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ABSTRACT

We present a theoretical analysis of the spatial shape (transverse and longitudinal) of two
degenerate four-wave mixing (FWM) signals induced by fields E, and Ej, with nonuniform
transverse profiles, and wave-vectors k: and k‘b The two signals are generated in a cold
sample of two-level atoms, in the forward directions Qk — k:b and ka — k: In all cases, the
transverse shapes of the generated signals (both near- and far-field) are dictated by the
projection of the nonlinear coherence onto the Laguerre-Gaussian (LG) function space.
Our calculations show that the longitudinal profile of each generated beam is affected
by the spectral characteristics of the medium, described by the third order nonlinear
susceptibility. For Gaussian incident fields with equal detunings from resonance, the
FWM beam shapes are completely symmetric, with an asymmetry induced by different
detunings of incident fields. By considering incident beams with LG distributions, the
topological charge conservation determines the orbital angular momentum of each signal
and the longitudinal profiles show similar behaviors to the case with Gaussian beams. The
phase discontinuities of LG modes reveal a rotation and distortion of the phase distribution
of the FWM beams caused by the detunings. We discuss for selected configurations, the
relations between both generated beams and their propagation properties. We also present
preliminary experimental results of the power spectra of the two FWM signals generated
in our magneto-optical trap of rubidium atoms.

Keywords:  Four-wave mixing. Orbital angular momentum of light. Cold atoms.
Magneto-optical trap.



RESUMO

Neste trabalho apresentamos uma andlise teérica da forma espacial (transversal e longi-
tudinal) de dois sinais de mistura de quatro ondas (MQO), degenerada, induzidos pelos
campos F, e Ej, com perfis transversais nao uniformes e vetores de onda Ea e Eb. Os dois
sinais sao gerados em uma amostra fria de atomos de dois niveis, nas diregoes QEG — Eb
e 2/51, — /;a. As formas transversais dos sinais gerados, tanto em campo proximo como
em campo distante, sao determinadas pela projecao da coeréncia nao linear no espaco
das fungdes Laguerre-Gauss (LG). Para o perfil longitudinal, nossos resultados mostram
que os dois sinais sao afetados pelas caracteristicas espectrais do meio, descritas pela
susceptibilidade nao linear de terceira ordem. Quando os campos incidentes sao Gaus-
sianos com dessintonias iguais, as formas espaciais dos feixes de MQO sao simétricas,
com uma assimetria induzida por diferentes dessintonias. Para campos incidentes com
distribui¢des LG, a conservacao da carga topologica determina o momento angular or-
bital de cada sinal, e os perfis longitudinais apresentam comportamentos semelhantes ao
caso com feixes Gaussianos. Neste caso, a dessintonia dos feixes incidentes também ¢é re-
sponsavel pelos efeitos de rotacao e distorcao da distribuicao de fase dos sinais de MQO.
Para algumas configuragoes, nés discutimos as relagdes entre os dois sinais gerados e as
suas propriedades de propagacao. Também apresentamos alguns resultados experimen-
tais preliminares da forma espectral dos dois sinais de MQO obtidos em nossa armadilha
magneto-6tica de rubidio.

Palavras-chave: Mistura de quatro ondas. Momento angular orbital da luz. Atomos
frios. Armadilha magneto-ética.



LIST OF FIGURES

Dependence of (a) the index of refraction n and (b) the absorption

coeflicient o with the detuning from resonance for different field am-

plitudes 15 = Q. I'/2r = 6 MHz, corresponding to the Dy line of

STRD ..

Lorentzian profile for {215 = I'/2 and Voigt profile for the same ampli-

tude considering a sample of atoms at 7"~ 200 mK (u ~ 6 m/s)| . . .

Hyperfine energy levels of the Dy line of Rb.| . . . ... .. ... ..

Depiction of the saturated absorption process. (a) Off resonance,

pump and probe interact with atoms at different velocity groups. Ex-

actly at resonance, both beams interact with the velocity group v = 0

and the probe is not absorbed. 'This leads to a peak at a hyperfine

resonance frequency in the probe transmission (b).| . . . . . . ... ..

Cross-over (CO) resonances in the saturated absorption spectrum. (a)

Energy levels involved in the process and associated transition fre-

quencies. (b) Exactly when w = @ the pump saturates the atoms in

the velocity groups +v". As a consequence, the probe cannot interact

with these atoms and is transmitted through the medium. This leads

to a peak haltway between the two expected resonances at w; and ws

in the probe transmission (¢).|. . . . . . . ... ... L.

22

Saturated absorption spectrum of Rb. The peak at o = 0 represents

the I, = 2 — I, = 3 hyperfine transition. Inset shows region inside

dashed box. CO(X&Y) denotes the cross-over transition involving

excited states with F = X and Y of ®Rb.J . . . . . . . . . . ... ...

22

Magnetic trapping force in 1D. With the magnetic field gradient and

beam polarizations arranged as shown, the force at all x positions

points towards the origin.| . . . . . . . . ... ... ...

25

Phase fronts of (a) plane wave beams, { = 0, and of LG beams with

(b)¢=1,(c)f=2and (d) /=3 ... ... ... ... ... ...,

Intensity and phase distributions of wug, at z = 0 for multiple £ and p .

29
30

(a) Forked grating used to generate an LG mode with / = 1. Red

box shows a close up of the central dislocation. (b) Diffraction of a

tundamental Gaussian beam by the ¢ = 1 forked grating into zeroth

and first orders.) . . . ...

31

11 —

Spatial orientation of the wave-vectors of the incident and generated

beams involved in the FWM process and the phase mismatch A/ﬂ ..

33

12 —

Hyperfine energy levels of the D, line of ®’Rb and the transitions

excited by the cooling, repump and FWM lasers.| . . . . . ... .. ..

35

13 —

Basic setup of a saturation absorption experiment. Ol is an optical

1solator . .o L




LIST OF FIGURES

[Figure

14 —

Preparation of the cooling laser. The SA spectrum is used as a ref-

erence signal for the frequency locking system (homemade). The first

diffracted order from the acousto-optic modulator (AOM) is sent into

the amplifier (AMP). The zeroth order is used as a guide beam for the

FWM laser beams.. . . . . . . . . .

Top and side views of the MOl arrangement. Beams a and b passing

through the Rb cell are the FWM laser beams. VP, AMD and FFC

reter to vacuum pump, alkali metal dispenser and fused fiber coupler,

respectively| . . . . . . e

Cold atom cloud obtained with our magneto-optical trap.| . . . . . . .

17 —

Preparation of the FWM laser. Acousto-optic modulator is setup in a

double-pass configuration.|. . . . . . . ... ... 0L

18 —

LCOS-SLM model X10468-02 from Hamamatsu Photonics. Main parts

are indicated. . . . . . L L

(a) Elements of the LCOS-SLM chip from Hamamatsu Photonics and

(b) depiction of the uniaxial liquid crystal molecule with the indices

of refraction n, and n, along the y and x directions, respectively.| . . .

20 —

Defining the two beams, F, and £y, responsible for the FWM process.

'T'he phase front of v, is modulated by the SLM before being sent to

the MOT. CCD image shows the the diffracted orders from the SLM

for 0 =110 . . . .

Intensity profile of zeroth and first order beams diffracted from the

SLM using a forked grating with ¢ = 1. Inset shows a close up ot the

first order beam and the x and y radial profiles.|. . . . . . ... .. ..

22 —

Scheme for the detection of transmitted and generated signals in the

FMW experiment.| . . . . . . . . ...

23 —

Measured FWM spectra of (a) S; (2k, — k) and (b) S, (2k;, — k,) ob-

tained with Gaussian beams in the (¢, || &,) configuration for different

INPUL INTENSITIES.| . . v v v v v v v e

44

24 —

Normalized FWM spectra of Sy (QEa — l%},) and Ss (2121, — Ea) for/, =0

and 0, = 0,1,2 in the (&, L &,) configuration. Beam power is (a),(b)

P,, ~ 315 uW and (c),(d) P, =~ 160 uW. In (b) and (d) the curves

corresponding to ¢, = 1,2 have been smoothed. . . . . . . ... .. ..

44

[Figure

20 —

Arrangement for the detection of images that correspond to matrices

@) Ml, (b) Mg and (C) M3| .......................

[Figure

Captured images showing (a) light scattered from Fj, (b) light scat-

tered from £, (c) light scattered from both pumps and the FWM

beam and (d) FWM beam profile. Inset shows zoomed FWM beam.| .

[Figure

(a) Spatial distribution of the wave-vectors of the incident and gen-

erated beams and scheme of the transitions in a two-level system to

generate (b) Sy and (¢) So.f . . . . ..o

[Figure

(a) Nonlinear signal power as a function of §, = 0, for some values

of ,5. (b) Amplitude of generated nonlinear signal at resonance as

a function of input Rabi frequency. Maximum output is obtained for

(.5 = 0.641" (red dashed line). Inset shows the full width at half

maximum (FWHM).|. . .. ... ..

20



LIST OF FIGURES

[Figure

29 —

(a) Dispersive and (b) absorptive responses of the medium for the same

values of Rabi frequency amplitudes as in figure 28| . . . . . ... ..

[Figure

30 —

Representation of the spatial overlap of the incident beams involved

in the FWM process when £, is Gaussian and £}, has Gaussian and

LG distributions with ¢/, =1and 2| . . . .. .. .. ... ... ....

