significance level since ?-value < 0.0001 and unlikely of the

expected, the signal of the associated estimate indicates that the MR increases when the

HDI increases.

• The GINI coefficient is significant at the 1% level, and its positive estimate means that the

MR increases in states with larger Gini coefficient.

• The number of hospital beds is significant at the 10% level. The mortality rate’s median

decreases when the total hospital beds per 100 thousand inhabitants increases as expected.

• The PR is significant at the 1% level, and the signal of its associated estimate reveals that

the MR grows when the PR increases.

• The SR is also significant at any level since ?-value= 0.0001. The mortality rate’s

median increases as the SR grows according to the positive signal of its related es-

timate. This is expected since the immune response of smoking patients potentially

decreases (TAGHIZADEH-HESARY; AKBARI, 2020).

• The AT in each state is statistically significant at any usual nominal levels and its signal

estimate indicates that the MR decreases when the AT grows. Indeed, Wang et al. (2020)

showed that high temperatures reduce the COVID-19 viability, i.e., the increase of the

temperature suggests a decline in disease spread, and, hence, a decline on the number of
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deaths.

• The dummy variables related to the time 60, 90, and 120 days after the 20th confirmed

case are significant as expected. As indicated by the box plots in Figure 8, the MR grows

steadily during the considered periods.

3.5 CONCLUSION

The COVID-19 characterizes a global pandemic that has been spread across the United

States of America (U.S.) since January 2020. In this chapter, it is investigated how demographic,

socioeconomic, behavioral, and meteorological variables are related to the mortality rate by

COVID-19 in the U.S. states. To reach that aim properly, it is chosen regressions that consider the

double bounded characteristic of the mortality rate. It is introduced an alternative model called

the reflexive unit Burr XII (RUBXII) regression, which is a useful tool for modeling bounded

random variables in the interval (0,1), such as rates, proportions, and indexes. This proposal

is based on a new unit continuous distribution that arises from a transformation on a random

variable Burr XII. Further, a more general and useful quantile-parameterization is introduced to

define the quantile regression for unit data. The estimation of the parameters, a simulation study

to evaluate the performance of the maximum likelihood estimators, and some adequacy measures

to check whether the regression’s assumptions hold are discussed. After consolidating the data

set about the mortality rates and other covariates for the U.S. states, a descriptive statistical

analysis and a regression modeling are done. In this way, the new regression is compared with

the beta, simplex, Kumaraswamy, and unit-Weibull regressions. The proposed regression is

quite competitive compared with other regressions, and it provides the best fit according to some

selection criteria since it improves the response’s prediction. Thus, from the fitted RUBXII

regression, it is possible to identity that the population density, human developed index, Gini

coefficient, hospital beds, poverty rate, smoking rate, average temperature (>F) in each state, and

during time variables are statistically significant in the modeling of the mortality rate’s median

by COVID-19 in the U.S. states. The findings in this chapter may improve understanding of

coronavirus in the U.S. and assist health-care system readiness for future coronavirus epidemics

or pandemics. Since the potentiality of the RUBXII regression to analyze coronavirus data, it

is aimed in future research to fit this regression to the mortality rates by coronavirus in other

countries of the world.
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4 UNIT BURR XII AUTOREGRESSIVE MOVING AVERAGE MODEL FOR TIME

SERIES DATA RESTRICTED IN THE UNIT INTERVAL

4.1 INTRODUCTION

Time series data are characterized by sets of observations on the values that a random

variable can take over time. Typically, models suitable for this type of data are based on

Gaussianity assumptions for the interest variable. Classic examples are the class of autoregressive

moving average (ARMA)models and autoregressive integratedmoving average (ARIMA)models;

see Brockwell, Davis and Fienberg (1991), Box, Jenkins and Reinsel (2011) for more details.

However, it is not appropriate to perform Gaussian-based inference for a random variable that

has not Gaussian distribution.

According to Cox et al. (1981) classification, the issue of extending ARMA time series

models to a non-Gaussian framework could be treated under two approaches, such as observation-

driven models and parameter-driven (or state-space) models. These approaches mainly differ in

the way the dependence structure is incorporated into the model. In the first class, parameters at

time C are deterministic functions of lagged dependent variables whereas, in the parameter-driven

models, the parameters vary over time as dynamic processes (FRANCO et al., 2019). In the

context of state-space models, an example of the most recent approaches that have been used

are Markov chain Monte Carlo (MCMC) methods. They aim to obtain posterior distributions

for the parameters of these models; see Durbin and Koopman (1997). However, convergence

issues and inferential theory for MCMC techniques were not yet fully developed (BENJAMIN;

RIGBY; STASINOPOULOS, 2003). On the other hand, from the observation-driven models, the

data’s likelihood can be expressed explicitly for any fixed set of parameter values. Further, in this

approach, it is simplest to carry out the model comparison and diagnostics analysis (BENJAMIN;

RIGBY; STASINOPOULOS, 2003). Thus, our focus henceforth is the models of this type.

Several works have been done in the context of observation-driven models. Zeger and

Qaqish (1988) considers a class of Markov autoregressive models and discusses a quasi-likelihood

(QL) approach to regression analysis with time series data based on the exponential family

conditional-response variables, in special distributed as Poisson and gamma. To this class,

moving average components were introduced by Li (1994). Afterwards, Benjamin, Rigby and

Stasinopoulos (2003) extended the Gaussian ARMA time series models to a non-Gaussian

framework by developing dynamic models for random variables in the exponential family, arising

the generalized autoregressive moving average (GARMA) models. Moreover, they provided a
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formula for the fourth moment of the generalized autoregressive conditional heteroskedasticity

(GARCH) model introduced by Bollerslev (1986). Other relevant studies were developed

regarding generalized linear autoregressive moving average (GLARMA) models; see Shephard

(1995) and Davis, Dunsmuir and Streett (2003).

In order to model serially dependent overtime random variables that assume values on the

interval (0,1), Rocha and Cribari-Neto (2009) pioneered the beta autoregressive moving average

(VARMA) models based on the class of beta regression models (FERRARI; CRIBARI-NETO,

2004). They considered a similar approach to those of Benjamin, Rigby and Stasinopoulos (2003)

and Shephard (1995). Afterward, Bayer, Bayer and Pumi (2017) proposed the Kumaraswamy

autoregressive moving average (KARMA) models for double bounded environmental data.

The advantage of this class over VARMA is that they employed a parameterization for the

Kumaraswamy distribution in terms of its median by providing more robust models to the

presence of atypical observations in the conditional response.

Using suitable models for double-bounded conditional-response variables in the unit

interval avoids data transformation before modeling. Moreover, they can naturally accommodate

asymmetries and heteroscedasticity, commons to this type’s data (ROCHA; CRIBARI-NETO,

2009). Therefore, there is a clear need for new flexible alternatives to the scarcely available

classes of time series models.

In this context, we propose a dynamic model for time series data where the conditional-

response has support on the standard unit interval. The new model is based on the class of unit

Burr XII (UBXII) regression models introduced in Chapter 2. We include additively ARMA

terms to the systematic component of the UBXII regression and define the UBXII-ARMA model.

The remainder of this chapter is outlined as follows. Section 4.2 introduces the new

time series model for conditional variates restricted to the interval (0,1). Section 4.3 discusses

conditional maximum likelihood estimation for the UBXII-ARMA models and provides closed

forms for the conditional score vector. Further, we present asymptotic confidence intervals based

on the conditional maximum likelihood estimator (CMLE) properties. A Monte Carlo simulation

study to assess the finite sample performance of the CMLEs is conducted in Section 4.4. We

evaluate the point estimates and the estimated coverage probability from the asymptotic confidence

intervals for the UBXII-ARMA model’s parameters. Some diagnostic analysis measures and

forecasting methods are presented in Section 4.5. An application in stocked hydroelectric energy

data is carried out to provide empirical evidence of the proposed model’s potentiality. Finally,

some conclusions are discussed in Section 4.7.
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4.2 THE PROPOSED MODEL

In this section, we introduce a dynamic time series model for the UBXII distribution

pioneered in Chapter 2. In this way, it is possible to model serial correlation in its conditional

quantiles. We shall consider a similar approach to the employed in the construction of the

GARMA (BENJAMIN; RIGBY; STASINOPOULOS, 2003), VARMA (ROCHA; CRIBARI-

NETO, 2009), and KARMA (BAYER; BAYER; PUMI, 2017) models.

Let {.C}=C=1 be a sequence of randomvariablesUBXII-distributed and letFC =f{.C , .C−1, . . .}

be the f-algebra generated by the observed information up to time C. Given the previous in-

formation set FC−1 (i.e., the smallest f-algebra such that the variables .1, . . . ,.C−1 are measur-

able), consider that the conditional distribution of each .C follows the UBXII distribution, say

.C |FC−1 ∼ UBXII(@C , 2). Thus, the conditional density of .C given FC−1 is

5 (HC |FC−1) =
logg−2 log2−1 H−1

C

HC log
(
1+ log2 @−1

C

) (
1+ log2 H−1

C

) logg/log(1+log2 @−1
C )−1

, 0 < HC < 1, (4.1)

where 0 < @C < 1 is a quantile of .C and 2 > 0 is a shape parameter. If g = 0.5, @C is the median of

.C . Moreover, the conditional cumulative distribution function (cdf) and conditional quantile

function (cqf) are

� (HC |FC−1) =
(
1+ log2 H−1

C

) logg/log(1+log2 @−1
C )
, 0 < HC < 1, (4.2)

and

&(D |FC−1) = exp
{
−[Dlog(1+log2 @−1

C )/logg −1]1/2
}
, 0 < g < 1, (4.3)

respectively. Occurrences of the UBXII distribution may be easily generated by the inversion

method since the cqf has a simple closed-form expression.

The UBXII distribution is quite versatile since its pdf can assume many different shapes

according to the selected parameter values combination. We develop an Open Web application

in Shiny (R Core Team, 2020) available at <https://unitati.shinyapps.io/UBXII/> that allows

viewing dynamic graphics of the UBXII pdf.

