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ABSTRACT

In this Thesis we present results for control and geometric inverse problems associated
with certain linear and non-linear PDEs. First, in Chapter 1 we perform a detailed analysis of the
geometric inverse problem that consists to identify, from boundary measurements, an unknown
obstacle to passage of a fluid governed by a system of linear elliptic equations. Then, by using
the so-called local Carleman estimates, we get a uniqueness result, that is, we show that if two
obstacles leading to the same boundary measurements are, necessarily, equals. Moreover, by
applying some techniques of differentiation with respect to domains, we can obtain a stability
result and then apply a reconstruction algorithm. In Chapter 2, we analyze the controllability
properties of the so-called inviscid and viscous Burgers-𝛼 equations. More specifically, in the
first part of the chapter we can get, by applying the so-called return method, time-reversibility
and scale change arguments, a global exact controllability result for the inviscid Burgers-𝛼
system. Then, in the second part, we prove that the viscous Burgers-𝛼 equation is globally
exactly controllable to constant trajectories following three steps: (1) We apply a smoothing
effect result for parabolic PDEs; (2) We use a controllability result for the inviscid Burgers-𝛼
system to deduce an approximate controllability result for the viscous system; (3) We prove a
local exact controllability result for regular time-dependent trajectories. In Chapter 3, we deal
with a two-phase free-boundary problem associated with the heat equation. Then, by using a
classical technique that reduces controllability to minimization of an appropriated functional,
parabolic regularity and the Schauder Fixed-Point Theorem, we prove that it is possible to
drive both temperatures and the interface to desired targets in an arbitrary small time, as long
as the initial data are small enough in a suitable norm.

Keywords: Geometric inverse problem. Burgers-𝛼 system. Global exact controllability. Free-
boundary problem.



RESUMO

Nesta tese são apresentados resultados para problemas inversos geométricos e de con-
trole associados à certas EDPs lineares e não-lineares. De fato, fizemos no capítulo 1 uma
análise detalhada do problema inverso geométrico que consiste em identicar, via medições na
fronteira, um obstáculo desconhecido à passagem de um fluido regido por um sistema linear
de equações elípticas. Então, aplicando estimativas de Carleman locais, obtemos um resultado
de unicidade, ou seja, mostramos que dois obstáculos provocando as mesmas medições de
fronteira devem ser iguais. Além disso, aplicando técnicas de diferenciação com relação a do-
mínios, é possível obter um resultado de estabilidade e esboçar um algoritmo de reconstrução.
No capítulo 2, analisamos a controlabilidade das equações Burgers-𝛼 invíscida e viscosa. Mais
precisamente, numa primeira parte, aplicamos o método do retorno e argumentos de reversibi-
lidade temporal e mudança de escala para obter um resultado global de controlabilidade exata
para a equação Burgers-𝛼 invíscida. Numa segunda parte, seguimos três etapas para provar
que a equação Burgers-𝛼 viscosa é globalmente exatamente controlável à trajetórias constan-
tes: 1. aplicamos o efeito regularizante para EDPs parabólicas; 2. usamos o resultado obtido
para a equação de Burgers-𝛼 invíscida para provar um resultado de controle aproximado; 3.
provamos um resultado local de controlabilidade exata à trajetórias regulares que dependem
somente do tempo. No capítulo 3, trabalhamos com um problema de fronteira-livre bifásico
associado à equação do calor. Então, usando uma técnica clássica que consiste em demonstrar
controlabilidade via minimização de um funcional apropriado, resultados de regularidade local
para EDPs parabólicas e o Teorema do Ponto-Fixo de Schauder, demonstramos que é possível
conduzir tanto as temperaturas quanto a interface à objetivos desejados, desde que os dados
iniciais sejam suficientemente pequenos numa norma apropriada.

Palavras-chaves: Problema inverso geométrico. Sistema Burgers-𝛼. Controlabilidade global
exata. Problema de fronteira-livre.
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1 INTRODUCTION

The main aims of this Thesis are the analysis of control and inverse problems of some
boundary/initial value problems for partial differential systems. Throughout this introduction
we will present a description of such systems, we will provide a short historical overview of the
related control and inverse problems theory and we will describe precisely the problems under
study.

1.1 MATHEMATICAL MODELING VIA DIFFERENTIAL EQUATIONS

One of the greatest achievements in mathematics is the invention of Differential Calculus
by Isaac Newton and Gottfried W. Leibniz at the 17th Century. Ever since we are able to
elaborate mathematical models to describing a plethora of phenomena in the most diverse
fields, such as biology, chemistry, physics, engineering, etc. We can see a mathematical model
as an attempt to write, in mathematical language, certain aspects observed at the real world.
In order to illustrate better this concept, we briefly analyse two well-known models.

𝑎) A simple spring-particle system is a system formed by a negligible mass spring with a
particle of mass 𝑚 connected to one of its extremes and the other extreme stuck to a wall.
We suppose that the particle can move, without friction, along a straight line endowed with
a coordinate system where the rest position is 𝑥 = 0. When the particle undergoes a small
displacement 𝑥, then the spring exerts a restoration force 𝐹1 to bring it back to the rest
position and we can see empirically that 𝐹1 has a intensity proportional to the displacement,
with a proportionality constant given by the elasticity constant 𝑘 of the spring and acting in
the opposite direction to the particle’s movement:

𝐹1 = −𝑘𝑥. (1.1)

Even supposing that the particle is moving without friction, the viscosity of the surrounding
media (air, water, oil, etc.) can create a force 𝐹2 which acts in the opposite direction of the
displacement and it is proportional to particle’s velocity; here, the friction constant 𝜂 of the
environment is the proportionality constant, that is:

𝐹2 = −𝜂𝑥′. (1.2)

We could also consider the presence of external forces (for example, the wall’s vibrations in
which the spring is stuck) acting on the spring-particle system but, for simplicity, we will
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neglect them. Then, using (1.1), (1.2) and Newton’s Second Law, we see that trajectory of
the particle satisfies the following differential equation:

𝑚𝑥′′(𝑡) = −𝑘𝑥(𝑡) − 𝜂𝑥′(𝑡). (1.3)

The constants 𝑚, 𝑘 and 𝜂 are the model’s parameters of the simple spring-particle system.
The equation (1.3) is an example of ODE (Ordinary Differential Equation), since the

unknown function 𝑥 only depends of a unique independent variable, which is the time variable.
Moreover, if the friction force 𝐹2 is negligible, that is, 𝜂 = 0 in (1.3) and we suppose that 𝑥0

and 𝑦0 represent, respectively, the initial position and initial velocity of the particle, then the
trajectory is given by:

𝑥(𝑡) = 𝑥0 cos𝜔𝑡+ 𝑦0

𝜔
sin𝜔𝑡,

where 𝜔 =
√︁
𝑘/𝑚.

𝑏) Let us consider a thin and straight bar of length 𝐿 located on the 𝑥-axis with its ends
positioned at 𝑥 = 0 and 𝑥 = 𝐿. Suppose that the bar is formed by a homogeneous material
with uniform cross-section and its sides are perfectly isolated, so that a heat flow can pass
only through the ends. Then, it is usually accepted that the temperature 𝑢 = 𝑢(𝑡, 𝑥) evolves
according to the following equation, known as the classical heat equation:

𝑢𝑡 = 𝜈𝑢𝑥𝑥, (1.4)

where 𝜈 > 0 is the so-called diffusion coefficient.
The equation (1.4) is an example of what we call PDE (Partial Differential Equation),

since the solution 𝑢 depends on more than one variable, which are the time and the position.
We must observe that there is one important difference between ODEs and PDEs: whereas
we need to know only the initial condition to analyze an ODE (the numbers 𝑥(0) = 𝑥0

and 𝑥′(0) = 𝑦0 in equation (1.3)) the PDEs on bounded spatial domains demand us to
know the initial and boundary conditions to analyze them appropriately (we can suppose, for
instance, in the equation (1.4) that 𝑢(0, 𝑥) = 𝑢0(𝑥), for certain function 𝑢0 : [0, 𝐿] ↦→ 𝑅, and
𝑢(𝑡, 0) = 𝑢(𝑡, 𝐿) = 0, for all 𝑡 ∈ [0,∞)).

1.2 INVERSE PROBLEMS IN MATHEMATICAL MODELING

Mathematical models using differential equations contain certain parameters related to the
physical phenomena under analysis (for example, the elasticity constant of a spring, the specific
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heat of a surface, the kinematic viscosity of a fluid, etc.). Once all the parameters are known,
a classical approach leads to existence and uniqueness results and stability estimates in the
standard functional spaces. Next, one can try to find (at least approximately) the solution of
the model via techniques from numerical analysis and with this one can measure some effects
generated by the model parameters. The approach described in this paragraph is known as the
solution to a direct problem associated to a mathematical model and it is summarized below:

• Measure all the parameters involved in the model and find the associated solution;

• Make measurements of the effects generated by the parameters.

To exemplify this approach in a more concrete way, we consider the following elliptic equation
associated with a Dirichlet boundary condition:

⎧⎪⎪⎨⎪⎪⎩
∇ · (𝛾∇𝑢) = 0 in Ω,

𝑢 = 𝑓 on 𝜕Ω,
(1.5)

where Ω ⊂ 𝑅𝑁 is a bounded open domain of class 𝐶∞, 𝛾 ∈ 𝐶2(Ω) is a strictly positive
function and 𝑓 ∈ 𝐻1/2(𝜕Ω). The mathematical model (1.5) describes the behavior of an
electrical current throughout a region Ω where the parameters 𝛾 and 𝑓 stand for the electrical
conductivity of Ω and the voltage applied on the boundary 𝜕Ω, respectively; the solution 𝑢 is
the voltage in Ω. It is a classical result that, for each positive function 𝛾 ∈ 𝐶0(Ω) and every
𝑓 ∈ 𝐻1/2(Ω), (1.5) has a unique weak solution 𝑢 ∈ 𝐻1(Ω).

An interested physical property that we can compute from 𝑢 (induced by 𝛾 and 𝑓) is the
current flowing through the boundary, which is mathematically given by 𝛾 𝜕𝑢/𝜕𝑛|𝜕Ω, where
𝑛 stands the exterior unit normal vector on 𝜕Ω. Fixing a 𝛾 and using the uniqueness solution
result for (1.5), we can introduce the called Steklov-Poincaré map (also known as Dirichlet to
Neumann map) Λ𝛾 : 𝐻1/2(𝜕Ω) ↦→ 𝐻−1/2(𝜕Ω), which is given by:

Λ𝛾(𝑓) = 𝛾
𝜕𝑢

𝜕𝑛

⃒⃒⃒⃒
⃒
𝜕Ω
, ∀𝑓 ∈ 𝐻1/2(𝜕Ω).

We can easily see that the direct problem related to observing the current flowing through the
boundary consists, basically, in evaluating the map Λ𝛾.

We can analyze a mathematical model following an “inverse”pathway, that is, to identify
the unknown model parameters from the knowledge of their effects. This approach is known as
the solution of an inverse problem associated to the model and it has a lot of applications, such
as the following: recovering the density of the Earth from measurements of the graviational



13

field, identification of tumors from exterior electrical, ultrasonic or magnetic measurements
and locating of underground mineral deposits from electrical measurements on the Earth’s
surface. For more details and other examples, see (ISAKOV, 2006). An important example of
inverse problem is the so called Calderón problem (or problem of inverse conductivity), which
it was introduced by A. P. Calderón in (CALDERÓN, 1980) and it was studied in a lot of
works, see (ALESSANDRINI, 1998; BROWN R.; UHLMANN, 1997) and the references therein. The
problem consists of determining the electrical conductivity of a medium from measurements
of the voltage and the current on the boundary. In other words, in the Calderón problem we
apply a voltage 𝑓 on the boundary of Ω and we are able to measure the electrical current
Λ𝛾(𝑓) flowing through of 𝜕Ω and our aim is to identify the conductivity 𝛾 that generates this
current.

One of the goals of this Thesis is the solution of geometric inverse problems. This consists,
in general, in determining the shape and localization of an unknown geometric structure, such
as a cavity or a crack in a medium, from measurements on its boundary. To illustrate better
the concept, let us consider a conductor represented by a simply connected and bounded set
Ω ⊂ 𝑅2 that contains a cavity represented by a simply connected subset 𝐷 ⊂⊂ Ω. We assume
that the conductivity tensor is given by a square matrix 𝐴 ∈ 𝐿∞(Ω)2×2 and the behavior of
the electrostatic potential 𝑢 can be described by the following elliptic problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇ · (𝐴(𝑥)∇𝑢) = 0 in Ω∖𝐷

𝐴(𝑥)∇𝑢 · 𝜈 = 0 on 𝜕𝐷,

𝐴(𝑥)∇𝑢 · 𝜈 = 𝜓 on 𝜕Ω,

(1.6)

where 𝜓 ∈ 𝐿2(𝜕Ω) is a current density applied on 𝜕Ω and satisfies the compatibility condition:∫︁
𝜕Ω
𝜓 = 0.

The main geometric inverse problem associated with (1.6) consists in determining the
unknown cavity 𝐷 when Ω, 𝐴 and 𝜓 are given and we can measure the potential 𝑢 on an open
portion Γ ⊂ 𝜕Ω. That is, determining (at least approximately) the shape and localization of
𝐷 from the knowledge of the Steklov-Poincaré mapping Λ𝐷 : 𝐿2(𝜕Ω) ↦→ 𝐿∞(Γ), given by

Λ𝐷(𝜓) = 𝑢|Γ ∀ 𝜓 ∈ 𝐿2(𝜕Ω). (1.7)

The three main aspects to be analyze in a geometric inverse problems are : uniqueness,
stability and reconstruction. In the context of the problem (1.6) − (1.7), this can be presented
as follows:
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• Uniqueness: If two admissible cavities 𝐷0 and 𝐷1 generate the same potential, i.e.
Λ𝐷0(𝜓) = Λ𝐷1(𝜓) for all 𝜓 ∈ 𝐿2(𝜕Ω), then 𝐷0 = 𝐷1.

• Stability: Find an estimate of the “distance” 𝜇𝑑(𝐷0, 𝐷1) from 𝐷0 to 𝐷1 in terms of a
“distance” 𝜇0(Λ𝐷0 ,Λ𝐷1) from Λ𝐷0 to Λ𝐷1 of the form

𝜇𝑑(𝐷0, 𝐷1) ≤ Φ(𝜇0(Λ𝐷0 ,Λ𝐷1)),

where the function Φ : 𝑅+ ↦→ 𝑅+ satisfies Φ(𝑠) → 0 as 𝑠 → 0, at least when Λ𝐷0 and
Λ𝐷1 are “close” to a fixed Λ̃︀𝐷.

• Reconstruction: Find an iterative algorithm to compute the unknown domain 𝐷 from the
values of the Steklov-Poincaré mapping Λ𝐷.

The proof of uniqueness results for geometric inverse problems relies, fundamentally, on
unique continuation properties of differential operators in simply connected domains. Some
concepts from complex analysis, such as stream functions and theorems of representation by
holomorphic functions can be used to prove the unique continuation property for elliptic ope-
rators in 𝑅2 (see (ALESSANDRINI G.; RONDI, 2001; ALESSANDRINI G.; RONDI, 1998)). This is the
case of (1.6)-(1.7) and Hormander’s Theorem can be applied in any euclidean space 𝑅𝑁 , but
only for differential operators with constant coefficients (see (DOUBOVA A.; FERNÁNDEZ-CARA,
2015; HORMANDER, 1969)). Contrarily, the tool used in this Thesis is local Carleman inequality,
which allows to get unique continuation property for elliptic (and even parabolic) operators
with non-smooth coefficients and spatial dimension (for more details, see also (DOUBOVA,
2006; DOUBOVA, 2007; FABRE, 1995)).

In general, our measurements of some effect (like, for instance, the electrical potential
on a portion of a medium’s boundary) provoked by the presence of an unknown cavity
or obstacle 𝐷 is not totally precise and a stability analysis permits to quantify how much
those measure errors may influence the identification process of 𝐷. That is, after introducing
a suitable distance between two observations Λ𝐷0(𝜓) and Λ𝐷1(𝜓) (for instance, the norm
‖Λ𝐷0(𝜓) − Λ𝐷1(𝜓)‖𝐿∞(Γ)) and between the corresponding domains 𝐷0 and 𝐷1 (for instance,
the Hausdorff distance 𝑑ℋ(𝐷0, 𝐷1)), we want to prove a result like

‖Λ𝐷0(𝜓) − Λ𝐷1(𝜓)‖𝐿∞(Γ) ≤ 𝜀 =⇒ 𝑑ℋ(𝐷0, 𝐷1) ≤ Φ(𝜀), (1.8)

for all 𝜀 > 0 sufficiently small, where Φ : 𝑅+ ↦→ 𝑅+ (error function) satisfyies Φ(𝜀) → 0 as 𝜀 →

0. It is important to note that the inequality (1.8) means that, for “acceptable”measurement
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errors, we are “close”to find the unknown domain 𝐷 that provokes the observed effect on the
boundary.

Likewise for uniqueness, the study of stability properties of (1.6)-(1.7) can be achieved
using tools from complex analysis. In that case, the standard approach consists in finding
the stream function 𝑣 (a kind of generalized harmonic conjugate) associated with the unique
weak solution 𝑢 to (1.6) and assume that 𝜕𝐷 has regularity properties that allow to find a
quasi-conformal mapping 𝜒 : Ω∖𝐷 ↦→ 𝐵, where 𝐵 is a circular domain. Then, by using a
Representetion Theorem by L. Bers and L. Nirenberg one proves that the complex function
𝑓 = 𝑢+ 𝑖𝑣 can be identified to 𝑓 = 𝐹 ∘ 𝜒, where 𝐹 : 𝐵 ↦→ 𝐶 is a holomorphic function and,
also, one can get appropriate estimates for 𝑓 that lead to stability results similar to (1.8). For
more details, we refer (ALESSANDRINI G.; RONDI, 2001; ALESSANDRINI G.; RONDI, 1998; RONDI,
2000) .

Another important approach to study the stability of geometric inverse problems associated
with elliptic (and even parabolic) operators relies on analyticity arguments. To sum up, assume
a priori that the effects measured from the boundary are obtained for domains 𝐷 that are
“suitable”deformations of a fixed domain 𝐷0, that is, they can be written as 𝐷 = (𝐼+𝜎𝜇)(𝐷0),
where 𝐼 : 𝑅𝑁 ↦→ 𝑅𝑁 is the identity, 𝜎 ∈ (−1, 1) and 𝜇 belongs to an appropriated subset
of 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁). Then, the deformations lead to an analytic mapping from (−1, 1) to the
space where the observed effects live (for instance, 𝐻−1/2(Γ)). After writing the mapping as
a power series expansion, we find a sufficiently small 𝜎0 ∈ (−1, 1) such that an inequality like
(2.6) in Theorem 2.2 of Chapter 2 holds. While the method based on complex analysis allows
to get stability estimates for elliptic operators whose coefficients are only 𝐿∞(Ω), the latter
method, based on analyticity, as far as we know, only works for constant coefficients.

There are several papers dealing with reconstruction algorithms to solve geometric in-
verse problems (see, for instance, (ABDA, 2009; ALVAREZ, 2005; ALVAREZ, 2008; DOUBOVA A.;

FERNÁNDEZ-CARA, 2015; DOUBOVA A.; FERNÁNDEZ-CARA, 2018)) and, in most of them, the
main idea consists in reducing to finite dimension and reformulating the search of the unknown
𝐷 as a constrained (maybe numerically ill-conditioned) extremal problem and, after this, using
gradient, quasi-Newton or even Newton methods to compute approximate solutions. In this
Thesis we outlined a reconstruction method (see Section 2.4.4 of the Chapter 2) that relies on
the application of techniques of differentiation with respect to the domains that can be found
in (HENROT A.; PIERRE, 2018) and (SIMON, 1987).
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1.3 MATHEMATICAL MODELING IN FLUID MECHANICS

One of the most notable mathematical models using Differential Calculus comes from fluid
mechanics and is represented by the so-called Navier-Stokes Equations (NSEs) that, in turn,
are applied to modeling a lot of phenomena (weather, ocean currents, water flows in oceans,
lakes and rivers, star motions inside and outside of a galaxy, smoke spread in fires and industrial
chimneys, etc.).

A fluid is a large number of molecules in motion that, contrarily to a solid, has not a
precise shape at rest. A physical property that characterizes all fluids is the so-called mean
free path, that is, the average distance travelled by a fluid particle between collisions that, in
turn, change the direction of its movement, energy, etc. The mean free path determines the
choice of the approach kinetic theory or continuum mechanics. The kinetic theory is used when
the number of fluid particles contained in a region is very small (which means a mean free path
relatively large); the effects of the particular molecules are then important and, consequently,
the movement of the fluid must be treated individually for each molecule. However, if the mean
free path is very small compared to the characteristic lengths of the problem, then the fluid
can be considered as a continuum medium and the movement of its particles must be viewed
as a whole. Through this approach, the fluid can be described by macroscopic quantities, such
as: density, velocity, etc.

From now on, we will consider a fluid as a continuum medium and we will suppose that a
fluid fills a region in space represented by a bounded and simply connected open set Ω ⊂ 𝑅𝑁

during a time interval (0, 𝑇 ). Also, we denote by 𝑦 and 𝑝, respectively, the velocity field and the
pressure of the fluid and we assume that the fluid is incompressible (conservation of volume),
homogeneous (the density of the fluid is a constant 𝜌0) and Newtonian, that is, the so-called
stress tensor 𝜎 obeys the relation:

𝜎 = −𝑝𝐼𝑑+ 𝜇(∇𝑦 + ∇𝑦𝑡),

where 𝜇 > 0 is the so-called dynamical viscosity coefficient. Then, we get that the velocity
field and pressure of the fluid obey the so-called Navier-Stokes equations (for more details
see, for instance, (BOYER F.; FABRIE, 2002; CHORIN A. J.; MARSDEN, 1990; FERNÁNDEZ-CARA,
2012)): ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑦𝑡 + (𝑦 · ∇)𝑦 = − 1
𝜌0

∇𝑝+ 𝜈Δ𝑦 + 𝑓 in (0, 𝑇 ) × Ω,

∇ · 𝑦 = 0 in (0, 𝑇 ) × Ω,
(1.9)
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where 𝜈 = 𝜇/𝜌0 is the so-called kinematic viscosity.

Remark 1 When we let 𝜈 → 0 in (1.9), we get in the limit the incompressible Euler equations:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦𝑡 + (𝑦 · ∇)𝑦 = − 1

𝜌0
∇𝑝+ 𝑓 in (0, 𝑇 ) × Ω,

∇ · 𝑦 = 0 in (0, 𝑇 ) × Ω.
(1.10)

When a Newtonian, homogeneous and incompressible fluid flows in a spatial region Ω ⊂ 𝑅3

during a time interval (0, 𝑇 ), we can establish a characteristic length 𝐿* (usually, the diameter
of Ω) and a characteristic velocity 𝑌* that can be related, for example, to the forces applied
on the boundary 𝜕Ω or to a pressure gradient. Once 𝐿* and 𝑌* are defined, we can rewrite
the NSEs in (1.9) in a nondimensional form by setting:

𝑥* = 𝑥

𝐿*
, 𝑡* = 𝑡

𝑇*
, 𝑦* = 𝑦

𝑌*
, 𝑝* = 𝑝

𝜌0𝑃*
and 𝑓* = 𝑇 2

*
𝐿*
𝑓, (1.11)

where 𝑇* = 𝐿*/𝑌* and 𝑃* = 𝑌 2
* . We can indeed check that the new independent variables

𝑥*, 𝑡* and the physical quantities 𝑦*, 𝑝*, 𝑓* are nondimensional and, moreover,

∇* = 𝐿*∇ and Δ* = 𝐿2
*Δ. (1.12)

Then, by applying (1.11) - (1.12) in (1.9), we obtain the following nondimensional NSEs:

𝑦*,𝑡 − 1
𝑅𝑒

Δ*𝑦* + (𝑦* · ∇)𝑦* + ∇*𝑝* = 𝑓*

where the 𝑅𝑒 := 𝐿*𝑌*

𝜈
is the so-called Reynolds number.

We see that previous process has a lot of interest because the parameter 𝑅𝑒, that naturally
appears, helps to predict the behaviour pattern of a fluid in different situations. Indeed, in
experiments, it is observed that at values of 𝑅𝑒 below the so-called critical Reynolds number,
the fluid moves smoothly with a minimal amount of mixing between adjacent layers. In this
regime, we say that the fluid is laminar. However, for higher values, the fluid exhibits a chaotic
behaviour, with rapid variations in its velocity field and pressure and swirling regions appear,
called eddies. In this regime, we say that the fluid is turbulent. By observing a turbulent
flow modeled by the NSEs (1.9), a process can be observed where large eddies (large-scale
components of the fluid) break up into smaller eddies (fine-scale components of the fluid).
That process is known as energy cascade and it is provoked by the presence of the inertial term
(𝑦 · ∇)𝑦 in the NSEs, responsible of the transport of kinetic energy from the larger structures
to the smaller ones.
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If a mesh sufficiently fine is used, a numerical resolution of the NSEs allows to visualize
all the fluid eddies, even the smallest ones close to a length-scale 𝑙𝑑, where the molecular
dissipation begins to dominate the inertial term. This approach is called Direct Numerical
Simulation (DNS) and for large 𝑅𝑒, it demands a really high computational cost what makes
it impractical. On the other hand, a numerical method proposal to overcome this difficult is the
so-called Large Eddy Simulation (LES) that consists in directly resolve the turbulent structures
larger than a certain prescribed length 𝑙* and inhibit the creation of structures smaller than
𝑙* by filtering the inertial term (𝑦 · ∇)𝑦 with a spatial smoothing kernel Φ. This means that
this term is replaced by (𝑧 · ∇)𝑦, with 𝑧 = Φ * 𝑦. However, the effects of the unresolved
smallest eddies cannot be ignored and, therefore, they must be modeled. To sum up, the LES
methods directly account for the large eddies (what does not require a very fine mesh and,
therefore, reduce the computational cost) and model the effects of the smallest eddies. It
is worth mentioning that the representation of those effects by subgrid scale modeling is an
active subject of research in the theory of turbulent fluids.

In the last years, two mathematical models has raised with a great potential to become
a subgrid scale LES model for 3𝐷 turbulence phenomena. The first one is well-described in
(FOIAS, 2001) and it is called Lagrangian Averaged Navier-Stokes-𝛼 model (LANS-𝛼 model)
(also called Navier-Stokes-𝛼 or viscous Camassa-Holm equations):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − 𝜈Δ𝑦 + (𝑧 · ∇)𝑦 +∑︀3
𝑗=1 𝑦𝑗∇𝑧𝑗 + ∇𝑝 = 𝑓 in (0, 𝑇 ) × Ω,

∇ · 𝑦 = ∇ · 𝑧 = 0 in (0, 𝑇 ) × Ω,

𝑧 − 𝛼2Δ𝑧 = 𝑦 in (0, 𝑇 ) × Ω,

(1.13)

where 𝑦 is periodic in the periodic box Ω = [0, 2𝜋𝐿]3. From the empirical point of view
in (CHEN, 1998; CHEN, 1999b; CHEN, 1999a), the authors showed that the steady LANS-𝛼
numerical solutions compare successfully with empirical data from turbulent flows and pipes,
for a wide range of Reynolds numbers. Inspired by the LANS-𝛼 model (1.13), the authors in
(CHESKIDOV, 2005) introduced and described the second model mentioned above, the so-called
Leray-𝛼 model to 3𝐷 turbulence:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − 𝜈Δ𝑦 + (𝑧 · ∇)𝑦 + ∇𝑝 = 𝑓 in (0, 𝑇 ) × Ω,

∇ · 𝑦 = ∇ · 𝑧 = 0 in (0, 𝑇 ) × Ω,

𝑧 − 𝛼2Δ𝑧 = 𝑦 in (0, 𝑇 ) × Ω.

(1.14)
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Here, we assume that 𝑦 is periodic in the box Ω = [0, 2𝜋𝐿]3. Notice that, as in the LANS-𝛼
model the low-pass filter used is the Green’s function associated with the Helmholtz operator
𝐼 − 𝛼2Δ.

The Euler equations for compressible fluids have two problems at small length-scales that
demand attention: the first one is the turbulence (like in incompressible fluids) and the second
one is the formation of shocks. Then, inspired by the good results obtained for LANS-𝛼
and Leray-𝛼 models to treat with turbulent flows and with the aim of regularize the shock
discontinuities that appear in the compressible Euler equations’ solutions, the authors in (BHAT,
2005) applied the Lagrangian averaging approach to deduce averaged models for barotropic
and compressible Euler equations. The Lagrangian averaging approach results in a filtered
convective velocity in the nonlinear term (𝑦 ·∇)𝑦. Then, taking this fact into account and due
to the great difficulties involved in the numerical treatment of the averaged models obtained
in (BHAT, 2005), the authors used in (NORGARD G.; MOHSENI, 2008) a filtered velocity in the
nonlinear term 𝑦𝑦𝑥 of the Burgers equation, with the intention of discovering if this technique
is reasonable to capture shock formation. Precisely, the starting 1𝐷 fluid model is the inviscid
Burgers equation. It is given by:

𝑦𝑡 + 𝑦𝑦𝑥 = 0 (1.15)

while the viscous Burgers equation is given by:

𝑦𝑡 − 𝜈𝑦𝑥𝑥 + 𝑦𝑦𝑥 = 0, (1.16)

where 𝜈 > 0 represents the viscosity.
There are a lot of works dealing with the inviscid and viscous Burgers equations (see for

example (BURGERS, 1948; COLE, 1951; GOTOH T.; KRAICHNAN, 1993; LAX, 1973; LIGHTHILL,
1956; OBERAI A. A.; WANDERER, 2006; TADMOR, 2004; WHITHAM, 1974)) and the reasons why
they have been a useful testing ground for dynamic fluids rely, mainly, on two aspects:

• Simplicity: Since the equations (1.15) - (1.16) are one-dimensional and they have not a
pressure term, then they are simpler than the Euler and Navier-Stokes equations.

• Similarity: Like the Euler equations (1.10) the inviscid Burgers equation (1.15) can be
expressed as a conservation law and just like the term (𝑦 · ∇)𝑦 in system (1.10), the
presence of the one-dimensional convective term 𝑦𝑦𝑥 is responsible by shock formation
for the solutions to (1.15). On the other hand, the viscous Burgers equation (1.16) can
be regarded as a simplified version of theNavier-Stokes equations (1.9).
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Taking into account the aspects mentioned above, in (NORGARD G.; MOHSENI, 2008) the
authors made a analytical and numerical study of the so-called inviscid Burgers-𝛼 equation:⎧⎪⎪⎨⎪⎪⎩

𝑦𝑡 + 𝑧𝑦𝑥 = 0,

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦,

(1.17)

where, like in the LANS-𝛼 and Leray-𝛼 models, there is a filtered convective velocity 𝑧 = Φ𝛼*𝑦;
here, Φ𝛼 is the Green’s function associated with the one-dimensional Helmholtz operator
𝐼𝑑− 𝛼2𝜕2

𝑥𝑥.
In (NORGARD G.; MOHSENI, 2008) the authors showed numerical evidence that (1.17) is in

fact a shock regularization for (1.15) and the behaviour of its solutions is similar to the one
for viscous Burgers equation’s solutions, which can also be interpreted as a regularization of
(1.15). Moreover, it is important to highlight that (1.17) appears when we take 𝑏 → 0 in the
so-called 𝑏−family: ⎧⎪⎪⎨⎪⎪⎩

𝑦𝑡 + 𝑧𝑦𝑥 + 𝑏𝑧𝑥𝑦 = 0,

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦.

(1.18)

A physical motivation of the equations (1.18) is found in (DULLIN, 2003; DULLIN, 2004), where
the authors showed that it is an asymptotically equivalent approximation of the shallow water
equations.

It is worth mentioning that, beyond their utility as test platforms for the Euler and the
Navier-Stokes equations, the equations (1.15) - (1.16) have an interest by themselves as models
for many areas, such as: acoustic waves (GARDNER C. S.; HSING SU, 1969), road traffic modeling
(HIGUCHI H.; MUSHA, 1978; NAGATANI, 2000), runoff in soils (SU, 2004), shock formation in
inelastic gases (BEN-NAIM, 1999), cosmology turbulence dynamics as in (BEC J; KHANIN, 2007;
BOUCHAUD J.-P.; MÉZARD, 1996), etc.

1.4 FREE-BOUNDARY PROBLEMS IN MATHEMATICAL MODEL

In all mathematical models presented before, either the boundary of the spatial domain
where the PDE is posed was given or there is a part of the spatial boundary that we have
to determine. However, there are some physical phenomena modeled by differential equations
defined in spatial domains such that a part of the boundary (called free boundary or moving
boundary) is unknown and evolves in time. One of them is the so-called 1𝐷 two-phase melting
phenomenon that we briefly describe below.
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Let 𝐿 > 0 a material length, 𝑇 > 0 a positive time and suppose that at the initial
time 𝑡 = 0, the spatial region 0 ≤ 𝑥 ≤ 𝐿 is filled with ice and the initial distribution of
temperature is given by a non-positive function 𝑢0 : [0, 𝐿] → 𝑅. Furthermore, consider that
a time-dependent heat source 𝑞(𝑡) > 0 acts at the left boundary 𝑥 = 0 starting, therefore,
a melting process of the ice. Therefore, for any 0 < 𝑡 ≤ 𝑇 , there exists a material length
ℓ(𝑡) (also called liquid/solid interface) such that the region 0 ≤ 𝑥 ≤ 𝐿 consists of two parts:
[0, ℓ(𝑡)) (filled with water) and (ℓ(𝑡), 𝐿] (filled with ice).

If we denote by 𝑢𝑙 and 𝑢𝑠, respectively, the temperatures in the water and ice regions,
then the 1𝐷 two-phase melting problem (also called the two-phase Stefan problem) is to find
a triplet (𝑢𝑙, 𝑢𝑠, ℓ) satisfying the following:

Water region: ⎧⎪⎪⎨⎪⎪⎩
𝑐𝑙𝜌𝑙𝑢𝑙,𝑡 = 𝜅𝑙𝑢𝑙,𝑥𝑥, 0 < 𝑡 < 𝑇, 0 ≤ 𝑥 < ℓ(𝑡),

𝑢𝑙(0, 𝑡) = 𝑞(𝑡), 0 < 𝑡 < 𝑇.

(1.19)

Ice region: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑐𝑠𝜌𝑠𝑢𝑠,𝑡 = 𝜅𝑠𝑢𝑠,𝑥𝑥, 0 < 𝑡 < 𝑇, ℓ(𝑡) < 𝑥 ≤ 𝐿,

𝑢𝑠(𝐿, 𝑡) = 0, 0 < 𝑡 < 𝑇,

𝑢𝑠(𝑥, 0) = 𝑢0(𝑥), 0 < 𝑥 ≤ 𝐿

(1.20)

Additional conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℓ(0) = 0,

𝑢𝑙(ℓ(𝑡), 𝑡) = 𝑢𝑠(ℓ(𝑡), 𝑡) = 0, 0 < 𝑡 < 𝑇,

𝜅𝑠𝑢𝑠,𝑥(ℓ(𝑡), 𝑡) − 𝜅𝑙𝑢𝑙,𝑥(ℓ(𝑡), 𝑡) = 𝜎𝜌ℓ′(𝑡), 0 < 𝑡 < 𝑇.

(1.21)

The positive constants 𝑐𝑖, 𝜌𝑖, 𝜅𝑖, for 𝑖 ∈ {𝑙, 𝑠} and 𝜎 stand for, respectively, the specific heat,
density, thermal conductivity and the latent heat required to melt the ice. Moreover, notice
that in (1.21) we have two boundary conditions on the moving boundary ℓ(𝑡). The first one
(1.21)2 allows to complete the definition of solution for the system of differential equations
(1.19)-(1.20) and the second one (1.21)3, called the Stefan condition, helps to determine the
unknown interface.

Besides the mathematical role described above, the Stefan condition (1.21)3 can be dedu-
ced physically (see (CRANK, 1984)) as a consequence of the behaviour of the heat flux from
the water to the ice region.
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An interesting control question for Stefan problems like (1.19)-(1.21) that we consider in
this Thesis (see Chapter 4), is to prove that, in a finite time 𝑇 > 0, one can drive both the
temperatures 𝑢𝑙, 𝑢𝑠 and the interface ℓ to desired targets.

CONTROLLABILITY PROBLEMS IN MATHEMATICAL MODELING

To fix ideas, let us consider the non-homogeneous version of the heat equation (1.4):⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝑢𝑥𝑥 = 𝑓1𝜔 in (0, 𝑇 ) × (0, 𝐿),

𝑢(·, 0) = 𝑢(·, 𝐿) = 0 on (0, 𝑇 ),

𝑢(·, 0) = 𝑢0 in (0, 𝐿),

(1.22)

where 𝐿 > 0 is the bar length, 𝑇 > 0 is the time in which the phenomenon is observed,
𝜔 ⊂⊂ (0, 𝐿) is an open subset, 1𝜔 represents the characteristic function on 𝜔 and the source
term 𝑓 and initial condition 𝑢0 are taken in appropriated spaces.

System (1.22) describes the time evolution of the temperature distribution in a thin bar
whose extremes have null temperature and the initial distribution of temperature is given by a
function 𝑢0 : (0, 𝐿) ↦→ 𝑅. On the other hand, the function 𝑓1𝜔 : (0, 𝑇 ) ×𝜔 ↦→ 𝑅 represents a
heat source acting on a portion 𝜔 of the bar. One can deal with the following question: given
a time 𝑇 > 0, an open subset 𝜔 ⊂ (0, 𝐿) and a state 𝑢𝑇 : (0, 𝐿) ↦→ 𝑅 is it possible to find
a heat source 𝑓 such that the solution 𝑢 to (1.22) satisfies 𝑢(𝑇, ·) ≡ 𝑢𝑇 in (0, 𝐿)? In other
words, is it possible, by applying a suitable heat source on a portion of the bar, to steer the
temperature distribution from a given initial 𝑢0 to a desired 𝑢𝑇 at time 𝑡 = 𝑇?

In the above question, the source 𝑓 plays the role of a control. As a consequence of the
regularizing effect for the heat equation, we have a negative answer for a general 𝑢𝑇 . However,
we can drive the temperature close enough (in some topology) to any final state. The issue
formulated in the previous paragraph is what we call controllability problem for a PDE, that
is, the study of the trajectories of a system governed by PDEs connecting two states in a finite
time 𝑇 .

The types of controllability problems can vary according to three factors: time, target and
initial state:

Regarding time, we deal with long-time controllability when the time of control 𝑇 depends
on the states to be connected and with small-time controllability when two states can be linked
at any time 𝑇 > 0.
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With respect to the target, we have the following types of controllability problems: 𝑖) null
controllability, when our aim is to lead any initial state to the null-state; 𝑖𝑖) controllability
problem to trajectories, when we desire to drive an initial state to a trajectory (a particular
solution of the system); 𝑖𝑖𝑖) approximate controllability, when starting from an arbitrary initial
state, we want to steer the solution of the system arbitrarily close to any target; 𝑖𝑣) exact
controllability, when any initial state can be driven exactly to every target.

Concerning the initial state, we have controllability questions of two kinds: global and
local controllability. The first one holds when any initial state can be driven (exactly or not)
to a prescribed target and the second one holds when we only can reach a target if we
start sufficiently close to it. A widely used method in Control Theory to solve controllability
problems for nonlinear partial differential equations consists in linearizing the system around
a well chosen trajectory and then, by applying a fixed-point argument or an inverse function
theorem, get a local controllability result (we have applied this technique in this Thesis, see
Chapter 3).

1.5 CONTEXT AND AIMS OF THIS THESIS

Geometric inverse problems associated with elliptic and parabolic operators and controlla-
bility of fluid mechanics systems and of free-boundary problems are focus of intense research
in mathematics, physics, engineering, etc. The main goal of this Thesis is to present new
contributions to all of them.

The first chapter of this Thesis relies on the paper (ARAUJO, 2020), which consists in a
detailed study of geometric inverse problems associated with systems of elliptic and parabolic
equations. The second chapter relies on the submitted manuscript, dealing with the global uni-
form controllability properties of a family of inviscid and viscous regularizations of the inviscid
and viscous Burqers equations. Finally, the third chapter relies on the submitted manuscript,
concerning a local controllability result for a two-phase Stefan problem, where we control both
temperatures and also the interface.

1.6 PREVIOUS RESULTS

There are a lot of works dealing with geometric inverse problems for elliptic equations. Let
us first mention (FRIEDMAN A.; VOGELIUS, 1989), where the authors obtained a uniqueness
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result for the inverse problem of determining the shape and localization of a singular crack 𝜎
(a simple arc) from two boundary measurements. Then, this result was extended for the case
of multiple cracks 𝜎1, . . . , 𝜎𝑛 by Alessandrini and Valenzuela in (ALESSANDRINI G.; VALENZU-

ELA, 1996) and stability results were obtained by Alessandrini and Rondi in (ALESSANDRINI

G.; RONDI, 1998). It is worth mentioning the paper (ALESSANDRINI G.; RONDI, 2001) of Alessan-
drini and Rondi, where they found optimal stability estimates for the problem of determining
the locations of several cavities 𝐷1, . . . , 𝐷𝑛 from only one boundary measurement.

As mentioned above, in this Thesis we use local Carleman inequalities to get a uniqueness
result for geometric inverse problems. This method was previously applied, for example, in
(DOUBOVA, 2006; DOUBOVA, 2007; FABRE, 1995) for inverse problems associated with the
systems of Boussinesq, Navier-Stokes and Stokes, respectively. We also prove stability results
by applying techniques used by C. Alvarez et al in (ALVAREZ, 2005) for the Navier-Stokes
equations and we present a reconstruction algorithm based in arguments used by Doubova et
al in (DOUBOVA, 2006; DOUBOVA, 2007).

On the other hand, the more notable controllability results in the field of fluid mecha-
nics are related to Navier-Stokes, Euler and Burgers equations. Concerning the Navier-Stokes
equations, Fursikov and Imanuvilov in (FURSIKOV A. V.; IMANUVILOV, 1999) proved, using Car-
leman inequality and an Inverse Function Theorem, local controllability results to trajectories
of class 𝐶∞ and Fernández-Cara et al in (FERNÁNDEZ-CARA, 2004) improved these results, by
considering bounded trajectories. Later, Fernández-Cara et al proved in (FERNÁNDEZ-CARA,
2006), under some specific geometric conditions, a local exact controllability result to trajec-
tories of the 𝑁−dimensional Navier-Stokes and Boussinesq systems with a reduced number of
scalar distributed controls. More results in this direction has been obtained later; see (CORON

J.-M; LISSY, 2014) and the references therein.
Regarding the Euler equations, Coron in (CORON, 1993; CORON, 1996) proved, by applying

the return method, a global controllability result for the 2𝐷 incompressible Euler equations
and in (GLASS, 1997; GLASS, 2000) Glass proved a global controllability result for the 3𝐷

incompressible Euler equations. Also, it is worth mentioning that Coron in (CORON, 1995),
using the results in (CORON, 1993; CORON, 1996), proved a global controllability result for the
2𝐷 incompressible Navier-Stokes equations with slip boundary conditions.

Some remarkable works were carried out in the framework of the inviscid Burgers equations.
In (ANCONA F.; MARSON, 1998), Ancona and Marson described the attainable states for the
general conservation law of the type 𝑦𝑡 +[𝑓(𝑦)]𝑥, with 𝑓 strictly convex and of class 𝐶2, in the
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positive half-space. Later, Horsin, in (HORSIN, 1998), described the attainable states for the
inviscid Burgers equation in a line segment using two boundary controls. Furthermore, similar
to the result of Ancona and Marson, Perrolaz in (PERROLLAZ, 2012), studied the controllability
properties of the system 𝑦𝑡 + [𝑓(𝑦)]𝑥 in but in the context of the entropic solutions.

In the case of the viscous Burgers equation, let us highlight the following positive con-
trollability results: in (FURSIKOV A. V.; IMANUVILOV, 1996), Fursikov and Imanuvilov proved
a small time local controllability result using only one boundary control; long time controlla-
bility results towards steady states were obtained by Fursikov and Imanuvilov in (FURSIKOV

A.; IMANUVILOV, 1995); furthermore, Chapouly proved in (CHAPOULY, 2009) that the viscous
Burgers equation is small time globally controllable with three scalar controls and Marbach
improved in (MARBACH, 2014) the Chapouly’s result considering only two controls.

On the other hand, there are negative controllability results in the framework of the viscous
Burgers equation. For instance, Fernández-Cara and Guerrero, in (FERNÁNDEZ-CARA E.; GUER-

RERO, 2007), presented optimal estimates for the minimal time of null controllability 𝑇 (𝑟) of
the initial data of 𝐿∞ norm ≤ 𝑟 and Marbach proved in (MARBACH, 2018) the viscous Bur-
gers equation is not small time locally null controllable with one space-independent distributed
control and no boundary controls.

On the other hand, there are some controllability results related the “𝛼− modifications”
of the Burgers equations. Indeed, in (ARARUNA, 2013), Araruna et al proved a local null con-
trollability result for the viscous Burgers-𝛼 equations. This result was extended in (FERNÁNDEZ-

CARA E.; SOUSA, 2019) to the viscous 𝑏−family and in higher dimensional cases, a null con-
trollability result for the Leray-𝛼 equations was obtained in (ARARUNA, 2014).

Finally, the study of the controllability properties of free boundary problems related to
parabolic PDEs is a topic few explored in the literature. Nevertheless, important results arised
in the last years, specially for one-phase Stefan problems and their variants: in (FERNÁNDEZ-

CARA, 2016), using classical results of parabolic regularity theory, standard energy estimates
and Schauder fixed-point Theorem, the authors managed to steer to zero the temperature
in an 1𝐷 one-phase Stefan Problem, when the initial condition is small enough. By similar
arguments, in (FERNÁNDEZ-CARA E.; SOUSA, 2017a) and (DEMARQUE R.; FERNÁNDEZ-CARA,
2018), the local null controllability for the temperature was extended to cover 1𝐷 semilinear
one-phase Stefan problems and 2𝐷 Stefan problems in star-shaped domains, respectively.
Moreover, in (FERNÁNDEZ-CARA, 2018), the authors treat the null controllability problem for
1𝐷 one-phase Stefan problem by using a local inversion argument (more precisely, Liusternik’s
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Inverse Function Theorem in Banach spaces).
Related to the two-phase Stefan problems, the best results up to our knowledge concern

stabilization. Precisely, in (KOGA S.; KRSTIC, 2020), a melting/solidification temperature 𝒯𝑚, is
introduced; the medium is assumed to fill a region (0, 𝐿) and a regular function ℓ : [0,+∞) ↦→

[0,+∞) describing the evolution in time of the interface liquid/solid, is introduced. Then, using
the Backstepping Transformation Method, the authors design a feedback boundary control
acting at 𝑥 = 0 that stabilizes the temperatures and drive them to 𝒯𝑚, while the interface
ℓ(𝑡) is driven towards a desired ℓ𝑇 . In other words, they prove the existence of a control such
that:

lim
𝑡→∞

‖𝑢𝑙(·, 𝑡) − 𝒯𝑚‖𝐿2(0,ℓ(𝑡)) = lim
𝑡→∞

‖𝑢𝑠(·, 𝑡) − 𝒯𝑚‖𝐿2(0,ℓ(𝑡)) = 0 and lim
𝑡→∞

ℓ(𝑡) = ℓ𝑇 .

1.7 DESCRIPTION OF THE RESULTS: INVERSE PROBLEM FOR AN ELLIPTIC SYSTEM

Let Ω ⊂ 𝑅𝑁 be a simply connected bounded domain whose boundary 𝜕Ω is of class 𝑊 2,∞,
𝐷* a fixed nonempty open set with 𝐷* ⊂⊂ Ω and 𝛾 ⊂ 𝜕Ω a nonempty open set. Consider
the following family of subsets of 𝐷*:

𝒟 =
{︁
𝐷 ⊂ Ω : 𝐷 ̸= ∅ is a simply connected domain, 𝐷 ⊂ 𝐷* and 𝜕𝐷 is of class 𝑊 2,∞

}︁
and let us denote by 𝒜 the set of all (𝑎, 𝑏, 𝐴,𝐵) such that 𝑎, 𝑏, 𝐴, 𝐵 ∈ 𝐿∞(Ω) and⎡⎢⎢⎣ 𝜉1

𝜉2

⎤⎥⎥⎦
𝑡 ⎡⎢⎢⎣ 𝑎(𝑥) 𝑏(𝑥)

𝐴(𝑥) 𝐵(𝑥)

⎤⎥⎥⎦
⎡⎢⎢⎣ 𝜉1

𝜉2

⎤⎥⎥⎦ ≥ −𝜆(|𝜉1|2 + |𝜉2|2) ∀(𝜉1, 𝜉2) ∈ 𝑅2, a.e. in Ω,

for some 𝜆 with 0 < 𝜆 < 𝜇1(Ω)−1, where 𝜇1(Ω) is the smallest positive constant such that

‖𝑢‖2
𝐿2 ≤ 𝜇1(Ω)‖∇𝑢‖2

𝐿2 ∀𝑢 ∈ 𝐻1
0 (Ω).

We will always assume that (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω) × 𝐻1/2(𝜕Ω) and (𝑎, 𝑏, 𝐴,𝐵) ∈ 𝒜. Under
these conditions, it is well known that, for any 𝐷 ∈ 𝒟, there exists a unique solution (𝑦, 𝑧) ∈

𝐻1(Ω∖𝐷) ×𝐻1(Ω∖𝐷) to the elliptic system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in Ω∖𝐷,

−Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in Ω∖𝐷,

𝑦 = 𝜙, 𝑧 = 𝜓 on 𝜕Ω,

𝑦 = 𝑧 = 0 on 𝜕𝐷.

(1.23)
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Furthermore, there exists a constant 𝐶(Ω, 𝐷*) > 0 such that

‖(𝑦, 𝑧)‖𝐻1(Ω∖𝐷) ≤ 𝐶(Ω, 𝐷*)‖(𝜙, 𝜓)‖𝐻1/2(𝜕Ω).