Figure

Normalized nonlinear signal power, calculated by averaging ot " (7 )

over the interaction region V), as a function of J,, (equation [4.42) for

three values of the topological charge of field F;, £, = 0,1 and 2, and

two incident Rabi frequency amplitudes g, =T and 2I'[ . . . . . ..

igure

Longitudinal profile and parameters of the superposition of LG modes

Qo e

Figure

33 —

Longitudinal function fo(z) and its integral Io(L) over the medium

extension L for different values of (). For a thick medium, only I(L)

has a significant value.|. . . . . . . . . ... 0oL

61

igure

34 —

Analytical and numerical values of the FWM field mode fidelity 7,

for incident fields €, = ug1, {4 = uge and different ratios L/zg. Mode

[Figure

selection due to the Gouy phase-matching occurs for increasing L/zg.|

35 —

Intensity and phase distributions of ®,, at z = 0 for m = —2, —1,0, 3

61
|

and 4. . .o

62

Figure

36 —

(a) Intensity distribution at the medium exit [Q,(z = L/2)[*, (b) free

space propagation of the generated beam, (¢) mode components 7.,

and (d) normalized radial distribution of the FWM beam at z/zp =

0,1/2,1. 0, =064 and 0, =05 = 0] . - « « v vee i

igure

37—

Distribution of mode weights. propagation of the generated beam and

radial profiles at positions z = L/2 (blue), z = z5/2 (magenta) and

z = zg (green) for Gaussian incident beams with different input Rabi

frequency amplitudes Qg , =Q . . ... ... ...

Figure

38 —

Behaviour of 7,,,5(z) and the longitudinal parameters (6., 7m, 2m and

M?#) for the symmetric generated beams for different incident Rabi

frequency amplitudes Q) , = Q. . . ... ... 000

Figure

Behaviour of r.,s(z) and the longitudinal parameters for the symmetric

generated beams with varying o, = 0,. Incident field Rabi frequency

amplitudes are Qg , =T|. . . . .. ... ...

Figure

40 —

Behaviour of runs(2) for the symmetric generated beams with varying

0 = 0p. Incident Rabi frequency amplitudes Qy, = 0.35I'| . . . . . . .

67

Figure

(a) Behaviour of r,,s(2) of signals Sy and S, for (2, , =", 0, = 0, and

different values of d,. (b) Longitudinal parameters of both generated

beams. (c) Propagation of both generated beams outside the interac-

tion medium and mode components 7, , and phases ®,, for 0, = 0

and 0, = 0.75. Red squares refer to S; and black x refer to S5 . . . .

68

Figure

42 —

Propagation of the intensity profile and r,,s(z) of both generated sig-

nals for 0, = 0 and 0, = 0.75[ calculated considering the same Ne, p

distributions of figure 41c and neglecting the phases ¢, ,,| . . . . . . .

[Figure

43 —

Same as ficure 41 but with 0, = —0.7501] . . . . . . . . . . . . .. ...

69
69

Figure

44 —

Radial distribution of Rex'y (r; 8) for different values of 4,5 considering

Gaussian incident beams with amplitudes Q) , =T'|. . . . .. ... ..

71



LIST OF FIGURES

Figure 45 — Behaviour of rms(2) and of the longitudinal parameters for different

values of d,,/I'. Input Rabi frequency amplitudes are QY, = I' and

o =Ly =10, . .

72

Figure 46 — Phase distribution of o35 " at z = L/2 for £, = 2, £, = 0, 6, = 0 and

0p/1" = —0.75;0;0.75 (from left to right), for different field amplitudes

g, = I';4L (from top to bottom). Red and black arrows indicate the

orientation of the rotation and distortion effects, respectively,| . . . . .

73

igure 47 — Intensity and phase distributions, mode weights 7, , and relative phases

., and radial profiles at positions z = L/2, zz/2 and zp for the two

generated signals for the cases (a) n =1, (b) n = —1 and (¢) n = 2.

Where no distinction is made between S; and Ss, it is applicable to

both. In all cases, ), =T, 0, = =0and =1/ . ... ... .. ..

Figure 48 — Behavior of r,s(z) for S; and Sy of cases n = +1,2. Detunings are

fixed at resonance, o0, = 0, = 0, and Rabi frequency amplitudes are

Qg,b - Fl ..................................

Figure 49 — Beam power of S7 and S, as a function of L/zg for incident fields given

bY Sla = @4 and Slb = Uoo.l .........................




CONTENTS

1  INTRODUCTION] 13
2 FUNDAMENTALS 15
2.1  Interaction of two-level atoms with light| . . . . . ... ... ... ... 15
2.2 Hyperfine structure of rubidium| . . . . . .. .. .. ... ... ..... 19
[2.2.1 Saturated absorption| . . . . . . . . . ... 21
2.3  Magneto-optical trap| . . . . . ... ... o 23
[2.3.1 Radiation force on atoms . . . . . . . . . . ... 23
[2.3.2  Optical molasses . . . . . . . . . . . 24
[2.3.3  Magnetic trapping forcd . . . . . . . . . .. 25
2.4  Orbital angular momentum of light| . . . . . . ... ... ........ 26
[2.4.1 Paraxial wave equation| . . . . . . . . . . . ... 26
[2.4.2  Angular momentum in the paraxial regime . . . . . . . . . .. ... ... .. 28
[2.4.3  The Laguerre-Gaussian mode . . . . . . . . . . . . . .. 29
[2.4.4 Generation of beams with OAM| . . . . . . . . . . . . ... ... ... .... 31
2.5 Nomnlinear optics| . . . . . . . . . ... . 32
B THEEXPERIMENTI . . . .« v vt ot e et e e e e e e e e e e e e 35
(3.1  Magneto-optical trap setup| . . . . . . ... ... ... L. 36
3.2  Four-wave mixing setup| . . ... ... ... ... L. 39
3.3  Spatial light modulator| . . . . . . ... ... ... ... ... 40
[3.4  Signal detection and preliminary results| . . . . . ... ... ... ... 42
[3.4.1 FWDWM spectral . . . . . . . . . . 43
[3.4.2 FWM beam profile . . . . . . . . . . ... 45
4  THE THEORETICAL MODEL 47
[4.1  Four-wave mixing in two-level atoms| . . . . . ... ... ... ... .. 47
[4.2  Wave equation| . . . . . .. ... 50
4.3  FWM field in terms of LG modes| . . . . ... ... ... ... ... .. 52
4.4  FWM lineshapes| . . . . . .. .. ... .. . ... 55
[4.5  Longitudinal parameters of the FWM beam|. . . . . . ... ... ... 56
[4.6  Arbitrary incident beams| . . . . ... ..o 58
4.7  Analytical overlap integral and Gouy phase-matching|. . . . . . . .. 58
[4.8  Suppression in a thick medium| . . . . . . ... ... 00000000 60
.................................. 63
5.1  Gaussian beams| . . . . ... ..o 63
[5.1.1 Effect of pump intensity] . . . . . . . . . . . e 64
[5.1.2  Eftect of detunings from resonancel . . . . . . . . . . . . . .. 66
5.2 LG beams . ... .. . .. 71

[5.3  Suppression in a thick medium| . . . . . . ... ... 0000 76




6 CONCLUSIONS

BDIBLIOGRAPHY

CONTENTS



13

1 INTRODUCTION

The angular momentum of light can be divided into two components: a spin angular
momentum, related to polarization; and an orbital angular momentum (OAM), related
to the spatial distribution of the light field. Allen et al. [I] were the first to show that
the Laguerre-Gaussian (LG) paraxial beam carries well defined OAM in the propagation
direction, defined by integer ¢, called the topological charge (TC). This seminal work was
the starting point of the ever-growing field of light OAM. Today, almost three decades
later, the field is an active research area in continuous growth [2].

The interaction of matter with light is accompanied by the transfer of linear and
angular momentum. The transfer of linear momentum is associated with the radiation
pressure onto atoms and small particles. The radiation pressure is employed in the laser
cooling of atoms [3]. The transfer of spin angular momentum (SAM) from circularly
polarized light was first demonstrated almost a century ago by Beth [4]. Only after 1992
the transfer of OAM from LG beams to small particles was demonstrated [3,[6]. In both of
these works the particles were trapped at the dark focus of an LG beam by the dipole force
and set into rotating motion due to the beam’s helical phase structure. The quantized
nature of the OAM of light has been explored [7] and the transfer of OAM in units of ¢h
to atoms was demonstrated in a sodium Bose-Einstein condensate [§].

Also, after the first proposals, new possibilities were opened in communications tech-
nology, due to the capability of information multiplexing with an additional degree of
freedom of light and the infinite dimensionality of the OAM space [9].

Four-wave mixing (FWM) processes can take place in a variety of systems, such as
atomic vapors, cold atom samples, optical fibers, and others. A number of optical phe-
nomena related to FWM has been extensively investigated over the years. Denegerate
four-wave mixing (DFWM) in a two-level atomic system and related effects, for instance,
the AC Stark shift, phase conjugation and others, have been well known for a long time
[10, 1T, 12, 13]. Three-level atomic systems have been used to demonstrate effects such
as electromagnetically induced transparency (EIT), where the presence of a strong reso-
nant field drives the medium transparent near an optical transition, thus enhancing the
nonlinear signal generation [14] [15].

In the nonlinear regime, light beams carrying OAM have been first applied to in-
vestigate second harmonic generation (SHG) in crystals [16, I7], where the beam at the
fundamental frequency w carries TC ¢ and, due to the conservation of OAM, the frequency
doubled beam emerges with 2¢. This is one key idea when employing OAM beams in non-
linear optics: the transfer of topological charge and transverse structure from incident to
generated fields. Today, SHG still offers an interesting platform for processes involving
the transverse degrees of freedom of light.