To define the dynamic component of the model, we propose the following specification to

the conditional quantile @C

[C = 6(@C) = U+x>C VVV+
?∑
8=1
q8 [6(HC−8) −x>C−8VVV ] +

@∑
9=1
\ 9 AC− 9 , (4.4)

where U ∈ IR is a constant, VVV = (V1, . . . , V: )> ∈ IR: is a :-dimensional vector of unknown

parameters related to the covariates, GGGC = (GC1, . . . , GC: )> ∈ IR: is a non-random covariates vector,

https://unitati.shinyapps.io/UBXII/
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being : < =, and q8 (8 = 1, . . . , ?) and \ 9 ( 9 = 1, . . . , @) are the autoregressive (AR) and moving

average (MA) parameters, respectively. That is, they are the parameters from an ARMA structure

with ?, @ ∈ IN, say ARMA(?,@). The term AC− 9 corresponds to a random error that can be

measured on the predictor scale as AC = 6(HC) − 6(@C) or on the original scale AC = HC − @C . It is

only required that AC be FC−1-measurable. Finally, @C is related to a linear predictor [C , through a

twice differentiable strictly monotonic link function that maps (0,1) into IR, i.e., 6 : (0,1) → IR

for which the inverse 6−1 : IR→ (0,1) exists and also is twice continuously differentiable. Some

examples of link functions are the logit, probit, and complementary log-log links.

In this way, from (4.1) and (4.4), we define the so-called UBXII-ARMA(?, @) dynamic

model. In a similar manner of classical ARMA models, we require non-common factors between

the AR and MA characteristic polynomials; otherwise the order (?, @) of the model can be

reduced. Further, the polynomial AR does not have unit characteristic root. Analogous to the

KARMAmodel, invertibility and causality conditions for the ARMA component are not required;

see Brockwell, Davis and Fienberg (1991) for more details.

The dynamic component (see Equation (4.4)) is similar to that one proposed by Rocha

and Cribari-Neto (2009) and later by Bayer, Bayer and Pumi (2017). However, there are two

sizeable differences. First, the random component is entirely distinct from both proposed since

the response variable here has a UBXII distribution. Second, in the class of UBXII-ARMA(?, @)

models, it is possible to model any quantile of the response instead of the mean or only the

median. Thus, it is a more general time series model and a new alternative that allows analyzing

a range of double-bonded conditional responses on the interval (0,1).

4.3 PARAMETER ESTIMATION

Themodel-fitting procedure described herein is performed out of the conditionalmaximum

likelihood method. Let WWW = (U, VVV>, qqq>, \\\>, 2)> be the (? + @ + : + 2)-dimensional parameter

vector that index the UBXII-ARMA(?, @) model in a sample (H1, GGG111), . . . , (H=, GGG===), satisfying

the specification given in (4.1) and (4.4). Hence, the conditional log-likelihood function can be

expressed as

ℓ ≡ ℓ(WWW; HHH) =
=∑

C=<+1
ℓC (@C , 2), (4.5)
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where < = max{?, @} < = and ℓC (@C , 2) is the logarithm of 5 (HC |FC−1) given in Equation (4.1).

That is,

ℓC (@C , 2) = log(logg−2) − log HC + (2−1) log(log H−1
C ) − log[C (HC)] − log{log[C (@C)]}

− logg−1 log[C (HC)]
log[C (@C)]

,

where C (G) = 1+ log2 (G−1). It is important to note that ℓC (@C , 2) = 0 for all C ≤ <.

Upon direct maximizing (4.5), we get the CMLEs ŴWW of WWW. Alternatively, we can obtain

the score vector, set its components to zero, and solve the resulting non-linear equation system.

In what follows, we compute the score vector by differentiating (4.5) concerning each component

of the unknown parameter vector WWW.

4.3.1 Conditional score vector

The conditional score vector, denoted by* (WWW), is composed of the partial derivatives of ℓ

with respect to each component of WWW. That is,* (WWW) := mℓ/mWWW = [*U (WWW),*VVV (WWW)>,*qqq (WWW)>,*\\\ (WWW)>,

*2 (WWW)]>. Let W 9 be the 9 th component of WWW. Then, the (: + ? + @ +1) first components of the

conditional score vector are obtained using the chain rule as

*W 9
(WWW) := mℓ

mW 9
=

=∑
C=<+1

mℓC (@C , 2)
m@C

d@C
d[C

m[C

mW 9
. (4.6)

Thus, defining the quantities

H★C := log[C (HC)], @★C :=
2 log2−1 @−1

C

@C C (@C) log[C (@C)]
, and @

†
C :=

logg−2 log2−1 @−1
C

@C C (@C) log2 [C (@C)]
,

the two first derivatives in (4.6) reduce to

mℓC (@C , 2)
m@C

= @★C − @†C H★C and
d@C
d[C

=
1

6′(@C)
.

The partial derivatives, m[C/mW 9 , are computed recursively as

m[C

mU
=1−

@∑
9=1
\ 9
m[C− 9
mU

, for A = 1,

m[C

mV;
=GC; −

?∑
8=1
q8G(C−8); −

@∑
9=1
\ 9
m[C− 9
mV;

, for A = 2, . . . , : +1, and ; = 1, . . . , :,

m[C

mq8
=6(HC−8) − GGG>C−8VVV−

@∑
9=1
\ 9
m[C− 9
mq8

, for A = : +2, . . . , ? +1, and 8 = 1, . . . , ?,
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and

m[C

m\ 9
=AC− 9 −

@∑
E=1

\E
m[C−E
m\ 9

, for A = ? +2, . . . , @ +1, and 9 = 1, . . . , @.

The last component of the conditional score vector,*2 (W), follows from direct differenti-

ation of (4.5)

mℓ

m2
=

=∑
C=<+1

mℓC (@C , 2)
m2

=

=∑
C=<+1

H
♯
C ,

where

H
♯
C =

1
2
+ log(log H−1

C ) −
log(log@−1

C ) [C (@8) −1]
C (@C) log[C (@C)]

−
[C (HC) −1] log(log H−1

C )
C (HC)

−
logg−1 log[C (@C)] [C (HC)]−1 [C (HC) −1] log(log H−1

C )
log2 [C (@C)]

+
logg−1 [C (@C) −1] log(log@−1

C ) log[C (HC)]
C (@C) log2 [C (@C)]

.

Let """,,, %%%,,, ''' be matrices with dimension (=−<) × :, (=−<) × ? and (=−<) × @, re-

spectively. The (8, 9)th element of those matrices are given by

""" 8, 9 =
m[8+<
mV 9

, %8, 9 =
m[8+<
mq 9

, and '8, 9 =
m[8+<
m\ 9

,

respectively. Then, we can compactly write the score vector’s components of WWW as

*U (WWW) =000>))) (@@@★− @@@† HHH★)

*VVV (WWW) =""">))) (@@@★− @@@† HHH★)

*qqq (WWW) =%%%>))) (@@@★− @@@† HHH★)

*\\\ (WWW) ='''>))) (@@@★− @@@† HHH★)

*2 (WWW) = HHH♯>111,

where 000 = (m[<+1/mU, . . . , m[=/mU)>, ))) is a diagonal matrix defined as ))) = diag{1/6′(@<+1),

. . . ,1/6′(@=)}, @@@★ = (@★<+1, . . . , @
★
= )>, @@@‡ = (@†<+1, . . . , @†=)>, HHH★ = (H★<+1, . . . , H

★
= )>, HHH♯ = (H

♯

<+1,

. . . , H
♯
=)>, and 111 is an (=−<)-dimensional vector of ones.

By setting each* (WWW) component equal to zero, i.e., *U (WWW) = 0, *VVV (WWW) = 000, *qqq (WWW) = 000,

*\\\ (WWW) = 000,*2 (WWW) = 0, and solving these equations simultaneously, the CMLE ŴWW = (Û, V̂VV>, q̂qq>,

\̂\\
>
, 2̂)> of WWW is obtained. However, since this system is nonlinear and cannot be solved explicitly,

we may maximize the Equation (4.5) through nonlinear optimization methods such as Newton-

Raphson or quasi-Newton type algorithms. We consider the quasi-Newton algorithm the so-called



66

Broyden- Fletcher-Goldfarb-Shanno (BFGS) method; see Press et al. (1992). This method is

an iterative optimization algorithm, and thus, it requires initialization. We compute the starting

values for U, VVV, and qqq from an ordinary least squares estimate by considering a linear regression,

where the response is ... = (6(H<+1), . . . , 6(H=))>, and the covariates matrix is expressed as

--- =



1 G(<+1)1 G(<+1)2 . . . G(<+1)A 6(H<) 6(H<−1) · · · 6(H<−?+1)

1 G(<+2)1 G(<+2)2 · · · G(<+2)A 6(H<+1) 6(H<) · · · 6(H<−?+2)
...

...
...

. . .
...

...
...

. . .
...

1 G=1 G=2 · · · G=A 6(H=−1) 6(H=−2) · · · 6(H=−?)


.

For the moving average parameters \\\, the starting values are set to zero, and the initial guess for

the shape parameter 2 is one.

From likelihood estimation properties when the usual regularity conditions hold for large

sample sizes, we have that

ŴWW ∼ N(:+?+@+2)
(
WWW,   −1(WWW)

)
,

where    −1(WWW) is the inverse of the expected information matrix defined as    (WWW) = IE[−mℓ2(WWW)/

(mWWWmWWW>)] and NA denotes a A-dimensional normal distribution. That is, the CMLE of WWW, ŴWW, is

asymptotically unbiased and normally distributed with covariance matrix equal to the inverse

of the Fisher’s information matrix. The matrix    (WWW) can be estimated consistently from the

observed information matrix evaluated in the CMLE of WWW, ŴWW; see Lindsay and Li (1997).

From the asymptotic normality of ŴWW, it is possible to construct a 100(1−X)% approximate

confidence interval with X ∈ (0,1/2) for the elements of WWW, i.e., for W8 (8 = 1, . . . , ? + @ + : +2) as

follows [
Ŵ8 − I1−X/2

√
� (ŴWW)88; Ŵ8 + I1−X/2

√
� (ŴWW)88

]
, (4.7)

where IX is the standard normal upper quantile and � (ŴWW)88 is the (8, 8)th element of the ���−1.

Analogously, based on the asymptotic distribution of the CMLE, we can construct

asymptotic test statistics for testing the null hypothesisH0 : W8 = W0
8
againstH1 : W8 ≠ W0

8
. It can

be done via the Wald test (WALD, 1943) defined as (PAWITAN, 2001)

/ =
Ŵ8 −W0

8√
� (ŴWW)88

.

Under H0, the / statistic has an approximately standard normal distribution. Thus, to the

significance level of X%, with (0 < X < 1/2), we reject the null hypothesis, whether the assumed

value by / , denoted by I, exceeds the quantity |I1−X/2 |.
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4.4 SIMULATION STUDY

To assess the finite sample performance of the CMLEs and the asymptotic confidence

intervals of the parameters that index the UBXII-ARMA(?, @) model, we conduct a Monte

Carlo simulation study. Samples of sizes = ∈ {75,125,200,300} are considered at four distinct

scenarios. For each scenario and sample size, we compute 10,000 times the CMLEs and the

confidence intervals of the model’s parameters.

