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ABSTRACT

Beta regressions are widely used for modeling random variables that assume values in
the standard unit interval, (0, 1), such as rates, proportions, and income concentration indices.
Parameter estimation is typically performed via maximum likelihood and hypothesis testing
inferences on these parameters that index the model are commonly performed using the likelihood
ratio test. Such a test, however, may deliver inaccurate inferences when the sample size is small.
It is thus important to develop alternative testing procedures that are more accurate when the
sample contains only few observations. In this master’s thesis, we introduce the linear and
nonlinear beta regression models with parametric mean link function, and derive two modified
likelihood ratio test statistics for performing improved testing inferences in that class of models.
We also obtain a score test statistic that can be used to test, in the same class of models, whether
the true link function is logit. We provide simulation evidence that shows that the new tests
usually outperform the standard likelihood ratio test in samples of small to moderate sizes. We

also present and discuss two empirical applications.

Keywords: Beta regression. Likelihood ratio test. Link function. Parametric link function.



RESUMO

Modelos de regressao beta sdo amplamente utilizados para modelar varidveis aleatdrias
que assumem valores no intervalo unitario padrao, (0, 1), como taxas, propor¢oes e indices de
concentracdo de renda. A estimacgdo dos parametros é comumente realizada através do método
de maxima verossimilhanca e testes de hipdteses sobre os pardmetros que indexam o modelo
geralmente sdo realizados utilizando o teste da razdo de verossimilhancgas. Esse teste pode,
contudo, fornecer inferéncias imprecisas quando o tamanho da amostra € pequeno. Portanto, é
importante desenvolver testes alternativos que sejam mais precisos em situacdes em que a amostra
contém poucas observagdes. Nessa dissertacdo, apresentamos os modelos de regressao beta
linear e ndo linear com fun¢do de ligacao paramétrica no submodelo da média, e derivamos, para
uso nessa classe de modelos, duas estatisticas de teste da razao de verossimilhangas corrigidas.
Obtemos também uma estatistica de teste escore que, na mesma classe de modelos, pode ser
usada para testar se a fungdo de ligacao do submodelo da média € logit. Fornecemos resultados
numéricos que mostram que os testes modificados tipicamente apresentam desempenho superior
ao do teste da razdo de verossimilhangas usual em amostras de tamanho pequeno a moderado.

Também apresentamos e discutimos duas aplicagdes em dados reais.

Palavras-chave: Funcio de ligacdo. Funcdo de ligacao paramétrica. Regressao beta. Teste da

razdo de verossimilhancas.
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1 INTRODUCTION

1.1 INITIAL CONSIDERATIONS

The beta regression model introduced by Ferrari and Cribari-Neto (2004) is commonly
used for modeling random variables that assume values in the unit interval, (0,1). Its underlying
assumption is that the dependent variable y follows the beta law, and its mean is modeled through
a regression structure that involves unknown parameters, covariates, and a fixed link function.
The model is also indexed by a precision parameter, which was initially taken to be constant.
Extensions of the beta regression model, in its original formulation, were proposed in the literature.
Ospina and Ferrari (2010) introduced the class of inflated beta distributions with support in (0,1],
[0,1), and [0, 1], and Ospina and Ferrari (2012) proposed a class of regression models based on
such distributions, which is known as the class of inflated beta regression models. The varying
precision regression model was formally introduced by Simas, Barreto-Souza and Rocha (2010)
and considered by several authors, such as Paolino (2001) and Smithson and Verkuilen (2006).
Model selection strategies were developed and numerically evaluated by Bayer and Cribari-Neto
(2015), Bayer and Cribari-Neto (2017), bias-corrected parameter estimation was developed by
Griin, Kosmidis and Zeileis (2012) and Ospina, Cribari-Neto and Vasconcellos (2006), residuals
for the model were proposed by Espinheira, Ferrari and Cribari-Neto (2007) and Espinheira,
Santos and Cribari-Neto (2017), non-nested hypothesis testing strategies were developed by
Cribari-Neto and Lucena (2015), bootstrap-based inferences were considered by Lima and Cribari-
Neto (2020), resampling-based prediction intervals were considered by Espinheira, Ferrari and
Cribari-Neto (2014), beta regression trees finite mixtures of beta regressions were considered by
Griin, Kosmidis and Zeileis (2012), and time series extensions of the model were introduced by
Bayer, Cintra and Cribari-Neto (2018) and Rocha and Cribari-Neto (2009) and considered by
Scher et al. (2020). For further details, we refer readers to Cribari-Neto and Zeileis (2010).

Recently, Canterle and Bayer (2019) proposed the beta regression model with parameter-
indexed link functions in the mean and dispersion submodels. Unlike the standard formulation
of the model, which uses a positively-valued precision parameter, their model is indexed by a
dispersion parameter that assumes values in the standard unit interval. That is, differently from
the standard formulation of the beta regression model, their model is indexed by a dispersion
parameter (in contrast to a precision parameter) which assumes values in (0, 1) (in contrast to

R+).
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Parameter estimation in beta regression analyses is usually carried out using the maximum
likelihood method and hypothesis testing inferences are typically performed using the likelihood
ratio test. As it is well known, such a test is based on a large sample approximation: the test
critical values are obtained from the test statistic limiting null distribution. As a result, the test
can be considerably size-distorted when the sample size is small. Simulation evidence reported
by different authors indicates that the test tends to be liberal (oversized) in small samples, i.e., it
has a tendency to overreject the null hypothesis when such a hypothesis is true. Finite sample
corrections to the likelihood ratio test were considered by some authors. For instance, Ferrari and
Pinheiro (2011) used approximations proposed by Skovgaard (2001) and obtained two corrected
likelihood ratio test statistics for varying precision beta regressions, and Bayer and Cribari-Neto
(2013) derived a Bartlett-corrected likelihood ratio test statistic (LAWLEY, 1956) for use in the
fixed precision beta regression model. Improved likelihood ratio testing inference in inflated beta
regressions was obtained by Pereira and Cribari-Neto (2014b).

Our first goal in this thesis is to introduce the linear and nonlinear varying precision
beta regression models with parametric mean link function. We present the models and their
corresponding log-likelihood function, and derive score functions, Fisher’s information matrices
and its inverses. The linear model differs from that of Canterle and Bayer (2019) in two ways:
(i) It only uses one parametric link function and (ii) It is indexed by a precision (not dispersion)
parameter that assumes values in R (not in the standard unit interval). We restrict the use of
the parametric link function to the mean submodel because our chief interest involves small
sample inferences, and using two parametric link functions may cause numerical instability in
the parameter estimation process when the number of data points is small. Additionally, we use
the same parameterization as in the beta regression formulation (FERRARI; CRIBARI-NETO,
2004), and hence the model is indexed by a positive-valued precision parameter. That way,
empirical results obtained with the model can be more readily compared to those that have been
already obtained using the standard beta regression model. It is also more common to index
regression models by a precision or dispersion parameter that is positive-valued rather than by a
parameter that assumes values in a double limited interval.

The parametric link function used in the mean submodel has two novel features that
are noteworthy. The first novel feature is that it allows the link function used to model mean
effects to be estimated from the data. The response and covariate values will thus determine
the shape of the function that relates the mean of the dependent variable to the linear predictor,

including the degree of asymmetry (if any) of such a relationship. There is typically no or very
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little information on the link function that relates the response mean to the corresponding linear
predictor and an incorrect choice may render the model misspecified. For instance, the use of a
symmetric link function when the true relationship between the mean and the predictor shows
asymmetry may impact statistical inferences and predictions. A way to circumvent that problem
is to define a data-driven link function that can be symmetric or asymmetric. This is the approach
we shall pursue. The second novel feature of the parameter-indexed link function we use is that
it includes the logit link function, which is most commonly used function in applications, as a
particular case. It is then possible to test whether the link function is logit by performing a test
on the parameter that indexes the parametric link function. We derive a score test statistic that
can be used to that end. We note that the use of parametric link functions in generalized linear
models (MCCULLAGH; NELDER, 1989) was initially investigated by Pregibon (1980) and
further advanced by Czado (1992) and Czado (1997). Colosimo, Chalita and Demétrio (2000)
derived score test statistics using a data-driven link function for grouped survival applications.
More recently, Dehbi, Cortina-Borja and Geraci (2016) modeled student performance assessment
using quantile regression with parametric link families.

Our second goal relates to testing inferences. In order to achieve accurate testing inferences
in small samples, we derive two improved likelihood ratio test statistics using general results
obtained by Skovgaard (2001). They can be used to test restrictions on the parameters that
index the two submodels of the varying precision beta regression model with parametric link
function. We also derive a score test statistic to test that the mean link function is logit in our
models. Our Monte Carlo results evidence shows that the corrected tests typically outperform
the standard likelihood ratio test when the number of observations is small, i.e., they tend to be
less size-distorted. For example, in one of the configurations and based on 30 data points, the
size distortion (difference between exact and nominal sizes) of the likelihood ratio test at the
10% significance level exceeded 15% (i.e., its estimated size exceeded 25%) whereas the size
distortions of the two tests we develop in this paper were —1% and 1.5%. These numerical results
show the usefulness of the two improved tests.

In addition to Monte Carlo evidence, we present and discuss two empirical applications.
In both of them, superior model fit is achieved by letting the relationship between the mean
response and the corresponding linear predictor be data-driven. Our second application uses
data on the data on the prevalence of religious disbelievers and average intelligence in 124
countries. Using such data, Cribari-Neto and Souza (2013) computed a measure of impact of

intelligence on atheism. The estimated impact was displayed as a function of average intelligence
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and showed a bell-curve relationship: the impact strengthens as average intelligence grows, peaks,
and then weakens. By using a parametric mean link function we were able to uncover an existing
asymmetry regarding the rates at which the impact strengthens and weakens prior and after

peaking, respectively. In particular, we show that the impact weakens at a slower rate.

1.2 THESIS ORGANIZATION

The thesis is structured as follows. Chapter 2 presents the linear and nonlinear varying
precision beta regression models with parametric mean link function. In Chapter 3 we derive
two adjusted likelihood ratio test statistics, and for the particular case of testing whether the link
function is logit we also derive the score test statistic for use with our models. Chapter 4 contains
Monte Carlo simulation evidence on the small sample behavior of the modified tests and of the
likelihood ratio test. We also provide evidence on the small sample behavior of a score test. In
Chapter 5 we present and discuss two empirical applications. Finally, some concluding remarks
are offered in Chapter 6. The Appendix contains the computer code used in the first empirical

application.

1.3 COMPUTING PLATFORMS

The Monte Carlo simulations and empirical applications were carried out using the Ox
matrix programming language (version 8.02) for the Linux operating system; see Doornik (2009)
for details. All figures presented in this thesis were produced using the R statistical computing

environment (R Core Team, 2018). This master’s thesis was typeset using I&TEX.
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2 BETA REGRESSION MODELS WITH PARAMETRIC MEAN LINK FUNCTION

The beta law is commonly used with data that are restricted to the standard unit interval.
Its density can assume a wide variety of shapes as the values of the parameters that index the
law vary. In particular, it can be asymmetric (to the right or to the left), symmetric, J-shaped,
inverted J-shaped, U-shaped, and uniform. An alternative parameterization of the beta law was
considered by Ferrari and Cribari-Neto (2004) in which the beta density is indexed by a location

(u) and a precision (¢) parameter. The authors wrote the beta density as

I'(¢) - _)ée
b(y; ps ) = K=l —y) ==l g 1, 2.1
(s 11, 9) TGO -9)° (I-y) <y< 2.1

where 0 < u < 1, ¢ > 0, and I'(+) is the gamma function. The distribution mean is u and the

variance is [u(1 — u)]/(1 + ¢). We shall denote the beta law based on such a parameterization as

B(u,¢).

2.1 LINEAR VARYING PRECISION BETA MODEL WITH PARAMETRIC MEAN LINK
FUNCTION

Let yy,...,y, be a set of independent random variables such that y, ~ B(u;, ¢;),t = 1,...,n.

The linear varying precision beta regression model with parametric mean link function is given

by
p
8 )= D xii =, (2.2)
i=1
q
W) =) i =1 (2.3)
j=1

where B = (B1,....8,)T € R” and ¥ = (y1,...,74)" € R? are unknown parameters vectors (p +
g+1=k<n),n=0n1,-...,mn)" and n, = (M21,-..,1m2,)" being the mean and precision linear
predictor vectors, respectively. Here, g(-,-) and A(-) are link functions that are strictly monotonic
in the first argument and twice differentiable (the former in both arguments) such that g :
(0,1) X (0,00) = R and & : (0,00) — R. The regression structures for u, and ¢, can then be

expressed as
pe =87 (1, ), (2.4)
¢ =h""(20). (2.5)

Common choices for the precision link function are log and square root, i.e., h(¢;) = log(¢,) and

h(¢;) = V¢, respectively.
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This model differs from the beta regression that is commonly used in the literature because
we consider a mean link function (g) that includes a parameter to be estimated from the data. In
particular, as in Canterle and Bayer (2019), we consider the asymmetric Aranda-Ordaz (AO) link

function which is given by (ARANDA-ORDAZ, 1981)

1—u) =1
g(us,A) = log (%) , (2.6)
where A > 0. The inverse mean link function is
g mnd) =1-(1+2em)™ /4, 2.7)

A noteworthy advantage of the AO family of link functions is that it includes two well
known link functions as particular cases: (i) the logit link follows from setting 4 = 1, and (ii)
the complementary loglog (cloglog) link is obtained by letting 4 — 0. Additionally, the family
includes asymmetric link functions that can capture existing asymmetries in the relationship
between the mean response and the corresponding linear predictor. Figure 1 shows the relationship
between 1 and u for different values of A. Notice that the convergence of u to one as 77 increases
happens at progressively slower paces as A increases. The estimated parametric mean link
accommodates the convergence rate and the corresponding degree of asymmetry that are best

suited to the data at hand.