FWM processes involving laser beams with OAM have also been widely explored.
One commonly used setting is FWM induced by amplified spontaneous emission in a
hot atomic vapour, with a 3-level cascade system. In this process, two input photons
at 780 nm and 776 nm interact to generate blue light at 420 nm with an emission also
at 5.23 pm. The transfer of OAM and complex profiles from inputs to blue light in
this system were demonstrated [I8, 19]. It has also been used to distinguish nonlinear
processes [20], to investigate the spiral bandwidth of the generated signals [21] and the
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Gouy phase-matching condition [22].

FWM involving OAM beams was also performed in cold atoms to transfer OAM from
incident to generated beams in nondegenerate [23] and degenerate [24] atomic systems,
to transfer more complicated phase structures (obtained by superimposing LG modes of
different orders) [25] and to store the OAM of light in the ensemble of atoms [26].

When the primary concern is the spatial shape of the FWM beam, the usual approach
is based on the overlap integral of four LG modes only. The medium simply allows the
nonlinear process to take place, and medium quantities don’t affect the output mode
superposition. With this approach, the theoretical predictions are remarkably accurate
[18, 22, 27]. The role of the spatially dependent nonlinear coherence in the signal genera-
tion process is discussed in [28]. In [29], the full spatial dependence of medium quantities
is taken into account in calculations and effects of detunings from resonance and phase
mismatch on the phase distribution of the FWM beam are evidenced. No connection is
established, however, with spatial properties of the beam outside the interaction medium.

This work is mainly a theoretical study of the spatial shape of two symmetric signals
of degenerate four-wave mixing in a sample of cold two-level atoms. We focus on the
influence of the spatially dependent nonlinear susceptibility, induced as a result of the
nonlinear process, on the overall shape of the two FWM signals. We investigate the spatial
properties of the generated beams in various configurations. Our calculations present
effects already reported, such as the bending of phase discontinuities of the generated
FWM beam [29, B30]. We also show that the so called root mean square parameters of
the generated beam, that serve as an effective measure of the longitudinal profile, are also
affected in an intuitive manner by the frequency degrees of freedom.

Most of our results focus on the thin-medium regime, characterized by L/zp < 1,
where L is the interaction medium extension and zp is the Rayleigh range of the beams
involved in the process. This regime is in agreement with the experimental conditions
in our magneto-optical trap. In the thick-medium regime, where the relation L/zr > 1
holds, we discuss possible outcomes due to the requirement of the Gouy phase-matching
condition [22] in the configuration where two FWM signals are generated. This regime
is more easily achievable in a hot atomic vapor cell, for example. We also describe our
experimental apparatus and present preliminary experimental results, namely the FWM
spectrum in two configurations of relative polarizations of incident beams, and the inten-
sity profile of the FWM signal induced by Gaussian beams.

The dissertation is divided as follows. In Chapter 2 we discuss fundamental concepts
related to the topics of this work. In Chapter 3 we describe the various components of
the experimental setup and their operation. Chapter 4 contains the theoretical model
developed to describe the generation of the FWM signal and its properties. The model is
divided in two main parts: (1) the calculation of the density operator’s matrix elements
and (2) the solution to the wave equation for the electric field of the FWM beam. With
the solution to the FWM field, we calculate and analyze its properties. In Chapter 5, we
present and discuss our main results. Concluding remarks are given in Chapter 6.
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2 FUNDAMENTALS

In this Chapter, we describe fundamental concepts related to the various topics in this
dissertation. Sections 1-5 focus, respectively, on the interaction of two-level atoms with
radiation, the structure of rubidium atoms, the magneto-optical trap, orbital angular
momentum of light in the paraxial regime and nonlinear optics.

2.1 Interaction of two-level atoms with light

To describe the atomic response due to the interaction with the oscillating electric
field of laser light (the response due to the magnetic component of the radiation field is
negligible in comparison) we employ the density matrix formalism. In many situations,
including the ones we are interested in, the interaction involves only two atomic states.
Thus, the atom can be modeled as a two-level system, where the the two states are the
ground and excited states, |1) and |2), respectively. This problem is treated in many
standard textbooks. We follow more closely the procedure developed in Chapter 8 of Ref.
[31]. The Hamiltonian of the system is

ﬁ:ﬁo+ﬁinta (21)

where H, = By |1) (1|+E; |2) (2] is the non-perturbed Hamiltonian for the internal degrees
of freedom of the atom and E; is the energy eigenvalue of state |j). The interaction
Hamiltonian Hj, is the electric dipole Hamiltonian,

Hipo (7, 1) = —p - E(7,1), (2.2)

where g = er is the electric dipole operator. The electric field E (7,t) of the monochro-
matic light beam, with frequency w and wave-vector k, is given by

(2.3)

where € is the polarization direction and £(7) is the slowly varying spatial envelope, that
carries the transverse dependence of the field. In the rotating wave and electric dipole
approximations, the matrix elements of the interaction Hamiltonian are written as

Hine ji = () Hin | k)
— _Mjkgozf)e—i(l;f—wt).

where (j, k) € {1,2} and p;, = (j|p - €|k), is the transition dipole moment. The phases of
|1) and |2) can be chosen so that pi9 is a real number. We introduce the Rabi frequency

() = 1E0) 2.5)

(2.4)

to write -
Hint,jk = _thke—z(kT—wt)‘ (26)
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In matrix form, H is

2 Ei  Hin2
H = I 2.7
<Hint,21 [, ) 2.7)

The density operator is used to describe a statistical mixing of quantum states and is
ideal to model an ensemble of atoms, due to our lack of knowledge concerning the exact
state of the system. It is given by

p=3pili) ] (2.8)

The diagonal elements p;; are called populations and represent the probability of finding
an atom of the ensemble in state |j). The off-diagonal elements p;; are the coherences
and are related to the response of the medium due to the interaction with light, given
by the macroscopic polarization P. The time evolution of p is determined by Liouville’s
Equation,

dp i, ~

U P 4

at = P b
where [fl, B] denotes the commutator of operators A and B. Using the matrices repre-
senting H and p, we can write the equations describing the time evolution of each element
of p

(2.9)

l

p11 = n [p12Hint 21 — p21 Hine,12] (2.10)
P22 = ; [p21 Hint 12 — pr2Hine 21] , (2.11)
P12 = ; [(Hint12 (P11 — p22) + p12 (B2 — Eq)], (2.12)
P21 = ; [(Hint21 (p22 — p11) + pa1 (E1 — Es)]. (2.13)

We rewrite the above system of coupled equations in the more convenient form

] . 21
(P22 - Pn) = —%[Plzﬂmt,m - C~C'], (2'14)
_ )
pr2=—7 [Hing12(p22 — p11) — p12 (Eo — Eq)], (2.15)

where p11+p22 = 1 and p1a = p3; must be satisfied. Now we introduce the relaxation terms
corresponding to spontaneous decay. In our model, populations and coherences decay at
rates I and I'/2, respectively, where I' /27 is the natural decay rate of the excited state.
For the D, line of 8'Rb, we have I'/2r = 6 MHz [32]. We get

‘ 2
(Ap) = — E[plemt,gl — C.C.] -T [Ap — (Ap)o} :
l T (2.16)
P12 = — % [Hint,128p — p12 (E2 — Eq)] — 5/)127

where Ap = (pa2 — p11) and (Ap)® = —1 is the population difference far from the region
of interaction. These are the Optical Bloch’s Equations (OBEs) for our system. We write
the coherence in the slowly varying form

pr2 = o™, (2.17)
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and substitute Hiy 12 from (2.4)) to arrive at
(Ap) = 2i(0122, — 0 Q2) — T [Ap — (Ap)°], (2.18)

r
0.'12 = ZngAp — 012 (Z(S + 2) s (219)

where 6 = w — w, is the detuning from resonance and w, = (Ey — E;)/h is the resonance
frequency. In the steady state,

21
Ap = (Ap)’ + f[augﬁ — 091812), (2.20)
- QAp
=l 2.21
TS ) (2.21)
Substituting the second equation into the first, we get
Ap)O
Ap = <—p)2. (2.22)
m 2|25
2 +1?2/4
The steady state solution to o5 is thus
Qo (0 +117/2
o = — O Fil/2) (2.23)

5%+ T2/4 + 2|Qpf?

The presence of |Q5]? in the denominator is related to saturation effects and power
broadening. The response of the system is governed by the macroscopic polarization,
given by

—

P=N{(u),

Tl (2.24)

where A is the atomic density. It is also related to the incident field by the electric
susceptibility x via

—

P =¢,xéE +c.c. (2.25)
Projecting equations (2.24) and ([2.25)) onto &*,
eoXE = NTr[p(p - €9))]. (2.26)

The trace is the dipole moment per atom and can be readily found as Tr[p(p - £€%)] =
(21012€™t + c.c.). Substituting (2.23)), we find

N j12)? §+1i'/2
y = el — / - (2.27)
hEO ) +T /4+2‘Q12’

The complex index of refraction in the medium is # = (1 + x)*/2, which for y < 1,

el X
2

(2.28)

We define

c
n = | — 2.29
n n+@2woz, (2.29)



2.1. INTERACTION OF TWO-LEVEL ATOMS WITH LIGHT 18

where n is the index of refraction in the medium and « is the absorption coefficient.

Comparing ([2.28) and (2.29)), we find
~ Nlpof? 0
2h€0 (52+F2/4+2|912|2’
. _FkN|/L12|2 1
n 2h€0 62+F2/4+2|912|2

n=1

(2.30)

(2.31)
The intensity of the incident wave propagating inside the medium decays with e,
Figure [I] shows n and « as functions of the detuning from resonance §.

Figure 1 — Dependence of (a) the index of refraction n and (b) the absorption coefficient «
with the detuning from resonance for different field amplitudes Q12 = Q. T'/27r = 6 MHz,
corresponding to the Do line of 87Rb.
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Source: The author (2021).