Several dynamic specifications and different parameter value combinations are selected.

For all settings, g = 0.5 is fixed, and thus @C , the conditional median of .C . We consider the logit

link function for 6(·) in (4.4). The simulation schemes are

• Scenario 1: UBXII-ARMA(2,2) with parametric values U = 0.5, q1 = 0.6, q2 = −0.4,

\1 = 0.4, \2 = 0.1, and 2 = 5.6.

• Scenario 2: UBXII-ARMA(1,1) with parametric values U = 0.2, q1 = 0.6, \1 = 0.1, and

2 = 3.8.

• Scenario 3: UBXII-ARMA(2,1) with parametric values U = 0.4, q1 = 0.6, q2 = −0.4,

\1 = 0.3, and 2 = 4.5.

• Scenario 4: UBXII-ARMA(1,2) with parametric values U = 0.7, q1 = −0.7, \1 = 0.4,

\2 = 0.6, and 2 = 3.5.

For the generation of samples from a UBXII-ARMA(?, @) process, we use the same algorithm

employed by Bayer, Bayer and Pumi (2017). For the random component simulation, we adopt

the inversion method replacing D ∼* (0,1) in (4.3) and assume the dynamic structure given in

Equation (4.4). All Monte Carlo simulations are performed using the R programming language (R

Core Team, 2020). Maximization of the conditional log-likelihood function in (4.5) is carried

out using the BFGS quasi-Newton nonlinear optimization algorithm implemented at the optim

function.

To numerically evaluate the behavior of the CMLEs, we compute its percentual relative

bias (RB%) and mean squared error (MSE). Monte Carlo results for the different structures

are reported in Table 11. We note that the RBs and MSEs are quite small in most scenarios

(even those of small samples), thus indicating that the UBXII-ARMA model provides accurate

estimates. The largest RB%s (in absolute value) are around 22 and 30 for the estimated means

of the parameters of the moving average (\2, \1) in scenarios 1 and 2, respectively, when the

smallest sample size is = = 75. All the remaining RBs (in absolute value) are lower than 16.

The RB and MSE values of Scenario 2 are close to the Monte Carlo simulation results for
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point estimation in the VARMA(1,1) model carried out by Palm and Bayer (2018) (see Table 3,

no corrected estimates). Roughly, it is noteworthy that the UBXII-ARMA(1,1) model yields

smaller MSE values by comparing the sample size = ∈ {75,125} with = ∈ {50,100}.

Overall, we note a result similar to that of Bayer, Bayer and Pumi (2017), in which the

estimates of the other parameters tend to present better performance compared to the parameter

estimates of the moving average terms. As expected, the MSEs decrease for all scenarios when =

increases, thus implying that the performance and accuracy of the CMLEs improve when the

sample size increases. Moreover, the MSE values are quite low in any one of the four settings.

Therefore, the numerical evaluation indicates that the properties of the CMLEs (asymptotically

unbiased and consistent) are remained.

Table 12 brings the estimated coverage probability from the asymptotic confidence

intervals for the parameters U, q1, q2, \1, \2, 2. The limits of the confidence intervals are computed

from (4.7) to the usual significance level of X = 0.05. Overall, the coverage probability of the

95% pointwise confidence intervals of all the parameters is quite close to the considered nominal

level. Scenario 1 has the lowest coverage probabilities, mainly for = = 75. However, as the sample

size increases, coverage probability becomes closer to 95% for all settings and different selected

parameter values.
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Table 11 – Performance of the CMLEs for the UBXII-ARMA(?, @) model under different
ARMA structures and parameter values.

= Measure Û q̂1 q̂2 \̂1 \̂2 2̂

Scenario 1

75
RB% 2.0185 −5.3152 −2.9294 9.7761 22.0407 −4.9018
MSE 0.0341 0.1378 0.0293 0.1632 0.0908 0.4605

125
RB% 0.9947 −2.4144 −1.6880 3.9732 7.6033 −3.1744
MSE 0.0159 0.0722 0.0155 0.0807 0.0427 0.2023

200
RB% 1.8867 −3.8484 −2.0145 6.2767 15.5935 −1.8121
MSE 0.0102 0.0404 0.0080 0.0454 0.0257 0.1285

300
RB% 1.2304 −2.5762 −1.3755 4.2335 10.9272 −1.2134
MSE 0.0061 0.0252 0.0051 0.0279 0.0152 0.0735

Scenario 2

75
RB% −10.5114 5.9353 − −29.8865 − −3.2580
MSE 0.0108 0.0178 − 0.0225 − 0.1376

125
RB% −5.2358 3.0885 − −15.6325 − −1.9586
MSE 0.0054 0.0087 − 0.0119 − 0.0749

200
RB% −3.4477 2.0306 − −9.8161 − −1.1865
MSE 0.0032 0.0052 − 0.0072 − 0.0431

300
RB% −2.4488 1.4366 − −6.7473 − −0.8043
MSE 0.0020 0.0033 − 0.0045 − 0.0278

Scenario 3

75
RB% −0.0867 −3.0292 −4.4578 7.5658 − −4.2000
MSE 0.0072 0.0344 0.0182 0.0439 − 0.2202

125
RB% 0.1510 −1.4249 −2.1015 3.0766 − −2.4926
MSE 0.0038 0.0168 0.0095 0.0195 − 0.1136

200
RB% 0.1408 −0.8888 −1.2725 2.0683 − −1.4964
MSE 0.0023 0.0097 0.0057 0.0112 − 0.0649

300
RB% 0.0442 −0.4714 −0.7727 1.2668 − −0.9823
MSE 0.0015 0.0065 0.0039 0.0072 − 0.0412

Scenario 4

75
RB% 1.1768 1.3360 − −0.0767 0.1104 −3.2573
MSE 0.0130 0.0092 − 0.0094 0.0093 0.1349

125
RB% 0.6865 1.1969 − 0.5190 0.6961 −1.8945
MSE 0.0071 0.0044 − 0.0046 0.0048 0.0730

200
RB% 0.3327 1.1161 − 0.5916 0.8119 −1.2053
MSE 0.0045 0.0025 − 0.0025 0.0032 0.0443

300
RB% 0.0599 0.8964 − 0.3750 0.5470 −0.8817
MSE 0.0030 0.0015 − 0.0015 0.0020 0.0285

Source: Author (2020)
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Table 12 – Estimated coverage probability from the asymptotic confidence intervals for
U, q1, q2, \1, \2, 2

Parameter U q1 q2 \1 \2 2

= Scenario 1
75 0.8026 0.7364 0.8642 0.7268 0.7577 0.9165

125 0.8770 0.8310 0.9023 0.8307 0.8441 0.9375
200 0.9020 0.8751 0.9257 0.8766 0.8831 0.9396
300 0.9228 0.9035 0.9352 0.9037 0.9082 0.9445

Scenario 2
75 0.9478 0.9484 − 0.9269 − 0.9434

125 0.9520 0.9508 − 0.9377 − 0.9437
200 0.9540 0.9496 − 0.9403 − 0.9482
300 0.9534 0.9533 − 0.9443 − 0.9478

Scenario 3
75 0.9243 0.8941 0.8995 0.8841 − 0.9363

125 0.9395 0.9201 0.9205 0.9179 − 0.9426
200 0.9459 0.9363 0.9336 0.9340 − 0.9457
300 0.9486 0.9427 0.9390 0.9407 − 0.9455

Scenario 4
75 0.9258 0.9305 − 0.9158 0.9065 0.9229

125 0.9362 0.9408 − 0.9268 0.9284 0.9261
200 0.9388 0.9377 − 0.9353 0.9360 0.9244
300 0.9347 0.9425 − 0.9436 0.9439 0.9190

Source: Author (2020)

4.5 DIAGNOSTIC ANALYSIS AND FORECASTING

After fitting a model, it is important to perform adequacy tests to check whether it fully

captures the data dynamics. Since a fitted time series model passes all diagnostic checks, we

may use it for out-of-sample forecasting. In what follows, we introduce and discuss some known

diagnostic measures and forecasting methods that can be used to identify whether assumptions

of a UBXII-ARMA model are satisfied.

We consider the randomized quantile residuals (DUNN; SMYTH, 1996) since they have

several advantages over other residuals (PEREIRA, 2019). For the UBXII-ARMA model, the

quantile residuals are defined by

AC = Φ
−1 [� (HC |FC−1)] ,

where Φ−1(·) is the standard normal quantile function and � (HC |FC−1) is the cdf given in (4.2),

evaluated in the CMLEs, specifically in @̂C that corresponds to fitted values and in 2̂. The quantile

residuals are roughly normally distributed with mean equal to zero and unit variance when the

model is suitable for the data. Furthermore, the index plot of these residuals should not display

any noticeable trend.
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To picks the most suitable model to fit a data set within other competitive models, the

Akaike information criterion (AIC) (AKAIKE, 1973) or, alternatively, the Bayesian information

criterion (BIC) (SCHWARZ et al., 1978) can be considered for models selection/comparison.

Both criteria are based on maximized conditional log-likelihood function, ℓ̂, namely

AIC(a) = 2 (a− ℓ̂) and SIC(a) = a log =−2ℓ̂,

where a is the number of estimated parameters, and = is the sample size. For more details about

these criteria, the reader is referred to Choi (2012), who provides their detailed properties.

From elsewhere, suppose that we are interested in forecasting of quantile @B using origin

= (B > =). Then, the forecast horizon is ℎ0 = B−=. Initially, we compute the {@̂C}=C=<+1 estimates

of {@C}=C=<+1 sequentially based on the CMLE ŴWW, starting at C = < +1, as

@̂C = 6
−1 ©­«Û+x>C V̂VV+

?∑
8=1
q̂8 [6(HC−8) −x>C−8 V̂VV ] +

@∑
9=1
\̂ 9 ÂC− 9

ª®¬ ,
where

ÂC =


0 if C ≤ <.

6(HC) −6(@̂C) if < < C ≤ =.

