
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

JEANDRO DE MESQUITA BEZERRA

Traffic Engineering in Data Center Networks: Prediction and Scheduling via
Randomized Rounding for Elephant Flows

Recife
2020

JEANDRO DE MESQUITA BEZERRA

Traffic Engineering in Data Center Networks: Prediction and Scheduling via
Randomized Rounding for Elephant Flows

Work presented to the Graduate Program in Com-
puter Science of the Centro de Informática of the
Universidade Federal de Pernambuco in partial ful-
fillment of the requirements for the degree of Doctor
in Computer Science.

Concentration Area: Computer Networks.

Advisor: Prof. Dr. Divanilson Rodrigo de Sousa
Campelo.

Co-Advisor: Prof. Dr. Críston Pereira de Souza.

Recife
2020

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

B574t Bezerra, Jeandro de Mesquita

Traffic engineering in data center networks: prediction and scheduling via
randomized rounding for elephant flows / Jeandro de Mesquita Bezerra. – 2020.

 105 f.: il., fig., tab.

 Orientador: Divanilson Rodrigo de Sousa Campelo.
 Tese (Doutorado) – Universidade Federal de Pernambuco. CIn, Ciência da

Computação, Recife, 2020.
 Inclui referências.

 1. Redes de computadores. 2. Avaliação de desempenho. I. Campelo,
Divanilson Rodrigo de Sousa (orientador). II. Título.

 004.6 CDD (23. ed.) UFPE - CCEN 2021 – 42

Jeandro de Mesquita Bezerra

“​Traffic Engineering in Data Center Networks: Prediction
and Scheduling via Randomized Rounding for Elephant Flows​”

Tese de Doutorado apresentada ao Programa
de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Doutor em Ciência da
Computação.

Aprovado em: 25/11/2020.

__
Orientador: Prof. Dr. Divanilson Rodrigo de Sousa Campelo

BANCA EXAMINADORA

__
Prof. Dr. ​José Augusto Suruagy Monteiro

Centro de Informática / UFPE

__
Prof. Dr. ​Paulo Romero Martins Maciel

Centro de Informática / UFPE

Prof. Dr. ​Kelvin Lopes Dias

Centro de Informática / UFPE

Prof. Dr. ​Glauco Estácio Gonçalves

Departamento de Estatística e Informática / UFRPE

Prof. Dr. ​Hélio Waldman

Faculdade de Engenharia Elétrica e de Computação / UNICAMP

I dedicate this work to God, to my parents Afonso and Custódia in memoriam, to my
sisters Janaina and Ana Joecília, to my wife Karine and my son Jorge Benício.

ACKNOWLEDGEMENTS

To God and all spiritual energies for leadership and comfort in every moment that I needed.
To Custódia (In memoriam) and Afonso, my parents, my thanks for everything! They have
always dedicated their lives to provide us the conditions so that we could achieve our goals.
I also thank my sisters Janaina and Joecília. To my wife, Karine Linhares, for all attention,
affection, understanding, support, and love received over these years. To my son Jorge Benicio,
for making me a more fulfilled and happy person.

To my family and friends who have always been with me and encouraged me to face
challenges.

To colleagues who collaborated with this research and lived in Recife. To the former student
and friend, Janael, with his example of an inspiring life.

To Divanilson Campelo (advisor) and Críston Souza (co-advisor), for the opportunity,
supervision, chances, and support that with their expertise and experience, provided to me the
opportunity to work on this project.

To all lecturers of Centro de Informatica (CIN) that, in one way or another, contributed
to my academic and personal growth.

To FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico)
for their financial support.

ABSTRACT

Applications and services hosted in large Data Centers account for most of the increase
in Internet traffic. Data Center Networks (DCNs) are often designed with a fat-tree topology,
allowing multiple paths between any two servers. The most widely adopted solution for flow
routing in DCNs is equal-cost multipath (ECMP), which can cause link performance degra-
dation due to the possible occurrence of hash collisions in the presence of flows with many
gigabytes of data, called elephants. Such collisions can result in packet discard, which generates
packet retransmission, causes additional latency, and further degrades link performance. This
thesis proposes a hybrid prediction model by combining aspects of the FARIMA and the Recur-
rent Neural Network (FARIMA-RNN) models to predict elephant flows on a short-term basis.
Besides, we implement an SDN solution based on a randomized rounding heuristic, named
RDRH, to schedule elephant flows in DCNs. We employ a linear programming formulation
that provides in polynomial time lower bounds for balancing elephant flows. A methodology
based on the rank of the prediction accuracy metrics is applied to compare the hybrid model’s
performance with the ARIMA, GARCH, RBF, MLP, and LSTM models. Results show that the
FARIMA-RNN model presents lower error rates than the other predictors. Furthermore, we
evaluate our proposed heuristic performance on an emulated network with Mininet. The ex-
periments show that the RDRH solution presents a performance gain compared to the ECMP
and Hedera solutions in the round-trip delay and loss metrics in two of the four evaluated
scenarios.

Keywords: Data center networks. Elephant Flows. Prediction. Performance Evaluation. Ran-
domized Rounding.

RESUMO

Aplicações e serviços hospedados em grandes data centers ocasionam um aumento no
volume de tráfego da Internet. Redes de data center (DCNs) são frequentemente projetadas
com a topologia fat-tree que permitem múltiplos caminhos entre quaisquer dois servidores. A
solução mais adotada para roteamento de fluxos em DCNs é o ECMP (equal-cost multipath),
que pode causar degradação do desempenho no enlace devido à possibilidade de ocorrência
de colisões de hash na presença de fluxos com muitos gigabytes, chamados de elefante. Tais
colisões podem ocasionar descarte de pacotes que geram retransmissões causando atrasos
adicionais e degradam o desempenho do enlace. Esta tese propõe um modelo híbrido de
predição combinando aspectos dos modelos FARIMA e de Redes Neurais Recorrentes, chamado
de (FARIMA-RNN), para prever fluxos elefante em curto período. Além disso, implementamos
uma solução SDN baseada em uma heurística de arredondamento probabilístico, denominada
de RDRH, para escalonar fluxos elefante em DCNs. Uma metodologia baseada no rank da
métrica de acurácia de previsão é aplicada para comparar o desempenho do modelo híbrido
com os modelos ARIMA, GARCH, RBF, MLP e LSTM. Os resultados mostram que o modelo
FARIMA-RNN apresenta taxas de erro menores que os demais modelos. A heurística proposta
foi avaliada em uma DCN emulada com o Mininet. Os experimentos mostram que a solução
RDRH apresenta ganho de desempenho comparado com as soluções ECMP e Hedera nas
métricas atraso de ida e volta e perda em dois dos quatro cenários avaliados.

Palavras-chaves: Redes de data center. Fluxos elefante. Predição. Avaliação de desempenho.
Arredondamento probabilístico.

LIST OF FIGURES

Figure 1 – Fat Tree topology. Adapted from (VAHDAT et al., 2010) 27
Figure 2 – Sample pod. Adapted from (ANDREYEV, 2014) 28
Figure 3 – Data center with SDN architecture. 30
Figure 4 – The scope of traffic engineering areas selected in this thesis. 31
Figure 5 – An RNN whose recurrence is the feedback connection from the output to

the hidden layer. 37
Figure 6 – Multicommodity flow example . 39
Figure 7 – The RDRH Application for Traffic Engineering 44
Figure 8 – Overview of the proposed TE solution . 46
Figure 9 – Proposed FARIMA-RNN model. The representation of the FARIMA model

can be defined as the output of the fractional-order process. 48
Figure 10 – Flowchart of the FARIMA-RNN model . 49
Figure 11 – Randomized Rounding Heuristic (RDRH) module 56
Figure 12 – experimento . 61
Figure 13 – Comparison of scheduling algorithms on a fat-tree topology of 4-pod with

100 Mbps. Experiments with one TCP flow are in the left column plot, and
five flows in the right column plot. 64

Figure 14 – Comparison of scheduling algorithms on a fat-tree topology of 4-pod with
1000 Mbps. Experiments with one TCP flow are in the left column plot,
and five flows in the right column plot. 65

Figure 15 – Comparison of scheduling algorithms on a fat-tree topology of 8-pod with
100 Mbps. Experiments with one TCP flow are in the left column plot, and
five flows in the right column plot. 66

Figure 16 – Comparison of scheduling algorithms on a fat-tree topology of 8-pod with
1000 Mbps. Experiments with one TCP flow are in the left column plot,
and five flows in the right column plot. 67

Figure 17 – Time series of all traffic sources: Intra-cluster (top left), Inter-cluster (top
right), Inter-datacenter (bottom left) and Inter-cluster & Inter-data center
(bottom right) . 79

Figure 18 – Evaluation of Predictors approaches . 89

LIST OF TABLES

Table 1 – Summary of the notation used in RDRH. 41
Table 2 – Qualitative overview of related works with DCN traffic prediciton. 52
Table 3 – Qualitative overview of DCN load balancing solutions. 55
Table 4 – Details of the specification of the experiment. 60
Table 5 – Nemenyi post hoc test for 4-pod with Stag traffic and one TCP connection. 69
Table 6 – Nemenyi post hoc test for 4-pod with Random traffic and one TCP connection. 70
Table 7 – Nemenyi posthoc test for 4-pod with Stag traffic and five TCP connections. 70
Table 8 – Nemenyi posthoc test for 4-pod with Random traffic and five TCP connections. 70
Table 9 – Nemenyi posthoc test for 8-pod with one TCP connection. 70
Table 10 – Nemenyi posthoc test for 8-pod with five TCP connections. 71
Table 11 – Wilcoxon rank test for 4-pod with one TCP connection. 71
Table 12 – Wilcoxon rank test for 4-pod with five TCP connections. 72
Table 13 – Wilcoxon rank test for 8-pod with one TCP connection. 72
Table 14 – Wilcoxon rank test for 8-pod with five TCP connections. 72
Table 15 – Average computation time (ms) for 4-pod topology. 73
Table 16 – Overview of datasets . 77
Table 17 – Descriptive statistics for all datasets. Units are represented in KB. 80
Table 18 – Statistical tests for samples . 81
Table 19 – Tests for LRD and non-linearity . 82
Table 20 – Parameters of the prediction models 1 . 82
Table 21 – Parameters of the prediction models 2 . 83
Table 22 – Performance Evaluation of Forecasting Approaches 1 87
Table 23 – Performance Evaluation of Forecasting Approaches 2 88
Table 24 – Performance Evaluation of Forecasting Approaches 88
Table 25 – Training and testing time (s) . 88
Table 26 – Training and testing time (s) . 89

LIST OF ABBREVIATIONS AND ACRONYMS

ANN Artificial Neural Networks

API Application Programming Interface

AR Autoregressive

ARCH Autoregressive Conditional Heteroskedasticity

ARIMA Autoregressive Integrated Moving Average

ATM Asynchronous Transfer Mode

BIC Bayesian Information Criterion

DCN Data Center Networks

ECMP Equal-cost multi-path

FARIMA Fractional ARIMA

FNN False Nearest Neighbors

FSSM Flow-Switch Stable Matching

FTR Fat-Tree Routing

GARCH Generalized Autoregressive Conditional Heteroskedasticity

GPH Geweke and Porter-Hudak

i.i.d. independent and identically distributed

IP Internet Protocol

JE_RProp Jordan and Elman Resilient Backpropagation

LP Linear Programming

LRD Long Range Dependence

LSTM Long Short-Term Memory

LWR Locally Weighted Regression

MA Moving Average

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Maximum Likelihood

MLP Multi-Layer Perceptron

MMFR Modified Multicommodity Flow Relaxation

MPLS Multiprotocol Label Switching

NOS Network Operating System

QoS Quality of Service

RBF Radial Basic Function

RDRH Randomized Rounding Heuristic

RMSE Root Mean Squared Error

RNN Recurrent Neural Networks

RPPS Cloud Resource Prediction and Provisioning Scheme

RProp Resilient Backpropagation

SDN Software-Defined Networking

SNNS Stuttgart Neural Network Simulator

SSTD Skewed Student’s 𝑡-distribution

SW Shapiro-Wilk

TCP Transmission Control Protocol

TE Traffic Engineering

TOR Top of Rack

VNEP Virtual Network Embedding Problem

WNN White Neural Network

WSRT Wilcoxon Signed-Rank tests

LIST OF SYMBOLS

𝜃 theta

𝜎 sigma

𝜇 mi

𝜑 phi

𝜙 varphi

Ψ psi

Γ gamma

CONTENTS

1 INTRODUCTION . 16

1.1 CONTEXT . 16
1.2 PROBLEM AND MOTIVATION . 17
1.3 OBJECTIVES . 20
1.4 RESEARCH QUESTIONS . 21
1.5 RESEARCH METHODOLOGY . 21
1.6 PUBLISHED WORKS . 22
1.6.1 Related Publications . 22

1.6.2 Co-authored papers . 23

1.7 THESIS STRUCTURE . 24
2 BACKGROUND . 26

2.1 DATA CENTER NETWORKS . 26
2.1.1 Data Center Networks with Software Defined Networking 29

2.1.2 Traffic Engineering in DCNs . 30

2.2 TIME SERIES PREDICTION WITH STATISTICAL METHODS 32
2.2.1 Non-seasonal ARIMA model . 32

2.2.2 GARCH model . 33

2.2.3 FARIMA model . 33

2.2.4 Time Series Prediction with Pattern Recognition 34

2.2.5 Feed-Forward Neural Networks . 35

2.2.6 Recurrent Neural Networks . 36

2.2.7 Hybrid FARIMA-MLP Model . 38

2.3 MULTICOMMODITY NETWORK FLOW AND RANDOMIZED ROUNDING 39
2.3.1 Multicommodity Network Flow . 39

2.3.2 Fat-Tree Routing Problem . 39

2.3.3 Randomized Rounding . 40

2.4 CLOSING REMARKS . 43
3 TRAFFIC ENGINEERING SOLUTION 44

3.1 THE APPLICATION FOR TRAFFIC ENGINEERING 44
3.2 PROPOSED PREDICTION MODEL . 46

3.3 RELATED WORKS . 50
3.3.1 Elephant Flow Prediction . 50

3.3.2 Elephant Flow Scheduling . 52

3.4 CLOSING REMARKS . 55
4 RANDOMIZED ROUNDING HEURISTIC SOLUTION 56

4.1 RANDOMIZED ROUNDING HEURISTIC MODULE 56
4.2 EVALUATION OF TRAFFIC ENGINEERING SOLUTION 58
4.2.1 Conception and design . 58

4.2.2 Preparation and execution . 59

4.3 PERFORMANCE EVALUATION OF THE RDRH FOR TE 62
4.3.1 Evaluation Metrics . 62

4.3.2 Data Analysis . 62

4.3.3 Statistical Validation . 68

4.3.4 Computing time . 72

4.4 LIMITATIONS OF THE RDRH AND TRAFFIC ENGINEERING SOLUTION 73
4.5 CLOSING REMARKS . 75
5 HYBRID PREDICTION MODEL VALIDATION 76

5.1 EXPLORATORY DATA ANALYSIS OF A FACEBOOK DATA CENTER’S
TRAFFIC . 76

5.1.1 Aggregate Elephant flows Analysis . 77

5.2 ADJUSTMENT PARAMETERS OF FORECAST MODELS 82
5.3 PERFORMANCE ANALYSIS FOR FORECASTING MODELS 84
5.3.1 Prediction accuracy . 84

5.3.2 Data Analysis and Discussion of the Prediction Models 85

5.3.3 FARIMA-RNN limitation . 87

5.4 CLOSING REMARKS . 89
6 CONCLUSION . 90

6.1 DISCUSSION ON CONTRIBUTIONS . 90
6.2 RESPONSES TO RESEARCH QUESTIONS 91
6.2.1 RQ1: Which procedures are required to identify elephant flows in

real data traces? . 92

6.2.2 RQ2: How to design a hybrid model for elephant flows prediction

in DCNs? . 92

6.2.3 RQ3: How does the proposed hybrid prediction model compare with

the related state-of-the-art models? 92

6.2.4 RQ4: How does the proposed randomized rounding heuristic com-

pare with the related state-of-the-art solutions? 93

6.2.5 RQ5: What is the effect of applying a randomized rounding heuristic

when it is used with different traffic patterns? 93

6.2.6 RQ6: What is the effect of optimizing elephant flow only? Does

this improve network performance? 93

6.3 FUTURE WORKS . 93
REFERENCES . 95

16

1 INTRODUCTION

In this chapter, we describe the context, problem and motivation of this thesis. Next, we
present its objectives, and research questions. Besides, we describe the research methodology
and published works related to this thesis. Finally, the thesis structure is defined.

1.1 CONTEXT

Data centers provide vital infrastructures such as clusters, storage, and networking for
hosting various applications that benefit from the availability of such resources. Currently,
cloud computing services, present mainly in large data centers, account for a significant part
of Internet traffic. Because of the dynamic characteristics and unpredictability of the traffic
generated by these services, the traffic growth poses challenges to intra- and inter- Data

Center Networks (DCN). Traffic patterns in DCNs reflect two aspects: bulk transfers with
many gigabytes of data, called elephants (e.g., backups, data migration), and low traffic with
flows of a few kilobytes, called mice (e.g., web searches, social networking, etc.). The work
(ANDERSON; CROVELLA; DIOT, 2004) describes the prevalence of long-tailed distributions in
network workloads known as the “elephant and mice” phenomenon. In the literature, results
contrast the data center traffic characteristics when hosting different applications (BENSON et

al., 2010; ROY et al., 2015).
The demand for solutions that improve and implement Traffic Engineering (TE) in data

centers has increased and enabled the dissemination and consolidation of Software-Defined
Networking (SDN). By decoupling the control plane and the data plane, SDN allows greater
flexibility and adds new features to the network. It has permitted the implementation of use
cases to enhance the network’s management through traffic control techniques. Proposed
architectures such as Hedera (AL-FARES et al., 2010), B4 (JAIN et al., 2013), Presto (HE et

al., 2015) have been landmarks to how new networks are designed and managed. Today, large
enterprises are adopting SDN in their DCNs due to ease of management and improved network
performance. The authors of (DAI et al., 2017) describe the improvements SDN can bring to
the DCN environment, and highlight the growth of studies in this area. The authors argue
that their work is the first survey with the integration of data center with SDN and addresses
works in optimization for resource allocation.

17

Flow forwarding in a DCN topology, such as fat-tree (MOLLAH et al., 2018), can be modeled
as multicommodity flow approaches. The application of simple heuristics that do not consider
flow size leads to load imbalance. Proposals that consider multicommodity approaches and the
scheduling flow problem in SDN scenarios appear in (BENSON et al., 2011; BRANDT; FOERSTER;

WATTENHOFER, 2017). Heuristics based on random rounding techniques are effective in prob-
lems of operational research (BARAHONA; CHUDAK, 2005) and computer networks (MANGILI

et al., 2014; XU et al., 2017). The randomized rounding provides a solution for an unsplittable
multicommodity flow problem, e.g., a solution for an integer programming formulation 𝑃 with
binary variables. Probabilistic approximation, based on randomized rounding technique, is the
primary mechanism in approximating unsplittable flow problems (BIALON, 2017). This tech-
nique uses linear relaxation 𝐿 of 𝑃 , and an optimal solution 𝑆 of 𝐿. Therefore, in 𝑆 the binary
variables of 𝑃 have values between 0 and 1 that are used as probabilities in a draw sequence
to produce an integer solution for 𝑃 .

The optimization of energy consumption and load balancing schemes are two examples of
data center applications to which prediction and multicommodity models can be applied. They
use the forecasting measures to aid in the decision-making process (YOON; KAMAL; ZHU, 2017;
BASTAM; SABAEI; YOUSEFPOUR, 2018). Short-term (e.g., one minute ahead) and long-term
time interval predictions can help in the development of decision support systems. Besides,
predicting the size of flows in a DCN can help revise the routing and scheduling required to
improve TE (ALVAREZ-HORCAJO et al., 2019).

The length of packets is used as a metric for classification and identification of traffic
patterns (CHAO; LIN; CHEN, 2019; ROY et al., 2015). This metric allows the development of
TE mechanisms that perform the scheduling (AL-FARES et al., 2010), classification (CHAO; LIN;

CHEN, 2019), and forecasting (LI et al., 2016) of elephant flows. TE mechanisms use time series
analysis and forecasting to application development. The length of the packets varying over
time is a time series that can be used to identify and predict elephant flow traffic. Besides,
flow aggregation is one of the techniques that make it possible to optimize resource allocation
in a network (KAMIYAMA et al., 2014).

1.2 PROBLEM AND MOTIVATION

The fat-tree topology allows the diversity of paths and the ability to achieve full-bisection
bandwidth in DCNs (AL-FARES; LOUKISSAS; VAHDAT, 2008). This diversity not only facilitates

18

the distribution of flows over all paths of equal length, such as Equal-cost multi-path (ECMP),
but also supports the handling of failures (THALER; HOPPS, 2000; ZHANG; CUI; ZHANG, 2017).
The problem of selecting routes for flow demands in fat-trees can be modeled as a problem
close to multicommodity flow, which is an NP-Hard problem (ZHANG; CUI; ZHANG, 2017).
Multicommodity flow approaches can be used to model problems of transmission between
pairs in the fat-tree topology (MOLLAH et al., 2018). The application of simple heuristics that
do not consider flow size leads to load imbalance. For instance, ECMP forwards flows based
on the hash value, causing load imbalance in the links because it does not consider the size
of the flows for forwarding.

The large volume of traffic generated in data centers brings up performance and Quality of
Service (QoS) problems due to elephant flows (HAMDAN et al., 2020; JURKIEWICZ, 2020; XIE et

al., 2019). Although mice and elephants phenomenon emerged two decades ago (ANDERSON;

CROVELLA; DIOT, 2004; GUO; MATTA, 2001), this research challenge is still in full development,
mainly in data centers (ABDELMONIEM; BENSAOU, 2015; WANG et al., 2016, 2016; CHAO; LIN;

CHEN, 2019; FU et al., 2020). A concentration of elephant flows in DCNs can lead to load
imbalance that affects other flows that are trying to utilize the shared link. The imbalance
can lead to packet discards, thus causing the retransmission of the discarded packets. In turn,
retransmission causes additional latency and degradation of the link performance. Elephant
flows utilize more bandwidth than other flows, what causes load imbalance because some paths
can be congested while others are underutilized.

ECMP is the most broadly used hash-based algorithm to optimize multipath switched
networks (ZHANG et al., 2018; TSO; PEZAROS, 2013; CHIESA; KINDLER; SCHAPIRA, 2017). To
balance traffic flows between a pair of source and destination nodes, ECMP uses several
equal-cost paths between them. In most implementations, ECMP relies on a link-state routing
protocol to calculate diverse equal-cost shortest paths. This can lead to a load imbalance
because the ECMP routing maps them to the same path based on the number of outgoing
interfaces, i.e., links associated with the shortest path at the node level along the route, not
at the source-destination path level (MEDHI; RAMASAMY, 2017). The path selection is based
on the hash of specific fields of the IP packet, such as the source and destination IP addresses,
transport port numbers, and protocol. For instance, by applying the function 𝑥 mod 𝑛, where
𝑥 is the least significant octet of the IP address and 𝑛 the number of interfaces (HOPPS et al.,
2000). A switch locally selects the next hop across multiple paths of equal cost, calculating a
hash value based on the 𝑥 mod 𝑛 function return. The concentration of elephant flows can

19

lead to the occurrence of hash collisions that degrade over all network utilization due to router
flooding or switch buffers.

In the literature of computing networking, few research studies tackled the multicommod-
ity approach with the randomized rounding heuristic. A feature of randomized algorithms
is their structural simplicity (GONZALEZ, 2007). The randomized rounding technique makes
efficient approximations and integrates well with Linear Programming (LP). (MANGILI et al.,
2014; KLOPFENSTEIN, 2005) showed the use of randomized rounding in computer networking.
The work in (MANGILI et al., 2014) proposed a randomized rounding heuristic that scales up
to realistic topologies in Information-Centric Networks. (KLOPFENSTEIN, 2005) presented a
randomized rounding heuristic to reroute tunnels in Multiprotocol Label Switching (MPLS)
networks.

Traffic load imbalance causes an impact on the capital and operational costs in DCNs
(GOMEZ et al., 2019; Saber et al., 2020). Therefore, obtaining the forecast of elephant flows
allows planning and better provisioning of links, avoiding underutilization or overload. Classical
statistical prediction models such as Autoregressive (AR) and Autoregressive Integrated Moving
Average (ARIMA) are extensively used for forecasting. In cases in which the traffic carries
Long Range Dependence (LRD) properties, these models present poor performance (KATRIS;

DASKALAKI, 2015). Fractional ARIMA (FARIMA) has been proposed to overcome ARIMA’s
limitations because it is most appropriate to describe the existence of LRD (SHENG; CHEN,
2011). In the presence of nonlinear time series, Artificial Neural Networks (ANN) can be
applied to traffic forecasting in computer networks (SABBEH et al., 2016; HONG; WANG; HSU,
2013). Recurrent Neural Networks (RNN) are ANN models for processing sequential data.
RNN models work well with time series analysis and can also process sequences of variable
length (GOODFELLOW; BENGIO; COURVILLE, 2016). Hybrid models can be defined as a proposal
in which several models are merged to form a new enhanced model to better forecast results
(RAMOS-PEREZ; ALONSO-GONZALEZ; NUNEZ-VELAZQUEZ, 2019; RATHER; AGARWAL; SASTRY,
2015). Artificial intelligence techniques combined with traditional statistics models result in a
hybrid model.