In Chapter 2, we will deal with the following geometric inverse problem:

Given (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω) ×𝐻1/2(𝜕Ω) and (𝛼, 𝛽) ∈ 𝐻−1/2(𝜕Ω) ×𝐻−1/2(𝜕Ω), find
a set 𝐷 ∈ 𝒟 such that the solution (𝑦, 𝑧) to the linear system (1.23) satisfies the
additional conditions:

𝜕𝑦

𝜕𝑛

⃒⃒⃒⃒
⃒
𝛾

= 𝛼 and 𝜕𝑧

𝜕𝑛

⃒⃒⃒⃒
⃒
𝛾

= 𝛽. (1.24)

A motivation of problems of this kind can be found, for instance, when one tries to com-
pute the stationary temperature of a chemically reacting plate whose shape is unknown. More
precisely, (1.23)-(1.24) has the following interpretation: assume that a chemical product, sen-
sible to temperature effects, fills an unknown domain Ω∖𝐷; its concentration 𝑦 = 𝑦(𝑥) and its
temperature 𝑧 = 𝑧(𝑥) are imposed on the whole outer boundary 𝜕Ω, the associated normal
fluxes are measured on 𝛾 ⊂ 𝜕Ω and both 𝑦 and 𝑧 vanish on the boundary of the non-reacting
unknown set 𝐷; what we pretend to do is to determine 𝐷 from these data and measurements.

The two main theorems proved in Chapter 2 involve uniqueness and stability results of the
inverse problem (1.23)-(1.24). Specifically, our first main result is the following:

Theorem 1 Assume that (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω)×𝐻1/2(𝜕Ω) is nonzero. For 𝑖 = 0, 1, let (𝑦𝑖, 𝑧𝑖)

be the unique weak solution to (1.23) with 𝐷 replaced by 𝐷𝑖 and let 𝛼𝑖 and 𝛽𝑖 be given by

the corresponding equalities (1.24). Then one has the following:

(𝛼0, 𝛽0) = (𝛼1, 𝛽1) =⇒ 𝐷0 = 𝐷1.

The proof relies on some ideas from (FABRE, 1995). More precisely, by applying a well-
known local Carleman inequality for elliptic operators, we obtain a unique continuation property
for the elliptic system (1.23)1,2 defined in a ball and, after that, we use a compactness argument
to extend this property for general domains.

Next let us introduce the sets 𝐷 := 𝐷0 ∪ 𝐷1, 𝑂0 := Ω∖𝐷 and let 𝑂 be the unique
connected component of 𝑂0 such that 𝜕Ω ⊂ 𝜕𝑂. Consider the functions 𝑦 = 𝑦0 − 𝑦1 and
𝑧 = 𝑧0 −𝑧1. Then, using the hypothesis that (𝛼0, 𝛽0) = (𝛼1, 𝛽1), we can define a appropriated
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extensions 𝑂′ of 𝑂 and (̃︀𝑦, ̃︀𝑧) of (𝑦, 𝑧) such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ̃︀𝑦 + 𝑎̃︀𝑦 + 𝑏̃︀𝑧 = 0 in 𝑂′,

−Δ̃︀𝑧 + 𝐴̃︀𝑦 +𝐵̃︀𝑧 = 0 in 𝑂′,

̃︀𝑦 = ̃︀𝑧 = 0 in 𝑂′∖𝑂.

As a consequence of the unique continuation property obtained in a first step, we get (̃︀𝑦, ̃︀𝑧) =

(0, 0) in 𝑂′, what implies (𝑦, 𝑧) = (0, 0) in 𝑂.
Finally, we must prove that 𝐷0∖𝐷1 and 𝐷1∖𝐷0 are empty sets. This can be done using

a contradiction argument and the well-posedness of our elliptic system. Indeed, suppose by
contradiction that 𝐷1∖𝐷0 ̸= ∅. Then, introducing the set 𝐷2 := 𝐷1 ∪ [(Ω∖𝐷0) ∩ (Ω∖𝑂)],

we have 𝐷2∖𝐷0 is a non-empty set. Furthermore, we note that 𝜕(𝐷2∖𝐷0) = Γ0 ∪ Γ1 where
Γ0 := 𝜕(𝐷2∖𝐷0) ∩ 𝜕𝐷0 and Γ1 := 𝜕(𝐷2∖𝐷0) ∩ 𝜕𝐷1. Therefore, since (𝑦0, 𝑧0) = (𝑦1, 𝑧1) in
𝑂, the pair (𝑦0, 𝑧0) is the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦0 + 𝑎𝑦0 + 𝑏𝑧0 = 0 in 𝐷2∖𝐷0
,

−Δ𝑧0 + 𝐴𝑦0 +𝐵𝑧0 = 0 in 𝐷2∖𝐷0
,

𝑦0 = 𝑧0 = 0 on Γ0 ∪ Γ1.

The above system has a unique solution in 𝐻1
0 (𝐷2∖𝐷0)2, what yields (𝑦0, 𝑧0) = (0, 0) in

𝐷2∖𝐷0. Then, applying unique continuation, we conclude that (𝑦0, 𝑧0) = (0, 0) in Ω∖𝐷0,
which contradicts the fact that (𝜙, 𝜓) ̸≡ (0, 0). Analogously, we can prove that 𝐷0∖𝐷1 = ∅.

Remark 2 (Parabolic Case) Let us consider the set 𝑄 := Ω × (0, 𝑇 ) and let us take func-

tions 𝑎, 𝑏, 𝐴,𝐵 ∈ 𝐿∞(𝑄). Then, we can formulate the following geometric inverse problem

associated with a parabolic system:

Given (𝜙, 𝜓) and (𝛼, 𝛽) in appropriate spaces and a nonempty open set 𝛾 ⊂ 𝜕Ω,

find an open set 𝐷 ∈ 𝒟 such that the solution (𝑦, 𝑧) to the linear evolution system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in Ω∖𝐷 × (0, 𝑇 ),

𝑧𝑡 − Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in Ω∖𝐷 × (0, 𝑇 ),

𝑦 = 𝜙, 𝑧 = 𝜓 on 𝜕Ω × (0, 𝑇 ),

𝑦 = 0, 𝑧 = 0 on 𝜕𝐷 × (0, 𝑇 ),

𝑦(· , 0) = 0, 𝑧(· , 0) = 0 in Ω∖𝐷,

(1.25)
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satisfies the additional conditions:

𝜕𝑦

𝜕𝑛

⃒⃒⃒⃒
⃒
𝛾×(0,𝑇 )

= 𝛼 and 𝜕𝑧

𝜕𝑛

⃒⃒⃒⃒
⃒
𝛾×(0,𝑇 )

= 𝛽. (1.26)

If one assume that (𝜙, 𝜓) ̸≡ (0, 0) then, using arguments similar to those in the proof of

Theorem 1, we can also establish an uniqueness result for the inverse problem (1.25)-(1.26).

In order to present our second main result, concerning stability, let us introduce some
notations. Let 𝐷0 ∈ 𝒟 be a fixed subdomain, let 𝜇 ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁) satisfying

‖𝜇‖𝑊 1,∞ < 𝜖 < 1, 𝜇 = 0 in Ω∖𝐷* (1.27)

and, for any 𝜎 ∈ (−1, 1), let us denote by 𝑚𝜎, 𝐷𝜎 and (𝑦𝜎, 𝑧𝜎), respectively, the mapping
𝑚𝜎 := 𝐼+𝜎𝜇 (where 𝐼 : 𝑅𝑁 ↦→ 𝑅𝑁 stands the identity), the open set 𝐷𝜎 := 𝑚𝜎(𝐷0) and the
solution to (1.23) with 𝐷 replaced by 𝐷𝜎. Moreover, it will be assumed that the coefficients
𝑎, 𝑏, 𝐴,𝐵 are constant. The following holds:

Theorem 2 There exists 𝜎0 > 0 with the following properties:

1. The mapping

𝜎 ↦→
(︃
𝜕𝑦𝜎

𝜕𝑛
,
𝜕𝑧𝜎

𝜕𝑛

)︃⃒⃒⃒⃒
𝛾

(1.28)

is well defined and analytic in (−𝜎0, 𝜎0), with values in 𝐻−1/2(𝛾)2.

2. Either 𝑚𝜎(𝐷0) = 𝐷0 for all 𝜎 ∈ (−𝜎0, 𝜎0) (and then the mapping in (1.28) is constant),

or there exist 𝜎* ∈ (0, 𝜎0), 𝐶 > 0 and 𝑘 ≥ 1 (an integer) such that⃦⃦⃦⃦
⃦
(︃
𝜕𝑦𝜎

𝜕𝑛
,
𝜕𝑧𝜎

𝜕𝑛

)︃
−
(︃
𝜕𝑦0

𝜕𝑛
,
𝜕𝑧0

𝜕𝑛

)︃⃦⃦⃦⃦
⃦

𝐻−1/2(𝛾)2
≥ 𝐶|𝜎|𝑘 ∀𝜎 ∈ (−𝜎*, 𝜎*).

To prove the Theorem 2, we assume that 𝜇 ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁) satisfies (1.27), we define
the function 𝑚 := 𝐼 + 𝜇 ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁) and we introduce

𝑚′ :=
(︃
𝜕𝑚𝑖

𝜕𝑥𝑗

)︃𝑁

𝑖,𝑗=1
, Jac(𝑚) := |det(𝑚′)| and 𝑀 := ((𝑚′)*)−1.

We can check in (HENROT A.; PIERRE, 2018, p. 193) that 𝑚 is bijective for 𝜖 > 0 small
enough and 𝑚−1 ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁). Thus, 𝐷1 := 𝑚(𝐷0) is also a domain in 𝒟 and we can
consider the unique solution (𝑦1, 𝑧1) ∈ 𝐻1(Ω∖𝐷1)2 to (1.23), with 𝐷 replaced by 𝐷1. On the
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other hand, due the regularity of the boundary 𝜕(Ω∖𝐷*) and the couple (𝜙, 𝜓), we have the
existence of (𝜙1, 𝜓1) ∈ 𝐻1(Ω) satisfying:⎧⎪⎪⎨⎪⎪⎩

(𝜙1, 𝜓1) = (0, 0) in 𝐷
*
,

(𝜙1, 𝜓1) = (𝜙, 𝜓) on 𝜕Ω.

Next, we can write (𝑦1, 𝑧1) = (𝑢1 + 𝜙1, 𝑣1 + 𝜓1), where (𝑢1, 𝑣1) ∈ 𝐻1
0 (Ω∖𝐷1)2 is the

unique weak solution to the elliptic problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑢1 + 𝑎𝑢1 + 𝑏𝑣1 = 𝐹1 in Ω∖𝐷1
,

−Δ𝑣1 + 𝐴𝑢1 +𝐵𝑣1 = 𝐺1 in Ω∖𝐷1
,

𝑢1 = 0, 𝑣1 = 0 on 𝜕Ω ∩ 𝜕𝐷1,

(1.29)

where (𝐹1, 𝐺1) ∈ 𝐻−1(Ω∖𝐷1)2 is given by

𝐹1 = Δ𝜙1 − 𝑎𝜙1 − 𝑏𝜓1, 𝐺1 = Δ𝜓1 − 𝐴𝜙1 −𝐵𝜓1.

Let us now introduce the functions:

𝑢0 := ̃︁𝑚(𝑢1), 𝑣0 := ̃︁𝑚(𝑣1), 𝜙0 := ̃︁𝑚(𝜙1) and 𝜓0 := ̃︁𝑚(𝜓1),

with ̃︁𝑚 : 𝐻1
0 (Ω∖𝐷1) ↦→ 𝐻1

0 (Ω∖𝐷0) being the isomorphism induced by 𝑚, that is,

̃︁𝑚(𝑓) := 𝑓 ∘𝑚, ∀𝑓 ∈ 𝐻1
0 (Ω∖𝐷1).

Then, by using the definition of weak solution, we get easily that (𝑢1, 𝑣1) is the unique
solution to (1.29) if and only if (𝑢0, 𝑣0) is the unique solution to the system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (Jac(𝑚)𝑀*𝑀∇𝑢0) + (𝑎𝑢0 + 𝑏𝑣0) Jac(𝑚) = 𝐹0 in Ω∖𝐷0
,

−∇ · (Jac(𝑚)𝑀*𝑀∇𝑣0) + (𝐴𝑢0 +𝐵𝑣0) Jac(𝑚) = 𝐺0 in Ω∖𝐷0
,

𝑢0 = 0, 𝑣0 = 0 in 𝜕Ω ∪ 𝜕𝐷0,

(1.30)

where (𝐹0, 𝐺0) ∈ 𝐻−1(Ω∖𝐷0)2 is given by

𝐹0 = ∇ · (Jac(𝑚)𝑀*𝑀∇𝜙0) − (𝑎𝜙0 + 𝑏𝜓0) Jac(𝑚),

𝐺0 = ∇ · (Jac(𝑚)𝑀*𝑀∇𝜓0) − (𝐴𝜙0 +𝐵𝜓0) Jac(𝑚).

Notice that, for each 𝜇 ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁) satisfying (1.27), one can simplify the formulation
of system (1.30) by introducing the operator 𝑇 (𝜇) ∈ ℒ((𝐻1

0 (Ω∖𝐷0)2;𝐻−1(Ω∖𝐷0)2), with:

𝑇 (𝜇)(𝑢, 𝑣) := (−∇ · (Jac(𝑚)𝑀*𝑀∇𝑢) + (𝑎𝑢+ 𝑏𝑣) Jac(𝑚),

−∇ · (Jac(𝑚)𝑀*𝑀∇𝑣) + (𝐴𝑢+𝐵𝑣) Jac(𝑚)),
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for all (𝑢, 𝑣) ∈ 𝐻1
0 (Ω∖𝐷0)2.

It can be proved that mapping 𝜇 ↦→ 𝑇 (𝜇) is analytic in a neighbourhood of 𝜇 = 0

and, therefore, using (1.29) and the fact that 𝑇 ↦→ 𝑇−1 is also analytic, we get that 𝜇 ↦→

(𝑢0, 𝑣0) = 𝑇−1(𝜇)(𝐹0, 𝐺0) is again analytic in a neighbourhood of 𝜇 = 0. This proves the
first statement of the Theorem 2. The second statement is obtained by writing the difference(︁

𝜕𝑦𝜎

𝜕𝑛
, 𝜕𝑧𝜎

𝜕𝑛

)︁
−
(︁

𝜕𝑦0
𝜕𝑛
, 𝜕𝑧0

𝜕𝑛

)︁
as a power series in 𝐻−1/2(𝛾)2 and making suitable computations.

Finally, in Section 2.4.4 of Chapter 2, we outline a reconstruction algorithm using the
techniques of differentiation with respect to the domains mentioned before.

The results of this chapter can be found in (ARAUJO, 2020), written in collaboration with
Enrique Fernández-Cara and Diego A. Souza.

1.8 DESCRIPTION OF THE RESULTS: GLOBAL CONTROLLABILITY OF THE BURGERS-
ALPHA SYSTEM

Let 𝐿 > 0 and 𝑇 > 0 be given. In Chapter 3, we study the following two families of
controlled systems: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝑧𝑦𝑥 = 𝑝(𝑡) in [0, 𝑇 ] × [0, 𝐿],

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in [0, 𝑇 ] × [0, 𝐿],

𝑧(·, 0) = 𝑣𝑙, 𝑧(·, 𝐿) = 𝑣𝑟 on [0, 𝑇 ],

𝑦(·, 0) = 𝑣𝑙 on 𝐼𝑙,

𝑦(·, 𝐿) = 𝑣𝑟 on 𝐼𝑟,

𝑦(0, ·) = 𝑦0 in [0, 𝐿],

(1.31)

where 𝐼𝑙 = {𝑡 ∈ [0, 𝑇 ] : 𝑣𝑙(𝑡) > 0} and 𝐼𝑟 = {𝑡 ∈ [0, 𝑇 ] : 𝑣𝑟(𝑡) < 0} and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − 𝛾𝑦𝑥𝑥 + 𝑧𝑦𝑥 = 𝑝(𝑡) in (0, 𝑇 ) × (0, 𝐿),

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in (0, 𝑇 ) × (0, 𝐿),

𝑧(·, 0) = 𝑦(·, 0) = 𝑣𝑙 in (0, 𝑇 ),

𝑧(·, 𝐿) = 𝑦(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),

𝑦(0, ·) = 𝑦0 in (0, 𝐿).

(1.32)
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They are, respectively, the inviscid and viscous Burgers-𝛼 systems. The couple (𝑦, 𝑧) and the
triplets (𝑝, 𝑣𝑙, 𝑣𝑟) respectively stand for the corresponding states and controls. For the sake of
simplicity, we always assume 𝛾 = 1, since all the results shown below can be extended without
difficulty to the case where 𝛾 is an arbitrary positive number.

Our two main results deal with uniform global exact controllability (uniform with respect
to 𝛼) for (1.31) and (1.32). Regarding the inviscid Burgers-𝛼 system, we have the following
result:

Theorem 3 Let 𝛼 > 0 and 𝑇 > 0 be given. The inviscid Burgers-𝛼 system (1.31) is globally

exactly controllable in 𝐶1. That is, for any given 𝑦0, 𝑦𝑇 ∈ 𝐶1([0, 𝐿]), there exist a time-

dependent control 𝑝𝛼 ∈ 𝐶0([0, 𝑇 ]), a couple of boundary controls (𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ) ∈ 𝐶1([0, 𝑇 ];𝑅2)

and an associated state (𝑦𝛼, 𝑧𝛼) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2) satisfying (1.31) and

𝑦𝛼(𝑇, ·) = 𝑦𝑇 in (0, 𝐿).

Moreover, there exists a positive constant 𝐶 > 0 (depending on 𝑦0 and 𝑦𝑇 , but independent

of 𝛼) such that

‖(𝑧𝛼, 𝑦𝛼)‖𝐶1([0,𝑇 ]×[0,𝐿];𝑅2) + ‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐶1([0,𝑇 ];𝑅2) ≤ 𝐶.

As far as we know, this is the first work analyzing the uniform controllability properties of
the inviscid Burguers-𝛼 system and the main tool used to get Theorem 3 is Coron’s return
method, which was introduced in (CORON, 1992).

Let us present some ideas of the proof. To do this, consider 𝐿, 𝑇 > 0 and a non-negative
𝑘 ∈ 𝑍 and let us introduce the set

Λ𝐿,𝑇,𝑘 := {𝜆 ∈ 𝐶𝑘([0, 𝑇 ]; [0,∞)) : ‖𝜆‖𝐿1(0,𝑇 ) > 𝐿}.

It is not difficult to see that, for each 𝜆 ∈ Λ𝐿,𝑇,𝑘 with 𝑘 ≥ 1, the pair of functions
(̂︀𝑦(𝑡, 𝑥), ̂︀𝑧(𝑡, 𝑥)) := (𝜆(𝑡), 𝜆(𝑡)) is a trajectory of (1.31), that is, a particular solution to (1.31)
associated with (̂︀𝑝(𝑡), ̂︀𝑣𝑙(𝑡), ̂︀𝑣𝑟(𝑡)) := (𝜆′(𝑡), 𝜆(𝑡), 𝜆(𝑡)). We can see easily that, since the
function 𝜆 ∈ Λ𝐿,𝑇,𝑘 then there exists 𝜂 ∈ (0, 𝐿/2) such that∫︁ 𝑇

0
𝜆(𝑠) 𝑑𝑠 > 𝐿+ 2𝜂. (1.33)

Let us consider the flux Φ : [0, 𝑇 ] × [0, 𝑇 ] × 𝑅 ↦→ 𝑅 associated with 𝜆, that is, the function
Φ = Φ(𝑠; 𝑡, 𝑥) defined by: ⎧⎪⎪⎨⎪⎪⎩

𝜕Φ
𝜕𝑡

(𝑠; 𝑡, 𝑥) = 𝜆(𝑡),

Φ(𝑠; 𝑠, 𝑥) = 𝑥.
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We note that, given 𝑦0 ∈ 𝐶1([0, 𝐿]), it is possible to define an extension 𝑦*
0 ∈ 𝐶1

0(𝑅) such
that supp 𝑦*

0 ⊂ (−𝜂, 𝜂), where 𝜂 > 0 is introduced in (1.33). Then, we get from (1.33) that
Φ(𝑇 ; 0, 𝑥) < −2𝜂, for all 𝑥 ∈ [0, 𝐿], which means that, after the time 𝑇 , the “particles”inside
[0, 𝐿] are driven out of the region supp 𝑦*

0 by Φ. This is the main argument used in the proof
of the following:

Proposition 1 Let 𝑇, 𝐿 > 0 be given and assume that 𝜆 ∈ Λ𝐿,𝑇,0. Then, for any 𝛼 > 0 and

any 𝑦0 ∈ 𝐶1([0, 𝐿]), there exists (𝑦, 𝑧) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝜆(𝑡)𝑦𝑥 = 0 in (0, 𝑇 ) × (0, 𝐿),

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in (0, 𝑇 ) × (0, 𝐿),

𝑧(·, 0) = 𝑦(·, 0), 𝑧(·, 𝐿) = 𝑦(·, 𝐿) in (0, 𝑇 ),

𝑦(0, ·) = 𝑦0 in (0, 𝐿),

𝑦(𝑇, ·) = 0 in (0, 𝐿).

(1.34)

Th result ensures that the linearization of (1.31) around the trajectory (̂︀𝑦(𝑡, 𝑥), ̂︀𝑧(𝑡, 𝑥)) :=

(𝜆(𝑡), 𝜆(𝑡)) is null-controllable. Then, it can be expected that “small perturbations”of (1.34)
furnishes a flux function Φ* : [0, 𝑇 ] × [0, 𝑇 ] × 𝑅 ↦→ 𝑅 sufficiently close of Φ (for example, in
the space 𝐶0([0, 𝑇 ] × [0, 𝑇 ] × 𝑅)) such that, after 𝑇 , the “particles”in [0, 𝐿] are also driven
off supp 𝑦*

0 by Φ*. This intuitive idea, together with a fixed-point argument, are the main
ingredients of the proof of the following local controllability result:

Proposition 2 Let 𝑇, 𝐿 > 0 be given and assume that 𝜆 ∈ Λ𝐿,𝑇,0. Then, there exist 𝛿 > 0

and 𝐶 > 0 (both independent of 𝛼) such that, for any 𝑦0 ∈ 𝐶1([0, 𝐿]) with ‖𝑦0‖𝐶1([0,𝐿]) ≤ 𝛿

and any 𝛼 > 0, there exist boundary controls (𝑣𝑙, 𝑣𝑟) ∈ 𝐶1([0, 𝑇 ];𝑅2) and an associated state

(𝑦, 𝑧) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + (𝜆(𝑡) + 𝑧)𝑦𝑥 = 0 in (0, 𝑇 ) × (0, 𝐿),

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in (0, 𝑇 ) × (0, 𝐿),

𝑦(·, 0) = 𝑧(·, 0) = 𝑣𝑙 in (0, 𝑇 ),

𝑦(·, 𝐿) = 𝑧(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),

𝑦(0, ·) = 𝑦0 in (0, 𝐿),

𝑦(𝑇, ·) = 0 in (0, 𝐿)

(1.35)
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and

‖𝑦‖𝐶1([0,𝑇 ]×[0,𝐿]) ≤ 𝐶‖𝑦0‖𝐶1([0,𝐿]) ∀𝛼 > 0.

Then, if we take 𝜆 ∈ Λ𝐿,𝑇,1, with supp𝜆 ⊂ (0, 𝑇 ), we can obtain, as an immediate
consequence of Proposition 2, the following:

Proposition 3 Let 𝑇, 𝐿, 𝛼 > 0 be given. Then, there exist 𝛿 > 0 and 𝐶 > 0 (both in-

dependent of 𝛼) such that the following property holds: for each 𝑦0 ∈ 𝐶1([0, 𝐿]) with

‖𝑦0‖𝐶1([0,𝐿]) ≤ 𝛿, there exist 𝑝𝛼 ∈ 𝐶0([0, 𝑇 ]) with 𝑝𝛼(𝑇 ) = 0, 𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ∈ 𝐶1([0, 𝑇 ]) and

associated states (𝑦𝛼, 𝑧𝛼) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2) satisfying (1.31),

𝑦𝛼(𝑇, ·) = 0 in (0, 𝐿)

and

‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐶1([0,𝑇 ];𝑅2) ≤ 𝐶 ∀𝛼 > 0.

Thus, if we take 𝜆 ∈ Λ𝐿,𝑇,1 with supp𝜆 ⊂ (0, 𝑇 ), we obtain Theorem 3 by using a scaling
argument (in order to apply Proposition 3) and the time-reversibility of the inviscid Burgers-𝛼
equation.

On the other hand, regarding the viscous Burgers-𝛼 system, we have the following result:

Theorem 4 Let 𝛼 > 0 and 𝑇 > 0 be given. The viscous Burgers-𝛼 system (1.32) is globally

exactly controllable in 𝐿∞ to constant trajectories. That is, for any given 𝑦0 ∈ 𝐿∞(0, 𝐿) and

𝑀 ∈ 𝑅, there exist controls 𝑝𝛼 ∈ 𝐶0([0, 𝑇 ]) and (𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ) ∈ 𝐻3/4(0, 𝑇 ;𝑅2) and associa-

ted states (𝑦𝛼, 𝑧𝛼) ∈ 𝐿2(0, 𝑇 ;𝐻1(0, 𝐿;𝑅2)) ∩ 𝐿∞(0, 𝑇 ;𝐿∞(0, 𝐿;𝑅2)) satisfying (1.32), the

controllability condition below

𝑦𝛼(𝑇, ·) = 𝑀 in (0, 𝐿)

and the following estimates

‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐻3/4([0,𝑇 ];𝑅2) ≤ 𝐶,

where 𝐶 is a positive constant independent of 𝛼, but depending on 𝑦0 and 𝑀 . Moreo-

ver, if 𝑦0 ∈ 𝐻1
0 (0, 𝐿), the same conclusion holds with (𝑦𝛼, 𝑧𝛼) ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿;𝑅2)) ∩

𝐻1(0, 𝑇 ;𝐿2(0, 𝐿;𝑅2)).
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The proof of Theorem 4 is divided in three steps: smoothing effect, approximate control-
lability and local exact controllability to the trajectories.

One of the main features of the parabolic equations is the so-called smoothing effect. This
property asserts, roughly speaking, that the solutions become regular after an arbitrary positive
time. Then, by combining the smoothing effects and standard energy estimates, we obtain the
following result:

Proposition 4 Let 𝑦0 ∈ 𝐿∞(0, 𝐿) be given and let (𝑦𝛼, 𝑧𝛼) be the solution to (1.32), with

𝑝 = 𝑣𝑙 = 𝑣𝑟 = 0. Then, there exist 𝑇 * ∈ (0, 𝑇/2) and 𝐶 > 0 (independent of 𝛼) such that

𝑦𝛼 belongs to 𝐶0([𝑇 *, 𝑇 ];𝐶2([0, 𝐿])) and satisfies

‖𝑦𝛼‖𝐶0([𝑇 *,𝑇 ];𝐶2([0,𝐿])) ≤ 𝐶Λ(‖𝑦0‖∞),

where Λ : 𝑅+ → 𝑅+ is a continuous function satisfying Λ(𝑠) → 0 as 𝑠 → 0+.

The approximate controllability step is contained in the following result:

Proposition 5 Let 𝑦0, 𝑦𝑓 ∈ 𝐶2([0, 𝐿]) be given. There exist positive constants 𝜏* and𝐾, inde-

pendent of 𝛼, such that, for any 𝜏 ∈ (0, 𝜏*], there exist controls 𝑝𝛼 ∈ 𝐶0([0, 𝜏 ]) and (𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ) ∈

𝐻3/4(0, 𝜏 ;𝑅2) and associated states (𝑦𝛼, 𝑧𝛼) satisfying (1.32) (with 𝑇 replaced by 𝜏), the con-

dition

‖𝑦𝛼(𝜏, .) − 𝑦𝑓‖𝐻1(0,𝐿) ≤ 𝐾
√
𝜏 (1.36)

and, moreover,

‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐻3/4([0,𝑇 ];𝑅2) ≤ 𝐶,

for some positive constant 𝐶 independent of 𝛼.

A heuristic argument for the proof of the Proposition 5 consists in splitting the state (𝑦𝛼, 𝑧𝛼)

in the form:
(𝑦𝛼, 𝑧𝛼) := (𝑢𝛼,𝜏 + 𝑟𝛼,𝜏 + 𝜆𝜏 , 𝑤𝛼,𝜏 + 𝑞𝛼,𝜏 + 𝜆𝜏 ), (1.37)

where 𝜆𝜏 ∈ Λ𝐿,𝜏,1, (𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 ) is a controlled solution of an inviscid system like (1.35) and
(𝑟𝛼,𝜏 , 𝑞𝛼,𝜏 ) is the “remainder”(solution of an appropriated parabolic-elliptic system). Therefore,
the task consists in proving the existence of suitable 𝜆𝜏 , (𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 ) and (𝑟𝛼,𝜏 , 𝑞𝛼,𝜏 ) such that
the solution in (1.37) satisfies the result in Proposition 5.

Then, arguing as in the proof of Theorem 3 we get that, given 𝑦0, 𝑦𝑓 ∈ 𝐶2([0, 𝐿]),
there exists a pair of boundary controls (𝑣𝛼,𝜏

𝑙 , 𝑣𝛼,𝜏
𝑟 ) ∈ 𝐶2([0, 𝜏 ];𝑅2) and an associated state
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(𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 ) ∈ 𝐶2([0, 𝜏 ]× [0, 𝐿];𝑅2) that solves an inviscid system like (1.35), with 𝜆 replaced
by 𝜆𝜏 and 𝑇 replaced by 𝜏 . We get yet 𝑢𝛼,𝜏 (0, ·) = 𝑦0 and 𝑢𝛼,𝜏 (𝜏, ·) = 𝑦𝑓 in [0, 𝐿].

The construction of suitable 𝜆𝜏 and (𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 ) is not difficult. The main aim is to get good
estimates for the “remainder”(𝑟𝛼,𝜏 , 𝑞𝛼,𝜏 ). Indeed, together with (𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 ), one can define
a suitable boundary-initial problem associated to a parabolic-elliptic system, whose solution
(𝑟𝛼,𝜏 , 𝑞𝛼,𝜏 ) is such that the decomposition in (1.37) solves (1.32), replacing 𝑇 by 𝜏 . Moreover,
from standard energy estimates for parabolic equations, we get a constant 𝐾 > 0 (independent
of 𝛼) such that

‖𝑟𝛼,𝜏 ‖𝐶0([0,𝜏 ];𝐻1(0,𝐿)) ≤ 𝐾
√
𝜏 ,

which implies that 𝑦𝛼, given in (1.37), satisfies (1.36).
Finally, inspired on some ideas of Araruna, Fernández-Cara and Souza in (ARARUNA, 2013),

we are able to prove the following local controllability result:

Proposition 6 Let 𝑇, 𝐿, 𝛼 > 0 and ̂︁𝑚 ∈ 𝐶1([0, 𝑇 ]) be given. There exists 𝛿 > 0 (inde-

pendent of 𝛼) such that, for any initial data 𝑦0 ∈ 𝐻1(0, 𝐿) satisfying ‖𝑦0 − ̂︁𝑚(0)‖𝐻1 ≤ 𝛿

there exist 𝑝𝛼 ∈ 𝐶0([0, 𝑇 ]) and (𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ) ∈ 𝐻3/4(0, 𝑇 ;𝑅2) and associated states (𝑦𝛼, 𝑧𝛼) ∈

𝐿2(0, 𝑇 ;𝐻2(0, 𝐿;𝑅2)) ∩𝐻1(0, 𝑇 ;𝐿2(0, 𝐿;𝑅2)) satisfying (3.2) and

𝑦𝛼(𝑇, ·) ≡ 𝑧𝛼(𝑇, ·) ≡ ̂︁𝑚(𝑇 ).

Moreover, 𝑝𝛼 = ̂︁𝑚′ and the following estimates hold:

‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐻3/4([0,𝑇 ];𝑅2) ≤ 𝐶,

where 𝐶 > 0 is a positive constant independent of 𝛼.

To sum up, using the three steps above we can construct a triplet of controls (𝑝𝛼, 𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )

and a pair of associated states (𝑦𝛼, 𝑧𝛼) satisfying Theorem 4.

1.9 DESCRIPTION OF THE RESULTS: LOCAL CONTROLLABILITY OF A TWO-PHASE
STEFAN PROBLEM

Let 𝐿 > 0 be a material length, let 𝑇 > 0 be a positive time and let ℓ𝑙, ℓ0, ℓ𝑟 ∈ (0, 𝐿)

be three positive real numbers such that ℓ𝑙 < ℓ0 < ℓ𝑟. Furthermore, let us consider functions
𝑢0 ∈ 𝑊 1,4

0 (0, ℓ0), with 𝑢0 ≥ 0, and 𝑣0 ∈ 𝑊 1,4
0 (ℓ0, 𝐿), with 𝑣0 ≤ 0 and two open sets
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𝜔𝑙 ⊂⊂ (0, ℓ𝑙) and 𝜔𝑟 ⊂⊂ (ℓ𝑟, 𝐿). The material domain is separated in two parts: 𝑥 ∈ [0, ℓ(𝑡))

(liquid phase) and 𝑥 ∈ (ℓ(𝑡), 𝐿] (solid phase). Here, ℓ = ℓ(𝑡) is the position of the interface
between liquid and solid phases and satisfies ℓ(0) = ℓ0 and ℓ(𝑡) ∈ (ℓ𝑙, ℓ𝑟), for all 𝑡. The main
aim of Chapter 4 is to study the controllability properties of the following two-phase Stefan
problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝑑𝑙𝑢𝑥𝑥 = ℎ𝑙1𝜔𝑙
in 𝑄𝑙,

𝑣𝑡 − 𝑑𝑟𝑣𝑥𝑥 = ℎ𝑟1𝜔𝑟 in 𝑄𝑟,

𝑢(0, 𝑡) = 𝑣(𝐿, 𝑡) = 0 on (0, 𝑇 ),

𝑢(·, 0) = 𝑢0 in (0, ℓ0),

𝑣(·, 0) = 𝑣0 in (ℓ0, 𝐿),

𝑢(ℓ(𝑡), 𝑡) = 𝑣(ℓ(𝑡), 𝑡) = 0 on (0, 𝑇 ),

−ℓ′(𝑡) = 𝑑𝑙𝑢𝑥(ℓ(𝑡), 𝑡) − 𝑑𝑟𝑣𝑥(ℓ(𝑡), 𝑡) on (0, 𝑇 ).

(1.38)

Here and in the sequel, 𝑑𝑙 and 𝑑𝑟 are positive diffusion coefficients and we use the notation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑄 := (0, 𝐿) × (0, 𝑇 ),

𝑄𝑙 := {(𝑥, 𝑡) ∈ 𝑄; 𝑡 ∈ (0, 𝑇 ) and 𝑥 ∈ (0, ℓ(𝑡))},

𝑄𝑟 := {(𝑥, 𝑡) ∈ 𝑄; 𝑡 ∈ (0, 𝑇 ) and 𝑥 ∈ (ℓ(𝑡), 𝐿)},

𝒪𝑙 = 𝜔𝑙 × (0, 𝑇 ) and 𝒪𝑟 = 𝜔𝑟 × (0, 𝑇 ).

Notice that, as in (1.19) - (1.21), the time evolution of the temperature distribution in the
solid-liquid phases is described by two parabolic equations and the Stefan condition, given by
the ODE (1.38)7, meaning that the time evolution of the interface between the solid-liquid
phases is influenced by the heat flux induced by the process of melting-solidification.

Then, the main result obtained in Chapter 4 is the following:

Theorem 5 Let ℓ𝑇 ∈ (ℓ𝑙, ℓ𝑟). Then, there exists 𝛿 > 0 such that for any 𝑢0 ∈ 𝑊 1,4
0 (0, ℓ0)

with 𝑢0 ≥ 0, any 𝑣0 ∈ 𝑊 1,4
0 (ℓ0, 𝐿) with 𝑣0 ≤ 0, and ℓ0 ∈ (ℓ𝑙, ℓ𝑟) satisfying

‖𝑢0‖𝑊 1,4
0

+ ‖𝑣0‖𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 | < 𝛿,
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there exist controls (ℎ𝑙, ℎ𝑟) ∈ 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟)and associated states (𝑢, 𝑣, ℓ) with⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℓ ∈ 𝐶1([0, 𝑇 ]) and ℓ(𝑡) ∈ (ℓ𝑙, ℓ𝑟) ∀ 𝑡 ∈ [0, 𝑇 ],

𝑢, 𝑢𝑥, 𝑢𝑡, 𝑢𝑥𝑥 ∈ 𝐿2(𝑄𝑙) and 𝑣, 𝑣𝑥, 𝑣𝑡, 𝑣𝑥𝑥 ∈ 𝐿2(𝑄𝑟)
(1.39)

and

ℓ(𝑇 ) = ℓ𝑇 , 𝑢(·, 𝑇 ) = 0 in (0, ℓ𝑇 ) and 𝑣(·, 𝑇 ) = 0 in (ℓ𝑇 , 𝐿). (1.40)

The proof of Theorem 5 relies on an extension of the ideas in (DOUBOVA A.; FERNÁNDEZ-CARA,
2005; FERNÁNDEZ-CARA, 2016). More precisely, the proof is divided in five steps that we briefly
describe below:

1. We define a suitable diffeomorphism Φ : 𝑄 ↦→ 𝑄 that transforms the non-cylindrical
problem (1.38) into a system of parabolic PDEs, whose coefficients depend on ℓ, defined
in a cylindrical domain. Therefore, after we define the new coordinates (𝜉, 𝑡) := Φ(𝑥, 𝑡),
we consider the new initial data 𝑝0(𝜉) := 𝑢0(Φ−1(𝜉, 0)) and 𝑞0(𝜉) := 𝑣0(Φ−1(𝜉, 0)) and
we denote (𝑝, 𝑞) the unique strong solution to the new system with initial data (𝑝0, 𝑞0).

2. It is not difficult to see that the controllability result in Theorem 5 is equivalent to
prove the same result for the new cylindrical problem obtained in the first step. Then,
the task is reduced to obtain, via global Carleman estimates and classical arguments
of compactness-uniqueness, an improved observability inequality for the adjoint system
associated to the new parabolic cylindrical domain.

3. Since our goal is to control both the temperatures (𝑝, 𝑞) and the interface ℓ, we must to
solve an approximate controllability problem with a constraint. More precisely, for fixed
ℓ satisfying (1.39) and 𝜀 > 0, we search for controls (ℎℓ

𝑙,𝜀, ℎ
ℓ
𝑟,𝜀) ∈ 𝐿2(𝒪𝑙) ×𝐿2(𝒪𝑟) such

that the associated state (𝑝, 𝑞) satisfies the approximate controllability condition:

‖(𝑝(·, 𝑇 ), 𝑞(·, 𝑇 ))‖𝐿2(0,ℓ0)×𝐿2(ℓ0,𝐿) ≤ 𝜀 (1.41)

and the linear constraint∫︁∫︁
𝒪𝑙

ℎℓ
𝑙,𝜀𝜓ℓ 𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

ℎℓ
𝑟,𝜀𝜁ℓ 𝑑𝜉 𝑑𝑡 = ℓ𝑇 − ℓ0 −

∫︁ ℓ0

0
𝑝0(𝜉)𝜓ℓ(𝜉, 0) 𝑑𝜉 (1.42)

−
∫︁ 𝐿

ℓ0
𝑞0(𝜉)𝜁ℓ(𝜉, 0) 𝑑𝜉.

Here, the couple (𝜓ℓ, 𝜁ℓ) is the weak solution of a suitable augmented adjoint system.

To get controls such that (1.41)-(1.42) hold, we apply the improved observability ine-
quality obtained in the second step to minimize an appropriate functional 𝐽ℓ,𝜀 and, after
this, we build the controls (ℎℓ

𝑙,𝜀, ℎ
ℓ
𝑟,𝜀).
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4. Let 𝑅 > 0 and ℓ𝑙 < ℓ̃𝑙 < ℓ̃𝑟 < ℓ𝑟 be given and let us define the set

𝒜𝑅 := {ℓ ∈ 𝐶1([0, 𝑇 ]) : ℓ̃𝑙 ≤ ℓ(𝑡) ≤ ℓ̃𝑟, ℓ(0) = ℓ0, ‖ℓ′‖𝐶0([0,𝑇 ]) ≤ 𝑅}.

For each fixed 𝜀 > 0, let us introduce the mapping Λ𝜀 : 𝒜𝑅 ↦→ 𝐶1([0, 𝑇 ]) given by

Λ𝜀(ℓ) = ℒ, with ℒ(𝑡) = ℓ0 −
∫︁ 𝑡

0
[𝑑𝑙𝑝𝜉(ℓ0, 𝜏) − 𝑑𝑟𝑞𝜉(ℓ0, 𝜏)] 𝑑𝜏,

where (𝑝, 𝑞) is the controlled state associated with the controls (ℎℓ
𝑙,𝜀, ℎ

ℓ
𝑟,𝜀), obtained in the

third step and, therefore, ℒ(𝑇 ) = ℓ𝑇 . Then, by using standard local regularity results for
parabolic PDEs, we can prove that, for any couple of initial data (𝑝0, 𝑞0) small enough in[︁
𝑊 1,4

0 (0, ℓ0) ×𝑊 1,4
0 (ℓ0, 𝐿)

]︁
, the mapping Λ𝜀 satisfies all the conditions of the Schauder

Fixed-Point Theorem. Therefore, there exists ℓ𝜀 ∈ 𝒜𝑅 such that Λ𝜀(ℓ𝜀) = ℓ𝜀. In other
words, given 𝜀 > 0, there exist controls (ℎ𝜀

𝑙 , ℎ
𝜀
𝑟) ∈ 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟) whose associated

states (𝑝𝜀, 𝑞𝜀, ℓ𝜀) satisfy (1.41) and ℓ𝜀(𝑇 ) = ℓ𝑇 .

5. In this last step, we prove that the family of controls {(ℎ𝜀
𝑙 , ℎ

𝜀
𝑟)}𝜀>0 and associate states

{(𝑝𝜀, 𝑞𝜀, ℓ𝜀)}𝜀>0 are uniformly bounded in appropriate spaces which, in turn, leads to the
existence of controls (ℎ𝑙, ℎ𝑟) and associated states (𝑝, 𝑞, ℓ) satisfying

ℓ(𝑇 ) = ℓ𝑇 , 𝑝(·, 𝑇 ) = 0 in (0, ℓ0) and 𝑞(·, 𝑇 ) = 0 in (ℓ0, 𝐿).

Then, it is not difficult to see the controls (ℎ𝑙, ℎ𝑟) and the interface ℓ, together with the
temperatures defined by (𝑢, 𝑣) := (𝑝, 𝑞) ∘ Φ, satisfy (1.38), (1.39) and (1.40).

Remark 3 Using a classical extension domain argument, one can prove a local boundary

controllability result for (1.38), by using two boundary controls.

After proving Theorem 5, a natural question is whether it is possible to get a positive
controllability result for (1.38) by using only one control. Then, using the maximum principle
for parabolic equations, one finds an obstruction and one has the following negative result:

Theorem 6 Assume that 𝑢0 ∈ 𝑊 1,4
0 (0, ℓ0) with 𝑢0 ≥ 0, 𝑣0 ∈ 𝑊 1,4

0 (0, ℓ0) with 𝑣0 ≤ 0 and

𝑣0 ̸≡ 0. Then, if (ℎ𝑙, ℎ𝑟) ∈ 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟), ℎ𝑟 ≡ 0 and the associated strong solution to

(1.38) satisfies ℓ(𝑡) < 𝐿 for all 𝑡 ∈ [0, 𝑇 ], we necessarily have

𝑣(·, 𝑇 ) ̸≡ 0 in (ℓ(𝑇 ), 𝐿).
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2 ON SOME GEOMETRIC INVERSE PROBLEMS FOR NONSCALAR ELLIP-

TIC SYSTEMS

In this chapter, we consider several geometric inverse problems for linear elliptic systems.
We prove uniqueness and stability results. In particular, we show the way that the observation
depends on the perturbations of the domain. In some particular situations, this provides a
strategy that could be used to compute approximations to the solution of the inverse problem.
In the proofs, we use techniques related to (local) Carleman estimates and differentiation with
respect to the domain.

2.1 INTRODUCTION

Let Ω ⊂ 𝑅𝑁 be a simply connected bounded domain whose boundary 𝜕Ω is of class 𝑊 2,∞,
let 𝐷* be a fixed nonempty open set with 𝐷* ⊂⊂ Ω and let 𝛾 ⊂ 𝜕Ω be a nonempty open set.
In what follows, the symbols 𝐶,𝐶1, 𝐶2, . . . will be used to denote generic positive constants
and sometimes, we will indicate the data on which they depend by writting, for example,
𝐶(Ω, 𝐷*).

Let us consider the following family of subsets of 𝐷*:

𝒟 =
{︁
𝐷 ⊂ Ω : 𝐷 ̸= ∅ is a simply connected domain, 𝐷 ⊂ 𝐷* and 𝜕𝐷 is of class 𝑊 2,∞

}︁
and let us denote by 𝒜 the set of all (𝑎, 𝑏, 𝐴,𝐵) such that 𝑎, 𝑏, 𝐴, 𝐵 ∈ 𝐿∞(Ω) and⎡⎢⎢⎣ 𝜉1

𝜉2

⎤⎥⎥⎦
𝑡 ⎡⎢⎢⎣ 𝑎(𝑥) 𝑏(𝑥)

𝐴(𝑥) 𝐵(𝑥)

⎤⎥⎥⎦
⎡⎢⎢⎣ 𝜉1

𝜉2

⎤⎥⎥⎦ ≥ −𝜆(|𝜉1|2 + |𝜉2|2) ∀(𝜉1, 𝜉2) ∈ 𝑅2, a.e. in Ω, (2.1)

for some 𝜆 with 0 < 𝜆 < 𝜇1(Ω)−1, where 𝜇1(Ω) is the smallest positive constant such that

‖𝑢‖2
𝐿2 ≤ 𝜇1(Ω)‖∇𝑢‖2

𝐿2 ∀𝑢 ∈ 𝐻1
0 (Ω).

In this chapter, we will always assume that (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω)×𝐻1/2(𝜕Ω) and (𝑎, 𝑏, 𝐴,𝐵) ∈

𝒜. Under these circumstances it is well known that, for any 𝐷 ∈ 𝒟, there exists a unique
solution (𝑦, 𝑧) ∈ 𝐻1(Ω∖𝐷) ×𝐻1(Ω∖𝐷) to the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in Ω∖𝐷,

−Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in Ω∖𝐷,

𝑦 = 𝜙, 𝑧 = 𝜓 on 𝜕Ω,

𝑦 = 𝑧 = 0 on 𝜕𝐷,

(2.2)
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furthermore satisfying

‖(𝑦, 𝑧)‖𝐻1(Ω∖𝐷) ≤ 𝐶(Ω, 𝐷*)‖(𝜙, 𝜓)‖𝐻1/2(𝜕Ω).

In many physical phenomena, in order to predict the result of a measurement, we need
a model of the system under investigation (typically a PDE system) and an explanation or
interpretation of the observed quantities. If we are able to compute the solution to the model
and quantify relevant observations, we say that we have solved the forward or direct problem.
Contrarily, the inverse problem consists of using the observations to recover unknown data
that characterize the model. For details about the main questions concerning inverse problems
for PDEs from the theoretical and numerical viewpoints, see for instance the book (ISAKOV,
2006).

In this chapter, we will deal with the following geometric inverse problem:

Given (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω) ×𝐻1/2(𝜕Ω) and (𝛼, 𝛽) ∈ 𝐻−1/2(𝜕Ω) ×𝐻−1/2(𝜕Ω), find
a set 𝐷 ∈ 𝒟 such that the solution (𝑦, 𝑧) to the linear system (2.2) satisfies the
additional conditions:

𝜕𝑦

𝜕𝑛

⃒⃒⃒⃒
⃒
𝛾

= 𝛼 and 𝜕𝑧

𝜕𝑛

⃒⃒⃒⃒
⃒
𝛾

= 𝛽. (2.3)

A physical motivation of problems of this kind can be found, for instance, when one tries to
compute the stationary temperature of a chemically reacting plate whose shape is unknown.
More precisely, (2.2)-(2.3) has the following interpretation: assume that a chemical product,
sensible to temperature effects, fills an unknown domain Ω∖𝐷; its concentration 𝑦 = 𝑦(𝑥) and
its temperature 𝑧 = 𝑧(𝑥) are imposed on the whole outer boundary 𝜕Ω, the associated normal
fluxes are measured on 𝛾 ⊂ 𝜕Ω and both 𝑦 and 𝑧 vanish on the boundary of the non-reacting
unknown set 𝐷; what we pretend to do is to determine 𝐷 from these data and measurements.

In the context of the inverse problem (2.2)-(2.3), three main questions appear. They are
the following:

• Uniqueness: Let (𝛼0, 𝛽0) and (𝛼1, 𝛽1) be two observations and let (𝑦0, 𝑧0) and (𝑦1, 𝑧1)

be solutions to (2.2) satisfying the identities (2.3) associated to the sets 𝐷0 and 𝐷1,
respectively. The question is: do we have 𝐷0 = 𝐷1 whenever (𝛼0, 𝛽0) = (𝛼1, 𝛽1)?

• Stability: Find an estimate of the “distance” 𝜇𝑑(𝐷0, 𝐷1) from 𝐷0 to 𝐷1 in terms of the
“distance” 𝜇0((𝛼0, 𝛽0), (𝛼1, 𝛽1)) from (𝛼0, 𝛽0) to (𝛼1, 𝛽1) of the form

𝜇𝑑(𝐷0, 𝐷1) ≤ Φ(𝜇0((𝛼0, 𝛽0), (𝛼1, 𝛽1))),
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where the function Φ : 𝑅+ ↦→ 𝑅+ satisfies Φ(𝑠) → 0 as 𝑠 → 0, valid at least whenever
(𝛼0, 𝛽0) and (𝛼1, 𝛽1) are “close” to a fixed (𝛼̄, 𝛽).

