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 RESUMO 

 

Este trabalho consiste em apresentar uma proposta de transposição didática 

apoiando-se na teoria de Chevallard (1991) e Marie-Alberte Joshua (1982). Nessa 

teoria são estudados os processos de transformação do saber científico para o 

saber ensinado que são saberes dominado por grupos sociais diferentes, mas com 

elementos comuns ligados ao saber, que se interligam, coexistem e se influenciam. 

O conteúdo que será apresentado como saber científico será o método de HFR. 

Esse método é um dos mais utilizados em cálculos de estrutura eletrônica da 

matéria e com ele é possível resolver a equação de Schröndinger aplicada a um 

sistema de N elétrons interagentes, de forma aproximada. Para tornar as aplicações 

envolvida nesse método passível de ser ensinado em cursos não-específicos, ou 

seja, para transformá-las num saber a ensinar, serão utilizados nesse trabalho dois 

“recursos didáticos”. O primeiro será a análise do saber sábio. A partir da análise de 

livros, artigos e sites, buscaremos os principais elementos envolvidos na teoria de 

HFR que a torna tão complicada de ser ensinada para alunos de Licenciatura em 

Física e Química. A segunda será uma aplicação. Aplicaremos esse método ao poço 

de potencial unidimensional infinito, através de um modelo bem simples, porém 

muito importante, que geralmente é visto no curso de física moderna durante a 

graduação. 

 

PALAVRAS CHAVES: Transposição Didática, Hartree-Fock-Roothann, 

Equação de Schrödinger, Saber Científico, Saber Ensinado, Poço Quadrado Infinito. 
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CAPÍTULO I 

 

 

Nesse Capítulo será realizada uma contextualização na qual será feita uma 

breve abordagem histórica de alguns fatos que deram origem à mecânica quântica 

bem como dos problemas que surgiram e que levaram ao desenvolvimento da 

aproximação de Hartree-Fock-Roothann. Em seguida será apresentada a 

problemática à qual se propõe esse texto. 

 

 

INTRODUÇÃO 

 

 

1.1. CONTEXTUALIZAÇÃO 

 

 

Um dos maiores interesses da mecânica quântica é o estudo de sistemas 

microscópicos com dimensões próximas ou até mesmo abaixo da escala atômica 

como, por exemplo, átomos, elétrons, prótons e outras partículas subatômicas. À 

medida que esses sistemas foram sendo estudados vários fenômenos isentos de 

qualquer analogia clássica foram surgindo. Isso foi um fato surpreendente para a 

maioria dos físicos no início do século XX que acreditavam que a física estava 

pronta e nada mais precisava ser descoberto. Um fato que trouxe fortes implicações 

nas bases conceituais da mecânica clássica e que deram origem à mecânica 

quântica foram os estudos voltados aos fenômenos ligados à estrutura da matéria, 

principalmente relacionados: i) à radiação do corpo negro realizado por Max Planck 

em 1900, ii) aos fenômenos relacionados ao efeito fotoelétrico estudados por 

Einstein em 1905, iii) aos estudos do modelo nuclear de Thomson apresentado em 

1904 iv), ao modelo nuclear de  Rutherford apresentado em  1911, v) ao modelo 

atômico de Bohr proposto no ano de 1913 e vi) a teoria ondulatória de De Broglie 

apresentada  em 1924. Esses estudos apresentaram resultados, até então, 

impossíveis de serem explicados pela mecânica clássica. 
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 A mecânica quântica possui uma essência probabilística assim como vários 

outros fenômenos estudados pela física clássica. No entanto, nos sistemas 

quânticos existem fenômenos que não possuem nenhum análogo clássico. 

Tecnicamente, segundo a tese de Louis De Broglie apresentada em 1924, as 

partículas possuem comportamento ondulatório e “não faz sentido perguntar onde 

precisamente está a onda”.  O comportamento ondulatório das partículas gera várias 

implicações na física. Uma delas é o princípio da indistinguibilidade que diz que as 

partículas não podem ser distinguidas.  

Em 1926 Erwin Schrödinger encontrou uma equação de onda (análoga à 

equação de onda clássica) que até hoje é considerada a equação de onda que 

governa o movimento dos elétrons e outras partículas com massa diferente de zero. 

A equação de Schrodinger aplicada a um sistema envolvendo apenas um elétron ou 

a sistemas envolvendo mais que um elétron não interagentes é possível de ser 

“fatorada”, ou seja, é possível separar cada termo da equação, pois cada um deles 

depende apenas de suas próprias coordenadas. Contudo, o mesmo não se aplica a 

sistemas que levem em consideração a interação eletrônica. Realmente, essa foi 

uma época desafiadora tanto para os físicos quanto para os químicos sendo, talvez, 

a época dos maiores desafios que já foram enfrentados na história da ciência. Se 

por um lado eles tinham uma equação poderosa cuja solução era capaz de fornecer 

informações fundamentais a respeito de um sistema microscópicos envolvendo 

partículas interagentes, por outro, essa equação somente possuía soluções 

analíticas para o caso de partículas não interagentes.  

Várias tentativas foram feitas para resolver esse problema. Em 1928, Douglas 

Hartree adotou o modelo das partículas independente, sugerido por Bohr em 1923, e 

propôs uma forma alternativa conhecida por produto de Hartree (ver seção 2.4) para 

calcular a função de onda através da solução da equação de Schrödinger. Hartree 

percebeu que a solução numérica de problemas de muitos corpos teria de envolver 

automação tanto analógica quanto digital dos cálculos necessários. Contudo, os 

primeiros cálculos realizados por Hartree não levavam em consideração o principio 

da antissimetria que está associada às partículas de spins semi-inteiro (elétrons, 

nêutrons e átomos). Essas partículas são conhecidas como férmions e obedecem ao 

princípio de exclusão de Pauli que afirma que não pode haver dois elétrons com o 

mesmo conjunto de números quânticos no mesmo orbital.  Em 1930 Vladimir A. Fock 



13 

 

(1898-1974) modificou o método de Hartree permitindo a adoção da função de onda 

como sendo um determinante de Slater, que nada mais é do que um modo de 

conseguir funções antissimétricas (ver seção 2.5). Em 1951, Clemens C.J.Roothann 

publica o seu mais famoso artigo o qual estabelece as bases definitivas para 

cálculos de orbitais moleculares.  

Habitualmente é utilizado o termo ab-initio, que tem como significado “desde o 

princípio”, para designar métodos que têm como objetivo resolver a equação de 

Schrödinger para um hamiltoniano completo.  Os primeiros cálculos do tipo ab initio 

Hartree-Fock sobre moléculas diatômicas foram efetuados em 1956 no MIT, 

utilizando como funções de base orbitais de Slater (funções de ondas que 

satisfazem ao princípio da antissimetria) dando início assim à química quântica 

computacional. Na década de setenta já existiam vários programas ab initio como o 

ATMOL, POLYATOM, IBMOL e GAUSSIAN começaram a serem usados para 

acelerar o cálculo de orbitais moleculares. Atualmente, destes programas, somente 

o GAUSSIAN continua em uso.  

 

 

1.2. PROBLEMÁTICA 

 

 

Em um curso de física moderna é comum a resolução da equação de 

Schroedinger para elétrons não interagentes, confinados em poços quânticos 

unidimensionais tais como: o poço de potencial infinito (também chamado de 

partícula na caixa) e o oscilador harmônico. Todavia, a mecânica quântica não se 

restringe apenas ao estudo de átomos e moléculas que possuem somente elétrons 

não interagentes. Para se entender um pouco dos diversos ramos da nanociência 

como espectroscopia, microscopia eletrônica, modelagem molecular e sobre as 

demais áreas que envolvem métodos de cálculo da estrutura da matéria é 

necessário saber lidar com sistemas mais sofisticados, envolvendo elétrons 

interagentes.  

As pesquisas em nanociência representam, hoje, um dos maiores interesses 

no mundo e tem como objetivo estudar sistemas mais sofisticados (envolvendo 

elétrons interagentes). Tais estudos possibilitam o entendimento, a manipulação e o 

http://pt.wikipedia.org/wiki/M%C3%A9todo_de_Hartree-Fock
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uso da estrutura da matéria a nível atômico e molecular, ou seja, a dimensões de 1 a 

100 nanômetros. Uma de suas aplicações é a nanotecnologia que aparece 

associada a diversas áreas do conhecimento como a medicina, física, química, 

engenharia e informática e que promete uma grande revolução tecnológica. Os 

resultados obtidos pelas pesquisas desenvolvidas nessa área se manifestam no 

cotidiano das pessoas de várias formas: através de produtos químicos (alguns 

relacionados à estética), da nanorobótica, dos aparelhos eletrônicos avançados, da 

saúde (desenvolvimento de exames diagnósticos em nanoescala e implementação 

de modalidades terapêuticas) dentre outros. Além disso, várias outras pesquisas tem 

sido desenvolvidas nessa área. Isso significa que o conhecimento está sendo 

desenvolvido de forma muito rápida e dinâmica principalmente no que diz respeito à 

estrutura da matéria, sendo necessário urgentemente o desenvolvimento de 

propostas de ensino que possam explicá-los.  

Na natureza os elétrons interagem entre si.  Paradoxalmente, o grau de 

sofisticação nos cursos de física moderna tende à “sofisticação matemática” de 

problemas como o átomo de hidrogênio que, impreterivelmente, recai em funções 

especiais (harmônicos esféricos e polinômios de Laguerre), mas que ainda assim, 

envolvem apenas elétrons não interagentes. Assim, vemos que métodos para se 

tratar o problema de muitos corpos como a aproximação de Hartree-Fock (foco deste 

trabalho), a teoria do funcional da densidade, dentre outros, ficam relegados a 

cursos como os de química quântica e física molecular, ou seja, para cursos 

direcionados a pesquisadores na área. Ainda assim, em tais cursos, a intenção de 

se tratar “sistemas realistas” traz consigo operações matemáticas demasiadamente 

complexas envolvendo funções especiais. Dessa forma, os conceitos subjacentes à 

teoria de Hartree-Fock, por exemplo, acabam perdendo o foco em detrimento do 

“maquinário matemático” inerente ao método. Para piorar a situação, softwares 

fechados de química quântica e física molecular “trazem” tais métodos de maneira 

otimizada sob o ponto de vista computacional. O fácil manuseio destes softwares 

muitas vezes faz com que tais métodos adquiram status de “caixa preta”, por parte 

dos estudantes.  

Entendemos que a formação dos professores deve envolver atividades 

epistemológicas que o permitam compreender o mundo que os cerca, pois só assim 

é possível entender como o mundo é projetado. Além disso, os professores (ou os 
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futuros professores-alunos de licenciaturas) devem ter em mente que os alunos 

estão envoltos em um mundo de som, imagem, e virtualidades e que a televisão e, 

hoje, a Internet, são janelas para o mundo que pode lhes dar uma visão distorcida 

da realidade (Iolanda Cortelazzo, 2000). É aqui que entra um dos maiores e 

importantes desafios do educador que é articular o cotidiano do aluno de acordo 

com sua realidade com o conteúdo programático proposto pelo currículo da escola. 

Segundo Libâneo (1998, p.84): 

 

Os educadores críticos estão desafiados a repensar objetivos e processos 

pedagógicos-didáticos em sua conexão com as relações entre educação e 

economia, educação e sociedade técnico-científica-informacional, para além 

dos discursos contra o domínio do mercado e a exclusão social. 

 

Diante dessas considerações fica evidente a importância do ensino dos 

métodos de HF nas licenciaturas uma vez que a aprendizagem dos conceitos que a 

compõe leva a uma compreensão mais detalhada de diversos fenômenos quânticos 

presentes no dia-dia. Além disso, devemos ter em mente que esses alunos de 

licenciatura serão os futuros professores que terão que ensinar conceitos 

relacionados ao cotidiano cada vez mais “nanoscopicamente projetado”, aos alunos 

do ensino médio (EM). É claro, que esses conceitos não devem ser tratados no EM 

com o mesmo formalismo que trataremos aqui, até porque nossa proposta é que as 

aplicações do método de HF sejam abordadas na graduação e não no EM. Mas, os 

alunos de licenciatura que realmente desejam seguir carreira na área da educação 

como professor, em algum momento, certamente, se envolverão em situações do 

cotidiano do aluno que estejam relacionados a algum fenômeno quântico dessa 

natureza. Aliás, a MQ está em toda parte, nos computadores, painéis de carros, 

leds, aparelhos eletrônicos, nos celulares dos alunos, enfim, na Ciência, Tecnologia 

e Sociedade (CTS), a mecânica quântica tem desempenhado um dos papeis 

centrais, particularmente ao que se refere às inovações tecnológicas. Nesse sentido, 

o objetivo central no Ensino Médio é desenvolver a alfabetização científica e 

tecnológica voltada para a cidadania, no sentido de permitir que o aluno possa 

compreender e tomar decisões responsáveis sobre questões de ciência e tecnologia 

na sociedade e atuar na solução de tais questões. (AIKENHEAD, 1994, p.5). Isso 
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somente será possível se os futuros professores de licenciatura em física tiverem 

uma boa formação principalmente no que diz respeito aos conceitos básicos da 

mecânica quântica. 

 Neste trabalho escolhemos o método de Hartree Fock (HF) com o qual 

iremos desenvolver um “saber a ensinar”. O método de HF é um método iterativo 

capaz de resolver a equação de Schrödinger de forma aproximada para um sistema 

de N elétrons interagentes através de uma solução autoconsistente. Vale salientar 

que as equações podem ser obtidas pelo método variacional e também através da 

teoria da perturbação que descreve sistemas complexos através de sistemas mais 

simples, adicionando hamiltonianos perturbativos ao mesmo. Nesse trabalho será 

utilizado somente o método variacional. Embora esse método seja um dos mais 

utilizados nos cálculos da estrutura eletrônica da matéria, uma das principais 

aplicações da mecânica quântica, geralmente tal método não chega a ser ensinado 

no curso de graduação em disciplinas de física moderna ou de química quântica. 

Mesmo em cursos de pós-graduação, os passos inerentes à implementação do 

método são abordados de forma bem limitada. Entendemos que os conceitos 

relacionados ao método de HFR e a sua aplicação, devido à importância no 

desenvolvimento da mecânica quântica e em fenômenos do dia-dia também 

desempenharia um papel tão importante na formação de um professor de física ou 

de química quanto os diversos conceitos de mecânica quântica que geralmente são 

vistos nesses cursos. Nesse método podemos ver claramente a essência 

probabilística da mecânica quântica desenvolvida a partir de métodos iterativos e 

também de aproximações que se baseiam no método variacional.  

Conforme dito anteriormente, a grande dificuldade em abordar esse método 

na graduação provém do fato de que as expressões que surgem no cálculo dos 

elementos de matriz dos operadores (energia cinética, atração elétrons-núcleos, 

Coulomb e troca) envolvem funções especiais tais como polinômios de Laguerre e 

Harmônicos esféricos estudados geralmente em cursos de física-matemática. Além 

disso, o número de integrais depende do número de funções de base que são 

utilizados. Se duas funções de base acarretam em 16 integrais (de dois elétrons), 

três funções de base acarretariam em 81 integrais. Se utilizarmos mais de três 

funções o número de integrais será ainda maior, o que acaba tornando inviável uma 

solução “puramente analítica”, sendo necessário então o uso de programas 
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computacionais. Isso deixa claro que esse conteúdo é extenso, trabalhoso e envolve 

uma matemática bastante complicada, sendo quase impossível de ser visto 

profundamente no curso de física moderna (ou química quântica) que já possui um 

número muito grande de conteúdos. Porém, o objetivo desse trabalho é justamente 

buscar recursos e estratégias que possam tornar a aplicação do método de Hartree-

Fock-Roothann (procedimentos do ciclo autoconsistente) acessível aos alunos de 

graduação sem a necessidade de um estudo aprofundado em funções especiais. 

Esse processo de adaptação do conhecimento para que possa torná-lo 

passível de ser ensinado, acessível não apenas a especialistas, mas a uma esfera 

maior de pessoas é abordado através do conceito de transposição didática. Esse 

termo foi empregado inicialmente pelo sociólogo francês Michel Verret, na sua tese 

de doutorado Le temps dês études, publicada em 1975. Nesse trabalho, Verret 

propõe-se a fazer um estudo sociólogo da distribuição do tempo das atividades 

escolares, visando contribuir para a compreensão das funções sociais dos 

estudantes. Posteriormente, o termo da “transposição Didática” é empregado por 

Yves Chevallard, um didata francês do ensino das matemáticas, como uma análise 

do caminho que percorre o saber, desde a sua produção científica, até a sua entrada 

no contexto escolar, chegando também à sala de aula (Chevallard, 1991). 

Entretanto, o estudo sobre os processos de adaptação do conhecimento para se 

tornarem ensináveis não se limita somente aos trabalhos de Verret e Chevallad. 

Lopes (1999), por exemplo, propôs o conceito de mediação didática. Perrenoud 

(1998) afirma ter concebido a noção de “transposição pragmática”. Na concepção de 

Chevallard esse seria um processo de “transformação adaptativa” a um contexto 

(Chevalard, 1997b, p.4-5).   

