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ABSTRACT

Modelling the functional relationship between a variable response and a set of explana-
tory variables is at the core of the regression problems in statistics. Several studies have
proposed different models. More recently, generalized additive models for scale and shape lo-
cation (GAMLSS) have gained attention for generalizing other already popular models such
as the linear model, the generalized linear models, semiparametric models and the generalized
additive models, and allowing any parametric distribution to model the response variable. In
addition, all distribution parameters can be modeled with linear, non-linear or smoothing func-
tions for explanatory variables. Various tools of influence diagnostics have been proposed in the
literature, and this work shows some of these tools and proposes techniques to detect possible
influential observations in the GAMLSS model class. This work considers several measures of
influence such as: the generalized Cook distance, the likelihood distance, the adjusted Peña
measure, differences in the generalized Akaike information criterion and the Kim measure for
simulated data and applications. It is also proposed algorithms to obtain the reference values
of these measures using bootstrap, adapting for the other measures the procedure suggested
by (KIM; PARK; KIM, 2002). The study is still limited to situations where we model the lo-
cation parameter (in general the mean) of the response variable, whether or not we have
smoothing additives, in this case univariate penalized splines were used as a smoother, since
the Peña and Kim measures need to calculate the matrix of smoothing that varies according
to the smoothed covariate and the smoother in question. For the simulation studies, several
scenarios were considered with some relevant distributions and several sample sizes, taking
into account continuous and discrete distributions as well. Analysis of real data illustrates the
approached methodology.

Keywords: Bootstrap. Cook’s Distance. Peña’s Measure. P-splines. Semiparametric Model.



RESUMO

Modelar a relação funcional entre uma váriável resposta e um conjunto de variáveis ex-
plicativas é o cerne dos problemas de regressão em estatística. Diversos estudos tem propostos
diferentes modelos. Mais recentemente os modelos aditivos generalizados para locação escala
e forma (GAMLSS) tem ganhado atenção por generalizar outros modelos já populares como
o modelo linear, os modelos lineares generalizados, modelos semiparamétricos e os modelos
aditivos generalizados, e permitir qualquer distribuição paramétrica para modelar a variável
resposta. Além disso, todos os parâmetros da distribuição podem ser modelados com funções
lineares, não lineares ou funções de suavização das variáveis explicativas. Várias ferramentas
de diagnósticos de influência tem sido propostas na literatura, e este trabalho mostra algumas
dessas ferramentas e propõe técnicas para detectar possíveis observações influentes na classe
de modelos GAMLSS. Este trabalho considera diversas medidas de influência como: a distân-
cia de Cook generalizada, o afastamento de verossimilhanças, a medida de Peña ajustada,
diferenças do critério de informação de Akaike generalizada e a medida de Kim para dados
simulados e aplicações. É proposto ainda algoritmos para obter os valores de referência destas
medidas utilizando bootstrap, adaptando para as outras medidas o procedimento sugerido por
Kim et al. (2002). O estudo ainda limita-se a situações que se é modelado o parâmetro de
locação (em geral a média) da variável resposta, incluindo ou não termos aditivos de suaviza-
ção, neste caso utilizou-se splines penalizados univariados como suavizador, já que a medida
de Peña e de Kim necessitam do cálculo da matriz de suavização que varia de acordo com a
covariável suavizada e o suavizador em questão. Para os estudos de simulação, foram consid-
erados diversos cenários com algumas distribuições relevantes e diversos tamanhos amostrais,
considerando distribuições tanto de natureza contínua quanto discretas. Análise de dados reais
ilustram a metodologia abordada.

Palavras-chaves: Bootstrap. Distância de Cook. Medida de Peña. Modelo Semiparamétrico.
P-Splines.
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1 PRELIMINARIES

In many practical situations it is desirable to model the functional relation of one or
more populational aspects between a particular response variable and one or more explanatory
variables. For this goal, a popular approach is to fit a regression model.

In general, we desire a model that represents the reality of the studied phenomenon, but
in some cases the model can be excessively complex, and the principle of parsimony suggest
than a good model need to capture the essential of the data behavior with the best possible
simplicity.

Regression analysis is attributed to Francis Galton in the 1870s for the regression to the
mean as presented by (SENN, 2011). Moreover, currently several fields of science have used
regression techniques to predict and understanding a phenomena. In this chapter, a review
about some important classes of regression models is presented.

1.1 INTRODUCTION AND STRUCTURE

There are several classes of regression models in the literature. The first chapter of this
work present some important GAMLSS submodels and theirs main respectives features and
parameter estimation as well.

The chapter two explores some diagnostic tools for the GAMLSS models, we focus on the
leave-one-out measures and present the algorithms to compute the reference values. The main
goal of this work is provide some global influence measures to GAMLSS models, also a criteria
to identify when a observation is influential.

The chapter three provide simulations for the main GAMLSS submodels by artificially
including influential cases, also different distributions are simulated to the response variable
and fitted models.

The chapter four perform two applications with real data, and the measures are computed,
finally the chapter five present the concluding remarks and the chapter six suggest some future
woks to complement this one.
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1.2 THE LINEAR REGRESSION MODEL (LM)

One of the simplest and more popular regression model, is the linear regression model. This
section introduces this model, and shows some advantages, assumptions, and disadvantages.
(MONTGOMERY; PECK; VINING, 2012) provide several details about this class of models.

Initially, consider a data set with 𝑛 observations, from random variable 𝑌𝑖. Let 𝑌𝑌𝑌 =

(𝑦1, . . . , 𝑦𝑛)⊤ be a vector of observed response variable and 𝑋𝑋𝑋 = (𝑥𝑥𝑥1, . . . ,𝑥𝑥𝑥𝑟)⊤ be a matrix
with fixed values and 𝑟 co-variate columns, with expectation, 𝜇𝑖 ≡ E(𝑌𝑖|𝑋𝑋𝑋). Denote 𝑌𝑌𝑌 as the
response variable and 𝑋𝑋𝑋 as the design matrix. A possible suitable model for the relationship
between 𝑋𝑋𝑋 and 𝑌𝑌𝑌 are the regression linear model, having the following functional form:

𝑌𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + . . . + 𝛽𝑟𝑥𝑖𝑟 + 𝜖𝑖, (1.1)

where, 𝜖𝑖 for 𝑖 = 1, . . . , 𝑛 are independently normal distributed that is, 𝜖𝑖
𝑖𝑛𝑑∼ 𝑁(𝜇, 𝜎2), the

normal distribution is given by the following probability density function:

𝑓(𝑥𝑖|𝜇, 𝜎2) = 1
𝜎
√

2𝜋
𝑒

−
1
2

(︂𝑥𝑖 − 𝜇

𝜎

)︂2

.

We can rewrite the model (1.1) in the follow equivalent specification:

𝑌𝑖 ∼ 𝑁(𝜇𝑖, 𝜎2), (1.2)

where 𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + . . . + 𝛽𝑟𝑥𝑖𝑟, for 𝑖 = 1, . . . , 𝑛.

Using matrix notation, the model (1.2) specification can be write as

𝑌𝑌𝑌
𝑖𝑛𝑑∼ 𝑁(𝜇𝜇𝜇,𝜎𝜎𝜎2),

where, 𝜇𝜇𝜇 = 𝑋𝑋𝑋𝛽𝛽𝛽, 𝑦𝑦𝑦 = (𝑌1, . . . , 𝑌𝑛)⊤ is the response vector, 𝑋𝑋𝑋 is the design matrix with
dimensions 𝑛× 𝑝 (𝑝 = 𝑟 + 1), if the constant is required the first column is ones, and plus 𝑟

covariate columns, 𝛽𝛽𝛽 = (𝛽0, . . . , 𝛽𝑟)⊤ is the coefficient vector, 𝜇𝜇𝜇 = (𝜇1, . . . , 𝜇𝑛)⊤ is the mean
vector, and 𝜎𝜎𝜎2 = (𝜎2, . . . , 𝜎2)⊤ is the vector of constant variance.

A common way, to estimate 𝛽𝛽𝛽 is using the least squares estimator, the idea is minimizing
the sum of squared differences between the observations 𝑌𝑖 and the means 𝜇𝑖, with respect to
the betas coefficients. We can write this as

𝛽𝛽𝛽 = argmin𝛽𝛽𝛽(𝑦𝑦𝑦 −𝑋𝛽𝑋𝛽𝑋𝛽)⊤(𝑦𝑦𝑦 −𝑋𝛽𝑋𝛽𝑋𝛽),
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the solution is given by
𝛽𝛽𝛽 = (𝑋𝑋𝑋⊤𝑋𝑋𝑋)−1𝑋𝑋𝑋⊤𝑌𝑌𝑌 , (1.3)

it can also shown that least squares estimator in (1.3) is equivalent to the maximum likelihood
estimator (MLE) of 𝛽𝛽𝛽. The fitted values of the linear model are 𝜇̂𝜇𝜇 = 𝑋𝑋𝑋𝛽𝛽𝛽 and the residuals
(fitted errors) are 𝜖̂𝜖𝜖 = 𝑦𝑦𝑦 − 𝜇̂𝜇𝜇. An unbiased estimator for 𝜎2 is

𝑠2 = 𝜖̂𝜖𝜖⊤𝜖̂𝜖𝜖

𝑛− 𝑝
,

since we have a established mean and variance of 𝛽, we have that

𝛽 ∼ 𝑁

(︃
𝛽,

∑︀𝑛
𝑖=1 𝑥2

𝑖

𝜎2

)︃
.

Note, the model premise that 𝑌𝑖
𝑖𝑛𝑑∼ 𝑁(𝜇𝑖, 𝜎2), often this can be not true. Moreover,

situations like not constant variance, correlated errors, nonlinear trend of the data or the
response variable are taken from others distributions. Also, count data, or even rates and
proportions can be not well fitted by the linear model. Some transformations in the response
variable were proposed to stabilize the variance of errors as the Box-Cox transformation (BOX;

COX, 1964) and the Yeo-Johnson transformation (YEO; JOHNSON, 2000), but this approaches
compromises the interpretation of the fitted parameters. Knowing this, several models were
developed to get around this situations.

1.3 THE GENERALIZED LINEAR MODEL (GLM)

The Generalized Linear Model (GLM) was first introduced by (NELDER; WEDDERBURN,
1972), we can highlight three innovations in their approach: (i) the exponential family (denoted
as EF(·)) replaces the normal distribution for modeling the response variable, thus are useful
to practical modeling, allowing count or binary data for example; (ii) a monotonic link function
𝑔(·) is used in modeling the relationship between E(𝑌 ) and the explanatory variables (iii) in
order to find the MLE for the parameters 𝛽 it uses an interactively re-weighted least squares
algorithm.

The GLM can be written as:

𝑌𝑖
𝑖𝑛𝑑∼ EF(𝜇𝑖, 𝜑), where 𝑔(𝜇𝑖) = 𝛽0 + 𝛽1𝑥𝑖1 + . . . + 𝛽𝑟𝑥𝑖𝑟, for 𝑖 = 1, 2, . . . , 𝑛,

and 𝜑 is the dispersion parameter. Using matrix notation, we rewrite this as
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𝑌𝑌𝑌
𝑖𝑛𝑑∼ EF(𝜇𝜇𝜇,𝜑𝜑𝜑),

𝜂𝜂𝜂 = 𝑔(𝜇𝜇𝜇) = 𝑋𝑋𝑋𝛽𝛽𝛽,

where 𝜂 is called the linear predictor and 𝜑𝜑𝜑 = (𝜑, . . . , 𝜑)⊤ is a vector of constant 𝜑.
The exponential family distribution EF(𝜇, 𝜑) is defined by the probability (density) function

𝑓(𝑦|𝜇, 𝜑) having the form:

𝑓(𝑦|𝜇, 𝜑) = exp
{︃

𝑦𝜃 − 𝑏(𝜃)
𝜑

+ 𝑐(𝑦, 𝜑)
}︃

, (1.4)

where E = 𝜇 = 𝑏′(𝜃) and var(𝑌 ) = 𝜑𝑉 (𝜇), where 𝑉 (𝜇) = 𝑏′′[𝜃(𝜇)] and 𝑉 (𝜇) is called
the variance function. The exponential family in 1.4 includes many important distributions as
the normal distribution, binomial, gamma, Poisson, inverse Gaussian, negative binomial, and
others.

(WOOD, 2017) showed that GLMs can be estimated by the iteratively re-weighted least

square (IRLS) algorithm, the IRLS are described as follows:
Algoritmo 1: Iteratively Re-Weighted Least Square Algorithm.

(1) Initialize 𝜇̂ = 𝑦𝑖 + 𝛿𝑖 and 𝜂𝑖 = 𝑔(𝜇̂𝑖), where 𝛿𝑖 is usually zero, but may be a small
constant ensuring that 𝜂𝑖 is finite. Iterate the following two steps to convergence;

(2) Compute pseudodata 𝑧𝑖 = 𝑔′(𝜇̂𝑖)(𝑦𝑖 − 𝜇̂𝑖)
𝛼(𝜇̂𝑖)

+ 𝜂𝑖, and iterative weights

𝑤𝑖 = 𝛼(𝜇̂𝑖)
𝑔′(𝜇̂𝑖)2𝑉 (𝜇̂𝑖)

;

(3) Find 𝛽 witch minimise of the weighted least squares objective function
𝑛∑︁

𝑖=1
𝑤𝑖(𝑧𝑖 −𝑋𝑋𝑋 𝑖𝛽𝛽𝛽)2,

then update 𝜂 = 𝑋𝑋𝑋𝛽𝛽𝛽 and 𝜇̂𝑖 = 𝑔−1(𝜂𝑖).
To more details about the GLMs see also (DOBSON; BARNETT, 2018).

1.4 THE GENERALIZED ADDITIVE MODEL (GAM)

The generalized additive model (GAM) introduced by (HASTIE; TIBSHIRANI, 1990) is a
generalized linear model with a sum of smooth functions of covariates in the linear predictor.
(WOOD, 2017) has contributed extensively to GAM theory and popularity by allowing, in his
implementation of GAM in R (package mgcv).
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The GAM can be written as:
𝑌𝑌𝑌

𝑖𝑛𝑑∼ EF(𝜇𝜇𝜇,𝜑𝜑𝜑)

𝜂𝜂𝜂 = 𝑔(𝜇𝜇𝜇) = 𝑋𝛽𝑋𝛽𝑋𝛽 + 𝑠1(𝑥𝑥𝑥1) + . . . + 𝑠𝐽(𝑥𝑥𝑥𝐽), (1.5)

where 𝑠𝑗 is a nonparametric smoothing function applied to covariate 𝑥𝑥𝑥𝑗, for 𝑗 = 1, . . . , 𝐽 ,
EF(𝜇𝜇𝜇,𝜑𝜑𝜑) denotes an exponential family distribution with vector of mean 𝜇𝜇𝜇 and vector of scale
𝜑𝜑𝜑. 𝑌𝑖 is the response variable, 𝑠𝑗 is not limited to a univariate case, that is the smoothing
terms 𝑠(·) can smooth two or more covariables in a single term, but in this work we focus on
models with just one univariate smoother term with penalized splines.

