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ABSTRACT

Defined as the district vote shares by the total number of valid votes cast in the district,

the vote proportion is auseful measure for analyzing election data. Since it is a variable bounded

in the standard unit interval, we consider unit distributions for analyzing the probabilistic behavior

of vote proportions in Brazilian presidential elections runoff in 2018. The objective of this

master thesis is twofold. Firstly, we introduce the two-component unit Weibull mixture model for

describing the characteristics of these data, such as the asymmetric behavior, bimodality, and

unit interval support. We provide some useful statistical properties of the new model, such as

quantile function, moments, and incomplete moments. The Expectation-Maximization (EM)

algorithm is derived for maximum-likelihood estimation, and a Monte Carlo study is carried

out to evaluate the performance of these estimators on finite samples. The proposed model’s

superiority is verified when comparing the fit with some usual unit mixing models related in

the literature: the two-component beta mixture and the two-component Kumaraswamy mixture

models. The second objective is to identify the covariates associated with the elected candidate’s

vote proportion in the Brazilian municipalities with a population greater than 300.000 inhabitants.

Thus, a study on unit regression models is performed using the Generalized Additive Models for

Location, Scale, and Shape (GAMLSS) framework. We fitted the beta and simplex regressions

considering mean and dispersion sub-models. The Akaike information criterion (AIC), Schwarz’s

Bayesian criteria (SBC), and pseudo-R2 statistics are considered as goodness-of-fit measures,

and residual analysis is performed for diagnostics. The simplex regression is superior to the beta

and is suitable for modeling the variable of interest. The covariates with significant effects are

monthly household income per capita, the proportion of evangelicals and the political spectrum

of the governors’ party elected in 2014 and 2018. We also verify that some Brazilian regions

impact the vote proportions’ mean and dispersion.

Keywords: Brazilian elections. EM algorithm. GAMLSS. Mixture distributions. Unit models.

Unit regression models. Unit Weibull.



RESUMO

Definido como a quantidade de votos do distrito pelo número total de votos válidos

lançados no distrito, a proporção de votos é um medida útil para analisar dados eleitorais. Por se

tratar de uma variável limitada ao intervalo unitário padrão, é importante considerar distribuições

unitárias para analisar o comportamento probabilístico da proporção de votos no segundo turno

das eleições presidenciais brasileiras no ano de 2018. Nesse contexto, a presente dissertação

possui dois objetivos. Primeiro, propomos o modelo de mistura Weibull unitária de duas compo-

nentes para descrever as características desses dados, tais como o comportamento assimétrico,

bimodalidade e suporte no intervalo unitário. Fornecemos algumas propriedades estatísticas

úteis do novo modelo, como função quantílica, momentos e momentos incompletos. O algoritmo

Expectation-Maximization (EM) é derivado para estimação de máxima verossimilhança,

e um estudo de Monte Carlo é realizado para avaliar o desempenho desses estimadores em

amostras finitas. A superioridade do modelo proposto é verificada ao comparar o ajuste com

alguns modelos de mistura unitários usuais relacionados na literatura: o modelo de mistura

de duas componentes beta e o modelo de mistura de duas componentes Kumaraswamy. O

segundo objetivo é identificar as covariáveis associadas à proporção de votos dos candidatos

eleitos nos municípios brasileiros com população superior a 300.000 habitantes. Assim, um

estudo sobre modelos de regressão unitária é realizado usando a estrutura de Modelos Aditivos

Generalizados de Locação, Escala e Forma (GAMLSS). Ajustamos as regressões beta e simplex

considerando os submodelos de média e dispersão. O critério de informação de Akaike (AIC), o

critério Bayesiano de Schwarz (SBC) e a estatística pseudo-R2 são considerados como medidas

de adequação e a análise residual é realizada para o diagnóstico. O modelo simplex foi superior

ao modelo de regressão beta. Verificou-se que a renda familiar mensal per capita, proporção de

evangélicos e o espectro político do partido dos governadores eleitos em 2014 e 2018 causaram

efeitos significantes sobre a proporção de votos. Além disso, verificou-se que algumas regiões

do Brasil apresentaram maiores impactos sobre a média e a dispersão da proporção de votos.

Palavras-chave: Algoritmo EM. Eleições brasileiras. GAMLSS. Mistura de distribuições.

Modelos unitários. Modelos de regressão unitário. Weibull unitária.
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1 PRELIMINARIES

The vote proportion is a double bounded variable defined as the district vote shares

by the total number of valid votes cast in the electoral district, which is typically defined as

municipalities, states, or regions of a country. One important characteristic in electoral processes

is that different candidates (or political parties) may win in distinct electoral districts. Therefore,

the distribution of the vote proportions is useful to understand the political landscape during an

election. In this work, we consider unit distributions for analyzing the probabilistic behavior

of vote proportions in Brazilian presidential elections runoff in 2018 and define the Brazilian

municipalities as electoral districts.

The objective of this master thesis is twofold and is presented in two main and independent

chapters. Chapter 2 introduces the two-component unit Weibull mixture model and is motivated

by the vote proportion’s behavior when considering all the Brazilian municipalities. The proposed

mixture model is suitable for describing these data since it is supported in the unit interval and

accommodates asymmetric and bimodal behaviors. We also provide some useful statistical

properties for the new mixture model, such as quantile function, incomplete moments, and

moments. For parameter estimation, the maximum likelihood method is considered using the

expectation-maximization (EM) algorithm. A Monte Carlo study is carried out to evaluate the

performance of the proposed estimators in finite samples. Finally, the vote proportion application

shows that the new model is quite competitive with the other two-component unit mixture models

listed in the literature.

The second objective is to identify the covariates associated with the elected candi-

date’s vote proportion in the Brazilian municipalities with a population greater than 300.000

inhabitants and is presented in Chapter 3. The study performed considering unit regression

models in the Generalized Additive Models for Location, Scale, and Shape (GAMLSS) frame-

work (STASINOPOULOS; RIGBY; BASTIANI, 2018). The GAMLSS allows evaluating the

effect of explanatory variables on each parameter indexed to the response distribution and provides

a comprehensive framework for incorporating nonlinear, random, and spatial effects. In this

work, the beta and simplex regressions considering mean and dispersion sub-models in the

GAMLSS framework. In this master thesis, all computational implementations are performed in

the R programming language (R Core Team, 2020). The notation and terminology are consistent

throughout each chapter.
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2 TWO-COMPONENT UNIT WEIBULL MIXTURE MODEL TO ANALYZE VOTE

PROPORTIONS

2.1 INTRODUCTION

Finite mixture models appeared in a study on the asymmetry of grouped materials not

being homogeneous (PEARSON, 1894), being useful in the presence of multimodality, heavy

tails, and asymmetry (LACHOS et al., 2017). Many works have appeared in the literature in the

context of finite mixtures. For example, Jewell (1982) proposed a model for exponential mixtures.

Considering Weibull mixture models, we can cite Jiang and Murthy (1998) for characterizations

of the failure rate function and Bučar, Nagode and Fajdiga (2004) for reliability approximations.

Recently, Huang and Dong (2019) analyzed individual periods in combined sea waves using

parametric mixture models.

In data with limited support, beta mixture models have been studied by several authors.

Ji et al. (2005) proposed a study on the beta mixture to solve problems related to correlations

of gene expression levels, Bouguila, Ziou and Monga (2006) presented a study on Bayesian

analysis, and Grün, Kosmidis and Zeileis (2011) studied beta mixture in regression models. The

Kumaraswamy mixture model is an alternative to the beta mixture models, Khalid, Aslam and

Sindhu (2020) carried out a Bayesian study on the three-component Kumaraswamy mixture.

In this paper, a new two-component mixture model is proposed as an alternative to model

population heterogeneities in the unit support. To this aim, we consider that each mixture compo-

nent follows a unit Weibull (UW) distribution (MAZUCHELI; MENEZES; GHITANY, 2018).

Some of the main contributions to the proposition of this new distribution, the so-called Weibull

mixture model of the two-component unit (UWUW), are i) parameterization based on quantiles

to formulate each component of the mixture; ii) all estimation routines, including simulations

and applications, are performed using the expectation-maximization (EM) algorithm, and iii)

applicability for electoral data modeling. The advantage of working with reparametrization in

terms of quantiles according to Bayes, Bazán and Castro (2017), is its flexibility to model data

with heterogeneous conditional distributions. The EM algorithm is a computational method

used to calculate the maximum likelihood estimator (MLE) iteratively (DEMPSTER; LAIRD;

RUBIN, 1977). It is widely used to estimate the maximum probability for (REDNER; WALKER,

1984) finite mixture models. Finally, the adjustment to electoral data, defined as the district’s

share of votes by the total number of valid votes cast in the district, the proportions of votes are

useful, since the electoral districts can vary considerably in the size of the population (ALEMÁN;
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KELLAM, 2017). Also, this measure can analyze other characteristics of the electoral pro-

cess, such as electoral volatility (POWELL; TUCKER, 2013) and nationalization of electoral

change (ALEMÁN; KELLAM, 2017). The data set used refers to the proportions of votes in the

Brazilian presidential elections runoff in 2018.

The rest of the work is organized as follows. In Section 2.2, an overview of the presidential

elections in Brazil is provided. Section 2.3 presents the unit Weibull distribution and some

of its main characteristics. In Section 2.4, the new mixture model is presented. Section 2.5

introduces the EM algorithm to perform maximum likelihood estimation for the UWUW model.

In Section 2.7, an application is made with electoral data. The final considerations of this work

are presented in Section 2.8.

2.2 MOTIVATING EXAMPLE

The election is one of the most fundamental processes in democratic societies (LYRA et al.,

2003), and the vote represents an effective instrument for regular citizens to promote significant

changes in their communities (FILHO et al., 2003). Consequently, electoral processes are of

interest to many researchers and the general society (CARDOSO et al., 2020). In these processes,

not always the same candidate (or political party) wins in all electoral districts. Therefore, the

vote proportion obtained in different cities is an important measure to understand the political

landscape during an election. It may present several configurations, including asymmetric

distribution and multimodality (PAZ; EHLERS; BAZÁN, 2015).

The UWUW model is introduced in order to analyze the probabilistic behavior of vote

proportions in electoral processes. The model formulation is motivated by data from the runoff

of Brazilian presidential elections in 2018. There were two candidates in the referred dispute

- Jair Bolsonaro, from the Liberal Social Party (in Portuguese: Partido Social Liberal, PSL),

and Fernando Haddad, from the Workers’ Party (in Portuguese: Partido dos Trabalhadores, PT).

Bolsonaro was the elected candidate with 55.13% of the valid votes. On the peculiarities of

the Brazilian electoral processes, see, for instance, (FILHO et al., 1999; FILHO et al., 2003;

CARDOSO et al., 2020).

