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RESUMO

Este trabalho consiste em apresentar uma proposta de transposicdo didatica
apoiando-se na teoria de Chevallard (1991) e Marie-Alberte Joshua (1982). Nessa
teoria sdo estudados os processos de transformacdo do saber cientifico para o
saber ensinado que sdo saberes dominado por grupos sociais diferentes, mas com
elementos comuns ligados ao saber, que se interligam, coexistem e se influenciam.
O conteudo que sera apresentado como saber cientifico serd& o método de HFR.
Esse método € um dos mais utilizados em calculos de estrutura eletronica da
matéria e com ele é possivel resolver a equagdo de Schrondinger aplicada a um
sistema de N elétrons interagentes, de forma aproximada. Para tornar as aplicacdes
envolvida nesse método passivel de ser ensinado em cursos nao-especificos, ou
seja, para transforma-las num saber a ensinar, serdo utilizados nesse trabalho dois
“recursos didaticos”. O primeiro serd a andlise do saber sabio. A partir da analise de
livros, artigos e sites, buscaremos 0s principais elementos envolvidos na teoria de
HFR que a torna tdo complicada de ser ensinada para alunos de Licenciatura em
Fisica e Quimica. A segunda sera uma aplicacdo. Aplicaremos esse método ao poco
de potencial unidimensional infinito, através de um modelo bem simples, porém
muito importante, que geralmente é visto no curso de fisica moderna durante a

graduacéao.

PALAVRAS CHAVES: Transposicdo Didéatica, Hartree-Fock-Roothann,

Equacao de Schrodinger, Saber Cientifico, Saber Ensinado, Po¢co Quadrado Infinito.
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CAPITULO |

Nesse Capitulo sera realizada uma contextualizacdo na qual sera feita uma
breve abordagem histérica de alguns fatos que deram origem a mecéanica quantica
bem como dos problemas que surgiram e que levaram ao desenvolvimento da
aproximagdo de Hartree-Fock-Roothann. Em seguida sera apresentada a

problematica a qual se propde esse texto.

INTRODUCAO

1.1. CONTEXTUALIZACAO

Um dos maiores interesses da mecanica quantica € o estudo de sistemas
microscopicos com dimensfes préximas ou até mesmo abaixo da escala atbmica
como, por exemplo, atomos, elétrons, prétons e outras particulas subatdmicas. A
medida que esses sistemas foram sendo estudados varios fenbmenos isentos de
qualquer analogia classica foram surgindo. Isso foi um fato surpreendente para a
maioria dos fisicos no inicio do século XX que acreditavam que a fisica estava
pronta e nada mais precisava ser descoberto. Um fato que trouxe fortes implicacdes
nas bases conceituais da mecanica classica e que deram origem a mecanica
guantica foram os estudos voltados aos fenbmenos ligados a estrutura da matéria,
principalmente relacionados: i) a radiacédo do corpo negro realizado por Max Planck
em 1900, ii) aos fendbmenos relacionados ao efeito fotoelétrico estudados por
Einstein em 1905, iii) aos estudos do modelo nuclear de Thomson apresentado em
1904 iv), ao modelo nuclear de Rutherford apresentado em 1911, v) ao modelo
atdmico de Bohr proposto no ano de 1913 e vi) a teoria ondulatoria de De Broglie
apresentada em 1924. Esses estudos apresentaram resultados, até entéo,

impossiveis de serem explicados pela mecanica classica.
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A mecanica quéantica possui uma esséncia probabilistica assim como varios
outros fendmenos estudados pela fisica cladssica. No entanto, nos sistemas
guanticos existem fendmenos que nao possuem nenhum analogo classico.
Tecnicamente, segundo a tese de Louis De Broglie apresentada em 1924, as
particulas possuem comportamento ondulatério e “nédo faz sentido perguntar onde
precisamente esta a onda”. O comportamento ondulatério das particulas gera vérias
implicagBes na fisica. Uma delas é o principio da indistinguibilidade que diz que as
particulas ndo podem ser distinguidas.

Em 1926 Erwin Schrddinger encontrou uma equac¢do de onda (analoga a
equacao de onda classica) que até hoje é considerada a equacdo de onda que
governa o movimento dos elétrons e outras particulas com massa diferente de zero.
A equacao de Schrodinger aplicada a um sistema envolvendo apenas um elétron ou
a sistemas envolvendo mais que um elétron nao interagentes € possivel de ser
“fatorada”, ou seja, € possivel separar cada termo da equacao, pois cada um deles
depende apenas de suas proprias coordenadas. Contudo, o mesmo nao se aplica a
sistemas que levem em consideracdo a interacdo eletrénica. Realmente, essa foi
uma época desafiadora tanto para os fisicos quanto para os quimicos sendo, talvez,
a época dos maiores desafios que ja foram enfrentados na histéria da ciéncia. Se
por um lado eles tinham uma equacgéo poderosa cuja solucdo era capaz de fornecer
informacBes fundamentais a respeito de um sistema microscopicos envolvendo
particulas interagentes, por outro, essa equacdo somente possuia solucdes
analiticas para o caso de particulas ndo interagentes.

Varias tentativas foram feitas para resolver esse problema. Em 1928, Douglas
Hartree adotou o modelo das particulas independente, sugerido por Bohr em 1923, e
propés uma forma alternativa conhecida por produto de Hartree (ver secédo 2.4) para
calcular a funcéo de onda através da solucdo da equacédo de Schrodinger. Hartree
percebeu que a solugcdo numeérica de problemas de muitos corpos teria de envolver
automacao tanto analdgica quanto digital dos célculos necessarios. Contudo, 0s
primeiros calculos realizados por Hartree ndo levavam em consideragdo o principio
da antissimetria que esta associada as particulas de spins semi-inteiro (elétrons,
néutrons e atomos). Essas particulas sédo conhecidas como férmions e obedecem ao
principio de exclusdo de Pauli que afirma que ndo pode haver dois elétrons com o

mesmo conjunto de nimeros quanticos no mesmo orbital. Em 1930 Vladimir A. Fock
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(1898-1974) modificou 0 método de Hartree permitindo a adogéo da funcéo de onda
como sendo um determinante de Slater, que nada mais é do que um modo de
conseguir funcdes antissimétricas (ver secdo 2.5). Em 1951, Clemens C.J.Roothann
publica 0o seu mais famoso artigo o qual estabelece as bases definitivas para
calculos de orbitais moleculares.

Habitualmente € utilizado o termo ab-initio, que tem como significado “desde o
principio”, para designar métodos que tém como objetivo resolver a equacdo de
Schrédinger para um hamiltoniano completo. Os primeiros célculos do tipo ab initio
Hartree-Fock sobre moléculas diatbmicas foram efetuados em 1956 no MIT,
utilizando como funcdes de base orbitais de Slater (funcbes de ondas que
satisfazem ao principio da antissimetria) dando inicio assim a quimica quantica
computacional. Na década de setenta ja existiam varios programas ab initio como o
ATMOL, POLYATOM, IBMOL e GAUSSIAN comecaram a serem usados para
acelerar o célculo de orbitais moleculares. Atualmente, destes programas, somente
0 GAUSSIAN continua em uso.

1.2. PROBLEMATICA

Em um curso de fisica moderna € comum a resolucdo da equacdo de
Schroedinger para elétrons ndo interagentes, confinados em poc¢os quéanticos
unidimensionais tais como: o poco de potencial infinito (também chamado de
particula na caixa) e o oscilador harménico. Todavia, a mecéanica quantica ndo se
restringe apenas ao estudo de atomos e moléculas que possuem somente elétrons
nao interagentes. Para se entender um pouco dos diversos ramos da nanociéncia
como espectroscopia, microscopia eletronica, modelagem molecular e sobre as
demais areas que envolvem métodos de calculo da estrutura da matéria é
necessario saber lidar com sistemas mais sofisticados, envolvendo elétrons
interagentes.

As pesquisas em nanociéncia representam, hoje, um dos maiores interesses
no mundo e tem como objetivo estudar sistemas mais sofisticados (envolvendo

elétrons interagentes). Tais estudos possibilitam o entendimento, a manipulacéo e o


http://pt.wikipedia.org/wiki/M%C3%A9todo_de_Hartree-Fock
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uso da estrutura da matéria a nivel atbmico e molecular, ou seja, a dimensfes de 1 a
100 nanbmetros. Uma de suas aplicacbes € a nanotecnologia que aparece
associada a diversas areas do conhecimento como a medicina, fisica, quimica,
engenharia e informatica e que promete uma grande revolucdo tecnoldgica. Os
resultados obtidos pelas pesquisas desenvolvidas nessa area se manifestam no
cotidiano das pessoas de varias formas: através de produtos quimicos (alguns
relacionados a estética), da nanorobdtica, dos aparelhos eletrdnicos avancados, da
saude (desenvolvimento de exames diagnosticos em nanoescala e implementacéo
de modalidades terapéuticas) dentre outros. Além disso, varias outras pesquisas tem
sido desenvolvidas nessa area. Isso significa que o conhecimento esta sendo
desenvolvido de forma muito rapida e dinamica principalmente no que diz respeito a
estrutura da matéria, sendo necessario urgentemente o desenvolvimento de
propostas de ensino que possam explica-los.

Na natureza os elétrons interagem entre si. Paradoxalmente, o grau de
sofisticagdo nos cursos de fisica moderna tende a “sofisticagdo matematica” de
problemas como o a&tomo de hidrogénio que, impreterivelmente, recai em funcdes
especiais (harménicos esféricos e polinbmios de Laguerre), mas que ainda assim,
envolvem apenas elétrons ndo interagentes. Assim, vemos que métodos para se
tratar o problema de muitos corpos como a aproximacao de Hartree-Fock (foco deste
trabalho), a teoria do funcional da densidade, dentre outros, ficam relegados a
cursos como os de quimica quantica e fisica molecular, ou seja, para cursos
direcionados a pesquisadores na area. Ainda assim, em tais cursos, a intengdo de
se tratar “sistemas realistas” traz consigo operacdes matematicas demasiadamente
complexas envolvendo funcdes especiais. Dessa forma, os conceitos subjacentes a
teoria de Hartree-Fock, por exemplo, acabam perdendo o foco em detrimento do
“‘maquinario matematico” inerente ao método. Para piorar a situacao, softwares
fechados de quimica quantica e fisica molecular “trazem” tais métodos de maneira
otimizada sob o ponto de vista computacional. O facil manuseio destes softwares
muitas vezes faz com que tais métodos adquiram status de “caixa preta”, por parte
dos estudantes.

Entendemos que a formacédo dos professores deve envolver atividades
epistemoldgicas que o permitam compreender o mundo que 0s cerca, pois s6 assim

€ possivel entender como o mundo é projetado. Além disso, os professores (ou 0s
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futuros professores-alunos de licenciaturas) devem ter em mente que os alunos
estdo envoltos em um mundo de som, imagem, e virtualidades e que a televiséo e,
hoje, a Internet, sédo janelas para o mundo que pode lhes dar uma visdo distorcida
da realidade (lolanda Cortelazzo, 2000). E aqui que entra um dos maiores e
importantes desafios do educador que € articular o cotidiano do aluno de acordo
com sua realidade com o conteddo programatico proposto pelo curriculo da escola.
Segundo Libaneo (1998, p.84):

Os educadores criticos estdo desafiados a repensar objetivos e processos
pedagodgicos-didaticos em sua conexao com as relagdes entre educagédo e

economia, educacéo e sociedade técnico-cientifica-informacional, para além

dos discursos contra o dominio do mercado e a exclusao social.

Diante dessas consideracdes fica evidente a importancia do ensino dos
métodos de HF nas licenciaturas uma vez que a aprendizagem dos conceitos que a
compde leva a uma compreensdo mais detalhada de diversos fenbmenos quanticos
presentes no dia-dia. Além disso, devemos ter em mente que esses alunos de
licenciatura serdo os futuros professores que terdo que ensinar conceitos
relacionados ao cotidiano cada vez mais “nanoscopicamente projetado”, aos alunos
do ensino médio (EM). E claro, que esses conceitos ndo devem ser tratados no EM
com o mesmo formalismo que trataremos aqui, até porgue nossa proposta € que as
aplicacdes do método de HF sejam abordadas na graduacgéo e ndo no EM. Mas, 0s
alunos de licenciatura que realmente desejam seguir carreira na area da educacao
como professor, em algum momento, certamente, se envolverdo em situagbes do
cotidiano do aluno que estejam relacionados a algum fenémeno quantico dessa
natureza. Alids, a MQ estd em toda parte, nos computadores, painéis de carros,
leds, aparelhos eletrénicos, nos celulares dos alunos, enfim, na Ciéncia, Tecnologia
e Sociedade (CTS), a mecanica quantica tem desempenhado um dos papeis
centrais, particularmente ao que se refere as inovagdes tecnoldgicas. Nesse sentido,
0 objetivo central no Ensino Médio é desenvolver a alfabetizacdo cientifica e
tecnoldgica voltada para a cidadania, no sentido de permitir que o aluno possa
compreender e tomar decisdes responsaveis sobre questdes de ciéncia e tecnologia

na sociedade e atuar na solugao de tais questoes. (AIKENHEAD, 1994, p.5). Isso



16

somente serd possivel se os futuros professores de licenciatura em fisica tiverem
uma boa formacg&o principalmente no que diz respeito aos conceitos basicos da
mecanica quantica.

Neste trabalho escolhemos o método de Hartree Fock (HF) com o qual
iremos desenvolver um “saber a ensinar’. O método de HF € um meétodo iterativo
capaz de resolver a equacao de Schrodinger de forma aproximada para um sistema
de N elétrons interagentes através de uma solucdo autoconsistente. Vale salientar
que as equacgles podem ser obtidas pelo método variacional e também através da
teoria da perturbacdo que descreve sistemas complexos através de sistemas mais
simples, adicionando hamiltonianos perturbativos ao mesmo. Nesse trabalho sera
utilizado somente o método variacional. Embora esse método seja um dos mais
utilizados nos calculos da estrutura eletrbnica da matéria, uma das principais
aplicacdes da mecanica quantica, geralmente tal método ndo chega a ser ensinado
no curso de graduacdo em disciplinas de fisica moderna ou de quimica quantica.
Mesmo em cursos de poés-graduacdo, 0s passos inerentes a implementacdo do
método sdo abordados de forma bem limitada. Entendemos que o0s conceitos
relacionados ao método de HFR e a sua aplicacdo, devido a importancia no
desenvolvimento da mecanica quantica e em fendmenos do dia-dia também
desempenharia um papel tdo importante na formacdo de um professor de fisica ou
de quimica quanto os diversos conceitos de mecanica quantica que geralmente séao
vistos nesses cursos. Nesse método podemos ver claramente a esséncia
probabilistica da mecéanica quantica desenvolvida a partir de métodos iterativos e
também de aproximacdes que se baseiam no método variacional.

Conforme dito anteriormente, a grande dificuldade em abordar esse método
na graduacdo provém do fato de que as expressées que surgem no célculo dos
elementos de matriz dos operadores (energia cinética, atracdo elétrons-ndcleos,
Coulomb e troca) envolvem fungdes especiais tais como polinbmios de Laguerre e
Harmonicos esféricos estudados geralmente em cursos de fisica-matematica. Além
disso, o numero de integrais depende do numero de funcdes de base que séo
utilizados. Se duas funcdes de base acarretam em 16 integrais (de dois elétrons),
trés funcdes de base acarretariam em 81 integrais. Se utilizarmos mais de trés
funcBes o0 numero de integrais sera ainda maior, o que acaba tornando inviavel uma

solugdo “puramente analitica”, sendo necessario entdo o uso de programas
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computacionais. Isso deixa claro que esse conteudo é extenso, trabalhoso e envolve
uma matematica bastante complicada, sendo quase impossivel de ser visto
profundamente no curso de fisica moderna (ou quimica quantica) que ja possui um
namero muito grande de conteudos. Porém, o objetivo desse trabalho é justamente
buscar recursos e estratégias que possam tornar a aplicacdo do método de Hartree-
Fock-Roothann (procedimentos do ciclo autoconsistente) acessivel aos alunos de
graduacéo sem a necessidade de um estudo aprofundado em fungdes especiais.