Figure 1 — AO link function for different values of A.
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Source: Author (2020)

We shall now develop statistical inference for the linear varying precision beta regression

model with parametric mean link function. In particular, we shall present the model log-likelihood
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function and obtain the corresponding score function, and Fisher’s information matrix. The
inverse information matrix will also be presented in closed-form.
Let=(B",y",A)" be the beta regression parameter vector. The log-likelihood function

of @ based on n independent observations is

0(6) = th(/-lta¢l), (2.8)
=1
where

Ci(us, @) =1log'(¢) —logI'(u;¢r) —log T((1 = pr)r) + (e — 1) 1og ys + [(1 = )y (2.9)
— 1]log(1 - y,),

with y; and ¢, being given in (2.4) and (2.5), respectively.
By letting y; = log(y;/(1-y:)) and y: = log(1 —y;), it is possible to write the above

log-likelihood function as

Ci(ur, ¢r) = logl'(¢y) —log I'(pr) —1og (1 — pr)bs) + (1 by — 1))’; + (¢ — Z)Y: (2.10)

We note that the moments of y* and y' are easily obtained. It can be shown that u = E(y;) =
(i) = (1 =)o), 1] = BT = w((1 = ) g) = (), vy = Var(y)) = o' (i) +¢'(1 -
pn), vf = Var(y)) = ¢/ (1= u)g) =9/ (¢0), and ¢ = cov(y7,y!) = —0/(1 - u)¢), where ¥
and ¢’ denote the digamma and trigamma functions, respectively.

The model log-likelihood function can be expressed in matrix form as (FERRARI;
PINHEIRO, 2011)

«8)=[(y* - ) (@M -1,)+(y —pu" ) (@-21,)+b" |1, (2.11)

where y* = (v5,. .,y T 1= (W) ¥ = Oy T = ()T, @ = diag (4,
e 0n), M = diag(uy,...,u,), I, is the n X n identity matrix, ¢ denotes a n-dimensional vector
of 1’s, and b = (by,...,b,)", with b, =log'(¢;) —log T'(t;¢;) —log T((1 — i) pr) + 16 (e — 1) +
,u:(gb, —2). Maximum likelihood estimates can be obtained by numerically maximizing (2.11)
with respect to 8 using a Newton or quasi-Newton algorithm. Notice that A is estimated jointly
with B8 and y.

We shall now obtain the score function by differentiating the log-likelihood function in
(2.8) with respect to each component of §. Fori =1,...,pand j = 1,...,q, we obtain

0¢(0) _ 0t (s, d1) :Zn: {(%t(ﬂz,fpt) Oy a’]lt}
0B B Oy oni; 0B ’

Up,(8) = (2.12)

t=1
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o)  ot(us,¢r) C {5€t(ﬂz,¢t) ¢, 67721‘}
U,.(0)= = = 2.13
% (@) dyj dv; — O¢:  Omy Oy 1)
55(0) Ol (s, ér) _ C aft(ﬂz,fﬁt)%
Ux(8) = —~ o _;{—W, : ﬂ} (2.14)
0€t(/lt,¢t) _ ok afz(#t,@) _ ok T 6/lt 1 8¢t
where o G0y — ), — o ey = )+ (f = ), o e o
1 ope 1 1 log(l+e™) =12 Ome _ ono;
(g, 04 Pr=7 [e—mz+/l A ](1 +Aem) T P X, and oy - A
Therefore,
At (uy, - .
t(aLi@) :Z{qﬁ,(yt 4r) e )X,,-}, (2.15)
aft(ﬂt,(ﬁt)
R Z; {[,ut(y, K+ O =) 3 (Mzz,} (2.16)
0t (s,
t(" 1) Z {667 = 1)pi} (2.17)
p _0g(un, ) A1 — py)"4*D , _ Oh(¢y)
where g’(uy,A) = R TE and h'(¢;) = 96,

The score function is U = U(0) = (Uﬂ(O)T,U,,(G)T,UA(B))T. It can be expressed in

matrix form as follows

Ug(6) = XTOT(y" — "), (2.18)
Uy(8)=ZTH[M(y" —p)+(y"— )], (2.19)
Ux6)=pTO(y" ~ "), (2.20)

where X is the n X p matrix of mean covariates whose the tth row is x;, Z is the nx ¢

1 1
matrix of precision covariates whose rth row is z;, T = diag .. H =

g () g ()

1 1
diag( e, ),andp:(pl,...,pn)T.
h(g1)  h(¢n)
The maximum likelihood estimators (MLE) of the parameters that index the beta regression

model with parametric mean link function solve

Us(8) =0
U, =0 (2.21)
U,e) =0,

where 0 denotes a column-vector of zeros of the appropriate dimension. Since the above system of
equations does not have a closed-form solution, maximum likelihood estimation can be performed

by numerically maximizing the log-likelihood function using a nonlinear optimization algorithm.
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The Hessian matrix is obtained by taking the second order derivatives of (2.8) with respect

to the components of 6. For i,r = 1,...,p, we have

025(9) :an{azft(/lt,fﬁt)}
0piop, | 9piosr )

EM: Ebllﬂ: i M

[5& His®r) Oty é’mr]}
0B, oy Oy 9B

lafz(ﬂz,(bt) aﬂt] Oy 0Ny a771r}
My ous  Om | Oy 0B, OB

0
[ ft(,ut,fﬁt) oyin + 0 (s, b1) aZ,Ut ] Oy 0Ny 0771t}
o> ony our O Oue | Oy 0B, 0B

>l
iz
|

0%¢ , 52 amw 92 A
where M = _¢t Ul* and Hi — 8 (,l.l[ 1, with 8”(#1,/1) — g(/,l; ) —
o O g (1) ou;

A=(1-p)'A(1+2)
(e = D2[(1 = )t = 1]2

(925(0) _ n {[_ ) *( 1 ) . (_g”(u,,/l))]( 1 ) }
aﬁiaﬂr_; i, g—’(,u,,/l) + ¢y — 1) 2 ()2 2 (i) XerXti ( -

Additionally, fori =1,...,pand j = 1,...,g, we obtain

3%6(0)
0Bidy; tz

. Therefore,

32&(#%@)}
aﬁza')’] ’

0 [afz(/vlt,(ﬁz) Oy a7711]}
Ouy 0y 0P

|
|
{ _62&(#:,@)] Ot amz}’
|
|

Opdyj | Oni OB

(aft(ﬂt,(ﬁt)) 0¢; a772t] Oy a’]lt}
|96, oy o 0B )’

azft(ﬂr,@) 0¢; (9772t] oy anlt}
Ou0¢;  0my 67’j

ony 0y,

on; 0B

0% (ps, b1
Ou0¢,

= [0 -amer 1] (5 o (i o
aﬁiayfz |07 =)= o+ w(@0) N\ g (unty)

t=1

where =(yf = 1) — (v + ch). Hence,

Also,

625(0) _ i {azft(ﬂta@)}
ABid ApioA |’
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{ [a&(ut,qx) e 6%”
A oy Oy, 0B |)°

{lazft(#ta(l’t)% O s + aft(ﬂz,@)i ( T )] 577”}

I
-
i Ms i
N

oz 04 oy, Ope 04\ ]| 0B
9 (o Me(1 + 1Mty 2%
where a1 (Wﬂ;) =w; = e +/l§ ) [(—/le””(l+/l)+(1+/le’7“)log(1 +/1€’7“)]. There-
fore,

0%0(0) < 1 ‘ 1
8,3,-6/1_;{[ #iv ’p’( (ki )) #lr - )ﬁ(g(ur,ﬂ))] }

Similarly, for j,g = 1,...,q, we have

825(9) :an{azfz(/lt,@)}
Oyjdyy, 4 6Yj07g ’
n

[6€t(ﬂta¢t) 0¢; 5772t]}
= 1 Ovgl 0 Omu Oy; 1)

g { 0 [aft(ﬂt,@) a¢t] 0¢; 0Ny a7721}

o 0¢; oo | Oy (9)/g 5)/]'

0
[ 51(#ta¢t) O, + agt(ﬂt,(ﬁt) (92¢z ] (9¢t a7721 aan}
a¢? Oy ¢ Onudd; | Ony Oy, 0y

t=1

t=1

(11, 91) .y ¢ _ (91 nigy < )
where# = —uv; —Zy,ctT—vT and (9772t5l</>z :—h/(@;z, with 1”7 (¢;) = tt Hence,
0%0(0) < 2 G o0 1 o et Y (L A(80)
9y;074 _;{[(_“’V’ ~2e =) (h'<¢t>)+(“’(y’ ~)+ 0 =) (‘h’(@)z)]

1
8 (h’(@)) e }
Also,

825(0)_ (0% (s 1)
dyjod L\ dy;od |

Z{ [(%’z(/lzﬂﬁt) 0¢: (9772t]}
d¢: ’

oy 0y

Z {3 (e, @) Oy Oy 6772t}

— OpOu; A Oy 0y

%, (s, by) _ %, (s, 1)
0¢:0 O 0¢;

825(0) _ - * * * T 1
(9'}@6/1 = Z{[(yl _:ut)_¢l(/-1tvt +Ct )] Pr (m) th}.

t=1

where

. Therefore,
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Finally,
325(0) _ i azfz(lhﬂﬁz)
012 — 012 ’
_ Zn: i Ol (s, ¢r) %
P 01 ou,  0a))’
_ - {82€t(ﬂt’¢l‘) % oy + Ot (11, ¢1) 52/1}
el G/ T 2 X oy 0A%)’
where
A 1, (1+ /le’“f)‘%‘2
YT AT e— [(1+2eM)log(1+ 2™ )(2A(1+ €™ (1+2)) — (1 + 2e™)

xlog(1 + ™)) — A2 (34 +1)e™ +2)].

Hence,

9*0(0) _ \ ‘ N T
912 ; {_¢tzvtplpt + (v — 1y W} :

The negative Hessian is the observed information matrix. It can be written in matrix form

as
Jop Jpy Jpa
J=JO)=| Jop Jyy Jon |
Jap Jay Jaw
where Jigg) = XT[®TV* + STXY* = M*)|T®X, Jigy) = J], 5 = XTI = M) - D(MV* +

OITHZ, Jgay = I o = XT[OV'Tp—DY* = MW, Jiyy) = ZT{HM?*V* +2MC + V') +

(18)
[M(Y* - M*)+ (YT = MOH?QYHZ, Jyay=J"  =-ZT[(Y*— M*)- OMV* + C)]|Hp, and

y) —
Jap = [@*V*p? —d(Y* — M*)o]"1. Here, Y* = diag(y},....y;), ¥ = diag(yj,...,y;), M* =
diag(s},. ... 1), M= diag(,u;r,. D), VE= diag(v},...,v}), vi= diag(vi',. LU, C= diag(cTT,
...,c;f), S =diag(g”(u1,A),...,8" (un,A)), Q = diag(h”(¢1),...,h"(¢,)), w = (wy,...,w,) 7, and

o=(01,---,0n)".

o6 (s, Ol (s,
Since E (M) =F (%) = 0, Fisher’s information matrix is given by
t

O

Kpp Kpy Kepa
K=K@O)=| Kyp Koy Kow | (2.22)

Kap Koy Ko

where Kigg) = X OV T?X, K(gy) = K[ 5 = XTOMV*+C)THZ, Kig ) = K[, g = XTO*V'Tp,

Koy =Z HM*V*+2MC+VHZ, Ky ) =K = ZTO(MV*+C)Hp, and K3 1) = pT D*V*p.
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In large samples and under the usual regularity conditions for maximum likelihood

estimation, we have

e )
=

~Ne| |y KT
A

PR

approximately, where B, 9, and A are the MLEs of 8, 9, and A, respectively, N} denoting the
k-variate normal distribution. In what follows, we shall use a result on inverses of partitioned
matrices given by Rao (1973, p. 33) to obtain a closed-form expression for K~!'. Such a matrix
is useful, for instance, for computing asymptotic standard errors for the point estimates.

Consider the symmetric matrix given by

lgp 1y
I=1(By)= 7.

