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ABSTRACT

Science has tried to use advanced modelling to understand nature behaviours. Dy-
namical systems often rise as the first option to forecast epidemic courses from parameter
estimation and epidemic curve fitting. Even though such techniques do not always lead to
successful results, the answer to this fact might be coupled with the variety of data sets
and presence of noise and delays in the time collection, which might interview directly
in the model precision. As a well-known parallel data-driven approach, Topological Data
Analysis (TDA) emerges as a trend since the last decade as a promising and powerful
tool for data science. Currently, infectious diseases have threatening humanity and con-
cerning health system worldwide. Recent Dengue outbreaks have been reported over the
past years, concerned with world health care and became our motivation to use and build
geometric and topological techniques for a more in-depth, data-driven understanding of
this topic. Yet, the damage of the novel Coronavirus disease (COVID-19) is reaching
unprecedented scales. Numerous classical epidemiology models are trying to quantify epi-
demiology metrics. In the work of this thesis, we propose a data-driven, parameter-free,
topological and geometric approaches to access the emergence of a pandemic states by
studying the Euler characteristics and Ricci curvature discretizations. We first compute
this curvatures in toy-models of epidemic time-series, which allows us to create epidemic
networks. Those curvatures allow us to detect early warning signs of the emergence of the
pandemic. The advantage of our method lies in providing an early geometrical data marker
for the pandemic state, regardless of parameter estimation and stochastic modelling. This
work opens the possibility of using discrete geometry to study epidemic networks.

Keywords: Topological Data Analysis. Dengue. COVID-19. Epidemiology. Ricci Curva-
tures. Euler Characteristic.



RESUMO

A ciência tentou usar modelos avançados para entender os comportamentos da na-
tureza. Os sistemas dinâmicos surgem com bastante frequência como a primeira opção
para prever cursos epidêmicos a partir da estimativa de parâmetros e do ajuste da curva
epidêmica. Mesmo assim, tais técnicas nem sempre levam a resultados bem-sucedidos, a
resposta a esse fato pode estar atrelada à variedade de conjuntos de dados e presença
de ruídos e atrasos na coleta, que podem interferir diretamente na precisão do modelo.
Como uma abordagem bem conhecida e orientada a dados, Análise Topológica de Dados
(em inglês, Topological Data Analysis - TDA) surge como uma tendência desde a última
década, além de ser uma ferramenta poderosa e promissora para a ciência de dados. Atual-
mente, as doenças infecciosas vêm ameaçando a humanidade e preocupando o sistema de
saúde em todo o mundo. Surtos recentes de dengue têm sido relatados nos últimos anos,
se tornou uma preocupação para a saúde mundial e tornou-se nossa motivação para usar
e construir técnicas geométricas e topológicas na tentativa de se obter um entendimento
mais aprofundado a partir dos dados neste tópico. No entanto, os danos advindos do novo
coronavírus (COVID-19) estão atingindo escalas sem precedentes. Numerosos modelos
clássicos de epidemiologia estão tentando quantificar as métricas da epidemiologia. No
trabalho desta tese, propomos uma abordagem baseada em dados, livre de parâmetros,
topológica e geométrica para acessar a emergência de estados de pandemia estudando as
características de Euler e as discretizações da curvatura de Ricci. Calculamos primeiro
essas curvaturas em modelos-teste para gerar séries temporais, o que nos permite criar
redes epidêmicas. Essas curvaturas nos permitem detectar os primeiros sinais de alerta do
surgimento da pandemia. A vantagem do nosso método reside em fornecer um marcador
de dados geométricos iniciais para o estado de pandemia, independentemente da estima-
tiva de parâmetro e modelagem estocástica. Este trabalho abre a possibilidade de usar
geometria discreta para estudar redes epidêmicas.

Palavras-chaves: Análise Topológica de Dados. Dengue. COVID-19. Epidemiologia.
Curvaturas de Ricci. Caractarística de Euler.
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1 INTRODUCTION

Epidemic outbreaks represent a significant concern for global health. Recent Dengue out-
breaks have been reported over the past years, concerned with world health care and
became our motivation to use and build geometric and topological techniques for a more
in-depth, data-driven understanding of this topic. The COVID-19 outbreak has caught
the attention of researchers worldwide due to its rapid spread, high fluctuation in the
incubation time and uncertain health and economic outcomes.

Ubiquitous and various epidemic outbreaks have motivated the development of rese-
arch in epidemic behavior across the years, as well its different approaches ((DIAS et al.,
2008; JOSSERAN et al., 2006; SCALLAN et al., 2011; NAFFAKH; WERF, 2009)).

Time varying models together with statistic and stochastic techniques were presented
in attempt to understand the inherent complexity of outbreak events, as the well known
techniques. One of those pioneers approaches were performed in the 50’s and suggested
by Kermack and McKendrick (BAILEY et al., 1975; BRAUER, 2005). Over the past years,
the emerge of complex network theory made possible to deal with epidemic behavior at
theoretical, statistical and big data frameworks. This synergy brings another point of view
for the classical techniques, e.g, the network data visualization of presenting population
dynamics behavior and parameter estimation control for modelling, (PASTOR-SATORRAS

et al., 2015; KEELING; EAMES, 2005; NEWMAN, 2002; PASTOR-SATORRAS; VESPIGNANI,
2001; MOORE; NEWMAN, 2000).

One of the urgent challenges of this outbreak concerns the development of a coordina-
ted and continuous data-driven feedback system that could quantify the spread and the
risk of the epidemic, without strongly depending on parameter estimation (such as the
contagion rate or the basic reproduction number) and even when data is heterogeneous
or subject to noise. Such a data-driven system would allow to develop adequate responses
at different scales (global, national or local) and to allocate limited resources in the most
effective ways.

In this work, we aim to use topological data analysis in order to investigate epide-
mic behavior in real data trough an exploratory perspective. Topological Data Analysis
(TDA) ( ZOMORODIAN, 2012; WASSERMAN, 2018; PASCUCCI et al., 2010; TAYLOR et al.,
2015; EDELSBRUNNER; HARER, 2010) represents a recent perspective regarding real data
treatment and has bringing unreachable results over the past years across many fields
(OTTER et al., 2017; BUBENIK, 2015; SAGGAR et al., 2018; MATAMALAS; GÓMEZ; ARENAS,
2019). The numerous applicability of those topogical and geometrical ideas demonstrates
the powerful tool of this techniques on several scientific fields. For example, the Ricci cur-
vature discretization has been useful in many approaches, such as stock market (SANDHU;

GEORGIOU; TANNENBAUM, 2016) and cancer diagnostics (SANDHU et al., 2015a), while
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Euler characteristics has been well applied to brain activity (SANTOS et al., 2019).
Dengue disease represents a huge health concern for the world scenario, where epi-

demic control still a challenge for Science and Society. Furthermore, its unpredictable
spreading dynamics has been threatening humanity, particularly surrounding several tro-
pical countries worldwide (ORGANIZATION et al., 2000; ARENAS; ZANOTTO, 2013).

In parallel, the COVID-19 pandemic scenario is also challenging science. Several papers
are using network approaches to investigate spreading control, isolation policies and social
distancing strategies as an attempt to provide a better understanding of the COVID-19
pandemic (WEITZ et al., 2020; BLOCK et al., 2020; BISWAS; KHALEQUE; SEN, 2020; PRASSE;

MIEGHEM, 2020; PRASSE et al., 2020).
Recent developments in topological and geometric data analysis (EDELSBRUNNER; HA-

RER, 2010; PASCUCCI et al., 2010; TAYLOR et al., 2015; WASSERMAN, 2018; ZOMORODIAN,
2012) offer useful perspectives regarding real data treatment, having yielded outstanding
results over the past years across many fields (OTTER et al., 2017; BUBENIK, 2015; SAG-

GAR et al., 2018; MATAMALAS; GÓMEZ; ARENAS, 2019). As an emerging and promising
approach in network science and complex systems more generally (PETRI et al., 2013),
topological and geometric data analysis describes the shape of the data by associating
data with high dimensional objects (EDELSBRUNNER; HARER, 2010; SAGGAR et al., 2018;
TOTH; O’ROURKE; GOODMAN, 2017).

Among the numerous successful interdisciplinary applications of applied geometry and
topology, ranging from differentiating cancer networks (SANDHU et al., 2015a) to modeling
phase transitions in brain networks (SANTOS et al., 2019), one idea in particular can be
beneficial to infer the emergence of a network pandemic state from data by using network
geometry. As this approach is completely data-driven, it could provide a geometric way to
give insights into the pandemic without the need for parameter estimations. Our idea is
inspired by earlier results obtained for financial networks (SANDHU; GEORGIOU; TANNEN-

BAUM, 2016), where the authors showed that it was possible to relate financial network
fragility with the Ollivier-Ricci curvature of a network. Most importantly, the Ollivier-
Ricci curvature emerged as a data-driven crash hallmark for major changes in stock mar-
kets over the past 15 years. In their study of market fragility, they used these geometric
tools to analyse and characterize the interaction between the economic agents (the nodes
of a financial network) and their correlation levels (which defines the edges’ weights). In
addition, these tools also allowed them to track the curvature of the financial network
as a function of time, i.e. how the shape of the financial network changed according to
a dynamic economic scenario. This geometric study also motivated us to test the use of
topological structures, as the Euler characteristics.

As a result, the Ollivier-Ricci curvature emerged as a strong quantitative indicator of
the systemic risk in financial networks. Motivated by this result, we initially used this dis-
crete version of Ricci curvatures for our geometric approach to epidemic networks. From a
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pure topological point-of-view and motivated by other applications, we also included the
Euler characteristics in our studies. From an implementation perspective, however, the
Forman-Ricci curvatures had proved to be an alternative, simpler discretization for com-
puting the curvature. It empirically correlates with the Ollivier-Ricci curvature even being
purely combinatorial, with the added value that the Forman-Ricci curvature has a faster
computation time for large-scale, real-world networks (SAMAL et al., 2018). Furthermore,
the Euler characteristics showed to be a low noise tool to detect fragility on networks
provided by epidemic data, despite the computational complexity.