Esse processo de adaptacdo do conhecimento para que possa torna-lo
passivel de ser ensinado, acessivel ndo apenas a especialistas, mas a uma esfera
maior de pessoas € abordado através do conceito de transposi¢do didatica. Esse
termo foi empregado inicialmente pelo sociélogo francés Michel Verret, na sua tese
de doutorado Le temps dés études, publicada em 1975. Nesse trabalho, Verret
propde-se a fazer um estudo socidlogo da distribuicdo do tempo das atividades
escolares, visando contribuir para a compreensdo das fungdes sociais dos
estudantes. Posteriormente, o termo da “transposi¢do Didatica” é empregado por
Yves Chevallard, um didata francés do ensino das mateméaticas, como uma analise
do caminho que percorre o saber, desde a sua producao cientifica, até a sua entrada
no contexto escolar, chegando também a sala de aula (Chevallard, 1991).
Entretanto, o estudo sobre os processos de adaptacdo do conhecimento para se
tornarem ensinaveis ndo se limita somente aos trabalhos de Verret e Chevallad.
Lopes (1999), por exemplo, prop6s o conceito de mediacdo didatica. Perrenoud
(1998) afirma ter concebido a nogéo de “transposicao pragmatica”. Na concepgéao de
Chevallard esse seria um processo de “transformacdo adaptativa” a um contexto
(Chevalard, 1997b, p.4-5).

Esses autores discutem de fato, apesar de algumas diferenciacdes, as
mudancas que sofre o conhecimento no processo de ser ensinado, partindo da
premissa explicita da existéncia de uma distancia entre o saber a ensinar e 0s
objetos de ensino definidos enquanto tal. Nesse sentido apontando uma diferenca
entre a pratica de ensino e a pratica da invengéo/criacao.

Nesse trabalho iremos nos basear no conceito de transposicdo didatica

segundo a visédo de Yves Chevallard e Marie Alberte Joshua.
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CAPITULO I

Nesse Capitulo serd apresentada a teoria pedagdgica na qual esse trabalho
fundamenta-se e também serd feita uma abordagem tedrica do método de HFR e
das propriedades matematica envolvida na teoria.

FUNDAMENTAGCAO TEORICA

2.1. TRANSPOSICAO DIDATICA

Os pressupostos tedricos que fundamentam este trabalho baseiam-se no
conceito de transposicdo didatica segundo a visdo de Yves Chevallard e Marie
Alberte Joshua. Esse conceito sempre surge quando se busca uma adaptacao do
conhecimento para poder ensina-lo, ou seja, quando se toma um conteddo de um
saber dominado somente por uma esfera, composta exclusivamente por
especialistas na area, e o transforma em um material ensinavel (Chevallard, 1991).
Segundo Chevallard, os trabalhos de pesquisa desenvolvidos pela comunidade
cientifica e divulgados por meio de artigos periddicos, conferéncias e teses nao
chegam aos alunos como exatamente foi elaborado. Geralmente esses trabalhos
possuem uma linguagem somente compreendida por uma pequena esfera
(Cientistas especializados). Para que possa ser transposto para a sala de aula esse
conhecimento deve passar por uma adaptacdo. A adaptacao deve ser feita de forma
gue tal conhecimento se torne compreensivel pelos alunos. Nesse sentido, a
transposicdo nos permite compreender as modificacdes pela qual o saber passa até
ser ensinado na sala de aula. Como bem destaca o proprio Chevallard (1991, p.39
apud, 2004, p. 45),

“‘Um conteudo de saber que tenha sido definido como saber a ensinar,
sofre, a partir de entdo, um conjunto de transformacdes adaptativas que iréo

torna-lo apto a ocupar um lugar entre os objetos de ensino. O ‘trabalho’ que
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faz de um objeto de saber a ensinar, um objeto de ensino, é chamado de
transposicao didatica.” (Chevallard, 1991, p.39)

Para Alves Filho (2000, p. 181-182) a transposicao didatica € um conceito
recente com uma capacidade de abrangéncia que “[...] permite justificar tanto os
processos envolvidos na construgdo do saber e na sua divulgagdo como a
estruturagado deste saber, quando este saber € apresentado em livros textos, [...]".

Segundo esse conceito, a analise do processo de transformacdo do saber

estabelece a existéncia de trés estatutos, patamares ou niveis:

1. O Saber Sabio (Savior Savant): O saber sabio é aquele
desenvolvido pelos especialistas de uma determinada éarea que
constroem o conhecimento cientifico. Geralmente esse tipo de saber é

apresentado ao publico em forma de revistas e periddicos cientificos.

2. O Saber a Ensinar (Savior & Enseigné): O saber a ensinar
€ uma reorganizacdo do saber sabio apresentados na forma de uma
sequéncia logica, fechada, ordenada, cumulativa, crescente em
dificuldade, mas ainda sim, intrinsecamente diferente do saber sébio
gue lhe serviu de referéncia. Geralmente o saber a ensinar envolve a
comunidade dos professores especialistas, autores de livros didaticos
dentre outros. E de certa forma uma transformac&o de um saber (saber
sabio), compreendido basicamente por uma esfera propria, em um
saber compreendido por um grupo maior que ndo pertence a apenas

uma esfera.

3. O Saber Ensinado (Savior Enseigné): O Saber Ensinado é
aguele desenvolvido pelo professor (tanto do ensino médio quanto do
ensino superior) dentro da sala de aula que envolve a transfiguragéo do
saber a ensinar em saber ensinado, ou seja, implica numa

reestruturacdo dos conteudos presentes nos livros didaticos e manuais
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de ensino de acordo com seus préprios referenciais e adaptando-o ao
tempo didatico.

Para Friolani (2007) o saber sabio, o saber a ensinar e o saber disponivel

podem ser definidos como:

Saber sabio: E a producéo cientifica resultante de uma pesquisa, porém,
sem expor o processo de desenvolvimento do conceito em questdo, nem o
problema que gerou a pesquisa.

Saber a ensinar: E aquele que o professor escolhe para ensinar e esta
presente no curriculo e nos manuais escolares. E geralmente adaptado
pelos professores em aula, de modo que exista uma transposi¢éo (interna a
instituicdo) entre o saber a ensinar e o saber efetivamente ensinado em
aula.

Saber disponivel: E o saber aprendido, construido pelo aluno e que pode
ser usado como ferramenta para novas aprendizagens. (FRIOLANI, 2007,
p.52)

Para Friolani (2007) a transposicdo didatica pode ser ilustrada a partir do

seguinte esquema

Saber Sabio

Papel da noosfera

Transposicao Didatica Strictosensu

PropostasCurriculares Livros Didaticos

Saber a ensinar Saberescolar

Saberensinado

\

Saber Disponivel

Figura 1: Esquema da Transposicdo Diddtica (FRIOLANI, 2007, p.52)
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2.2. ANOOSFERA

De acordo com Pais (2002) a noosfera condiciona todo andamento do
sistema didatico e pode-se dizer que é cenario de interacdes, trocas, conflitos e
negociagdes. Atua como intermediadora do fluxo de saberes para o sistema de

ensino, ou seja,

Noosfera € o lugar onde os saberes sdo manipulados para fins de ensino,
onde os saberes sdo modificados para passar de um nivel de ensino a
outro, lugar onde é pensado o funcionamento didatico. A Noosfera é
considerada o centro operacional do processo de transposi¢do. Sua
finalidade é estabelecer a interagdo entre o sistema de ensino e seu
entorno, proporcionando a sele¢do dos elementos do “saber sabio”, que

devem advir “saber a ensinar”’. (BERNAL, 2004, p. 21)

Segundo Chevallard, a noosfera seria, por definicdo, um espacgo de conflito,
de disputa: a compatibilizacdo em questdo é uma construcdo social, ndo um

movimento espontaneo ou natural.

ENTORNO

SISTEMAS DE ENSINO

NOOSFERA

Figura 2: Sistema de ensino
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A figura 2 mostra um esquema da representacdo do sistema didatico segundo
a visdo de Chevalard. No entorno social estariam incluidos as familias dos
estudantes, as instancias politicas de decisdo; nos sistemas de ensino atuam
professores e alunos. Na noosfera estariam o0s representantes da sociedade,
especialistas em geral. A noosfera seria encarregada de realizar a interface entre a
sociedade e as esferas de produgcédo de saberes delas participando em posicdes
diferenciadas.

2.3. A TEORIA DA TRANSPOSICAO DIDATICA SEGUNDO A VISAO DE
CHEVALLARD

A especificidade do trabalho de Chevallard reside no desenvolvimento de um
modelo de ensino para a andlise dos sistemas de ensino, referido especificamente a
Didatica (ndo sociolégico, psicologico ou instrumental) propondo como eixo
estruturante para esse modelo, a discussédo do saber escolar, enquanto a esfera da
producdo dos saberes move-se pela busca da resolugdo de problemas colocados
pela comunidade de pesquisadores, a esfera do ensino ndo € impulsionada pela
necessidade de solugdo de problemas, mas sim pela “contradicdo antigo/novo”, ou
seja, a necessidade de os objetos de ensino remeterem-se aquilo que ja é
conhecido pelo aluno, ao mesmo tempo, que devem aparecer como novidade.
Aponta o autor um reconhecimento da especificidade epistemoldgica: contextos com
demandas igualmente diferenciadas, como o sdo os contextos de producdo dos

saberes e 0s contextos das relacdes didaticas. Nesse sentido, Lopes afirma que:

Mas além da critica de Forquin, defendo que o papel da epistemologia ndo
se resume a discussao da validade epistemolégica dos saberes, mas na
possibilidade de introduzir uma nova forma de compreender e questionar o
conhecimento, internamente, na sua prépria forma de se constituir (1999,
p.167)

Chevallard define o conhecimento como a prépria relagdo pessoal ou

institucional estabelecida com os objetos do mundo. A busca individual ou coletiva
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desse conhecimento constituiria o estudo. A didatica, por sua vez, seria a “ciéncia do
estudo”, ou ainda a ciéncia do didatico, posto que este € entendido aqui como o
adjetivo que corresponde ao substantivo estudo.

Chevallard enfatiza ainda a énfase no papel do professor que se diferencia do
papel do aluno em duas instancias: uma primeira que diz respeito a relacdo com o
saber e uma segunda que diz respeito ao tempo de saber. Em relacdo ao primeiro, o
professor domina o saber a ensinar em um nivel mais abstrato do que seria possivel
para o aluno atingir em um primeiro momento de estudo; além disso, o professor
precisa conhecer também a maneira de ensina-lo. Em relacdo ao segundo item, o
tempo se constituiria da selecdo, organizacao e sistematizacdo do contetudo a ser
ensinado. Assim, o professor pode prever e mesmo decidir sobre a introducdo de
novos objetos transacionais. Entretanto, a possibilidade de controle da dimenséao
temporal do funcionamento didatico encontra na subjetividade de cada aluno um
limite que inviabiliza a pretensdo de um tempo didatico unico. A “ficcdo” de um
tempo de aprendizagem determinado exclusivamente pelo tempo de ensino é
desestabilizada, pois, para alguns, o tempo legal significard o fracasso escolar e,
para outros, um “freio”, uma limitagcao das suas possibilidades.

A transposicdo entdo, ndo se trata apenas de uma estratégia de ensino, mas
uma concepc¢ao sobre o papel do professor no ensino.

2.4. REGRAS DA TRANSPOSICAO DIDATICA

Para facilitar a analise dos diferentes tipos de saberes Astolfi (1997, apud
ALVES FILHO, 2000a, p.182) tomando como base os trabalhos desenvolvidos por
Chevallard e Joshua estabelecem algumas diretrizes que nortearam 0 processo de

transformacao pelo qual passam o saber sbio até o saber ensinado.

Regra 1 - Modernizar o saber escolar.
A modernizagdo faz-se necessaria, pois o desenvolvimento e o crescimento
da producdo cientifica s&o intensos. Novas teorias, modelos e

interpretacdes cientificas, e tecnologicas forgam a inclusédo desses novos
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conhecimentos nos programas de formacdo (graduacédo) de futuros
profissionais.

Regra 2 - Atualizar o saber a ensinar.

Saberes ou conhecimentos especificos, que de certa forma ja se
vulgarizaram ou banalizaram, podem ser descartados, abrindo espaco para
introducdo do novo, justificando a modernizagao dos curriculos.

Regra 3 - Articular saber velho com saber novo.

A introducé@o de objetos de saber novos ocorre melhor se articulados com
os antigos. O novo se apresenta como que esclarecendo melhor o contetdo
antigo, e o antigo hipotecando validade ao novo.

Regra 4 - Transformar um saber em exercicios e problemas.

O saber sabio, cuja formatacdo permite uma gama maior de exercicios, €
aquele que, certamente, terd preferéncia frente a conteldos menos
operacionaliziveis. Esta talvez seja a regra mais importante, pois esta
diretamente relacionada com o processo de avaliacdo e controle da
aprendizagem.

Regra 5 - Tornar um conceito mais compreensivel.

Conceitos e definicdes construidos no processo de producdo de novos
saberes elaborados, muitas vezes, com grau de complexidade significativo,
necessitam sofrer uma transformacdo para que seu aprendizado seja
facilitado no contexto escolar.

2.5. A EQUACAO DE SCHRONDINGER

Em 1927 quando C. J. Davisson e L. H. Germer confirmaram
experimentalmente a hipotese de Louis de Broglie (1892-1987), que associava
propriedades ondulatérias a matéria, ou seja, afirmava que o comportamento dual,
onda-particula, da radiacdo também se aplicava a matéria. A partir de entdo houve
entre os fisicos e quimicos a necessidade de desenvolver uma teoria analoga a
teoria ondulatéria da luz que explicasse a manifestacdo das propriedades
ondulatérias dos elétrons. Em 1925 o austriaco Erwin Schrodinger ja estudava a
hipotese proposta por Louis de Broglie e buscava explicacdes do modo como Louis
de Broglie associava o comportamento ondulatorio das particulas (Tipler, 2010). Na
época o conceituado fisico e quimico Petrus Joseph Wilhelm Debye (1884-1966)
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propés que o comportamento ondulatério do elétron (caso esse comportamento
existisse) deveria resultar de uma equacao de onda. Isso, de fato, ndo se verificava
na teoria de Broglie. No fim de 1925, Erwin Schrondinger decide passar as férias de
fim de ano em Vila Herwig, nos Alpes Sui¢cos, com uma amante misteriosa que
combinou encontra-la em um dos anexos de uma clinica onde ja havia sido tratado
de uma suspeita infeccao de tuberculose em 1922 (MOORE, 1989, p. 194-195 apud,
PIZA, 2007). Tudo indica que ele aproveitou grande parte desse tempo para tentar
representar a hipétese de de Broglie matematicamente, encontrando a tal equacao
de onda proposta por Debye. Embora ndo conste nos registros sua estadia na
clinica no fim de 1925, o conceituado fisico Wilhelm (Willy) Wien (1864-1928) que
recebera o premio Nobel de 1911 por seus importantes trabalhos relativos ao
problema da radiacdo de corpo negro, recebeu uma carta de Schrondinger, nesse

periodo, supostamente enviada daquela tal clinica. Nessa carta estava esctrito:

“No momento estou batalhando com uma nova teoria atbmica. Se ao menos
eu soubesse mais mateméatical Estou muito otimista com relacdo a esta
coisa, e acredito que se por fim (...) eu conseguir resolvé-la, ha de ser muito
bonita. Acho que posso especificar um sistema vibrante cujas frequéncias
caracteristicas sdo as dos termos do hidrogénio, e de um relativamente
natural, sem suposi¢cdes ad doc [quer dizer, sem suposi¢cdes sob medida

para obter o resultado que se espera ou deseja obter]”. (PIZA, 2007, p. 42).