Iyp) liyy

where (g g) = Kgg), I(8y) = K(gy)» liyp) = K(y,8), and Iy 5) = K(y). We denote its inverse as

188 [BY)

r'=r'py)=
B.y) JvB)  [(vy)

It can be shown that

. XTOMV*+C)THZZTHTTT(MV*+C)T®T X(XT®>V*T2X)!
w

2

B) _ 2y 72 -1
188 = (xT?v'1?X)7! |1,

withw=ZTHM?*V*+2MC+V)HZ-ZTH' TT(MV*+C)T®dTX(XTO?V*T?X) ' XTO(MV* +
C)THZ, I, denoting the p X p identity matrix. Additionally,

TH2v*T2v\-1vT *
I(B,,y) _ (1(7»3))1— _ _(X o-V*T X) X (D(MV +C)THZ and 1(7’7) _ a)_l.

w
We obtain
KBB gBy kB
K'=k'@)=| kB kv gy | (2.23)
KB gy g
where

KBB) = [BB) L QIIBAXTO?V*Tp+ IBY) ZTO(MV* + C)Hp]
X[p TT (V) (@) XI®P + pT HT (MV* +C)TdT ZI7#),

KY) = [0V L QIYBPXT OV Tp+ 17 2T D(MV* + C)Hp]
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X[p TT(VHT(®)TXIBY + pTHT(MV* +C) 0T ZI"Y],
KB = (KYNT = [BY) L QIBPXTO*V*Tp+ 1BV ZTOMV* + C)Hp]
X[pTTT(V)T (@) XIBY + pTHT(MV* +C)T®T 21",
KBV = (KPYT = _Q[IBAXTO* V' Tp+ 1BV ZTD(MV* + C)Hp),
KV = (KANT = _QUIPPXTD*V*Tp+ 1Y ZTd(MV* + C)Hp),

KM =Q,
with

Q={p O*Vp-[p T (V) () XIPAXTO’V*'Tp+p H (MV*
+O)OTZIYAXTONV Tp+p TT(VH)T (D) XIBY ZTD(MV* +C)Hp

+p H (MV* +C)TOTZI"ZTd(MV* + C)Hp]} .

2.2 NONLINEAR VARYING PRECISION BETA MODEL WITH PARAMETRIC MEAN
LINK FUNCTION

Let yi,...,y, be a set of n independent random variables each following the beta law
given in (2.1). The nonlinear beta regression model with parametric mean link function is given

by

g(und) = fi(x].B) =nu,

k() = fo(z/),y) =,

where B =(Bi,....8,)" € R andy = (y1,...,74)" € R? are unknown parameters vectors of di-
mensions p X 1 and g X 1, respectively. The mean and precision nonlinear predictor vectors are, re-
spectively, 9y = (711,....101,) " and 19y = (21, .., 720) T, X = (X¢1,. . ., Xep,) a0 2] = (241, -, Z1gy)
being the covariates vectors, t = 1,...,n, p; < p and q; < g, with p+ g+ 1 < n. Here, fi(-,-) and
f>(-,-) are differentiable and continuous functions, g(-,-) and A(-) being defined as in the linear

0 0
case. Also, we assume I _ =X and Ire _ = Z, in which X and Z have full column, rank p and

B dy
g, respectively.
Taking the first order derivatives of the log-likelihood function in (2.11) with respect to

each component of 8, we obtain the score vector, which is given in matrix form by

Up(0) = XTOT(y" — u*),

Uy(0)=Z H[M(y —p)+( -p")],
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Ui6)=p " O(y" - p").
The elements of the Hessian matrix are
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0Biop, S| 0piopr )

0 [06(uds) Oy 8771t]}
0B-|  Ou Oy 0B ])

0 —3&(/&,@) a#t]anlt+a€l(ﬂl7¢t) oy 0 [ﬁmt]}
g, | O Omii| 0B; oy O 0B | 0Bi |)°

i >a€t(/~lt,¢1) aﬂt] Oy O Oy + 0l (i dr) Oy azﬂlt }
ous | Ope  Omy | Oy 0B OB o O BBy’

~
I
—_
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55t(llt,¢t) ¢, azﬂzt

t=1

The observed information matrix then is given by

Jsp Jpy Jpa
J=JO)=| Jop Jyy o

Jap Jay Jaw

b

A

0 040

) Xtr Xti

j

_ Z {[5 Ci(us, @) 0, 4 o0t (11, ¢1) 52¢z ] Opy O Oy
g o> Ony 0¢r  Ondéy | Ona; Oyg Oy
9*(6) _ [ (i)
dy;od B E{ dy;j0a }’
_ Zn:{ [0ft(/~lt,¢t) 0, (9772t]}
P o¢;  Ony 87]
_ an {3 4 ,ut’¢t) 8#: ¢, a772t}
B e 8(15;3,(1; (9/1 87721 871
0%6(0) B 5 (026 (1 )
FY ;{ A2 }
_ i { aft(ﬂta@) a,ut }
B - C op  aall’
_ Zn: 9? G 1) % oy + ot (s, d1) 02#}
AR AL Opr 0%
Therefore,
n~ 241 (m) oo - (-S|
X Z I ) AUl W) | | ey
% * 1 azﬂlt
o= ) (g'(/lt,/l)) 0BidB; }’
B~ (o ==t e (55 o o
O <[ (1 i) (e ] }
3B _;{[_W’) t(g'(#z,/l))+¢t(y o t)a/l(g/(ﬂz,/l)) i
9%t(0) < 5 P 1 . + g
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(9’)/j0/1 - ; {[(yt _ﬂt)_¢t(ﬂtvt +Ct )] Pt (M) Zl_/}’
0%t(0) < 92
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]
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where Jig gy = XT[OTV* + ST>(Y* = M)|TOX +[(y* — 1*) TOT][X], Jgy) = Jop=—XTIY" -
M*)~®MV* +OITHZ, Jigp)=J ) g = =XT[O*V* Tp-OY*—M*)W], Jiyyy = Z {HM?*V* +
2MC+ V) +[MY* = M*)+ (YT = M) H*QYHZ +[(y* — )™M+ (y" = p" ) THI[Z], Jyy =
=-ZT[(Y*—=M*)-D(MV* +C)|Hp, and J 1 1) = [O*V*p? = D(Y* — M*)p] 1. Here, ][]

(ﬂ y)
represents the bracket product between a matrix and an array as defined in Wei (1998, p. 188),
P Pmi s
and =Xa = Z are arrays of dimensions n X p X p and n X g X ¢, respectively.
aﬁi algr 67] ayu
’ 0€ ’
Since IE( té’ut ¢) ) ( tg:; ¢) ) 0, Fisher’s information matrix is given by
Mt t

Kpp Kpy Kepa
K=K(0)=| Kyp Kyy Ko |

Kap Koy Koo

where K(gg)= X O°V'T?X, K(gy) = K, 5 =X OMV* +OTHZ K gy = K, 5 =X T®*V'Tp,
Kiyy)=ZTHM*V*+2MC+V)HZ, Ky =K, = ZTOMV*+C)Hp, and K(1 1) = pT @*V*p.
It can be shown that the formulas for the score vector and Fisher’s information matrix for
the nonlinear case are equal to those obtained in the linear case after we replace X and Z with X
and Z, respectively. Therefore, Fisher’s information inverse matrix for the nonlinear varying
precision beta regression model with parametric mean link function is equal to that in (2.23),

with X and Z replaced by X and Z, respectively.
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3 IMPROVED LIKELIHOOD TESTING INFERENCES

In this chapter, we shall develop improved likelihood testing inference for the linear and
nonlinear varying precision beta regression models with parametric mean link function. Our goal
is to obtain testing criteria that can be used to achieve good control of the type I error probability

when the number of observations is small.

3.1 THE LIKELIHOOD RATIO TEST

Let@=(v",6")", wherev=(vy,...,v;)T and 6 = (1,...,05) " are the parameter of interest
and the nuisance parameter, respectively. Notice that [ +s = p+ g + 1. Our interest lies in testing
Hy : v = vg against H, : v # v, where v is a given [-vector. Let § = (f/T,gT)T and 6 = (vg,ST)T
be the unrestricted and restricted maximum likelihood estimators of 8, respectively. The likelihood

test statistic is
w = 2[€(9,6) - (vy,6)].

In large samples and under Hy, w is approximated distributed as )(12 (PAWITAN, 2001, Chapter
9). The test is then carried out using critical values obtained from such a limiting null distribution

and, as result, size distortions are likely to occur when the sample size is small.

3.2 SKOVGAARD’S ADJUSTMENTS FOR THE LIKELIHOOD RATIO TEST STATISTIC

A variant of the likelihood test statistic designed to deliver more accurate inferences in
finite samples was developed by Skovgaard (2001) building upon previous results obtained by
Barndorff-Nielsen (1986), Barndorff-Nielsen (1991). It is given by

w* =w—2log(¢).
An alternative modified test statistic is given by
ok —1 2
wr=w [1 -w log(f)] .

An advantage of the latter is that it is always non-negative. Here,

_ (RIRIseDV?> (@ TT'RITIRTOY
ITIET-1TK1T)s6]1/2 w21 v-1g

b

where hat and tilde denote, respectively, evaluation at the unrestricted and restricted maximum

likelihood estimators. Here, J is the observed information matrix, K is Fisher’s information, U
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is the score vector, and Jss denotes the s X s observed information matrix corresponding to 6.
Likewise, the subscript 8,6 when applied to a matrix indicates its block relative to 6. Additionally,

g is an [ + s column vector and Y is an (I + s) X (/ + s) matrix which come, respectively, from
q=TFeq, [U61)(¢(1)-€(9)] and T =T, [UB)UT(6)]

by replacing 8; with 8 and @ with 8 after expected values are computed.

The two modified test statistics are invariant under reparametrizations of the form (v,8)
(v,¢(v,0)) and the null distributions of w* and w** converge to Xlz as n — oo. For further details,
see Skovgaard (2001).

Our interest lies in obtaining the quantities that define the two modified likelihood ratio
test statistics in the context of the varying precision beta regression model with parametric
mean link function and write them in matrix form that can be easily numerically computed by
practitioners. In what follows, we provide details on the derivation of the corrected likelihood
test statistics for that class of models.

In the linear case, observe that g is obtained from

g, [Up(61)((61)] — g, [Up(81)¢(6)]
q =Eq,[U(61)(€(61)—£(0))] = | Eg,[U,(61)t(01)]-Eg,[U,(61)((0)]
g, [UA(01)((81)] - Eg, [U1(61)€(6)]

From (2.11) and (2.18) we have
Eg[Ugs(8)((0)] = Eg {X OT (y* — u)[(y* — ") (@M - 1)+ (y" - ") (@-2D)+ b 11}
= XTOT{Eo[(y* — u)(y* - ") I @M - 1) + Eg[(y" — p*)(y" — ")
X(©—-21)+Eg[(y" — )b 1
= XTOT {V*(®M - 1)+ C(®-21)}1.

For all # # u, y; and y, are independent, and [y, (y; — ,uf(l)) = 0. Therefore, Eg, [(y; — ,uf(l))(y;k -
« « #(1 % * % *(1 * #(1 * #(1 *(1
)] =0 and Eq, [(7 = ;)07 = 1)) = B, [(5F = 1507 = ;)] + B [0 = ™)™ -

w)] = Eq, [(yi - ,uf(l))z] =v, () Evaluation at 6, is indicated by the superscript *(1)’.

After some algebra, we obtain
Ee,[Us(61)((8)] = X ToNTW VD (@M — 1)+ V(@ -2D .
Thus,

Eo,[Ug(61)((81)] - Eg, [Ug(81)¢(8)] = X T dDTW{v* D@V pr™) — 1y + cW(@) - 21) 14
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- xToWTWIV D @wpm - 1)+ V(@ -2Dh
= XTOOTO Ly O@D D — @) + D@D

— D)}

Using Equations (2.11) and (2.19), we obtain

Eo[U,(0)((0)] = Eg {ZTH[M(y* — ")+ (y" = u)I[(y* - ) (@M - D)+ (y" - ") (@
—20) +b" 1}
= ZTH{ME[(y* - u*)(y" = ") I @M — 1)+ MEg[(y" — p")(y" — ") T)(®
=20 +Eo[(y" - " )(y* — ") N@M - D)+ Eg[(y" — ")y - H) N @-2D}a
=ZTH{MV*(®M - 1)+ MC(®-21)+ C(®M - )+ V' (®-2D)}1

=ZTH{(MV*+C) (@M —-I)+(MC+V')(®-2D)}1.

Hence,

Eo, [Uy(61)£(81)] - o, [Uy(61)£(0)] = Z" HV{(M VvV + ¢y @M 1)
+(MVe +viy@W - 21}
— ZTHO{MOV*D 4 Oy oM - 1)+ (MDD
+Viy@-2nh
= ZTHO MOV 1+ cOy @D M D - D)

+ MV + vy x (@D — o).
Similarly, from (2.11) and (2.20) it follows that
Eo[UA(6)((8)] = Eg{p" ®(y" ~ p")(y" — ) (@M ~ 1)+ (y" = p") (@ ~201) + b 11}

=p O{Eq[(y" — p*)(y" — ") UPM - )+ Eo[(y* — ")y — ") T I(@-2D) }a
=p o{V*(@M-1)+C(@-2Dh.