The results of the Brazilian elections are available on the data repository of the Brazilian

superior electoral court (in Portuguese: Tribunal Superior Eleitoral, TSE) (TSE, 2018). It

contains information about the number of votes of each candidate in the referred election for

all the Brazilian municipalities. Table 1 shows the number and proportion of abstention, blank
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and null votes, and the votes obtained by each candidate in the runoff dispute. The abstention

concerns the voters who do not go to vote on election day. There were a high number of blank

and null votes in this election, and the abstention reached is 21.3%. Also known as a protest vote,

a blank vote can be interpreted as dissatisfaction with the choice of candidates or refusal of the

current political system (LEMONTE; BAZáN, 2016). Adding the percentage of null and blank

votes with the percentage of abstention, more than 28% of voters did not choose either of the

two candidates for the presidency of the Republic. This percentage of blank and null votes is the

highest since the elections held in 1989 (TSE, 2018).

Table 1 – Results of the runoff of the presidential elections in 2018.
Candidate Number of votes Vote Proportion of valid (%) Total of vote proportion (%)
Jair Bolsonaro 57.797.847 55,13% 39,24%
Fernando Haddad 47.040.906 44,87% 31,93%
Blank and null 11.094.698 − 7,53%
Abstention 31.371.704 − 21.3%
Total 147.305.155 100% 100%

Source: Author (2021)

Figure 1 presents the municipalities where each candidate obtained the most votes (more

than 50%). The candidate Fernando Haddad won in most of the Northeast’s and North’s

municipalities, while Jair Bolsonaro reached the majority of votes in most of the municipalities

located in the other Brazilian regions. Some authors have already carried out studies focusing on

the performance of the PT’s candidate in the Northeast and North regions. For instance, we can

cite Abensur et al. (2007) and Junior and Souza (2015), who analyzed the vote proportion in

previous elections.

In this paper, we employ these vote proportions for illustrating the two-component unit

Weibull mixture model. The introduced model is suitable for describing the characteristics

of these data, such as the asymmetric behavior, bimodality, and the unit interval support, see

Figure 2.

2.3 THE UNIT WEIBULL DISTRIBUTION

The unit Weibull distribution (UW) was introduced by Mazucheli, Menezes and Ghitany

(2018) as an alternative to the classical beta and Kumaraswamy distributions. Since it has

closed-form expressions for the cumulative distribution function (cdf) and quantile function

(qf), Mazucheli et al. (2020) presented a quantile-parametrization, detailed to follow. Let . be a
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Figure 1 – Winning candidate in the Brazilian presidential elections runoff in 2018.
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random variable following a UW distribution. Then, its cdf is

�UW(H |\\\) = g [log H/log`]V , 0 < H < 1, (2.1)

where \\\ = (`, V)> is the parameter vector, ` ∈ (0,1) is a location parameter that represents the

gth quantile of . , V > 0 is a shape parameter, and g is assumed to be known. The corresponding

probability density function (pdf) of . is

5UW(H |\\\) =
V

H

logg
log`

[
log H
log`

] V−1
g [log H/log`]V , 0 < H < 1. (2.2)

When ` = V = 1, the standard uniform distribution (MAZUCHELI; MENEZES; GHITANY,

2018) is obtained as a special case. The power function distribution (MAZUCHELI; MENEZES;

GHITANY, 2018) arrises when V = 1, and the unit Rayleigh (UR) (MAZUCHELI; MENEZES;

GHITANY, 2018) when V = 2. The UW distribution is also part of the extended unit Weibull
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Figure 2 – Histogram of the proportion of candidate Bolsonaro’s valid votes in the
Brazilian presidential elections runoff in 2018.
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Figure 3 – Plots of the UW densities with different parameter values.
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family pioneered by Guerra, Peña-Ramírez and Bourguignon (2020). The UW distribution

can be very useful in practical situations in several fields, such as hydrology (MAZUCHELI;

MENEZES; GHITANY, 2018), biometrics, and economic science (MAZUCHELI et al., 2020).

The UW pdf can take decreasing, increasing, unimodal, and anti-modal shapes. Figure 3

shows some plots of its density for several combinations of \\\. The quantile order is fixed at

g = 0.5 since it does not interfere with the density shapes.

The qf of the UW distribution (under this parametrization) is

&UW(D |\\\) = `[logD/logg]1/V . (2.3)
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For V > 1, the Bth moment can be defined as

� (. B) =
∞∑
:=0

(B log`):

:!(− logg):/V
Γ

(
:

V
+1

)
, (2.4)

where Γ(B) =
∫ ∞

0 exp{−C} CB−1dC is the gamma function.

The incomplete moments of a random variable, say . , play an important role in several

fields, such as econometrics, insurance and medicine. The Bth incomplete moment of. is defined

as ). (A, B) =
∫ A

0 H
B 5 (H)dH, where 5 (H) is the pdf of . . For example, the Lorenz and Bonferroni

curves are applications of the first incomplete moment. For a given probability c, they are defined

by �(c) = ). (@,1)/(c� (. )) and ! (c) = ). (@,1)/(� (. )), respectively, where @ =&. (c) is the

cth quantile of . . Another related measure is the Gini concentration (��), which is defined as

the area between the curve ! (c) and the straight line. Hence, �� = 1−2
∫ 1

0 ! (c)dD. The closer

�� is to one the more uniqual is the distribution of the variable of interest. Analogously a ��
of zero expresses perfect equality. From the definition of the incomplete moments follows that

� (. B) = limA→∞). (A, B) and �. (H) = ). (H,0).

The following proposition gives a general result on the Bth incomplete moment of the

UW distribution.

Proposition 2.3.1 The Bth incomplete moment of . (for V > 1) is

)UW(A, B) =
∞∑
:=0

(B log`):

:!(− logg):/V
Γ

(
:

V
+1 ,

B logA logg
(− log`)V

)
,

where Γ(B,A) =
∫ ∞
A

exp{−C} CB−13C is the upper incomplete gamma function. The pdf in (2.2)

can be rewrite as

5UW(H |\\\) =
V

H

logg
log`

[
log H
log`

] V−1
exp

{
logg

[
log H
log`

] V}
.

Using the last expression in the definition of ). (A, B), and considering the exponential expansion

in exp{D}, with D = logg(log H/log`)V, is obtained

). (A, B) =
∞∑
:=0

(B log`):

:!(− logg):/V

∫ ∞

B logA logg/(− log`)V
exp{−D} D [(:/V)+1]−13D.

The proof is completed by replacing the upper incomplete gamma function in the above equation.

2.4 THE PROPOSED MODEL

A two-component mixture model is defined as a convex linear combination of two

independently distributed random variables. Let .8, with 8 = 1,2, be two random variables
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independently distributed with densities, say 51(H;\\\1) and 52(H;\\\2), respectively. Then, the pdf

of random variable - that defines its two-component mixture is

5 - (G;�) = ? 51(G;\\\1) + (1− ?) 52(G;\\\2), (2.5)

where � = (\\\>1 , \\\
>
2 , ?)>, \\\1 and \\\2 are the parameter vectors associated with each mixture

component, and ? ∈ (0,1) is the mixing parameter. The corresponding cdf of - is

�- (G;�) = ?�1(G;\\\1) + (1− ?)�2(G;\\\2), (2.6)

where �8 (G;\\\8) is the cdf of .8 (8 = 1,2).

In this section, the two-component unit Weibull mixture distribution, so-denoted UWUW,

is introduced using the above framework. Some important mathematical and statistical properties

of the new model are explored. Thus, let - be a random variable with UWUW distribution.

Then, its cdf is obtained replacing (2.1) in each component of (2.6) as

�UWUW(G;�) = ? �*, (G;\\\1) + (1− ?)�*, (G;\\\2)

= ? g [− logG/log`1]V1 + (1− ?) g [− logG/log`2]V2
,

where � = (\\\>1 , \\\
>
2 , ?)>, \\\1= (`1,V1)>, \\\2=(`2,V2)>, `1 and `2 ∈ (0,1) are location parameters

associated with the gth quantiles of each component of the mixture, V1 and V2 > 0 are shape

parameters, and g ∈ (0,1) is assumed to be known.

Replacing Equation (2.2) in (2.5), the UWUW pdf is obtained as

5UWUW(G;�) = ? 5UW(G;\\\1) + (1− ?) 5UW(G;\\\2)

= ?
V1 logg
G log`1

(
logG

log`1

) V1−1
g(logG/log`1)V1 (2.7)

+ (1− ?) V2 logg
G log`2

(
logG

log`2

) V2−1
g(logG/log`2)V2

.

Figure 4 shows some graphs of UWUW pdf with various combinations of parameters and g = 0.5,

which reveals the high flexibility of the new distribution. It accommodates bimodal, unimodal,

descending, and bath forms under different asymmetric characteristics. Also, it is possible to

identify a bimodal form for different values of ?. Hereafter, we denote - as a random variable

following a UWUW distribution, this is, - ∼ UWUW(�).

The following result provides the - moments and incomplete moments. It is noteworthy

that the incomplete moments and moments are defined for V1 and V2 > 1.
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Figure 4 – Plots of the UWUW density for some parameter values.
(a) For ? = 0.4.
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Source: Author (2021)

Proposition 2.4.1 The Bth moment of - (for V1 > 1 and V2 > 1) is

� (- B) = ?
∞∑
:=0

(B log`1):

:!(− logg):/V1
Γ

(
:

V1
+1

)
+ (1− ?)

∞∑
:=0

(B log`2):

:!(− logg):/V2
Γ

(
:

V2
+1

)
.

We have that

� (- B) = ?
∫ 1

0
GB 5*, (G;\\\111)dG + (1− ?)

∫ 1

0
GB 5*, (G;\\\222)dG.

Using (2.4), the proof is completed.

From the incomplete moments of the UW distribution, it is possible to obtain the incom-

plete moments of the UWUW model.
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Proposition 2.4.2 The Bth incomplete moment of - (for V1 > 1 and V2 > 1) is

)UWUW(A, B) = ?
∞∑
:=0

(B log`1):

:!(− logg):/V1
Γ

(
:

V1
+1 ,

B logA logg
(− log`1)V1

)
+ (1− ?)

∞∑
:=0

(B log`2):

:!(− logg):/V2
Γ

(
:

V2
+1 ,

B logA logg
(− log`2)V2

)
,

We can write

)UWUW(A, B) = ?
∫ A

0
GB 5UW(G;\\\111)dG + (1− ?)

∫ A

0
GB 5UW(G;\\\222)dG.

The proof follows from Proposition 2.3.1.