Ao retornar a Zurique, em seu segundo seminario conjunto com a Escola
Técnica Superior (E.T.H. — Eidgenotssiche Technische Hochschule) de Zurique.
Schrondinger inicia o seu seminario dizendo: “Meu colega Debye sugeriu que seria
preciso ter uma equacdo de ondas; bem, encontrei uma”. (Piza, 2007, p. 44). A

equacao apresentada nesse semindrio era algo desse tipo:

2
veg 20 EL € |y 1)
K2
r

No entanto, apesar de ter sido publicado um artigo com toda a deducéo
relativa a essa equacao, havia algumas coisas que nado se ajustavam muito bem. A

deducédo que foi usada ndo fazia o menor sentido, ja que ¥ € uma funcdo néo
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definida. Além disso, o principio variacional utilizado n&o era valido na fisica
cldssica. Sua unica “justificagdo” € que a equagdo de onda leva aos niveis de
energia corretos para o atomo de hidrogénio. Na verdade, nem o proprio
Schrondinger estava satisfeito com a sua equacao. S6 depois de pensar muito € que
ele acaba desenvolvendo um trabalho bastante abstrato, independente das
consideracdes feitas por de Broglie, usando analogia entre os principios de Huygens
e Hamilton. Esse trabalho, finalmente, acarretou na obtencdo da sua hoje famosa
equacdo de onda nao relativistica que descreve a evolucdo temporal do estado

guantico de um sistema fisico. Na notacéo de Dirac, pode ser escrita como:
%‘Za(x,)>=6‘la(x,)>1 (2)

onde 7 € o operador hamiltoniano, & € a energia e ya(x,)representa o a-€simo

orbital de spin com i-ésimo elétron alocado no mesmo.
2.6. O HAMILTONIANO

Um dos maiores problemas que aparecem na mecéanica quantica € encontrar

a funcéo Xa(x;) - Nesse trabalho, nos deteremos na solugcdo dessa equacao na

forma néo relativista e independente do tempo. Os efeitos da relatividade sdo bem
perceptiveis em moléculas contendo atomos pesados como de ouro (Au), mercurio
(HG) e Chumbo (Pb), mas em atomos com numeros atbmicos menores que 54 0s
efeitos relativisticos podem ser negligenciados (Levine, 2009, p. 708). Para um
sistema de N elétrons e M ndcleos (figura 3), o hamiltoniano eletrénico pode ser

escrito da seguinte forma:

Z/:—ilv?—iiﬁ+iilﬂ +V, +V,, 3)

i 2 T A Ra TN
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Na equacao (3) consideramos 2=m=1 (unidades atbmicas), o par de indices

{i, j} correspondem aos elétrons, o par de indices {A,B} aos nicleos de massa M,
e carga Z,, r; € a distancia entre os elétrons que pode ser escrito também como
I :‘rj -ri‘ e R, é adistancia entre o nucleo A e o i-esimo elétron que também pode
ser escrito como R, =|R,-R;|. No Lado direito da expressdo (3), T é a energia
cinética dos N eléetrons, V. € o potencial responsavel pela atragéo entre elétrons e

nucleos e V,, é o termo de interagdo elétron-elétron. Ainda na expressdo (3),

estamos levando em consideracdo a aproximacdo de Born-Oppenheimer que
despreza o termo de energia cinética do(s) nucleo(s). Tendo em vista que 0s
ndcleos sdo bem mais pesados que os elétrons, a razdo carga/massa do ndcleo é
da ordem de 10* a 10°, suas transigdes sdo mais lentas que as transigbes
eletrdnicas. Além disso, considera-se a repulsdo entre os nucleos (no caso de
moléculas) como sendo constante. Essas consideracbes acabam levando a
completa separacdo do operador- energia entre as partes eletrbnicas e nucleares.
De modo que tanto a funcdo de onda eletronica quanto sua energia depende do
ndcleo apenas de forma paramétrica. Nesse contexto, os elétrons podem ser

tratados como particulas que se movem em um campo gerado por nucleos fixos.

. & Elétrons

iwm]

M-I
@

'. Miacleos

Figura 3: Molécula com N elétrons de coordenadas r e M nucleos de coordenadas R. Figura

inspirada no livro do (Alcacer, 2006, pg. 192)
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2.7. O PRODUTO DE HARTREE

Obviamente a ES nédo pode ser resolvida analiticamente para o hamiltoniano
da equacao (3). Vamos considerar inicialmente um hamiltoniano mais simples que
descreve um sistema de N elétrons independentes que, nesse caso, pode ser escrito

como,
%:ih(i). (4)

Na equacédo (4), h(i)é o operador que descreve a energia cinética. Este

modelo que ficou conhecido como o modelo das particulas independente (sugerido
por Bohr em 1923) foi adotado por Douglas Hartree, em 1928. Este modelo propde
uma forma alternativa para a funcao de onda. Para calcular os niveis de energia e as
funcdes de onda de atomos multieletrénicos, considera-se a interacdo do elétron
com o0 ndcleo e com o campo médio devido aos outros elétrons. O operador

hamiltoniano tera um conjunto de autofun¢gdes que podemos considerar como sendo

um conjunto de orbitais de spins {z,},

h(i) 7. (%) = £.2. (%) - (®)

Como consideramos +# como sendo uma soma de operadores
independentes, a solucédo da funcdo de onda total pode ser escrita como o produto

das fungbes de onda de cada particula, ou seja,
P X Xy ) = o (%) 26 (Xo) - 20 (%) - (6)

As fungbes V¥, sdo denominadas orbitais e o lado direito da equagéo acima é

conhecido como produto de Hartree. O autovalor E é definido como,
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E=g+e+..+¢g. (7)

2.8. DETERMINANTE DE SLATER

A equacao (6) ndao poderia ser uma solucéo correta de (3), visto que neste
caso as particulas interagem entre si. Além disso, diferentemente da mecénica
classica, na mecanica quantica as particulas ndo podem ser distinguiveis. Na
mecanica classica as particulas podem ser diferenciadas por cores, letras ou
nameros. Na mecanica quantica, contudo, ndo sabemos nem mesmo onde as
particulas se encontram. O maximo que podemos saber é a probabilidade dessas
particulas estarem em algum lugar. Nesse caso, a equacao (2) para o hamiltoniano
dado por (3) s6 pode ser resolvida de forma analitica quando aplicada a sistemas
que possuam particulas iguais e ndo interagentes. Se houver interacdo os termos
que constituem o Hamiltoniano dependerdo de varias coordenadas. Assim, por
exemplo, para um atomo de dois ou mais elétrons interagentes nao existe solucdo
analitica da equacdo de Schrodinger (Tipler, 2010, p.186). Além disso, a
antissimetria associada as fun¢des de ondas que descreve sistemas envolvendo
férmions geram varias consequéncias na mecanica quantica, sendo uma delas o
principio de exclusédo de Pauli. O principio de exclusdo de Pauli exige que a funcéo
de onda total dos elétrons seja antissimétrica. A funcao de onda obtida pelo Produto
de Hartree ndo satisfaz ao principio da antissimetria. Uma funcdo de onda de um
sistema com N elétrons, por exemplo, que respeitaria a esses principios deveria ser
representada por uma sobreposicdo (combinacdo linear) de todas as possiveis
permutacfes de troca de elétrons com a condicdo de que cada troca de elétrons a

funcdo de onda muda de sinal, ou seja, deveria satisfazer a uma funcao do tipo:

Wiy Xy Xeyeer) ==y Xy Xy000) - (8)

Em 1930, Fock sugeriu que a solugcdo da equacdo de Schrondinger poderia

ser um determinante de Slater. O determinante de Slater fornece a funcdo de onda
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para o sistema de N elétrons independentes ja na forma antissimétrica e de forma
indistinguivel.
O determinante de Slater pode ser escrito para um caso mais geral da

seguinte maneira,

() () (X))
LZi(Xz) Zj(xz) v (%)

=N ©
Zi(Xy) ZJ(XN) e 2(Xy)
ou, de forma compacta, como:
‘P(xi,xz,xs.-.xm=ﬁ\zi(xl)z,-(x1)...xk(xmz\;a(xl)z,.(xz)...zk(xN>>- (10)

Nas equacdes (9) e (10) o termo (N!)™? é uma constante de normalizacéo,
0s y,(x) sé&o os orbitais de spin a do elétron de coordenada x,. Para um sistema

com dois elétrons o respectivo determinante de Slater toma a forma,

1

X %) -+ (%) x(x)

Zi(%;) Xi (X,)

1

W =ﬁ[zi(x1)z,- %) -7,z ] (11)

Como é possivel observar, o sinal de menos assegura que a funcdo de onda

Y(x,X,) seja antissimétrica com respeito a troca dos elétrons de coordenadas x, e

X,, atendendo a funcéo (8), ou seja, podemos ver que;

\P(Xv Xz) = _\P(Xz’ X1) (12)

Na equacao (11) podemos observar também o principio de exclusao de Pauli
segundo o qual dois elétrons de mesmo spin ndo podem ocupar a mesma orbital.

Quando o mesmo spin é ocupado com os dois elétrons a funcdo ¥ se anula;
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1
¥ __Z[Zi(X1)Zi(xz)_7(i(xl)7(i(xz)] —0. (13)
29. A APROXIMAQAO DE HARTREE-FOCK

Conforme discutimos anteriormente, ndo é possivel resolver a ES para
o Hamiltoniano dado pela expresséo (3). Mas a solucdo se torna possivel caso o
sistema constituido por N elétrons seja tratado como a soma de varios subsistemas

constituidos por “apenas um elétron” submetido a um potencial médio V(r) (que

depende s6 das proprias coordenadas) provenientes das interacdes de cada elétron
com os outros N-1 elétrons e um potencial proveniente dos nucleos estacionarios.
Essa € a esséncia da aproximacdo de Hartree-Fock. O método de HF tem como
objetivo propor uma solugdo aproximada para o problema da separagdo das
interacOes elétron-elétron (Rangel, 2006). Ainda hoje tal método é uma ferramenta
poderosa, considerada como padrdo para iniciar qualquer estudo que envolva
representacfes de estados eletrbnicos de atomos, moléculas e sélidos (Custodio,
1998). Sua construcéo é feita a partir da escolha de funcbes matematicas que sao
utilizadas para representar os orbitais de spins de Hartree-Fock.

Na figura 4 representamos o modelo didatico e simplificado do que seria a
aproximacdo de HF. Na figura, cada subsistema constituido por um elétron, que,
grosso modo poderia representar atomos de uma molécula, sofre a influéncia do
potencial médio dos outros elétrons e também dos nudcleos. Assim podemos
observar que na aproximacao de HF, o problema exato envolvendo N elétrons e M
nacleos interagentes é reduzido a um problema de N elétrons e M nucleos
independentes. Vale ressaltar que na figura 4, os elétrons ndo estdo presos a cada
ndcleo separadamente e, sim, presos por um potencial médio gerado por todos 0s

nacleos que estdo fixos (aproximacao de Born-Oppenheimer).
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- subsistema

nacleos

Figura 4 Modelo da aproximag¢Go de HF representado por um sistema constituido por vdrios
subsistemas possuindo um elétron de coordenada r e um ntcleo de coordenada R.

Agora, resta calcular uma expressdo para a energia desse sistema, 0 que
iremos fazer na préxima secdo. Embora ainda ndo saibamos a forma dessa
expressdo de energia podemos deduzir a partir do modelo acima algumas
caracteristicas que ela devera ter. Obviamente tal expressdo devera conter termos
envolvendo o potencial de energia cinética e potencial dos elétrons independentes.
Também deverd possuir um termo envolvendo um potencial médio devido as
interacdes entre os elétrons. Além disso, na expressdo que iremos encontrar
esperamos que apareca um termo que leve em consideracdo o principio da

indistinguibilidade e que possua a propriedade de permutacéo.

2.10. EXPRESSAO DA ENERGIA

O valor esperado da energia para o estado fundamental de uma funcao de
onda na forma de um determinante de Slater pode ser escrito da seguinte forma

(assumindo que a funcdo de onda é normalizavel);
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<EO>=<\P\%\\P>=IT¢?W§, (14)

onde d¢ é o elemento de volume nas coordenadas dos espacos e spins de todos 0s

elétrons.

Nota-se facilmente que o hamiltoniano eletronico dado pela expressao (3),
visto na secdo 2.6, contém operadores envolvendo apenas um elétron e operadores
envolvendo dois elétrons. Para simplificar a notacdo iremos escrever a soma dos

operadores de um so elétron da seguinte forma,

- . § 1 2 Sh N ZA Ly mono
Zh('):‘ZEV _ZZA:IF—RAI_H : (15)

onde H™™ é o Hamiltoniano monoeletrénico. A soma dos operadores envolvendo

dois elétrons assume a forma,

L _v.. (16)
N _ri|

Logo, o hamitoniano total da equacéo (3) passa a ser reescrito como,

A =H™® 1V, (17)

.

Para calcular o valor esperado da energia do estado fundamental devemos
calcular a contribuicdo de energia total relativa a cada termo do lado direito da
expressao (17). Para isso, iremos calcular inicialmente a contribuicdo da energia
total relativa ao operador H™™ que pode ser obtida a partir do valor esperado deste

operador e em seguida calculamos a contribuicdo de energia do segundo termo.
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2.10.1. Contribuicé@o do Primeiro Termo <Hm°"°>

O valor esperado para o hamiltoniano monoeletrénico € dado por,

¥)= i(llf|h(i)|‘{’>. (18)

<\P‘H mono

Para tornar os céalculos mais claros, iremos considerar um sistema com dois
elétrons interagentes e, nesse caso, a fungéo de onda na forma do determinante de

Slater assume a forma:

H =h()+h(2) +V,,, (19a)
e,
‘P=%[za(xi)zxxz)—zb(xoza(xz)]. (19b)

Além disso, uma deducéo utilizando a notacdo da eq. (19) torna-se-ia muito

trabalhosa e por isso iremos reescrevé-la da seguinte forma,

1 _
W= ﬁ(a(l)b(z) b1)a(2)). (20)

Para que nao haja confusdo com a notacdo que ja comeca a complicar, daqui

pra frente as notagcdes |a) e |yz,), a(l) e z,(x) devem ser tomadas como

equivalentes.

Na equacgédo (20) o termo a(l) possui o significado de que o elétron de
coordenada X, esta no orbital de spin a(l), a(2)significa que o elétron de
coordenada X, esta no orbital de spin a(2) . O mesmo raciocinio vale para o orbital

de spin b(l) e b(2). Assim, o valor esperado de h(1) sera dado por,
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(h®) =%<a(l)b(2) —bMa(2) |h(@)a@b(2)-bDa(2)). (21)

Separando a expressao (21) em duas integrais podemos fazer

I, =(ab(2) | @) |a(b(2) —bDa(2)) , (22)

I

(b(®a(2)|h(1)|a(W)b(2)-bDa(2)). (23)

Substituindo (22) e (23) em (21) obtemos,
(h(i)) = %(rl T,). (24)

Mas, pelo principio da indistinguibilidade, os elétrons ao permuta-se devem
atender a propriedade b(l)a(2) =—-a(l)b(2) e isso implica que I', =-T';. Logo, levando

em consideracao esses resultados, a partir de (24) chegamos em,
(h(i)) =T, = (a@b(2) | (i) | a@b(2) ~bDa(2)) (25)
gue também pode ser escrito como:

(h()) =(a@® [b(2) (1) |a(Db(2))-(a@)b(2) |h®) [b(L)a(2), (262)
(h() = (b(2)|(a®)| h@)|a@®)|b(2)) - (b(2)|(a) |h@) |b@))| a(2)). (26b)

Agora podemos separar, na expressao (26b) os orbitais de spins com elétron

de coordenada x, e os orbitais de spins com elétron de coordenada X,. Como
mostra a expressdo (26b), os termos que esta dentro (a@)|h@®)|a(l)) e

(a(@)[h(@) b)) se referem ao elétron de coordenada X, (bra-kets interiores) e os
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termos que estdo fora (b(2) |b(2)) e (b(2)|a(2)) se referem ao elétron de coordenada

X, (bra-kets exteriores). Logo, a equacéao (26b) fica,

(h())=(a@h() [a@))(b(2)|b(2)) —(a®) | h(i) | b®))(b(2) |a(2)).

(27)

Contudo, pela propriedade de ortogonalidades de funcbes temos que <b(2) | b(2)> =le

(b(2)|a(2))=0, pois ae b sdo ortogonais. Logo,

(h(@)=(a@®h(@)a@®)=h,,

(28)

onde h,_é a média da energia cinética e da atragdo nuclear de um elétron descrito

pela fungcéo de onda ¥ . Assim, para h(l) obteriamos,

(h@)) =(a@ [ h()|a())+(b@ [h@) [b()),

e, Para h(2):

(h(2))=(a(2)|n(2)]a(2))+(b(2) [h(2)|b(2)),

e assim por diante.

Finalmente podemos concluir que para um sistema com dois elétrons:

< H m0n0> =(a(®|h(2)|a@))+(b@)|h(2) |b@)) = hi:) + h:j) + h::> + hg) :

Para um caso mais geral de N elétrons temos que,

0soc N osoc

(H™) = (a(i)[h(i)|al))=>. >

a=1 i=1l a=1

(29)

(30)

(31)

(32)
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onde a sigla osoc significa orbital de spin ocupado. A expressao (32) representa,
como esperavamos pela definicdo da teoria de HF, a contribuicdo de energia para

energia total de cada elétron ndo interagente na orbital de spin a.