Thus,
Eg,[U1(61)0(81)] - Eg,[U1(81)(8)] = p" VoW {v D@Dy - 1)+ cV@V -2n}

—-p Vo v W@opM -1+ cV(@-2n}h

- pT(l)q)(l){V*(l)(q)(l)M(l) —oM)+ V(@D - q))}l.
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We shall now move to the derivation of T, which is obtained from
Eg, [Up(01)U4(8)] Eq,[Ug(81)U,(8)] Eq,[Ug(681)U(8)]

T=| Eq,[Uy(81)Ug(0)] Eg,[Uy(61)Uy(8)] Eg,[Uy(61)U; ()]
Ee, [Ur(61)U4(8)] Eg,[Ur(81)U(8)] Eg,[U(61)U,(0)]

From Equations (2.18), (2.19), and (2.20) we obtain

Eo,[Up(01)U(0)] = Eg, { X TONTV(y* — D) [XTOT (y* - )]}
= Eq, [XTOVT(y — D) (y* — ) TOX]
=X QTR [(y* -~ ' D)y* ) TITOX
= xToWTWy-Orex,

Eo, [Up(81)U5(8)] = Eg, {XT@VTW(y* — M) [ZTH[M(y* — ) + (y" - u")]] '}
= B, [XTOWTW(y* = ) [(y" - ") M+ (y" - p")T|HZ]
= XTOWTWE, [(y* - )|y =) M +(y" - )| |HZ
= XTOWTWE,, [(y* - ') y* - ) M+ (y* - D)(y" - p")T|HZ
=xToWTW v Wy + ¢ HZ,
Eg, [Ug(01)U}(8)] = Eg, {XT0NTV(y* - W) [pTd(y" - )] "}
= Eq, [XT0VTO(y" — D) (y* — )T 0p]
= XTOUTVE,, [(v" — D)y~ ") 0p
_ X"y g,

Eg, [Uy(00)U5(0)] = B {ZTHO [MD(y" — )+ (" = D) [XTOT (y* - )] '}
=g, [ZTHV [MO(y* = D) + (" = ") (" - )" TOX]
= Z"HVEy, [[MD(y* - D) + (" = ") (" = ") 7| TOX
= ZTHVEg, [MD(y* - D)y =)+ (" = " D)y — )T T DX
=ZTH MOV D+ cOTX,

o, [Uy(01)U(0)] = Eg, {ZTHO[MD(y* — D)+ (v = " )][ZTHM (y" — ) + (" = )]}
=Bg, [ZTHOIMD(y* — D)+ (y" = g D" =) M+ (y" - ") T1HZ]
= ZTH OBy [[MV(y" = )+ (6" = "Dy =) ™M + (3 = ) TNIHZ
= Z"HVEg, [MD(y* - D) (y* =) M+ MD(y* = D) (y" - )T
+ O = ) )M+ (T - ) - i) TIHZ

=ZTH MOV DOy + (MDD + M)cV + ViDL HZ,
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Eo, [Uy(60)U(6)] = o, {Z"HV MV (y" — i) + (3" - '] [pT 0 (y" - )] '}
=B, [ZTHO[MD(y* - D) + (y" = " )] (" — ") T 0p]
= ZTHVEg, [[MD(y* - )+ (y" = ™) (" — )| @p
= ZTHVE, [MD(y* - D)y =)+ (" = " D)y — )| 0p
_ 2 HO MOV L c Do,

g, [UA(00)U5(0)] =Eo, {p" V0V (y" - ) [ XTOT(y* - p*)] '}
= Eg, [p" VoV (y* — g V) (y* - p")TTOX]|
= p"VOWVEy, [(y* - )y - )T TOX
_ pT My rgy,

Eo, [U2(80)U5(8)] = Eg, {p™ V0V (y* — M) [ ZTH[M(y" — )+ (»" - )] ] "}
=g, [p" N0V (y - ) [y - )M +(y" - )T HZ]
= p"VOWVEy, [(y* - ) [y - ) M+ (y" - "] |HZ
= p"WOWEy, [(y* - )" ) M +(y* - )" - ") |HZ
= p ey Oar+ c VY HZ,

Eq,[U2(61)U}(0)] = Eg, {p" V0V (y* — ") p " d(y" — p")]"}
=g, [p" 0V (y* - )y - ) Dp]
= p " VOWE, [(y" - D)(y" - ") | ®p

— pT(l)(D(l)V*(l)CDp.

Finally, by combining the above results we can write g and (" as

XTpW7M) [V*(l)(q)(l)M(l) —OM)+CHO(@D - q))] 1
q=| z7HD [(M(l)v*(l) + C(l))(q)(l)M(l) —OM)+ (M(I)C(l) + VT(I))((D(I) - q))] 1
p M) [V*(l)(q)(l)M(l) —OM)+CH @D - q))] 1

and

where D = XTOWTWOVOTOX, Dy = XTOWTO(V* DM+ D HZ, D3 = XTOWTDYV D p,
Dy = ZTHOMOy )  cOyTox, Ds = ZTHOMDOV D p + (MDY + Myc® + viDHZ,
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Dg = ZTH(l)(M(l)V*(l) + C(l))d)p, D; = pT(l)q)(l)V*(l)Tq)X’ Dg = pT(l)q)(l)(V*(l)M + C(l))HZ,
and Dy = pTM @Dy Dpp.

The above expressions for g and Y hold for models in which the precision is allowed
to vary across observations. When precision is taken to be fixed, i.e., ¢; =--- = ¢, = ¢, some
simplifications take place, namely: the matrix Z becomes a column vector of ones, H reduces to
the identity matrix and ® equals the identity matrix multiplied by ¢. We also note that under
fixed precision Q becomes a matrix of zeros.

In the nonlinear case, g and (" are given by

XTorM [V*(l)((p(l)M(l) —OM)+CHO (@D - (D)] 1
qg=| Z"HWD [(M(I)V*(l) +COY@YMD —dM) + (MDD + yi) (@M - q))] 1
p W) [V*(l)(q)(l)M(l) —OM)+CH (@D - q))] 1

and

D, Dy Ds

D7 Dg Dy

where D; = XTOWTOVOTOX, D, = XTOWTO(V DM+ CDHZ, D3 = XToWTOV D,
Dy =ZTHOMOYvD L cOYTdX, Ds = ZTHO[MDV DM + (MDD + M) + VIOHZ,
Dg = .ZTH(I)(M(UV*(I)+C(1))(I)p, D= pT(l)d)(l)V*(l)T(I)X, Ds :pT(l)(I)(l)(V*(l)M+C(l))HZ,
and Dy = pTM @Dy Dpp,

3.3 RAO’S SCORE TEST

It is noteworthy that it is possible to test whether the mean link function is logit by testing
Hy : A =1 against H; : 2 # 1. This is possible because the logit link beta regression model is a
particular case of our models. The score test (RAO, 1948) is particularly convenient here since
all quantities in its test statistic are evaluated at the restricted maximum likelihood estimator and,
as a consequence, estimation of A is not required.

The general form of the score test statistic is Sg = U(8) K~'(8)U(8), where U(8) is the
score vector and K~'(@) is Fisher’s information inverse matrix, both evaluated at . When the
interest lies in testing Hy : A = 1 in the linear varying precision beta regression model with

parametric link function, the score test statistic can be expressed as

Sg = Up(0Y KVUL(8),
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where

1 _10g(1+e’7“)]}

2+ e~ Mt + el 1+ efite

Ua(8)= ) {@(y:‘ )

r=1

and

k(lﬂ) — {pT(“I')ZV*p _ [iJTTT(V*)T(CT)Z)TXf(B”B)XTCTDZV*Tf)
+pTHT(MV + O)T T ZI DX TR Tp
+p TT(V) (@) XTBYZTd(MV* +C)Hp
+p HT(MV* +CO)TOT I 2T d(mV* + C)Apl} .
Under the null hypothesis and when # is large, Sg is approximately X12 distributed. For the

nonlinear case, the score test statistic remains the same, only replacing X and Z with X and Z,

respectively.



34

4 NUMERICAL RESULTS

In this chapter we shall report the results of several Monte Carlo simulations that were
performed to evaluate the finite sample performances of the likelihood ratio test (w) and of its two
corrected versions (w* and w**) along with results for the score test in linear beta regressions with
parametric mean link function. Since the link function parameter and the precision parameter
are constrained to be positive, log-likelihood maximization was carried out using the sequential
quadratic programming (SQP) nonlinear optimization algorithm with first analytical derivatives
(NOCEDAL; WRIGHT, 2006, Chapter 18). It allows for the specification of linear and non-linear
restrictions through sequential quadratic programming. The algorithm uses a second-order
correction step in which the quasi-Newton formula updates the Hessian approximation in each
iteration. In all numerical experiments, we specified the lower bound of A as 0.001. The same
lower bound was used for ¢ under constant precision. When working with corrections to the
signed likelihood ratio test statistic and in order to avoid numerical instability, Severini (2000, p.
241-244) recommends that the modified test statistics be set equal to the standard test statistic
when the latter is close to zero. We shall proceed similarly: w* and w** are set equal to w
when the latter is < 0.1. The values of all mean covariates were randomly generated from the
standard uniform distribution. Under varying precision, the precision covariates are set equal
to the corresponding mean covariates. The significance levels (@) are 10%, 5%, and 1%. All
results are based on 10,000 Monte Carlo replications and all simulations were performed using

the Ox matrix programming language (DOORNIK, 2009); see <https://www.doornik.com>.

4.1 FIXED PRECISION BETA REGRESSION WITH PARAMETRIC MEAN LINK FUNC-
TION

At the outset, we consider the fixed dispersion precision beta regression model with

parametric link function given by

g, A) = B1 + Poxe2 + B3 X3 + LaXea,

t =1,...,n, where g(y;,1) is the AO link function. We consider three different null hypotheses,
namely: (i) Hy: A =1 (logit link), (ii) Hy : B4 =0, and (iii) Hy : 1 =1, B4 = 0. In the first case,
the parameter values are 5; = —1.5, B = 1.5, B3 =4.0, B4 = —4.0, and A1 = 1. For the second
case, we have g1 =—-1.5, B, = 1.5, 3 =4.0, 4, =0, and A = 0.5. In the third and final case, we
set B1 =—1.5, B =1.5, B3 =4.0, B4 =0, and A = 1. The precision parameter (¢) equals 10 and


https://www.doornik.com
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30, and n € {20,40,60,80}.

The tests null rejection rates (%) are presented in Table 1. First, notice that the likelihood
ratio test is considerably liberal (oversized) when the sample is small. For example, when testing
Ho : B4 =0, for n =20, ¢ = 30, and @ = 10%, its null rejection rate is 16.1%. Second, the two
corrected tests (w* and w**) display better control of the type I error frequency than the standard
likelihood ratio test. Under the same conditions, their null rejection rates are 10.1% (w™) and
10.6% (w™*). Overall, the two variants of the likelihood ratio test perform similarly, w* being
slightly conservative.

We also performed simulations to evaluate the tests powers, i.e., their ability to detect that
the null hypothesis is false. We test Hj : 4 = 1. Data generation is carried out using link parameter
values that are different from one and range from 0.2 to 2.0 in increments of 0.2. The sample size
is n =40 and ¢ = 30. The tests non-null rejection rates (%) can be found in Table 2. As expected,
the tests become more powerful as the true value of 4 moves away from one. Interestingly, the
tests are more powerful when A < 1 than when A > 1. For instance, the tests non-null rejection
rates at the 10% significance level for 4 = 0.4 (1 = 1.6) range from approximately 74% to nearly
77% (from approximately 24% to 30%). We also note that the likelihood ratio test tends to be
slightly more powerful than its two modified version. This advantage stems from the fact that w
is oversized.

Figure 2 contains quantile-quantile (QQ) plots of the three test statistics for testing
Hy: A=1and Hy: B4 =0. The sample sizes are n € {20,40,60}. We plot the exact quantiles of
each test statistic against the asymptotic quantiles. The 45 degree line indicates perfect agreement
between exact and asymptotic quantiles. QQ plots allow us to investigate the quality of the y>
asymptotic approximation at the entire distribution range, and not only at some selected quantiles
(e.g., 0.90, 0.95, and 0.99). It is clear from the plots that the null distributions of w* and w** are
much better approximated by the limiting null distribution than that of w. We also note that the

null distribution of w* is slightly better approximated by its limiting counterpart than that of w**.

4.2 VARYING PRECISION BETA REGRESSION WITH PARAMETRIC MEAN LINK
FUNCTION

We shall now consider varying precision. In particular, we shall use the following model

as the true data generating process:

g(us,A) = B1+ Poxia + Baxiz + Paxia
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Table 1 — Null rejection rates (%), fixed precision.
10% 5% 1%

3k * kok * 3k

o  Hy n w  wow woowowrow owtw

20 155 95 99 90 43 46 24 07 038
40 11.8 96 97 60 44 45 13 08 0.8
60 11.2 99 100 58 50 50 12 08 0.8
80 11.2 105 106 58 55 55 13 12 12

20 158 10.1 106 92 54 60 29 10 13

10 Ba=0 40 130 100 102 7.0 49 51 16 10 1.0
‘- 60 11.3 94 97 62 51 53 13 09 1.0

g0 11.1 100 100 57 48 48 12 1.0 1.0

20 159 121 135 89 62 76 21 08 1.6
40 14.0 108 11.0 7.5 53 54 16 10 1.1

A=1p:=0 60 127 104 106 6.6 5.1 52 13 09 09
g0 11.1 100 100 59 50 50 14 1.1 1.1

20 16.6 105 11.0 100 52 56 3.0 1.0 1.1

1=1 40 122 96 97 68 49 50 19 1.1 1.1

60 124 104 105 64 52 52 15 10 1.0
80 114 101 101 60 52 52 13 1.0 1.0

20 16.1 10.1 106 92 52 56 29 1.1 1.2

30 Ba=0 40 122 98 99 66 51 51 15 10 1.0
‘- 60 113 95 96 60 51 51 14 1.0 1.0

80 114 101 102 60 50 50 13 1.0 1.0

20 182 106 114 107 55 60 29 09 1.2
40 13.8 102 104 74 53 54 18 10 1.1
60 122 99 100 63 48 48 15 1.0 1.0
80 11.6 100 10.1 60 49 49 14 1.0 1.0

Source: Author (2020)

log(é:) = y1+ Y222 + V323 + VaZs4.