Due to the Doppler effect and the atomic motion at room temperature, atoms see an
incoming light field given by with frequency w’ = w—k-7. Considering the movement
in 1D, the response of a large number of atoms in the velocity group v is x(d — kv). To
account for all velocity groups, we average the susceptibility over all possible values of v,

() p = [ X6~ k) f(@)de. (232)

The weighting factor f(v) is the Maxwell-Boltzmann distribution,

o) = 1 6_U2/u2
f(v) N : (2.33)

where u = /2k,T/m is the most probable velocity at a given temperature 7. The
absorption coefficient becomes

(a(0))p = —ng(é), (2.34)

where gy(d) is the lineshape function, with a Voigt profile, which is the convolution
between the Lorentzian and Gaussian lineshapes,

—v2/u2

1 00 e
w(0) == /_oo (0= kol + T2/4 1 20

(2.35)
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Figure [2 shows a Lorentzian lineshape and the Voigt profile considering an atomic sample
at T' ~ 200 mK. We see that the motion of atoms at this relatively low temperature leads

Figure 2 — Lorentzian profile for 12 = I'/2 and Voigt profile for the same amplitude considering
a sample of atoms at 7'~ 200 mK (u ~ 6 m/s).
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Source: The author (2021).

to a significant broadening of the absorption lines. At room temperature, 7"~ 300 K, the
Doppler broadening is much greater than many natural linewidths.

2.2 Hyperfine structure of rubidium

Alkali atoms possess a single valence electron orbiting a core composed of the nucleus
(total charge +Ze) and the electrons of the closed subshells (total charge —[Z — 1]e),
which shield the nuclear charge. Due to the shielding effect, an excited outermost electron
experiences the potential of a nuclear charge of +e. In this case, its energy is essentially
hydrogenic, Eakali ~ E! /p? where EI is the ground state energy of hydrogen and n is
the principal quantum number. For an s valence electron, however, the shielding is not
as effective, and it sees a greater nuclear charge. Because of this, s electrons have lower
energies than d electrons with the same principal quantum number. The quantum defect
01, is a quantity subtracted from the principal quantum number n of the alkalis to account
for this effect. The subscript L indicates the dependence of the quantum deffect on the
orbital angular momentum quantum number. The effective principal quantum number is
n* =n — dr, and the energies of alkali atoms are well described by the modified form of
Bohr’s formula Eakali = R /(n*)2.

The fine structure of atoms is a result of the spin-orbit coupling. The total angular
momentum of the outer electron is given by J = L+ S, where L and S are the orbital and
spin angular momentum operators, respectively. From the quantum mechanical theory of
addition of angular momenta, the corresponding quantum number J is such that |L— S| <
J < L+ S. Further, the associated magnetic quantum number m; assumes all integer
or half-integer values in the range —J < mj; < J. The hyperfine structure is a result of
the coupling between J and the nuclear angular momentum I. The total atomic angular
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momentum is given by F = J 4+ I and likewise, the quantum numbers F' and mp must
satisfy |J — I| < F < J+1 and —F < mp < F, respectively. The total energy shift due
to these effects can be written as

AFE = AFEso + AEyrs,

= Aso (L - S) + Bups (J - I). (2:36)
The expectation values are
(L-S) :h;[J(J+1)—L(L+1)—S(S+1)],
12 (2.37)
(J-1) :E[F(F+1)—J(J+1)—I(I+1)],

and the coupling factors Aso and Byps can be calculated following standard atomic
physics text books [33, B4]. The energy shift due to the spin orbit interaction is of the
order a’E,, where a = e?/4mweohc ~ 1/137 is the fine structure constant. The second
term on the right-hand side of leads to smaller corrections because the magnetic
moment of the nucleus is much smaller than the magnetic moment of the electron [34].

Rubidium has two stable isotopes, ¥*Rb and 8"Rb, that are found with abundances
of 72.2% and 27.8%, respectively. For its ground state, n = 5, L = 0, S = 1/2 and
J =1/2. In the first excited, L =1, S = 1/2 and J can assume the values J = 1/2,3/2.
The spin-orbit interaction thus splits the energy levels of p electrons into two. The
transitions |L =0,J =1/2) - |L=1,J=1/2)and |[L =0,J =1/2) - |[L=1,J = 3/2)
are referred to as the Dy and D, lines, respectively. The D, lines of both isotopes contain
cycling transitions that are of uttermost importance to the trapping and cooling of these
atoms. In this work we use the Dy line of 3'Rb. The nuclear spin of ¥Rb is I = 3/2. The
ground state (J = 1/2, I = 3/2) is split into two, F' = 1,2, while the first excited state
(J =3/2, 1 = 3/2) is split into four hyperfine levels, F' = 0,1, 2,3. The cyclic transition of
the Dy line is |J = 1/2, F = 2) — |J = 3/2, F = 3). Figure [3 shows the hyperfine energy
levels of the Dy line of 8"Rb.

Figure 3 — Hyperfine energy levels of the Dy line of 8"Rb.
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Source: Modified from [32].
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2.2.1 Saturated absorption

The motion of atoms at room temperature leads to a significant broadening of the
absorption lines due to the Doppler effect. For this reason, the hyperfine transitions
of Rb cannot be resolved by ordinary absorption. In order to eliminate the Doppler
broadening and reveal the hyperfine structure, one must perform a saturated absorption
(SA) experiment. The setup is as follows. Two counter-propagating beams, a strong pump
and a weak probe, that originate from a single laser (and thus have the same frequency
at all times) are superimposed in a region where the atoms are located. The frequency
is made to vary around a hyperfine transition. Off resonance, pump and probe interact
with different velocity groups and both beams are absorbed. Precisely at resonance, both
beams interact with atoms in the velocity group v = 0. The intense pump saturates the
medium and thus the probe beam cannot be absorbed, leading to a peak on the probe
transmission at resonance. Figure [ illustrates the process.

Figure 4 — Depiction of the saturated absorption process. (a) Off resonance, pump and probe
interact with atoms at different velocity groups. Exactly at resonance, both beams interact with
the velocity group v = 0 and the probe is not absorbed. This leads to a peak at a hyperfine
resonance frequency in the probe transmission (b).
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Source: The author (2021).

€

When we have two hyperfine transitions with common ground states, an additional
peak will appear halfway between the two expected peaks in the SA spectrum. These
are called cross-over resonances, and arise because when the frequency of the beams is
w =W = (w; + wy)/2, where w; < wy are the frequencies corresponding to the two
transitions, pump and probe interact with the same velocity groups +v’ = +(wy —wy)/2k,
where k is the wave-number. In the reference frame considered (figure [5p), atoms with
positive (negative) velocity will be promoted to states |1) (|2)) by the pump, saturating
these atoms. At the same time the probe would also interact with these velocity groups,
but atoms with positive (negative) velocity would be promoted to |2) (|1)) if the medium
were not saturated by the pump. This leads to a peak on the probe transmission at @.
Figure [f] illustrates the process.
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Figure 5 — Cross-over (CO) resonances in the saturated absorption spectrum. (a) Energy levels
involved in the process and associated transition frequencies. (b) Exactly when w = @ the pump
saturates the atoms in the velocity groups +v’. As a consequence, the probe cannot interact
with these atoms and is transmitted through the medium. This leads to a peak halfway between
the two expected resonances at w; and ws in the probe transmission (c).
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A saturated absorption spectrum can be used as a reference signal to lock the fre-
quency of a tunable diode laser at desired hyperfine transitions using a control system.
This experiment can be implemented using only a fraction of the total output power of
conventional diode lasers and a few optical components. Figure [ shows the saturated
absorption spectrum of Rb. In the close up, showing the transitions from F, = 2 of 'Rb,
we see three well defined peaks, corresponding to F, = 2 — F, = 3, centered at zero, and
two cross-over resonances. There are three other peaks that cannot be seen, corresponding
to Fy =2 — F, = 1,2 and a third cross-over.

Figure 6 — Saturated absorption spectrum of Rb. The peak at § = 0 represents the F, =
2 — F, = 3 hyperfine transition. Inset shows region inside dashed box. CO(X&Y) denotes the
cross-over transition involving excited states with ' = X and Y of 8"Rb.
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2.3 Magneto-optical trap

The magneto-optical trap (MOT) is an apparatus used to cool and trap neutral atoms.
The temperatures of the cold samples are of the order of hundreds of uK. The MOT is
the result of a series of advances in experimental techniques that culminated in the 1997
Nobel Prize in Physics. Without much detail, the working of the MOT depends on two
phenomena: radiation pressure and the Zeeman shift. It consists of 3 pairs of counter-
propagating lasers beams tuned below the resonance with a cyclic transition, with each
beam in a pair possessing opposite circular polarizations 6%; and a quadrupole magnetic
field that leads to a position dependent Zeeman shift of the atomic energy levels. More
detailed descriptions of the fundamentals of a MOT and its historical development can
be found in references [33] [35].