2.5 PARAMETER ESTIMATION

An approach to the iterative computation of maximum-likelihood estimates (MLE) when

the observations can be treated as incomplete data is the well-known expectation-maximization

(EM) algorithm. Considering the context of two-component mixture models, let GGG = {G1, . . . , G=}

be a random sample of size = from a random variable - having pdf (4) with unknown parameter

vector � = (\\\>1 , \\\
>
2 , ?)>, where \\\1=(`1,V1)> and \\\2=(`2,V2)>. It is customary to call GGG of

“incomplete data" since it is associated with a second component III = {I1, . . . , I=} of unobserved

values of a latent random variable / . Each value I8 of / indicates which component of the

mixture belongs to the 8th observation G8, of such that

I8 =


1 if G8 has pdf 5UW(G |\\\111),

0 if G8 has pdf 5UW(G |\\\222),

where %(/ = 1) = ? and %(/ = 0) = 1− ?. The complete-data specification is determined by the

joint density of (-, /)

5-,/ (G8, I8;�) =
[
?
V1 logg
G8 log`1

(
logG8
log`1

) V1−1
g(logG8/log`1)V1

] I8
×

[
(1− ?) V2 logg

G log`2

(
logG

log`2

) V2−1
g(logG/log`2)V2

]1−I8

,

and based on it, the complete log-likelihood function, for the sample of size =, is given by

;2 (�) =
=∑
8=1

log 5-,/ (G8, I8;�)

=

=∑
8=1
I8 log

[
?
V1 logg
G8 log`1

(
logG8
log`1

) V1−1
g(logG8/log`1)V1

]
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+
=∑
8=1
(1− I8) log

[
(1− ?) V2 logg

G log`2

(
logG

log`2

) V2−1
g(logG/log`2)V2

]
. (2.8)

The EM algorithm iterates, between two steps, to compute the MLEs of �. In the E-step

or expectation step, due to (2.8) is unobservable, it is replaced by its conditional expectation

with respect to the conditional distribution of / , given GGG and the current parameter estimates.

More specifically, in the (: +1)th iteration, the E-step computes

&(�,�(:)) =��(k) [;2 (�) |GGG]

=

=∑
8=1

log 5-,/ (G8, I8;�)

=

=∑
8=1
Ī81 log

[
?
V1 logg
G8 log`1

(
logG8
log`1

) V1−1
g(logG8/log`1)V1

]
+

=∑
8=1
Ī82 log

[
(1− ?) V2 logg

G log`2

(
logG

log`2

) V2−1
g(logG/log`2)V2

]
, (2.9)

where

Ī81 =
? (:) 5*, (G;\\\ (k)111 )

? (:) 5*, (G;\\\ (k)111 ) + (1− ? (:)) 5*, (G;\\\ (k)222 )
,

Ī82 =
(1− ? (:)) 5*, (G;\\\ (k)222 )

? (:) 5*, (G;\\\ (k)111 ) + (1− ? (:)) 5*, (G;\\\ (k)222 )
,

and �(k) = (\\\ (k)111 , \\\
(k)
222 , ? (:))> are obtained from the :th iteration.

The M-step or maximization step, requires the maximization of (2.9) with respect to �.

This is

�(:+1) = argmax
�

&(�,�(:)). (2.10)

The vector �(:+1) is used to initialize the next iteration. Thus, the EM algorithm is

initialized by the starting values �(0) = (\\\ (0)111 , \\\
(0)
222 , ? (0))> and the MLEs �̂ of � are obtained by

�̂ =�(:+1) when a convergence criterion |�(:+1) −�(:) | < Y is reached (DEMPSTER; LAIRD;

RUBIN, 1977). We set Y = 10000. It should be noted that it is not possible to obtain analytical

results from these expressions. It is necessary to perform this maximization by applying some

iterative techniques, for example, Newton Raphson’s method (PRESS et al., 2007).

2.6 SIMULATION STUDY

In this section, a Monte Carlo experiment is carried out to evaluate the performance

of the EM algorithm to estimate the UWUW parameter vector. The simulation routines are
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implemented using the R programming language (R Core Team, 2020) and the ContrOptim

function with the Nelder-Mead maximization algorithm. The qf of the UWUW model can only

be obtained numerically. However, it is possible to generate random numbers using the qf of

the UW distribution given in (2.3). Alencar (2018) and Carvalho (2015) carried out simulation

studies similar to what we are proposing. Thus, let GGG = G1, . . . , G= be a random sample of -

∼ UWUW(�), then the 8th element of GGG, 8 = 1, . . . , =, can be generated as follows:

1. generate D1 and D2 from two independent standard uniform random variables;

2. if D1 < ?, where ? is the weight of the first component of the mixture, calculate G8 =

&UW(D2 |\\\111);

3. if D1 ≥ ?, calculate G8 =&UW(D2 |\\\222).

All reported results are based on 10,000 replications, and the sample sizes are set at = ∈

{100,250,500}. Eight different parameter combinations are considered, and the value of g is

fixed at 0.5. Thus, for all the scenarios generated in this section, the quantile parameters `1 and `2

represent the median of each mixture component. To assess the performance of the EM algorithm,

the percentage relative bias (RB%) and the mean squared error (MSE) are calculated. Further

simulations, considering different scenarios and values for g, are reported in the Appendix.

Table 2 shows the simulation results and allows us to note the RB% and MSE tend to be

closer to zero as the sample size increases. Note that RB% of ˆ̀1 and ˆ̀2 does not exceed 0.9%

when = is larger than 100. In general, the median estimates parameters are more accurate than

those for the shape parameters V1 and V2. Notice V̂2 has the highest RB%, and this configuration

is observed for all sample sizes.
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Table 2 – RB% and MSE of the estimates of the MLEs obtained via the EM algorithm of the UWUW model.

Scenario `1 `2 V1 V2 ? =
RB % MSE

ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂ ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂

1 0.3 0.7 2.0 3.0 0.4
100 -0.4189 -0.0881 14.5975 8.2128 0.0479 0.0014 0.0002 0.1647 0.1685 0.0017
250 -0.1693 -0.0420 4.9168 3.0942 -0.0426 0.0005 0.0001 0.0428 0.0576 0.0006
500 -0.0930 -0.0143 2.4068 1.0230 0.0241 0.0002 0.0001 0.0184 0.0269 0.0003

2 0.2 0.6 0.9 2.5 0.4
100 0.1731 0.0328 4.3019 6.9431 0.0442 0.0048 0.0005 0.0214 0.1389 0.0013
250 0.0716 0.0002 1.6727 2.7888 -0.0035 0.0019 0.0002 0.0066 0.0485 0.0005
500 0.0371 0.0013 0.6670 1.4385 0.0078 0.0009 0.0001 0.0029 0.0234 0.0002

3 0.1 0.8 1.5 0.8 0.5
100 0.6696 -0.6281 5.3045 2.8803 0.0086 0.0014 0.0020 0.0566 0.0187 0.0015
250 0.2527 -0.2658 1.6845 1.0632 -0.0133 0.0004 0.0006 0.0207 0.0065 0.0006
500 0.1273 -0.1311 0.6829 0.3130 0.0118 0.0001 0.0003 0.0101 0.0031 0.0003

4 0.7 0.5 0.9 5.0 0.5
100 -0.1970 -0.0549 2.8046 22.1717 -0.0131 0.0022 0.0002 0.0119 0.8689 0.0012
250 -0.1088 -0.0173 1.1837 8.3364 0.0017 0.0008 0.0001 0.0043 0.2722 0.0005
500 -0.0286 -0.0144 0.4739 4.5350 0.0099 0.0004 0.0001 0.0019 0.1287 0.0002

5 0.6 0.2 5.0 3.5 0.8
100 -0.0221 -0.0185 8.8737 42.6975 0.0124 0.0001 0.0008 0.2519 1.1632 0.0014
250 -0.0141 -0.0131 2.9371 15.4892 -0.0127 0.0001 0.0003 0.0911 0.3070 0.0005
500 -0.0062 0.0022 1.4449 7.3342 0.0158 0.0001 0.0001 0.0444 0.1363 0.0002

6 0.9 0.4 1.9 3.0 0.8
100 -0.0225 -0.0095 2.9770 33.2689 -0.0204 0.0001 0.0012 0.0365 0.7896 0.0015
250 -0.0079 -0.0297 1.2212 12.2812 -0.0055 0.0001 0.0005 0.0136 0.2170 0.0006
500 -0.0032 -0.0043 0.5437 5.9671 0.0208 0.0001 0.0002 0.0062 0.0946 0.0003

7 0.5 0.9 2.5 0.4 0.9
100 -0.0818 -3.4265 4.7901 3.5705 -0.0097 0.0003 0.0182 0.0588 4.4945 0.0005
250 -0.0513 -1.4269 1.7292 2.7833 -0.0173 0.0001 0.0049 0.0214 0.0069 0.0002
500 -0.0236 -0.6906 0.9218 1.2397 -0.0094 0.0001 0.0020 0.0104 0.0025 0.0001

8 0.8 0.1 3.5 0.6 0.9
100 0.0103 3.8199 3.8603 26.3026 -0.0109 0.0001 0.0281 0.1072 1.1422 0.0007
250 0.0028 1.5648 1.3948 6.1629 -0.0184 0.0001 0.0107 0.0403 0.0301 0.0002
500 0.0008 0.8949 0.6650 2.4312 -0.0101 0.0001 0.0051 0.0194 0.0074 0.0001

Source: Author (2021)
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Figure 5 illustrates the EM algorithm’s convergence using the total RB%, which is defined

as the sum of the absolute values of the individual RB%. It is an aggregate measure of the bias,

and its outcome confirms that the parameter estimates improve their accuracy as = increases.

Another useful aggregate measure is the total MSE, defined as the sum of all the individual MSEs.

Figure 6 displays plots of this measure for the eight scenarios considered. Note that when = is

larger than 100, the total MSE is less than 1 for all scenarios.

Figure 5 – Total RB% for the estimates of the MLEs of the UWUW model obtained via
EM algorithm.

(a) Scenarios 1 to 4.
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Figure 6 – Total MSE for the MLEs of the UWUW model obtained via EM algorithm.
(a) Scenarios 1 to 4.
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2.7 APPLICATION

In what follows, we present a case study that illustrates the suitability of the UWUW

distribution for modeling real unit data sets. The database considered is the municipality’s vote

proportion of the winning candidate in the Brazilian presidential elections runoff in 2018. Since

it presents a bimodal shape, see Figure 7, a unimodal distribution would not be appropriate to fit

this data set. Therefore, the UWUW distribution is a suitable alternative to model these data. Its

performance is compared with other double-bounded component mixtures that have already been

studied in the literature: two-component beta mixture (BB) and two-component Kumaraswamy

mixture (KWKW) models.

The BB model is obtained by replacing the pdf of the beta distribution in Equation (2.5).

In this paper, the parameterization proposed by Ferrari and Cribari-Neto (2004) is considered to

define the BB model, which has pdf given by

5 (G;�) = ? Γ(`1 + V1)
Γ(`1)Γ(V1)

G`1−1(1− G)V1−1 + (1− ?)