The null hypotheses under test are the same as in the previous simulations and also three additional
ones, namely: (i) Hy : y2 = y3 = y4 = 0 (fixed precision), (ii) Hy: A =1,y =y3 =y4 =0, and
(iii) Ho : 1 =1, B4 = y2 = y3 = y4 = 0. We shall refer to (i), (ii), and (iii) as Scenarios 1, 2, and
3, respectively. Notice that in Scenario 1 we test the null hypothesis of fixed precision. The
values of the parameters in the mean submodel are §; = —1.5, > = 1.5, 83 =4.0, and B4 = —4.0.
Additionally, y, = y3 = y4 = 0 and we consider two values for y;, namely: log(10) and log(30).
The sample sizes are n € {30,50,70,90}.

The null rejection rates (%) are presented in Tables 3 (Scenarios 1, 2, and 3) and 4 (null

hypotheses as in the previous set of simulations). Again, the likelihood ratio test is considerably
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Table 2 — Non-null rejection rates (%), fixed precision (¢ = 30) and n = 40.
10% 5%

k 3k k 3k

A w w w w w w

0.2 98.7 985 985 973 96.8 96.8
04 766 743 743 668 635 63.5
0.6 378 350 351 275 245 246
0.8 173 150 150 103 84 85
1.2 151 11.6 11.8 88 62 63
14 240 189 192 151 113 114
1.6 30.1 243 245 204 152 155
1.8 36.8 303 306 258 20.2 205
20 438 36.7 37.2 319 253 256

Source: Author (2020)

liberal and is clearly outperformed by the two modified tests. Consider, for instance, the test of
the null hypothesis that the link function is logit (Hy : A = 1), n = 50, y; = log(10), and & = 5%
(Table 4). The estimated sizes of w, w*, and w** are 9.1%, 5.6%, and 5.9%, respectively. The
likelihood ratio test rejection rate exceeds the significance level by over 80%. The test thus rejects
the true logit link function with excessive frequency. Consider now Scenario 2, n = 30, @ = 10%,
and the largest value of y;. The null rejection rates of w, w*, and w** are 25.6%, 9.0%, and
10.5%, respectively. The null rejection rate of the uncorrected test is over 2.5 times larger than
the significance level. This is a very large size distortion.

We also performed power simulations under varying precision, i.e., simulations in which
the true data generating process differs from that specified in the null hypothesis under evaluation.
The tests non-null rejection rates (%) are displayed in Tables 5 and 6. In both cases, the sample
size is n =70, y; = log(30), and we test Hy : A =1, i.e., we test that the mean link function is
logit. At the outset, we consider a grid of values for the true value of A similar to that used in the
previous set of power simulations (Table 2, fixed precision). Again, the tests are more powerful
for values of A that are smaller than one relative to values of A in excess of one. The unmodified
test again tends to be slightly more powerful than the corrected tests. This is due to its liberal
(oversized) behavior. In the second set of power simulations, we perform data generation using
four well known link functions, namely: loglog, cloglog, Cauchy, and probit. The estimated
powers (%) are presented in Table 6. The tests are very powerful against the loglog link function,
their non-null rejection rates at the 10% significance level exceeding 87%. The tests are also
quite powerful when the true link function is cloglog, their nonnull rejection rates at the 10%

significance level being above 79%. There is also good power against the Cauchy link; here, their
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estimated powers are approximately 73% at the 10% significance level. The powers are, however,
considerably lower when the true mean link function is probit, ranging from 30.6% to 32.4%
when a = 10%. This is understandable since the logit and probit link functions are similar and a
much larger sample size would be required for the tests to be able to reliably distinguish between
them.

Figure 3 contains QQ plots for the test statistics when we test that (i) the mean link function
is logit (one restriction) and (ii) the mean link function is logit and 4 = 0 (two restrictions) in
the varying precision beta regression model. The sample sizes are n € {30,50,70}. It is clear
from these plots that the null distribution of likelihood ratio test is poorly approximated by
the limiting y? distribution in all cases. The exact quantiles of w are considerably larger than
the corresponding y? quantiles and that renders the test to be considerably oversized. The y?
approximation holds much better when applied to the null distributions of w* and w**, especially
the former. The agreement between exact and asymptotic quantiles is very good for both modified
test statistics, especially when n > 50.

Finally, we consider inference based on the score test. The interest lies in testing Hy : 1 =1
(logit link). As noted earlier, the score test is particularly appealing for testing the logit link since
it does not require estimation of A. Table 7 displays the null rejection rates (%) of the score test.
Note that for fixed (varying) precision, with n = 20 (n = 30), and ¢ = 30 (y; = log(30)) the test is
liberal, its estimated size being 14.6% (13.3%) at @ = 10%. When n > 40, the null rejection rates
are close to the nominal levels. For example, when n = 50, @ = 5%, and y; = log(30) (varying
precision), the size distortion is 0.4%. Figure 4 contains QQ plots for the score test statistic (Sg)
and the two modified likelihood ratio test statistics. It is noteworthy that the null distributions
of w* and w** are better approximated by the limiting )(12 distribution than that of the score test
statistic. Inferences based on the modified likelihood ratio tests are thus more accurate than those

based on the score test.



Table 3 — Null rejection rates (%), varying precision; first set of null hypotheses.
10% 5% 1%

* kok k 3k % 3k

Y1 Scenario n w w w woowrw woowrw

30 229 94 106 139 50 58 48 12 1.6
50 154 101 103 85 49 50 24 1.1 12
70 129 94 95 68 48 48 16 10 1.0
9% 125 99 99 64 49 50 13 08 09

30 237 9.0 102 146 49 57 50 1.1 14
log(10) 50 160 9.7 100 89 45 47 22 09 1.0
70 143 103 105 79 52 53 20 10 10
% 126 10.1 102 6.7 50 51 16 1.1 1.1

30 226 87 99 137 47 55 44 15 20
50 163 98 102 93 48 51 23 08 09
70 144 108 11.1 83 56 58 18 12 14
9% 134 103 106 7.5 5.1 52 18 12 1.2

30 249 96 113 160 49 59 57 1.0 12
50 16.8 102 106 9.8 5.1 53 27 10 1.1
70 15.1 104 106 83 52 52 20 1.1 1.1
% 138 106 107 7.6 51 52 20 13 13

30 256 9.0 105 164 47 57 6.0 10 13
log(30) 50 176 95 100 101 47 50 29 10 1.0

2 70 140 96 97 78 48 49 1.7 08 09
9 128 98 99 69 50 51 18 1.1 1.1
30 258 87 98 169 45 53 56 16 19
3 50 166 104 109 9.7 55 58 29 13 1.6

70 141 98 99 77 51 52 20 10 1.0
% 134 10.1 102 74 52 52 20 1.1 1.1

Source: Author (2020)
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Table 4 — Null rejection rates (%), varying precision; second set of null hypotheses.

10%

5%

1%

Y1

Ho

n

w

k

w

*3k

w

w

*

w

ek

*

w

ek

30
50
70
90

30
50
70
90

30
50
70
90

30
50
70
90

30
50
70
90

30
50
70
90

21.4
15.8
13.8
13.0

219
14.8
13.3
13.0

22.5
16.9
14.8
13.9

20.7
15.7
13.1
13.0

20.8
14.6
13.1
12.0

25.3
16.2
14.1
12.9

11.5
11.2
10.4
10.6

14.1
10.2
10.5
10.2

12.9
114
11.1
10.9

12.6
11.3
9.7

10.6

13.7
10.6
10.3
10.0

13.5
10.8
10.0
9.7

13.2
11.5
10.7
10.7

16.2
10.6
10.7
10.4

14.5
11.9
114
11.0

13.8
11.5
9.9

10.7

15.0
10.9
10.4
10.0

15.0
11.1
10.3
9.8

13.5
9.1
7.9
6.9

14.3
8.7
7.2
6.7

13.8
9.8
8.6
7.5

13.2
9.2
7.0
7.1

13.6
8.4
7.5
6.3

16.4
9.2
7.7
7.0

5.8
5.6
53
5.0

8.1
5.6
5.2
5.0

6.8
59
5.6
5.5

7.0
5.8
5.0
5.3

7.6
54
54
4.9

7.4
54
4.9
4.9

6.9
59
54
5.1

9.7
5.8
53
5.0

8.3
6.2
5.7
5.6

7.7
6.0
5.1
54

8.9
5.6
5.5
5.0

8.5
5.5
5.0
5.0

4.4
2.3
22
1.8

5.2
2.8
2.1
1.8

4.4
2.9
2.1
2.0

4.6
2.3
2.0
1.5

4.8
2.3
2.1
L.5

6.0
2.3
1.9
1.8

1.4
1.0
1.0
1.2

2.1
1.3
1.1
1.2

1.5
1.1
1.0
1.4

1.8
1.1
1.1
1.0

2.0
1.2
1.2
1.0

1.9
1.1
0.9
1.0

1.6
1.1
1.1
1.2

3.1
1.4
1.2
1.2

2.3
1.3
1.1
1.4

2.1
1.2
1.1
1.0

2.6
1.3
1.2
1.0

24
1.1
0.9
1.0

Source: Author (2020)
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Table 5 — Non-null rejection rates (%), varying precision, n = 70, and v = log(30); grid
of values for A.

10% 5%

* KK * ek

A w 2 w w w w

02 993 989 989 984 974 974
04 872 826 830 790 728 732
0.6 50.8 446 450 39.6 323 327
0.8 21.7 172 174 134 97 99
1.2 186 152 154 112 85 8.6
14 288 247 248 192 154 15.6
1.6 40.2 359 36.1 29.1 245 247
1.8 51.0 466 469 395 339 341
20 593 550 553 48.0 424 426

Source: Author (2020)

Table 6 — Non-null rejection rates (%), varying precision, n = 70, and y1 = log(30);
alternative well known link functions.

10% 5%

True link w w* oW w w*  w

loglog 91.8 87.6 88.1 86.1 78.6 79.2
cloglog 844 79.4 79.6 73.0 650 653
Cauchy 74.0 73.0 73.1 599 572 572
probit 324 30.6 31.0 23.6 21.8 222

Source: Author (2020)

Table 7 — Null rejection rates (%), fixed and varying precision; score test.

Fixed precision Varying precision
Sk SR

¢ n 10% 5% 1% Y1 n 10% 5% 1%
20 132 7.0 1.1 30 125 63 1.2
0 6 105 55 09 PO 0 g sk 1
80 10.7 56 1.2 90 10.7 52 1.1
20 146 80 1.5 30 133 66 1.2
30 40 11.3 6.0 1.2 log(30) 50 11.7 6.1 1.0

60 11.6 58 1.2 70 10.8 54 1.0
80 11.0 56 1.1 % 114 57 1.0

Source: Author (2020)
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Figure 3 — Quantile-quantile (QQ) plots, v1 = log(30), varying precision.
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Figure 4 — Quantile-quantile (QQ) plots, fixed precision (¢ = 30), score test (Hj: 1 =1).
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S EMPIRICAL APPLICATIONS

In this chapter we shall present and discuss two empirical applications. The first application
showcases the usefulness of the modified likelihood ratio test statistics derived in Chapter 3
whereas the second application illustrates the usefulness of the parametric mean link function
when used in the beta regression model, as presented in Chapter 2. In both cases, a superior fit is
achieved when the mean parametric link function is adopted. We note that, since our model is
indexed by a precision (not dispersion) parameter, the results we report are directly comparable

to the corresponding results reported in the literature, which use the same scale parameterization.

5.1 FIRST APPLICATION

In the first empirical application, we shall use the gasoline yield data from Prater (1956).
The response variable (y) is the proportion of crude oil converted to gasoline after distillation and
fractionation and n = 32. Ferrari and Cribari-Neto (2004) modeled the data using two covariates
and the logit link function in a fixed precision beta regression. The covariate batch is a dummy
variable indicating ten factors of conditions in the experiments (xs,,...,X;10), and the covariate
temp (x;11) represents the temperature (degrees F) at which all gasoline has vaporized. We fitted
this same beta regression model only replacing the logit link function with the parametric link
function. The parameter estimates are presented in Table 8 along with the corresponding standard
errors, z test statistics (given by the ratio between the point estimates and the corresponding
standard errors), p-values, and lower and upper limits of 95% approximate confidence intervals.
Additionally, q3 =942.457 and A = 6.602. The estimate of P11, the coeflicient associated with
temperature, is nearly 2/3 larger relative to the logit link model. The positive impact of temperature
on the mean proportion of crude oil converted to gasoline is thus stronger when computed from a
model that incorporates a parametric link function. Also, the estimated precision (¢) becomes
considerably larger: 942.457 under the data-driven link function vs. 440.278 under the logit link
function.

Consider the test of H : 2 = 1 (logit link function). The likelihood ratio test statistic w
equals 23.905 (p-value < 0.001). The two corrected test statistics, w* and w**, equal 14.047
(p-value < 0.001) and 15.063 (p-value < 0.001), respectively. All three tests reject the null
hypothesis at 1% of significance level. Next, we test Hy : 1 = 6.5. We obtain (p-values in
parentheses) w = 0.005538 (0.940), w* = 0.000917 (0.975), and w** = 0.001881 (0.965). The

tests p-values are very large and the null hypothesis is not rejected at the usual significance levels.
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There is thus considerable evidence against the logit link function and in favor of a link function
indexed by a value of A that is substantially larger than one.
Table 8 — Parameter estimates, standard errors (SE), z statistics, p-values, and lower

(LCI) and upper (UCI) limits for approximate confidence intervals; Prater’s
gasoline yield data.