2.10.2. Contribuigcéo do Segundo termo (V,,)

ee

Agora que j4 temos a forma da contribuicdo de energia do operador
monoeletrénico vamos encontrar a forma para o operador envolvendo dois elétrons

V.. Para atomos de camadas fechadas a distribuicdo de carga média dos outros
elétrons que age sobre o elétron de coordenada r,, por exemplo, € esférica e o
potencial de interacdo elétron-elétron pode ser escrito como V, =1/r, (campo

central), onde 1, =|r, —r,|. Assim o valor esperado desse operador fica:

(Ve = §<a<1)b<2) ~bDa(@)|—|a(b(d) - b(l)a(2)> . 33)

12

Usando o mesmo raciocinio que foi utilizado para encontrar a contribuicdo de
energia para o primeiro termo H™", obtemos a seguinte expressédo para o segundo

termo V,,;

<vee>=<a(1)|<b(2)|ri|b(2>>|a(1)>—<a<1)|<b(2)|ri|a(2)>|b(1)>. (34

A expressao (34) por sua vez pode ser escrita como:

(Vee) =(a@ | 71a(®) —(a@® | K |b(D)) , (35)

onde, definiremos

J= <b(2)|ri| b(2)), (36)
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K = <b(2)|ri| a(2)). 37)

1

Nas equacdes (36) e (37) os termos 7 e K sao conhecidos como operadores
de Coulomb e de troca, respectivamente, e sdo 0S termos que esperavamos
encontrar pela analise do modelo de HF que fizemos. O operador de Coulomb 7
define a forca de repulsé@o entre os elétrons no sistema. Para dois orbitais a e b, por
exemplo, podemos escrever o potencial de Coulomb na forma 7, , que representa a
repulsdo de Coulomb entre os elétrons na orbital de spin a e na orbital de spin b. O
operador de troca K define o efeito quantico gerado pela troca da orbital de spin
entre os elétrons e ndo existe nada semelhante na mecanica classica.

Dessa forma, a contribuicdo de energia para a energia total proveniente do
operador das interacbes elétron-elétron para um sistema de dois elétrons fica

definido como a soma dos operadores de Coulomb 7 e de troca, ¥, ou seja,
V,=J-K. (38)

Na forma integral esses operadores assumem as formas:

2d
hO=Zo0e)| T (39)

] d
Ko@) = f Zb(xz)Za(xz)Tiz ) (40)

onde dg, € o0 elemento de volume.

Ao contrario do operador de Coulomb, o operador de troca é dito ser um

operador ndo local uma vez que ndo existe um potencial simples x,(x,) definido em
um unico ponto local do espago x. O operador ¥, (x)operado sobre o orbital spin
X.(x), por exemplo, depende dos valores de y,(x) através de todo o espaco. Um

fato interessante e muito importante é que os operadores de Coulomb e de troca
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sentidas pelo elétron 1, por exemplo, dependem apenas de suas coordenadas.
Assim pela teoria de Hartree-Fock, o Hamiloniano monoeletrénico, para o sistema de

dois elétrons, conhecido como operador de Fock pode ser escrito como:
f=h+7-%, (42)

onde h representa o conjunto de operadores de um elétron, 7 e K 0s operadores

envolvendo dois elétrons. Para um caso geral de um sistema de N elétrons e M

ndcleos o operador de Fock assume a forma:

0SocC

foy=hi+ Y (b)) —Kp()- (42)

b=1

Na equacédo (42) o indice “osoc” significa que todas as orbitais de spins estédo
ocupadas e, nesse caso, 0 Hamiltoniano pode ser escrito como a soma dos

operadores de Fock:
N
H=>fq@ . (43)
i=1

Se, numa molécula ou a4tomo, houver camadas incompletas € recomendavel
que se use o0 método de Hartree-Fock nédo restrito (UHF, de unrestricted Hartree-
Fock), que estabelece que a energia deve ser calculada considerando todos os
spins de orbitais ocupados com um Unico elétron. Se todas as camadas das
moléculas ou atomos estiverem completas com os dois possiveis elétrons de spins
oposto, o estado é conhecido como singleto e usa-se a versao restrita do método de
Hartree-Fock (RHF, de restricted Hartree-Fock). Para o método nao restrito, a

energia eletronica toma a forma:

0s0C 0s0oC

EUHF = Zhaa +§ Z (jab _Kab) . (44)

a,b=1
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Ja o método restrito implica o uso de orbitais (espaciais) duplamente
ocupadas e, portanto, a energia € da mesma forma que a da expressdo (44)

multiplicada por um fator 2 para compensar os orbitais de spins, ou seja,

odoc odoc

Erve = 22 haa + Z (2~7ab _Kab) . (45)
a1

a,b=1

Note que o potencial de troca ndo foi multiplicado pelo fator 2 pois este
operador € quantico e consegue “discernir’ entre dois elétrons de spins que sao
trocados.

Na literatura é habitual encontrar os operadores de Coulomb e de troca

escrito na seguinte notacao,

Tap = <a(1)b(2) | ri | a(l)b(2)> =(a(b(2) | a()b(2)). (44)

Kap = <a(1)b(2) | ri I b(l)a(2)> =(a(b(2) [b(L)a(2)) . (45)

onde o operador 7, representa a repulséo classica de Coulomb entre a nuvem de

elétrons |‘Pa(rl)|2 no orbital de spins a e no orbital de spins b |\Pb(r2)|2. O operador

de troca %, €é uma manifestacdo da correlacdo entre os movimentos dos elétrons

das orbitais de spin ae b. A correlagdo ocorre devido a presenca de elétrons com
spins paralelos. Como os elétrons de spins paralelos se “evitam” a energia acaba
diminuindo.

. Também é comum a diferenca entre os operadores de troca e Coulomb

assumir a forma,
I —Kap = (a(D)b(2)|a@®b(2)) - (a(®)b(2)|b)a(2)) = (a(@Db(2)||a(®b(2)).  (48)

Nesse caso, podemos reescrever a equacdo (42) em termo de (48) e

obtemos,
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0soC

Eue =2 +5 2, (a00(2)[20b(2). (49)

a=1

2.11. PRINCIPIO VARIACIONAL E MINIMIZACAO DA ENERGIA DE UM
DETERMINANTE SINGLETO

O método de Hartree-Fock é baseado no célculo variacional. Esse principio
pode ser utilizado quando se pretende calcular a energia do estado fundamental

(E,) para um sistema descrito por um Hamiltoniano H que torna a equacgdo de

Schréndinger dificil ou até mesmo impossivel de ser resolvida analiticamente. Um
dos objetivos principais desse método é encontrar a energia do estado fundamental
do sistema. Para isso, considera-se que a energia total do sistema pode ser escrita

na forma de uma fungéo de um conjunto de parametros variacionais ¢ . A energia do
estado fundamental seria 0 minimo do funcional, ou seja, E, =min E[‘P(g)], pois, de

acordo com o principio variacional, a melhor funcéo de onda desta forma funcional é
aguela que da a mais baixa energia possivel. Por exemplo, suponha que queremos

derivar a equacdo de HF com o objetivo de obter a energia minima do funcional

E,[ ¥(7.)] onde E,=(¥,|H|¥,) e |¥y)=| 11to--ZaXo--Zn) - Para que os orbitais de

spins permanecam ortonormais eles devem estar sujeitos a seguinte condicao:

[dx 2 (0 2,@) =(alb) =5, (50)
ou ainda,

(alb)-5,,=0. (51)

Um método que é utilizado para minimizar um funcional (a energia para o

caso tratado) e que garante a ortonormalidade das funcdes (orbitais de spins) é o

meétodo de Lagrange. Nesse método consideramos o funcional Q[{Za}] dos orbitais

de spins dado por,
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“[{z)]=E[lz)]-2 T (alb]-54), 52)

a=1 b=1

onde g, constitui um conjunto de multiplicadores de Lagrange e a energia E, € o
valor esperado do determinante |‘PO> gue, como vimos na secao anterior, pode ser

escrito como:

e [{7.}]=2 (ahl2) + 33 (aalbb) - (ab|ba)). (53

a=1 a=1 b=1

Devemos obter a energia para uma pequena variagdo em y,, ou seja, para

Xa = Xata- (54)

Assim, igualando a primeira variagcdo < em ordem zero obtemos:

5 =58, -3 6.5(alb) =0. (55)

a=1 b=1

onde ¢, € constante e, portanto, a variagdo nesse termo € zero. Tomando a

variacdo em cada termo do lado direito da equacao acima temos que

5(alb) =(5r.| 1)+ (2|02 (56)

0By = 2 (bl za)+ {1 N[5 ) +

a=1

N
D (St | 2070) + (XHaOWa | 2020 )+ HaXa | S 20 ) + (X T | 20057
b=

I

I\)IH N[

N
D (St | 2 2a) + 280 | A Xa )+ oo | S Xa )+ (a0 | 26520)) - (57)

b=1

|_\

a=.
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Simplificando a equacéao (57) obtemos:

N

N N
SEy = > (07, | 2a)+ 2. 2 ((SXatal 2020) —(ato | 2o7a)) + COMPlexo conjugado . (58)

a=1 a=1 b=1

Agora, manipulando o segundo termo do lado direito da expresséo (55)

obtemos,

;gba (CAPSEICALE ;gba CArS +§8ba CALA

znga <5Za|7fb>+25;b <5Za|7(b>* (59)
ab ab

:Z En <5;(a | ;(b> + complexo conjugado
ab

Substituindo os valores de (59) e (58) em (55) encontramos

N N
5 = Z (el 2a) + 2> ((0atta| 2o206) ~ (SHato| 222)) 0
a=1 b=1
+Y &5 (57| 2) + cOmplexo conjugado =0
ab

Utilizando as definicbes das integrais de Coulomb e troca, a expressao acima

assume a forma:

5 = i [z {h(l) 2@+ ZN:(Jb D) -Ky @)z D —bZN:Sbazb (1)}

+ complexo conjugado =0. (61)

Logo, desde que Jy, (1) seja diferente de zero, o termo dentro do paréntese da

equacgao acima deve ser zero, ou seja,

LOPRORD YERORTN AR WRACRLE ©2)
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ou,

[h(l)&(%(l)— K, (1»}(3(1) DAY (63)

O termo dentro do paréntese da equacdo acima € o operador de Fock f e

assim a equacao acima que corresponde a equacado de orbitais de spins pode ser

escrita como:
N
f|Zb>:nga|Zb>- (64)
b=1

Observa-se assim que o operador de Fock satisfaz uma equacdo parecida
com uma equacao de autovalores semelhante a equagdo de Schrondinger com a

interpretacéo de que a aplicacdo do operador de Fock f no orbital de spins y, ,

resulta no proprio spin de orbital multiplicado por um autovalor de energia

caracteristica do orbital b. Embora a energia ¢, represente na maioria dos casos

uma matriz ndo-diagonal. Contudo, podemos diagonaliza-la utilizando uma

transformacao unitaria e transformar a equacéo (64) numa equacao de autovalores.
2.12. APROXIMACAO DAS COMBINACOES LINEARES

No método das combinacdes lineares, considera-se que a funcdo de onda

molecular ¥, pode ser expandida como uma combinagao linear das fung¢des de
onda dos orbitais dos atomos formadores da molécula (orbitais atdmicos),

{Hp(r-Rp)}, centrados no p-ésimo nudcleo. Onde {ep(r-Rp)} pode ser considerado

como sendo uma base de dimensao L de tal forma que,

W, (r) :ZL:cf}Hp(r- R,))=¥,(r) =ic$0p, (65)
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onde p=1,2,3,..L; ¢; sdo os parametros a determinar pelo método variacional. S&o

também os coeficientes que constituem a matriz de transformacédo das bases das

orbitais atomicas 6, nas bases das orbitais moleculares, ¥,. Fazendo isso, “o

p,
problema de calcular os orbitais moleculares de HF se reduz ao problema de

calcular o conjunto da expanséo de coeficientes c; . (Alcacer, 2006).

2.13. EQUACAO DE AUTOVALORES DE HARTREE-FOCK

Como vimos na secdo anterior, utilizando o célculo variacional, algumas
manipulagbes algébricas e as propriedades dos operadores Hermtianos, observa-se
gue o operador de Fock satisfaz uma equacédo de autovalores bem parecida com a

equacéao de Schrondinger, ou seja,
f)n(r)=6x). (66)

Contudo, pelo principio de exclusdo de Pauli, dois elétrons ndo podem ter os
mesmos numeros atdmicos (orbitais e spins), mas, para cada conjunto de orbitais de
spins pode existir no maximo dois elétrons up e/ou down. Para o método restrito, o

operador de Fock para um elétron pode ser escrito como:

1 M Z odoc odoc
fQ)=|-SVi+) A1+ 27 ,—
( ) { 2 1 ; riA } bzﬂl b(1) bZ:;](b(l) . (67)

No lado direito da expresséo (67), o primeiro termo corresponde ao operador
monoeletrénico (“hamiltoniano de carogo”), o segundo termo se refere ao operador
de Coulomb e o terceiro ao operador de troca. E importante observar na expressao
(67) que o indice bcorresponde ao conjunto de numeros quanticos espaciais
degenerados, “odoc” significa orbitais (moleculares) espaciais duplamente
ocupadas. O potencial de Coulomb deve ser multiplicado por dois devido ao fato de
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que esse operador ndo consegue “discernir’ entre dois elétrons de spins contrarios.
O operador de troca por possuir natureza quantica consegue “discernir” esses
elétrons, ndo sendo necessario multiplicar esse operador pelo fator dois.

Substituindo a expressao (66) em (65) obtemos,

{“VZ ir_A} (i 20~ OZTKb(l)};(,(r) ZAOR (68)

b=1
ou, na forma integral:

2 dr

—} Odoc{m(x)xm) . }}Z.(r) A (1), (69

1_, &%
{{‘EV o). bZU 2]
que é a equacdo de autovalores de HF. Um fato interessante € que a equacdo de
HF ndo incorpora um termo de correlagcéo eletrbnica, ou seja, trata os elétrons como
particulas interagentes unicamente a partir dos operadores de Coulomb e de troca,
desconsiderando o fato de que o movimento do i-ésimo elétron depende do
movimento dos outros (N-1) elétrons e a esse fato, chamamos de correlacédo
eletrbnica (Lowdin, 1955). A resolucdo da equacdo (68) consiste em encontrar 0s

autovalores de energia da funcdo desconhecida y,. N&o resta divida de que a

solucéo dessa equacédo € muito complicada pois envolve integrais contendo funcdes

especiais, sendo necessario entdo técnicas matematicas e numéricas avancadas.
2.14. EXPANSAO DA ENERGIA NA BASE DAS COMBINACOES LINEARES

Vimos anteriormente que para encontrar a expressdao da energia total
utilizamos a contribuicdo de dois tipos de operadores (operador monoeletrénico e

operador de dois elétrons). S6 que agora pretendemos calcular a expressao da

energia total na base {ep}. Nesse caso, iremos utilizar a mesma ideia de antes.
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Trabalharemos inicialmente com o operador h_,e em seguida com o termo
(a()b(2)||a(Db(2)) que envolve os operadores de Coulomb e de troca da equacéo

(49). Uma forma geral de escrever a energia total para o caso restrito ou nao restrito,

seria;
E=n>h, +3 (a®b(2)|[a®b() (70)

onde o valor de n vai depender do método (restrito ou ndo restrito) que estivermos
trabalhando. Para o método n&o restrito n assume valor 1, para o restrito n= 2.
Nesse caso, expandindo o primeiro termo da equacao acima na aproximacao

das combinacgdes lineares temos que:

h =(¥, |h|P,) ( a*<¢\j[

Agora, vamos escrever a expressdo acima na forma do primeiro termo de
(69), isto &,

>j (71)

e S

onde H :<¢p | h|¢q> e {¢p} € a base na qual os termos de h,, sé&o transformados

numa matriz H de elementos. A equacéo (71) também pode ser expressa na forma,

0oC L
nzl: ha=nY D, H.. (73)
a= pq

Na equacao (73) qu:(ang*cjj € conhecida como matriz densidade. A
a

esséncia da matriz densidade €, sem duavida, probabilistica. Cada elemento dessa
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matriz representa o somatoério estendido a todos os orbitais espaciais moleculares
ocupados dos quadrados ou produtos cruzados dos coeficientes associados a cada
orbital atbmica. Em outras palavras, a matriz densidade representa a probabilidade
de encontrar um elétron j de um orbital atdmico g em um outro orbital A pertencente
a descricdo do orbital molecular. Agora, para ficar mais claro iremos converter 0s

operadores de Coulomb 7, e de troca %, numa combinagdo linear de base
{¢p}separadamente. Assim, seguindo o mesmo raciocinio que foi utilizado para o

primeiro termo de (69) temos que:

T = (ab]ab) =D ¢ (4] 3¢5 (4| 2c7'[4) 2 |4, (74)
=(ablab)=>>"c¥c; Zc (pq|rs) (75)
=D, D (pa]rs). (76)

pars

Nas equacdes acima D, =>cici e D,=>c’cl sdo as matrizes
a

densidade. O termo (pq|rs) € conhecido como integral de dois elétrons na base

{¢p}e indica o quanto o orbital do elétron 1 interage com o orbital do elétron 2 até

formar os orbitais moleculares. Pela simetria das integrais de dois elétrons
(pqg|rs)=(ap|rs)=(rs| pq) e assim por diante.