Esses autores discutem de fato, apesar de algumas diferenciações, as 

mudanças que sofre o conhecimento no processo de ser ensinado, partindo da 

premissa explícita da existência de uma distância entre o saber a ensinar e os 

objetos de ensino definidos enquanto tal. Nesse sentido apontando uma diferença 

entre a prática de ensino e a prática da invenção/criação.  

Nesse trabalho iremos nos basear no conceito de transposição didática 

segundo a visão de Yves Chevallard e Marie Alberte Joshua. 



18 

 

CAPÍTULO II  
 

 

Nesse Capítulo será apresentada a teoria pedagógica na qual esse trabalho 

fundamenta-se e também será feita uma abordagem teórica do método de HFR e 

das propriedades matemática envolvida na teoria. 

 

 

FUNDAMENTAÇÃO TEÓRICA 

 

 
2.1. TRANSPOSIÇÂO DIDÁTICA 

 

 

Os pressupostos teóricos que fundamentam este trabalho baseiam-se no 

conceito de transposição didática segundo a visão de Yves Chevallard e Marie 

Alberte Joshua. Esse conceito sempre surge quando se busca uma adaptação do 

conhecimento para poder ensiná-lo, ou seja, quando se toma um conteúdo de um 

saber dominado somente por uma esfera, composta exclusivamente por 

especialistas na área, e o transforma em um material ensinável (Chevallard, 1991). 

Segundo Chevallard, os trabalhos de pesquisa desenvolvidos pela comunidade 

científica e divulgados por meio de artigos periódicos, conferências e teses não 

chegam aos alunos como exatamente foi elaborado. Geralmente esses trabalhos 

possuem uma linguagem somente compreendida por uma pequena esfera 

(Cientistas especializados). Para que possa ser transposto para a sala de aula esse 

conhecimento deve passar por uma adaptação. A adaptação deve ser feita de forma 

que tal conhecimento se torne compreensível pelos alunos. Nesse sentido, a 

transposição nos permite compreender as modificações pela qual o saber passa até 

ser ensinado na sala de aula. Como bem destaca o próprio Chevallard (1991, p.39 

apud, 2004, p. 45), 

 

“Um conteúdo de saber que tenha sido definido como saber a ensinar, 

sofre, a partir de então, um conjunto de transformações adaptativas que irão 

torná-lo apto a ocupar um lugar entre os objetos de ensino. O ‘trabalho’ que 
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faz de um objeto de saber a ensinar, um objeto de ensino, é chamado de 

transposição didática.” (Chevallard, 1991, p.39) 

 

Para Alves Filho (2000, p. 181-182) a transposição didática é um conceito 

recente com uma capacidade de abrangência que “[...] permite justificar tanto os 

processos envolvidos na construção do saber e na sua divulgação como a 

estruturação deste saber, quando este saber é apresentado em livros textos, [...]”. 

Segundo esse conceito, a análise do processo de transformação do saber 

estabelece a existência de três estatutos, patamares ou níveis: 

 

 

1. O Saber Sábio (Savior Savant): O saber sábio é aquele 

desenvolvido pelos especialistas de uma determinada área que 

constroem o conhecimento científico. Geralmente esse tipo de saber é 

apresentado ao público em forma de revistas e periódicos científicos.  

 

2. O Saber a Ensinar (Savior à Enseigné): O saber a ensinar 

é uma reorganização do saber sábio apresentados na forma de uma 

sequência lógica, fechada, ordenada, cumulativa, crescente em 

dificuldade, mas ainda sim, intrinsecamente diferente do saber sábio 

que lhe serviu de referência. Geralmente o saber a ensinar envolve a 

comunidade dos professores especialistas, autores de livros didáticos 

dentre outros. É de certa forma uma transformação de um saber (saber 

sábio), compreendido basicamente por uma esfera própria, em um 

saber compreendido por um grupo maior que não pertence a apenas 

uma esfera. 

 

3. O Saber Ensinado (Savior Enseigné): O Saber Ensinado é 

aquele desenvolvido pelo professor (tanto do ensino médio quanto do 

ensino superior) dentro da sala de aula que envolve a transfiguração do 

saber a ensinar em saber ensinado, ou seja, implica numa 

reestruturação dos conteúdos presentes nos livros didáticos e manuais 
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de ensino de acordo com seus próprios referenciais e adaptando-o ao 

tempo didático. 

 

Para Friolani (2007) o saber sábio, o saber a ensinar e o saber disponível 

podem ser definidos como: 

 

Saber sábio: É a produção científica resultante de uma pesquisa, porém, 

sem expor o processo de desenvolvimento do conceito em questão, nem o 

problema que gerou a pesquisa. 

Saber a ensinar: É aquele que o professor escolhe para ensinar e está 

presente no currículo e nos manuais escolares. É geralmente adaptado 

pelos professores em aula, de modo que exista uma transposição (interna à 

instituição) entre o saber a ensinar e o saber efetivamente ensinado em 

aula. 

Saber disponível: É o saber aprendido, construído pelo aluno e que pode 

ser usado como ferramenta para novas aprendizagens. (FRIOLANI, 2007, 

p.52) 

 

Para Friolani (2007) a transposição didática pode ser ilustrada a partir do 

seguinte esquema 

 

 

Figura 1: Esquema da Transposição Didática (FRIOLANI, 2007, p.52) 
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2.2. A NOOSFERA 

 

 

De acordo com Pais (2002) a noosfera condiciona todo andamento do 

sistema didático e pode-se dizer que é cenário de interações, trocas, conflitos e 

negociações. Atua como intermediadora do fluxo de saberes para o sistema de 

ensino, ou seja, 

 

Noosfera é o lugar onde os saberes são manipulados para fins de ensino, 
onde os saberes são modificados para passar de um nível de ensino a 
outro, lugar onde é pensado o funcionamento didático. A Noosfera é 
considerada o centro operacional do processo de transposição. Sua 
finalidade é estabelecer a interação entre o sistema de ensino e seu 
entorno, proporcionando a seleção dos elementos do “saber sábio”, que 
devem advir “saber a ensinar”. (BERNAL, 2004, p. 21)  
 

 

Segundo Chevallard, a noosfera seria, por definição, um espaço de conflito, 

de disputa: a compatibilização em questão é uma construção social, não um 

movimento espontâneo ou natural.  

 

 

 

                 Figura 2: Sistema de ensino 
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A figura 2 mostra um esquema da representação do sistema didático segundo 

a visão de Chevalard. No entorno social estariam incluídos as famílias dos 

estudantes, as instâncias políticas de decisão; nos sistemas de ensino atuam 

professores e alunos. Na noosfera estariam os representantes da sociedade, 

especialistas em geral. A noosfera seria encarregada de realizar a interface entre a 

sociedade e as esferas de produção de saberes delas participando em posições 

diferenciadas. 

 

 

2.3. A TEORIA DA TRANSPOSIÇÂO DIDÀTICA SEGUNDO A VISÂO DE 

CHEVALLARD 

 

 

A especificidade do trabalho de Chevallard reside no desenvolvimento de um 

modelo de ensino para a análise dos sistemas de ensino, referido especificamente à 

Didática (não sociológico, psicológico ou instrumental) propondo como eixo 

estruturante para esse modelo, a discussão do saber escolar, enquanto a esfera da 

produção dos saberes move-se pela busca da resolução de problemas colocados 

pela comunidade de pesquisadores, a esfera do ensino não é impulsionada pela 

necessidade de solução de problemas, mas sim pela “contradição antigo/novo”, ou 

seja, a necessidade de os objetos de ensino remeterem-se àquilo que já é 

conhecido pelo aluno, ao mesmo tempo, que devem aparecer como novidade. 

Aponta o autor um reconhecimento da especificidade epistemológica: contextos com 

demandas igualmente diferenciadas, como o são os contextos de produção dos 

saberes e os contextos das relações didáticas. Nesse sentido, Lopes afirma que: 

 

Mas além da crítica de Forquin, defendo que o papel da epistemologia não 

se resume à discussão da validade epistemológica dos saberes, mas na 

possibilidade de introduzir uma nova forma de compreender e questionar o 

conhecimento, internamente, na sua própria forma de se constituir (1999, 

p.167) 

 

Chevallard define o conhecimento como a própria relação pessoal ou 

institucional estabelecida com os objetos do mundo. A busca individual ou coletiva 
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desse conhecimento constituiria o estudo. A didática, por sua vez, seria a “ciência do 

estudo”, ou ainda a ciência do didático, posto que este é entendido aqui como o 

adjetivo que corresponde ao substantivo estudo.  

Chevallard enfatiza ainda a ênfase no papel do professor que se diferencia do 

papel do aluno em duas instâncias: uma primeira que diz respeito à relação com o 

saber e uma segunda que diz respeito ao tempo de saber. Em relação ao primeiro, o 

professor domina o saber a ensinar em um nível mais abstrato do que seria possível 

para o aluno atingir em um primeiro momento de estudo; além disso, o professor 

precisa conhecer também a maneira de ensiná-lo. Em relação ao segundo item, o 

tempo se constituiria da seleção, organização e sistematização do conteúdo a ser 

ensinado. Assim, o professor pode prever e mesmo decidir sobre a introdução de 

novos objetos transacionais. Entretanto, a possibilidade de controle da dimensão 

temporal do funcionamento didático encontra na subjetividade de cada aluno um 

limite que inviabiliza a pretensão de um tempo didático único. A “ficção” de um 

tempo de aprendizagem determinado exclusivamente pelo tempo de ensino é 

desestabilizada, pois, para alguns, o tempo legal significará o fracasso escolar e, 

para outros, um “freio”, uma limitação das suas possibilidades. 

A transposição então, não se trata apenas de uma estratégia de ensino, mas 

uma concepção sobre o papel do professor no ensino. 

 

 

2.4.  REGRAS DA TRANSPOSIÇÃO DIDÁTICA 

 

 

Para facilitar a análise dos diferentes tipos de saberes Astolfi (1997, apud 

ALVES FILHO, 2000a, p.182) tomando como base os trabalhos desenvolvidos por 

Chevallard e Joshua estabelecem algumas diretrizes que nortearam o processo de 

transformação pelo qual passam o saber sábio até o saber ensinado. 

 

Regra 1 - Modernizar o saber escolar.  

A modernização faz-se necessária, pois o desenvolvimento e o crescimento  

da produção científica são intensos. Novas teorias, modelos e 

interpretações científicas, e tecnológicas forçam a inclusão desses novos 
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conhecimentos nos programas de formação (graduação) de futuros 

profissionais.  

Regra 2 - Atualizar o saber a ensinar.  

Saberes ou conhecimentos específicos, que de certa forma já se 

vulgarizaram ou banalizaram, podem ser descartados, abrindo espaço para 

introdução do novo, justificando a modernização dos currículos.  

Regra 3 - Articular saber velho com saber novo. 

A introdução de objetos de saber novos ocorre melhor se articulados com 

os antigos. O novo se apresenta como que esclarecendo melhor o conteúdo 

antigo, e o antigo hipotecando validade ao novo.  

Regra 4 - Transformar um saber em exercícios e problemas.  

O saber sábio, cuja formatação permite uma gama maior de exercícios, é 

aquele que, certamente, terá preferência frente a conteúdos menos 

operacionalizáveis. Esta talvez seja a regra mais importante, pois está 

diretamente relacionada com o processo de avaliação e controle da 

aprendizagem.  

Regra 5 - Tornar um conceito mais compreensível.  

Conceitos e definições construídos no processo de produção de novos 

saberes elaborados, muitas vezes, com grau de complexidade significativo, 

necessitam sofrer uma transformação para que seu aprendizado seja 

facilitado no contexto escolar. 

 

 

2.5. A EQUAÇÂO DE SCHRÖNDINGER 

 

 

Em 1927 quando C. J. Davisson e L. H. Germer confirmaram 

experimentalmente a hipótese de Louis de Broglie (1892-1987), que associava 

propriedades ondulatórias à matéria, ou seja, afirmava que o comportamento dual, 

onda-partícula, da radiação também se aplicava à matéria. A partir de então houve 

entre os físicos e químicos a necessidade de desenvolver uma teoria análoga à 

teoria ondulatória da luz que explicasse a manifestação das propriedades 

ondulatórias dos elétrons. Em 1925 o austríaco Erwin Schrodinger já estudava a 

hipótese proposta por Louis de Broglie e buscava explicações do modo como Louis 

de Broglie associava o comportamento ondulatório das partículas (Tipler, 2010).  Na 

época o conceituado físico e químico Petrus Joseph Wilhelm Debye (1884-1966) 
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propôs que o comportamento ondulatório do elétron (caso esse comportamento 

existisse) deveria resultar de uma equação de onda. Isso, de fato, não se verificava 

na teoria de Broglie. No fim de 1925, Erwin Schrondinger decide passar as férias de 

fim de ano em Vila Herwig, nos Alpes Suíços, com uma amante misteriosa que 

combinou encontrá-la em um dos anexos de uma clínica onde já havia sido tratado 

de uma suspeita infecção de tuberculose em 1922 (MOORE, 1989, p. 194-195 apud, 

PIZA, 2007). Tudo indica que ele aproveitou grande parte desse tempo para tentar 

representar a hipótese de de Broglie matematicamente, encontrando a tal equação 

de onda proposta por Debye. Embora não conste nos registros sua estadia na 

clínica no fim de 1925, o conceituado físico Wilhelm (Willy) Wien (1864-1928) que 

recebera o premio Nobel de 1911 por seus importantes trabalhos relativos ao 

problema da radiação de corpo negro, recebeu uma carta de Schrondinger, nesse 

período, supostamente enviada daquela tal clínica. Nessa carta estava escrito: 

 

“No momento estou batalhando com uma nova teoria atômica. Se ao menos 

eu soubesse mais matemática! Estou muito otimista com relação a esta 

coisa, e acredito que se por fim (...) eu conseguir resolvê-la, há de ser muito 

bonita. Acho que posso especificar um sistema vibrante cujas frequências 

características são as dos termos do hidrogênio, e de um relativamente 

natural, sem suposições ad doc [quer dizer, sem suposições sob medida 

para obter o resultado que se espera ou deseja obter]”. (PIZA, 2007, p. 42). 

 

Ao retornar a Zurique, em seu segundo seminário conjunto com a Escola 

Técnica Superior (E.T.H. – Eidgenössiche Technische Hochschule) de Zurique. 

Schrondinger inicia o seu seminário dizendo: “Meu colega Debye sugeriu que seria 

preciso ter uma equação de ondas; bem, encontrei uma”. (Piza, 2007, p. 44).  A 

equação apresentada nesse seminário era algo desse tipo: 

 

                                      
2

2

2

2m e
E

K r

 
    

 
.                                                (1) 

 

No entanto, apesar de ter sido publicado um artigo com toda a dedução 

relativa a essa equação, havia algumas coisas que não se ajustavam muito bem. A 

dedução que foi usada não fazia o menor sentido, já que   é uma função não 
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definida. Além disso, o princípio variacional utilizado não era válido na física 

clássica. Sua única “justificação” é que a equação de onda leva aos níveis de 

energia corretos para o átomo de hidrogênio. Na verdade, nem o próprio 

Schrondinger estava satisfeito com a sua equação. Só depois de pensar muito é que 

ele acaba desenvolvendo um trabalho bastante abstrato, independente das 

considerações feitas por de Broglie, usando analogia entre os princípios de Huygens 

e Hamilton. Esse trabalho, finalmente, acarretou na obtenção da sua hoje famosa 

equação de onda não relativística que descreve a evolução temporal do estado 

quântico de um sistema físico. Na notação de Dirac, pode ser escrita como:  

 

                                  ( ) ( )
ˆ

i i
a ax x H E ,                                               (2) 

 

onde Ĥ  é o operador hamiltoniano, E  é a energia e ( )ia x representa o a-ésimo 

orbital de spin com i-ésimo elétron alocado no mesmo. 

 

 

2.6. O HAMILTONIANO 

 

 

Um dos maiores problemas que aparecem na mecânica quântica é encontrar 

a função ( )ia x . Nesse trabalho, nos deteremos na solução dessa equação na 

forma não relativista e independente do tempo. Os efeitos da relatividade são bem 

perceptíveis em moléculas contendo átomos pesados como de ouro (Au), mercúrio 

(HG) e Chumbo (Pb), mas em átomos com números atômicos menores que 54 os 

efeitos relativísticos podem ser negligenciados (Levine, 2009, p. 708). Para um 

sistema de N elétrons e M núcleos (figura 3), o hamiltoniano eletrônico pode ser 

escrito da seguinte forma:                  

 

                  2

1 1 1 1

1 1ˆ
2

N N M N N
A

i ne ee

i i A i j iiA ij

Z
T V V

R r    

         H  .                           (3) 
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Na equação (3) consideramos 1m   (unidades atômicas), o par de índices 

 ,i j  correspondem aos elétrons, o par de índices {A,B} aos núcleos de massa 
AM  

e  carga 
AZ , ijr  é a distância entre os elétrons que pode ser escrito também como 

j ir -rijr =  e 
iAR  é a distância entre o núcleo A e o i-ésimo elétron que também pode 

ser escrito como iAR  A iR -R . No Lado direito da expressão (3), T é a energia 

cinética dos N elétrons, 
neV  é o potencial responsável pela atração entre elétrons e 

núcleos e 
eeV  é o termo de interação elétron-elétron. Ainda na expressão (3), 

estamos levando em consideração a aproximação de Born-Oppenheimer que 

despreza o termo de energia cinética do(s) núcleo(s). Tendo em vista que os 

núcleos são bem mais pesados que os elétrons, a razão carga/massa do núcleo é 

da ordem de 410  a 510 , suas transições são mais lentas que as transições 

eletrônicas. Além disso, considera-se a repulsão entre os núcleos (no caso de 

moléculas) como sendo constante. Essas considerações acabam levando a 

completa separação do operador- energia entre as partes eletrônicas e nucleares. 