2.3.1 Radiation force on atoms

To describe the forces on atoms due to the interaction with light, we use the two-level
atom model. From the Ehrenfest Theorem, the force on an atom is

. d
F =P,

- %<[H pl). (2.38)
- = <Vﬁint> )

where p is the momentum operator. The Hamiltonian is written in the form already
used in this text, H = H + Hmt, where H is the Hamiltonian of the free atom and
Hmt = —u- E(r t) is the electric dipole interaction Hamiltonian. The electric field is
written as in equation and we consider that its spatial variation is negligible near
the center of mass of the atom ¥ = r,, thus

F=— (&) VE(F ). (2.39)
Now we use (g - &) = Tr [p(p - €)] to get

F = —(ta1012™" + c.c.) [VS(F) ;Ce’i(];'?c’“’t) — ikE(7,)e ™ (Rfemet) 4 ¢ c} (2.40)

In the rotating wave approximation, the terms with frequency 2w average to zero. Also,
considering that the sample of atoms is located in a region where the phase of £(7) is
negligible, we get

r _hQ(FC)
F= +12/4 4 2|Q(7%) |? [

26V s, — TEQ(T)] (2.41)

where () is the Rabi frequency. We see that }" is composed by two types of forces, a
dissipative force ]-"dlss and a conservative force ]:COHS, given by

. hE|Q)2T
iss — y 2.42
Fa 52 + 12 /4 + 2|02 (242)

, —2000VQ2
cons — X 2.43
Feons = 55 T2 4 12l (243)
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where it is implicit that the fields are evaluated near .. The conservative force arises
due to the spatial distribution of the electric field of light. This term describes the forces
in optical tweezers [36] and bottle beams [37], for example. In the simpler case of laser
beams given by plane wave fields, .fcons ~ 0, and we shall disregard this term for the rest
of the section. Using pae = (1 + Ap)/2, the relevant force term can be written as

Faiss = Dpashik, (2.44)

and this expression gives a straightforward meaning to this component: it is equal to the
scattering rate, ['peg, multiplied by the momentum of each photon [33]. The scattering
rate is the rate at which a photon is absorbed and then re-emitted in a random direction.
The kick given by the photon in the spontaneous emission process averages to zero over
many cycles.

2.3.2 Optical molasses

When two counter-propagating laser beams interact with a moving atom, the Doppler
effect leads to an imbalance between the forces exerted by each beam. The net radiation
force is shown to be a damping force. If three pairs of counter-propagating beams are
made to intersect, atoms located near the intersection region experience a viscous force in
all directions. This is called the optical molasses (OM) technique [3], named in analogy
with the movement of a particle in a viscous fluid, and used to cool atoms with laser light.
It is also the first step needed to attain a magneto-optical trap. Using , we write
the total force exerted on an atom with velocity vector ¥ = v,& + v,§ + v.2 located in an
OM generated using laser beams with wave-number £

Fornt = ThE S & [paa(6 — kv) — paa(d + kvy)] (2.45)

where ¢ = 1,2, 3, referring to the z,y and z directions, respectively. For |kv;| < T in all
directions, we expand

= R 8p22<5 — k’l)l) 6,022(5 + kvz)
Fom = Thk > zi(kvy) | —+———= - , (2.46)
2 o) by W) g
where the derivatives can be found as
J(kv;) kvi—0 (02 +T2/4 4 2|Q2)% ’
The force is thus written as .
Fom = =77, (2.48)
where
—4ThE%5]Q? (2.49)

T+ T4+ 2R
Evidently, fluctuations and asymmetries may lead to different damping coefficients in

different directions. It is seen that 6 < 0 is a necessary condition to obtain a damping
force.
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2.3.3 Magnetic trapping force

Atoms located near the intersection of the three pairs of beams are cooled, but can
diffuse away from this region. To trap these atoms, a restoring force is necessary, just
like a classical harmonic oscillator. In order to generate this force, a quadrupole magnetic
field is introduced at the OM region [38]. This field is attained with a pair of circular
coils with currents of magnitude I. and opposite directions. At the central region, the
magnetic field B is approximately linear.

Atoms that move away from the center will experience a position dependent Zeeman
shift of their magnetic sublevels. Considering an atom with ground and excited states
|1) = |J =0) and |2) = |J = 1) moving in the z direction, we write the energy shift as
0B

AEzs(x) = p'my 5

z, (2.50)

where m is the magnetic quantum number of the atomic excited state (ground state is
non degenerate) and p’ carries all relevant physical constants. The beams in each pair are
made circularly polarized with opposite handedness, 4*. Due to selection rules, they will
promote transitions that obey Amj; = +1, respectively. Since the laser is tuned below
resonance, an atom located at positive (negative)  must absorb a photon from the 6~
(67) beam, so that the force always points towards the origin, as illustrated in figure .
The net effect can be represented by an additional frequency shift seen by the atom. We

Figure 7 — Magnetic trapping force in 1D. With the magnetic field gradient and beam polar-
izations arranged as shown, the force at all x positions points towards the origin.
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Source: The author (2021).

call it wyg(z) = Pz, where f = p'm;|0B/0x|/h. In three dimensions, considering equal
field gradients in all directions, the total force on the atom is thus

ﬁMOT = Fth Zi [p22(0 — kv — Bxy) — paa(d + kv; + Ba;)]. (2.51)

Following the same procedure as in Section we take |fx;| < I' and expand around
|fx;] = 0 to arrive at
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where the restoring constant is
K=—. (2.53)

2.4 Orbital angular momentum of light

It is known from Maxwell’s theory that electromagnetic radiation carries energy, linear
momentum and angular momentum. The angular momentum of light possesses a spin
part S , related to polarization, and an orbital part E, related to the spatial distribution of
the radiation field. The total angular momentum of an electromagnetic field in a charge
free vacuum is given by

fzgg/Fx(ExZ%fn (2.54)
and if E and B are written in terms of the vector potential A, we can obtain [39]
f:%/Z@wxvmﬁ%+%ﬂEx®fn
i (2.55)
=L+S.

In the paraxial regime, this intuitive separation is valid and useful to build understanding
of multiple phenomena. It becomes troublesome, however, in the more general picture of
nonparaxial solutions to Maxwell’s equations [40}, 41].

2.4.1 Paraxial wave equation

Maxwell’s equations in vacuum with no free charge and current densities are [42]

V-E=0, (2.56)
V-B=0, (2.57)
. OB
VxE=-7", (2.58)
. OE
B = eopto—-. 2.
V % Eollo 5 (2.59)

By decoupling this set of equations, we obtain the wave equation for the electric field
E(7,t) of electromagnetic (EM) radiation in vacuum

L 10%E
2 _
VIE - o5 =0, (2.60)

We assume that £ can be written as
E(7,t) = Eu(Fy, z)e k== 4 cc., (2.61)

where k = w/c is the wave number and £ is the complex field amplitude. For optical

fields, k is large, and thus e ** carries the fast longitudinal variation of E. In this

manner, u(7 |, z) describes the transverse (and slow longitudinal) dependence of the field.
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Substituting (2.61)) into (2.60)), projecting onto the oscillation direction of the field and
performing the z derivatives, we get the equation for u(7,, z)

Viu+ 28 ikt —p, (2.62)
y4

where V2 is the transverse Laplacian. We employ the slowly varying envelope approxi-
mation,

0%u k@u
022 0z

to neglect the second derivative in z and arrive at the paraxial wave equation (PWE)

< , (2.63)

Viu— Zik(;: =0. (2.64)
Equation describes the evolution of the transverse distribution of the radiation field
in vacuum. It is interesting to note that the PWE is mathematically equivalent to the
Schrodinger equation for a 2D free particle. Therefore, conclusions concerning physical
aspects of u may be drawn in analogy to the free particle wave function. As an example,
we note that u satisfies the continuity equation

Olul?
V,-v=0 2.65
82’ + 1V ) ( )
where the current is )
V= ;—k(u*VLu —uV u"). (2.66)

This continuity equation is analogous to the transport-of-intensity equation [43]. We
integrate (2.65)) over a plane surface S with normal unit vector § parallel to Z and contour
0S. With 2D Gauss’ theorem (or the 3D version in the volume & x Az, where Az is a
small longitudinal length), we get

Olul?
ds + V-h)dt =0, 2.67

/ /s 0z as( ) (267)
where i is a unit vector normal to the contour S pointing outward and dt is an element

of the contour. We can write P
S

— 4+ Py =0 2.68

dz + oS 5 ( )

where Ps = [[s |u|>dS is the power of u contained in § and ®ys = [55(V - 0)dt is the flux
of the current v through 8SE|. If § is taken as the infinite transverse plane, Ps becomes
the total power and the flux term goes to zero, leading to

dptotal
dz

=0, (2.69)

and we conclude that the total power in a paraxial beam propagating in vacuum is con-
served.

In the following subsection, it will become evident that ¥ is related to the time averaged linear
momentum density (p) of an electromagnetic wave described by the amplitude function u, and thus the
flux of V is related to the flux of linear momentum.
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2.4.2 Angular momentum in the paraxial regime

In the Lorenz gauge, the vector potential A satisfies the wave equation. We describe
it as a linearly polarized traveling wave of the form [I]

A7 1) = 2Au(FL, 2)e =), (2.70)

where u(7, z) satisfies the PWE. The electric and magnetic fields in this case are written
as [39, [44]

=
I

_on l

ou 4
pik 52 —i(kz—wt)
2 T1ku + za ] e ,

g (2.71)

B=—-A, [yzku + z“] o~ (thz—wt)
dy

To obtain these forms, we neglected 8%u/dydz and considered |8u /02| < |kul, |0%u/0z?*| <
|k*u|. We see that the electromagnetlc wave described by (2.71) is not transverse. The
longitudinal components of E and B however, are small compared to ku, and for cal-
culations it is sufficient to consider only the transverse components of the electric and
magnetic fields. The time average of the linear momentum density is [1]

L 2.72
- % Re[E x BY] (2.72)

Taking A, = 1 for simplicity, we find
(p) = zw— (w*V L u — uV  u*) + wke,|ul?2. (2.73)

Specializing to cylindrical coordinates, the azimuthal component of (p) can be found

u* Ou

Py = —we, Im [T 8(]5] (2.74)

The time average angular momentum density is (j) = 7 x (p), and its longitudinal com-
ponent is

8“] (2.75)

7, = —we, Im [u —

06|

and the total angular momentum in the z direction per unit length is thus

J, = / / j.dS. (2.76)

Moreover, the total energy per unit length of the radiation field is

V=3 // <EO|E|2 |B|2> a5, (2.77)
~ e,

where we neglected the axial components of E and B.
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2.4.3 The Laguerre-Gaussian mode

A solution to the PWE of special interest in this work is the well known Laguerre-
Gaussian (LG) mode, denoted as

(7, 6, 2) = wcé’) (ﬁg)m Il [wii)] ¢ exp {—i€¢+ iC(z) — 2'222) } (2.78)

where Cy, = \/ 2p!/m(p + [¢])! is the normalization constant, LI‘!(-) is the associated La-

guerre polynomial, w(z) = w,y/1 + (2/2r)? is the beam waist, R(z) = z[1 + (zr/2)?] is
the curvature radius, ((z) = (2p + |¢| + 1) tan~'(z/2R) is the Gouy phase, 2z = kw?/2 is
the Rayleigh range and w, is the minimum beam waist. The transverse and longitudinal
characteristic lengths of an LG mode are w, and zg, respectively. To fully define an LG
mode, one of the pairs (w,, zr), (w,, k or A), (zg,k or A), must be known.