Then, for C = = + 1, . . . , B, we need to assume that the observations from the covariates GGGCCC are

known. Hence, the forecasted values of the conditional quantiles @B, being ℎ = 1, . . . , ℎ0, are

obtained sequentially from

@̂=+ℎ = 6
−1 ©­«Û+x>=+ℎ V̂VV+

?∑
8=1
q̂8 [6(H=+ℎ−8) −x>=+ℎ−8 V̂VV ] +

@∑
9=1
\̂ 9 Â=+ℎ− 9

ª®¬ ,
where for C > =, ÂC = 0 and

6(HC) =

6(@̂C) if C > =,

6(HC) if C ≤ =.

To empirically evaluate the forecasting performance of the UBXII-ARMA model and

compare it to the other fitted models, we consider three measures of forecast accuracy, such as the

mean square error (MSE), the mean absolute percentage error (MAPE), and the mean absolute

scaled error (MASE). These measures allow assessing the difference between the actual value and

the predicted value. MSE is largely used due to its theoretical relevance in statistical modeling.

However, when the data are supported in positive real, the use of the MAPE is indicated. On the

other hand, in the presence of atypical observations in the response, MASE may be preferred
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since it is less sensitive to outliers; see Hyndman and Koehler (2006) for a detailed discussion of

available measures of univariate time series forecast accuracy. The MSE, MAPE, and MASE are

defined by

MSE =
1
ℎ0

ℎ0∑
ℎ=1
(Hℎ − @̂ℎ)2,

MAPE =
1
ℎ0

ℎ0∑
ℎ=1

|Hℎ − @̂ℎ |
|Hℎ |

, and

MASE =
1
ℎ0

ℎ0∑
ℎ=1

(
|Hℎ − @̂ℎ |

1
ℎ−1

∑ℎ0
ℎ=2 |Hℎ − Hℎ−1 |

)
,

respectively, where the H′
ℎ
s are the observed values, and @̂ℎ are the predicted values for the

forecast horizon (ℎ = 1, . . . , ℎ0). Low values for MSE, MAPE and MASE indicate more accurate

predictions.

4.6 APPLICATION

This section presents an empirical application study of the UBXII-ARMA model. The

data refer to the proportion of stocked hydroelectric energy in Southeast Brazil available at

<http://www.ons.org.br/>. The time series is analyzed in the period of May 2000 to April 2019,

thus covering 228 months. The last six observations are reserved for assess the forecasting

performance of the model. Thus, the series sample size in the fit is = = 222 months. Our interest

is to model the median; hence, we set g = 0.5. We use the programming language R (R Core Team,

2020) to carry out the estimations and computations. The conditional log-likelihood functions

are maximized using the quasi-Newton algorithm known as BFGS being the considered starting

values, as discussed in Section 4.4.

Table 13 brings some descriptive statistic measures of the monthly average proportions

of stocked energy in the Southeast of Brazil. These measures corroborate the histogram of the

data presented in Figure 13(a). It is noteworthy that the UBXII distribution can accommodating

the negative skewness and negative excess kurtosis presented by the data.

Table 13 – Descriptive statistics of the monthly average proportions of stocked energy in
the Southeast of Brazil.

Min. Median Mean Max. Var. Asymmetry Exc. Kurtosis
0.1582 0.5547 0.5464 0.8782 0.0411 −0.0515 −1.2480

Source: Author (2020)

Figure 13(b) shows evidence of seasonality in the data. The proportions of stocked energy

http://www.ons.org.br/
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grows until April, after decreases from April to November and again increase from December. A

seasonal component can be accommodated of way several. Considering trigonometric functions

as covariates is a simple harmonic regression approach; see Bloomfield (2004). We set GGGC =

(cos(2cC/12), sin(2cC/12))> for C = 1, . . . , =, and introduce these covariates in the modeling.

Figure 13(c) shows the sample autocorrelation function (ACF) of the time series, whereas

Figure 13(d) brings the sample partial autocorrelation function (PACF).

Figure 13 – Observed proportions of stocked hydroelectric energy time series in
Southeast of Brazil.
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In addition to the UBXII-ARMA model, we also fit the VARMA and KARMA models

for comparison purposes. Final models are selected according to the AIC criterion. It was

considered all models with autoregressive and moving average dynamics up to the third order and

logit link function. The smallest AIC in each class is obtained by the UBXII-AR(2), VAR(2),



74

and KARMA(2,2) models. Table 14 gives the parameter estimates, standard errors, z statistic

value, and p-value of the best fits. Note that, as expected both covariates considered to account

for this monthly seasonal component are significant to the usual nominal level of 5%.

Table 14 – Fitted UBXII-AR, VAR, and KARMA models for the proportion of stocked
hydroelectric energy in Southeast Brazil.

Parameter Estimate Std. Error I value Pr(>|z|)
UBXII-AR(2)

U 0.0098 0.0135 0.7287 0.4662
V1 0.4072 0.0469 8.6817 < 0.0001
V2 0.1015 0.0410 2.4758 0.0133
q1 1.3390 0.0412 32.5070 < 0.0001
q2 −0.4119 0.0427 9.6436 < 0.0001
2 11.2294 0.6365 17.6437 < 0.0001

VAR(2)
U 0.0074 0.0098 0.7504 0.4530
V1 0.6201 0.0415 14.9600 < 0.0001
V2 0.1804 0.0407 4.4287 < 0.0001
q1 1.3777 0.0513 26.8705 < 0.0001
q2 −0.4177 0.0517 8.0776 < 0.0001
i 190.5798 18.1319 10.5107 < 0.0001

KARMA(2,2)
U 0.0420 0.0193 2.1728 0.0298
V1 0.9483 0.0790 12.0013 < 0.0001
V2 0.2514 0.0984 2.5544 0.0106
q1 1.3254 0.1783 7.4349 < 0.0001
q2 −0.4164 0.1636 2.5455 0.0109
\1 0.3197 0.1675 1.9084 0.0563
\2 0.1803 0.1080 1.6693 0.0951
i 14.8340 0.7321 20.2628 < 0.0001

Source: Author (2020)

Two residual diagnostic plots are displayed in Figure 14. In the residuals plot against

time (Figure 14(a)), we note that the points distribution has no strong tend, and its behavior is

similar to the white noise. The QQ-plot from Figure 14(b) indicates that the quantile residuals

have approximately the standard normal distribution. Moreover, from residual ACF and PACF

functions, (Figures 14(c) and (d)), it is possible to check the residual white noise hypothesis

visually. All these plots and analysis show the fitted UBXII-AR(2) model can be used for

out-of-sample forecasting.

Figure 15(a) gives a plot of the actual values (solid lines) and predicted values (dashed

lines) from the fitted UBXII-AR(2) model. Note that the proposed model provides accurate

forecasts since the fitted values are quite close to observed data overtime. That is, the UBXII-
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Figure 14 – Residual diagnostic plots of the fitted UBXII-AR model for proportion of
stocked hydroelectric energy in Southeast Brazil.

(a) Randomized quantile residuals against index
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AR(2) model is suitable to capture the energy stocked proportion data dynamics satisfactorily.

Similarly, in the out-of-sample forecasting comparison, the new dynamic model has the best

performance; see Figure 15(b).

Table 15 provides values of the accuracy measures (defined in the previous section) for the

three final fitted models. According to the results, the UBXII-AR(2) provides the best forecasting

since the MSE, MAPE, and MASE presented the smallest values.
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Figure 15 – Forecasting performance plots from the UBXII-AR(2) model.
(a) Observed energy stocked proportion and fitted values
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Table 15 – Forecasting performance comparison among different the best fitted models in
each class

UBXII-AR(2) VAR(2) KARMA(2,2)
MSE 0.0053 0.0127 0.1558
MAPE 0.1505 0.2019 0.4834
MASE 1.0531 1.4777 3.7512

Source: Author (2020)

4.7 CONCLUSION

This chapter proposes a new class of dynamic models: the unit Burr XII autoregressive

moving average (UBXII-ARMA) model. This class is appropriate for modeling and forecasting

continuous dependent variables over time that assume values in the interval (0,1) such as rates,

proportions, and indexes. The new model is very versatile for modeling data of this type since

the UBXII density assumes different shapes depending on the values of its parameters. We also

perform point estimation by the conditional maximum likelihood method and interval estimation

based on asymptotic properties of the conditional maximum likelihood estimators (CMLEs). We

derive closed-form expressions for the score function. We assess the finite-sample performance

of the CMLE in the UBXII-ARMA framework through Monte Carlo simulation studies. The

results show that the CMLEs performs very well, even for small sample sizes.

Moreover, we present some diagnostic analysis and forecasting tools to check whether

the proposed model captures the data dynamics. An application study to a dataset regarding the

proportion of stocked hydroelectric energy in Southeast of Brazil is presented and discussed.
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According to some goodness-of-fit measures, the UBXII-ARMA model has outperformed the

KARMA and VARMA models for this dataset. Thus, the introduced model yields the best

out-of-sample forecasts for the proportion of stocked hydroelectric energy in Southeast of Brazil

in the considered forecast horizon.
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5 CONCLUDING REMARKS

This dissertation investigated two transformations of the Burr XII distribution, proposing

new probability distributions and its regression models to analyze continuous random variables

that assume values in the unit interval. Furthermore, we also introduce a new dynamic model

for time series data in the interval (0,1). In Chapter 2, we define the unit Burr XII (UBXII)

distribution and its associated regression model. Some mathematical and statistical properties

are investigated. Dropout proportions in Brazilian undergraduate animal sciences courses are

modeled by the UBXII regression model that provides more accurate predictions than the beta

regression model. In Chapter 3, from the reflection of the random variable UBXII, we propose

the reflexive unit Burr XII (RUBXII) distribution and the RUBXII regression. This new model

is quite competitive to Kumaraswamy regression and suitable to analyze mortality rates by

COVID-19 in the United States. For both regression models, we conduct Monte Carlo simulation

studies to assess the maximum likelihood estimators’ finite-sample performance. We also

provided different tools to perform diagnostic analysis and model selection. Chapter 4 includes

autoregressive and average moving components additively to the UBXII regression and defines a

time series model useful to analyze dependent variables that assume values in the unit interval

called UBXII autoregressive average moving (UBXII-ARMA). From Monte Carlo simulation

studies we conducted, it is noteworthy that the conditional maximum likelihood estimators of the

parameters that index the model has a good finite-sample performance. The application’s to the

real data results, computed from the traditional quality measures of prediction, indicate that our

proposal provides more accurate forecasts than those provided by the beta autoregressive average

moving and Kumaraswamy autoregressive average moving models.

Until now, the contribution of this dissertation is listed below.

• Chapter 3: Ribeiro, T. F., Cordeiro, G. M., Peña-Ramírez, F. A., and Guerra, R. R. A

new regression model for the COVID-19 mortality rates in the United States. Statistics in

Medicine. Under Review.