Expandindo o operador de permuta X, obtemos,
=(ab(2) |bMa@) =X ey (¢, | 2cr (] el 4) Xel|a). (77)
p q r s

Juntando os termos com 0s mesmos orbitais a e b obtemos

Koy =D D ,CaCl ZZC (ps|qr), (78)

ps a

gue pode ser reescrito como,
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»=>.D,D, (pglar), (79)

psar

onde D, =ch*c§ e D, = ch*cf’ também sdo, novamente, matrizes de densidade.
a b

Agora, tomando a diferenca entre os dois operadores encontramos:

~ Ky = 2 DyeDi (palrs)—> D, D, (ps|ar), (80)

pars pars

ou,

jab_Kab:Zqu rs|: pq|I’S <pl’|8q>] (81)

pgrs

Finalmente, encontramos as contribuicbes de energia proveniente do
Hamiltoniano monoeletrdnico (equacgéo 73) e dos operadores de Coulomb e de troca
(equacdes 81) para a energia total a partir de uma expansdao com base na
aproximacéo das combinacgdes lineares. Para obter a energia para o caso restrito em
termos da expansdo na base das combinacgdes lineares que foram escolhidas basta

substituir as equacdes (72) e (80) em (70) e considerar n=2 para obter:

Eppr ZD Hop+> Zqu [ pq|r5>—%<pr|sq>] (82)

pq s

Isolando o somatério nos orbitais de spins obtemos,

Eue =330, 2.+ 20, {palrs)-(prisa) || )

Podemos definir os elementos qu como sendo uma matriz G:

ZD ( pa|rs ——<prlsq>j (84)
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Em (84) G geralmente € chamado de matriz de dois elétrons. Portanto, a

matriz de Fock fica definido como:

Fo =Hy +qu , (85)

e, nesse caso, substituindo (83) e (84) em (82) a energia assume a forma,
1 86
ERHF:EZqu(Hpq"_qu) (86)
Pa

Uma outra maneira de escrever a energia é em termo do trago da matriz, ou

seja,

E., = %tr [D(H+F)] (87)

Para o método ndo restrito, consideram-se dois conjuntos diferentes de

orbitais espaciais. Sendo um com os elétrons de spin «, ‘¥{(r)e o outro conjunto

com os elétrons de spin g, ‘Pf(r). Ao ser escolhida uma base, cada conjunto de

orbitais espaciais pode ser expandido em uma combinacgéao linear da forma:

vin =Y, ©9)
p

V0=, 89)
p

Como temos dois conjuntos de elétrons (elétrons com spins « e elétrons com

spins f) teremos também duas matrizes de densidade que pode ser representadas

como D” e D”. A densidade de matriz total pode ser escrita como

D' = D" +D”, (90)
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onde D* =D’ =(1/2)D'. Assim, a energia UHF fica:

1
Euue == 0 (DipHp + D Foi + DAFY ), (91)

qp " pq
2 pq

Em termo da matriz traco temos,

Eur :%tr(DTH+D“F“ +DPEY). (92)

2.15. EQUACOES DE ROOTHANN

Como visto anteriormente a Equacdo de Schrondinger assume a forma de

uma equacao de autovalores que pode ser escrito como:
f 2 =20 (93)

onde f € o operador de Fock e y, corresponde aos orbitais moleculares.

Vimos que a solucdo da equacédo (93) consiste em obter os resultados das

energias ¢&,, considerando y, como uma combinagédo linear de uma dada base de

dimensdo L, centradas no(s) ndcleos da mesma forma que a expressdo (65)

discutida na secéo 2.9. Assim, substituindo essa expressao em (93) obtemos:
f> cig, =&,>.ci4,. (94)

Multiplicando ambas as parte da esquerda de (94) por uma base ¢,temos,

para todo (, que,
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L

PAACANES ey (4,18, (95)

p

ou ainda,

{1 |¢p>=j¢;(r-Rp)f(r)¢q(r-Rq)df: F,. (96)

Na equagdo (96) F,, & a matriz de Fock. Esta matriz € a representagdo da

matriz do operador de Fock com o conjunto de fungbes de base ¢,. As integrais

<¢q |¢p> sdo chamadas de integrais de sobreposicdo. Elas quantificam o quanto um

orbital atbmico se sobrepde ao outro (overllaping) e pode ser escrito como:
(4 1¢,)=[8,(r-R,)g,(r-R)dr =S, 97)

Logo, podemos escrever a equacdo de HF em termos das definicbes F,, e

pq -

szqu =¢ ch pq (98)

gue também pode ser escrito na forma

L

Z(qu &a pq)c =0. (99)

p

A equacédo (99) é conhecida como equacao de Roothaan que também pode

ser escrita na forma matricial dada por,
FC =SCe. (100)

A equacao (100) é conhecida como equacéo de Hartree-Fock-Roothann-Hall,

nela C é uma matriz quadrada dada por,
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C C cl
c: ¢ . C)

c=| 2 2, (101)
Cv G - Gy

ge=| - . (102)

Na pratica, a equacdo (100) ndo é muito conveniente uma vez que ela ndo

possui a forma de uma equacao de autovalor. Contudo, se definirmos as matrizes de

transformacdo X =S*2e Y =$¥?, vemos que a equacdo 100 pode ser escrita como:

FC=2C, (103)

onde: F=XFX e C=YC. Este fato possibilitou 0 uso de técnicas de algebra linear

para se obter os autovalores (&, ) e os coeficientes C;.

2.16. PROCEDIMENTO PARA SCF

A equacao de autovalores de HF para o hamiltoniano dado pela expresséo 3
(equacdo 69) é uma equacéao integro-diferencial muito dificil de ser trabalhada
analiticamente e deve ser resolvida de forma autoconsistente, ou seja, a solugéo
deve ser feita de forma aproximada através de um método autoconsistente que
implica o uso de métodos iterativos. Os procedimentos para resolver a equacao de
Hartree-Fock € chamado de “método do campo autoconsistente” (self consistente

Field, SCF). A ideia basica do método SCF é simples. Fazendo um chute inicial dos
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orbitais de spins, pode-se calcular o campo médio experimentado por cada elétron e
resolver a equacao de autovalores. Usando-se novos orbitais de spins, pode-se
obter novos campos e repetir o procedimento até que o campo autoconsistente,
conjunto de orbitais de spins, seja alcancado, (Szabo, 2006). Para desenvolvimento

de algum programa computacional podemos adotar 0s seguintes procedimentos:

1- Especificar o sistema (poco de potencial, atomo, molécula, etc...) e escolher a
base.
2- Calcular as integrais (T, J, K, S (matriz de sobreposicdo em caso de uma

base nao-ortogonal) etc...);
3- Diagonalizar a matriz S (caso a base ndo seja ortogonal) e obter as matrizes

de transformacdo X e Y que transforma a equacgéo 100 em 103;

4- Escolher a primeira versado da matriz D;
5-  Construir a matriz F e a matriz F:
6- Diagonalizar a matriz F, para obter os autovalores e autovetores (novos

coeficientes) C;

7- Converter C em C e calcular uma nova matriz densidade (D);
8- Calcular a nova energia total do sistema;
9- Retornar ao item 5° até que a energia total do passo anterior ndo difira

significativamente do passo atual.
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CAPITULO 1l

Neste capitulo discutiremos tanto os resultados que obtivemos ao aplicar o
meétodo de Hartree-Fock-Roothann no poco quadrado infinito unidimensional quanto
as estratégias que foram utilizadas e que tornaram a discussdo desse método mais
simples, menos trabalhoso e, por sua vez, mais acessivel aos alunos de graduacao.
Essas estratégias basicamente envolveram o uso de dois artificios: a base do poco
qguadrado infinito e o potencial delta de Dirac. Por isso, na primeira parte desse
capitulo apresentamos a metodologia, ou seja, como esse trabalho foi pensado e
elaborado a partir de algumas ferramentas da transposicdo didatica. Na segunda
parte serd apresentada uma breve discussdo do poc¢o quadrado infinito. Na terceira
parte falamos um pouco sobre o potencial delta de Dirac. As demais sec¢des serao
dedicadas as iterac6es necessarias que envolvem os procedimentos do SCF, que
foram apresentados no capitulo anterior, utilizando as bases do poco quadrado

infinito para duas particulas interagentes.

METODOLOGIA

3.1. ANALISE DO SABER A ENSINAR

O objetivo principal desse trabalho é construir um saber a ensinar
matematicamente simplificado. Ja discutimos anteriormente que o método de HFR
sera escolhido para ser o saber sabio. Discutimos também que o saber ensinado
consiste em uma adaptacdo do saber a ensinar. Agora discutiremos como esse
trabalho foi desenvolvido a partir do significado de cada parametro da transposicao
Didatica. Consideraremos os livros didaticos que abordam a teoria de HFR, um dos
exemplos de saber a ensinar. Nesse trabalho, fizemos um levantamento bibliogréafico
de livros, artigos e sites que abordam essa teoria com objetivo de analisar o saber a

ensinar. A importancia dessa analise é verificar como os livros tratam o método de
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HFR, quais as ferramentas mateméaticas que sao utilizadas, se porventura fazem
abordagens qualitativas ou somente quantitativas, ou ambas, se fazem uma
abordagem histérica de como surgiu o0 método ou discute qual a necessidade
apresentada pela ciéncia que deram origem a teoria de HFR. Também pretendemos
analisar como cada livro desenvolvem as etapas do ciclo autoconsistente. Assim
estaremos analisando o saber a ensinar, ou seja, a passagem dessa teoria que é
dominada somente por uma pequena esfera de pessoas (cientistas e pesquisadores
da area) para uma esfera maior de pessoas (alunos que se especializam nessa
area). O instrumento que permite essa passagem sao o0s livros didaticos.
Verificamos que, grosso modo, as abordagens das aplicagcbes do método nos livros
didaticos geralmente sao feitas de acordo com as seguintes etapas:

l. Obtencdo dos operadores de Fock de duas maneiras
distintas: ou utilizando o principio variacional ou simplesmente
reescrevendo o hamiltoniano do sistema em termos dos operadores de
um elétron e de dois elétrons (troca e Coulomb). Alguns livros
desenvolvem essa etapa de forma qualitativa, ou seja, dando énfase a
uma abordagem histérica, apresentando as equacdes principais do
método sem prova-las, mas explicando o significado fisico de cada
uma delas.

Il. DefinicAo de um conjunto de funcdes de base e a
construcdo das matrizes de sobreposicdo, da energia cinética e da
energia potencial devido a interacdo entre dois elétrons (Coulomb e
troca) e de um elétron (interacdo elétron-nucleo). Vale salientar que o
termo “construcdo das matrizes” envolve necessariamente resolucao
das integrais.

II. Realizagdo do ciclo auto-consistente completo com um
‘chute” inicial da matriz densidade e, posteriormente, calculando-se
novos autovalores, autovetores, uma nova matriz densidade e assim

sucessivamente.

De acordo com as nossas analises pudemos observar que dificilmente os

livros agrupam, em um sé procedimento, todas essas etapas de um ciclo SCF.
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Alguns desenvolvem ou déo énfase somente a etapa (I), outros a (I) e a (Ill) e assim
por diante. Com isso, estipulamos um critério de analise através das seguintes

categorias:

1. Livros que somente mostram a etapa (I), apresentando as

outras etapas, mas sem o desenvolvimento quantitativo.

2. Livros que constroem as matrizes de sobreposicdo e
desenvolvem o ciclo autoconsistente ou simplesmente apresentam
resultados obtidos a partir de um ciclo autoconsistente sem mostrar 0s
calculos envolvidos no desenvolvimento dos procedimentos do ciclo,
ou seja, aqueles que mostram apenas as etapas () e (Il) apresentando
a etapa (lll), mas sem o desenvolvimento de um ciclo autoconsistente

completo.

3. Livros que constroem as matrizes, desenvolvem o ciclo
autoconsistente e resolvem as integrais, ou seja, aqueles que mostram

as etapas (1), (Il) e (lll) de forma quantitativa e/ou qualitativa.

A maioria do material que analisamos seguem alguns desses critérios de
forma bem semelhante. Portanto, para que a andlise ndo fique tao repetitiva
selecionamos quatro livros que consideramos representativos de um amplo espectro
da literatura dessa &area do conhecimento para serem analisados por possuirem
caracteristicas bem especificas em relagdo aos critérios de analise que
desenvolvemos. De cada livro discutiremos somente a parte que nos interessa que é
a aplicacdo do método de HFR. Os livros que selecionamos foram: (Alcacer, 2006),
(Eisberg, 1979), (Levine, 2009), (Szabo,2006). De cada livro selecionado traremos

um exemplo de como cada um deles desenvolvem os procedimentos do ciclo SCF.
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3.2. ANALISE DO LIVRO DO ALCACER

O livro do Alcéacer é um livro de quimica quantica computacional e aborda o
método de HFR no capitulo 7 cujo titulo é teoria dos orbitais. Nesse capitulo o
operador de Fock é obtido a partir do principio variacional de acordo com a etapa |
(que desenvolvemos). Também todos os passos das etapas Il e Il séo

desenvolvidos no decorrer do capitulo. No complemento desse capitulo, encontram-

se alguns exemplos da aproximacdo de HFR aplicados a atomos (H, e H,) e a
moléculas (HeH™ e H,O). As bases escolhidas no desenvolvimento das etapas do

ciclo autoconsiste, na maioria dos exemplos, sdo gaussianas determinantes de
Slater. Para cada caso as etapas sdo desenvolvidas passo a passo. Embora as
integrais de dois elétrons para esses exemplos ndo sejam resolvidas, em cada caso
€ mostrado uma tabela jA com os resultados. Evidentemente essas integrais sdo
bem trabalhosas, mas em um dos apéndices é mostrado como calcular tais integrais.
Com isso, o livro do Alcacer por ser bem completo, em se tratando da aplicacdo do
método de HFR, pode ser considerado “completo” na medida em que desenvolve

todas as etapas (I, Il, lll) e, portanto, se encaixa na categoria 3.

3.2.1. Exemplo do Livro do Alcéacer: Atomo de Hélio em aproximacdes SCF-
LCBF

Etapa 1- Escolha da base: base zeta-dupla {1s,1s"}:
1s(r) = 4 2oe o, 1s'(r) = 5 22_e ", onde ¢ =145 e ¢,=2,90.

Etapa 2-Calculo dos Integrais e construcéo das Matrizes S,T,V , e H=T+V:
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J: (§1+§2)2} { 1 (172)3/2][ 1 0,8381],

(1_ 72 )3/2 1 0,8381 1

1 1 , 1 1 5/2
- (l=5Vils) (sl=5Vils) | 56 g(6+e) (1-7) _[1,05125 1,76202}
1 L1 N 2 5/2 1 “(1,76202  4,20500 )
<5|—§V2|5> <S|—§V2|5> §(§1+§z) (1-7%) 5522

V:{<S|—2/r|5> <S|—2/r|3'>]

[ ~2¢, (G+& ) (1-2) 2] z(_z,gooo -3, 6455)

Y — —
(é/l + é/z )2 (1_2_2) 2 _24’2 3, 6455 5, 8000

(s

=2frls) (s']=2/r]s))

G 7.,y (18488 ~18835
B | -1,8835 -1,5950 )
Os 16 S6 6 valores de diferentes
Integrais
V1111 2 2
vii11= || qudg (ss|ss) =g§1 =0,90625
12
V1112 2
a4 (D42
V1191 v2i1i=|| - dz,dz,
V1122 1
V1911 (SS|SS>=§(1—72)(1—72)(5—12)(3§1+§2)=0,904O9
V2211
v2211= ] Z (1)¢2(2)¢1(1)¢1(2)d71d12
V2121 s
V2112 1
5"y = —(1-7%)(5-72 =118148
121 (ss|s's") 16( T )( T )({1+4’2)
V1212

v2121=f qudq
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' ' 3] 2\
(ss |SS>:E(1—T ) (&+¢,)=0,9543

V2221 = H¢2 ) 4 () (2 )dfld'[z

12

(ss'|s's') = 3—12(1— )" (1-7"2)(5-7"2)(¢, +3¢,) = 1,20666

2 2
V2222 = ijdqdrz (s’s’|s’s’)g§2 =1,81250
12

Tabela 1: exemplo do livro do Alcécer: Integrais de dois elétrons.

Etapa 3- Diagonalizagdo da matriz S e obtencé&o do coeficiente X :

g 1,8381 0,0000 _(0,7071 0,7071 1o _ 0,7376 0,0000
10,0000 0,1619)" ~ |0,7071 -0,7071)’ 10,0000 2,4849)°

% —Us Y2 _gv2 _ [o, 5216 1,7571 J St (0,5216 0, 5216)

0,5216 -1,7571) 47571 —1,7571)

Onde U é a matriz que diagonaliza S, sé matriz S diagonalizada e X é a matriz de

transformacéo.