Γ(`2 + V2)
Γ(`2)Γ(V2)

G`2−1(1− G)V2−1, 0 < G < 1,

where � = (`1, `2, V1, V2, ?)>, `1 and `2 ∈ (0,1) are location parameters associated with the

mean of each mixture component, V1 and V2 > 0 are precision parameters, and ? ∈ (0,1) is the

parameter that measures the weights of the mixture.

The KWKW model is obtained by replacing the pdf of the Kumaraswamy distribu-

tion (KUMARASWAMY, 1980) in Equation (2.5). We consider the parameterization in Mitnik

and Baek (2013) to define the KWKW model, which has pdf given by

5 (G;�) = ? `1 V1 G
`1−1(1− G`1)V1−1 + (1− ?)

`2 V2 G
`2−1(1− G`2)V2−1, 0 < G < 1,

where � = (`1, `2, V1, V2, ?)>, `1 and `2 ∈ (0,1) are location parameters associated with the

median of each mixture component, V1 and V2 > 0 are precision parameters, and ? ∈ (0,1) is the

parameter that measures the weights of the mixture.

For all competitive mixture models, the parameter estimation is carried out using the

EM algorithm following the steps described in Section 2.5. The Corrected Anderson-Darling

(�∗) (CHEN; BALAKRISHNAN, 1995), Cramér-von Misses (,∗) (DURBIN; KNOTT, 1972),

and the Kolmogorov Smirnov ( () (GOODMAN, 1954) statistics are calculated to assess the

quality-of-fit for the three fitted models. The lower their values are, the better is the model fit. All
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the analysis is performed using the R programming language, and the goodness-of-fit measures

are computed using the AdequacyModel (MARINHO et al., 2019) subroutine.

Table 3 displays the parameter estimates, standard errors, and the model comparison

criteria of the three considered models. The results indicate that the UWUW distribution provides

the lowest values for all goodness-of-fit statistics. The KWKW presents the worse performance,

not being an adequate alternative to fit these data.

Table 3 – Parameter estimates and standard errors (given in parentheses) for the models
fitted to Bolsonaro’s vote proportion in Brazilian presidential elections in 2018.

ˆ̀1 ˆ̀2 V̂1 V̂1 ?̂ ,∗ �∗  (

BB 0.5816 0.1985 9.7510 29.3260 0.7268 1.2937 7.4584 0.0477
(0.0035) (0.0026) (0.3201) (1.3521) -

UWUW 0.2677 0.6491 2.7011 2.9611 0.5368 0.4119 3.6768 0.0153
(0.0039) (0.0027) (0.0545) (0.0567) -

KWKW 0.5475 0.5475 1.0399 1.0398 0.3736 10.4367 60.8235 0.2465
(0.0103) (0.0074) (0.0295) (0.0214) -

Source: Author (2021)

Figure 7 presents the histogram of the vote proportion data overlaid with the estimated

densities of the fitted models. The bimodality of the data is confirmed, and the UWUW model

provides the closest fit to the histogram. Clearly, the KWKW model is not adequate to fit these

data. Further, Figure 7 gives plots of the empirical and estimated cdf functions. This visual

inspection favors the results in Figure 7 and Table 3, indicating that the proposed model is

appropriate to fit these data. Thus, it can be an effective alternative to analyze vote proportions,

being quite competitive with the BB model and providing consistently better fits than the KWKW

model. Therefore, the UWUW provides a useful tool for modeling bimodal data restricted to

the unit interval. Also, with the estimates of the mixture parameters, it is possible to identify

that more than 50 % of the observations belong to the first mixture component. The estimated

median of the first component is ˆ̀1 = 0.2677 and the estimated median of the second component

is ˆ̀2 = 0.6649.

2.8 CONCLUSION

A two-component mixture model was defined to describe the heterogeneities of the

population with the limited domain. Named the two-component unit Weibull mixture (UWUW)

model, the new distribution is formulated considering that each mixture component follows the

unit Weibull distribution. Some of the main properties of UWUW have been presented, such as
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Figure 7 – Estimated densities (a) and empirical cdf (b) of the BB, KWKW and UWUW
models.

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

N = 5570   Bandwidth = 0.03557

D
en

si
ty

Empirical

BB

KWKW

UWUW

0.0 0.2 0.4 0.6 0.8

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F̂
(x

)

Empirical

BB

KWKW

UWUW

Source: Author (2021)

ordinary and incomplete moments. The EM algorithm was used to obtain maximum likelihood

estimates for the model parameters. To evaluate the performance of the EM algorithm, Monte

Carlo simulations were performed. An application to electoral data illustrates the importance and

potential of the new model. The motivating data set is about the vote proportions obtained by the

winning candidate in the Brazilian presidential runoff elections in 2018. The results indicate

that our proposal is adequate to fit this data set since it is suitable to analyze the asymmetric and

bimodal behaviors. From the mixing parameter estimate, we can conclude that 53.68% of the

observations are from the first component of the mixture with estimated median at ˆ̀1 = 0.2677.

The estimated median for the municipalites from the secondmixture compontent was ˆ̀2 = 0.6491.

With the application, it was possible to verify that the UWUW performance may overcome other

two-component mixture models based on other widely known unit distributions such as the beta

and Kumaraswamy.
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3 UNIT REGRESSION MODELS TO EXPLAIN VOTE PROPORTIONS IN THE

BRAZILIAN PRESIDENTIAL ELECTIONS IN 2018

3.1 INTRODUCTION

Double-bounded variables, such as rates and proportions, usually show asymmetry,

and heavy tails. Thus, the assumption of normality becomes inadequate. For these situa-

tions, one should look for more flexible models that provide adequate representations for the

physiological properties and the empirical distribution of the data (PEREIRA; SOUZA; CRIBARI-

NETO, 2014). The beta (FERRARI; CRIBARI-NETO, 2004) and simplex (BARNDORFF-

NIELSEN; JØRGENSEN, 1991) regressions are common procedures to accommodate these

features. These models resemble the Generalized Additive Models for Location, Scale, and

Shape (GAMLSS) (STASINOPOULOS; RIGBY; BASTIANI, 2018) by allowing a regression

structure in the mean and the dispersion (or precision) parameter of the beta and simplex distri-

butions, respectively. The GAMLSS allows all parameters of the response distribution to vary

with explanatory variables and provides a comprehensive framework for easily incorporating

nonlinear, random and spatial effects.

In this chapter, our objective is to explain the mean variations of the vote proportions

received by Jair Bolsonaro in the runoff of the 2018 presidential elections. Some works have

been used beta regression for previous Brazilian presidential elections. Andrade et al. (2013)

assessed the impacts of welfare programs and economic growth on the outcome of the 2006

election. Junior and Souza (2015) investigated it in the 2010 election and for the Northeast region.

For the 2018 elections, Hunter and Power (2019), and Rennó (2020) carried out some analysis

on the political landscape. Yero, Sacco and Nicoletti (2020) analyzed the effects of development

indicators in the 2018 elections using machine learning algorithms. They reported that voters

residing in less developed regions have left-wing parties as to the preferred choice. However, to

our best knowledge, a unit regression analysis modeling the 2018 elections has no been carried

out.

In this context, we fit beta and simplex regressions since they are parameterized in terms

of the mean and dispersion parameters and are available in the R gamlss package (RIGBY;

STASINOPOULOS, 2005). Alternative unit regressions have been proposed in recent years, but

most of them focus on quantile parametrizations. We can cite, for example, Bayes, Bazán and

Castro (2017) for quantile regression based on the Kumaraswamy distribution and Lemonte and

Bazán (2016) for median regression from the Johnson S� distribution. Other recent advances
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are Smithson and Shou (2017), Mazucheli et al. (2020), and Pumi, Rauber and Bayer (2020).

Those models are not considered in the analysis because our interest lies in the effect of socio-

demographic and economic indicators in the mean of the vote proportions.

The rest of this chapter is divided as follows. Section 3.2 presents a theoretical background

on the beta and simplex regression models. In Section 3.3, a descriptive analysis and the data

preparation is presented. Section 3.4 discusses the fitted regressions and the effects of the

explanatory variables in the vote proportions data collected. The concluding remarks are outlined

in Section 3.5.

3.2 THEORETICAL BACKGROUND

This section aims to discuss the unit regression models employed in the vote proportion

analysis. We present some aspects of parameter estimation, model selection, and diagnostic

analysis on these models. Ferrari and Cribari-Neto (2004) proposed a class of beta regression

models in which the mean response is related to a linear predictor, which involves covariates

and unknown regression parameters, through a link function. The model is also indexed by a

precision parameter and assumes that the dependent variable has a beta distribution.

The beta regressionmodel was considered by several authors. For example, Bayer, Tondolo

and Müller (2018) proposed beta regression control charts to monitor the tire manufacturing

process and the relative humidity in Brasília, Brazil. Ghosh (2019) presented a study on robust

inference for the model, with application to health studies. Karlsson, Månsson and Kibria (2020)

introduced a Liu estimator for the beta regression model and performed an application to chemical

data. Espinheira et al. (2019) investigated model selection criteria on beta regression for machine

learning.

Assuming that the precision parameter is also related to a linear predictor, Simas, Barreto-

Souza and Rocha (2010) formally introduced the varying precision beta regression model.

Moreover, an alternative parametrization in terms of a dispersion (not precision) parameter is

considered by Cribari-Neto and Souza (2012), Bayer and Cribari-Neto (2017) and Canterle and

Bayer (2019). Let . be a beta random variable indexed by the mean ` ∈ (0,1) and the dispersion

parameter f ∈ (0,1), denoted as. ∼ Beta (`,f). Its probability density function is (for H ∈ (0,1))

5 (H;`,f) =
Γ

(
1/f2−1

)
Γ

(
`(1/f2−1)

)
Γ

(
(1− `) (1/f2−1)

) H`(1/f2−1)−1(1− H) (1−`) (1/f2−1)−1, (3.1)

where Γ(U) =
∫ ∞

0 GU−1e−GdG is the gamma function. Under this parameterization the variance of

. is Var(. ) = f2`(1− `). It should be noted that this reparametrization is the one implemented
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for the beta density in the R gamlss package (RIGBY; STASINOPOULOS; VOUDOURIS,

2013; RIGBY; STASINOPOULOS, 2005; STASINOPOULOS et al., 2017).

The simplex distribution was introduced by Barndorff-Nielsen and Jørgensen (1991) as

an alternative to the beta distribution. Let . ∼ ((`,f2) be a simplex random variable, which

density is (for H ∈ (0,1))

5 (H;`,f2) = {2cf2 [H(1− H)]3}−1/2exp
{
− (H− `)2

2f2`2H(1− H) (1− `)2

}
, (3.2)

where 0 < ` < 1 is the mean of . and f2 is a dispersion parameter. Espinheira and Silva (2019)

proposed a general class of simplex regression in which the mean and the disperson parameters

can be related to a linear predictor. They also perform residual and influence analysis to the

simplex regression.