Taking all this features in consideration, here, we are going to compare our results for
both Ricci Curvatures and Euler characteristics applied to epidemic networks.

This thesis is written as follows: In chapter 2 is provided a quick background regarding
network theory. In chapters 3 and 4 the reader can find the classical topological and geo-
metric approaches used in our work. In chapter 5 is described our methods for processing
and filtering data, followed by chapter 6, where we test the techniques to synthetic data.
In chapter 7 the results for Dengue disease and COVID-19 data are shown. Finally, in
chapter 8 we conclude all the results reached in this work.
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2 GRAPH THEORY

In this chapter, we are going to introduce the basics for the understanding of our work
on graph theory. We will also introduce the reader into quick and well-known results
regarding random graph theory. This notions will be crucial for a better understanding
of our results.

2.1 NETWORKS

The definition of graphs can be found in many classical works (BONDY; MURTY, 2008). In
many approaches, a simple graph, or a simple network, is often used to encode information
from a complex system. In the literature, there are many ways to define graphs. For
simplicity and easy-way for applications, we will restrict our approach to simple undirected
graphs, and for the rest of the thesis, we will refer them as graphs (or networks) only.

Formally, let 𝑉 be a set of countable objects. We define 𝐸 the set such that if 𝑒 ∈ 𝐸,
than 𝑒 = {𝑥, 𝑦}, for some 𝑥, 𝑦 ∈ 𝑉, and 𝑥 ̸= 𝑦.

Well call 𝑉 the set of nodes (or vertexes), while 𝐸 is the set of edges (or links).
We say that 𝐻 = (𝑉 ′, 𝐸 ′) ⊆ 𝐺 is a subgraph of 𝐺 if 𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊂ 𝐸.
The pair 𝐺 = (𝑉, 𝐸) is said a simple undirected graph. In our approach, we are res-

tricting our approach for finite graphs, i.e., the sets of nodes and edges are finite.
Let 𝑥 ∈ 𝑉 . We say that 𝑦 is a neighbor of 𝑥 when there is an edge that connects 𝑥 to

𝑦, and we denote by 𝑥 ∼ 𝑦. We define the set of neighbors of 𝑥 as

neigh(x) = {𝑦 ∈ 𝑉, 𝑥 ∼ 𝑦}. (2.1)

The degree of 𝑥 is denoted by 𝑑𝑒𝑔(𝑥) and is defined as follows:

deg(x) = #neigh(x). (2.2)

Remark: This last definition makes sense in our approach due to the lack of selfloops
(edges connecting a node to itself) in our definition of simple graphs. From now on, we
are going to refer the natural number 𝑛 for the number of nodes in a graph.

Figure 1 displays an example our representation of a simple graph. Once properly
defined the graph structure, we are now able to bring some classic results from the random
graph theory, which will be presented in the next section.
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Figure 1 – Example of a simple graph containing 6 nodes (black dots) and 3 edges (blue
lines). The degree of each node is also shown in a table.

Source: self-provided.

2.2 ERDOS-RENYI THEORY

In attempt to study discrete curvature behavior, this section is dedicated to Erdos-Renyi
random graph theory ((BOLLOBÁS; BÉLA, 2001),(ERDŐS; RÉNYI, 1960)). This classical
model paved the way of the studies of randomness in network theory, despite its simplicity.
In one of its versions, in the Erdos-Renyi model, we start with 𝑛 isolated nodes while each
edge is sequentially included according a probability 𝑝 of having a connection. This edges
are generated by sampling a random uniform number 𝑟 in [0, 1], for each combination of
node pairs. Thus, for a fixed value of 𝑝, the presence of each pair of nodes (𝑥, 𝑦) ∈ 𝑉, 𝑥 ̸= 𝑦

is going to depend of how often the number 𝑟 is smaller than 𝑝. For 𝑝 = 0, we have a
totally unconnected graph, while 𝑝 = 1 makes a complete graph. A Erdos-Renyi graph
which has 𝑛 nodes and probability 𝑝 of connection is denoted by 𝐺𝐸𝑅(𝑛, 𝑝).

The expected number of edges in 𝐺𝐸𝑅(𝑛, 𝑝) is ⟨𝑒⟩ =
(︁

𝑛
2

)︁
𝑝, the expected node degree is

⟨deg(𝑥)⟩ = (𝑛 − 1)𝑝, for every node 𝑥 in 𝐺𝐸𝑅(𝑛, 𝑝). The degree distribution of any node
𝑥 is given by a binomial distribution as follows:

𝑃 (deg(𝑥) = 𝑘) =
(︃

𝑛 − 1
𝑘

)︃
𝑝𝑘(1 − 𝑝)(𝑛−𝑘−1). (2.3)

As well-known results, we also have:

• If ⟨deg(𝑥)⟩ < 1, all components tend to be very small and the largest component
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has size 𝑂(ln 𝑛);

• If ⟨deg(𝑥)⟩ = 1, the largest component has size 𝑂(𝑛 2
3 );

• If ⟨deg(𝑥)⟩ > 1, the rest of components are very small, with the second largest
having size around ln 𝑛.

Figure 2 – Examples of Erdos-Renyi graphs, for different values of probability 𝑝.

Source: self-provided.

Figure 2 provides the illustration of random graphs for different values of 𝑝. Now,
we are able to make a deeper analysis over topological and geometrical changes in the
graph structures based on the probability of links from Erdos-Renyi theory. This will
give us estimations of how the topological and geometric curvatures might behave as the
probability of links changes. Although real data, in general, does not behave as random
graphs, it could give as insights, as we will see during the thesis.

2.3 CELLS OF A GRAPH

The graph complexity not always can be summarized only by the presence of edges in a
graph. It will be important to understand the meaning and the analysis of higher order
structures in a graph (BATTISTON et al., 2020). Among many ways to define this structures,
the common ways to refer to this structures are by cells or also, cliques, depending on
the approach (topological or geometric). All the following information can be found at
(HATCHER, 2005). Formally, let 𝐺 = (𝑉, 𝐸) a graph and 𝑑 ∈ N⋃︀{0}. The structures
equivalent to the 𝑑-dimensional open disks in the continuous approach are called 𝑑-cells
,or 𝑑-faces, or also 𝑑-simplexes. They are equivalent to a (𝑑 + 1)-vertex clique. Depending
on the approach, we will call them by the best notation as required.

A clique of size 𝑑 + 1, or a (𝑑 + 1)−vertex clique, is a subset of 𝑉 with cardinality
𝑑 + 1 in which all pairs of nodes are connected by an edge. They are also called complete
subgraphs of 𝐺. An example of this 𝑑-cells is shown at the Figure 3, for 𝑑 = 0, 1, 2, 3.

We will denote a 𝑑-cell by 𝑒𝑑
𝜆, for some 𝜆 ∈ Δ, where Δ is a collection of indexes. We

also will denote 𝑑-skeleton by 𝑋𝑑 and define it recursively by 𝑋𝑑 = 𝑋𝑑−1 ⋃︀
𝜆∈Δ

𝑒𝑑
𝜆, and 𝑋0

is the set of all 0-cells.
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Figure 3 – Examples of 𝑐𝑒𝑙𝑙𝑠 (or cliques) of different dimensions.

Source: self-provided.

Figure 4 – Example of a CW-Complex.

Source: self-provided.

The space constructed from the graph 𝐺 is called a Cell Complex or a CW-Complex
(FORMAN, 2003; HATCHER, 2005), and we will denote by 𝑋. The set of all 𝑑-cells of 𝑋 will
be denoted by ℱ𝑑(𝑋), and each 𝑑-cell will be expressed in terms of the set of nodes, i.e.,
𝑒𝑑 = [𝑣𝜎(1), · · · , 𝑣𝜎(𝑑+1)], where 𝜎 : {1, · · · , 𝑑 + 1} → {1, · · · , 𝑛} is an injective function.
For example, in Figure 2, we have ℱ2(𝑋) = {[𝑣1, 𝑣4, 𝑣9], [𝑣4, 𝑣5, 𝑣9], [𝑣5, 𝑣8, 𝑣9]}.

In Figure 4 we have an example of a CW-Complex constructed from 𝑑-skeletons, for
𝑑 ∈ {0, 1, 2, 3}. Clearly, 𝑋0 is the set of nodes, 𝑋1 is the union of 𝑋0 with the set of edges,
𝑋2 is the union of 𝑋1 with the set of triangles and 𝑋3 is the result of the union between
𝑋2 and the tetrahedron. Once we have defined this structures, we are able to bring the
notion of Betti numbers, which can be seen in the next chapter.
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3 TOPOLOGICAL APPROACHES

In this chapter, we are going to introduce the definitions of the topological functions that
we used in our approach. Those definitions can also be found at (EDELSBRUNNER; HARER,
2010; GREENBERG, 2018).

3.1 BETTI NUMBERS

As many other topological tools, the Betti number is one of those that is used to distin-
guish topological spaces based on the connectivity of 𝑛-dimensional simplicial complexes
(EDELSBRUNNER; HARER, 2010; HATCHER, 2005; GREENBERG, 2018). Its applications is
notable in neuroscience (SANTOS et al., 2019). Considering the definition given of a 𝑑-
simplex in Chapter 2, we will construct the definition of Betti numbers. To start, we will
induce an orientation to a 𝑑-simplex. An orientation of a 𝑑-simplex is given by an ordering
of the vertices and denoted by [𝑣1, · · · , 𝑣𝑑+1]. Two orderings induce the same orientation
if and only if they differ by an even permutation of the vertices. In other words, for a
permutation 𝜋 on [𝑑],

[𝑣1, · · · , 𝑣𝑑+1] = (−1)sgn(𝜋)[𝑣𝜋(1), · · · , 𝑣𝜋(𝑑+1)], (3.1)

where sgn(𝜋) = (−1)𝑁(𝜋) and 𝑁(𝜋) is the number of inversions in 𝜋.We assume that each
simplex in our complex is assigned a specific orientation ( i.e., ordering).