Etapa 4- Escolha da primeira versdo das matrizes C e D (sO orbitais

ocupadas):

62(1,0000} C' =(1,0000 0,0000); E3=2|C><C|=ZCCT:[

2,0000 0,0000
0,0000

0,0000 0,0000)

Etapa 5- Construcao da matriz de Fock (If e F):

Para construir a matriz de Fock, o livro do Alcacer faz uso da matriz de

elementos dado pela expresséo G, ZDrS( pqg|rs ——(pr|sq))

A matriz obtida é dada por:
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6 0,9063 0,9041
10,9041 1,4082 )

entdo, a matriz de fock F pode ser calculada como:

.~ . (-0,9425 -0,9794
F=H+G= .
~0,9794 -0,1868

e, como F = XFX , entdo temos,

= (—0,8400 -0,6926
-0,6926 2,5612 )

Etapa 6- Diagonalizacéo de F para obter os autovalores ¢ e os autovetores C:
Ao diagonalizar, o livro apresenta os seguintes resultados para os autovalores
e autovetores,

-0,9757 0,0000) ~ (0,9814 0,1922
&= , C= .
0,0000 2,6958 0,1922 -0,9814

Etapa 7-Conversdo de C em C e célculo de uma nova matriz:

A conversao é feita a partir da seguinte expressao,

~ wx (0,8495 -11641 0,8495 10,1742
C=XC= , C'= .
0,1742 11,8246 -1,6241 1,8246

Logo, a nova matriz é dada por:

b—2|c)(C|-20C' - 2[0, 7217 0,1480] |

0,1480 0,0303

Etapa 8-Calculo da energia:

A energia calculada para a primeira iteracdo é dada por:
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Ene = %tr [D(H +F)]=-2,8615E, ,

Na expresséo acima E, =27,21150eV € conhecida como energia de Hartree.

Etapa 9- Retornar ao item cinco até que a energia total do passo anterior nao
difira significativamente do passo atual:

O livro do alcacer retorna ao item cinco, refaz as etapas e depois de 6
iteracdes apresenta os resultados dos autovetores, autovalores e da energia na

versao restrita do método de HF para o sistema no estado minimo:

(O, 8409 -1, 6286] B (—0, 9182 0

- . Epe =—2,8617E,
0,8409 11,8236 0 27930

Devemos ressaltar que as integrais de dois elétrons mostradas na tabela (1)
sdo integrais complicadas envolvendo harménicos esféricos. Por exemplo, a integral

de repulsado entre dois elétrons no orbital 1s é da forma:
= (1s(r, )1s(r, )| |1s(r )1s(r,)). (104)

3 3
Usando as fungdes do atomo de hidrogénio 1s(r,) _L g g 1s(r,) _L g
T T

,de (104), obtemos,

6
_Z [dz, [dr,e e N (105).
T

I

O termo 1/r,, é expandindo nas harménicas esféricas:

—:Zm |2| 1 |+1 Im(91’¢1) (82’¢2)1 (106)

onde r. € o menor valorde r, e r, e r_ & o maior valor de r, e r,. Substituindo (106)

em (105) obtém-se,
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G A T om o
I :16262 > 2|—+1”e 22hg22n T r2drrzdr,.
i=0 m=-1 00 > (107)

2r 2r 7

[ Yoo (6o (61, 8)5en6,d6,d s [ [ Y (6, )Yoo (6, 6, )5€06,d6,d g,

3.3. ANALISE DO LIVRO DO EISBERG

O livro do Eisberg é um livro de fisica quéantica introdutério sem a notacéo de
Dirac. No capitulo 9 cujo titulo é: Atomos multieletrdnicos-Estados Fundamentais e
ExcitacGes por Raios X, na secdo 9-6 é feita uma abordagem puramente qualitativa
do método de Hartree. Nessa abordagem néo se utiliza nenhum calculo envolvendo
o0 principio variacional, operadores de Fock ou coisas do tipo. Somente é discutido a
aproximacdo de Hartree e em algumas poucas linhas fala-se da importancia dos
calculos desenvolvidos por Fock. Os elétrons sdo tratados como se eles se
movessem independentemente e também ndo sdo utlizadas autofungbes
antissimétricas, ndo levando em consideragdo o principio da indistinguibilidade.
Apesar desse livro ndo chegar a discutir contribuicdes de Roothann, por considerar
uma teoria avancada, iremos encaixa-lo na categoria 1, pois, embora nao
desenvolva os célculos envolvido na teoria, traz aspectos qualitativos e até mesmo
historicos que consideramos importante no desenvolvimento do saber ensinado. O
livro do Eisberg ndo apresenta as etapas do ciclo autoconsistente e, portanto, nao

apresentaremos nenhum exemplo do mesmo.
3.4. ANALISE DO LIVRO DO LEVINE

O Levine é um livro de Quimica Quantica que em algumas sec¢des aborda o
método de HFR. No capitulo 18 (estrutura atbmica) em uma pequena secao, €
discutido as funcdes de onda de HF. A discussdo segue um caminho qualitativo,
trazendo aspectos histéricos, apresentando as contribuicbes de cada cientista no
desenvolvimento do método. No capitulo 19 (estrutura da molécula) o livro retorna a
discussédo do método para explicar algumas caracteristicas importantes do operador

de Fock apresentando algumas equa¢fes mas sem demonstrar matematicamente
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sua origens . Traz também varios resultados de célculos de moléculas a partir do
desenvolvimento autoconsistente. Porém, grande parte da abordagem é feita de

forma qualitativa. Portanto, O livro do Levine se encaixa na categoria 2.

3.4.1. Exemplo do livro do Levine: Conjunto de base minima da molécula
HF (fluoreto de Hidrogénio)

No livro do Levine ndo é mostrado as etapas do ciclo autoconsistente
explicitamente como no livro do Alcacer, no entanto, o livro deixa claro que os
resultados foram obtidos a partir das etapas do ciclo SCF. Por exemplo, no célculo
do conjunto das bases minima da molécula HF (fluoreto de Hidrogénio) a solucdo da
equacao de Hartree-Fock usando o conjunto de base minima para uma molécula o
€ apresentada pelo livro (p.692) de forma direta, sem célculos ou demonstracdes, a

partir da seguinte combinacao:

1o-=1,000(F1s) +0,012(F 2s) +0,002(F2p,) —0,003(H1s),
26 =-0,018(F1s) +0,914(F 25) +0,090(F 2p,) —0,154(H1s),
30 =-0,023(F1s) -0, 411(F2s) +0, 711(F2p,) —0,516(H1s) .

3.5. ANALISE DO LIVRO DO SZABO

O livro do Szabo € um livro de quimica quéntica avancada que discute a
teoria da estrutura eletrbnica e que da grande énfase ao método de HFR nos
calculos que envolvem a teoria dos orbitais. Em varios capitulos do livro esse
meétodo é discutido. Nesse livro, a teoria de HFR é levada tdo a sério que é
reservado um capitulo inteiro (capitulo 3) s6 pra discutir a aproximacdo de HF.
Nesse capitulo a abordagem é feita de maneira tanto qualitativa quanto guantitativa,
com énfase maior no quantitativo. Existe pouca preocupagdo com 0S aspectos

historicos. O interesse maior consiste em desenvolver todas as etapas matematicas
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e explicar fisicamente o significado de cada termo envolvido em cada expresséo que
surge. Apesar de desenvolver todo método autoconsistente, as integrais ndo sdo
resolvidas, mas, assim como no livro do Alcacer € mostrado no apéndice como
resolver integrais do tipo. No final do livro (também nos apéndices) € mostrado um
programa computacional desenvolvido em Fortran, que realiza todos os passos de
um ciclo autoconsistente para o caso de dois elétrons. Assim, o livro do Szabo é
bem mais completo no sentido de trazer e explicar os conteudos (teorias, métodos,
principios e propriedades matematicas) referentes a aplicacdes da teoria de HFR do
gue os demais. Nesse caso, pela nossa avaliacdo esse livro por desenvolver todas

as etapas se encaixa na categoria 3.

3.5.1. Exemplo do livro do Szabo: Céalculos SCF na Molécula STO-3G HeH"

As atapas do SCF desenvolvido pelo livro do Szabo € bem parecido com o

livro do Alcécer:

Etapa 1- Escolha das bases:

h= (413/”)]/2 e, g = (Cf/ﬁ)m oGl Rl

Etapa 2-Calculo das Integrais e construcdo das Matrizes S, T,V, e

H=T+V'+V2
. ( 10 04508 F_ 2,1643 0,1670 i ~41398 -1.1029
l0,4508 10 /) 10,1670 0,7600) | -1,1029 -1,2652 )

Jjo_(0.6772 -0,4113
0,413 —1,2266 )’

A

s s e [—2,6527  —1,3472
H=T+V +V°= :

-1,3472 -1,7318

Os resultados da integrais de dois elétrons s&o o0s seguintes:
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(4| 4,) =1,3072 v (¢, | 4h) = 0,6057 ua.
(doth|dhdh) =0,4373 u.a. (86| 4,61)=0,3118 ua.
(th|4,) =0,1773 v (#05|#8) =0,7746 U2

Etapa 3- Diagonalizagéo da Matriz S e calculo do coeficiente X :
2" (2™

U= 12 2 |’

(2] -[2]

1o _ 0,8302 0,0
0,0 1,3493)

2 —Ust? 0,5871 0,9571
B 10,5871 0,9571)°

Etapa 4- Primeira versao da matriz densidade:

1,7266 0,2599
0,2599 0,0391)

Etapa 5- Construcao da matriz de Fock (If eF):

6o 1,2623 0,3740
~10,3740 0,9890 )’

~ o~ o (—2,6527 -1,3472
F=H+G= .

-1,3472 -1,7318

~  ~n~n  (—2,4397 —0,5158
F=XFX = :

-0,5158 -1,5387

Etapa 6- Diagonalizacdo de F para obter os autovalores ¢ e os autovetores C:
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. (0,9104 10,4136 -2,6741 0
= , &= )
0,4136 -0,9104 0 -1,3043

A

Etapa 7- Converséo de C em C:

2 g (09291 -0,6259
0,1398 11115 )

Etapa 8- Construcdo da nova matriz de Fock:

~ & 4 (-1,3904 -0,9732
F=H+G= :
(—O, 9732 -0, 7429]

Depois de algumas iteracdes o livro apresenta o resultado final das energias e
dos autovetores do estado minimizados que sao dados por:

~ (0,8019 -0,7823 -1,5975 0,0
= ,E= )
0,3368 11,0684 0,0 —-0,0617

Também o livro traz uma tabela (tabela 2) mostrando os resultados da matriz

densidade e da energia eletrénica durante o processo (STO-3G HeH™).

1 1,7266 0,2599 0,0391 -4,141863
2 1,3342 0,5166 0,2000 -4,226492
3 1,2829 0,5384 0,2247 -4,227523
4 1,2864 0,5400 0,2267 -4,227529
5 1,2862 0,5402 0,2269 -4,227529
6 1,2861 0,5402 0,2269 -4,227529

Tabela 2: Exemplo do livro do Szabo: resultados da matriz densidade e da energia eletrénica.
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3.6. CONCLUSOES OBTIDAS A PARTIR DA ANALISE DOS LIVROS

Devemos ressaltar que de acordo com os critérios estabelecidos a “posi¢cao”
gue colocamos cada livro ndo os coloca em nenhuma posicdo especial no sentido
de possuir uma abordagem mais correta ou mais didatica do que os outros. Estamos
apenas analisando as diversas formas de como o saber a ensinar foi construido e,
nao desenvolvendo um julgamento de quais abordagens sdo as mais adequadas.
Queremos entender o processo de transformacédo pela qual passou a teoria de HFR
e estabelecer uma legitimagdo de um saber analisando a teoria sobre o ponto de
vista de cada nivel da transposicao didatica. Como bem destacou Pinho Alves
(2000),

O saber a ensinar é entendido como um novo saber, sua estrutura de
origem esta localizada fora do contexto académico produtor do saber sabio.
Dessa forma, para que na integracdo entre objetos de ensino ndo haja
prevaléncia de conceitos sem significado, € recomendado o uso das
diferentes fontes de referéncia, que inspiram e estabelecem a legitimacao
de um saber (p. 23).

A andlise nos permitira enxergar os elementos envolvidos na teoria que a
torna complicada de ser ensinada para alunos de graduacdo. Selecionamos de
propdsito quatro livros, trés que sdo utilizados somente em cursos avancados de
Quimica e Mecanica Quantica e um que € utilizado geralmente no curso de fisica
moderna.

Embora cada livro possua caracteristicas bem especificas, todos eles
concordam com o fato de que o método de HFR possui uma matematica bem
trabalhosa e que somente para alguns poucos casos € possivel resolver as
equacdes que surgem de forma analitica. Em outras palavras, € a matematica
envolvida no método e, consequentemente, nas aplicacbes do método, etapas do
ciclo SCF, a responsavel por torna-lo tao trabalhoso e complicado de ser abordado
na graduacdo. O entendimento quantitativo do método exige um grande dominio de
calculo avancado e de algebra Linear. Na verdade o entendimento fisico (qualitativo)
do método néo é tdo complicado. Existem disciplinas em um curso de fisica que séo

bem mais dificeis. Mas concordamos com o fato de que nenhum desses exigiria
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tanto esforco matematico quanto o de resolver analiticamente todas as integrais que
surgem ao se aplicar o método de HF em uma molécula contendo N elétrons e M
nacleos. O numero de integrais que surge a partir da expressao (81) vai de acordo
com numero de elétrons e com o tamanho da base. A relacdo que fornece um
nimero de integrais por elétron é da ordem de k*, onde k é o nimero de elétrons.

Assim, se aplicarmos o método ao atomo de H,, com uma base minima para o

mesmo (uma fungdo de base por elétron), por exemplo, obteriamos 16 integrais das
quais, por simetria, basta levar em consideracdo 6 delas. Se tomassemos o Litio,
que possui 3 elétrons, a equacao (50) forneceria 81 integrais para uma base minima
e, assim por diante. Além disso, os livros que analisamos constroem as integrais

utilizando fungdes de base do tipo Slater (Slater type orbitals-STO) dada por:
¢°'° = Nr'"7e'Y, (0, ¢) (108)

Onde ¢ é conhecido como expoente orbital zeta que pode associar-se ao
namero atdmico efetivo Z"pela relacio ZA; N é a constante de normalizacdo e a

funcéo Y,

Im

sdo os harmdnicos esféricos. Para minimizar os célculos das integrais
gue possuem funcgdes exponenciais geralmente utilizam-se fungcbes gaussianas do

. p . ~ . , .
tipo e* onde para cada base ¢ temos uma combinacdo linear com varias

gaussianas de forma que a expressao (102) assume a forma

¢CGF :Zkrp rGTo (109)

O uso dessas bases deixa os calculos ainda mais complicados, possibilitando
0 surgimento de integrais envolvendo harmoénicos esféricos e polinbmios de
Laguerre.

Uma das exigéncias principais da transposicao didatica € que no processo de
transformacdo a teoria (com suas propriedades e caracteristicas) deve ser
preservada para ser assimilada pelos alunos. Portanto, visto que o maquinario

matematico torna-se um obstaculo ao aprendizado dos conceitos, & adaptacdo deve
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ser feita a partir de simplificagbes matematicas. Nosso interesse ndo é chegar em
resultados precisos mas simplesmente mostrar como 0 método pode ser
implementado utilizando ferramentas matematicas que qualquer aluno dos ultimos
periodos de fisica ou quimica consiga dominar.

De acordo com os contetdos programaticos dos cursos de Fisica Moderna e
Quantica, o poco quadrado infinito unidimensional e o potencial delta de Dirac sao
conteddos que geralmente sdo vistos na maioria das universidades. Isso significa
gue esses contetddos sdo acessiveis a alunos de graduacdo. Iremos, portanto,
utiliza-los como procedimentos metodologicos que servirdo como pecas chave de

adaptacao que iremos construir.