The main idea of this formulation is allow a better flexibility to the model fit, that means
leaving the data determine the relationship between the linear predictor 𝜂 = 𝑔(𝜇) and the
explanatory variables. the sections 1.7 and 2.2.4 provide more information about the smoothing
parameter estimation. To read more details about the additive smoothing terms see the chapter
9 of (STASINOPOULOS et al., 2017).

1.5 MEAN AND DISPERSION ADDITIVE MODEL (MADAM)

In some occasions, in which the assumption of a constant scale parameter is not appropri-
ate. To deal with this situations and modelling 𝜎, in the 1970s new approaches were proposed.
(HARVEY, 1976) and (AITKIN, 1987) was the first to modeling the variance of the normal
distribution. As a solution to the problem of heterocedasticity.

(NELDER; WEDDERBURN, 1972), (SMYTH, 1989) and (VERBYLA, 1993) are introduced ap-
proaches for modeling the dispersion parameter within the GLM framework. A model to model-
ing both 𝜇 and 𝜎 was introduced by (RIGBY; STASINOPOULOS, 1996), (RIGBY; STASINOPOULOS,
1996), which they called the mean and dispersion additive model (MADAM). The MADAM
using the pseudo-likelihood method to estimate the parameters, the same used in GAMLSS
which allows any two-parameters distribution for the response variable, but in the original
formulation the response distribution had to be in the exponential family.

The MADAM formulation has the form:

𝑌
𝑖𝑛𝑑∼ 𝐷(𝜇𝜇𝜇,𝜎𝜎𝜎)
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𝜂𝜂𝜂1 = 𝑔1(𝜇𝜇𝜇) = 𝑋𝑋𝑋1𝛽𝛽𝛽1 + 𝑠11(𝑥11) + . . . + 𝑠1𝐽1(𝑥1𝐽1)

𝜂𝜂𝜂2 = 𝑔2(𝜇𝜇𝜇) = 𝑋𝑋𝑋2𝛽𝛽𝛽2 + 𝑠21(𝑥21) + . . . + 𝑠2𝐽2(𝑥2𝐽2)
(1.6)

where 𝐷(𝜇𝜇𝜇,𝜎𝜎𝜎) is any two-parameters distribution and both 𝜇 and 𝜎 are linear and/or smooth
functions of the explanatory variables.

1.6 THE GENERALIZED ADDITIVE MODEL FOR LOCATION, SCALE AND SHAPE (GAMLSS)

Use a two-parameter distribution bounded us to the fact that the skewness and kurtosis
of the distribution are fixed for fixed 𝜇 and 𝜎. In some situations, there may be interest to
model the skewness and/or kurtosis. The GAMLSS has been used in several fields like: actuarial
science, biology, bio-sciences, energy economic, genomics, finance, fisheries, food consumption,
growth curves estimation, marine research, medicine, meteorology, rainfalls, vaccines, and
others. Huge institutes are using GAMLSS in their analysis, like the World Health Organisation
(WHO) (PAIVA; FREIRE; CECATTI, 2008), the International Monerary Fund (IMF) (MONETARY;

DEPARTMENT, 2015), and the European Bank (GIRAUD; KOCKEROLS, 2015).
Therefore, the model 1.6 can be extended as follows:

𝑌𝑌𝑌
𝑖𝑛𝑑∼ 𝐷(𝜇𝜇𝜇,𝜎𝜎𝜎,𝜈𝜈𝜈, 𝜏𝜏𝜏)

𝜂𝜂𝜂1 = 𝑔1(𝜇𝜇𝜇) = 𝑋𝑋𝑋1𝛽𝛽𝛽1 + 𝑠11(𝑥𝑥𝑥11) + . . . + 𝑠1𝐽1(𝑥𝑥𝑥1𝐽1)

𝜂𝜂𝜂2 = 𝑔1(𝜎𝜎𝜎) = 𝑋𝑋𝑋2𝛽𝛽𝛽2 + 𝑠21(𝑥𝑥𝑥21) + . . . + 𝑠2𝐽2(𝑥𝑥𝑥2𝐽2)

𝜂𝜂𝜂3 = 𝑔1(𝜈𝜈𝜈) = 𝑋𝑋𝑋3𝛽𝛽𝛽3 + 𝑠31(𝑥𝑥𝑥31) + . . . + 𝑠3𝐽3(𝑥𝑥𝑥3𝐽3)

𝜂𝜂𝜂4 = 𝑔4(𝜏𝜏𝜏) = 𝑋𝑋𝑋4𝛽𝛽𝛽4 + 𝑠41(𝑥𝑥𝑥41) + . . . + 𝑠4𝐽4(𝑥𝑥𝑥4𝐽4)

(1.7)

where 𝐷(𝜇𝜇𝜇,𝜎𝜎𝜎,𝜈𝜈𝜈, 𝜏𝜏𝜏) is any four-parameter distribution and where 𝜇 are a location parameter, 𝜎

are a scale parameter and 𝜈 and 𝜏 are shape parameters which are often related to the skewness
and kurtosis of the distribution. The model 1.7 defines de formulation of the generalized
additive model for location, scale and shape (GAMLSS) and was first introduced by (RIGBY;

STASINOPOULOS, 2005). GAMLSS dispose of a computational package in the R language,
which one enable to fit a model, implement new distributions (in addition to the more than
one hundred already existing), more than ten kinds of additive terms, and several others
functionalities pre implemented.
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The GAM model provides a more flexible approach, in terms of the specification of the
dependence of the response on the covariates. This models can be represented using basis
expansions for each smooth term. In this particular work, we focus in models with one single
univariate smooth component.

The GAMLSS lets choose between a wide range of options of regression models, (STASINOPOU-

LOS et al., 2017) underscore some basic properties of the GAMLSS, which follows:

• GAMLSS is a very flexible unifying framework for univariate regression models.

• It allows any distribution for the response variable. All the parameters of the distribution
can be modelled as functions of explanatory variables.

• It allows a variety of additive terms in the models for the distribution parameters.

• The fitted algorithm is modular, where different components can be added easily.

• It extends basic statistical models allowing flexible modeling of overdispersion, excess of
zeros, skewness and kurtosis in the data.

Generally, the smooth functions used in the GAMLSS models can be written as 𝑠(𝑥𝑥𝑥) = 𝑍𝛾𝑍𝛾𝑍𝛾

where 𝑍𝑍𝑍 is the basis matrix which depends on the explanatory variable 𝑥𝑥𝑥. 𝛾𝛾𝛾 is a parameter
vector to be estimated, subject to a quadratic penalty of the form 𝜆𝛾𝛾𝛾⊤𝐺𝛾𝐺𝛾𝐺𝛾, for a known matrix
𝐺𝐺𝐺 = 𝐷𝐷𝐷⊤𝐷𝐷𝐷 and where the hyperparameter 𝜆 regulates the amount of smoothing needed for
the fit.

The model (1.7) can be extended including random effects in the following form:

𝑌 |𝛾𝑌 |𝛾𝑌 |𝛾 𝑖𝑛𝑑∼ 𝐷(𝜇𝜇𝜇,𝜎𝜎𝜎,𝜈𝜈𝜈, 𝜏𝜏𝜏)

𝜂𝜂𝜂1 = 𝑔1(𝜇𝜇𝜇) = 𝑋𝑋𝑋1𝛽𝛽𝛽1 + 𝑍11(𝛾𝛾𝛾11) + . . . + 𝑍1𝐽1(𝛾𝛾𝛾1𝐽1)

𝜂𝜂𝜂2 = 𝑔1(𝜎𝜎𝜎) = 𝑋𝑋𝑋2𝛽𝛽𝛽2 + 𝑍21(𝛾𝛾𝛾21) + . . . + 𝑍2𝐽2(𝛾𝛾𝛾2𝐽2)

𝜂𝜂𝜂3 = 𝑔1(𝜈𝜈𝜈) = 𝑋𝑋𝑋3𝛽𝛽𝛽3 + 𝑍31(𝛾𝛾𝛾31) + . . . + 𝑍3𝐽3(𝛾𝛾𝛾3𝐽3)

𝜂𝜂𝜂4 = 𝑔4(𝜏𝜏𝜏) = 𝑋𝑋𝑋4𝛽𝛽𝛽4 + 𝑍41(𝛾𝛾𝛾41) + . . . + 𝑍4𝐽4(𝛾𝛾𝛾4𝐽4)

(1.8)

where the 𝛽’s are the fixed effects parameters:

𝛽𝛽𝛽 = (𝛽𝛽𝛽⊤
1 ,𝛽𝛽𝛽⊤

2 ,𝛽𝛽𝛽⊤
3 ,𝛽𝛽𝛽⊤

4 )⊤
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and the 𝛾’s are the random effects parameters:

𝛾𝛾𝛾 = (𝛾⊤
11, . . . , 𝛾⊤

1𝐽1 , 𝛾⊤
21, . . . , 𝛾⊤

4𝐽4)⊤

Also, assume for the model (1.8) that the 𝛾’s are independent of each other, each with
prior distribution

𝛾𝑘𝑗
𝑖𝑛𝑑∼ 𝑁(000, [𝐺𝐺𝐺𝑘𝑗(𝜆𝜆𝜆𝑘𝑗)]−1) (1.9)

where [𝐺𝐺𝐺𝑘𝑗(𝜆𝜆𝜆𝑘𝑗)]−1] is the (generalized) inverse of a 𝑞𝑘𝑗×𝑞𝑘𝑗 symmetic matrix 𝐺𝐺𝐺𝑘𝑗(𝜆𝜆𝜆𝑘𝑗) which
may depend on a vector of hyperparameters 𝜆𝜆𝜆𝑘𝑗. Moreover, we can simplify the model (1.8),
if there are no random effects, and write as:

𝑌𝑌𝑌
𝑖𝑛𝑑∼ 𝐷(𝜇𝜇𝜇,𝜎𝜎𝜎,𝜈𝜈𝜈, 𝜏𝜏𝜏)

𝜂𝜂𝜂1 = 𝑔1(𝜇𝜇𝜇) = 𝑋𝑋𝑋1𝛽𝛽𝛽1

𝜂𝜂𝜂2 = 𝑔1(𝜎𝜎𝜎) = 𝑋𝑋𝑋2𝛽𝛽𝛽2

𝜂𝜂𝜂3 = 𝑔1(𝜈𝜈𝜈) = 𝑋𝑋𝑋3𝛽𝛽𝛽3

𝜂𝜂𝜂4 = 𝑔4(𝜏𝜏𝜏) = 𝑋𝑋𝑋4𝛽𝛽𝛽4

(1.10)

The model (1.10) is called as the parametric GAMLSS model, and the model (1.8) as the
random effects GAMLSS model.

1.6.1 Parameter Estimation

The parametric GAMLSS model only requires estimates the 𝛽𝛽𝛽’s. The random effects
GAMLSS model requires estimates for the 𝛽𝛽𝛽’s, 𝛾𝛾𝛾’s and also the 𝜆𝜆𝜆. The gamlss package
in R fitted the parametric model by maximum likelihood estimation with respect to 𝛽𝛽𝛽. In this
section we summarise the model parameter estimation for the GAMLSS models, for more de-
tails the reader can see (STASINOPOULOS; RIGBY et al., 2007). Also as introduced by (RIGBY;

STASINOPOULOS, 2005), the random effects model is fitted using maximum penalized likelihood
estimation, or in an equivalent way by maximum a posterior estimation (MAP).

Let 𝑓(𝑦𝑖|𝛽𝛽𝛽,𝛾𝛾𝛾) be the conditional probability function of 𝑌𝑖 given 𝛽𝛽𝛽 and 𝛾𝛾𝛾, which can
be any distribution. Assume that the observations 𝑌𝑖, for 𝑖 = 1, 2, . . . , 𝑛, are conditionally
independent given (𝛽𝛽𝛽,𝛾𝛾𝛾). Assume that he 𝛾𝛾𝛾′

𝑘𝑠s have prior independent normal distributions
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given in (1.9), for 𝑘 = 1, 2, 3, 4 over the distribution parameters and 𝑗 = 1, 2, . . . , 𝐽𝑘 over the
different smoothers. A constant improper prior distribution for 𝛽𝛽𝛽 is also assumed for 𝜆𝜆𝜆 fixed.
Then the posterior distribution for the parameters 𝛽𝛽𝛽 and 𝛾𝛾𝛾 given 𝑦𝑦𝑦 and 𝜆𝜆𝜆 is given by:

𝑓(𝛽𝛽𝛽,𝛾𝛾𝛾|𝑦𝑦𝑦,𝜆𝜆𝜆) ∝ 𝑓(𝑦𝑦𝑦|𝛽𝛽𝛽,𝛾𝛾𝛾)𝑓(𝛾𝛾𝛾|𝜆𝜆𝜆) ∝ 𝐿(𝛽𝛽𝛽,𝛾𝛾𝛾)
∏︁
𝑘

∏︁
𝑗

𝑓(𝛾𝑘𝑗|𝜆𝑘𝑗), (1.11)

note that 𝑓(𝛾𝛾𝛾|𝜆𝜆𝜆) = ∏︀
𝑘

∏︀
𝑗 𝑓(𝛾𝑘𝑗|𝜆𝑘𝑗) is the prior probability density distribution for 𝛾𝛾𝛾. Also,

𝑓(𝑦𝑦𝑦|𝛽𝛽𝛽,𝛾𝛾𝛾) = 𝐿(𝛽𝛽𝛽,𝜆𝜆𝜆) = ∏︀
𝑖 𝑓(𝑦𝑖|𝛽𝛽𝛽,𝛾𝛾𝛾) is the likelihood function.