A linearly polarized light beam described by carries well defined OAM in the
z direction, which is closely related to the azimuthal phase factor exp (—if¢). This term
introduces a phase singularity, an optical vortex, at the beam center, where the intensity
is zero. The integer ¢ € (—o0, 00) is called the topological charge and defines the OAM
in the beam [I]. The phase fronts of LG beams are twisted around the propagation
axis as shown in Figure [§] with the number and handedness of the helices defined by
the magnitude and sign of ¢, respectively. The Poynting vector S=FExB /1o, which
is normal to the phase-fronts at all positions, spirals around the beam axis [I]. The
momentum density thus possesses an off axis azimuthal component, that gives rise to the
angular momentum of the beam [41].

Figure 8 — Phase fronts of (a) plane wave beams, ¢ = 0, and of LG beams with (b) £ =1, (¢)

Ty

Source: Taken from reference [41].

Using equation (12.75)) with v = uyg,, the density of angular momentum in the z direction
is
J= = weol|ug|*. (2.79)
With the fact that wg, is normalized, the total angular momentum in the z direction per
unit length (2.76)) can be found
J, = we,l. (2.80)
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The ratio of the angular momentum along the beam axis to the field energy W, given by

equation ([2.77)), is found

J,
— = —. 2.81
| ( )
This can be generalized to the case of a field with circular polarization [1],
J, {+o,
7z _ 2.82
W w (2:82)

where o, = +1 for left- or right-circular polarizations. It is known that a photon from a
circularly polarized light beam possesses an angular momentum given by

Sz - Uzhu (283)

which is regarded as the spin of the photon. Thus, (2.82)) suggests that the orbital angular
momentum in the z direction per photon in a Laguerre-Gaussian beam is

Lz,photon = (h. (284)

Contrary to the spin component of the angular momentum of a photon, its OAM can
assume an infinite number of values, and this high dimensionality represents a useful tool
for information multiplexing. The other index characterizing the mode, p € [0,00), is
called the radial index. It is related to the number of dark rings in the intensity profile of
ugp, but doesn’t have a straightforward connection with a physical quantity as is the case
for . In recent years, however, the radial index has been the subject of theoretical works
[45, [46] that have enlightened its significance. The intensity and phase distributions of
LG modes with different orders ¢ and p are shown in Figure [0

Figure 9 — Intensity and phase distributions of us, at z = 0 for multiple ¢ and p.

p=1
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Source: The author (2021).



2.4. ORBITAL ANGULAR MOMENTUM OF LIGHT 31

LG modes form a complete orthonormal set of functions on the transverse plane,
satisfying

/ / Uity rdrdd = 0,00y, (2.85)
S un (P, 2)ug, (7, 2) = 6(7 — 7). (2.86)

L,p
This makes the set {ug,} a basis suitable for problems involving cylindrical symmetry.
Furthermore, LG modes are one out of three families of orthonormal solutions to the
PWE that are closely related. The other two are the Hermite-Gaussian (HG) and Ince-
Gaussian (IG), that possess rectangular and elliptical symmetries, respectively. LG and
HG solutions are limiting cases of the IG solution.

2.4.4 Generation of beams with OAM

Allen et al. also discussed the conversion of Hermite-Gaussian beams to LG beams,
which is accomplished by using mode converters composed of astigmatic optical compo-
nents [47]. LG modes can also be generated from fundamental Gaussian beams using
a spiral phase plate [48] or a computer generated hologram mask [49]. This mask is a
diffraction grating with a forked structure at the center that has as many dislocations
as the order of the desired singularity, ¢. The first order diffracted beam is shown to
possess the approximate intensity distribution of an LG beam with topological charge ¢
and radial index p = 0. Figure [I0] shows one of these forked gratings and the first order
diffracted beam. Both spiral phase plates and computer generated holograms can also
be used to efficiently generate LG beams with higher radial orders p # 0 [50, 5I]. The
combination of computer generated holograms and spatial light modulators (SLM) offers
a versatile method for the generation of structured light modes and is vastly employed
in the field of light OAM. An SLM is a device used to introduce a spatially dependent
phase-modulation to a light beam. Modern SLMs are controlled with easy to use com-
puter programs that allow to quickly select the desired hologram and the device response
is practically immediate. In the next chapter we describe the basic structure of an SLM.

Figure 10 — (a) Forked grating used to generate an LG mode with £ = 1. Red box shows a
close up of the central dislocation. (b) Diffraction of a fundamental Gaussian beam by the £ =1
forked grating into zeroth and first orders.
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Source: The author (2021).
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2.5 Nonlinear optics

Nonlinear optics studies the interaction of strong light fields with matter, such that
the medium response depends nonlinearly on the electric field of light. Second harmonic
generation (SHG), where two photons with frequency w interact nonlinearly inside a
crystal to create a photon with frequency 2w, was the first nonlinear optical process to
be experimentally demonstrated [52]. It was achieved using a ruby laser and a quartz
crystal, only one year after the construction of the first laser by Maiman, in 1960.

Inside matter, Maxwell’s macroscopic equations [42] lead to the wave equation for the
electric field E of light B .

2
VQE - %aj = Moaja
2 ot? ot?
where P is the macroscopic polarization vector and describes the medium response to the
incident field. It can be separated in a linear part and a nonlinear one, P = ﬁL + ﬁNL,
where

(2.87)

ﬁLZEOX(l)'E7
) L L 2.88
PNL—€O(X(2):EE+X(3):EEE+~~>. 259

The linear susceptibility, x(!), is related to absorption and the index of refraction, while
the multiple nonlinear susceptibilities in the expansion of ﬁNL, ™, are responsible for
all nonlinear optical phenomena that occur in the medium. The ™ are tensors of rank
(n+1) and the products of fields that accompany these quantities are tensorial products.
Symmetries in the medium reduce the number of independent elements of x™. For
instance, in centrosymmetric media, all even order susceptibilities are null, x(*® = 0, and
the nonlinearity of lowest order is given by y®).

The nonhomogenous wave equation together with the source term given by the
medium response ([2.88]) is an essential part of the mathematical description of nonlinear
optical phenomena in various configurations and regimes. In the specific case of four-wave
mixing, a third order nonlinear process, we consider in this work, incident fields E, and Ej,
with frequencies w, and w, and propagation directions lga and Eb (figure , interact with
an isotropic and centrosymmetric nonlinear medium to generate field E, with frequency
ws = 2w, — wp and propagation direction IZS = 21%; — Eb. It can be s}}own that the scalar
wave equation for the generated field complex amplitude E; = £, %" takes the form

2
w? (. .
V2 E, + k2EA+ = 2 {zlm[x(l)(ws)]Es + X (ws = 2w, — wb)EiEb} ) (2.89)
where ks = wgns/c,
n? =1+ Re[x™" (w,)] (2.90)

is the index of refraction in the medium at frequency w,. Here y(w;) and & (w, =
2w, — wy) are both scalars and their detailed forms, related to the characteristics of the
medium, are deduced in Chapter 4] The wave equations that describe the evolution of
fields E, and Ej, can be found in a similar form. In ref. [10], where field E, is strong, a
solution is given for the coupled evolution of the weak and generated fields, F, and E,.
In the configuration we consider, however, both incident fields are strong, and we expect
them to undergo little variation due to linear or nonlinear effects in the interaction region,
which is considered small in comparison with the characteristic length of the beams.
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Figure 11 — Spatial orientation of the wave-vectors of the incident and generated beams involved
in the FWM process and the phase mismatch Ak.
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Source: The author (2021).