It is difficult to obtain current traffic traces from production data centers for analysis
because of industrial privacy and confidentiality policy. There is an initiative from the Altoona,
Pennsylvania Facebook released a set of real traces of its DCN (ZENG; SHAO, 2016). Trace
documentation is available in a private Facebook group called Facebook Network Analytics

20

Data Sharing1. This benefited the research community and enabled the development of this
work. Besides, most traditional data centers do not have the infrastructure to support flow-
level monitoring and scheduling, thus relying on an accurate traffic prediction to perform short-
term/long-term traffic scheduling to aid with load balancing (LI et al., 2016). For instance, if
we can predict short-term elephant flow traffic, we can reroute mice flows to non-congested
links. Long-term prediction is beyond the scope of this thesis.

Systematic literature reviews about TE with SDN were conducted by (AKYILDIZ et al., 2014;
AKYILDIZ et al., 2016; DAI et al., 2017). These reviews pointed to many types of contributions,
such as load balancing mechanisms and prediction of traffic patterns in DCNs. The integration
of SDN with DCNs enables the development of innovations that make it possible to address
the challenges raised in this section. Therefore, we noticed a demand for a prediction model
and load balancing mechanisms in DCNs.

1.3 OBJECTIVES

The challenges related to the scheduling and forecasting of elephant flows in DCNs, men-
tioned above, motivated the investigation of how such processes can be implemented and
improved.

The main objective of this thesis is to minimize the imbalance in the data flow in DCNs.
This thesis investigates real data traces of a Facebook DCN, considering the packet length as
a time series metric for identifying and determining the predictability of elephant flow traffic.
Also, this thesis presents the development of an elephant flow scheduling prototype for DCNs
based on the randomized rounding heuristic and SDN. To achieve this goal, we defined the
following specific objectives:

1. Processing and time series analysis of real traces from the Altoona, Pennsylvania Face-
book Data Center to identify scenarios where elephant flow prediction can be made.
The packet length is used as a time series metric for identifying and determining the
predictability of elephant flow traffic.

2. The proposal of a hybrid prediction model based on FARIMA and RNN models, which
is denoted by FARIMA-RNN.

1 <https://www.facebook.com/groups/1144031739005495>

https://www.facebook.com/groups/1144031739005495

21

3. A performance evaluation of the FARIMA-RNN model and its comparison with existing
prediction models.

4. The development of a flow scheduling for DCNs based on SDN that uses an approxima-
tive algorithm, called Randomized Rounding Heuristic (RDRH), for load balancing.

1.4 RESEARCH QUESTIONS

As described in the previous section, we identified two research challenges to explore with
elephant flows in DCNs: short-term prediction and load balancing in the fat-tree. Thus, the
following research questions (RQs) are raised in this work:

• RQ1: Which procedures are required to identify elephant flows in real data traces?

• RQ2: How to design a hybrid model for elephant flows prediction in DCNs?

• RQ3: How does the proposed hybrid prediction model compare with the related state-
of-the-art models?

• RQ4: How to implement a heuristic for more efficient routing of elephant flows, and how
does it compare with related state-of-the-art solutions?

• RQ5: What is the effect of applying the proposed heuristic when it is used with different
traffic patterns?

• RQ6: What is the effect of optimizing elephant flow only? Does this improve network
performance?

1.5 RESEARCH METHODOLOGY

This thesis was based on a methodological approach suggested in (WAZLAWICK, 2009).
The steps of the methodological process adopted in this thesis are:

• Problem identification: data centers host many applications and concentrate a large mass
of data. The network infrastructure to support the demand for elephant flow requires
load balancing mechanisms that offer scalability. Real-time applications require a low
delay. This requirement can be compromised due to the fact that elephant flows cause
bottlenecks in routers or switches in DCNs;

22

• The elaboration of a strategy for elephant flows forwarding in DCNs: we propose a
randomized rounding heuristic since the finding of paths for elephant flows in fat-tree
topology is very challenging in terms of computational time, due to its NP-Hardness
(ZHANG; CUI; ZHANG, 2017). Therefore, there is a clear necessity of formulating heuristics
that can efficiently find an approximate solution for elephant flows forwarding;

• The development and implementation of a prototype for scheduling elephant flows in
an emulated DCN. We opted for popular network emulation, Mininet, due to its cost,
flexibility, and reproducibility of experiments for new services and applications. Besides,
it integrates many SDN elements, e.g., controller;

• The development and implementation of a hybrid elephant flow forecasting model using
real DCN traces;

• Performance evaluation: planning and execution of a set of experiments to evaluate the
FARIMA-RNN and RDRH prototype;

• Analysis and presentation of results to obtain conclusions from the results.

1.6 PUBLISHED WORKS

1.6.1 Related Publications

In this subsection, we list the papers generated by this thesis. Subsection 1.6.2 presents
co-authored publications without a direct relation to this work.

• Journal paper:

– Performance evaluation of elephant flow predictors in data center net-

working.

Future Generation Computer Systems, s, v. 102, p. 952 – 964, Jan, 2020.

J. M. Bezerra, A. J. Pinheiro, C. Souza, D. R. Campelo.
https://doi.org/10.1016/j.future.2019.09.031.
Highest percentile Scopus (%) - 96th, “Novo Qualis”:A1.
The results of this publication are presented as parts of Chapters 2, 3, and 5;

• Book chapter:

https://doi.org/10.1016/j.future.2019.09.031

23

– Engenharia de Tráfego em Redes Definidas por Software.

Livro de Mini-cursos do SBRC 2016, SBC, 2016.

J. M. Bezerra, A. J. Pinheiro, M. S. Bonfim, J. A. Suruagy Monteiro, D. R.
Campelo.
http://www.sbrc2016.ufba.br/minicurso/minicurso-3.
The results of this publication are presented as part of Chapter 2;

• Paper to be submitted:

– A randomized rounding approach for scheduling elephant flows in data

center networks.

To be defined.

J. M. Bezerra, A. J. Pinheiro, C. Souza, D. R. Campelo.
Chapters 2, and 4;

1.6.2 Co-authored papers

• Journal paper:

– Adaptive packet padding approach for smart home networks: a trade-off

between privacy and performance.

IEEE Internet of Things Journal, accepted for publication 2020.

A. J. Pinheiro, P. Freitas de Araujo Filho, J. M. Bezerra, D. R. Campelo.
https://doi.org/10.1016/j.comcom.2019.05.012.
Highest percentile Scopus (%) - 99th, “Novo Qualis”:A1;

– Identifying IoT devices and events based on packet length from encrypted

traffic

Computer Communications, v.144, p.8 – 17, 2019.

A. J. Pinheiro, J. M. Bezerra, C. A. P. Burgardt, D. R. Campelo.
https://doi.org/10.1016/j.comcom.2019.05.012.
Highest percentile Scopus (%) - 85th, “Novo Qualis”:A2;

• Conference paper:

http://www.sbrc2016.ufba.br/minicurso/minicurso-3/
https://doi.org/10.1016/j.comcom.2019.05.012
https://doi.org/10.1016/j.comcom.2019.05.012

24

– Packet padding for improving privacy in consumer IoT.

IEEE Symposium on Computers and Communications (ISCC) 2018, pp. 1-5, Jun

2018.

A. J. Pinheiro, J. M. Bezerra, D. R. Campelo.
https://doi.org/10.1109/ISCC.2018.8538744.
“Novo Qualis”:A3;

– An OpenFlow-based elastic solution for cloud-CDN video streaming ser-

vice.

IEEE GLOBECOM 2015, pp. 1-7, Dec 2015.

P. A. L. Rego, M. S. Bonfim, M. Ortiz, J. M. Bezerra, D. R. Campelo, J. Neuman
de Souza.
“Novo Qualis”:A1;

1.7 THESIS STRUCTURE

The remainder of this thesis is structured as follows:

• Chapter 2 provides the background of DCNs, as well as the statistical and pattern
recognition prediction methods. It also briefly presents examples of multicommodity
flow models and randomized rounding heuristic.

• Chapter 3 describes the proposed traffic engineering solution and the hybrid prediction
model. Finally, it discusses related works;

• Chapter 4 describes the randomized rounding heuristic for traffic engineering. It also
presents implementation details of RDRH experiments and the results of the perfor-
mance evaluation. It highlights the main shortcomings of the proposals;

• Chapter 5 analyzes the performance of predictors and the research methodology to iden-
tify elephant flow, and data patterns in data centers. Besides, it analyzes the descriptive
and inferential statistics through hypothesis tests and explains how the prediction tests

https://doi.org/10.1109/ISCC.2018.8538744
https://doi.org/10.1109/GLOCOM.2015.7417789
https://doi.org/10.1109/GLOCOM.2015.7417789

25

were done.

• Chapter 6 discusses the results obtained in this thesis and makes some final considera-
tions on the development of this work, presenting the main findings and answers to the
research questions. Finally, it indicates how future works could improve our approach.

26

2 BACKGROUND

This chapter defines the central background concepts that are used throughout this thesis.
Initially, we present details of the DCNs, including topology, and features of the Facebook
DCN. This chapter also includes SDN and traffic engineering paradigms. Then, the time series
forecasting models that will be evaluated are described. The prediction models are based
on statistical methods and pattern recognition models to forecast elephant flows. In Section
2.3, an example of multicommodity network flow and two examples of randomized rounding
heuristic are presented.

2.1 DATA CENTER NETWORKS

In this section, we focus on DCNs, mainly the details of the fat-tree topology. We also
describe details of the Facebook DCN since it provides part of the data used in this work.
Subsection 2.1.1 presents SDN paradigms and its integration with DCNs. Finally, in Subsection
2.1.2, we describe the traffic engineering in DCNs.

DCNs are a specially designed network with many interconnected nodes that act as servers
with a large processing and storage capacities. Real-time applications demand considerable
traffic volume and high performance in application response time, and TE approaches make it
possible to meet these requirements.

The main demands of a DCN are scalability and flexibility with ease of management.
Technology giants like Microsoft, Google, Amazon, and Facebook are working on a better
scalability of data centers. It is possible to maintain scalability and make changes with flexibility
without requiring a significant re-organization of the data center, such as addressing to the
topology (MEDHI; RAMASAMY, 2017).

Fat-tree topologies are multirooted trees with multiple paths between host pairs. A fat-tree
topology is typically associated with the number of pods it has, which are small network units
down from the core switches that implement an infrastructure to allow performance scalability.
A 4-pod fat-tree is illustrated in Figure 1. They are numbered from left to right as Pod-0 to
Pod-(𝑘 − 1) (MEDHI; RAMASAMY, 2017). For each 𝑘-port switch, there are 𝑘 pods formed
by two layers: lower pod switches (edge switches), and the upper pod switches (aggregation
switches). The 𝑘 pods are interconnected by (𝑘/2)2 core switches. Edge switches manage

27

(𝑘/2) hosts, providing connectivity among end hosts and aggregation switches. Core switches
are on top and provide inter-pod communication. The leaf nodes of this hierarchy represent
hosts. The advantages of fat-tree are cost, high scalability, and multipath forwarding.

Figure 1 – Fat Tree topology. Adapted from (VAHDAT et al., 2010)

Facebook developed a fat-tree model to increase the bisection bandwidth and performance
scalability to support the high demand for applications running in its data center. The bisec-
tion bandwidth refers to the bandwidth available between two topology partitions and can be
defined as the maximum capacity between any two servers (VARMA, 2015). The internal data
center traffic, called machine-to-machine traffic, has experienced an exponential growth (AN-

DREYEV, 2014). This factor particularly challenges the infrastructure design to support rapid
growth, scalability, and planning for new large data center fabrics. Large production networks
such as those of Facebook (ANDREYEV, 2014) and Google (SINGH et al., 2015) use 3-tier or
more complex Clos topologies (WANG et al., 2019).

Figure 2 shows a pod, which consists of a set of four fabric switches, with each Top of
Rack (TOR) having 4 x 40 Gbps uplinks. Moreover, the pod has 48 server racks, the same
configuration for all pods. Each Facebook data center contains multiple logical clusters. The
work (ANDREYEV, 2014) highlights that the use of clusters was initiated to overcome network

28

Figure 2 – Sample pod. Adapted from (ANDREYEV, 2014)

limitations, such as port density in switches. Facebook’s DCN fabric utilizes virtual clusters,
which correspond to the database, web, and Hadoop applications.

(XIA et al., 2017) defines topologies as switch centric, those in which the switches are
capable of building the network and transmitting data. In addition to the fat-tree, the other
switch centric topologies are: VL2 (GREENBERG et al., 2011), Aspen tree (WALRAED-SULLIVAN;

VAHDAT; MARZULLO, 2013), and Jellyfish (SINGLA et al., 2012).
VL2 also uses commodity switches to form a three-layer tree-based topology. The difference

with fat-tree is that the links between core switches and aggregation switches generate a
complete bipartite graph, and each edge switch is connected to two aggregation switches.

Aspen tree is a variation of traditional fat-tree by disconnecting links at a given level and
repurpose them as redundant links for added fault tolerance at the same level. This action
generates a tradeoff in scalability, i.e., reduced host count (XIA et al., 2017).

Jellyfish builds a degree-bounded random regular graph at the edge layer. In particular,
parts of the edge switches’ ports are used to connect servers, and all the remaining ports are
used to form a random graph of the switches. The advantage over the fat-tree is that a server
can reach more servers in a few hops.

29

2.1.1 Data Center Networks with Software Defined Networking

The main characteristic of SDN is the separation of control and data planes in the network
(FEAMSTER; REXFORD; ZEGURA, 2013). In SDN networks, the control plane, represented by an
entity called controller, can decide how to handle traffic. The controller can run on commercial
servers, separate from the network equipment. The data plane, embedded in the network
devices, can route the data according to established rules. These rules are created and managed
by the controller, which performs direct control over the data devices through an Application
Programming Interface (API) (KREUTZ et al., 2014; KREUTZ et al., 2015).

Software-Defined Networking facilitates network resource allocation in DCNs. The integra-
tion of these paradigms enables and eases network application development. The traditional
network is constrained to provide dynamic and complex network rules, large-scale parallel pro-
cessing algorithms, and a standard and open interface for network devices. To meet these
DCN requirements, the research community has significantly employed the SDN paradigm to
develop new traffic engineering applications (DAI et al., 2017; XIA et al., 2017). With the SDN
controller’s APIs, the DCN operator and tenants can program flow tables of hardware and soft-
ware switches for flexible network services with lower cost and higher efficiency, implementing
functions such as creating and configuring private networks and QoS.

A layered structure represents the SDN architecture, as illustrated in Figure 3 depicts the
three layers with two planes and the APIs interfaced among them. The data plane contains
physical network components, which produce the data path. The control plane has a Net-
work Operating System (NOS) also known as a controller, which executes rules on data plane
devices. These rules and policies are designed in the Application of SDN architecture. Commu-
nication among these planes is set by using well-defined APIs. The Northbound API is the link
for the communication between the application layer and the control plane. This API provides
a guide for developing network applications, including traffic engineering and QoS (ZHANG et

al., 2020; WANG et al., 2020). The Southbound API is capable of communicating the data plane
with the control plane. The path diversity of fat-tree DCNs allows the potential use of SDN
in optimizing network traffic (DAI et al., 2017).

30

Figure 3 – Data center with SDN architecture.

2.1.2 Traffic Engineering in DCNs

In this subsection, we discuss traffic engineering for intra-domain DCN. Traffic engineer-
ing aims to optimize an operational network to meet performance requirements, yet network
resources are well employed. The main aim of Internet Protocol (IP) TE is to determine link
metrics (weights) optimally so that the network’s primary goal such as reducing congestion
or delay is met through efficient traffic flows (MEDHI; RAMASAMY, 2017). Traffic engineering
was developed for all legacy network technologies since Asynchronous Transfer Mode (ATM)
to current paradigms.

SDN enables the development of applications in various approaches of TE, such as flow
management and traffic analysis (AKYILDIZ et al., 2014). We highlight issues such as perfor-
mance optimization, prediction, and scheduling of the transmitted data (AKYILDIZ et al., 2016;
CUI; YU; YAN, 2016). These issues are research challenges in cloud computing, which demands
large-scale DCNs. Besides, flow scheduling in the fat-tree topologies is challenging due to
the NP-hard complexity of managing elephant flow load. In Figure 3, we illustrate traffic en-
gineering applications, such as flow control and traffic prediction, with SDN for DCN. The

31

elements of the DCN and SDN architectures are the target of the TE applications. Details of
the proposed TE architecture are in the next chapter, in Section 3.1.

Figure 4 illustrates two scopes to TE with flow management, traffic analysis, and predic-
tion. These scopes were used as a background for this research. Flow management is essential
to address the elephant flows problems investigated in this thesis. In the SDN paradigm, the
centralized management function in the controller brings a series of challenges. The increase
in traffic volume increases the complexity of managing flows and causes loss of network per-
formance. This is a tradeoff because SDN makes management more flexible by developing
applications like the previous ones, but they generate load on the SDN controller. Another
element of DCNs that has limitations is the switch, as it has limited memory resources. There-
fore the increase in the number of flow entries in the switches causes memory consumption
problems. These drawbacks are relevant to TE in SDN because they direct the development
of research and applications to flow management. This thesis focus is on the areas of traffic
prediction and link load balancing in DCNs.

Figure 4 – The scope of traffic engineering areas selected in this thesis.

Traffic analysis is related to monitoring the complexity of SDN environments operation.
Traffic pattern analysis and monitoring allow, for instance, the detection of elephant flows and
the prediction of congestion. This analysis also makes it possible to predict resource allocation
and detect network invariants, that is, bugs in the software that cause failures in the network’s
operation.

32

2.2 TIME SERIES PREDICTION WITH STATISTICAL METHODS

The applicability of time series analysis and prediction methods covers many areas of
computer networking. The definition of time series is a sequence of observations on a variable
of interest, e.g., flow size. The values of the series in pairs can be represented by 𝑦𝑡 and 𝑦𝑡+𝑘,
which are separated in the same time interval 𝑘 called lag (MONTGOMERY; KULAHCI, 2015).
The quantitative forecasting techniques make regular use of historical data and a prediction
model (WEI, 2006). The model searches for patterns (e.g., randomness, trends, and seasonality)
in the data series, then analyzes the past and present to identify future patterns. The selection
criteria for the models described in the following sections were based on the patterns of the
analyzed data. These models are used in the literature of traffic forecasting on computer
networks (KATRIS; DASKALAKI, 2015; OTOSHI et al., 2015; TONG; WANG; YU, 2009; ANAND;

SCOGLIO; NATARAJAN, 2008). The models included in this thesis are in the class of regression
and general time series.

2.2.1 Non-seasonal ARIMA model

The combination of differencing with autoregressive models and a moving average model
generates a non-seasonal ARIMA model (HYNDMAN; ATHANASOPOULOS, 2017). ARIMA mod-
els propose to describe the autocorrelation in the data, that is, the measurement of the linear
relationship between the lagged values of a time series. The model is described as

𝑍 ′
𝑡 = 𝑐 + 𝜑1𝑍

′
𝑡−1 + · · ·+ 𝜑𝑝𝑍 ′

𝑡−𝑝 + 𝜃1𝑎𝑡−1 + · · ·+ 𝜃𝑞𝑎𝑡−𝑞 + 𝑎𝑡, (2.1)

where 𝑍 ′
𝑡 is the differencing series, 𝑐 is a constant, 𝜑 is the parameter of the autoregressive

models, 𝜃 is the parameter of the moving average models, and 𝑎𝑡 is white noise. Eq. (2.1) can
be written in backshift notation (𝐵 has the effect of shifting the data back 𝑑th-order period)
as

𝜑𝑝(𝐵)(1−𝐵)𝑑𝑍𝑡 = 𝜃0 + 𝜃𝑞(𝐵)𝑎𝑡, (2.2)

where the stationary Autoregressive (AR) operator 𝜑𝑝(𝐵) = (1 − 𝜑1𝐵 − · · · − 𝜑𝑝𝐵𝑝) and
the Moving Average (MA) 𝜃𝑞(𝐵) = (1− 𝜃1𝐵 + · · ·+ 𝜃𝑞𝐵

𝑞) share no common factors (WEI,
2006). This description is known as the ARIMA (𝑝, 𝑑, 𝑞) model, where 𝑝 is the order of the

33

autoregressive part, 𝑑 is the degree of the first differencing, and 𝑞 is the order of the average
moving part.

2.2.2 GARCH model

The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is used
for series modeling, mainly in cases where it is heteroscedastic, that is, the variance is serially
correlated. Non-stationary series have periods of volatility during which there is an apparent
change in variance (WEI, 2006).

According to Wei (WEI, 2006), the GARCH model is an extension of the Autoregressive
Conditional Heteroskedasticity (ARCH) model. ARCH considers that the error’s conditional
variance is related not only to the square of the errors, but also to the past conditional variance.
The generalization of the error is calculated as

𝑛𝑡 = 𝜎𝑡𝜖𝑡, (2.3)

where 𝜖𝑡 are independent and identically distributed (i.i.d.) random variables with mean 0 and
variance 1; they are independent of past realizations of 𝑛𝑡−𝑖. The following equation describes
the conditional variance:

𝜎2
𝑡 = 𝜃0 + 𝜑1𝜎

2
𝑡−1 + · · ·+ 𝜑𝑝𝜎2

𝑡−𝑝 + 𝜃1𝑛
2
𝑡−1 + · · ·+ 𝜃𝑞𝑛

2
𝑡−𝑞, (2.4)

where 𝜑𝑖 and 𝜃𝑗 (𝑖 = 0, 1, . . . , 𝑝; 𝑗 = 1, . . . , 𝑞) are parameters of the model(s). To assure
𝜎2

𝑡 > 0, assume that 𝜃0 > 0 and that 𝜑𝑖 and 𝜃𝑗 are non-negative (WEI, 2006). The model for
the error term described in (2.3) with the property (2.4) is known as GARCH (𝑝, 𝑞).

2.2.3 FARIMA model

In the previous description of the ARIMA model, 𝑑 is an integer. A Fractional ARIMA
(FARIMA) model is an extension of the ARIMA (𝑝, 𝑑, 𝑞), allowing the fractional parameter 𝑑

to take real values (KATRIS; DASKALAKI, 2018; WEI, 2006). It is formulated as

Φ𝑝(𝐵)(1−𝐵)𝑑𝑍𝑡 = Θ𝑞(𝐵)𝑎𝑡, (2.5)

34

for some −0.5 < 𝑑 < 0.5, where Φ𝑝(𝐵)Θ𝑞(𝐵) ̸= 0 for |𝐵| ≤ 1 and 𝑎𝑡 is a white noise process
with zero mean and constant variance 𝜎2

𝑎 to be stationary (WEI, 2006). Considering, without
loss of generality, the case

(1−𝐵)𝑑𝑍𝑡 = 𝑎𝑡. (2.6)

if Eq. (2.6) is stationary, then it is expressed as

𝑍𝑡 = (1−𝐵)−𝑑𝑎𝑡 =
∞∑︁

𝑗=0
Ψ𝑗𝑎𝑡−𝑗, (2.7)

i.e,

(1−𝐵)−𝑑 =
∞∑︁

𝑗=0
Ψ𝑗𝐵

𝑗, (2.8)

such that Ψ𝑗 is square-summable. From Taylor series expansion, the general binomial formula
is defined as (WEI, 2006)

(1−𝐵)−𝑑 =
∞∑︁

𝑗=0

(︃
−𝑑

𝑗

)︃
(−𝐵)𝑗 =

∞∑︁
𝑗=0

Ψ𝑗𝐵
𝑗, (2.9)

where
Ψ𝑗 = (−1)𝑗

(︃
−𝑑

𝑗

)︃
= (−1)𝑗 (−𝑑)(−𝑑− 1) . . . (−𝑑− 𝑗 + 1)

𝑗! = Γ(𝑗 + 𝑑)
Γ(𝑗 + 1)Γ(𝑑)

and Γ(·) is the gamma function.

2.2.4 Time Series Prediction with Pattern Recognition

Pattern recognition is an area of artificial intelligence that encompasses algorithms which
focus is learning through training. Among the categories of pattern recognition is that of
Artificial Neural Networks (ANNs).