Furthermore, we can also work with the log-likelihood for 𝛽𝛽𝛽 and 𝜆𝜆𝜆, in this case we have:

log𝑓(𝛽𝛽𝛽,𝛾𝛾𝛾|𝑦𝑦𝑦,𝜆𝜆𝜆) = 𝑙(𝛽, 𝛾) +
∑︁∑︁

log𝑓(𝛾𝑘𝑗|𝜆𝑘𝑗|𝜆𝑘𝑗) + 𝑐(𝑦𝑦𝑦,𝑦𝑦𝑦) (1.12)

= 𝑙ℎ(𝛽𝛽𝛽,𝛾𝛾𝛾|𝜆𝜆𝜆) + 𝑐(𝑦𝑦𝑦,𝜆𝜆𝜆) (1.13)

= 𝑙(𝛽𝛽𝛽,𝜆𝜆𝜆)− 1
2
∑︁

𝑘

∑︁
𝑗

𝛾⊤
𝑘𝑗𝐺𝐺𝐺𝑘𝑗(𝜆𝜆𝜆𝑘𝑗)𝛾𝑘𝑗 + 𝑐1(𝑦𝑦𝑦,𝜆𝜆𝜆) (1.14)

= 𝑙𝑝(𝛽𝛽𝛽,𝛾𝛾𝛾|𝜆𝜆𝜆) + 𝑐1(𝑦𝑦𝑦,𝜆𝜆𝜆). (1.15)

Fist, in the equation (1.12) the log-likelihood of the data for a given 𝛽𝛽𝛽 and 𝛾𝛾𝛾, that is, 𝑙(𝛽𝛽𝛽,𝛾𝛾𝛾) =

log𝐿(𝛽𝛽𝛽,𝛾𝛾𝛾), together with the logarithm of the assumed probability density function for 𝛾𝛾𝛾

given 𝜆𝜆𝜆. The 𝑐(𝑦𝑦𝑦,𝜆𝜆𝜆) = −log𝑓(𝑦𝑦𝑦, |𝜆𝜆𝜆) is a constant for the proportionality in (1.11). The
hierarchical likelihood is obtained by combining the first two terms of (1.13), the definition of
the hierarchical likelihood is provided by (LEE; NELDER; PAWITAN, 2018). In the equation (1.14)
substitute the general form 𝑓(𝛾𝑘𝑗|𝜆𝑘𝑗) with the assumed normal distribution, so is resulting the
quadratic penalty 𝛾⊤

𝑘𝑗𝐺𝐺𝐺𝑘𝑗(𝜆𝜆𝜆𝑘𝑗). The others elements of the logarithm of the normal probability
density function is are absorbed by the constant, this changes 𝑐 to 𝑐1. Finally, the log-posterior
for the 𝛽𝛽𝛽 and 𝛾𝛾𝛾 is equal to the penalized likelihood of the equation (1.16).

To estimate the parameters using maximum likelihood, we need to integrate 𝛾𝛾𝛾 out of the
joint likelihood of 𝛽𝛽𝛽,𝛾𝛾𝛾 and 𝜆𝜆𝜆 given in equation

The log-likelihood function for the parametric model (1.10) is given by

𝑙(𝜃𝜃𝜃) =
𝑛∑︁

𝑖=1
log𝑓(𝑦𝑖|𝜇𝑖, 𝜎𝑖, 𝜈𝑖, 𝜏𝑖),

and the penalized log-likelihood function for the random effects GAMLSS model (1.7) is given
by

𝑙𝑝 = 𝑙 − 1
2

4∑︁
𝑘=1

𝐽𝑘∑︁
𝑗=1

𝛾𝛾𝛾⊤
𝑘𝑗𝐺𝐺𝐺𝑘𝑗(𝜆𝑘𝑗)𝛾𝛾𝛾𝑘𝑗. (1.16)

There are two basic algorithms for fitting the parametric model with respect to 𝛽𝛽𝛽, and the
nonparametric model with respect to 𝛽𝛽𝛽 and 𝛾𝛾𝛾 for fixed 𝜆𝜆𝜆: the RS algorithm (a generalization
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of the same algorithm used by (RIGBY; STASINOPOULOS, 1996) and (RIGBY; STASINOPOULOS,
1996) for fitting the MADAM models). The RS algorithm using three nested procedures: the
outer iteration, the inner iteration and a modified backfitting.

The outer iteration starts by maximise the log-likelihood over 𝜇𝜇𝜇 to fit a model for 𝜇𝜇𝜇, latest
estimates 𝜎𝜎𝜎, 𝜈𝜈𝜈 and 𝜏𝜏𝜏 , then fit a model for 𝜎𝜎𝜎 given the latest estimates 𝜇̂𝜇𝜇, 𝜈𝜈𝜈 and 𝜏𝜏𝜏 , then fi a
model for 𝜈𝜈𝜈 given the latest estimates 𝜇̂𝜇𝜇, 𝜈𝜈𝜈 and 𝜏𝜏𝜏 , and finally fit a model for 𝜏𝜏𝜏 given the latest
estimates 𝜇̂𝜇𝜇, 𝜈𝜈𝜈 and 𝜏𝜏𝜏 .

The inner iteration is a local scoring algorithm resembling to the used in the GLMs, for
practice we defined 𝜃𝜃𝜃1 = 𝜇𝜇𝜇, 𝜃𝜃𝜃2 = 𝜎𝜎𝜎, 𝜃𝜃𝜃3 = 𝜈𝜈𝜈 and 𝜃𝜃𝜃4 = 𝜏𝜏𝜏 . Let define a modified response
variable (also called working variable) for fitting the parameter 𝜃𝑘 is given by

𝑧𝑧𝑧𝑘 = 𝜂𝜂𝜂𝑘 + 𝑤𝑤𝑤−1
𝑘 ∘ 𝑢𝑘 (1.17)

where, 𝑧𝑧𝑧𝑘 = (𝑧𝑘1, . . . , 𝑧𝑘𝑛)⊤, 𝜂𝜂𝜂𝑘 = (𝜂𝑘1, . . . , 𝜂𝑘𝑛)⊤ and 𝑢𝑢𝑢𝑘 = (𝑢𝑘1, . . . , 𝑢𝑘𝑛)⊤, 𝑤−1
𝑘 ∘ 𝑢𝑘 =

(𝑤−1
𝑘1 𝑢𝑘1, . . . , 𝑤−1

𝑘𝑛 𝑢𝑘𝑛), the operator ∘ is the Hadamard element by element product, 𝜂𝜂𝜂1 =

𝑔𝑘(𝜃𝜃𝜃𝑘) is the predictor vector of the 𝑘-th parameter vectors for 𝑘 = 1, 2, 3, 4. The first derivative
of the log-likelihood (score function) with respect to the predictor, are given by

𝑢𝑢𝑢𝑘 = 𝜕𝑙

𝜕𝜂𝜂𝜂𝑘

=
(︃

𝜕𝑙

𝜕𝜃𝜃𝜃𝑘

)︃
∘
(︃

𝑑𝜃𝜃𝜃𝑘

𝑑𝜂𝜂𝜂𝑘

)︃

where 𝜕𝑙

𝜕𝜂𝜂𝜂𝑘

=
(︃

𝜕𝑙1
𝜕𝜂𝑘1

, . . . ,
𝜕𝑙𝑛

𝜕𝜂𝑘𝑛

)︃⊤

, 𝜕𝑙

𝜕𝜃𝜃𝜃𝑘

=
(︃

𝜕𝑙1
𝜕𝜃𝑘1

, . . . ,
𝜕𝑙𝑛
𝜕𝜃𝑘𝑛

)︃⊤

, for 𝑘 = 1, 2, 3, 4, 𝑑𝜃𝜃𝜃𝑘

𝑑𝜂𝜂𝜂𝑘

=(︃
𝑑𝜃𝑘1

𝑑𝜂𝑘1
, . . . ,

𝑑𝜃𝑘𝑛

𝑑𝜂𝑘𝑛

)︃⊤

, for 𝑘 = 1, 2, 3, 4.
We define the iterative weights 𝑤𝑤𝑤𝑘 as

𝑤𝑤𝑤𝑘 = −𝑓𝑓𝑓𝑘 ∘
(︃

𝑑𝜃𝜃𝜃𝑘

𝑑𝜂𝜂𝜂𝑘

)︃
∘
(︃

𝑑𝜃𝜃𝜃𝑘

𝑑𝜂𝜂𝜂𝑘

)︃

where the method to compute 𝑓𝑓𝑓𝑘 depends on the information available for the specific dis-
tribution. If the expectation 𝑓𝑓𝑓𝑘 = E

(︃
𝜕2𝑙

𝜕𝜃2
𝑘

)︃
exists, we using a Fisher’s scoring algorithm, if

𝑓𝑓𝑓 = 𝜕𝑙

𝜕𝜃𝜃𝜃2
𝑘

we using the usual Newton-Raphson algorithm, if 𝑓𝑓𝑓𝑘 = −
(︃

𝜕𝑙

𝜕𝜃𝜃𝜃𝑘

)︃
∘
(︃

𝜕𝑙

𝜕𝜃𝜃𝜃𝑘

)︃
, where

𝜕2𝑙

𝜕𝜃2
𝑘

=
(︃

𝜕2𝑙1
𝜕𝜃2

𝑘1
, . . . ,

𝜕2𝑙𝑛
𝜕𝜃2

𝑘𝑛

)︃⊤

, we using a quasi-newton scoring algorithm. This procedure for
the GLMs is the IRLS algorithm, described in the algorithm 1.

The modified backfitting is a version of the Gauss-Seidel algorithm (HASTIE; TIBSHIRANI,
1990) responsible for the estimation of the beta and gamma parameters. The backfitting
algorithm need a least squares algorithm and a penalized weighted least squares algorithm.
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We desire to fit linear explanatory variables and smoothers to 𝑧𝑧𝑧𝑘 with working weights 𝑤𝑤𝑤𝑘 using
backfitting and the inner iteration for updating the estimate of distribution parameter 𝜃𝜃𝜃𝑘. For
given iterative weights 𝑤𝑤𝑤𝑘, working response variable 𝑧𝑧𝑧𝑘 and previosly inialized or estimated
values for the coefficients of the two smoothers 𝛾𝑘1 and 𝛾𝑘2, calculate the partial residuals 𝜖𝜖𝜖

for the beta parameters 𝛽𝛽𝛽𝑘 (equivalently offsetting for 𝛾𝑘1 and 𝛾𝑘2) and fit a weighted least
squares algorithm to the residuals to obtain the partial residual with respect to the second
smoother and use the penalized least squares algorithm to obtain a new estimate of 𝛾𝑘1. Then
obtain the partial residual with respect to the second smoother and use the penalized least
squares to obtain a new estimate of 𝛾𝑘2. Then, repeat the process until the 𝛽𝑘, 𝛾𝑘1 and 𝛾𝑘2

reach convergence.
On the other hand, the CG algorithm, is a generalisation of the algorithm introduced by

(COLE; GREEN, 1992). The RS algorithm does not use cross derivatives of the log-likelihood
and the CG algorithm requires first and second cross derivatives of the log-likelihood function
with respect to the distribution parameters 𝜇𝜇𝜇, 𝜎𝜎𝜎, 𝜈𝜈𝜈 and 𝜏𝜏𝜏 . The CG algorithm maximizes the
penalized log-likelihood (1.16) with respect to the betas and gammas for fixed 𝜆𝜆𝜆.

In the outer iteration of the CG algorithm, the working variable and the iterative weights
for the parameter vectors 𝜇𝜇𝜇, 𝜎𝜎𝜎, 𝜈𝜈𝜈 and 𝜏𝜏𝜏 are updated by:

𝑧𝑧𝑧 = 𝜂𝜂𝜂 + 𝑤𝑤𝑤−1
𝑘𝑘 ∘ 𝑢𝑢𝑢𝑘

equivalent to 𝑧𝑧𝑧𝑘 defined in equation (1.17), for 𝑘 = 1, 2, 3, 4 and the 𝑤𝑤𝑤𝑘𝑠 vectors contain the
elements of the iterative weights, for 𝑘 = 1, 2, 3, 4, 𝑠 = 1, 2, 3, 4 and 𝑠 ≤ 𝑘 defined by

𝑤𝑤𝑤𝑘𝑠 = 𝑓𝑓𝑓𝑘𝑠 ∘
(︃

𝜕𝜃𝜃𝜃𝑘

𝜕𝜂𝜂𝜂𝑘

)︃
∘
(︃

𝜕𝜃𝜃𝜃𝑘

𝜕𝜂𝜂𝜂𝑘

)︃

where 𝑓𝑓𝑓𝑘𝑠 is computed depending on the information available for the specific distribution. If
the expectation 𝑓𝑓𝑓𝑘𝑠 = E

(︃
𝜕2𝑙

𝜕𝜃𝜃𝜃𝑘𝜕𝜃𝜃𝜃𝑠

)︃
exists we use a Fisher’s scoring algorithm, if 𝑓𝑓𝑓𝑘𝑠 = 𝜕2𝑙

𝜕𝜃𝜃𝜃
we

use a Newton-Raphson scoring algorithm, if 𝑓𝑓𝑓𝑘𝑠 = −
(︃

𝜕𝑙

𝜕𝜃𝜃𝜃𝑘

)︃
∘
(︃

𝜕𝑙

𝜕𝜃𝜃𝜃𝑠

)︃
we use a quasi Newton

scoring algorithm. Where 𝜕2𝑙

𝜕𝜃2
𝑘𝜃2
𝑘𝜃2
𝑘

=
(︃

𝜕2𝑙1
𝜕𝜃𝜃𝜃2

𝑘1
, . . . ,

𝜕2𝑙1
𝜕𝜃𝜃𝜃2

𝑘1

)︃⊤

.
Thereby, in the inner iteration takes the current working variable 𝑧𝑧𝑧𝑘, current weights 𝑤𝑤𝑤𝑘𝑠,

and current predictors denoted by 𝜂𝜂𝜂∘
𝑙 for 𝑘 = 1, 2, 3, 4 and 𝑠 = 1, 2, 3, 4 are fixed. Next, for

𝑘 = 1, 2, 3, 4, updates the new adjusted working variable as 𝑧𝑧𝑧⊤
𝑘 = 𝑧𝑧𝑧𝑘 + 𝑧𝑧𝑧𝑎

𝑘, where 𝑧𝑧𝑧𝑎
𝑘 is a

combination of the ‘cross derivatives’ multiplied by the difference in the relevant predictors,
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defined for the four parameters as:

𝜇 : 𝑧𝑧𝑧𝑎
1 = −𝑤𝑤𝑤−1

11 ∘ [𝑤𝑤𝑤12 ∘ (𝜂𝜂𝜂2 − 𝜂𝜂𝜂∘
2) + 𝑤𝑤𝑤13 ∘ (𝜂𝜂𝜂3 − 𝜂𝜂𝜂∘

3) + 𝑤𝑤𝑤14 ∘ (𝜂𝜂𝜂4 − 𝜂𝜂𝜂∘
4)]

𝜎 : 𝑧𝑧𝑧𝑎
2 = −𝑤𝑤𝑤−1

22 ∘ [𝑤𝑤𝑤12 ∘ (𝜂𝜂𝜂1 − 𝜂𝜂𝜂∘
1) + 𝑤𝑤𝑤23 ∘ (𝜂𝜂𝜂3 − 𝜂𝜂𝜂∘

3) + 𝑤𝑤𝑤24 ∘ (𝜂𝜂𝜂4 − 𝜂𝜂𝜂∘
4)]

𝜈 : 𝑧𝑧𝑧𝑎
3 = −𝑤𝑤𝑤−1

33 ∘ [𝑤𝑤𝑤13 ∘ (𝜂𝜂𝜂1 − 𝜂𝜂𝜂∘
1) + 𝑤𝑤𝑤23 ∘ (𝜂𝜂𝜂2 − 𝜂𝜂𝜂∘

2) + 𝑤𝑤𝑤34 ∘ (𝜂𝜂𝜂4 − 𝜂𝜂𝜂∘
4)]

𝜏 : 𝑧𝑧𝑧𝑎
4 = −𝑤𝑤𝑤−1

44 ∘ [𝑤𝑤𝑤14 ∘ (𝜂𝜂𝜂1 − 𝜂𝜂𝜂∘
1) + 𝑤𝑤𝑤23 ∘ (𝜂𝜂𝜂2 − 𝜂𝜂𝜂∘

2) + 𝑤𝑤𝑤34 ∘ (𝜂𝜂𝜂3 − 𝜂𝜂𝜂∘
3)].