In future work, we shall address the following issues:

• computing the expected information matrices for the UBXII regression, RUBXII regression,

and UBXII-ARMA models.

• developing the related asymptotic theory to three proposed models.

• defining the class of inflated UBXII and RUBXII regression models in zeros and ones.

• proposing a RUBXII autoregressive average moving (RUBXII-ARMA) model for time
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series data.

• Proposing the class of inflated RUBXII-ARMA and UBXII-ARMA models in zeros and

ones.

• introducing the generalized autoregressive score (GAS) with random components being

the UBXII and RUBXII distributions.

• applying the novel proposed time serie models to the data of COVID-19.



80

REFERENCES

AKAIKE, H. Information theory and an extension of the maximum likelihood principle. In:
AKADEMIAI KAIDO. 2nd International Symposium on Information Theory, 1973. [S.l.],
1973. p. 267–281.

ANDERSEN, M. Early evidence on social distancing in response to COVID-19 in the United
States. Available at SSRN 3569368, 2020.

BARNDORFF-NIELSEN, O. E.; JØRGENSEN, B. Some parametric models on the simplex.
Journal of multivariate analysis, Elsevier, v. 39, n. 1, p. 106–116, 1991.

BASHIR, M. F.; MA, B.; KOMAL, B.; BASHIR, M. A.; TAN, D.; BASHIR, M. et al. Correlation
between climate indicators and COVID-19 pandemic in New York, USA. Science of The Total
Environment, Elsevier, v. 728, p. 1–4, 2020.

BAYER, F. M.; BAYER, D. M.; PUMI, G. Kumaraswamy autoregressive moving average models
for double bounded environmental data. Journal of Hydrology, Elsevier, v. 555, p. 385–396,
2017.

BAYES, C. L.; BAZÁN, J. L.; CASTRO, M. D. A quantile parametric mixed regression model
for bounded response variables. Statistics and its interface, International Press of Boston, v. 10,
n. 3, p. 483–493, 2017.

BENJAMIN, M. A.; RIGBY, R. A.; STASINOPOULOS, D. M. Generalized autoregressive
moving average models. Journal of the American Statistical Association, Taylor & Francis,
v. 98, n. 1, p. 214–223, 2003.

BERGER, J. B. The influence of the organizational structures of colleges and universities on
college student learning. Peabody Journal of Education, Taylor & Francis, v. 77, n. 3, p. 40–59,
2002.

BLOOMFIELD, P. Fourier analysis of time series: an introduction. [S.l.]: John Wiley &
Sons, 2004.

BOLLERSLEV, T. Generalized autoregressive conditional heteroskedasticity. Journal of Econo-
metrics, North-Holland, v. 31, n. 3, p. 307–327, 1986.

BOX, G. E.; JENKINS, G. M.; REINSEL, G. C. Time series analysis: forecasting and control.
[S.l.]: John Wiley & Sons, 2011.

BROCKWELL, P. J.; DAVIS, R. A.; FIENBERG, S. E. Time series: theory and methods.
[S.l.]: Springer Science & Business Media, 1991.

BURR, I. W. Cumulative frequency functions. The Annals of Mathematical Statistics, JSTOR,
v. 13, n. 2, p. 215–232, 1942.

BUUREN, S. v.; FREDRIKS, M. Worm plot: a simple diagnostic device for modelling growth
reference curves. Statistics in Medicine, Wiley Online Library, v. 20, n. 8, p. 1259–1277, 2001.

CARRATURO, F.; GIUDICE, C. D.; MORELLI, M.; CERULLO, V.; LIBRALATO, G.;
GALDIERO, E.; GUIDA, M. Persistence of SARS-CoV-2 in the environment and COVID-19
transmission risk from environmental matrices and surfaces. Environmental Pollution, Elsevier,
v. 265, p. 1–6, 2020.



81

Centers for Disease Control and Prevention. 2020. Online. Accessed 14 August 2020. Available
at: <https://www.cdc.gov/>.

CHAVEZ, N. What’s happened in American schools since reopening. 2020. Online.
Accessed 27 August 2020. Available at: <https://www.ctvnews.ca/health/coronavirus/
what-s-happened-in-american-schools-since-reopening-1.5065769>.

CHOI, B. ARMA model identification. [S.l.]: Springer Science & Business Media, 2012.

COMMISSION, W. Municipal Health et al. Report of clustering pneumonia of unknown
etiology in Wuhan City. 2019.

COX, D. R.; GUDMUNDSSON, G.; LINDGREN, G.; BONDESSON, L.; HARSAAE, E.;
LAAKE, P.; JUSELIUS, K.; LAURITZEN, S. L. Statistical analysis of time series: Some recent
developments. Scandinavian Journal of Statistics, JSTOR, v. 8, n. 2, p. 93–115, 1981.

CRIBARI-NETO, F.; SOUZA, T. C. Religious belief and intelligence: Worldwide evidence.
Intelligence, Elsevier, v. 41, n. 5, p. 482–489, 2013.

DAVIS, R. A.; DUNSMUIR, W. T.; STREETT, S. B. Observation-driven models for poisson
counts. Biometrika, Oxford University Press, v. 90, n. 4, p. 777–790, 2003.

de Jonge, E.; WIJFFELS, J.; van der Laan, J. ffbase: Basic Statistical Functions for Package
’ff’. [S.l.], 2020. R package version 0.12.8.

DEB, S.; CACCIOLA, S.; STEIN, M. Sports Leagues Bar Fans and Cancel Games Amid
Coronavirus Outbreak. New York Times. 2020. Online. Accessed 27 August 2020. Available
at: <https://www.nytimes.com/2020/03/11/sports/basketball/warriors-coronavirus-fans.html>.

DEHBI, H.-M.; CORTINA-BORJA, M.; GERACI, M. Aranda-ordaz quantile regression for
student performance assessment. Journal of Applied Statistics, Taylor & Francis, v. 43, n. 1, p.
58–71, 2016.

DOREMALEN, N. V.; BUSHMAKER, T.; MORRIS, D. H.; HOLBROOK, M. G.; GAMBLE,
A.; WILLIAMSON, B. N.; TAMIN, A.; HARCOURT, J. L.; THORNBURG, N. J.; GERBER,
S. I. et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New
England Journal of Medicine, Mass Medical Soc, v. 382, n. 16, p. 1564–1567, 2020.

DUNN, P. K.; SMYTH, G. K. Randomized quantile residuals. Journal of Computational and
Graphical Statistics, Taylor & Francis, v. 5, n. 3, p. 236–244, 1996.

DURBIN, J.; KOOPMAN, S. J. Monte Carlo maximum likelihood estimation for non-Gaussian
state space models. Biometrika, Oxford University Press, v. 84, n. 3, p. 669–684, 1997.

FERRARI, S.; CRIBARI-NETO, F. Beta regression for modelling rates and proportions. Journal
of Applied Statistics, Taylor & Francis, v. 31, n. 7, p. 799–815, 2004.

FRANCO, G. C.; MIGON, H. S.; PRATES, M. O. et al. Time series of count data: A review,
empirical comparisons and data analysis. Brazilian Journal of Probability and Statistics,
Brazilian Statistical Association, v. 33, n. 4, p. 756–781, 2019.

FREYTAS-TAMURA, K. d.; ROJAS, R.; FINK, S. Florida Breaks U.S. Coronavirus Record
for Most New Cases in a Day. New York Times. 2020. Online. Accessed 14 August 2020.
Available at: <https://www.nytimes.com/2020/07/12/us/florida-coronavirus-covid-cases.html>.

https://www.cdc.gov/
https://www.ctvnews.ca/health/coronavirus/what-s-happened-in-american-schools-since-reopening-1.5065769
https://www.ctvnews.ca/health/coronavirus/what-s-happened-in-american-schools-since-reopening-1.5065769
https://www.nytimes.com/2020/03/11/sports/basketball/warriors-coronavirus-fans.html
https://www.nytimes.com/2020/07/12/us/florida-coronavirus-covid-cases.html


82

GHARPURE, R.; HUNTER, C. M.; SCHNALL, A. H.; BARRETT, C. E.; KIRBY, A. E.;
KUNZ, J.; BERLING, K.; MERCANTE, J. W.; MURPHY, J. L.; GARCIA-WILLIAMS, A. G.
Knowledge and practices regarding safe household cleaning and disinfection for COVID-19
prevention – United States, May 2020.Morbidity and Mortality Weekly Report, Centers for
Disease Control and Prevention, v. 20, n. 10, p. 705–709, 2020.

GHOSH, A. Robust inference under the beta regression model with application to health care
studies. Statistical Methods in Medical Research, SAGE Publications Sage UK: London,
England, v. 28, n. 3, p. 871–888, 2019.

GÓMEZ-DÉNIZ, E.; SORDO, M. A.; CALDERÍN-OJEDA, E. The Log–Lindley distribu-
tion as an alternative to the beta regression model with applications in insurance. Insurance:
Mathematics and Economics, Elsevier, v. 54, p. 49–57, 2014.

GOOD, D. U.S. now leads world in deaths, passes 20,000 mark. NEWS. 2020. Online. Ac-
cessed 27 August 2020. Available at: <https://www.nbcnews.com/health/health-news/live-blog/
2020-04-11-coronavirus-news-n1181761/ncrd1182006#blogHeader>.

GUAN, Y.; ZHENG, B.; HE, Y.; LIU, X.; ZHUANG, Z.; CHEUNG, C.; LUO, S.; LI, P.; ZHANG,
L.; GUAN, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus
from animals in southern China. Science, American Association for the Advancement of Science,
v. 302, n. 5643, p. 276–278, 2003.

GUERRA, R. R.; PEÑA-RAMIREZ, F. A.; PEÑA-RAMIREZ, M. R.; CORDEIRO, G. M. A
note on the density expansion and generating function of the Beta Burr XII. Mathematical
Methods in the Applied Sciences, Wiley Online Library, v. 43, n. 4, p. 1817–1824, 2020.

HERNANDEZ, S.; O’KEY, S.; WATTS, A.; MANLEY, B.; PETTERSSON, H. Tracking
Covid-19 cases in the US. CNN. 2020. Online. Accessed 27 August 2020. Available at: <https:
//edition.cnn.com/interactive/2020/health/coronavirus-us-maps-and-cases/>.

HUANG, C.; WANG, Y.; LI, X.; REN, L.; ZHAO, J.; HU, Y.; ZHANG, L.; FAN, G.; XU, J.; GU,
X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The
Lancet, Elsevier, v. 395, n. 10223, p. 497–506, 2020.