ANNs have multiple applications across diverse areas of knowledge; they are widely used
for nonlinear processes with unknown functional form (GOOIJER, 2017). There are other ar-
chitectures in the literature, but in this work, because these models work with non-linearity in
the data, the Multi-Layer Perceptron (MLP), Radial Basic Function (RBF) (VIEIRA; COSTA;

GONÇALVES, 2013; KATRIS; DASKALAKI, 2015), and Recurrent Neural Networks (RNNs) (GOOD-

FELLOW; BENGIO; COURVILLE, 2016; WANG; ZHANG; ZHANG, 2012; TONG; WANG; YU, 2009) are
used as benchmarks.

35

Neural networks can be classified into dynamic and static networks. Static or feed-forward
networks do not possess delay or feedback elements. On the contrary, the output of dynamic
networks depends on the current and previous inputs or outputs of the network. It has recurrent,
i.e. feedback connections, which means that the current output is a function of outputs at
previous times (ARDALANI-FARSA; ZOLFAGHARI, 2010; DEMUTH et al., 2014).

2.2.5 Feed-Forward Neural Networks

One of the models most widely used are the feed-forward networks or MLP, which aim
to approximate some function 𝑓 *. For example, the predictor 𝑦 = 𝑓 *(x) maps an input 𝑥 to
a predicted value 𝑦. A feed-forward network defines the mapping y = 𝑓(x; 𝜃) and learns the
value of the parameters 𝜃, resulting in the approximation of the best function (GOODFELLOW;

BENGIO; COURVILLE, 2016). The training set specifies directly what the output layer must do
at each point 𝑥; it must produce a value that is close to 𝑦. The learning algorithm controls
how to use those layers to generate the desired output.

The design decision parameters are: the input variables, the number of hidden layers,
and the number of nodes for each layer of each ANN used by Katris and Daskalaki (KATRIS;

DASKALAKI, 2015). Each ANN includes one input layer, one hidden layer, and one output node.
A Sigmoid is a mathematical function which has a characteristic S-shaped curve. In (2.10), it
is used to activate a function at a hidden layer:

𝑆(𝑡) = 1
1 + 𝑒−𝑡

. (2.10)

For training, a gradient descent algorithm optimizes the input and weights of the network.
The gradient is computed using the back-propagation technique, in which the cost information
flows backward through the network (GOODFELLOW; BENGIO; COURVILLE, 2016).

Another commonly applied ANN feed-forward network is the RBF (KATRIS; DASKALAKI,
2015). The design used in this work consists of one input layer, one hidden layer with nonlinear
activation function that for this work is the Gaussian basis function in Eq. (2.11), and one
output node:

𝜑(𝑥, 𝑐, 𝜎) = exp(−‖𝑥− 𝑐‖2/2𝜎2), (2.11)

where the center 𝑐 ∈ 𝑅𝑚 is the mean and 𝜎 the width of the function. Finally, a linear

36

transformation is performed going from the hidden layer to the output. Eq. (2.12) presents
the output of the RBF network:

𝑦 =
𝑁∑︁

𝑖=1
𝑤𝑖𝜑(𝑥, 𝑐, 𝜎) + 𝑤0, (2.12)

where 𝑤0 is a bias term and wi is the weight between the hidden and output layers, whereas 𝑁

is the number of hidden neurons. One of the advantages of the RBF network is the flexibility
for function approximation. It has centers adequately distributed across the range of network
inputs (DEMUTH et al., 2014).

2.2.6 Recurrent Neural Networks

RNNs are a class of neural networks for processing time series data that can scale to much
longer sequences than would be practical for networks without sequence-based specialization
(GOODFELLOW; BENGIO; COURVILLE, 2016). Because RNNs have memory, they can be trained
to learn sequential or time-varying patterns (DEMUTH et al., 2014). RNN consists of a hidden
layer ℎ and an extra output layer 𝑦 which both operate on a variable-length sequence x =

(𝑥1 . . . 𝑥𝑇). At each time step 𝑡, the hidden layer ℎ𝑡 is updated by

𝐻𝑡 = 𝜑(bh + 𝑥wx + ℎ𝑡−1wh) (2.13)

𝑌 = bo + ℎ𝑡wo, (2.14)

where the parameters are the bias vectors bh and bo along with the weight matrices wx, wh

and wo (GOODFELLOW; BENGIO; COURVILLE, 2016). 𝜑 is a non-linear activation function.
The main difference between Eqs. (2.13), (2.14), and the classical ANN previously described

is that the hidden layer of information from the previous period, ℎ𝑡−1𝑤ℎ, is added. An advantage
of recurrent networks is the simultaneous sharing of parameters across different parts of a
model.

Figure 5 shows an example of RNN composed of four layers: the input layer, the recurrent
layer, the hidden layer, and the output layer. The number of nodes of the recurrent layer is
always the same as that of the hidden layer. The dashed lines represent the input that recurrent
nodes receive from hidden nodes. Only one neuron is used in the output layer.

One of the disadvantages of RNNs is that they should theoretically maintain at time 𝑡

information about inputs seen many times before. In practice, such long-term dependencies are

37

Figure 5 – An RNN whose recurrence is the feedback connection from the output to the hidden
layer.

challenging to learn (CHOLLET; ALLAIRE, 2018). Long Short-Term Memory (LSTM) networks
are designed to solve this problem (HOCHREITER; SCHMIDHUBER, 1997a).

An LSTM RNN is composed of units called memory blocks. Each memory block contains
memory cells with self-connections saving the temporal state of the network, in addition to
appropriate multiplicative units called gates to control the flow of information. Each memory
block contains an input gate to control the flow of input activations into the memory cell,
an output gate to control the output flow of cell activations into the rest of the network
and a forget gate. An LSTM network gets an input sequence 𝑥 = (𝑥1, . . . , 𝑥𝑇) to an output
sequence 𝑦 = (𝑦1, . . . , 𝑦𝑇) by computing the network unit activations using the following
equations iteratively from 𝑡 = 1 to 𝑇 (SAK; SENIOR; BEAUFAYS, 2014):

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖𝑚𝑚𝑡−1 + 𝑊𝑖𝑐𝑐𝑡−1 + 𝑏𝑖) (2.15)

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑥𝑡 + 𝑊𝑚𝑓𝑚𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) (2.16)

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑔(𝑊𝑖𝑥𝑥𝑡 + 𝑊𝑖𝑚𝑚𝑡−1 + 𝑊𝑖𝑐𝑐𝑡−1 + 𝑏𝑖) (2.17)

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑥𝑡 + 𝑊𝑜𝑚𝑚𝑡−1 + 𝑊𝑜𝑐𝑐𝑡 + 𝑏𝑜) (2.18)

𝑚𝑡 = 𝑜𝑡 ⊙ ℎ(𝑐𝑡) (2.19)

𝑦𝑡 = 𝜙(𝑊𝑦𝑚𝑚𝑡 + 𝑏𝑦) (2.20)

38

where 𝑖, 𝑓, c, and 𝑜 are, respectively, the input gate, forget gate, cell activation vectors, and
output gate. The output activation vector is m, and ⊙ is the element-wise product of the
vectors. The cell input and cell output activation functions are 𝑔 and ℎ, respectively; in general
both are tanh. 𝜙 is the network output activation function. The terms b denote bias vectors
and the terms W denote weight matrices. 𝜎 is the logistic sigmoid function.

2.2.7 Hybrid FARIMA-MLP Model

In 2015, Katris and Daskalaki (KATRIS; DASKALAKI, 2015) presented a hybrid time series
forecasting model using both FARIMA and ANN models. The proposed approach first fits a
FARIMA model to the data and then creates a neural network with the residuals.

The FARIMA model is fit to each data set following the same procedure as described
in (KATRIS; DASKALAKI, 2015):

1. All the samples are normalized. The sample mean 𝑥̄ of the traffic trace is subtracted
from each observation to convert it to a zero-mean data series.

2. The order (𝑝, 𝑞) of the model is specified using the lowest Bayesian Information Criterion
(BIC). In this work, the order of autoregressive and the moving average components’
order will be less than or equal to 4 (0 ≤ 𝑝 ≤ 4, 0 ≤ 𝑞 ≤ 4).

3. Having set the order of the model, and under the assumption that the stationary, frac-
tionally integrated series follows a Student’s 𝑡-distribution (KATRIS; DASKALAKI, 2015),
the rest of the parameters (𝑑, 𝜙𝑖, 𝜃𝑗) are estimated using the Geweke and Porter-Hudak
(GPH) estimator for 𝑑 and a Maximum Likelihood (ML) methodology for the others.

The time series of the residuals from a fitted FARIMA are used to construct the ANN. See
5.2 for a description of the ANN creation procedure. In each step, the two models’ forecasts
are added together in a single prediction for one period ahead.

39

2.3 MULTICOMMODITY NETWORK FLOW AND RANDOMIZED ROUNDING

2.3.1 Multicommodity Network Flow

Multicommodity flow is essential to address traffic engineering problems because this ap-
proach allows us to design new mechanisms to forward flows in the best way. The fat-trees can
be modeled as a graph. We adapt the problem of selecting routes for data traffic to a problem
that approximates the multicommodity flow. In this modeling, the switches are vertices, the
links are the edges, and the network flows are the elephant flows.

Figure 6 illustrates examples of graphs in two flow routing situations. The circles are the
vertices, and the lines connecting them are the edges with the capacities. In these graphs,
there are two flows: the red flow, originating in 𝑑, the destination in 𝑔 and size 2, and the blue
one, originating in 𝑎, the destination in 𝑔 and size 7. Two useful ways of allocating these flows
are presented in figures 6a and 6b. The solution in Figure 6a shows the edge that connects
the vertex 𝑒 and the vertex 𝑔 is saturated, as it has capacity 9 and is being used by two flows,
size 2 and 7.

(a) (b)

Figure 6 – Multicommodity flow example

2.3.2 Fat-Tree Routing Problem

We adapt the problem of selecting routes for data traffic to a problem that approximates
the multicommodity flow. In this modeling, the switches are vertices, the links are the edges,
and the network flows are the elephant flows.

The problem of routing flows in fat-tree topologies, called Fat-Tree Routing (FTR), consists
in: given a directed graph 𝐺 = (𝑉, 𝐸), where the edges (𝑢, 𝑣) ∈ 𝐸 have a capacity 𝑐(𝑢, 𝑣) ≥ 0.

40

For each demand 𝑖 we have a tuple (𝑠𝑖, 𝑡𝑖, 𝑑𝑖) indicating that 𝑑𝑖 units of flow must be sent
from the node 𝑠𝑖 to the node 𝑡𝑖. ℓ indicates the number of demands, and 𝑓𝑖(𝑢, 𝑣) is the flow
of demand 𝑖 passing through the link.

1. Link Capacity: For each edge (𝑢, 𝑣), the sum of flows passing through (𝑢, 𝑣) must not
exceed its capacity 𝑐(𝑢, 𝑣).

ℓ∑︁
𝑖=1

𝑓𝑖(𝑢, 𝑣)𝑑𝑖 ≤ 𝑐(𝑢, 𝑣),∀(𝑢, 𝑣) ∈ 𝐸 (2.21)

2. Flow conservation in transition vertices: For each vertex, except 𝑠𝑖 and 𝑡𝑖, the total
flow entering the node is equal to the total flow leaving the node.

∑︁
𝑤∈𝑉

𝑓𝑖(𝑤, 𝑢) =
∑︁
𝑤∈𝑉

𝑓𝑖(𝑢, 𝑤),∀𝑖 ∈ {1, 2, . . . , ℓ} (2.22)

3. Flow conservation in the vertices of origin: For the start node 𝑠𝑖 of each demand
𝑖, the total flow leaving this node is one unit more than the total flow entering, since
this node is producing the flow of demand 𝑖.

∑︁
𝑤∈𝑉

𝑓𝑖(𝑠𝑖, 𝑤)−
∑︁
𝑤∈𝑉

𝑓𝑖(𝑤, 𝑠𝑖) = 1,∀𝑖 ∈ {1, 2, . . . , ℓ} (2.23)

4. Flow conservation at destination vertices: For the end node 𝑡𝑖 of each demand 𝑖,
the total flow entering this node is one unit more than the total flow leaving, since this
node is consuming the flow of demand 𝑖.

∑︁
𝑤∈𝑉

𝑓𝑖(𝑤, 𝑡𝑖)−
∑︁
𝑤∈𝑉

𝑓𝑖(𝑡𝑖, 𝑤) = 1,∀𝑖 ∈ {1, 2, . . . , ℓ} (2.24)

For clarity, Table 1 summarizes the notation used throughout this chapter.
The objective function, described in the next subsection, seeks to balance the links’ residual

capacity. Let the use of a link be the sum of the flows that pass through it, and the residue
the difference between its capacity and use. Thus, the goal is to balance the residues of the
links by maximizing the smallest residue.

2.3.3 Randomized Rounding

A feature of randomized algorithms is their structural simplicity (GONZALEZ, 2007). The
randomized rounding method makes efficient approximations and integrates well with LP.

41

Parameters Explanation
𝐸 Set of links
𝑉 Set of switches
𝑠𝑖 Source switch of demand 𝑖

𝑡𝑖 Destination switch of demand 𝑖

𝑑𝑖 Demand volume of demand 𝑖

𝑐(𝑢, 𝑣) Capacity of link (𝑢, 𝑣)
Decision variables

𝑓𝑖(𝑢, 𝑣) Flow of demand 𝑖 passing through the link (𝑢, 𝑣)

Table 1 – Summary of the notation used in RDRH.

(WILLIAMSON; SHMOYS, 2011) describe an example of the randomized rounding that uses the
set cover problem.

The set cover problem is: given a set of elements 𝐸 = {𝑒1, 𝑒2, . . . , 𝑒𝑛} and subsets
𝑆1, 𝑆2, . . . , 𝑆𝑚 ⊆ 𝐸 with weights 𝑤1, 𝑤2, . . . , 𝑤𝑚, find a collection of subsets, so that the
union contains all the elements of 𝐸 and has the least possible weight.

This problem can be solved using integer linear programming (specific to the case of LP,
where the variables are integers) with the following modeling:

minimize
𝑚∑︁

𝑗=1
𝑤𝑗𝑥𝑗 (2.25)

subject to:

∑︁
𝑗:𝑒𝑖∈𝑆𝑗

𝑥𝑗 ≥ 1 𝑖 = 1, . . . , 𝑛 (2.26)

𝑥𝑗 ∈ {0, 1} 𝑗 = 1, . . . , 𝑚 (2.27)

Inequality 2.26 ensures that for each 𝑒𝑖 ∈ 𝐸 element, at least one set 𝑆𝑗, which contains
𝑒𝑖, will be in the solution.

In this model, the variable 𝑥𝑗 is worth 1 if 𝑆𝑗 is in the solution. However, finding the
optimal solution for this model is an NP-Complete problem. Performing a linear relaxation in
this model, by replacing Equation 2.27 with Inequality 2.28, we obtain a linear programming
model with efficient algorithms known for resolution.

𝑥𝑗 ∈ [0, 1] 𝑗 = 1, . . . , 𝑚 (2.28)

42

However, the entire 𝑥𝑗 variables no longer exist to inform which sets are in the solution.
Instead, we will have 𝑥𝑗 composed of real numbers informing the probability that 𝑆𝑗 is in
the optimal solution. A draw is then carried out based on the probabilities obtained, and a
solution close to the optimal one is reached, where each set 𝑗 is inserted in the solution with
probability 𝑥𝑗. The draw is repeated as long as it does not satisfy the condition of containing all
𝐸 elements. In the end, we get a collection of sets drawn based on probabilities that minimize
the sum of their weights (lighter sets have a greater probability of being in the solution).

(ROST; SCHMID, 2019) implements a heuristic with an approach based on randomized
rounding. The authors present a solution for the Virtual Network Embedding Problem (VNEP),
which occurs due to failure to meet application requirements for using computational and
communication resources between the distributed components (e.g., virtual machines, storage
devices) of a cloud. The problem can be described as: given a graph designating computational
requirements at the nodes and bandwidth requirements on the edges, an embedding of this
Virtual Network in the physical network has to be found, such that both the computational
and the network requirements are met (ROST; SCHMID, 2019).

Therefore, for employing randomized rounding for the VNEP, a convex combination of
valid mappings 𝐶𝑟 = {(𝑓𝑘

𝑟 , 𝑚𝑘
𝑟)|𝑚𝑘

𝑟 ∈ 𝑀𝑟, 𝑓𝑘
𝑟 > 0} must be obtained from the LP solution

for for each request 𝑟 ∈ 𝑅. Were 𝑓𝑘
𝑟 is the probabilities of request of the demand 𝑘 request

𝑟. 𝑚𝑘
𝑟 is a valid mapping of request 𝑟 ∈ 𝑅, and 𝑀𝑟 is the set of valid mappings of request

𝑟 ∈ 𝑅. The constraints are:

1. The profit of these convex combinations equals the LP’s profit, and

2. the (fractional) cumulative allocations do not violate physical network capacities.

Rounding a solution is then done as follows. For each request 𝑟 ∈ 𝑅, the mapping 𝑚𝑘
𝑟 is

chosen with probability 𝑓𝑘
𝑟 , refusing 𝑟 with probability 1−∑︀𝑘 𝑓𝑘

𝑟 (ROST; SCHMID, 2019).
We can summarize the concept of randomized rounding. Given an integer programming

for a specific problem, randomized rounding works by:

1. Calculating a solution to its LP relaxation.

2. Decomposing this solution into arched combinations of solutions.

3. Probabilistically selecting solutions based on their weight.

43

2.4 CLOSING REMARKS

This chapter presents the concepts and fundamentals of the paradigms discussed and
used as support for the development of the proposed solution to the elephant flow scheduling
problem in DCNs. Besides, it describes the theory of models for forecasting time series that
will be used to implement the hybrid forecasting model for elephant flows. The configuration
parameters for the models described in this chapter are defined in Chapter 5, in Section 5.2.

44

3 TRAFFIC ENGINEERING SOLUTION

This chapter defines a traffic engineering solution based on SDN, named RDRH, to schedule
elephant flows in DCNs, and the hybrid prediction model, called FARIMA-RNN. Finally, we
discuss related works.

3.1 THE APPLICATION FOR TRAFFIC ENGINEERING

The flowchart of our TE solution is illustrated in Figure 7. The prototype comprises an SDN
controller and the optimizer RDRH application. The proposed solution uses some features of
the Hedera architecture (AL-FARES et al., 2010), which is the reference to compare solutions
with a single SDN controller.

SDN

Controller

New
routes

Flow table
information

Fat tree with SDN-controlled switches

Flow
manager

Optimizer
RDRH

Elephant
Flow

Monitor

Install flows
entries

Figure 7 – The RDRH Application for Traffic Engineering

As explained in Section 2.1.1, the SDN paradigm is integrated with DCN to make traf-
fic engineering more flexible and effective. In light of this, we explore this paradigm to our
approach. Figure 8 shows the overview of the proposed TE solution’s elements. The control
plane consists of two components - an SDN controller with two modules, Monitor and Flow

45

manager, and a network control application to schedule elephant flows.
The main SDN features used in our TE’s solution are:

• The separation of the control plane and the data plane simplifies and makes network man-
agement efficient since a logically centralized controller controls the entire network. The
flow scheduling application runs through the controller to operate the SDN-controlled
switches in the data plane.

• The interface to the network-control application component. The Monitor module inter-
acts with the network-control application through its “northbound” interface. REST API
(HALEPLIDIS et al., 2015) allows the network-control application to read/write network
state and flow tables.

• The Flow manager module is responsible for communicating between the SDN controller
and controlled network devices. The communication between the controller and the
controlled devices crosses what has come to be known as the controller’s “southbound”
interface. To operate, the controller uses a protocol to communicate with the SDN-
controlled switches. This protocol operates based on an exact match of several flow
fields such as input port, source/destination address, etc. An SDN switch must also
communicate locally-observed events to the controller (e.g., link up or port failure).

We show in Figure 7 the features and details of the relationship among the modules of our
prototype. The monitor module is based on Hedera’s approach. The SDN controller collects
all network topology and flow statistics information through the monitor module, besides,
performing scheduling flow tasks.

The monitor module performs elephant flow detection by periodically consulting the edge
switches. In the presence of mice flows, the controller sets information to forward with ECMP.
Our criteria for identifying an elephant flow is a flow which exceeds a threshold of 10% of the
link capacity. The network graph component has information about the network switches/hosts
and enables interaction, via the Northbound API, for the application located in the Network
Control Application.

The scheduling action directs the elephant flows from the path to which it was allocated to
another based on the scheduler’s decision. The path decision is based on randomized rounding.
The details of the RDRH module are described in the next chapter. The action of installing new
flow entries in the flow tables starts the elephant flow’s forwarding process. The Flow manager

46

schedulerNetwork Control
Application

Northbound API

SDN

Controller

Control
plane

Data
plane

Fat tree with SDN-controlled switches

Southbound API

Flow manager
(Flow-based forwarding)

RESTful
API

Network
graph

Monitor

Figure 8 – Overview of the proposed TE solution

module configures the switches’ flow tables, which based on the configuration, forward the
flows to the destination port.

3.2 PROPOSED PREDICTION MODEL

This section describes FARIMA-RNN, the hybrid prediction model for elephant flows in
DCNs presented in this thesis. FARIMA-RNN combines aspects of the FARIMA and RNN
models, and provides a good fit for the traffic patterns identified in this thesis.

In this work, the Elman dynamic neural network (ELMAN, 1990) is used to develop the
proposed hybrid prediction model. Although this RNN model has three decades, it is used in
recent proposals (LI et al., 2019; MEHDIZADEH; FATHIAN; ADAMOWSKI, 2019) for short-term
prediction. The Elman RNN becomes an excellent option to improve elephant flow short-
term prediction accuracy. The superb performance is because the Elman Neural Network
has inherent temporal capabilities that use feature information of the network’s past state
to perform future decisions, which is required for time series prediction (CHANDRA, 2015).
Moreover, Elman recurrent neural network has some advantages, such as faster convergence
and more accurate mapping capabilities than ANN models (WANG et al., 2016). Hochreiter and
Schmidhuber (1997b) introduced a select type of RNN called LSTM intending to model long

47

sequences (e.g., long-term time series), which is out of the scope of this thesis. Compared
with LSTM, Elman’s RNN has a simple structure and low training complexity (ZHANG; WANG;

TANG, 2019).
The Elman architecture applies a recurrent layer (also known as a context layer), making a

copy of the hidden layer outputs in the previous time steps, as shown in Figure 9. The circles
represent the nodes of each layer. The representation of the recurrent layer in Elman networks
is defined as

𝑦𝑖(𝑡) = 𝜑

(︃
𝐾∑︁

𝑘=1
𝑣𝑖𝑘𝑦𝑘(𝑡− 1) +

𝐽∑︁
𝑗=1

𝑤𝑖𝑗𝑥𝑗(𝑡− 1)
)︃

, (3.1)

where 𝑦𝑘(𝑡) and 𝑥𝑗(𝑡) are the output of the recurrent layer and input layer, respectively. 𝑣𝑖𝑘

and 𝑤𝑖𝑗 represent their corresponding weights. 𝜑 is a sigmoid activation function.
Hybrid forecasting models merge the capacity of different time series models and combine

their advantages, allowing, for instance, the simultaneous modeling of long- and short-term
dependences, and non-linear structures (KATRIS; DASKALAKI, 2015). The development of hy-
brid forecasting models has become popular due to better performance than individual models
(PANIGRAHI; BEHERA, 2017). The models proposed in (KATRIS; DASKALAKI, 2015; ZHANG;

WANG; TANG, 2019) perform well when a time series is composed of a linear and a non-linear
pattern. However, a real-world time series may be purely linear or purely non-linear or often
contain a combination of linear and non-linear patterns. This demands a new hybrid method-
ology that can handle a time series with long-range dependence and a different combination
of linear and/or non-linear patterns.

Figure 9 then presents a scheme for the representation of FARIMA and Elman’s RNN
that compose the FARIMA-RNN model. The FARIMA model can be described as the output
of the fractional-order system directed by white Gaussian noise for 𝑑 ∈ (−0.5, 0.5). The
use of the Skewed Student’s 𝑡-distribution (SSTD) provides more general classes of noise
(e.g., Gaussian) (ZHAN; XU; XU, 2015). This distribution allows innovations, i.e., the error
terms are assumed to follow Student’s 𝑡-distribution with zero mean and constant variance
𝜎2 (KATRIS; DASKALAKI, 2015). An Elman network has recurrent nodes, which are the same
number as the hidden nodes. Each recurrent node receives input from a single hidden node and
transfers its output to each node in the layer of its corresponding hidden node. Considering that
the recurrent nodes depend only on the activations of the hidden nodes from the previous input,
the recurrent nodes preserve state information among inputs. The learning algorithm used is

48

Figure 9 – Proposed FARIMA-RNN model. The representation of the FARIMA model can be
defined as the output of the fractional-order process.