Parameter Estimate @ SE  z statistic p-value LCI UCI
B -8.800 0.696 -12.640 <0.001 -10.164 -7.435
B2 3238 0.393 8.230 <0.001  2.467 4.009
B3 2302 0.284  8.090 <0.001 1.744 2.860
Ba 2.698 0.320 8422 <0.001  2.070 3.326
Bs 1.898 0246  7.711 <0.001 1416 2.381
Be 1915 0239  7.992 <0.001  1.445 2.385
B7 1.829  0.239  7.653 <0.001  1.360 2.297
B3 1.021  0.177  5.747 <0.001 0.672 1.369
Bo 0.882  0.161 5.448 <0.001  0.564 1.199
Bio 0.648 0.145  4.466 <0.001  0.363 0.932
Bi1 0.018 0.002  9.172 <0.001 0.014 0.022

Source: Author (2020)

Next, we shall test the null hypothesis of fixed precision in the parametric link beta
regression model. To that end, we use temp and press as precision covariates, the latter
representing the vapor pressure of crude oil (Ibf/in2). The extended model is fitted and we
test Hy : y» = v3 = 0 (fixed precision). We obtain w = 9.144 (0.010), w* = 2.236 (0.326), and
w** =3.540 (0.170). It is noteworthy that the usual likelihood ratio test rejects the null hypothesis
at the 5% significance level whereas the two corrected versions do not reject it even at @ = 0.10.
The modified tests thus indicate that precision is constant across observations when the parametric
link function is used. This result shows the importance of using tests with superior behavior
when the sample size is not large.

In order to determine whether the two models (logit link and parametric link) are correctly
specified, we shall perform the RESET misspecification test introduced by Pereira and Cribari-
Neto (2014a). The null hypothesis is that the model specification is correct and the alternative
hypothesis is that it is in error. We perform the misspecification test using the standard likelihood
ratio test statistic and also the two modified test statistics we derived. For the logit link function
model we obtain w = 22.408 (< 0.001), w* = 13.522 (< 0.001), and w** = 14.403 (< 0.001). All
three tests suggest that the model is incorrectly specified at the 1% significance level. When

the test statistics are computed from the beta regression model with parametric link function
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under fixed precision, we obtain w = 0.317 (0.573), w* = 0.070 (0.791), and w** = 0.118 (0.731).
All three p-values are large and the null hypothesis of correct model formulation is not rejected.
Therefore, there is evidence that the logit link model is misspecified. In contrast, the parametric
link model appears to be correctly specified. We were able to achieve correct model formulation
by replacing the logit link function by a parameter-index function, thus avoiding the need to
model the precision.

In Table 9 we present, for both models, the following goodness-of-fit measures: (i) R%C:
the pseudo-R? proposed by Ferrari and Cribari-Neto (2004), (ii) RIZV: the generalized coefficient
of determination introduced by Nagelkerke (1991), (iii) AIC: the Akaike information criterion
(AKAIKE, 1974), and (iv) SIC: the Schwarz information criterion (SCHWARZ, 1978). We
note that the parametric link function model fit is at least as good as that of the logit link model
according to all measures. In particular, we note that the difference in AIC values is nearly 22,
which can be taken as substantial evidence in favor of the beta regression model that uses the

parametric mean link function (BURNHAM; ANDERSON, 2004).

Table 9 - Pseudo-R* (R3.. and R% ) and model selection criteria (AIC and SIC), gasoline

yield data.
Model AIC SIC  R.. R}
Parametric link -167.50 -148.45 0.96 0.99
Logit link -145.60 -128.00 0.96 0.97

Source: Author (2020)

Finally, the link functions used in the two competing models are displayed in Figure 5.
The minimum and maximum values of 7j; in the parametric link model (logit link model) are
—3.34 and 2.12 (-3.04 and 0.03), respectively, and the largest value of /i is approximately 0.46
(0.51). It is noteworthy that the maximal response value is 0.457 (fourth observation) which
is considerably closer to the corresponding predicted value obtained from the parametric link

model (0.45676) than to that obtained from the logit link model (0.50792).

5.2 SECOND APPLICATION

The previous application mainly illustrated the usefulness of the two modified likelihood
ratio tests. We saw that a different inference is reached regarding fixed precision when the
modified tests are used. In what follows, we shall present an empirical application that illustrates

the usefulness of the parametric mean link function.



48

Figure 5 — AO link functions, 1 =1 (logit) and 1 = 6.6.
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There is evidence that religious belief negatively correlates with intelligence; see, e.g.,
Lynn, Harvey and Nyborg (2009). Several authors have performed regression analyses to measure
the strength of the net impact of intelligence on religious disbelief; see Zuckerman, Silberman
and Hall (2013). In particular, Cribari-Neto and Souza (2013) carried out a beta regression
analysis to estimate the functional form of such a net impact. They showed that the impact is
positive, statistically significant, gains strength up to a certain level and then weakens. We shall
use the same data, but using the varying precision beta regression model with parametric mean
link function. The observations refer to a cross section of 124 nations. The response variable
(y) is the proportion of atheists in each country and the conditioning variables are the average
intelligence quotient (1Q), IQ squared (IQ?), a dummy variable that equals 1 if the majority of
the population is Muslim and 0O otherwise (M USL), the logarithm of the sum of total imports and
exports divided by the gross national product (log(OPE N)), and the per capita income adjusted
for purchasing power parity /NCOME).

We consider the model used by Cribari-Neto and Souza (2013) only replacing the loglog
link function by the parametric link function in the mean submodel and adding a new covariate

to the precision submodel (log(OPEN)). Our model is
8(ur,A) = B+ B21Q; + B310g(OPEN;) + Bal QF + BsMUSL + eI NCOME;
log(¢:) = y1+721Q; +y310g(OPEN,).

Regression coefficient estimates, standard errors, z test statistics, p-values, and lower and

upper limits for 95% approximate confidence intervals can be found in Table 10. Additionally,
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A =9.5354. All covariates are statistically significant at the 10% significance level. We note
that MUS L negatively influences the mean response and that log(OPEN) and INCOME have a
positive impact on the mean rate of disbelief. Regarding the precision submodel, both /Q and
log(OPEN) negatively affect the precision inferences. As in Cribari-Neto and Souza (2013),
B> <0and B4 > 0.

Table 10 — Parameter estimates, standard errors (SE), z statistics, p-values, and lower
(LCI) and upper (UCI) limits for approximate confidence intervals; religious

disbelief data.

B SE  zstatistic p-value  LCI UCI
Intercept 25.710 8.671 2.965 0.003 8.715 42.706
10 -0.918 0.235 -3.894 <0.001 -1.381 -0.456
log(OPEN) 0.717 0.205 3.488 <0.001 0314 1.120
10? 0.006  0.001 4.091 <0.001 0.003 0.009
MUSL -0.375 0.179  -2.095 0.036 -0.726 -0.024
INCOME 0.029 0.015 1.820 0.068 —-0.002 0.060

0% SE  zstatistic p-value  LCI UCI
Intercept 17.155 1.244 13.780 < 0.001 14.715 19.596
10 -0.105 0.011 -9.616 <0.001 -0.127 -0.084

log(OPEN) -1.095 0.270 -4.044 <0.001 -1.626 -0.564
Source: Author (2020)

We performed the RESET test of correct model specification using the three likelihood
ratio test statistics. The three p-values are very large, and we conclude that the specification of
our model is not in error. Goodness-of-fit measures for the parametric link function model and
for the loglog link model used by Cribari-Neto and Souza (2013) are presented in Table 11. It is
noteworthy that the model pseudo-R? values are larger for the parametric link model relative to
the loglog model: for the former we obtain Rrc = 0.71 and Ry = 0.80 whereas for the latter we
have Rrpc = 0.64 and Ry = 0.76. Additionally, the two model selection criteria clearly favor our
model: the difference in AIC between the models exceeds 18 points. According to Burnham and
Anderson (2004), when the difference in the AIC values exceeds 4, one can conclude that there is
considerably less support for the model with larger AIC and when it exceeds 10, it is possible to
say that there is essentially no support for the model that displays the larger AIC value.

Figure 6 displays the parametric and loglog link functions; the logit link is also included
for reference. The minimum and maximum values of 77; in the parametric link model (loglog
model) are approximately —5.38 and 5.94 (—1.68 and 0.93), respectively, and the largest value of
[ is nearly 0.60 (0.67).
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Table 11 - Pseudo-R? (Rf7 ¢ and RIZV) and model selection criteria (AIC and SIC),
religious disbelief data.

2 2
Model AIC SIC R, R}

Parametric link -537.29 -509.09 0.71 0.80
Loglog link -518.98 -496.42 0.64 0.76

Source: Author (2020)

Figure 6 — AO (1 =9.5), loglog, and logit link functions.
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Cribari-Neto and Souza (2013) computed the impact of intelligence on the mean rate of
religious disbelief by evaluating du;/d1Q; (‘impact’) as a function of /Q for fixed values of the
remaining covariates. They showed that the impact is always positive, strengthens up to a certain
level of average intelligence and then progressively looses strength. We proceeded similarly using
the two models (loglog link and parametric link). Following Cribari-Neto and Souza (2013),
we fix the values of all continuous regressors at the corresponding median values. The dummy
variable is set at zero, i.e., we obtain estimates for non-Muslim countries. The results for Muslim
countries are similar and are not presented for brevity. The impacts of average intelligence on
the mean proportion of atheists computed from the two beta regression models are presented
in Figure 7. In both cases, the impact is positive and bell-shaped. The maximal impact from
the loglog model is 0.037 and takes place at /Q = 106. In contrast, for the parametric link beta
regression model, the maximal impact equals 0.027 and corresponds to /Q = 104. The maximal
impacts computed from the two models take place at approximately the same level of average

intelligence, but the maximal strengths are considerably different: the maximal impact computed



51

Figure 7 — Impact of intelligence on atheism.
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using the parametric link function model is over 25% weaker than that obtained from the loglog
model. Interestingly, the decay after peaking is slower for the parametric link model. The use of
a parametric link function thus uncovers an existing asymmetry in the rates at which the impact
of intelligence on religious disbelief gains and then loses strength. Such an asymmetric behavior

was not revealed in the beta regression analysis reported by (CRIBARI-NETO; SOUZA, 2013).
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6 CONCLUDING REMARKS

Random variables that assume values in the standard unit interval, such as rates and
proportions, are commonly modeled using the beta regression model introduced by Ferrari and
Cribari-Neto (2004). We extended the varying precision version of the model by replacing its
parameter-free mean link function with a parametric link. The parameter that indexes such a link
function controls the degree of asymmetry and is estimated from the data. Hence, the response
and covariate values determine the shape of function that connects the mean response and the
linear predictor. The most commonly used link function in empirical analyses, the logit link, is a
particular case of the parametric link function we use. It is thus possible to test whether it is the
correct link function. We derived score functions, Fisher’s information matrices and its inverses
for the linear and nonlinear varying precision beta regression models with parametric mean link
function.

A second contribution of the thesis relates to hypothesis testing inference. The likelihood
ratio test, which is commonly used by practitioners, can be considerably size-distorted when the
sample size is not large. We derived, in the context of the linear and nonlinear beta regression
models with parametric mean link function, two modified versions of the likelihood ratio test
statistic that yield better control of the type I error probability. We also derived a score test statistic
that can be used to test whether the true mean link function is logit. Our Monte Carlo simulation
evidence showed that such tests are typically much less size-distorted than the likelihood ratio
test. The standard likelihood ratio test can be very liberal (oversized) in small samples. For
example, in one of the Monte Carlo configurations, its null rejection at the 10% significance level
exceeded 25%; the empirical sizes of our tests were 9.0% and 10.5%. This result is, we believe,
indicative of the usefulness of the modified tests.