De modo que tanto a função de onda eletrônica quanto sua energia depende do 

núcleo apenas de forma paramétrica. Nesse contexto, os elétrons podem ser 

tratados como partículas que se movem em um campo gerado por núcleos fixos. 

 

 

 

Figura 3: Molécula com N elétrons de coordenadas r e M núcleos de coordenadas R. Figura 

inspirada no livro do (Alcácer, 2006, pg. 192) 
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2.7. O PRODUTO DE HARTREE 

 

  

Obviamente a ES não pode ser resolvida analiticamente para o hamiltoniano 

da equação (3).  Vamos considerar inicialmente um hamiltoniano mais simples que 

descreve um sistema de N elétrons independentes que, nesse caso, pode ser escrito 

como,  

 

                                                  
1

ˆ ( )
N

i

h i


H .                                                   (4) 

 

Na equação (4), ( )h i é o operador que descreve a energia cinética. Este 

modelo que ficou conhecido como o modelo das partículas independente (sugerido 

por Bohr em 1923) foi adotado por Douglas Hartree, em 1928. Este modelo propõe 

uma forma alternativa para a função de onda. Para calcular os níveis de energia e as 

funções de onda de átomos multieletrônicos, considera-se a interação do elétron 

com o núcleo e com o campo médio devido aos outros elétrons. O operador 

hamiltoniano terá um conjunto de autofunções que podemos considerar como sendo 

um conjunto de orbitais de spins  a , 

 

                                                ( ) ( ) ( )a i a a ih i x x   .                                        (5) 

 

Como consideramos Ĥ  como sendo uma soma de operadores 

independentes, a solução da função de onda total pode ser escrita como o produto 

das funções de onda de cada partícula, ou seja,  

 

                                1 2 1 2( , ,..., ) ( ) ( )... ( )N a b n Nx x x x x x    .                              (6) 

 

As funções i  são denominadas orbitais e o lado direito da equação acima é 

conhecido como produto de Hartree. O autovalor  E  é definido como, 
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                                              ...i j kE       .                                              (7) 

 

 

2.8. DETERMINANTE DE SLATER 

 

 

A equação (6) não poderia ser uma solução correta de (3), visto que neste 

caso as partículas interagem entre si. Além disso, diferentemente da mecânica 

clássica, na mecânica quântica as partículas não podem ser distinguíveis. Na 

mecânica clássica as partículas podem ser diferenciadas por cores, letras ou 

números. Na mecânica quântica, contudo, não sabemos nem mesmo onde as 

partículas se encontram. O máximo que podemos saber é a probabilidade dessas 

partículas estarem em algum lugar. Nesse caso, a equação (2) para o hamiltoniano 

dado por (3) só pode ser resolvida de forma analítica quando aplicada a sistemas 

que possuam partículas iguais e não interagentes. Se houver interação os termos 

que constituem o Hamiltoniano dependerão de várias coordenadas. Assim, por 

exemplo, para um átomo de dois ou mais elétrons interagentes não existe solução 

analítica da equação de Schrödinger (Tipler, 2010, p.186). Além disso, a 

antissimetria associada às funções de ondas que descreve sistemas envolvendo 

férmions geram várias consequências na mecânica quântica, sendo uma delas o 

princípio de exclusão de Pauli. O princípio de exclusão de Pauli exige que a função 

de onda total dos elétrons seja antissimétrica. A função de onda obtida pelo Produto 

de Hartree não satisfaz ao princípio da antissimetria. Uma função de onda de um 

sistema com N elétrons, por exemplo, que respeitaria a esses princípios deveria ser 

representada por uma sobreposição (combinação linear) de todas as possíveis 

permutações de troca de elétrons com a condição de que cada troca de elétrons a 

função de onda muda de sinal, ou seja, deveria satisfazer a uma função do tipo: 

 

                                    (..., , ,...) (..., , ,...)i k k ix x x x  .                                    (8) 

 

Em 1930, Fock sugeriu que a solução da equação de Schrondinger poderia 

ser um determinante de Slater. O determinante de Slater fornece a função de onda 
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para o sistema de N elétrons independentes já na forma antissimétrica e de forma 

indistinguível.  

O determinante de Slater pode ser escrito para um caso mais geral da 

seguinte maneira, 

 

                   

1 1 1

2 2 2

( ) ( ) ... ( )

( ) ( ) ... ( )1

... ... ... ...!

( ) ( ) ... ( )

i j k

i j k

i N j N k N

x x x

x x x

N

x x x

  

  

  

  ,                                         (9) 

ou, de forma compacta, como: 

 

            
1 2 3 1 1 1 2

1
( , , ... ) ( ) ( )... ( ) ( ) ( )... ( )

!
N i j k N i j k Nx x x x x x x x x x

N
        .            (10) 

 

Nas equações (9) e (10) o termo 1/2( !)N   é uma constante de normalização, 

os ( )a ix  são os orbitais de spin a  do elétron de coordenada 
ix . Para um sistema 

com dois elétrons o respectivo determinante de Slater toma a forma, 

 

            
1 1

1 2 1 2 1 2

2 2

( ) ( )1 1
( , ) ( ) ( ) ( ) ( )

( ) ( )2 2

i j

i j j i

i j

x x
x x x x x x

x x

 
   

 
      .        (11) 

 

Como é possível observar, o sinal de menos assegura que a função de onda 

1 2( , )x x  seja antissimétrica com respeito à troca dos elétrons de coordenadas 1x  e 

2x , atendendo a função (8), ou seja, podemos ver que; 

                                            1 2 2 1( , ) ( , )x x x x                                            (12) 

 

Na equação (11) podemos observar também o princípio de exclusão de Pauli 

segundo o qual dois elétrons de mesmo spin não podem ocupar a mesma orbital.  

Quando o mesmo spin é ocupado com os dois elétrons a função  se anula;  
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 1 2 1 2

1
( ) ( ) ( ) ( ) 0

2
i i i ix x x x      

.                         (13) 

 

2.9. A APROXIMAÇÂO DE HARTREE-FOCK 

 

 

  Conforme discutimos anteriormente, não é possível resolver a ES para 

o Hamiltoniano dado pela expressão (3). Mas a solução se torna possível caso o 

sistema constituído por N elétrons seja tratado como a soma de vários subsistemas 

constituídos por “apenas um elétron” submetido a um potencial médio ( )V r (que 

depende só das próprias coordenadas) provenientes das interações de cada elétron 

com os outros N-1 elétrons e um potencial proveniente dos núcleos estacionários. 

Essa é a essência da aproximação de Hartree-Fock. O método de HF tem como 

objetivo propor uma solução aproximada para o problema da separação das 

interações elétron-elétron (Rangel, 2006). Ainda hoje tal método é uma ferramenta 

poderosa, considerada como padrão para iniciar qualquer estudo que envolva 

representações de estados eletrônicos de átomos, moléculas e sólidos (Custódio, 

1998). Sua construção é feita a partir da escolha de funções matemáticas que são 

utilizadas para representar os orbitais de spins de Hartree-Fock. 

Na figura 4 representamos o modelo didático e simplificado do que seria a 

aproximação de HF. Na figura, cada subsistema constituído por um elétron, que, 

grosso modo poderia representar átomos de uma molécula, sofre a influência do 

potencial médio dos outros elétrons e também dos núcleos. Assim podemos 

observar que na aproximação de HF, o problema exato envolvendo N elétrons e M 

núcleos interagentes é reduzido a um problema de N elétrons e M núcleos 

independentes. Vale ressaltar que na figura 4, os elétrons não estão presos a cada 

núcleo separadamente e, sim, presos por um potencial médio gerado por todos os 

núcleos que estão fixos (aproximação de Born-Oppenheimer). 
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Figura 4 Modelo da aproximação de HF representado por um sistema constituído por vários 
subsistemas possuindo um elétron de coordenada r e um núcleo de coordenada R. 
 

 

Agora, resta calcular uma expressão para a energia desse sistema, o que 

iremos fazer na próxima seção. Embora ainda não saibamos a forma dessa 

expressão de energia podemos deduzir a partir do modelo acima algumas 

características que ela deverá ter. Obviamente tal expressão deverá conter termos 

envolvendo o potencial de energia cinética e potencial dos elétrons independentes. 

Também deverá possuir um termo envolvendo um potencial médio devido às 

interações entre os elétrons. Além disso, na expressão que iremos encontrar 

esperamos que apareça um termo que leve em consideração o princípio da 

indistinguibilidade e que possua a propriedade de permutação. 

 

 

2.10. EXPRESSÂO DA ENERGIA 

 

 

O valor esperado da energia para o estado fundamental de uma função de 

onda na forma de um determinante de Slater pode ser escrito da seguinte forma 

(assumindo que a função de onda é normalizável); 
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                             0
ˆ ˆE d     H H  ,                                  (14)                                                            

 

onde d é o elemento de volume nas coordenadas dos espaços e spins de todos os 

elétrons. 

Nota-se facilmente que o hamiltoniano eletrônico dado pela expressão (3), 

visto na seção 2.6, contém operadores envolvendo apenas um elétron e operadores 

envolvendo dois elétrons. Para simplificar a notação iremos escrever a soma dos 

operadores de um só elétron da seguinte forma, 

 

                             21
( )

2

N N N M
monoA

i i i A A

Z
h i H

r R
    


   .                           (15)     

onde monoH  é o Hamiltoniano monoeletrônico. A soma dos operadores envolvendo 

dois elétrons assume a forma, 

 

                                                   
1

1N N

ee

i k k i

V
r r




 .                                        (16) 

 

Logo, o hamitoniano total da equação (3) passa a ser reescrito como, 

 

                                              ˆ mono

eeH V H .                                              (17) 

 

Para calcular o valor esperado da energia do estado fundamental devemos 

calcular a contribuição de energia total relativa a cada termo do lado direito da 

expressão (17). Para isso, iremos calcular inicialmente a contribuição da energia 

total relativa ao operador monoH  que pode ser obtida a partir do valor esperado deste 

operador e em seguida calculamos a contribuição de energia do segundo termo.  
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2.10.1. Contribuição do Primeiro Termo monoH  

 

O valor esperado para o hamiltoniano monoeletrônico é dado por, 

 

                               
1

( )
N

mono

i

H h i


     .                                          (18) 

 

Para tornar os cálculos mais claros, iremos considerar um sistema com dois 

elétrons interagentes e, nesse caso, a função de onda na forma do determinante de 

Slater assume a forma: 

 

                                                 12(1) (2)H h h V   ,                                                                  (19a) 

e,  

                           1 2 1 2

1
( ) ( ) ( ) ( )

2
a b b ax x x x      .                                  (19b)                                               

 

Além disso, uma dedução utilizando a notação da eq. (19) torna-se-ia muito 

trabalhosa e por isso iremos reescrevê-la da seguinte forma, 

 

                                     
1

(1) (2 (1) (2))
2

a b b a   .                                       (20) 

 

 Para que não haja confusão com a notação que já começa a complicar, daqui 

pra frente às notações a  e a , (1)a  e 1( )a x  devem ser tomadas como 

equivalentes.  

Na equação (20) o termo (1)a  possui o significado de que o elétron de 

coordenada 1x  está no orbital de spin (1)a , (2)a significa que o elétron de 

coordenada 2x  está no orbital de spin  (2)a . O mesmo raciocínio vale para o orbital 

de spin (1)b  e (2)b . Assim, o valor esperado de (1)h será dado por, 
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1

(1) (1) (2) (1) (2) | (1) | (1) (2) (1) (2)
2

h a b b a h a b b a   .                (21) 

 

Separando a expressão (21) em duas integrais podemos fazer  

 

                          1 (1) (2) | (1) | (1) (2) (1) (2)a b h a b b a   ,                                 (22) 

                          2 (1) (2) | (1) | (1) (2) (1) (2)b a h a b b a   .                                 (23) 

 

Substituindo (22) e (23) em (21) obtemos, 

 

                                              1 2

1
( )

2
h i    .                                            (24) 

 

Mas, pelo princípio da indistinguibilidade, os elétrons ao permuta-se devem 

atender a propriedade (1) (2) (1) (2)b a a b   e isso implica que 
2 1   . Logo, levando 

em consideração esses resultados, a partir de (24) chegamos em, 

 

                       1( ) (1) (2) | ( ) | (1) (2) (1) (2)h i a b h i a b b a   ,                        (25) 

 

que também pode ser escrito como: 

 

              (1) (1) | (2) | (1) | (1) (2) (1) (2) | (1) | (1) (2)h a b h a b a b h b a  ,             (26a) 

             (1) (2) (1) (1) (1) (2) (2) (1) (1) (1) (2)h b a h a b b a h b a  .                (26b) 

 

 

Agora podemos separar, na expressão (26b) os orbitais de spins com elétron 

de coordenada 1x  e os orbitais de spins com elétron de coordenada 2x . Como 

mostra a expressão (26b), os termos que está dentro (1) | (1) | (1)a h a  e 

(1) | (1) | (1)a h b  se referem ao elétron de coordenada 1x  (bra-kets interiores) e os 
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termos que estão fora (2) | (2)b b e (2) | (2)b a  se referem ao elétron de coordenada 

2x  (bra-kets exteriores). Logo, a equação (26b) fica, 

 

        ( ) (1) | ( ) | (1) (2) | (2) (1) | ( ) | (1) (2) | (2)h i a h i a b b a h i b b a  .             (27) 

 

Contudo, pela propriedade de ortogonalidades de funções temos que (2) | (2)b b =1 e 

(2) | (2)b a =0, pois a e b são ortogonais. Logo,  

                   

                                      ( ) (1) | ( ) | (1) aah i a h i a h  ,                                    (28) 

 

onde aah é a média da energia cinética e da atração nuclear de um elétron descrito 

pela função de onda  . Assim, para (1)h  obteríamos,    

 

                                  (1) (1) | (1) | (1) (1) | (1) | (1)h a h a b h b  ,                                (29) 

 

 e, Para (2)h : 

  

                                            (2) (2) | (2) | (2) (2) | (2) | (2)h a h a b h b  ,                            (30) 

 

 e assim por diante.  

Finalmente podemos concluir que para um sistema com dois elétrons:  

 

                   (1) (1) (2) (1)(1) | (2) | (1) (1) | (2) | (1)
aa bb aa bb

monoH a h a b h b h h h h      .           (31) 

 

Para um caso mais geral de N elétrons temos que, 

 

                         ( )

1 1 1

( ) | ( ) | ( )
aa

osoc N osoc
mono i

a i a

H a i h i a i h
  

   .                                (32) 
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onde a sigla osoc significa orbital de spin ocupado. A expressão (32) representa, 

como esperávamos pela definição da teoria de HF, a contribuição de energia para 

energia total de cada elétron não interagente na orbital de spin a . 

 

2.10.2. Contribuição do Segundo termo eeV  

 

Agora que já temos a forma da contribuição de energia do operador 

monoeletrônico vamos encontrar a forma para o operador envolvendo dois elétrons 

eeV . Para átomos de camadas fechadas a distribuição de carga média dos outros 

elétrons que age sobre o elétron de coordenada 
ir , por exemplo, é esférica e o 

potencial de interação elétron-elétron pode ser escrito como 
121eeV r  (campo 

central), onde 12r  2 1r r . Assim o valor esperado desse operador fica:  

 

                    
12

1 1
(1) (2) (1) (2) | | (1) (2) (1) (2)

2
eeV a b b a a b b a

r
   .                   (33) 

 

Usando o mesmo raciocínio que foi utilizado para encontrar a contribuição de 

energia para o primeiro termo monoH , obtemos a seguinte expressão para o segundo 

termo 
eeV ; 

 

         
12 12

1 1
(1) | (2) (2) | (1) (1) | (2) (2) | (1)eeV a b b a a b a b

r r
  .              (34) 

 

A expressão (34) por sua vez pode ser escrita como: 

 

                                (1) | | (1) (1) | | (1)eeV a a a b J K ,                               (35) 

onde, definiremos 

                                                
12

1
(2) (2)b b

r
J ,                                          (36) 

e, 
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12

1
(2) (2)b a

r
K .                                         (37) 

 

Nas equações (36) e (37) os termos J  e K  são conhecidos como operadores 

de Coulomb e de troca, respectivamente, e são os termos que esperávamos 

encontrar pela análise do modelo de HF que fizemos. O operador de Coulomb J  

define a força de repulsão entre os elétrons no sistema. Para dois orbitais a  e b, por 

exemplo, podemos escrever o potencial de Coulomb na forma 
abJ , que representa a 

repulsão de Coulomb entre os elétrons na orbital de spin a  e na orbital de spin b . O 

operador de troca K  define o efeito quântico gerado pela troca da orbital de spin 

entre os elétrons e não existe nada semelhante na mecânica clássica. 