Let F be a field. A simplicial 𝑑-chain is a formal sum of oriented 𝑑-simplices ∑︀
𝑖

𝑐𝑖𝑒
𝑑
𝑖 , 𝑐𝑖 ∈

F. The free abelian group generated by the 𝑑-chain is denoted by the 𝐶𝑑(𝑋), the 𝑑-th
chain group, i.e.,

𝐶𝑑(𝑋) =
{︃∑︁

𝑖

𝑐𝑖𝑒
𝑑
𝑖 : 𝑐𝑖 ∈ F, 𝑒𝑑

𝑖 ∈ ℱ𝑑(𝑋)
}︃

, (3.2)

for 𝑑 > 0 and 𝐶−1 = F, 𝐶𝑑 = ∅, for 𝑑 = −2, −3, · · · . It is easy to verify that 𝐶𝑑(𝑋) ⊆ F𝑑

is a vector space. We also define the boundary operator, 𝜕𝑑 : 𝐶𝑑 → 𝐶𝑑−1, as follows:

𝜕𝑑([𝑣1, · · · , 𝑣𝑑+1]) =
𝑑+1∑︁
𝑖=1

(−1)𝑖−1[𝑣1, · · · , 𝑣𝑖, · · · , 𝑣𝑑+1], (3.3)

where 𝑣𝑖 denotes the omitted variable. Is is easy to verify that 𝜕𝑑−1𝜕𝑑 = 0. In our special
case, we have F = Z2. As an example, let 𝑋 = {[1, 2, 3], [3, 4]}. We have that 𝐶1(𝑋) =
{[1, 2], [1, 3], [2, 3], [3, 4]}, 𝐶2(𝑋) = {[1, 2, 3]} and 𝜕2([1, 2, 3]) = [2, 3] − [1, 3] + [1, 2],
𝜕1𝜕2([1, 2, 3]) = 𝜕1([2, 3] − [1, 3] + [1, 2]) = [3] − [2] − ([3] − [1]) + [2] − [1] = 0. We
also have that the structural simplicity of this space allow as to express the boundary
operator in terms of the vector basis B2 = [[1, 2, 3]], B1 = [[1, 2], [1, 3], [2, 3], [3, 4]] and
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B0 = [[1], [2], [3], [4]] as follows:

[𝜕2]B2
B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

−1

1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.4)

[𝜕1]B1
B0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0 0

1 0 −1 0

0 1 1 −1

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.5)

In general, for every finite simplicial complex 𝑋, with 𝐶𝑑(𝑋) built over Z2 we can induce
the same representation.

The 𝑑-th boundary space of 𝑋 is denoted by B𝑑 = B𝑑(𝑋) and is defined as the
im𝜕𝑑+1, and the 𝑑-th cycle space, Z𝑑 = Z𝑑(𝑋) is ker 𝜕𝑑. This way, we can construct the
d-dimentional homology group by the quocient space given by

Hd = Z𝑑

B𝑑

. (3.6)

Finally, the d-th Betti number of the simplicial complex 𝑋 is defined as

𝛽𝑑(𝑋) = 𝑟𝑎𝑛𝑘(Hd(𝑋)), (3.7)

or simply, can be rewritten as

𝛽𝑑(𝑋) = dim ker 𝜕𝑑 − dim im𝜕𝑑+1. (3.8)

Using the same example, 𝑋 = {[1, 2, 3], [3, 4]} and (3.4),(3.5), we have that 𝛽0(𝑋) =
4 − 3 = 1 and 𝛽1(𝑋) = 1 − 1 = 0 and 𝛽𝑖 = 0 for 𝑖 ≥ 2.

3.2 EULER CHARACTERISTICS

The Euler characteristics is one of the topological invariants often used to explore big
data (CARLSSON, 2009; EDELSBRUNNER; HARER, 2010) and has been used to analyse
networks in a topological, high-order perspective (PASCUCCI et al., 2010; TAYLOR et al.,
2015; WASSERMAN, 2018; ZOMORODIAN, 2012). For us, the Euler Characteristics can
induce an alternative curvature (KNILL, 2011a; WU et al., 2015) in attempt to contrast the
results with the discrete Ricci curvatures.

The applications across fields has been bringing astounding results for science. For
instance, the use of topological transictions as bio-markers in protein-protein networks
(FILHO, 2019) and for distinguish disease by brain activities (SANTOS et al., 2019).
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Furthermore, a strong result in (WEBER; SAUCAN; JOST, 2018) revels a connection
between the Forman-Ricci curvatures and Euler Characteristics in an alternative Gauss-
Bonnet Theorem for 2-dimensional complexes.

There are many ways to compute the Euler characteristics across fields, one being
towards the Betti numbers (HATCHER, 2005; GREENBERG, 2018), by

𝜒(𝑋) =
∞∑︁

𝑖=1
(−1)𝑖𝛽𝑖(𝑋). (3.9)

Remark: Originally, the sum in 3.9 is infinite, however, in our approach, as we are dealing
with finite graphs, the sum is also finite. Another one is by using the Euler curvature
(KNILL, 2011b) in each node of the graph. This method were more suitable for us due to
the reduction of computational complexity. The Euler characteristics of CW complex is
also given as follows:

Given 𝐺 = (𝑉, 𝐸) an undirected finite graph, we define the Euler curvature of a node
𝑣 ∈ 𝑉 as ((KNILL, 2012b)),((KNILL, 2011a)),((KNILL, 2012a))

𝐾(𝑣) =
𝑑max∑︁
𝑑=0

(−1)𝑑 𝑆𝑑−1(𝑣)
𝑑 + 1 , (3.10)

where 𝑆𝑑 is the number of 𝑑−1 cells containing 𝑣, 𝑆−1(𝑣) = 1, and 𝑑max is the highest cell
dimension of the CW complex. The 𝑑-cells are the same defined at the previous section. In
our case, for finite graph without self-loops and multiple connections, the Gauss-Bonnet
Theorem is satisfied ((KNILL, 2011a)),((KNILL, 2012b)),((KNILL, 2014)),((KNILL, 2013))
i.e.,

𝜒(𝐺) =
∑︁
𝑣∈𝑉

𝐾(𝑣), (3.11)

where 𝐾(𝑣) is the curvature defined in (3.10) and can also be rewritten as

𝜒(𝐺) =
𝑑max∑︁
𝑑=0

(−1)(𝑑+1)𝑘𝑑, (3.12)

where 𝑘𝑑 is the number of 𝑑-cells in 𝐺. For example, if 𝑋 = {[1, 2, 3], [3, 4]}, as before,
from the calculus of Betti numbers, we have 𝜒(𝑋) = 1 − 0 = 1.

The analytic expected Euler characteristic of an Erdos-Renyi graph is given by (KNILL,
2011b)

E[𝜒(𝐺(𝑛, 𝑝))] =
𝑛∑︁

𝑘=1
(−1)𝑘+1

(︃
𝑛

𝑘 + 1

)︃
𝑝(𝑘

2) (3.13)

Due to computational limitations, we restricted our calculus to cells of dimension at
most 𝑑max = 6. Figure 5 shows the results of our calculus in comparison to the expected
Euler characteristics, provided by the equation (3.13). The original result can be found
at (KNILL, 2011b). At this point, it was possible to analyse how the topological struc-
ture behaves as the probability of connection increases. Once compared to Forman-Ricci
curvature, it was clear to realise the persistence of the high absolute values in curvatures
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Figure 5 – Euler characteristic: average of 500 Erdos-Renyi graph realizations for diferent
amount of nodes, restricted to dimention 𝑑max = 6.

Source: self-provided.

for values of 𝑝 greater than 0.5. The main difference remains on the maximum of this
absolute values, which are extremely higher than the Forman curvature, once it is limited
to the number of nodes in the graph.
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4 GEOMETRIC APPROACHES

Geometrizations are present everywhere in network science e.g. in quantum (KIBBLE, 1979;
CASETTI; PETTINI; COHEN, 2000; SAVILLE; WOOD, 2012; PAWLOWSKY-GLAHN; EGOZCUE,
2001) and also offer useful perspectives regarding real data treatment and applications
across fields (SANDHU; GEORGIOU; TANNENBAUM, 2016; FAROOQ et al., 2019). In this
chapter, we are going to discuss some of the geometric approaches currently used in our
data analysis.