Then, repeat using the modified backfitting algorithm until the convergence of the inner
global deviance. The algorithm returns to the outer iteration which recalculates the quantities
𝑧𝑧𝑧𝑘,𝑤𝑤𝑤𝑘𝑠 and 𝜂𝜂𝜂∘

𝑘, for 𝑘 = 1, 2, 3, 4 and 𝑠 = 1, 2, 3, 4 and starts the inner iteration again.
Additionally, for estimating the hyperparameters 𝜆𝜆𝜆 there are tree main approach’s: Likelihood-

methods (RIGBY; STASINOPOULOS, 2005), Generalized Akaike information criteria (RIGBY;

STASINOPOULOS, 2004) and Generalized cross validation (WOOD, 2017).

1.7 UNIVARIATE PENALIZED SMOOTHERS

Consider a usual regression problem where we have 𝑛 observations of a random, variable
𝑌 , for a single explanatory variable with real values. In this particular case nonparametric
regression methods are also called scatterplot smoothers. Therefore, the goal is estimating a
function 𝑓 such as:

E(𝑌𝑌𝑌 |𝑥𝑥𝑥) = 𝑓(𝑥𝑥𝑥) (1.18)

To estimate 𝑓 , using the usual methods as the IRLS algorithm, 𝑓 must be represented in
such a way that 1.18 becomes a linear model. For this purpose, we choose a linear basis function
to represent 𝑓 . If 𝑏𝑗(𝑥) is the 𝑗th basis function, then 𝑓 is assumed to have a representation

𝑓(𝑥) =
𝑘∑︁

𝑗=1
𝑏𝑗(𝑥)𝛽𝑗.

The linear smoother, such the fitted values 𝑦𝑦𝑦 = (𝑦1, . . . , 𝑦𝑛)⊤ can be written in the form
𝑦𝑦𝑦 = 𝑆𝑦𝑆𝑦𝑆𝑦. The 𝑆𝑆𝑆 matrix, is called smoother matrix and (BUJA; HASTIE; TIBSHIRANI, 1989)
defines a 𝑆𝑆𝑆 matrix, called smoothing matrix. (STASINOPOULOS et al., 2017) underscored the
importance of penalized smoothers in the GAMLSS family of smoothers because of their
flexibility and the fact they can be applied in a variety of different situations.

Let 𝑍𝑍𝑍 be an 𝑛× 𝑝 basis matrix, which is defined in (2.5), 𝛾 a 𝑝× 1 vector of parameters,
𝑊𝑊𝑊 an 𝑛× 𝑛 diagonal matrix of weights, 𝐺𝐺𝐺 a 𝑝× 𝑝 penalty matrix, 𝜆 a smoothing parameter
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and 𝑦 the variable of interest. Penalized smoothers are the solution to minimizing the quantity
𝑄 with respect to 𝛾, more details are provided in (EILERS; MARX, 1996):

𝑄 = (𝑦𝑦𝑦 −𝑍𝛾𝑍𝛾𝑍𝛾)⊤𝑊𝑊𝑊 (𝑦𝑦𝑦 −𝑍𝛾𝑍𝛾𝑍𝛾) + 𝜆𝛾𝛾𝛾⊤𝐺𝐺𝐺𝛾𝛾𝛾. (1.19)

The solution to the equation 1.19 is given by:

𝛾𝛾𝛾 = (𝑍𝑍𝑍⊤𝑊𝑊𝑊𝑍𝑍𝑍 + 𝜆𝐺𝐺𝐺)−1𝑍𝑍𝑍⊤𝑊𝑊𝑊𝑦𝑦𝑦,

moreover, the fitted values for 𝑦 are given in (STASINOPOULOS et al., 2017), by:

𝑦𝑦𝑦 = 𝑍𝑍𝑍(𝑍𝑍𝑍⊤𝑊𝑍𝑊𝑍𝑊𝑍 + 𝜆𝐺𝐺𝐺)−1𝑍𝑍𝑍⊤𝑊𝑦𝑊𝑦𝑊𝑦 = 𝑆𝑦𝑆𝑦𝑆𝑦. (1.20)

So, the smoothing matrix plays a similar role to the hat matrix 𝐻𝐻𝐻 in least squares estimation.
The penalty matrix 𝐺𝐺𝐺 is defined as 𝐺𝐺𝐺 = 𝐷𝐷𝐷⊤

𝑘 𝐷𝐷𝐷𝑘, where the matrix 𝐷𝐷𝐷𝑘 is a (𝑝−𝑘)×𝑝 difference
matrix of order 𝑘. For example 𝐷𝐷𝐷1 and 𝐷𝐷𝐷2 matrices of order 1 and 2, respectively, look like:

𝐷𝐷𝐷1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 0 · · · 0

0 −1 1 · · · 0

· · · · · · · · · · · · · · ·

0 0 · · · −1 · · ·

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝐷𝐷𝐷2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0

· · · · · · · · · · · · · · · · · ·

0 0 · · · 1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Usually, the matrix 𝐷𝐷𝐷2 is used to compute the 𝐺𝐺𝐺 matrix used to estimate the smoothing

matrix.
In the chapter 4 of (WOOD, 2017) the reader can find a detailed description of univariate

smoothers, in particular how to represent the piecewise linear basis. Also, the chapter 8 and
9 of (STASINOPOULOS et al., 2017) provides a description for B-basis and linear additive terms
for the GAMLSS context.
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2 GLOBAL INFLUENCE FOR THE MODELS WITH LOCATION PARAMETER

It is important to ensure for the regression model that assumptions are not violated, oth-
erwise the model may have undesirable characteristics like: bad predictions, misinterpretation
of the fitted data behaviour, incoherent inferences, etc. Furthermore, occasionally, only a few
observations can affect significantly the model and consequently the inferences as a whole.
Firstly, (COOK, 1977) and (COOK, 1979) introduced the influence analysis for linear regression
models. Basically, an observation is flagged as influential if after removing it from the data
set, affects significantly the parameters of the fitted model.

Influential observations may occur for for a variety of reasons, including a typo, a system
error, a measure error, experimental error, even just by causality or some other unknown cause
on the experiment.

Several studies has been extended methods and measures to detect influential observations
to other statistical models. (PREGIBON et al., 1981) has presented in diagnostics for the logistic
regression model. (KIM; STORER, 1996) suggested a way to compute reference values for
Cook’s distance in the linear model via Monte Carlo simulation. (KIM; PARK; KIM, 2002) are
provided some influence diagnostics for the semiparametric regression models and a way to
compute references values for the Cook’s distance in the semiparametric regression models
using bootstrap.

Therefore, (PEÑA, 2005) proposed a new way to measure the influence, the Peña’s measure
is defined as the squared norm of the vector of changes of the forecast of one observation
when each of the sample points are deleted one by one. More recently, (TÜRKAN; TOKTAMIS,
2013) compared the Cook’s distance and Peña’s measure for the semiparametric regression
model using real and simulated data.

The main goal of this chapter is to study how to detect influential observations in the
GAMLSS models. For this purpose, we focused on the most well known perturbation schemes:
case-deletion (COOK; WEISBERG, 1982) using two measures: the generalised Cook’s distance
and the likelihood distance.

Moreover, we have suggested a approach using the Generalised Akaike Information Criteria
(GAIC) and also a technique to compute a reference value for each measure based on bootstrap
resamples.
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2.1 DIAGNOSTIC TOOLS BASED ON RESIDUALS

The checking of model assumptions via normality of residuals is widely used the statistical
literature for the classic regression linear model. (DUNN; SMYTH, 1996) proposed the normalised
(randomised) quantile residuals, the main advantage of use this residuals is for any distribution
of the response variables, the distribution of the residuals follow a standard normal distribution
when the adopt model is correct. For the GAMLSS given the distribution of 𝑓(𝑦|𝜃𝜃𝜃) and fit the
observations 𝑦𝑖, 𝑖 = 1, . . . , 𝑛. The normalised (randomised) quantile residuals are given by

𝑟𝑖 = Φ−1(𝑢̂𝑖),

where Φ−1(·) is the inverse cumulative distribution function (cdf) of the normal distribu-
tion. The 𝑢̂′

𝑖𝑠 are the quantile residuals have distinct definitions for continuous and discrete
responses.

If 𝑦 is an observation of a continuous random variable so, let 𝑢 = 𝐹 (𝑦|𝜃𝜃𝜃) and 𝑢̂ = 𝐹 (𝑦|𝜃𝜃𝜃)

is the model and the cdf’s respectively. If the model is correctly specified, 𝑢 have uniform
distribution between zero and one, that is, 𝑢 ∼ 𝑈(0, 1). This is called probability integral
transform. The 𝑢 is transformed in the true residual 𝑟(z-score) for 𝑟 = Φ−1(𝑢) which have
normal distribution if the model is correct. In a similar way, 𝑢̂ is transformed in the adjusted
residual 𝑟 by 𝑟 = Φ(𝑢̂) = Φ−1[𝐹 (𝑦|𝜃)], and 𝑟 have a approximate standard normal distribution.

If 𝑦 is an observation of a discrete random variable, so 𝐹 (𝑦|𝜃𝜃𝜃) is a step function with
jumps at the integers. The distribution of 𝑢 = 𝐹 (𝑦|𝜃𝜃𝜃) has range zero to one, but is discrete
with positive probability at the points 𝐹 (𝑦|𝜃𝜃𝜃). To deal with the discrete response variable,
𝑢 is defined with a random value of a uniform distribution in the interval [𝑢1, 𝑢2] = [𝐹 (𝑦 −

1|𝜃𝜃𝜃), 𝐹 (𝑦|𝜃𝜃𝜃)] and similarly 𝑢̂ is a random variable of a uniform distribution in [𝑢̂1, 𝑢̂2] =

[𝐹 (𝑦 − 1|𝜃), 𝐹 (𝑦|𝜃)].
Using the fitted cdf, 𝑦 is transformed for 𝑢̂, randomly select of (𝑢̂1, 𝑢̂2), so the trans-

formed residual for the adjusted residual 𝑟 = Φ−1(𝑢̂)) and 𝑟 has approximate standard normal
distribution.

The normalised residuals are useful to obtain important plots in the GAMLSS as:

• Residuals against the fitted values of the 𝜇 parameter;

• residuals against the index;

• kernel density estimate of the residuals;
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• Quantile-Quantile pĺot of the residuals;

• worm plots.

The worm plots are introduced by (BUUREN; FREDRIKS, 2001), and are used in the GAMLSS
to identify possible model violations. The Figure 1, taken from (STASINOPOULOS et al., 2017),
illustrate the possible failures in the model which can be identify by the worm plot, including
the failures associated to the fit in the location, scale, skewness and kurtosis.

Originally, the worm plots are used as a diagnostic device for modelling growth reference
curves, for the GAMLSS the normalised quantile residuals are used for generate the worm
plots. Also, for the mean, if the worm passes above the origin, the fitted mean is too small and
if the worm passes below the origin, the fitted mean is too large. For the variance, if the worm
has a positive slope the fitted variance is too small and if the worm has a negative slope the
fitted variance is too large. For the skewness, if the worm has a U-shape the fitted distribution
is too skew to the left, and if the worm has an inverse U-shape the fitted distribution is too
skew to the rigth. Finally for the kurtosis, if the worm has an S-shape on the left bent down
the tails of the fitted distribution are too light and if if the worm has an S-shape on the left
bent up the tails of the fitted distribution are too heavy.
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Figure 1 – Worm plots indicating different types of model failures.

Source: (STASINOPOULOS et al., 2017).

2.2 LEAVE-ONE-OUT MEASURES BASED

A possible approach to perform a measure of global influence for the GAMLSS model (1.7)
is dropping the 𝑖-th observation on the data set, and study the effect of this in the model.
This methodology is known as case-deletion or leave-one-out. Initially, in particular we are
interested to study the impact of the 𝑖-th observation on the estimates of 𝜇, 𝜎, 𝜈 and 𝜏 ,
respectively.

There are some measures to reveal the impact of the 𝑖th observation on the estimates.
Moreover, let 𝜃𝜃𝜃 be the maximum likelihood estimator of 𝜃𝜃𝜃, we have special desire to study the
difference between 𝜃𝜃𝜃 and 𝜃𝜃𝜃(𝑖), where 𝜃𝜃𝜃(𝑖) is the MLE of 𝜃𝜃𝜃(𝑖) removing the 𝑖th observation. The
basic idea behind this approach is to compare 𝜃𝜃𝜃 and 𝜃𝜃𝜃(𝑖) and verify if this make a seriously



33

changing in the model, in other words if the inference is considerable affected by removing this
particular case. In this work we focus on this methodology to detect influential observations.
The R source code for generate the index plots and all measures of this work is available in
<https://rpubs.com/LucasSilva/743391>.

2.2.1 Likelihood Distance

The basic idea of the likelihood distance (COOK, 1977), (COOK; WEISBERG, 1982), (COOK,
1986), is assess the influence of the 𝑖-th observation on the maximum likelihood distance, so
we have to compare the difference between 𝜃𝜃𝜃(𝑖) and 𝜃𝜃𝜃. defined by:

𝐿𝐷𝑖(𝜃𝜃𝜃) = 2[𝑙(𝜃𝜃𝜃)− 𝑙(𝜃𝜃𝜃(𝑖))].

for the GAMLSS models 𝑙(·) are computed as the pseudo-likelihood, note then 𝐿𝐷𝑖(𝜃𝜃𝜃) can be
assume negative values. Similarly, we can assess the specifics measures in each parameter for
the model by 𝐿𝐷𝑖(𝜇𝜇𝜇), 𝐿𝐷𝑖(𝜎𝜎𝜎), 𝐿𝐷𝑖(𝜈𝜈𝜈), and 𝐿𝐷𝑖(𝜏𝜏𝜏). In this work we focus in situations tha
modelling the parameter 𝜇, so we focus in computing 𝐿𝐷𝑖(𝜇𝜇𝜇), the measures 𝐿𝐷𝑖(𝜎𝜎𝜎), 𝐿𝐷𝑖(𝜈𝜈𝜈),
and 𝐿𝐷𝑖(𝜏𝜏𝜏) may be not comparable with the others measures used like Peña’s measure or
Kim’s measure.

The 𝐿𝐷𝑖 can take positive or negative values, the interpretation of is that positive values
indicate poorer fit associated with removing case 𝑖 as the log-likelihood of the full sample
solution decreased, also negative values indicate that removing case 𝑖 to improve the model
fit compared with the original sample, more details about the likelihood distance can be find
in (PEK; MACCALLUM, 2011).