Dessa forma, a contribuição de energia para a energia total proveniente do 

operador das interações elétron-elétron para um sistema de dois elétrons fica 

definido como a soma dos operadores de Coulomb J  e de troca, K , ou seja,  

 

                                                    
eeV  J K .                                                 (38) 

 

Na forma integral esses operadores assumem as formas: 

 

                                                2

2
12

2

(1) ( )bb x
d

r


 J ,                                               (39) 

e, 

                                                2

2 2
12

(1) ( ) ( )b ab x x
d

r


  K ,                                      (40) 

 

onde 2d  é o elemento de volume.  

Ao contrário do operador de Coulomb, o operador de troca é dito ser um 

operador não local uma vez que não existe um potencial simples 1( )b xK  definido em 

um único ponto local do espaço 1x .  O operador 1( )b xK operado sobre o orbital spin 

1( )a x , por exemplo, depende dos valores de  1( )a x  através de todo o espaço. Um 

fato interessante e muito importante é que os operadores de Coulomb e de troca 
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sentidas pelo elétron 1, por exemplo, dependem apenas de suas coordenadas. 

Assim pela teoria de Hartree-Fock, o Hamiloniano monoeletrônico, para o sistema de 

dois elétrons, conhecido como operador de Fock pode ser escrito como:  

 

                                                f h  J K ,                                                 (41) 

 

onde h  representa o conjunto de operadores de um elétron, J  e K  os operadores 

envolvendo dois elétrons. Para um caso geral de um sistema de N elétrons e M 

núcleos o operador de Fock assume a forma: 

 

                                   ( ) ( ) ( ) ( )

1

)(
osoc

i i i ib b

b

f h


  J K .                                    (42) 

 

Na equação (42) o índice “osoc” significa que todas as orbitais de spins estão 

ocupadas e, nesse caso, o Hamiltoniano pode ser escrito como a soma dos 

operadores de Fock: 

 

                                                         ( )

1

N

i

i

H f


 .                                                  (43) 

 

Se, numa molécula ou átomo, houver camadas incompletas é recomendável 

que se use o método de Hartree-Fock não restrito (UHF, de unrestricted Hartree-

Fock), que estabelece que a energia deve ser calculada considerando todos os 

spins de orbitais ocupados com um único elétron. Se todas as camadas das 

moléculas ou átomos estiverem completas com os dois possíveis elétrons de spins 

oposto, o estado é conhecido como singleto e usa-se a versão restrita do método de 

Hartree-Fock (RHF, de restricted Hartree-Fock). Para o método não restrito, a 

energia eletrônica toma a forma: 

 

                                       
1 , 1

1
( )

2

osoc osoc

UHF aa ab ab

a a b

E h
 

    J K .                                (44) 
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Já o método restrito implica o uso de orbitais (espaciais) duplamente 

ocupadas e, portanto, a energia é da mesma forma que a da expressão (44) 

multiplicada por um fator 2 para compensar os orbitais de spins, ou seja, 

 

                                 
1 , 1

2 (2 )
odoc odoc

RHF aa ab ab

a a b

E h
 

    J K .                                     (45) 

 

Note que o potencial de troca não foi multiplicado pelo fator 2  pois este 

operador é quântico e consegue “discernir” entre dois elétrons de spins que são 

trocados.  

Na literatura é habitual encontrar os operadores de Coulomb e de troca 

escrito na seguinte notação, 

 

                
12

1
(1) (2) | | (1) (2) (1) (2) | (1) (2)ab a b a b a b a b

r
 J ,                          (44) 

                 
12

1
(1) (2) | | (1) (2) (1) (2) | (1) (2)ab a b b a a b b a

r
 K .                        (45) 

onde o operador abJ  representa a repulsão clássica de Coulomb entre a nuvem de 

elétrons 
2

( )a 1r  no orbital de spins a  e no orbital de spins b  
2

( )b 2r .  O operador 

de troca 
abK  é uma manifestação da correlação entre os movimentos dos elétrons 

das orbitais de spin a e b . A correlação ocorre devido à presença de elétrons com 

spins paralelos. Como os elétrons de spins paralelos se “evitam” a energia acaba 

diminuindo.                                                                           

. Também é comum a diferença entre os operadores de troca e Coulomb 

assumir a forma, 

 

     (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (1) (2)ab ab a b a b a b b a a b a b   J K .      (48) 

 

Nesse caso, podemos reescrever a equação (42) em termo de (48) e 

obtemos, 
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1 , 1

1
(1) (2) (1) (2)

2

osoc osoc

UHF aa

a a b

E h a b a b
 

   .                              (49) 

 

 

2.11. PRINCÌPIO VARIACIONAL E MINIMIZAÇÂO DA ENERGIA DE UM 

DETERMINANTE SINGLETO 

 

 

O método de Hartree-Fock é baseado no cálculo variacional. Esse princípio 

pode ser utilizado quando se pretende calcular a energia do estado fundamental 

( 0E ) para um sistema descrito por um Hamiltoniano H que torna a equação de 

Schröndinger difícil ou até mesmo impossível de ser resolvida analiticamente. Um 

dos objetivos principais desse método é encontrar a energia do estado fundamental 

do sistema. Para isso, considera-se que a energia total do sistema pode ser escrita 

na forma de uma função de um conjunto de parâmetros variacionais  . A energia do 

estado fundamental seria o mínimo do funcional, ou seja,  0 min ( )E E   , pois, de 

acordo com o princípio variacional, a melhor função de onda desta forma funcional é 

aquela que dá a mais baixa energia possível. Por exemplo, suponha que queremos 

derivar a equação de HF com o objetivo de obter a energia mínima do funcional 

 0 aE     onde 0 0 0E H    e 0 1 2... ...a b N      . Para que os orbitais de 

spins permaneçam ortonormais eles devem estar sujeitos à seguinte condição: 

 

                                        *

1 (1) (1)a b abdx a b    ,                                    (50) 

ou ainda, 

                                                  0aba b   .                                              (51) 

 

Um método que é utilizado para minimizar um funcional (a energia para o 

caso tratado) e que garante a ortonormalidade das funções (orbitais de spins) é o 

método de Lagrange. Nesse método consideramos o funcional  a  L  dos orbitais 

de spins dado por, 
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                                0

1 1

|
N N

a a ba ab

a b

E a b   
 

         L ,                        (52) 

 

onde 
ba  constitui um conjunto de multiplicadores de Lagrange e a energia 

0E  é o 

valor esperado do determinante 0  que, como vimos na seção anterior, pode ser 

escrito como: 

 

                     0

1 1 1

1

2

N N N

a

a a b

E a h a aa bb ab ba
  

       .                        (53) 

 

Devemos obter a energia para uma pequena variação em a , ou seja, para 

 

                                             a a a    .                                                 (54) 

 

 Assim, igualando a primeira variação L em ordem zero obtemos: 

 

                                 0

1 1

0
N N

ba

a b

E a b   
 

  L .                                     (55) 

 

onde ab  é constante e, portanto, a variação nesse termo é zero. Tomando a 

variação em cada termo do lado direito da equação acima temos que 

 

                                            a b a ba b      ,                              (56) 

e, 

0

1

( )
N

a a b b

a

E h h    


      

 
1 1

1

2

N N

a a b b a a b b a a b b a a b b

a b

               
 

     

 
1 1

1

2

N N

a b b a a b b a a b b a a b b a

a b

               
 

    .           (57) 
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Simplificando a equação (57) obtemos:  

 

 0

1 1 1

 
N N N

a a a a b b a b b a

a a b

E h complexo conjugado          
  

     .   (58) 

 

Agora, manipulando o segundo termo do lado direito da expressão (55) 

obtemos, 

 

 

**                                             =

                                             =   

ba a b a b ba a b ba b a

ab ab ab

ba a b ab a b

ab ab

ba a b

ab

complexo conjugado

          

     

  

  





  

 



                   (59) 

 

Substituindo os valores de (59) e (58) em (55) encontramos  

 

              
 

1 1 1

 0  

N N N

a a a a b b a b b a

a a b

ba a b

ab

h

complexo conjugado

          

  

  

  

  

 



L
                 (60) 

 

Utilizando as definições das integrais de Coulomb e troca, a expressão acima 

assume a forma: 

 

                

 *

1

1 1 1

(1) (1) (1) (1) (1) (1) (1)

  0.    

N N N

a a b b a ba b

a b b

dx h J K

complexo conjugado

     
  

 
    

 

 

  L

        (61) 

Logo, desde que *(1)a seja diferente de zero, o termo dentro do parêntese da 

equação acima deve ser zero, ou seja, 

 

                     
1 1

(1) (1) (1) (1) (1) (1) 0
N N

a b b a ba b

b b

h J K   
 

     .                        (62) 
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ou, 

                         
1 1

(1) (1 (1)) (1) (1)
N N

b b a ba b

b b

h J K   
 

 
   

 
  .                            (63) 

 

O termo dentro do parêntese da equação acima é o operador de Fock f  e 

assim a equação acima que corresponde a equação de orbitais de spins pode ser 

escrita como:  

 

                                                 
1

N

b ba b

b

f   


 .                                        (64) 

 

Observa-se assim que o operador de Fock satisfaz uma equação parecida 

com uma equação de autovalores semelhante a equação de Schrondinger com a 

interpretação de que a aplicação do operador de Fock f  no orbital de spins b , 

resulta no próprio spin de orbital multiplicado por um autovalor de energia 

característica do orbital b . Embora a energia ba  represente na maioria dos casos 

uma matriz não-diagonal. Contudo, podemos diagonalizá-la utilizando uma 

transformação unitária e transformar a equação (64) numa equação de autovalores. 

 

 

2.12. APROXIMAÇÂO DAS COMBINAÇÔES LINEARES 

 

 

No método das combinações lineares, considera-se que a função de onda 

molecular i  pode ser expandida como uma combinação linear das funções de 

onda dos orbitais dos átomos formadores da molécula (orbitais atômicos), 

 ( )p pr - R , centrados no p-ésimo núcleo. Onde  ( )p pr - R  pode ser considerado 

como sendo uma base de dimensão L de tal forma que,  

 

                                  ( ) ( ) ( )
L L

a a

a p p a p p

p p

c c     pr r - R r ,                      (65) 
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onde p=1,2,3,...L; a

pc  são os parâmetros a determinar pelo método variacional. São 

também os coeficientes que constituem a matriz de transformação das bases das 

orbitais atômicas p , nas bases das orbitais moleculares, 
a . Fazendo isso, “o 

problema de calcular os orbitais moleculares de HF se reduz ao problema de 

calcular o conjunto da expansão de coeficientes a

pc .” (Alcacer, 2006). 

 

 

2.13. EQUAÇÃO DE AUTOVALORES DE HARTREE-FOCK 

 

 

Como vimos na seção anterior, utilizando o cálculo variacional, algumas 

manipulações algébricas e as propriedades dos operadores Hermtianos, observa-se 

que o operador de Fock satisfaz uma equação de autovalores bem parecida com a 

equação de Schrondinger, ou seja, 

 

                                           
1 1( ) ( ) ( )i i if i r r   .                                             (66) 

 

Contudo, pelo princípio de exclusão de Pauli, dois elétrons não podem ter os 

mesmos números atômicos (orbitais e spins), mas, para cada conjunto de orbitais de 

spins pode existir no máximo dois elétrons up e/ou down. Para o método restrito, o 

operador de Fock para um elétron pode ser escrito como: 

 

                           
2

1 (1) (1)

1 1 1

1
(1) 2

2

M odoc odoc
A

b b

A b biA

Z
f

r  

 
      
 

  J K
.                         (67) 

No lado direito da expressão (67), o primeiro termo corresponde ao operador 

monoeletrônico (“hamiltoniano de caroço”), o segundo termo se refere ao operador 

de Coulomb e o terceiro ao operador de troca. É importante observar na expressão 

(67) que o índice b corresponde ao conjunto de números quânticos espaciais 

degenerados, “odoc” significa orbitais (moleculares) espaciais duplamente 

ocupadas. O potencial de Coulomb deve ser multiplicado por dois devido ao fato de 
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que esse operador não consegue “discernir” entre dois elétrons de spins contrários. 

O operador de troca por possuir natureza quântica consegue “discernir” esses 

elétrons, não sendo necessário multiplicar esse operador pelo fator dois. 

Substituindo a expressão (66) em (65) obtemos, 

 

               2

1 (1) (1) 1 1

1 1 1

1
2 ( ) ( )

2

M odoc odoc
A

b b i i i

A b biA

Z
K r r

r
  

  

   
       

   
  J ,                     (68) 

 

ou, na forma integral: 

 

    
2 2 2

2 2

12 12

2
2

1 1 1

1 1 1
( ) ( ) ( )

1
( ) ( )

2
b b a

M odoc odoc
A

i i i

A b biA

x x x

Z d d
r r

r r r
  

 
  

  

      
          

         
    , (69) 

 

que é a equação de autovalores de HF. Um fato interessante é que a equação de 

HF não incorpora um termo de correlação eletrônica, ou seja, trata os elétrons como 

partículas interagentes unicamente a partir dos operadores de Coulomb e de troca, 

desconsiderando o fato de que o movimento do i-ésimo elétron depende do 

movimento dos outros (N-1) elétrons e a esse fato, chamamos de correlação 

eletrônica (Löwdin, 1955). A resolução da equação (68) consiste em encontrar os 

autovalores de energia da função desconhecida i . Não resta dúvida de que a 

solução dessa equação é muito complicada pois envolve integrais contendo funções 

especiais, sendo necessário então técnicas matemáticas e numéricas avançadas. 

 

 

2.14. EXPANSÂO DA ENERGIA NA BASE DAS COMBINAÇÔES LINEARES 

 

 

Vimos anteriormente que para encontrar a expressão da energia total 

utilizamos a contribuição de dois tipos de operadores (operador monoeletrônico e 

operador de dois elétrons). Só que agora pretendemos calcular a expressão da 

energia total na base  p . Nesse caso, iremos utilizar a mesma ideia de antes. 
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Trabalharemos inicialmente com o operador 
aah e em seguida com o termo 

(1) (2) (1) (2)a b a b  que envolve os operadores de Coulomb e de troca da equação 

(49). Uma forma geral de escrever a energia total para o caso restrito ou não restrito, 

seria: 

 

                                  
,

(1) (2) (1) (2)
oc oc

aa

a a b

E n h a b a b   ,                              (70) 

 

onde o valor de n  vai depender do método (restrito ou não restrito) que estivermos 

trabalhando. Para o método não restrito n  assume valor 1, para o restrito n = 2. 

Nesse caso, expandindo o primeiro termo da equação acima na aproximação 

das combinações lineares temos que: 

 

                       *| | a a

aa a a p p q q

p q

h h c c 
  

      
  
  .                             (71) 

 

Agora, vamos escrever a expressão acima na forma do primeiro termo de 

(69), isto é,  

 

                  * *
oc oc L oc

a a a a

aa p q p q p q pq

a a q p pq a

n h n c c c c H 
   

    
  

     ,                    (72) 

 

onde | |pq p qH h   e  p  é a base na qual os termos de aah  são transformados 

numa matriz H de elementos. A equação (71) também pode ser expressa na forma, 

 

                                                  
1

oc L

aa pq pq

a pq

n h n D H


  .                                    (73) 

 

Na equação (73) pqD = *
oc

a a

p q

a

n c c
 
 
 
  é conhecida como matriz densidade. A 

essência da matriz densidade é, sem dúvida, probabilística. Cada elemento dessa 
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matriz representa o somatório estendido a todos os orbitais espaciais moleculares 

ocupados dos quadrados ou produtos cruzados dos coeficientes associados a cada 

orbital atômica. Em outras palavras, a matriz densidade representa a probabilidade 

de encontrar um elétron j de um orbital atômico q em um outro orbital  pertencente 

a descrição do orbital molecular. Agora, para ficar mais claro iremos converter os 

operadores de Coulomb 
abJ  e de troca 

abK numa combinação linear de base 

 p separadamente. Assim, seguindo o mesmo raciocínio que foi utilizado para o 

primeiro termo de (69) temos que: 

 

                  * *| a a b b

ab p q q r r s r

p q r s

ab ab c c c c       J ,                     (74) 

                  * *| |a a b b

ab p q r s

pq a rs

ab ab c c c c pq rs  J ,                                    (75) 

                                         |ab pq rs

pqrs

D D pq rsJ .                                         (76) 

Nas equações acima *a a

pq p q

a

D c c  e *b b

rs r s

rs

D c c  são as matrizes 

densidade. O termo |pq rs  é conhecido como integral de dois elétrons na base 

 p e indica o quanto o orbital do elétron 1 interage com o orbital do elétron 2 até 

formar os orbitais moleculares. Pela simetria das integrais de dois elétrons 

| | |pq rs qp rs rs pq   e assim por diante.  