Several studies have been developed considering simplex regression models. Carrasco and

Reid (2019) studied measurement errors. López (2013) considered a Bayesian approach to param-

eter estimation in a simplex regression model and compared with beta regression. Cordeiro et al.

(2020) used the beta and simplex regressionmodels to explain homicides in state Brazilian capitals.

The simplex regression is also implemented in R gamlss package (RIGBY; STASINOPOULOS;

VOUDOURIS, 2013; RIGBY; STASINOPOULOS, 2005; STASINOPOULOS et al., 2017).

Let H1, . . . , H= be a set of independent randomvariables such that each HC ∼D(`C ,fC), where

C = 1, . . . , =, and D(`C ,fC) denotes a two-parameter distribution in which both `C and fC are linear

functions of the explanatory variables. We consider the GAMLSS structure (STASINOPOULOS

et al., 2017) to define the following systematic components,

6(`C) =
:∑
8=1
GC8V8 = [C ,

ℎ(fC) =
@∑
9=1
IC 9W 9 = hC , (3.3)

where V = (V1, . . . , V: )> ∈ R: e W = (W1, . . . , W@)> ∈ R@ are vectors of unknown parameters,

GC1, . . . , GC: and IC1, . . . , IC@ are : and @ covariate observations (: + @) < =, respectively, assumed

to be fixed and known, [C =
∑:
8=1 GC8V8 and hC =

∑@

9=1 IC 9W 9 are the linear predictors, and 6(·) and

ℎ(·) are strictly monotonous and twice differentiable link functions.

Thus, both beta and simplex regression models are defined from Equation (3.3), with

6 : (0,1) →R, but differing on the assumption of the random component and the mapping required

for the dispersion link function. The beta regression has the random compontent following (3.1),

in which ℎ : (0,1) → R, and the simplex regression has D(`C ,fC) following (3.2), in which

ℎ : R+→ R.
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The link functions that can be considered for the parameters in the unit range are, for

instance: i) logit: 6(`) = log
(
`

1−`

)
; ii) probit: 6(`) = Φ−1(`), where Φ(·) is the cumulative

distribution of a standard normal random variable; iii) log-log(loglog): 6(`) = − log[− log(`)];

iv) complement log-log (cloglog) : 6(`) = log[− log(1− `)], and v) Cauchy: 6(`) = tan[c(`−

0.5)]. Regarding the dispersion parameter of the simplex regression, we can use the logarithmic

function ℎ(f) = logf, and the identity function ℎ(f) = f. McCullagh and Nelder (1989) provide

a detailed study of some of these link functions.

3.3 DATA PREPARATION AND DESCRIPTIVE ANALYSIS

The variable of interest is the proportion of valid votes received by Jair Bolsonaro in the

2018 presidential elections runoff (Prop_PSL).We consider the data from Brazilian municipalities

with a population greater than 300,000 in the 2010 census, totaling 79 observations. Some

socio-demographic indicators and the political spectrum of the governors’ party are selected

as explanatory variables for the vote proportions. The variables were collected using public

data from the Brazilian Tribunal Superior Eleitoral (TSE) (TSE, 2018), Instituto Brasileiro de

Geografia e Estatística (IBGE) (SIDRA, 2020), and Instituto de Pesquisa Econômica Aplicada

(IPEADATA) (BRASIL, 2020). Table 4 lists all variables and their respective sources. Since

the variables Region, PG_2014, PG_2018, and Cap_BR are qualitative, they are included in

the regression analysis using dummy variables. We define the Midwest region as the reference

category for the Region variables. For PG_2014 and PG_2018, the reference is the centre

spectrum. Finally, the Cap_BR dummy is defined as a variable that equals one if the municipality

is a capital and zero otherwise.

Table 4 – Summary of the variables
Variable Source Description
Prop_PSL TSE Proportion of valid votes recieved by Jair Bolsonaro in the 2018 presidential elections runoff.
EP IBGE Estimated population in the 2010 census, per 100,000.
PE IBGE Proportion of evangelicals in the 2010 census.
PEAW IBGE Proportion of economically active women (2010 census).
LR IBGE Literacy rate in the 2010 census.
MHIC IBGE Monthly household income per capita in reals, R$, in the 2010 census.
DD IBGE Demographic density in the 2010 census.
Region - Brazilian region to which the city belongs (South, Northeast, Southeast, North, and Midwest).

PG_2014 IPEADATA and Political spectrum of the governors’ party elected in 2014 (left-wing, centre, right-wing).(SARDINHA; COSTA, 2020)

PG_2018 IPEADATA and Political spectrum of the governors’ party elected in 2018 (left-wing, centre, right-wing).(SARDINHA; COSTA, 2020)
Cap_BR - Brazilian capital to which the city belongs.

Source: Author (2021)

The variable MHIC is calculated as the ratio between total family income-in nominal
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terms-and the total number of residents. Income from work and other sources for all residents

is considered, including those classified as retired, domestic workers, and relatives of domestic

workers (IBGE, 2010). We also analyze the governors’ party elected in the Brazilian state where

the cities belong. Since the Brazilian political system has many parties, the variables PG_2014

and PG_2018 are defined from political spectrum of the governors’ party elected in 2014 and

2018 elections, respectively. The political spectrum of the party is obtained from Sardinha and

Costa (2020), and the governors’ party from (BRASIL, 2020). The variable Region is defined

since several authors carried out studies on the impact of the Brazilian regions on presidential

elections, see Junior and Souza (2015), Jr (2013), and Jr (2015), for instance.

Table 5 gives some descriptive measures of the response variable and quantitative covari-

ates. The coefficient of variation (CV) indicates that EP has the higher variability and LR has

the lower degree of variability. The mean proportion of votes is 0.63, and the amplitude is 0.53.

Since the median is 0.66, the elected candidate won in most municipalities considered. We have

negative skewness and kurtosis coefficients, indicating that the larger vote proportion values have

a fatter tail than the smallest ones. These features can be confirmed through the plots displayed

in Figure 8.

From the boxplot of Prop_PSL (Figure 8), we highlight that the cities with the lowest

values in relation to the vote proportion are Salvador (Bahia), Caucaia (Ceará), Feira de Santana

(Bahia), and Teresina (Piauí), which registered values at 0.314, 0.3667, 0.3715 and 0.3726,

respectively. It is noteworthy that all the city are located in the Northeast of Brazil, and Caucaia

is also between the three cities with the lowest MHIC. Besides, Blumenau (Santa Catarina) is the

city with the highest values for Prop_PSL and LR.

Table 5 – Descriptive statistics for the response variable and quantitative covariates.
Variable Mean Median Skewness Kurtosis Min. Max. CV
Prop_PSL 0.628 0.655 −0.527 −0.368 0.314 0.840 19.279

EP 9.020 4.720 5.378 32.976 3.005 112.535 160.160
PE 0.267 0.255 −0.024 −0.291 0.117 0.410 24.688

PEAW 0.235 0.235 −0.070 −0.648 0.182 0.284 9.164
MHIC 1,100.113 1,042.840 0.723 −0.172 439.720 2,159.170 36.127
DD 2,515.933 1,315.270 1.722 2.490 12.570 13,024.560 119.971
LR 95.328 96.300 −1.710 2.732 85.500 98.300 2.741

Source: Author (2021)

Figure 9 displays dispersion plots of the response variable versus the quantitative covariates.

Since there is no indication of a linear relationship between the variables, we use the Spearman

method to compute the correlation matrix (see Table 6). The results indicate that the response
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Figure 8 – Histogram and boxplot of the vote proportion data.
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variable is positively correlated with most variables. The highest correlation is with LR, followed

by the MHIC. This high correlation shows that covariates are important for the study, as they

indicate that LR and MHIC had are associated with the response variable.

Table 7 presents the frequency distribution for the qualitative variables. About 50% of the

municipalities in the study belong to the Southeast region, which is also the most developed. The

North and Northeast are the most impoverished and concentrate a relative frequency of 15.19%.

In 2014 and 2018, the parties with centre ideology elected more governors. Notice the growing

number of right-wing governors from 2014 to 2018. It increased approximately 26.58%.

Table 6 – Spearman’s correlation matrix with their respective p-values in parenthesis.
Prop_PSL EP PE PEAW MHIC DD LR

Prop_PSL
EP −0.10

(0.3650)
PE 0.23 −0.09

(0.0382) (0.4403)
PEAW 0.26 0.24 −0.42

(0.0183) (0.0363) (0.0001)
MHIC 0.41 0.30 −0.46 0.79

(0.0002) (0.0072) (0.0002) (< 0.0001)
DD −0.24 0.34 0.01 0.05 0.02

(0.0313) (0.0022) (0.9587) (0.6824) (0.8582)
LR 0.56 0.12 −0.24 0.62 0.76 0.11

(< 0.0001) (0.2765) (0.0316) (< 0.0001) (< 0.0001) (0.3325 )
Source: Author (2021)
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Figure 9 – Scatter diagram.

0 20 40 60 80

0
.3

0
.5

0
.7

EP

P
ro

p
_

P
S

L

0.15 0.25 0.35

0
.3

0
.5

0
.7

PE

P
ro

p
_

P
S

L

0.18 0.22 0.26

0
.3

0
.5

0
.7

PEAW

P
ro

p
_

P
S

L

500 1000 1500 2000

0
.3

0
.5

0
.7

MHIC

P
ro

p
_

P
S

L

0 4000 8000 12000

0
.3

0
.5

0
.7

DD

P
ro

p
_

P
S

L

86 90 94 98

0
.3

0
.5

0
.7

LR

P
ro

p
_

P
S

L

Source: Author (2021)

Table 7 – Frequency distribution for the qualitative variables.
Variable Frequency Relative frequency (%)
Region
Northeast 17 21.5189
South 11 13.9241
Southeast 39 49.3672
Northern 6 7.5949
Midwest 6 7.5949
PG_2014
Left-wing 32 40.5063
Centre 39 49.3671
Right-wing 8 10.1266
PG_2018
Left-wing 20 25.3164
Centre 30 37.9747
Right-wing 29 36.7089

Source: Author (2021)

3.4 FITTED REGRESSIONS

This section presents and discusses the fitted regression models considering the Prop_PSL

as the dependent variable. For both simplex and beta regressions, parameter estimation is

performed by the maximum likelihood method using the Rigby and Stasinopoulos (RS) al-

gorithm (STASINOPOULOS et al., 2017). We use the Akaike information criterion (AIC),

Schwarz’s Bayesian criteria (SBC), and stepwise technique for model selection. After evaluating

the regression subsets and selecting those with the smallest AIC and SBC, we define the systematic

components for both classes of regressions and eliminate the non-significant predictors.
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Table 8 – Results from the fitted beta and simplex regressions.
Beta (`8,f8) Simplex(`8,f8)

Variable ˆ̀̀̀ Std. Error ?-value ˆ̀̀̀ Std. Error ?-value
Intercept −0.7070 0.1695 0.0001 −0.7174 0.1760 0.0001

EP - - - −0.0030 0.0016 0.0592
MHIC 0.0004 0.0001 < 0.0001 0.0005 0.0001 < 0.0001

PE 3.6723 0.4324 < 0.0001 3.6378 0.4345 < 0.0001
DD −0.0003 0.0001 0.0026 −0.0002 0.0001 0.0429

South 0.2580 0.1032 0.0149 0.3286 0.0926 0.0007
PG_2014_Left −0.1996 0.0751 0.0099 −0.2431 0.0689 0.0008
PG_2018_Left −0.4372 0.0679 < 0.0001 −0.4472 0.0687 < 0.0001

Variable f̂ff Std. Error ?-value f̂ff Std. Error ?-value
Intercept −11.1583 3.1705 0.0008 0.8580 0.4838 0.0807

PE −3.3198 1.5630 0.0374 −5.2280 1.6409 0.0022
LR 0.1126 0.0343 0.0017 - - -

North - - - 1.1931 0.3326 0.0006
South −0.8738 0.3271 0.0095 - - -

Southeast −0.9463 0.2513 0.0004 - - -
Cap_BR −0.9004 0.2795 0.0020 −0.7768 0.2553 0.0033

Source: Author (2021)

Table 9 – Values of AIC, SBC, pseudo-R2, and SW ?-value for the beta and simplex
models.