• Reconstruction: Find an iterative algorithm to compute the unknown domain 𝐷 from the
observation (𝛼, 𝛽).

In the sequel, we will on the uniqueness and the stability of the inverse problem (2.2)-(2.3).
Specifically, our first main result is the following:

Theorem 2.1 Assume that (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω) × 𝐻1/2(𝜕Ω) is nonzero. For 𝑖 = 0, 1, let

(𝑦𝑖, 𝑧𝑖) be the unique weak solution to (2.2) with 𝐷 replaced by 𝐷𝑖 and let 𝛼𝑖 and 𝛽𝑖 be given

by the corresponding equalities (2.3). Then one has the following:

(𝛼0, 𝛽0) = (𝛼1, 𝛽1) =⇒ 𝐷0 = 𝐷1.

The proof is given in Section 2.2. It relies on some ideas from (FABRE, 1995); more
precisely, we use two well known properties of (2.2): unique continuation and well-posedness
in the Sobolev space 𝐻1.

Remark 2.1 Note that, if (𝜙, 𝜓) = (0, 0), then the associated solution to (2.2) is zero, for

any 𝐷 ∈ 𝒟. Therefore, the uniqueness problem has no sense when (𝜙, 𝜓) = (0, 0).

Remark 2.2 In the one-dimensional case, if one consider (2.2) with only one boundary ob-

servation, uniqueness may not hold. Indeed, suppose that Ω = (0, 1), 𝐿 ∈ (0, 1) and consider

the system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝑦𝑥𝑥 + 𝜂2𝑦 + 𝑏𝑧 = 0 in (0, 𝐿),

−𝑧𝑥𝑥 + 𝐴𝑦 + 𝜁2𝑧 = 0 in (0, 𝐿),

𝑦(0) = 𝑧(0) = 0,

𝑦𝑥(0) = 0,

(2.4)

where 𝐴, 𝑏, 𝜂, 𝜁 ∈ 𝑅 (all them different from zero) and |𝐴| + |𝑏| < 2|𝜂||𝜁|. Then, the numbers

(𝜂2, 𝑏, 𝐴, 𝜁2) ∈ 𝒜 and, using the parameter variation method, we get that a solution (𝑦, 𝑧) to

(2.4) is given by

𝑧(𝑥) = 𝐾

𝜁
sinh(𝜁𝑥) + 𝐴

𝜁

∫︁ 𝑥

0
𝑦(𝑠) sinh[𝜁(𝑥− 𝑠)] 𝑑𝑠, 𝑦(𝑥) = 𝑏

𝜂

∫︁ 𝑥

0
𝑧(𝑠) sinh[𝜂(𝑥− 𝑠)]𝑑𝑠

for each 𝐾 ∈ 𝑅. Therefore, if 𝐾 ̸= 0 we have 𝑧𝑥(0) ̸= 0 and this implies non-uniqueness.

For 𝑁 ≥ 2, the uniqueness in the N-dimensional case with only one information on 𝛾 is,

to our knowledge, an open question.
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In order to state our main stability result, let us introduce some notation. Thus, let 𝐷0 ∈ 𝒟

be a fixed subdomain and let’s assume 𝜇 ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁) satisfy

‖𝜇‖𝑊 1,∞ ≤ 𝜖 < 1, 𝜇 = 0 in Ω∖𝐷*

and, for any 𝜎 ∈ (−1, 1), we denote by 𝑚𝜎, 𝐷𝜎 and (𝑦𝜎, 𝑧𝜎), respectively, the mapping
𝑚𝜎 := 𝐼 +𝜎𝜇, the open set 𝐷𝜎 := 𝑚𝜎(𝐷0) and the solution to (2.2) with 𝐷 replaced by 𝐷𝜎.
It will be assumed still that the coefficients 𝑎, 𝑏, 𝐴,𝐵 are constant. The following holds:

Theorem 2.2 There exists 𝜎0 > 0 with the following properties:

1. The mapping

𝜎 ↦→
(︃
𝜕𝑦𝜎

𝜕𝑛
,
𝜕𝑧𝜎

𝜕𝑛

)︃⃒⃒⃒⃒
𝛾

(2.5)

is well defined and analytic in (−𝜎0, 𝜎0), with values in 𝐻−1/2(𝛾)2.

2. Either 𝑚𝜎(𝐷0) = 𝐷0 for all 𝜎 ∈ (−𝜎0, 𝜎0) (and then the mapping in (2.5) is constant),

or there exist 𝜎* ∈ (0, 𝜎0), 𝐶 > 0 and 𝑘 ≥ 1 (an integer) such that⃦⃦⃦⃦
⃦
(︃
𝜕𝑦𝜎

𝜕𝑛
,
𝜕𝑧𝜎

𝜕𝑛

)︃
−
(︃
𝜕𝑦0

𝜕𝑛
,
𝜕𝑧0

𝜕𝑛

)︃⃦⃦⃦⃦
⃦

𝐻−1/2(𝛾)2
≥ 𝐶|𝜎|𝑘 ∀𝜎 ∈ (−𝜎*, 𝜎*). (2.6)

In (BUCKGEIM, 1999) and (KAVIAN, 2003), a similar geometric inverse problem for one
scalar elliptic equation is studied. For geometric inverse problems for nonlinear models, like
Navier-Stokes and Boussinesq systems, the uniqueness has been analyzed in (DOUBOVA, 2006)
and (DOUBOVA, 2007), respectively. Reconstruction algorithms have been considered and ap-
plied in (ABDA, 2009) and (ALVAREZ, 2008) for the stationary Stokes system and in (DOUBOVA,
2006) and (DOUBOVA, 2007) for the Navier-Stokes and Boussinesq systems.

Note that, in the applications to fluid mechanics, the goal is to identify the shape of a body
around which a fluid flows from measurements performed far from the body. In other contexts,
the domain 𝐷 can represent a rigid body immersed in an elastic medium. Thus, related inverse
problems with relevant applications in Elastography have been analyzed in (DOUBOVA A.;

FERNÁNDEZ-CARA, 2015) for the wave equation and (DOUBOVA A.; FERNÁNDEZ-CARA, 2018)
for the Lamé system.

This chapter is organized as follows. In Section 2.2, we prove a unique continuation property
for the solutions to (2.2) and, then, we prove the uniqueness result (Theorem 2.1). Section 2.3
is devoted to proof of the stability result (Theorem 2.2). Finally, in Section 2.4, we present
some additional comments and open questions.
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2.2 UNIQUE CONTINUATION AND UNIQUENESS

In this section, we analyze a unique continuation property for (2.2). More precisely, we
have the following result:

Theorem 2.3 Let 𝐺 ⊂ 𝑅𝑁 be a bounded domain whose boundary 𝜕𝐺 is of class 𝑊 1,∞, let

𝜔 ⊂ 𝐺 be a nonempty open set and assume that 𝑎, 𝑏, 𝐴,𝐵 ∈ 𝐿∞(𝐺). Then, any solution

(𝑦, 𝑧) ∈ 𝐻1(𝐺) ×𝐻1(𝐺) to the linear system⎧⎪⎪⎨⎪⎪⎩
−Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in 𝐺,

−Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in 𝐺,

(2.7)

satisfying

𝑦 = 𝑧 = 0 in 𝜔, (2.8)

is zero everywhere.

As already mentioned, the proof relies on some ideas from (FABRE, 1995). In fact, we will
divide the proof in two parts: (i) the proof of Theorem 2.3 when 𝜔 and 𝐺 are open balls and
(ii) the proof for general domains 𝜔 and 𝐺, using a compactness argument.

2.2.1 A unique continuation property for balls

In this Section, we prove a very particular result concerning the unique continuation of the
solutions to (2.7):

Lemma 2.1 Assume that 𝑅 > 0, 𝑥0 ∈ 𝑅𝑁 and 𝑎, 𝑏, 𝐴,𝐵 ∈ 𝐿∞(𝐵2𝑅(𝑥0)), where 𝐵2𝑅(𝑥0)

denotes the open ball of radius 2𝑅 centered at 𝑥0. For any solution (𝑦, 𝑧) ∈ 𝐻1(𝐵2𝑅(𝑥0)) ×

𝐻1(𝐵2𝑅(𝑥0)) to the linear system (2.7) in 𝐵2𝑅(𝑥0), the following property holds:

(𝑦, 𝑧) = (0, 0) in 𝐵𝑅(𝑥0) ⇒ (𝑦, 𝑧) = (0, 0) in 𝐵2𝑅(𝑥0).

Before proving this lemma, let us introduce 𝜙 ∈ 𝐶∞
0 (𝑅𝑁) and let us define

𝑎0(𝑥, 𝜉) := |𝜉|2 − |∇𝜙(𝑥)|2 and 𝑏0(𝑥, 𝜉) := 2𝜉 · ∇𝜙(𝑥).

Let us also recall that the Poisson bracket of 𝑎0 and 𝑏0 is given by

[𝑎0, 𝑏0] := ∇𝜉𝑎0 · ∇𝑥𝑏0 − ∇𝑥𝑎0 · ∇𝜉𝑏0.

A crucial result in the proof of Lemma 2.1 is the following:
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Theorem 2.4 ((FABRE, 1995, Proposition 2.3)) Let 𝑈 ⊂ 𝑅𝑁 be a nonempty bounded

open set, 𝐾 ⊂ 𝑈 a nonempty compact set and assume that 𝜙 ∈ 𝐶∞
0 (𝑅𝑁). Suppose that 𝜙 is

bi-convex in 𝑈 with respect to the characteristics of 𝑎0 and 𝑏0, i.e. 𝜙 satisfies the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩
∇𝜙(𝑥) ̸= 0 ∀𝑥 ∈ 𝑈,

∃𝐶0 > 0 so that [𝑎0, 𝑏0](𝑥, 𝜉) ≥ 𝐶0 when (𝑥, 𝜉) ∈ 𝑈 ×𝑅𝑁 and 𝑎0(𝑥, 𝜉) = 𝑏0(𝑥, 𝜉) = 0.
(2.9)

Then, there exist 𝐶1 > 0 and ℎ1 > 0 such that, for all 0 < ℎ < ℎ1 and any function

𝑢 ∈ 𝐻2
0 (𝐾), one has:

𝐼0(𝑢) :=
∫︁

𝐾
𝑒2𝜙/ℎ|𝑢|2 𝑑𝑥+ ℎ2

∫︁
𝐾
𝑒2𝜙/ℎ|∇𝑢|2 𝑑𝑥 ≤ 𝐶1ℎ

3
∫︁

𝐾
𝑒2𝜙/ℎ|Δ𝑢|2 𝑑𝑥.

[Proof of Lemma 2.1] Without loss of generality we may assume that 𝑥0 = 0. Let (𝑦, 𝑧) ∈

𝐻1(𝐵2𝑅) ×𝐻1(𝐵2𝑅) be a solution to (2.7) such that 𝑦 = 0 and 𝑧 = 0 in 𝐵𝑅.
We will try to apply Theorem 2.4 to the functions 𝑦 and 𝑧. To do this, let us fix 𝜀 > 0

and let us introduce the sets

𝐾 :=
{︂
𝑥 ∈ 𝑅𝑁 : 3

4𝑅 ≤ |𝑥| ≤ 2𝑅 − 𝜀
}︂

and 𝑈 :=
{︂
𝑥 ∈ 𝑅𝑁 : 1

2𝑅 < |𝑥| < 2𝑅
}︂

and a function 𝜙 ∈ 𝐶∞
0 (𝑅𝑁), with

𝜙(𝑥) := 𝑒−𝛿|𝑥|2 ∀𝑥 ∈ 𝐵2𝑅, 𝛿 > 4/𝑅2. (2.10)

It is not difficult to see that

𝜕𝑥𝑗
𝜙(𝑥) = −2𝛿𝑥𝑗𝜙(𝑥) and 𝜕𝑥𝑗

𝜕𝑥𝑘
𝜙(𝑥) = −2𝛿𝜙(𝑥)𝛿𝑗𝑘 + 4𝛿2𝑥𝑗𝑥𝑘𝜙(𝑥), (2.11)

where the 𝛿𝑗𝑘 are the Kronecker symbols. From (2.10) and (2.11), we have that

[𝑎0, 𝑏0](𝑥, 𝜉) = 64 𝛿3𝜙(𝑥)3|𝑥|2
[︁
𝛿|𝑥|2 − 1

]︁
≥16 𝛿3𝑅2𝑒−12𝑅2𝛿

(︃
𝛿𝑅2

4 − 1
)︃

for any (𝑥, 𝜉) ∈ 𝑈 × 𝑅𝑁 such that 𝑎0(𝑥, 𝜉) = 𝑏0(𝑥, 𝜉) = 0. Therefore, we see that (2.9) is
satisfied by the function 𝜙 in 𝑈.

Let us introduce a cut-off function 𝜁 ∈ 𝐶∞
0 (𝐾) satisfying 𝜁 ≡ 1 for 𝑅−𝜀 ≤ |𝑥| ≤ 2𝑅−2𝜀

and let us set 𝑦 := 𝜁𝑦 and 𝑧 := 𝜁𝑧. It is then clear that (𝑦, 𝑧) ∈ 𝐻2
0 (𝐾) ×𝐻2

0 (𝐾). After some
computations, we obtain that: ⎧⎪⎪⎨⎪⎪⎩

Δ𝑦 = 𝑎𝑦 + 𝑏𝑧 +𝐻1,

Δ𝑧 = 𝐴𝑦 +𝐵𝑧 +𝐻2,



46

where
𝐻1 := 2∇𝜁 · ∇𝑦 + 𝑦Δ𝜁 and 𝐻2 := 2∇𝜁 · ∇𝑧 + 𝑧Δ𝜁. (2.12)

Consequently, we can apply Theorem 2.4 to 𝑦 and deduce that there exist 𝐶2 > 0 and
ℎ2 > 0 such that

𝐼0(𝑦) ≤ 𝐶2ℎ
3
(︂∫︁

𝐾
𝑒2𝜙/ℎ|𝑧|2 𝑑𝑥+

∫︁
𝐾
𝑒2𝜙/ℎ|𝐻1|2 𝑑𝑥

)︂
(2.13)

for all ℎ ∈ (0, ℎ2). Here, we have absorbed the lower order term for 𝑦 from the right hand side
by taking ℎ2 small enough. Analogously, there exist positive constants 𝐶3 > 0 and ℎ3 > 0

such that,
𝐼0(𝑧) ≤ 𝐶3ℎ

3
(︂∫︁

𝐾
𝑒2𝜙/ℎ|𝑦|2 𝑑𝑥+

∫︁
𝐾
𝑒2𝜙/ℎ|𝐻2|2 𝑑𝑥

)︂
(2.14)

for all ℎ ∈ (0, ℎ3).
Next, adding (2.13) and (2.14), taking ℎ4 sufficiently small and 𝐶4 sufficiently large and

absorbing again the lower order terms for 𝑦 and 𝑧 from the right hand side, we have

𝐼0(𝑦) + 𝐼0(𝑧) ≤ 𝐶4ℎ
3
∫︁

𝐾
𝑒2𝜙/ℎ

(︁
|𝐻1|2 + |𝐻2|2

)︁
𝑑𝑥, (2.15)

for all ℎ ∈ (0, ℎ4).
To conclude the proof, we note that (2.12), the fact that 𝑦 = 𝑧 = 0 in 𝐵𝑅 and ∇𝜁 =

Δ𝜁 = 0 for 𝑅 − 𝜀 ≤ |𝑥| ≤ 2𝑅 − 2𝜀 imply that 𝐻1 and 𝐻2 vanish in 𝐵2𝑅−2𝜀. Now, we have
from (2.10) that 𝜙 is positive and radially decreasing in 𝑈 . Thus, one has∫︁

𝐾
𝑒2𝜙/ℎ(|𝐻1|2 + |𝐻2|2) 𝑑𝑥 ≤ 𝑒2𝜙(2𝑅−2𝜀)/ℎ

∫︁
𝐾

(|𝐻1|2 + |𝐻2|2) 𝑑𝑥.

On the other hand,∫︁
𝐾
𝑒2𝜙/ℎ(|𝑦|2 + |𝑧|2) 𝑑𝑥 ≥

∫︁
𝑅≤|𝑥|≤2𝑅−3𝜀

𝑒2𝜙/ℎ(|𝑦|2 + |𝑧|2) 𝑑𝑥

≥ 𝑒2𝜙(2𝑅−3𝜀)/ℎ
∫︁

𝑅≤|𝑥|≤2𝑅−3𝜀
(|𝑦|2 + |𝑧|2) 𝑑𝑥.

(2.16)

It follows from (2.15)–(2.16) that∫︁
𝑅≤|𝑥|≤2𝑅−3𝜀

(|𝑦|2 + |𝑧|2) 𝑑𝑥 ≤ 𝐶4ℎ
3𝑒2[𝜙(2𝑅−2𝜀)−𝜙(2𝑅−3𝜀)]/ℎ

∫︁
𝐾

(|𝐻1|2 + |𝐻2|2) 𝑑𝑥.

Since 𝐻1 and 𝐻2 are independent of ℎ and 𝜙(2𝑅− 2𝜀) < 𝜙(2𝑅− 3𝜀), we can let ℎ → 0 and
get that

𝑦 = 𝑧 = 0 in 𝑅 ≤ |𝑥| ≤ 2𝑅 − 3𝜀

and, consequently, 𝑦 and 𝑧 vanish in 𝐵2𝑅−3𝜀. Since 𝜀 > 0 is arbitrarily small, we conclude that
𝑦 and 𝑧 vanish identically in 𝐵2𝑅.
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2.2.2 Unique continuation for general domains

The goal of this section is to prove Theorem 2.3 in the general case.
Let (𝑦, 𝑧) ∈ 𝐻1(𝐺) ×𝐻1(𝐺) be a solution to (2.7) satisfying (2.8) and let us assume that

𝐵𝜌0(𝑥0) ⊂ 𝜔. Let 𝑥1 be a point of 𝐺 and let us see that 𝑦 = 0 and 𝑧 = 0 in a neighborhood
of 𝑥1.

Since 𝐺 is connected, there exists a curve 𝜂 ∈ 𝐶∞([0, 1];𝐺) such that 𝜂(0) = 𝑥0 and
𝜂(1) = 𝑥1.

Notice that for any 𝑡 ∈ [0, 1] there exists 𝑟𝑡 > 0 such that 𝐵2𝑟𝑡(𝜂(𝑡)) ⊂ 𝐺. Since Γ :=

𝜂 ([0, 1]) is a compact set, there exist 𝑚 ≥ 1 and 0 ≤ 𝑡1 < . . . < 𝑡𝑚 ≤ 1 satisfying

Γ ⊂
𝑚⋃︁

𝑗=1
𝐵𝑟𝑗

(𝜂(𝑡𝑗)) , where we have set 𝑟𝑗 := 𝑟𝑡𝑗
.

By construction, setting 𝜌1 := min {𝑟1, . . . , 𝑟𝑚, 𝜌0}, we have that 𝐵𝜌1(𝑥) ⊂ 𝐺, for all
𝑥 ∈ Γ.

Finally, we set 𝑟0 := 𝜌1/2 and fix 0 < 𝑟 < 𝑟0. It is clear that (𝑦, 𝑧) vanishes in 𝐵𝑟(𝑥0)

whence, by Lemma 2.1, (𝑦, 𝑧) also vanishes in 𝐵2𝑟(𝑥0). Let 𝜉1 := 𝜂(𝜏1) ∈ 𝜕𝐵𝑟(𝑥0) ∩ Γ. Then,
we have that (𝑦, 𝑧) = (0, 0) in 𝐵𝑟(𝜉1) and, in view of Lemma 2.1, (𝑦, 𝑧) = (0, 0) in 𝐵2𝑟(𝜉1).
Applying the same idea a finite number of times, we obtain 𝑦 = 0 and 𝑧 = 0 in 𝐵𝑟(𝑥1). This
ends the proof.

2.2.3 Proof of Theorem 1: uniqueness

Let us introduce the open sets 𝐷 := 𝐷0 ∪ 𝐷1 and 𝑂0 := Ω∖𝐷 and let 𝑂 be the unique
connected component of 𝑂0 such that 𝜕Ω ⊂ 𝜕𝑂. Also, let us set 𝑦 := 𝑦0 −𝑦1 and 𝑧 := 𝑧0 −𝑧1

in 𝑂. Since 𝛼0 = 𝛼1 and 𝛽0 = 𝛽1, the couple (𝑦, 𝑧) ∈ 𝐻1(𝑂) ×𝐻1(𝑂) satisfies:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in 𝑂,

−Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in 𝑂,

𝑦 = 𝑧 = 0 on 𝜕Ω,

𝜕𝑦
𝜕𝑛

= 𝜕𝑧
𝜕𝑛

= 0 on 𝛾.

(2.17)

Now, we fix 𝑥0 ∈ 𝛾 and we choose 𝑟 > 0 such that 𝐵𝑟(𝑥0) ∩ 𝜕Ω ⊂ 𝛾. Let us set
𝑂′ := 𝑂 ∪𝐵𝑟(𝑥0) and consider the extension by zero (𝑦, 𝑧) of (𝑦, 𝑧) to the whole set 𝑂′.
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From (2.17), it follows that⎧⎪⎪⎨⎪⎪⎩
−Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in 𝑂′,

−Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in 𝑂′.

Also, since 𝑂′ is connected and (𝑦, 𝑧) = (0, 0) in 𝑂′∖𝑂, Theorem 2.3 implies (𝑦, 𝑧) = (0, 0)

in 𝑂′. In particular, (𝑦, 𝑧) = (0, 0) in 𝑂.
To conclude, let us prove that𝐷1∖𝐷0 and𝐷0∖𝐷1 must be empty. Thus, let us suppose that

𝐷1∖𝐷0 ̸= ∅ and let us introduce the set 𝐷2 := 𝐷1∪[(Ω∖𝐷0)∩(Ω∖𝑂)]. By hypothesis, 𝐷2∖𝐷0

is nonempty.On the other hand, note that 𝜕(𝐷2∖𝐷0) := Γ0∪Γ1, where Γ0 = 𝜕(𝐷2∖𝐷0)∩𝜕𝐷0

and Γ1 = 𝜕(𝐷2∖𝐷0) ∩ 𝜕𝐷1.
Therefore, since (𝑦0, 𝑧0) = (𝑦1, 𝑧1) in 𝑂, the pair (𝑦0, 𝑧0) verifies⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦0 + 𝑎𝑦0 + 𝑏𝑧0 = 0 in 𝐷2∖𝐷0
,

−Δ𝑧0 + 𝐴𝑦0 +𝐵𝑧0 = 0 in 𝐷2∖𝐷0
,

𝑦0 = 0, 𝑧0 = 0 on Γ0,

𝑦0 = 0, 𝑧0 = 0 on Γ1.

(2.18)

Since the linear system (2.18) possesses exactly one solution, we necessarily have (𝑦0, 𝑧0) =

(0, 0) in 𝐷2∖𝐷0. Consequently, in view of Theorem 2.3, (𝑦0, 𝑧0) = (0, 0) in Ω∖𝐷0
. This

contradicts the fact that (𝜙, 𝜓) is not identically zero on 𝜕Ω. Hence, 𝐷1∖𝐷0 is the empty set.
Analogously, one can prove that 𝐷0∖𝐷1 is empty and, finally, one has 𝐷0 = 𝐷1.

Remark 2.3 Consider a multiple domain Σ = 𝐷0 ∪ 𝐷1 ∪ . . . ∪ 𝐷𝑘, with 𝐷𝑖 ∩ 𝐷𝑗 = ∅, if

𝑖 ̸= 𝑗, and 𝐷𝑖 ∈ 𝒟, for all 𝑖 = 1, . . . , 𝑘. Then, by applying similar techniques as these above,

one can see that Theorem 2.1 can be extended to a geometric inverse problem which consists

to find an unknown multiple domain Σ such that the corresponding solution to (2.2) (with 𝐷

replaced by Σ) generates the observation (2.3). That is, if two multiple domains Σ0 and Σ1

generate the same observation (𝛼, 𝛽) in (2.3), then Σ0 = Σ1.
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2.3 STABILITY

2.3.1 Preliminary results

Let us introduce some basic notation. Let 𝑚 = (𝑚1, . . . ,𝑚𝑁) ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁) be given
and let us set

𝑚′ :=
(︃
𝜕𝑚𝑖

𝜕𝑥𝑗

)︃𝑁

𝑖,𝑗=1
, Jac(𝑚) := | det(𝑚′)|, 𝑀 := ((𝑚′)*)−1.

In the sequel, we will consider the set

𝒲𝜖 := {𝜇 ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁) : ‖𝜇‖𝑊 1,∞ < 𝜖, 𝜇 = 0 in Ω∖𝐷*},

where 0 < 𝜖 < 1. We will work with mappings of the form 𝑚 := 𝐼 + 𝜇, where 𝐼 : 𝑅𝑁 ↦→ 𝑅𝑁

is the identity and 𝜇 ∈ 𝒲𝜖. For any 𝜇 ∈ 𝒲𝜖, 𝐼 + 𝜇 is obviously bijective, (𝐼 + 𝜇)−1 ∈

𝑊 1,∞(𝑅𝑁 ;𝑅𝑁) (see (HENROT A.; PIERRE, 2018), p. 193) and

(𝐼 + 𝜇)(𝐷) ∈ 𝒟, ∀𝐷 ∈ 𝒟.

Also, the corresponding functions Jac(𝑚), 𝑀 and 𝑀−1 satisfy

Jac(𝑚) ≥ 𝐶(𝜖) > 0, ‖𝑀‖𝐿∞ + ‖𝑀−1‖𝐿∞ ≤ 𝐶(𝜖). (2.19)

Let 𝐷0 ∈ 𝒟 and 𝜇 ∈ 𝒲𝜖 be given, let us set again 𝑚 := 𝐼 + 𝜇 and 𝐷1 = 𝑚(𝐷0) and let
us consider the solution (𝑦1, 𝑧1) ∈ 𝐻1(Ω∖𝐷1)2 to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦1 + 𝑎𝑦1 + 𝑏𝑧1 = 0 in Ω∖𝐷1
,

−Δ𝑧1 + 𝐴𝑦1 +𝐵𝑧1 = 0 in Ω∖𝐷1
,

𝑦1 = 𝜙, 𝑧1 = 𝜓 on 𝜕Ω,

𝑦1 = 0, 𝑧1 = 0 on 𝜕𝐷1.

Since (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω)2, there exists (𝜙1, 𝜓1) ∈ 𝐻1(Ω)2 such that

(𝜙1, 𝜓1) = 0 in 𝐷* and (𝜙1, 𝜓1) = (𝜙, 𝜓) on 𝜕Ω.

Thus, we can write (𝑦1, 𝑧1) = (𝑢1 + 𝜙1, 𝑣1 + 𝜓1), where (𝑢1, 𝑣1) is the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑢1 + 𝑎𝑢1 + 𝑏𝑣1 = 𝐹1 in Ω∖𝐷1
,

−Δ𝑣1 + 𝐴𝑢1 +𝐵𝑣1 = 𝐺1 in Ω∖𝐷1
,

𝑢1 = 0, 𝑣1 = 0 on 𝜕Ω ∪ 𝜕𝐷1

(2.20)
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and
𝐹1 = Δ𝜙1 − 𝑎𝜙1 − 𝑏𝜓1, 𝐺1 = Δ𝜓1 − 𝐴𝜙1 −𝐵𝜓1.

We see from (2.20) that for any (𝑤, 𝑝) ∈ 𝐻1
0 (Ω∖𝐷1)2 the following holds:∫︁

Ω∖𝐷
1(∇𝑢1 · ∇𝑤 + ∇𝑣1 · ∇𝑝) 𝑑𝑦 +

∫︁
Ω∖𝐷

1(𝑎𝑢1𝑤 + 𝑏𝑣1𝑤 + 𝐴𝑢1𝑝+𝐵𝑣1𝑝) 𝑑𝑦

= −
∫︁

Ω∖𝐷
1(∇𝜙1 · ∇𝑤 + ∇𝜓1 · ∇𝑝) 𝑑𝑦 −

∫︁
Ω∖𝐷

1(𝑎𝜙1𝑤 + 𝑏𝜓1𝑤 + 𝐴𝜙1𝑝+𝐵𝜓1𝑝) 𝑑𝑦.
(2.21)

Let us introduce the functions:

𝑢0 := 𝑚̃(𝑢1), 𝑣0 := 𝑚̃(𝑣1), 𝜙0 := 𝑚̃(𝜙1), 𝜓0 := 𝑚̃(𝜓1),

where 𝑚̃ is the isomorphism from 𝐻1
0 (Ω∖𝐷1)2 onto 𝐻1

0 (Ω∖𝐷0)2 induced by 𝑚, that is,

𝑚̃(𝑓) := 𝑓 ∘𝑚, ∀𝑓 ∈ 𝐻1
0 (Ω∖𝐷1)2. (2.22)

We get easily from (2.19) that there exists a positive constant 𝐶 = 𝐶(𝜖) such that

‖̃︁𝑚(𝑓)‖
𝐻1

0 (Ω∖𝐷
0)2 ≤ 𝐶(𝜖)‖𝑓‖

𝐻1
0 (Ω∖𝐷

1)2 , ∀ 𝑓 ∈ 𝐻1
0 (Ω∖𝐷1)2.

Moreover, it’s easy to see that ̃︁𝑚−1 is the linear mapping induced by the inverse 𝑚−1 of
the 𝑚, that is, ̃︁𝑚−1(𝑔) = 𝑔 ∘𝑚−1, for all 𝑔 ∈ 𝐻1

0 (Ω∖𝐷0)2.
Observe that, since (𝜙1, 𝜓1) = 0 in 𝐷* and 𝑚 = 𝐼 in Ω∖𝐷*, we have (𝜙0, 𝜓0) = (𝜙1, 𝜓1)

in Ω. In other words, (𝜙1, 𝜓1) is invariant under the isomorphism 𝑚̃ associated to 𝑚.
It can be easily shown that solving the variational problem (2.21) is equivalent to find

(𝑢0, 𝑣0) ∈ 𝐻1
0 (Ω∖𝐷0)2 such that∫︁

Ω∖𝐷
0(𝑀∇𝑢0 ·𝑀∇𝑧+𝑀∇𝑣0 ·𝑀∇𝑞) Jac(𝑚) 𝑑𝑥

+
∫︁

Ω∖𝐷
0(𝑎𝑢0𝑧+𝑏𝑣0𝑧+𝐴𝑢0𝑞+𝐵𝑣0𝑞) Jac(𝑚) 𝑑𝑥

=−
∫︁

Ω∖𝐷
0(𝑀∇𝜙0 ·𝑀∇𝑧+𝑀∇𝜓0 ·𝑀∇𝑞) Jac(𝑚) 𝑑𝑥

−
∫︁

Ω∖𝐷
0(𝑎𝜙0𝑧+𝑏𝜓0𝑧+𝐴𝜙0𝑞+𝐵𝜓0𝑞) Jac(𝑚) 𝑑𝑥,

for all (𝑧, 𝑞) ∈ 𝐻1
0 (Ω∖𝐷0)2 that is, a solution to the system:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (Jac(𝑚)𝑀*𝑀∇𝑢0) + (𝑎𝑢0 + 𝑏𝑣0) Jac(𝑚) = 𝐹0 in Ω∖𝐷0
,

−∇ · (Jac(𝑚)𝑀*𝑀∇𝑣0) + (𝐴𝑢0 +𝐵𝑣0) Jac(𝑚) = 𝐺0 in Ω∖𝐷0
,

𝑢0 = 0, 𝑣0 = 0 on 𝜕Ω ∪ 𝜕𝐷0,

(2.23)
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where (𝐹0, 𝐺0) ∈ 𝐻−1(Ω∖𝐷0)2 is given by

𝐹0 = ∇ · (Jac(𝑚)𝑀*𝑀∇𝜙0) − (𝑎𝜙0 + 𝑏𝜓0) Jac(𝑚),

𝐺0 = ∇ · (Jac(𝑚)𝑀*𝑀∇𝜓0) − (𝐴𝜙0 +𝐵𝜓0) Jac(𝑚).

For convenience, we will rewrite (2.23) in the abridged form⎧⎪⎪⎨⎪⎪⎩
𝑇 (𝑢0, 𝑣0) = (𝐹0, 𝐺0) in Ω∖𝐷0

,

𝑢0 = 0, 𝑣0 = 0 on 𝜕Ω ∪ 𝜕𝐷0,

(2.24)

where the notation is self-explanatory.

Lemma 2.2 The linear operator 𝑇 : 𝐻1
0 (Ω∖𝐷0)2 ↦→ 𝐻−1(Ω∖𝐷0)2 is an isomorphism. Further-

more, if ‖ · ‖ℒ0 and ‖ · ‖ℒ′
0

denotes the usual norm in ℒ(𝐻1
0 (Ω∖𝐷0)2;𝐻−1(Ω∖𝐷0)2) and

ℒ(𝐻−1(Ω∖𝐷0)2;𝐻1
0 (Ω∖𝐷0)2), respectively, one has

‖𝑇‖ℒ0 + ‖𝑇−1‖ℒ′
0

≤ 𝐶(𝜖).

It is easy to see that 𝑇 ∈ ℒ(𝐻1
0 (Ω∖𝐷0)2;𝐻−1(Ω∖𝐷0)2) and ‖𝑇‖ℒ0 ≤ 𝐶(𝜖). On the other

hand, the continuous and bilinear form 𝜏(· , ·), given by

𝜏( (𝑢, 𝑣), (𝑧, 𝑞) ) := ⟨𝑇 (𝑢, 𝑣), (𝑧, 𝑞)⟩𝐻−1,𝐻1
0

∀(𝑢, 𝑣), (𝑧, 𝑞) ∈ 𝐻1
0 (Ω∖𝐷0)2,

is coercive. Indeed, given (𝑢, 𝑣) ∈ 𝐻1
0 (Ω∖𝐷0)2 we have from the fact that mapping ̃︁𝑚 defined

in (2.22) is an isomorphism that there exists a unique pair (𝑢1, 𝑣1) ∈ 𝐻1
0 (Ω∖𝐷1)2 such that

(𝑢, 𝑣) = ̃︁𝑚(𝑢1, 𝑣1). Thus,

𝜏((𝑢, 𝑣), (𝑢, 𝑣)) =
∫︁

Ω∖𝐷
0(|𝑀∇𝑢|2 + |𝑀∇𝑣|2) Jac(𝑚) 𝑑𝑥

+
∫︁

Ω∖𝐷
0(𝑎|𝑢|2 +𝐵|𝑣|2 + (𝑏+ 𝐴)𝑢𝑣)Jac(𝑚) 𝑑𝑥

≥
∫︁

Ω∖𝐷
0(|𝑀∇𝑢|2 + |𝑀∇𝑣|2) Jac(𝑚) 𝑑𝑥

−𝜆
∫︁

Ω∖𝐷
0(|𝑢|2 + |𝑣|2) Jac(𝑚) 𝑑𝑥

≥ (1 − 𝜆𝜇1(Ω))‖(𝑢1, 𝑣1)‖2
𝐻1

0 (Ω∖𝐷
1)2 ,

where in the last inequality we used the fact that (2.1) is satisfied by the coefficients 𝑎, 𝑏, 𝐴
and 𝐵. Then, it follows from this and from fact ̃︁𝑚 is a isomorphism that

𝜏((𝑢, 𝑣), (𝑢, 𝑣)) ≥ (1 − 𝜆𝜇1(Ω))‖(𝑢1, 𝑣1)‖2
𝐻1

0 (Ω∖𝐷
1)2

= (1 − 𝜆𝜇1(Ω))‖̃︁𝑚−1(𝑢, 𝑣)‖2
𝐻1

0 (Ω∖𝐷
1)2

≥ 𝐶(𝜖)(1 − 𝜆𝜇1(Ω))‖(𝑢, 𝑣)‖2
𝐻1

0 (Ω∖𝐷
0)2 .

Therefore, from Lax-Milgram’s Lemma, we get the result.
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Theorem 2.5 The mapping 𝜇 ↦→ (𝑢0, 𝑣0) is analytic in a neighbourhood of the origin in 𝒲𝜖.

We note first that (𝐹0, 𝐺0) does not depend of 𝜇, because (𝜙0, 𝜓0) = 0 where 𝜇 ̸= 0.
Then, since the mapping 𝑇 is a isomorphism we have by (2.24) that

(𝑢0, 𝑣0) = 𝑇−1(𝐹0, 𝐺0).

We prove in the Appendix A the mapping 𝜇 ↦→ 𝑇 is analytic in a neighbourhood of 0.
Consequently, this is also the case for 𝜇 ↦→ (𝑢0, 𝑣0) and the proof is done.

2.3.2 Proof of Theorem 2: stability

Let 𝐷0 ∈ 𝒟 and 𝜇 ∈ 𝑊𝜖 be given, with 𝜇 ̸≡ 0 in 𝐷0. Recall that, in Theorem 2, for any
𝜎 ∈ (−1, 1), we have set 𝑚𝜎 := 𝐼 + 𝜎𝜇 and 𝐷𝜎 := 𝑚𝜎(𝐷0) and (𝑦𝜎, 𝑧𝜎) ∈ 𝐻1(Ω∖𝐷𝜎)2 is
the solution to ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦𝜎 + 𝑎𝑦𝜎 + 𝑏𝑧𝜎 = 0 in Ω∖𝐷𝜎,

−Δ𝑧𝜎 + 𝐴𝑦𝜎 +𝐵𝑧𝜎 = 0 in Ω∖𝐷𝜎,

𝑦𝜎 = 𝜙, 𝑧𝜎 = 𝜓 on 𝜕Ω,

𝑦𝜎 = 0, 𝑧𝜎 = 0 on 𝜕𝐷𝜎.

(2.25)

We will argue as in (ALVAREZ, 2005):

1. First, it follows from Theorem 2.5 and the fact that 𝜇 ≡ 0 in Ω∖𝐷* that there exists
𝜎0 > 0 such that the mapping in (2.5) is well defined and analytic in (−𝜎0, 𝜎0). Hence,
there exist 𝐹1, 𝐹2, . . . in 𝐻−1/2(𝛾)2 such that(︃

𝜕𝑦𝜎

𝜕𝑛
,
𝜕𝑧𝜎

𝜕𝑛

)︃
−
(︃
𝜕𝑦0

𝜕𝑛
,
𝜕𝑧0

𝜕𝑛

)︃
=

∞∑︁
𝑗=1

𝜎𝑗𝐹𝑗 ∀𝜎 ∈ (−𝜎0, 𝜎0), (2.26)

where the series converges in 𝐻−1/2(𝛾)2.

2. Now, let us assume that 𝑚𝜎(𝐷0) ̸= 𝐷0 for some 𝜎 ∈ (−𝜎0, 𝜎0). In view of Theorem 1,
not all the 𝐹𝑗 can be zero. Let 𝑘0 be the smallest 𝑗 such that 𝐹𝑗 ̸= 0. It is then clear
that there exists 𝜎* ∈ (0, 𝜎0) such that⃦⃦⃦⃦

⃦⃦ ∞∑︁
𝑗=𝑘0+1

𝜎𝑗𝐹𝑗

⃦⃦⃦⃦
⃦⃦

𝐻−1/2

≤ 1
2 |𝜎|𝑘0‖𝐹𝑘0‖𝐻−1/2 , ∀𝜎 ∈ (−𝜎*, 𝜎*). (2.27)

Indeed, using the definition of series’ convergence, we can see easily that fixed 𝜎 ∈

(−𝜎0, 𝜎0) and taking 𝜀 = 1/4|𝜎|𝑘0‖𝐹𝑘0‖𝐻−1/2 > 0, there exists 𝑝0 ∈ 𝑁 such that if
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𝑝 ≥ 𝑝0 then ⃦⃦⃦⃦
⃦⃦ ∞∑︁

𝑗=𝑝+1
𝜎𝑗𝐹𝑗

⃦⃦⃦⃦
⃦⃦

𝐻−1/2

≤ 𝜀.

If 𝑝0 ≤ 𝑘0 then the inequality in (2.27) is easily obtained. Now, suppose that 𝑝0 > 𝑘0,
that is, 𝑝0 = 𝑘0 + 𝑘1, for some positive integer 𝑘1 ≥ 1. Thus,⃦⃦⃦⃦

⃦⃦ ∞∑︁
𝑗=𝑘0+𝑘1+1

𝜎𝑗𝐹𝑗

⃦⃦⃦⃦
⃦⃦

𝐻−1/2

≤ 1
4 |𝜎|𝑘0‖𝐹𝑘0‖𝐻−1/2

and, consequently,⃦⃦⃦⃦
⃦⃦ ∞∑︁

𝑗=𝑘0+1
𝜎𝑗𝐹𝑗

⃦⃦⃦⃦
⃦⃦

𝐻−1/2

≤ 1
4 |𝜎|𝑘0‖𝐹𝑘0‖𝐻−1/2 +

⃦⃦⃦⃦
⃦⃦ 𝑘1+1∑︁

𝑗=𝑘0+1
𝜎𝑗𝐹𝑗

⃦⃦⃦⃦
⃦⃦

𝐻−1/2

.

Then, by taking 𝜎* ∈ (0, 𝜎0) so that
𝑘0+𝑘1∑︁
𝑘0+1

|𝜎|𝑗‖𝐹𝑗‖𝐻−1/2 ≤ 1
4 |𝜎|𝑘0‖𝐹𝑘0‖𝐻−1/2 ,

for all 𝜎 ∈ (−𝜎*, 𝜎*), we get the inequality (2.27).

Then, for these 𝜎 ∈ (−𝜎*, 𝜎*), one must also have

|𝜎|𝑘0‖𝐹𝑘0‖𝐻−1/2 ≤
⃦⃦⃦⃦
⃦
(︃
𝜕𝑦𝜎

𝜕𝑛
,
𝜕𝑧𝜎

𝜕𝑛

)︃
−
(︃
𝜕𝑦0

𝜕𝑛
,
𝜕𝑧0

𝜕𝑛

)︃⃦⃦⃦⃦
⃦

𝐻−1/2
+ 1

2 |𝜎|𝑘0‖𝐹𝑘0‖𝐻−1/2 ,

which allows to achieve the proof.

Remark 2.4 Similar to Remark 2.3 above, one can consider a fixed multiple domain

Σ0 = 𝐷1
0 ∪ . . .∪𝐷𝑘

0 , with 𝐷𝑖
0 ∩𝐷𝑗

0 = ∅ if 𝑖 ̸= 𝑗, and 𝐷𝑖
0 ∈ 𝒟, for all 𝑖 = 1, . . . , 𝑘. Then,

assuming that the set Σ0 is subjected to perturbations, as described in this section, it is

possible to prove a version of the Theorem 2.2 for multiple domains.

2.4 ADDITIONAL COMMENTS AND QUESTIONS

2.4.1 A similar inverse problem with internal observation

Let 𝜔 ⊂⊂ Ω∖𝐷* be a nonempty open set. Consider the following geometric inverse pro-
blem, where the observation is performed on 𝜔:

Given (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω) × 𝐻1/2(𝜕Ω) and 𝛼 ∈ 𝐻1(𝜔), find a set 𝐷 ∈ 𝒟 such
that the solution (𝑦, 𝑧) to the linear system (2.2) satisfies the following additional
condition:

𝑦
⃒⃒⃒
𝜔

= 𝛼. (2.28)



54

We have the following uniqueness result:

Theorem 2.6 Assume that (𝜙, 𝜓) ∈ 𝐻1/2(𝜕Ω) × 𝐻1/2(𝜕Ω) is nonzero and suppose that

there exists a nonempty open set 𝜔0 ⊂ 𝜔 such that 𝑏 ̸= 0 a.e. in 𝜔0. Let (𝑦𝑖, 𝑧𝑖) be the

unique weak solution to (2.2) with 𝐷 replaced by 𝐷𝑖 for 𝑖 = 0, 1 and let 𝛼𝑖 be given by the

corresponding equality (2.28). Then, one has:

𝛼0 = 𝛼1 =⇒ 𝐷0 = 𝐷1.

The proof is very similar to the proof of Theorem 2.1.
As before, we can consider the open sets 𝐷 := 𝐷0 ∪ 𝐷1, 𝑂0 := Ω∖𝐷 and the unique

connected component 𝑂 of 𝑂0 such that 𝜕Ω ⊂ 𝜕𝑂. Again, let us set 𝑦 := 𝑦0 − 𝑦1 and
𝑧 := 𝑧0 − 𝑧1 in 𝑂. Then, using the facts that 𝛼0 = 𝛼1 and 𝑏 ̸= 0 a.e. in 𝜔0, we have that
(𝑦, 𝑧) ∈ 𝐻1(𝑂) ×𝐻1(𝑂) and satisfies⎧⎪⎪⎨⎪⎪⎩

−Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in 𝑂,

−Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in 𝑂

and
𝑦 = 𝑧 = 0 in 𝜔0.

Consequently, Theorem 2.3 guarantees that (𝑦, 𝑧) = (0, 0) in 𝑂. Arguing as in the proof of
Theorem 2.1, we deduce that 𝐷0∖𝐷1 and 𝐷1∖𝐷0 are empty sets and, consequently, 𝐷0 = 𝐷1.

We also have a stability result similar to Theorem 2.2. Thus, let us fix 𝐷0 ∈ 𝒟 and 𝜇 ∈ 𝑊𝜖

with 𝜇 ̸= 0 in 𝐷0, let us take 𝑚𝜎 = 𝐼+𝜎𝜇 and 𝐷𝜎 = 𝑚𝜎(𝐷0) and let (𝑦𝜎, 𝑧𝜎) be the solution
to (2.25). The following holds:

Theorem 2.7 Under the assumptions in Theorem 2.6 on (𝜙, 𝜓) and 𝑏, there exists 𝜎0 > 0

with the following properties:

1. The mapping

𝜎 ↦→ 𝑦𝜎

⃒⃒⃒
𝜔

(2.29)

is well defined and analytic in (−𝜎0, 𝜎0), with values in 𝐿2(𝜔).

2. Either 𝑚𝜎(𝐷0) = 𝐷0 for all 𝜎 ∈ (−𝜎0, 𝜎0) (and then the mapping in (2.29) is constant),

or there exist 𝜎* ∈ (0, 𝜎0), 𝐶 > 0 and 𝑘 ≥ 1 (an integer) such that

⃦⃦⃦
(𝑦𝜎 − 𝑦0)

⃒⃒⃒
𝜔

⃦⃦⃦
𝐿2

≥ 𝐶|𝜎|𝑘 ∀𝜎 ∈ (−𝜎*, 𝜎*).
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Again, the proof is very similar to the proof of stability in the boundary observation case
(Theorem 2.2). In fact, the unique difference appears in the last part of the argument, when
we write

(𝑦𝜎 − 𝑦0)
⃒⃒⃒
𝜔

=
∞∑︁

𝑗=1
𝜎𝑗𝐹𝑗 ∀𝜎 ∈ (−𝜎0, 𝜎0),

instead of (2.26).
For brevity, we omit the details.

Remark 2.5 Recall that, in the case of problem (2.2)–(2.3), we need two boundary observa-

tions, the normal derivatives of 𝑦 and 𝑧 on 𝛾, to deduce uniqueness and stability. The last two

results show that, with internal observations, this holds with the information supplied by just

one variable.

2.4.2 A geometric inverse problem for a parabolic system

Let us present some ideas that allow to extend Theorems 2.1 and 2.6 to time-dependent
parabolic systems. For brevity, we will only consider the boundary observation case. Thus, let
𝑇 > 0 be given and let us consider the following inverse problem:

We consider (𝜙, 𝜓) ∈ 𝐶1([0, 𝑇 ];𝐻3/2(𝜕Ω)2), with 𝜙(·, 0) = 𝜓(·, 0) = 0 on 𝜕Ω and
(𝛼, 𝛽) ∈ 𝐿2(0, 𝑇 ;𝐻−1/2(𝛾)2), where 𝛾 ⊂ 𝜕Ω is a nonempty open set. Then, our
goal is find an open set 𝐷 ∈ 𝒟 such that the unique solution (𝑦, 𝑧) to the linear
evolution system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in Ω∖𝐷 × (0, 𝑇 ),

𝑧𝑡 − Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in Ω∖𝐷 × (0, 𝑇 ),

𝑦 = 𝜙, 𝑧 = 𝜓 on 𝜕Ω × (0, 𝑇 ),

𝑦 = 0, 𝑧 = 0 on 𝜕𝐷 × (0, 𝑇 ),

𝑦(· , 0) = 0, 𝑧(· , 0) = 0 in Ω∖𝐷,

(2.30)

satisfies the additional conditions:
𝜕𝑦

𝜕𝑛

⃒⃒⃒⃒
⃒
𝛾×(0,𝑇 )

= 𝛼 and 𝜕𝑧

𝜕𝑛

⃒⃒⃒⃒
⃒
𝛾×(0,𝑇 )

= 𝛽. (2.31)

If one assume that (𝜙, 𝜓) ̸≡ (0, 0), then arguments similar to those in the proof of Theo-
rem 2.1 can be used to deduce uniqueness for (2.30)–(2.31).

Indeed, the first step is to deduce a unique continuation property:



56

Proposition 2.1 Let 𝐺 ⊂ 𝑅𝑁 be a bounded domain whose boundary is of class 𝑊 2,∞ and

let us set 𝑄 := 𝐺× (0, 𝑇 ). Suppose that 𝑎, 𝑏, 𝐴,𝐵 ∈ 𝐿∞(𝑄) and let 𝑂 be a nonempty open

subset of 𝑄. Then, any solution (𝑦, 𝑧) ∈ 𝐿2(0, 𝑇 ;𝐻2(𝐺) ×𝐻2(𝐺)) to⎧⎪⎪⎨⎪⎪⎩
𝑦𝑡 − Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in 𝑄,

𝑧𝑡 − Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in 𝑄.