Expandindo o operador de permuta abK  obtemos, 

 

   * *(1) (2) | (1) (2) a b b a

ab p p q q r r s s

p q r s

a b b a c c c c       K .                 (77) 

 

Juntando os termos com os mesmos orbitais a  e b  obtemos 

 

                             * * |a a b b

ab p s q r

ps a qr b

c c c c ps qr K ,                                   (78) 

 

que pode ser reescrito como, 
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                                         |ab ps qr

psqr

D D pq qrK ,                                       (79) 

 

onde *a a

ps p s

a

D c c  e *b b

qr q r

b

D c c  também são, novamente, matrizes de densidade. 

Agora, tomando a diferença entre os dois operadores encontramos: 

 

                          | |ab ab pq rs ps qr

pqrs pqrs

D D pq rs D D ps qr   J K ,                  (80) 

 

ou, 

 

                             | |ab ab pq rs

pqrs

D D pq rs pr sq     J K .                           (81) 

 

Finalmente, encontramos as contribuições de energia proveniente do 

Hamiltoniano monoeletrônico (equação 73) e dos operadores de Coulomb e de troca 

(equações 81) para a energia total a partir de uma expansão com base na 

aproximação das combinações lineares. Para obter a energia para o caso restrito em 

termos da expansão na base das combinações lineares que foram escolhidas basta 

substituir as equações (72) e (80) em (70) e considerar 2n   para obter: 

 

                     
1 1

| |
2 2

RHF pq pq pq rs

pq pqrs

E D H D D pq rs pr sq
 

   
 

  ,                (82) 

 

Isolando o somatório nos orbitais de spins obtemos,  

 

               
1 1

2 | |
2 2

RHF pq pq rs

pq rs

E D H D pq rs pr sq
  

    
  

  .                     (83) 

 

Podemos definir os elementos pqG  como sendo uma matriz G : 

 

                               
1

| |
2

pq rs

rs

G D pq rs pr sq
 

  
 

 .                                  (84) 
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Em (84) G  geralmente é chamado de matriz de dois elétrons. Portanto, a 

matriz de Fock fica definido como: 

 

                                                   pq pq pqF H G  ,                                           (85) 

 

e, nesse caso, substituindo (83) e (84) em (82) a energia assume a forma, 

 

                                       
1

2
RHF pq pq pq

pq

E D H F                                         (86) 

 

Uma outra maneira de escrever a energia é em termo do traço da matriz, ou 

seja,  

                                                    
1

2
RHFE tr D(H + F)                                   (87) 

 

Para o método não restrito, consideram-se dois conjuntos diferentes de 

orbitais espaciais. Sendo um com os elétrons de spin  , ( )j

 r e o outro conjunto 

com os elétrons de spin  , ( )j

 r . Ao ser escolhida uma base, cada conjunto de 

orbitais espaciais pode ser expandido em uma combinação linear da forma:  

 

                                          ( )
L

a

a p p

p

c  r                                                    (88) 

                                          ( )
L

a

a p p

p

c  r .                                                  (89) 

 

Como temos dois conjuntos de elétrons (elétrons com spins   e elétrons com 

spins  ) teremos também duas matrizes de densidade que pode ser representadas 

como D  e D . A densidade de matriz total pode ser escrita como 

 

                                                TD D D   ,                                                (90) 
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onde (1 2) TD D D   . Assim, a energia UHF fica: 

 

                                   
1

2

T

UHF qp pq qp pq qp

pq

E D H D F D F      ,                          (91) 

 

Em termo da matriz traço temos, 

 

                                    
1

( )
2

UHFE tr T α α β βD H + D F + D F .                                 (92) 

 

 

2.15. EQUAÇÔES DE ROOTHANN 

 

 

Como visto anteriormente a Equação de Schrondinger assume a forma de 

uma equação de autovalores que pode ser escrito como:  

 

                                             a a af    ,                                                      (93) 

 

onde f  é o operador de Fock e a  corresponde aos orbitais moleculares.  

Vimos que a solução da equação (93) consiste em obter os resultados das 

energias a , considerando a  como uma combinação linear de uma dada base de 

dimensão L, centradas no(s) núcleos da mesma forma que a expressão (65) 

discutida na seção 2.9. Assim, substituindo essa expressão em (93) obtemos: 

 

                                               
L L

a a

p p a p p

p p

f c c    .                                       (94) 

 

Multiplicando ambas as parte da esquerda de (94) por uma base q temos, 

para todo q , que, 
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                                          | | |
L L

a a

p q p a p q p

p p

c f c      ,                        (95) 

ou ainda, 

                               . *| | ( ) ( ) ( )q p p q q pqf f d F      pr - R r r - R .                (96) 

 

Na equação (96) pqF  é a matriz de Fock. Esta matriz é a representação da 

matriz do operador de Fock com o conjunto de funções de base p . As integrais 

|q p   são chamadas de integrais de sobreposição. Elas quantificam o quanto um 

orbital atômico se sobrepõe ao outro (overllaping) e pode ser escrito como: 

 

                           *| ( ) ( )q p p p q q pqd S      r - R r - R .                                (97) 

 

Logo, podemos escrever a equação de HF em termos das definições pqF  e 

pqS : 

 

                                          
L L

a a

p pq a p pq

p p

c F c S  ,                                           (98) 

 

que também pode ser escrito na forma 

 

                                           ( ) 0
L

a

pq a pq p

p

F S c  .                                          (99) 

 

A equação (99) é conhecida como equação de Roothaan que também pode 

ser escrita na forma matricial dada por,  

 

                                                  FC = SCε .                                                  (100) 

 

A equação (100) é conhecida como equação de Hartree-Fock-Roothann-Hall, 

nela C  é uma matriz quadrada dada por, 
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1 2

1 1 1

1 2

2 2 2

1 2

...

...

N

N

N

N N N

C C C

C C C

C C C

 
 
 
 
  
 

C ,                                   (101)   

 

e ε  é uma matriz diagonal que pode ser escrita como:  

 

                                          

1 0

0 N





 
 

  
 
 

ε .                                               (102) 

 

Na pratica, a equação (100) não é muito conveniente uma vez que ela não 

possui a forma de uma equação de autovalor. Contudo, se definirmos as matrizes de 

transformação 1 2ˆX̂ S  e 1 2ˆŶ S , vemos que a equação 100 pode ser escrita como: 

 

                                                                          ˆFC C ,                                              (103) 

 

onde: ˆ ˆ ˆF XFX  e ˆˆC YC . Este fato possibilitou o uso de técnicas de álgebra linear 

para se obter os autovalores  a e os coeficientes a

qC . 

 

 

2.16. PROCEDIMENTO PARA SCF 

 

 

A equação de autovalores de HF para o hamiltoniano dado pela expressão 3 

(equação 69) é uma equação integro-diferencial  muito difícil de ser trabalhada 

analiticamente e deve ser resolvida de forma autoconsistente, ou seja, a solução 

deve ser feita de forma aproximada através de um método autoconsistente que 

implica o uso de métodos iterativos. Os procedimentos para resolver a equação de 

Hartree-Fock é chamado de “método do campo autoconsistente” (self consistente 

Field, SCF). A ideia básica do método SCF é simples. Fazendo um chute inicial dos 
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orbitais de spins, pode-se calcular o campo médio experimentado por cada elétron e 

resolver a equação de autovalores. Usando-se novos orbitais de spins, pode-se 

obter novos campos e repetir o procedimento até que o campo autoconsistente, 

conjunto de orbitais de spins, seja alcançado, (Szabo, 2006). Para desenvolvimento 

de algum programa computacional podemos adotar os seguintes procedimentos: 

 

1- Especificar o sistema (poço de potencial, átomo, molécula, etc...) e escolher a 

base. 

2- Calcular as integrais (T, J, K, S (matriz de sobreposição em caso de uma 

base não-ortogonal) etc...); 

3- Diagonalizar a matriz S (caso a base não seja ortogonal) e obter as matrizes 

de transformação X̂  e Ŷ  que transforma a equação 100 em 103; 

4- Escolher a primeira versão da matriz D; 

5- Construir a matriz F̂  e a matriz F ; 

6- Diagonalizar a matriz F , para obter os autovalores e autovetores (novos 

coeficientes) C ; 

7- Converter C  em Ĉ  e calcular uma nova matriz densidade (D); 

8- Calcular a nova energia total do sistema;  

9- Retornar ao item 5° até que a energia total do passo anterior não difira 

significativamente do passo atual.  
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CAPÍTULO III 

 

 

Neste capítulo discutiremos tanto os resultados que obtivemos ao aplicar o 

método de Hartree-Fock-Roothann no poço quadrado infinito unidimensional quanto 

às estratégias que foram utilizadas e que tornaram a discussão desse método mais 

simples, menos trabalhoso e, por sua vez, mais acessível aos alunos de graduação. 

Essas estratégias basicamente envolveram o uso de dois artifícios: a base do poço 

quadrado infinito e o potencial delta de Dirac. Por isso, na primeira parte desse 

capítulo apresentamos a metodologia, ou seja, como esse trabalho foi pensado e 

elaborado a partir de algumas ferramentas da transposição didática. Na segunda 

parte será apresentada uma breve discussão do poço quadrado infinito. Na terceira 

parte falamos um pouco sobre o potencial delta de Dirac. As demais seções serão 

dedicadas às iterações necessárias que envolvem os procedimentos do SCF, que 

foram apresentados no capítulo anterior, utilizando as bases do poço quadrado 

infinito para duas partículas interagentes.  

 

 

METODOLOGIA 

 

 

3.1.  ANÀLISE DO SABER A ENSINAR 

 

 

O objetivo principal desse trabalho é construir um saber a ensinar 

matematicamente simplificado. Já discutimos anteriormente que o método de HFR 

será escolhido para ser o saber sábio. Discutimos também que o saber ensinado 

consiste em uma adaptação do saber a ensinar. Agora discutiremos como esse 

trabalho foi desenvolvido a partir do significado de cada parâmetro da transposição 

Didática. Consideraremos os livros didáticos que abordam a teoria de HFR, um dos 

exemplos de saber a ensinar. Nesse trabalho, fizemos um levantamento bibliográfico 

de livros, artigos e sites que abordam essa teoria com objetivo de analisar o saber a 

ensinar. A importância dessa análise é verificar como os livros tratam o método de 
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HFR, quais as ferramentas matemáticas que são utilizadas, se porventura fazem 

abordagens qualitativas ou somente quantitativas, ou ambas, se fazem uma 

abordagem histórica de como surgiu o método ou discute qual a necessidade 

apresentada pela ciência que deram origem a teoria de HFR. Também pretendemos 

analisar como cada livro desenvolvem as etapas do ciclo autoconsistente.  Assim 

estaremos analisando o saber a ensinar, ou seja, a passagem dessa teoria que é 

dominada somente por uma pequena esfera de pessoas (cientistas e pesquisadores 

da área) para uma esfera maior de pessoas (alunos que se especializam nessa 

área). O instrumento que permite essa passagem são os livros didáticos. 

Verificamos que, grosso modo, as abordagens das aplicações do método nos livros 

didáticos geralmente são feitas de acordo com as seguintes etapas: 

 

I. Obtenção dos operadores de Fock de duas maneiras 

distintas: ou utilizando o princípio variacional ou simplesmente 

reescrevendo o hamiltoniano do sistema em termos dos operadores de 

um elétron e de dois elétrons (troca e Coulomb). Alguns livros 

desenvolvem essa etapa de forma qualitativa, ou seja, dando ênfase a 

uma abordagem histórica, apresentando as equações principais do 

método sem prová-las, mas explicando o significado físico de cada 

uma delas. 

II. Definição de um conjunto de funções de base e a 

construção das matrizes de sobreposição, da energia cinética e da 

energia potencial devido à interação entre dois elétrons (Coulomb e 

troca) e de um elétron (interação elétron-núcleo). Vale salientar que o 

termo “construção das matrizes” envolve necessariamente resolução 

das integrais. 

III.  Realização do ciclo auto-consistente completo com um 

“chute” inicial da matriz densidade e, posteriormente, calculando-se 

novos autovalores, autovetores, uma nova matriz densidade e assim 

sucessivamente. 

 

De acordo com as nossas análises pudemos observar que dificilmente os 

livros agrupam, em um só procedimento, todas essas etapas de um ciclo SCF. 
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Alguns desenvolvem ou dão ênfase somente a etapa (I), outros a (I) e a (III) e assim 

por diante. Com isso, estipulamos um critério de análise através das seguintes 

categorias: 

 

1. Livros que somente mostram a etapa (I), apresentando as 

outras etapas, mas sem o desenvolvimento quantitativo. 

 

2. Livros que constroem as matrizes de sobreposição e 

desenvolvem o ciclo autoconsistente ou simplesmente apresentam 

resultados obtidos a partir de um ciclo autoconsistente sem mostrar os 

cálculos envolvidos no desenvolvimento dos procedimentos do ciclo, 

ou seja, aqueles que mostram apenas as etapas (I) e (II) apresentando 

a etapa (III), mas sem o desenvolvimento de um ciclo autoconsistente 

completo.  

 

3. Livros que constroem as matrizes, desenvolvem o ciclo 

autoconsistente e resolvem as integrais, ou seja, aqueles que mostram 

as etapas (I), (II) e (III) de forma quantitativa e/ou qualitativa. 

 

A maioria do material que analisamos seguem alguns desses critérios de 

forma bem semelhante. Portanto, para que a análise não fique tão repetitiva 

selecionamos quatro livros que consideramos representativos de um amplo espectro 

da literatura dessa área do conhecimento para serem analisados por possuírem 

características bem específicas em relação aos critérios de análise que 

desenvolvemos. De cada livro discutiremos somente a parte que nos interessa que é 

a aplicação do método de HFR. Os livros que selecionamos foram: (Alcacer, 2006), 

(Eisberg, 1979), (Levine, 2009), (Szabo,2006). De cada livro selecionado traremos 

um exemplo de como cada um deles desenvolvem os procedimentos do ciclo SCF. 
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3.2. ANÀLISE DO LIVRO DO ALCACER  

 

 

 O livro do Alcácer é um livro de química quântica computacional e aborda o 

método de HFR no capítulo 7 cujo título é teoria dos orbitais. Nesse capítulo o 

operador de Fock é obtido a partir do princípio variacional de acordo com a etapa I 

(que desenvolvemos). Também todos os passos das etapas II e III são 

desenvolvidos no decorrer do capítulo. No complemento desse capítulo, encontram-

se alguns exemplos da aproximação de HFR aplicados a átomos (
2H  e 2H  ) e a 

moléculas ( HeH   e 2H O ). As bases escolhidas no desenvolvimento das etapas do 

ciclo autoconsiste, na maioria dos exemplos, são gaussianas determinantes de 

Slater.  Para cada caso as etapas são desenvolvidas passo a passo. Embora as 

integrais de dois elétrons para esses exemplos não sejam resolvidas, em cada caso 

é mostrado uma tabela já com os resultados. Evidentemente essas integrais são 

bem trabalhosas, mas em um dos apêndices é mostrado como calcular tais integrais. 

Com isso, o livro do Alcácer por ser bem completo, em se tratando da aplicação do 

método de HFR, pode ser considerado “completo” na medida em que desenvolve 

todas as etapas (I, II, III) e, portanto, se encaixa na categoria 3.  

 

3.2.1. Exemplo do Livro do Alcácer: Átomo de Hélio em aproximações SCF-

LCBF 

 

Etapa 1- Escolha da base: base zeta-dupla  1 ,1 's s : 

 

1

3 2

1

1 2
1 ( )s r e  



 ,          2

3 2

2

1 2
1 ( )s r e  



  ,  onde 1 1,45   e 2 2,90  . 

 

Etapa 2-Cálculo dos Integrais e construção das Matrizes , ,S T V , e Ĥ T V  : 
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 

 

 

 

3 2

1 2
3 22 2

1 2

3 2 3 2
2

1 2

2

1 2

1 8
1 1 1 0,8381ˆ ,

0,8381 11 1
8 1

s s s s
S

s s s s

 

 

 

 

  
  

                             
   

    

 

 

   

   

1

5 222 22 2

1 2

5 222 2 2 2

1 2 2

1 11 1
1

1,05125 1,762022 82 2
,

1 1 1 1 1,76202 4,20500
1

2 2 8 2

s s s s

T

s s s s

   

   

  
          

      
              

   

 

 

   

   

3 22 2

1 1 2

3 22 2

1 2 2

2 12 2 2,9000 3,6455
,

2 2 3,6455 5,80001 2

s r s s r s
V

s r s s r s

   

   

                           
 

 

 

1,8488 1,8835
ˆ ˆ ˆ

1,8835 1,5950
H T V

  
    

  
. 