Modelo AIC SBC '2
�

SW
Beta (`8,f8) −211.5764 −178.3964 0.7939 0.3113

Simplex (`8,f8) −219.0181 −188.2081 0.8025 0.5797
Source: Author (2021)

Table 8 lists the parameter estimates, standard errors (Std. Error), and p-values of the final

fitted models. Both include the mean and the dispersion submodels. Most of the covariates are

significant at 5%, except for EP in the simplex mean submodel, which is significant at 10%. The

AIC, SBC and pseudo-R2 (RAO et al., 1973) statistics are considered as goodness-of-fit measures.

Residual analysis is performed through quantile residuals, and we also compute the ?-value

for the Shapiro-Wilk (SW) test to verify the assumption of normality for the residuals. From

reported in Table 9, the null hypothesis that the residual distribution is normal is not rejected at a

significance level of 5% for both fitted models but the simplex regression was superior to the

beta in all the considered statistics. Thus, there are evidences that the simplex regression is better

suited to the current data.

Figure 10 displays plots of the residuals versus the index, wormplot (BUUREN; FREDRIKS,

2001) and quantile-quantile plot (QQ-plot) for the simplex regression quantile residuals. These

plots confirm that this model is suitable for modeling the vote proportions.
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Figure 10 – Residual analysis for the final simplex regression.
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Therefore, we select the following simplex regression to explain the variable of interest,

log[ ˆ̀C/(1− ˆ̀C)] = −0.7174−0.0030 EP+0.0005 MHIC+3.6378 PE−0.0002 DD

+0.3286 South−0.2431 PG_2014_Left−0.4472 PG_2018_Left, (3.4)

and

log(f̂C) = 0.8580−5.2280 PE+1.1931 North−0.7768 Cap_BR. (3.5)

Some findings of the vote proportion can follow from Equations (3.4) and (3.5).

• The MHIC and the South region have a positive impact on the vote proportions’ mean.

These results are consistent with Hunter and Power (2019) which indicate income among

the support indicators for Bolsonaro’s election. The candidate won among all income

groups, except for the poor and very poor.
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• The PE is a significant covariate, and the average vote proportions tend to be higher in

the municipalities with a more evangelical population. It is also significant about the

dispersion, and the tends to decrease as the proportion of evangelicals increases.

• PG_2014_Left and PG_2018_Left had negative influence in the vote proportions’ mean.

In fact, Bolsonaro adopted a position of reducing state intervention in the economy in his

campaign, and right-wing voters in Latin America have traditionally been against state

intervention in the economy (RENNÓ, 2020).

• The North region is positively related to the dispersion of the variable of interest, i.e., the

municipality on this region present vote proportion more disperse than those from other

regions. Finally, the dispersion tends to decrease for the capitals.

3.5 CONCLUSION

In this chapter, we conducted a study on unitary regression models to quantify the effect

of explanatory variables on the proportion of votes of Jair Bolsonaro in the second round of the

2018 presidential elections. We considered data from Brazilian municipalities with a population

greater than 300,000 and verified that the elected candidate won in most cities considered. The

vote proportion distribution is left-skewed with a few outliers in the left tail. All of them are

located in the Northeast region. As explanatory variables, we select some socio-demographic

indicators and the political spectrum of the governors’ party in the 2014 and 2018 elections.

We constructed beta and simplex regressions with systematic components for the mean and

dispersion parameters using the Generalized Additive Models for Location, Scale, and Shape

(GAMLSS) framework. Both fitted regressions are estimated by the maximum likelihood method

using the GAMLSS R package. The Akaike information criterion (AIC), Schwarz’s Bayesian

criteria (SBC), and pseudo-R2 statistics were considered as goodness-of-fit statistics and the

quantile residuals were analyzed as a diagnostic tool. We concluded that the simplex regression is

superior to the beta and is suitable for modeling the variable of interest. We evaluated significant

effects for the monthly household income per capita, the proportion of evangelicals, and the

political spectrum of the governors’ party elected in 2014 and 2018. We also verify that some

Brazilian regions impact the vote proportions’ mean and dispersion.
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4 CONCLUDING REMARKS

This masterthesis investigated the unit models for analyzing vote proportions, defined

as the district vote shares by the total number of valid votes cast in the district. The motivating

data set is vote proportions in Brazilian presidential elections runoff in 2018. The objective of

this masterthesis is twofold and is presented in two main independent chapters. In Chapter 2, we

defined a two-component mixture model to describe population heterogeneities. The unit Weibull

two-component mixture model (UWUW) is a new distribution formulated considering that

each mixture’s component follows the unit Weibull distribution. Some of the main properties of

UWUWare presented, such as ordinary and incomplete moments. The ExpectationMaximization

algorithm is used to obtain maximum likelihood estimates for the model parameters, and Monte

Carlo simulations are performed. An application to electoral data illustrates the importance and

potential of the new model. The results indicate that our proposal is adequate to fit this data set

since it is adequate to analyze asymmetric and bimodal behaviors. With the application, it was

possible to verify that the performance of UWUW can surpass other two-component mixture

models based on other widely known unit distributions such as beta and Kumaraswamy.

Chapter 3 carries out a regression study to explain the mean variations of the vote

proportions received by Jair Bolsonaro in the runoff of the 2018 presidential elections. We fit

beta and simplex regressions since they are parameterized in terms of the mean and dispersion

parameters and are available in the R programming language. These models resemble the

Generalized Additive Models for Location, Scale, and Shape (GAMLSS) by allowing a regression

structure in the mean and the dispersion parameter. The simplex regression is superior to the

beta and is suitable for modeling the variable of interest. We evaluate significant effects for some

socio-demographic indicators, and the political spectrum of the governors’ party are selected as

explanatory variables for the vote proportions.

In future work, we intend to address the following problems:

• Introduce mixture distributions based on other unit models such as the submodels of the

unit extended Weibull family.

• Propose the UWUWquantile-regressionmodel with systematic components for the quantile

parameter of each mixture component.

• Analyze the effect of explanatory variables on quantile variations of the vote proportions

received by Jair Bolsonaro in the runoff of the 2018 presidential elections.
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APPENDIX A – Simulation study

In this Section, Monte Carlo simulations are presented to evaluate the performance of the

EM algorithm for estimating the parameter vector of the UWUW model. It is noteworthy that

the results of simulations are presented for various combinations of parameters. In which the

values of g were varied, considering g = c (0.25, 0.5, 0.75).
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Table 10 – RB% and MSE of the estimates of the MLEs obtained via the EM algorithm of the UWUW model, g = 0.5.

Scenario `1 `2 V1 V2 ? =
RB % MSE

ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂ ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂

9 0.2 0.1 2.5 0.9 0.4
100 0.3975 0.5491 19.2335 2.6651 0.0161 0.0021 0.0019 0.4928 0.0131 0.0007
250 0.1689 0.1725 6.2358 1.0401 -0.0172 0.0006 0.0007 0.1353 0.0043 0.0002
500 0.0712 0.1124 2.8551 0.5806 0.0006 0.0003 0.0003 0.0587 0.0021 0.0001

10 0.4 0.2 5.0 0.8 0.4
100 0.0013 0.4209 29.4588 1.8725 0.0157 0.0003 0.0038 1.3055 0.0081 0.0013
250 0.0099 0.1079 9.8147 0.7456 -0.0158 0.0001 0.0015 0.3779 0.0029 0.0005
500 0.0012 0.0907 4.5832 0.4423 0.0011 0.0001 0.0007 0.1796 0.0013 0.0002

11 0.9 0.7 4.7 0.5 0.5
100 -0.0986 -0.0158 2.7373 26.0359 -0.0045 0.0042 0.0001 0.0121 1.1989 0.0013
250 -0.0558 -0.0073 1.1311 9.7238 -0.0107 0.0016 0.0001 0.0043 0.3864 0.0005
500 -0.0098 -0.0051 0.4744 5.2583 0.0184 0.0008 0.0001 0.0021 0.1802 0.0002

12 0.4 0.6 1.2 3.2 0.5
100 -0.0707 0.0515 4.1733 13.8448 0.0104 0.0027 0.0005 0.0272 0.3834 0.0011
250 -0.0477 0.0184 1.7183 4.8896 0.0007 0.0011 0.0002 0.0094 0.1254 0.0004
500 -0.0077 0.0051 0.6897 3.0752 -0.0028 0.0005 0.0001 0.0043 0.0581 0.0002

13 0.9 0.7 4.7 0.5 0.7
100 -0.0049 -0.8978 17.2693 1.4606 -0.0251 0.0001 0.0075 0.6201 0.0038 0.0018
250 -0.0018 -0.4241 6.5468 0.5641 -0.0051 0.0001 0.0031 0.2073 0.0013 0.0007
500 -0.0002 -0.1668 2.8111 0.3263 -0.0026 0.0001 0.0014 0.0961 0.0006 0.0003

14 0.5 0.2 2.3 3.5 0.7
100 -0.0733 0.0426 2.7725 25.8623 0.0153 0.0013 0.0043 0.0083 0.3435 0.0009
250 0.0332 -0.0917 1.2734 10.0406 0.0068 0.0005 0.0016 0.0031 0.0889 0.0003
500 0.0224 -0.0036 0.6225 4.8221 0.0068 0.0002 0.0008 0.0014 0.0394 0.0001

15 0.3 0.8 2.4 1.2 0.8
100 0.1928 -0.5945 4.2111 15.8039 -0.0256 0.0004 0.0026 0.0632 0.2177 0.0009
250 0.0987 -0.3513 1.4691 5.0698 0.0127 0.0001 0.0009 0.0244 0.0525 0.0003
500 0.0481 -0.1862 0.6871 2.1657 0.0097 0.0001 0.0004 0.0116 0.0221 0.0001

16 0.4 0.9 1.5 1.9 0.8
100 -0.1281 -0.3337 3.6454 26.8186 -0.0245 0.0012 0.0004 0.0265 0.7181 0.0011
250 -0.0605 -0.1125 1.4978 9.4096 0.0063 0.0004 0.0001 0.0091 0.1364 0.0004
500 -0.0369 -0.0457 0.7765 3.9336 0.0113 0.0002 0.0001 0.0041 0.0501 0.0002

Source: Author (2021)
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Figure 11 – Total RB% for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.5.