4.1 OLLIVIER-RICCI CURVATURE

The Ollivier-Ricci curvature for networks is defined as follows (LIN; LU; YAU, 2011; SAMAL

et al., 2018): Let 𝐺 = (𝑉, 𝐸) be a graph. The path length function 𝑑 : 𝑉 ×𝑉 → R+ defined
as the length of the shortest path between two nodes induces a metric for the set of nodes
of 𝐺. The neighborhood of a node 𝑥 ∈ 𝑉 is the subset of nodes connected to 𝑥 by an edge.
Let 𝛼 ∈ [0, 1] and 𝑥 ∈ 𝑉 . We define 𝑚𝛼

𝑥 , a probability measure over the set of nodes as

𝑚𝛼
𝑥(𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝛼 if 𝑦 = 𝑥

(1 − 𝛼)/ deg(𝑥) if 𝑦 ∈ neigh(𝑥)

0 otherwise

. (4.1)

Finally, the Olliver-Ricci curvature of an edge 𝑒 = (𝑥, 𝑦) ∈ 𝐸 is defined as

𝜅(𝑥, 𝑦) = 1 −
𝑊 (𝑚𝛼

𝑥 , 𝑚𝛼
𝑦 )

𝑑(𝑥, 𝑦) , (4.2)

where 𝑊 is the discrete Wasserstein distance ( WASSERMAN, 2018) given by

𝑊 (𝑚𝛼
𝑥 , 𝑚𝛼

𝑦 ) = inf
𝜇∈Π(𝑚𝛼

𝑥 ,𝑚𝛼
𝑦 )

∑︁
𝑥′,𝑦′∈𝑉

𝑑(𝑥′, 𝑦′)𝜇(𝑥′, 𝑦′). (4.3)

Here, Π(𝑚𝛼
𝑥 , 𝑚𝛼

𝑦 ) denotes the set of all probability measures 𝜇 : 𝑉 × 𝑉 → R+ that satisfy
∑︁

𝑦′∈𝑉

𝜇(𝑥′, 𝑦′) = 𝑚𝛼
𝑥(𝑥′),

∑︁
𝑥′∈𝑉

𝜇(𝑥′, 𝑦′) = 𝑚𝛼
𝑦 (𝑦′). (4.4)

In this way, the computation of the Ollivier-Ricci curvature, in equation (4.2), requires
solving an optimization and linear programming problem provided by equations (4.3)
and (4.4), respectively. In our work, we set 𝛼 = 0.5. The choice of the parameter 𝛼 ∈
[0, 1] directly influences the contributions of the nodes and edges to the computation
of the curvature, see equation (4.1). Although Ollivier-Ricci discretization has numerous
applications across fields (SANDHU; GEORGIOU; TANNENBAUM, 2016; FAROOQ et al., 2019;
SANDHU et al., 2015b), the implementation can be time consuming when compared to
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other discrete version of network curvatures. For this reason, we used and compared,
alternatively, the combinatorial version of the Forman-Ricci curvature in our work, as
discussed below.

4.2 WEIGHTED FORMAN-RICCI CURVATURE

We defined Forman-Ricci curvature for weighted and unweigted graphs. Both has its pe-
culiarities in terms of numeric and combinatorial results, as well as the time processing.
Here, we are going to define each one and show the main difference between them. Con-
sidering 𝐺 = (𝑉, 𝐸) an undirected weighted graph, 𝑥 ∈ 𝑉 and 𝜋𝑥 the neighborhood of 𝑥

(i.e., the adjacent nodes to 𝑥), whe define the weighted version of Forman-Ricci curvature
as ((SREEJITH et al., 2016),(POURYAHYA; MATHEWS; TANNENBAUM, 2017)):

F(𝑥, 𝑦) = 𝑤𝑥 + 𝑤𝑦 − 𝑤𝑥𝑦

(︂ ∑︁
𝑧∈𝜋𝑥, 𝑧 ̸=𝑦

𝑤𝑥√
𝑤𝑥𝑦𝑤𝑥𝑧

(4.5)

+
∑︁

𝑠∈𝜋𝑦 , 𝑠 ̸=𝑥

𝑤𝑦√
𝑤𝑥𝑦𝑤𝑠𝑦

)︂
,

where (𝑥, 𝑦) ∈ 𝐸, 𝑤𝑥, 𝑤𝑦 and 𝑤𝑥𝑦 are the weights of vertices 𝑥, 𝑦 and edge (𝑥, 𝑦), res-
pectively. The sums in 4.5 vary over all neighbouring nodes of 𝑥 and 𝑦, except 𝑦 and 𝑥,
respectively.

In a particular case, when considered all nodes and edges with unitary weights (i.e,
𝑤𝑥𝑦 = 𝑤𝑥 = 𝑤𝑦 = 1, ∀(𝑥, 𝑦) ∈ 𝐸) we have that

F(𝑥, 𝑦) = 2 −
(︂ ∑︁

𝑧∈𝜋𝑥, 𝑧 ̸=𝑦

1 +
∑︁

𝑠∈𝜋𝑦 , 𝑠 ̸=𝑥

1
)︂

(4.6)

= 2 − [(deg(𝑥) − 1) + (deg(𝑦) − 1)],

i.e.,

F(𝑥, 𝑦) = 4 − deg(𝑥) − deg(𝑦). (4.7)

The formula in 4.7 allow us to compute curvatures from the basic graph structures,
without the need of weights carried in the edges. The Formula in 4.5 expand this results
by using the metric provided by edges.

As an example, considering the graph in Figure 6, it is easily seen that 𝐹 (𝑥, 𝑦) =
2 − [

√
2 +

√
3/3] by the formula in 4.5 and 𝐹 (𝑥, 𝑦) = 4 − 3 − 2 = −1 by 4.7, thus they

might provide completely different results.
In order to distinguish both curvatures, we are going to call 4.5 as Weighted Forman-

Ricci curvature and 4.7 as simply Forman-Ricci Curvature.
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Figure 6 – Example of a simple weighted graph.

Source: self-provided.

4.3 AUGMENTED FORMAN-RICCI CURVATURE

The study of the topology of a continuous manifold and its geometric counterparts is
not a new concept, (LOTT; VILLANI, 2009; BOCHNER, 1946; COLDING, 1997; TIAN; YAU,
1990; MATSUMOTO, 2002; NAJMAN; ROMON, 2017). However, discrete versions of several
results in Differential Geometry is quite a contemporaneous approach (BOBENKO, 2008)
and It’s an active area in pure mathematics. Over the past years, the concept of Ricci
curvature, which will be used in our work, was formalized for discrete structures by For-
man (BOCHNER, 1946; FORMAN, 2003; SREEJITH et al., 2016; POURYAHYA; MATHEWS;

TANNENBAUM, 2017). Later, it was also formalized by Olliver Ricci (OLLIVIER, 2007;
POURYAHYA; MATHEWS; TANNENBAUM, 2017). The ideas developed by Forman, also pro-
ven to be useful for complex systems and Networks. The concept is explained as follows:
For an unweighted graph, we can define Forman Curvature from a topological approach
provided at (LEVY, 1999). For more details regarding discretization and definitions, see
(HATCHER, 2005). To clarify this concept, an example is given in Figure 3 and Figure 4.

The curvature is calculated from the 𝑑-cells present in the graph. Considering a CW-
complex (FORMAN, 2003; HATCHER, 2005) obtained from the graph and given two 𝑑-cells
𝛼1 and 𝛼2, we denote that 𝛼1 is contained in the boundary of 𝛼2 by 𝛼1 < 𝛼2. We say that
𝛼1 and 𝛼2 are neighbors, if at least one of the following conditions are fulfilled:

1. There is a (𝑑 + 1)-cell 𝛽 such that 𝛼1 < 𝛽 and 𝛼2 < 𝛽;

2. There is a (𝑑 − 1)-cell 𝛾 such that 𝛾 < 𝛼1 and 𝛾 < 𝛼2.

We say that that 𝛼1 and 𝛼2 are parallel neighbors if conditions (1) and (2) is true but
not simultaneously. In case of both (1) and (2) are true, 𝛼1 and 𝛼2 are said transverse
neighbors.

In Figure 7, considering 𝑑 = 1, the dashed edges are parallel neighbors of edge
𝑒 = (𝑥, 𝑦) (blue edge), while the dotted edges are transverse neighbors. The black ed-
ges are not neighbors of 𝑒, once that neither conditions are satisfied. The d-th Forman
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Figure 7 – Example of parallel and transverse neighbors for an undirected graph. The
nodes 𝑥 and 𝑦 have 5 and 3 neighbors, respectively. Following the definiton,
the edge 𝑒𝑥𝑦 has 4 paralell neighbors (dotted edges) and 2 tranverse neighbors
(dashed edges).

Source: self-provided

Curvature for an unweighted 𝑑-cell 𝛼 is given by

F𝑑(𝛼) = #{(𝑑 + 1)-cells 𝛽 > 𝛼}

+#{(𝑑 − 1)-cells 𝛾 < 𝛼}

−#{parallel neighbors of 𝛼}. (4.8)

In our special case, for 𝑑 = 1, the formula reduces to

F(𝑒) = #{2-cells 𝛽 > 𝑒} + 2
−#{parallel neighbors of 𝑒}. (4.9)

Applying (4.9) for 𝑒 in Figure 7, we have: one triangle (2-cell) that contains 𝑒, as well as
4 parallel neighbors. Therefore, F(𝑒) = 1 + 2 − 4 = −1. Once defined the Forman-Ricci
curvature for edges, we can extend the concept for the nodes as follows:

F(𝑥) = 1
𝑑𝑒𝑔(𝑥)

∑︁
𝑧∈𝜋𝑥

𝐹 (𝑒𝑥𝑧), (4.10)

where 𝑒𝑥𝑧 is the edge that connects 𝑥 to 𝑧 and 𝜋𝑥 = neigh(𝑥). We can have a set theory
analogy for the definition above. This analogy will prove to be useful during the numerical
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implementation of the Forman-Ricci curvature. The following results provide a generalized
formulation for the Forman-Ricci curvature for higher-order CW-complexes, and is a
original result from our work.