Resilient Backpropagation (RProp). This work uses a variant of RProp for the learning function
called Jordan and Elman Resilient Backpropagation (JE_RProp) (BERGMEIR; BENÍTEZ, 2012).
RProp is a local adaptive scheme, giving fast and robust supervised batch learning in neural
networks (MARVUGLIA; MESSINEO, 2012).

The topology of the Elman’s RNN is composed of four layers: (a) the input layer, repre-
sented by the leftmost circles; (b) the recurrent layer, represented by the dashed circles; (c) the
hidden layer, represented by the lightly shaded circles; and (d) the output layer, represented
by the darkly shaded circles. The number of nodes of the recurrent layer is always the same
as that of the hidden layer. The dashed lines represent the input that recurrent nodes receive
from hidden nodes. Only one neuron is used in the output layer. The representation of the
models illustrated in Figure 9 has the formal presentation defined in Equation (3.2). Figure 10
shows the sequence of steps to reach the models’ final prediction.

Equation (3.2) presents the combination of the models FARIMA-MLP, which was described
in Section 2.2.7, and FARIMA-RNN. The prediction 𝑦𝑡 at each time 𝑡 is defined by

𝑦𝑡 = 𝑦𝐿
𝑡 + ℎ𝑁𝐿

𝑡 , (3.2)

49

Figure 10 – Flowchart of the FARIMA-RNN model

where 𝑦𝐿
𝑡 are the predicted values from FARIMA, and ℎ𝑁𝐿

𝑡 are the predicted values from
the MLP or RNN models. The steps to achieve the model described in Equation (3.2) can
be represented by the flowchart depicted in Figure 10. According to the flowchart, the time
series represent the selected dataset, which is described in the next section. In the following
step, the time series is fitted to the FARIMA model, and residual data values are obtained by
subtracting the FARIMA predictions from the original series. RNN models the residual data
to get the predictions ℎ𝑁𝐿

𝑡 . The Final Prediction rectangle represents the prediction values
returned by Equation (3.2).

More details about the proposed model is given in Algorithm 1. In Steps 1–2, initially, a
dataset with elephant flows is used in the input. The normalization process between 0 and
1 is the most used for avoiding numerical problems during the training phase. It also makes
it easier to compare different datasets that span several orders of magnitude. In Step 3, the
function that estimates the best parameters of FARIMA is based on the Maximum Likelihood
method. In the training (Step 5), Elman’s RNN splits the residual dataset into batches to
improve the performance. Lastly, the final prediction is obtained by combining the predictions
obtained from the FARIMA model 𝑦𝐿

𝑡 with the predictions derived from RNN ℎ𝑁𝐿
𝑡 .

50

Algorithm 1: FARIMA-RNN
1 Given a dataset represented by elephant flows 𝑦 = 𝑦1, 𝑦2, . . . , 𝑦𝑛.
2 Normalize dataset in [0, 1].
3 Obtain the best FARIMA (𝑝, 𝑑, 𝑞) parameters.
4 Obtain the residual of the FARIMA fitted.
5 Train Elman’s RNN with FARIMA residual.
6 Obtain predictions using RNN model.
7 Final predictions are obtained by combining the FARIMA (𝑦𝐿

𝑡) with RNN predictions
ℎ𝑁𝐿

𝑡 .

3.3 RELATED WORKS

This section describes the main works related to this thesis. The analyzed papers are
divided into two sections, elephant flow prediction and elephant flow scheduling. This section
also points out this thesis’s contributions to the state-of-the-art about TE in DCNs.

3.3.1 Elephant Flow Prediction

To date, few research projects include time series analysis and prediction for DCNs. Most
papers investigate cloud data centers. Recent works that consider elephant flows when pre-
dicting traffic in DCNs are (POUPART et al., 2016; LI et al., 2016). The paper (POUPART et al.,
2016) describes the classification and prediction of flows through machine learning techniques.
The authors of (POUPART et al., 2016) do not implement a time series analysis to identify
autocorrelation in the data. Besides, they do not justify the criterion used to define the ANN’s
number of layers and nodes. To improve the prediction accuracy in inter-data center links,
(LI et al., 2016) proposed a model that combines wavelet transform with ANN to enhance
prediction accuracy. The prediction model adds information about sublink traffic and elephant
flows explicitly. As elephant traffic data flows are sampled less frequently, (LI et al., 2016) use
interpolation methods to construct the missing values to roughly align the data sample of the
total traffic and the elephant flow samples. Besides, the authors construct the missing values
using interpolation methods to manage the elephant flow information while keeping the mon-
itoring cost low. The elephant flow prediction model proposed in (LI et al., 2016) works in a
data center in production; however, the prediction model application considers only inter-data
center locality. The hybrid forecasting model proposed in this thesis is applied to elephant
flows in different locations, for example, intra-data center and inter-data center.

51

The main drawback of (LI et al., 2016; KATRIS; DASKALAKI, 2015) is that their results were
not compared with related works. (KATRIS; DASKALAKI, 2015) implemented a hybrid prediction
model based on FARIMA and MLP ANN. The proposed model in (KATRIS; DASKALAKI, 2015)
does not consider RNN when exploring potential time series patterns. This gap favored the
implementation of the hybrid model FARIMA-RNN proposed in this work.

(FANG et al., 2012) developed an architecture called Cloud Resource Prediction and Provi-
sioning Scheme (RPPS), which includes the ARIMA model to automatically predict workloads
in a cloud data center. RPPS implements proactive resource provisioning for cloud applica-
tions. The authors used real and simulated data but did not evaluate the results compared
to other models. Statistical analysis using hypothesis tests was not performed. The analysis
did not use the metrics Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and
Mean Absolute Percentage Error (MAPE) to evaluate the error when compared to other mod-
els. (DALMAZO; VILELA; CURADO, 2017) presented a state-of-the-art taxonomy for network
traffic prediction and classified the models into two categories: Pattern Recognition and Time
Series. Their major contribution is the study of the performance of several predictor models
in a cloud computing environment. The solutions presented in (DALMAZO; VILELA; CURADO,
2017) did not consider model fitting or a method to evaluate the nonlinear time series. Also,
the statistical analysis does not identify patterns in the datasets. Table 2 presents a summary
of the main related works listed above.

Outside the context of data centers, (SILVA et al., 2020) presents solutions for identifying
and predicting elephant flows at the Internet Exchange Point. The predict elephant flows
process uses the regression-based statistical model called Locally Weighted Regression (LWR),
derived from standard linear regression. Besides, it performed the classification of elephant
flows in real-time in the data plane. A drawback of the solution proposed by (SILVA et al.,
2020) did not consider that the behavior of elephant flows that have a non-linear pattern. The
implementation of LWR presented a lower performance than models such as Simple Linear
Regression and Nearest Neighbor Regression family as shown in (DELL’ACQUA et al., 2015).

(ALDHYANI et al., 2020) propose a hybrid model for network traffic prediction. The strategy
uses clustering using fuzzy c-means to analyze the network data to improve time series. The
method uses clustering with fuzzy c-means to analyze network data to improve time series.
This makes it possible to deal with ambiguities from all network data to improve the time
series models. The resulting clusters are used as input to the weighted exponential smoothing
method. The clusters are combined and used as input for LSTM and Adaptive Neuro-Fuzzy

52

Inference System time series models. Two real network traffic traces were used to test and
evaluate the proposed hybrid model. The authors compared the prediction results between
the conventional models with the hybrid prediction proposed and state-of-the-art models. It is
observed that the prediction results of the proposed hybrid model are more satisfactory. The
authors did not analyze the execution times of the proposed model. However, the method has
a pre-processing step with clustering and the weighted exponential smoothing method before
applying the final forecast making the model prohibitive due to the possible high execution
times.

Work Prediction Model Drawback Major Contribution

(POUPART et al., 2016)

ANN
Gaussian Process

Regression
Online Bayesian

Moment Matching

No time series analysis
was performed

to identify
autocorrelation in the data.

Implemented classification
and prediction of

elephant flows through
machine learning

techniques.

(LI et al., 2016) Wavelet transform
with ANN

Prediction model application
considers only

inter-data center locality.

Information about
sublink traffic

and elephant flows explicitly.

(KATRIS; DASKALAKI, 2015) FARIMA combined
with MLP ANN

Does not consider RNN when
exploring potential

time series patterns.

Combining of prediction
models for network traffic.

(FANG et al., 2012) ARIMA

The authors used real and
simulated data

but did not evaluate the results
compared to other models.
Statistical analysis using

hypothesis tests
were not performed.

Implements proactive
resource

provisioning for
cloud applications.

(DALMAZO; VILELA; CURADO, 2017)

Weighted Moving Average,
Exponential Moving Average,

Poisson Moving Average,
ARIMA, ARMA

Does not consider model fitting or
a method to evaluate

the nonlinear time series.

Study of the performance
of several predictors,

models in a
cloud computing environment

(SILVA et al., 2020) Locally Weighted Regression
The implementation of LWR presenteda lower performance

than models such as
Simple Linear Regression

Performs the classification and prediction of
elephant flows in real-time in the data plane.

(ALDHYANI et al., 2020) LSTM,
Adaptive Neuro-Fuzzy Inference System

The possible high execution time.
Combination of clustering with LSTM and
Adaptive Neuro-Fuzzy Inference System

time series models.

Table 2 – Qualitative overview of related works with DCN traffic prediciton.

3.3.2 Elephant Flow Scheduling

ECMP (THALER; HOPPS, 2000) is the default protocol for multipath routing and load bal-
ancing in DCNs. For this reason, we chose it to compare with the heuristic proposed in this
thesis. In ECMP, a switch locally selects the next hop from multiple equal-cost paths by calcu-
lating a hash value based on IP five-tuple: the source and destination IP addresses, transport
port numbers, and protocol (for instance, by applying the function 𝑥 mod 𝑛, where 𝑥 is the
least significant octet of the IP address and 𝑛 the number of interfaces (HOPPS et al., 2000)).
Therefore, this result is used to direct the packet to the switch’s output interface. ECMP has
two major shortcomings. First, ECMP cannot effectively utilize the available bandwidth due to

53

hash collisions (AL-FARES et al., 2010). Second, as mentioned in the previous chapter, ECMP
can lead to load imbalance because it works independently of link load and flows size. There is
no differentiation between mice flows and elephant flows. Thus, mice flows, which usually are
latency-sensitive flows, frequently find themselves queued behind the elephant in the egress
ports, suffering from long queueing delays (ZHANG; CUI; ZHANG, 2017).

The most cited heuristic for traffic engineering in DCNs with an available open-source ver-
sion is Hedera (AL-FARES et al., 2010), which implements a centralized dynamic flow scheduling
for the fat-tree topology. System monitoring occurs by sending information from links and flows
to the controller. When an elephant flow is detected, the edge switch sends a message to the
scheduler about the event. The scheduler re-routes elephant flow according to the result of
the estimated demand for large flows and allocates it based on a greedy solution called Global
First Fit. The proposal’s goal is to maximize the network utilization, generating less delay or
impact on the active flows in the schedule. With a global view of the network, it is possible to
visualize routing and traffic demands. This view makes it possible for the scheduling system
to visualize bottlenecks, not visualized by local switches.

Zhang et al. (ZHANG; CUI; ZHANG, 2017) propose an elephant flow scheduling algorithm
called Fincher based on the stable matching theory. This algorithm obtains an optimal stable
matching between flows and switches by matching all flows to their appropriate paths. The
authors prove that the Flow-Switch Stable Matching (FSSM) problem is NP-hard.

Previous works investigated the impact of elephant flow scheduling on DCNs with the
fat-tree topology. (AL-FARES et al., 2010; ZHANG; CUI; ZHANG, 2017) gave us the other flow
scheduling and load balancing features and taught us to improve RDRH. Hedera was the
first solution using heuristics to load balance data centers with SDN. Open-source versions
of Hedera (AL-FARES et al., 2010) 1 made it possible to reproduce and develop TE research
in DCNs. Fincher (ZHANG; CUI; ZHANG, 2017) presented a solution based on graph theory
and demonstrated that the routing of flows in a fat-tree topology has NP-hard algorithmic
complexity.

(LI; LU; FU, 2020) proposed a new dynamic elephant flow scheduling algorithm combining
genetic and ant-colony (GA-ACO) algorithms. In SDN architecture, the proposed GA-ACO
algorithm is used to get a global view of the network. It determines and re-routes elephant
flows on the congestion links to the globally optimal path. The genetic algorithm is used in the
global search for available paths, and these are passed as input to the ant colony algorithm.
1 <https://reproducingnetworkresearch.wordpress.com/?s=hedera&submit=Search>

https://reproducingnetworkresearch.wordpress.com/?s=hedera&submit=Search

54

The authors conducted extensive experiments to verify the GA-ACO algorithm’s performance
compared with the ECMP and ACO-SDN. The simulation results show that GA-ACO is superior
to ECMP and ACO-SDN. GA-ACO does not only minimize the full usage of links but also
significantly increase the bisection bandwidth. This approach has some constraints due to the
overhead in the elephant flow detection process.

In another research, (WANG et al., 2016) proposed a DCN architecture scheme named
Freeway that gains from the existence of multiple shortest paths in DCN. This scheme avoids
the trade-off by separating elephant and mice flows and forwarding them over dynamically
partitioned low latency and high throughput paths. An M/G/1-based model is implemented
to theoretically obtain the highest value of average delay over the path that will guarantee, for
99% of mice flows, their completion time before the deadline. Based on this bound, Freeway
proposes a dynamic path partitioning algorithm to dynamically adjust the number of low
latency and high throughput paths with varying traffic load.

Compared to ECMP, a solution based on path computation through hashing, our proposal
distributes traffic flows more efficiently among alternative paths. Our RDRH solution is based
on a centralized flow scheduling implemented on Hedera. By comparison, RDRH performs bet-
ter, especially considering congestion and loss metrics. The authors of Fincher’s algorithm per-
formed a throughput comparison with Hedera and ECMP without a statistical validation. We
implement a complete performance evaluation with a statistical validation. Fincher’s proposal
implements an optimization model considering the association between flows and switches.
Our model has another approach that considers the optimization of network links. None of the
existing research used Randomized Rounding to solve the elephant flows scheduling problem
to the best of our knowledge. Table 3 presents a qualitative analysis of the state of the art
and the proposal of this thesis.

55

Work Heuristic Drawback Major Contribution
ECMP Shortest path Hashing collisions can lead to traffic load imbalance Optimize multipath switched networks

Hedera Global First Fit and Simulatted
Anneling

Large delay in the switches
A centralized dynamic flow scheduling to

the fat-tree topology

Presto - Split elephant flows into small units causing packet reordering,
delay and processing

Design and implementation of a
soft-edge load balancing scheme

Fincher Stable Matching theory The stable matching solution obtained is not necessarily optimal Stable matching theory to perform
elephant flow schedule in DCNs

GA-ACO Genetic and ant-colony algorithms GA can provide premature convergence to local
minima resulting in low accuracy.

GA-ACO algorithm

Freeway Dynamic Path Partition algorithm and
an M/G/1-based model

Requires knowing the size of elephant flows
before they start, so it is difficult to deploy it in practice

Partitions the forwarding paths into
high throughput paths and

low latency paths for elephant flows
and mice flows, respectively

RDRH Randomizing Rounding The Randomized Rounding solution is not necessarily optimal Randomized Rounding to perform
elephant flow scheduling in DCNs

Table 3 – Qualitative overview of DCN load balancing solutions.

3.4 CLOSING REMARKS

This chapter presented a TE solution for elephant flow scheduling in DCNs and a hybrid
model to predict elephant flows in the short-term. These proposals addresses interdisciplinary
areas in computer science and statistics: graph optimization, linear programming, time series
analysis, forecasting, and computer networks. Finally, the main related works were presented.

56

4 RANDOMIZED ROUNDING HEURISTIC SOLUTION

This chapter defines the modeling stage of the proposed randomized rounding heuristic
based on a multicommodity network flow, and the problem of routing elephant flows in fat-
trees. Section 4.1 describes the RDRH module, which is integrated with the traffic engineering
solution defined in the previous chapter.

4.1 RANDOMIZED ROUNDING HEURISTIC MODULE

The Fat-Tree Routing problem for elephant flow scheduling introduced in Subection 2.3.2
is NP-Hard (WANG et al., 2016). Our goal is to solve it in polynomial time. We model FTR
problem as a multicommodity flow, but without the Constraint 2.21 (Link Capacity). As the
objective function seeks to balance the links’ residues by maximizing the smallest residue, we
expect that in an optimal solution there will be no link with usage that greatly exceeds its
capacity.

Figure 11 – Randomized Rounding Heuristic (RDRH) module

RDRH consists of two main functions: obtaining the probabilities of choosing the links
through the solution of a linear programming formulation, and drawing the links to use based
on the obtained probabilities. Figure 11 shows RDRH functions (represented by boxes) and
the output of each RDRH’s component.

We can formulate the FTR problem using the integer programming model below, based
on the multicommodity network flow formulation described in the previous section.

min 𝑦 (4.1)

s.t. ∑︀ℓ
𝑖=1 𝑓𝑖(𝑢, 𝑣)𝑑𝑖 − 𝑦 ≤ 𝑐(𝑢, 𝑣) ∀(𝑢, 𝑣) ∈ 𝐸 (4.2)

57

∑︁
𝑤∈𝑉

𝑓𝑖(𝑢, 𝑤)−
∑︁
𝑤∈𝑉

𝑓𝑖(𝑤, 𝑢) = 0 ∀𝑢 ∈ 𝑉 − {𝑠𝑖, 𝑡𝑖},∀𝑖 ∈ {1, . . . , ℓ} (4.3)

∑︁
𝑤∈𝑉

𝑓𝑖(𝑠𝑖, 𝑤)−
∑︁
𝑤∈𝑉

𝑓𝑖(𝑤, 𝑠𝑖) = 1 ∀𝑖 ∈ {1, . . . , ℓ} (4.4)

∑︁
𝑤∈𝑉

𝑓𝑖(𝑤, 𝑡𝑖)−
∑︁
𝑤∈𝑉

𝑓𝑖(𝑡𝑖, 𝑤) = 1 ∀𝑖 ∈ {1, . . . , ℓ} (4.5)

𝑓𝑖(𝑢, 𝑣) ∈ {0, 1} ∀(𝑢, 𝑣) ∈ 𝐸,∀𝑖 ∈ {1, . . . , ℓ} (4.6)

The objective function (4.1) minimizes the overall elephant flow traffic in the links. Equa-
tion (4.2) is similar to Equation (2.21) described previously in the multicommodity flow model;
the difference lies in the fact that it allows the existence of an excess 𝑦 in the links’ capacity.
However, the objective function (4.1) tends to minimize 𝑦, therefore overloads are allowed
but avoided and reduced. The function (4.1) estimates the greatest excess bandwidth among
links. The equations (4.3), (4.4), and (4.5) ensure that equations (2.22), (2.23), and (2.24)
of the multicommodity flow model are satisfied.

Although solving a general linear formulation with a binary variable is an NP-hard prob-
lem, if we relax the integrality of these binary variables, we can solve the formulation in
polynomial time (HOLMBERG, 2007). Thus, the original formulation’s binary variables receive
real values between 0 and 1 in the relaxed solution, but this fractional solution can be ob-
tained in polynomial time. We can relax the FTR formulation by change the Equation (4.6) to
𝑓𝑖(𝑢, 𝑣) ∈ [0, 1],∀(𝑢, 𝑣) ∈ 𝐸,∀𝑖 ∈ {1, . . . , ℓ}. We call this relaxed formulation the Modified
Multicommodity Flow Relaxation (MMFR) model.

The objective function (4.1) allows better distribution of flows among links (load balanc-
ing), which makes it possible to improve throughput by allocating elephant flows on alternative
paths. Mice flows are forwarded based on hashing and shortest path through ECMP, allowing
the decrease of round-trip delay and loss rate metrics since the traffic is well balanced.

Algorithm 2 depicts the randomized rounding heuristic in pseudo-code. The algorithm’s
input parameters with the number of demands, origin, and destination of the demands. Based
on these entries, the solution of LP relaxation MMFR is performed in Step 1. In steps 5 to
8, each elephant flow paths are drawn based on the optimal solution of the MMFR relaxation
generated by the LP. In Steps 5 to 8, each elephant flow paths are drawn based on the optimal
solution of the MMFR relaxation generated by the LP. The drawing in Step 6 is a random
sample from an empirical distribution.

58

Algorithm 2: RDRH
Input:
𝑛: number of demands.
𝑠[𝑖]: origin of the 𝑖th demand.
𝑡[𝑖]: destination of the 𝑖th demand.
Output: the path of each demand.

1 Let 𝑝 be the solution of LP relaxation MMFR, i.e., 𝑝[𝑖][𝑢][𝑣] is the value of 𝑓𝑖(𝑢, 𝑣) in
the optimal solution.

2 𝑃 [𝑖] ← { } // The path of the 𝑖th demand
3 foreach demand 𝑖 do
4 𝑢 ← 𝑠[𝑖]
5 while 𝑢 is not 𝑡[𝑖] do
6 Draw a node 𝑣, where each 𝑣 has chance 𝑝[𝑖][𝑢][𝑣].
7 P[i] ← 𝑃 [𝑖] ∪ {(𝑢, 𝑣)}
8 𝑢 ← 𝑣

9 return 𝑃

4.2 EVALUATION OF TRAFFIC ENGINEERING SOLUTION

The controlled experiment used in this section was designed based on the procedures
indicated in (PFLEEGER, 1995). The design of an experiment consists of the following steps:

• Conception;

• Design;

• Preparation;

• Execution.

4.2.1 Conception and design

The assessment aims to ascertain the RDRH solution’s capacity to improve the allocation
of elephant flows in DCNs. For this reason, experiments were carried out to measure the flow
capacity of the links with elephant flows, and we also evaluated the links with mice flows.

We evaluate our proposed heuristic performance from different performance evaluation
metrics such as:

• Throughput: characterizes how much data the switch can transfer per second between
connected hosts. This metric is the most relevant to elephant flows in DCNs. The

59

forwarding of the elephant flows requires a high and sustained throughput;

• Round-trip-delay: the time takes for a small packet to travel from source to destination
and then back to the source.

• The packet loss rate will occur when the arriving packet or one of the already queued
packets will be dropped (KUROSE; ROSS, 2012). Round trip delay and loss are essential
to detect congestion symptoms.

We evaluated RDRH with part of the set of communication patterns in: (AL-FARES;

LOUKISSAS; VAHDAT, 2008; AL-FARES et al., 2010; ZHANG; CUI; ZHANG, 2017). We used a syn-
thetic workload, generated by iPerf and composed of two communication patterns following
the characteristics:

• Staggered Prob (𝐸𝑑𝑔𝑒𝑃, 𝑃𝑜𝑑𝑃): a host sends to another host in the same edge switch
with probability EdgeP; its same pod is sent with probability PodP, and the remainder
of the network with probability 1− 𝐸𝑑𝑔𝑒𝑃 − 𝑃𝑜𝑑𝑃 .

• Random: a host sends to any other host in the network with uniform probability. More-
over, there are bijective mappings as well as ones where hotspots are present.

4.2.2 Preparation and execution

In the preparation phase of the experiments, we defined the tools used to implementation
and evaluate the prototype.

• Mininet 2.3.0: Mininet is an open-source, easy-to-deploy, and lightweight network emu-
lator that provides a programmable interface to define and build network configurations
with virtualized elements. All experiments were conducted using the Mininet (LANTZ et

al., 2015) emulator. It integrates several SDN components allowing the test and design
of network architectures and services. Emulators enable the reproduction of experiments
that best reproduce the hardware and overcome network simulations in terms of relia-
bility, flexibility, and cost (MUELAS; RAMOS; VERGARA, 2018);

• Open vSwitch 2.5.4: software used by Mininet to create virtual switches for an SDN
network;

60

• Ryu framework 4.26: Ryu is an SDN controller framework implemented in Python; it is
widely used in academia and industry (ALIYU et al., 2020). This controller was selected
due to network management’s capacity and control applications development through
the APIs available;

• iPerf 2.0.5: software capable of producing network traffic. The experiments were carried
out using iPerf, which can calculate the available bandwidth between any two hosts by
creating a client-server Transmission Control Protocol (TCP) connection (LEBIEDNIK;

MANGAL; TIWARI, 2016);

• bwm-ng 1: software used to monitor the flows’ bandwidth;

• C++: general-purpose programming language created as an extension of the C pro-
gramming language. The solution prototype was implemented in this language due to
its performance, efficiency, and flexibility. The TE solution was integrated with RDRH
by extending a project available on Github2;

• IBM CPLEX (IBM, 2018): High-performance mathematical programming solver for lin-
ear programming, mixed-integer programming and quadratic programming. We use to
resolve the LP MMFR.

Table 4 presents a summary of the tools and parameters of the experiments.

Specification Detail
SDN emulator Mininet 2.3.0
SDN controller Ryu 4.26 - Software defined networking framework
Switch type Open vSwitch(OVS) - 2.5.4 and OpenFlow 1.3 enabled
Traffic generator iPerf 2.0.5
Traffic type TCP
Network Topology Three layered fat-tree with 4-pod and 8-pod

Table 4 – Details of the specification of the experiment.