2.2.2 Generalised Cook’s Distance

For the classic linear model 1.2 is well established the Cook’s distance, which provides the
measure between 𝛽𝛽𝛽(𝑖) and 𝛽𝛽𝛽, defined by (COOK, 1977), (COOK, 1986):

𝐷𝑖 =
(𝛽𝛽𝛽(𝑖) − 𝛽𝛽𝛽)⊤𝑋𝑋𝑋⊤𝑋𝑋𝑋(𝛽𝛽𝛽(𝑖) − 𝛽𝛽𝛽)

𝑝𝑠2 , for 𝑖 = 1, . . . , 𝑛.

where 𝛽𝛽𝛽(𝑖) is the fitted coefficients when the observation 𝑖 is deleted.

https://rpubs.com/LucasSilva/743391
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For the GAMLSS another alternative is using, the standardised norm of 𝜃𝜃𝜃(𝑖) − 𝜃𝜃𝜃, this
measure is known as the generalised Cook distance (RAMIRES et al., 2018), defined by

CD𝑖(𝜃𝜃𝜃) = (𝜃𝜃𝜃(𝑖) − 𝜃𝜃𝜃)⊤[−𝐼𝐼𝐼(𝜃𝜃𝜃)](𝜃𝜃𝜃(𝑖) − 𝜃𝜃𝜃), (2.1)

where, 𝐼𝐼𝐼(𝜃𝜃𝜃) is the observed information matrix, defined in (2.2)
For the parametric GAMLSS model (1.10), the asymptotic distribution of 𝜃𝜃𝜃𝑇 is

𝜃𝜃𝜃 ∼ 𝑁(𝜃𝜃𝜃𝑇 , 𝑖𝑖𝑖(𝜃𝜃𝜃)−1),

where 𝜃𝜃𝜃 is the maximum likelihood estimator of 𝜃𝜃𝜃 and 𝜃𝜃𝜃𝑇 is the assumed true vale. The Fisher
expected information matrix evaluated at 𝜃𝜃𝜃𝑇 given by

𝑖𝑖𝑖(𝜃𝜃𝜃𝑇 ) = E

⎡⎣𝜕2𝑙(𝜃𝜃𝜃)
𝜕𝜃𝜃𝜃𝜕𝜃𝜃𝜃

⊤
⎤⎦

𝜃𝜃𝜃𝑇

,

in some situations it is not possible to compute the expected information 𝑖𝑖𝑖(𝜃𝜃𝜃𝑇 ) analytically
and therefore given by (2.2) is used

𝐼(𝜃𝜃𝜃𝑇 ) = −
[︃

𝜕2𝑙(𝜃𝜃𝜃)
𝜕𝜃𝜃𝜃𝜕𝜃𝜃𝜃

]︃
𝜃𝜃𝜃𝑇

, (2.2)

in others words, 𝐼(𝜃𝜃𝜃) is equal to the negative of the Hessian matrix of the log-likelihood
function at 𝜃𝜃𝜃. In general, for the parametric GAMLSS models the asymptotic distribution of 𝜃𝜃𝜃

is given by
𝜃𝜃𝜃 ∼ 𝑁(𝜃𝜃𝜃𝑇 , 𝐼𝐼𝐼(𝜃𝜃𝜃)−1).

If the model is a semiparametric GAMLSS model, the pseudo-likelihood is used instead and
the Hessian matrix is numerically computed. Moreover, if the model specification is incorrect
then, under regularity conditions, the asymptotic distribution of 𝜃𝜃𝜃 may be approximated by

𝜃𝜃𝜃 ∼ 𝑁(𝜃𝜃𝜃𝑐, 𝐼𝐼𝐼(𝜃𝜃𝜃)−1𝐾(𝜃𝜃𝜃)𝐼𝐼𝐼(𝜃𝜃𝜃)−1),

where 𝜃𝜃𝜃𝑐 is the closest value of 𝜃𝜃𝜃 to the true model measured by a weighted Kullback-Leibler
distance, and 𝐾(𝜃𝜃𝜃) is an estimate of the variance-covariance matrix of the fist derivative of
log-likelihood function with respect to the parameters. If the model is incorrect then 𝜃𝜃𝜃 is not
a consistent estimator of 𝜃𝜃𝜃𝑇 .

In a similar way, it’s possible to calculate the value CD𝑖(𝜇𝜇𝜇), CD𝑖(𝜎𝜎𝜎), CD𝑖(𝜈𝜈𝜈) and CD𝑖(𝜏𝜏𝜏).
In this work we focus in situations that modelling the parameter 𝜇, so we focus in computing
CD𝑖(𝜇𝜇𝜇). The measures CD𝑖(𝜎𝜎𝜎) and CD𝑖(𝜈𝜈𝜈), CD𝑖(𝜏𝜏𝜏) may be not comparable with the others
measures used like Peña’s measure or Kim’s measure.
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2.2.3 Leave-One-Out GAIC

The basic idea behind the Akaike Information Criteria (AIC), introduced by (AKAIKE, 1974),
is select a model with a reduced number of parameters, that is a more parsimonious model.
The AIC for the usual linear regression model is defined by

AIC = −𝐿(𝛽) + 𝑝 = 𝑛log
(︃

𝐷(𝑦|𝜇̂)
𝑛

)︃
+ 2𝑝,

where 𝐷(𝑦|𝜇̂) = ∑︀𝑛
𝑖=1(𝑦𝑖 − 𝜇̂𝑖)2.

An alternative, for the usual linear regression model, as well, is the Schwarz Bayesian
Criteria (BIC) introduced by (SCHWARZ et al., 1978), which is defined by

BIC = 𝑝 log(𝑛)− 2log(𝐿̂).

where, 𝐿̂ is the maximised value of the likelihood function of the model.
A extension for the GAMLSS is the Generalised AIC (GAIC), is given by

GAIC(𝜅) = −2𝑙(𝛽, 𝛾) + 𝜅 · df,

where 𝜅 is a constant of penalty and df is the effective degrees of freedom. The GAIC(𝜅) is
maximised globally over 𝜆. The AIC can be obtained from the GAIC with 𝜅 = 2 and the SBC
with 𝜅 = log 𝑛.

In this work we compare the difference between a GAIC of the model fitted with the full
sample (GAIC(𝜅)) and the model fitted dropping the 𝑖-th observation (GAIC(𝑖)(𝜅)). Thus, we
call this method Leave-One-Out GAIC, with is defined as

GAIC(𝑖) = GAIC(𝜅)− GAIC(𝑖)(𝜅). (2.3)

Similarly to the likelihood distance the values in the equation (2.3) can be negative values. In
the section 2.3 we provide the method for compute the reference values for the Leave-One-Out
GAIC.

2.2.4 Kim’s Measures for Semiparametric Models

Consider a semiparametric regression model, which is a GAMLSS submodel like (1.7), but
with a single univariate additive term 𝑠1(·), and modelling the 𝜇𝜇𝜇, with any response distribution.
Hence, consider the model

𝑌𝑌𝑌
𝑖𝑛𝑑∼ 𝐷(𝜇𝜇𝜇,𝜎𝜎𝜎,𝜈𝜈𝜈, 𝜏𝜏𝜏),
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𝜂𝜂𝜂1 = 𝑔1(𝜇𝜇𝜇) = 𝑋𝑋𝑋1𝛽𝛽𝛽1 + 𝑠(𝑡𝑡𝑡). (2.4)

Following the approach of (KIM; PARK; KIM, 2002), we consider a measure for three compo-
nents in this GAMLSS submodel, the fitted 𝛽𝛽𝛽’s, the fitted 𝑠’s that is to say, the influence
corresponding to the smoothing additive terms, and the mean response.

In this work we focus in a important class of smothers, so we use P-Splines as smoother
for the model (2.4). The P-Splines are based in penalised B-Splines, where each basis function
is only non-zero over the intervals between 𝑚 + 3 adjacent knots, where 𝑚 + 1 is the order of
the basis (hence, 𝑚 = 2 is used for the cubic splines). We use 𝑘 + 𝑚 + 2 knots for the basis,
where 𝑥1 < 𝑥2 < . . . < 𝑥𝑘+𝑚+2, by default in the GAMLSS models we use 𝑚 = 2 and 𝑘 = 10

if 𝑛 < 99 and 𝑘 = 20 if 𝑛 ≥ 100. An (𝑚 + 1)th order spline can be represented as

𝑓(𝑥) =
𝑘∑︁

𝑖=1
𝑍𝑚

𝑖 (𝑥)𝛽𝑖

where the B-spline function are defined recursively as:

𝑍𝑚
𝑖 (𝑥) = 𝑥− 𝑥𝑖

𝑥𝑖+𝑚+1 − 𝑥𝑖

𝑍𝑚−1
𝑖 (𝑥) + 𝑥𝑖+𝑚+2 − 𝑥

𝑥𝑖+𝑚+2 − 𝑥𝑖+1
𝑍𝑚−1

𝑖+1 (𝑥), 𝑖 = 1, . . . , 𝑘. (2.5)

and

𝑍−1
𝑖 =

⎧⎪⎪⎨⎪⎪⎩
1 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

0 otherwise

More details about the linear basis for the P-Splines can be find in (WOOD, 2017).
Let 𝑆𝑆𝑆 be the linear smoother matrix, (BUJA; HASTIE; TIBSHIRANI, 1989), shows that 𝑆𝑆𝑆

depends on covariates as well the particular smoother, but not on 𝑦𝑦𝑦. And given a linear
smoothing algorithm, we can compute the corresponding smoother matrix 𝑆𝑆𝑆.

Let 𝑋𝑋𝑋 be the design matrix with 𝑥𝑥𝑥⊤
𝑖 as its 𝑖th row, and 𝑦𝑦𝑦 be a response vector. Now, we

consider the follow hat matrix 𝐻̃𝐻𝐻 = (𝐼𝐼𝐼 −𝑆𝑆𝑆)−1𝑋̃𝑋𝑋(𝑋̃𝑋𝑋⊤
𝑋̃𝑋𝑋)−1𝑋̃𝑋𝑋

⊤(𝐼𝐼𝐼 −𝑆𝑆𝑆). Then, we can write

𝑋𝑋𝑋𝛽𝛽𝛽 = 𝐻̃𝐻𝐻𝑦𝑦𝑦 and 𝑚̂𝑚𝑚(𝑡𝑡𝑡) = 𝑆𝑆𝑆(𝐼𝐼𝐼 − 𝐻̃𝐻𝐻)𝑦𝑦𝑦,

respectively. Also, the vector of fitted responses equals 𝑦𝑦𝑦 = 𝐻𝑦𝐻𝑦𝐻𝑦 where

𝐻𝐻𝐻 = 𝑆𝑆𝑆 + (𝐼𝐼𝐼 −𝑆𝑆𝑆)𝐻̃𝐻𝐻, (2.6)

is the hat matrix. The residual vector is then given by

𝑒𝑒𝑒 = 𝑦𝑦𝑦 − 𝑦𝑦𝑦 = (𝐼𝐼𝐼 − 𝐻̃𝐻𝐻)(𝐼𝐼𝐼 −𝑆𝑆𝑆)𝑦𝑦𝑦.
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Note that 𝐻𝐻𝐻 = 𝐻̃𝐻𝐻 + 𝐻𝐻𝐻*, where 𝐻𝐻𝐻* = 𝑆𝑆𝑆(𝐼𝐼𝐼 − 𝐻̃̃𝐻̃𝐻), which will be used in defining and
interpreting Cook’s distances for measuring the influence over the mentioned components of
the GAMLSS model.

An influence measure for the 𝑖th observation on 𝛽𝛽𝛽 may be defined as a type of Cook’s
distance by:

𝐶𝑖 =
(𝛽𝛽𝛽 − 𝛽𝛽𝛽(𝑖))⊤𝑋̃𝑋𝑋

⊤
𝑋̃𝑋𝑋(𝛽𝛽𝛽 − 𝛽𝛽𝛽(𝑖))

𝜎2tr(𝐻̃𝐻𝐻)
.

We can express it as a function of the 𝑖th residual and leverage, i.e.,

𝐶𝑖 = 1
𝑝𝜎2

𝑒2
𝑖 ℎ̃𝑖𝑖

(1− ℎ̃𝑖𝑖)2
, (2.7)

where 𝑒𝑖 is the component of residual vector 𝑒𝑒𝑒 = (𝐼𝐼𝐼 − 𝐻̃𝐻𝐻)𝑦𝑦𝑦 and ℎ̃𝑖𝑖 is the 𝑖th diagonal
component of 𝐻̃𝐻𝐻. Here we take the P-splines smoother and define the corresponding cook’s
distance for 𝑠𝑠𝑠 suggested by (KIM; PARK; KIM, 2002). We may define a type of Cook’s distance
for the 𝑖th observation by

𝐶*
𝑖 = {𝑚̂(𝑡𝑖)− 𝑚̂(𝑖)(𝑡𝑖)}2

𝜎2tr(𝐻𝐻𝐻*) ,

where ℎ*
𝑖𝑖 is the 𝑖th diagonal element of 𝐻𝐻𝐻* and 𝑒*

𝑖 is the 𝑖th component of residual vector
𝑒𝑒𝑒* = (𝐼𝐼𝐼 −𝐻𝐻𝐻*)𝑦𝑦𝑦.

Following the work of (KIM; PARK; KIM, 2002), we may express it as

𝐶*
𝑖 = (ℎ*

𝑖𝑖𝑒
*
𝑖 )2

(1− ℎ*
𝑖𝑖)2𝜎2tr(𝐻𝐻𝐻*) . (2.8)

An influence measure for the 𝑖th observation on the vector of fitted values can be similarly
defined by

𝐶𝑖 =
(𝑦𝑦𝑦 − 𝑦𝑦𝑦(𝑖))⊤(𝑦𝑦𝑦 − 𝑦𝑦𝑦(𝑖))

𝜎2tr(𝐻𝐻𝐻) ,

where 𝐻𝐻𝐻 = 𝑆𝑆𝑆 + (𝐼𝐼𝐼 − 𝑆𝑆𝑆)𝐻̃𝐻𝐻, as is given in (2.6). Also, we can express it as a function of the
corresponding residual and leverage. Let ℎ𝑖𝑖 be the 𝑖th diagonal element of 𝐻𝐻𝐻 and 𝑒𝑖 be the
𝑖th component of 𝑒𝑒𝑒 = (𝐼𝐼𝐼 −𝐻𝐻𝐻)𝑦𝑦𝑦. Then

𝐶𝑖 = 1
𝜎2tr(𝐻𝐻𝐻)

𝑒2
𝑖 ℎ𝑖𝑖

(1− ℎ𝑖𝑖)2 . (2.9)

Note that this has the same form as the original Cook’s distance in the classical linear
model.

This particular in approach has the advantage of provide the influence of an observation
on 𝛽𝛽𝛽, 𝑠𝑠𝑠 and 𝑦𝑦𝑦 separately by (2.7), (2.8), (2.9) respectively. This can be handy for know how
to raise the model to improve the fit, in other words, identify what component in the model
can be change.
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2.2.5 Peña’s Measure

In some situations outliers can be undetected by Cook’s distance in linear models, but can
be detected by the Peña’s measure. This fact has been demonstrated and in (PEÑA, 2005)
when the Peña’s measure was proposed.