4.4 APPLICATION TO RANDOM GRAPHS

In our thesis, we developed analytic expressions for the mean Augmented Forman-Ricci
curvature for random graphs. Given a 𝑑-cell, 𝛼, we can write it as 𝛼 = {𝑣1, 𝑣2, · · · , 𝑣𝑑+1},
for 𝑣𝑖 ∈ 𝑉 , 𝑖 = 1, 2, · · · , 𝑑+1. Now, we can give an alternative formulation from equation
4.8. The explanation can be given from a set theory perspective: The number of 𝑑 + 1-
cells containing 𝛼 can be found by counting the number of all vertices in 𝑉 contained
simultaneously in all neighbourhood of each 𝑣𝑖 ∈ 𝛼. The number of cells contained in the
boundary of 𝛼 are always 𝑑+1. For each 𝑣𝑖 ∈ 𝛼, the number of parallel cells can be found
by taking all 𝑣 ∈ 𝑉 such that 𝑣 belongs to the neighborhood of all 𝑣𝑗 ∈ 𝛼, except the
neighborhood of 𝑣𝑖. Summarizing all this information, we can rewrite 4.8 as

F𝑑(𝛼) = #{𝑣 ∈ 𝑉 | 𝑣 ∈
𝑑+1⋂︀
′𝑖=1

𝜋𝑣𝑖
}

+(𝑑 + 1)

−#⋃︀𝑑+1
𝑖=1 {𝑣 ∈ 𝑉 |𝑣 ∈ (

𝑑⋂︀
𝑗=1, 𝑗 ̸=𝑖

𝜋𝑣𝑗
) ∖ 𝜋𝑣𝑖

}, (4.11)

where 𝜋𝑖 = neigh(𝑣𝑖). Simplifying (4.11) with 𝑑 = 1, we finally have the alternative
Forman-Ricci formula for 𝑒 = {𝑥, 𝑦}, given by

F1(𝑒) = #{𝑣 ∈ 𝑉 | 𝑣 ∈ 𝜋𝑥 ∩ 𝜋𝑦}}

+2
−#({𝑣 ∈ 𝑉 | 𝑣 ∈ 𝜋𝑥 ∖ 𝜋𝑦}⋃︀{𝑣 ∈ 𝑉 | 𝑣 ∈ 𝜋𝑦 ∖ 𝜋𝑥}) (4.12)

This new version motivated us to find an analytic expression for the mean of the Aug-
mented Forman-Curvature for random graphs. Let 𝑒 = {𝑥, 𝑦} be and edge in a random
graph. From the alternative equation in 4.12, we have that the number of triangles contai-
ning an edge can be counted by simply counting the number of nodes that belongs to the
intersection of the neighbors of 𝑥 and 𝑦. Hence, the expected number of triangles contai-
ning 𝑒 is (𝑛 − 2)𝑝2, once that for each edge different from 𝑒 has probability 𝑝 of appearing
in the graph and we also have (𝑛 − 2) nodes in 𝑉 for the choice. The conditions 1. and 2.

of neighbouring cells ensure as that the parallel edges to 𝑒 are the neighbors that does not
satisfy the first condition. Thus, the number of edges parallel to 𝑒 can also be explained as
the number of neighbors of 𝑥 (𝑦), except 𝑦 (𝑥) that are not included in triangles containing
𝑒. Applying this result with the Erdos-Renyi theory presented in chapter 2 we have that
the expected number of edges parallel to 𝑒 is 2(𝑛 − 2)𝑝(1 − 𝑝) = 2[(𝑛 − 2)𝑝 − (𝑛 − 2)𝑝2].
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Figure 8 – Forman-Ricci Curvature average of 600 Erdos-Renyi graph realizations for
diferent amount of nodes.

Source: self-provided.

Thus, we finally have from (4.12) the expected Forman-Ricci curvature of an Erdos-Renyi
graph 𝐺(𝑛, 𝑝), namely

E[𝐹 (𝐺(𝑛, 𝑝))] = 3(𝑛 − 2)𝑝2 + 2 − 2(𝑛 − 2)𝑝, (4.13)

for 𝑝 > 0. The resultant quadratic equation in (4.13) has roots

𝑝+, 𝑝− = 1
3

⎡⎣1 ±

⎯⎸⎸⎷(𝑛 − 8)
(𝑛 − 2)

⎤⎦ , (4.14)

for 𝑛 > 8, and 𝑝 = 1/3, for 𝑛 = 8. For a large graph (when 𝑛 −→ ∞) we have that the
roots in 4.14 are close to 0 and 2/3.

Figure 8 shows the mean behavior of 600 realizations for the Forman-Ricci curvature
of Erdos-Renyi graph. Furthermore, the roots of (4.13) signalize the geometric change
from the curvature sign, which occurs, generally, for high values of 𝑝. The formulation in
4.13 can be generalized by following the previous argument for 1-cells as follows:

Let 𝛼 = {𝑣1, . . . , 𝑣𝑑+1} a 𝑑-cell. From the first parcel of equation 4.11, we have that
the probability of a given vertex 𝑣 ∈ 𝑉 be in

𝑑+1⋂︀
′𝑖=1

𝜋𝑣𝑖
is 𝑝𝑑+1. We also have (𝑛 − (𝑑 + 1))

possibilities for selecting 𝑣. Thus, the expected number of (𝑑 + 1)-cells containing 𝛼 is
(𝑛 − (𝑑 + 1))𝑝𝑑+1. From the third parcel of equation 4.11, we have that, for each 𝑖 ∈

{1, 2, . . . , 𝑑+1}, the probability of a given 𝑣 ∈ 𝑉 be in (
𝑑⋂︀

𝑗=1
𝜋𝑣𝑗

)∖𝜋𝑣𝑖
is 𝑝𝑑(1−𝑝), for every



29

Figure 9 – Comparison between the analytic expected Augmented Forman-Ricci curva-
tures for 𝑑-cells (𝑑 = 1, 2, 3, 4, 5) and the mean of 100 realizations in a Erdos-
Renyi graph with 𝑛 = 40 nodes.

Source: self-provided.

𝑗 ∈ 1, ..., 𝑑 + 1, 𝑖 ̸= 𝑗, which gives us (𝑛 − (𝑑 + 1)) different choices, for each fixed node 𝑣𝑖

in 𝛼. Hence, the expected number of parallel cells to 𝛼 is (𝑑 + 1)(𝑛 − (𝑑 + 1))𝑝𝑑(1 − 𝑝).
Gathering all this information and applying to 4.11, we finally have

E[𝐹𝑑(𝐺(𝑛, 𝑝))] = (𝑑 + 2)(𝑛 − (𝑑 + 1))𝑝(𝑑+1) + (𝑑 + 1) − (𝑑 + 1)(𝑛 − (𝑑 + 1))𝑝𝑑, (4.15)

for 𝑑 = 1, 2, 3, . . ..
By setting 𝑑 = 1, in 4.15 we bring back the formula in 4.13. Normalizing 4.15 by 𝑛, the

number of nodes, we have that, as 𝑛 −→ ∞, the resultant polynomial is 𝑝𝑑[(𝑑+2)𝑝−(𝑑+1)],
which clearly has roots 0 and (𝑑+1)/(𝑑+2). In Figure 9 we can see the comparison between
the analytic formula obtained in 4.15 and the mean of 100 stochastic realizations, for
different higher-order cells.

In the next chapter, we are going to introduce a topological approach for this data
analysis, which can be compared to the geometric one, already made in this chapter.
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5 TOPOLOGICAL AND GEOMETRIC APPLICATIONS TO EPIDEMIC DATA

In this chapter we are going to develop the main concepts used in this work. First, we
are going to provide our definition of graphs generated from epidemic time-series, which
we called epidemic networks, and then, all the steps needed for its construction and data
visualisation.

5.1 EPIDEMIC NETWORKS

In fields where network science is applicable (BARABÁSI et al., 2016), and particularly
in network neuroscience (FORNITO; ZALESKY; BULLMORE, 2016), weighted networks are
build based on correlations between nodes of a network, or any other similarity mea-
sure. Similarly, in studies of financial networks (ONNELA; KASKI; KERTSZ, 2004; SANDHU;

GEORGIOU; TANNENBAUM, 2016), the resultant weighted network is built from Pearson
correlations between financial time-series (ONNELA; KASKI; KERTSZ, 2004). In contrast, in
most of the network approaches to epidemiology (MILLER; KISS, 2014; TAO; ZHONGQIAN;

BINGHONG, 2006), the structure of the contagion network is considered, i.e., the focus is
studying an epidemic in a network (TAO; ZHONGQIAN; BINGHONG, 2006).

Here, following the network science approaches in neuroscience and economy, we in-
troduce an epidemic network as a weighted network, where nodes are locations and the
weights are defined by the Pearson correlation coefficient between two epidemic time-
series. As far as we know, this way of defining an epidemic network from correlations
was not yet introduced in the literature on network epidemiology. Therefore, not much
is known regarding the relationship between our epidemic network approach and classic
network epidemiology. This question deserves further investigation and can draw inspira-
tion from other fields confronted with similar issues, in particular neuroscience (WANG et

al., 2015; TEWARIE et al., 2020),
In this work, we create an epidemic network consisting of nodes and edges, based on

the reported epidemic time-series. We define each spatial domain of the epidemic as the
node of a network. The links between two locations are based on the Pearson correlation
coefficient between their epidemic time-series.

5.2 NETWORK FROM EPIDEMIC TIME-SERIES DATA

Network-based approaches to epidemiology are usually performed by associating vertices
to individuals and the edges are the infection probability (NEWMAN, 2002; BALL et al.,
2019; BRITTON; JUHER; SALDAÑA, 2016; PASTOR-SATORRAS et al., 2015). The starting
point of our approach for creating an epidemic network differs for the standard one since
it is based in Pearson correlation coefficient from the time-series data. This approach is
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Figure 10 – An explanation for the time varying process on epidemic data.

Source: self-provided.

inspired by network analysis in other fields, such as neuroscience (FORNITO; ZALESKY;

BULLMORE, ) or in financial networks (KIM; KIM; HA, 2007).
In this first step, we explain the process of conversion of time-series into evolving

graphs as follows:

1. A moving window on data is pre-selected regarding the way of time measuring (days,
weeks or months);

2. The resulting data will provide the time-series on each place to be analysed;

3. The place names are provided to the nodes, while the connection between epidemic
time-series is given by edges between nodes via Pearson correlation coefficient, given
by (KENNEY; KEEPING, 1957; SNEDECOR; COCHRAN, 1937; EDWARDS, 1984)

𝜌 = cov(𝑋, 𝑌 )
var(𝑋)var(𝑌 ) , (5.1)

where cov(𝑋, 𝑌 ) is the co-variance between two random variables, 𝑋 and 𝑌 , while
var(𝑋) and var(𝑌 ) are the variance of the time-series 𝑋 and 𝑌 , respectively.