(2.32)

satisfies the following property:

(𝑦, 𝑧) = (0, 0) in 𝑂 =⇒ (𝑦, 𝑧) = (0, 0) in 𝐶(𝑂),

where 𝐶(𝑂) is the horizontal component of 𝑂, defined by

𝐶(𝑂) := {(𝑥, 𝑡) ∈ 𝑄 : ∃𝑥0 such that (𝑥0, 𝑡) ∈ 𝑂}.

The proof of this result is similar to the proof of Theorem 1.4 in (FABRE, 1995).

Remark 2.6 Let 𝐺 ⊂ 𝑅𝑁 be a bounded domain whose boundary is of class 𝑊 2,∞ and let Γ0

be an open nonempty subset of 𝜕𝐺 × (0, 𝑇 ). Then, any solution (𝑦, 𝑧) in 𝐿2(0, 𝑇 ;𝐻2(𝐺) ×

𝐻2(𝐺)) to (2.32) satisfies the following property:

(𝑦, 𝑧) = (0, 0) and
(︃
𝜕𝑦

𝜕𝑛
,
𝜕𝑧

𝜕𝑛

)︃
= (0, 0) on Γ0 =⇒ (𝑦, 𝑧) = (0, 0) in 𝐶(Γ0).

Indeed, take (𝑥0, 𝑡0) ∈ Γ0. Since Γ0 is open in 𝜕𝐺 × (0, 𝑇 ), there exist constants 𝑟, 𝛿 > 0

such that (𝐵𝑟(𝑥0) ∩ 𝜕𝐺) × (𝑡0 − 𝛿, 𝑡0 + 𝛿) ⊂ Γ0. Let us denote by (𝑦, 𝑧) the extension by zero

of (𝑦, 𝑧) to 𝑂 := (𝐵(𝑥0; 𝑟) ∩𝐺𝑐) × (𝑡0 − 𝛿, 𝑡0 + 𝛿). Then, writing ̃︀𝐺 := 𝐺 ∪ [𝐵(𝑥0; 𝑟) ∩𝐺𝑐],

we have that (𝑦, 𝑧) ∈ 𝐿2(0, 𝑇 ;𝐻2( ̃︀𝐺) ×𝐻2( ̃︀𝐺)) is a solution of (2.32) in ̃︀𝐺× (𝑡0 − 𝛿, 𝑡0 + 𝛿)

and (𝑦, 𝑧) = (0, 0) in 𝑂. Consequently, by Proposition 3.2, (𝑦, 𝑧) vanishes in 𝐶(𝑂). Since

(𝑥0, 𝑡0) is arbitrary in Γ0, we get the result.

Let us now achieve the proof of uniqueness for the geometric inverse problem (2.30)-(2.31).
To this end, let 𝐷0 and 𝐷1 be two open sets in 𝒟 and let (𝑦𝑖, 𝑧𝑖) be the solution to (2.30)
with 𝐷 = 𝐷𝑖. Let us also assume that(︃

𝜕𝑦0

𝜕𝑛
,
𝜕𝑧0

𝜕𝑛

)︃
=
(︃
𝜕𝑦1

𝜕𝑛
,
𝜕𝑧1

𝜕𝑛

)︃
on 𝛾 × (0, 𝑇 ).
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As before, by introducing the open sets 𝐷 := 𝐷0 ∪𝐷1, 𝑂0 := Ω∖𝐷 and 𝑂, with 𝑦 := 𝑦0 − 𝑦1

and 𝑧 := 𝑧0 − 𝑧1, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − Δ𝑦 + 𝑎𝑦 + 𝑏𝑧 = 0 in 𝑂 × (0, 𝑇 ),

𝑧𝑡 − Δ𝑧 + 𝐴𝑦 +𝐵𝑧 = 0 in 𝑂 × (0, 𝑇 ),

𝑦 = 0, 𝑧 = 0 on 𝜕Ω × (0, 𝑇 ),
𝜕𝑦

𝜕𝑛
= 0, 𝜕𝑧

𝜕𝑛
= 0 on 𝛾 × (0, 𝑇 ).

From Remark 2.6, we find that (𝑦, 𝑧) = (0, 0) in 𝑂 × (0, 𝑇 ).
We can prove that 𝐷1∖𝐷0 is the empty set. Indeed, suppose the contrary, i.e. that 𝐷1∖𝐷0

is nonempty. Let us introduce the open set 𝐷2 = 𝐷1 ∪ ((Ω∖𝐷0 ∩ (Ω∖𝑂)). As before, using
the fact that (𝑦0, 𝑧0) = (𝑦1, 𝑧1) in 𝑂 × (0, 𝑇 ), we see that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦0
𝑡 − Δ𝑦0 + 𝑎𝑦0 + 𝑏𝑧0 = 0 in (𝐷2∖𝐷0) × (0, 𝑇 ),

𝑧0
𝑡 − Δ𝑧0 + 𝐴𝑦0 +𝐵𝑧0 = 0 in (𝐷2∖𝐷0) × (0, 𝑇 ),

𝑦0 = 𝑧0 = 0 on 𝜕(𝐷2∖𝐷0) × (0, 𝑇 ),

𝑦0(· , 0) = 𝑧0(· , 0) = 0 in 𝐷2∖𝐷0
.

(2.33)

Consequently, thanks to the uniqueness of solution to (2.33) and Proposition 3.2, we must
have (𝑦0, 𝑧0) = (0, 0) in (Ω∖𝐷0) × (0, 𝑇 ), which implies (𝜙, 𝜓) ≡ (0, 0), an absurd. This
proves that 𝐷1 ⊂ 𝐷0.

Similarly, we can also prove that 𝐷0 ⊂ 𝐷1 and, therefore, 𝐷0 = 𝐷1.

Remark 2.7 If, in (2.30), we impose nonzero initial conditions on 𝑦 and/or 𝑧, the situation

is much more complex. In particular, the previous argument does not work.

Remark 2.8 Notice that, in this time-dependent case, no assumption of the kind (2.1) is

needed.

Stability results like Theorems 2.2 and 2.7 can also be established in this framework. We
will not give the details for brevity, since the arguments are not very different and can easily
be completed by the reader.
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2.4.3 Additional comments on stability

In the context of the stability problem, we can adopt another (more geometrical) viewpoint.
To clarify the situation, let us consider the scalar systems⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦𝑖 = 0 in Ω∖𝐷𝑖,

𝑦 = 𝜙𝑖 on 𝜕Ω,

𝑦 = 0 on 𝜕𝐷𝑖,

where Ω, is as before, 𝐷0 and 𝐷1 are convex and have nonempty intersection and the following
regularity properties hold:

𝜙𝑖 ∈ 𝐶2(𝜕Ω), 𝛼̃𝑖 := 𝜕𝑦𝑖

𝜕𝑛
∈ 𝐶1(𝛾), 𝑦𝑖 ∈ 𝐶2(Ω ∖𝐷𝑖).

Let us assume that ⎧⎪⎪⎪⎨⎪⎪⎪⎩
‖𝜙𝑖‖𝐶0(𝜕Ω) ≥ 𝑚 > 0, ‖𝜙0 − 𝜙1‖𝐶2(𝜕Ω) ≤ 𝜖

‖𝛼̃0 − 𝛼̃1‖𝐶1(𝛾) ≤ 𝜖, ‖𝑦𝑖‖𝐶2(Ω∖𝐷𝑖) ≤ 𝑀.

Then, it can be proved that the Haussdorf distance 𝑑𝐻(𝐷0, 𝐷1) satisfies the estimate

𝑑𝐻(𝐷0, 𝐷1) ≤ 𝐶(︁
log(log 1

𝜖
)
)︁2 ,

where 𝐶 only depends on Ω, 𝑀 and 𝑚; see (BUCKGEIM, 1999).
The proof is based on the following well-posedness results, where 𝐶 is as above:

• Let us set again 𝐺 = Ω ∖𝐷0 ∪𝐷1 and let us assume that

|𝑦0(𝑥̂) − 𝑦1(𝑥̂)| = max
𝑥∈𝐺

|𝑦0(𝑥) − 𝑦1(𝑥)|.

Then, under the previous hypotheses, one has |𝑦0(𝑥̂) − 𝑦1(𝑥̂)| ≤ 𝐶
(︁
log 1

𝜖

)︁−1
.

• Assume that ‖𝑦0 − 𝑦1‖𝐶0(𝐺) ≤ 𝛿. Then 𝑑𝐻(𝐷0, 𝐷1) ≤ 𝐶
(︁
log 1

𝛿

)︁−2
.

Under additional properties for the 𝜙𝑖, 𝛼̃𝑖 and 𝑦𝑖, the previous estimates can be improved;
see (BUCKGEIM, 1999) for more details.

It would be interesting to extend this approach to the inverse problems (2.2), (2.3)
and (2.2), (2.28). At present, to our knowledge, whether or not this is possible is an open
question.



59

2.4.4 Reconstruction

As already said, reconstruction algorithms for the solution of problems of the kind (2.2)–
(2.3) have been considered in several papers. In all them, the main idea is to reduce to finite
dimension and reformulate the search of the unknown 𝐷 as a constrained (maybe numeri-
cally ill-conditionned) extremal problem. Then, usual gradient, quasi-Newton or even Newton
methods can be used to compute approximate solutions; see for instance (ABDA, 2009; ALVA-

REZ, 2005; ALVAREZ, 2008).
Let us present in this section a different approach that relies on the domain variation

techniques introduced in (SIMON, 1987).
The main idea is to describe how the observation depends on small perturbations of 𝐷 as

explicitly as possible. For such, let us introduce the Banach space

𝒲2,∞
* := {𝜇 ∈ 𝑊 2,∞(𝑅𝑁 ;𝑅𝑁);𝜇 ≡ 0 in Ω∖𝐷*}

and the open set

𝒲𝜖 := {𝜇 ∈ 𝒲2,∞
* ; ‖𝜇‖2,∞ < 𝜖 and 𝜇 ≡ 0 in Ω∖𝐷*}.

Moreover, for a fixed domain 𝐷 ∈ 𝒟 and for each 𝜇 ∈ 𝒲𝜖, let us set

𝐷 + 𝜇 :=
{︁
𝑧 ∈ 𝑅𝑁 , 𝑧 : 𝑥+ 𝜇(𝑥), 𝑥 ∈ 𝐷

}︁
and let us recall that, whenever 𝐷 ∈ 𝒟, we also have 𝐷 + 𝜇 ∈ 𝒟.

Now, let us assume that 𝑎, 𝑏, 𝐴, 𝐵 ∈ 𝐶1(Ω) satisfy (2.1), (𝜙, 𝜓) ∈ 𝐻3/2(𝜕Ω)2 and we
consider the unique solution (𝑦𝜇, 𝑧𝜇) ∈ 𝐻2(Ω∖(𝐷 + 𝜇)2 of the perturbed system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦𝜇 + 𝑎𝑦𝜇 + 𝑏𝑧𝜇 = 0 in Ω∖(𝐷 + 𝜇),

−Δ𝑧𝜇 + 𝐴𝑦𝜇 +𝐵𝑧𝜇 = 0 in Ω∖(𝐷 + 𝜇),

𝑦𝜇 = 𝜙, 𝑧𝜇 = 𝜓 on 𝜕Ω,

𝑦𝜇 = 0, 𝑧𝜇 = 0 on 𝜕(𝐷 + 𝜇).

Then, we have the following lemma whose proof is in Appendix B:

Lemma 2.3 Assume that 𝑎, 𝑏, 𝐴,𝐵 ∈ 𝐶1(Ω) satisfy (2.1). Then,

1. The mapping 𝜇 ↦→ (𝑦𝜇, 𝑧𝜇) ∘ (𝐼 + 𝜇) is differentiable at 𝜇 = 0 from 𝒲𝜖 into 𝐻2(Ω∖𝐷)2.

That is, there exists a linear mapping 𝜇 ∈ 𝒲2,∞
* ↦→ (𝑦̇𝜇, 𝑧̇𝜇) ∈ 𝐻2(Ω∖𝐷)2 such that

(𝑦𝜇, 𝑧𝜇) ∘ (𝐼 + 𝜇) = (𝑦, 𝑧) + (𝑦̇𝜇, 𝑧̇𝜇) + 𝑜(𝜇) (2.34)
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where (𝑦, 𝑧) ∈ 𝐻2(Ω∖𝐷)2 is the unique solution of (2.2) and

𝑜(𝜇)
‖𝜇‖2,∞

→ 0 when ‖𝜇‖2,∞ → 0. (2.35)

2. For each domain 𝒪 ⊂⊂ Ω∖𝐷*, the mapping 𝜇 ↦→ (𝑦𝜇, 𝑧𝜇)|𝒪, which is defined in 𝒲𝜖 and

takes values in 𝐻2(𝒪)2 is differentiable at 𝜇 = 0 from 𝒲𝜖 into 𝐻1(𝒪) and we stand by

(𝑦′
𝜇, 𝑧

′
𝜇) the local derivative in the direction of the vector 𝜇.

3. Furthermore, (𝑦′
𝜇, 𝑧

′
𝜇) is the unique solution of the linear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦′
𝜇 + 𝑎𝑦′

𝜇 + 𝑏𝑧′
𝜇 = 0 in Ω∖𝐷,

−Δ𝑧′
𝜇 + 𝐴𝑦′

𝜇 +𝐵𝑧′
𝜇 = 0 in Ω∖𝐷,

𝑦′
𝜇 = 0, 𝑧′

𝜇 = 0 on 𝜕Ω,

𝑦′
𝜇 = −(𝜇 · 𝑛)𝜕𝑦

𝜕𝑛
, 𝑧′

𝜇 = −(𝜇 · 𝑛)𝜕𝑧
𝜕𝑛

on 𝜕𝐷,

and the following holds:

(𝑦′
𝜇, 𝑧

′
𝜇) = (𝑦̇𝜇, 𝑧̇𝜇) + 𝜇 · ∇(𝑦, 𝑧). (2.36)

Then, using (2.34), (2.36) and the fact each 𝜇 ∈ 𝒲𝜖 is null in a neighbourhood of the
boundary 𝜕Ω, we get easily

(︃
𝜕𝑦𝜇

𝜕𝑛
,
𝜕𝑧𝜇

𝜕𝑛

)︃
−
(︃
𝜕𝑦

𝜕𝑛
,
𝜕𝑧

𝜕𝑛

)︃
=
(︃
𝜕𝑦′

𝜇

𝜕𝑛
,
𝜕𝑧′

𝜇

𝜕𝑛

)︃
+ 𝑜(𝜇) on 𝛾,

where 𝑜(𝜇) satisfies (2.35).
Moreover, for any (𝜂, 𝜃) ∈ 𝐶2(𝛾), one has∫︁
𝛾

[︃(︃
𝜕𝑦𝜇

𝜕𝑛
− 𝜕𝑦

𝜕𝑛

)︃
𝜂 +

(︃
𝜕𝑧𝜇

𝜕𝑛
− 𝜕𝑧

𝜕𝑛

)︃
𝜃

]︃
𝑑Γ = −

∫︁
𝜕𝐷

(𝜇 · 𝑛)
(︃
𝜕𝑦

𝜕𝑛

𝜕𝜂

𝜕𝑛
+ 𝜕𝑧

𝜕𝑛

𝜕𝜃

𝜕𝑛

)︃
𝑑Γ + 𝑜(𝜇),

(2.37)
where (𝜂, 𝜃) is the solution to the adjoint system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝜂 + 𝑎𝜂 + 𝐴𝜃 = 0 in Ω∖𝐷,

−Δ𝜃 + 𝑏𝜂 +𝐵𝜃 = 0 in Ω∖𝐷,

𝜂 = 𝜂1𝛾, 𝜃 = 𝜃1𝛾 on 𝜕Ω,

𝜂 = 0, 𝜃 = 0 on 𝜕𝐷.

(2.38)

Let us see how, starting from an already computed candidate 𝐷̃ to the solution of the
geometric inverse problem (2.2)–(2.3), we can compute a better candidate of the form 𝐷̃+𝜇.
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Let ℳ be a finite dimensional subspace of 𝐿∞(𝜕𝐷̃) and let {𝑓1, . . . , 𝑓𝑝} be a basis of ℳ.
We will take 𝜇 such that 𝜇 · 𝑛|𝜕𝐷̃ ∈ ℳ. Then, we can write

𝜇 · 𝑛|𝜕𝐷̃ =
𝑝∑︁

𝑖=1
𝜆𝑖𝑓𝑖

for some 𝜆𝑖 ∈ 𝑅 to be determined.
Now, let us introduce 𝑝 linearly independent functions (𝜂𝑖, 𝜃

𝑖) ∈ 𝐶2(𝛾). Using (2.37), we
obtain ∫︁

𝛾

[︃(︃
𝜕𝑦𝜇

𝜕𝑛
− 𝛼̃

)︃
𝜂𝑗1𝛾 +

(︃
𝜕𝑧𝜇

𝜕𝑛
− 𝛽

)︃
𝜃

𝑗1𝛾

]︃
𝑑Γ = −

𝑝∑︁
𝑖=1

𝐾𝑖𝑗𝜆𝑖 + 𝑜(𝜇),

where
𝐾𝑖𝑗 :=

∫︁
𝜕𝐷̃
𝑓𝑖

(︃
𝜕𝑦

𝜕𝑛

𝜕𝜂𝑗

𝜕𝑛
+ 𝜕𝑧

𝜕𝑛

𝜕𝜃𝑗

𝜕𝑛

)︃
𝑑Γ,

we have denoted by (𝜂𝑗, 𝜃𝑗) is the solution to (2.38) corresponding to (𝜂𝑗, 𝜃
𝑗) and (𝛼̃, 𝛽) is

the observation corresponding to (𝑦, 𝑧). We thus see that an appropriate strategy to compute
the coefficients 𝜆𝑖 is to solve, if possible, the finite-dimensional algebraic system

𝑝∑︁
𝑖=1

𝐾𝑖𝑗𝜆𝑖 = −
∫︁

𝛾

[︁
(𝛼− 𝛼̃)𝜂𝑗 + (𝛽 − 𝛽)𝜃𝑗

]︁
𝑑Γ, 1 ≤ 𝑗 ≤ 𝑝.

Remark 2.9 Let us devote some words to other reconstruction issues. A natural way to

compute a sequence of open sets 𝐷𝑘 such that, in some sense, 𝐷𝑘 converges to a solution to

the inverse problem is the following:

1. Reformulate (2.2)-(2.3) as an extremal (direct) problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Minimize 1

2

⃦⃦⃦⃦
⃦
(︃
𝜕𝑦

𝜕𝑛
,
𝜕𝑧

𝜕𝑛

)︃
− (𝛼, 𝛽)

⃦⃦⃦⃦
⃦

2

𝐻−1/2(𝛾)2

Subject to 𝑦 = 𝑦𝐷, 𝑧 = 𝑧𝐷, 𝐷 ∈ 𝒟𝑎𝑑.

(2.39)

Here, 𝒟𝑎𝑑 is an appropriated family of admissible domains and, for each 𝐷 ∈ 𝒟𝑎𝑑,

(𝑦𝐷, 𝑧𝐷) is the unique solution to (2.2). For practical purposes, it is of course interesting

to take, for instance, classes 𝒟𝑎𝑑 similar to those in Theorem 2.2.

2. Try to solve (2.39) by applying an iterative algorithm. For example, if the domains in

𝒟𝑎𝑑 are parametrized (as in Theorem 2.2), it makes sense to apply constrained descent

techniques. This approach has been chosen in a lot of references up to date in connection

with many different problems.
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3 ON THE UNIFORM CONTROLLABILITY OF THE INVISCID AND VISCOUS

BURGERS-ALPHA SYSTEMS

In this chapter we study the global controllability of families of non-viscous and viscous
convectively filtered Burgers equations (also known as inviscid and viscous Burgers-𝛼 systems)
in a finite interval by using boundary and space independent distributed controls. In these
equations, the usual convective velocity of the Burgers equation is replaced by a regularized
velocity, induced by a Helmholtz filter of characteristic wavelength 𝛼. First, we prove a global
(uniform with respect to 𝛼) exact controllability result for the family of non-viscous Burgers-𝛼
equations, using the return method and a fixed-point argument. Then, we establish the global
uniform exact controllability to constant states for the similar family of viscous equations. To
this purpose, we first prove a local exact controllability property and a global approximate
controllability property for smooth initial and target states.

3.1 INTRODUCTION

Let 𝐿 > 0 and 𝑇 > 0 be given. Let us present the notations used along this chapter.
The symbols 𝐶, ̂︀𝐶 and 𝐶𝑖, 𝑖 = 0, 1, . . . stand for positive constants (usually depending on 𝐿
and 𝑇 ). For any 𝑟 ∈ [1,+∞] and any given Banach space 𝑋, ‖ · ‖𝐿𝑟(𝑋) will denote the usual
norm in Lebesgue-Bochner space 𝐿𝑟(0, 𝑇 ;𝑋). In particular, the norms in 𝐿𝑟(0, 𝐿), 𝐿𝑟(0, 𝑇 )

and 𝐿𝑟((0, 𝑇 )× (0, 𝐿)) will be denoted by ‖ · ‖𝑟. In this chapter, we will consider the following
two families of controlled systems:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝑧𝑦𝑥 = 𝑝(𝑡) in [0, 𝑇 ] × [0, 𝐿],

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in [0, 𝑇 ] × [0, 𝐿],

𝑧(·, 0) = 𝑣𝑙, 𝑧(·, 𝐿) = 𝑣𝑟 in [0, 𝑇 ],

𝑦(·, 0) = 𝑣𝑙 in 𝐼𝑙,

𝑦(·, 𝐿) = 𝑣𝑟 in 𝐼𝑟,

𝑦(0, ·) = 𝑦0 in [0, 𝐿],

(3.1)



63

where 𝐼𝑙 = {𝑡 ∈ [0, 𝑇 ] : 𝑣𝑙(𝑡) > 0} and 𝐼𝑟 = {𝑡 ∈ [0, 𝑇 ] : 𝑣𝑟(𝑡) < 0}, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − 𝛾𝑦𝑥𝑥 + 𝑧𝑦𝑥 = 𝑝(𝑡) in (0, 𝑇 ) × (0, 𝐿),

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in (0, 𝑇 ) × (0, 𝐿),

𝑧(·, 0) = 𝑦(·, 0) = 𝑣𝑙 in (0, 𝑇 ),

𝑧(·, 𝐿) = 𝑦(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),

𝑦(0, ·) = 𝑦0 in (0, 𝐿).

(3.2)

These are respectively the so called non-viscous and viscous convectively filtered Burgers
equations (also known in the literature as the Burgers-𝛼 or the Leray-Burgers equations). The
pairs (𝑦, 𝑧) and the triplets (𝑝, 𝑣𝑙, 𝑣𝑟) stand for the corresponding states and controls. The
parameter 𝛾 > 0 is the fluid viscosity and 𝛼 is the characteristic wavelength of the Helmholtz
filter. For simplicity, throughout this chapter we will take 𝛾 = 1. All the results can be extended
without difficulty to the case where 𝛾 is an arbitrary positive number.

Obviously, (3.1) and (3.2) can be regarded as nonlinear regularizations of the inviscid and
viscous Burgers equations. These systems and some related variants have already been studied.
More precisely, (3.2) is the 𝑏 = 0 case of the 𝑏-family:⎧⎪⎪⎨⎪⎪⎩

𝑦𝑡 − 𝛾 𝑦𝑥𝑥 + 𝑧𝑦𝑥 + 𝑏 𝑧𝑥𝑦 = 𝑝(𝑡)

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦

or, equivalently

𝑧𝑡 − 𝛼2𝑧𝑥𝑥𝑡 − 𝛾 𝑧𝑥𝑥 + 𝛾 𝛼2𝑧𝑥𝑥𝑥𝑥 + (𝑏+ 1)𝑧𝑧𝑥 − 𝛼2𝑧𝑧𝑥𝑥𝑥 − 𝑏𝛼2𝑧𝑥𝑧𝑥𝑥 = 𝑝(𝑡).

This has been studied in (HOLM D.; STALEY, 2003) as a model for the 1D nonlinear wave
dynamics in fluids which includes the effects of convection and stretching. The dimensionless
parameter 𝑏 measures the relative strength of these effects. The variable 𝑧 can be viewed as
the fluid velocity in the 𝑥 direction (or equivalently the height of the free surface of the fluid
above a flat bottom).

When 𝑏 = 2, this equation is the so-called 1D viscous Camassa-Holm equation; it describes
the unidirectional surface waves at a free surface of shallow water under the influence of gravity,
see (CAMASSA R.; HOLM, 1993). When 𝑏 = 3, we are dealing with the viscous Degasperis-
Procesi equation which plays a similar role in water wave theory.



64

It is interesting to highlight that this regularization idea was first employed by Leray in (LE-

RAY, 1934) to prove the existence of a solution to the Navier-Stokes equations. This Leray-type
regularization has been used to capture shocks in the Burgers equation in (BHAT H. S.; FETE-

CAU, 2006; BHAT H. S.; FETECAU, 2008; BHAT H. S.; FETECAU, 2009b; NORGARD G.; MOHSENI,
2008; NORGARD G.; MOHSENI, 2009). It has also been employed in other contexts, such as the
analysis of compressible Euler equations, scalar conservations laws and aggregation equations,
see (BERTOZZI, 2012; BHAT, 2005; BHAT H. S.; FETECAU, 2009a; CRAIG K.; BERTOZZI, 2016;
SHEN, 2014). Finally, systems like (3.1) and (3.2) can also be viewed as simplified 1D versions
of the so called Leray-𝛼 system introduced some time ago to describe turbulent flows as an
alternative to the classical averaged Reynolds models, see (CHESKIDOV, 2005; FOIAS, 2004;
FOIAS, 2002).

Our two main results deal with the global uniform exact controllability (with respect to 𝛼)
for systems (3.1) and (3.2). More precisely, one has:

Theorem 3.1 Let 𝛼 > 0 and 𝑇 > 0 be given. The inviscid Burgers-𝛼 system (3.1) is globally

exactly controllable in 𝐶1. That is, for any given 𝑦0, 𝑦𝑇 ∈ 𝐶1([0, 𝐿]), there exist a time-

dependent control 𝑝𝛼 ∈ 𝐶0([0, 𝑇 ]), a couple of boundary controls (𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ) ∈ 𝐶1([0, 𝑇 ];𝑅2)

and an associated state (𝑦𝛼, 𝑧𝛼) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2) satisfying (3.1) and

𝑦𝛼(𝑇, ·) = 𝑦𝑇 in (0, 𝐿). (3.3)

Moreover, there exists a positive constant 𝐶 > 0 (depending on 𝑦0 and 𝑦𝑇 but independent

of 𝛼) such that

‖(𝑧𝛼, 𝑦𝛼)‖𝐶1([0,𝑇 ]×[0,𝐿];𝑅2) + ‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐶1([0,𝑇 ];𝑅2) ≤ 𝐶.

Theorem 3.2 Let 𝛼 > 0 and 𝑇 > 0 be given. The viscous Burgers-𝛼 system (3.2) is globally

exactly controllable in 𝐿∞ to constant trajectories. That is, for any given 𝑦0 ∈ 𝐿∞(0, 𝐿) and

𝑁 ∈ 𝑅, there exist controls 𝑝𝛼 ∈ 𝐶0([0, 𝑇 ]) and (𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ) ∈ 𝐻3/4(0, 𝑇 ;𝑅2) and associated

states (𝑦𝛼, 𝑧𝛼) ∈ 𝐿2(0, 𝑇 ;𝐻1(0, 𝐿;𝑅2)) ∩ 𝐿∞(0, 𝑇 ;𝐿∞(0, 𝐿;𝑅2)) satisfying (3.2),

𝑦𝛼(𝑇, ·) = 𝑁 in (0, 𝐿)

and the following estimates

‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐻3/4([0,𝑇 ];𝑅2) ≤ 𝐶,
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where 𝐶 is a positive constant (depending on 𝑦0 and 𝑁 but independent of 𝛼). Moreover,

if 𝑦0 ∈ 𝐻1
0 (0, 𝐿) then the same conclusion holds with (𝑦𝛼, 𝑧𝛼) ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿;𝑅2)) ∩

𝐻1(0, 𝑇 ;𝐿2(0, 𝐿;𝑅2)).

We will see in the proofs of the above results that the distributed control 𝑝𝛼 is independent
of 𝛼, it only depends on 𝑇 , 𝐿, the initial condition and the target state. In this chapter, we
are going to deal with situations that lead to new difficulties compared to previous works on
nonlinear parabolic equations. Let us discuss these differences:

• Nonlocal nonlinearities. In the (3.1) and (3.2), the usual convective term is replaced and
a filtered (averaged) velocity appears. As a consequence, the arguments in (CHAPOULY,
2009) must be modified, as shown below.

• Uniform controllability. Performing careful estimates of the controls, global uniform con-
trollability results are obtained. This way, we are able to generalize some previous control
results to the context of nonlinear parabolic equations with nonlocal nonlinearities, see
(CHAPOULY, 2009; MARBACH, 2014).

For completeness, let us mention some previous works on the well-posedness and the
control of our main systems and other similar models. Concerning well-posedness, global well-
posedness for the inviscid Bugers-𝛼 system is established in (ESCHER J.; YIN, 2009) in the case
of homogeneous boundary conditions and local well-posedness can be found in (COCLITE, 2009;
PERROLLAZ, 2010) for non-homogenous boundary conditions. Regarding the viscous Burgers-
𝛼 system we prove a global well-posedness below in the Section 3.3. On the other hand,
there are many important works dealing with the controllability properties of parabolic equa-
tions and systems, see (FERNÁNDEZ-CARA E.; ZUAZUA, 2000b; FURSIKOV A. V.; IMANUVILOV,
1996) and inviscid and viscous Burgers equations, see (CHAPOULY, 2009; FERNÁNDEZ-CARA

E.; GUERRERO, 2007; FURSIKOV A. V.; IMANUVILOV, 1996; GLASS O; GUERRERO, 2007; GUER-

RERO S.; IMANUVILOV, 2007; HORSIN, 1998; MARBACH, 2014; PERROLLAZ, 2012).
For Burgers-𝛼 sytems, the uniform local null controllability for the viscous system (3.2)

with distributed and boundary controls was studied in (ARARUNA, 2013); later, the results
have been extended to any equation of the 𝑏-family in (FERNÁNDEZ-CARA E.; SOUSA, 2019). In
higher dimensions, uniform local null control results for the Leray-𝛼 system have been obtained
in (ARARUNA, 2014).

The rest of this chapter is organized as follows. In Section 3.2, we prove some results
concerning the existence, uniqueness and regularity of the solution to the viscous and invis-
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cid Burgers-𝛼 systems. Sections 3.4 and 3.5 deal with the proofs of Theorems 3.1 and 3.2,
respectively. Finally, in Section 4.5, we present some additional comments and questions.

3.2 PRELIMINARIES

3.2.1 Notations and Classical Results

Let us denote by 𝐶0
𝑏 (𝑅) the Banach space of bounded continuous functions on 𝑅, let

𝐶0,1
𝑏 (𝑅) be the Banach space of bounded Lipschitz-continuous functions on𝑅 and let 𝐶0,1

𝑥 ([0, 𝑇 ]×

𝑅) be the space of functions 𝑓 : [0, 𝑇 ] × 𝑅 ↦→ 𝑅 that are continuous in 𝑥 and 𝑡 and globally
Lipschitz-continuous in space, with Lipschitz constant independent of 𝑡.

In the sequel, for any function 𝑓 ∈ 𝐶0([0, 𝑇 ] × 𝑅), the associated flux function Φ =

Φ(𝑠; 𝑡, 𝑥) is defined as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜕Φ
𝜕𝑡

(𝑠; 𝑡, 𝑥) = 𝑓(𝑡,Φ(𝑠; 𝑡, 𝑥)),

Φ(𝑠; 𝑠, 𝑥) = 𝑥.

(3.4)

The mapping Φ contains all the information on the trajectories of the particles transported by
the velocity 𝑓 . Furthermore, we have the following existence, uniqueness and regularity result:

Proposition 3.1 (Theorem 10.19, (DOERING C.I.; LOPES, 2014)) Assume that 𝑓 ∈ 𝐶0,1
𝑥 ([0, 𝑇 ]×

𝑅) and 𝜕𝑓
𝜕𝑥

belongs to 𝐶0([0, 𝑇 ] × 𝑅). Then, there exists a unique flux associated to 𝑓 , that

is, a unique function Φ : [0, 𝑇 ] × [0, 𝑇 ] × 𝑅 ↦→ 𝑅 satisfying (3.4) for all (𝑠, 𝑥) ∈ [0, 𝑇 ] × 𝑅.

Moreover, Φ ∈ 𝐶1([0, 𝑇 ] × [0, 𝑇 ] ×𝑅).

For results like the Proposition 3.1 above, the reader can consult also the references (HALE,
1980; HARTMAN, 1964). Under the assumptions of Proposition 3.1, it is well known that, for
each 𝑠, 𝑡 in [0, 𝑇 ], the mapping Φ(𝑠; 𝑡, ·) : 𝑅 ↦→ 𝑅 is a diffeomorphism, with

Φ(𝑠; 𝑡, ·)−1 = Φ(𝑡; 𝑠, ·).

Let us now recall a classical result related the solution of a transport equation. To this
purpose, let us first note that, for any given Banach space 𝑋 with norm ‖·‖𝑋 and any function
𝑢 ∈ 𝐶1([0, 𝑇 ];𝑋), the following inequality holds:

𝑑

𝑑𝑡+
‖𝑢(𝑡)‖𝑋 ≤ ‖𝑢𝑡(𝑡)‖𝑋 in (0, 𝑇 ), (3.5)

where 𝑑/𝑑𝑡+ represents the right derivative.
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Proposition 3.2 Let us consider a velocity 𝑣 ∈ 𝐶0([0, 𝑇 ];𝐶0,1
𝑏 (𝑅)) ∩𝐶0,1

𝑥 ([0, 𝑇 ] ×𝑅) and a

source 𝑔 ∈ 𝐶0([0, 𝑇 ];𝐶0
𝑏 (𝑅)). Then, any solution 𝑦 ∈ 𝐶0([0, 𝑇 ];𝐶1

𝑏 (𝑅)) ∩ 𝐶1([0, 𝑇 ];𝐶0
𝑏 (𝑅))

to the equation

𝑦𝑡 + 𝑣𝑦𝑥 = 𝑔 in (0, 𝑇 ) ×𝑅 (3.6)

satisfies the following inequality

𝑑

𝑑𝑡+
‖𝑦(𝑡, ·)‖𝐶0

𝑏
(𝑅) ≤ ‖𝑔(𝑡, ·)‖𝐶0

𝑏
(𝑅) in (0, 𝑇 ).

Let Φ be the flow associated to 𝑣. For any (𝑠, 𝑡, 𝑥) ∈ [0, 𝑇 ] × [0, 𝑇 ] × 𝑅, we have by (3.6)
that

𝑑

𝑑𝑡
𝑦(𝑡,Φ(𝑠; 𝑡, 𝑥)) = 𝑔(𝑡,Φ(𝑠; 𝑡, 𝑥)).

Using this identity and the fact that Φ(𝑠; 𝑡, ·) is a diffeomorphism, we get⃦⃦⃦⃦
⃦ 𝑑𝑑𝑡𝑦(𝑡, ·)

⃦⃦⃦⃦
⃦

𝐶0
𝑏

(𝑅)
≤ ‖𝑔(𝑡, ·)‖𝐶0

𝑏
(𝑅).

Now, the result follows easily from this and from (3.5).
The last result of this section is an immediate consequence of the Banach Fixed-Point

Theorem:

Theorem 3.3 Let (𝐸, ‖·‖𝐸) and (𝐹, ‖·‖𝐹 ) be Banach spaces with 𝐹 continuously embedded

in 𝐸. Let 𝐵 be a subset of 𝐹 and let 𝐺 : 𝐵 ↦→ 𝐵 be a mapping such that

‖𝐺(𝑢) −𝐺(𝑣)‖𝐸 ≤ 𝛾‖𝑢− 𝑣‖𝐸 ∀ 𝑢, 𝑣 ∈ 𝐵, for some 𝛾 ∈ (0, 1).

Let us denote by ̃︀𝐵 the closure of 𝐵 for the norm ‖ · ‖𝐸. Then, 𝐺 can be uniquely extended

to a continuous mapping ̃︀𝐺 : ̃︀𝐵 ↦→ ̃︀𝐵 that possesses a unique fixed-point in ̃︀𝐵.

3.3 WELL-POSEDNESS OF THE VISCOUS BURGERS-ALPHA SYSTEM

Let us introduce the Hilbert space 𝐸 := 𝐻3/4(0, 𝑇 )×𝐻3/4(0, 𝑇 ). It is not difficult to check
that the trace operator Γ : 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐿2(0, 𝐿)) ↦→ 𝐸, defined by Γ(𝜉) :=

(𝜉(·, 0), 𝜉(·, 𝐿)) is surjective, see (LIONS J.-L.; MAGENES, 1972, p. 18). Furthermore, there
exists a linear continuous mapping 𝑆 : 𝐸 ↦→ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿))∩𝐻1(0, 𝑇 ;𝐿2(0, 𝐿)) such that
Γ∘𝑆 = 𝐼𝐸. Thus, for each (𝑣𝑙, 𝑣𝑟) ∈ 𝐸 we can get 𝜉 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿))∩𝐻1(0, 𝑇 ;𝐿2(0, 𝐿))

such that
‖𝜉‖𝐿2(𝐻2)∩𝐻1(𝐿2) ≤ 𝐶(‖𝑣𝑙‖𝐻3/4 + ‖𝑣𝑟‖𝐻3/4),
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for some 𝐶 > 0.
The following result concerns global existence and uniqueness for viscous Burgers-𝛼 sys-

tems:

Proposition 3.3 Let 𝛼 > 0, 𝑓 ∈ 𝐿∞((0, 𝑇 ) × (0, 𝐿)), 𝑦0 ∈ 𝐻1(0, 𝐿) and 𝑣𝑙, 𝑣𝑟 ∈ 𝐻3/4(0, 𝑇 )

be given. Assume that the following compatibility relations hold:

𝑣𝑙(0) = 𝑦0(0) and 𝑣𝑟(0) = 𝑦0(𝐿).

Then, there exists a unique solution (𝑦𝛼, 𝑧𝛼) to the Burgers-𝛼 system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝛼
𝑡 − 𝑦𝛼

𝑥𝑥 + 𝑧𝛼𝑦𝛼
𝑥 = 𝑓 in (0, 𝑇 ) × (0, 𝐿),

𝑧𝛼 − 𝛼2𝑧𝛼
𝑥𝑥 = 𝑦𝛼 in (0, 𝑇 ) × (0, 𝐿),

𝑧𝛼(·, 0) = 𝑦𝛼(·, 0) = 𝑣𝑙 in (0, 𝑇 ),

𝑧𝛼(·, 𝐿) = 𝑦𝛼(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),

𝑦𝛼(0, ·) = 𝑦0 in (0, 𝐿).

(3.7)

with ⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦𝛼 ∈ 𝐻1(0, 𝑇 ;𝐿2(0, 𝐿)) ∩ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿)) ∩ 𝐶0([0, 𝑇 ];𝐻1(0, 𝐿)),

𝑧𝛼 ∈ 𝐻1(0, 𝑇 ;𝐿2(0, 𝐿)) ∩ 𝐿2(0, 𝑇 ;𝐻4(0, 𝐿)) ∩ 𝐶0([0, 𝑇 ];𝐻3(0, 𝐿)).
(3.8)

Let us set 𝑀𝑇 := ‖𝑦0‖∞ + ‖𝑣𝑙‖∞ + ‖𝑣𝑟‖∞ + 𝑇‖𝑓‖∞. Then, the following estimates holds:

‖𝑦𝛼‖∞ ≤ 𝑀𝑇 , ‖𝑧𝛼‖∞ ≤ 𝑀𝑇 ,

‖𝑦𝛼‖𝐻1(𝐿2)∩𝐿2(𝐻2) + ‖𝑦𝛼‖𝐿∞(𝐻1) ≤ 𝐶𝑒𝐶𝑀2
𝑇 (‖𝑓‖2 + ‖𝑦0‖𝐻1 + ‖𝑣𝑙‖𝐻3/4 + ‖𝑣𝑟‖𝐻3/4)

‖𝑧𝛼‖2 + 𝛼‖𝑧𝛼
𝑥 ‖2 + 𝛼2‖𝑧𝛼

𝑥𝑥‖2 ≤ 𝐶𝑒𝐶𝑀2
𝑇

[︁
‖𝑓‖2 + ‖𝑦0‖𝐻1 + (1 + 𝛼2)‖(𝑣𝑙, 𝑣𝑟)‖𝐻3/4×𝐻3/4

]︁
.

(3.9)

The proof of existence can be reduced to find a fixed-point of an appropriate mapping Λ𝛼.
Thus, note first that there exists 𝜉 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐿2(0, 𝐿)) with

𝜉(·, 0) = 𝑣𝑙 and 𝜉(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ).

Accordingly, for each 𝑦 ∈ 𝐿∞(0, 𝑇 ;𝐿∞(0, 𝐿)) there exists exactly one 𝑧 ∈ 𝐿∞(0, 𝑇 ;𝐻2(0, 𝐿))

with ⎧⎪⎪⎨⎪⎪⎩
𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in (0, 𝑇 ) × (0, 𝐿),

𝑧(·, 0) = 𝑣𝑙, 𝑧(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),
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satisfying:

‖𝑧‖2
2 + 2𝛼2‖𝑧𝑥‖2

2 + 𝛼4‖𝑧𝑥𝑥‖2
2 ≤ 𝐶 (‖𝑦‖2

2 + ‖𝜉‖2
2 + 𝛼2‖𝜉𝑥‖2

2 + 𝛼4‖𝜉𝑥𝑥‖2
2) ,

‖𝑧‖𝐿∞(𝐿∞) ≤ ‖𝑦‖𝐿∞(𝐿∞) + ‖𝑣𝑙‖∞ + ‖𝑣𝑟‖∞.

With this 𝑧, by applying (for instance) the Faedo-Galerkin method, we can easily prove the
existence of a 𝑦 to the linear parabolic equation⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − 𝑦𝑥𝑥 + 𝑧𝑦𝑥 = 𝑓 in (0, 𝑇 ) × (0, 𝐿),

𝑦(·, 0) = 𝑣𝑙, 𝑦(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),

𝑦(0, ·) = 𝑦0 in (0, 𝐿)

(3.10)

that satisfies

𝑦 ∈ 𝐻1(0, 𝑇 ;𝐿2(0, 𝐿)) ∩ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿)) ∩ 𝐶0([0, 𝑇 ];𝐻1(0, 𝐿))

and

‖𝑦𝑡‖𝐿2(𝐿2) +‖𝑦‖𝐿2(𝐻2) +‖𝑦‖𝐿∞(𝐻1) ≤ 𝐶
(︁
‖𝑦0‖𝐻1 + ‖𝑓‖𝐿2(𝐿2) + ‖𝑣𝑙‖𝐻3/4 + ‖𝑣𝑟‖𝐻3/4

)︁
𝑒𝐶‖𝑧‖2

∞ .

(3.11)
Arguing as in the proof of (ARARUNA, 2013, Lemma 1), we can deduce that the solu-

tion to (3.10) belongs to the space 𝐶0([0, 𝑇 ];𝐻1(0, 𝐿)) and, in particular, 𝑦𝐿∞(𝐿∞) ≤ 𝑀𝑇 .
Accordingly, we can introduce the bounded closed convex set

𝐾 := {𝑦 ∈ 𝐿∞(0, 𝑇 ;𝐿∞(0, 𝐿)) : ‖𝑦‖𝐿∞(𝐿∞) ≤ 𝑀𝑇 }

and the mapping Λ𝛼 : 𝐾 ↦→ 𝐾, with Λ𝛼(𝑦) = 𝑦. Obviously, Λ𝛼 is well-defined and continuous
and, moreover, we can see from the estimates in (3.11) that 𝐺 := Λ𝛼(𝐾) is bounded in
𝐿∞(0, 𝑇 ;𝐻1(0, 𝐿)) and 𝐺𝑡 := {𝑢𝑡;𝑢 ∈ 𝐺} is bounded in 𝐿2(0, 𝑇 ;𝐿2(0, 𝐿)). From classical
results of the Aubin-Lions kind (see (SIMON, 1980)), we deduce that 𝐺 is relatively compact
in 𝐿∞(0, 𝑇 ;𝐿∞(0, 𝐿)). Therefore, by Schauder’s fixed point Theorem, Λ𝛼 has a fixed point in
𝐾, which obviously implies the existence of a solution to (3.7).

We prove now that the solution is unique. Let (𝑦𝛼, 𝑧𝛼) and (̂︀𝑦𝛼, ̂︀𝑧𝛼) be two solutions to
(3.7) and let us introduce 𝑢 := 𝑦𝛼 − ̂︀𝑦𝛼 and 𝑣 := 𝑧𝛼 − ̂︀𝑧𝛼. Then,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝑢𝑥𝑥 + 𝑧𝛼𝑢𝑥 = −𝑣̂︀𝑦𝛼
𝑥 in (0, 𝑇 ) × (0, 𝐿),

𝑣 − 𝛼2𝑣𝑥𝑥 = 𝑢 in (0, 𝑇 ) × (0, 𝐿),

𝑢(·, 0) = 𝑢(·, 𝐿) = 𝑣(·, 0) = 𝑣(·, 𝐿) = 0 in (0, 𝑇 ),

𝑢(0, ·) = 0 in (0, 𝐿).

(3.12)
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Using the fact that ̂︀𝑦𝛼 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿)) →˓ 𝐿2(0, 𝑇 ;𝐶1[0, 𝐿]) and multiplying the first
equation of the system above by 𝑢, we get:

1
2
𝑑

𝑑𝑡
‖𝑢‖2

2 + ‖𝑢𝑥‖2
2 ≤ ‖𝑧𝛼‖∞‖𝑢𝑥‖2‖𝑢‖2 + ‖̂︀𝑦𝛼

𝑥 ‖∞‖𝑣‖2‖𝑢‖2

≤ 1
2‖𝑢𝑥‖2

2 + ‖𝑧𝛼‖2
∞

2 ‖𝑢‖2
2 + ‖̂︀𝑦𝛼

𝑥 ‖∞‖𝑢‖2
2.

Therefore,
𝑑

𝑑𝑡
‖𝑢‖2

2 + ‖𝑢𝑥‖2
2 ≤

(︁
‖𝑧𝛼‖2

∞ + 2‖̂︀𝑦𝛼
𝑥 ‖∞

)︁
‖𝑢‖2

2.

Since 𝑢(0, ·) = 0, Gronwall’s Lemma implies 𝑢 ≡ 0 and, consequently, 𝑣 ≡ 0.
Finally, let us check that 𝑧𝛼 satisfies the regularity properties in (3.8). To get this, let us

introduce the function given by

ℎ(𝑡, 𝑥) := 𝑣𝑙(𝑡)(𝐿− 𝑥) + 𝑥 𝑣𝑟(𝑡)
𝐿

.

Then, we obtain from (3.7) that 𝑧𝛼 = 𝑤𝛼 + ℎ, where 𝑤𝛼 solves⎧⎪⎪⎨⎪⎪⎩
𝑤𝛼 − 𝛼2𝑤𝛼

𝑥𝑥 = 𝑦𝛼 − ℎ in (0, 𝑇 ) × (0, 𝐿),

𝑤𝛼(·, 0) = 𝑤𝛼(·, 0) = 0 in (0, 𝑇 ).

Consequently, 𝑤𝛼 ∈ 𝐿2(0, 𝑇 ;𝐻4(0, 𝐿) ∩ 𝐻1
0 (0, 𝐿)) ∩ 𝐶0([0, 𝑇 ];𝐻3(0, 𝐿) ∩ 𝐻1

0 (0, 𝐿)) and
the estimates are uniform, with respect to 𝛼, in the space 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿) ∩ 𝐻1

0 (0, 𝐿)) ∩

𝐶0([0, 𝑇 ];𝐻1
0 (0, 𝐿)).

Now, let us present a result concerning global existence and uniqueness of a (weak) solution
with initial conditions in 𝐿∞(0, 𝐿):

Proposition 3.4 Let 𝛼 > 0, 𝑓 ∈ 𝐿∞((0, 𝑇 )× (0, 𝐿)), 𝑦0 ∈ 𝐿∞(0, 𝐿) and 𝑣𝑙, 𝑣𝑟 ∈ 𝐻3/4(0, 𝑇 )

be given. Then, there exists a unique solution (𝑦𝛼, 𝑧𝛼) to the Burgers-𝛼 system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝛼
𝑡 − 𝑦𝛼

𝑥𝑥 + 𝑧𝛼𝑦𝛼
𝑥 = 𝑓 in (0, 𝑇 ) × (0, 𝐿),

𝑧𝛼 − 𝛼2𝑧𝛼
𝑥𝑥 = 𝑦𝛼 in (0, 𝑇 ) × (0, 𝐿),

𝑧𝛼(·, 0) = 𝑦𝛼(·, 0) = 𝑣𝑙 in (0, 𝑇 ),

𝑧𝛼(·, 𝐿) = 𝑦𝛼(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),

𝑦𝛼(0, ·) = 𝑦0 in (0, 𝐿)

(3.13)
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with⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑦𝛼 ∈ 𝐻1(0, 𝑇 ;𝐻−1(0, 𝐿)) ∩ 𝐿2(0, 𝑇 ;𝐻1

0 (0, 𝐿)) ∩ 𝐶0([0, 𝑇 ];𝐿2(0, 𝐿)) ∩ 𝐿∞(0, 𝑇 ;𝐿∞(0, 𝐿)),

𝑧𝛼 ∈ 𝐻1(0, 𝑇 ;𝐻−1(0, 𝐿)) ∩ 𝐿2(0, 𝑇 ;𝐻3(0, 𝐿)) ∩ 𝐶0([0, 𝑇 ];𝐻2(0, 𝐿)).
(3.14)

Let us set 𝑀𝑇 := ‖𝑦0‖∞ + ‖𝑣𝑙‖∞ + ‖𝑣𝑟‖∞ + 𝑇‖𝑓‖∞. Then, the following estimates holds:

‖𝑦𝛼‖∞ ≤ 𝑀𝑇 , ‖𝑧𝛼‖∞ ≤ 𝑀𝑇 ,

‖𝑦𝛼‖𝐻1(𝐻−1)∩𝐿2(𝐻1) + ‖𝑦𝛼‖𝐿∞(𝐿2) ≤ 𝐶𝑒𝐶𝑀2
𝑇 (‖𝑓‖2 + ‖𝑦0‖2 + ‖𝑣𝑙‖𝐻3/4 + ‖𝑣𝑟‖𝐻3/4) ,

‖𝑧𝛼‖2 + 𝛼‖𝑧𝛼
𝑥 ‖2 + 𝛼2‖𝑧𝛼

𝑥𝑥‖2 ≤ 𝐶𝑒𝐶𝑀2
𝑇

[︁
‖𝑓‖2 + ‖𝑦0‖2+ (1 + 𝛼2)(‖(𝑣𝑙, 𝑣𝑟)‖𝐻3/4×𝐻3/4)

]︁
.