 

Os 16 

Integrais 

Só 6 valores de diferentes 

V1111    
2 2

1 1

1 2

12

1 2
1111V d d

r

 
             1

5
0,90625

8
ss ss    

V1112 

V1121 

V1122 

V1211 

     
2

1 2 1

1 2

12

1 1 2
2111V d d

r

  
      

    2 2 2

1 2

1
1 1 5 3 0,90409

32
ss ss              

V2211 

V2121 

V2112 

V1221 

V1212 

       2 2 1 1

1 2

12

1 2 1 2
2211V d d

r

   
     

   2 2

1 2

1
1 5 1,18148

16
ss s s            

   
2 2

1 2

1 2

12

2 1
2121V d d

r

 
    
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   
3

2

1 2

5
1 0,9543

16
ss ss          

V2221 

V2212 

V2112 

V1222 

     
2

2 2 1

1 2

12

1 2 2
2221V d d

r

  
      

     
3 2

2 2 2

1 2

1
1 1 5 3 1,29666

32
ss s s                

V2222    
2 2

2 2

1 2

12

1 2
2222V d d

r

 
       2

5
1,81250

2
s s s s       

Tabela 1: exemplo do livro do Alcácer: Integrais de dois elétrons. 

 

 

Etapa 3- Diagonalização da matriz S  e obtenção do coeficiente X̂ :  

 

1,8381 0,0000ˆ
0,0000 0,1619

S
 

  
 

, 
0,7071 0,7071

0,7071 0,7071
U

 
  

 
, 1 2

0,7376 0,0000

0,0000 2,4849
s

 
  
 

. 

1 2 1 2
0,5216 1,7571

ˆ
0,5216 1,7571

X Us S   
    

 
,  †

0,5216 0,5216

1,7571 1,7571

 
  

 
X . 

Onde U é a matriz que diagonaliza Ŝ , s é matriz Ŝ diagonalizada e X̂  é a matriz de 

transformação. 

 

Etapa 4- Escolha da primeira versão das matrizes C  e D  (só orbitais 

ocupadas): 

 

 †
1,0000ˆ ˆ,     1,0000 0,0000
0,0000

C C
 

  
 

;  †
2,0000 0,0000ˆ ˆˆ 2 2
0,0000 0,0000

D C C CC
 

    
 

. 

 

Etapa 5- Construção da matriz de Fock  ( F̂  e F ): 

Para construir a matriz de Fock, o livro do Alcácer faz uso da matriz de 

elementos dado pela expressão 
1

| | .
2

pq rs

rs

G D pq rs pr sq
 

  
 


  

 A matriz obtida é dada por: 
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0,9063 0,9041ˆ
0,9041 1,4082

G
 

  
 

. 

então, a matriz de fock F̂ pode ser calculada como: 

  

0,9425 0,9794ˆˆ ˆ
0,9794 0,1868

F H G
  

    
  

. 

 

e, como ˆ ˆ ˆF XFX , então temos, 

 

0,8400 0,6926

0,6926 2,5612
F

  
  

 
. 

  

Etapa 6- Diagonalização de F para obter os autovalores   e os autovetores C : 

 Ao diagonalizar, o livro apresenta os seguintes resultados para os autovalores 

e autovetores, 

 

0,9757 0,0000

0,0000 2,6958


 
  
 

, 
0,9814 0,1922

0,1922 0,9814
C

 
  

 
. 

 

 

Etapa 7-Conversão de C  em Ĉ  e cálculo de uma nova matriz: 

A conversão é feita a partir da seguinte expressão, 

 

0,8495 1,1641ˆ ˆ
0,1742 1,8246

C XC
 

   
 

, 
0,8495 0,1742

1,6241 1,8246

 
  

 

†C . 

Logo, a nova matriz é dada por: 

†
0,7217 0,1480

2 2 2
0,1480 0,0303

C C
 

    
 

D CC . 

Etapa 8-Cálculo da energia: 

A energia calculada para a primeira iteração é dada por: 
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 
1

2,8615
2

RHF hE tr E  D(H + F) , 

Na expressão acima 27,21150hE eV  é conhecida como energia de Hartree.  

Etapa 9- Retornar ao item cinco até que a energia total do passo anterior não 

difira significativamente do passo atual: 

O livro do alcácer retorna ao item cinco, refaz as etapas e depois de 6 

iterações apresenta os resultados dos autovetores, autovalores e da energia na 

versão restrita do método de HF para o sistema no estado mínimo: 

 

0,8409 1,6286 0,9182 0
,   ,   2,8617

0,8409 1,8236 0 2,7930
RHF hC E E

    
      
   

 

 

 Devemos ressaltar que as integrais de dois elétrons mostradas na tabela (1) 

são integrais complicadas envolvendo harmônicos esféricos. Por exemplo, a integral 

de repulsão entre dois elétrons no orbital 1s é da forma: 

                                             
12

1
1 ( )1 ( ) 1 ( )1 ( )I s s s s

r
 1 2 1 2r r r r .                                (104) 

Usando as funções do átomo de hidrogênio 1

3
21 ( ) ZrZ

s e


1r  e 2

3
2

21 ( ) ZrZ
s e



r  

,de (104), obtemos, 

 

                                           1 2

6
2 2

1 2

12

1Zr ZrZ
I d d e e

r
 



    .                                       (105). 

 

O termo 
121 r é expandindo nas harmônicas esféricas: 

 

                                 *

1 1 2 21
012

1 4
( , ) ( , )

2 1

ll

lm lml
i m l

r
Y Y

r l r


   





  




 ,                                 (106) 

onde r  é o menor valor de 1r  e 2r  e ré o maior valor de  1r  e 2r . Substituindo (106) 

em (105) obtêm-se, 
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1 22 26 2 2

1 1 2 21
0 0 0

2 2

* *

00 1 1 00 1 1 1 1 1 00 2 2 00 2 2 2 2 2

0 0 0 0

4
16

2 1

( , ) ( , ) ( , ) ( , )

ll
Zr Zr

l
i m l

r
I Z e e r drr dr

l r

Y Y sen d d Y Y sen d d
   



             

 
  


  




 

   

                        (107) 

 

3.3. ANÁLISE DO LIVRO DO EISBERG 

 

 

O livro do Eisberg é um livro de física quântica introdutório sem a notação de 

Dirac. No capítulo 9 cujo título é: Átomos multieletrônicos-Estados Fundamentais e 

Excitações por Raios X, na seção 9-6 é feita uma abordagem puramente qualitativa 

do método de Hartree. Nessa abordagem não se utiliza nenhum cálculo envolvendo 

o princípio variacional, operadores de Fock ou coisas do tipo. Somente é discutido a 

aproximação de Hartree e em algumas poucas linhas fala-se da importância dos 

cálculos desenvolvidos por Fock. Os elétrons são tratados como se eles se 

movessem independentemente e também não são utilizadas autofunções 

antissimétricas, não levando em consideração o princípio da indistinguibilidade. 

Apesar desse livro não chegar a discutir contribuições de Roothann, por considerar 

uma teoria avançada, iremos encaixá-lo na categoria 1, pois, embora não 

desenvolva os cálculos envolvido na teoria, traz aspectos qualitativos e até mesmo 

históricos que consideramos importante no desenvolvimento do saber ensinado. O 

livro do Eisberg não apresenta as etapas do ciclo autoconsistente e, portanto, não 

apresentaremos nenhum exemplo do mesmo. 

 

3.4. ANÁLISE DO LIVRO DO LEVINE 

 

 O Levine é um livro de Química Quântica que em algumas seções aborda o 

método de HFR. No capítulo 18 (estrutura atômica) em uma pequena seção, é 

discutido as funções de onda de HF. A discussão segue um caminho qualitativo, 

trazendo aspectos históricos, apresentando as contribuições de cada cientista no 

desenvolvimento do método. No capítulo 19 (estrutura da molécula) o livro retorna a 

discussão do método para explicar algumas características importantes do operador 

de Fock apresentando algumas equações mas sem demonstrar matematicamente 
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sua origens . Traz também vários resultados de cálculos de moléculas a partir do 

desenvolvimento autoconsistente. Porém, grande parte da abordagem é feita de 

forma qualitativa. Portanto, O livro do Levine se encaixa na categoria 2.  

 

 

3.4.1. Exemplo do livro do Levine: Conjunto de base mínima da molécula 

HF (fluoreto de Hidrogênio) 

 

 

No livro do Levine não é mostrado as etapas do ciclo autoconsistente 

explicitamente como no livro do Alcácer, no entanto,  o livro deixa claro que os 

resultados foram obtidos a partir das etapas do ciclo SCF. Por exemplo, no cálculo 

do conjunto das bases mínima da molécula HF (fluoreto de Hidrogênio) a solução da 

equação de Hartree-Fock usando o conjunto de base mínima para uma molécula   

é apresentada pelo livro (p.692) de forma direta, sem cálculos ou demonstrações, a 

partir da seguinte combinação: 

 

1 1,000( 1 ) 0,012( 2 ) 0,002( 2 ) 0,003( 1 )zF s F s F p H s     , 

2 0,018( 1 ) 0,914( 2 ) 0,090( 2 ) 0,154( 1 )zF s F s F p H s      , 

3 0,023( 1 ) 0,411( 2 ) 0,711( 2 ) 0,516( 1 )zF s F s F p H s      . 

 

3.5. ANÁLISE DO LIVRO DO SZABO 

 

 

O livro do Szabo é um livro de química quântica avançada que discute a 

teoria da estrutura eletrônica e que dá grande ênfase ao método de HFR nos 

cálculos que envolvem a teoria dos orbitais. Em vários capítulos do livro esse 

método é discutido. Nesse livro, a teoria de HFR é levada tão a sério que é 

reservado um capítulo inteiro (capítulo 3) só pra discutir a aproximação de HF. 

Nesse capítulo a abordagem é feita de maneira tanto qualitativa quanto quantitativa, 

com ênfase maior no quantitativo. Existe pouca preocupação com os aspectos 

históricos. O interesse maior consiste em desenvolver todas as etapas matemáticas 
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e explicar fisicamente o significado de cada termo envolvido em cada expressão que 

surge. Apesar de desenvolver todo método autoconsistente, as integrais não são 

resolvidas, mas, assim como no livro do Alcácer é mostrado no apêndice como 

resolver integrais do tipo. No final do livro (também nos apêndices) é mostrado um 

programa computacional desenvolvido em Fortran, que realiza todos os passos de 

um ciclo autoconsistente para o caso de dois elétrons. Assim, o livro do Szabo é 

bem mais completo no sentido de trazer e explicar os conteúdos (teorias, métodos, 

princípios e propriedades matemáticas) referentes à aplicações da teoria de HFR do 

que os demais. Nesse caso, pela nossa avaliação esse livro por desenvolver todas 

as etapas se encaixa na categoria 3.  

 

 

3.5.1. Exemplo do livro do Szabo: Cálculos SCF na Molécula STO-3G +HeH  

 

As atapas do SCF desenvolvido pelo livro do Szabo é bem parecido com o 

livro do Alcácer: 

 

Etapa 1- Escolha das bases: 

 

  1
1 2

3

1 1 e


  
 1r-R

,      2
1 2

3

1 2 e


  
 1r-R

. 

 

Etapa 2-Cálculo das Integrais e construção das Matrizes , ,S T V , e 

1 2ˆ ˆ ˆ ˆH T V V   : 

 

1,0 0,4508ˆ
0,4508 1,0

S
 

  
 

, 
2,1643 0,1670

ˆ
0,1670 0,7600

T
 

  
 

, 
1

4,1398 1,1029
ˆ

1,1029 1,2652
V

  
  

  
, 

2
0,6772 0,4113

ˆ
0,4113 1,2266

V
  

  
  

. 

1 2
2,6527 1,3472

ˆ ˆ ˆ ˆ
1,3472 1,7318

H T V V
  

     
  

. 

Os resultados da integrais de dois elétrons são os seguintes: 
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1 1 1 1

2 1 1 1

2 1 2 1

1,3072 . .

0,4373 . .

0,1773 . .

u a

u a

u a

 

  

   







                           

2 2 1 1

2 2 2 1

2 2 2 2

0,6057 . .

0,3118 . .

0,7746 . .

u a

u a

u a

  

   

   







 

 

Etapa 3- Diagonalização da Matriz S e cálculo do coeficiente X̂ : 

   

   

1 2 1 2

1 2 1 2

2 2

2 2
U

 

 

 
 
  

, 

1 2
0,8302 0,0

0,0 1,3493
s

 
  
 

, 

 

  -1 2
0,5871 0,9571

ˆ
0,5871 0,9571

X Us
 

   
 

. 

Etapa 4- Primeira versão da matriz densidade: 

 

1,7266 0,2599

0,2599 0,0391
D

 
  
 

. 

 

Etapa 5- Construção da matriz de Fock ( F̂ e F ): 

 

1,2623 0,3740ˆ
0,3740 0,9890

G
 

  
 

, 

 

2,6527 1,3472ˆˆ ˆ .
1,3472 1,7318

F H G
  

    
    

2,4397 0,5158
ˆ ˆ ˆ

0,5158 1,5387
F XFX

  
   

  
. 

 

Etapa 6- Diagonalização de F para obter os autovalores   e os autovetores C : 
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0,9104 0,4136

0,4136 0,9104

 
   

 
C , 

2,6741 0

0 1,3043


 
  

 
. 

 

Etapa 7- Conversão de C  em Ĉ : 

 

0,9291 0,6259ˆ ˆ
0,1398 1,1115

C XC
 

   
 

. 

. 

Etapa 8- Construção da nova matriz de Fock: 

 

1,3904 0,9732ˆˆ ˆ
0,9732 0,7429

F H G
  

    
  

. 

 Depois de algumas iterações o livro apresenta o resultado final das energias e 

dos autovetores do estado minimizados que são dados por: 

 

0,8019 0,7823

0,3368 1,0684
C

 
  
 

, 
1,5975 0,0

0,0 0,0617


 
  

 
. 

 

Também o livro traz uma tabela (tabela 2) mostrando os resultados da matriz 

densidade e da energia eletrônica durante o processo (STO-3G +HeH ). 

 

Iteração 
11P  12P  22P  0( . )E u a  

1 1,7266 0,2599 0,0391 -4,141863 

2 1,3342 0,5166 0,2000 -4,226492 

3 1,2829 0,5384 0,2247 -4,227523 

4 1,2864 0,5400 0,2267 -4,227529 

5 1,2862 0,5402 0,2269 -4,227529 

6 1,2861 0,5402 0,2269 -4,227529 

Tabela 2: Exemplo do livro do Szabo: resultados da matriz densidade e da energia eletrônica. 
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3.6. CONCLUSÕES OBTIDAS A PARTIR DA ANÁLISE DOS LIVROS 

 

 

Devemos ressaltar que de acordo com os critérios estabelecidos a “posição” 

que colocamos cada livro não os coloca em nenhuma posição especial no sentido 

de possuir uma abordagem mais correta ou mais didática do que os outros. Estamos 

apenas analisando as diversas formas de como o saber a ensinar foi construído e, 

não desenvolvendo um julgamento de quais abordagens são as mais adequadas.  

Queremos entender o processo de transformação pela qual passou a teoria de HFR 

e estabelecer uma legitimação de um saber analisando a teoria sobre o ponto de 

vista de cada nível da transposição didática. Como bem destacou Pinho Alves 

(2000),  

O saber a ensinar é entendido como um novo saber, sua estrutura de 

origem está localizada fora do contexto acadêmico produtor do saber sábio. 

Dessa forma, para que na integração entre objetos de ensino não haja 

prevalência de conceitos sem significado, é recomendado o uso das 

diferentes fontes de referência, que inspiram e estabelecem a legitimação 

de um saber (p. 23).   

 

 A análise nos permitirá enxergar os elementos envolvidos na teoria que a 

torna complicada de ser ensinada para alunos de graduação. Selecionamos de 

propósito quatro livros, três que são utilizados somente em cursos avançados de 

Química e Mecânica Quântica e um que é utilizado geralmente no curso de física 

moderna.  

Embora cada livro possua características bem específicas, todos eles 

concordam com o fato de que o método de HFR possui uma matemática bem 

trabalhosa e que somente para alguns poucos casos é possível resolver as 

equações que surgem de forma analítica. Em outras palavras, é a matemática 

envolvida no método e, consequentemente, nas aplicações do método, etapas do 

ciclo SCF, a responsável por torná-lo tão trabalhoso e complicado de ser abordado 

na graduação. O entendimento quantitativo do método exige um grande domínio de 

cálculo avançado e de álgebra Linear. Na verdade o entendimento físico (qualitativo) 

do método não é tão complicado. Existem disciplinas em um curso de física que são 

bem mais difíceis.  Mas concordamos com o fato de que nenhum desses exigiria 
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tanto esforço matemático quanto o de resolver analiticamente todas as integrais que 

surgem ao se aplicar o método de HF em uma molécula contendo N elétrons e M 

núcleos. O número de integrais que surge a partir da expressão (81) vai de acordo 

com número de elétrons e com o tamanho da base. A relação que fornece um 

número de integrais por elétron é da ordem de 4k , onde k  é o número de elétrons. 