We compare the impact on the performance of RDRH with Hedera and ECMP on a fat-tree
topology. This impact was measured by allocating elephant and mice flows in topologies with
4-pod and 8-pod. Topologies with 4-pod have 16 servers, 20 switches, and 32 links. For 8-pod,
there are 128 servers, 80 switches, and 256 links. In a total of 8 experiments, we evaluated
1 <https://linux.die.net/man/1/bwm-ng>
2 <https://github.com/Huangmachi/exp_EFattree>

https://linux.die.net/man/1/bwm-ng
https://github.com/Huangmachi/exp_EFattree

61

North-Bound APIs

 Switches

Switches
Openflow

South-Bound APIs

Edge

Core

Aggregation

SDN Controller

hosts

SDN Application

h1 h2 h3 h4 h5 h6 h7 h8 h10h9 h11 h12 h13 h14 h15 h16

Legends

OpenFlow

Interface REST

TCP Traffic

Figure 12 – 4-pod topology used in the experiments to assess the impact of elephant flow on
DCNs.

the throughput, round-trip delay, and loss on two levels of use of a data link, varying the
bandwidth by 100 Mbps and 1000 Mbps. TCP traffic was generated by iPerf complying with
the communication patterns described previously, varying the amount of TCP flows between
the source and destination hosts in one and five flows. These experiments were performed on
a dedicated server running a 64-bit Ubuntu operating system with eight vCPUs and 24 GB of
memory.

Figure 12 illustrates one of the scenarios used in experiments with 4-pod topology with
the following steps:

• Create the topology based on the value of 𝑘 (number of switch ports);

• Create hosts peers (ℎ1 . . . ℎ𝑛) so that traffic is generated with iPerf ;

• Initialize bwm-ng to monitor throughput;

• Mice traffic monitoring is performed by measuring the metrics of round-trip delay and
loss effected through ping application;

• TCP traffic is generated by iPerf according to the bandwidth configuration tested in
the topology.

62

The controller has a monitoring module described in Chapter 3 that runs a pooling in the
switches to identify elephant flows that exceed 10% of the link capacity.

All experiments, compare RDRH to ECMP and Hedera to show performance and scalability,
considering scenarios used in DCNs. ECMP is the most common load-balancing scheme used
on DCNs, and the most cited heuristic with an open-source version is Hedera. Each experiment
lasts for 60 seconds for each origin and destination and uses TCP flows with values of 1 and
5 for staggered and randomized communication patterns. We use TCP traffic generated by
iPerf because it is the most predominant transport protocol used in DCNs.

We collect the running times of the three algorithms: RDRH, ECMP, and Hedera. These
do not include the fat-tree build and link discovery times in the emulated testbed, because the
goal is the algorithms’ processing time. The discussion about computing time of the proposals
evaluated in this thesis is in the next section.

4.3 PERFORMANCE EVALUATION OF THE RDRH FOR TE

In this section, the results of the experiments described in the previous section are analyzed.

4.3.1 Evaluation Metrics

The performance evaluation of the RDRH for TE was carried out using different metrics,
such as throughput, round trip delay, and loss rate. The throughput’s statistical evaluation is
because this metric is more relevant for elephant flows in DCNs (ABDELMONIEM; BENSAOU,
2015). Routing elephant flows requires a high and sustained throughput. Round-trip delay and
loss rate are essential to detect congestion indications. These metrics are applied to assess
non-elephant traffic situations. All experiments compare the RDRH with ECMP and Hedera to
show performance and scalability of the solutions, considering scenarios with DCN topologies.
ECMP is the most common load balancing scheme used in DCNs, and the most frequently
cited heuristic with an open-source version is Hedera.

4.3.2 Data Analysis

The results of the experiments for 4-pod and 8-pod, for 100 Mbps and 1000 Mbps, are
illustrated in Figures 13–16. In the left column of the figures are the experiments’ results

63

for one TCP connection between source and destination, in the right column for five TCP
connections. Figure 13a shows that RDRH outperforms ECMP in the normalized transfer rate
for most traffic patterns, and outperforms Hedera in three patterns. When the number of
TCP flows increases to five, as shown in Figure 13b, RDRH shows better results in five traffic
patterns. As shown in most of figures (a) and (b), the throughput gain increases with the
degree of communication locality in the staggered patterns.

Figures 13c and 13d show round-trip delay. RDRH has a shorter delay on most of the
Random traffic for 100 Mbps. In Figure 13c, ECMP showed a shorter delay in most of the
stag pattern, but the delay is more significant in most random patterns. Figure 13e shows
that the loss level for RDRH is higher than Hedera and ECMP in only two traffic patterns. In
Figure 13f, the loss rate of the RDRH is lower than other algorithms in most of the patterns.
The most visible reduction in packet loss is observed in all scenarios with a bandwidth of 1000
Mbps, except in Figure 16e, in which RDRH shows a loss higher than other solutions.

For 8-pod, the results in figures 15 and 16 show that RDRH varies in throughput. RDRH
shows poorer performance than the other algorithms in the stag pattern of one flow experiment.
RDRH outperforms throughput in three traffic patterns when running with five flows, as
shown in Figure 16b. RDRH has a shorter delay in most traffic except stag1_0.5_0.1, and
stag2_0.4_0.3 patterns for 1 and 5 TCP flows with 100 Mbps. Figure 13f shows that RDRH’s
round-trip delay is smaller than others in most patterns with an increase in the number of
flows.

The throughput values illustrated in figures 15 and 16 show the transfer rate with close
values in the random pattern. The RDRH algorithm has a round-trip delay and loss rate that
outperforms Hedera and ECMP in most traffic patterns. Besides, the allocation of elephant
flows by the RDRH improved the performance of mice flows. Round-trip delay and loss rate
were measured with mice traffic.

The results of the RDRH were better than those of the other solutions in most of the
metrics evaluated for 4-pod. Highlights for round-trip delay and packet loss. The throughput
is less than or equal theirs in some scenarios for 8-pod, though round-trip delay and packet
loss show improvements in performance in most cases. For 4-pod and 8-pod, the throughput
values were very close among the evaluated solutions in some scenarios.

Although the RDRH throughput performance was not superior to that of the other solutions
for the 8-pod scenario, we can conclude that this, in fact, does not restrain our solution. RDRH
showed similar performance in several scenarios. Also, the results’ insights are that it does

64

(a) (b)

(c) (d)

(e) (f)

Figure 13 – Comparison of scheduling algorithms on a fat-tree topology of 4-pod with 100
Mbps. Experiments with one TCP flow are in the left column plot, and five flows
in the right column plot.

65

(a) (b)

(c) (d)

(e) (f)

Figure 14 – Comparison of scheduling algorithms on a fat-tree topology of 4-pod with 1000
Mbps. Experiments with one TCP flow are in the left column plot, and five flows
in the right column plot.

66

(a) (b)

(c) (d)

(e) (f)

Figure 15 – Comparison of scheduling algorithms on a fat-tree topology of 8-pod with 100
Mbps. Experiments with one TCP flow are in the left column plot, and five flows
in the right column plot.

67

(a) (b)

(c) (d)

(e) (f)

Figure 16 – Comparison of scheduling algorithms on a fat-tree topology of 8-pod with 1000
Mbps. Experiments with one TCP flow are in the left column plot, and five flows
in the right column plot.

68

improve round-trip delay and loss rate for delay-sensitive traffic. These metrics are crucial for
real-time applications. In the next section, we will check and quantify the uncertainty in these
results through hypothesis testing. The metric throughput is evaluated because it is the most
critical metric with respect to elephant flows in DCNs.

4.3.3 Statistical Validation

It is possible to verify and certify the performance metric’s confidence values illustrated
in the previous section. In hypothesis testing, the p-value is the probability of obtaining a
result, which indicates the lowest level of significance for rejection of the null hypothesis. It
is the most critical information for decision making in statistical analysis. A p-value provides
information on whether a statistical hypothesis test is significant or not (GARCíA et al., 2010).

Hypothesis testing reveals which solution presents the best performance in elephant flow
allocation. All the hypothesis tests conducted are provided by specifying a threshold significance
level 𝛼 of 5%. The use of the Shapiro-Wilk (SW) adherence test indicates what type of
hypothesis testing to choose: parametric or non-parametric (TRIVEDI, 2011). P-values for all
data sets resulted in amounts of less than the significance level of 5%. All SW tests suggest the
use of non-parametric hypothesis testing because p-values were smaller than 5%. Therefore,
we use the Friedman, Nemenyi Post-Hoc, and Wilcoxon Signed-Rank tests (WSRT) (GARCíA

et al., 2010) to validate the results of our experiments. These tests are valuable for identifying
the algorithm that presents the best performance.

Friedman’s test aims to determine if we may conclude from a sample of results that there
is a difference among the RDRH, Hedera, and ECMP. The formulated hypotheses conducting
the Friedman’s test are:

𝐻0 : There is no statistical difference among the algorithms. (4.7)

𝐻𝑎 : There is a statistical difference among the algorithms. (4.8)

For most fat-tree scenarios with 4-pod with bandwidth 100 Mbps, and 1000 Mbps, we
obtain a p-value smaller than 5% with Friedman’s test. Therefore, the hypothesis 𝐻0 (4.7)
must be rejected because there is a statistical difference between the algorithms’ performance.
For the 8-pod scenario with one TCP connection, Friedman’s test showed a p-value of less than
0.05 only for stag1_0.2_0.3 for 100 Mbps, and random3 and random4 patterns for 1000 Mbps.

69

For the 8-pod scenario with five TCP connections, only the stag1_0.2_0.3, stag1_0.5_0.1,
and stag2_0.4_0.3 patterns.

The Nemenyi post-hoc test indicates if there is a performance difference between algorithms
pairs. For the Nemenyi test, the hypotheses are:

𝐻0 : The performance of algorithms A and B does not differ significantly.

𝐻𝑎 : The performance of algorithms A and B differs significantly.

For paired tests, Algorithm A is RDRH and B is Hedera or ECMP.
Tables 5–10 show results for this paired test. It is worth noting that this test was applied

only to the solutions that showed a statistical difference by the Friedman test. The algorithms’
performance differs significantly in most cases because of the alternative hypothesis 𝐻𝑎 in fields
with a p-value of less than 5%. Tables 5–6 show the p-values of the RDRH comparison with the
other solutions. There is a difference for tests with one TCP connection in 19 combinations for
100 Mbps and 1000 Mbps. Tables 7–8 present results for testing with five TCP connections.
The results are similar to the test for one TCP connection.

100 Mbps
Stag1_0.2_0.3 Stag1_0.5_0.1 Stag1_0.4_0.3 Stag2_0.4_0.3
Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP

ECMP 0.093 - 0.32 - 0.0487 - (<0.01) -
RDRH (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) 0.5794 (<0.01) (<0.01)

1000 Mbps
ECMP 0.093 - 0.32 - (<0.05) - (<0.01) -
RDRH (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) 0.5794 (<0.01) (<0.01)

Table 5 – Nemenyi post hoc test for 4-pod with Stag traffic and one TCP connection.

Tables 9 and 10 present the results for the 8-pod topology. The columns list the traffic
patterns that showed a statistical difference with the application of Friedman’s test. Table
9 shows that there is a significant difference from RDRH to Hedera at 100 Mbps and with
ECMP and Hedera to 1000 Mbps. For five TCP connections, RDRH differs from Hedera and
ECMP only for the Stag1_0.4_0.3 pattern.

The Wilcoxon Signed-Rank test was used to determine which algorithms obtained the
best performance in throughput only for the cases in which there was a significant difference

70

100 Mbps
Random1 Random2 Random3 Random4

Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP
ECMP 0.98 - (<0.01) - (<0.01) - (<0.01) -
RDRH (<0.01) (<0.01) 0.75 (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

1000 Mbps
ECMP 0.98 - (<0.01) - (<0.01) - (<0.01) -
RDRH (<0.01) (<0.01) 0.75 (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Table 6 – Nemenyi post hoc test for 4-pod with Random traffic and one TCP connection.

100 Mbps
Stag1_0.2_0.3 Stag1_0.5_0.1 Stag1_0.4_0.3 Stag2_0.4_0.3
Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP

ECMP 0.093 - 0.32 - 0.0487 - (<0.01) -
RDRH (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) 0.5794 (<0.01) (<0.01)

1000 Mbps
ECMP (<0.01) - (<0.01) - (<0.01) - (<0.01) -
RDRH (<0.01) (<0.01) (<0.01) 0.69 0.0935 0.0044 (<0.05) (<0.01)

Table 7 – Nemenyi posthoc test for 4-pod with Stag traffic and five TCP connections.

100 Mbps
Random1 Random2 Random3 Random4

Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP
ECMP 0.98 - (<0.01) - (<0.01) - (<0.01) -
RDRH (<0.01) (<0.01) 0.75 (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

1000 Mbps
ECMP 0.23 - 0.47 - 0.0934 - (<0.01) -
RDRH (<0.01) (<0.01) (<0.01) (<0.01) 0.1660 (<0.01) (<0.01) (<0.01)

Table 8 – Nemenyi posthoc test for 4-pod with Random traffic and five TCP connections.

100 Mbps
Stag1_0.2_0.3 Random3 Random4
Hedera ECMP Hedera ECMP Hedera ECMP

RDRH 0.012 0.294 - - - -
1000 Mbps

RDRH - - 0.694 0.039 (<0.01) 0.8499

Table 9 – Nemenyi posthoc test for 8-pod with one TCP connection.

71

100 Mbps
Stag1_0.2_0.3 Stag1_0.5_0.1 Stag1_0.4_0.3 Stag2_0.4_0.3
Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP

RDRH 0.9998 0.9999 0.914 0.993 - - - -
1000 Mbps

RDRH 1 0.3342 1 0.9994 (<0.01) (<0.01) - -

Table 10 – Nemenyi posthoc test for 8-pod with five TCP connections.

detected through the paired Nemenyi post-hoc test. The formulated hypotheses for the WSRT
are:

𝐻0 : Algorithm A has performance less than algorithm B.

𝐻𝑎 : Algorithm A has performance greater than algorithm B.

We compare the performance of RDRH with Hedera and ECMP in Tables 11 and 12 for
the 4-pod. The p-values of the paired WSRT smaller than 0.05 evidences that we rejected
𝐻0; consequently, RDRH presented the best performance in thirteen comparisons for 100
Mbps with one TCP connection (Table 11). With bandwidth 1000 Mbps, it presented a lower
performance than the other solutions. Table 12 presents the results for tests with five con-
nections. The performance of RDRH was superior in thirteen comparisons for 100 Mbps and
eight comparisons for 1000 Mbps.

In Table 13, the RDRH presented a lower performance in the analyzed patterns and did
not present statistical differences for the other patterns for 100Mbps. At 1000 Mbps band-
width, RDRH betters ECMP only at random3 and Hedera at random4. For 8-pods with five
connections (Table 14), RDRH is best only for the stag1_0.4_03 pattern.

100 Mbps
Stag1_0.2_0.3 Stag1_0.5_0.1 Stag1_0.4_0.3 Stag2_0.4_0.3 Random1 Random2 Random3 Random4
Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP

RDRH (<0.01) (<0.01) (<0.01) (<0.01) 0.9967 0.9056 (<0.01) (<0.01) (<0.01) (<0.01) 0.931 (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
1000 Mbps

RDRH 1 1 1 0.9999 1 0.9998 0.9998 0.9999 1 1 1 1 1 1 1 1

Table 11 – Wilcoxon rank test for 4-pod with one TCP connection.

The hypothesis tests conducted in this work contributed to some conclusions regarding
evaluating the prototype RDRH. First, the variation in the size of the fat-tree topology in-
fluences the allocation of elephant flows. In the topology with 4-pod, the RDRH performed
better. For topology with 8-pod, the performance was inferior to the analyzed algorithms.

72

100 Mbps
Stag1_0.2_0.3 Stag1_0.5_0.1 Stag1_0.4_0.3 Stag2_0.4_0.3 Random1 Random2 Random3 Random4
Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP

RDRH (<0.01) (<0.01) (<0.01) (<0.01) 0.9967 0.9056 (<0.01) (<0.01) (<0.01) (<0.01) 0.931 (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)
1000 Mbps

RDRH 1 1 (<0.01) 0.0848 (<0.01) 0.9992 0.9963 1 1 1 (<0.01) (<0.01) (<0.01) (<0.01) (<0.01) (<0.01)

Table 12 – Wilcoxon rank test for 4-pod with five TCP connections.

100 Mbps
Stag1_0.2_0.3 Random3 Random4
Hedera ECMP Hedera ECMP Hedera ECMP

RDRH 0.9724 0.9104 - - - -
1000 Mbps

RDRH - - 0.8784 0.0371 (<0.01) 0.3578

Table 13 – Wilcoxon rank test for 8-pod with one TCP connection.

100 Mbps
Stag1_0.2_0.3 Stag1_0.5_0.1 Stag1_0.4_0.3 Stag2_0.4_0.3
Hedera ECMP Hedera ECMP Hedera ECMP Hedera ECMP

RDRH 0.9998 0.9999 0.914 0.993 - - - -
1000 Mbps

RDRH 1 0.3342 1 0.9994 (<0.01) (<0.01) - -

Table 14 – Wilcoxon rank test for 8-pod with five TCP connections.

Second, the variation in bandwidth from 100 Mbps to 1000 Mbps caused a balance between
the evaluated solutions, as there was a reduction in the statistical difference between the solu-
tions being assessed. Finally, the variation in the number of connections from 1 to 5 between
origin and destination, it was observed that for 8-pod, there was a more significant statistical
difference for the staggered pattern.

4.3.4 Computing time

The results presented in Section 4.3.2 showed that the allocation of elephant flows by the
RDRH improved the performance of mice flows. The metrics of round-trip delay and loss rate
were measured with mice traffic. These metrics are crucial for real-time applications. Therefore,
the allocation time of the elephant flow generated by the routing solutions evaluated in this
work is a parameter that must be considered.

Table 15 reports the average computing time necessary to solve different instances of
the FTR problem for the 4-pod topology. The average time was calculated considering the

73

transmissions of all traffic patterns between hosts lasting 60 seconds. The values in brackets
represent the number of TCP flows.

The RDRH has a tradeoff, gains in performance as indicated in the previous section, but
the time required to allocate the elephant’s flow is greater than that of other solutions. The
longer average times is due to the use of software solvers such as Cplex.

100 Mbps
Hedera(1) Hedera(5) ECMP(1) ECMP(5) RDRH(1) RDRH(5)

1.22 2.99 770.92 767.66 8288.28 8269.81
1000 Mbps

1.73 3.63 764.06 766.14 8625.16 8547.80

Table 15 – Average computation time (ms) for 4-pod topology.

RDRH runs with computing time higher than other approaches due to the need to pe-
riodically re-execute the algorithm to obtain the next cycle’s routing, which considers the
new demands and those demands that ended in the previous iteration. This process can be
improved by using the following strategy: each cycle’s necessary adjustments correspond to
inserting and removing some columns in the model of the previous period and re-optimizing it,
which can generally be done efficiently in a few iterations of the simplex method (BERTSIMAS;

TSITSIKLIS, 1997). This methodology is called local sensitivity analysis. A concern with the
proposed RDRH is solving a linear program in each cycle in polynomial time. Therefore, us-
ing a solver requires additional processing time, but that should not compromise final results.
Besides, it is impossible to perform experiments due to the high use of the processor by the
Mininet emulator for large-scale fat-tree topologies (e.g., k = 16, k = 32).

4.4 LIMITATIONS OF THE RDRH AND TRAFFIC ENGINEERING SOLUTION

This section describes the main limitations of RDRH solution defined in this chapter.
The main limitations of the RDRH are:

• Approaches that seek solutions to problems with exponential complexity through heuris-
tics do not provide an optimal solution. The solution obtained is an approximation of
the problem.

• A linear programming problem can be solved in 𝑂((𝑛 + 𝑑)1.5𝑛𝐿) time (VAIDYA, 1989),
where 𝑛 is the number of variables, 𝑑 is the number of constraints, and 𝐿 is the number

74

of bits used to encode the input.

– In the linear programming model used by the RDRH, the number of variables is
𝑂(ℓ|𝐸|) and the number of constraint is 𝑂(ℓ|𝐸|). As due to the fat-tree topology
|𝐸| = 𝑘3/2, we conclude that the RDRH takes 𝑂((ℓ|𝐸|)2.5𝐿) = 𝑂(ℓ2.5𝑘7.5𝐿) time
to solve the linear programming model, which can be prohibitive for situations with
a large number of demands (ℓ) or with many ports on the switches (𝑘).

• Considering that the prototype’s execution is in real-time, the optimizer module will be
running several times, so it cannot have very high complexity.

• It can generate paths that are not necessarily the shortest between the origin and desti-
nation of demand. Therefore, the RDRH may produce routes that are not the shortest
path between the origin and destination of the demand, since during the drawing there
is no limitation on which link to follow.

The main limitations of the TE solution are:

• SDN controller centralizes data plan management. Considering an increase in topology,
the number of messages exchanged between the controller and the switches can cause
congestion.

• In OpenFlow, the controller needs to calculate and install the forwarding rule of each
new flow in real-time, which may cause a computation and congestion on both data and
control planes in networks with large topologies (ALSAEEDI; MOHAMAD; AL-ROUBAIEY,
2019).

• The Mininet network emulator allows the reproduction of experiments with a level close
to reality (LANTZ et al., 2015). However, it has limitations due to hardware/software
that affect its performance and scalability (ORTIZ; LONDOñO; NOVILLO, 2016). When we
perform tests with bandwidth up to 1000 Mbps, the performance degradation of the
CPU in the experiments’ server occurs. A shortcoming in our solution is the computing
time when increasing network parameters, e.g., 𝑘-pod value and bandwidth. Moreover,
using a solver requires an additional processing time that could increase the elephant
flows’ forward time.

75

4.5 CLOSING REMARKS

This chapter presented the steps followed in designing the experiments used to evaluate
the proposed TE solution prototype: methodology, variables, and the metrics of the controlled
experiment adopted in this evaluation.

76

5 HYBRID PREDICTION MODEL VALIDATION

This chapter presents in Section 5.1 the initial statistical analysis and traces the pre-
processing of Facebook’s data center. Besides, we describe the prediction models’ adjustment
parameters in Subsection 5.2. Concluding, we define the metrics used to evaluate the fore-
casting models in Subsection 5.3.

5.1 EXPLORATORY DATA ANALYSIS OF A FACEBOOK DATA CENTER’S TRAFFIC

This section presents descriptive statistics and hypothesis tests used in the dataset. It is
of great relevance to use real data traces to evaluate the performance of forecasting models.
The traces to be considered during the analysis were collected through twenty-four hours at
the Altoona Facebook Data Center. We analyzed realistic workloads, and the raw data sample
exceeds 500GB. Although the period appears insufficient, this did not impede research of
relevance and impact in the computer network community (ROY et al., 2015; WANG et al., 2019;
DAB; FAJJARI; AITSAADI, 2017). The dataset was distributed in three clusters:

• Cluster A - Database

• Cluster B - Web Servers

• Cluster C - Hadoop Servers

The Mysql servers (Database) store user data, whereas Web servers provide Web traffic,
and Hadoop Servers manages offline analysis and data mining. (ROY et al., 2015) concluded
that the data locality identifies Facebook’s DCN traffic patterns: intra-cluster, inter-cluster, or
inter-data center. The analysis adopted in this thesis follows the same premise as (ROY et al.,
2015), with the addition of inter-cluster & inter-data center traffic, in combination with the
consideration of another statistical analysis approach.

Table 16 provides an overview of all datasets used in the experiments and the descriptive
analysis. The locality is defined by the source of traffic and the particular cluster. Traffic
generated within the clusters is classified as intra-cluster. When there is an exchange of traffic
among clusters, it is classified as inter-cluster. An inter-data center exchange occurs between
buildings in the same geographical region or across geographical regions. When the traffic is
externally targeted, it counts as an inter-cluster & inter-data center. The flows collected in

77

the raw data traces were aggregated every 60 seconds.1 This work adopted matching rules to
compose elephant flows based on the 6-tuple composed of timestamps, source and destination
addresses, source and destination ports, and the transport layer protocol. The Aggregate
Flows column displays the total number of elephant flows. An elephant flow, as defined by this
analysis, is considered that which exceeds a threshold of 100 MB (AL-FARES et al., 2010; ZHANG;

CUI; ZHANG, 2017). The uniform sampling rate is 1:30,000 per-packet-sampling (ROY et al.,
2015). The trace samples were collected from a specific machine every minute. We define a
sample size of 5000 as one of the sources used for prediction. This value was defined because
Cluster C of the Inter-data center dataset has only 5037 aggregate flows. Therefore, 4000
samples were assigned to the training dataset. The testing set was assigned to the remaining
1000 samples.