We also presented and discussed two empirical applications. In both cases, superior model
fits were achieved by using a mean link function that incorporates a parameter that controls for
asymmetry. In the first application, the sample size was small (n = 32) and the two modified tests
yielded an inference regarding constant precision that was different from that obtained with the
standard likelihood ratio test. In the second application, by using a parametric mean link function
we were able to uncover an existing asymmetry in the impact of a regressor (average intelligence)
on the mean response (mean prevalence of religious disbelievers) before and after the maximal
impact. Our results revealed that the decay after peaking is slower than the strengthening prior to

the peak.
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APPENDIX A - COMPUTATIONAL IMPLEMENTATION

The Ox code used in the gasoline yield data empirical application is presented below.
s i i e o R o O o o o o s s ok
* PROGRAM: appPrater.ox

* USAGE: Calculation of the modified test statistics for
the gasoline yield data from Prater (1956)

* NULL HYPOTHESIS: H_0: lambda = 1
* MODEL: g(mu,lambda) = X*beta
* beta = (beta_l...beta_p)
* fixed precision (phi)

* AUTHOR: Cristine Rauber Oliveira

// header files
#include <oxstd.oxh>
#include <oxprob.oxh>
#import <maximize>
#import <maxsqp>

// global variables
static decl y;
static decl N;
static decl X;
static decl Xrr;
static decl Xrrt;
static decl Z;
static decl Xt;
static decl Zt;

// irrestricted log-likelihood function
floglik(const vtheta, const adFunc, const avScore, const amHess)

{
decl r = columns(X);
decl beta = vtheta[0:(r-1)];
decl phi = vtheta[r];
decl lambda = vthetal[r+1];
decl etal = X*beta;
decl mu =1.0 - (1.0 + lambda .* exp(etal)) .~ (-1.0 ./ lambda);
decl p =mu .* phi;
decl ¢ = (1.0 - mu) .* phi;
decl ystar = log(y ./ (1.0 - y));
decl ydag = 1log(1.0 - y);
decl mustar = polygamma(mu .* phi, 0) - polygamma((1.0 - mu) .* phi, 0);
decl mudag = polygamma((l.® - mu) .* phi, 0) - polygamma(phi, 0);
decl T = diag( exp(etal) .* (1.0 + lambda .* exp(etal)) .*» (-(1.0 + (1.0 ./ lambda))) );
decl H = unit(N);
decl P = phi .* unit(N);
decl M = diag(mu);
decl rho = (1.0 ./ lambda) .* ((1.0 ./ (exp(-etal) + lambda)) -
(log(1.0 + lambda .* exp(etal)) ./ lambda)) .*
((1.0 + lambda .* exp(etal)) .~ (-1.0 ./ lambda));
adFunc[0] = double ( sumc( log(densbeta(y, p, @)) ) );

// first order analytical derivatives of the log-likelihood function
if(avScore)

{

(avScore[0]1)[0: (r-1)] Xt*P*T*(ystar - mustar);

(avScore[0]) [r] Zt*H*(M*(ystar - mustar) + (ydag - mudag));
(avScore[0]) [r+1] = rho’ *P*(ystar - mustar);

}

if( isnan(adFunc[0]) || isdotinf(adFunc[®]) )
return 0;



else
return 1; // 1 indicates success

}

// restricted log-likelihood function
flogliknull(const vtheta, const adFunc, const avScore, const amHess)

{

decl r = columns(X);

decl beta = vtheta[0:(r-1)];

decl phi = vtheta[r];

decl lambda = 1;

decl etal = X*beta;

decl mu =1.0 - (1.0 + lambda .* exp(etal)) .~ (-1.0 ./ lambda);
decl p =mu .* phi;

decl ¢ = (1.0 - mu) .* phi;

decl ystar = log(y ./ (1.0 - y));

decl ydag = log(l.0 - y);

decl mustar = polygamma(mu .* phi, 0) - polygamma((1.0 - mu) .* phi, 0);
decl mudag = polygamma((1.0 - mu) .* phi, 0) - polygamma(phi, 0);

decl T = diag( exp(etal) .* (1.0 + lambda .* exp(etal)) . (-(1.0 + (1.0 ./ lambda))) );
decl H = unit(N);

decl P = phi .* unit(N);

decl M = diag(mu);

adFunc[0] = double ( sumc( log(densbeta(y, p, @)) ) J;

// first order analytical derivatives of the log-likelihood function
if(avScore)

{

(avScore[0])[0: (r-1)] = Xt*P*T*(ystar - mustar);

(avScore[0])[r] = Zt*H*(M*(ystar - mustar) + (ydag - mudag));
}

if( isnan(adFunc[0]) || isdotinf(adFunc[®]) )
return 0;

else

return 1; // 1 indicates success

}

// log-likelihood function of the null model
flogliknullaranda(const vtheta, const adFunc, const avScore, const amHess)

{

decl beta = vtheta[0];

decl lambda = 1;

decl phi = vthetal[1l];

decl etal = Xrr*beta;

decl mu =1.0 - (1.0 + lambda .* exp(etal)) .» (-1.0 ./ lambda);
decl p =mu .* phi;

decl ¢ = (1.0 - mu) .* phi;

decl ystar = log(y ./ (1.0 - y));

decl ydag = log(l.0 - y);

decl mustar = polygamma(mu .* phi, 0) - polygamma((1.®0 - mu) .* phi, 0);
decl mudag = polygamma((1.0 - mu) .* phi, 0) - polygamma(phi, 0);

decl T = diag( exp(etal) .* (1.0 + lambda .* exp(etal)) . (-(1.0 + (1.0 ./ lambda))) );
adFunc[0] = double ( sumc( log(densbeta(y, p, @) ) );

// first order analytical derivatives of the log-likelihood function
if(avScore)

{

(avScore[0]1)[0] = phi*Xrrt*T*(ystar - mustar);

(avScore[0])[1] = double( sumc( mu .* (ystar - mustar) + (ydag - mudag) ) );
}

if( isnan(adFunc[0]) || isdotinf(adFunc[®]) )
return 0;

else

return 1; // 1 indicates success



}

main()

{

// variables used in the maximization of the log-likelihood function
decl dfunc®, dfuncl, dfuncr, conv®, convl, conv2;

decl vtheta®, vthetal, vthetar;

decl vlol, vhil, vlo®, vhi®, vlo2, vhi2;

// other variables used

decl ybar, yvar, ystar, ydagger;
decl r, s, k, gl, pseudoR2LR;

decl w, pvwWw, WS, DPVWS, WSS, DVWSS;

// variables used for the initial values
decl betaols, gamaols, phiols, varols, muols, etaols, lambdaini;

// variables used in the model
decl data, batch, temp;

oxwarning(0);
data = loadmat("gasoline.mat"); // load the data
y = data[][10]; // variable of interest
temp = data[][9]; // covariate temp
batch = data[][0:8]; // covariate batch (dummy covariates)
X = l~batch~temp; // matrix 32x11
Z = X[1[0]; // matrix 32x1 of 1’s
Xt =X; // X transposed
Zt =27; // Z transposed
k =1; // number of parameters of interest
r = columns(X); // number of parameters in the mean submodel
s = columns(Z); // number of parameters in the precision submodel
N = rows(data); // sample size
gl =N - (r +s +1) // degrees of fredom
ystar = log(y ./ (1.0 - y)); // transformed variable
ydagger = log(l.0 - y); // transformed variable
ols2c(ystar, X, &betaols); // store the ols estimates in betaols
etaols = X*betaols;
muols = exp(etaols) ./ (1.0 + exp(etaols));
varols = ((ystar - etaols)’ * (ystar - etaols)) ./
(N -1r) * ((1 ./ (muols .* (1.0 - muols))) .A (2)));
phiols = double( meanc((muols .* (1.0 - muols) ./ varols) - 1.0) );
lambdaini = 1; // initial value for lambda (logit)

// initial values
vthetal = betaols | phiols | lambdaini;
vtheta® = betaols | phiols;

// boundaries for the initial values

vlol = <-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;0.001;0.001>;
vhil = <+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf>;
vlo® = <-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;-.Inf;0.001>;

vhi® = <+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf;+.Inf>;

ybar = meanc(y); // mean of y

yvar = varc(y); // variance of y

println(M--—--mm oo e ")
println("\t\t\t\t BETA REGRESSION ESTIMATION");

PrintIn(—-—-— - ");
println("\n MEAN AND VARIANCE OF Y:\n ", "%10.5f", ybar~yvar);

println("\n INITIAL VALUES FOR THE ML ESTIMATION:\n ", "%16.5f", vthetal);
println("-------=--=-—-m o ")

// convergence checking

convl = MaxSQP(floglik, &vthetal, &dfuncl, 0, 0, 0, 0, vlol, vhil);
conv® = MaxSQP(flogliknull, &vtheta®, &dfunc®, 0, 0, 0, 0, vlio®, vhi®);
println("\n CONVERGENCE STATUS UNDER H1l: ", MaxConvergenceMsg(convl));
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println("\n CONVERGENCE STATUS UNDER HO: ", MaxConvergenceMsg(conv@));

if(convl == MAX_CONV || convl == MAX_WEAK_CONV) && (conv® == MAX_CONV || conv® == MAX_WEAK_CONV))

{

decl iota = ones(N,1); // N-dimensional vector of ones
decl Ystar = diag(ystar);

decl Ydagger = diag(ydagger);

decl r = columns (X);

// quantities under H1*****************************************************************************

decl etalhat = X*vthetal[0:(r-1)];

decl phihat = vthetal[r];
decl lambdahat = vthetal[r+1];
decl muhat =1.0 - (1.0 + lambdahat .* exp(etalhat)) .~ (-1.0 ./ lambdahat);
decl Hhat = unit(N);
decl That = diag(exp(etalhat) .* (1.0 + lambdahat .* exp(etalhat)) .2
(-(1.0 + (1.0 ./ lambdahat))));
decl Phat = phihat .* unit(N);
decl Muhat = diag(muhat);
decl mustarhat = polygamma(muhat .* phihat, 0) - polygamma((1l.0 - muhat) .* phihat, 0);
decl Mustarhat = diag(mustarhat);
decl Mudaggerhat = diag(polygamma((1.0 - muhat) .* phihat, ®) - polygamma(phihat, 0));
decl vstarhat = polygamma(muhat .* phihat, 1) + polygamma((1.0 - muhat) .* phihat, 1);
decl Vstarhat = diag(vstarhat);
decl Vdaggerhat = diag(polygamma((1l.0 - muhat) .* phihat, 1) - polygamma(phihat, 1));
decl Chat = diag(-polygamma((1.0 - muhat) .* phihat, 1));
decl Shat = diag((lambdahat - lambdahat .* (1.0 + lambdahat) .* (1.0 - muhat) .*

(lambdahat)) ./ (((muhat - 1.0) .~ 2) .* ((1.0 - muhat) .4
(lambdahat) - 1.0) .A 2));
decl Qhat = zeros(N);
decl rhohat = (1.0 ./ lambdahat) .* ((1.0 ./ (exp(-etalhat) + lambdahat)) -
(log(1.0 + lambdahat .* exp(etalhat)) ./ lambdahat)) .*
((1.0 + lambdahat .* exp(etalhat)) .» (-1.0 ./ lambdahat));
decl varrhohat = ((1.0 + lambdahat .* exp(etalhat)) . (-2.0 - (1.0 ./ lambdahat)) .*
(-exp(etalhat) .* (lambdahat .~ 2) .* (2.0 + exp(etalhat) .*
(1.0 + 3.0 .* lambdahat)) + (1.0 + lambdahat .* exp(etalhat))
log(1.0 + lambdahat .* exp(etalhat)) .* (2.0 .* lambdahat .*
(1.0 + exp(etalhat) .* (1.0 + lambdahat)) - (1.0 + lambdahat .*
exp(etalhat)) .* log(l.0 + lambdahat .* exp(etalhat))))) ./ (lambdahat .* 4);
decl what = (exp(etalhat) .* (1.0 + lambdahat .* exp(etalhat)) .4
(-2.0 - (1.0 ./ lambdahat)) .* (-exp(etalhat) .* lambdahat .*
(1.0 + lambdahat) + (1.0 + lambdahat .* exp(etalhat)) .*
log(1.0 + lambdahat .* exp(etalhat)))) ./ (lambdahat .A 2);

// observed information® ik o o

decl Jbbhat = Xt*(Phat*That*Vstarhat + Shat*(ThatA2)*(Ystar - Mustarhat))*That*Phat*X;

decl Jbghat = -Xt*((Ystar - Mustarhat) - Phat*(Muhat*Vstarhat + Chat))*That*Hhat*Z;

decl Jblhat = Xt*((PhatA2)*Vstarhat*That*rhohat - Phat*(Ystar - Mustarhat)*what);

decl Jgbhat = Jbghat’;

decl Jgghat = Zt*(Hhat*(Muhat*Vstarhat*Muhat + (Muhat + Muhat)*Chat + Vdaggerhat) +
(Muhat*(Ystar - Mustarhat) + (Ydagger - Mudaggerhat))*(Hhat*2)*Qhat)*Hhat*Z;

decl Jglhat = -Zt*((Ystar - Mustarhat) - Phat*(Muhat*Vstarhat + Chat))*Hhat*rhohat;

decl Jlbhat = Jblhat’;

decl Jlghat = Jglhat’;

decl Jllhat = ((PhatA2)*Vstarhat*(rhohat .~ 2)-Phat*(Ystar - Mustarhat)*varrhohat)’*iota;

decl Jhat = (Jbbhat~Jbghat~Jblhat) | (Jgbhat~Jgghat~Jglhat) | (J1lbhat~Jlghat~J1llhat);
decl invJhat = invert(Jhat); // inverse of Jhat

// Fisher’s information****************************************************************************
decl Kbbhat = Xt*Phat*That*Vstarhat*That*Phat*X;

decl Kbghat = Xt*Phat*(Muhat*Vstarhat + Chat)*Hhat*That*Z;

decl Kblhat = Xt*Phat*Vstarhat*Phat*That*rhohat;

decl Kgbhat = Kbghat’;

decl Kgghat = Zt*Hhat*(Muhat*Vstarhat*Muhat + (Muhat+Muhat)*Chat + Vdaggerhat)*Hhat*Z;

decl Kglhat = Zt*Phat* (Muhat*Vstarhat + Chat)*Hhat*rhohat;

decl Klbhat = Kblhat’;

decl Klghat = Kglhat’;

decl Kllhat = rhohat’*(PhatA2)*Vstarhat*rhohat;

decl Khat = (Kbbhat~Kbghat~Kblhat) | (Kgbhat~Kgghat~Kglhat) | (Klbhat~Klghat~Kllhat);
decl invKhat = invert(Khat); // inverse of Khat
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// quantltles under H@t‘:**k*:’.‘:\—7’.‘5‘:}':5‘:*5'.‘*‘,’.‘t‘r7’:5‘:*5':z“c‘,’.‘:\—‘.’.‘5‘:}“:*k*:’.‘:\—7’.‘5‘:}':5‘:*5'.‘*‘,’.‘t‘r7’:5‘:*5':z“c‘,’.‘:\—7':5‘:}“:*k*:’.‘:\—‘.’.‘5‘:*5‘:*5'.‘*7’.‘5‘:7’:5‘:*5’:*7’::\—7’:5‘:*5‘:*‘!::\—1:5‘:

decl
decl
decl
decl

decl
decl

decl
decl
decl
decl
decl
decl
decl
decl
decl
decl

decl
decl

decl

decl

// observed information**

decl
decl
decl
decl
decl

decl
decl
decl
decl

decl
decl

// Fisher’s information*
= Xt*Ptil*Ttil*Vstartil*Ttil*Ptil*X;

decl
decl
decl
decl
decl
decl
decl
decl
decl

decl
decl

// score function under HO®

decl
decl
decl

decl

// qbar**

decl

etaltil
phitil
lambdatil
mutil

Htil
Ttil

Ptil
Mutil
mustartil
Mustartil
mudaggert
Mudaggert
Vstartil
Vdaggerti
Ctil

Stil

Qtil
rhotil

varrhotil

wtil

Jbbtil =
Jbgtil =
Jbltil =
Jgbtil =
Jggtil =

Jgltil =
Jlbtil =
Jlgtil =
J11til =

Jtil
invJtil =

Kbbtil =
Kbgtil =
Kbltil =
Kgbtil =
Kggtil =
Kgltil =
Klbtil =
Klgtil =
K11til =

Ktil
invKtil =

escorebet
escoreganm
escorelan|

escoretil

gbeta =

= X*vtheta®[0: (r-1)];