3.7. ADAPTACAO DOS PROCEDIMENTOS DO CICLO AUTOCONSISTENTE
DO METODO DE HFR

Com base no esquema desenvolvido por FRIOLANI (sec¢éo 2.1) fizemos um
esquema semelhante onde estdo ilustradas as propostas e 0s objetivos principais
fundamentados no conceito de transposicéo didatica que mostra como esse trabalho
foi pensado e elaborado (figura 3). A comparacéo entre os dois esquemas permite
observar que o método de HF nesse trabalho sera escolhido como sendo o saber
sabio. Nossa proposta € adaptar matematicamente os procedimentos necessarios
envolvidos nas etapas de um Ciclo Autoconsiste que sdo desenvolvidos a partir do
método de HFR. Nesse caso, nossa proposta se restringe a uma adaptacdo da
aplicacdo do método de HFR e ndo do método em sim, desenvolvendo assim um
saber a ensinar matematicamente simplificado. Concordamos que a matematica
envolvida na construcdo do método, como pode ser vista na fundamentacao tedrica,
envolve manipulacdes de algebra linear e célculos avancados. Embora na aplicacao
em geral também apareca integrais de fungbes especiais, nosso objetivo principal &
buscar uma estratégia que possa substitui-las por integrais simples. Para isso,
aplicaremos o meétodo de HF ao poco quadrado Infinito unidimensional com o uso do
potencial delta de Dirac para interacdo elétron-elétron. A funcdo delta de Dirac é

aplicada em alguns casos realistas como, por exemplo, pode ser utilizada para
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representar a densidade de uma carga pontual. Contudo, ndo encontramos na
literatura uma situacao realista convincente que descreva a interacdo de dois
elétrons a partir de um potencial delta de Dirac. Por isso, iremos utilizar esse
potencial como sendo um potencial alegérico. Como nosso objetivo é somente
simplificar matematicamente as etapas do SCF, esse potencial sera utilizado com
este objetivo. A partir dessa adaptacdo o saber a ensinar passa a ser o ensino da
aplicacdo do método, matematicamente adaptado para um curso de licenciatura em
fisica ou em quimica. Em relacdo ao saber disponivel, esse trabalho permitira o
estudo de particulas interagentes, raramente discutidos na graduacdo, e também
dos procedimentos associados ao método autoconsistente (somente abordados

profundamente em areas especificas).

Noosfera

Método HF

!

Adaptar a aplicagido do método HF Livros de Fisica Moderna, Mecéanica
| Quantica e Quimica Quéntica
Pogo Quadrado Infinito Unidimensional| Potencial delta de Dirac
Ensino do método HF adaptado na graduagao

Aplicag@o do método HF ao PQIU com o uso do PD
Método de HF

Particulas Interagentes Ciclo Autocosistente

Figura 5: Esquema que ilustra segundo a visGo desse trabalho a adaptagéo do método de HFR sob os vdrios
pardmetros da transposi¢do Diddtica: comparar com o esquema da pdgina 20.
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3.8. POCO QUADRADO INFINITO UNIDIMENSIONAL

O poco quadrado infinito € um dos modelos mais simples utilizado pela
mecanica quantica para estudar os estados ligados de uma particula. No estado

ligado as particulas com niveis de energia & estdo presas por duas barreiras de

potencial V(x) de ambos os lados (figura 6). As particulas oscilam de um lado para
outro, mas ndo conseguem escapar. No poco de potencial infinito considera-se que
0S potenciais possuem valores de energia tdo alto que séo considerados infinitos em
comparacdo com as energias das particulas. Esse efeito é de fundamental
importancia para a mecanica quantica, pois s6 ha quantizacdo de energia se 0s

potenciais forem capazes de aprisionarem as particulas (Eisberg, 1979, pg. 271).

Ve A

-
0 L =

Figura 6: Energia potencial de um pogo quadrado infinito de largura L

Considere o poco infinito de largura L conforme mostra a figura 6. Dentro do
poco a energia potencial V(x) é zero. Imaginemos o caso de uma Unica particula
aprisionada pelo poco. Para estudar esse sistema e encontrar as autofuncdes e as
autoenergias, devemos resolver a equacao de Schrondiger independente do tempo

que, para esse caso pode ser escrita como:

7 AP
2m  dx?

=E¥(X). (110)
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‘Isolando” a derivada segunda na expressao acima, obtemos a seguinte

equacao de segunda ordem:

d ZKPSX) __ 2sz P(x) = _kz\P(X) ’ (1112)
dx h

onde k’= 2sz .
h

Agora, precisamos encontrar a solucdo da equacédo (111) que é

dada por,

Y (x) = Asinkx+ B coskx. (112)

E claro que esta ndo é ainda a solugcdo completa, pois ainda temos que
encontrar os valores de A, B e k. Para encontrar a solucdo devemos aplicar as
condicdes de cotorno em (112) para obter os valores de B e de k. Enquanto A é
obtido por normalizacdo. As condi¢cdes de cotorno séo as seguintes:

{111(0)=0 condicdo 1 . (113)

V(L) =0 condicdo 2

Aplicando a primeira condicdo na equacdo (112) obtemos que B=0. A

segunda condicao implica que:
Y(L)=AsinkL =0 (114)

S6 que, para que AsinkL=0, o nimero de ondas k tem que assumir 0s

seguintes valores:

k =”T” N=12.34.... (115)

n

Logo, os autovalores de energia em termo de k toma a forma:
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E =20 (116)

Encontradas as auto-energias precisamos saber agora as autofuncdes que
irdo fornecer os elementos da base do sistema. Para isso, basta normalizar a funcéo

(114) para encontrar o valor de A. Nesse caso temos,

[“wow dx= Alsin? (”LLX) dx =1. (117)

. . 2 :
Resolvendo a integral acima encontramos que Ajz,/t. Assim, as

autofuncdes (que sado as fung¢des normalizadas que resolve 0 nosso problema) ficam

dadas por:

¥ (x)= \E sin nLLX . (118)

Na graduacéo de fisica (Licenciatura ou Bacharelado), no curso de fisica
moderna, geralmente esse exemplo é utilizado como modelo para estudar a ES para
duas ou mais particulas ndo interagentes presas por um potencial infinito. Nosso
objetivo nesse trabalho € estudar esse sistema para o caso de duas particulas
interagentes que envolvera as aplicacbes do método de HF. Veremos que a escolha
da base do poc¢o quadrado infinito ird facilitar muito os célculos das integrais que

aparecem ao aplicarmos o método de HF.

3.9. FUNCAO DELTA 6 DE DIRAC

A funcao delta de Dirac o é definida pelas seguintes condicdes:

0 x=0 (119)
o x=0

§(x—a):{
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Na verdade, rigorosamente a funcdo de Dirac ndo se trata bem de uma
funcao, pois nao é finita em x=a. Os matematicos a consideram como uma funcéo
generalizada ou distribuicdo, ou seja, como sendo o limite de uma funcéo (Griffiths.

2011, pg 54). As condi¢cbes dada por (119) implicam nas seguintes relacoes:

f(X)5(x—a) = f(a)5(x—a) e Tf(x)é(x—a)dx = f(a) j_*:5(x—a)dx = f(a)

—00

(120)

onde fwé(x—a)dx:l. As relagbes acima mostram que multiplicar 6(x—a) por uma

funcdo ordinaria € o mesmo que multiplica-la por f(a), onde a € uma constante.

Um potencial do tipo funcéo Delta de Dirac pode ser escrito como:
V(X)=yo(x-a). (121)

Este sera o potencial que iremos usar e, novamente, veremos que O USO
deste potencial ira facilitar muito o manuseio das integrais que surgirdo daqui pra
frente. Nossa preocupacdo, sem dulvida, sdo essas tais integrais, pois estamos
falando, como veremos, de 16 integrais. Isso porque iremos trabalhar com duas
particulas apenas. Se por acaso, nos aventurassemos a trabalhar com trés teriamos
que lidar com 81 integrais, como foi discutido anteriormente. Nao resta davida que o

uso da base do poco infinito e do potencial de Dirac facilitar4d muita coisa.

3.10. APLICACAO DOS PROCEDIMENTOS SCF NA BASE DO PQIU

, , 1
Vamos agora obter a energia para o caso restrito, Eg, =—Z(Hpq+qu)
pq

utilizando as aplica¢des dos procedimentos SCF do método de HF. Faremos isso
utilizando ferramentas que possam diminuir a complexidade matematica e torne a
aplicacao acessivel aos alunos de graduacao. Isso podera ser feito utilizando bases

do poco quadrado infinito unidimensional e o potencial delta de Dirac. Essa energia
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em geral s6 pode ser calculada via método SCF. Por isso, iremos aplicar
praticamente todos os procedimentos necessarios do SCF apresentado na secao
anterior para a base do po¢o quadrado infinito e também para um potencial em

termo da funcao de Dirac.
ETAPA 1. Especificagdo do sistema.

Adotaremos neste trabalho um potencial de interacdo elétron-elétron do tipo

delta de Dirac: V,, =y (X, -X,). As integrais de dois elétrons podem ser faciimente

resolvidas, visto que para a funcao delta de Dirac temos que:

X
j f (X)S(x—xp)dx =
X

{f(xo) se Xoe[xmxb]_ (122)
0

C.C.

Por se tratar de particulas numa caixa, utilizaremos como funcdo de base,

NzX

funcbes do tipo %(x)=\/gsen(T) com n =1, 2; ou sej,

B ={\/%sen(%xj, \/%sen(z—ij}. Note que essa base evita a utilizacdo de funcdes

especiais, permitindo que as integrais sejam realizadas analiticamente. Por ser uma

base ortonormal, a matriz de sobreposicéo (S) possuira apenas elementos unitarios

na diagonal principal, ou seja, S = I,, onde |, €& a matriz identidade de tamanho

A

2x2. Uma vez que S = |, é facil ver que F=F e C=C. Além disso, ao restringir a

base em dois elementos, a “diagonalizac&o” envolvera uma matriz 2x2.
ETAPA 2 - Calculo das Integrais.

Inicialmente iremos calcular as integrais mais simples, envolvendo apenas um
elétron. Sabemos que o Hamiltoniano do poco quadrado infinito é dado por hy = T
+ Vg, onde Vi e T correspondem ao potencial de interagéo elétron-“nucleo” e a

energia cinética do i-ésimo elétron, respectivamente. Nesse trabalho, atribuiremos
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ao “fundo do pog¢o” uma energia nula, ou seja, adotaremos V = 0. Nesse caso, a
parte monoeletronica do Hamiltoniano do nosso sistema (Hamiltoniano de caroco)

fica definido simplesmente como:

h d? 1 d?
T=—t = =2 123
® 2mdx>  2dx?’ (123)

onde, na segunda igualdade da Equacdo (123), consideramos #=1 e m=1

(unidades atbmicas — u.a.). Como estamos trabalhando com duas func¢des de base,

o operador de um elétron ird gerar uma matriz quadrada 2x2 do tipo:

H =(H“ H”J (124)

Tabela 3: Integrais de um elétron
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Para facilitar a implementa¢do computacional, iremos arbitrar os seguintes

valores: L=7//2 = y . Logo, de acordo com os resultados da Tabela 3, vemos que

a matriz H pode ser escrita como H :(é ?J

Abaixo, segue uma tabela com as integrais envolvendo dois elétrons. Apesar

de termos dezesseis integrais, apenas seis possuem valores distintos.

(11]11) =
}/LL 37/
:_2!'!’ ( jé(x1 X,)sin? ( i jdxldxzzz
(22|2
LL
02| 274 in2 ”XZJ _3r
'L[ |04 =x;)sin ( dxdx, =2

”smz 27[X1)5(x1 x)sm( ]dxldx

(12]11) = (21]11) = (11]12) = (11]21) =

_TZEUSW(” jé(xl—xz)sin(t jsm( deidx =
(

(2122) = (12]22) = (22]21) = (22]12) =

LL
- %Msin2 (ZETXij&xl - xz)sin(”i(2 jsin(ztxz jdxidx2 =

(12|12) = (21]21) = (12|21) = (21]12) =

”sm[ﬂxljsm( i )5()9 x)sm( i jsin(ztxzjd&dxzzl

Tabela 4: Integrais de dois elétrons

ETAPA 3. Diagonalizagdo da Matriz S e construgcdo das matrizes de

A Py

transformacéo X e Y.
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Como a base B contém elementos ortogonais, a matriz S é diagonal (§ =1,)

de modo que esta etapa do processo torna-se desnecessaria.

ETAPA 4. A primeira verséo da matriz densidade D.

A matriz densidade, como vimos, é dada por D=2CC", sendo C a matriz

cujos elementos sdo formados pelos valores dos coeficientes C;. Em nosso caso,

estamos considerando apenas um orbital espacial duplamente ocupado e uma base

1
contendo dois elementos. Portanto, C e C' podem ser escritos como: C:[Cllj e
2

ct =(C11* Cf) ; de modo que, a matriz densidade assume a forma:

D=2CC'= Z(Clicli CliC%] = [ g“ 312] . (125)
CZCl C2C2 21 22

Como uma primeira tentativa, arbitraremos a seguinte combinagéo linear para

0 nosso orbital espacial duplamente ocupado:

7) ﬂ.(@jsen(”—l_xjm[ %jsen(”—l_xj. (126)

De acordo com a funcéo acima temos: C! =1 e C;=0; o que resulta em uma

1
“matriz’ dos coeficientes dada por: C:(Cljz[oj' Para se construir a matriz
2

densidade (D), devemos nos lembrar que ela apenas leva em consideracdo os

orbitais espaciais ocupados. Logo temos que:
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~ aa, (CICY CiICY) (2 0
D=2CCT=2 A1 M2 | . (127)
cicr cier) o o

gue € a nossa primeira tentativa para a matriz densidade.

ETAPA 5. Construcdo da Matriz de Fock (F e F).

A

A matriz de Fock, como vimos, é dada por F=H+G. As matrizes S e H ja

foram obtidas. Falta ainda obter os elementos da matriz G gue, por sua vez, podem

ser encontrados a partir da expressao G, ZDrS( pqg|rs ——<pr|sq>). De posse

dos valores das integrais de Coulomb, troca, sobreposicdo e da matriz densidade,

A

podemos construir a matriz G, elemento por elementos (G, ). Assim, para G,

temos que:

G,=D, [(11|11) —5(11|11)} +D,, [(11| 21) —5(11| 21)} +D,, [(11|12) —1(12 | 11)} +D,, [(11| 22) —1(12 | 21)}.
2 2 2 2

Como D, =D, =D,, =0, entéo, substituindo os valores das integrais de

Coulomb e troca, obtemos:

6, _o[3.13]_3
2 22 2

Seguindo o mesmo raciocinio para os demais elementos segue que:

G, = Dl{(12|11)—%(11|12)}:2( _% j
fo-topo

G, - Dll{(22|11) —%(21|12)} - 2( %1) 1

G, = Dn[(zml) —%(zml)}
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Portanto, a primeira versédo (ordem zero - G”) da matriz de dois elétrons

passa a ser escrita como:

é@:(s/ 2 Oj . (128)
0 1

Finalmente, de posse da matriz G temos condices de construir a matriz de

Fock (também de ordem zero):

A A A 1 0) (32 0) (52 0
F(O):H+G(O>=(O 4}{(/) J:[é 5)_ (129)

~ A

Conforme dito anteriormente, como a base é ortonormal, temos que F=F
ETAPA 6. Diagonalizar a matriz F para obter os autovalores e autovetores C .

O préximo passo consiste em determinar os autovalores e autovetores da
matriz F e obter novos coeficientes (€ ). Como ela j& é uma matriz diagonal é facil

ver que seus autovalores sdo: 4 =5/2 e 4, =5. Para 4 =5/2 obtemos o autovetor
(coeficientes da expansdo) Cl=1 e C}=0. Ja para 4, =5 obtemos C?=0 e C2=1.
Note que, por utilizarmos dois elementos na base B, todas as matrizes séo de
tamanho 2x2. Consequentemente tém-se dois autovalores e dois autovetores que
por sua vez correspondem a dois niveis de energia e dois orbitais espaciais onde
podem ser alocados até dois elétrons em cada um deles. Como nosso sistema
possui apenas dois elétrons ambos serdo colocados no orbital espacial de menor
energia. Por este ser o orbital ocupado com a energia mais alta, ele € denominado
HOMO, do inglés Highest Occupied Molecular Orbital. J& o orbital espacial de maior
energia, por ndo possuir elétrons, € usualmente chamado de orbital virtual. Logo,
assim como no caso do HOMO, por ser o orbital virtual de mais baixa energia, é

chamado de LUMO, do inglés Lowest Unoccupied Molecular Orbital. A Figura 1
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mostra nosso sistema com seus dois orbitais espaciais (HOMO e LUMO) e os dois
elétrons ocupando o HOMO.

Q0 o0
A A
ELUNID
AV > ¥ =7 g -x)
|“ A ‘.‘, Eyomo
>
0 L X

Figura 7: Niveis de energia do sistema apds a convergéncia da energia. O “ultimo” orbital ocupado HOMO com
energia, HOMO = 2,5 u.a. e o primeiro orbital desocupado (virtual) LUMO com energia, LUMO = 5,0 u.a. (u.a. —
unidades arbitrdrias).

ETAPA 7. Converter Cem C e calcular uma nova matriz densidade (D)

Novamente, como a base é ortonormal, temos que C=C. Além disso, por
estarmos utilizando a versao restrita do método (RHFR), alocamos os dois elétrons
no nivel de energia mais baixo. Como a matriz densidade é construida levando-se
em conta apenas orbitais espaciais (duplamente) ocupados, s6 os coeficientes dos
orbitais ocupados sdo levados em consideracdo para o calculo da nova matriz

densidade (ordem um). Assim, vemos que ap0s 0 primeiro ciclo iterativo, a nova

. . . 2 0 o
matriz densidade fica; D" :(0 Oj’ gue coincidentemente, corresponde a nossa

matriz tentativa (ordem zero).