Assim, se aplicarmos o método ao átomo de 
2H , com uma base mínima para o 

mesmo (uma função de base por elétron), por exemplo, obteríamos 16 integrais das 

quais, por simetria, basta levar em consideração 6 delas. Se tomássemos o Lítio, 

que possui 3 elétrons, a equação (50) forneceria 81 integrais para uma base mínima 

e, assim por diante. Além disso, os livros que analisamos constroem as integrais 

utilizando funções de base do tipo Slater (Slater type orbitals-STO) dada por: 

 

                                                         1 ( , )STO n r

lmNr e Y                                                         (108) 

 

Onde  é conhecido como expoente orbital zeta que pode associar-se ao 

número atômico efetivo *Z pela relação 
*Z
n

; N é a constante de normalização e a 

função 
lmY  são os harmônicos esféricos. Para minimizar os cálculos das integrais 

que possuem funções exponenciais geralmente utilizam-se funções gaussianas do 

tipo 
2re   onde para cada base   temos uma combinação linear com várias 

gaussianas de forma que a expressão (102) assume a forma 

 

                                                                      CGF GTO

rp rk                                                      (109) 

 

O uso dessas bases deixa os cálculos ainda mais complicados, possibilitando 

o surgimento de integrais envolvendo harmônicos esféricos e polinômios de 

Laguerre. 

Uma das exigências principais da transposição didática é que no processo de 

transformação a teoria (com suas propriedades e características) deve ser 

preservada para ser assimilada pelos alunos. Portanto, visto que o maquinário 

matemático torna-se um obstáculo ao aprendizado dos conceitos, à adaptação deve 
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ser feita a partir de simplificações matemáticas.  Nosso interesse não é chegar em 

resultados precisos mas simplesmente mostrar como o método pode ser 

implementado utilizando ferramentas matemáticas que qualquer aluno dos últimos 

períodos de física ou química consiga dominar.  

De acordo com os conteúdos programáticos dos cursos de Física Moderna e 

Quântica, o poço quadrado infinito unidimensional e o potencial delta de Dirac são 

conteúdos que geralmente são vistos na maioria das universidades. Isso significa 

que esses conteúdos são acessíveis a alunos de graduação. Iremos, portanto, 

utilizá-los como procedimentos metodológicos que servirão como peças chave de 

adaptação que iremos construir. 

 

 

3.7. ADAPTAÇÂO DOS PROCEDIMENTOS DO CICLO AUTOCONSISTENTE 

DO MÉTODO DE HFR  

 

 

Com base no esquema desenvolvido por FRIOLANI (seção 2.1) fizemos um 

esquema semelhante onde estão ilustradas as propostas e os objetivos principais 

fundamentados no conceito de transposição didática que mostra como esse trabalho 

foi pensado e elaborado (figura 3). A comparação entre os dois esquemas permite 

observar que o método de HF nesse trabalho será escolhido como sendo o saber 

sábio. Nossa proposta é adaptar matematicamente os procedimentos necessários 

envolvidos nas etapas de um Ciclo Autoconsiste que são desenvolvidos a partir do 

método de HFR. Nesse caso, nossa proposta se restringe a uma adaptação da 

aplicação do método de HFR e não do método em sim, desenvolvendo assim um 

saber a ensinar matematicamente simplificado. Concordamos que a matemática 

envolvida na construção do método, como pode ser vista na fundamentação teórica, 

envolve manipulações de álgebra linear e cálculos avançados. Embora na aplicação 

em geral também apareça integrais de funções especiais, nosso objetivo principal é 

buscar uma estratégia que possa substituí-las por integrais simples. Para isso, 

aplicaremos o método de HF ao poço quadrado Infinito unidimensional com o uso do 

potencial delta de Dirac para interação elétron-elétron. A função delta de Dirac é 

aplicada em alguns casos realistas como, por exemplo, pode ser utilizada para 



71 

 

representar a densidade de uma carga pontual. Contudo, não encontramos na 

literatura uma situação realista convincente que descreva a interação de dois 

elétrons a partir de um potencial delta de Dirac. Por isso, iremos utilizar esse 

potencial como sendo um potencial alegórico. Como nosso objetivo é somente 

simplificar matematicamente as etapas do SCF, esse potencial será utilizado com 

este objetivo.  A partir dessa adaptação o saber a ensinar passa a ser o ensino da 

aplicação do método, matematicamente adaptado para um curso de licenciatura em 

física ou em química. Em relação ao saber disponível, esse trabalho permitirá o 

estudo de partículas interagentes, raramente discutidos na graduação, e também 

dos procedimentos associados ao método autoconsistente (somente abordados 

profundamente em áreas específicas).   

 

 

 
Figura 5: Esquema que ilustra segundo a visão desse trabalho a adaptação do método de HFR sob os vários 

parâmetros da transposição Didática: comparar com o esquema da página 20. 
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3.8. POÇO QUADRADO INFINITO UNIDIMENSIONAL 

 

 

O poço quadrado infinito é um dos modelos mais simples utilizado pela 

mecânica quântica para estudar os estados ligados de uma partícula. No estado 

ligado as partículas com níveis de energia 
i  estão presas por duas barreiras de 

potencial V(x) de ambos os lados (figura 6). As partículas oscilam de um lado para 

outro, mas não conseguem escapar. No poço de potencial infinito considera-se que 

os potenciais possuem valores de energia tão alto que são considerados infinitos em 

comparação com as energias das partículas. Esse efeito é de fundamental 

importância para a mecânica quântica, pois só há quantização de energia se os 

potenciais forem capazes de aprisionarem as partículas (Eisberg, 1979, pg. 271).  

 

 

 

Figura 6: Energia potencial de um poço quadrado infinito de largura L 

 

 

Considere o poço infinito de largura L conforme mostra a figura 6. Dentro do 

poço a energia potencial V(x) é zero. Imaginemos o caso de uma única partícula 

aprisionada pelo poço. Para estudar esse sistema e encontrar as autofunções e as 

autoenergias, devemos resolver a equação de Schrondiger independente do tempo 

que, para esse caso pode ser escrita como: 

 

                                         
2 2

2

( )
( )

2

d x
E x

m dx


   .                                        (110) 
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“Isolando” a derivada segunda na expressão acima, obtemos a seguinte 

equação de segunda ordem: 

 

                                          
2

2

2 2

( ) 2
( ) ( )

d x mE
x k x

dx


      ,                       (111) 

 

onde 2

2

2mE
k  . Agora, precisamos encontrar a solução da equação (111) que é 

dada por, 

 

                                              ( ) sin cosx A kx B kx   .                                (112) 

 

É claro que esta não é ainda a solução completa, pois ainda temos que 

encontrar os valores de A , B  e k . Para encontrar a solução devemos aplicar as 

condições de cotorno em (112) para obter os valores de B  e de k . Enquanto A  é 

obtido por normalização. As condições de cotorno são as seguintes: 

 

                                        
(0) 0  condição 1

( ) 0 condição 2  L

 

 

 .                                        (113) 

 

Aplicando a primeira condição na equação (112) obtemos que B =0. A 

segunda condição implica que: 

 

                                       ( ) sin 0L A kL                                                   (114) 

 

Só que, para que sin 0A kL  , o número de ondas k  tem que assumir os 

seguintes valores: 

 

                                          n=1,2,3,4....n

n
k

L


                                             (115)  

   

Logo, os autovalores de energia em termo de k toma a forma: 
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2 2

2
n

n

k
E

m
 .                                                        (116) 

 

Encontradas as auto-energias precisamos saber agora as autofunções que 

irão fornecer os elementos da base do sistema. Para isso, basta normalizar a função 

(114) para encontrar o valor de A . Nesse caso temos,  

 

                                       * 2 2

0
sin 1

L

n n n

n x
dx A dx

L





 
    

 
  .                      (117) 

 

Resolvendo a integral acima encontramos que 
2

nA
L

 . Assim, as 

autofunções (que são as funções normalizadas que resolve o nosso problema) ficam 

dadas por: 

 

                                                   
2

( ) sinn

n x
x

L L


  .                                            (118) 

 

Na graduação de física (Licenciatura ou Bacharelado), no curso de física 

moderna, geralmente esse exemplo é utilizado como modelo para estudar a ES para 

duas ou mais partículas não interagentes presas por um potencial infinito. Nosso 

objetivo nesse trabalho é estudar esse sistema para o caso de duas partículas 

interagentes que envolverá as aplicações do método de HF. Veremos que a escolha 

da base do poço quadrado infinito irá facilitar muito os cálculos das integrais que 

aparecem ao aplicarmos o método de HF. 

 

3.9.    FUNÇÂO DELTA   DE DIRAC 

 

 

A função delta de Dirac   é definida pelas seguintes condições: 

    

                               (119)                                                                                               0 0
( ) .

0

x
x a

x



  

 
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Na verdade, rigorosamente a função de Dirac não se trata bem de uma 

função, pois não é finita em x=a. Os matemáticos a consideram como uma função 

generalizada ou distribuição, ou seja, como sendo o limite de uma função (Griffiths. 

2011, pg 54). As condições dada por  (119) implicam nas seguintes relações: 

 

( ) ( ) ( ) ( )  e  ( ) ( ) ( ) ( ) ( )f x x a f a x a f x x a dx f a x a dx f a   







        ,            (120) 

onde ( ) 1x a dx



  . As relações acima mostram que multiplicar ( )x a  por uma 

função ordinária é o mesmo que multiplicá-la por ( )f a , onde a  é uma constante. 

Um potencial do tipo função Delta de Dirac pode ser escrito como: 

 

                                                      ( ) ( )V x x a  .                                     (121) 

 

Este será o potencial que iremos usar e, novamente, veremos que o uso 

deste potencial irá facilitar muito o manuseio das integrais que surgirão daqui pra 

frente. Nossa preocupação, sem dúvida, são essas tais integrais, pois estamos 

falando, como veremos, de 16 integrais. Isso porque iremos trabalhar com duas 

partículas apenas. Se por acaso, nos aventurássemos a trabalhar com três teríamos 

que lidar com 81 integrais, como foi discutido anteriormente. Não resta dúvida que o 

uso da base do poço infinito e do potencial de Dirac facilitará muita coisa. 

 

 

3.10. APLICAÇÂO DOS PROCEDIMENTOS SCF NA BASE DO PQIU 

  

Vamos agora obter a energia para o caso restrito,  
1

2
RHF pq pq

pq

E H G   

utilizando as aplicações dos procedimentos SCF do método de HF. Faremos isso 

utilizando ferramentas que possam diminuir a complexidade matemática e torne a 

aplicação acessível aos alunos de graduação. Isso poderá ser feito utilizando bases 

do poço quadrado infinito unidimensional e o potencial delta de Dirac. Essa energia 
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em geral só pode ser calculada via método SCF. Por isso, iremos aplicar 

praticamente todos os procedimentos necessários do SCF apresentado na seção 

anterior para a base do poço quadrado infinito e também para um potencial em 

termo da função de Dirac. 

 

ETAPA 1.  Especificação do sistema. 

 

Adotaremos neste trabalho um potencial de interação elétron-elétron do tipo 

delta de Dirac: 12 1 2( - )V x x  . As integrais de dois elétrons podem ser facilmente 

resolvidas, visto que para a função delta de Dirac temos que: 

 

                            

0 0
0

( )
( ) ( )

. .

,

0

b
a b

a

x
x se x

x x x dx
c cx

f x x
f 




    



 .                           (122) 

 

Por se tratar de partículas numa caixa, utilizaremos como função de base, 

funções do tipo ( )
2

n x
n x

LL
sen


  

 
 

=  com n =1, 2; ou seja, 

2
,

2 2x x
sen sen

L LL L

          
    

 . Note que essa base evita a utilização de funções 

especiais, permitindo que as integrais sejam realizadas analiticamente. Por ser uma 

base ortonormal, a matriz de sobreposição (S) possuirá apenas elementos unitários 

na diagonal principal, ou seja, 2
ˆ  S I , onde 2I  é a matriz identidade de tamanho 

2x2. Uma vez que 2
ˆ  S I  é fácil ver que ˆF F  e ˆC C . Além disso, ao restringir a 

base em dois elementos, a “diagonalização” envolverá uma matriz 2x2.  

 

ETAPA 2 - Calculo das Integrais. 

 

Inicialmente iremos calcular as integrais mais simples, envolvendo apenas um 

elétron. Sabemos que o Hamiltoniano do poço quadrado infinito é dado por h(i) = T(i) 

+ V(i), onde V(i) e T(i) correspondem ao potencial de interação elétron-“núcleo” e a 

energia cinética do i-ésimo elétron, respectivamente. Nesse trabalho, atribuiremos 



77 

 

ao “fundo do poço” uma energia nula, ou seja, adotaremos V(i) = 0. Nesse caso, a 

parte monoeletrônica do Hamiltoniano do nosso sistema (Hamiltoniano de caroço) 

fica definido simplesmente como: 

 

                                              

2 2

2 2
( ) ,

1

2 2
i

d d
T

m dx dx
   

 
                                       (123) 

 

onde, na segunda igualdade da Equação (123), consideramos =1 e m =1 

(unidades atômicas – u.a.). Como estamos trabalhando com duas funções de base, 

o operador de um elétron irá gerar uma matriz quadrada 2x2 do tipo:  

 

                                                          

11 12

21 22

ˆ H H
H

H H

 
 
 



  

                                        (124) 

 

cujos elementos pqH  são dados na tabela abaixo: 

 

2 2

1 1
11 12 2

10

1 2 2
sin sin

2 2

L
x xd

H dx
L L dx L L L

      
      

    
  

 

2

1 1
12 1

10

21 2
sin sin 0

2

L
x xd

H dx
L dx L L

     
      

    
  

2

1 1
21 1

10

21 2
sin sin 0

2

L
x xd

H dx
L dx L L

     
      

    
  

 

2 2

1 1
22 1 2

10

2 21 2 2 2
sin sin .

2

L
x xd

H dx
L L dx L L L

      
      

    
  

Tabela 3: Integrais de um elétron 
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Para facilitar a implementação computacional, iremos arbitrar os seguintes 

valores: / 2L    . Logo, de acordo com os resultados da Tabela 3, vemos que 

a matriz H  pode ser escrita como ˆ 1 0

0 4
H

 
 
 

 .   

Abaixo, segue uma tabela com as integrais envolvendo dois elétrons. Apesar 

de termos dezesseis integrais, apenas seis possuem valores distintos. 

 

 

2 21 2
1 2 1 22

0 0

11|11  

4 3
sin ( )sin

2

L L
x x

x x dx dx
L L L L

  




   
     

   
 

 

 

 

2 21 2
1 2 1 22

0 0

22 | 22  

2 24 3
sin ( )sin

2

L L
x x

x x dx dx
L L L L

  




   
     

   
 

  

 

   

2 21 2
1 2 1 22

0 0

11| 22   22 |11  

24
sin ( )sin

L L
x x

x x dx dx
L L L L

  


 

   
     

   
 

  

 

       

2 1 2 2
1 2 1 22

0 0

12 |11   21|11   11|12   11| 21  

24
sin ( )sin sin 0

L L
x x x

x x dx dx
L L L L

  


   

     
       

     
 

  

 

       

2 1 2 2
1 2 1 22

0 0

21| 22   12 | 22   22 | 21   22 |12  

2 24
sin ( )sin sin 0

L L
x x x

x x dx dx
L L L L

  


   

     
       

     
 

 

       

1 1 2 2
1 2 1 22

0 0

12 |12   21| 21   12 | 21   21|12  

2 24
sin sin ( )sin sin .

L L
x x x x

x x dx dx
L L L L L L

    


   

       
       

       
  

   

Tabela 4: Integrais de dois elétrons 

 

ETAPA 3. Diagonalização da Matriz Ŝ  e construção das matrizes de 

transformação X̂  e  Ŷ . 
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Como a base B contém elementos ortogonais, a matriz Ŝ  é diagonal ( 2
ˆ  S I ) 

de modo que esta etapa do processo torna-se desnecessária. 

ETAPA 4. A primeira versão da matriz densidade D. 

A matriz densidade, como vimos, é dada por ˆ ˆˆ 2D CC † , sendo Ĉ  a matriz 

cujos elementos são formados pelos valores dos coeficientes a

pC . Em nosso caso, 

estamos considerando apenas um orbital espacial duplamente ocupado e uma base 

contendo dois elementos. Portanto, Ĉ  e Ĉ †  podem ser escritos como: 
1

1

1

2

ˆ C
C

C

 
  
 

 e 

 1* 1*

1 2Ĉ C C†
; de modo que, a matriz densidade assume a forma: 

 

                            

1 1* 1 1*
11 121 1 1 2

1 1* 1 1*
21 222 1 2 2

ˆ ˆˆ 2 2
D DC C C C

D CC
D DC C C C

   
     

  

†  .                               (125) 

Como uma primeira tentativa, arbitraremos a seguinte combinação linear para 

o nosso orbital espacial duplamente ocupado: 

 

                               
1( )

2 2
0.1. .x

x x
sen sen

L L L L

 


      
      

      
                            (126) 

 

De acordo com a função acima temos: 1

1 1C   e 1

2 0C  ; o que resulta em uma 

“matriz” dos coeficientes dada por: 
1

1

1

2

1ˆ
0

C
C

C

   
    

  
. Para se construir a matriz 

densidade (D), devemos nos lembrar que ela apenas leva em consideração os 

orbitais espaciais ocupados. Logo temos que:  
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1 1* 1 1*

1 1 1 2

1 1* 1 1*

2 1 2 2

2 0ˆ ˆˆ 2 2 .
0 0

C C C C
D CC

C C C C

   
     

  

†                               (127) 

que é a nossa primeira tentativa para a matriz densidade. 