The Peña’s measure is defined as the squared norm of the vector of changes of the forecast
of one observation when each of the sample points are deleted one by one. This measure is
very effective in detection of high leverage outliers, that can be not deteced by the Cook’s
distance in large datasets.

Consider the model (1.1), let us denote 𝛽𝛽𝛽(𝑖) as the vector of coefficients when the 𝑖-th
case are deleted, and 𝑦𝑦𝑦(𝑖) = 𝑋𝑋𝑋𝛽𝛽𝛽(𝑖) be the corresponding vector of forecast. Essentially, this
approach measure how each observation is being influenced by the rest of the data. For that
purpose, this can be done computing the follows vectors:

𝑠𝑠𝑠𝑖 = (𝑦𝑖 − 𝑦𝑖(1), . . . , 𝑦𝑖 − 𝑦𝑖(𝑛))⊤,

that is to say, we see at how sensitive the forecast of the 𝑖-th observation is to the deletion of
each observation in the sample.

Finally, the Peña’s measure for the 𝑖-th observation, 𝑆𝑖, as the squared norm of the stan-
dardized vector 𝑠𝑠𝑠𝑖, that is,

𝑃𝑖 = 𝑠𝑠𝑠⊤
𝑖 𝑠𝑠𝑠𝑖

𝑝v̂ar(𝑦𝑖)
, (2.10)

where v̂ar(𝑦) = 𝑠2ℎ𝑖𝑖, and ℎ𝑖𝑖 is the 𝑖-th diagonal element of the hat matrix and 𝑠2 = 𝑒𝑒𝑒⊤𝑒𝑒𝑒

𝑛− 𝑝
.

One computational advantage is its more ease to obtain reference values, (PEÑA, 2005)
suggested a criteria to determine if the observation are influential (in other words, if 𝑃𝑖

are large enough), if 𝑃𝑖 exceeds the median value of 𝑃𝑖 + 4.5MAD(𝑃𝑖), where MAD(𝑃𝑖) =

median
{︃
|𝑃𝑖 −median(𝑃𝑖)|

0.6745

}︃
.

The equation (2.10), we consider the original measure for linear models, but when addi-
tive terms are included, the computation of hat matrix changes. Let consider the GAMLSS
submodel (1.5), using a single smother additive term 𝑠, that is:

𝜂𝜂𝜂 = 𝑔(𝜇𝜇𝜇) = 𝑋𝛽𝑋𝛽𝑋𝛽 + 𝑠(𝑡𝑡𝑡),

the fitted values vector can be written as

𝑦𝑦𝑦 = 𝑋𝛽𝑋𝛽𝑋𝛽 + 𝑆𝑦𝑆𝑦𝑆𝑦,
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where 𝑆𝑆𝑆 are the smoothing matrix. For this class of models, the diagonal elements of the hat
matrix ℎ𝑖𝑖 are taken from the modified version for the semiparametric models in (2.6) proposed
by (KIM; PARK; KIM, 2002).

The adjusted Penã’s measure for the semiparametric regression are derived in (TÜRKAN;

TOKTAMIS, 2013), for this work we estimating the smoother matrix for the P-Splines (1.20)
and not for the local polynomial smoother as the original work.

2.3 REFERENCE VALUES

For the semi-parametric models (KIM; PARK; KIM, 2002) proposed a approach to calculate
reference values for Cook distance using bootstrap. For the GAMLSS we following the same
idea. But in that case, we run a non-parametric bootstrap for approximate a confidence interval
and use it as references values to detect influential cases.

The procedure is based in compute a confidence interval based on bootstrap percentiles for
a more detailed reading about this see (EFRON; TIBSHIRANI, 1994) chapter 13. This approach
consists in re-sample with replacement the observations of the original data set 𝐷𝑜, and
generate 𝐵 bootstrap samples 𝐷𝑏, 𝑏 = 1, . . . , 𝐵, with a large number of samples with same
sample size 𝑁 of the original data for each bootstrap replica.

The next step, is fit a model with the same specification for each one of this 𝐵 replicas,
and compute the likelihood distance for each case in his respective replica. Let LD*

𝑏(𝜃𝜃𝜃) be the
of the likelihood distances for a 𝑏-th fitted model.

Let 𝐺̂ be the empirical cumulative distribution function of LD*
𝑖 (𝜃𝜃𝜃), the (1− 2𝛼) percentile

interval is defined by the 𝛼 and 1− 𝛼 percentiles of 𝐺̂

[LD(𝜃𝜃𝜃)%,lower; LD(𝜃𝜃𝜃)%,upper] = [𝐺̂−1(𝛼); 𝐺̂−1(1− 𝛼)],

in this case we use 𝛼 = 0.05 as default. Since, by definition 𝐺̂−1(𝛼) = 𝐿𝐷*
𝑏 (𝜃𝜃𝜃), the 100 · 𝛼th

percentile of the bootstrap distribution, we can also write the percentile interval as

[LD(𝜃𝜃𝜃)%,lower; LD(𝜃𝜃𝜃)%,upper] = [LDLDLD*(𝛼)(𝜃𝜃𝜃)%,lower;LDLDLD*(1−𝛼)(𝜃𝜃𝜃)%,upper], (2.11)

we consider a 𝑖-th observation as influential if the value of LD𝑖(𝜃𝜃𝜃) it’s out of the interval
(2.11). The Algorithm 2, provides the detailed steps of this procedure using pseudo-code.

A similar approach was conducted to obtain reference values for generalized cook distance.
However, the expression (2.1) only provides positive values, so we compute the (1−𝛼) = 95%

percentile instead in this case.
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Algoritmo 2: Computing reference values for likelihood distance.
Input: A data set;
Output: A confidence interval [LDLDLD*(𝛼)(𝜃𝜃𝜃)%,lower;LDLDLD*(1−𝛼)(𝜃𝜃𝜃)%,upper];
Declare: LD[n] a empty vector with size 𝑛 (to the likelihood distances of the original
sample);

LD*[B] a empty vector with size 𝐵 (to the likelihood distances of the
bootstrap samples);

LD𝐹 [B] a empty vector with size 𝑛𝐵 (to all computed likelihood distance of
the boostraps samples);

(1) fit the observed data using a GAMLSS model;
(2) for i := 1 to n do ;

LD[i] ← 2[𝑙(𝜃𝜃𝜃)− 𝑙(𝜃𝜃𝜃(𝑖))];
(3) generate 𝐵 bootstrap samples (𝐵 large e.g 1000) ;
(4) fit a GAMLSS model with the same specification for each model fitted in step (3);
(5) for n = 0 to 𝐵 do;

for j = 0 to 𝑛 do;
LD*

𝑗 [𝑏]← 2[𝑙(𝜃𝜃𝜃)− 𝑙(𝜃𝜃𝜃(𝑖))];
(6) for j = 0 to 𝑛𝐵 do;

LD𝐹 [𝑗]← LD*[𝑏];
(7) Return: the 95% bootstrap percentile confidence interval of 𝐿𝐷𝐹 (𝜃𝜃𝜃):;

[LDLDLD*(𝛼)(𝜃𝜃𝜃)%,lower;LDLDLD*(1−𝛼)(𝜃𝜃𝜃)%,upper].

The idea is re-sampling the original data to generate 𝐵 bootstrap samples and fit a
GAMLSS model with the same specification for each bootstrap sample, and compute the
generalized Cook’s distance for each sample. Then finally, compute the (1 − 𝛼) bootstrap
percentile of all generalized Cook’s distance computed. The Algorithm 3 give us a guideline
for this procedure.

Similary with the Algorithm 3, to obtain the references values for the Kim’s measure
we adjust the original procedure of (KIM; PARK; KIM, 2002). In this case for each bootstrap
sample we compute 𝐶*

𝑖 , 𝐶𝑖 and 𝐶𝑖. Next, we compute the (1 − 𝛼) bootstrap percentile
for all each measure computed on the bootstraps samples (tree bootstraps generated on the
reference process, in this case we use the bootstraps percentiles, one for each measure), usually
𝛼 = 0.05. In this case we obtain tree reference values, one for each measure provided by the
Kim’s measure. The algorithm 4 provides the details of each step.

In the sections 3 and 4, we use this procedure to obtain reference values for simulated data
and the original application of (KIM; PARK; KIM, 2002).

Similarly to Likelihood distance, the reference values for the Leave-One-Out GAIC for a
given 𝜅 is described in the algorithm 5.
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Algoritmo 3: Computing reference values for generalized Cook’s distance.
Input: A data set and the GAMLSS model;
Output: R (a numeric reference value);
Declare: CD[n] (a empty vector with size 𝑛);

CD*[B] (a empty vector with size 𝐵);
CD𝐹 [B] (a empty vector with size 𝑛𝐵);

(1) fit the observed data using a GAMLSS model;
(2) for i := 0 to n do ;

CD𝑖(𝜃𝜃𝜃)← (𝜃𝜃𝜃(𝑖) − 𝜃𝜃𝜃)⊤[−𝐼𝐼𝐼(𝜃𝜃𝜃)](𝜃𝜃𝜃(𝑖) − 𝜃𝜃𝜃);
(3) generate 𝐵 bootstrap samples (𝐵 large e.g 1000) ;
(4) fit a GAMLSS model with the same specification for each model fitted in the step
(3);

(5) for b = 0 to 𝐵 do;
for j = 0 to 𝑛 do;

CD*
𝑗 [𝑏]← (𝜃𝜃𝜃

*
(𝑖) − 𝜃𝜃𝜃

*
)⊤[−𝐼𝐼𝐼(𝜃𝜃𝜃

*
)](𝜃𝜃𝜃

*
(𝑖) − 𝜃𝜃𝜃

*
);

(6) for j = 0 to 𝑛𝐵 do;
CD𝐹 [𝑗]← CD*[𝑏];

(7) Return: the (1− 𝛼) bootstrap percentile of 𝐶𝐷𝐹 (𝜃𝜃𝜃).

Algoritmo 4: Computing reference values for kim’s Measure.
Input: A data set and the GAMLSS model;
Output: R (a numeric reference value);
Declare: 𝐶*

𝑖 [𝑛] (a empty vector with size 𝑛);
𝐶*

𝑖 [𝑛] (a empty vector with size 𝑛);
𝐶𝑖[𝑛] (a empty vector with size 𝑛);
𝐶𝑖 (a empty vector with size 𝑛);
𝐶*

𝑖 [𝐵] (a empty vector with size 𝐵);
𝐶𝑖[𝐵] (a empty vector with size 𝐵);
𝐶𝑖 (a empty vector with size 𝐵);

(1) fit the observed data using a GAMLSS model;
(2) for i := 0 to n do ;

compute: 𝐶*
𝑖 , 𝐶𝑖 and 𝐶𝑖;

(3) generate 𝐵 bootstrap samples (𝐵 large e.g 1000) ;
(4) fit a GAMLSS model with the same specification for each model fitted in the step
(3);

(5) for b :=0 to 𝐵 do;
compute: 𝐶*

𝑖 [𝐵], 𝐶𝑖[𝐵] and 𝐶𝑖;
(7) Return: the (1− 𝛼) bootstrap percentile of 𝐶𝐷𝑖(𝜃𝜃𝜃).
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Algoritmo 5: Computing reference values for Leave-One-Out GAIC.
Input: A data set;
Output: [GAIC*(𝛼)(𝜃𝜃𝜃)%,lower; GAIC*(1−𝛼)(𝜃𝜃𝜃)%,upper] (a confidence interval);
Declare: GAIC[n] (a empty vector with size 𝑛);

GAIC*[B] (a empty vector with size 𝐵);
(1) fit the observed data using a GAMLSS model;
(2) for i = 1 to n do ;

GAIC(𝑖) = GAIC(𝜅)− GAIC(𝑖)(𝜅);
(3) generate 𝐵 bootstrap samples (𝐵 large e.g 1000) ;
(4) fit a GAMLSS model with the same specification for each model fitted in step (3);
(5) for n = 0 to 𝐵 do;

for j = 0 to 𝑛 do;
GAIC*

𝑗 [𝑏]← GAIC(𝜅)− GAIC(𝑖)(𝜅);
(6) for j = 0 to 𝑛𝐵 do;

GAIC𝐹 [𝑗]← GAIC*[𝑏];
(7) Return: the 95% bootstrap percentile confidence interval of 𝐿𝐷𝑖(𝜃𝜃𝜃).
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3 INFLUENCE MEASURES FOR ARTIFICIAL DATA

The main goal of this chapter is simulate several different scenarios for univariate splines and
semiparametrical models with different responses distributions: normal, poisson, gumbel and
the skew power exponential type 3. Then, we compute the influential measures aforementioned,
and compute the correspondents references values.

3.1 SIMULATED DATA FOR THE SIMPLE LINEAR REGRESSION MODEL

For the simple linear regression model the data was generated from

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖, 𝑖 = 1, . . . , 𝑛, (3.1)

where 𝛽0 = 4, 𝛽1 = 2 and 𝜖𝑖
𝑖𝑛𝑑∼ 𝑁(0, 4), 𝑥𝑥𝑥 is the fixed vector of co-variables, in this case

𝑥𝑥𝑥 is the sequence 1, 2, . . . , 𝑛, because 𝑥𝑥𝑥 can be any fixed vector. We consider four different
scenarios with 𝑛1 = 90, 𝑛2 = 150, 𝑛3 = 300 and 𝑛4 = 500. For this model the low variance
are used to obtain a good fit and a evident influential observation. To artificially include a
influential point we generate an outlier observation in the response variable based on the
Tukey’s method for detect outlier in univariate data, (TUKEY, 1977) proposes a approach
based on the interquartile range, a observation of a univariate data are flagged as outlier if
there are out of range:

[𝐿𝐵, 𝑈𝐵] = [𝑄1(𝑌 )− 𝑘(𝑄3(𝑌 )−𝑄1(𝑌 )), 𝑄3(𝑌 ) + 𝑘(𝑄3(𝑌 )−𝑄1(𝑌 ))], (3.2)

where 𝑄1(𝑌 ) are the lower quartile (25th percentile) and 𝑄3(𝑌 ) are the uper quartile (75th
percentile), 𝑘 is a positive constant, usually 𝑘 = 1.5 are used, and 𝑘 = 3 to outliers “far out”,
that is problematic cases. We use 𝑘 = 1.5 to generate a lower outlier for the response variable
and the maximum value of the explanatory variable 𝑥𝑖, 𝑖 = 1, . . . , 𝑛 + 1.

To include a specific new outlier we take the maximum value of the covariables and use
the lower-bound computed by the tukey criteria, or similarly use the upper bound of the tukey
criteria with the minimum value of the covariables.

The Figures 2 and 3 shown the dispersion and the fitted linear models with and without
the influential case (blue curve and yellow respectively).

The index of the influential observation is 𝑛+1, so when we generate a sample with 𝑛1 = 90

the observation 91 is artificially included as influential. Also the Figure 4 shown the index



44

Figure 2 – Dispersion and fitted linear model with and without the influential case with sample
size 𝑛1 = 90, 𝑛2 = 150 respectively.