(3.15)

For any 𝑦 ∈ 𝐿2(0, 𝑇 ;𝐿∞(0, 𝐿)), there exists a unique solution to the elliptic problem⎧⎪⎪⎨⎪⎪⎩
𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in (0, 𝑇 ) × (0, 𝐿),

𝑧(·, 0) = 𝑣𝑙, 𝑧(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),

furthermore satisfying

‖𝑧‖2
2 + 2𝛼2‖𝑧𝑥‖2

2 + 𝛼4‖𝑧𝑥𝑥‖2
2 ≤ 𝐶 (‖𝑦‖2

2 + ‖𝜉‖2
2 + 𝛼2‖𝜉𝑥‖2

2 + 𝛼4‖𝜉𝑥𝑥‖2
2) ,

‖𝑧‖𝐿2(𝐿∞) ≤ ‖𝑦‖𝐿2(𝐿∞) + ‖𝑣𝑙‖2 + ‖𝑣𝑟‖2.

With this 𝑧, we solve the linear problem⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − 𝑦𝑥𝑥 + 𝑧𝑦𝑥 = 𝑓 in (0, 𝑇 ) × (0, 𝐿),

𝑦(·, 0) = 𝑣𝑙, 𝑦(·, 𝐿) = 𝑣𝑟 in (0, 𝑇 ),

𝑦(0, ·) = 𝑦0 in (0, 𝐿)

(3.16)

and we find a solution 𝑦 that satisfies

‖𝑦𝑡‖𝐿2(𝐻−1) + ‖𝑦‖𝐿2(𝐻1
0 ) + ‖𝑦‖𝐿∞(𝐿2) ≤ 𝐶 (‖𝑦0‖2 + ‖𝑓‖2 + ‖𝑣𝑙‖𝐻3/4 + ‖𝑣𝑟‖𝐻3/4) 𝑒𝐶‖𝑧‖2

𝐿2(𝐿∞) .

Again, as in the proof of (ARARUNA, 2013, Lemma 1), we can deduce that the solution to
(3.16) satisfies

‖𝑦‖𝐿2(𝐿∞) ≤ 𝑇 1/2𝑀𝑇 .

Let us introduce the set

𝐾 := {𝑦 ∈ 𝐿2(0, 𝑇 ;𝐿∞(0, 𝐿)) : ‖𝑦‖𝐿2(𝐿∞) ≤ 𝑇 1/2𝑀𝑇 }
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and the mapping Λ𝛼 : 𝐾 ↦→ 𝐾 with Λ𝛼(𝑦) = 𝑦. Then, arguing as in the proof of Proposi-
tion 3.3, it is not difficult to prove that Λ𝛼 possesses a fixed-point in 𝐾.

Finally, in order to prove uniqueness, we consider to solutions 𝑢 := 𝑦𝛼−̂︀𝑦𝛼 and 𝑣 := 𝑧𝛼−̂︀𝑧𝛼

and we get (3.12). Then, multiplying the first equation of (3.12) by 𝑢, we easily get the
differential inequality

𝑑

𝑑𝑡
‖𝑢(𝑡, ·)‖2

2 + ‖𝑢𝑥(𝑡, ·)‖2
2 ≤

(︃
‖𝑧𝛼(𝑡, ·)‖2

∞ + 2𝐶‖̂︀𝑦𝛼
𝑥 (𝑡, ·)‖2

𝛼

)︃
‖𝑢(𝑡, ·)‖2

2.

Since 𝑢(0, ·) ≡ 0, Gronwall’s Lemma implies 𝑢 ≡ 0 and, consequently, 𝑣 ≡ 0.
Let (𝑦𝛼, 𝑧𝛼) be the solution to (3.13). From (3.13) and the fact that 𝑦 ∈ 𝐿∞(0, 𝑇 ;𝐿∞(0, 𝐿)),

the maximum principle implies that

‖𝑧𝛼‖𝐿∞(𝐿∞) ≤ ‖𝑦𝛼‖𝐿∞(𝐿∞) ≤ 𝑀𝑇 .

This ends the proof.

3.4 CONTROLLABILITY OF THE INVISCID BURGERS-ALPHA SYSTEM

In this section we present a proof of the global exact controllability property of the inviscid
Burgers-𝛼 system. We split the proof in two parts: (𝑖) a local null controllability result; (𝑖𝑖) an
argument based on a time scale-invariance and reversibility in time that leads to the desired
global result.

3.4.1 Local null controllability

We have the following result:

Proposition 3.5 Let 𝑇, 𝐿, 𝛼 > 0 be given. Then, there exist 𝛿 > 0 and 𝐶 > 0 (both

independent of 𝛼) such that the following property holds: for each 𝑦0 ∈ 𝐶1([0, 𝐿]) with

‖𝑦0‖𝐶1([0,𝐿]) ≤ 𝛿, there exist 𝑝𝛼 ∈ 𝐶0([0, 𝑇 ]) with 𝑝𝛼(𝑇 ) = 0, 𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ∈ 𝐶1([0, 𝑇 ]) and

associated states (𝑦𝛼, 𝑧𝛼) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2) satisfying (3.1),

𝑦𝛼(𝑇, ·) = 𝑧𝛼(𝑇, ·) = 0 in (0, 𝐿)

and

‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐶1([0,𝑇 ];𝑅2) ≤ 𝐶 ∀𝛼 > 0.
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The proof is obtained applying the return method, see (CHAPOULY, 2009; CORON, 1992;
CORON, 1996; GLASS, 2000). It relies on a linearization process in combination with a fixed-
point argument: (𝑖) first, we need to find a “good"trajectory (a particular solution for the
nonlinear system) steering 0 to 0 such that the linearization around it is controllable; (𝑖𝑖)

then, we must recover (for instance by a fixed-point argument) the exact controllability result,
at least locally, for the nonlinear system.

In our case, it is not difficult to verify that the linearization around zero is not controllable.
Accordingly, we build an appropriate nontrivial trajectory connecting (0, 0) to (0, 0).

To this purpose, let us introduce the set

Λ𝐿,𝑇,𝑘 :=
{︁
𝜆 ∈ 𝐶𝑘([0, 𝑇 ]; [0,∞)) : ‖𝜆‖𝐿1(0,𝑇 ) > 𝐿

}︁
.

Let us consider the couple (̂︀𝑦(𝑥, 𝑡), ̂︀𝑧(𝑥, 𝑡)) := (𝜆(𝑡), 𝜆(𝑡)) and the triplet (̂︀𝑝(𝑡), ̂︀𝑣𝑙(𝑡), ̂︀𝑣𝑟(𝑡)) :=

(𝜆′(𝑡), 𝜆(𝑡), 𝜆(𝑡)), with 𝜆 ∈ Λ𝐿,𝑇,1 and supp 𝜆 ⊂ (0, 𝑇 ). Note that (̂︀𝑦, ̂︀𝑧) is a particular solu-
tion to (3.1), associated to the control (̂︀𝑝, ̂︀𝑣𝑙, ̂︀𝑣𝑟). We have the following general controllability
result:

Proposition 3.6 Let 𝑇, 𝐿 > 0 be given and assume that 𝜆 ∈ Λ𝐿,𝑇,0. Then, for any 𝛼 > 0

and any 𝑦0 ∈ 𝐶1([0, 𝐿]), there exists (𝑦, 𝑧) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + 𝜆(𝑡)𝑦𝑥 = 0 in (0, 𝑇 ) × (0, 𝐿),

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in (0, 𝑇 ) × (0, 𝐿),

𝑧(·, 0) = 𝑦(·, 0), 𝑧(·, 𝐿) = 𝑦(·, 𝐿) in (0, 𝑇 ),

𝑦(0, ·) = 𝑦0 in (0, 𝐿),

𝑦(𝑇, ·) = 0 in (0, 𝐿).

(3.17)

For the proof, it suffices to use (CHAPOULY, 2009, Proposition 8) to find 𝑦 ∈ 𝐶1([0, 𝑇 ] ×

[0, 𝐿]) satisfying (3.17)1,(3.17)4 and (3.17)5 and then solve the elliptic problem (3.17)2-(3.17)3

to construct 𝑧 ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿]).
Thanks to Proposition 3.6, one may expect that the null controllability for the nonlinear

system (3.1) holds. Indeed, we have the following result from which Proposition 3.5 is an
immediate consequence:

Proposition 3.7 Let 𝑇, 𝐿 > 0 be given and assume that 𝜆 ∈ Λ𝐿,𝑇,0. Then, there exist 𝛿 > 0

and 𝐶 > 0 (both independent of 𝛼) such that, for any 𝑦0 ∈ 𝐶1([0, 𝐿]) with ‖𝑦0‖𝐶1([0,𝐿]) ≤
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𝛿 and any 𝛼 > 0, there exist (𝑣𝑙, 𝑣𝑟) ∈ 𝐶1([0, 𝑇 ];𝑅2) and an associated state (𝑦, 𝑧) ∈

𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2) satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + (𝜆(𝑡) + 𝑧)𝑦𝑥 = 0 in (0, 𝑇 ) × (0, 𝐿),

𝑧 − 𝛼2𝑧𝑥𝑥 = 𝑦 in (0, 𝑇 ) × (0, 𝐿),

𝑧(·, 0) = 𝑣𝑙, 𝑧(·, 𝐿) = 𝑣𝑟 in [0, 𝑇 ],

𝑦(·, 0) = 𝑣𝑙 in 𝐼𝑙,

𝑦(·, 𝐿) = 𝑣𝑟 in 𝐼𝑟,

𝑦(0, ·) = 𝑦0 in (0, 𝐿),

𝑦(𝑇, ·) = 0 in (0, 𝐿)

(3.18)

and

‖𝑦‖𝐶1([0,𝑇 ]×[0,𝐿]) ≤ 𝐶‖𝑦0‖𝐶1([0,𝐿]) ∀𝛼 > 0.

We will reformulate the null controllability problem as a fixed-point equation. To do this,
we will first introduce some auxiliar functions and establish some helpful results. Thus, to any
given ℎ ∈ 𝐶0([0, 𝑇 ];𝐶0([0, 𝐿]))∩𝐿∞ (0, 𝑇 ;𝐶0,1([0, 𝐿])) we can associated the unique solution
to the time-dependent problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑧 − 𝛼2𝑧𝑥𝑥 = ℎ in (0, 𝑇 ) × (0, 𝐿),

𝑧(·, 0) = ℎ(·, 0) in (0, 𝑇 ),

𝑧(·, 𝐿) = ℎ(·, 𝐿) in (0, 𝑇 ).

(3.19)

From the maximum principle for elliptic equations, we get

‖𝑧‖𝐶0([0,𝑇 ];𝐶1([0,𝐿])) ≤ ‖ℎ‖𝐶0([0,𝑇 ];𝐶0([0,𝐿])) + ‖ℎ‖𝐿∞(0,𝑇 ;𝐶0,1([0,𝐿])). (3.20)

Since 𝜆 ∈ Λ𝐿,𝑇,0, we can find 𝜂 ∈ (0, 𝐿/2) such that∫︁ 𝑇

0
𝜆(𝑠) 𝑑𝑠 > 𝐿+ 2𝜂. (3.21)

Now, we consider the following extension of 𝑧 to the closed interval [−𝜂, 𝐿+ 𝜂]:

𝑧𝜂(𝑡, 𝑥) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

5𝑧(𝑡,−𝑥) − 20𝑧
(︁
𝑡,−𝑥

2

)︁
+ 16𝑧

(︁
𝑡,−𝑥

4

)︁
, (𝑡, 𝑥) ∈ [0, 𝑇 ] × [−𝜂, 0],

𝑧(𝑡, 𝑥) (𝑡, 𝑥),∈ [0, 𝑇 ] × [0, 𝐿],

5𝑧(𝑡, 2𝐿− 𝑥) − 20𝑧
(︁
𝑡, 3𝐿−𝑥

2

)︁
+ 16𝑧

(︁
𝑡, 5𝐿−𝑥

4

)︁
, (𝑡, 𝑥) ∈ [0, 𝑇 ] × [𝐿,𝐿+ 𝜂].
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It is not difficult to check that 𝑧𝜂 ∈ 𝐶0([0, 𝑇 ];𝐶2([−𝜂, 𝐿 + 𝜂])) and there exists 𝐶1 > 0

(independent of 𝛼) such that

‖𝑧𝜂‖𝐶0([0,𝑇 ];𝐶1([−𝜂,𝐿+𝜂])) ≤ 𝐶1‖𝑧‖𝐶0([0,𝑇 ];𝐶1([0,𝐿])). (3.22)

Then, let 𝜒 be given, with 𝜒 ∈ 𝐶∞
0 (−𝜂/2, 𝐿+ 𝜂/2), 𝜒 = 1 in [0, 𝐿] and 0 ≤ 𝜒 ≤ 1.

This way, we can introduce 𝑧* ∈ 𝐶0([0, 𝑇 ];𝐶2(𝑅)), with

𝑧*(𝑡, 𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜒(𝑥)𝑧𝜂(𝑡, 𝑥), (𝑡, 𝑥) ∈ [0, 𝑇 ] × [−𝜂, 𝐿+ 𝜂],

0, (𝑡, 𝑥) ∈ [0, 𝑇 ] × (𝑅 ∖ [−𝜂, 𝐿+ 𝜂]).
(3.23)

and, using (3.22) and (3.23), we see that

‖𝑧*‖𝐶0([0,𝑇 ];𝐶1
𝑏

(𝑅)) ≤ 𝐶2‖𝑧‖𝐶0([0,𝑇 ];𝐶1([0,𝐿])), (3.24)

for some 𝐶2 > 0, again independent of 𝛼.
Let us set 𝑅 := 𝜂

𝐶2𝑇
and let us assume from now on that

‖ℎ‖𝐶0([0,𝑇 ];𝐶0([0,𝐿]))∩𝐿∞(0,𝑇 ;𝐶0,1([0,𝐿])) ≤ 𝑅. (3.25)

Then, it follows from (3.20), (3.24) and (3.25) that

‖𝑧*‖𝐶0([0,𝑇 ];𝐶1
𝑏

(𝑅)) ≤ 𝜂

𝑇
. (3.26)

Let 𝜑* be the flow associated with the ordinary differential equation 𝜉′ = 𝜆(𝑡) + 𝑧*(𝑡, 𝜉),
that is, the solution to ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝜑*

𝜕𝑡
(𝑠; 𝑡, 𝑥) = 𝜆(𝑡) + 𝑧*(𝑡, 𝜑*(𝑠; 𝑡, 𝑥)),

𝜑*(𝑠; 𝑠, 𝑥) = 𝑥.

(3.27)

Claim 3.1 The function 𝜑* = 𝜑*(𝑠; 𝑡, 𝑥) is well-defined for any (𝑡, 𝑥) ∈ [0, 𝑇 ] × 𝑅 and any

𝑠 ∈ [0, 𝑇 ].

Let 𝜑 : [0, 𝑇 ] × [0, 𝑇 ] × 𝑅 ↦→ 𝑅 be the flow associated to the ODE 𝜉′ = 𝜆(𝑡). Then, for
every (𝑠, 𝑡, 𝑥) we get from (3.27) that

|𝜑*(𝑠; 𝑡, 𝑥) − 𝜑(𝑠; 𝑡, 𝑥)| =
⃒⃒⃒⃒
⃒
∫︁ 𝑡

𝑠

(︃
𝜕𝜑*

𝜕𝜏
(𝑠; 𝜏, 𝑥) − 𝜕𝜑

𝜕𝜏
(𝑠; 𝜏, 𝑥)

)︃
𝑑𝜏

⃒⃒⃒⃒
⃒

≤
∫︁ 𝑡

𝑠

⃒⃒⃒⃒
⃒𝜕𝜑*

𝜕𝜏
(𝑠; 𝜏, 𝑥) − 𝜕𝜑

𝜕𝜏
(𝑠; 𝜏, 𝑥)

⃒⃒⃒⃒
⃒ 𝑑𝜏

=
∫︁ 𝑡

𝑠
|𝑧*(𝜏, 𝜑*(𝑠; 𝜏, 𝑥))| 𝑑𝜏

≤ 𝑇‖𝑧*‖𝐶0([0,𝑇 ];𝐶0(𝑅)).
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Hence, for any (𝑠, 𝑡, 𝑥) such that 𝜑*(𝑠; 𝑡, 𝑥) is well-defined, one has

|𝜑*(𝑠; 𝑡, 𝑥) − 𝜑(𝑠; 𝑡, 𝑥)| ≤ 𝜂. (3.28)

This and the fact that 𝜑(𝑠; 𝑡, 𝑥) is well-defined for all (𝑠, 𝑡, 𝑥) ∈ [0, 𝑇 ] × [0, 𝐿] ×𝑅 lead to the
desired conclusion.

Let 𝑦0 ∈ 𝐶1([0, 𝐿]) be given and let us introduce 𝑦𝜂
0 ∈ 𝐶1 ([−𝜂, 𝐿+ 𝜂]) with

𝑦𝜂
0(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

−𝑦0(−𝑥) + 2𝑦0(0), 𝑥 ∈ [−𝜂, 0],

𝑦0(𝑥), 𝑥 ∈ [0, 𝐿],

−𝑦0(2𝐿− 𝑥) + 2𝑦0(𝐿), 𝑥 ∈ [𝐿,𝐿+ 𝜂]

and

𝑦*
0(𝑥) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝜒(𝑥)𝑦𝜂

0(𝑥), 𝑥 ∈ [−𝜂, 𝐿+ 𝜂],

0, 𝑥 ∈ 𝑅 ∖ [−𝜂, 𝐿+ 𝜂].

Then, it is easy to see that 𝑦*
0 is an extension of 𝑦0 to the whole real line and

‖𝑦*
0‖𝐶1

𝑏
(𝑅) ≤ 𝐶3‖𝑦0‖𝐶1([0,𝐿]). (3.29)

for some 𝐶3 > 0.
Let us set 𝑦 ∈ 𝐶1([0, 𝑇 ] ×𝑅), with

𝑦(𝑡, 𝑥̄) := 𝑦*
0(𝜑*(𝑡; 0, 𝑥̄)) ∀(𝑡, 𝑥̄) ∈ [0, 𝑇 ] ×𝑅. (3.30)

Then, we have the following :

Claim 3.2 The function 𝑦 satisfies:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 + (𝜆(𝑡) + 𝑧*(𝑡, 𝑥))𝑦𝑥 = 0 in (0, 𝑇 ) ×𝑅,

𝑦(0, ·) = 𝑦*
0 in 𝑅,

𝑦(𝑇, ·) = 0 in [0, 𝐿].

(3.31)

For any 𝑡 ∈ [0, 𝑇 ], 𝜑*(0; 𝑡, ·) : 𝑅 → 𝑅 is a diffeomorphism and (3.30) is equivalent to
𝑦(𝑡, 𝜑*(0, 𝑡, 𝑥))) ≡ 𝑦*

0(𝑥). Then, for each 𝑥 ∈ 𝑅, we deduce that

𝑦𝑡(𝑡, 𝜑*(0; 𝑡, 𝑥)) + [𝜆(𝑡) + 𝑧*(𝑡, 𝜑*(0; 𝑡, 𝑥))] 𝑦𝑥(𝑡, 𝜑*(0; 𝑡, 𝑥)) = 0.
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Using (3.30) and (3.27)2, we get

𝑦(0, 𝑥) = 𝑦*
0(𝑥) ∀ 𝑥 ∈ 𝑅.

Moreover, it is not difficult to see that, for any 0 < 𝜂 < 𝐿/2 such that (3.21) holds, the flow
associated to the ODE 𝜉′ = 𝜆(𝑡) satisfies 𝜑(𝑇 ; 0, 𝐿) < −2𝜂 and we obtain from (3.28) that
𝜑*(𝑇 ; 0, 𝐿) < −𝜂. Since 𝜑*(𝑠; 𝑡, ·) is increasing for any 𝑠, 𝑡 ∈ [0, 𝑇 ], we see that

𝜑*(𝑇 ; 0, 𝑥) < −𝜂 ∀ 𝑥 ∈ (−∞, 𝐿].

This inequality, together with the fact that

supp 𝑦*
0 ⊂ [−𝜂, 𝐿+ 𝜂] ,

implies 𝑦(𝑇, ·) = 0 in [0, 𝐿].

An immediate consequence of (3.26), 𝐶1 estimates for (3.27), (3.29) and (3.30) is that

‖𝑦‖𝐶1([0,𝑇 ]×[0,𝐿]) ≤ 𝐶4‖𝑦0‖𝐶1([0,𝐿]),

for a positive constant 𝐶4 depending on 𝑅 but independent of 𝛼. Taking 𝑦0 ∈ 𝐶1([0, 𝐿]) such
that

‖𝑦0‖𝐶1([0,𝐿]) ≤ 𝑅/3𝐶4,

we have that ‖𝑦‖𝐶0([0,𝑇 ];𝐶0([0,𝐿])) + ‖𝑦‖𝐿∞(0,𝑇 ;𝐶0,1([0,𝐿])) ≤ 𝑅 and we can therefore introduce
the mapping ℱ : 𝐵𝑅 ↦→ 𝐵𝑅, where 𝐵𝑅 is the closed ball of radius 𝑅 in the Banach space
𝐶0([0, 𝑇 ];𝐶0([0, 𝐿])) ∩ 𝐿∞(0, 𝑇 ;𝐶0,1([0, 𝐿])) and, for each ℎ ∈ 𝐵𝑅, 𝑦 = ℱ(ℎ) is given by
(3.30). Thanks to (3.30), we have that ℱ(𝐵𝑅) ⊂ 𝐶1([0, 𝑇 ] × [0, 𝐿]). Moreover, the following
holds:

Claim 3.3 There exists a positive constant 𝐶 that depends on ‖𝑦0‖𝐶1([0,𝐿]), 𝐿,𝑅 and 𝑇 , such

that, for any 𝑚 ≥ 1 and any ℎ1, ℎ2 ∈ 𝐵𝑅, one has

‖(ℱ𝑚(ℎ1) − ℱ𝑚(ℎ2))(𝑡, ·)‖𝐶0([0,𝐿]) ≤ (𝐶𝑡)𝑚

𝑚! ‖ℎ1 − ℎ2‖𝐶0([0,𝑇 ];𝐶0([0,𝐿])) in [0, 𝑇 ],

where ℱ𝑚 represents the m-th iteration of ℱ .

The proof relies on an induction argument. Let ℎ𝑖 ∈ 𝐵𝑅 be given for 𝑖 = 1, 2. Then, let us
consider the functions 𝑧𝑖,* and 𝑦𝑖, respectively given by (3.23) and (3.30) and set 𝑦 := 𝑦1 −𝑦2

and 𝑧* := 𝑧1,* − 𝑧2,*. By Claim 3.2, we have

𝑦𝑡 + (𝜆+ 𝑧1,*)𝑦𝑥 = −𝑧*𝑦2
𝑥 in (0, 𝑇 ) ×𝑅,



78

whence, from Proposition 3.2,

𝑑

𝑑𝑡+
‖𝑦(𝑡, ·)‖𝐶0

𝑏
(𝑅) ≤ ‖𝑧*(𝑡, ·)𝑦2

𝑥(𝑡, ·)‖𝐶0
𝑏

(𝑅).

Therefore, integrating from 0 to 𝑡 and using that 𝑦2
𝑥 ∈ 𝐶0([0, 𝑇 ];𝐶0

𝑏 (𝑅)) and the maximum
principle for elliptic PDE’s, we find a positive constant 𝐶 depending on ‖𝑦0‖𝐶1([0,𝐿]), 𝐿,𝑅 and
𝑇 , such that

‖𝑦(𝑡, ·)‖𝐶0
𝑏

(𝑅) ≤ 𝐶
∫︁ 𝑡

0
‖𝑧*(𝜏, ·)‖𝐶0

𝑏
(𝑅) 𝑑𝜏

≤ 𝐶
∫︁ 𝑡

0
‖𝑧1(𝜏, ·) − 𝑧2(𝜏, ·)‖𝐶0([0,𝐿]) 𝑑𝜏

≤ 𝐶
∫︁ 𝑡

0
‖ℎ1(𝜏, ·) − ℎ2(𝜏, ·)‖𝐶0([0,𝐿]) 𝑑𝜏.

It follows that

‖(ℱ(ℎ1) − ℱ(ℎ2))(𝑡, ·)‖𝐶0([0,𝐿]) ≤ 𝐶𝑡‖ℎ1 − ℎ2‖𝐶0([0,𝑇 ];𝐶0([0,𝐿])) (3.32)

and the result is true for 𝑚 = 1.
Now, assume that the claim is true for a fixed 𝑚 and let us prove that it holds also for

𝑚+ 1. Performing computations similar to those above, we get

‖(ℱ𝑚+1(ℎ1) − ℱ𝑚+1(ℎ2))(𝑡, ·)‖𝐶0([0,𝐿]) ≤ 𝐶
∫︁ 𝑡

0
‖(ℱ𝑚(ℎ1) − ℱ𝑚(ℎ2))(𝜏, ·)‖𝐶0([0,𝐿]) 𝑑𝜏,

where 𝐶 is the same positive constant in (3.32).
Using the induction hypothesis, we deduce that

‖(ℱ𝑚+1(ℎ1) − ℱ𝑚+1(ℎ2))(𝑡, ·)‖𝐶0([0,𝐿]) ≤ 𝐶‖ℎ1 − ℎ2‖𝐶0([0,𝑇 ];𝐶0([0,𝐿]))

∫︁ 𝑡

0

(𝐶𝜏)𝑚

𝑚! 𝑑𝜏

= (𝐶𝑡)𝑚+1

(𝑚+ 1)!‖ℎ
1 − ℎ2‖𝐶0([0,𝑇 ];𝐶0([0,𝐿])).

Therefore, the result is also true for 𝑚+ 1 and the proof is done.

Let ̃︀𝐵𝑅 be the closure of 𝐵𝑅 with the norm of 𝐶0([0, 𝑇 ];𝐶0([0, 𝐿])) and let ̃︀ℱ be the
unique continuous extension of ℱ to ̃︀𝐵𝑅. Let us now present additional properties for the
extension ̃︀ℱ :

Claim 3.4 The continuous extension ̃︀ℱ satisfies the following properties:

a) For any ℎ in ̃︀𝐵𝑅, the function ̃︀ℱ(ℎ) belongs to 𝐶1([0, 𝑇 ] × [0, 𝐿]) and satisfies equation

(3.31);



79

b) ̃︀ℱ( ̃︀𝐵𝑅) ⊂ 𝐵𝑅.

Let us begin by proving the item 𝑎). For a given ℎ ∈ ̃︀𝐵𝑅, let us consider a sequence (ℎ𝑛)𝑛∈𝑁 in
𝐵𝑅 such that ℎ𝑛 → ℎ in 𝐶0([0, 𝑇 ];𝐶0([0, 𝐿])). Therefore, the corresponding elliptic solutions
to (3.19) and the associated flows (given in (3.27)) satisfy the convergences

𝑧𝑛 → 𝑧 in 𝐶0([0, 𝑇 ];𝐶2([0, 𝐿])) and Φ*
𝑛 → Φ* in 𝐶0([0, 𝑇 ] × [0, 𝑇 ] ×𝑅).

Moreover, since the Φ*
𝑛,Φ* ∈ 𝐶1([0, 𝑇 ] × [0, 𝑇 ] ×𝑅), the corresponding functions, defined in

(3.30), belong to 𝐶1([0, 𝑇 ] × [0, 𝐿]), verify the transport equation (3.31) and, furthermore,

𝑦𝑛 → 𝑦 in 𝐶0([0, 𝑇 ];𝐶0([0, 𝐿])).

Thus, it follows easily from this and from the definition of ℱ and ̃︀ℱ that ̃︀ℱ(ℎ) = 𝑦.
Let us now prove the item 𝑏). In fact, notice that, by definition of ℱ ,for any ℎ ∈ ̃︀𝐵𝑅 there

exists a sequence (ℎ𝑛)∞
𝑛=1 in 𝐵𝑅 such that ℎ𝑛 → ℎ in 𝐶0([0, 𝑇 ];𝐶0([0, 𝐿])) and

̃︀ℱ(ℎ) = lim
𝑛→∞

ℱ(ℎ𝑛) in 𝐶0([0, 𝑇 ];𝐶0([0, 𝐿])).

On the other hand, it is not difficult to prove that

‖ ̃︀ℱ(ℎ)(𝑡, ·)‖𝐶0([0,𝐿]) + ‖ ̃︀ℱ(ℎ)(𝑡, ·)‖𝐶0,1([0,𝐿]) ≤ ‖ℱ(ℎ𝑛)(𝑡, ·)‖𝐶0([0,𝐿]) + ‖ℱ(ℎ𝑛)(𝑡, ·)‖𝐶0,1([0,𝐿])

4‖ℱ(ℎ𝑛)(𝑡, ·) − ̃︀ℱ(ℎ)(𝑡, ·)‖𝐶0([0,𝐿]).

Therefore, using the fact that ̃︀ℱ(ℎ) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿]), we certainly have that ̃︀ℱ(ℎ) ∈ 𝐵𝑅.

It follows from Claim 3.3 that ℱ𝑚 is a contraction for 𝑚 large enough. Then, from Banach
Fixed-Point Theorem 3.3, ̃︀ℱ possesses a unique fixed-point 𝑦 ∈ ̃︀𝐵𝑅. Finally, taking into
account Claim 3.4, the proof of Proposition 3.7 is achieved.

Remark 3.1 Let 𝑇, 𝐿 > 0, assume that 𝜆 ∈ Λ𝐿,𝑇,1 and consider the Banach space

𝒳 = 𝐶0([0, 𝑇 ];𝐶1([0, 𝐿])) ∩ 𝐶1([0, 𝑇 ];𝐶0([0, 𝐿])) ∩ 𝐿∞(0, 𝑇 ;𝐶1,1([0, 𝐿]))

If 𝑦0 ∈ 𝐶2([0, 𝐿]) is small enough, then the fixed-point mapping ℱ can be defined in a closed

ball of 𝒳 centered at zero of radius 𝑅 > 0. Then, one applies Banach Fixed-Point Theorem

in the closure of this ball with the norm of 𝐶0([0, 𝑇 ];𝐶1([0, 𝐿])) ∩ 𝐶1([0, 𝑇 ];𝐶0([0, 𝐿])).

Performing similar computations of Proposition 3.7, one can deduce that there exists 𝛿 > 0
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(independent of 𝛼) such that, for any 𝑦0 ∈ 𝐶2([0, 𝐿]) with ‖𝑦0‖𝐶2([0,𝐿]) ≤ 𝛿, there exists a

solution 𝑦 ∈ 𝐶2([0, 𝑇 ] × [0, 𝐿]) to (3.18), satisfying

‖𝑦‖𝐶2([0,𝑇 ]×[0,𝐿])) ≤ 𝐶‖𝑦0‖𝐶2([0,𝐿]) ∀𝛼 > 0, (3.33)

for a constant 𝐶 > 0 that is independent of 𝛼.

Remark 3.2 From the proof of the previous result, one sees that 𝑧(·, 0) = 𝑦(·, 0) and 𝑧(·, 𝐿) =

𝑦(·, 𝐿) in (0, 𝑇 ). This is important to guarantee that in the limit, as 𝛼 goes to 0, 𝑧 and 𝑦

converge to the same limit.

3.4.2 Global exact controllability

In order to prove Theorem 3.1, we have to use scaling arguments and the time-reversibility
of the inviscid Burgers-𝛼 system. Thus, let 𝑇, 𝐿 > 0 be given, let us consider initial and final
states 𝑦0, 𝑦𝑇 ∈ 𝐶1([0, 𝐿]), let 𝛿 > 0 be given by Proposition 3.5 and let 𝛾0, 𝛾𝑇 ∈ (0, 1) be
such that 𝛾0 < 𝛾𝑇 ,

‖𝛾0𝑦0‖𝐶1([0,𝐿]) ≤ 𝛿 and ‖(1 − 𝛾𝑇 )𝑦𝑇 ‖𝐶1([0,𝐿]) ≤ 𝛿.

Then, by Proposition 3.5, there exist distributed controls ̃︀𝑝, ̂︀𝑝 in 𝐶0
𝑐 ((0, 𝑇 )), boundary

controls (̃︀𝑣𝑙, ̃︀𝑣𝑟), (̂︀𝑣𝑙, ̂︀𝑣𝑟) in 𝐶1([0, 𝑇 ]) and associated states (̃︀𝑦, ̃︀𝑧), (̂︀𝑦, ̂︀𝑧) in 𝐶1([0, 𝑇 ] × [0, 𝐿])

such that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̃︀𝑦𝑡 + ̃︀𝑧 ̃︀𝑦𝑥 = ̃︀𝑝(𝑡) in (0, 𝑇 ) × (0, 𝐿),

̃︀𝑧 − 𝛼2̃︀𝑧𝑥𝑥 = ̃︀𝑦 in (0, 𝑇 ) × (0, 𝐿),

̃︀𝑧(·, 0) = ̃︀𝑦(·, 0) = ̃︀𝑣𝑙 in (0, 𝑇 ),

̃︀𝑧(·, 𝐿) = ̃︀𝑦(·, 𝐿) = ̃︀𝑣𝑟 in (0, 𝑇 ),

̃︀𝑦(0, ·) = 𝛾0𝑦0(𝑥) in (0, 𝐿),

̃︀𝑦(𝑇, ·) = 0 in (0, 𝐿)

(3.34)
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and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̂︀𝑦𝑡 + ̂︀𝑧̂︀𝑦𝑥 = ̂︀𝑝(𝑡) in (0, 𝑇 ) × (0, 𝐿),

̂︀𝑧 − 𝛼2̂︀𝑧𝑥𝑥 = ̂︀𝑦 in [0, 𝑇 ] × [0, 𝐿],

̂︀𝑧(·, 0) = ̂︀𝑦(·, 0) = ̂︀𝑣𝑙 in (0, 𝑇 ),

̂︀𝑧(·, 𝐿) = ̂︀𝑦(·, 𝐿) = ̂︀𝑣𝑟 in (0, 𝑇 ),

̂︀𝑦(0, ·) = (1 − 𝛾𝑇 )𝑦𝑇 in (0, 𝐿),

̂︀𝑦(𝑇, ·) = 0 in (0, 𝐿).

(3.35)

Using (3.34), (3.35) and the facts that ̃︀𝑝(𝑇 ) = ̂︀𝑝(𝑇 ) = 0 and 𝛾00 and 𝛾𝑇 1, we can
introduce the functions 𝑌, 𝑍 : [0, 𝑇 ] × [0, 𝐿] ↦→ 𝑅 and 𝑃, 𝑉𝑙, 𝑉𝑟 : [0, 𝑇 ] ↦→ 𝑅, given by

𝑌 (𝑡, 𝑥) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾−1
0 ̃︀𝑦 (︁𝑡 𝛾−1

0 , 𝑥
)︁

(𝑡, 𝑥) ∈ [0, 𝛾0𝑇 ] × [0, 𝐿],

0 (𝑡, 𝑥) ∈ [𝛾0𝑇, 𝛾𝑇𝑇 ] × [0, 𝐿],

1
1 − 𝛾𝑇

̂︀𝑦 (︃ 𝑇 − 𝑡

1 − 𝛾𝑇

, 𝐿− 𝑥

)︃
(𝑡, 𝑥) ∈ [𝛾𝑇𝑇, 𝑇 ] × [0, 𝐿],

𝑍(𝑡, 𝑥) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾−1
0 ̃︀𝑧 (︁𝑡 𝛾−1

0 , 𝑥
)︁

(𝑡, 𝑥) ∈ [0, 𝛾0𝑇 ] × [0, 𝐿],

0 (𝑡, 𝑥) ∈ [𝛾0𝑇, 𝛾𝑇𝑇 ] × [0, 𝐿],

1
1 − 𝛾𝑇

̂︀𝑧 (︃ 𝑇 − 𝑡

1 − 𝛾𝑇

, 𝐿− 𝑥

)︃
(𝑡, 𝑥) ∈ [𝛾𝑇𝑇, 𝑇 ] × [0, 𝐿],

𝑃 (𝑡) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾−2
0 ̃︀𝑝 (︁𝑡 𝛾−1

0

)︁
𝑡 ∈ [0, 𝛾0𝑇 ] ,

0 𝑡 ∈ [𝛾0𝑇, 𝛾𝑇𝑇 ] ,

− 1
(1 − 𝛾𝑇 )2

̂︀𝑝(︃ 𝑇 − 𝑡

1 − 𝛾𝑇

)︃
𝑡 ∈ [𝛾𝑇𝑇, 𝑇 ],

𝑉𝑙(𝑡) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾−1
0 ̃︀𝑣𝑙

(︁
𝑡 𝛾−1

0 , 𝑥
)︁

𝑡 ∈ [0, 𝛾0𝑇 ] ,

0 𝑡 ∈ [𝛾0𝑇, 𝛾𝑇𝑇 ] ,

1
1 − 𝛾𝑇

̂︀𝑣𝑟

(︃
𝑇 − 𝑡

1 − 𝛾𝑇

)︃
𝑡 ∈ [𝛾𝑇𝑇, 𝑇 ]

and

𝑉𝑟(𝑡) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝛾−1
0 ̃︀𝑣𝑟

(︁
𝑡 𝛾−1

0 , 𝑥
)︁

𝑡 ∈ [0, 𝛾0𝑇 ] ,

0 𝑡 ∈ [𝛾0𝑇, 𝛾𝑇𝑇 ] ,

1
1 − 𝛾𝑇

̂︀𝑣𝑙

(︃
𝑇 − 𝑡

1 − 𝛾𝑇

)︃
𝑡 ∈ [𝛾𝑇𝑇, 𝑇 ].
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It is now straightforward to check that (𝑌, 𝑍) ∈ 𝐶1([0, 𝑇 ] × [0, 𝐿];𝑅2), 𝑃 ∈ 𝐶0([0, 𝑇 ]),
𝑉𝑙, 𝑉𝑟 ∈ 𝐶1([0, 𝑇 ]) and (3.1) and (3.3) are satisfied.

3.5 GLOBAL CONTROLLABILITY OF THE VISCOUS BURGERS-ALPHA SYSTEM

3.5.1 Smoothing effect

The goal of this section is to prove that, starting from a 𝐻1
0 initial data, there exists a small

time where the solution begins to be smooth. More precisely, we have the following result:

Proposition 3.8 Let 𝑦0 ∈ 𝐻1
0 (0, 𝐿) be given and let (𝑦𝛼, 𝑧𝛼) be the solution to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝛼
𝑡 − 𝑦𝛼

𝑥𝑥 + 𝑧𝛼𝑦𝛼
𝑥 = 0 in (0, 𝑇 ) × (0, 𝐿),

𝑧𝛼 − 𝛼2𝑧𝛼
𝑥𝑥 = 𝑦𝛼 in (0, 𝑇 ) × (0, 𝐿),

𝑦𝛼(·, 0) = 𝑦𝛼(·, 𝐿) = 𝑧𝛼(·, 0) = 𝑧𝛼(·, 𝐿) = 0 in (0, 𝑇 ),

𝑦𝛼(0, ·) = 𝑦0 in (0, 𝐿).

(3.36)

Then, there exist 𝑇 * ∈ (0, 𝑇/2) and 𝐶 > 0 (independent of 𝛼) such that the solution 𝑦𝛼

belongs to 𝐶0([𝑇 *, 𝑇 ];𝐶2([0, 𝐿])) and satisfies

‖𝑦𝛼‖𝐶0([𝑇 *,𝑇 ];𝐶2([0,𝐿])) ≤ Λ(‖𝑦0‖𝐻1
0
),

where Λ : 𝑅+ → 𝑅+ is a continuous function satisfying Λ(𝑠) → 0 as 𝑠 → 0+.

We will divide the proof in several steps. Throughout the proof, all the constants are
independent of 𝛼.

Step 1: Strong estimates in (0, 𝑇/2). Since 𝑦0 ∈ 𝐻1
0 (0, 𝐿), 𝑓 ≡ 0 and 𝑣𝑙 ≡ 𝑣𝑟 ≡ 0, Proposi-

tion 3.3 implies the existence and uniqueness of a solution (𝑦𝛼, 𝑧𝛼) to (3.36) satisfying (3.8)
and (3.9). In particular, we have from (3.9) that

‖𝑦𝛼‖𝐿2(𝐻2∩𝐻1
0 ) ≤ 𝐶1‖𝑦0‖𝐻1

0
𝑒

𝐶‖𝑦0‖2
𝐻1

0 .

Consequently, there exists 𝑡1 ∈ (0, 𝑇/2) such that

‖𝑦𝛼(𝑡1, ·)‖𝐻2∩𝐻1
0

≤
√︃

2
𝑇
𝐶1‖𝑦0‖𝐻1

0
𝑒

𝐶‖𝑦0‖2
𝐻1

0 .
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Step 2: Estimates in (𝑡1, 𝑇/2). Let us set 𝑦1 := 𝑦𝛼(𝑡1, ·), 𝑔 := 𝑧𝛼𝑦𝛼
𝑥 . Then, we can easily

check that 𝑦𝛼 is the unique solution to the heat equation:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝛼
𝑡 − 𝑦𝛼

𝑥𝑥 = 𝑔 in (𝑡1, 𝑇 ) × (0, 𝐿),

𝑦𝛼(·, 0) = 𝑦𝛼(·, 𝐿) = 0 in (𝑡1, 𝑇 ),

𝑦𝛼(𝑡1, ·) = 𝑦1 in (0, 𝐿).

(3.37)

From the regularity of 𝑦𝛼 and 𝑧𝛼, we have 𝑔 ∈ 𝐿2(0, 𝑇 ;𝐻1
0 (0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐻−1(0, 𝐿)) and

‖𝑔‖𝐿2(𝐻1
0 ) + ‖𝑔𝑡‖𝐿2(𝐻−1) ≤ 𝐶‖𝑦𝛼‖𝐿∞(𝐻1

0 )(‖𝑦𝛼‖𝐿2(𝐻2) + ‖𝑦𝛼
𝑡 ‖𝐿2(𝐿2))

≤ 𝐶𝑒
𝐶‖𝑦0‖2

𝐻1
0 ‖𝑦0‖2

𝐻1
0
.

Using this estimate, the fact that 𝑔 ∈ 𝐶0(0, 𝑇 ;𝐿2(0, 𝐿)) (see (EVANS, 2010, Ch. 5,
Thm. 3)), (3.37) and the parabolic regularity result (EVANS, 2010, Ch. 3, Thm. 5), we find
that

𝑦𝛼 ∈ 𝐿∞(𝑡1, 𝑇 ;𝐻2(0, 𝐿)), 𝑦𝛼
𝑡 ∈ 𝐿∞(𝑡1, 𝑇 ;𝐿2(0, 𝐿))∩𝐿2(𝑡1, 𝑇 ;𝐻1

0 (0, 𝐿))∩𝐻1(𝑡1, 𝑇 ;𝐻−1(0, 𝐿))

and, in the time interval (𝑡1, 𝑇 ),

‖𝑦𝛼‖𝐿∞(𝐻2) + ‖𝑦𝛼
𝑡 ‖𝐿∞(𝐿2)∩𝐿2

1(𝐻1
0 ) + ‖𝑦𝛼

𝑡𝑡‖𝐿2(𝐻−1) ≤ 𝐶
(︁
‖𝑔‖𝐿2(𝐻1

0 )∩𝐻1(𝐻−1) + ‖𝑦1‖𝐻2

)︁
≤ 1

2Λ1(‖𝑦0‖𝐻1
0
)

(3.38)

where
Λ1(‖𝑦0‖𝐻1

0
) = 2𝐶𝑒

𝐶‖𝑦0‖2
𝐻1

0 ‖𝑦0‖𝐻1
0
(1 + ‖𝑦0‖𝐻1

0
).

From (3.37), we have that ⎧⎪⎪⎨⎪⎪⎩
−𝑦𝛼

𝑥𝑥(𝑡, ·) = 𝑔(𝑡, ·) − 𝑦𝛼
𝑡 (𝑡, ·)

𝑦𝛼(𝑡, 0) = 𝑦𝛼(𝑡, 𝐿) = 0

for 𝑡 a.e in (𝑡1, 𝑇 ). Thus, using (3.38) and elliptic regularity results, (see (EVANS, 2010, Ch.
6, Thm. 5)), we deduce that 𝑦𝛼 ∈ 𝐿2(𝑡1, 𝑇 ;𝐻3(0, 𝐿)) and

‖𝑦𝛼‖𝐿2(𝑡1,𝑇 ;𝐻3(0,𝐿)) ≤ 1
2Λ1(‖𝑦0‖𝐻1

0
).

We also deduce that, for some 𝑡2 ∈ (𝑡1, 𝑇/2), one has

‖𝑦𝛼
𝑡 (𝑡2, ·)‖𝐻1

0
+ ‖𝑦𝛼(𝑡2, ·)‖𝐻3∩𝐻1

0
≤
√︃

2
𝑇 − 2𝑡1

Λ1(‖𝑦0‖𝐻1
0
).
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Step 3: Estimates in (𝑡2, 𝑇/2). Let us set 𝑦2 := 𝑦𝛼(𝑡2, ·). Note that

‖𝑔‖𝐿2(𝑡1,𝑇 ;𝐻2(0,𝐿))∩𝐻1(𝑡1,𝑇 ;𝐿2(0,𝐿)) ≤ 𝐶‖𝑦𝛼‖𝐿∞(𝑡1,𝑇 ;𝐻1
0 (0,𝐿))‖𝑦𝛼‖𝐿2(𝑡1,𝑇 ;𝐻3(0,𝐿))∩𝐻1(𝑡1,𝑇 ;𝐻1

0 (0,𝐿))

≤ 𝐶‖𝑦0‖𝐻1
0
Λ1(‖𝑦0‖𝐻1

0
) 𝑒

𝐶‖𝑦0‖2
𝐻1

0

and the needed compatibility conditions for regularity results holds:

𝑔(𝑡2, ·) + (𝑦2)𝑥𝑥(𝑡, ·) = 𝑦𝛼
𝑡 (𝑡2, ·) ∈ 𝐻1

0 (0, 𝐿).

Using (EVANS, 2010, Ch. 7, Thm. 6), we get that

𝑦𝛼 ∈ 𝐿2(𝑡2, 𝑇 ;𝐻4(0, 𝐿)) ∩𝐻1(𝑡2, 𝑇 ;𝐻2(0, 𝐿)) ∩𝐻2(𝑡2, 𝑇 ;𝐿2(0, 𝐿))

and, moreover, in the time interval (𝑡2, 𝑇 )

‖𝑦𝛼‖𝐿2(𝐻4)∩𝐻1(𝐻2)∩𝐻2(𝐿2) ≤ 𝐶
(︁
‖𝑔‖𝐿2(𝐻2)∩𝐻1(𝐿2) + ‖𝑦2‖𝐻3

)︁
≤Λ2(‖𝑦0‖𝐻1

0
),

(3.39)

where
Λ2(‖𝑦0‖𝐻1

0
) := 𝐶

(︂
1 + ‖𝑦0‖𝐻1

0
𝑒

𝐶‖𝑦0‖2
𝐻1

0

)︂
Λ1(‖𝑦0‖𝐻1

0
).

Step 4: Conclusion. Finally, the result in (EVANS, 2010, Ch. 5, Thm. 4) applied to (3.39) leads
to the regularity 𝐶0([𝑡2, 𝑇 ];𝐻3(0, 𝐿)) for 𝑦𝛼. Therefore, the conclusion follows from Sobolev’s
embedding, taking 𝑇 * = 𝑡2 and Λ(‖𝑦0‖𝐻1

0
) = Λ2(‖𝑦0‖𝐻1

0
).

Proposition 3.8 is also true when 𝑦0 ∈ 𝐿∞(0, 𝐿). Indeed, we can start using Proposition 3.3
that guarantees the existence and uniqueness of a solution (𝑦𝛼, 𝑧𝛼) to (3.36) satisfying (3.14)
and (3.15). In particular, we have from (3.15) that

‖𝑦𝛼‖𝐿2(𝐻1
0 ) ≤ 𝐶1‖𝑦0‖∞𝑒

𝐶‖𝑦0‖2
∞ .

Therefore, there exists 𝑡1 ∈ (0, 𝑇/2) such that

‖𝑦𝛼(𝑡1, ·)‖𝐻1
0

≤
√︃

2
𝑇
𝐶1‖𝑦0‖∞𝑒

𝐶‖𝑦0‖2
∞ .