(a) Scenarios 9 to 12.
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(b) Scenarios 13 to 16.
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Figure 12 – Total MSE for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.5.

(a) Scenarios 9 to 12.
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Table 11 – RB% and MSE of the estimates of the MLEs obtained via the EM algorithm of the UWUW model, para g = 0.25.

Scenario `1 `2 V1 V2 ? =
RB % MSE

ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂ ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂

17 0.2 0.1 2.5 0.9 0.4
100 0.5151 0.8172 19.2698 3.3123 -0.0111 0.0021 0.0016 0.5305 0.0148 0.0005
250 0.1616 0.2714 6.6401 1.1325 -0.0082 0.0006 0.0005 0.1527 0.0042 0.0002
500 0.0541 0.1712 2.8853 0.6107 0.0108 0.0002 0.0002 0.0658 0.0019 0.0001

18 0.4 0.2 5.0 0.8 0.4
100 0.1001 0.7393 33.7887 1.9095 0.0106 0.0003 0.0028 1.4821 0.0079 0.0011
250 0.0327 0.2411 11.5953 0.7392 -0.0015 0.0001 0.0011 0.4158 0.0028 0.0004
500 0.0102 0.1796 5.1559 0.4521 0.0077 0.0001 0.0005 0.1863 0.0013 0.0002

19 0.9 0.7 4.7 0.5 0.5
100 0.0102 0.0099 18.8134 1.3925 -0.0076 0.0001 0.0051 0.6508 0.0038 0.0016
250 0.0051 -0.0495 7.4006 0.5573 -0.0212 0.0001 0.0021 0.2215 0.0013 0.0006
500 0.0031 0.0386 3.6082 0.3257 0.0103 0.0001 0.0011 0.1035 0.0006 0.0003

20 0.4 0.6 1.2 3.2 0.5
100 0.4011 0.2111 4.7789 15.3331 0.0125 0.0021 0.0005 0.0308 0.4482 0.0007
250 0.1588 0.0655 1.8713 5.1945 -0.0086 0.0007 0.0001 0.0099 0.1409 0.0003
500 0.0682 0.0516 0.7881 3.0652 0.0039 0.0004 0.0001 0.0044 0.0661 0.0001

21 0.8 0.3 6.0 2.6 0.7
100 -0.0051 0.0906 12.1058 15.5138 -0.0042 0.0001 0.0011 0.4109 0.2621 0.0021
250 -0.0011 0.0041 4.8797 6.1073 0.0332 0.0001 0.0004 0.1511 0.0844 0.0008
500 0.0001 -0.0039 2.0299 3.3756 0.0199 0.0001 0.0002 0.0697 0.0401 0.0004

22 0.5 0.2 2.3 3.5 0.7
100 -0.0658 0.2541 5.6023 26.3541 0.0182 0.0004 0.0003 0.0807 0.7716 0.0013
250 -0.0097 0.0817 2.1471 9.0033 0.0147 0.0001 0.0001 0.0296 0.1849 0.0005
500 0.0045 0.0467 1.0381 4.6491 0.0073 0.0001 0.0001 0.0138 0.0827 0.0002

23 0.3 0.8 2.4 1.2 0.8
100 0.1986 -0.1101 3.8889 15.5529 -0.0274 0.0003 0.0029 0.0624 0.2707 0.0011
250 0.0856 -0.0549 1.4251 5.3471 0.0113 0.0001 0.0011 0.0229 0.0473 0.0004
500 0.0408 -0.0081 0.7339 2.4304 0.0109 0.0001 0.0004 0.0104 0.0193 0.0002

24 0.4 0.9 1.5 1.9 0.8
100 0.1234 -0.2867 3.4196 29.1013 -0.0238 0.0007 0.0011 0.0261 0.9943 0.0011
250 0.0467 -0.0635 1.4276 9.6141 0.0071 0.0003 0.0001 0.0089 0.1406 0.0003
500 0.0209 -0.0257 0.7481 4.0017 0.0101 0.0001 0.0001 0.0041 0.0523 0.0002

Source: Author (2021)
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Figure 13 – Total RB% for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.25.

(a) Scenarios 17 to 20.
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(b) Scenarios 21 to 24.
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Figure 14 – Total MSE for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.25.

(a) Scenarios 17 to 20.
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Table 12 – RB% and MSE of the estimates of the MLEs obtained via the EM algorithm of the UWUW model, para g = 0.75.

Scenario `1 `2 V1 V2 ? =
RB % MSE

ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂ ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂

25 0.2 0.1 2.5 0.9 0.4
100 0.0614 0.6321 16.8864 2.2831 0.0249 0.0026 0.0034 0.4048 0.0113 0.0011
250 0.0654 0.2027 6.0884 0.9445 -0.0102 0.0011 0.0013 0.1137 0.0041 0.0004
500 0.0407 0.1089 2.5926 0.5346 0.0041 0.0004 0.0006 0.0491 0.0019 0.0002

26 0.4 0.2 5.0 0.8 0.4
100 -0.0897 0.1097 25.6589 2.1509 0.0295 0.0006 0.0075 1.1182 0.0085 0.0016
250 -0.0219 -0.0457 8.7453 0.8615 0.0073 0.0002 0.0031 0.3245 0.0031 0.0006
500 -0.0108 -0.0244 3.7014 0.4897 0.0232 0.0001 0.0015 0.1482 0.0014 0.0003

27 0.9 0.7 4.0 0.6 0.5
100 -0.0375 -2.4091 12.3655 2.1603 0.0128 0.0001 0.0124 0.3989 0.0064 0.0019
250 -0.0159 -1.0385 4.9285 0.8428 0.0032 0.0001 0.0047 0.1403 0.0022 0.0008
500 -0.0048 -0.5292 2.0703 0.4681 0.0201 0.0001 0.0022 0.0641 0.0011 0.0004

28 0.4 0.6 1.2 3.2 0.5
100 -0.8291 -0.1121 4.4417 12.4527 0.0194 0.0056 0.0008 0.0271 0.3241 0.0013
250 -0.3738 -0.0587 1.7871 4.7815 -0.0017 0.0022 0.0003 0.0091 0.1076 0.0005
500 -0.1477 -0.0289 0.7476 2.3435 0.0073 0.0011 0.0001 0.0041 0.0504 0.0002

29 0.8 0.3 6.0 2.6 0.7
100 -0.0327 -0.1788 12.0966 14.4248 -0.0032 0.0001 0.0021 0.3948 0.2386 0.0021
250 -0.0126 -0.1266 4.7917 5.8392 0.0395 0.0001 0.0008 0.1464 0.0785 0.0008
500 -0.0042 -0.0661 2.1076 3.0914 0.0171 0.0001 0.0004 0.0676 0.0377 0.0004

30 0.5 0.2 2.3 3.5 0.7
100 -0.5119 0.6754 7.3478 32.8236 0.0154 0.0011 0.0036 0.1011 1.0829 0.0009
250 -0.2501 0.5165 2.7293 9.0254 0.0038 0.0004 0.0017 0.0387 0.3449 0.0003
500 -0.1057 0.2479 1.1895 4.1899 0.0047 0.0001 0.0006 0.0188 0.1662 0.0001

31 0.3 0.8 2.4 1.2 0.8
100 -0.1141 -1.5711 7.3688 22.0105 -0.0223 0.0011 0.0052 0.0745 0.5316 0.0007
250 -0.0188 -0.6967 3.1843 6.7136 0.0137 0.0004 0.0015 0.0298 0.0632 0.0002
500 0.0181 -0.3654 1.5101 2.9003 0.0084 0.0002 0.0006 0.0148 0.0275 0.0001

32 0.4 0.9 1.5 1.9 0.8
100 -0.4861 -0.5492 3.8337 25.4473 -0.0256 0.0025 0.0005 0.0269 0.5981 0.0011
250 -0.2163 -0.2241 1.5794 8.8246 0.0049 0.0011 0.0001 0.0094 0.1229 0.0004
500 -0.1163 -0.0938 0.8036 3.8307 0.0127 0.0004 0.0001 0.0042 0.0473 0.0002

Source: Author (2021)
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Figure 15 – Total RB% for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.75.

(a) Scenarios 25 to 28.
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(b) Scenarios 29 to 32.
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Figure 16 – Total MSE for the estimates of the MLEs of the UWUWmodel obtained via
EM algorithm, g = 0.75.

(a) Scenarios 25 to 28.
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(b) Scenarios 29 to 32.
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Table 13 – RB% and MSE of the estimates of the MLEs obtained via the EM algorithm of the UWUW model, para g = 0.5.