ETAPA 5.  Construção da Matriz de Fock ( F̂  e F ). 

 

A matriz de Fock, como vimos, é dada por ˆˆ ˆF H G  . As matrizes Ŝ  e Ĥ  já 

foram obtidas. Falta ainda obter os elementos da matriz Ĝ  que, por sua vez, podem 

ser encontrados a partir da expressão 
1

| |
2

pq rs

rs

G D pq rs pr sq
 

  
 

 . De posse 

dos valores das integrais de Coulomb, troca, sobreposição e da matriz densidade, 

podemos construir a matriz Ĝ , elemento por elementos ( pqG ). Assim, para 11G , 

temos que: 

 

11 11 12 21 22

1 1 1 1
(11 | 11) (11 | 11) (11 | 21) (11 | 21) (11 | 12) (12 | 11) (11 | 22) (12 | 21)

2 2 2 2
.G D D D D             

              

 

Como 12 21 22 0D D D   , então, substituindo os valores das integrais de 

Coulomb e troca, obtemos: 

 

11

3 1 3 3
2 .

2 2 2 2
G

 
   

 
 

Seguindo o mesmo raciocínio para os demais elementos segue que: 

 

12 11

1 1
(12 |11) (11|12) 2 0 0 0,

2 2
G D

   
      

   
 

21 11

1 1
(21|11) (21|11) 2 0 0 0,

2 2
G D

   
      

   
 

22 11

1 1
(22 |11) (21|12) 2 1 1 1.

2 2
G D

   
      

      .
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Portanto, a primeira versão (ordem zero - Ĝ(0) ) da matriz de dois elétrons 

passa a ser escrita como: 

 

                                                       

3 2 0ˆ
0 1

G
 

  
 

(0)  .                                              (128) 

 

Finalmente, de posse da matriz Ĝ(0)  temos condições de construir a matriz de 

Fock (também de ordem zero): 

 

                                
1 0 3 2 0 5 2 0ˆˆ ˆ
0 4 0 1 0 5

F H G
     

         
     

(0) (0) .                        (129) 

 

Conforme dito anteriormente, como a base é ortonormal, temos que ˆF F . 

 

ETAPA 6.  Diagonalizar a matriz F  para obter os autovalores e autovetores C . 

 

O próximo passo consiste em determinar os autovalores e autovetores da 

matriz F  e obter novos coeficientes (C ). Como ela já é uma matriz diagonal é fácil 

ver que seus autovalores são: 1 5 2   e 2 5  . Para 1 5 2   obtemos o autovetor 

(coeficientes da expansão) 1

1 1C   e 1

2 0C  . Já para 2 5   obtemos 2

1 0C   e 2

2 1C  . 

Note que, por utilizarmos dois elementos na base B, todas as matrizes são de 

tamanho 2x2. Consequentemente têm-se dois autovalores e dois autovetores que 

por sua vez correspondem a dois níveis de energia e dois orbitais espaciais onde 

podem ser alocados até dois elétrons em cada um deles. Como nosso sistema 

possui apenas dois elétrons ambos serão colocados no orbital espacial de menor 

energia. Por este ser o orbital ocupado com a energia mais alta, ele é denominado 

HOMO, do inglês Highest Occupied Molecular Orbital. Já o orbital espacial de maior 

energia, por não possuir elétrons, é usualmente chamado de orbital virtual. Logo, 

assim como no caso do HOMO, por ser o orbital virtual de mais baixa energia, é 

chamado de LUMO, do inglês Lowest Unoccupied Molecular Orbital. A Figura 1 
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mostra nosso sistema com seus dois orbitais espaciais (HOMO e LUMO) e os dois 

elétrons ocupando o HOMO. 

 

 

Figura 7: Níveis de energia do sistema após a convergência da energia. O “último” orbital ocupado HOMO com 
energia, HOMO = 2,5 u.a. e o primeiro orbital desocupado (virtual) LUMO com energia, LUMO = 5,0 u.a. (u.a. – 
unidades arbitrárias). 

 

ETAPA 7.  Converter C em Ĉ  e calcular uma nova matriz densidade ( D ) 

Novamente, como a base é ortonormal, temos que ˆC C . Além disso, por 

estarmos utilizando a versão restrita do método (RHFR), alocamos os dois elétrons 

no nível de energia mais baixo. Como a matriz densidade é construída levando-se 

em conta apenas orbitais espaciais (duplamente) ocupados, só os coeficientes dos 

orbitais ocupados são levados em consideração para o cálculo da nova matriz 

densidade (ordem um). Assim, vemos que após o primeiro ciclo iterativo, a nova 

matriz densidade fica: 
2 0

0 0
D

 
  
 

(1) , que coincidentemente, corresponde a nossa 

matriz tentativa (ordem zero).  

 

ETAPA 8.  Calcular a energia total do sistema. 
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Conforme visto anteriormente, a RHFE  pode ser calculada através da Equação 

 
1

2
RHFE tr D(H + F) , resultando em:   

                          

2 0 1 0 5 / 2 01
2 0 0 0 4 0 5

7

2RHFE Tr
       

         
       

.                             (130) 

 

Aqui, vale salientar que a energia total do sistema não corresponde, 

simplesmente, ao menor valor da energia do orbital espacial multiplicado por dois 

(visto que ele é duplamente ocupado). Note que, se assim o fosse, estaríamos 

considerando a interação elétron-elétron duas vezes.   

 

ETAPA 9. Retornar ao item cinco, até que a energia total do passo anterior não 

difira significativamente do passo atual 

 

 Neste exemplo em particular, vemos que após um ciclo completo, a nova matriz 

densidade (primeira ordem) é idêntica a nossa primeira tentativa (ordem zero). Em 

outras palavras, vemos que nosso ‘chute’ foi certeiro. Logo, se fossemos adiante 

com o método, as demais iterações ‘convergiriam’ para o mesmo resultado. Assim 

sendo, após a etapa 8 podemos encerrar o processo e afirmar que o mesmo 

convergiu. 

 

 

 

 

3. 11.  OUTRAS TENTATIVAS PARA A MATRIZ DENSIDADE DE ORDEM ZERO.  

 

 

Talvez, o fato mais intrigante do método do campo autoconsistente é que o 

resultado final sempre será o mesmo não importando o chute inicial que é dado para 

os coeficientes que compõem a matriz densidade. Em outras palavras, o sistema 

converge para um valor mínimo de RHFE . Espera-se que quanto mais próximo o 

chute estiver da ‘solução correta’ menor será o número de iterações realizadas para 

se chegar nela. Isso foi o que aconteceu no nosso exemplo: o chute foi certeiro. 

Contudo, para que não haja dúvidas acerca da afirmação anterior, desenvolvemos 
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um programa simples (ver apêndice) em linguagem Octave, que realiza todos os 

passos (de 1 até 9, para uma base ortonormal) dos procedimento do ciclo 

auconsiste. Essas iterações vão se repetindo até que se obtenha a matriz de 

autovalores para a energia ( RHFE ) mínima. Abaixo, seguem as Tabelas 5 e 6, cada 

uma contendo um chute inicial distinto para a matriz densidade de ordem zero. Nas 

linhas cada tabela, colocamos os resultados das matrizes D, E e C, além da energia 

total ( RHFE ), para algumas iterações.  

 

 

Chute 2 1 1

1 2

1 1
 ,  

2 2
C C    

Iteraçã

o 

Matriz D  Matriz F  Matriz   
RHFE (u.a.)  

n = 0 1 1

1 1

 
 
 

 2,2500 1,0000

1,0000 5,2500

 
 
 

 1,9472 0

0 5,5528

 
 
 

 
7,2500  

n = 1 1,8320 0,5547

0,5547 0,1679

 
 
 




 2,4580 0,5547

0,5547 5,0419

 
 
 

 
2,3440 0

0 5,1560

 
 
 

 4,2346  

n = 10 1,9989 0,0454

0,0454 0,0010

 
 
 

 2,4996 0,0569

0,0569 5,0004

 
 
 

 2,4983 0

0 5,0017

 
 
 

 3,5073  

n = 27 2 0

0 0

 
 
 

 
2,5 0

0 5

 
 
 

 2,5 0

0 5

 
 
 

 
3,5000  

Tabela 5: Outra tentativa inicial para construção da matriz densidade de ordem zero 
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Chute 3 1 1

1 2

3 1
 ,  

10 10
C C    

Iteraçã

o 

Matriz D  Matriz F  Matriz   
RHFE (u.a.)  

n = 0 1,8000 0,6000

0,6000 0,2000

 
 
 

 
2,4500 0,6000

0,6000 5,0500

 
 
 

 
2,3182 0

0 5,1818

 
 
 

 
4,3700  

n = 1 1,9079 0,4190

0,4190 0,0920

 
 
 

 

2,4769 0,4190

0,4190 5,0230

 
 
 

 
2,4098 0

0 5,0902

 
 
 

 
3,9078  

n = 15 1,9999 0,0012

0,0012 0

 
 
 

 
2,4999 0,0151

0,0151 5

 
 
 

 
2,4999 0

0 5,001

 
 
 

 

3,5008  

n = 25 2 0

0 0

 
 
 

 
2,5 0

0 5

 
 
 

 
2,5 0

0 5

 
 
 

 
3,5000  

Tabela 6 : Mais uma tentativa inicial para construção da matriz densidade de ordem zero 
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CAPÍTULO IV  

 

 CONCLUSÂO 

 

 

Podemos observar que praticamente todos procedimentos do método 

autoconsistente para as bases do poço quadrado infinito unidimensional poderia ser 

resolvido de forma analítica. Contudo, seria muito trabalhoso ter que realizar 19 

iterações para obter os níveis de energia minimizados. A ideia é que o método seja 

abordado de forma qualitativa, apresentado apenas as principais equações 

envolvidas nas etapas do ciclo-autoconsistente, no final da graduação, quando os 

alunos já dominarem o básico de programação computacional, já tenham visto o 

hamiltoniano do poço quadrado infinito e também o potencial delta de Dirac para que 

sejam capazes de desenvolverem um programa simples e manipularem as integrais 

que surgirem. Até porque a transposição que estamos propondo somente terá efeito 

caso haja esse domínio por parte dos alunos. O programa pode ser desenvolvido em 

qualquer linguagem desde que funcione e reproduza os passos do método 

Nautoconsistente que apresentamos. As integrais que surgem, devido ao uso da 

base do PQIU e do potencial de Dirac, são integrais simples envolvendo senos e 

cossenos. Além disso, os autovalores e autovetores envolvem uma matriz 2x2 

facilitando ainda mais a implementação computacional do método tornando possível 

a sua abordagem na graduação de Física (Licenciatura). A introdução desse da 

aplicação do método HFR e de outros conhecimentos mais avançados nos 

programas de formação (graduação) a partir de um processo de transformação 

baseado na Teoria da Transposição Didática  é um exemplo da modernização do 

saber Astolfi (1997apud ALVES FILHO, 2000a, pg.182). Negar essa introdução é 

estagnar o conhecimento, torná-lo estável, o contrário de dinâmico, é pôr um véu 

sobre os olhos da maioria frente a todo desenvolvimento e crescimento das 

produções científicas, ou seja, do saber sábio. 
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APÊNDICE 1 
 
 

Programa escrito em linguagem Octave, utilizado para construir as Tabelas 3 
e 4 do texto. Os comentários do programa estão em vermelho/itálico 

 
 

% IMPLEMENTAÇÃO DO MÉTODO HARTREE FOCK RESTRITO 

%---------------------------------DEFINIÇÕES----------------------------------------------------- 

% C(1) E C(2) = COEFICIENTES QUE COMPORÃO A MATRIZ DENSIDADE   

% D = MATRIZ DOS COEFICIENTES 

% D = MATRIZ DENSIDADE 

% H = HAMILTONIANO DE CAROÇO (ENVOLVENDO UM ELÉTRON) 

% Gpq = PARTE DO HAMILTONIANO ENVOLVENDO DOIS ELÉTRONS 

% F = MATRIZ DE FOCK (F=H+G) 

% EANT = ENERGIA CALCULADA NO CICLO AUTOCONSISTENTE ANTERIOR  

% E = ENERGIA CALCULADA NO CICLO AUTOCONSISTENTE ATUAL 

% Vijkl = INTEGRAIS DE COULOMB E TROCA (TABELA 2 DO TEXTO) 

% CICLO = NÚMERO DE CICLOS REALIZADOSDURANTE O PROCESSO 

%---------------------------------PROGRAMA----------------------------------------------------- 

%  AQUI REALIZAMOS O PRIMEIRO CHUTE DOS COEFICIENTE DA MATRIZ DENSIDADE (D) 

C=input('dê [C(1),C(2)]\n')  

D=2.*(C*C') % CONSTRUÇÃO DA MATRIZ (D) 

% VALORES DAS INTEGRAIS DE COULOMB E TROCA (DISPOSTOS NA TABELA 2 DO TEXTO) 

V1111=V2222=3/2; 

V1112=V1121=V1211=V2111=0; 

V1122=V2211=1; 

V1222=V2122=V2212=V2221=0; 
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V1212=V1221=V2112=V2121=1; 

H=[1,0;0 4]; % MATRIZ REFERENTE AOS ELEMENTOS DO HAMILTONIANO DE CAROÇO (UM 

ELÉTRON) CONFORME A TABELA 1 NO TEXTO  

E=1 % AQUI CONSIDERAMOS A ENERGIA TOTAL DO SISTEMA (E) INICIAL DADO PELA 

EQUAÇÃO 10 CONSIDERANDO INICIALMNENTE A MATRIZ DE FOCK COMO SENDO NULA (F = 

0) 

CICLO=0 

do 

EANT=E 

D1=[D(1,1),D(1,2)]; % PRIMEIRA LINHA DA MATRIZ DENSIDADE 

D2=[D(2,1),D(2,2)]; % SEGUNDA LINHA DA MATRIZ DENSIDADE 

% DESENVOLVIMENTO DA MATRIZ DE ELEMENTOS Gpq 

V1=[V1111-0.5*V1111;V1121-0.5*V1121]; % PARA SIMPLIFICAR OS CÁLCULOS E A LEITURA 

DO PROGRAMA SEPARAMOS A EXPRESSÃO DA MATRIZ (G) EM DUAS PARCELAS V1 E V2 

PARA G11, V3 E V4 PARA G12 E ASSIM POR DIANTE. 

  V2=[V1121-0.5*V1211;V1122-0.5*V1221] 

G11=D1*V1+D2*V2;                       

  V3=[V1211-0.5*V1121;V1221-0.5*V1122]; 

  V4=[V1212-0.5*V1212;V1222-0.5*V1222]; 

G12=D1*V3+D2*V4; 

  V5=[V2111-0.5*V2111;V2121-0.5*V2121]; 

  V6=[V2112-0.5*V2211;V2122-0.5*V2221]; 

G21=D1*V5+D2*V6; 

  V7=[V2211-0.5*V2112;V2212-0.5*V2122]; 

  V8=[V2221-0.5*V2212;V2222-0.5*V2222]; 

 G22=D1*V7+D2*V8; 

Gpq=[G11 G12;G21 G22] % AQUI CONSTRUÍMOS A MATRIZ G PRÓPRIAMENTE DITA 
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F=H+Gpq %CONSTRUÇÃO DA MATRIZ DE FOCK F 

[R M]=eig(F) % AQUI NÓS DIAGONALIZAMOS A MATRIZ DE FOCK OBTENDO OS 

AUTOVALORES (M) E AUTOVETORES (R) 

P=D*(F+H) %AQUI MONTAMOS A MATRIZ P DA QUAL CALCULAREMOS A ENERGIA TOTAL DO 

SISTEMA, OU SEJA, O TRAÇO DA MATRIZ P DIVIDIDO PELO FATOR 0.5 CONFORME A 

EQUAÇÃO 10 DO TEXTO. 

E=0.5*(P(1,1)+P(2,2)) % CALCULO DA ENERGIA E (TRAÇO DA MATRIZ P)  

K=[R(1,1);R(2,1)] % CÁLCULO DOS NOVOS AUTOVETORES 

D=2*(K*K') %  AQUI REALIZAMOS A MONTAGEM DA NOVA MATRIZ DENSIDADE OBTIDA A 

PARTIR DO CÁLCULO DOS NOVOS AUTOVETORES (K) 

CICLO=CICLO+1 

until ((EANT-E)<0.0001) % O CRITÉRIO DE PARADA CONSISTE EM VER SE A DIFERENÇA ENTRE 

A ENERGIA CALCULADA NESTE CICLO (E) E A ENERGIA CALCULADA NO CICLO ANTERIOR 

(EANT) É MENOR QUE 0.0001.   

 