ETAPA 8. Calcular a energia total do sistema.
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Conforme visto anteriormente, a E;,, pode ser calculada atraves da Equagéo

Erne = %tr[D(H +F)], resultando em:

2 0 1 0 5/2 0
ER“F:%Tr{o OJKO 4)+ ( 0 J}:; (130)

Aqui, vale salientar que a energia total do sistema n&o corresponde,
simplesmente, ao menor valor da energia do orbital espacial multiplicado por dois
(visto que ele é duplamente ocupado). Note que, se assim o fosse, estariamos

considerando a interagao elétron-elétron duas vezes.

ETAPA 9. Retornar ao item cinco, até que a energia total do passo anterior ndo

difira significativamente do passo atual

Neste exemplo em particular, vemos que apds um ciclo completo, a nova matriz
densidade (primeira ordem) é idéntica a nossa primeira tentativa (ordem zero). Em
outras palavras, vemos que nosso ‘chute’ foi certeiro. Logo, se fossemos adiante
com o método, as demais iteragdes ‘convergiriam’ para o mesmo resultado. Assim
sendo, ap6s a etapa 8 podemos encerrar o processo e afirmar que o mesmo

convergiu.
3.11. OUTRAS TENTATIVAS PARA A MATRIZ DENSIDADE DE ORDEM ZERO.

Talvez, o fato mais intrigante do método do campo autoconsistente € que o
resultado final sempre serd o mesmo ndo importando o chute inicial que é dado para
os coeficientes que compdem a matriz densidade. Em outras palavras, o sistema
converge para um valor minimo de E;,-. Espera-se que quanto mais préximo o
chute estiver da ‘solucdo correta’ menor sera o numero de iteracdes realizadas para

se chegar nela. Isso foi o que aconteceu no nosso exemplo: o chute foi certeiro.

Contudo, para que ndo haja davidas acerca da afirmagéo anterior, desenvolvemos
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um programa simples (ver apéndice) em linguagem Octave, que realiza todos os
passos (de 1 até 9, para uma base ortonormal) dos procedimento do ciclo
auconsiste. Essas iteracfes vao se repetindo até que se obtenha a matriz de
autovalores para a energia ( E; ) minima. Abaixo, seguem as Tabelas 5 e 6, cada
uma contendo um chute inicial distinto para a matriz densidade de ordem zero. Nas
linhas cada tabela, colocamos os resultados das matrizes D, E e C, além da energia

total ( Bz ), para algumas iteragoes.

Chute 2

Iteraca Matriz D Matriz F Matriz & Ene (ULa.)

0

n=0 11 2,2500 1,0000 19472 0 7,2500

11 1,0000 5,2500 0 55528

n=1 18320 -0,5547 2,4580 -0,5547 23440 0 4,2346
—-0,5547 0,1679 -0,5547 5,0419 0 51560

n=10 1,9989 -0,0454 2,4996 0,0569 2,4983 0 3,5073
-0,0454 0,0010 0,0569 5,0004 0 50017

n =27 2 0 25 0 2,5 0 3,5000
0 0 0 5 0 5

Tabela 5: Outra tentativa inicial para construgdo da matriz densidade de ordem zero
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Chute 3

lteracéa Matriz D Matriz F Matriz ¢ Eqe (u.a.)

0

n=0 1,8000 0,6000 2,4500 0,6000 2,3182 0 4,3700
0,6000 0,2000 0,6000 5,0500 0 51818

n=1 (L9079 —0,4190] 2,4769 —0,4190 2,4098 0 3,9078
—0,4190 0,0920 -0,4190 5,0230 0 50902

n=15 1,9999 0,0012 2,4999 -0,0151 2,499 0 3,5008
0,002 O -0,0151 5 0 5001
n=25 2 0 25 0 25 0 3,5000
00 0 5 0 5

Tabela 6 : Mais uma tentativa inicial para construgdo da matriz densidade de ordem zero
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CAPITULO IV

CONCLUSAO

Podemos observar que praticamente todos procedimentos do método
autoconsistente para as bases do poc¢o quadrado infinito unidimensional poderia ser
resolvido de forma analitica. Contudo, seria muito trabalhoso ter que realizar 19
iteracOes para obter os niveis de energia minimizados. A ideia é que o método seja
abordado de forma qualitativa, apresentado apenas as principais equagdes
envolvidas nas etapas do ciclo-autoconsistente, no final da graduacao, quando os
alunos ja dominarem o béasico de programacdo computacional, jA tenham visto o
hamiltoniano do poc¢o quadrado infinito e também o potencial delta de Dirac para que
sejam capazes de desenvolverem um programa simples e manipularem as integrais
que surgirem. Até porque a transposicdo que estamos propondo somente tera efeito
caso haja esse dominio por parte dos alunos. O programa pode ser desenvolvido em
qualquer linguagem desde que funcione e reproduza os passos do método
Nautoconsistente que apresentamos. As integrais que surgem, devido ao uso da
base do PQIU e do potencial de Dirac, sédo integrais simples envolvendo senos e
cossenos. Além disso, os autovalores e autovetores envolvem uma matriz 2x2
facilitando ainda mais a implementacdo computacional do método tornando possivel
a sua abordagem na graduacdo de Fisica (Licenciatura). A introducdo desse da
aplicacdo do meétodo HFR e de outros conhecimentos mais avancados nos
programas de formacdo (graduacdo) a partir de um processo de transformacéo
baseado na Teoria da Transposicdo Didatica é um exemplo da modernizacdo do
saber Astolfi (1997apud ALVES FILHO, 2000a, pg.182). Negar essa introducéo é
estagnar o conhecimento, torna-lo estavel, o contrario de dinamico, é pér um veu
sobre os olhos da maioria frente a todo desenvolvimento e crescimento das

producdes cientificas, ou seja, do saber sabio.



87

REFERENCIAS

AGNALDO A.; KATIA M. HONORIO, KAREN C. WEBER, PAULA HOMEM-DE-
MELLO; ALBERTO B. F da SILVA. O ENSINO DE QUIMICA E O COMPUTADOR
NA PERSPECTIVA DE PROJETOS. Séo Carlos-SP: Quim. Nova, 2004.

AIKENHEAD, GLEN S. What is STS science teaching? In: SOLOMO, J;
AIKENHEAD, GLEN S. STS Education: International perspectivas ou reform.
New York: Teachers College Press, 1994, 2006.

ANDREU, F. J. El uso de textos originales de los cientificos y sus dificuldades
en el caso de la ensefianza de la mecanica cuantica, in: Didactica de las Ciéncias
Experimentales y Sociales, n.° 10, 1996. p. 93-100.

ALCACER, Luis. Introducdo a Quimica Quantica Computacional: Teoria Das
Orbitais. Lisboa: IST Press, 2007. p. 191-260.

ALVES FILHO, J. P.; PIETROCOLA, Mauricio.; PINHEIRO, T. F.; A Eletrostatica
como exemplo de Transposicao Didatica. In:_ . (Orgs.). Ensino de Fisica
Contetdo, Metodologia e Epistemologia uma Concepcédo Integradora. Santa
Catarina: Editora da UFSC, 2001. P. 78-98.

BERNAL, M. M. Estudo do Objeto proporcéao: elementos de sua organizacao
matematica como objeto a ensinar e como objeto ensinado. 2004 (Dissertacao
de Mestrado). UFSC. Florianépolis, p. 18-22.

CHEVALLARD, Y.; JOSHUA, M-A. Un exemple d’analyse de la transposition
didactigue - La notion de distance. Recherches en Didactique des
Mathematiques. V.3, n.2, 157-239, 1982.

CHEVALLARD, Y. La Transposition Didactique- du savoir savant au savoir
enseigné. Grenoble: La Pensee Sauvage Editions, 1991.

CORTELAZZO, Iolanda. B. C; Colaboracédo, Trabalho em equipe e as
Tecnologias de Comunicacgado: Relacbes de Proximidade em Cursos de Pos-
Graduacéo. Tese de Doutorado - Faculdade de Educacéo da Universidade de Séo
Paulo, 2000.

CUSTODIO, R.; MORGON, N. H. Método LCAO. 1998. Instituto de Quimica,
Universidade Estadual de Campinas, Campinas.

EISBERG, Robert; RESNICK, Robert. Fisica Quantica - Atomos,
Moléculas, Sélidos, Nucleos e Particulas. Tradugdo de Paulo Costa Ribeiro, Enio
Costa da Silveira e Marta Feij6 Barroso. 2. Ed. Rio de Janeiro: Campus, 1979.



88

FRIOLANI, L. C. O Pensamento Estocastico nos Livros Didaticos do Ensino
Fundamental. 2007. Dissertacdo (Mestrado). Pontificia Universidade de Sao Paulo:
Sao Paulo.

LEVINE, I. N. Phisycal Chemistry: New Jersey: Pearson Education, 2009.

LIBANEO, Carlos José. Adeus Professor, Adeus Professora? Novas exigéncias
educacionais e profissdo docente. Sdo Paulo: Cortez, 1999.

LOPES, C. A. S. O Ensino de Probabilidade e Estatistica da Escola Basica nas
Dimensbes do Curriculo e da Pratica Pedagdgica, 2005. Disponivel em;
HTTP://lwww.iberomat.uji.es/carpeta/posters/148 celi espandi lopes.doc .

LOWDIN, P._O. (1955). Quantum Theory of Many-Particle Sistems: Extension of
the Hartree-Fock Scheme to Include Degenerate Systems and Correlation Effects.
Physical Review, 1997.

PAIS, Luis Carlos. Didatica da matematica: uma analise da influéncia francesa.
2.ed. Belo Horizonte: Auténtica, 2002.

PINHO ALVES, J. Regras da Transposicdo Didéatica aplicada ao Laboratério
Didatico. Santa Catarina, Caderno Catarinense de Ensino de Fisica, v.17.n.2,
p.174-188, 2000.

PIZA, Antonio F.R de Toledo. Schrédinger & Heisenberg. Sdo Paulo: Odysseus
Editora, 2007.p.12-44.

RANGENL, Fernando Cesériq. UMA ABORDAGEM SOBRNE 0Ss I'NDICE§ DE
LIGACAO E SUA APLICACAO NO ESTUDO DAS LIGACOES DIHIDROGENIO.
2006. Dissertagdo (Mestrado) — Instituto de Quimica, Universidade de Brasilia,
Brasilia.

SENA, Hildegar Jodo de. A transposicao didatica do conceito de area em livros
didéaticos

do ensino fundamental: periodo de 1923 a 2002. 2007. Dissertacdo (Mestrado em
Educacao). Tubardo: UNISUL, 2007.

SZABO, A.; Ostlund, N. S. Modern Quantum Chemistry — Introducdo to
Advanced Electronic Structure Theory. Mineola, New York: Dover Publications,
Inc, 1996.

TEIXEIRA, Carlos Alberto. O Globo Tecnologia. Nanomateriais podem causar
danos a saude e ao meio ambiente. 19/02/2014 Disponivel em:
http://oglobo.globo.com/tecnologia/mat/2008/12/01/nanomateriais_podem_causar_d
anos_saude_ao_meio_ambiente-586781977.asp> Acesso em: marco de 2009.


http://www.iberomat.uji.es/carpeta/posters/148_celi_espandi_lopes.doc

89

TIPLER, Paul A.; LIEWELLYN, Ralph A. Fisica Moderna. Traducdo e reviséo
técnica Ronaldo Sérgio de Biasi. Rio de Janeiro: LTC, 2010.



90

APENDICE 1

Programa escrito em linguagem Octave, utilizado para construir as Tabelas 3
e 4 do texto. Os comentérios do programa estdo em vermelho/itélico

% IMPLEMENTACAO DO METODO HARTREE FOCK RESTRITO

% DEFINICOES

% C(1) E C(2) = COEFICIENTES QUE COMPORAO A MATRIZ DENSIDADE

% D = MATRIZ DOS COEFICIENTES

% D = MATRIZ DENSIDADE

% H = HAMILTONIANO DE CAROCO (ENVOLVENDO UM ELETRON)

% Gpg = PARTE DO HAMILTONIANO ENVOLVENDO DOIS ELETRONS

% F = MATRIZ DE FOCK (F=H+G)

9% EANT = ENERGIA CALCULADA NO CICLO AUTOCONSISTENTE ANTERIOR
% E = ENERGIA CALCULADA NO CICLO AUTOCONSISTENTE ATUAL

% Vijkl = INTEGRAIS DE COULOMB E TROCA (TABELA 2 DO TEXTO)

% CICLO = NUMERO DE CICLOS REALIZADOSDURANTE O PROCESSO

% PROGRAMA

% AQUI REALIZAMOS O PRIMEIRO CHUTE DOS COEFICIENTE DA MATRIZ DENSIDADE (D)
C=input('dé [C(1),C(2)]\n")

D=2.*(C*C') % CONSTRUCAO DA MATRIZ (D)

% VALORES DAS INTEGRAIS DE COULOMB E TROCA (DISPOSTOS NA TABELA 2 DO TEXTO)
V1111=V2222=3/2;

V1112=V1121=V1211=V2111=0;

V1122=V2211=1;

V1222=V2122=V2212=V2221=0;
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V1212=V1221=V2112=V2121=1;

H=[1,0;0 4]; % MATRIZ REFERENTE AOS ELEMENTOS DO HAMILTONIANO DE CAROCO (UM
ELETRON) CONFORME A TABELA 1 NO TEXTO

E=1 % AQUI CONSIDERAMOS A ENERGIA TOTAL DO SISTEMA (E) INICIAL DADO PELA
EQUACAO 10 CONSIDERANDO INICIALMNENTE A MATRIZ DE FOCK COMO SENDO NULA (F =
0)

CICLO=0

do

EANT=E

D1=[D(1,1),D(1,2)]; % PRIMEIRA LINHA DA MATRIZ DENSIDADE
D2=[D(2,1),D(2,2)]; % SEGUNDA LINHA DA MATRIZ DENSIDADE
% DESENVOLVIMENTO DA MATRIZ DE ELEMENTOS Gpq

V1=[V1111-0.5%V1111;V1121-0.5*V1121]; % PARA SIMPLIFICAR OS CALCULOS E A LEITURA
DO PROGRAMA SEPARAMOS A EXPRESSAO DA MATRIZ (G) EM DUAS PARCELAS V1 E V2
PARA G11, V3 E V4 PARA G12 E ASSIM POR DIANTE.

V2=[V1121-0.5*V1211;V1122-0.5*V1221]
G11=D1*V1+D2*V2;
V3=[V1211-0.5*V1121;V1221-0.5*V1122];
V4=[V1212-0.5*V1212;V1222-0.5*V1222];
G12=D1*V3+D2*V4;
V5=[V2111-0.5*V2111;V2121-0.5*V2121];
V6=[V2112-0.5*V2211;V2122-0.5*V2221];
G21=D1*V5+D2*V6;
V7=[V2211-0.5*V2112;V2212-0.5*V2122];
V8=[V2221-0.5*V2212;V2222-0.5*V2222];
G22=D1*V7+D2*VS8;

Gpg=[G11 G12;G21 G22] % AQUI CONSTRUIMOS A MATRIZ G PROPRIAMENTE DITA
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F=H+Gpq %CONSTRUCAO DA MATRIZ DE FOCK F

[R M]=eig(F) % AQUI NOS DIAGONALIZAMOS A MATRIZ DE FOCK OBTENDO OS
AUTOVALORES (M) E AUTOVETORES (R)

P=D*(F+H) %AQUI MONTAMOS A MATRIZ P DA QUAL CALCULAREMOS A ENERGIA TOTAL DO
SISTEMA, OU SEJA, O TRACO DA MATRIZ P DIVIDIDO PELO FATOR 0.5 CONFORME A
EQUAGAO 10 DO TEXTO.

E=0.5*(P(1,1)+P(2,2)) % CALCULO DA ENERGIA E (TRACO DA MATRIZ P)
K=[R(1,1);R(2,1)] % CALCULO DOS NOVOS AUTOVETORES

D=2*(K*K') % AQUI REALIZAMOS A MONTAGEM DA NOVA MATRIZ DENSIDADE OBTIDA A
PARTIR DO CALCULO DOS NOVOS AUTOVETORES (K)

CICLO=CICLO+1

until ((EANT-E)<0.0001) % O CRITERIO DE PARADA CONSISTE EM VER SE A DIFERENCA ENTRE
A ENERGIA CALCULADA NESTE CICLO (E) E A ENERGIA CALCULADA NO CICLO ANTERIOR
(EANT) E MENOR QUE 0.0001.