Scenario `1 `2 V1 V2 ? =
RB % MSE

ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂ ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂

33 0.1 0.3 0.7 1.3 0.4
100 1.3431 0.8492 5.1813 5.1494 0.0241 0.0072 0.0051 0.0244 0.0469 0.0005
250 0.5284 0.3362 1.9471 1.8891 -0.0109 0.0025 0.0019 0.0071 0.0166 0.0002
500 0.2695 0.1891 0.8267 1.0515 0.0056 0.0012 0.0009 0.0029 0.0079 0.0001

34 0.7 0.4 2.9 5.7 0.4
100 -0.0656 -0.0062 14.3154 18.6748 0.0326 0.0004 0.0001 0.2733 0.6269 0.0019
250 -0.0269 -0.0151 5.3321 7.3435 0.0044 0.0001 0.0001 0.0869 0.2085 0.0008
500 -0.0091 -0.0003 2.2942 4.0364 0.0129 0.0001 0.0001 0.0393 0.1001 0.0004

35 0.6 0.5 1.1 0.6 0.5
100 -0.2387 -0.6997 7.3386 4.2118 -0.0071 0.0107 0.0179 0.0635 0.0155 0.0003
250 0.3096 -0.7241 2.1014 1.6881 -0.0084 0.0034 0.0071 0.0214 0.0048 0.0001
500 0.1159 -0.2658 0.9406 0.7811 0.0078 0.0016 0.0033 0.0095 0.0018 0.0001

36 0.3 0.4 1.7 2.1 0.5
100 1.3058 -0.5612 16.8161 34.5799 0.0041 0.0069 0.0076 0.2003 0.3692 0.0002
250 0.0242 0.3216 9.5246 12.9866 0.0025 0.0028 0.0032 0.0916 0.0977 0.0001
500 -0.1507 0.3576 5.1591 6.4477 -0.0006 0.0013 0.0015 0.0469 0.0431 0.0001

37 0.4 0.3 0.9 4.3 0.7
100 0.0951 0.0155 1.9486 50.7801 0.0078 0.0034 0.0012 0.0081 2.7065 0.0007
250 0.0351 -0.0081 0.7558 17.1542 0.0101 0.0013 0.0003 0.0031 0.6084 0.0003
500 0.0303 0.0044 0.3515 7.9056 0.0146 0.0006 0.0001 0.0013 0.2662 0.0001

38 0.8 0.9 3.1 2.3 0.7
100 0.1885 -0.4281 6.6299 29.2241 -0.0064 0.0001 0.0004 0.1876 0.7482 0.0008
250 0.1156 -0.2601 1.3025 8.3721 0.0246 0.0001 0.0001 0.0791 0.1555 0.0003
500 0.0668 -0.1386 0.1455 3.3921 0.0011 0.0001 0.0001 0.0397 0.0681 0.0001

39 0.9 0.8 1.9 0.6 0.8
100 0.0154 -1.7455 3.3579 6.3849 -0.0078 0.0001 0.0081 0.0468 0.0322 0.0007
250 0.0074 -0.7837 1.2941 2.3185 -0.0146 0.0001 0.0031 0.0168 0.0072 0.0002
500 0.0021 -0.3069 0.7142 1.0719 0.0024 0.0001 0.0014 0.0079 0.0031 0.0001

40 0.1 0.4 2.8 1.7 0.8
100 0.1908 -0.4331 8.0864 45.0598 -0.0201 0.0004 0.0084 0.1143 2.8126 0.0006
250 0.1145 -0.6036 3.3183 11.0698 0.0113 0.0001 0.0039 0.0466 0.1681 0.0002
500 0.0834 -0.5345 1.2913 4.2572 0.0061 0.0001 0.0021 0.0241 0.0651 0.0001

Source: Author (2021)
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Figure 17 – Total RB% for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.5.

(a) Scenarios 33 to 36.
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(b) Scenarios 34 to 40.
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Figure 18 – Total MSE for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.5.

(a) Scenarios 33 to 36.
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(b) Scenarios 37 to 40.
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Table 14 – RB% and MSE of the estimates of the MLEs obtained via the EM algorithm of the UWUW model, para g = 0.25.

Scenario `1 `2 V1 V2 ? =
RB % MSE

ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂ ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂

41 0.1 0.3 0.7 1.3 0.4
100 2.3087 1.2611 7.2043 5.3671 0.0107 0.0092 0.0057 0.0367 0.0531 0.0004
250 0.6246 0.5861 2.6006 1.6021 -0.0095 0.0018 0.0017 0.0089 0.0193 0.0001
500 0.2986 0.2698 1.0301 0.8254 0.0055 0.0008 0.0008 0.0032 0.0092 0.0001

42 0.7 0.4 2.9 5.7 0.4
100 0.0309 0.0585 13.2779 19.7381 0.0308 0.0003 0.0001 0.2551 0.6388 0.0021
250 0.0079 0.0132 4.8609 7.8168 0.0021 0.0001 0.0001 0.0832 0.2192 0.0008
500 0.0006 0.0163 2.0896 4.3322 0.0141 0.0001 0.0001 0.0383 0.1061 0.0004

43 0.6 0.5 1.1 0.6 0.5
100 -0.2619 1.9723 8.6334 5.5848 -0.0128 0.0112 0.0175 0.0693 0.0201 0.0004
250 0.1232 0.3801 2.1328 2.1169 -0.0044 0.0035 0.0059 0.0239 0.0056 0.0001
500 0.0875 0.1816 0.8149 0.9274 0.0096 0.0013 0.0024 0.0111 0.0019 0.0001

44 0.3 0.4 1.7 2.1 0.5
100 2.4869 0.5871 18.7961 40.2805 0.0037 0.0069 0.0071 0.2241 0.4299 0.0001
250 0.6262 0.9384 11.9024 15.1276 0.0024 0.0024 0.0034 0.1121 0.1118 0.0001
500 0.0267 0.8458 7.1611 7.0445 -0.0007 0.0009 0.0017 0.0601 0.0503 0.0001

45 0.4 0.3 0.9 4.3 0.7
100 0.5726 0.0498 2.1856 49.7098 -0.0002 0.0026 0.0009 0.0086 2.3576 0.0007
250 0.2259 0.0053 0.8353 16.9112 0.0222 0.0011 0.0002 0.0029 0.5597 0.0003
500 0.1404 -0.0026 0.3622 8.8801 -0.0034 0.0005 0.0001 0.0013 0.2471 0.0001

46 0.8 0.9 3.1 2.3 0.7
100 0.1732 -0.3043 5.4412 24.9968 -0.0063 0.0001 0.0004 0.1674 0.7201 0.0009
250 0.0723 -0.1961 1.3165 6.9376 0.0269 0.0001 0.0001 0.0664 0.1332 0.0003
500 0.0311 -0.0841 0.5129 3.2706 0.0014 0.0001 0.0001 0.0316 0.0599 0.0001

47 0.9 0.8 1.9 0.6 0.8
100 0.0451 -0.0069 3.4448 7.5111 -0.0217 0.0001 0.0048 0.0488 0.0469 0.0005
250 0.0153 -0.0754 1.2818 2.4641 -0.0038 0.0001 0.0021 0.0173 0.0073 0.0002
500 0.0052 0.0308 0.6826 1.1224 0.0161 0.0001 0.0009 0.0083 0.0029 0.0001

48 0.1 0.4 2.8 1.7 0.8
100 0.2174 0.0131 5.3541 31.7771 -0.0228 0.0001 0.0093 0.0997 1.0556 0.0007
250 0.1076 -0.5425 1.7278 8.3367 0.0115 0.0001 0.0046 0.0399 0.1326 0.0002
500 0.0564 -0.4514 0.5708 3.2849 0.0074 0.0001 0.0023 0.0201 0.0556 0.0001

Source: Author (2021)
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Figure 19 – Total RB% for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.25.

(a) Scenarios 41 to 44.
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(b) Scenarios 45 to 48.
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Figure 20 – Total MSE for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.25.

(a) Scenarios 41 to 44.
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(b) Scenarios 45 to 48.
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Table 15 – RB% and MSE of the estimates of the MLEs obtained via the EM algorithm of the UWUW model, para g = 0.75.

Scenario `1 `2 V1 V2 ? =
RB % MSE

ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂ ˆ̀1 ˆ̀2 V̂1 V̂2 ?̂

49 0.1 0.3 0.7 1.3 0.4
100 1.8442 0.1283 3.7247 4.8947 0.0336 0.0121 0.0063 0.0165 0.0426 0.0008
250 0.8289 0.0132 1.4405 1.8396 -0.0031 0.0046 0.0025 0.0054 0.0145 0.0003
500 0.4627 -0.0081 0.5953 1.0576 0.0011 0.0021 0.0012 0.0024 0.0068 0.0001

50 0.7 0.4 2.9 5.7 0.4
100 -0.2511 -0.0269 14.3522 15.5045 0.0337 0.0005 0.0002 0.3013 0.5694 0.0017
250 -0.0962 -0.0254 5.4704 5.9814 0.0058 0.0002 0.0001 0.0966 0.1883 0.0007
500 -0.0346 -0.0092 2.1958 3.3271 0.0117 0.0001 0.0001 0.0431 0.0906 0.0003

51 0.6 0.5 1.1 0.6 0.5
100 -0.8314 -2.3712 6.5533 2.9878 0.0073 0.0115 0.0269 0.0559 0.0111 0.0006
250 -0.2149 -1.1893 2.2669 1.1962 -0.0124 0.0045 0.0118 0.0174 0.0036 0.0002
500 -0.1053 -0.5362 0.9951 0.5918 0.0021 0.0021 0.0058 0.0077 0.0015 0.0001

52 0.3 0.4 1.7 2.1 0.5
100 0.2557 -1.4483 14.3751 28.2231 0.0048 0.0094 0.0083 0.1762 0.3044 0.0003
250 -0.2795 -0.2884 7.0162 10.8547 0.0024 0.0043 0.0031 0.0727 0.0824 0.0001
500 -0.1272 -0.1342 3.3515 5.6571 -0.0004 0.0023 0.0016 0.0357 0.0359 0.0001

53 0.4 0.3 0.9 4.3 0.7
100 -0.3815 -0.0963 1.8176 47.1071 0.0136 0.0065 0.0019 0.0085 2.4788 0.0009
250 -0.1805 -0.0261 0.7456 14.1534 0.0261 0.0026 0.0006 0.0031 0.5503 0.0003
500 -0.0554 -0.0404 0.3258 8.0644 -0.0046 0.0013 0.0003 0.0014 0.2442 0.0001

54 0.8 0.9 3.1 2.3 0.7
100 0.1001 -0.7466 10.7375 35.2397 -0.0066 0.0003 0.0008 0.2146 0.9167 0.0007
250 0.1408 -0.4001 2.5558 11.6171 0.0217 0.0001 0.0002 0.0977 0.1983 0.0002
500 0.1351 -0.2393 0.0977 4.2931 0.0007 0.0001 0.0001 0.0533 0.0836 0.0001

55 0.9 0.8 1.9 0.6 0.8
100 -0.0398 -6.3071 2.8454 8.3544 -0.0211 0.0001 0.0294 0.0426 0.0557 0.0009
250 -0.0159 -2.4248 1.1844 2.5477 -0.0101 0.0001 0.0078 0.0161 0.0076 0.0003
500 -0.0067 -1.0405 0.5931 1.1345 -0.0002 0.0001 0.0032 0.0076 0.0031 0.0002

56 0.1 0.4 2.8 1.7 0.8
100 -0.1207 -1.3397 14.5299 65.5843 -0.0162 0.0005 0.0128 0.1453 4.2333 0.0004
250 -0.1128 -0.5662 7.8871 18.6456 0.0107 0.0002 0.0051 0.0593 0.2724 0.0001
500 -0.0635 -0.2924 4.6242 8.2711 0.0044 0.0001 0.0025 0.0299 0.0826 0.0001

Source: Author (2021)
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Figure 21 – Total RB% for the estimates of the MLEs of the UWUWmodel obtained via
EM algorithm, g = 0.75.

(a) Scenarios 49 to 52.
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(b) Scenarios 52 to 56.
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Figure 22 – Total MSE for the estimates of the MLEs of the UWUW model obtained via
EM algorithm, g = 0.75.

(a) Scenarios 49 to 52.
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(b) Scenarios 53 to 56.
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