Source Cluster Unit Aggregate Flows Sample Training Test

Intra-cluster
A KB 25929 5000 4000 1000
B KB 122928 5000 4000 1000
C KB 32848 5000 4000 1000

Inter-cluster
A KB 295606661 5000 4000 1000
B KB 27440053 5000 4000 1000
C KB 5491 5000 4000 1000

Inter-data center
A KB 16980 5000 4000 1000
B KB 19319 5000 4000 1000
C KB 5037 5000 4000 1000

Inter-cluster &
Inter-data center

A KB 24544 5000 4000 1000
B KB 19315 5000 4000 1000
C KB 5036 5000 4000 1000

Table 16 – Overview of datasets

5.1.1 Aggregate Elephant flows Analysis

The technique of aggregating flows into macro flows is used in TE to improve the per-
formance of links in large-scale networks (KAMIYAMA et al., 2014). SDN makes it possible to
control flows individually, but for DCNs, the increase in the number of flows that must be
managed causes performance problems. Therefore, the aggregation performed in this work
1 https://www.facebook.com/network-analytics

78

enables identifying elephant flows and allows these flows to be routed by TE mechanisms, as
described in the previous chapter.

Figure 17 depicts the time series plots of the four traffic sources previously described.
Each source contains the traffic generated by the three clusters. All plots are bursty, and the
variability does not diminish significantly with aggregation. The horizontal axis represents the
number of aggregate flows. Cluster C (Hadoop) shows a higher volume of flows than Cluster
A (Database) and Cluster B (Web). Hadoop is a software framework for big data applications
(PENG et al., 2014). (ROY et al., 2015) shows that cluster Hadoop generates most traffic on the
data it analyzed. Therefore, it is following what was presented in Figure 17.

Table 17 includes the mean, standard deviation, skewness, kurtosis, and the coefficient of
variation for each dataset. These values are calculated based on the elephant flows packet
length. The high values in some clusters were due to the large volume of aggregate flows
represented in KB. The development of the statistical analysis was performed with the R
statistics software (CHAMBERS, 2002). Most prediction models implemented in this work use
R packages due to its availability and ease of data processing. Also, there are support and
documentation. The measures are initially represented in KB, but in Figure 17 were converted
to GB. Cluster C represents data from the Hadoop servers. Based on the statistic mean, Cluster
C identifies the most significant elephant flows. It was also concluded that Hadoop traffic is the
predominant local cluster (Intra-cluster). Cluster B (Web servers) presented higher standard
deviation values than those in the Intra-cluster, Inter-data center, and the Inter-cluster/Inter-
data center scenarios. To evaluate the behavior of the series regarding the distributional shape,
the skewness statistic2 was observed as a right-skew in all datasets. Kurtosis analysis entails
the distribution condition having a specified tail form. A leptokurtic distribution occurs when
the Kurtosis value has an excess positive value. The coefficient of variation (CV) varies from
a low of 701.80 to a high of 81126.84.

As displayed in Table 18, a second statistical test group identifies the test statistics values
and p-values in parentheses. Tests performed on the datasets include normality, stationarity,
randomness, and autocorrelation. The Weisberg–Bingham test is a variant of the Shapiro–
Wilk test. The Weisberg–Bingham test was chosen based on the fact that it is powerful when
analyzing asymmetric distributions (YAP; SIM, 2011). Experimental results determined that no
dataset passed the test for normality. This test is essential to identify if the data are parametric
or non-parametric. The clusters in bold font presented autocorrelation and were selected to
2 The shape of the data distribution.

79

(a) (b)

(c) (d)

Figure 17 – Time series of all traffic sources: Intra-cluster (top left), Inter-cluster (top right),
Inter-datacenter (bottom left) and Inter-cluster & Inter-data center (bottom right)

80

Locality Cluster Mean St. Dev. Skewness Kurtosis CV

Intra-cluster
A 63641.59 935880.8 24.36 810.21 1470.549
B 322443.8 10164095 44.96 2296.09 3152.206
C 4572952 38522770 12.31 166.96 842.4048

Inter-cluster
A 75.73 61437.93 2730.77 11873022 81126.84
B 1370.1 605247.2 679.6 566585.7 44175.25
C 3636361 29060621 15.14 268.58 799.1676

Inter-data center
A 346704 3579931 23.74 690.02 1032.562
B 1153177 16004868 22.39 643.39 1387.893
C 2906111 22428846 18.43 425.44 771.782

Inter-cluster&
Inter-datacenter

A 429881.6 5274180 33.87 1588.34 1226.891
B 1127077 16558904 23.29 679.37 1469.19
C 3377108 23700759 15.93 331.57 701.8063

Table 17 – Descriptive statistics for all datasets. Units are represented in KB.

make the prediction.
Random testing runs concluded that two datasets (Intra- cluster C and Inter-cluster A)

are random because the test’s null hypothesis is for randomness. The remaining datasets are
non-random. Therefore, it was determined that models that describe their structures to predict
future values in the time series can be more successful (KATRIS; DASKALAKI, 2015). The ADF3

test infers that all datasets are stationary. The Ljung–Box4 test indicates that autocorrelation
still exists in four datasets: Intra-cluster A, Intra-cluster B, Inter-cluster B, and Inter-data
center C. Identifying high autocorrelation can improve the prediction. Therefore, the locations
chosen (the bold lines) to carry out the forecast were those that, according to Table 18,
presented data correlation.

Data center traffic characterization is essential to flow routing algorithms design. Long
Range Dependence (LRD) detection is crucial to studying various protocols, algorithms, and
characterizes emerging data communication environments (CROVELLA; BESTAVROS, 1997; GONG

et al., 2005; WALDMAN; JR; RIBEIRO, 2004). LRD and non-linearity tests, as displayed in Table
19, were applied to the datasets. The Hurst often summarizes the LRD parameter (H), which
defines auto-similarity (GONG et al., 2005). If 0.5 < 𝐻 < 1, the series will show the LRD. In the
case of values close to 1, the LRD is stronger. On the contrary, the value of 𝐻 = 0.5 indicates
the absence of long-term memory. Using the 𝐻 values from Table 19, except in Inter-data cen-
3 An alternative hypothesis for the ADF test is statistical stationarity.
4 An alternative hypothesis is autocorrelation.

81

Locality Cluster Normality
Weisberg-B.

Randomness
runs test

Stationarity
ADF test

Autocorrelation
Ljung–Box

Intra-cluster
A 0.0407

(<0.01)
-4.2302
(<0.01)

-25.58
Lag = 29, (0.01)

10.008
(0.0015)

B 0.0123
(<0.01)

-115.08
(<0.01)

-40.505
Lag = 43, (0.01)

13.582
(<0.01)

C 0.0955
(<0.01)

0.2096
(0.8339)

-32.165
Lag=32, (0.01)

1.25e-05
(0.9972)

Inter-cluster
A 0.3863

(<0.01)
-1.7153
(0.0863)

-42.871
Lag=43, (0.01)

0.1108
(0.7392)

B 0.0175
(<0.01)

-151.51
(<0.01)

-40.328
Lag=43, (0.01)

6.5866
(0.0102)

C 0.0997
(<0.01)

-5.7769
(<0.01)

-17.202
Lag=17, (0.01)

0.0031
(0.9552)

Inter-data center
A 0.0655

(<0.01)
-8.3958
(<0.01)

-25.608
Lag=25, (0.01)

0.3887
(0.533)

B 0.0443
(<0.01)

-64.468
(<0.01)

-22.94
Lag=26, (0.01)

1.4864
(0.2228)

C 0.1015
(<0.01)

-4.1433
(<0.01)

-16.647
Lag=17, (0.01)

39.417
(<0.01)

Inter-cluster &
Inter-data center

A 0.0491
(<0.01)

-10.073
(<0.01)

-28.915
Lag=29,(0.01)

0.9135
(0.3392)

B 0.0405
(<0.01)

-65.305
(<0.01)

-23.667
Lag=26,(0.01)

0.8579
(0.3543)

C 0.1197
(<0.01)

-4.5097
(<0.01)

-17.184
Lag=17,(0.01)

0.2093
(0.6472)

Table 18 – Statistical tests for samples

ter C, Inter-cluster/Inter-data center C, it is concluded that all datasets are LRD. Non-linearity
is performed through a White Neural Network (WNN) (LEE; WHITE; GRANGER, 1993), which
verifies the significance of the linearity assumption. Four datasets presented non-linearity. This
analysis is essential for the identification of the prediction models used in this thesis.

82

Source Cluster Hurst
exponent

White
test

(p-Value) Suggested
structure

Intra-cluster
A 0.5676 19.386 (<0.01) Non-linear
B 0.6141 1.9696 0.3735 Linear
C 0.5291 0.4897 0.7828 Linear

Inter-cluster
A 0.5304 5.7812 0.0555 Linear
B 0.6660 6813.6 (<0.01) Non-linear
C 0.5348 1.6803 0.4316 Linear

Inter-data center
A 0.5036 1.0393 0.5947 Linear
B 0.6965 0.1644 0.9211 Linear
C 0.4897 6.0104 0.0495 Non-linear

Inter-cluster &
inter-data center

A 0.5115 31.157 (<0.01) Non-linear
B 0.6725 0.60981 0.7372 Linear
C 0.4848 1.8669 0.3932 Linear

Table 19 – Tests for LRD and non-linearity

5.2 ADJUSTMENT PARAMETERS OF FORECAST MODELS

The previously analyzed data was grouped at four locations, each containing packet size
information for applications running on each cluster. The selection of the applied prediction
models was based on the results shown in Tables 18-19. Table 19 identifies the type of data
structure (linear or non-linear). As previously stated, four datasets were selected as the criteria
for applying the forecast models. The selection was based on the Ljung–Box test (18), which
verified the presence of autocorrelation in a time series. The number of periods for short-term
prediction (one-step-ahead) in all models was 60 s. In all the models, data are normalized in
[0,1].

Locality Cluster Train Test ARIMA MLP RBF Garch

Intra-cluster A 4000 1000 (0,0,0) (1,20,1) (1,2,1) (1,1)
B 4000 1000 (0,0,0) (1,2,1 (1,50,1) (1,1)

Inter-cluster B 4000 1000 (0,0,0) (1,1,1) (1,20,1) (1,1)
Inter-dc C 4000 1000 (0,0,0) (1,50,1) (1,50,1) (1,1)

Table 20 – Parameters of the prediction models 1

As previously stated, the one-step ahead prediction was conducted by incorporating five
thousand dataset samples. In Tables 20 and 21, the dataset was divided into two sets: training
and test. Eighty percent of the samples were allocated to training the models and twenty per-

83

Locality Cluster Train Test Farima-MLP Farima-RNN LSTM

Intra-cluster A 4000 1000 (3,0)/(1,50,1) (3,0)/(2,2,1) (50,32,1)
B 4000 1000 (0,1)/(1,20,1) (0,1)/(50,50,1) (100,32,1)

Inter-cluster B 4000 1000 (3,0)/(1,2,1) (0,3)/(2,2,1) (30,32,1)
Inter-dc C 4000 1000 (1,1)/(1,10,1) (1,1)/(50,50,1) (50,32,1)

Table 21 – Parameters of the prediction models 2

cent to the test. Following the prediction error metrics described in the next section, Tables
20 and 21 identify the parameter combinations that present the lowest error rate. For ARIMA
modeling, the model’s fitting was done using the R package forecast. The Auto.ARIMA func-
tion returns the best set of parameters for the model. In all cases, the values of the parameters
(𝑝, 𝑑, 𝑞) indicate a white noise, which is identified as ARIMA (0, 0, 0) (HYNDMAN; ATHANA-

SOPOULOS, 2017). The rugarch package (GHALANOS; GHALANOS; RCPP, 2017) aims to provide
a flexible GARCH modeling environment using the R language, which recently turned into an
essential tool for computational insights, perception, and data science (ANGADI; KULKARNI,
2015).

A normal distribution is used to model innovations; that is, the error (difference from the
actual and predicted value) follows a normal distribution. The parameter set up of (1, 1) is
adequate for capturing the conditional variance of the errors (ANAND; SCOGLIO; NATARAJAN,
2008; KATRIS; DASKALAKI, 2018). For ANNs models, the embedding dimension generated by
the False Nearest Neighbors (FNN) algorithm (KATRIS; DASKALAKI, 2015) was used to select
the input nodes. The experiments were performed with 1, 2, 10, 20, or 50 nodes in the hidden
layer. During training, the final solution was based on a minimum RMSE calculated for the 4000
most recent training sample observations. The training was performed using back-propagation
with an adaptive gradient descent algorithm and the 4000 epochs of training. Lastly, sigmoid
was selected for the activation function of the hidden layer and linear output. For the RBF
architecture, the analysis incorporated the same node selection procedure as with the FNN;
the training was performed by the “RadialBasisLearning” function.

The implementation of the ANN models and Elman RNN was through the Stuttgart Neural
Network Simulator (SNNS).5 The “Auto ARFIMA” function of the rugarch package adjusts
the parameters of the FARIMA model. Due to the skewness of the traces shown in Table 17,
the fitting of the FARIMA model was performed with Student’s-t distribution with skewness
5 https://cran.r-project.org/web/packages/RSNNS/RSNNS.pdf.

84

“sstd”. For nonlinear optimization procedures, the maximum likelihood estimation requires the
nlminb optimizer or the augmented Lagrange method.

The LSTM model is implemented using the Keras library (CHOLLET, 2018) on top of
TensorFlow machine learning framework (ABADI et al., 2016). The architecture has an LSTM
layer with 32 units and a dense single layer with the sigmoid activation function. By tuning
the network’s parameters varying the lookback value (i.e., how many timesteps back the input
data should go) in 30, 50, and 100 on 20 epochs. Table 21 shows in the column labeled LSTM
the parameters that presented lower mean square error.

5.3 PERFORMANCE ANALYSIS FOR FORECASTING MODELS

This section describes the accuracy metrics used to evaluate the proposed model’s perfor-
mance, and then the results are evaluated.

5.3.1 Prediction accuracy

Section 5.2 describes the application of the prediction models. The performance analy-
sis considers measures of accuracy as originated by the prediction error. RMSE, MAE, and
MAPE (SHMUELI; LICHTENDAHL, 2015) are the most popular performance metrics for mea-
suring predictive accuracy. The primary percentage error measure is MAPE because it has the
advantage of an independent scale. The disadvantages of the MAPE and RMSE measures are
that they give more weight to significant errors (SHMUELI; LICHTENDAHL, 2015).

Selecting the most appropriate model is difficult when various forecasting models are avail-
able for the prediction analysis of several datasets. In this work, the goal is to adopt the
model that presents the best performance to forecast elephant flows in DCNs. The prediction
model selection process considered the model’s ranking, calculating the average position, and
identifying the corresponding standard deviation (KATRIS; DASKALAKI, 2015).

To illustrate the rank model: suppose 𝑁 prediction models are applied to 𝑘 datasets. For
each dataset, all models are ranked according to their RMSE, MAE, and MAPE values. Equa-
tion (5.1) uses rank to calculate the average position (𝐴𝑃) of each model, which summarizes
its performance overall data sets. In (5.2), the standard deviation of the positions (𝑆𝐷𝑃)
calculates the variability of the positions that each model has for different datasets (KATRIS;

85

DASKALAKI, 2015). For each model 𝑖, is computed

𝐴𝑃𝑖 = 1
𝑘

𝑘∑︁
𝑗=1

𝑃𝑖𝑗 (5.1)

where 𝑃𝑖𝑗 indicates the position of model 𝑖 for dataset 𝑗, and

𝑆𝐷𝑃𝑖 =

⎯⎸⎸⎸⎷1
𝑘

𝑘∑︁
𝑗=1

(𝑃𝑖𝑗 − 𝐴𝑃𝑖)2 (5.2)

The model with the lowest possible concurrent 𝐴𝑃 and 𝑆𝐷𝑃 was selected. The results were
achieved using a defined linear utility function to evaluate the models (KATRIS; DASKALAKI,
2015).

For each model 𝑖 the utility function 𝑈 is defined by (5.3):

𝑈𝑖 = 𝐴𝑃𝑖 + 𝑆𝐷𝑃𝑖 (5.3)

The utility value was calculated for each performance metric: RMSE, MAE, and MAPE.
An Average Ranking value is calculated as in (5.4):

𝐴𝑅𝑣𝑖 = 1
3(𝑈𝑅𝑀𝑆𝐸

𝑖 + 𝑈𝑀𝐴𝐸
𝑖 + 𝑈𝑀𝐴𝑃 𝐸

𝑖), (5.4)

where a lower 𝐴𝑅𝑣 value for a model indicates a more accurate prediction model (KATRIS;

DASKALAKI, 2015).
The next chapter presents the evaluation of the results considering the metrics described

above.

5.3.2 Data Analysis and Discussion of the Prediction Models

All forecasting models analyzed in 5.2 were applied to four selected datasets. The datasets
that present autocorrelation are identified in bold font in Table 18. These four datasets were
used to evaluate and compare the elephant flow prediction models.

Tables 22 and 23 show the performance results for each locality and their respective cluster
arrangement. Both tables also show the average position within the seven prediction models,
the standard deviation of each position, and each ranking’s mean values. Their ranking position
is also described in parentheses.

Cluster A of the Intra-cluster source is the only database selected from the sources because
of its autocorrelation in Table 18. In the RMSE and MAE metrics, the models based on RNNs

86

present errors smaller than the errors from other models in the Intra-cluster source. In Intra-
cluster B, the analysis follows the same conclusion described previously. It is also worth noticing
that the LSTM model performs poorly in terms of MAPE, with values 100.2095 and 100.0985
for Intra-cluster A and Intra-cluster B, respectively (see Table 23). Higher values of metrics
indicate poor performance. Reported disadvantages of MAPE (KIM; KIM, 2016) are associated
with fluctuations when the original time series carries small values. If the actual values are
minimal (usually less than one), MAPE yields huge percentage errors, i.e., outliers.

In the Inter-cluster scenario, FARIMA-RNN outperforms all other models in RMSE and
MAE. Also, this dataset presents non-linearity; for this reason, the ARIMA and GARCH models
presented worse performance compared with the other models evaluated in the rank in Table
22. In Inter-data center scenario, FARIMA-RNN outperforms all the other models as indicated
in Table 23. Overall, the reason that the LSTM model did not achieved a better position was
due to MAPE.

The evaluation of the forecasting approaches is also displayed graphically in Figure 18
where the values for 1/𝑈𝑅𝑀𝑆𝐸

𝑖 , 1/𝑈𝑀𝐴𝐸
𝑖 , 1/𝑈𝑀𝐴𝑃 𝐸

𝑖 and 1/𝐴𝑅𝑣𝑖 (Average Ranking Equation
(5.4)) are the inverse of the utility value (1/𝑈𝑖). The inverse value of the utility metric (U)
indicates that higher values represent better performance. Figure 18 was plotted using the data
from Table 24. Thereby, one may conclude that the FARIMA-MLP and LSTM models display
similar performance, giving 0.25 and 0.23 as the reciprocal of their ARvi, as can be seen from
Table 24. It is also worth noticing that the FARIMA-RNN model performs well according to
all error metrics, and the RMSE suggests the absence of some extreme deviations between the
actual and forecasted values.

The training and testing times are presented in Tables 25 and 26, parenthesis to the left
(training) and right (testing) with measure times taken in seconds. Hybrid models have higher
training times than other models for two reasons: the first is the process of fitting the FARIMA
model to the data, followed by creating a neural network with the residuals of step one. The
LSTM model presented higher training time due to the number (twenty) of epochs used by
tuning the model, according to the description in Section 5.2. Lastly, from the hybrid models,
the FARIMA-RNN outperformed all models in testing time.

This chapter presented the steps followed in designing the experiments used to evaluate
the hybrid forecasting model FARIMA-RNN and the prototype of the proposed TE solution:
the description of the stages of analysis and exploration of the real traces; the statistical
techniques applied during the investigation of results; methodology; variables; and the metrics

87

Source Cluster Arima MLP RBF Garch

Intra-cluster A
RMSE
MAE

MAPE

1.724
0.097
100

0.1083
0.0368
100.175

0.1
0.0696
205.281

1.434
0.2475

283.3561

B
RMSE
MAE

MAPE

0.71
0.064
100

0.2348
0.0525
99.9656

0.2156
0.1317

318.8574

1.417
0.2587

335.7927

Inter-cluster B
RMSE
MAE

MAPE

1.237
0.268
100

0.5085
0.1876
98.8698

0.2402
0.1039
63.1386

1.6129
0.7232
70.6346

Inter-data center C
RMSE
MAE

MAPE

1.02
0.225
100

1.2218
1.1186

1266.691

0.3754
0.2592

194.1222

0.7133
0.541

79.6104

RMSE
evaluation

Avg. Position
St. Dev.
Value

6.00
0.82
6.82

5.25
1.26
6.51

3.00
0.82
3.82

6.25
0.96
7.21

MAE
evaluation

Avg. Position
St. Dev.
Value

5.25
0.96
6.21

5.00
1.41
6.41

4.75
1.26
6.01

6.75
0.50
7.25

MAPE
evaluation

Avg. Position
St. Dev.
Value

4.00
1.41
5.41

4.75
1.71
6.46

5.25
1.50
6.75

5.00
2.45
7.45

Model ranking 6.15(5) 6.46(6) 5.52(4) 7.30(7)

Table 22 – Performance Evaluation of Forecasting Approaches 1

of the controlled experiment adopted in this evaluation.

5.3.3 FARIMA-RNN limitation

• Machine learning models can present the overfitting problem, which consists in the model
being unable to generalize to new data. We indicate in Chapter 6, Section 6.3 of future
works, we indicate a technique proposed in the literature to solve this problem.

88

Source Cluster Farima-MLP Farima-RNN LSTM

Intra-cluster A
RMSE
MAE

MAPE

0.0871
0.0054
9.3656

0.0238
0.0079
22.6287

0.0304
0.0305

100.2095

B
RMSE
MAE

MAPE

1.0293
0.0489
12.878

0.0159
0.0156
45.9622

0.0442
0.0443

100.0985

Inter-cluster B
RMSE
MAE

MAPE

0.3905
0.0788
48.254

0.0815
0.0425
49.3084

0.3172
0.132

104.3633

Inter-datacenter C
RMSE
MAE

MAPE

0.3971
0.1527
101.275

0.0792
0.0224
27.5416

0.3639
0.1491

105.0217

RMSE
evaluation

Avg. Position
St. Dev.
Value

4.25
1.26
5.51

1.00
0.00
1.00

2.25
0.50
2.75

MAE
evaluation

Avg. Position
St. Dev.
Value

2.25
0.96
3.21

1.25
0.50
1.75

2.75
0.96
3.71

MAPE
evaluation

Avg. Position
St. Dev.
Value

1.75
1.50
3.25

1.75
0.50
2.25

5.50
1.00
6.50

Model ranking 3.99(2) 1.67(1) 4.32(3)

Table 23 – Performance Evaluation of Forecasting Approaches 2

ARIMA MLP RBF GARCH FARIMA-MLP FARIMA-RNN LSTM
1/U(RSME) 0.15 0.15 0.26 0.14 0.18 1.00 0.36
1/U(MAE) 0.16 0.16 0.17 0.14 0.31 0.57 0.27

1/U(MAPE) 0.18 0.15 0.15 0.13 0.31 0.44 0.15
1/AR(vi) 0.16 0.15 0.18 0.14 0.25 0.60 0.23

Table 24 – Performance Evaluation of Forecasting Approaches

Locality Cluster ARIMA MLP RBF Garch

Intra-cluster A (0.74)(0.002) (4.82)(0.002) (4.66)(0.002) (3.06)(0.009)
B (0.24)(0.002) (4.84)(0.002) (4.63)(0.002) (1.27)(0.05)

Inter-cluster B (0.50)(0.003) (5.27)(0.002) (4.90)(0.002) (3.93)(0.003)
Inter-dc C (0.26)(0.002) (5.46)(0.002) (4.67)(0.002) (1.68)(0.003)

Table 25 – Training and testing time (s)

89

Figure 18 – Evaluation of Predictors approaches

Locality Cluster Farima-MLP Farima-RNN LSTM

Intra-cluster A (5.87)(0.002) (100.36)(0.001) (61.41)(0.063)
B (7.69)(0.002) (1.64)(0.001) (74.35)(0.062)

Inter-cluster B (10.26)(0.003) (6.00)(0.001) (54.68)(0.054)
Inter-dc C (2.03)(0.002) (0.40)(0.001) (63.89)(0.066)

Table 26 – Training and testing time (s)

5.4 CLOSING REMARKS

This chapter presented the steps followed in designing the experiments used to evaluate
the proposed hybrid prediction model: the description of the stages of analysis and explo-
ration of the real traces; the statistical techniques applied during the investigation of results;
methodology; variables; and the metrics of the experiments adopted in this evaluation.

90

6 CONCLUSION

In this chapter, the hybrid forecasting model and the elephant flow scheduling heuristic
proposed in this thesis are briefly revisited. In addition, the contributions of this research to the
literature on forecasting and scheduling elephant flows are described. Also listed are responses
to research questions. Finally, extensions and integrations of the model are discussed with
heuristics to be explored in future works.