Source: Author’s own.

Figure 3 – Dispersion and fitted linear model with and without the influential case with sample
size 𝑛3 = 300, 𝑛4 = 500 respectively.

Source: Author’s own.
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plot for the Likelihood and Cook’s Distance. For example, the bootstrap confidence interval
obtained for the likelihood distance using 1000 bootstrap resamples are [1.631801; 7.491019],
thus the observation 91 for the scenario with 𝑛 = 91 flagged as the observation 91 as influential.
The Figures 4, 5, 6 and 7. Shows the results for the Likelihood distance, Leave-One-Out GAIC,
Cook’s distance and Peña’s measure for the scenarios with 𝑛1 = 90, 𝑛2 = 150, 𝑛3 = 300 and
𝑛4 = 500 respectively. For this cases, the four scenarios has similar results for any measure
used.

Figure 4 – Index Plots for the simulated data from the model (3.1), with Likelihood Distance,
GAIC Distance, Cook’s Distance, and Peña’s Measure, respectively. For the scenario
with sample size 𝑛1 = 90.

Source: Author’s own.
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Figure 5 – Index Plots for the simulated data from the model (3.1), with Likelihood Distance,
GAIC Distance, Cook’s Distance, and Peña’s Measure, respectively. For the scenario
with sample size 𝑛2 = 150.

Source: Author’s own.

Figure 6 – Index Plots for the simulated data from the model (3.1), with Likelihood Distance,
GAIC Distance, Cook’s Distance, and Peña’s Measure, respectively. For the scenario
with sample size 𝑛3 = 300.

Source: Author’s own.
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Figure 7 – Index Plots for the simulated data from the model (3.1), with Likelihood Distance,
GAIC Distance, Cook’s Distance, and Peña’s Measure, respectively. For the scenario
with sample size 𝑛4 = 500.

Source: Author’s own.

Figure 8 – Index Plots of the Kim’s measure for the simulated data from the model (3.1), for
the scenario with sample size 𝑛1 = 90.

Source: Author’s own.
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Figure 9 – Index Plots of the Kim’s measure for the simulated data from the model (3.1), for
the scenario with sample size 𝑛2 = 150.

Source: Author’s own.

Figure 10 – Index Plots of the Kim’s measure for the simulated data from the model (3.1),
for the scenario with sample size 𝑛3 = 300.

Source: Author’s own.
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Figure 11 – Index Plots of the Kim’s measure for the simulated data from the model (3.1),
for the scenario with sample size 𝑛4 = 500.

Source: Author’s own.

3.2 SIMULATED DATA FOR UNIVARIATE PENALIZED SMOOTHERS

Now, we simulate a dataset to modeling a response variable with a p-spline with the model
1.18, for four different scenarios 𝑛1 = 90, 𝑛2 = 150, 𝑛3 = 300 and 𝑛4500 observations, using
the follow functional relationship:

𝑌𝑖 = 1 + 2sin(5𝜋𝑥𝑖) + 𝜀𝑖, (3.3)

where 𝜀𝑖 ∼ 𝑁(0, 1). The Figure 12 show the dispersion and the fitted curves for each scenario,
the circle highlight the influential observation. 𝑥𝑥𝑥 is the vector of observed covariates. For each
scenario we artificially included a influential point by the Tukey’s method criteria, where the
index of the influential observation is 𝑛+1, that is, for the simulation with 𝑛1 = 90 for example
the observation 91 was included as influential. The response was included by the lower bound
of the interval (3.2) and the covariate 𝑥 are the maximum value in 𝑥𝑥𝑥.

The model (3.3) is non-parametric, so in this case we use the likelihood distance, Leave-
One-Out GAIC and generalized Cook’s distance, the peñas measure and kim’s measures need
the 𝐻𝐻𝐻 matrix and this model uses the smoother matrix instead. The Figures 13, 14, 15 and
16 show the results of the index plots for the scenarios with 𝑛1 = 90, 𝑛2 = 150, 𝑛3 = 300,

and 𝑛4 = 500, respectively.
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When 𝑛 is large and a single influential case is included more points can be miss identified
as influential, one possible solution can be choice a more conservative percentile value on the
reference value algorithm when 𝑛 is large.

Figure 12 – Scatter plot and fitted curves with and without the influential observation for the
simulated data based on the functional form in (3.3), with sample size 𝑛1 = 90
and 𝑛2 = 150, 𝑛2 = 90 and 𝑛3 = 150, respectively.

Source: Author’s own.

Figure 13 – Likelihood Distance, Leave-One-Out GAIC and generalized Cook’s distance for the
simulated data based on the functional form in (3.3), with sample size 𝑛1 = 90.

Source: Author’s own.
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Figure 14 – Likelihood Distance, Leave-One-Out GAIC and generalized Cook’s distance for the
simulated data based on the functional form in (3.3), with sample size 𝑛2 = 150.

Source: Author’s own.

Figure 15 – Likelihood Distance, Leave-One-Out GAIC and generalized Cook’s distance for the
simulated data based on the functional form in (3.3), with sample size 𝑛3 = 300.

Source: Author’s own.



52

Figure 16 – Likelihood Distance, Leave-One-Out GAIC and generalized Cook’s distance for the
simulated data based on the functional form in (3.3), with sample size 𝑛4 = 500.

Source: Author’s own.
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3.3 SIMULATED DATA FOR A SEMIPARAMETRIC MODEL WITH POISSON RESPONSE

The Poisson distribution is widely used to model count data. If the response variable 𝑌

represents the number of occurrences of some event, the probability distribution can be written
as:

𝑓(𝑦|𝜇) = 𝜇𝑦𝑒−𝜇

𝑦! , 𝑦 = 0, 1, 2, . . . ,

where 𝜇 is the average number of occurrences. One important feature of this distribution is:
the mean and the variance are equal, that is E(𝑌 ) = Var(𝑌 ) = 𝜇.

For the Poisson regression model, consider 𝑌𝑌𝑌 = (𝑌1, . . . , 𝑌𝑛)⊤, independent random vari-
ables with 𝑌𝑖 denoting the number of events observed in the exhibition number 𝑛𝑖. The model
(3.4), is the GAMLSS submodel for the Poisson response for modeling the 𝜇𝑖 parameter,
including the p-spline 𝑠(𝑢).

𝑌𝑖
𝑖𝑖𝑑∼ PO(𝜇𝑖);E(𝑌𝑖) = 𝜇𝑖 = 𝑛𝑖𝑒

𝑥⊤
𝑖𝑥⊤
𝑖𝑥⊤
𝑖 𝛽𝛽𝛽+𝑠(𝑢), 𝑖 = 1, . . . , 𝑛; (3.4)

the natural link function is the logarithmic function, that is:

𝑙𝑜𝑔(𝜇𝑖) = 𝑙𝑜𝑔(𝑛𝑖) + 𝑥𝑥𝑥⊤
𝑖 𝛽𝛽𝛽 + 𝑠(𝑢),

in this case, for the simulation process, we take 𝛽𝛽𝛽⊤ = (𝛽0, 𝛽1, 𝛽2) and, 𝛽0 = 2, 𝛽1 = 3 and
𝛽3 = −2. Also, 𝑥𝑥𝑥 is the fixed vector of co-variables, in this case 𝑥𝑥𝑥⊤ = (𝑥𝑥𝑥1,𝑥𝑥𝑥2)⊤ both are
a sequence generated from a uniform fixing the seed in the generation process. We consider
four different sample sizes 𝑛1 = 90, 𝑛2 = 150, 𝑛3 = 300 and 𝑛4 = 500. To artificially include
a influential point we generate a outlier observation in the response variable based on the
Tukey’s method presented in (3.2).

For all scenarios the influential observation was detected, some others observations was
possible miss flagged as influential the results are show in the Figures 17, 18 and 19. We don’t
compare different measures itself, but the results of this different measures, in this particular
case the figures 17, 18 and 19 provide similar conclusions for all scenarios.
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Figure 17 – Likelihood distance, Leave-One-Out-GAIC, generalized Cook’s distance and Peña’s
measure respectively, for the simulated data based on the functional form in (3.4),
with sample size 𝑛1 = 90.

Source: Author’s own.

Figure 18 – Likelihood distance, Leave-One-Out-GAIC, generalized Cook’s distance and Peña’s
measure respectively, for the simulated data based on the functional form in (3.4),
with sample size 𝑛2 = 150.

Source: Author’s own.
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Figure 19 – Likelihood distance, Leave-One-Out-GAIC, generalized Cook’s distance and Peña’s
measure respectively, for the simulated data based on the functional form in (3.4),
with sample size 𝑛3 = 300.

Source: Author’s own.
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3.4 SIMULATED DATA FOR A SEMIPARAMETRIC MODEL WITH GUMBEL RESPONSE

The Gumbel distribution (GUMBEL, 1948), is a continuous normally used to modeling rare
events or extreme values situations. Let consider Y a random variable with Gumbel distribution,
with location parameter 𝜇 and scale parameter 𝜎, that is 𝑌 ∼ 𝐺𝑈(𝜇, 𝜎). Thus, the probability
density function is given by:

𝑓(𝑦; 𝜇, 𝜎) = 1
𝜎

exp{−(𝑧 + exp(−𝑧)},

where, 𝑧 = 𝑥− 𝜇

𝜎
. More details about the Gumbel distribution for the GAMLSS framework

can be find in (RIGBY et al., 2019).
For the Gumbel regression model, consider 𝑌𝑌𝑌 = (𝑌1, . . . , 𝑌𝑛)⊤, a vector of independent

random variables, with 𝑌𝑖. The canonical link function for the Gumbel response in the GAMLSS
framework are the identity function. The Gumbel response semiparametrical model has the
follow functional form

𝜇𝑖 = 𝑥𝑥𝑥⊤
𝑖 𝛽𝛽𝛽 + 𝑠(𝑢), (3.5)

where, 𝛽𝛽𝛽⊤ = (𝛽0, 𝛽1, 𝛽2) and, 𝛽0 = 2, 𝛽1 = 3 and 𝛽3 = −2. Also, 𝑥𝑥𝑥 is the fixed vector of
co-variables, in this case 𝑥𝑥𝑥⊤ = (𝑥𝑥𝑥1,𝑥𝑥𝑥2)⊤ both are a sequence generated from a uniform fixing
the seed in the generation process.

Simulating the four scenarios with 𝑛1 = 90, 𝑛2 = 150, 𝑛3 = 300 and 𝑛4 = 500. All
measures detected the influential observation, but for the Gumbel, others observations are
detected as influential as well. This can be associated to the fact of then Gumbel distribution
generate extreme values, so in this cases this result is already expected, in this case we can
use a bigger value of 𝜅 in the tukey criteria to force a higher extreme value. For all measures,
the influential observation was the most influential on the sample.

In this cases when 𝑛 is large less observations are miss identified as influential, this indicate
a better model fitting but the single influential case are so influential as the others.
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Figure 20 – Likelihood distance, Leave-One-Out-GAIC, generalized Cook’s distance and Peña’s
measure for the simulated data based on the functional form in (3.5), with sample
size 𝑛1 = 90.

Source: Author’s own.

Figure 21 – Likelihood distance, Leave-One-Out-GAIC, generalized Cook’s distance and Peña’s
measure for the simulated data based on the functional form in (3.5), with sample
size 𝑛2 = 150.

Source: Author’s own.
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Figure 22 – Likelihood distance, Leave-One-Out-GAIC, generalized Cook’s distance and Peña’s
measure for the simulated data based on the functional form in (3.5), with sample
size 𝑛2 = 150.

Source: Author’s own.
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4 APPLICATIONS

In this section we present some applications. Initially, we modeling a Diabetes data with
a semiparametric model with gamma response, and use the Cook’s distance, Likelihood Dis-
tance, Leave-One-Out GAIC, Adjusted Peña’s measure, and Kim’s measure to detect possible
influential observations. Also, we fit a semiparametric model wih Negative Binomial Type-II
for the Tidal data, the response is the counts of a mollusk find in New Zealand coast and
compute the same measures.

4.1 DIABETES DATA

To illustrate the method described in the section 2.3, we consider the Diabetes data used
in (KIM; PARK; KIM, 2002) taken from a study by (SOCHETT et al., 1987). The response variable
is the logarithm of C-peptide blood concentration and the explanatory variables are the age
𝑋𝑋𝑋1 = (𝑥11, . . . , 𝑥1𝑛)⊤ and the base deficit 𝑋𝑋𝑋2 = (𝑥21, . . . , 𝑥2𝑛)⊤. For this example we consider
𝑛 = 41 observations, the original data has 𝑛 = 43, but (KIM; PARK; KIM, 2002) fitted a semi-
parametric model after removing the fifth (i=5) and the tenth (i=10) observation, and we
follow the same line to have comparable results.

The data are show in the table 1, the response variable take positive real values, and we
select the Gamma distribution for the GAMLSS model in this case with the GAIC automatic
selection criteria in the gamlss R package. For each observation, 𝑌𝑖 is Gamma distributed with
mean 𝜇 and 𝜑−1/2, that is 𝑌𝑖

𝑖𝑛𝑑∼ 𝐺𝐴(𝜇𝑖, 𝜑), with probability density function given by:

𝑓(𝑦; 𝜇, 𝜑) = 1
Γ(𝜑)

(︃
𝜑𝑦

𝜇

)︃𝜑

exp
(︃
−𝜑𝑦

𝜇

)︃
d(log 𝑦) =

= exp[𝜑{−
(︃

𝑦

𝜇
+ log 𝜇

)︃
} − logΓ(𝜑) + 𝜑log(𝜑𝑦)− log 𝑦],

where, 𝑦 > 0, 𝜑 > 0, 𝜇 > 0, Γ(𝜑) =
∫︀∞

0 𝑡𝜑−1𝑒−𝑡dt is the gamma function. The canonical link
function for the Gamma regression model is the logarithmic function:

𝜂𝜂𝜂1 = 𝑔1(𝜇𝜇𝜇) = 𝛽0 + log(𝜇𝜇𝜇) = 𝑋𝑋𝑋1𝛽1 + 𝑠(𝑋𝑋𝑋2), (4.1)

in this case 𝑠(·) is the smoothing P-Spline. The fitted parameters are 𝛽0 = 1.50971 and
𝛽1 = 0.01173.
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The Table 1 shown the data, and the respective i-𝑡ℎ likelihood distance, generalized cook
distance, Peña’s measure, and Kim’s measure (𝐶𝑖, 𝐶*

𝑖 and 𝐶) for each observation on sample.
Also the Figure 27 present the histograms of the bootstrap values generated for compute the
likelihood distance, Leave-One-Out GAIC and Cook’s distances respectively.

The Figure 26 show off the index plot for the likelihood and Cook’s distances, the hor-
izontal line is the upper limit reference value calculated with 1000 bootstrap samples. For
the likelihood distance, we computed the confidence interval [−0.626935; 7.773088]. That is,
by the likelihood distance approach, the observation 20 are possible influential. Based on the
Leave-One-Out GAIC, the computed reference value is 5.364664, so the observations 20 and
34 are possible influential by this approach.