= vthetaO[r];

:1;

=1.0 - (1.0 + lambdatil .* exp(etaltil)) .~ (-1.0 ./ lambdatil);

= unit(N);
= diag(exp(etaltil) .* (1.0 + lambdatil .* exp(etaltil)) .*
(-(1.0 + (1.0 ./ lambdatil))));
= phitil .* unit(N);
= diag(mutil);
= polygamma(mutil .* phitil, 0) - polygamma((1l.0 - mutil) .* phitil, 0);
= diag(mustartil);
il = polygamma((1.0 - mutil) .* phitil, 0) - polygamma(phitil, 0);
il = diag(mudaggertil);
= diag(polygamma(mutil .* phitil, 1) + polygamma((1.0 - mutil) .* phitil, 1));
1 = diag(polygamma((l.® - mutil) .* phitil, 1) - polygamma(phitil, 1));
= diag(-polygamma((1.0 - mutil) .* phitil, 1));
= diag((lambdatil - lambdatil .* (1.0 + lambdatil) .* (1.0 - mutil) .4
(lambdatil)) ./ (((mutil - 1.0) .4 2) .* ((1.0 - mutil) .~
(lambdatil) - 1.0) .+ 2));
= zeros(N);
= (1.0 ./ lambdatil) .* ((1.0 ./ (exp(-etaltil) + lambdatil)) -
(log(1.0 + lambdatil .* exp(etaltil)) ./ lambdatil)) .*
((1.0 + lambdatil .* exp(etaltil)) .+ (-1.0 ./ lambdatil));
= ((1.0 + lambdatil .* exp(etaltil)) .4 (-2.0 - (1.0 ./ lambdatil))
(-exp(etaltil) .* (lambdatil .~ 2) .* (2.0 + exp(etaltil) .=
(1.0 + 3.0 .* lambdatil)) + (1.0 + lambdatil .* exp(etaltil)) .*
log(1.0 + lambdatil .* exp(etaltil)) .* (2.0 .* lambdatil .*
(1.0 + exp(etaltil) .* (1.0 + lambdatil)) - (1.0 + lambdatil .*
exp(etaltil)) .* log(l.0 + lambdatil .* exp(etaltil))))) ./ (lambdatil .+ 4);
= (exp(etaltil) .* (1.0 + lambdatil .* exp(etaltil)) .4
(-2.0 - (1.0 ./ lambdatil)) .* (-exp(etaltil) .* lambdatil .*
(1.0 + lambdatil) + (1.0 + lambdatil .* exp(etaltil)) .*
log(1l.0 + lambdatil .* exp(etaltil)))) ./ (lambdatil .A 2);

Sede e de v de e deve e e

dedede e

dedededededkdedehddd

Xt*(Ptil*Ttil*Vstartil + Ttil*Stil*Ttil*(¥star - Mustartil))*Ttil*Ptil*X;
-Xt*((Ystar - Mustartil) - Ptil*(Mutil*Vstartil + Ctil))*Ttil*Htil*Z;
Xt*(Ptil*Vstartil*Ptil*Ttil*rhotil - Ptil*(Ystar - Mustartil)*wtil);
Jbgtil’;

Zt*(Htil*(Mutil*Vstartil*Mutil + (Mutil + Mutil)*Ctil + Vdaggertil) +
(Mutil*(Ystar - Mustartil) + (Ydagger - Mudaggertil))*Htil*Qtil*Htil)*Htil*Z;
-Zt*((Ystar - Mustartil) - Ptil*(Mutil*Vstartil + Ctil))*Htil*rhotil;

Jbltil’;

Jgltil’;

((Ptil .+ 2)*Vstartil*(rhotil .~ 2) - Ptil*(Ystar - Mustartil)*varrhotil)’*iota;

(Jbbtil~Jbgtil~Jbltil) | (Jgbtil~Jggtil~Jgltil) | (J1btil~J1lgtil~J11til);
invert(Jtil); // inverse of Jtil

e dedededede e dede v e T e T e T ve T Yo e v e T e T e T e T e T e de v de v e v e v e S e S e T e T e e Y e Y e v e S e S e b e b e e v e v e v e Y e e o

Xt*Ptil*(Mutil*Vstartil + Ctil)*Ttil*Htil*Z;
Xt*Ptil*Vstartil*Ptil*Ttil*rhotil;

Kbgtil’;

Zt*Htil*(Mutil*Vstartil*Mutil + (Mutil + Mutil)*Ctil + Vdaggertil)*Htil*Z;
Zt*Ptil*(Mutil*Vstartil + Ctil)*Htil*rhotil;

Kbltil’;

Kgltil’;

rhotil’*(Ptil .4 2)*Vstartil*rhotil;

(Kbbtil~Kbgtil~Kb1ltil) | (Kgbtil~Kggtil~Kgltil) | (Klbtil~Klgtil~K11ltil);
invert(Ktil); // inverse of Ktil

atil = Xt*Ptil*Ttil*(ystar - mustartil);
atil = Zt*Htil*(Mutil*(ystar - mustartil) + (ydagger - mudaggertil));
bdatil = rhotil’*Ptil*(ystar - mustartil);

= escorebetatil | escoregamatil | escorelambdatil;

Xt*Phat*That*(Vstarhat*(Phat*Muhat - Ptil*Mutil) + (Phat - Ptil)*Chat)*iota;



61

decl gqgama = Zt*Hhat*((Muhat*Vstarhat + Chat)*(Phat*Muhat - Ptil*Mutil) +
(Muhat*Chat + Vdaggerhat)*(Phat - Ptil))*iota;
decl glambda = rhohat’*Phat*(Vstarhat*(Phat*Muhat - Ptil*Mutil) + Chat*(Phat - Ptil))*iota;

decl gbar = gbeta | qgama | glambda;

// upsilonbar®
decl upsbb = Xt*Phat*That*Vstarhat*Ttil*Ptil*X;

decl upsbg = Xt*Phat*That*(Vstarhat*Mutil + Chat)*Htil*Z;

decl upsbl = Xt*Phat*That*Vstarhat*Ptil*rhotil;

decl upsgb = Zt*Hhat*(Muhat*Vstarhat + Chat)*Ttil*Ptil*X;

decl upsgg = Zt*Hhat*(Muhat*Vstarhat*Mutil + (Muhat + Mutil)*Chat + Vdaggerhat)*Htil*Z;
decl upsgl = Zt*Hhat*(Muhat*Vstarhat + Chat)*Ptil*rhotil;

decl upslb = rhohat’*Phat*Vstarhat*Ttil*Ptil*X;

decl upslg = rhohat’*Phat*(Vstarhat*Mutil + Chat)*Htil*Z;

decl upsll = rhohat’*Phat*Vstarhat*Ptil*rhotil;

decl upsbar = (upsbb~upsbg~upsbl) | (upsgb~upsgg~upsgl) | (upslb~upslg~upsll);
decl invupsbar = invert(upsbar); // inverse of upsbar

decl nuiltil = Jtil[0: (r+s-1)]1[0: (r+s-1)];

decl nuisance = Ktil*invupsbar*Jhat*invKhat*upsbar;

decl nuisance2 = nuisance[0:(r+s-1)]1[0:(r+s-1)1;

// Likelihood ratio test statistics**

w 2*(dfuncl - dfunc®); // likelihood ratio test statistic
pvw = 1.0 - probchi(w,1); // p-value of w

decl epson = fabs(((fabs(determinant(Ktil))*fabs(determinant(Khat))*
fabs(determinant (nuiltil)))*(0.5))/(fabs(determinant (upsbar))*
fabs(determinant (nuisance2))*(0.5))*
(fabs(escoretil’*invupsbar*Khat*invJhat*upsbar*invKtil*escoretil)*(1/2))/
fabs((w)A((1/2)-1.0)*escoretil’ *invupsbar*gbar));

wSs = w - 2*log(epson); // Skovgaard’s modified likelihood ratio test statistic w*
pvws = 1.0 - probchi(ws,1); // p-value of w*

wss = w*(1.0 - log(epson)/w)r2; // Skovgaard’s modified likelihood ratio test statistic w**
pvwss = 1.0 - probchi(wss,1); // p-value of w**

// pseudoR2 based on likelihood*
Xrr = ones(N, 1);

Xrrt = Xrr’;

decl ystarbar = meanc(ystar);
decl lambdar = 1;

decl muhatr =1.0 - (1.0 + lambdar .* exp(ystarbar)) .~ (-1.0 ./ lambdar);

// initial values (constant mean and precision, fixed lambda)*

vthetar = ystarbar | ((1.0/(varc(ystar)*muhatr*(1.0 - muhatr))));
vlo2 = <-.Inf;-.Inf>;
vhi2 = <+.Inf;+.Inf>;

// convergence checking
conv2 = MaxSQP(flogliknullaranda, &vthetar, &dfuncr, 0, 0, 0, 0, vlo2, vhi2);

if(conv2 == MAX_CONV || conv2 == MAX_WEAK_CONV)

{

pseudoR2LR = 1.0 - (exp(dfuncr)/exp(dfuncl))*(2/N);
}

// measures Of quallty of the fltted modelz’::‘:f::‘:v‘:-,‘:',“:~,’::‘:7'::‘:‘.'::‘:7‘:f::‘:7’::‘:7'::‘:7‘:-,':'.“:7’::‘:7'::‘:7‘:-,‘:'A",’::‘:7'::‘:‘.'::‘:7‘:;’::‘:7’::‘:7'::‘:7‘:-,‘:'.‘:7’::\",'::\—7‘:-,‘::‘::’::\“!::\—
decl pseudoR2 = (correlation(etalhat~ystar)[0][1])A2;

decl AIC = -2*dfuncl + 2*(r + s + 1);

decl BIC = -2*dfuncl + (r + s + 1)*log(N);

// printing resultsi itk
println("\n PARAMETER ESTIMATES AND ASYMPTOTIC STANDARD ERRORS: ");

decl stderrors = sqrt(diagonal(invKhat))’; // standard erros
decl zstats = vthetal ./ stderrors; // z test statistic
println("%16.5f", "%c", {"estimates", "std. errors", "z stats", "p-values"}, "%r",

{"intercept", "batchl", "batch2", "batch3", "batch4", "batch5",
"batch6", "batch7", "batch8", "batch9", "temp", "phi", "lambda"},
vthetal~stderrors~zstats~2.0%(1.0-probn(fabs(zstats))));
println("\t Sample size:", N); // sample size
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println("%r", {"pseudoR2", "pseudoR2LR", "AIC", "BIC"}, pseudoR2 | pseudoR2LR | AIC | BIC);
println("\n ASYMPTOTIC COVARIANCE MATRIX OF ML ESTIMATES:");
println("%14.5f", invKhat);

println("------------mmm ");
println("\t\t\t\t LIKELIHOOD RATIO TEST STATISTICS");

PrintIn (- ");
printIn("\t\t\t NULL HYPOTHESIS: lambda = 1 (logit link):");

Println(------m o ");

println("%16.6£f", "%c", {"\t test statistic", "p-value"}, "%r", {"w", "w*", "w**"},
(w | ws | wss)~(pvw | pvws | pvwss));

}

else

{

println("\n\n ERROR: NO CONVERGENCE!\n\n");

}

printIn("----—--—--m o ")
println("\t\t\t Program:", oxfilename(0));

println("\t\t\t OX version:", oxversion());

println("\t\t\t Maximization algorithm applied: MaxSQP");

println("\t\t\t Date:", date());

println("\t\t\t Time: ", time(Q));

println("------------om ")

} // end of main*k*3'.‘5‘<s’:*k*5'(*3'.‘5'<s’:s‘r}'t5‘(*5':*5'.‘5‘<}'t5‘(*>'t*3'.‘5‘<s’:*k*5'(*3'.‘5'<s’:s‘r}'t5‘(*3':*5'.‘5‘<}'t5‘(*>'t*3'.‘5‘<s’t*k*5'(*3'.‘5'<s’:*k}'t5‘(*3':*5'.‘5‘<}'t5‘(*5’:**5‘:5’:********
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