HYNDMAN, R. J.; KOEHLER, A. B. Another look at measures of forecast accuracy. Interna-
tional Journal of Forecasting, Elsevier, v. 22, n. 4, p. 679–688, 2006.

Institute for Health Metrics and Evaluation (IHME). COVID-19 Mortality, Infection, Testing,
Hospital Resource Use, and Social Distancing Projections. Seattle, United States of America,
2020.

JAMES, G.; WITTEN, D.; HASTIE, T.; TIBSHIRANI, R. An introduction to statistical
learning. [S.l.]: Springer, 2013.

JØRGENSEN, B. Proper dispersion models. Brazilian Journal of Probability and Statistics,
JSTOR, v. 11, n. 2, p. 89–128, 1997.

JØRGENSEN, B. The theory of dispersion models. [S.l.]: CRC Press, 1997.

KENNEY, J.; KEEPING, E. Kurtosis.Mathematics of Statistics, Van Nostrand, v. 3, p. 102–103,
1962.

https://www.nbcnews.com/health/health-news/live-blog/2020-04-11-coronavirus-news-n1181761/ncrd1182006#blogHeader
https://www.nbcnews.com/health/health-news/live-blog/2020-04-11-coronavirus-news-n1181761/ncrd1182006#blogHeader
https://edition.cnn.com/interactive/2020/health/coronavirus-us-maps-and-cases/
https://edition.cnn.com/interactive/2020/health/coronavirus-us-maps-and-cases/


83

KIESCHNICK, R.; MCCULLOUGH, B. D. Regression analysis of variates observed on (0,
1): percentages, proportions and fractions. Statistical Modelling, Sage Publications Sage CA:
Thousand Oaks, CA, v. 3, n. 3, p. 193–213, 2003.

KUMARASWAMY, P. A generalized probability density function for double-bounded random
processes. Journal of Hydrology, Elsevier, v. 46, n. 1-2, p. 79–88, 1980.

LACHOS, V. H.; CHEN,M.-H.; ABANTO-VALLE, C. A.; AZEVEDO, C. L. Quantile regression
for censored mixed-effects models with applications to hiv studies. Statistics and its interface,
NIH Public Access, v. 8, n. 2, p. 203, 2015.

LEHMANN, E. L.; CASELLA, G. Theory of point estimation. 2nd. ed. [S.l.]: Springer, 2011.

LEMONTE, A. J.; BAZÁN, J. L. New class of Johnson distributions and its associated regression
model for rates and proportions. Biometrical Journal, Wiley Online Library, v. 58, n. 4, p.
727–746, 2016.

LEWIS, S. Florida surpasses New York in confirmed COVID-19 cases. CBC NEWS.
2020. Online. Accessed 27 August 2020. Available at: <https://www.cbsnews.com/news/
florida-surpasses-new-york-in-confirmed-covid-19-cases/>.

LEWNARD, J. A.; LO, N. C. Scientific and ethical basis for social-distancing interventions
against COVID-19. The Lancet. Infectious Diseases, Elsevier, v. 20, n. 6, p. 631–633, 2020.

LI, W. K. Time series models based on generalized linear models: some further results. Biomet-
rics, JSTOR, v. 50, n. 2, p. 506–511, 1994.

LINDSAY, B. G.; LI, B. On second-order optimality of the observed Fisher information. The
Annals of Statistics, Institute of Mathematical Statistics, v. 25, n. 5, p. 2172–2199, 1997.

MAZUCHELI, J.; MENEZES, A. F. B.; CHAKRABORTY, S. On the one parameter unit-
Lindley distribution and its associated regression model for proportion data. Journal of Applied
Statistics, Taylor & Francis, v. 46, p. 700–714, 2019.

MAZUCHELI, J.; MENEZES, A. F. B.; FERNANDES, L. B.; OLIVEIRA, R. P. de; GHITANY,
M. E. The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the
modeling of quantiles conditional on covariates. Journal of Applied Statistics, Taylor & Francis,
v. 47, n. 6, p. 954–974, 2020.

MCCULLAGH, P.; NELDER, J.Generalized linear models. 2. ed. London: Chapman and Hall,
1989.

MITNIK, P. A.; BAEK, S. The Kumaraswamy distribution: median-dispersion re-
parameterizations for regression modeling and simulation-based estimation. Statistical Papers,
Springer, v. 54, n. 1, p. 177–192, 2013.

MOLLALO, A.; VAHEDI, B.; RIVERA, K. M. GIS-based spatial modeling of COVID-19
incidence rate in the continental United States. Science of the Total Environment, Elsevier,
p. 1–8, 2020.

MOORS, J. A quantile alternative for kurtosis. Journal of the Royal Statistical Society, Wiley
Online Library, v. 37, p. 25–32, 1988.

MOUSA, A.; EL-SHEIKH, A.; ABDEL-FATTAH, M. A gamma regression for bounded contin-
uous variables. Advances and Applications in Statistics, v. 49, n. 4, p. 305–326, 10 2016.

https://www.cbsnews.com/news/florida-surpasses-new-york-in-confirmed-covid-19-cases/
https://www.cbsnews.com/news/florida-surpasses-new-york-in-confirmed-covid-19-cases/


84

MUNSTER, V. J.; KOOPMANS, M.; DOREMALEN, N. van; RIEL, D. van; WIT, E. de. A novel
coronavirus emerging in China – key questions for impact assessment. New England Journal
of Medicine, Mass Medical Soc, v. 382, n. 8, p. 692–694, 2020.

NAGELKERKE, N. J. et al. A note on a general definition of the coefficient of determination.
Biometrika, Oxford University Press, v. 78, n. 3, p. 691–692, 1991.

NELDER, J. A.; WEDDERBURN, R. W. Generalized linear models. Journal of the Royal
Statistical Society: Series A (General), Wiley Online Library, v. 135, n. 3, p. 370–384, 1972.

PALM, B. G.; BAYER, F. M. Bootstrap-based inferential improvements in beta autoregressive
moving average model. Communications in Statistics-Simulation and Computation, Taylor
& Francis, v. 47, n. 4, p. 977–996, 2018.

PAWITAN, Y. In all likelihood: statistical modelling and inference using likelihood. [S.l.]:
Oxford University Press, 2001.

PEFFER, P. A. L. Demographics of an Undergraduate Animal Sciences Course and the Influence
of Gender and Major on Course Performance. NACTA Journal, North American Colleges and
Teachers of Agriculture (NACTA), v. 55, n. 1, p. 26–31, 2011.

PEREIRA, G. H. On quantile residuals in beta regression. Communications in Statistics-
Simulation and Computation, Taylor & Francis, v. 48, n. 1, p. 302–316, 2019.

PEREIRA, T. L.; CRIBARI-NETO, F. Detecting model misspecification in inflated beta regres-
sions. Communications in Statistics – Simulation and Computation, Taylor & Francis, v. 43,
n. 3, p. 631–656, 2014.

PRESS, W. H.; TEUKOLSKY, S. A.; VETTERLING, W. T.; FLANNERY, B. P. Numerical
Recipes in C: The Art of Scientific Computing. 2. ed. USA: Cambridge University Press, 1992.

PUMI, G.; RAUBER, C.; BAYER, F. M. Kumaraswamy regression model with aranda-ordaz
link function. TEST, Springer, p. 1–21, 2020.

R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria,
2020. Available at: <https://www.R-project.org/>.

RADMANESH, A.; RAZ, E.; ZAN, E.; DERMAN, A.; KAMINETZKY, M. Brain imaging use
and findings in COVID-19: a single academic center experience in the epicenter of disease in the
United States. American Journal of Neuroradiology, Am Soc Neuroradiology, v. 41, n. 7, p.
1179–1183, 2020.

RAMSEY, J. B. Tests for specification errors in classical linear least-squares regression analysis.
Journal of the Royal Statistical Society: Series B, Wiley Online Library, v. 31, n. 2, p. 350–371,
1969.

RIGBY, R. A.; STASINOPOULOS, D. M. Generalized additive models for location, scale and
shape, (with discussion). Applied Statistics, v. 54, n. 3, p. 507–554, 2005.

ROCHA, A. V.; CRIBARI-NETO, F. Beta autoregressive moving average models. TEST,
Springer, v. 18, n. 3, p. 529–545, 2009.

https://www.R-project.org/


85

RODRÍGUEZ-MUÑIZ, L. J.; BERNARDO, A. B.; ESTEBAN, M.; DÍAZ, I. Dropout and
transfer paths: What are the risky profiles when analyzing university persistence with machine
learning techniques? Plos One, Public Library of Science San Francisco, CA USA, v. 14, n. 6, p.
218–796, 2019.

SALLOUM, S. A.; ALSHURIDEH, M.; ELNAGAR, A.; SHAALAN, K. Mining in Educational
Data: Review and Future Directions. In: SPRINGER. Joint European-US Workshop on
Applications of Invariance in Computer Vision. [S.l.], 2020. p. 92–102.

SCHUMAKER, E.Timeline: How coronavirus got started The outbreak spanning the globe
began in December, in Wuhan, China. 2020. Online. Accessed 14 August 2020. Available at:
<https://abcnews.go.com/Health/timeline-coronavirus-started/story?id=69435165>.

SCHWARZ, G. et al. Estimating the dimension of a model. The Annals of Statistics, Institute
of Mathematical Statistics, v. 6, n. 2, p. 461–464, 1978.

SHEPHARD, N. Generalized linear autoregressions. [S.l.], 1995. Available at: <https://ideas.
repec.org/p/nuf/econwp/0008.html>.

SNEYERS, E.; WITTE, K. D. The interaction between dropout, graduation rates and quality
ratings in universities. Journal of the Operational Research Society, Taylor & Francis, v. 68,
n. 4, p. 416–430, 2017.

STEPHENS, M. A. EDF statistics for goodness of fit and some comparisons. Journal of the
American Statistical Association, Taylor & Francis Group, v. 69, n. 347, p. 730–737, 1974.

TAGHIZADEH-HESARY, F.; AKBARI, H. The powerful immune system against powerful
COVID-19: A hypothesis.Medical Hypotheses, Elsevier, v. 140, p. 1–3, 2020.

TINTO, V. Theories of student departure revisited. Higher education: Handbook of theory
and research, v. 2, n. 359-384, 1986.

VIEIRA, R. S.; ARENDS-KUENNING, M. Affirmative action in Brazilian universities: Effects
on the enrollment of targeted groups. Economics of Education Review, Elsevier, v. 73, p.
101–931, 2019.