Based on the Cook’s distance the computed reference value is 1.181677, so the observations
13 and 34 are possible influential, on the other hand. For the adjusted Peña’s measure the
obtained reference value is 0.0103735 and also flagged the observations 6, 13, 20, 26 and 34,
as possible influential.

The Figure, 27 show the distribution of the bootstrap of likelihood distance, Leave-One-Out
GAIC and Cook’s distance used to obtain the references values.

Somehow, the results agree one with each other, the observations 6, 13, 20 and 34 was
detected as influential in almost all measures so this four observations can be potentially
influential. For a semiparameric model but using a local polynomial smoother (KIM; PARK;

KIM, 2002), in a similar way detect the observations 6, 22 and 34 as possible influential.
The results of this work can be comparable with the results of (KIM; PARK; KIM, 2002), but

the influential observations can be different because the model is not the same and the others
measures (likelihood distance, Leave-One-Out GAIC, Cook’s distance and Peña’s measure)
can indicate different results for the influence.
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Figure 23 – The residuals against fitted values, residuals against the index, kernel density
estimate for the normalised residuals and Q-Q plot of the normalised residuals
respectively for the model (4.1).

Source: Author’s own.

Figure 24 – Worm-plot for the model (4.1).

Source: Author’s own.
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Table 1 – Likelihood distances, generalized Cook’s Distance, and Kim’s measure for the dia-
betes data fitted with the model 4.1.

𝑌𝑌𝑌 𝑋𝑋𝑋1 𝑋𝑋𝑋2 LD𝑖(𝜇𝜇𝜇) CD𝑖(𝜇𝜇𝜇) 𝑃𝑖 𝐶𝑖 𝐶*
𝑖 𝐶𝑖

1 4.80 5.20 −8.10 0.436248 0.045151 0.000930 0.000017 0.000238 0.003398
2 4.10 8.80 −16.10 0.940130 0.050683 0.001495 0.010046 0.002702 0.013452
3 5.20 10.50 −0.90 0.653117 0.014057 0.000050 0.000331 0.000140 0.000778
4 5.50 10.60 −7.80 2.109778 0.056517 0.001634 0.000140 0.000684 0.013304
5 3.40 1.80 −19.20 −0.247866 0.108730 0.002835 0.000087 0.008375 0.000288
6 3.40 12.70 −18.90 5.135500 1.150154 0.027619 0.137887 0.008133 0.151889
7 4.90 15.60 −10.60 1.177152 0.022439 0.000619 0.002092 0.000146 0.032787
8 5.60 5.80 −2.80 1.685129 0.148490 0.004482 0.007153 0.005231 0.036372
9 3.90 2.20 −3.10 0.398059 0.281553 0.008372 0.009214 0.000078 0.042580

10 4.50 4.80 −7.80 0.415537 0.012915 0.000053 0.000000 0.000022 0.000196
11 4.80 7.90 −13.90 0.647521 0.057503 0.001439 0.004453 0.000048 0.009728
12 4.90 5.20 −4.50 0.452536 0.031446 0.000506 0.000099 0.000571 0.001098
13 3.00 0.90 −11.60 1.069903 1.242706 0.037044 0.000011 0.049891 0.137972
14 4.60 11.80 −2.10 1.749776 0.075746 0.002179 0.008676 0.000313 0.023183
15 4.80 7.90 −2.00 1.283771 0.014627 0.000425 0.002558 0.000045 0.009206
16 5.50 11.50 −9.00 2.635045 0.086497 0.002294 0.001468 0.000651 0.017336
17 4.50 10.60 −11.20 0.535396 0.012748 0.000129 0.000856 0.000500 0.002988
18 5.30 8.50 −0.20 0.674441 0.016793 0.000118 0.000011 0.000576 0.000030
19 4.70 11.10 −6.10 0.738299 0.012737 0.000193 0.000093 0.000158 0.004083
20 6.60 12.80 −1.00 8.051237 0.907519 0.013416 0.054164 0.010030 0.136401
21 5.10 11.30 −3.60 0.575160 0.013472 0.000002 0.000023 0.000043 0.000148
22 3.90 1.00 −8.20 1.459061 0.065160 0.001855 0.000124 0.009394 0.004403
23 5.70 14.50 −0.50 1.873735 0.031933 0.000935 0.005613 0.012394 0.036941
24 5.10 11.90 −2.00 0.600435 0.016199 0.000102 0.000346 0.000049 0.001032
25 5.20 8.10 −1.60 0.643374 0.017317 0.000139 0.000003 0.000386 0.000020
26 3.70 13.80 −11.90 4.401796 0.622400 0.014324 0.028869 0.013970 0.096119
27 4.90 15.50 −0.70 0.898874 0.175165 0.005039 0.001375 0.000123 0.026367
28 4.80 9.80 −1.20 1.411375 0.035053 0.001041 0.007169 0.000072 0.016214
29 4.40 11.00 −14.30 0.380166 0.015802 0.000147 0.001403 0.000695 0.002280
30 5.20 12.40 −0.80 0.612800 0.017225 0.000112 0.000190 0.000177 0.000497
31 5.10 11.10 −16.80 3.015145 0.356155 0.009975 0.044883 0.000040 0.052697
32 4.60 5.10 −5.10 0.657765 0.007654 0.000022 0.000113 0.000000 0.001497
33 3.90 4.80 −9.50 2.676957 0.084021 0.001496 0.000878 0.003411 0.024548
34 5.10 4.20 −17.00 7.501751 1.686115 0.036300 0.100974 0.004164 0.207562
35 5.10 6.90 −3.30 0.571309 0.024787 0.000336 0.000060 0.000421 0.000561
36 6.00 13.20 −0.70 3.155435 0.144020 0.003653 0.017070 0.005462 0.047183
37 4.90 9.90 −3.30 0.780475 0.011351 0.000130 0.000857 0.000009 0.003777
38 4.10 12.50 −13.60 1.079980 0.095771 0.002904 0.010610 0.002198 0.019027
39 4.60 13.20 −1.90 1.532794 0.121837 0.003577 0.006525 0.000597 0.026441
40 4.90 8.90 −10.00 0.538494 0.024470 0.000362 0.000172 0.000005 0.001133
41 5.10 10.80 −13.50 1.765195 0.096247 0.002889 0.009515 0.000042 0.016703
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Figure 25 – Index plot for the Cook’s distance, Likelihood distance and Peña’s measure for the
model used for the diabetes data and fitted with the model (4.1), the horizontal
line is the reference value computed with 𝐵 = 1000 bootstraps resamples.

Source: Author’s own.

Figure 26 – Index plot for the Kim’s measure for the model used for the diabetes data and
fitted with the model (4.1), the horizontal line is the reference value computed
using the algorithm 4.

Source: Author’s own.



64

Figure 27 – Histograms for the bootstrap likelihood and cook’s distances for the diabetes data
fitted with the model (4.1).

Source: Author’s own.

4.2 TIDAL DATA

The organism intertidal bivalve A. Stutchburyi with common name New Zealand cockle, is
a marine bivalve mollusk frequently often found in the New Zealand. (MCARDLE; ANDERSON,
2004) provided the data about the count in thee different coastal areas in the Bay of Planty,
New Zealand. They also modelling the data with a particular transformation, in this work we
use a Negative Binomial type II distribution.

The probability mass function of the Binomial Type II, is given by the

𝑃 (𝑌 = 𝑦|𝜇, 𝜎) =
Γ
(︁
𝑦 + 𝜇

𝜎

)︁
Γ
(︁

𝜇
𝜎

)︁
Γ(𝑦 + 1)

𝜎𝑦(1 + 𝜎)𝑦+ 𝜇
𝜎 . (4.2)

This parameterization was used by (EVANS, 1953) and also by (JOHNSON; KEMP; KOTZ, 2005).
For the Binomial Type II semiparametric regression model, the natural link function is the
logarithmic function. The model in the GALMSS framework is:

𝑌𝑖
𝑖𝑖𝑑∼ NBII(𝜇, 𝜎)

𝜂𝜂𝜂 = 𝑙𝑜𝑔(𝜇𝜇𝜇) = 𝛽0 + 𝛽1𝑥𝑥𝑥1 + 𝑠(𝑢𝑢𝑢), (4.3)
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Figure 28 – The residuals against fitted values, residuals against the index, kernel density
estimate for the normalised residuals and Q-Q plot of the normalised residuals
respectively for the model (4.3).

Source: Author’s own.

where the response variable is the count of New Zealand cockles, the covariable 𝑢𝑢𝑢 is the
vertical tidal height, s(·) is the p-spline smoother function, 𝑥𝑥𝑥1 is the factor indicating one of
the tree tidal areas based on the tidal vertical height: lower (< 0.33m), middle (0.33−0.66m)
and upper (> 0.66m). The ecologists are interested in the effect of tidal height (either raw or
classified) on the number of organisms.

The estimated parameters for the model are 𝛽0 = 0.8585 and 𝛽1 = −0.4541I𝑥1=1(𝑥) and
𝛽2 = −1.4244I𝑥1=2(𝑥), where I is the indicator function, defined as

I𝐴 : 𝑋 → {0, 1},

I𝐴 =

⎧⎪⎪⎨⎪⎪⎩
1, if 𝑥 ∈ 𝐴,

0, if 𝑥 /∈ 𝐴
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Figure 29 – Worm-plot for the model (4.3).

Source: Author’s own.

Figure 30 – Index plot for the Cook’s distance, Likelihood distance and Peña’s measure for the
model used for the diabetes data and fitted with the model (4.3), the horizontal
line is the reference value computed using 𝐵 = 1000 bootstraps resamples.

Source: Author’s own.
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Table 2 – The tidal data-set, where 𝑦𝑦𝑦 is the number of organisms, 𝑢𝑢𝑢 is the vertical tidal height
in meters and 𝑥𝑥𝑥1 is the tidal area 1-lower, 2-middle and 3-upper.

𝑖 𝑦𝑦𝑦 𝑢𝑢𝑢 𝑥𝑥𝑥1 𝑖 𝑦𝑦𝑦 𝑢𝑢𝑢 𝑥𝑥𝑥1 𝑖 𝑦𝑦𝑦 𝑢𝑢𝑢 𝑥𝑥𝑥1

1 15 0.32 1 31 16 0.37 2 61 13 0.72 3
2 3 0.27 1 32 45 0.62 2 62 10 0.67 3
3 3 0.22 1 33 98 0.57 2 63 43 0.97 3
4 3 0.17 1 34 18 0.52 2 64 57 0.92 3
5 0 0.12 1 35 8 0.47 2 65 32 0.87 3
6 5 0.32 1 36 37 0.42 2 66 8 0.82 3
7 3 0.27 1 37 10 0.37 2 67 12 0.77 3
8 0 0.22 1 38 32 0.62 2 68 22 0.72 3
9 3 0.17 1 39 13 0.57 2 69 6 0.67 3

10 0 0.12 1 40 96 0.52 2 70 0 0.97 3
11 21 0.32 1 41 45 0.47 2 71 26 0.92 3
12 10 0.27 1 42 7 0.42 2 72 29 0.87 3
13 13 0.22 1 43 30 0.37 2 73 26 0.82 3
14 5 0.17 1 44 80 0.62 2 74 16 0.77 3
15 1 0.12 1 45 26 0.57 2 75 44 0.72 3
16 26 0.32 1 46 43 0.52 2 76 12 0.67 3
17 71 0.27 1 47 8 0.47 2 77 15 0.97 3
18 43 0.22 1 48 7 0.42 2 78 19 0.92 3
19 8 0.17 1 49 20 0.37 2 79 7 0.87 3
20 2 0.12 1 50 118 0.62 2 80 6 0.82 3
21 35 0.32 1 51 26 0.57 2 81 10 0.77 3
22 187 0.27 1 52 15 0.52 2 82 40 0.72 3
23 46 0.22 1 53 16 0.47 2 83 38 0.67 3
24 21 0.17 1 54 21 0.42 2 84 54 0.97 3
25 10 0.12 1 55 36 0.37 2 85 60 0.92 3
26 65 0.62 2 56 24 0.97 3 86 29 0.87 3
27 114 0.57 2 57 57 0.92 3 87 13 0.82 3
28 96 0.52 2 58 22 0.87 3 88 33 0.77 3
29 52 0.47 2 59 24 0.82 3 89 63 0.72 3
30 14 0.42 2 60 40 0.77 3 90 84 0.67 3
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Figure 31 – Index plot for the Kim’s measure for the model used for the diabetes data and
fitted with the model (4.1), the horizontal line is the reference value computed
using the algorithm 4.

Source: Author’s own.
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5 CONCLUDING REMARKS

In this work we using five measures to detect influential observations for the GAMLSS
model: the Likelihood distance, Leave-One-Out GAIC, generalized Cook’s distance, Peñas
measure and Kim’s measure. The Leave-One-Out GAIC is an new approach introduced in this
work, usually the GAIC has the purpose to select the model, here we adjust the GAIC with
the Leave-One-Out method for obtain a approach similar to the likelihood distance to detect
influential observations.

The smoother matrix is not easy to estimate for a general smoother, and is necessary to
compute the Kim’s measure and Peña’s measure. The smoother matrix estimation method
changes when the smoother additive terms changes, that is for the penalized univariate splines
we have a method to estimate the smoother matrix and for the local polynomial smoother
we have other method to estimate the matrix. This hamper the computational method to
calculate this measure.

One considerable contribution of this work is the methods to obtain the reference values,
the bootstrap approach is used since the real distribution of the measures is unknown. However,
this approach has a considerable computational disadvantage, we need to fit 𝑛×𝐵 models, in
some situations some of this models can not reach convergence. Also, sometimes when 𝑛 and
𝐵 are huge, compute and store this models on the memory can be a problem, that is compute
this references values sometimes need a considerable computational effort.

Using multiple measures to detect influential observation has a advantage to observe if
the results agree one with other, sometimes the results can be very similar and sometimes the
measures can detected different observations as influential.
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6 FUTURE WORKS

Now we mention some future works that we have interest to extend the results obtained
in this work.

There are two type of miss identification of influential observations, when the influential
observation is not detected as influential and when a not influential observation is detected
as possible influential. A future work can simulate several scenarios and compute a confusion
matrix, that is understand this measures and reference values as a problem of classification.
For this purpose its necessary a huge computational time to generate the samples and fit the
models.

Furthermore, we can study in particular the Leave-One-Out GAIC to observe how the 𝜅

changes the detection of influence.
Other future work that we have interest is adjust this measures for models with parameters

of scale and shape, that is models with 𝜎, 𝜈 and 𝜏 . And perform simulations and applications
as we done in this work.

At last, we have interest in apply this measures to detect influential observations with
different smoother, that is by fixing the parametric terms on the model, observe what changes
on the measures when the smothers terms changes, by using local polynomial, fractional
polynomial, cubic splines, or neural networks.
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