This thesis hypothesis analyzes and predicts actual data from Facebook’s DCN located
in Altoona, Pennsylvania (USA). Traces were pre-processed to identify elephant flows and
forecast them on a short-term basis. In light of this, a time series prediction model with
statistical methods and pattern recognition was implemented. This combination generated
a new hybrid prediction model built with FARIMA and a Recurrent Neural Network, called
FARIMA-RNN.

Moreover, we propose the RDRH solution for scheduling elephant flows in DCN with fat-
tree topology. This solution uses linear relaxation with randomized rounding to route elephant
flows, thereby distributing traffic more evenly to avoid overloading links.

The performance of the FARIMA-RNN model was compared to the ARIMA, GARCH, MLP,
RBF, FARIMA-MLP, and LSTM models. Finally, existing elephant flow scheduling strategies
were evaluated and compared with the proposed RDRH solution.

The results obtained have determined that the FARIMA-RNN model presents an advantage
over the other predictors. The proposed model allows the lowest error rate in the evaluated
metrics and the prediction of non-linear data.

The results obtained from the evaluation of the RDRH show that the performance is
superior for 4-pod topology. Although the throughput performance is balanced for the solutions
in the 8-pod topology, in general, there was a good performance for the metrics of round-trip
delay and loss rate.

The main contributions of this thesis and future works are discussed in the following
sections.

6.1 DISCUSSION ON CONTRIBUTIONS

The main findings of this thesis, presented initially in Chapter 1, are discussed below.

91

• The processing and time series analysis of real traces from the Altoona, Pennsylvania
Facebook Data Center to identify scenarios where elephant flow prediction can be real-
ized. The Facebook DCN database was made available in 2017. This made it possible
to carry out an exploratory statistical analysis and considering the variation in the size
of the packet in the flows as a time series. To the best of our knowledge, this thesis is
the first work to carry out such analysis.

• A new hybrid prediction model built with FARIMA and a Recurrent Neural Network is
proposed.

The FARIMA-RNN hybrid forecast model proposal brought together the advantages that
each model presents. The central insights were this combination to compose a model
that performs better than those that exist in the state-of-the-art.

• Flow scheduling for DCNs based on an SDN that uses a randomized rounding heuristic
is developed.

To the best of our knowledge, the randomized rounding technique had not been explored
to allocate elephant flows in DCNs. SDN paradigms enable new traffic engineering appli-
cations that exploit the global network view and flow patterns for better traffic control
and management. In light of this, we propose a prototype for scheduling elephant flows
in DCNs called RDRH. We performed experiments that reproduced a DCN’s topology
in an emulated environment. The source code is available in the Github repository 1.

6.2 RESPONSES TO RESEARCH QUESTIONS

In Chapter 1 of this thesis, the main research questions that guided this work were pre-
sented. In this section, these questions are reviewed and answered according to the results
analyzed in this chapter. For the reader’s convenience, the questions are listed in subsections,
followed by their respective answers.
1 <https://github.com/jmbezerra/exp_rdrhfattree.git>

https://github.com/jmbezerra/exp_rdrhfattree.git

92

6.2.1 RQ1: Which procedures are required to identify elephant flows in real data

traces?

The DCN Facebook data traces used in this work were pre-processed and aggregated
according to the 6-tuple composed of timestamps, source and destination addresses, source
and destination ports, and the transport layer protocol. In the flow aggregation stage, the
packet was used in the elephant flow classification based on the definition of elephant flow for
those that exceed 100 MB.

6.2.2 RQ2: How to design a hybrid model for elephant flows prediction in DCNs?

For the design or development of a time series forecasting model, the necessary initial
procedure is to analyze the series’ behavior and check for patterns, for example, seasonality,
trend, etc. In elephant flow traffic, due to the pattern showing LRD behavior, the FARIMA
model performed better. The option chosen by Elman’s RNN was due to the non-linearity of
the data and the capacity that RNNs have in their architecture to store previous information
and use it for forecasting. Before choosing Elman’s RNN, tests were performed with a Jordan
RNN, but Elman’s presented the least error in the forecast results. A hybrid model, based on
the characteristics described above, enhances the prediction of elephant flows.

6.2.3 RQ3: How does the proposed hybrid prediction model compare with the

related state-of-the-art models?

To evaluate the performance of the proposed hybrid model, we followed the methodology
presented in (KATRIS; DASKALAKI, 2015). The conventional metric for evaluating prediction
models used by the state of the art is the forecast error, which is the difference between the
predicted and the real value of the series. The most popular are the RMSE, MAE, and MAPE.
These metrics are those most used by the research community as they cover statistics that
allow a detailed analysis of the forecast error. To evaluate the sets of the three error metrics
for each model, the average position and standard deviation were calculated. The sum of
these values generated the utility value for each model. The models were ranked based on the
smallest forecasting error.

93

6.2.4 RQ4: How does the proposed randomized rounding heuristic compare with

the related state-of-the-art solutions?

The RDRH solution was compared with the Hedera and ECMP solutions to evaluate
throughput, round-trip delay, and loss. These metrics were evaluated on an emulated testbed.
Besides, the results were also evaluated with inferential statistics through hypothesis tests.

6.2.5 RQ5: What is the effect of applying a randomized rounding heuristic when

it is used with different traffic patterns?

The RDRH heuristic was integrated with an SDN solution in order to improve TE in
DCNs. We evaluated the solutions with the two traffic patterns presented in the papers by
(AL-FARES et al., 2010; ZHANG; CUI; ZHANG, 2017; CHAO; LIN; CHEN, 2019). Although these
patterns are synthetic, they reproduce well the traffic pattern behavior in data centers. Our
RDRH prototype showed better performance in throughput in some cases, for example, with
the Random traffic pattern. For round-trip delay and loss rate metrics, our proposal performed
better in most of the scenarios evaluated. We have achieved a better use of the links and
response time through the metrics previously described.

6.2.6 RQ6: What is the effect of optimizing elephant flow only? Does this improve

network performance?

Although the RDRH focuses only on elephant flow, the performance evaluation results
improved mice flows’ performance. This was verified through round-trip delay and loss metrics,
evaluated in Section 4.3.

6.3 FUTURE WORKS

Next, we will indicate future works that can be carried out potentially to improve on our
approach.

• The regularization technique can control the overfitting phenomenon (BISHOP, 2006).
This approach works by adding a penalty term to the error function (the difference be-

94

tween actual and adjusted values) after the fitting process. The purpose of this technique
is to discourage the coefficients from reaching large values.

• Investigate the combination of FARIMA with other models of deep neural networks, such
as LSTM. Further research (ZHAOWEI et al., 2020) could be conducted to investigate
whether there are hybrid prediction models that reduce the problem of overfitting in
learning-based models.

• Determine the advantages for DCNs of the SDN controller having advance information
on elephant flow. Survey the requirements for implementing the FARIMA-RNN model
to develop a traffic engineering application for integration with an SDN solution.

• Determine the other algorithmic approaches that have not yet been explored for schedul-
ing elephant flows in DCNs. Recently, related works (LI; LU; FU, 2020; JINGWEN; MUQING;

XIAOLAN, 2019) have proposed new heuristics for the scheduling of elephant flows. We
will investigate the use of greedy heuristics and genetic algorithms.

95

REFERENCES

ABADI, M.; BARHAM, P.; CHEN, J.; CHEN, Z.; DAVIS, A.; DEAN, J.; DEVIN, M.;
GHEMAWAT, S.; IRVING, G.; ISARD, M.; KUDLUR, M.; LEVENBERG, J.; MONGA, R.;
MOORE, S.; MURRAY, D. G.; STEINER, B.; TUCKER, P.; VASUDEVAN, V.; WARDEN,
P.; WICKE, M.; YU, Y.; ZHENG, X. Tensorflow: A system for large-scale machine learning.
In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16).
Savannah, GA: USENIX Association, 2016. p. 265–283. ISBN 978-1-931971-33-1. Available
at: <https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi>.

ABDELMONIEM, A. M.; BENSAOU, B. Reconciling mice and elephants in data center
networks. In: 2015 IEEE 4th International Conference on Cloud Networking (CloudNet). [S.l.:
s.n.], 2015. p. 119–124.

AKYILDIZ, I. F.; LEE, A.; WANG, P.; LUO, M.; CHOU, W. A Roadmap for Traffic
Engineering in SDN-OpenFlow Networks. Computer Networks, Elsevier North-Holland,
Inc., New York, NY, USA, v. 71, p. 1–30, Oct. 2014. ISSN 1389-1286. Available at:
<http://dx.doi.org/10.1016/j.comnet.2014.06.002>.

AKYILDIZ, I. F.; LEE, A.; WANG, P.; LUO, M.; CHOU, W. Research challenges for traffic
engineering in software defined networks. IEEE Network, v. 30, n. 3, p. 52–58, May 2016.
ISSN 0890-8044.

AL-FARES, M.; LOUKISSAS, A.; VAHDAT, A. A scalable, commodity data center
network architecture. In: Proceedings of the ACM SIGCOMM 2008 Conference on Data
Communication. New York, NY, USA: ACM, 2008. (SIGCOMM ’08), p. 63–74. ISBN
978-1-60558-175-0. Available at: <http://doi.acm.org/10.1145/1402958.1402967>.

AL-FARES, M.; RADHAKRISHNAN, S.; RAGHAVAN, B.; HUANG, N.; VAHDAT, A. Hedera:
Dynamic flow scheduling for data center networks. In: Proceedings of the 7th USENIX
Conference. Berkeley, CA, USA: USENIX Association, 2010. (NSDI’10), p. 19–19. Available
at: <http://dl.acm.org/citation.cfm?id=1855711.1855730>.

ALDHYANI, T. H. H.; ALRASHEEDI, M.; ALQARNI, A. A.; ALZAHRANI, M. Y.; BAMHDI,
A. M. Intelligent hybrid model to enhance time series models for predicting network traffic.
IEEE Access, v. 8, p. 130431–130451, 2020.

ALIYU, A. L.; ANEIBA, A.; PATWARY, M.; BULL, P. A trust management framework for
software defined network (sdn) controller and network applications. Computer Networks,
v. 181, p. 107421, 2020. ISSN 1389-1286. Available at: <http://www.sciencedirect.com/
science/article/pii/S1389128620311105>.

ALSAEEDI, M.; MOHAMAD, M. M.; AL-ROUBAIEY, A. A. Toward adaptive and scalable
openflow-sdn flow control: A survey. IEEE Access, v. 7, p. 107346–107379, 2019.

ALVAREZ-HORCAJO, J.; LOPEZ-PAJARES, D.; MARTINEZ-YELMO, I.; CARRAL, J. A.;
ARCO, J. M. Improving multipath routing of tcp flows by network exploration. IEEE Access,
v. 7, p. 13608–13621, 2019. ISSN 2169-3536.

ANAND, N. C.; SCOGLIO, C.; NATARAJAN, B. Garch; non-linear time series model for
traffic modeling and prediction. In: NOMS 2008 - 2008 IEEE Network Operations and
Management Symposium. [S.l.: s.n.], 2008. p. 694–697. ISSN 1542-1201.

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
http://dx.doi.org/10.1016/j.comnet.2014.06.002
http://doi.acm.org/10.1145/1402958.1402967
http://dl.acm.org/citation.cfm?id=1855711.1855730
http://www.sciencedirect.com/science/article/pii/S1389128620311105
http://www.sciencedirect.com/science/article/pii/S1389128620311105

96

ANDERSON, T.; CROVELLA, M.; DIOT, C. Internet Measurement: Past, Present and
Future. 2004. <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.6531&rep=
rep1&type=pdf>.

ANDREYEV, A. Introducing data center fabric, the next-generation Facebook data center
network. 2014. Available at: <https://code.facebook.com/posts/360346274145943/>.

ANGADI, M. C.; KULKARNI, A. P. Time series data analysis for stock market prediction
using data mining techniques with r. International Journal of Advanced Research in Computer
Science, v. 6, n. 6, 2015. <https://doi.org/10.26483/ijarcs.v6i6.2528>.

ARDALANI-FARSA, M.; ZOLFAGHARI, S. Chaotic time series prediction with residual
analysis method using hybrid elman–narx neural networks. Neurocomputing, v. 73, n. 13,
p. 2540 – 2553, 2010. ISSN 0925-2312. Pattern Recognition in Bioinformatics Advances
in Neural Control. Available at: <http://www.sciencedirect.com/science/article/pii/
S0925231210002687>.

BARAHONA, F.; CHUDAK, F. A. Near-optimal solutions to large-scale facility location
problems. Discrete Optimization, v. 2, n. 1, p. 35 – 50, 2005. ISSN 1572-5286. Available at:
<http://www.sciencedirect.com/science/article/pii/S1572528605000034>.

BASTAM, M.; SABAEI, M.; YOUSEFPOUR, R. A scalable traffic engineering technique
in an sdn-based data center network. Transactions on Emerging Telecommunications
Technologies, v. 29, n. 2, p. e3268, 2018. E3268 ett.3268. Available at: <https:
//onlinelibrary.wiley.com/doi/abs/10.1002/ett.3268>.

BENSON, T.; ANAND, A.; AKELLA, A.; ZHANG, M. Understanding data center
traffic characteristics. SIGCOMM Comput. Commun. Rev., ACM, New York, NY,
USA, v. 40, n. 1, p. 92–99, Jan. 2010. ISSN 0146-4833. Available at: <http:
//doi.acm.org/10.1145/1672308.1672325>.

BENSON, T.; ANAND, A.; AKELLA, A.; ZHANG, M. Microte: Fine grained traffic engineering
for data centers. In: Proceedings of the Seventh COnference on Emerging Networking
EXperiments and Technologies. New York, NY, USA: ACM, 2011. (CoNEXT ’11), p. 8:1–8:12.
ISBN 978-1-4503-1041-3. Available at: <http://doi.acm.org/10.1145/2079296.2079304>.

BERGMEIR, C.; BENÍTEZ, J. M. Neural networks in r using the stuttgart neural network
simulator: Rsnns. Journal of Statistical Software, v. 46, n. 7, 2012.

BERTSIMAS, D.; TSITSIKLIS, J. N. Introduction to linear optimization. [S.l.]: Athena
Scientific Belmont, MA, 1997.

BIALON, P. A randomized rounding approach to a k-splittable multicommodity flow problem
with lower path flow bounds affording solution quality guarantees. Telecommunication
Systems, v. 64, n. 3, 2017.

BISHOP, C. M. Pattern recognition and machine learning. [S.l.]: springer, 2006.

BRANDT, S.; FOERSTER, K.-T.; WATTENHOFER, R. Augmenting flows for the consistent
migration of multi-commodity single-destination flows in sdns. Pervasive and Mobile
Computing, v. 36, p. 134 – 150, 2017. ISSN 1574-1192. Special Issue on Pervasive
Social Computing. Available at: <http://www.sciencedirect.com/science/article/pii/
S1574119216302322>.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.6531&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.457.6531&rep=rep1&type=pdf
https://code.facebook.com/posts/360346274145943/
https://doi.org/10.26483/ijarcs.v6i6.2528
http://www.sciencedirect.com/science/article/pii/S0925231210002687
http://www.sciencedirect.com/science/article/pii/S0925231210002687
http://www.sciencedirect.com/science/article/pii/S1572528605000034
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3268
https://onlinelibrary.wiley.com/doi/abs/10.1002/ett.3268
http://doi.acm.org/10.1145/1672308.1672325
http://doi.acm.org/10.1145/1672308.1672325
http://doi.acm.org/10.1145/2079296.2079304
http://www.sciencedirect.com/science/article/pii/S1574119216302322
http://www.sciencedirect.com/science/article/pii/S1574119216302322

97

CHAMBERS, J. he R Project for Statistical Computing. 2002. Available at: <https:
//www.r-project.org/>.

CHANDRA, R. Competition and collaboration in cooperative coevolution of elman recurrent
neural networks for time-series prediction. IEEE transactions on neural networks and learning
systems, IEEE, v. 26, n. 12, p. 3123–3136, 2015.

CHAO, S.; LIN, K. C.; CHEN, M. Flow classification for software-defined data centers using
stream mining. IEEE Transactions on Services Computing, v. 12, n. 1, p. 105–116, Jan 2019.
ISSN 1939-1374.

CHIESA, M.; KINDLER, G.; SCHAPIRA, M. Traffic engineering with equal-cost-multipath:
An algorithmic perspective. IEEE/ACM Transactions on Networking, v. 25, n. 2, p. 779–792,
2017.

CHOLLET, F. Deep Learning mit Python und Keras: Das Praxis-Handbuch vom Entwickler
der Keras-Bibliothek. [S.l.]: MITP-Verlags GmbH & Co. KG, 2018.

CHOLLET, F.; ALLAIRE, J. J. Deep Learning with R. 1st. ed. Greenwich, CT, USA: Manning
Publications Co., 2018. ISBN 161729554X, 9781617295546.

CROVELLA, M. E.; BESTAVROS, A. Self-similarity in world wide web traffic: evidence and
possible causes. IEEE/ACM Transactions on Networking, v. 5, n. 6, p. 835–846, 1997.

CUI, L.; YU, F. R.; YAN, Q. When big data meets software-defined networking: Sdn for big
data and big data for sdn. IEEE Network, v. 30, n. 1, p. 58–65, 2016.

DAB, B.; FAJJARI, I.; AITSAADI, N. Online-batch joint routing and channel allocation for
hybrid data center networks. IEEE Transactions on Network and Service Management, v. 14,
n. 4, p. 831–846, 2017.

DAI, B.; XU, G.; HUANG, B.; QIN, P.; XU, Y. Enabling network innovation in
data center networks with software defined networking: A survey. Journal of Network
and Computer Applications, v. 94, p. 33 – 49, 2017. ISSN 1084-8045. Available at:
<http://www.sciencedirect.com/science/article/pii/S1084804517302278>.

DALMAZO, B. L.; VILELA, J. P.; CURADO, M. Performance analysis of network traffic
predictors in the cloud. Journal of Network and Systems Management, v. 25, n. 2, p. 290–320,
Apr 2017. ISSN 1573-7705. Available at: <http://dx.doi.org/10.1007/s10922-016-9392-x>.

DELL’ACQUA, P.; BELLOTTI, F.; BERTA, R.; GLORIA, A. D. Time-aware multivariate
nearest neighbor regression methods for traffic flow prediction. IEEE Transactions on
Intelligent Transportation Systems, v. 16, n. 6, p. 3393–3402, 2015.

DEMUTH, H. B.; BEALE, M. H.; JESS, O. D.; HAGAN, M. T. Neural Network Design. 2nd.
ed. Stillwater, OK, USA: Martin Hagan, 2014. ISBN 0971732116.

ELMAN, J. L. Finding structure in time. Cognitive Science, v. 14, n. 2, p. 179–211, 1990.
Available at: <https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1>.

FANG, W.; LU, Z.; WU, J.; CAO, Z. Rpps: A novel resource prediction and provisioning
scheme in cloud data center. In: 2012 IEEE Ninth International Conference on Services
Computing. [S.l.: s.n.], 2012. p. 609–616.

https://www.r-project.org/
https://www.r-project.org/
http://www.sciencedirect.com/science/article/pii/S1084804517302278
http://dx.doi.org/10.1007/s10922-016-9392-x
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1

98

FEAMSTER, N.; REXFORD, J.; ZEGURA, E. The road to sdn. Queue, ACM, New
York, NY, USA, v. 11, n. 12, p. 20:20–20:40, Dec. 2013. ISSN 1542-7730. Available at:
<http://doi.acm.org/10.1145/2559899.2560327>.

FU, Q.; SUN, E.; MENG, K.; LI, M.; ZHANG, Y. Deep q-learning for routing schemes in sdn
based data center networks. IEEE Access, v. 8, p. 103491–103499, 2020.

GARCíA, S.; FERNáNDEZ, A.; LUENGO, J.; HERRERA, F. Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational intelligence and
data mining: Experimental analysis of power. Information Sciences, v. 180, n. 10, p. 2044 –
2064, 2010. ISSN 0020-0255. Special Issue on Intelligent Distributed Information Systems.
Available at: <http://www.sciencedirect.com/science/article/pii/S0020025509005404>.

GHALANOS, A.; GHALANOS, M. A.; RCPP, L. Package ‘rugarch’. 2017.

GOMEZ, S. E.; HERNANDEZ-CALLEJO, L.; MARTINEZ, B. C.; SANCHEZ-ESGUEVILLAS,
A. J. Exploratory study on class imbalance and solutions for network traffic classification.
Neurocomputing, v. 343, p. 100 – 119, 2019. ISSN 0925-2312. Learning in the Presence of
Class Imbalance and Concept Drift. Available at: <http://www.sciencedirect.com/science/
article/pii/S092523121930164X>.

GONG, W.-B.; LIU, Y.; MISRA, V.; TOWSLEY, D. Self-similarity and long range dependence
on the internet: a second look at the evidence, origins and implications. Computer Networks,
v. 48, n. 3, p. 377 – 399, 2005. ISSN 1389-1286. Long Range Dependent Traffic. Available
at: <http://www.sciencedirect.com/science/article/pii/S1389128604003330>.

GONZALEZ, T. F. Handbook of approximation algorithms and metaheuristics. [S.l.]: CRC
Press, 2007.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press, 2016.
<http://www.deeplearningbook.org>.

GOOIJER, J. G. D. Elements of Nonlinear Time Series Analysis and Forecasting. 1. ed. [S.l.]:
Springer International Publishing, 2017.

GREENBERG, A.; HAMILTON, J. R.; JAIN, N.; KANDULA, S.; KIM, C.; LAHIRI, P.; MALTZ,
D. A.; PATEL, P.; SENGUPTA, S. Vl2: A scalable and flexible data center network. Commun.
ACM, Association for Computing Machinery, New York, NY, USA, v. 54, n. 3, p. 95–104,
Mar. 2011. ISSN 0001-0782. Available at: <https://doi.org/10.1145/1897852.1897877>.

GUO, L.; MATTA, I. The war between mice and elephants. In: Proceedings Ninth International
Conference on Network Protocols. ICNP 2001. [S.l.: s.n.], 2001. p. 180–188.

HALEPLIDIS, E.; PENTIKOUSIS, K.; DENAZIS, S.; SALIM, J. H.; MEYER, D.;
KOUFOPAVLOU, O. Software-defined networking (SDN): Layers and architecture
terminology. In: RFC 7426. [S.l.]: IRTF, 2015.

HAMDAN, M.; MOHAMMED, B.; HUMAYUN, U.; ABDELAZIZ, A.; KHAN, S.; ALI, M. A.;
IMRAN, M.; MARSONO, M. N. Flow-aware elephant flow detection for software-defined
networks. IEEE Access, v. 8, p. 72585–72597, 2020.

http://doi.acm.org/10.1145/2559899.2560327
http://www.sciencedirect.com/science/article/pii/S0020025509005404
http://www.sciencedirect.com/science/article/pii/S092523121930164X
http://www.sciencedirect.com/science/article/pii/S092523121930164X
http://www.sciencedirect.com/science/article/pii/S1389128604003330
http://www.deeplearningbook.org
https://doi.org/10.1145/1897852.1897877

99

HE, K.; ROZNER, E.; AGARWAL, K.; FELTER, W.; CARTER, J.; AKELLA, A. Presto:
Edge-based load balancing for fast datacenter networks. In: Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication. New York, NY,
USA: ACM, 2015. (SIGCOMM ’15), p. 465–478. ISBN 978-1-4503-3542-3. Available at:
<http://doi.acm.org/10.1145/2785956.2787507>.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Computing, v. 9,
n. 8, p. 1735–1780, 1997. Available at: <http://arxiv.org/abs/https://doi.org/10.1162/
neco.1997.9.8.1735>.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Computation, v. 9,
n. 8, p. 1735–1780, 1997. Available at: <https://doi.org/10.1162/neco.1997.9.8.1735>.

HOLMBERG, K. Optimization Models for Routing in Switching Networks of Clos Type with
Many Stages. 2007. Available at: <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.
1.109.1846>.

HONG, W.; WANG, K.; HSU, Y. H. Application-aware resource allocation for sdn-based
cloud datacenters. In: 2013 International Conference on Cloud Computing and Big Data.
[S.l.: s.n.], 2013. p. 106–110.

HOPPS, C. et al. Analysis of an equal-cost multi-path algorithm. [S.l.], 2000.

HYNDMAN, R. J.; ATHANASOPOULOS, G. Forecasting: principles and practice. 2nd. ed.
OTexts, 2017. Available at: <http://otexts.org/fpp2/>.

IBM. IBM CPLEX Optimizer. 2018. <https://www.ibm.com/analytics/cplex-optimizer>.