In Chapter [4] we’ll derive a solution to considering the full spatial dependence
of the incident fields, that will be given by Gaussian or Laguerre-Gaussian distributions.
For the moment, we’ll consider beams with plane wave-fronts only. The solution in this
configuration is well known and we analyze two limiting cases that will be recovered in
Chapter 4l We thus neglect the transverse derivatives of E; and employ the slowly varying
envelope approximation to arrive at

0E; m
= — &, + KEZE e TIART, (2.91)
0z
where w
m = ———TIm[x™ (w, 2.92
i = — Ty ()] (292
is the absorption coefficient,
w
— =5 B =20, — 2.93
k=i X (ws = 2wy — wp) (2.93)

is the nonlinear coupling and Ak = 215@ — lgb — Es ~ (2k, — ky — ks)Z is the phase mismatch

(figure [11)),

1
Ak = —[2w,nq — (wpnp + wsns) cos V). (2.94)
c
Making the substitution & = £,e**, we get
ags * oqinz—tAkz
5 = KE2E] oz TIARzZ, (2.95)
With the initial condition &(0) = £,(0) = 0, the solution to the FWM field &,(2) is
e—iAkz — e~ %linZ
Ez) = REZE, 2.96
) =nste | (296)

In a medium with extension L, in a case where the linear absorption can be neglected,
the generated signal power is given by

AEkL
P, o |\ E2E7|? x sinc? <2> : (2.97)
Also, in a phase-matched setting, we have
T(L)|”
P, o [ X E2Er|? x L) , (2.98)
lin
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where T(L) = 1 — e~“inl is the Beer-Lambert transmission factor through the medium
of size L. In Chapter [4] we show that, under the approximations therein considered, we
obtain a term similar to that in square brackets of equation . Consequently, the
terms that multiply |x®)&2&|? in equations and (2.98)) will be recovered.
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3 THE EXPERIMENT

All experiments were performed on samples of cold ' Rb atoms obtained with a magneto-
optical-trap (MOT), the main apparatus in this project. In this chapter we discuss various
details regarding the operation of the MOT and the detection of the four-wave mixing
signals. We use three lasers, namely the cooling, repump and FWM lasers. They are all
tunable diode lasers from Sanyo, model DL7140-201S, and we use a homemade electronic
box for temperature and current control. Figure[I2shows a representation of the hyperfine
transitions excited by each laser in the experiment.

Figure 12 — Hyperfine energy levels of the Dy line of 8’Rb and the transitions excited by the
cooling, repump and FWM lasers.
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Source: The author (2021).

All lasers go through a saturated absorption (SA) experiment, that allows to control
their frequencies and also provides a frequency reference. The saturated absorption ex-
periment setup used is shown in figure [I3] A small portion of the total power of the
laser output is reflected by a piece of glass and passes through the Rb cell. This is the
pump beam. The reflected beam, which is attenuated by filter F, is the probe. Pump and
probe are superimposed inside the cell containing Rb vapour and the probe is detected
by a photodetector (PD). By sweeping the frequency of the laser, one gets the saturated
absorption spectrum (SAS).
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Figure 13 — Basic setup of a saturation absorption experiment. OI is an optical isolator.
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Source: The author (2021).

[—

3.1 Magneto-optical trap setup

The cooling laser is setup to excite the [55,2; Fy =2) — |5P5/; F. = 3) hyperfine
cyclic transition of 8Rb. It is tuned to the cross-over transition between |F, = 1) and
|F, = 3), 212 MHz below resonance, using a homemade locking system and the saturated
absorption spectrum as a reference signal. An acousto-optic modulator (AOM) then
introduces a frequency shift of 200 MHz, leaving it approximately 12 MHz below the
desired resonance frequency. The zeroth order diffracted from the AOM is used as a
guide beam for the alignment of the FWM laser beams. The first order is sent into a
Toptica Photonics Boosta amplifier, which converts an input of 12 mW to about 350 mW.
The AOM is also used in the temporal control of the experiment, which will be commented
in the next section.

The amplified beam is then coupled to an optical fiber via a Fiber Dock, also from
Toptica Photonics, that helps eliminating the cross-talk between the mechanical degrees of
freedom during alignment of the fiber and maintains the fiber coupling for longer periods
of time. It is, however, a component that presents a reasonable power loss. The coupling
efficiency of this and all other fibers used during the experiments was around 65%. The
beam is then divided in two using a series of optical components. One of the beams goes
direcly to the main Rb cell via an optical fiber and becomes the z arm (vertical) of the
MOT. The other beam is mixed with the repump beam via a fused fiber coupler (FFC).
The fiber coupler has two outputs, containing light from cooling and repump lasers, that
are sent to the MOT and become the x and y arms. The power provided by the cooling
laser to each arm is very sensible to the overall alignment and it varied around 5 — 7 mW
during the experiments. Figure [14] shows the setup of the cooling laser.

Due to the motion of the atoms and the high intensity of the beams, the cooling laser
may promote atoms to |5Pss; F, = 2), instead of F, = 3, and these atoms can decay to
1551 /2; Fy = 1). At this point, they can no longer interact with the cooling laser. For this
reason, the repump laser is tuned to the |55 2; Fy = 1) — [5P39; F, = 2) transition and is
responsible for emptying the population of state |55 /2; F}; = 1) so that atoms can interact
with the cooling laser again. The repump laser provides about 1 — 1.3 mW to both x
and y arms and is not as sensible as the cooling laser. It was not frequency locked during
experiments, and thus its frequency usually drifts away and constant manual adjustments
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Figure 14 — Preparation of the cooling laser. The SA spectrum is used as a reference signal
for the frequency locking system (homemade). The first diffracted order from the acousto-optic
modulator (AOM) is sent into the amplifier (AMP). The zeroth order is used as a guide beam
for the FWM laser beams.

Locking Cooling
System Laser Temporal Control

Beam division

Source: The author (2021).

must be made during experiments.

The quadrupole magnetic field is attained with a pair of circular coils in an anti-
Helmholtz setting. In order to shield the experiment from Earth’s spurious magnetic field
and possibly other fields, we use a Faraday cage. The atoms are provided by a rubidium
alkali metal dispenser (AMD), through which a high electric current is imposed to release
atoms. The released atoms are contained inside the main Rb cell, which is connected
to an ionic vacuum pump (VP) from Varian. The pump maintains an extremely low
pressure inside the cell, P.o; ~ 10~ Torr (with no current through the Rb getter), which
is necessary to reduce collisions and increase the lifetime of the cooled atom cloud. At
the output end of all fibers of the MOT arms, a telescope is used to increase the beam
size and a quarter-wave plate makes them circularly polarized. Inside the cell, the beams
intersect far from the glass walls. They are then reflected by a mirror and another \/4
plate switches the handedness of their circular polarizations, 6% — 67, thus creating the
configuration needed for the trapping of atoms near the intersection. In figure [L5| we show
a scheme of the MOT arrangement.

With the system setup as described so far, we obtain cold atom clouds with approxi-
mately 10 atoms and diameters of D ~ 3 —4 mm. Figure [16{shows a picture of the main
Rb cell with the cloud of cold Rb atoms inside.
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Figure 15 — Top and side views of the MOT arrangement. Beams a and b passing through
the Rb cell are the FWM laser beams. VP, AMD and FFC refer to vacuum pump, alkali metal
dispenser and fused fiber coupler, respectively.
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Source: The author (2021).

Figure 16 — Cold atom cloud obtained with our magneto-optical trap.

Source: The author (2021).
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3.2 Four-wave mixing setup

The FWM laser is also setup to excite the |55y 2, Fy = 2) — |5P55, F,, = 3) transition.
Since this is the same transition that the cooling laser excites, we use a temporal control
to turn the cooling laser off before the FWM process. The quadrupole magnetic field
generated by the circular coils is also turned off. After a small delay, so that the atoms
can decay from the |F, = 3) state, the FWM time window begins. The FWM laser is
not frequency locked in the current configuration. We modulate the current that goes to
the laser diode with a ramp signal that varies its frequency around the desired transition
during the FWM window. The whole FWM spectra is obtained in a single window.

The FWM beam arrives at the main table via an optical fiber. It passes through
an AOM in a double-pass configuration and then gets divided into two, to produce the
two beams E, and Ej used to drive the FWM process (see Fig. . Both beams must
intersect inside the main Rb cell, at the location of the cloud of cold atoms. This alignment
is performed with the aid of a pair of masks with guiding holes. The two masks are
separated by a distance of about 1 m with the MOT region located halfway between
them. The separation between the holes is approximately 6 mm. This gives an angle
¥ ~ 8 mrad between Ea and Eb. These masks are also used for the alignment of the FWM
signal detectors using the zeroth diffracted order of the cooling laser.

The minimum beam waist (that occurs at the intersection) throughout most of the
measurements was w, ~ 1 mm, and this is the value that will be considered in the present
work, unless otherwise stated. The Rayleigh range for w, = 1 mm and wavelength A = 780
nm is zp = mw?/A ~ 4 m. The FWM beams must popagate considerable distances,
compared to zg, before reaching the interaction region and the detection positions, and
thus the incident beams must be well collimated.

Figure 17 — Preparation of the FWM laser. Acousto-optic modulator is setup in a double-pass
configuration.
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3.3 Spatial light modulator

In this work we use the LCOS-SLM (liquid crystal on silicon spatial light modulator)
model X10468-02 from Hamamatsu Photonics, shown in figure [18|

Figure 18 — LCOS-SLM model X10468-02 from Hamamatsu Photonics. Main parts are indi-
cated.

Controller

Chip
Head

Source: Modified from the SLM datasheet [53].

In the LCOS-SLM chip, a nematic liquid crystal (LC) is layered on top of an array
of pixels and enclosed by a glass plate (figure ) The LC molecules are uniaxial, i.e.,
possess an ordinary and an extraordinary index of refraction, n, and n., respectively, in
orthogonal directions (figure ) Their orientation is locally controlled by applying a
specific voltage to each pixel. This results in a local change of the index of refraction, that
leads to the phase modulation of the incoming light, which is then reflected by a dielectric
mirror for the desired wavelengths. Note that due to the geometry of the LC molecules,

Figure 19 — (a) Elements of the LCOS-SLM chip from Hamamatsu Photonics and (b) depiction
of the uniaxial liquid crystal molecule with the indices of refraction n, and n. along the y and
x directions, respectively.
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the phase modulation will only occur if the direction of oscillation of the incoming electric
field is parallel to the plane that contains both the ordinary and extraordinary axes, the
x-y plane [54].