WALD, A. Tests of statistical hypotheses concerning several parameters when the number of
observations is large. Transactions of the AmericanMathematical Society, JSTOR, v. 54, n. 3,
p. 426–482, 1943.

WANG, J.; TANG, K.; FENG, K.; LV, W. High temperature and high humidity reduce the
transmission of COVID-19. Available at SSRN 3551767, 2020.

Washington Post.Where states reopened and cases spiked after the U.S. shutdown.Washing-
ton Post. 2020. Online. Accessed 27 August 2020. Available at: <https://www.washingtonpost.
com/graphics/2020/national/states-reopening-coronavirus-map/>.

WATKINS, A. J. On an integral related to the Burr XII distribution. Communications in
Statistics - Theory and Methods, Taylor & Francis, v. 40, n. 21, p. 3777–3779, 2011.

WICKHAM, H.; AVERICK, M.; BRYAN, J.; CHANG, W.; MCGOWAN, L. D.; FRANçOIS,
R.; GROLEMUND, G.; HAYES, A.; HENRY, L.; HESTER, J.; KUHN, M.; PEDERSEN, T. L.;
MILLER, E.; BACHE, S. M.; MüLLER, K.; OOMS, J.; ROBINSON, D.; SEIDEL, D. P.; SPINU,
V.; TAKAHASHI, K.; VAUGHAN, D.; WILKE, C.; WOO, K.; YUTANI, H. Welcome to the
tidyverse. Journal of Open Source Software, v. 4, n. 43, p. 1686, 2019.

https://abcnews.go.com/Health/timeline-coronavirus-started/story?id=69435165
https://ideas.repec.org/p/nuf/econwp/0008.html
https://ideas.repec.org/p/nuf/econwp/0008.html
https://www.washingtonpost.com/graphics/2020/national/states-reopening-coronavirus-map/
https://www.washingtonpost.com/graphics/2020/national/states-reopening-coronavirus-map/


86

WICKHAM, H.; FRANçOIS, R.; HENRY, L.; MüLLER, K. dplyr: A Grammar of Data
Manipulation. [S.l.], 2020. R package version 0.8.5.

World Health Organization. 2020. Online. Accessed 14 August 2020. Available at: <https:
//covid19.who.int/region/amro/country/us>.

World Health Organization.Q&A: How is COVID-19 transmitted?. World Health Organiza-
tion. 2020. Online. Accessed 31 August 2020. Available at: <https://www.who.int/news-room/
q-a-detail/q-a-how-is-covid-19-transmitted>.

Worldometer. 2020. Online. Accessed 14 August 2020. Available at: <https://www.worldometers.
info/coronavirus/country/us/>.

ZEGER, S. L.; QAQISH, B. Markov regression models for time series: a quasi-likelihood
approach. Biometrics, JSTOR, v. 44, n. 4, p. 1019–1031, 1988.

ZHANG, C. H.; SCHWARTZ, G. G. Spatial disparities in coronavirus incidence and mortality in
the United States: an ecological analysis as of May 2020. The Journal of Rural Health, Wiley
Online Library, v. 36, n. 3, p. 433–445, 2020.

ZHANG, W.; OLTEAN, A.; NICHOLS, S.; ODEH, F.; ZHONG, F. Epidemiology of reopening
in the COVID-19 pandemic in the United States, Europe and Asia.medRxiv, Cold Spring Harbor
Laboratory Press, 2020.

ZOGHBI, A. C.; ROCHA, F.; MATTOS, E. Education production efficiency: Evidence from
Brazilian universities. Economic Modelling, Elsevier, v. 31, p. 94–103, 2013.

https://covid19.who.int/region/amro/country/us
https://covid19.who.int/region/amro/country/us
https://www.who.int/news-room/q-a-detail/q-a-how-is-covid-19-transmitted
https://www.who.int/news-room/q-a-detail/q-a-how-is-covid-19-transmitted
https://www.worldometers.info/coronavirus/country/us/
https://www.worldometers.info/coronavirus/country/us/


87

APPENDIX A – OBSERVED INFORMATION MATRICES AND CHAPTER 2

APPLICATION SUPPLEMENT

Initially, this appendix provides the observed information matrix for the unit Burr XII

(UBXII) distribution and a detailed calculation of the observed information matrix for the UBXII

regression, defined in Chapter 2. After, it presents supplementary information to the application

study carried out in Chapter 2.

OBSERVED INFORMATION MATRICES

In what follows, we present the second-order derivatives of the log-likelihood function to

the parameters vector \\\, of the UBXII distribution. The elements of the matrix � (\\\) presented in

Section 2.4 are

*22 =−
=

22 −
= log2(log@−1) [C (@) −1]
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− logg−1 log2−1 @−1

@ C (@) log2 [C (@)]
− 2 log(log@−1) logg−1 log2−1 @−1
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] =∑
8=1

log[C (H8)] .

Next, we obtain the score function and observed information matrix for the parameter

vector (VVV>, 2)> from the regression (2.17). First, we obtain the components of the score vector

*** in Section 2.6.1. Notice that *VVV =
[
*V1 (VVV, 2), . . . ,*V: (VVV, 2)

]> is the first component of ***.

Invoking the chain rule, we have

*V 9 ≡
mℓ(VVV, 2)
mV 9

=

=∑
8=1

[
mℓ8 (@8, 2)
m@8

d@8
d[8

m[8

mV 9

]
, 9 = 1, . . . , :,

where

mℓ8 (@8, 2)
m@8

= 2 (@★8 − @
†
8
H★8 ).

We have that d@8/d[8 = 1/6′(@8) and m[8/mV 9 = G8 9 . Therefore, the vector*VVV ≡ mℓ(VVV, 2)/mVVV can

be written in matrix notation as in Equation (2.19).

Differentiating (2.18) with respect to the parameter 2 leads to

mℓ(VVV, 2)
m2

=

=∑
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m2

=

=∑
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H
♯

8
,

which leads to the second component of*** given by (2.20).

We obtain the second-order derivatives ℓ(VVV, 2) with respect to VVV> and 2, which compose

the observed information matrix ��� from Section 2.6.1. For 9 , ? = 1, . . . , : , using the chain and

product rules, we have
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It follows that
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In order to simplify the notation, we write ���VVVVVV in matrix form as given by Equation (2.21).
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For obtaining the components of ���>
2 VVV

component, we set
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The right term can be written as
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Hence, analogously to the previous calculates, we have
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Thus, the quantity ���>
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written in matrix notation is just given by (2.22).

For calculating the component �22, we have
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The second-order derivative of mℓ8 (@8, 2) with respect to 2 is expressed as
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log[C (@8)]

[
log2(log H−1

8
) log2 H−1

8

C (H8)

−
log2(log H−1

8
) log22 H−1

8

[C (H8)]2

]
+

2log(log@−1
8
) logg−1 [C (@8) −1] log(log H−1

8
) [C (H8) −1]

C (@8)C (H8) log2 [C (@8)]

+
{

log2(log@−1
8
) logg−1 [C (@8) −1]

C (@8) log2 [C (@8)]
−

log2(log@−1
8
) logg−1 log22 @−1

8

[C (@8)]2 log2 [C (@8)]

−
2log2(log@−1

8
) logg−1 log22 @−1

8

[C (@8)]2 log3 [C (@8)]

}
log[C (H8)] .

Let H�
8
= m2ℓ8 (@8, 2)/m22. Then, we shall define...� = diag{H�1, . . . , H

�
=}, and obtain a simpler

expression for the component �22, namely

�22 =

=∑
8=1

H�8 = tr(...�)

as expressed in Equation (2.23).

CHAPTER 2 APPLICATION SUPPLEMENT

Henceforth, we provide a supplementary material that contains information to extract the

full database and explains the methodology used in preprocessing and cleaning step. Further, we

present a table with the description of the data set’s variables used in the application and a table

with the results from other fitted Kw, UW, and beta regressions for the considered data set.



90

Data extraction

The data for this study were otained from the publicly-available higher education census

(HEC) microdata. Since 1995, the HEC is conducted yearly by the Brazilian National Institute

for Educational Studies and Research “Anísio Teixeira” (INEP) and the data are available

at <http://portal.inep.gov.br/web/guest/microdados>. It contains information about the Brazilian

higher education system divided into four microdata files, each one presenting students, course,

professors and education institution variables. Those files are defined as follows:

1. DM_IES: composed by higher education institutions (HEIs) variables such as the institu-

tion’s code, administrative category, city, and federation unit, among others;

2. DM_CURSO: contains variables about the undergraduate courses such as the course

workload, shift (morning, afternoon, night), number of vacancies, among others;

3. DM_ALUNO: contains variables related to the students such as socio-demographic infor-

mation from the students, course, admision form, among others;

4. DM_DOCENTE: provides variables related to the professors linked to each HEI, such as

socio-demographic and career informations, among others.

We are interested in the dropout proportion for animal sciences courses and factors

associated with their enrollment and organizational structure. The DM_ALUNO file provides

the information to construct the dropout proportion. The other variables are obtained from the

DM_IES and DM_CURSO files. The following section describes the data mining tools employed

to obtain the final data set.

Preprocessing and cleaning

Data preprocessing and cleaning involves basic operations to collect and filter the necessary

information in order to conduct desired statistical analysis. We perform the data filtering in the R

programming language (R Core Team, 2020). We use the ffbase (de Jonge; WIJFFELS; van

der Laan, 2020), tidyverse (WICKHAM et al., 2019), and dplyr (WICKHAM et al., 2020)

packages, necessary to treat a big database. The population is the cohort of the freshmen animal

sciences students in academic year 2009. Each of them has a related unique identification code in

the DM_ALUNO file, which allows us to follow them up until 2017, or until the dropout/graduate

outcome. The variable CO_ALUNO_SITUACAO identify the student’s situation in each census.

It is from this variable that we build the dropout proportion.

From the CO_ALUNO_SITUACAO variable, we reclassify the students according to

http://portal.inep.gov.br/web/guest/microdados
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their last register in the census and construct a new variable under the following categories

1. dropout: if the student transferred to another course of the same HEI or who detached

from the course, originally encoded as 4 and 5, respectively;

2. graduate: if the student completed its undergraduate study, originally encoded as 6;

3. censoring: students who have situation likely forming, attending, locked enrollment, or

deceased, originally encoded as 1, 2, 3, and 7, respectively.
The response variable for the 8th course is given by

DROPOUT_PROPORTION8 =
number of students with dropout outcome in the 8th course

number of students with dropout or graduate outcome in the 8th course
,

where 8 = 1, . . . ,78. The students classified as censoring are not considered since none outcome is

observed in this group and one course is eliminated since it had no graduated students until 2017.