4. The process is repeated for the next time period, until the whole analysed data be
fully covered.

This way, each moving window provides a graph. For better understanding, see Figure
10.

Once we set the edges weights as the values found by applying 5.1, we are ready
to perform all the topological and geometrical analysis in the epidemic data, as we will
explain further.

5.3 FILTRATION

The network created using the procedure above often results into a dense graph, which
may have several spurious links.
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Figure 11 – Illustration of an epidemic network, for different filtration values.

Source: self-provided.

The reader may remember that we chose the links of the network according to the
Pearson’s correlation coefficient between two locations in descending order, which means
that we include the strongest links in the network first, until the network reaches the same
number of connected components of the original graph. The strategy for thresholding is
based on the concept of filtration, which, for instance, ( ZOMORODIAN, 2012) was used
in neuroscience for classifying disease and control groups (SANTOS et al., 2019; GRACIA-

TABUENCA et al., 2020).

More precisely, we define a graph 𝐺 = (𝑉, 𝐸) as a structure constructed from the set
of nodes (or vertexes) 𝑉 and edges (links between nodes ) 𝐸.

Formally, once 𝑉 is the set of nodes of 𝐺, we define a 𝜖-neighbourhood (ZOMORODIAN,
2005) on 𝑉 as 𝐺𝜖 = (𝑉, 𝐸𝜖), where

𝐸𝜖 = {𝑒 = (𝑥, 𝑦) ∈ 𝐸, 𝑥 ̸= 𝑦 ; 𝑑(𝑥, 𝑦) ≤ 𝜖}, (5.2)

where 𝑑(𝑥, 𝑦) is the distance between nodes 𝑥 and 𝑦. The added value of this definition is
the possibility to visualize an evolving graph as a function of a parameter 𝜖, i.e., we can
track the evolving from an empty graph, when 𝜖 = 0, until the a dense network, when
𝜖 = 1. The idea of filtration can be better understood via the example in Figure11.

The main idea is to start with an empty graph, and gradually add the strongest links
to the evolving graph, i.e., we first add the edges with higher correlation coefficient.
Therefore, we denoted the filtration 𝐸𝜖 by

𝐸𝜖 = {𝑒 ∈ 𝐸; 𝑤𝑒 ≥ 1 − 𝜖}. (5.3)

Clearly, 𝜖 runs over the interval [0, 2], and than 𝐺𝜖 ⊂ 𝐺. In order to ignore redundant
information for the time-varying analysis, we are going to find the critical percolation
value of 𝜖𝑐 such that the graph still keeping the connections which is relevant in the
skeleton structure. This threshold value is defined as follows:

𝜖𝑐 = inf{𝜖 ∈ [0, 2] ; |𝐺𝜖| = |𝐺|}, (5.4)
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where |𝐺| denotes the number of connected components of 𝐺 = 𝐺1 (ERDOS; P., 1959;
ERDŐS; RÉNYI, 1960). The idea is to keep the graph structure as the same of the crossing
the Betti numbers of 𝐺 ((LEVY, 1999)). An algorithm to obtain the approximate 𝜖𝑐 from
small steps Δ𝜖 is given in bellow. In our studies, we used Δ𝜖 = 10−5.

Algorithm 1 Graph Threshold Algorithm
Result: 𝜖𝑐

1 Input: 𝐺1, Δ𝜖;
𝜖𝑐 = 0
while |𝐺𝜖| ≠ |𝐺1| do

2 𝜖𝑐 := 𝜖𝑐 + Δ𝜖
3 end

This approach allow us to avoid the inclusion of spurious links between epidemic sites
in a natural manner. Once the graph is created, a filtration is selected at the vicinity of the
giant component transition. As is discussed in theoretical models in epidemic networks,
an epidemic outbreak happens at the critical probability for the emergence of a giant
component transition (MOORE; NEWMAN, 2000; NEWMAN, 2002), so that the detachment
of connected components is imminent, i.e., we are seeking for the smallest value such
it leads to the maximum amount of connected components graph. In order to start our
tests in a data-driven approach, we started the topological and geometric applications to
synthetic data, whose models are described in the next chapter.
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6 ANALYTIC EPIDEMIC MODELS

In this chapter, we dedicate the sections to construct synthetic data from analytic models.
As one of the first works that emerged on modelling COVID-19 data in Wuhan (ZIFF;

ZIFF, 2020), we decided to chose the fractal model to generate our time-series for COVID
data. For Dengue disease, we decided to use a recent work of modelling Dengue cases by
using a modification of SIR model with interaction between sites used in Rio de Janeiro,
Brazil (STOLERMAN; COOMBS; BOATTO, 2015).

6.1 FRACTAL MODEL

As a proof of concept, we decided to first investigate whether the curvatures are able to
indicate the risk of a pandemic in a toy-model. For this, we simulated an epidemic network
obtained from synthetic epidemic time-series. We will first build this simple toy-model
heuristically and in a second step move towards the analysis of real COVID-19 data.

A simple way to access the number of cases in an epidemic network is to use the fractal
growth hypothesis, as observed in (ZIFF; ZIFF, 2020), where the daily number of cases 𝑛(𝑡)
in an epidemic follows a power-law distribution with an exponential cutoff:

𝑛(𝑡) = 𝐾𝑡𝑥 exp(−𝑡/𝑡0), (6.1)

where, 𝐾, 𝑥 and 𝑡0 are fitting parameters. In Figure 12, we show examples of the fit
between (6.1) and the number of reported COVID-19 new cases for four countries, namely,
China, Iran, South Korea and Japan. This fit suggests that (6.1) paves a simple way for
building a toy-model for epidemic time series. We stress that our aim here is not to find
whether the best fit for the pandemic is exponential or power law, which was already
addressed in (ZIFF; ZIFF, 2020; WODARZ; KOMAROVA, 2020), but to build a simple toy-
model that allows us to test our hypothesis relating Forman-Ricci curvatures to epidemic
networks.

Inspired by this equation, we can suggest a phenomenological toy-model for generating
epidemic time series with noise that can capture the growth of an epidemic network. We
assume that in each node 𝑖 of the epidemic network, the daily number of cases follows a
fractal epidemic growth with Gaussian noise 𝑤𝑖(𝑡) and a time delay 𝑑𝑖 in relation to the
epicenter:

𝑛𝑖(𝑡)=

⎧⎪⎨⎪⎩
𝑤𝑖(𝑡) if 𝑡 ≤ 𝑑𝑖

𝐾𝑖(𝑡 − 𝑑𝑖)𝑥𝑖 exp
(︂

− (𝑡−𝑑𝑖)
𝑡𝑖
0

)︂
+ 𝑤𝑖(𝑡) if 𝑡 > 𝑑𝑖

. (6.2)

We now show that the Forman-Ricci curvature suffices to detect fragility and risk
for the simulated epidemic network. The starting point for creating a fractal epidemic
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Figure 12 – COVID-19 per country. Illustration of the number of cases and fitting th-
rough fractal growth (dashed lines), Eq. (6.1), for a representative number of
countries.

Source: self-provided.

Figure 13 – Illustration of the creation of epidemic networks based on the correlations
between epidemic time series across spatial domains for a given time window.
This approach allow us to infer network signatures for epidemic outbreaks
without relying on parameter estimation of classic stochastic epidemic ap-
proaches.
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Figure 14 – Illustration of the toy-model epidemic curves for new cases (moving average),
according to (6.2) and its respective curvatures, with white noise parameter
𝜎 = 0.01.

Source: self-provided.
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network is based on simulating epidemic time series with delays from (6.2). In a second
step, we define the weights of the epidemic network through the Pearson correlation co-
efficient between time series 𝑛𝑖(𝑡) and 𝑛𝑗(𝑡). The temporal epidemic network is computed
for a given time window, and the process is repeated for the next time window, thus
obtaining an evolving network. This approach is inspired by network analysis in other
fields, such as neuroscience (FORNITO; ZALESKY; BULLMORE, ) or finance (KIM; KIM; HA,
2007). We illustrate the delayed epidemic time series, its Pearson correlation matrix and
its corresponding network for a given time point in Figure 13, resulting in a time evolving
network.

The third step is to infer the fragility of the time evolving epidemic network by tracking
geometric changes in this network as a function of time. More specifically, we observe the
mean changes in the discrete version of the Forman-Ricci curvature (SREEJITH et al.,
2016) for a selected moving window for each location affected by the epidemic and use
the network curvature as a indicator for its fragility and risk. Thus, we assume that the
application to epidemic time series follows an analogous behaviour to the one observed
for stock markets in (SANDHU; GEORGIOU; TANNENBAUM, 2016).

As a proof of concept, we then investigate a simulated time series with delays in (6.2).
We generated 50 time series with parameters 𝐾𝑖, 𝑥𝑖, 𝑑𝑖, and 𝑡𝑖

0 randomly chosen in the
interval 𝐾𝑖 ∈ [0, 20], 𝑥𝑖 ∈ [0, 5], 𝑑𝑖 ∈ [10, 21], and 𝑡𝑖

0 ∈ [0, 1]. We also included a small
white noise with zero mean and variance of 𝜎 = 0.01.

Figure 14 shows that the epidemic curve generated from our toy-model in Eq. (6.2) is
compatible with an epidemic outbreak and contrasts the simulated epidemic curve with its
curvatures. We observe that the curvature is constant before the starting of the simulated
epidemic, grows during its progression and reaches its maximum during the peak of the
simulated outbreak. After the end of the simulated epidemic, the curvature comes back
to its initial level. We emphasize that the inclusion of white noise 𝑤𝑖(𝑡) in our model was
very important to destroy spurious deterministic correlations that appear at the end of
the outbreak.