Then, we can achieve arguing as in the proof of Proposition 3.8.
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3.5.2 Uniform approximate controllability

In this section, the goal is to prove the following approximate controllability result starting
from sufficiently smooth initial data:

Proposition 3.9 Let 𝑦0, 𝑦𝑓 ∈ 𝐶2([0, 𝐿]) be given. There exist positive constants 𝜏* and

𝐾 > 0, independent of 𝛼, such that, for any 𝜏 ∈ (0, 𝜏*], there exist 𝑝𝛼 ∈ 𝐶0([0, 𝜏 ]), (𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ) ∈

𝐻3/4(0, 𝜏 ;𝑅2) and associated states (𝑦𝛼, 𝑧𝛼) with the following regularity⎧⎪⎪⎨⎪⎪⎩
𝑦𝛼 ∈ 𝐿2(0, 𝜏 ;𝐻2(0, 𝐿)) ∩𝐻1(0, 𝜏 ;𝐿2(0, 𝐿)) ∩ 𝐶0([0, 𝜏 ];𝐻1(0, 𝐿))

𝑧𝛼 ∈ 𝐿2(0, 𝑇 ;𝐻4(0, 𝐿)) ∩𝐻1(0, 𝜏 ;𝐿2(0, 𝐿)) ∩ 𝐶0([0, 𝜏 ];𝐻3(0, 𝐿)),
(3.40)

satisfying

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝛼
𝑡 − 𝑦𝛼

𝑥𝑥 + 𝑧𝛼𝑦𝛼
𝑥 = 𝑝𝛼(𝑡) in (0, 𝜏) × (0, 𝐿),

𝑧𝛼 − 𝛼2𝑧𝛼
𝑥𝑥 = 𝑦𝛼 in (0, 𝜏) × (0, 𝐿),

𝑧𝛼(·, 0) = 𝑦𝛼(·, 0) = 𝑣𝛼
𝑙 on (0, 𝜏),

𝑧𝛼(·, 𝐿) = 𝑦𝛼(·, 𝐿) = 𝑣𝛼
𝑟 on (0, 𝜏),

𝑦𝛼(0, ·) = 𝑦0 in (0, 𝐿)

(3.41)

and, moreover,

‖𝑦𝛼(𝜏, .) − 𝑦𝑓‖𝐻1(0,𝐿) ≤ 𝐾
√
𝜏 (3.42)

and

‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐻3/4([0,𝑇 ];𝑅2) ≤ 𝐶 ∀𝛼 > 0.

In order to prove this result, let us introduce 𝜆 ∈ 𝐶1
0(0, 1) with ‖𝜆‖𝐿1(0,1/2) > 𝐿 and 𝜆(𝑡) =

𝜆(1 − 𝑡) for all 𝑡 ∈ [0, 1]. Let us set 𝜆𝜏 (𝑡) := 1
𝜏
𝜆
(︁

𝑡
𝜏

)︁
for all 𝑡 ∈ [0, 𝜏 ].

The following two results hold:

Lemma 3.1 Let 𝑀 > 0 be a positive constant. Then, if 𝑢0, 𝑢𝑓 ∈ 𝐶2([0, 𝐿]) and

max{‖𝑢0‖𝐶2([0,𝐿]), ‖𝑢𝑓‖𝐶2([0,𝐿])} ≤ 𝑀, (3.43)
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there exists 𝜏0 ∈ (0, 1) such that for every 𝜏 ∈ (0, 𝜏0] we can find controls 𝑣𝛼,𝜏
𝑙 , 𝑣𝛼,𝜏

𝑟 in

𝐶2([0, 𝜏 ]) and associated states 𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 in 𝐶2([0, 𝜏 ] × ([0, 𝐿])), satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝛼,𝜏
𝑡 + (𝜆𝜏 (𝑡) + 𝑤𝛼,𝜏 )𝑢𝛼,𝜏

𝑥 = 0 in (0, 𝜏) × (0, 𝐿),

𝑤𝛼,𝜏 − 𝛼2𝑤𝛼,𝜏
𝑥𝑥 = 𝑢𝛼,𝜏 in (0, 𝜏) × (0, 𝐿),

𝑢𝛼,𝜏 (·, 0) = 𝑤𝛼,𝜏 (·, 0) = 𝑣𝛼,𝜏
𝑙 in (0, 𝜏),

𝑢𝛼,𝜏 (·, 𝐿) = 𝑤𝛼,𝜏 (·, 𝐿) = 𝑣𝛼,𝜏
𝑟 in (0, 𝜏),

𝑢𝛼,𝜏 (0, ·) = 𝑢0 in (0, 𝐿),

𝑢𝛼,𝜏 (𝜏, ·) = 𝑢𝑓 in (0, 𝐿).

(3.44)

Furthermore, there exists 𝐶 > 0, independent of 𝛼 and 𝜏 , such that

‖𝑢𝛼,𝜏 ‖𝐶0([0,𝜏 ];𝐶2([0,𝐿])) ≤ 𝐶𝑀. (3.45)

First, thanks to the fact that ‖𝜆‖𝐿1(0,1/2) > 𝐿 and Remark 3.1, we know that there exists
𝛿 > 0 (independent of 𝛼) such that, for any initial datum in a ball of 𝐶2([0, 𝐿]) centered at
origin and radius 𝛿, there exists a solution to (3.18) belonging to the space 𝐶2([0, 1/2]×[0, 𝐿])

satisfying (3.33).
Let us now take 𝜏0 ∈ (0, 1) such that 𝜏0𝑀 ≤ 𝛿. Then, according to the previous construc-

tion, for each 𝜏 ∈ (0, 𝜏0] there exist functions (̃︀𝑦𝛼, ̃︀𝑧𝛼), (̂︀𝑦𝛼, ̂︀𝑧𝛼) in the space 𝐶2([0, 1/2] ×

[0, 𝐿];𝑅2), solutions to (3.18), satisfying the ̃︀𝑦𝛼(0, 𝑥) = 𝜏𝑢0(𝑥) and ̂︀𝑦𝛼(0, 𝑥) = 𝜏𝑢𝑓 (𝐿 − 𝑥),
for all 𝑥 ∈ [0, 𝐿], and satisfying the inequality (3.33).

Then, one defines the states

𝑢𝛼,𝜏 (𝑡, 𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝜏−1̃︀𝑦𝛼(𝜏−1𝑡, 𝑥) in [0, 𝜏/2] × [0, 𝐿],

𝜏−1̂︀𝑦𝛼(𝜏−1(𝜏 − 𝑡), 𝐿− 𝑥) in [𝜏/2, 𝜏 ] × [0, 𝐿]

and

𝑤𝛼,𝜏 (𝑡, 𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝜏−1̃︀𝑧𝛼(𝜏−1𝑡, 𝑥) in [0, 𝜏/2] × [0, 𝐿],

𝜏−1̂︀𝑧𝛼(𝜏−1(𝜏 − 𝑡), 𝐿− 𝑥) in [𝜏/2, 𝜏 ] × [0, 𝐿],

that satisfy (𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 ) ∈ 𝐶2([0, 𝜏 ] × [0, 𝐿];𝑅2) and the associated boundary controls

𝑣𝛼,𝜏
𝑙 (𝑡) := 𝑢𝛼,𝜏 (𝑡, 0) and 𝑣𝛼,𝜏

𝑟 (𝑡) := 𝑢𝛼,𝜏 (𝑡, 𝐿).

Since 𝜆(𝜏−1𝑡) ≡ 𝜆(𝜏−1(𝜏 − 𝑡)) and Remark 3.2, the couple (𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 ) satisfies (3.44) and
(3.45).
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Lemma 3.2 Assume that 𝑀 > 0, 𝑢0, 𝑢𝑓 ∈ 𝐶2([0, 𝐿]) satisfy (3.43) and 𝜏0 is furnished by

Lemma 3.1. There exists 𝜏* ∈ (0, 𝜏0] such that, for any 𝜏 ∈ (0, 𝜏*] and any (𝑢𝛼,𝜏 , 𝑤𝛼,𝜏 ) ∈

𝐶2([0, 𝜏 ] × [0, 𝐿];𝑅2) satisfying (3.44) and (3.45), there exists a unique solution to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑟𝛼,𝜏
𝑡 + (𝑞𝛼,𝜏 + 𝑤𝛼,𝜏 + 𝜆𝜏 )𝑟𝛼,𝜏

𝑥 − 𝑟𝛼,𝜏
𝑥𝑥 + 𝑞𝛼,𝜏𝑢𝛼,𝜏

𝑥 − 𝑢𝛼,𝜏
𝑥𝑥 = 0 in (0, 𝜏) × (0, 𝐿),

𝑞𝛼,𝜏 − 𝛼2𝑞𝛼,𝜏
𝑥𝑥 = 𝑟𝛼,𝜏 in (0, 𝜏) × (0, 𝐿),

𝑟𝛼,𝜏 (·, 0) = 0, 𝑟𝛼,𝜏
𝑥 (·, 𝐿) = 0, on (0, 𝜏),

𝑞𝛼,𝜏 (·, 0) = 0, 𝑞𝛼,𝜏 (·, 𝐿) = 𝑟𝛼,𝜏 (·, 𝐿), on (0, 𝜏),

𝑟𝛼,𝜏 (0, ·) = 0 in (0, 𝐿),

satisfying ⎧⎪⎪⎨⎪⎪⎩
𝑟𝛼,𝜏 ∈ 𝐿2(0, 𝜏 ;𝐻2(0, 𝐿)) ∩𝐻1(0, 𝜏 ;𝐿2(0, 𝐿)) ∩ 𝐶0([0, 𝜏 ];𝐻1(0, 𝐿)),

𝑞𝛼,𝜏 ∈ 𝐿2(0, 𝜏 ;𝐻4(0, 𝐿)) ∩𝐻1(0, 𝜏 ;𝐿2(0, 𝐿)) ∩ 𝐶0([0, 𝜏 ];𝐻3(0, 𝐿))

and

‖𝑟𝛼,𝜏 ‖𝐿2(0,𝜏 ;𝐻2(0,𝐿))∩𝐻1(0,𝜏 ;𝐿2(0,𝐿)) ≤ 𝐶.

Here, 𝐶 is a positive constant that depends on 𝐿, 𝑇,𝑀 and 𝜏 , but it is independent of 𝛼.

Moreover, there exists a constant 𝐾 that depends on 𝐿, 𝑇 and 𝑀 (independent of 𝛼 and 𝜏),

such that

‖𝑟𝛼,𝜏 ‖𝐶0([0,𝜏 ];𝐻1(0,𝐿)) ≤ 𝐾
√
𝜏 . (3.46)

The proof is standard. It can be easily obtained, for instance, via a Faedo-Galerkin technique
in combination with well known energy estimates.

We can now achieve the proof of Proposition 3.9. Indeed, given 𝜏 ∈ (0, 𝜏*], it is not difficult
to see that (𝑦𝛼, 𝑧𝛼) given by

(𝑦𝛼, 𝑧𝛼) := (𝑢𝛼,𝜏 + 𝑟𝛼,𝜏 + 𝜆𝜏 , 𝑤𝛼,𝜏 + 𝑞𝛼,𝜏 + 𝜆𝜏 )

satisfies (3.40) and (3.41) with 𝑝𝛼(𝑡) = 𝜆𝜏
𝑡 and boundary controls 𝑣𝛼

𝑙 (𝑡) = 𝑢𝛼,𝜏 (𝑡, 0) +

𝑟𝛼,𝜏 (𝑡, 0) + 𝜆𝜏 (𝑡) and 𝑣𝛼
𝑟 (𝑡) = 𝑢𝛼,𝜏 (𝑡, 𝐿) + 𝑟𝛼,𝜏 (𝑡, 𝐿) + 𝜆𝜏 (𝑡). Moreover, using (3.44)6, (3.46)

and the fact that 𝜆𝜏 vanishes in the neighbourhood of 𝜏 , we obtain (3.42).

3.5.3 Uniform local exact controllability to the trajectories

The goal of this section is to prove the local exact controllability to space-independent
trajectories for the Burgers-𝛼 system, with controls and associated states uniformly bounded
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with respect to 𝛼 in appropriate spaces. Thus, let ̂︁𝑚 ∈ 𝐶1([0, 𝑇 ]) be given and note that
(̂︀𝑦𝛼, ̂︀𝑧𝛼) = (̂︁𝑚,̂︁𝑚) is a trajectory of viscous Burgers-𝛼 system with (̂︀𝑝𝛼(𝑡), ̂︀𝑣𝛼

𝑙 (𝑡), ̂︀𝑣𝛼
𝑟 (𝑡)) =

(̂︁𝑚′(𝑡),̂︁𝑚(𝑡),̂︁𝑚(𝑡)). We have the following result:

Theorem 3.4 Let 𝑇, 𝐿, 𝛼 > 0 and ̂︁𝑚 ∈ 𝐶1([0, 𝑇 ]) be given. There exists 𝛿 > 0 (inde-

pendent of 𝛼) such that, for any initial data 𝑦0 ∈ 𝐻1(0, 𝐿) satisfying ‖𝑦0 − ̂︁𝑚(0)‖𝐻1 ≤ 𝛿

there exist 𝑝𝛼 ∈ 𝐶0([0, 𝑇 ]) and (𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 ) ∈ 𝐻3/4(0, 𝑇 ;𝑅2) and associated states (𝑦𝛼, 𝑧𝛼) ∈

𝐿2(0, 𝑇 ;𝐻2(0, 𝐿;𝑅2)) ∩𝐻1(0, 𝑇 ;𝐿2(0, 𝐿;𝑅2)) satisfying (3.2) and

𝑦𝛼(𝑇, ·) ≡ ̂︁𝑚(𝑇 ). (3.47)

Moreover, 𝑝𝛼 = ̂︁𝑚′ and the following estimates hold:

‖𝑝𝛼‖𝐶0([0,𝑇 ]) + ‖(𝑣𝛼
𝑙 , 𝑣

𝛼
𝑟 )‖𝐻3/4([0,𝑇 ];𝑅2) ≤ 𝐶 ∀𝛼 > 0, (3.48)

where 𝐶 > 0 is a positive constant independent of 𝛼.

Let us set (𝑦𝛼, 𝑧𝛼) = (𝑢𝛼 +̂︁𝑚,𝑤𝛼 +̂︁𝑚) and 𝑝𝛼 = ̂︁𝑚′. Then, (𝑢𝛼, 𝑤𝛼) must satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝛼
𝑡 − 𝑢𝛼

𝑥𝑥 + (𝑤𝛼 +̂︁𝑚)𝑢𝛼
𝑥 = 0 in (0, 𝑇 ) × (0, 𝐿),

𝑤𝛼 − 𝛼2𝑤𝛼
𝑥𝑥 = 𝑢𝛼 in (0, 𝑇 ) × (0, 𝐿),

𝑢𝛼(·, 0) = 𝑤𝛼(·, 0) = ℎ𝛼
𝑙 in (0, 𝑇 ),

𝑢𝛼(·, 0) = 𝑤𝛼(·, 𝐿) = ℎ𝛼
𝑟 in (0, 𝑇 ),

𝑢𝛼(0, ·) = 𝑢0 in (0, 𝐿),

(3.49)

where 𝑢0 := 𝑦0−̂︁𝑚(0) and (ℎ𝛼
𝑙 , ℎ

𝛼
𝑟 ) := (𝑣𝛼

𝑙 −̂︁𝑚, 𝑣𝛼
𝑟 −̂︁𝑚). Therefore, Theorem 3.4 is equivalent

to the local null-controllability to (3.49).

Proposition 3.10 Let the conditions of Theorem 3.4 be satisfied. There exists 𝛿 > 0 (inde-

pendent of 𝛼) such that, for any initial data 𝑢0 ∈ 𝐻1(0, 𝐿) satisfying ‖𝑢0‖𝐻1 ≤ 𝛿, there exist

(ℎ𝛼
𝑙 , ℎ

𝛼
𝑟 ) ∈ 𝐻3/4(0, 𝑇 ;𝑅2) and (𝑢𝛼, 𝑤𝛼) ∈ 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿;𝑅2)) ∩ 𝐻1(0, 𝑇 ;𝐿2(0, 𝐿;𝑅2))

satisfying (3.49) and

𝑢𝛼(𝑇, ·) ≡ 0. (3.50)

Moreover, there exists a positive constant 𝐶 > 0 (independent of 𝛼) such that

‖(ℎ𝛼
𝑙 , ℎ

𝛼
𝑟 )‖𝐻3/4([0,𝑇 ];𝑅2) ≤ 𝐶 ∀𝛼 > 0. (3.51)



89

The proof of this result relies on a fixed-point argument. Thus, given 𝑢0 ∈ 𝐻1(0, 𝐿) and
𝜂 > 0, one can get by reflection method an extension 𝑢*

0 ∈ 𝐻1
0 (−𝜂, 𝐿+ 𝜂), with

‖𝑢*
0‖𝐻1

0 (−𝜂,𝐿+𝜂) ≤ 𝐶‖𝑢0‖𝐻1(0,𝐿).

Let 𝑅 > 0 be given and consider the set

𝐵𝜂
𝑅 := {𝑢̄ ∈ 𝐿∞(0, 𝑇 ;𝐶0([−𝜂, 𝐿+ 𝜂]) : ‖𝑢̄‖𝐿∞(0,𝑇 ;𝐶0([−𝜂,𝐿+𝜂])) ≤ 𝑅}.

For any 𝑢̄ ∈ 𝐵𝜂
𝑅, we can easily deduce that there exists a unique solution to⎧⎪⎪⎨⎪⎪⎩
𝑤 − 𝛼2𝑤𝑥𝑥 = 𝑢̄1(0,𝐿) in (0, 𝑇 ) × (0, 𝐿),

𝑤(·, 0) = 𝑢̄(·, 0), 𝑤(·, 𝐿) = 𝑢̄(·, 𝐿) in (0, 𝑇 ).
(3.52)

Moreover, using the maximum principle, we obtain that

‖𝑤‖𝐿∞(0,𝑇 ;𝐶0([0,𝐿])) ≤ 𝐶‖𝑢̄‖𝐿∞(0,𝑇 ;𝐶0([−𝜂,𝐿+𝜂])) ≤ 𝐶𝑅.

Then, again reflection method, we get an extension 𝑤* ∈ 𝐿∞(0, 𝑇 ;𝐶2([−𝜂, 𝐿+ 𝜂])) with

‖𝑤*‖𝐿∞(0,𝑇 ;𝐶0([−𝜂,𝐿+𝜂])) ≤ 𝐶‖𝑤‖𝐿∞(0,𝑇 ;𝐶0([0,𝐿])) ≤ 𝐶𝑅.

We assume that 𝐿 < 𝑎 < 𝑏 < 𝐿 + 𝜂. Then, arguing as in the proof of (ARARUNA,
2013, Theorem 1), we find 𝑣 ∈ 𝐿∞((0, 𝑇 ) × (𝑎, 𝑏)) and 𝑢 ∈ 𝐿2(0, 𝑇 ;𝐻2(−𝜂, 𝐿 + 𝜂)) ∩

𝐿∞(0, 𝑇 ;𝐻1
0 (−𝜂, 𝐿+ 𝜂)) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝑢𝑥𝑥 + (𝑤* +̂︁𝑚)𝑢𝑥 = 𝑣1(𝑎,𝑏) in (0, 𝑇 ) × (−𝜂, 𝐿+ 𝜂),

𝑢(·,−𝜂) = 𝑢(·, 𝐿+ 𝜂) = 0 in (0, 𝑇 ),

𝑢(0, ·) = 𝑢*
0 in (−𝜂, 𝐿+ 𝜂),

𝑢(𝑇, ·) = 0 in (−𝜂, 𝐿+ 𝜂),

(3.53)

and
‖𝑣‖𝐿∞(0,𝑇 ;𝐿∞(𝑎,𝑏)) ≤ 𝐶‖𝑢0‖𝐻1(0,𝐿),

for some 𝐶 > 0 of the form

𝐶 := 𝑒
𝐶0[1+1/𝑇 +(1+𝑇 )(‖𝑤*‖2

𝐿∞(𝐿∞)+‖̂︀𝑚2
∞)]
.

where 𝐶0 > 0 depends on 𝑎, 𝑏, 𝐿 and 𝜂. Therefore, it is not difficult to deduce that the norm
of 𝑢 in 𝐻1(0, 𝑇 ;𝐿2(−𝜂, 𝐿+ 𝜂)), 𝐿2(0, 𝑇 ;𝐻2(−𝜂, 𝐿+ 𝜂)) and 𝐿∞(0, 𝑇 ;𝐻1

0 (−𝜂, 𝐿+ 𝜂)) are
bounded by 𝐶‖𝑢0‖𝐻1 , where 𝐶 is independent of 𝛼.
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Consequently, there exists 𝛿 > 0 (independent of 𝛼) such that, if ‖𝑢0‖𝐻1 ≤ 𝛿, one has
‖𝑢‖𝐿∞(0,𝑇 ;𝐶0([−𝜂,𝐿+𝜂])) ≤ 𝑅 and the mapping Λ𝛼 : 𝐵𝜂

𝑅 ↦→ 𝐵𝜂
𝑅, Λ𝛼(𝑢̄) := 𝑢 is well defined.

Note that

1. Λ𝛼 is well defined and continuous. Indeed, this follows from the uniqueness of solution
of (3.52) and (3.53); the continuity is obtained by using standard parabolic estima-
tes and the fact that, if 𝑢̄𝑛 → 𝑢̄ in 𝐿∞(0, 𝑇 ;𝐶0([−𝜂, 𝐿 + 𝜂])), then 𝑤*

𝑛 → 𝑤* in
𝐿∞(0, 𝑇 ;𝐶0([−𝜂, 𝐿+ 𝜂])) and, therefore, 𝑢𝑛 → 𝑢 in 𝐿∞(0, 𝑇 ;𝐶0([−𝜂, 𝐿+ 𝜂])).

2. 𝐹 𝜂 := Λ𝛼(𝐵𝜂
𝑅) is relatively compact in 𝐿∞(0, 𝑇 ;𝐶0([−𝜂, 𝐿 + 𝜂])). Indeed, one ea-

sily obtains that 𝐹 𝜂 is bounded in 𝐿∞(0, 𝑇 ;𝐻1
𝜂,0(−𝜂, 𝐿 + 𝜂)) and 𝐹 𝜂

𝑡 is bounded in
𝐿2(0, 𝑇 ;𝐿2(−𝜂, 𝐿 + 𝜂)). Hence, applying again (SIMON, 1980, Corollary 4), we get the
desired compactness.

Finally, by applying Schauder’s Fixed-Point Theorem, we see that there exists 𝑢 ∈ 𝐵𝜂
𝑅 such

that Λ𝛼(𝑢) = 𝑢. Then, the couple (𝑢𝛼, 𝑣𝛼), where 𝑢𝛼 is the restriction to (0, 𝑇 ) × (0, 𝐿) of
𝑢 and 𝑤 is the solution to (3.52), belongs to 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿;𝑅2)) ∩𝐻1(0, 𝑇 ;𝐿2(0, 𝐿;𝑅2))

and satisfies (3.49), (3.50) and (3.51) with controls ℎ𝛼
𝑙 := 𝑢(·, 0) and ℎ𝛼

𝑟 := 𝑢(·, 𝐿).

3.5.4 Global exact controllability

In this section we prove Theorem 3.2 by combining the results obtained in Sections 3.5.1,
3.5.2 and 3.5.3. First recall that given 𝑦0 ∈ 𝐿∞(0, 𝐿) and the unique associated solution
(𝑦𝛼

1 , 𝑧
𝛼
1 ) to (3.36), Proposition 3.8 provides a time 𝑇 * ∈ (0, 𝑇/2) and a constant 𝑀* > 0

(both independent of 𝛼) such that 𝑦𝛼
1 ∈ 𝐶0([𝑇 *, 𝑇 ];𝐶2([0, 𝐿])) and, moreover,

‖𝑦𝛼
1 ‖𝐶0([𝑇 *,𝑇 ];𝐶2([0,𝐿])) ≤ 𝑀*. (3.54)

Now, let us fix 𝑁 ∈ 𝑅, let us set 𝑀 := max{𝑀*, |𝑁 |} and assume that the cons-
tant 𝜏 * > 0, furnished by Proposition 3.9 is small enough, such that 𝑇 * < 𝑇/2 − 𝜏 *.
Then, 𝑦𝛼

2,0 := 𝑦𝛼
1 (𝑇/2 − 𝜏, ·) belongs to 𝐶2([0, 𝐿]) and, from (3.54) and Proposition 3.9,

there exist 𝑝𝛼
2 ∈ 𝐶0([0, 𝜏 ]), (𝑣𝛼

𝑙,2, 𝑣
𝛼
𝑟,2) ∈ 𝐻3/4(0, 𝜏 ;𝑅2) and associated states (𝑦𝛼

2 , 𝑧
𝛼
2 ) ∈

𝐿2(0, 𝜏 ;𝐻2(0, 𝐿;𝑅2)) ∩ 𝐻1(0, 𝜏 ;𝐿2(0, 𝐿;𝑅2)) satisfying (3.40), (3.41) and (3.42), with ini-
tial datum 𝑦𝛼

2,0 and target 𝑦𝑓 = 𝑁 .
Finally, decreasing 𝜏 if necessary and setting 𝑦𝛼

3,0 := 𝑦𝛼
2 (𝜏, ·), we deduce, thanks to (3.42),

that ‖𝑦𝛼
3,0 − 𝑁‖1

𝐻 ≤ 𝛿, where 𝛿 > 0 is the constant given in Theorem 3.4 for a control
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time 𝑇/2. Hence, this theorem (applied with ̂︁𝑚 ≡ 𝑁), guarantees the existence of controls
(𝑣𝛼

𝑙,3, 𝑣
𝛼
𝑟,3) ∈ 𝐻3/4(0, 𝑇/2;𝑅2) such that the associated states (𝑦𝛼

3 , 𝑧
𝛼
3 ) satisfying (3.2), (3.47)

and (3.48), with 𝑝𝛼 ≡ 0 and initial datum 𝑦𝛼
3,0.

To conclude, using (𝑦𝛼
1 , 𝑧

𝛼
1 ), (𝑦𝛼

2 , 𝑧
𝛼
2 ) and (𝑦𝛼

3 , 𝑧
𝛼
3 ), and the associated controls, we can

build the required solution, as stated in Theorem 3.2.

3.6 ADDITIONAL COMMENTS AND QUESTIONS

3.6.1 Controllability for Lipschitz-continuous data

Proposition 3.7 and Theorem 3.1 also hold for 𝑦0 in 𝐶0,1([0, 𝐿]). Indeed, arguing as in
the proof, one can guarantee that, as soon as the initial condition is small enough in the
Lipschitz-continuous class, there exist (𝑣𝑙, 𝑣𝑟) ∈ 𝐶0,1([0, 𝑇 ];𝑅2) and an associated state
(𝑦, 𝑧) ∈ 𝐶0,1([0, 𝑇 ] × [0, 𝐿];𝑅2) satisfying (3.18) almost everywhere; furthermore, it is not
difficult to check that all the estimates are uniform with respect to 𝛼. Note that this result
improves (CHAPOULY, 2009, Theorem 1).

3.6.2 Passage to the limit

Theorem 3.1 establishes the existence of uniformly bounded controls for the inviscid
Burgers-𝛼 system; the family of associated solutions is uniformly bounded in the space 𝐶1([0, 𝑇 ]×

[0, 𝐿]). What happens as 𝛼 goes to 0? For uncontrolled nonlocal conservation law, a similar
question related to singular limit was studied in (COLOMBO, 2019).

Thanks to Theorem 3.2, assuming that 𝑦0 ∈ 𝐻1
0 (0, 𝐿), the family of controls {(𝑝𝛼, 𝑣𝛼

𝑙 , 𝑣
𝛼
𝑟 )}𝛼>0

of the viscous Burgers-𝛼 systems is uniformly bounded in 𝐶0([0, 𝑇 ]) ×𝐻3/4(0, 𝑇 ;𝑅2) and the
associated family of states {𝑦𝛼}𝛼>0 is uniformly bounded in 𝐿2(0, 𝑇 ;𝐻2(0, 𝐿))∩𝐻1(0, 𝑇 ;𝐿2(0, 𝐿)).
It is not difficult to verify that {𝑦𝛼}𝛼>0 converges, as 𝛼 goes to 0, to a controlled solution to
the viscous Burgers equation with same initial datum 𝑦0.

An additional interesting question is to determine the order of convergence of 𝑦𝛼, in the
convergence space.
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3.6.3 Null controllability with 2 controls

In Theorems 3.1 and 3.2, we have used 3 scalar controls. It remains open to see whether,
using arguments similar to those in (MARBACH, 2014), it is also possible to prove global uniform
null controllability with only 2 scalar controls.

3.6.4 Global exact controllability to the trajectories

At least two additional questions remain open here: (i) to obtain uniform global exact
controllability to trajectories for the viscous Burgers-𝛼 system with trajectories in the space
𝑊 1,∞(0, 𝑇 ;𝑊 1,∞(0, 𝐿;𝑅2)); (ii) to reduce the number of scalar controls.

3.6.5 Less regular initial conditions

In (MARBACH, 2014), the author proved a null controllability result for the viscous Burgers
equation with initial datum in 𝐿2(0, 𝐿). Is it also possible to control uniformly 𝐿2 initial
conditions in the case of the viscous Burgers-𝛼 system?
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4 REMARKS ON THE CONTROL OF FREE BOUNDARY PROBLEMS

This chapter analyzes the null-exact controllability of the two-phase Stefan problem with
distributed controls. The two-phase Stefan problem is a class of free boundary problems mo-
delling solidification or melting processes where each phase satisfies a parabolic equation which
are separated by phase-change interface. We prove that the temperatures and the interface
can be steered to zero and to a prescribed location, respectively, since the initial data and
interface position are sufficiently close to the targets using two localized sources of heating/-
cooling (one in each of the phases). The proofs rely on compactness-uniqueness argument to
deduce observability estimates adapted to constraints and fixed point arguments to deduce
the result for the non-linear system. Moreover, a negative controllability result is obtained in
the case where there are no controls acting in the phases simultaneously and the interface
does not collapse to the boundary.

4.1 INTRODUCTION

The two-phase Stefan problem is a mathematical model (a coupled system composed of
two PDEs and one ODE) used to describe liquid-solid phase transition processes. These proces-
ses appear frequently in science and engineering like, for example, in the cancer treatment by
cryosurgeries (RABIN Y.; SHITZER, 1998), crystal growth (CONRAD, 1990), lithium-ion batteries,
among others. It is also important to highlight that, besides the interest in thermodynamics
processes, similar systems represent models for phenomena of other kinds: analysis and com-
putation of the flux in free-surfaces (HERMANS, 2011; STOKER, 1957), fluid-solid interaction
(DOUBOVA A.; FERNÁNDEZ-CARA, 2005; TAKAHASHI L. Y.; TUCSNAK, 2013; VÁZQUEZ J.L.; ZU-

AZUA, 2003), gases flow through porous medium (VÁZQUEZ, 2007), growth of tumors and
others mathematical modelling in biology (FRIEDMAN, 2012).

Let us present the mathematical formulation of the two-phase Stefan problem: let 𝐿 > 0,
𝑇 > 0 and ℓ𝑙, ℓ0, ℓ𝑟 ∈ (0, 𝐿) be given with ℓ𝑙 < ℓ0 < ℓ𝑟. Moreover, let us also consider two
functions 𝑢0 ∈ 𝑊 1,4

0 (0, ℓ0) with 𝑢0 ≥ 0 and 𝑣0 ∈ 𝑊 1,4
0 (ℓ0, 𝐿) with 𝑣0 ≤ 0 and two open sets

𝜔𝑙 ⊂⊂ (0, ℓ𝑙) and 𝜔𝑟 ⊂⊂ (ℓ𝑟, 𝐿). At each 𝑡, the material domain is separated in two parts:
𝑥 ∈ [0, ℓ(𝑡)) (liquid phase) and 𝑥 ∈ (ℓ(𝑡), 𝐿] (solid phase). Here, ℓ = ℓ(𝑡) is the position of
the interface between liquid and solid phases; it satisfies ℓ(0) = ℓ0 and ℓ(𝑡) ∈ (ℓ𝑙, ℓ𝑟) for all 𝑡.
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The aim of this chapter is to study the controllability properties of the two-phase Stefan
problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝑑𝑙𝑢𝑥𝑥 = ℎ𝑙1𝜔𝑙
in 𝑄𝑙,

𝑣𝑡 − 𝑑𝑟𝑣𝑥𝑥 = ℎ𝑟1𝜔𝑟 in 𝑄𝑟,

𝑢(0, 𝑡) = 0 on (0, 𝑇 ),

𝑣(𝐿, 𝑡) = 0 on (0, 𝑇 ),

𝑢(·, 0) = 𝑢0 in (0, ℓ0),

𝑣(·, 0) = 𝑣0 in (ℓ0, 𝐿),

𝑢(ℓ(𝑡), 𝑡) = 𝑣(ℓ(𝑡), 𝑡) = 0 on (0, 𝑇 ),

−ℓ′(𝑡) = 𝑑𝑙𝑢𝑥(ℓ(𝑡), 𝑡) − 𝑑𝑟𝑣𝑥(ℓ(𝑡), 𝑡) in (0, 𝑇 ).

(4.1)

Here and in the sequel, 𝑑𝑙 and 𝑑𝑟 must be viewed as diffusion coefficients and we use the
notation ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑄 := (0, 𝐿) × (0, 𝑇 ),

𝑄𝑙 := {(𝑥, 𝑡) ∈ 𝑄 : 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (0, ℓ(𝑡))},

𝑄𝑟 := {(𝑥, 𝑡) ∈ 𝑄 : 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ (ℓ(𝑡), 𝐿)},

𝒪𝑙 = 𝜔𝑙 × (0, 𝑇 ) and 𝒪𝑟 = 𝜔𝑟 × (0, 𝑇 ).

The main result in this chapter is the following:

Theorem 4.1 Let ℓ𝑇 ∈ (ℓ𝑙, ℓ𝑟). Then there exists 𝛿 > 0 such that, for any 𝑢0 ∈ 𝑊 1,4
0 (0, ℓ0)

with 𝑢0 ≥ 0, any 𝑣0 ∈ 𝑊 1,4
0 (ℓ0, 𝐿) with 𝑣0 ≤ 0 and any ℓ0 ∈ (ℓ𝑙, ℓ𝑟) satisfying

‖𝑢0‖𝑊 1,4
0

+ ‖𝑣0‖𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 | ≤ 𝛿,

there exist controls (ℎ𝑙, ℎ𝑟) ∈ 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟) and associated states (𝑢, 𝑣, ℓ) with⎧⎪⎪⎪⎨⎪⎪⎪⎩
ℓ ∈ 𝐶1([0, 𝑇 ]), ℓ(𝑡) ∈ (ℓ𝑙, ℓ𝑟) ∀ 𝑡 ∈ [0, 𝑇 ],

𝑢, 𝑢𝑥, 𝑢𝑡, 𝑢𝑥𝑥 ∈ 𝐿2(𝑄𝑙) and 𝑣, 𝑣𝑥, 𝑣𝑡, 𝑣𝑥𝑥 ∈ 𝐿2(𝑄𝑟),

such that

ℓ(𝑇 ) = ℓ𝑇 , 𝑢(·, 𝑇 ) = 0 in (0, ℓ𝑇 ) and 𝑣(·, 𝑇 ) = 0 in (ℓ𝑇 , 𝐿).
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Remark 4.1 We will see in Section 4.5.1 that the maximum principle for parabolic equations

implies that the null controllability for (4.1) does not hold if one of the controls (for instance

ℎ𝑟) vanishes and the interface satisfies 0 < ℓ(𝑇 ) < 𝐿. However, the possibility of getting a

null control result with only one control when one of the phases collapses to the boundary,

that is, ℓ(𝑇 ) = 𝐿 or ℓ(𝑇 ) = 0, is open.

For completeness, let us mention some previous works on the control of our main system
and other similar models.

The analysis of the controllability properties for linear and non-linear parabolic PDEs defi-
ned in cylindrical domains is a classical problem in control theory and the some of the main con-
tributions are in the references (FATTORINI H.O.; RUSSELL, 1971; FERNÁNDEZ-CARA E.; ZUAZUA,
2000a; FURSIKOV A. V.; IMANUVILOV, 1996; LEBEAU G.; ROBBIANO, 1995). On the other hand,
the study of the controllability properties of free-boundary problems for PDEs has not been
much explored, although some important results have been obtained in the last years, specially
for one-phase Stefan problems and variants; see (FERNÁNDEZ-CARA, 2016; FERNÁNDEZ-CARA

E.; SOUSA, 2017a; DEMARQUE R.; FERNÁNDEZ-CARA, 2018; FERNÁNDEZ-CARA, 2018).
In what respects the two-phase Stefan problem, the best result to our knowledge concerns

stabilization. More precisely, it is proved in (KOGA S.; KRSTIC, 2020) that, under some as-
sumptions, there exist Neumann boundary controls and associated states (𝑢, 𝑣, ℓ) defined for
all 𝑡 > 0 such that

lim
𝑡→∞

‖𝑢(·, 𝑡) − 𝒯𝑚‖𝐿2(0,ℓ(𝑡)) = lim
𝑡→∞

‖𝑣(·, 𝑡) − 𝒯𝑚‖𝐿2(0,ℓ(𝑡)) = 0 and lim
𝑡→∞

ℓ(𝑡) = ℓ𝑇 ,

where 𝒯𝑚 is a melting/solidification temperature.
A natural question is whether or not it is possible to drive both the temperature and the

interface to prescribed targets at a finite time. In this chapter we give a positive partial answer
to this question. Recall that, in (DOUBOVA A.; FERNÁNDEZ-CARA, 2005; FERNÁNDEZ-CARA

E.; SOUSA, 2017b; TAKAHASHI L. Y.; TUCSNAK, 2013), a similar problem was considered for a
1D fluid-structure problem, with the following equations on the interface:

𝑢(ℓ(𝑡), 𝑡) = 𝑣(ℓ(𝑡), 𝑡) = ℓ′(𝑡), 𝑣𝑥(ℓ(𝑡), 𝑡) − 𝑢𝑥(ℓ(𝑡), 𝑡) = 𝑚ℓ′′(𝑡) for 𝑡 ∈ (0, 𝑇 ).

In this chapter, we deal with situations leading to new difficulties compared to previous
works on free-boundary controllability. Let us discuss some of these differences:

• Control of the interface. Here, we are also going to control the temperature and also the
interface between liquid and solid regions. This will bring an extra difficulty. They main
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strategy will rely on linearization, then reformulation as an observability problem with a
linear constraint and then resolution of a fixed-point equation.

• Existence of two phases. Obviously, this complicates a lot the structure and properties
of the state and requires an appropriate analysis.

The rest of this chapter is organized as follows. In Section 4.2, we will reformulaqte the
free-boundary problem as a nonlinear parabolic system in a cylindrical domain. In Section 4.3,
we will present an improved observability inequality which leads to the null controllability for
a related linearized system subject to a linear constraint. In Section 4.4, we will give a proof
of Theorem 4.1. To this purpose, we will apply a fixed-point argument. Finally, in Section 4.5,
we will present some additional comments and questions.

4.2 REFORMULATION OF THE FREE-BOUNDARY PROBLEM

As a first step, let us find a suitable diffeomorphism Φ that transforms the free-boundary
problem for the parabolic system (4.1) into an equivalent problem for a nonlinear parabolic
system in a cylindrical domain.

To do that, let us fix a function ℓ ∈ 𝐶1([0, 𝑇 ]) such that ℓ(𝑡) ∈ (ℓ𝑙, ℓ𝑟) for all 𝑡 ∈ [0, 𝑇 ]

and let us take 𝜎 > 0 sufficiently small such that

ℓ𝑙 + 𝜎 < ℓ(𝑡) − 𝜎 and ℓ(𝑡) + 𝜎 < ℓ𝑟 − 𝜎 in [0, 𝑇 ].

Then, for any ℓ𝑙 + 2𝜎 < 𝑦 < ℓ𝑟 − 2𝜎, we build a function 𝑚(·, 𝑦) : 𝑅 → 𝑅 by linear
interpolation of the points (ℓ𝑙 − 𝜎, ℓ𝑙 − 𝜎), (ℓ𝑙 + 𝜎, ℓ𝑙 + 𝜎), (𝑦 − 𝜎, ℓ0 − 𝜎), (𝑦 + 𝜎, ℓ0 + 𝜎),
(ℓ𝑟 − 𝜎, ℓ𝑟 − 𝜎) and (ℓ𝑟 + 𝜎, ℓ𝑟 + 𝜎) and then extend the extreme segments toward infinity.
Specifically, we have the following definition for 𝑚(·, 𝑦):

𝑚(𝑥, 𝑦) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑥, if 𝑥 ≤ ℓ𝑙 + 𝜎,

ℓ𝑙 + 𝜎 + (ℓ𝑙 − ℓ0 + 2𝜎)(𝑥− ℓ𝑙 − 𝜎)
ℓ𝑙 + 2𝜎 − 𝑦

, if ℓ𝑙 + 𝜎 < 𝑥 < 𝑦 − 𝜎,

𝑥− 𝑦 + ℓ0, if 𝑦 − 𝜎 < 𝑥 < 𝑦 + 𝜎,

ℓ0 + 𝜎 + (ℓ𝑟 − ℓ0 − 2𝜎)(𝑥− 𝑦 − 𝜎)
ℓ𝑟 − 𝑦 − 2𝜎 , if 𝑦 + 𝜎 < 𝑥 < ℓ𝑟 − 𝜎,

𝑥, if 𝑥 ≥ ℓ𝑟 − 𝜎.

Let us now consider a function 𝜂 ∈ 𝐶∞(𝑅) such that

supp 𝜂 ⊂ (−𝜎, 𝜎)
∫︁ 𝜎

−𝜎
𝜂(𝑥) 𝑑 𝑥 = 1 and 𝜂(𝑥) = 𝜂(−𝑥) ∀𝑥 ∈ 𝑅.
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Then, we can define a smooth function 𝐺 : 𝑅 × (ℓ𝑙 + 2𝜎, ℓ𝑟 − 2𝜎) ↦→ 𝑅 as follows:

𝐺(𝑥, 𝑦) := [𝜂 *𝑚(·, 𝑦)](𝑥).

A simple computation leads to the equalities

𝐺(𝑦, 𝑦) = ℓ0, 𝜕𝑥𝐺(𝑦, 𝑦) = 1 (4.2)

and
∇𝐺(𝑥, 𝑦) = ([𝜂′ *𝑚(·, 𝑦)](𝑥), [𝜂 * 𝜕𝑦𝑚(·, 𝑦)](𝑥)) ,

where

𝜕𝑦𝑚(𝑥, 𝑦) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 𝑥 ≤ ℓ𝑙 + 𝜎,

(ℓ𝑙 − ℓ0 + 2𝜎)(𝑥− ℓ𝑙 − 𝜎)
(ℓ𝑙 + 2𝜎 − 𝑦)2 , if ℓ𝑙 + 𝜎 < 𝑥 < 𝑦 − 𝜎,

−1, if 𝑦 − 𝜎 < 𝑥 < 𝑦 + 𝜎,

(ℓ𝑟 − ℓ0 − 2𝜎)(𝑥− ℓ𝑟 + 𝜎)
(ℓ𝑟 − 𝑦 − 2𝜎)2 , if 𝑦 + 𝜎 < 𝑥 < ℓ𝑟 − 𝜎,

0, if 𝑥 ≥ ℓ𝑟 − 𝜎.

Let us introduce the mapping

Φ : 𝑄 ↦→ 𝑄, with Φ(𝑥, 𝑡) := (𝐺(𝑥, ℓ(𝑡)), 𝑡) .

It can be seen that Φ is a diffeomorphism in 𝑄, coincides with the identity in the regions
(0, ℓ𝑙 +𝜎)×(0, 𝑇 ) and (ℓ𝑟 −𝜎, 𝐿)×(0, 𝑇 ) and, moreover, Φ(ℓ(𝑡), 𝑡) = (𝐿0, 𝑡) for all 𝑡 ∈ [0, 𝑇 ].
Let us introduce the sets 𝑄0,𝑙 := (0, ℓ0) × (0, 𝑇 ) and 𝑄0,𝑟 := (ℓ0, 𝐿) × (0, 𝑇 ) and let us define
𝑝 : 𝑄0,𝑙 → 𝑅 and 𝑞 : 𝑄0,𝑟 → 𝑅, with

𝑝(𝜉, 𝑡) := 𝑢(𝑥, 𝑡) = 𝑢(Φ−1(𝜉, 𝑡)) and 𝑞(𝜉, 𝑡) := 𝑣(𝑥, 𝑡) = 𝑣(Φ−1(𝜉, 𝑡)),

where (𝜉, 𝑡) := Φ(𝑥, 𝑡). Then, we have that the couple (𝑝, 𝑞) satisfies:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑝𝑡 − 𝑑ℓ
𝑙𝑝𝜉𝜉 + 𝑏ℓ

𝑙𝑝𝜉 = ℎ𝑙1𝜔𝑙
in 𝑄0,𝑙,

𝑞𝑡 − 𝑑ℓ
𝑟𝑞𝜉𝜉 + 𝑏ℓ

𝑟𝑞𝜉 = ℎ𝑟1𝜔𝑟 in 𝑄0,𝑟,

𝑝(0, ·) = 𝑞(𝐿, ·) = 0 on (0, 𝑇 ),

𝑝(·, 0) = 𝑝0 in (0, ℓ0),

𝑞(·, 0) = 𝑞0 in (ℓ0, 𝐿),

𝑝(ℓ0, ·) = 𝑞(ℓ0, ·) = 0 on (0, 𝑇 ),

𝑑𝑙𝑝𝜉(ℓ0, 𝑡) − 𝑑𝑟𝑞𝜉(ℓ0, 𝑡) = −ℓ′(𝑡) on (0, 𝑇 ).

(4.3)
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where 𝑝0 = 𝑢0 ∘ [𝐺(·, ℓ0)]−1 ∈ 𝑊 1,4
0 (0, ℓ0), 𝑞0 = 𝑣0 ∘ [𝐺(·, ℓ0)]−1 ∈ 𝑊 1,4

0 (ℓ0, 𝐿) and

𝑑ℓ
𝑙 (·, 𝑡) := 𝑑𝑙

(︁
𝐺𝑥

(︁
[𝐺(·, ℓ(𝑡))]−1, ℓ(𝑡)

)︁)︁2
,

𝑑ℓ
𝑟(·, 𝑡) := 𝑑𝑟

(︁
𝐺𝑥

(︁
[𝐺(·, ℓ(𝑡))]−1, ℓ(𝑡)

)︁)︁2
,

𝑏ℓ
𝑙 (·, 𝑡) := 𝐺𝑦

(︁
[𝐺(·, ℓ(𝑡))]−1, ℓ(𝑡)

)︁
ℓ′(𝑡) + 𝑑𝑙𝐺𝑥𝑥

(︁
[𝐺(·, ℓ(𝑡))]−1, ℓ(𝑡)

)︁
,

𝑏ℓ
𝑟(·, 𝑡) := 𝐺𝑦

(︁
[𝐺(·, ℓ(𝑡))]−1, ℓ(𝑡)

)︁
ℓ′(𝑡) + 𝑑𝑟𝐺𝑥𝑥

(︁
[𝐺(·, ℓ(𝑡))]−1, ℓ(𝑡)

)︁
.

Remark 4.2 Using the fact that 𝐺 and 𝐺−1 are smooth and ℓ ∈ 𝐶1([0, 𝑇 ]), we can prove

that 𝑑ℓ
𝑙 and 𝑏ℓ

𝑙 belong, respectively, to 𝐶1(𝑄0,𝑙) and 𝐶0(𝑄0,𝑙). Furthermore, the second spatial

derivative of 𝑑ℓ
𝑙 and the first spatial derivative of 𝑏ℓ

𝑙 are functions in 𝐶0(𝑄0,𝑙). The same can

be obtained for the coefficients 𝑑ℓ
𝑟 and 𝑏ℓ

𝑟.

This way, we have that Theorem 4.1 is equivalent to prove a local controllability result
for (4.3). Actually, we will prove the following:

Theorem 4.2 Let ℓ𝑇 ∈ (ℓ𝑙, ℓ𝑟). Then there exists 𝛿 > 0 such that, for any 𝑝0 ∈ 𝑊 1,4
0 (0, ℓ0)

with 𝑝0 ≥ 0, any 𝑞0 ∈ 𝑊 1,4
0 (ℓ0, 𝐿) with 𝑞0 ≤ 0 and any ℓ0 ∈ (ℓ𝑙, ℓ𝑟) satisfying

‖𝑝0‖𝑊 1,4
0

+ ‖𝑞0‖𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 | < 𝛿,

there exist controls (ℎ𝑙, ℎ𝑟) ∈ 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟) and associated solutions (𝑝, 𝑞, ℓ) to (4.3)
with ⎧⎪⎪⎪⎨⎪⎪⎪⎩

ℓ ∈ 𝐶1([0, 𝑇 ]), ℓ(𝑡) ∈ (ℓ𝑙, ℓ𝑟) ∀𝑡 ∈ [0, 𝑇 ],

𝑝, 𝑝𝜉, 𝑝𝑡, 𝑝𝜉𝜉 ∈ 𝐿2(𝑄0,𝑙) and 𝑞, 𝑞𝜉, 𝑞𝑡, 𝑞𝜉𝜉 ∈ 𝐿2(𝑄0,𝑟),

such that

ℓ(𝑇 ) = ℓ𝑇 , 𝑝(·, 𝑇 ) = 0 in (0, ℓ0) and 𝑞(·, 𝑇 ) = 0 in (ℓ0, 𝐿).

4.3 APPROXIMATE CONTROLLABILITY OF A LINEARIZED SYSTEM

In this section, we are going to complete a first step in the proof of Theorem 4.2. More
precisely, we are going to prove a controllability result for a suitable (natural) linearization of
(4.3).
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To do this, let us fix ℓ ∈ 𝐶1([0, 𝑇 ]) with ℓ(0) = ℓ0 and ℓ([0, 𝑇 ]) ⊂ (ℓ𝑙, ℓ𝑟) and let us
consider the system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑀 ℓ
𝑙 (𝑝) = ℎ𝑙1𝜔𝑙

in 𝑄0,𝑙,

𝑀 ℓ
𝑟 (𝑞) = ℎ𝑟1𝜔𝑟 in 𝑄0,𝑟,

𝑝(0, ·) = 𝑝(ℓ0, ·) = 𝑞(ℓ0, ·) = 𝑞(𝐿, ·) = 0 on (0, 𝑇 ),

𝑝(·, 0) = 𝑝0 in (0, ℓ0),

𝑞(·, 0) = 𝑞0 in (ℓ0, 𝐿),

(4.4)

where the operators 𝑀 ℓ
𝑙 and 𝑀 ℓ

𝑟 are respectively defined by:

𝑀 ℓ
𝑙 (𝑝) := 𝑝𝑡 − 𝑑ℓ

𝑙𝑝𝜉𝜉 + 𝑏ℓ
𝑙𝑝𝜉 and 𝑀 ℓ

𝑟 (𝑞) := 𝑞𝑡 − 𝑑ℓ
𝑟𝑞𝜉𝜉 + 𝑏ℓ

𝑟𝑞𝜉.