Thus, we obtain 77 observations corresponding to the dropout proportions of Brazilian animal

sciences courses with freshmen students in 2009. We join the organizational variables, from the

DM_IES and DM_CURSO files in the HEC of 2009, with the dropout proportion. Finally, we

select and clean the those covariates to obtain the final data set. In the cleanning process we i)

eliminate some variables with missing observations and identification codes; and ii) join some

variables to perform data reduction. The final data set contains the dropout proportion and other

42 covariates.

Table 16 provides the nomenclature (nom.) and a brief description of the response

variable, and covariates of the final data set.
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Table 16 – Response variable and covariates with its respective description
Nom. Variable Description
. DROPOUT_PROPORTION Dropout proportion from 2009 until 2017 of

(response variable) Brazilian undergraduate animal sciences courses.
GGG1 ID1 Name of the university to which the course belongs.
GGG2 QT_VAC_MORNING Quantity of vacancies offered in the

morning shift.
GGG3 IN_ACCESSIBILITY Dummy variable that equals one if the course

guarantees conditions of accessibility for people
with disabilities, and zero otherwise.

GGG4 IN_NIGHT_COURSE Dummy variable that equals one if the course
works on the night shift, and zero otherwise.

GGG5 IN_LIBRAS_TRANSLATOR Dummy variable that equals one if the course
provides a translator of Brazilian sign language
interpreter (LIBRAS), and zero otherwise.

GGG6 IN_HIGH_RELIEF Dummy variable that equals one if the course
offers adaptation to high relief of graphics,
engravings and figures, and zero otherwise.

GGG7 IN_AUDIO Dummy variable that equals one if the course
has material in audio, and zero otherwise.

GGG8 IN_BRAILLE Dummy variable that equals one if the course
has material in Braille, and zero otherwise.

GGG9 IN_ENL_CHARACTER Dummy variable that equals one if the course
offers material with enlarged characters,
and zero otherwise.

GGG10 IN_LIBRAS_DISCIPLINE Dummy variable that equals one if the course
provides translator of LIBRAS, and zero otherwise.

GGG11 IN_GUIDE_INTERPRETER Dummy variable that equals one if the course
makes available guides-interpreter, and zero otherwise.

GGG12 IN_LIBRAS_MATERIAL Dummy variable that equals one if the course
has material in LIBRAS, and zero otherwise.

GGG13 IN_SPEECH_SYNTHESIS Dummy variable that equals one if the course
offers a speech synthesis, and zero otherwise.

GGG14 IN_MORNING_COURSE Dummy variable that equals one if the course
works on the morning shift, and zero otherwise.

GGG15 IN_OTHER_ADM_FORMS Dummy variable that equals one if the
course has alternative forms of admission in
addition to the regular ones, and zero otherwise.

GGG16 IN_EVENING_COURSE Dummy variable that equals one if the course
works on the evening shift, and zero otherwise.

(It continues)

Table 17 brings the estimates and p-values of the fitted Kw, UW, and beta regressions for

the dropout proportion in the Brazilian zootechnics courses between 2009 and 2017.

1 Identification variable not considered for modeling.
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(Continuation)
GGG17 IN_AGREEMENT Dummy variable that equals one if the course

makes available enter through course of
agreement for foreign students, and zero otherwise.

GGG18 IN_DIST_LEARNING Dummy variable that equals one if
the classroom course offers distance
learning, and zero otherwise.

GGG19 IN_USE_LAB Dummy variable that equals one if
the course uses the laboratories from
the HEI, and zero otherwise.

GGG20 NU_COURSE_LOAD Course load
GGG21 NU_TIME_COMP Minimum time to complete the course

in number of semesters
GGG22 QT_VAC_INTEGRAL Quantity of vacancies offered in the

integral shift.
GGG23 QT_VAC_NIGHT Quantity of vacancies offered in the

night shift.
GGG24 QT_VAC_EVENING Quantity of vacancies offered in the

evening shift.
GGG25 QT_SEL_PROCESS Number of students who entered in the course

through selection process.
GGG26 QT_SEL_OTHER_FORM Number of students who entered in the course

through other selection forms.
GGG27 IN_CAPITAL_HEI Dummy variable that equals one if the HEI

to which the course belongs is located in the
capital, and zero otherwise.

GGG28 IN_ADM_CAT_1 Dummy variable that equals one if the HEI
to which the course belongs has a federal
administrative category, and zero otherwise.

GGG29 IN_ADM_CAT_2 Dummy variable that equals one if the HEI
to which the course belongs has a state
administrative category, and zero otherwise.

GGG30 IN_ADM_CAT_3 Dummy variable that equals one if the HEI
to which the course belongs has a municipal
administrative category, and zero otherwise.

GGG31 IN_ADM_CAT_4 Dummy variable that equals one if the HEI
to which the course belongs has a private
in the strict sense administrative category,
and zero otherwise.

GGG32 IN_ACADEM_ORG_1 Dummy variable that equals one if the HEI’s
academic organization to which the course
belongs is university, and zero otherwise.

GGG33 IN_ACADEM_ORG_2 Dummy variable that equals one if the HEI’s
academic organization to which the course
belongs is university center, and zero otherwise.
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(Continuation)
GGG34 IN_ACADEM_ORG_3 Dummy variable that equals one if the HEI’s

academic organization to which the course
belongs is college, and zero otherwise.

GGG35 QT_TEC_INCOMP_ELEM Number of technical-administrative employees
of the HEI (of which the 8th course is part)
with incomplete elementary education.

GGG36 QT_TEC_HIGH_SCHOOL Number of technical-administrative employees
of the HEI (of which the 8th course is part)
with high school.

GGG37 QT_TEC_HIGHER_EDUC Number of technical-administrative employees
of the HEI (of which the 8th course is part)
with higher education.

GGG38 QT_TEC_SPEC Number of technical-administrative employees
of the HEI (of which the 8th course is part)
with specialization.

GGG39 QT_TEC_MASTER Number of technical-administrative employees
of the HEI (of which the 8th course is part)
with master’s education.

GGG40 QT_TEC_DOC Number of technical-administrative employees
of the HEI (of which the 8th course is part)
with a doctorate.
Source: Author (2020)

Table 17 – Estimates and p-values of the fitted Kw, UW, and beta regressions for the
dropout proportion in the Brazilian zootechnics courses.

Parameter Kw UW Beta
Estimate Pr(>|t|) Estimate Pr(>|t|) Estimate Pr(>|t|)

V1 0.0379 0.7251 −0.1778 0.2102 −0.0594 0.5954
V2 0.0067 0.0378 0.0098 0.0004 0.0082 0.0046
V3 0.4401 0.0095 0.6801 0.0002 0.5136 0.0023
V4 0.7169 0.1139 0.9107 0.0055 0.8144 0.0397
3?, V, f 0.3116 < 0.0001 1.9202 < 0.0001 −0.6556 < 0.0001

Source: Author (2020)
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APPENDIX B – SCORE VECTOR AND OTHER FITTED REGRESSIONS

SCORE VECTOR

Next, it is determined the score vector of the log-likelihood function given by Equa-

tion (3.9). It is obtained from the first derivative of the log-likelihood function with re-

spect to the : + 1 unknown parameters which compose the vector \\\. That is, it is defined

as* (\\\) :=
(
*bbb (\\\)>,*2 (\\\)

)>, where
*b 9 (\\\) :=

mℓ(\\\)
mb 9

=

=∑
8=1

[
mℓ8 (@8, 2)
m@8

d@8
d[8

m[8

mb 9

]
and

*2 (\\\) :=
mℓ(\\\)
m2

=

=∑
8=1

mℓ8 (@8, 2)
m2

with 9 = 1, . . . , : .

To simplify the notation, the following quantities are considered:

08 :=− 2 log2−1(1− @8)−1

(1− @8)A (@8)exp[A (@8)]
+ log(1− g)−2 log2−1(1− @8)−1A (I8)

(1− @8) [A (@8)]2exp[A (@8)]

and

18 :=
1
2
+ B(I8) +

B(I8) log2 (1− I8)−1 [log(1− g)/A (@8) −1]
exp[A (I8)]

− log2 (1− @8)−1B(@8)
A (@8)exp[A (@8)]

− log(1− g)B(@8) log2 (1− @8)−1A (I8)
[A (@8)]2exp[A (@8)]

,

where B(G) = log [ log (1− G)−1 ]. Observe that

mℓ8 (@8, 2)
m@8

= 08,
d@8
d[8

=
1

6′(@8)
,

m[8

mb 9
= G8 9 ,

and
mℓ8 (@8, 2)
m2

= 38 .

Hence, the score vector’s components can be written compactly in matrix notation as

*bbb (\\\) = --->))) 000 and *2 (\\\) = 111>111,

where --- is an =× : covariates matrix, whose 8th row is GGG8 = (G81, . . . , G8: )>, ))) = diag{1/6′(@1),

. . . ,1/6′(@=)}, 000 = (01, . . . , 0=)>, 111 = (11, . . . , 1=)>, and 111 is an =-dimensional vector of 1’s.
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OTHER FITTED REGRESSIONS

Here, Table 18 reports the estimates, and ?-values of the final fitted beta, simplex, and

UW regressions.

Table 18 – Some final fitted regressions for the MR by coronavirus in the U.S. states.
Beta(`8 ,f) Simplex(`8 ,f2) UW(@8 , V)

Coeff Estimate p-value Coeff Estimate p-value Coeff Estimate p-value
Int −27.8556 < 0.0001 Int −23.6492 < 0.0001 Int −17.1853 < 0.0001
PD 0.0022 < 0.0001 GINI 31.8738 < 0.0001 PD 0.0010 < 0.0001
HDI 21.7485 < 0.0001 BEDS −0.1952 0.0205 GINI 30.2048 < 0.0001
PR 21.5709 < 0.0001 MA 0.1079 0.0001 AT −0.0311 0.0001
AT −0.0122 0.0280 T60 1.3915 < 0.0001 T120 1.2311 < 0.0001
T60 1.0731 < 0.0001 T90 1.8532 < 0.0001 V 5.0111 −
T90 1.4274 < 0.0001 T120 2.0838 < 0.0001 − − −
T120 1.6113 < 0.0001 f2 2.3355 − − − −
f −2.2854 − − − − − − −

Source: Author (2020)
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