6.2 SIR MODEL WITH BIRTH AND DEATH

Repeating the steps of the previous section, we will apply our techniques to a simple and
classic infection disease model, named SIR. In addiction, we are considering the birth and
death parameters in our modelling.

In this part of the research, we based our approach on a SIR social dynamic over
networks applied to Dengue disease with variations regarding population dynamics. Ba-
sically, for simplicity, we decided to introduce birth and death on the model in order to
include a natural noise and periodic outbreaks, which makes the epidemic time series
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closer to the data collection. More specifically, we are providing the interaction between
human population as follows (STOLERMAN; COOMBS; BOATTO, 2015):

The total initial population (𝑁) is divided by sites/places (𝑃1, 𝑃2, · · · , 𝑃𝑚). For each
𝑗 ∈ {1, · · · , 𝑚} we have susceptible (𝑆𝑗), infected (𝐼𝑗) and recovered/removed (𝑅𝑗) as
local population.

The contagion dynamics between the sites is ruled by a probability matrix, Φ =
(𝜑𝑖𝑗)𝑚×𝑚. Each class (susceptible, infected or recovered) has a rate of death (𝛿𝑆𝑗

,𝛿𝐼𝑗
and

𝛿𝑅𝑗
), and only new susceptible arrives with rate of birth 𝛼𝑖, for all 𝑗 ∈ {1, · · · , 𝑚}.

From this dynamics, we can express a system of ordinary differential equations from rate
equation techniques provided at (BAEZ; BIAMONTE, 2012),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑑𝑆𝑖

𝑑𝑡
= 𝛼𝑖 −∑︀𝑚

𝑗,𝑘=1 𝛽𝑗𝜑𝑖𝑗𝜑𝑘𝑗𝑆𝑖
𝐼𝑘

𝑁𝑝
𝑗

− 𝛿𝑆𝑖
𝑆𝑖

𝑑𝐼𝑖

𝑑𝑡
= ∑︀𝑚

𝑗,𝑘=1 𝛽𝑗𝜑𝑖𝑗𝜑𝑘𝑗𝑆𝑖
𝐼𝑘

𝑁𝑝
𝑗

− (𝛾𝑖 + 𝛿𝐼𝑖
)𝐼𝑖

𝑑𝑅𝑖

𝑑𝑡
= 𝛾𝑖𝐼𝑖 − 𝛿𝑅𝑖

𝑅𝑖

, (6.3)

for all 𝑗, 𝑘 ∈ {1, · · · , 𝑚}, and satisfying the constant initial condition equation

𝑆𝑗(0) + 𝐼𝑗(0) + 𝑅𝑗(0) = 𝑁𝑗 , (6.4)

for 𝑁𝑗 ∈ N+, where ∑︀𝑚
𝑗=1 𝑁𝑗 = 𝑁 , 𝑁𝑝

𝑗 = ∑︀𝑚
𝑘=1 𝜑𝑘𝑗𝑁𝑘, and 𝜑𝑖𝑗 is an element of the Flux

Matrix satisfying
𝑚∑︁

𝑘=1
𝜑𝑗𝑘 = 1, (6.5)

for all 𝑗 ∈ {1, · · · 𝑚}. In our approach, we are considering

𝜑𝑖𝑗(𝜌) =

⎧⎪⎨⎪⎩ 𝜌, 𝑖 ̸= 𝑗

1 − (𝑚 − 1)𝜌, 𝑖 = 𝑗
, (6.6)

for some 𝜌 ∈ [0, 1/(𝑚 − 1)]. We generated the epidemic time series from a Monte-Carlo
simulation as chemical reactions (ERBAN; CHAPMAN; MAINI, 2007) as follows:

1. Select the time: 𝑡;

2. Take 𝑟 ∈ (0, 1) a random variable uniformly distributed;

3. Update the propensities, i.e., for all 𝑖 ∈ 1, . . . , 𝑚:

• 𝑎𝑖 = ∑︀𝑚
𝑗,𝑘=1 𝛽𝑗𝜑𝑖𝑗𝜑𝑘𝑗𝑆𝑖(𝑡)

𝐼𝑘(𝑡)
𝑁𝑝

𝑗

;

• 𝑏𝑖 = 𝛾𝑖𝐼𝑖(𝑡);
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• 𝑐𝑖 = 𝑆𝑖(𝑡);

• 𝑑𝑖 = 𝛿𝑆𝑗
𝑆𝑗(𝑡);

• 𝑒𝑖 = 𝛿𝐼𝑗
𝐼𝑗(𝑡);

• 𝑓𝑖 = 𝛿𝑅𝑗
𝑅𝑗(𝑡);

• 𝑟0 = ∑︀𝑚
𝑖=1 𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖 + 𝑒𝑖 + 𝑓𝑖;

4. Compute the extreme points of intervals for the next reaction:

𝑟𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
𝑟0

∑︀𝑖
𝑗=1 𝑎𝑗 , 1 ≤ 𝑖 ≤ 𝑚

1
𝑟0

(
∑︀𝑚

𝑗=1 𝑎𝑗 +
∑︀𝑖−𝑚

𝑗=1 𝑏𝑗), 𝑚 + 1 ≤ 𝑖 ≤ 2𝑚

1
𝑟0

(
∑︀𝑚

𝑗=1(𝑎𝑗 + 𝑏𝑗) +
∑︀𝑖−2𝑚

𝑗=1 𝑐𝑗), 2𝑚 + 1 ≤ 𝑖 ≤ 3𝑚

1
𝑟0

(
∑︀𝑚

𝑗=1(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗) +
∑︀𝑖−3𝑚

𝑗=1 𝑑𝑗), 3𝑚 + 1 ≤ 𝑖 ≤ 4𝑚

1
𝑟0

(
∑︀𝑚

𝑗=1(𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗 + 𝑑𝑗) +
∑︀𝑖−4𝑚

𝑗=1 𝑒𝑗), 4𝑚 + 1 ≤ 𝑖 ≤ 5𝑚

1
𝑟0

(
∑︀𝑚(

𝑗=1 𝑎𝑗 + 𝑏𝑗 + 𝑐𝑗 + 𝑑𝑗 + 𝑒𝑗) +
∑︀𝑖−5𝑚

𝑗=1 𝑓𝑗), 5𝑚 + 1 ≤ 𝑖 ≤ 6𝑚

5. Update time, 𝑡 := 𝑡 + 1;

6. Update population:

• If 0 ≤ 𝑟 < 𝑟1, then 𝑆1(𝑡 + 1) = 𝑆1(𝑡) − 1 and 𝐼1(𝑡 + 1) = 𝐼1(𝑡) + 1;

Considering the other possible cases, when 𝑟𝑖 ≤ 𝑟 < 𝑟𝑖+1 :

• If 𝑖 ∈ {1, · · · , 𝑚−1}, then 𝑆𝑖+1(𝑡+1) = 𝑆𝑖+1(𝑡)−1 and 𝐼𝑖+1(𝑡+1) = 𝐼𝑖+1(𝑡)+1;

• If 𝑖 ∈ {𝑚, · · · , 2𝑚−1}, then 𝐼𝑖+1−𝑚(𝑡+1) = 𝐼𝑖+1−𝑚(𝑡)−1 and 𝑅𝑖+1−𝑚(𝑡+1) =
𝑅𝑖+1−𝑚(𝑡) + 1;

• If 𝑖 ∈ {2𝑚, · · · , 3𝑚 − 1}, then 𝑆𝑖+1−2𝑚(𝑡 + 1) = 𝑆𝑖+1−2𝑚(𝑡) + 1;

• If 𝑖 ∈ {3𝑚, · · · , 4𝑚 − 1}, then 𝑆𝑖+1−3𝑚(𝑡 + 1) = 𝑆𝑖+1−3𝑚(𝑡) − 1;

• If 𝑖 ∈ {4𝑚, · · · , 5𝑚 − 1}, then 𝐼𝑖+1−4𝑚(𝑡 + 1) = 𝐼𝑖+1−4𝑚(𝑡) − 1;

• If 𝑖 ∈ {5𝑚, · · · , 6𝑚 − 1}, then 𝑅𝑖+1−5𝑚(𝑡 + 1) = 𝑅𝑖+1−5𝑚(𝑡) − 1;

7. Return to 1. and repeat the algorithm for the next time step.

In our study, we computed the algorithm in order to obtain the infected time series for
a population of size 𝑁 = 2000, with one infected at time 𝑡 = 0. The population were
uniformly distributed in 20 sites (𝑚 = 20) and parameters 𝛽𝑖 = 1, 𝛾𝑖 = 0.1, 𝛼𝑖 = 1,
𝛿𝑆𝑖

= 𝛿𝐼𝑖
= 𝛿𝑅𝑖

= 1/60, for all 𝑖 ∈ {1, · · · , 𝑚}, and a total of 10000 steps. The next site
infection parameter was 𝜌 = 1/𝑚 = 0.05.The resulting simulation is provided at Figure
15 and Figure 16. The result of curvature approach over this simulated epidemic cases is
provided at Figure 17. As observed, the Forman-Ricci curvature and Euler characteristics
stay elevated at the vicinity of the epidemic periods, and the relevant manifestation occurs
before or during the epidemic peaks, for different size of epidemics.
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Figure 15 – Stochastic simulation of SIR epidemic model with birth and death. Each color
represent a site (20 sites in total).

Source: self-provided.

Figure 16 – Total population from simulation in Figure 15.

Source: self-provided.

Overall, it is evident the presence of higher amplitude values of the curvatures while
approaching to epidemic periods, regardless the geometric or topological approach. This
pattern is repeated in three scales of epidemic intensity.