Also, let us introduce the function ℒ : [0, 𝑇 ] ↦→ 𝑅 given by

ℒ(𝑡) := ℓ0 −
∫︁ 𝑡

0
[𝑑𝑙𝑝𝜉(ℓ0, 𝜏) − 𝑑𝑟𝑞𝜉(ℓ0, 𝜏)] 𝑑𝜏.

The main goal of this section is to obtain a (robust) approximate controllability result for (4.4)
subject to the linear constraint

ℒ(𝑇 ) = ℓ𝑇 . (4.5)

In other words, we want to find controls (ℎ𝑙, ℎ𝑟) ∈ 𝐿2(𝒪𝑙) ×𝐿2(𝒪𝑟) such that the associated
solutions to (4.4) satisfy (4.5).

Let us first reformulate (4.5). Thus, consider the augmented adjoint system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑀 ℓ
𝑙 )*(𝜓) = 0 in 𝑄0,𝑙,

(𝑀 ℓ
𝑟 )*(𝜁) = 0 in 𝑄0,𝑟,

𝜓(0, ·) = 0, 𝜓(ℓ0, ·) = 1 on (0, 𝑇 ),

𝜁(ℓ0, ·) = 1, 𝜁(𝐿, ·) = 0, on (0, 𝑇 ),

𝜓(·, 𝑇 ) = 0 in (0, ℓ0),

𝜁(·, 𝑇 ) = 0 in (ℓ0, 𝐿).

(4.6)

It is not difficult to check that (4.6) possesses a unique weak solution (𝜓ℓ, 𝜁ℓ), with

𝜓ℓ ∈ 𝐿2(0, 𝑇 ;𝐻1
0 (0, ℓ0)) ∩𝐻1(0, 𝑇 ;𝐻−1(0, ℓ0)),

𝜁ℓ ∈ 𝐿2(0, 𝑇 ;𝐻1
0 (ℓ0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐻−1(ℓ0, 𝐿)).

A crucial property of (𝜓ℓ, 𝜁ℓ) is the following:
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Proposition 4.1 Given 𝑅 > 0, let us consider the set ℬ𝑅 := {ℓ ∈ 𝐶1([0, 𝑇 ]); ‖ℓ′‖𝐶0([0,𝑇 ]) ≤

𝑅}. Then, there exists a positive constant 𝐶0, only depending on ℓ0, ℓ𝑙, ℓ𝑟, 𝜔𝑙, 𝜔𝑟, 𝑇 and 𝑅

such that, for any ℓ ∈ ℬ𝑅, one has:

‖𝜓ℓ‖𝐿2(𝒪𝑙) + ‖𝜁ℓ‖𝐿2(𝒪𝑟) ≥ 𝐶0.

We argue by contradiction. Thus, if the assertion were false, then there would exist ℓ1, ℓ2, . . .

and associated pairs (𝜓1, 𝜁1), (𝜓2, 𝜁2), . . . (weak solutions to (4.6)), such that

‖ℓ′
𝑛‖∞ ≤ 𝑅 and ‖𝜓𝑛‖𝐿2(𝒪𝑙) + ‖𝜁𝑛‖𝐿2(𝒪𝑟) ≤ 1

𝑛
∀ 𝑛 ≥ 1. (4.7)

Due to the smoothing effect of parabolic operators and the fact that the (𝑑ℓ𝑛
𝑙 , 𝑏

ℓ𝑛
𝑙 ) are uniformly

bounded in 𝐶1(𝑄0,𝑙) × 𝐶0(𝑄0,𝑙), there would exist 𝜎 > 0 such that

‖𝜓𝑛‖𝐿2(0,𝑇 −𝜎;𝐻2(0,ℓ0)) + ‖𝜓𝑛
𝑡 ‖𝐿2(0,𝑇 −𝜎;𝐿2(0,ℓ0)) ≤ 𝐶 ∀ 𝑛 ≥ 1,

with 𝐶 > 0 depending only on ℓ0, ℓ𝑙, ℓ𝑟, 𝑇 and 𝑅. Consequently, after extraction of a
subsequence, we would have⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ℓ𝑛 → ℓ strongly in 𝐶0([0, 𝑇 − 𝜎]),

ℓ𝑛 → ℓ weakly in 𝐻1(0, 𝑇 − 𝜎),

𝜓𝑛 → 𝜓 weakly in 𝐿2(0, 𝑇 − 𝜎;𝐻2(0, ℓ0)) ∩𝐻1(0, 𝑇 − 𝜎;𝐿2(0, ℓ0))

and we would be able to pass to the limit in the equation and the boundary condition satisfied
by 𝜓𝑛 to deduce that⎧⎪⎪⎨⎪⎪⎩

(𝑀 ℓ
𝑙 )*(𝜓) = 0 in (0, ℓ0) × (0, 𝑇 − 𝜎),

𝜓(0, ·) = 0, 𝜓(ℓ0, ·) = 1 on (0, 𝑇 − 𝜎).
(4.8)

But we would also have, by (4.7), that 𝜓 ≡ 0 in 𝜔𝑙 × (0, 𝑇 − 𝜎), which is impossible, in view
of the unique continuation property and (4.8)2. This ends the proof.

Let us multiply (4.4)1 by 𝜓ℓ and let us integrate in 𝑄0,𝑙 to obtain∫︁∫︁
𝒪𝑙

ℎ𝑙𝜓ℓ 𝑑𝜉 𝑑𝑡 = −
∫︁ ℓ0

0
𝑝0(𝜉)𝜓ℓ(𝜉, 0) 𝑑𝜉 −

∫︁ 𝑇

0
𝑑𝑙𝑝𝜉(ℓ0, 𝜏) 𝑑𝜏. (4.9)

Analogously, multiplying (4.4)2 by 𝜁ℓ and integrating in 𝑄0,𝑟 we get∫︁∫︁
𝒪𝑟

ℎ𝑟𝜁ℓ 𝑑𝜉 𝑑𝑡 = −
∫︁ 𝐿

ℓ0
𝑞0(𝜉)𝜁ℓ(𝜉, 0) 𝑑𝜉 +

∫︁ 𝑇

0
𝑑𝑟𝑞𝜉(ℓ0, 𝜏) 𝑑𝜏. (4.10)
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It follows from (4.9)–(4.10) that a couple of controls (ℎ𝑙, ℎ𝑟) ∈ 𝐿2(𝒪𝑙) ×𝐿2(𝒪𝑟) is such that
ℒ(𝑇 ) = ℓ𝑇 if and only if∫︁∫︁

𝒪𝑙

ℎ𝑙𝜓ℓ 𝑑𝜉 𝑑𝑡+
∫︁∫︁

𝒪𝑟

ℎ𝑟𝜁ℓ 𝑑𝜉 𝑑𝑡 = ℓ𝑇 − ℓ0 −
∫︁ ℓ0

0
𝑝0(𝜉)𝜓ℓ(𝜉, 0) 𝑑𝜉 −

∫︁ 𝐿

ℓ0
𝑞0(𝜉)𝜁ℓ(𝜉, 0) 𝑑𝜉.

(4.11)

In Section 4.3.2, we will establish the approximate controllability of (4.4) subject to the
linear constraint (4.11). Before, we will need an adequate (improved) observability inequality.

4.3.1 An improved observability inequality

To do this, let us first consider open sets 𝜔0,𝑙 ⊂⊂ 𝜔𝑙, 𝜔0,𝑟 ⊂⊂ 𝜔𝑙 and let us introduce the
weight functions 𝜂0,𝑙 ∈ 𝐶2([0, ℓ0]) and 𝜂0,𝑟 ∈ 𝐶2([ℓ0, 𝐿]) satisfying⎧⎪⎪⎨⎪⎪⎩

𝜂0,𝑙 > 0 in (0, ℓ0), 𝜂0,𝑙(0) = 𝜂0,𝑙(ℓ0) = 0 and |𝜂′
0,𝑙| > 0 in [0, ℓ0]∖𝜔0,𝑙,

𝜂0,𝑟 > 0 in (ℓ0, 𝐿), 𝜂0,𝑟(ℓ0) = 𝜂0,𝑟(𝐿) = 0 and |𝜂′
0,𝑟| > 0 in [ℓ0, 𝐿]∖𝜔0,𝑟.

Also, for any 𝜆 > 0, let us set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜇𝑙(𝜉, 𝑡) := 𝑒𝜆𝜂0,𝑙(𝜉)

𝑡(𝑇 − 𝑡) , 𝛼𝑙(𝜉, 𝑡) := 𝑒2𝜆‖𝜂0,𝑙‖∞ − 𝑒𝜆𝜂0,𝑙(𝜉)

𝑡(𝑇 − 𝑡) ,

𝜇𝑟(𝜉, 𝑡) := 𝑒𝜆𝜂0,𝑟(𝜉)

𝑡(𝑇 − 𝑡) , 𝛼𝑟(𝜉, 𝑡) := 𝑒2𝜆‖𝜂0,𝑟‖∞ − 𝑒𝜆𝜂0,𝑟(𝜉)

𝑡(𝑇 − 𝑡) .

Then, by using the regularity of the coefficients of the adjoint operators (𝑀 ℓ
𝑙 )* and (𝑀 ℓ

𝑟 )* (see
Remark 4.2) and following the ideas in (FERNÁNDEZ-CARA E.; GUERRERO, 2006; FURSIKOV A.

V.; IMANUVILOV, 1996), we get the following global Carleman estimates:

Proposition 4.2 Let 𝑅 > 0 and assume that ℓ ∈ 𝐶1([0, 𝑇 ]) satisfies ℓ(0) = ℓ0, ℓ([0, 𝑇 ]) ⊂

(ℓ𝑙, ℓ𝑟) and ‖ℓ′‖𝐶0([0,𝑇 ]) ≤ 𝑅. Then, there exist positive constants 𝜆0, 𝑠0 and 𝐶 (depending on

ℓ𝑙, ℓ𝑟, 𝑅, 𝜔𝑙, 𝜔𝑟 and 𝑇 ) such that, for any 𝑠 ≥ 𝑠0 and 𝜆 ≥ 𝜆0, we have:∫︁∫︁
𝑄0,𝑙

𝑒−2𝑠𝛼𝑙

[︁
(𝑠𝜇𝑙)−1

(︁
|𝜙𝑡|2 + |𝜙𝜉𝜉|2

)︁
+ 𝜆2(𝑠𝜇𝑙)|𝜙𝜉|2 + 𝜆4(𝑠𝜇𝑙)3|𝜙|2

]︁
𝑑𝜉 𝑑𝑡 (4.12)

≤ 𝐶

[︃∫︁∫︁
𝑄0,𝑙

𝑒−2𝑠𝛼𝑙

⃒⃒⃒
(𝑀 ℓ

𝑙 )*(𝜙)
⃒⃒⃒2
𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑙

𝑒−2𝑠𝛼𝑙𝜆4(𝑠𝜇𝑙)3|𝜙|2 𝑑𝜉 𝑑𝑡
]︃

and ∫︁∫︁
𝑄0,𝑟

𝑒−2𝑠𝛼𝑟

[︁
(𝑠𝜇𝑟)−1

(︁
|𝜑𝑡|2 + |𝜑𝜉𝜉|2

)︁
+ 𝜆2(𝑠𝜇𝑟)|𝜑𝜉|2 + 𝜆4(𝑠𝜇𝑟)3|𝜑|2

]︁
𝑑𝜉 𝑑𝑡 (4.13)

≤ 𝐶

[︃∫︁∫︁
𝑄0,𝑟

𝑒−2𝑠𝛼𝑟 |(𝑀 ℓ
𝑟 )*(𝜑)|2 𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

𝑒−2𝑠𝛼𝑟𝜆4(𝑠𝜇𝑟)3|𝜑|2 𝑑𝜉 𝑑𝑡
]︃
,
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for any pair (𝜙, 𝜑) in the Bochner-Sobolev space

[𝐿2(0, 𝑇 ;𝐻1
0 (0, ℓ0)) ∩𝐻1(0, 𝑇 ;𝐻−1(0, ℓ0))] × [𝐿2(0, 𝑇 ;𝐻1

0 (ℓ0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐻−1(ℓ0, 𝐿))]

such that
(︁
(𝑀 ℓ

𝑙 )*(𝜙), (𝑀 ℓ
𝑟 )*(𝜑)

)︁
belongs to 𝐿2(𝑄0,𝑙) × 𝐿2(𝑄0,𝑟).

A straightforward argument, based on the estimates (4.12)–(4.13), leads the following
observability inequality:

Proposition 4.3 Let 𝑅 > 0 and assume that ℓ ∈ 𝐶1([0, 𝑇 ]) satisfies ℓ(0) = ℓ0, ℓ([0, 𝑇 ]) ⊂

(ℓ𝑙, ℓ𝑟) and ‖ℓ′‖𝐶0([0,𝑇 ]) ≤ 𝑅. There exist positive constants 𝜆0, 𝑠0 and 𝐶, depending on ℓ𝑙, ℓ𝑟,

𝑅, 𝜔𝑙, 𝜔𝑟 and 𝑇 , such that, for any 𝑠 ≥ 𝑠0 and any 𝜆 ≥ 𝜆0, we have:

‖(𝜙(·, 0), 𝜑(·, 0))‖𝐿2(0,ℓ0)×𝐿2(ℓ0,𝐿) ≤ 𝐶‖(𝜙, 𝜑)‖𝐿2(𝒪𝑙)×𝐿2(𝒪𝑟), (4.14)

for any pair (𝜙, 𝜑) in the Bochner-Sobolev space

[𝐿2(0, 𝑇 ;𝐻1
0 (0, ℓ0)) ∩𝐻1(0, 𝑇 ;𝐻−1(0, ℓ0))] × [𝐿2(0, 𝑇 ;𝐻1

0 (ℓ0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐻−1(ℓ0, 𝐿))]

such that
(︁
(𝑀 ℓ

𝑙 )*(𝜙), (𝑀 ℓ
𝑟 )*(𝜑)

)︁
= (0, 0).

In order to present an improved observability inequality, let us introduce the linear projectors
𝑃 ℓ

𝑙 : 𝐿2(𝑄0,𝑙) ↦→ 𝐿2(𝑄0,𝑙) and 𝑃 ℓ
𝑟 : 𝐿2(𝑄0,𝑟) ↦→ 𝐿2(𝑄0,𝑟), respectively given by

𝑃 ℓ
𝑙 𝜙 := 𝛽ℓ

𝑙 (𝜙)𝜓ℓ and 𝑃 ℓ
𝑟𝜑 := 𝛽ℓ

𝑟(𝜑)𝜁ℓ,

where we have set

𝛽ℓ
𝑙 (𝜙) :=

∫︁∫︁
𝒪𝑙

𝜓ℓ𝜙𝑑𝜉 𝑑𝑡∫︁∫︁
𝒪𝑙

|𝜓ℓ|2 𝑑𝜉 𝑑𝑡
and 𝛽ℓ

𝑟(𝜑) :=

∫︁∫︁
𝒪𝑟

𝜁ℓ𝜑 𝑑𝜉 𝑑𝑡∫︁∫︁
𝒪𝑟

|𝜁ℓ|2 𝑑𝜉 𝑑𝑡

and (𝜓ℓ, 𝜁ℓ) is the unique weak solution to (4.6).

Remark 4.3 Note that the ranges of 𝑃 ℓ
𝑙 and 𝑃 ℓ

𝑟 are 1D vector spaces. Therefore, these

operators are compact.

For any (𝜙𝑇 , 𝜑𝑇 ) ∈ 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿), there exists a unique couple (𝜙, 𝜑) satisfying⎧⎪⎪⎨⎪⎪⎩
𝜙 ∈ 𝐿2(0, 𝑇 ;𝐻1

0 (0, ℓ0)) ∩𝐻1(0, 𝑇 ;𝐻−1(0, ℓ0)),

𝜑 ∈ 𝐿2(0, 𝑇 ;𝐻1
0 (ℓ0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐻−1(ℓ0, 𝐿)),

(4.15)
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that solves in the weak sense the linear system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑀 ℓ
𝑙 )*(𝜙) = 0 in 𝑄0,𝑙,

(𝑀 ℓ
𝑟 )*(𝜑) = 0 in 𝑄0,𝑟,

𝜙(0, ·) = 𝜙(ℓ0, ·) = 0 on (0, 𝑇 ),

𝜑(0, ·) = 𝜑(ℓ0, ·) = 0 on (0, 𝑇 ),

𝜙(·, 𝑇 ) = 𝜙𝑇 in (0, ℓ0),

𝜑(·, 𝑇 ) = 𝜑𝑇 in (ℓ0, 𝐿).

(4.16)

Accordingly, we can introduce the following functional in 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿):

𝐼(𝜙𝑇 , 𝜑𝑇 ) :=
∫︁∫︁

𝒪𝑙

|𝜙|2 𝑑𝜉 𝑑𝑡+
∫︁ ℓ0

0
|𝜙(𝜉, 0)|2 𝑑𝜉 + |𝛽ℓ

𝑙 (𝜙)|2

+
∫︁∫︁

𝒪𝑟

|𝜑|2 𝑑𝜉 𝑑𝑡+
∫︁ 𝐿

ℓ0
|𝜑(𝜉, 0)|2 𝑑𝜉 + |𝛽ℓ

𝑟(𝜑)|2,

where (𝜙, 𝜑) satisfies (4.15)–(4.16).
We can prove the following result:

Proposition 4.4 Let 𝑅 > 0 and let us assume that ℓ ∈ 𝐶1([0, 𝑇 ]) satisfies ℓ(0) = ℓ0,

ℓ([0, 𝑇 ]) ⊂ (ℓ𝑙, ℓ𝑟) and ‖ℓ′‖𝐶0([0,𝑇 ]) ≤ 𝑅. Then, there exists a positive constant 𝐶, depending

on ℓ0, ℓ𝑙, ℓ𝑟, 𝑅, 𝜔𝑙, 𝜔𝑟 and 𝑇 , such that, for any (𝜙𝑇 , 𝜑𝑇 ) ∈ 𝐿2(0, ℓ0)×𝐿2(ℓ0, 𝐿), the following

holds:

𝐼(𝜙𝑇 , 𝜑𝑇 ) ≤ 𝐶
[︂∫︁∫︁

𝒪𝑙

|𝜙− 𝑃 ℓ
𝑙 𝜙|2 𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

|𝜑− 𝑃 ℓ
𝑟𝜑|2 𝑑𝜉 𝑑𝑡

]︂
. (4.17)

The prove will be by contradiction. It is inspired by the results in (NAKOULIMA, 2007). Let
us first prove that there exists a constant 𝐶1 > 0 (depending on ℓ0, ℓ𝑙, ℓ𝑟, 𝑅, 𝜔𝑙, 𝜔𝑟 and 𝑇 )
such that, for any couple of functions (𝜙𝑇 , 𝜑𝑇 ) ∈ 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿), we get:∫︁∫︁

𝒪𝑙

|𝜙|2 𝑑𝜉 𝑑𝑡+
∫︁ ℓ0

0
|𝜙(𝜉, 0)|2 𝑑𝜉 +

∫︁∫︁
𝒪𝑟

|𝜑|2 𝑑𝜉 𝑑𝑡+
∫︁ 𝐿

ℓ0
|𝜑(𝜉, 0)|2 𝑑𝜉

≤ 𝐶1

[︂∫︁∫︁
𝒪𝑙

|𝜙− 𝑃 ℓ
𝑙 𝜙|2 𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

|𝜑− 𝑃 ℓ
𝑟𝜑|2 𝑑𝜉 𝑑𝑡

]︂
.

(4.18)

To prove this, we argue by contradiction. Thus, suppose that (4.18) does not hold. Then,
there exists a sequence {(𝜙𝑇,𝑛, 𝜑𝑇,𝑛)}∞

𝑛=1 in 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿) such that⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 =

∫︁∫︁
𝒪𝑙

|𝜙𝑛|2 𝑑𝜉 𝑑𝑡+
∫︁ ℓ0

0
|𝜙𝑛(𝜉, 0)|2 𝑑𝜉 +

∫︁∫︁
𝒪𝑟

|𝜑𝑛|2 𝑑𝜉 𝑑𝑡+
∫︁ 𝐿

ℓ0
|𝜑𝑛(𝜉, 0)|2 𝑑𝜉,

1
𝑛

≥
∫︁∫︁

𝒪𝑙

|𝜙𝑛 − 𝑃 ℓ
𝑙 𝜙𝑛|2 𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

|𝜑𝑛 − 𝑃 ℓ
𝑟𝜑𝑛|2 𝑑𝜉 𝑑𝑡.

(4.19)
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Now, notice that

1
2

∫︁∫︁
𝒪𝑙

|𝑃 ℓ
𝑙 𝜙𝑛|2 𝑑𝜉 𝑑𝑡+ 1

2

∫︁∫︁
𝒪𝑟

|𝑃 ℓ
𝑟𝜑𝑛|2 𝑑𝜉 𝑑𝑡

≤
∫︁∫︁

𝒪𝑙

[︁
|𝜙𝑛|2 + |𝜙𝑛 − 𝑃 ℓ

𝑙 𝜙𝑛|2
]︁
𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

[︁
|𝜑𝑛|2 + |𝜑𝑛 − 𝑃 ℓ

𝑙 𝜑𝑛|2
]︁
𝑑𝜉 𝑑𝑡.

Therefore, we get easily from (4.19) that the right hand side of the inequality above is uniformly
bounded and, in particular, the sequence {(𝛽ℓ

𝑙 (𝜙𝑛), 𝛽ℓ
𝑟(𝜑𝑛))}∞

𝑛=1 is uniformly bounded in 𝑅2.
Consequently, there exists a subsequence, still indexed by 𝑛, and (𝛽*

𝑙 , 𝛽
*
𝑟 ) ∈ 𝑅2 such that

(𝛽ℓ
𝑙 (𝜙𝑛), 𝛽ℓ

𝑟(𝜑𝑛)) → (𝛽*
𝑙 , 𝛽

*
𝑟 ) in 𝑅2. (4.20)

Now, we consider a sequence of positive numbers {𝑘𝑗}∞
𝑗=1 with 𝑘𝑗 = 𝑘1 + (𝑗 − 1), so that

𝑇 − 1/𝑘1 > 0. Moreover, given 𝑗, let us introduce the spaces:

𝒰 𝑙
𝑗 := 𝐿2(1/𝑘𝑗, 𝑇 − 1/𝑘𝑗;𝐻2(0, ℓ0) ∩𝐻1

0 (0, ℓ0)) ∩𝐻1(1/𝑘𝑗, 𝑇 − 1/𝑘𝑗;𝐿2(0, ℓ0)),

𝒰 𝑟
𝑗 := 𝐿2(1/𝑘𝑗, 𝑇 − 1/𝑘𝑗;𝐻2(ℓ0, 𝐿) ∩𝐻1

0 (ℓ0, 𝐿)) ∩𝐻1(1/𝑘𝑗, 𝑇 − 1/𝑘𝑗;𝐿2(ℓ0, 𝐿)).

Then, using the inequalities (4.12), (4.13) and (4.19)1, we can see the sequence {(𝜙𝑛, 𝜑𝑛)}∞
𝑛=1

is uniformly bounded in 𝒰 𝑙
1 × 𝒰 𝑟

1 and, consequently, there exist a subsequence {(𝜙1
𝑛, 𝜑

1
𝑛)}∞

𝑛=1

and functions (𝜙1, 𝜑1) ∈ 𝒰 𝑙
1 × 𝒰 𝑟

1 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜙1
𝑛 → 𝜙1 weakly in 𝐿2(1/𝑘1, 𝑇 − 1/𝑘1;𝐻2(0, ℓ0) ∩𝐻1

0 (0, ℓ0)),

𝜙1
𝑛,𝑡 → 𝜙1,𝑡 weakly in 𝐿2(1/𝑘1, 𝑇 − 1/𝑘1;𝐿2(0, ℓ0)),

𝜑1
𝑛 → 𝜑1 weakly in 𝐿2(1/𝑘1, 𝑇 − 1/𝑘1;𝐻2(ℓ0, 𝐿) ∩𝐻1

0 (ℓ0, 𝐿)),

𝜑1
𝑛,𝑡 → 𝜑1,𝑡 weakly in 𝐿2(1/𝑘1, 𝑇 − 1/𝑘1;𝐿2(ℓ0, 𝐿)).

(4.21)

Analogously, the sequence {(𝜙1
𝑛, 𝜑

1
𝑛)}∞

𝑛=1 is uniformly bounded in 𝒰 𝑙
2 × 𝒰 𝑟

2 , where we can
extract a new subsequence {(𝜙2

𝑛, 𝜑
2
𝑛)}∞

𝑛=1 and functions (𝜙2, 𝜑2) ∈ 𝒰 𝑙
2 × 𝒰 𝑟

2 satisfying the
weak limits in (4.21), for 𝑘1 replaced by 𝑘2. In particular,

(𝜙2, 𝜑2)|(1/𝑘1,𝑇 −1/𝑘1) = (𝜙1, 𝜑1).

Then, by an induction procedure we can get, for each 𝑗, sequences {(𝜙𝑗
𝑛, 𝜑

𝑗
𝑛)}∞

𝑛=1 ⊂

{(𝜙𝑗−1
𝑛 , 𝜑𝑗−1

𝑛 )}∞
𝑛=1 ⊂ . . . ⊂ {(𝜙1

𝑛, 𝜑
1
𝑛)}∞

𝑛=1 ⊂ {(𝜙𝑛, 𝜑𝑛)}∞
𝑛=1 and functions (𝜙𝑗, 𝜑𝑗) ∈ 𝒰 𝑙

𝑗 × 𝒰 𝑟
𝑗

satisfying the weak limits in (4.21), for 𝑘1 replaced by 𝑘𝑗 and, furthermore

(𝜙𝑗, 𝜑𝑗)|(1/𝑘𝑗−1,𝑇 −1/𝑘𝑗−1) = (𝜙𝑗−1, 𝜑𝑗−1), for 𝑗 = 2, 3, . . . .
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Now, let us denote again by {(𝜙𝑛, 𝜑𝑛)}∞
𝑛=1 the sequence {(𝜙𝑛

𝑛, 𝜑
𝑛
𝑛)}∞

𝑛=1 obtained by Cantor
diagonalization. Then, it’s easy to see that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝜙𝑛 → 𝜙𝑗 weakly in 𝐿2(1/𝑘𝑗, 𝑇 − 1/𝑘𝑗;𝐻2(0, ℓ0) ∩𝐻1
0 (0, ℓ0)),

𝜙𝑛,𝑡 → 𝜙𝑗,𝑡 weakly in 𝐿2(1/𝑘𝑗, 𝑇 − 1/𝑘𝑗;𝐿2(0, ℓ0)),

𝜑𝑛 → 𝜑𝑗 weakly in 𝐿2(1/𝑘𝑗, 𝑇 − 1/𝑘𝑗;𝐻2(ℓ0, 𝐿) ∩𝐻1
0 (ℓ0, 𝐿)),

𝜑𝑛,𝑡 → 𝜑𝑗,𝑡 weakly in 𝐿2(1/𝑘𝑗, 𝑇 − 1/𝑘𝑗;𝐿2(ℓ0, 𝐿)),

(4.22)

for all 𝑗.
Therefore, the functions 𝜙 : (0, ℓ0) × (0, 𝑇 ) ↦→ 𝑅 and 𝜑 : (ℓ0, 𝐿) × (0, 𝑇 ) ↦→ 𝑅, given by

(𝜙, 𝜑)|(1/𝑘𝑗 ,𝑇 −1/𝑘𝑗) = (𝜙𝑗−1, 𝜑𝑗−1), ∀ 𝑗 ∈ 𝑁

are well defined and it follows easily from (4.22) that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝑀 ℓ
𝑙 )*(𝜙) = 0 in 𝑄0,𝑙,

(𝑀 ℓ
𝑟 )*(𝜑) = 0 in 𝑄0,𝑟,

𝜙(·, 0) = 𝜙(·, ℓ0) = 0 in (0, 𝑇 ),

𝜙(·, ℓ0) = 𝜙(·, 𝐿) = 0 in (0, 𝑇 ).

(4.23)

Moreover, since (𝜙𝑛, 𝜑𝑛) = (𝜙𝑛 − 𝑃 ℓ
𝑙 𝜙𝑛, 𝜑𝑛 − 𝑃 ℓ

𝑟𝜑𝑛) + (𝑃 ℓ
𝑙 𝜙𝑛, 𝑃

ℓ
𝑟𝜑𝑛) in 𝒪𝑙 × 𝒪𝑟, using

(4.19)2 and (4.20), it is not difficult to see that

(𝜙𝑛, 𝜑𝑛) → (𝑃 *
𝑙 𝜙, 𝑃

*
𝑟 𝜑) strongly in 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟),

where (𝑃 *
𝑙 𝜙, 𝑃

*
𝑟 𝜑) = (𝛽*

𝑙 𝜓ℓ, 𝛽
*
𝑟 𝜁ℓ).

We have from (4.6) and (4.23) that ((𝑀 ℓ
𝑙 )*(𝜙 − 𝑃 *

𝑙 𝜙), (𝑀 ℓ
𝑟 )*(𝜑 − 𝑃 *

𝑟 𝜑)) = (0, 0) in
𝑄0,𝑙×𝑄0,𝑟 and also, in view of (4.19) and (4.20), (𝜙−𝑃 *

𝑙 𝜙, 𝜑−𝑃 *
𝑙 𝜑) = (0, 0) in 𝒪𝑙×𝒪𝑟. Then,

by applying a classical unique continuation argument, we conclude that (𝜙, 𝜑) = (𝑃 *
𝑙 𝜙, 𝑃

*
𝑟 𝜑)

in 𝑄0,𝑙 ×𝑄0,𝑟. However, this implies (𝜙, 𝜑) = (0, 0) in 𝑄0,𝑙 ×𝑄0,𝑟, since

(0, 0) = (𝜙(ℓ0, ·), 𝜑(ℓ0, ·)) = (𝛽*
𝑙 𝜓ℓ(ℓ0, ·), 𝛽*

𝑟 𝜁ℓ(ℓ0, ·)) = (𝛽*
𝑙 , 𝛽

*
𝑟 ).

In other words,
(𝜙𝑛, 𝜑𝑛) → (0, 0) in 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟).

Then, taking into account (4.14) and (4.19), we see that∫︁∫︁
𝒪𝑙

|𝜙𝑛|2 𝑑𝜉 𝑑𝑡+
∫︁ ℓ0

0
|𝜙𝑛(𝜉, 0)|2 𝑑𝜉 +

∫︁∫︁
𝒪𝑟

|𝜑𝑛|2 𝑑𝜉 𝑑𝑡+
∫︁ 𝐿

ℓ0
|𝜑𝑛(𝜉, 0)|2 𝑑𝜉 → 0,
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which is obviously absurd.
This proves (4.18). The remaining terms in 𝐼(𝜙𝑇 , 𝜑𝑇 ) can also be bounded by the right

hand side of (4.17), as an immediate consequence of Proposition 4.1.

4.3.2 Approximate controllability problem with linear constraint

In this section, we prove the approximate controllability of (4.4) subject to the linear
constraint (4.11). More precisely, the following holds:

Proposition 4.5 Assume that 𝑅 > 0, ℓ0 ∈ (ℓ𝑙, ℓ𝑟) and ℓ ∈ 𝐶1([0, 𝑇 ]) satisfies ℓ𝑙 < ℓ(𝑡) < ℓ𝑟

for all 𝑡 ∈ [0, 𝑇 ], ℓ(0) = ℓ0 and ‖ℓ′‖𝐶0([0,𝑇 ]) ≤ 𝑅. Then, for any 𝜀 > 0, any data 𝑝0 ∈ 𝐻1
0 (0, ℓ0)

and 𝑞0 ∈ 𝐻1
0 (ℓ0, 𝐿) and any ℓ𝑇 ∈ (ℓ𝑙, ℓ𝑟), there exist controls (ℎℓ

𝑙,𝜀, ℎ
ℓ
𝑟,𝜀) ∈ 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟)

and associated solutions to (4.4), with⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, ℓ0)) ∩𝐻1(0, 𝑇 ;𝐿2(0, ℓ0)),

𝑞 ∈ 𝐿2(0, 𝑇 ;𝐻2(ℓ0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐿2(ℓ0, 𝐿)),

satisfying the approximate controllability condition

‖(𝑝(·, 𝑇 ), 𝑞(·, 𝑇 )‖𝐿2(0,ℓ0)×𝐿2(ℓ0,𝐿) ≤ 𝜀 (4.24)

and the linear constraint (4.11). Furthermore, the controls can be chosen satisfying

‖(ℎℓ
𝑙,𝜀1𝜔𝑙

), (ℎℓ
𝑟,𝜀1𝜔𝑙

))‖𝐿2(𝑄0,𝑙)×𝐿2(𝑄0,𝑟) ≤ 𝐶 (‖(𝑝0, 𝑞0)‖𝐿2×𝐿2 + |ℓ0 − ℓ𝑇 |) , (4.25)

where the constant 𝐶 > 0 depends only on ℓ𝑙, ℓ𝑟, 𝜔𝑙, 𝜔𝑟, 𝑇 and 𝑅.

Let us first introduce the notation

𝑀ℓ := ℓ𝑇 − ℓ0 −
∫︁ ℓ0

0
𝑝0(𝜉)𝜓ℓ(𝜉, 0) 𝑑𝜉 −

∫︁ 𝐿

ℓ0
𝑞0(𝜉)𝜁ℓ(𝜉, 0) 𝑑𝜉,

where the couple (𝜓ℓ, 𝜁ℓ) is the unique solution to (4.6).
Now, for any given 𝜀 > 0, let us introduce the functional 𝐽ℓ,𝜀 : 𝐿2(0, ℓ0) ×𝐿2(ℓ0, 𝐿) ↦→ 𝑅,

defined as follows: given (𝜙𝑇 , 𝜑𝑇 ) ∈ 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿), we have

𝐽ℓ,𝜀(𝜙𝑇 , 𝜑𝑇 ) :=
∫︁∫︁

𝒪𝑙

|𝜙− 𝑃 ℓ
𝑙 𝜙|2 𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

|𝜑− 𝑃 ℓ
𝑟𝜑|2 𝑑𝜉 𝑑𝑡+ 𝜀

2‖(𝜙𝑇 , 𝜑𝑇 )‖𝐿2×𝐿2

−
∫︁ ℓ0

0
𝑝0(𝜉)𝜙(𝜉, 0) 𝑑𝜉 −

∫︁ 𝐿

ℓ0
𝑞0(𝜉)𝜑(𝜉, 0) 𝑑𝜉 −

[︁
𝛽ℓ

𝑙 (𝜙) + 𝛽ℓ
𝑟(𝜑)

]︁𝑀ℓ

2 ,

(4.26)
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where the couple (𝜙, 𝜑) satisfies (4.15)–(4.16).
Using Hölder and Young inequalities, it is not difficult to check that 𝐽ℓ,𝜀 is a continuous,

coercive and strictly convex functional. Therefore, 𝐽ℓ,𝜀 possesses a unique minimizer (𝜙𝜀
𝑇 , 𝜑

𝜀
𝑇 ) ∈

𝐿2(0, ℓ0) ×𝐿2(ℓ0, 𝐿). The corresponding solution to (4.16) will be denoted by (𝜙𝜀, 𝜑𝜀). Then

𝐽 ′
ℓ,𝜀(𝜙𝜀

𝑇 , 𝜑
𝜀
𝑇 )(𝜙𝑇 , 𝜑𝑇 ) = 0 ∀(𝜙𝑇 , 𝜑𝑇 ) ∈ 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿), (4.27)

where

𝐽 ′
ℓ,𝜀(𝜙𝑇,𝜀, 𝜑𝑇,𝜀)(𝜙𝑇 , 𝜑𝑇 ) =

∫︁∫︁
𝒪𝑙

[𝜙𝜀 − 𝑃 ℓ
𝑙 (𝜙𝜀)]𝜙𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

[𝜑𝜀 − 𝑃 ℓ
𝑟 (𝜑𝜀)]𝜑 𝑑𝜉 𝑑𝑡

+ 𝜀

2‖𝜙𝜀
𝑇 ‖𝐿2

∫︁ ℓ0

0
𝜙𝜀

𝑇 (𝜉)𝜙𝑇 (𝜉) 𝑑𝜉 + 𝜀

2‖𝜑𝜀
𝑇 ‖𝐿2

∫︁ 𝐿

ℓ0
𝜑𝜀

𝑇 (𝜉)𝜑𝑇 (𝜉) 𝑑𝜉

−
∫︁ ℓ0

0
𝑝0(𝜉)𝜙(𝜉, 0) 𝑑𝜉 −

∫︁ 𝐿

ℓ0
𝑞0(𝜉)𝜑(𝜉, 0) 𝑑𝜉 −

[︁
𝛽ℓ

𝑙 (𝜙) + 𝛽ℓ
𝑟(𝜑)

]︁𝑀ℓ

2 ,

Here, we have used the fact that ⟨𝜙𝜀−𝑃 ℓ
𝑙 (𝜙𝜀), 𝑃 ℓ

𝑙 (𝜙)⟩𝐿2(𝒪𝑙) = 0 and ⟨𝜑𝜀−𝑃 ℓ
𝑟 (𝜑𝜀), 𝑃 ℓ

𝑟 (𝜑)⟩𝐿2(𝒪𝑟) =

0.
Let us introduce

ℎℓ
𝑙,𝜀 :=

[︁
𝑃 ℓ

𝑙 (𝜙𝜀) − 𝜙𝜀

]︁
+ 𝑀ℓ

2
𝜓ℓ

‖𝜓ℓ‖2
𝐿2(𝒪𝑙)

and ℎℓ
𝑟,𝜀 :=

[︁
𝑃 ℓ

𝑟 (𝜑𝜀) − 𝜑𝜀

]︁
+ 𝑀ℓ

2
𝜁ℓ

‖𝜁ℓ‖2
𝐿2(𝒪𝑟)

. (4.28)

Let (𝜙𝑇 , 𝜑𝑇 ) ∈ 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿) be given and let (𝑝, 𝑞) be the solution to (4.4)
associated to the control pair (ℎℓ

𝑙,𝜀, ℎ
ℓ
𝑟,𝜀). Then, multiplying (4.4) by the solution (𝜙, 𝜑) to

(4.16) and integrating in 𝑄0,𝑙 and 𝑄0,𝑟, we obtain∫︁∫︁
𝒪𝑙

ℎℓ
𝑙,𝜀𝜙𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

ℎℓ
𝑟,𝜀𝜑 𝑑𝜉 𝑑𝑡 =

∫︁ ℓ0

0
[𝑝(𝜉, 𝑇 )𝜙(𝜉, 𝑇 ) − 𝑝0(𝜉)𝜙(𝜉, 0)] 𝑑𝜉

+
∫︁ 𝐿

ℓ0
[𝑞(𝜉, 𝑇 )𝜑(𝜉, 𝑇 ) − 𝑞0(𝜉)𝜑(𝜉, 0)] 𝑑𝜉.

(4.29)

Taking into account (4.28) and comparing (4.27) with (4.29), we get

∫︁ ℓ0

0
𝑝(𝜉, 𝑇 )𝜙𝑇 (𝜉) 𝑑𝜉 +

∫︁ 𝐿

ℓ0
𝑞(𝜉, 𝑇 )𝜑𝑇 (𝜉) 𝑑𝜉 = 𝜀

2

(︃∫︁ ℓ0

0

𝜙𝜀
𝑇 (𝜉)

‖𝜙𝜀
𝑇 ‖𝐿2

𝜙𝑇 (𝜉) 𝑑𝜉

+
∫︁ 𝐿

ℓ0

𝜑𝜀
𝑇 (𝜉)

‖𝜑𝜀
𝑇 ‖𝐿2

𝜑𝑇 (𝜉) 𝑑𝜉
)︃
,

for all (𝜙𝑇 , 𝜑𝑇 ) ∈ 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿). Therefore, the approximate controllability condition
(4.24) follows. Since we also have∫︁∫︁

𝒪𝑙

ℎℓ
𝑙,𝜀𝜓ℓ 𝑑𝜉 𝑑𝑡+

∫︁∫︁
𝒪𝑟

ℎℓ
𝑟,𝜀𝜁ℓ 𝑑𝜉 𝑑𝑡 =

∫︁∫︁
𝒪𝑙

[︁
𝑃 ℓ

𝑙 (𝜙𝜀) − 𝜙𝜀

]︁
𝜓ℓ 𝑑𝜉 𝑑𝑡+ 𝑀ℓ

2

+
∫︁∫︁

𝒪𝑟

[︁
𝑃 ℓ

𝑟 (𝜑𝜀) − 𝜑𝜀

]︁
𝜁ℓ 𝑑𝜉 𝑑𝑡+ 𝑀ℓ

2
= 𝑀ℓ,
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the pair (ℎℓ
𝑙,𝜀, ℎ

ℓ
𝑟,𝜀) satisfies (4.11) and, consequently, ℒ(𝑇 ) = ℓ𝑇 .

Finally, due to the fact that (𝜙𝑇,𝜀, 𝜑𝑇,𝜀) is the minimum of 𝐽ℓ,𝜀, we have the inequality
𝐽ℓ,𝜀(𝜙𝜀

𝑇 , 𝜑
𝜀
𝑇 ) ≤ 𝐽ℓ,𝜀(0, 0) = 0. Using this fact and the definition of 𝑀ℓ and (4.17), we deduce

that there exist positive constants 𝐶 (depending on ℓ𝑙, ℓ𝑟, 𝑅, 𝜔𝑙, 𝜔𝑟 and 𝑇 ) such that

‖(𝜙𝜀 − 𝑃 ℓ
𝑙 (𝜙𝜀))‖𝐿2(𝒪𝑙) + ‖(𝜑𝜀 − 𝑃 ℓ

𝑟 (𝜑𝜀))‖𝐿2(𝒪𝑟) ≤ 𝐶
(︁
‖𝑝0‖𝐿2(0,ℓ0) + ‖𝑞0‖𝐿2(ℓ0,𝐿) + |ℓ0 − ℓ𝑇 |

)︁
and

‖ℎℓ
𝑙,𝜀‖𝐿2(𝒪𝑙) + ‖ℎℓ

𝑙,𝜀‖𝐿2(𝒪𝑟) ≤ 𝐶
(︁
‖(𝜙𝜀 − 𝑃 ℓ

𝑙 (𝜙𝜀))‖𝐿2(𝒪𝑙) + ‖(𝜑𝜀 − 𝑃 ℓ
𝑟 (𝜑𝜀))‖𝐿2(𝒪𝑟) + |𝑀ℓ|

)︁
≤ 𝐶

(︁
‖𝑝0‖𝐿2(0,ℓ0) + ‖𝑞0‖𝐿2(ℓ0,𝐿) + |ℓ0 − ℓ𝑇 |

)︁
.

This ends the proof.

4.4 CONTROLLABILITY OF THE TWO-PHASE STEFAN PROBLEM

In this Section we prove Theorem 4.2. The proof relies on a fixed-point argument. It will
be convenient to first recall some regularity properties for linear parabolic systems.

4.4.1 A regularity property

Assume that (𝑝0, 𝑞0) ∈
[︁
𝑊 1,4

0 (0, ℓ0)
]︁

×
[︁
𝑊 1,4

0 (ℓ0, 𝐿)
]︁
. For any open interval 𝐼 ⊂ 𝑅, let us

introduce the Banach space

𝑋4(0, 𝑇 ; 𝐼) := 𝐿4(0, 𝑇 ;𝑊 2,4(𝐼)) ∩𝑊 1,4(0, 𝑇 ;𝐿4(𝐼)).

On the other hand, let us consider the cylinder 𝐺𝑙 := (ℓ𝑙, ℓ0) × (0, 𝑇 ), the Hölder semi-norms

⟨𝑢⟩𝜅
𝜉,𝐺𝑙

:= sup
(𝜉,𝑡),(𝜉′,𝑡)∈𝐺𝑙

𝜉 ̸=𝜉′

|𝑢(𝜉, 𝑡) − 𝑢(𝜉′, 𝑡)|
|𝜉 − 𝜉′|𝜅

and
⟨𝑢⟩𝜅

𝑡,𝐺𝑙
:= sup

(𝜉,𝑡),(𝜉,𝑡′)∈𝐺𝑙
𝑡̸=𝑡′

|𝑢(𝜉, 𝑡) − 𝑢(𝜉, 𝑡′)|
|𝑡− 𝑡′|𝜅

where 0 < 𝜅 < 1 and the space 𝐶𝜅,𝜅/2(𝐺𝑙) formed by the functions 𝑢 ∈ 𝐶0(𝐺𝑙) whose
corresponding ⟨𝑢⟩𝜅

𝜉,𝐺𝑙
and ⟨𝑢⟩𝜅/2

𝑡,𝐺𝑙
are finite. It is known that 𝐶𝜅,𝜅/2(𝐺𝑙) is a Banach space

(see (LADYZHENSKAYA, 1968)) with the following norm:

‖𝑢‖𝜅,𝜅/2;𝐺𝑙
:= ‖𝑢‖𝐶0(𝐺𝑙) + ⟨𝑢⟩𝜅

𝜉,𝐺𝑙
+ ⟨𝑢⟩𝜅/2

𝑡,𝐺𝑙
.
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Finally, let us introduce the Banach space

𝐶1+𝜅,(1+𝜅)/2(𝐺𝑙) := {𝑢 ∈ 𝐶0(𝐺𝑙) : 𝑢𝜉 ∈ 𝐶𝜅,𝜅/2(𝐺𝑙), ⟨𝑢⟩(1+𝜅)/2
𝑡,𝐺𝑙

< +∞}.

Obviously, we can introduce similar quantities and spaces for functions defined in 𝐺𝑟 :=

(ℓ0, ℓ𝑟) × (0, 𝑇 ). The following result holds:

Lemma 4.1 Let us assume that ℓ0, ℓ𝑇 ∈ (ℓ𝑙, ℓ𝑟) and the couple of initial data (𝑝0, 𝑞0) ∈[︁
𝑊 1,4

0 (0, ℓ0)
]︁

×
[︁
𝑊 1,4

0 (ℓ0, 𝐿)
]︁
. Then, the states (𝑝, 𝑞), furnished by Proposition 4.5 satisfy

(𝑝, 𝑞) ∈ 𝐶1+𝜅,(1+𝜅)/2(𝐺𝑙) × 𝐶1+𝜅,(1+𝜅)/2(𝐺𝑟) for 𝜅 = 1
4 .