JAIN, S.; KUMAR, A.; MANDAL, S.; ONG, J.; POUTIEVSKI, L.; SINGH, A.; VENKATA,
S.; WANDERER, J.; ZHOU, J.; ZHU, M.; ZOLLA, J.; HöLZLE, U.; STUART, S.;
VAHDAT, A. B4: Experience with a globally-deployed software defined wan. In:
Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. New York, NY,
USA: ACM, 2013. (SIGCOMM ’13), p. 3–14. ISBN 978-1-4503-2056-6. Available at:
<http://doi.acm.org/10.1145/2486001.2486019>.

JINGWEN, X.; MUQING, W.; XIAOLAN, H. A traffic scheduling scheme for data center
networks based on sdn. In: 2019 IEEE 5th International Conference on Computer and
Communications (ICCC). [S.l.: s.n.], 2019. p. 1417–1422.

JURKIEWICZ, P. Evaluation of elephant-based algorithms for flow table reduction under
realistic traffic distributions. arXiv preprint arXiv:2005.00173, 2020.

KAMIYAMA, N.; TAKAHASHI, Y.; ISHIBASHI, K.; SHIOMOTO, K.; OTOSHI, T.;
OHSITA, Y.; MURATA, M. Flow aggregation for traffic engineering. In: 2014 IEEE Global
Communications Conference. [S.l.: s.n.], 2014. p. 1936–1941.

KATRIS, C.; DASKALAKI, S. Comparing forecasting approaches for internet traffic. Expert
Systems with Applications, v. 42, n. 21, p. 8172 – 8183, 2015. ISSN 0957-4174. Available at:
<http://www.sciencedirect.com/science/article/pii/S0957417415004315>.

KATRIS, C.; DASKALAKI, S. Dynamic bandwidth allocation for video traffic using
farima-based forecasting models. Journal of Network and Systems Management, Apr 2018.
ISSN 1573-7705. Available at: <https://doi.org/10.1007/s10922-018-9456-1>.

http://doi.acm.org/10.1145/2785956.2787507
http://arxiv.org/abs/https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.1846
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.109.1846
http://otexts.org/fpp2/
https://www.ibm.com/analytics/cplex-optimizer
http://doi.acm.org/10.1145/2486001.2486019
http://www.sciencedirect.com/science/article/pii/S0957417415004315
https://doi.org/10.1007/s10922-018-9456-1

100

KIM, S.; KIM, H. A new metric of absolute percentage error for intermittent demand forecasts.
International Journal of Forecasting, v. 32, n. 3, p. 669 – 679, 2016. ISSN 0169-2070.
Available at: <http://www.sciencedirect.com/science/article/pii/S0169207016000121>.

KLOPFENSTEIN, O. A randomized rounding heuristic to reroute tunnels in mpls networks.
In: IEEE. DRCN 2005). Proceedings. 5th International Workshop on Design of Reliable
Communication Networks, 2005. [S.l.], 2005. p. 7–pp.

KREUTZ, D.; RAMOS, F. M. V.; VERÍSSIMO, P.; ROTHENBERG, C. E.; AZODOLMOLKY,
S.; UHLIG, S. Software-defined networking: A comprehensive survey. CoRR, abs/1406.0440,
2014. Available at: <http://arxiv.org/abs/1406.0440>.

KREUTZ, D.; RAMOS, F. M. V.; VERíSSIMO, P. E.; ROTHENBERG, C. E.;
AZODOLMOLKY, S.; UHLIG, S. Software-defined networking: A comprehensive survey.
Proceedings of the IEEE, v. 103, n. 1, p. 14–76, Jan 2015. ISSN 0018-9219.

KUROSE, J. F.; ROSS, K. W. Computer networking: A top-down approach . 6th. Harlow,
UK: Pearson Education Ltd, 2012.

LANTZ, B.; HELLER, B.; HANDIGOL, N.; JEYAKUMAR, V.; O’CONNOR, B. Mininet-an
instant virtual network on your laptop (or other pc). [S.l.]: March, 2015.

LEBIEDNIK, B.; MANGAL, A.; TIWARI, N. A survey and evaluation of data center network
topologies. CoRR, abs/1605.01701, 2016. Available at: <http://arxiv.org/abs/1605.01701>.

LEE, T.-H.; WHITE, H.; GRANGER, C. W. Testing for neglected nonlinearity in
time series models: A comparison of neural network methods and alternative tests.
Journal of Econometrics, v. 56, n. 3, p. 269–290, 1993. ISSN 0304-4076. Available at:
<https://www.sciencedirect.com/science/article/pii/030440769390122L>.

LI, H.; LU, H.; FU, X. An optimal and dynamic elephant flow scheduling for sdn-based data
center networks. Journal of Intelligent & Fuzzy Systems, IOS Press, v. 38, n. 1, p. 247–255,
2020.

LI, X.; ZHANG, L.; WANG, Z.; DONG, P. Remaining useful life prediction for lithium-ion
batteries based on a hybrid model combining the long short-term memory and elman neural
networks. Journal of Energy Storage, v. 21, p. 510–518, 2019. ISSN 2352-152X. Available at:
<https://www.sciencedirect.com/science/article/pii/S2352152X1830450X>.

LI, Y.; LIU, H.; YANG, W.; HU, D.; WANG, X.; XU, W. Predicting inter-data-center network
traffic using elephant flow and sublink information. IEEE Transactions on Network and
Service Management, v. 13, n. 4, p. 782–792, Dec 2016. ISSN 1932-4537.

MANGILI, M.; MARTIGNON, F.; CAPONE, A.; MALUCELLI, F. Content-aware planning
models for information-centric networking. In: 2014 IEEE Global Communications Conference.
[S.l.: s.n.], 2014. p. 1854–1860. ISSN 1930-529X.

MARVUGLIA, A.; MESSINEO, A. Using recurrent artificial neural networks to forecast
household electricity consumption. Energy Procedia, v. 14, p. 45 – 55, 2012. ISSN 1876-6102.
2011 2nd International Conference on Advances in Energy Engineering (ICAEE). Available at:
<http://www.sciencedirect.com/science/article/pii/S1876610211043116>.

MEDHI, D.; RAMASAMY, K. Network routing: algorithms, protocols, and architectures.
[S.l.]: Morgan Kaufmann, 2017.

http://www.sciencedirect.com/science/article/pii/S0169207016000121
http://arxiv.org/abs/1406.0440
http://arxiv.org/abs/1605.01701
https://www.sciencedirect.com/science/article/pii/030440769390122L
https://www.sciencedirect.com/science/article/pii/S2352152X1830450X
http://www.sciencedirect.com/science/article/pii/S1876610211043116

101

MEHDIZADEH, S.; FATHIAN, F.; ADAMOWSKI, J. F. Hybrid artificial intelligence-time
series models for monthly streamflow modeling. Applied Soft Computing, v. 80, p. 873 –
887, 2019. ISSN 1568-4946. Available at: <http://www.sciencedirect.com/science/article/
pii/S1568494619301723>.

MOLLAH, M. A.; YUAN, X.; PAKIN, S.; LANG, M. Rapid calculation of max-min fair rates
for multi-commodity flows in fat-tree networks. IEEE Transactions on Parallel and Distributed
Systems, v. 29, n. 1, p. 156–168, Jan 2018. ISSN 2161-9883.

MONTGOMERY, C. L. J. D. C.; KULAHCI, M. Introduction to Time Series Analysis and
Forecasting. [S.l.]: Wiley, 2015.

MUELAS, D.; RAMOS, J.; VERGARA, J. E. L. d. Assessing the limits of mininet-based
environments for network experimentation. IEEE Network, v. 32, n. 6, p. 168–176, November
2018. ISSN 0890-8044.

ORTIZ, J.; LONDOñO, J.; NOVILLO, F. Evaluation of performance and scalability of mininet
in scenarios with large data centers. In: 2016 IEEE Ecuador Technical Chapters Meeting
(ETCM). [S.l.: s.n.], 2016. p. 1–6.

OTOSHI, T.; OHSITA, Y.; MURATA, M.; TAKAHASHI, Y.; ISHIBASHI, K.; SHIOMOTO,
K. Traffic prediction for dynamic traffic engineering. Computer Networks, v. 85, p. 36 – 50,
2015. ISSN 1389-1286. Available at: <http://www.sciencedirect.com/science/article/pii/
S1389128615001565>.

PANIGRAHI, S.; BEHERA, H. A hybrid ets–ann model for time series forecasting. Engineering
Applications of Artificial Intelligence, v. 66, p. 49–59, 2017. ISSN 0952-1976. Available at:
<https://www.sciencedirect.com/science/article/pii/S0952197617301550>.

PENG, Y.; CHEN, K.; WANG, G.; BAI, W.; MA, Z.; GU, L. Hadoopwatch: A first step
towards comprehensive traffic forecasting in cloud computing. In: IEEE INFOCOM 2014 -
IEEE Conference on Computer Communications. [S.l.: s.n.], 2014. p. 19–27.

PFLEEGER, S. Experimental design and analysis in software engineering. Annals of
Software Engineering, Springer, v. 1, n. 1, p. 219–253, 1995. ISSN 1022-7091. Available at:
<http://dx.doi.org/10.1007/BF02249052>.

POUPART, P.; CHEN, Z.; JAINI, P.; FUNG, F.; SUSANTO, H.; GENG, Y.; CHEN, L.;
CHEN, K.; JIN, H. Online flow size prediction for improved network routing. In: 2016 IEEE
24th International Conference on Network Protocols (ICNP). [S.l.: s.n.], 2016. p. 1–6.

RAMOS-PEREZ, E.; ALONSO-GONZALEZ, P. J.; NUNEZ-VELAZQUEZ, J. J. Forecasting
volatility with a stacked model based on a hybridized artificial neural network. Expert
Systems with Applications, v. 129, p. 1 – 9, 2019. ISSN 0957-4174. Available at:
<http://www.sciencedirect.com/science/article/pii/S0957417419302209>.

RATHER, A. M.; AGARWAL, A.; SASTRY, V. Recurrent neural network and a hybrid model
for prediction of stock returns. Expert Systems with Applications, v. 42, n. 6, p. 3234 – 3241,
2015. ISSN 0957-4174. Available at: <http://www.sciencedirect.com/science/article/pii/
S0957417414007684>.

ROST, M.; SCHMID, S. Virtual network embedding approximations: Leveraging randomized
rounding. IEEE/ACM Transactions on Networking, v. 27, n. 5, p. 2071–2084, 2019.

http://www.sciencedirect.com/science/article/pii/S1568494619301723
http://www.sciencedirect.com/science/article/pii/S1568494619301723
http://www.sciencedirect.com/science/article/pii/S1389128615001565
http://www.sciencedirect.com/science/article/pii/S1389128615001565
https://www.sciencedirect.com/science/article/pii/S0952197617301550
http://dx.doi.org/10.1007/BF02249052
http://www.sciencedirect.com/science/article/pii/S0957417419302209
http://www.sciencedirect.com/science/article/pii/S0957417414007684
http://www.sciencedirect.com/science/article/pii/S0957417414007684

102

ROY, A.; ZENG, H.; BAGGA, J.; PORTER, G.; SNOEREN, A. C. Inside the social network’s
(datacenter) network. In: Proceedings of the 2015 ACM Conference on Special Interest Group
on Data Communication. New York, NY, USA: ACM, 2015. (SIGCOMM ’15), p. 123–137.
ISBN 978-1-4503-3542-3. Available at: <http://doi.acm.org/10.1145/2785956.2787472>.

SABBEH, A.; AL-DUNAINAWI, Y.; AL-RAWESHIDY, H. S.; ABBOD, M. F. Performance
prediction of software defined network using an artificial neural network. In: 2016 SAI
Computing Conference (SAI). [S.l.: s.n.], 2016. p. 80–84.

Saber, M. A. S.; Ghorbani, M.; Bayati, A.; Nguyen, K.; Cheriet, M. Online data center traffic
classification based on inter-flow correlations. IEEE Access, v. 8, p. 60401–60416, 2020.

SAK, H.; SENIOR, A.; BEAUFAYS, F. Long short-term memory recurrent neural network
architectures for large scale acoustic modeling. In: Fifteenth annual conference of the
international speech communication association. [S.l.: s.n.], 2014. p. 123–130.

SHENG, H.; CHEN, Y. Farima with stable innovations model of great salt lake elevation
time series. Signal Processing, v. 91, n. 3, p. 553 – 561, 2011. ISSN 0165-1684. Advances
in Fractional Signals and Systems. Available at: <http://www.sciencedirect.com/science/
article/pii/S016516841000040X>.

SHMUELI, G.; LICHTENDAHL, K. C. Practical Time Series Forecasting with R: A Hands-On
Guide. [S.l.]: Axelrod Schnall Publishers, 2015. ISBN 0991576632.

SILVA, M. V. B. da; JACOBS, A. S.; PFITSCHER, R. J.; GRANVILLE, L. Z. Predicting
elephant flows in internet exchange point programmable networks. In: BAROLLI, L.;
TAKIZAWA, M.; XHAFA, F.; ENOKIDO, T. (Ed.). Advanced Information Networking
and Applications. Cham: Springer International Publishing, 2020. p. 485–497. ISBN
978-3-030-15032-7.

SINGH, A.; ONG, J.; AGARWAL, A.; ANDERSON, G.; ARMISTEAD, A.; BANNON, R.;
BOVING, S.; DESAI, G.; FELDERMAN, B.; GERMANO, P.; KANAGALA, A.; PROVOST,
J.; SIMMONS, J.; TANDA, E.; WANDERER, J.; HöLZLE, U.; STUART, S.; VAHDAT, A.
Jupiter rising: A decade of clos topologies and centralized control in google’s datacenter
network. In: Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication. [s.n.], 2015. (SIGCOMM ’15), p. 183–197. ISBN 978-1-4503-3542-3.
Available at: <http://doi.acm.org/10.1145/2785956.2787508>.

SINGLA, A.; HONG, C.-Y.; POPA, L.; GODFREY, P. B. Jellyfish: Networking data centers
randomly. In: 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). San Jose, CA: USENIX Association, 2012. p. 225–238. ISBN 978-931971-92-8.
Available at: <https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/
singla>.

THALER, D.; HOPPS, C. Internet Control Message Protocol. RFC Editor, 2000. RFC 2991.
(Request for Comments, 2991). Available at: <https://rfc-editor.org/rfc/rfc792.txt>.

TONG, X.; WANG, Z.; YU, H. A research using hybrid rbf/elman neural networks for
intrusion detection system secure model. Computer Physics Communications, v. 180, n. 10,
p. 1795 – 1801, 2009. ISSN 0010-4655. Available at: <http://www.sciencedirect.com/
science/article/pii/S0010465509001519>.

http://doi.acm.org/10.1145/2785956.2787472
http://www.sciencedirect.com/science/article/pii/S016516841000040X
http://www.sciencedirect.com/science/article/pii/S016516841000040X
http://doi.acm.org/10.1145/2785956.2787508
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/singla
https://rfc-editor.org/rfc/rfc792.txt
http://www.sciencedirect.com/science/article/pii/S0010465509001519
http://www.sciencedirect.com/science/article/pii/S0010465509001519

103

TRIVEDI, K. S. Probability & Statistics with Reliability, Queuing and Computer Science
Applications. [S.l.]: PHI Learning Pvt. Limited, 2011.

TSO, F. P.; PEZAROS, D. P. Improving data center network utilization using near-optimal
traffic engineering. IEEE Transactions on Parallel and Distributed Systems, v. 24, n. 6, p.
1139–1148, 2013.

VAHDAT, A.; AL-FARES, M.; FARRINGTON, N.; MYSORE, R. N.; PORTER, G.;
RADHAKRISHNAN, S. Scale-out networking in the data center. IEEE Micro, v. 30, n. 4, p.
29–41, July 2010. ISSN 0272-1732.

VAIDYA, P. M. A new algorithm for minimizing convex functions over convex sets. In: IEEE
COMPUTER SOCIETY. 30th Annual Symposium on Foundations of Computer Science.
[S.l.], 1989. p. 338–343.

VARMA, S. Chapter 7 - congestion control in data center networks. In: VARMA, S.
(Ed.). Internet Congestion Control. Boston: Morgan Kaufmann, 2015. p. 205 – 230.
ISBN 978-0-12-803583-2. Available at: <http://www.sciencedirect.com/science/article/pii/
B9780128035832000074>.

VIEIRA, F. H. T.; COSTA, V. H. T.; GONÇALVES, B. H. P. Neural network based
approaches for network traffic prediction. In: Artificial Intelligence, Evolutionary Computing
and Metaheuristics. [S.l.]: Springer, 2013. p. 657–684.

WALDMAN, H.; JR, F. L. T.; RIBEIRO, M. R. Appropriate teletraffic framework in ip over
wdm. In: XXII Simpósio Brasileiro de Redes de Computadores (SBRC 2004), pág. [S.l.: s.n.],
2004. p. 647–660.

WALRAED-SULLIVAN, M.; VAHDAT, A.; MARZULLO, K. Aspen trees: Balancing data
center fault tolerance, scalability and cost. In: Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies. New York, NY, USA: Association for
Computing Machinery, 2013. (CoNEXT ’13), p. 85–96. ISBN 9781450321013. Available at:
<https://doi.org/10.1145/2535372.2535383>.

WANG, J.; WANG, J.; FANG, W.; NIU, H. Financial time series prediction using elman
recurrent random neural networks. Computational intelligence and neuroscience, Hindawi,
v. 2016, 2016.

WANG, P.; TRIMPONIAS, G.; XU, H.; GENG, Y. Luopan: Sampling-based load balancing in
data center networks. IEEE Transactions on Parallel and Distributed Systems, v. 30, n. 1, p.
133–145, Jan 2019. ISSN 1045-9219.

WANG, W.; SUN, Y.; SALAMATIAN, K.; LI, Z. Adaptive path isolation for elephant and
mice flows by exploiting path diversity in datacenters. IEEE Transactions on Network and
Service Management, v. 13, n. 1, p. 5–18, 2016.

WANG, X.; ZHANG, C.; ZHANG, S. Modified elman neural network and its application to
network traffic prediction. In: 2012 IEEE 2nd International Conference on Cloud Computing
and Intelligence Systems. [S.l.: s.n.], 2012. v. 02, p. 629–633. ISSN 2376-5933.

WANG, Y.; WANG, X.; LI, H.; DONG, Y.; LIU, Q.; SHI, X. A multi-service differentiation
traffic management strategy in sdn cloud data center. Computer Networks, v. 171, p. 107143,
2020. ISSN 1389-1286. Available at: <http://www.sciencedirect.com/science/article/pii/
S1389128619309740>.

http://www.sciencedirect.com/science/article/pii/B9780128035832000074
http://www.sciencedirect.com/science/article/pii/B9780128035832000074
https://doi.org/10.1145/2535372.2535383
http://www.sciencedirect.com/science/article/pii/S1389128619309740
http://www.sciencedirect.com/science/article/pii/S1389128619309740

104

WAZLAWICK, R. S. Metodologia de Pesquisa para Ciência da Computação. [S.l.: s.n.], 2009.
ISBN 9788535234107.

WEI, W. W. S. Time Series Analysis, Univariate and Multivariate Methods. 2. ed. [S.l.]:
Pearson Addison Wesley, 2006.

WILLIAMSON, D. P.; SHMOYS, D. B. The design of approximation algorithms. [S.l.]:
Cambridge university press, 2011.

XIA, W.; ZHAO, P.; WEN, Y.; XIE, H. A survey on data center networking (dcn):
Infrastructure and operations. IEEE Communications Surveys Tutorials, v. 19, n. 1, p.
640–656, Firstquarter 2017. ISSN 1553-877X.

XIE, K.; TIAN, J.; WANG, X.; XIE, G.; WEN, J.; ZHANG, D. Efficiently inferring top-k
elephant flows based on discrete tensor completion. In: IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications. [S.l.: s.n.], 2019. p. 2170–2178.

XU, H.; LI, X.; HUANG, L.; DENG, H.; HUANG, H.; WANG, H. Incremental deployment and
throughput maximization routing for a hybrid sdn. IEEE/ACM Transactions on Networking,
v. 25, n. 3, p. 1861–1875, 2017.

YAP, B. W.; SIM, C. H. Comparisons of various types of normality tests. Journal of
Statistical Computation and Simulation, v. 81, n. 12, p. 2141–2155, 2011. Available at:
<http://dx.doi.org/10.1080/00949655.2010.520163>.

YOON, M. S.; KAMAL, A. E.; ZHU, Z. Adaptive data center activation with user
request prediction. Computer Networks, p. –, 2017. ISSN 1389-1286. Available at:
<http://www.sciencedirect.com/science/article/pii/S1389128617301780>.

ZENG, J. H.; SHAO, M. Facebook Network Analytics Data Sharing. 2016. Available at:
<https://www.facebook.com/groups/1144031739005495/about>.

ZHAN, Z.; XU, M.; XU, S. Predicting cyber attack rates with extreme values. IEEE
Transactions on Information Forensics and Security, v. 10, n. 8, p. 1666–1677, Aug 2015.
ISSN 1556-6013.

ZHANG, J.; YE, M.; GUO, Z.; YEN, C.; CHAO, H. J. Cfr-rl: Traffic engineering with
reinforcement learning in sdn. IEEE Journal on Selected Areas in Communications, p. 1–1,
2020.

ZHANG, J.; YU, F. R.; WANG, S.; HUANG, T.; LIU, Z.; LIU, Y. Load balancing in data
center networks: A survey. IEEE Communications Surveys Tutorials, v. 20, n. 3, p. 2324–2352,
2018.

ZHANG, Y.; CUI, L.; ZHANG, Y. A stable matching based elephant flow scheduling algorithm
in data center networks. "Computer Networks", v. 120, p. 186 – 197, 2017. ISSN 1389-1286.
Available at: <http://www.sciencedirect.com/science/article/pii/S1389128617301603>.

ZHANG, Y.; WANG, X.; TANG, H. An improved elman neural network with piecewise
weighted gradient for time series prediction. Neurocomputing, v. 359, p. 199–208, 2019.
ISSN 0925-2312. Available at: <https://www.sciencedirect.com/science/article/pii/
S0925231219308215>.

http://dx.doi.org/10.1080/00949655.2010.520163
http://www.sciencedirect.com/science/article/pii/S1389128617301780
https://www.facebook.com/groups/1144031739005495/about
http://www.sciencedirect.com/science/article/pii/S1389128617301603
https://www.sciencedirect.com/science/article/pii/S0925231219308215
https://www.sciencedirect.com/science/article/pii/S0925231219308215

105

ZHAOWEI, Q.; HAITAO, L.; ZHIHUI, L.; TAO, Z. Short-term traffic flow forecasting method
with m-b-lstm hybrid network. IEEE Transactions on Intelligent Transportation Systems, p.
1–11, 2020.

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of symbols
	Contents
	Introduction
	Context
	PROBLEM AND MOTIVATION
	Objectives
	Research Questions
	Research Methodology
	Published Works
	Related Publications
	Co-authored papers

	Thesis Structure

	Background
	Data Center Networks
	Data Center Networks with Software Defined Networking
	Traffic Engineering in DCNs

	Time Series Prediction with Statistical Methods
	Non-seasonal ARIMA model
	GARCH model
	FARIMA model
	Time Series Prediction with Pattern Recognition
	Feed-Forward Neural Networks
	Recurrent Neural Networks
	Hybrid FARIMA-MLP Model

	Multicommodity Network Flow and Randomized Rounding
	Multicommodity Network Flow
	Fat-Tree Routing Problem
	Randomized Rounding

	Closing Remarks

	Traffic Engineering Solution
	The Application for Traffic Engineering
	Proposed Prediction Model
	Related Works
	Elephant Flow Prediction
	Elephant Flow Scheduling

	Closing Remarks

	Randomized Rounding Heuristic Solution
	Randomized Rounding Heuristic Module
	Evaluation of Traffic Engineering Solution
	Conception and design
	Preparation and execution

	Performance Evaluation of the RDRH for TE
	Evaluation Metrics
	Data Analysis
	Statistical Validation
	Computing time

	Limitations of the RDRH and Traffic Engineering Solution
	Closing Remarks

	Hybrid Prediction Model Validation
	Exploratory Data Analysis of a Facebook Data Center's Traffic
	Aggregate Elephant flows Analysis

	Adjustment parameters of forecast models
	Performance Analysis for Forecasting Models
	Prediction accuracy
	Data Analysis and Discussion of the Prediction Models
	FARIMA-RNN limitation

	Closing Remarks

	Conclusion
	Discussion on Contributions
	Responses to research questions
	RQ1: Which procedures are required to identify elephant flows in real data traces?
	RQ2: How to design a hybrid model for elephant flows prediction in DCNs?
	RQ3: How does the proposed hybrid prediction model compare with the related state-of-the-art models?
	RQ4: How does the proposed randomized rounding heuristic compare with the related state-of-the-art solutions?
	RQ5: What is the effect of applying a randomized rounding heuristic when it is used with different traffic patterns?
	RQ6: What is the effect of optimizing elephant flow only? Does this improve network performance?

	Future Works

	References