All curvatures are high correlated and bring analogous information from the epide-
mic network. Augmented Forman-Ricci and Ollivier Ricci curvatures presented similar
behaviours and are different only in the scale of values. Forman-Ricci curvatures, both
weighted and unweighted versions, were almost identical and also provided good results,
once compared to the other Ricci discretizations.

Visually, Euler characteristics provided a better marker for epidemic states, once that
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Figure 17 – Comparison between Synthetic data of Dengue Disease and curvatures.

Source: self-provided.
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the noise is minimal compared to the geometric approach.
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7 RESULTS

Having illustrated that we can use the Ricci curvatures and Euler characteristics as es-
timators for the risk of reaching a pandemic state in a toy-model for epidemic networks,
we are now ready to test whether the curvatures are reliable network fragility metrics for
real data. In this chapter we are going to summarize the main information of our results
for COVID-19 pandemic and Dengue disease.

7.1 TOPOLOGICAL AND GEOMETRIC APPROACH TO COVID-19

In Figure 18 we illustrate the epidemic curve and the curvatures for the COVID-19 data-
base (ORGANIZATION et al., 2020). As in the simulated data, the curvature was stable at
the beginning and grows over time, signaling increasing risk and fragility of the epidemic
network. Remarkably, we observe that the curvature of the epidemic network might give
early warning signs for the emergence of the pandemics, as the curvature starts to incre-
ase weeks before the exponential growth in number of cases is observed and the WHO
declares COVID-19 as a pandemic (e.g., see Figure 18, in red). Figure 19 provides an
additional geographical illustration of the distribution of the Augmented Forman-Ricci
curvature and Ollivier-Ricci curvature across countries for three time windows.

We also tested the sensitiveness of our approach to different threshold values. We find
that the Augmented Forman-Ricci curvature is able to identify the risk of an epidemic in
both synthetic and real data for threshold values 𝜖 ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75},
apart from 𝜖 = 0, which leads to an empty graph, and apart from 𝜖 = 2, which leads to
a fully connected graph and thus constant Augmented Forman-Ricci curvature as can be
seen in Figure 20.

We illustrate the sensitiveness of the Ollivier-Ricci curvature to COVID-19 data for
𝛼 ∈ {0, 0.25, 0.5, 0.75}, apart from 𝛼 = 1, which considers the major weight influence
from the nodes. The result can be seen in figure Figure 21.

Applications of discrete curvature to complex systems are rather new (FAROOQ et al.,
2019; SANDHU; GEORGIOU; TANNENBAUM, 2016; SANDHU et al., 2015a). Therefore, it is
relevant to contrast our findings with classic network metrics on COVID-19 data, both for
daily new reported cases and for daily deaths. We focus our comparison on the following
nine metrics: the degree assortativity coefficient (NEWMAN, 2003; FOSTER et al., 2010), the
percolation threshold, modularity (CLAUSET; NEWMAN; MOORE, 2004; YANG, 2013), the
mean diameter, the average clustering coefficient (SARAMÄKI et al., 2007; KAISER, 2008),
communicability, betweenness centrality, the first non-zero eigenvalue of the Laplacian and
the Perron-Frobenius eigenvalue (YANG, 2013). We also performed the dynamic network
filtration provided by equation (5.3) before computing each metric with time window of
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Figure 18 – Reported COVID epidemic cases per time window, for new cases, vs. its
curvatures for a time window of 7 days (Top) and 21 days (bottom). In red,
we indicate the moment when the WHO declared COVID-19 as a pandemic.

Source: self-provided.
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Figure 19 – Illustration of the distribution of the Ollivier-Ricci curvature (a) and Forman-
Ricci curvature (b) for three different time windows based on new cases corres-
ponding to periods before, during, and after the beginning of the COVID-19
pandemic.

(a) (b)

Source: self-provided.

seven days. All those classic network metrics are easily computed using python NetworkX
package (HAGBERG; SWART; CHULT, 2008). We summarize the results of our comparison
in Figure 22 for new cases and Figure 23 for new deaths. For better comparability, we
also computed the Pearson correlation coefficient of all these metrics and illustrate it in a
cluster map in Figure 24. Some numerical exploration on the relationship between discrete
curvature and classic network metrics in complex systems was made in (SREEJITH et al.,
2016), but a rigorous connection between classic network metrics and discrete curvatures
deserves further investigation. Our systematic comparison shows that the Ricci curvatures
provide analogous results to some of the classic metrics for both new cases new deaths.
In particular, the percolation threshold, betweenness centrality, and average clustering
coefficients for new cases are the three classic metrics with the highest absolute correla-
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Figure 20 – Augmented Forman-Ricci curvature for different threshold values, for synthe-
tic data (a) and real data (b).

(a)

(b)

Source: self-provided.

tion with Ollivier-Ricci curvatures, see Figure 24 (a). In addition, the average clustering
coefficient, mean betweenness centrality and mean diameter, for new deaths are the three
classic metrics with the highest absolute correlation with Ollivier-Ricci curvatures, see
Figure 24 (b). However, the Forman-Ricci curvature has the advantage of fast time pro-
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Figure 21 – Ollivier-Ricci curvature of COVID-19 (new cases), for different parameter
values.

Source: self-provided.

cessing and easy implementation. For new cases, in particular, the percolation threshold,
mean betweenness centrality, and average communicability are the three classic metrics
with the highest absolute correlation with Forman-Ricci curvatures, see Figure 24 (a).
In addition, for new deaths, the average clustering coefficient, percolation threshold, and
mean diameter are the three classic metrics with the highest absolute correlation with
Forman-Ricci curvatures, see Figure 24 (b).



48

Figure 22 – Comparison between various network metrics and COVID-19 (new cases).

Source: self-prvided.
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Figure 23 – Comparison between various network metrics and COVID-19 (new deaths).

Source: self-provided.
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Figure 24 – Cluster matrix comparing classic and geometric metrics in COVID-19 data,
for new cases (a) and new deaths (b).

(a)

(b)

Source: self-provided.
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7.2 TOPOLOGICAL AND GEOMETRIC APPROACH TO DENGUE

Once that we validated our technique on Dengue synthetic data, we are now able to apply
the topological and geometric approaches to real Dengue data. In Figs. 25 and 26 we show
the comparison between curvatures and the weekly collected Dengue database, provided
by Pan American Health Organization (PAHO, 2018) and DadosRecife (DADOSRECIFE,
2019), respectively. Although the Dengue data were provided by weeks (which might
reduce important information from daily cases, and than, increase noise in the data set),
the results obtained from curvature studies were satisfactory. As in the application to
synthetic data provided in the networks SIR model in section 6.2, we have an analogous
behavior of the curvatures on detecting Dengue outbreaks, and this is clear when the high
values of curvatures are present near epidemic peaks. All the curvatures presented signs
for epidemic outbreaks, despite the different levels of noise. Euler characteristic showed
to be the best option to network fragility due to the high levels of true pandemic signs,
in contrast to the noise, which was barely visible. Even with a higher level of noise, the
geometric approach also presented an easy implementation to detect epidemic outbreaks,
once that the sensibility to smaller epidemic epochs are also detected. Here, we also used
𝛼 = 0.5 as the metric parameter in Ollivier-Ricci curvature calculus. The test for other
parameter values, such for synthetic as real data, deserves further investigations.
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Figure 25 – Reported PAHO Dengue epidemic cases per time window, for weekly new
cases, vs. its curvatures for a time window of 10 weeks (Top) and 20 weeks
(bottom).

Source: self-provided.
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Figure 26 – Reported Recife Dengue epidemic cases per time window, for weekly new
cases, vs. its curvatures for a time window of 10 weeks (Top) and 20 weeks
(bottom).

Source: self-provided.
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8 CONCLUSION

In this work, we showed that Ricci curvatures metrics, as well as the Euler characteristics,
might be strong indicators for the identification of a pandemic state in epidemic networks,
in special, Dengue and COVID-19. Consequently, it could have the potential to become
a data-driven, geometric and topological approach in epidemiology more generally. All
discrete curvatures presented similar results when it comes to the detection of geometric
signatures on the epidemic network. While the Augmented Forman-Ricci discretization
is purely combinatory and differs substantially from the Ollivier-Ricci computation, it
presents substantial advantages, such as less noise and quicker computational convergence.
Meanwhile, the Euler characteristics provides better visual results, once that mostly real
information is not confused with the noise in data. However, as the computation algorithm
for finding all cliques in a network is NP-complete, a huge computation power is required.

The main added value of a topological and geometric approaches, in contrast to clas-
sical stochastic and modelling simulations, is that the results emerge intrinsically and
empirically independent of parameter estimations for the pandemic. We emphasise that
this are the early stage of this field and deserves further investigations.

We also compared the Augmented Forman-Ricci and Ollivier-Ricci curvatures with
classic network metrics, and found that our approach is consistent with results for network
fragility detection. In particular, we found absolute correlation between the Ricci curva-
tures and some classical network metrics. Although some of the classical network metrics
provided network fragility detection analogous to the Ricci curvatures, geometrization is
ubiquitous across domains beyond network science, e.g. in quantum (KIBBLE, 1979) and
statistical mechanics (CASETTI; PETTINI; COHEN, 2000), and statistics (SAVILLE; WOOD,
2012; PAWLOWSKY-GLAHN; EGOZCUE, 2001). We tested this approaches for synthetic data
generated by the fractal model for COVID-19. We also used a modified version of SIR
model for Dengue disease. However, the extension of this framework to other epidemic
models deserves further investigation, once that the aim of our work was to provide ge-
ometric and topological approaches to epidemic data, instead of finding the best model
for fitting.

Lastly, our work could pave the way for parameter-free, topological and geometric
approaches to epidemic networks and open the possibility for studying epidemics from a
topological and geometric perspective.
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