Furthermore, there exists 𝐶 > 0, depending on ℓ𝑙, ℓ𝑟, 𝜔𝑙, 𝜔𝑟, 𝑇 and 𝑅, such that

‖𝑝‖1+𝜅,(1+𝜅)/2;𝐺𝑙
+ ‖𝑞‖1+𝜅,(1+𝜅)/2;𝐺𝑟

≤ 𝐶
(︁
‖(𝑝0, 𝑞0)‖𝑊 1,4

0 ×𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 |
)︁
. (4.30)

Clearly, due the regularity of 𝑝0, there exists a function 𝑓 ∈ 𝑋4(0, 𝑇 ; (0, ℓ0)) such that
𝑓(0, 𝑡) = 𝑓(ℓ0, 𝑡) = 0, for 𝑡 ∈ (0, 𝑇 ), and 𝑓(𝜉, 0) = 𝑝0(𝜉), for 𝜉 ∈ (0, ℓ0). Consequently,
the state 𝑝, provided by Proposition 4.5, can be written in the form 𝑝 = 𝑦 + 𝑓 , where
𝑦 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, ℓ0)) ∩ 𝐻1(0, 𝑇 ;𝐿2(0, ℓ0)) is the unique strong solution of the following
problem: ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − 𝑑ℓ
𝑙𝑦𝜉𝜉 + 𝑏ℓ

𝑙𝑦𝜉 = 𝐹 in 𝑄0,𝑙

𝑦(0, ·) = 𝑦(ℓ0, ·) = 0 in (0, 𝑇 ),

𝑦(·, 0) = 0 in (0, ℓ0),

(4.31)

where 𝐹 = ℎℓ
𝑙,𝜀1𝜔𝑙

− 𝑓𝑡 + 𝑑ℓ
𝑙𝑓𝜉𝜉 − 𝑏ℓ

𝑙𝑓𝜉.
Now, let 𝜎 > 0 be such that 𝜔𝑙 ⊂⊂ (0, ℓ𝑙 − 𝜎) and, moreover, 𝐺𝜎

𝑙 := (ℓ𝑙 − 𝜎, ℓ𝑙 +

𝜎) × (0, 𝑇 ) ⊂ 𝑄0,𝑙. We can easily check that 𝐹 ∈ 𝐿4(0, 𝑇 ;𝐿4(ℓ𝑙 − 𝜎, ℓ𝑙 + 𝜎)). Therefore,
from local parabolic regularity results (see Proposition C.1 of Appendix C), we obtain that
𝑦 ∈ 𝑋4(0, 𝑇 ; (ℓ𝑙 − 𝜎/2, ℓ𝑙 + 𝜎/2)) and

‖𝑦‖𝑋4(0,𝑇 ;(ℓ𝑙−𝜎/2,ℓ𝑙+𝜎/2)) ≤ 𝐶
(︁
‖𝐹‖𝐿4(0,𝑇 ;𝐿4(ℓ𝑙−𝜎,ℓ𝑙+𝜎)) + ‖𝑦‖𝐿2(0,𝑇 ;𝐻2(0,ℓ0))∩𝐻1(0,𝑇 ;𝐿2(0,ℓ0))

)︁
,

where 𝐶 only depends on ‖𝑑ℓ
𝑙 ‖∞, ‖𝑏ℓ

𝑙 ‖∞, ℓ𝑙, ℓ0 and 𝜎.
Next, using standard parabolic energy estimates and (4.25), we get

‖𝑦‖𝑋4(0,𝑇 ;(ℓ𝑙−𝜎/2,ℓ𝑙+𝜎/2)) ≤ 𝐶
(︁
‖(𝑝0, 𝑞0)‖𝑊 1,4

0 ×𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 |
)︁
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for some 𝐶 > 0 as above. Here, we have used that ‖𝑑ℓ
𝑙 ‖∞ and ‖𝑏ℓ

𝑙 ‖∞ are bounded in terms
of 𝑅. Finally, using this inequality, the regularity of the trace 𝑦(ℓ𝑙, ·), the fact that 𝑦 is a
strong solution to (4.31) and (WU, 2006, Propositions 9.2.3 and 9.2.5), we conclude that
𝑦 ∈ 𝑋4(0, 𝑇 ; (ℓ𝑙, ℓ0)) and, moreover,

‖𝑦‖𝑋4(0,𝑇 ;(ℓ𝑙,ℓ0)) ≤ 𝐶
(︁
‖(𝑝0, 𝑞0)‖𝑊 1,4

0 ×𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 |
)︁

(4.32)

for a new 𝐶 > 0.
In a similar way, we can write 𝑞 = 𝑧 + 𝑔, where 𝑔 ∈ 𝑋4(0, 𝑇 ; (ℓ0, 𝐿)) is a shift function

for the initial data 𝑞0 and 𝑧 ∈ 𝑋4(0, 𝑇 ; (ℓ0, ℓ𝑟)) satisfies

‖𝑧‖𝑋4(0,𝑇 ;(ℓ0,ℓ𝑟)) ≤ 𝐶
(︁
‖(𝑝0, 𝑞0)‖𝑊 1,4

0 ×𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 |
)︁
. (4.33)

Then, the estimate in (4.30) is a immediate consequence of (4.32)-(4.33) and the following
embedding from (BODART, 2004, Lemma 2.2)

𝑋4(0, 𝑇 ; (ℓ𝑙, ℓ0)) ×𝑋4(0, 𝑇 ; (ℓ0, ℓ𝑟)) →˓ 𝐶1+𝜅,(1+𝜅)/2(𝐺𝑙) × 𝐶1+𝜅,(1+𝜅)/2(𝐺𝑟),

where 𝜅 = 1/4.
Let us introduce the function 𝜃 : [0, 𝑇 ] ↦→ 𝑅, given by

𝜃(𝑡) = 𝑑𝑟𝑞𝜉(ℓ0, 𝑡) − 𝑑𝑙𝑝𝜉(ℓ0, 𝑡). (4.34)

Then, as an immediate consequence of (4.30), we get that 𝜃 ∈ 𝐶1/8([0, 𝑇 ]) and, moreover,
there exists a positive constant 𝐶 (depending on ℓ𝑙, ℓ𝑟, 𝜔𝑙, 𝜔𝑟, 𝑇 and 𝑅) such that

‖𝜃‖𝐶1/8([0,𝑇 ]) ≤ 𝐶
(︁
‖(𝑝0, 𝑞0)‖𝑊 1,4

0 ×𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 |
)︁
. (4.35)

4.4.2 A fixed-point argument

In this Section we will achieve the proof of Theorem 4.2. It will be a consequence of the
following uniform approximate controllability result:

Theorem 4.3 Assume that 𝑅 > 0 is given. Then, there exists 𝛿 > 0 such that, for any

𝑝0 ∈ 𝑊 1,4
0 (0, ℓ0) with 𝑝0 ≥ 0, any 𝑞0 ∈ 𝑊 1,4

0 (ℓ0, 𝐿) with 𝑞0 ≤ 0 and any ℓ0, ℓ𝑇 ∈ (ℓ𝑙, ℓ𝑟)

satisfying

‖𝑝0‖𝑊 1,4
0 (0,ℓ0) + ‖𝑞0‖𝑊 1,4

0 (ℓ0,𝐿) + |ℓ0 − ℓ𝑇 | ≤ 𝛿
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and any 𝜀 > 0, there exist controls (ℎ𝜀
𝑙 , ℎ

𝜀
𝑟) ∈ 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟) and associated solutions to

(4.3), with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ℓ𝜀 ∈ 𝐶1([0, 𝑇 ]) and ℓ𝜀(𝑡) ∈ (ℓ𝑙, ℓ𝑟) ∀ 𝑡 ∈ [0, 𝑇 ], ‖ℓ′
𝜀‖𝐶0([0,𝑇 ]) ≤ 𝑅,

𝑝𝜀 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, ℓ0)) ∩𝐻1(0, 𝑇 ;𝐿2(0, ℓ0)),

𝑞𝜀 ∈ 𝐿2(0, 𝑇 ;𝐻2(ℓ0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐿2(ℓ0, 𝐿)),

satisfying the exact-approximate controllability condition

ℓ𝜀(𝑡) = ℓ𝑇 and ‖(𝑝𝜀(·, 𝑇 ), 𝑞𝜀(·, 𝑇 ))‖𝐿2(0,ℓ0)×𝐿2(ℓ0,𝐿) ≤ 𝜀. (4.36)

Moreover, the controls can be found satisfying the following uniform estimate with respect to

𝜀:

‖(ℎ𝜀
𝑙 1𝜔𝑙

), (ℎ𝜀
𝑟1𝜔𝑟))‖𝐿2(𝑄0,𝑙)×𝐿2(𝑄0,𝑟) ≤ 𝐶

(︁
‖(𝑝0, 𝑞0)‖𝑊 1,4

0 ×𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 |
)︁

for some positive 𝐶 (depending on ℓ𝑙, ℓ𝑟, 𝜔𝑙, 𝜔𝑟, 𝑇 and 𝑅).

Given ℓ𝑙 < ℓ̃𝑙 < ℓ̃𝑟 < ℓ𝑟 and 𝑅 > 0, we define the set:

𝒜𝑅 := {ℓ ∈ 𝐶1([0, 𝑇 ]) : ℓ̃𝑙 ≤ ℓ(𝑡) ≤ ℓ̃𝑟, ∀𝑡 ∈ [0, 𝑇 ], ℓ(0) = ℓ0, ‖ℓ′‖𝐶0([0,𝑇 ]) ≤ 𝑅}.

Obviously, 𝒜𝑅 is a non-empty, closed and convex subset of 𝐶1([0, 𝑇 ]). Let us also introduce
the mapping Λ𝜀 : 𝒜𝑅 ↦→ 𝐶1([0, 𝑇 ]), given by

Λ𝜀(ℓ) = ℒ, with ℒ(𝑡) := ℓ0 −
∫︁ 𝑡

0
[𝑑𝑙𝑝𝜉(ℓ0, 𝜏) − 𝑑𝑟𝑞𝜉(ℓ0, 𝜏)] 𝑑𝜏,

where (𝑝, 𝑞) is the state associated to the control pair (ℎℓ
𝑙,𝜀, ℎ

ℓ
𝑟,𝜀) constructed as in the proof of

Proposition 4.5 (recall Lemma 4.1) and, therefore, ℒ(𝑇 ) = ℓ𝑇 . Thanks to (4.34) and (4.35),
we have that ℒ ∈ 𝐶1([0, 𝑇 ]).

Let us check that Λ𝜀 satisfies the conditions of Schauder’s Fixed-Point Theorem.

• Λ𝜀 is continuous: Indeed, let the ℓ𝑛(𝑛 ≥ 1) and ℓ belong to 𝒜𝑅 and assume that ℓ𝑛 → ℓ

in 𝐶1([0, 𝑇 ]). We must prove that Λ𝜀(ℓ𝑛) → Λ𝜀(ℓ) in 𝐶1([0, 𝑇 ]). To that end, we will
first prove that the corresponding solutions to (4.6) satisfy

(𝜓ℓ𝑛 , 𝜁ℓ𝑛) → (𝜓ℓ, 𝜁ℓ) strongly in 𝐿2(𝑄0,𝑙) × 𝐿2(𝑄0,𝑟). (4.37)

Let 𝑓 ∈ 𝐿2(0, 𝑇 ;𝐻2(0, ℓ0)) ×𝐻1(0, 𝑇 ;𝐿2(0, ℓ0)) be so that 𝑓(0, ·) = 0 and 𝑓(ℓ0, ·) = 1

on (0, 𝑇 ) and let us put 𝜓ℓ𝑛 = Ψℓ𝑛 + 𝑓 and 𝜓ℓ = Ψℓ + 𝑓 . It is then clear that 𝑦ℓ𝑛 :=
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Ψℓ𝑛 − Ψℓ is the unique weak solution to:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(𝑀 ℓ𝑛
𝑙 )*(𝑦ℓ𝑛) = 𝐹ℓ𝑛 in 𝑄0,𝑙,

𝑦ℓ𝑛(0, ·) = 𝑦ℓ𝑛(ℓ0, ·) = 0 on (0, 𝑇 ),

𝑦ℓ𝑛(·, 0) = 0 in (0, ℓ0),

where 𝐹ℓ𝑛 ∈ 𝐿2(0, 𝑇 ;𝐻−1(0, ℓ0)) is given by

𝐹ℓ𝑛 :=(𝑑ℓ
𝑙,𝜉𝜉 − 𝑑ℓ𝑛

𝑙,𝜉𝜉)𝑓 + 2(𝑑ℓ
𝑙,𝜉 − 𝑑ℓ𝑛

𝑙,𝜉)𝑓𝜉 + (𝑑ℓ
𝑙 − 𝑑ℓ𝑛

𝑙 )𝑓𝜉𝜉 + (𝑏ℓ
𝑙,𝜉 − 𝑏ℓ𝑛

𝑙,𝜉)𝑓

+ (𝑏ℓ
𝑙 − 𝑏ℓ𝑛

𝑙 )𝑓𝜉 + ((𝑑ℓ
𝑙 − 𝑑ℓ𝑛

𝑙 )Ψℓ)𝜉𝜉 + ((𝑏ℓ
𝑙 − 𝑏ℓ𝑛

𝑙 )Ψℓ)𝜉.

Then, using the fact that (𝑑ℓ𝑛
𝑙 , 𝑏

ℓ𝑛
𝑙 ) are uniformly bounded in the space 𝐶1(𝑄0,𝑙) ×

𝐶0(𝑄0,𝑙) and the (𝑑ℓ𝑛
𝑙,𝜉𝜉, 𝑏

ℓ𝑛
𝑙,𝜉) are uniformly bounded in 𝐶0(𝑄0,𝑙) ×𝐶0(𝑄0,𝑙), the standard

parabolic energy estimates and the regularity of the function 𝐺 (as well as the regularity
of its inverse 𝐺−1), we get that 𝑦ℓ𝑛 → 0 strongly in 𝐿2(𝑄0,𝑙) which, in turn, implies

𝜓ℓ𝑛 → 𝜓ℓ strongly in 𝐿2(𝑄0,𝑙).

Analogously, we can prove that 𝜁ℓ𝑛 → 𝜁ℓ strongly in 𝐿2(𝑄0,𝑟).

Now, we recall that, for each 𝜀 > 0, there exists a unique (𝜙𝑛
𝑇,𝜀, 𝜑

𝑛
𝑇,𝜀) in 𝐿2(0, ℓ0) ×

𝐿2(ℓ0, 𝐿) that minimizes the functional 𝐽ℓ𝑛,𝜀, defined in (4.26). Due to the facts that
𝐽ℓ𝑛,𝜀(𝜙𝑛

𝑇,𝜀, 𝜑
𝑛
𝑇,𝜀) ≤ 0 and the constant appearing in the right side of (4.17) does not

depend on 𝑛, we get that the minimizers are uniformly bounded with respect to 𝑛 in
the space 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿) and the corresponding (𝜙𝑛

𝜀 , 𝜑
𝑛
𝜀 ), solutions to (4.16), are

uniformly bounded spaces given in (4.15). Therefore, there exist (𝜙𝑇,𝜀, 𝜑𝑇,𝜀) in 𝐿2(0, ℓ0)×

𝐿2(ℓ0, 𝐿) and (𝜙𝜀, 𝜑𝜀) in 𝐿2(𝑄0,𝑙) × 𝐿2(𝑄0,𝑟) such that, at least for a subsequence, one
has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(𝜙𝑛
𝑇,𝜀, 𝜑

𝑛
𝑇,𝜀) → (𝜙𝑇,𝜀, 𝜑𝑇,𝜀) weakly in 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿),

(𝜙𝑛
𝜀 (·, 0), 𝜑𝑛

𝜀 (·, 0)) → (𝜙𝜀(·, 0), 𝜑𝜀(·, 0)) weakly in 𝐿2(0, ℓ0) × 𝐿2(ℓ0, 𝐿) and

(𝜙𝑛
𝜀 , 𝜑

𝑛
𝜀 ) → (𝜙𝜀, 𝜑𝜀) strongly in 𝐿2(𝑄0,𝑙) × 𝐿2(𝑄0,𝑟).

(4.38)

We will show now that (𝜙𝑇,𝜀, 𝜑𝑇,𝜀) is the unique minimizer of the functional 𝐽ℓ,𝜀. Indeed,
we first note from the convergences in (4.37) and (4.38)3 that

(𝑃 ℓ𝑛
𝑙 (𝜙𝑛

𝜀 ), 𝑃 ℓ𝑛
𝑟 (𝜑𝑛

𝜀 )) → (𝑃 ℓ
𝑙 (𝜙𝜀), 𝑃 ℓ

𝑟 (𝜑𝜀)) strongly in 𝐿2(𝑄0,𝑙) × 𝐿2(𝑄0,𝑟).
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Then, using this fact and the weak convergences (4.38)1,2, we easily get

𝐽ℓ,𝜀(𝜙𝑇,𝜀, 𝜑𝑇,𝜀) ≤ lim inf
𝑛

𝐽ℓ𝑛,𝜀(𝜙𝑛
𝑇,𝜀, 𝜑

𝑛
𝑇,𝜀). (4.39)

Now, let (𝜙𝑇 , 𝜑𝑇 ) be given in 𝐿2(0, ℓ0) ×𝐿2(ℓ0, 𝐿) and let the (𝜙𝑛, 𝜑𝑛) be the solutions
to the system (4.16), with ℓ replaced by ℓ𝑛, for 𝑛 = 1, 2, . . .. Then, using the same
ideas that led to prove of (4.37), we can ensure that the (𝜙𝑛, 𝜑𝑛) converge strongly in
𝐿2(𝑄0,𝑙)×𝐿2(𝑄0,𝑟), to the solution (𝜙, 𝜑) to (4.16) and the (𝜙𝑛(·, 0), 𝜑𝑛(·, 0)) converge
weakly in 𝐿2(0, ℓ0) ×𝐿2(ℓ0, 𝐿) to (𝜙(·, 0), 𝜑(·, 0)). Therefore, from (4.37) and (4.39) we
deduce that

𝐽ℓ,𝜀(𝜙𝑇,𝜀, 𝜑𝑇,𝜀) ≤ lim inf
𝑛

𝐽ℓ𝑛,𝜀(𝜙𝑛
𝑇,𝜀, 𝜑

𝑛
𝑇,𝜀) ≤ lim inf

𝑛
𝐽ℓ𝑛,𝜀(𝜙𝑇 , 𝜑𝑇 ) = 𝐽ℓ,𝜀(𝜙𝑇 , 𝜑𝑇 ).

(4.40)
Since (𝜙𝑇 , 𝜑𝑇 ) ∈ 𝐿2(0, ℓ0)×𝐿2(ℓ0, 𝐿) is arbitrary, we conclude that (𝜙𝑇,𝜀, 𝜑𝑇,𝜀) minimizes
𝐽ℓ,𝜀.

Now, let us consider, for each 𝑛, the pair (ℎℓ𝑛
𝑙,𝜀1𝜔𝑙

, ℎℓ𝑛
𝑟,𝜀1𝜔𝑟) associated by Proposition 4.5

to ℓ𝑛. It follows easily from (4.37), (4.38)3 and (4.40) that

(ℎℓ𝑛
𝑙,𝜀1𝜔𝑙

, ℎℓ𝑛
𝑟,𝜀1𝜔𝑟) → (ℎℓ

𝑙,𝜀1𝜔𝑙
, ℎℓ

𝑟,𝜀1𝜔𝑟) strongly in 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟), (4.41)

where (ℎℓ
𝑙,𝜀1𝜔𝑙

, ℎℓ
𝑟,𝜀1𝜔𝑟) is the control corresponding to ℓ. Let us denote by (𝑝𝑛

𝜀 , 𝑞
𝑛
𝜀 ) and

(𝑝𝜀, 𝑞𝜀) the solutions to (4.4) associated, respectively, to (ℎℓ𝑛
𝑙,𝜀1𝜔𝑙

, ℎℓ𝑛
𝑟,𝜀1𝜔𝑟) and (ℎℓ

𝑙,𝜀1𝜔𝑙
, ℎℓ

𝑟,𝜀1𝜔𝑟).
Then, if we set (𝑦𝑛, 𝑧𝑛) := (𝑝𝑛

𝜀 −𝑝𝜀, 𝑞
𝑛
𝜀 −𝑞𝜀) and (𝑤𝑛

𝑙 1𝜔𝑙
, 𝑤𝑛

𝑟 1𝜔𝑟) := (ℎℓ𝑛
𝑙,𝜀1𝜔𝑙

−ℎℓ
𝑙,𝜀1𝜔𝑙

, ℎℓ𝑛
𝑟,𝜀1𝜔𝑟−

ℎℓ
𝑟,𝜀1𝜔𝑟), we find that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑛
𝑡 − 𝑑ℓ𝑛

𝑙 𝑦
𝑛
𝜉𝜉 + 𝑏ℓ𝑛

𝑙 𝑦
𝑛
𝜉 = 𝑤𝑛

𝑙 1𝜔𝑙
+ 𝐹 𝑛

𝑙 in 𝑄0,𝑙,

𝑧𝑛
𝑡 − 𝑑ℓ𝑛

𝑟 𝑧
𝑛
𝜉𝜉 + 𝑏ℓ𝑛

𝑟 𝑧
𝑛
𝜉 = 𝑤𝑛

𝑟 1𝜔𝑟 + 𝐹 𝑛
𝑟 in 𝑄0,𝑟,

𝑦𝑛(0, ·) = 𝑦𝑛(ℓ0, ·) = 𝑧𝑛(ℓ0, ·) = 𝑧𝑛(𝐿, ·) = 0 in (0, 𝑇 ),

𝑦𝑛(·, 0) = 0 in (0, ℓ0),

𝑧𝑛(·, 0) = 0 in (ℓ0, 𝐿),

(4.42)

where ⎧⎪⎪⎨⎪⎪⎩
𝐹 𝑛

𝑙 := (𝑑ℓ𝑛
𝑙 − 𝑑ℓ

𝑙 )𝑝𝜀,𝜉𝜉 + (𝑏ℓ𝑛
𝑙 − 𝑏ℓ

𝑙 )𝑝𝜀,𝜉,

𝐹 𝑛
𝑟 := (𝑑ℓ𝑛

𝑟 − 𝑑ℓ
𝑟)𝑞𝜀,𝜉𝜉 + (𝑏ℓ𝑛

𝑟 − 𝑏ℓ
𝑟)𝑞𝜀,𝜉.

Recall that (𝑝0, 𝑞0) ∈ 𝑊 1,4
0 (0, ℓ0)(0, ℓ0) × 𝑊 1,4

0 (0, ℓ0)(ℓ0, 𝐿). Therefore, arguing as in
Section 4.4.1 and Lemma 4.1, we first deduce that (𝐹 𝑛

𝑙 , 𝐹
𝑛
𝑟 ) ∈ 𝐿𝑠((ℓ𝑙, ℓ0) × (0, 𝑇 )) ×
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𝐿4((ℓ0, ℓ𝑟) × (0, 𝑇 )) and (𝑦𝑛
𝜉 (ℓ0, ·), 𝑧𝑛

𝜉 (ℓ0, ·)) ∈ 𝐶1/8([0, 𝑇 ]) ×𝐶1/8([0, 𝑇 ]) and also, that

‖𝑦𝑛
𝜉 (ℓ0, ·)‖𝐶1/8+‖𝑧𝑛

𝜉 (ℓ0, ·)‖𝐶1/8 ≤ 𝐶
(︁
‖(𝐹 𝑛

𝑙 , 𝐹
𝑛
𝑟 )‖𝐿𝑠(𝐿𝑠)×𝐿𝑠(𝐿𝑠) + ‖(𝑦𝑛, 𝑧𝑛)‖𝐿2(𝐻2)×𝐿2(𝐻2)

)︁
for some 𝐶 > 0, independent of 𝑛.

It is not difficult to check that, in this inequality, the first term go to 0 when 𝑛 → ∞.
From standard parabolic estimates applied to (4.42) and (4.41), we also have that con-
vergence to zero of the second term. Therefore, we deduce that (𝑝𝑛

𝜀,𝜉(ℓ0, ·), 𝑞𝑛
𝜀,𝜉(ℓ0, ·)) →

(𝑝𝜀,𝜉(ℓ0, ·), 𝑞𝜀,𝜉(ℓ0, ·)) in 𝐶1/8([0, 𝑇 ]), which implies the continuity of Λ𝜀.

• Λ𝜀 is compact. Note that Λ𝜀(ℓ)′(𝑡) = 𝜃(𝑡) for all ℓ ∈ 𝒜𝑅 and all 𝑡 ∈ [0, 𝑇 ], where 𝜃 is
the function defined in (4.34). Thus, we conclude easily from (4.35) that Λ𝜀(𝒜𝑅) is a
bounded subset of 𝐶1+1/8([0, 𝑇 ]), which is a compact subset of 𝐶1([0, 𝑇 ]).

• There exists 𝛿 > 0, such that, whenever (𝑝0, 𝑞0) ∈ 𝑊 1,4
0 (0, ℓ0) ×𝑊 1,4

0 (ℓ0, 𝐿) and

‖(𝑝0, 𝑞0)‖𝑊 1,4
0 ×𝑊 1,4

0
+ |ℓ0 − ℓ𝑇 | ≤ 𝛿,

then Λ𝜀(𝒜𝑅) ⊂ 𝒜𝑅. Indeed, it follows easily from (4.35) that there exists 𝐶 > 0

(depending on ℓ𝑙, ℓ𝑟, 𝜔𝑙, 𝜔𝑟, 𝑇 and 𝑅) such that

|ℒ(𝑡) − ℓ0| ≤ 𝐶𝑇
(︁
‖(𝑝0, 𝑞0)‖𝑊 1,4

0 ×𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 |
)︁

∀𝑡 ∈ [0, 𝑇 ],

and
|ℒ′(𝑡)| ≤ 𝐶

(︁
‖(𝑝0, 𝑞0)‖𝑊 1,4

0 ×𝑊 1,4
0

+ |ℓ0 − ℓ𝑇 |
)︁

∀𝑡 ∈ [0, 𝑇 ].

Thus, we get the result by taking 𝛿 ≤ min
{︃
𝑅

𝐶
,
ℓ0 − ℓ̃𝑙

𝐶𝑇
,
ℓ̃𝑟 − ℓ0

𝐶𝑇

}︃
.

Consequently, for initial data 𝑝0, 𝑞0 and ℓ0 satisfying the above conditions, Schauder’s Fixed-
Point Theorem guarantees that there exists ℓ𝜀 ∈ 𝒜𝑅 such that Λ𝜀(ℓ𝜀) = ℓ𝜀. It is easy to see
that this is suffices to achieve the proof of the result.

Now, we are in conditions to prove Theorem 4.2. Indeed, since the fixed-points ℓ𝜀 and con-
trols (ℎ𝜀

𝑙 , ℎ
𝜀
𝑟) furnished by the Theorem 4.3 are uniformly bounded, respectively, in 𝐶1+1/8([0, 𝑇 ])

and 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟), then there exist ℓ and (ℎ𝑙, ℎ𝑟) such that, at least for a subsequence,
we have ⎧⎪⎪⎨⎪⎪⎩

ℓ𝜀 → ℓ strongly in 𝐶1([0, 𝑇 ]) and

(ℎ𝜀
𝑙 , ℎ

𝜀
𝑟) → (ℎ𝑙, ℎ𝑟) weakly in 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟).

(4.43)
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Since the coefficients (𝑑ℓ𝜀
𝑙 , 𝑏

ℓ𝜀
𝑙 ) and (𝑑ℓ𝜀

𝑟 , 𝑏
ℓ𝜀
𝑟 ) are uniformly bounded, respectively, in the spaces

𝐿∞(𝑄0,𝑙) ×𝐿∞(𝑄0,𝑙) and 𝐿∞(𝑄0,𝑟) ×𝐿∞(𝑄0,𝑟), we can conclude from energy estimates and
(4.43) that there exists (𝑝, 𝑞) with⎧⎪⎪⎨⎪⎪⎩

𝑝𝜀 → 𝑝 weakly in 𝐿2(0, 𝑇 ;𝐻2(0, ℓ0) ∩𝐻1
0 (0, ℓ0)) ∩𝐻1(0, 𝑇 ;𝐿2(0, ℓ0)),

𝑞𝜀 ⇀ 𝑞 weakly in 𝐿2(0, 𝑇 ;𝐻2(0, ℓ0) ∩𝐻1
0 (ℓ0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐿2(ℓ0, 𝐿)),

(4.44)

where the (𝑝𝜀, 𝑞𝜀) are associated to the (ℎ𝜀
𝑙 , ℎ

𝜀
𝑟). Then, (𝑝, 𝑞) is the solution to (4.4), associated

to (ℎ𝑙, ℎ𝑟). Moreover, from (4.36), it is clear that ℓ(𝑇 ) = ℓ𝑇 and (𝑝(·, 𝑇 ), 𝑞(·, 𝑇 )) = (0, 0) on
(0, 𝑇 ).

Furthermore, as a consequence of (4.44) and the embeddings

𝐻2(0, ℓ0)
𝑐→˓ 𝐶1([0, ℓ0]) →˓ 𝐿2(0, ℓ0) and 𝐻2(ℓ0, 𝐿) 𝑐→˓ 𝐶1([ℓ0, 𝐿]) →˓ 𝐿2(ℓ0, 𝐿),

we find that, for any given 𝑡 ∈ [0, 𝑇 ], the following holds:

ℓ(𝑡) = lim
𝜀→0

ℓ𝜀(𝑡) = lim
𝜀→0

(︂
ℓ0 −

∫︁ 𝑡

0
[𝑑𝑙𝑝𝜀,𝜉(ℓ0, 𝜏) − 𝑑𝑟𝑞𝜀,𝜉(ℓ0, 𝜏)] 𝑑𝜏

)︂
= ℓ0 −

∫︁ 𝑡

0
[𝑑𝑙𝑝𝜉(ℓ0, 𝜏) − 𝑑𝑟𝑞𝜉(ℓ0, 𝜏)] 𝑑𝜏.

This implies that the Stefan condition (4.3)7 is satisfied by (ℓ, 𝑝, 𝑞) and ends the proof of
Theorem 4.2.

4.5 ADDITIONAL COMMENTS

4.5.1 Lack of controllability with only one control

In the next result it is proved that, if ℎ𝑙 or ℎ𝑟 vanishes and the interface does not collapse
to the boundary, then null controllability cannot hold.

Theorem 4.4 Assume that 𝑢0 ∈ 𝑊 1,4
0 (0, ℓ0) with 𝑢0 ≥ 0, 𝑣0 ∈ 𝑊 1,4

0 (ℓ0, 𝐿) with 𝑣0 ≤ 0 and

𝑣0 ̸≡ 0. Then, if (ℎ𝑙, ℎ𝑟) ∈ 𝐿2(𝒪𝑙) × 𝐿2(𝒪𝑟), ℎ𝑟 ≡ 0 and the associated strong solution to

(4.1) satisfies ℓ(𝑡) < 𝐿 for all 𝑡 ∈ [0, 𝑇 ], we necessarily have

𝑣(·, 𝑇 ) ̸≡ 0 in (ℓ(𝑇 ), 𝐿).

Let us assume, by contradiction, that (4.1) is null-controllable with ℎ𝑟 ≡ 0, i.e. 𝑢(·, 𝑇 ) ≡ 0 in
(0, ℓ(𝑇 )) and 𝑣(·, 𝑇 ) ≡ 0 in (ℓ(𝑇 ), 𝐿).
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Then, taking account the diffeomorphism Φ and the function 𝑞 = 𝑣 ∘ Φ−1, defined in the
section 4.2, we get easily that 𝑞 is the solution to⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑞𝑡 − 𝑑ℓ
𝑟𝑞𝜉𝜉 + 𝑏ℓ

𝑟𝑞𝜉 = 0 in 𝑄0,𝑟,

𝑞(ℓ0, ·) = 𝑞(𝐿, ·) = 0 on (0, 𝑇 ),

𝑞(·, 0) = 𝑞0 in (ℓ0, 𝐿),

(4.45)

where 𝑞0 := 𝑣0 ∘ [𝐺(·, ℓ0)]−1 ∈ 𝑊 1,4
0 (ℓ0, 𝐿) and, obviously, 𝑞0 ≤ 0 and 𝑞0 ̸≡ 0. We also have

that
𝑞(·, 𝑇 ) ≡ 0 in (ℓ0, 𝐿). (4.46)

Now, we consider a sequence ℓ1, ℓ2, . . . of functions in 𝐶∞([0, 𝑇 ]) converging strongly to ℓ in
𝐶1([0, 𝑇 ]), as well as, a sequence 𝑞1

0, 𝑞
2
0, . . . of functions in 𝐶∞

0 (ℓ0, 𝐿) so that 𝑞𝑛
0 → 𝑞0 strongly

in 𝑊 1,4
0 (ℓ0, 𝐿). Thus, there exists a sequence {𝑞𝑛}∞

𝑛=1 in 𝐶2,1(𝑄0,𝑟) ∩𝐶0(𝑄0,𝑟) formed by the
solutions to (4.45), with initial data 𝑞𝑛

0 and ℓ replaced by ℓ𝑛. Then, by applying the maximum
principle for classical solutions of parabolic equations, we get

max
𝑄0,𝑟

𝑞𝑛 = max
[ℓ0,𝐿]

𝑞𝑛
0 , ∀ 𝑛 ∈ 𝑁.

Then, using this equality and the fact that

𝑞𝑛 → 𝑞 strongly in 𝐿2(0, 𝑇 ;𝐻2(ℓ0, 𝐿)) ∩𝐻1(0, 𝑇 ;𝐿2(ℓ0, 𝐿))

we obtain
max
𝑄0,𝑟

𝑞 = max
[ℓ0,𝐿]

𝑞0,

what implies that 𝑞 ≤ 0 in 𝑄0,𝑟.
Thus, if (4.46) holds we get, from the strong maximum principle and from the fact 𝑞 ≤ 0

in 𝑄0,𝑟, that 𝑞 ≡ 0 in 𝑄0,𝑟, what contradicts 𝑞0 ̸≡ 0.

Remark 4.4 Note that the previous argument also shows that the null controllability for (4.1)
cannot be achieved keeping the signs of the initial conditions in each phase region. In other

words, in order to drive the solution to zero at time 𝑇 , the liquid and solid state must penetrate

each other before 𝑇 .
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4.5.2 Boundary controllability and other extensions

We can prove local boundary controllability results similar to Theorem 4.1. Thus, let us
introduce the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑢𝑡 − 𝑑𝑙𝑢𝑥𝑥 = 0 in 𝑄𝑙,

𝑣𝑡 − 𝑑𝑟𝑣𝑥𝑥 = 0 in 𝑄𝑟,

𝑢(0, 𝑡) = 𝑘𝑙(𝑡), 𝑣(𝐿, 𝑡) = 𝑘𝑟(𝑡) on (0, 𝑇 ),

𝑢(·, 0) = 𝑢0 in (0, ℓ0),

𝑣(·, 0) = 𝑣0 in (ℓ0, 𝐿),

𝑢(ℓ(𝑡), 𝑡) = 𝑣(ℓ(𝑡), 𝑡) = 0 on (0, 𝑇 ),

−ℓ′(𝑡) = 𝑑𝑙𝑢𝑥(ℓ(𝑡), 𝑡) − 𝑑𝑟𝑣𝑥(ℓ(𝑡), 𝑡) on (0, 𝑇 ).

(4.47)

where (𝑘𝑙, 𝑘𝑟) stands for the boundary control pair.
Then, using a domain extension technique and Theorem 4.1, it is easy to prove that, if 𝑢0

and 𝑣0 are sufficiently small, and ℓ0 is sufficiently close to ℓ𝑇 , there exist controls (𝑘𝑙, 𝑘𝑟) and
associated solutions to (4.47) that satisfy ℓ(𝑇 ) = ℓ𝑇 , 𝑢(·, 𝑇 ) = 0 in (0, ℓ𝑇 ) and 𝑣(·, 𝑇 ) = 0

in (ℓ𝑇 , 𝐿).
Let us finally mention that the arguments and results in this chapter can also be used

to solve other variants of the two-phase Stefan controllability problem. Thus, we can prove
results similar to Theorem 4.1 when the controls are Neumann data, we can assume that the
equations contain lower order terms or even appropriate nonlinearities, etc.
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APPENDIX A – ANALYTICITY OF THE ELLIPTIC OPERATOR

In this section we will prove that the mapping 𝜇 ↦→ 𝑇 , which appears in the proof of the
Theorem 2.5, is analytic in a neighbourhood of the 𝜇 = 0. In order to do that, we consider
the Banach space

𝒲1,∞
* (𝑅𝑁 ;𝑅𝑁) := {𝜇 ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁); 𝜇 ≡ 0 in Ω∖𝐷*}.

It is not difficult to see that the set 𝒲𝜖, defined in Section 2.3, is an open set of 𝒲1,∞
* (𝑅𝑁 ;𝑅𝑁)

and, moreover, one consider the map

𝜂 : 𝒲𝜖 ↦→ ℒ(𝐻1
0 (Ω0)2;𝐻−1(Ω0)2)

𝜇 ↦→ 𝑇,

with

𝑇 (𝑢, 𝑣) := − (∇ · (Jac(𝑚)𝑀*𝑀∇𝑢),∇ · (Jac(𝑚)𝑀*𝑀∇𝑣)

+ ((𝑎𝑢+ 𝑏𝑣)Jac(𝑚), (𝐴𝑢+𝐵𝑣)Jac(𝑚)) ,

for all (𝑢, 𝑣) ∈ 𝐻1
0 (Ω0)2, where 𝑚 = 𝐼 + 𝜇.

One can see from (ALVAREZ, 2005) that the mapping 𝜂1 : 𝒲𝜖 ↦→ ℒ(𝐻1
0 (Ω0)2;𝐻−1(Ω0)2)

given by
𝜂1(𝜇) = − (∇ · (Jac(𝑚)𝑀*𝑀∇·),∇ · (Jac(𝑚)𝑀*𝑀∇·)

is analytic in a neighbourhood of 𝜇 = 0.
Now, assuming that the coefficients 𝑎, 𝑏, 𝐴 and 𝐵 are constant, one can see that the

mapping 𝜂2 : 𝒲𝜖 ↦→ ℒ(𝐻1
0 (Ω0)2;𝐻−1(Ω0)2), given by

𝜂2(𝜇)(𝑢, 𝑣) = ((𝑎𝑢+ 𝑏𝑣)Jac(𝑚), (𝐴𝑢+𝐵𝑣)Jac(𝑚)) , ∀ (𝑢, 𝑣) ∈ 𝐻1
0 (Ω0)2,

is a polynomial in the coordinates of 𝜇. Therefore, it is analytic in a neighbourhood of origin.
To a better illustration, let us consider the particular case where 𝑁 = 2 and, conse-

quently, 𝒲𝜖 ⊂ 𝒲1,∞
* (𝑅2;𝑅2). Moreover, given 𝜇0 = (𝜇1

0, 𝜇
2
0) ∈ 𝒲𝜖 and 𝜇 = (𝜇1, 𝜇2) ∈

𝒲1,∞
* (𝑅2, 𝑅2), we have that

𝜂′
2(𝜇0) · 𝜇 = lim

𝑡→0

𝜂2(𝜇0 + 𝑡𝜇) − 𝜂2(𝜇0)
𝑡

.

Now, for ((𝑢, 𝑣), (𝑧, 𝑞)) ∈ 𝐻1
0 (Ω0)2 ×𝐻1

0 (Ω0)2, let us introduce

𝜁 ((𝑢, 𝑣), (𝑧, 𝑞)) := 𝑎𝑢𝑧 + 𝑏𝑣𝑧 + 𝐴𝑢𝑞 +𝐵𝑣𝑞.
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Then, after some computations, the above limit leads to

⟨(𝜂′
2(𝜇0) · 𝜇) (𝑢, 𝑣), (𝑧, 𝑞)⟩𝐻−1;𝐻1

0
=
∫︁

Ω0
𝜁 ((𝑢, 𝑣), (𝑧, 𝑞))

(︁
∇ · 𝜇+ 𝜕2𝜇

2𝜕1𝜇
1
0 + 𝜕1𝜇

1𝜕2𝜇
2
0

)︁
𝑑𝑥

−
∫︁

Ω0
𝜁 ((𝑢, 𝑣), (𝑧, 𝑞))

(︁
𝜕1𝜇

2𝜕2𝜇
1
0 + 𝜕2𝜇

1𝜕1𝜇
2
0

)︁
𝑑𝑥,

for all ((𝑢, 𝑣), (𝑧, 𝑞)) ∈ 𝐻1
0 (Ω0)2 ×𝐻1

0 (Ω0)2.
Thus, above equality implies

lim
𝜇→0

‖𝜂2(𝜇0 + 𝜇) − 𝜂2(𝜇0) − 𝜂′
2(𝜇0) · 𝜇‖ℒ(𝐻1

0 ;𝐻−1)

‖𝜇‖𝑊 1,∞
= 0.

This means that the mapping 𝜂′
2 is the first Fréchet derivative of 𝜂2.

Furthermore, by making similar computations we obtain the second Fréchet derivative
𝜂′′

2 : 𝒲𝜖 ↦→ ℒ2(𝒲1,∞
* (𝑅2, 𝑅2); ℒ(𝐻1

0 (Ω0)2;𝐻−1(Ω0)2). More precisely, for each 𝜇0 ∈ 𝒲𝜖 and
𝜇1, 𝜇2 in 𝒲1,∞

* (𝑅2, 𝑅2), we obtain:

⟨(𝜂′′
2(𝜇0) · 𝜇1 · 𝜇2) (𝑢, 𝑣), (𝑧, 𝑞)⟩𝐻−1;𝐻1

0
=
∫︁

Ω0
𝜁 ((𝑢, 𝑣), (𝑧, 𝑞))

(︁
𝜕2𝜇

2
1𝜕1𝜇

1
2 + 𝜕1𝜇

1
1𝜕2𝜇

2
2

)︁
𝑑𝑥

−
∫︁

Ω0
𝜁 ((𝑢, 𝑣), (𝑧, 𝑞))

(︁
𝜕1𝜇

2
1𝜕2𝜇

1
2 + 𝜕2𝜇

1
1𝜕1𝜇

2
2

)︁
𝑑𝑥.

Finally, 𝜂(𝑘)
2 ≡ 0, for all 𝑘 ≥ 3, which implies the analyticity of the mapping 𝜂2 near the origin.
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APPENDIX B – DIFFERENTIATION WITH RELATION DOMAINS

In this appendix we will prove Lemma 2.3 of Section 2.4.4. The idea is to use the arguments
from (SIMON, 1980, Section 6.3) and (BELLO, 1997, Lemma 7). Let us now recall that, for
each 𝜇 ∈ 𝑊𝜖, the pair (𝑦𝜇, 𝑧𝜇) ∈ 𝐻2(Ω∖𝐷 + 𝜇)2 is the unique solution of the perturbed
system: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Δ𝑦𝜇 + 𝑎𝑦𝜇 + 𝑏𝑧𝜇 = 0 in Ω∖(𝐷 + 𝜇),

−Δ𝑧𝜇 + 𝐴𝑦𝜇 +𝐵𝑧𝜇 = 0 in Ω∖(𝐷 + 𝜇),

𝑦𝜇 = 𝜙, 𝑧𝜇 = 𝜓 on 𝜕Ω,

𝑦𝜇 = 0, 𝑧𝜇 = 0 on 𝜕(𝐷 + 𝜇).

Then, defining (𝑌𝜇, 𝑍𝜇) := (𝑦𝜇, 𝑧𝜇)∘(𝐼+𝜇) and performing similar change of variables used in
Section 2.3, we have that (𝑌𝜇, 𝑍𝜇) ∈ 𝐻2(Ω∖𝐷)2 is the unique solution of the elliptic problem:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (Jac(𝑚)𝑀*𝑀∇𝑌𝜇) + (𝑎𝜇𝑌𝜇 + 𝑏𝜇𝑍𝜇) Jac(𝑚) = 0 in Ω∖𝐷,

−∇ · (Jac(𝑚)𝑀*𝑀∇𝑍𝜇) + (𝐴𝜇𝑌𝜇 +𝐵𝜇𝑍𝜇) Jac(𝑚) = 0 in Ω∖𝐷,

𝑌𝜇 = 𝜙, 𝑍𝜇 = 𝜓 on 𝜕Ω,

𝑌𝜇 = 0, 𝑍𝜇 = 0 on 𝜕𝐷,

(B.1)

where (𝑎𝜇, 𝑏𝜇, 𝐴𝜇, 𝐵𝜇) := (𝑎, 𝑏, 𝐴,𝐵) ∘𝑚 and 𝑚 = 𝐼 + 𝜇.
Let us now introduce the new variables ( ̂︀𝑌𝜇, ̂︀𝑍𝜇) := (𝑌𝜇 − 𝜙*, 𝑍𝜇 − 𝜓*), where the pair

(𝜙*, 𝜓*) ∈ 𝐻2(Ω∖𝐷)2 satisfies⎧⎪⎪⎨⎪⎪⎩
(𝜙*, 𝜓*) = (𝜙, 𝜓) on 𝜕Ω,

(𝜙*, 𝜓*) = (0, 0) on 𝜕𝐷.

Therefore, the system (B.1) can be rewritten as

𝐻(𝜇; ̂︀𝑌𝜇, ̂︀𝑍𝜇) = 0,

where the mapping 𝐻 : 𝒲𝜖 ×𝐻2
0 (Ω∖𝐷)2 ↦→ 𝐿2(Ω∖𝐷)2 is given by⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐻(𝜇;𝜒, 𝜁) = (𝐹 (𝜇;𝜒, 𝜁), 𝐺(𝜇;𝜒, 𝜁)),

𝐹 (𝜇;𝜒, 𝜁) = −∇ · (Jac(𝑚)𝑀*𝑀∇(𝜒+ 𝜙*)) + [𝑎𝜇(𝜒+ 𝜙*) + 𝑏𝜇(𝜁 + 𝜓*)] Jac(𝑚),

𝐺(𝜇;𝜒, 𝜁) = −∇ · (Jac(𝑚)𝑀*𝑀∇(𝜁 + 𝜓*)) + [𝐴𝜇(𝜒+ 𝜙*) +𝐵𝜇(𝜁 + 𝜓*)] Jac(𝑚).
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Observe that the mapping 𝐻 satisfies the conditions of the Implicit Function Theorem. Indeed,
we can see in (SIMON, 1980) that the mapping 𝜇 ∈ 𝒲𝜖 ↦→ 𝑀(𝜇) ∈ 𝑊 1,∞(𝑅𝑁 ;𝑅𝑁2) and
the mapping 𝜇 ∈ 𝒲𝜖 ↦→ Jac(𝐼 + 𝜇) ∈ 𝑊 1,∞(𝑅𝑁 , 𝑅) are of class 𝐶1 and, consequently, 𝐻
is a continuous differentiable mapping in a neighbourhood of (0, ̂︀𝑌0, ̂︀𝑍0), where ( ̂︀𝑌0, ̂︀𝑍0) =

(𝑌0 − 𝜙*, 𝑍0 − 𝜓*).
On the other hand, one can see that the differential mapping 𝐷𝜒,𝜁𝐻(0; ̂︀𝑌0, ̂︀𝑍0) is a iso-

morphism. Indeed, it is a consequence of the fact the mapping 𝐻(0; ·, ·) : 𝐻2
0 (Ω∖𝐷)2 ↦→

𝐿2(Ω∖𝐷)2, given by

𝐻(0;𝜒, 𝜁) = (−Δ(𝜒+𝜙*) + 𝑎(𝜒+𝜙*) + 𝑏(𝜁 +𝜓*),−Δ(𝜁 +𝜓*) +𝐴(𝜒+𝜙*) +𝐵(𝜁 +𝜓*)),

is an isomorphism.
Thus, by the Implicit Function Theorem, there exist neighbourhoods 𝑈 ⊂ 𝒲𝜖 of 𝜇 = 0,

𝑉 ⊂ 𝐻2
0 (Ω∖𝐷)2 of the ( ̂︀𝑌0, ̂︀𝑍0) and a differentiable mapping 𝜉 : 𝑈 ↦→ 𝑉 such that

𝐻−1(0) ∩ [𝑈 × 𝑉 ] = {(𝜇;𝜒, 𝜁); (𝜒, 𝜁) = 𝜉(𝜇)},

which proves the first item of the Lemma 2.3.
The second and third items of the Lemma 2.3 are immediate consequences of the Lemma

2.1, Theorem 3.1 and Theorem 3.2 of the (SIMON, 1980).
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APPENDIX C – LOCAL PARABOLIC REGULARITY

In this appendix, let us prove a local regularity result for a 1𝑑 parabolic equation.

Proposition C.1 Let 𝑇 > 0 be a positive time, 𝐼 ⊂ 𝑅 an open interval and consider the

cylinder 𝑄 := 𝐼 × (0, 𝑇 ). Moreover, let us consider functions 𝑑, 𝑏 : 𝑄 ↦→ 𝑅 satisfying:⎧⎪⎪⎨⎪⎪⎩
𝑑 ∈ 𝐶0(𝑄), 𝑏 ∈ 𝐿∞(𝑄),

𝑑(𝜉, 𝑡) ≥ 𝜆 > 0, for all (𝜉, 𝑡) ∈ 𝑄 and some 𝜆 > 0,

and also consider 𝑓 ∈ 𝐿2(0, 𝑇 ;𝐿2(𝐼)) and the unique strong solution 𝑦 in the space 𝐿2(0, 𝑇 ;𝐻2(𝐼))∩

𝐻1(0, 𝑇 ;𝐿2(𝐼)), of the parabolic system⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑦𝑡 − 𝑑𝑦𝜉𝜉 + 𝑏𝑦𝜉 = 𝑓 in 𝑄,

𝑦 = 0 on 𝜕𝐼 × (0, 𝑇 ),

𝑦(·, 0) = 0 in (0, 𝑇 ).

Then, the following holds: let 𝒰 ⊂⊂ 𝒱 ⊂ 𝐼 open sets and we assume 𝑓 ∈ 𝐿4(0, 𝑇 ;𝐿4(𝒱)).

Then, 𝑦 ∈ 𝑋4(0, 𝑇 ; 𝒰) := 𝐿4(0, 𝑇 ;𝑊 2,4(𝒰)) ∩ 𝑊 1,4(0, 𝑇 ;𝐿4(𝒰)) and there exists a positive

constant 𝐶 (depending on 𝐼, 𝒱 , 𝒰 , ‖𝑑‖∞, ‖𝑏‖∞), such that:

‖𝑦‖𝑋4(0,𝑇 ;𝒰) ≤ 𝐶
(︁
‖𝑓‖𝐿4(𝐿4(𝒱)) + ‖𝑦‖𝐿2(𝐻2)∩𝐻1(𝐿2)

)︁
.

Indeed, let us consider firstly the open set 𝒰 ⊂⊂ 𝒰 ′ ⊂⊂ 𝒱 and a test function 𝜒 ∈ 𝐶∞
0 (𝒰 ′)

so that 𝜒 ≡ 1 in 𝒰 . Then, one can see that 𝑤 = 𝜒𝑦 is the strong solution of the problem:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑤𝑡 − 𝑑𝑤𝜉𝜉 = 𝑔 in 𝑄,

𝑤 = 0 on 𝜕𝐼 × (0, 𝑇 ),

𝑤(·, 0) = 0 in 𝐼,

where 𝑔 = 𝜒𝑓 − (𝜒𝑏𝑦𝜉 + 2𝑑𝜒𝜉𝑦𝜉 + 𝑑𝜒𝜉𝜉𝑦).
As consequence of the hypothesis on 𝑓 and 𝑦 we get that 𝜒𝑓 ∈ 𝐿4(0, 𝑇 ;𝐿4(𝐼)) and

𝑔0 := 𝜒𝑏𝑦𝜉 + 2𝑑𝜒𝜉𝑦𝜉 + 𝑑𝜒𝜉𝜉𝑦 is a function of 𝐿∞(0, 𝑇 ;𝐿2(𝐼)) ∩ 𝐿2(0, 𝑇 ;𝐿∞(𝐼)). Now, by
using standard interpolation results, we can assure that 𝑔0 ∈ 𝐿4(0, 𝑇 ;𝐿4(𝐼)) and there exists
a positive constant 𝐶 (depending on 𝐼, 𝒱 , 𝒰 ′, 𝒰 , ‖𝑑‖∞, ‖𝑏‖∞) so that

‖𝑔0‖𝐿4(𝐿4(𝐼)) ≤ 𝐶‖𝑦‖𝐿2(𝐻2)∩𝐻1(𝐿2).
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Consequently, 𝑔 ∈ 𝐿4(0, 𝑇 ;𝐿4(𝐼)) and, this way, we can use the estimate above and results
of 𝐿𝑝-regularity for parabolic operators, see (WU, 2006, Theorems 9.2.3 and 9.2.5), to obtain
𝑤 ∈ 𝑋4(0, 𝑇 ; 𝐼) and

‖𝑤‖𝑋4(0,𝑇 ;𝐼) ≤ 𝐶
(︁
‖𝑓‖𝐿4(𝐿4(𝒱)) + ‖𝑦‖𝐿2(𝐻2)∩𝐻1(𝐿2)

)︁
,

for some constant 𝐶 > 0 (depending on 𝐼, 𝒱 , 𝒰 ′, 𝒰 , ‖𝑑‖∞, ‖𝑏‖∞ and 𝑠). Therefore, since
𝑤 = 𝑦 in 𝒰 then we can conclude the proof of the result.