The modulator is operated using a computer connected to the SLM controller via
standard video connectors, which is connected to the SLM head via a pair of robust
cables. The desired phase modulation is defined by an arbitrary gray-scale image file with
the appropriate size. The intensity of each pixel in the image is translated into voltage
in the corresponding pixel of the array, that changes the LC orientation in that region.
The image is "printed" onto the chip and, subsequently, onto the phase distribution of the
incident beam [54]. To generate LG beams of various ¢ orders we use forked diffraction
patterns, like the one shown in Chapter [2]

For the experiments involving OAM, the LCOS-SLM was introduced in the path of
beam FEj, as shown in figure A telescope is used to increase the beam size so that it
covers a larger portion of the SLM chip. The output beam is reflected at a small angle
and a second telescope reduces the beam waist back to its original size, approximately.
The resultant diffraction pattern with the zeroth and first diffracted orders is also shown.
The positive £ order is selected and both beams E, and Ej are sent to the MOT. In figure
we present in detail the intensity profile of the zeroth and first order diffracted beams
from the SLM using the ¢ = 1 forked grating. We see that the first order beam shows a
sensible asymmetry, which is a result of slight off centering of the fundamental Gaussian
beam on the SLM chip.

Figure 20 — Defining the two beams, F, and Ej, responsible for the FWM process. The phase
front of Ejp is modulated by the SLM before being sent to the MOT. CCD image shows the the
diffracted orders from the SLM for ¢ = 1.
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Source: The author (2021).
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Figure 21 — Intensity profile of zeroth and first order beams diffracted from the SLM using a
forked grating with £ = 1. Inset shows a close up of the first order beam and the x and y radial
profiles.
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3.4 Signal detection and preliminary results

The FWM experiments were performed in the MOT described in this chapter, for
two configurations: parallel and orthogonal polarizations of incident beams. For parallel
polarizations, &, || &, the atom-light interaction can be described considering a two-level
atomic system. With orthogonal beam polarizations, £, L &, the nonlinear interaction
can be described in terms of a 3- or a 4-level system, depending on the chosen quantization
axis.

Regardless of the relative orientation of incident beam polarizations, after the signal
generation inside the cold atom sample, all four beams, E,, £, (transmitted), S; and Sy
(generated), are sent to the detection part of the experiment, which is illustrated in figure
22 There is a small separation between the four beams due to the angle ¢ between
the wave-vectors k; and k:b, that allows to send each beam to an individual detector.
The efficiency of power conversion from incident to generated signals in our configuration
is quite low. For this reason, we use avalanche photo detectors (APD) to detect the
symmetric FWM signals. To capture images of the intensity profile of one of the two
generated beams, we replace the APD with a CCD camera. The transmitted beams F,
and F, are strong and can be detected with photodetectors.

For &, || &, both generated signals will possess the same polarization direction as the
incident beams. On the other hand, for orthogonal polarizations of incident beams, the
generated signals will also have orthogonal polarizations, &; L &;. Also, they will satisfy
€, L &1 and &, L &5. For this reason, it becomes easier to clean the signal going to each
detector.

We show the lineshapes obtained for the two symmetric FWM signals in both inci-
dent beam polarization settings. For orthogonal linear polarizations, we also show the
lineshapes when Ej, carries topological charge. In this configuration we also show images
of the transverse profile of the generated FWM signal S; when pumps have Gaussian
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Figure 22 — Scheme for the detection of transmitted and generated signals in the FMW ex-
periment.
Detection of FWM spectra Detection of FWM beam shape (51)

scattered wave fronts
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Source: The author (2021).

distributions.

3.4.1 FWM spectra

We show in figure [23| the intensities of both generated signals, S; and S5, as a function
of the detuning from resonance of incident beams in the &, || &, setting. It is seen that
the spectra of both signals present power broadening and that their amplitudes do not
saturate up to the higher beam intensity used in the measurements. The amplitudes of
S, are smaller than the amplitudes of S; for all intensities because, as depicted in figure
S5 is detected further in the optical table.

In figure [24] the intensities of the two symmetric signals, S; and S, as a function of the
frequency detuning of incident beams are presented for £, L &,. We selected two powers
of incident beams and varied the topological charge of beam FEj,, which assumed the values
l, = 0,1,2. The signal with orthogonal polarizations was studied in a previous project
[55] using only Gaussian beams. We can’t precisely describe all of its characteristics,
specially the central valley. It is seen that the features of the lineshape with ¢, = £, =0
are maintained when ¢, # 0. Also, we note that for increasing topological charge ¢,
the linewidths become narrower. This has already been addressed in other works, and
occurs because of the intensity distribution of the LG beams [56]. In the following chapter
we discuss this effect in a little more detail. Furthermore, this signal possesses greater
linewidths for a similar range of incident beam power, in comparison with the signal
obtained for parallel incident beam polarizations. We recall that in our setup, the FWM
laser is not locked in frequency, instead, its frequency is swept continuously in the FWM
time window. For a fixed sweep rate of the incident laser frequency, the nonlinear signal
with a greater width in frequency also has a greater width in time. Since we estimate
the generated signal intensities to be very low, the emission over a longer interval of time
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Figure 23 — Measured FWM spectra of (a) S; (2kq — k) and (b) Sy (2k;, — ko) obtained with
Gaussian beams in the (&, || &) configuration for different input intensities.
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Figure 24 — Normalized FWM spectra of S; (2/2a — Eb) and Sy (21_51, — Ea) for ¢, = 0 and
0y, = 0,1,2 in the (§, L &) configuration. Beam power is (a),(b) P, ~ 315 pW and (c),(d)
P,y ~ 160 uW. In (b) and (d) the curves corresponding to ¢, = 1,2 have been smoothed.
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during the FWM time window may be easier do detect with a camera. This led us to
choose the &, L &, setting in the first attempts to detect the FWM beam profile. The
following discussion considers this configuration.
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3.4.2 FWM beam profile

Because of their high power, we expect the incident beams transmitted through the
atomic medium to undergo little spatial variation as a result of the nonlinear interaction.
Thus, we are mainly interest in the spatial profile of the weak FWM beams. One issue
that posed some difficulty to capture clear images is that, even with £, L &,, and the
possibility to clean each signal with polarizing beam splitters, scattered light was present
with much more intensity than the FWM beam we were trying to see. In figure [22] we
illustrate the wave fronts from beam Ej, that arrive at the detection position of signal S;.
The obtained image contains a bright diffracted pattern that is almost completely from
beam Ej,. To have a better image of the generated beam, the following procedure was
employed. With the camera aligned to capture S; fixed in position, we capture images
in three conditions: (i) E, not incident on the MOT, (ii) E} not incident on the MOT,
and (iii) E, and E} incident on the MOT, generating S;. In this manner, image (iii) will
show all possible scattered light from E, and Ej in addition to the FWM signal. Images
(i) and (ii) will show the scattered light from E, and FE,, respectively. Each image can
be represented by a N, x N, matrix, where N, (IV,) is the number of pixels in the z
(y) directions. The matrices M;, My and M3 contain the images corresponding to (i),
(ii) and (iii), respectively. A clean image of the FWM beam profile is obtained with the
matrix Mz — M; — My|. Figure [25|illustrates the arrangement to capture these images
and figure we shows the sequence of images, respectively. ~ We see that the clean

Figure 25 — Arrangement for the detection of images that correspond to matrices (a) My, (b)
M, and (c) Ms.
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Source: The author (2021).

FWM beam profile image also presents a fringed pattern. This can be originated by the
diffraction of the FWM beam or can be some residue from the scattered light from field
Ey,. Nonetheless, the profile appears to be Gaussian, with little ellipticity.
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Figure 26 — Captured images showing (a) light scattered from Ej, (b) light scattered from E,,
(c) light scattered from both pumps and the FWM beam and (d) FWM beam profile. Inset
shows zoomed FWM beam.
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Source: The author (2021).
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4 THE THEORETICAL MODEL

The theoretical model used to describe the generated FWM beam is divided in two main
parts. The first one is the semi-classical description of the interaction between the atomic
medium and the radiation field of the laser beam via optical Bloch’s equations. In the
second part, we solve the wave equation for the FWM field €2, with the source term given
by the nonlinear polarization Py, related to the nonlinear coherence obtained in the first
part.

4.1 Four-wave mixing in two-level atoms

We consider two input beams Ea and Eb, with propagation directions /Za and Eb,
respectively. Two FWM signals are generated simultaneously in directions (21_5,1 — Eb) and
(2/;1, — l;:a) We name these signals (2w, — wp) or S; and (2w, — w,) or Ss, respectively.
We consider a quasi co-propagating configuration, where the angle ¥ between ko and ki,
is very small (figure ), making /;a’b T kg pz, where k, = |Ea] = WaNe/c and n,, is the
index of refraction at frequency w,, a € {a, b}.

The polarization directions &, and &, of input beams Ea and Eb determine the tran-
sitions that can be driven in the atomic system during the nonlinear process. We are
interested in the case where &, and &, are parallel circular polarizations. In this case, we
can model the atom as a two-level system. The nonlinear interaction leads to the gen-
eration of 7 with the absorption of two photons from the F, beam and the stimulated
emission of one photon in the direction of Ejy; and S, with the absorption of two photons
from the Ej beam and the stimulated emission of one photon in the direction of E,. These
processes are schematically represented in figures and 27f. In what follows we use the
density matrix formalism detailed in Chapter 2. The starting point is the set of equations
, that describe the time evolution of the density operator for a two-level system in
the electric dipole approximation

21

(Ap) = == [praHims21 — po21 Hing1o] — T {(Ap) — (Ap)o} ,
; " m
prz = _g [Hint,12(AP) — p12 (BEo — Ey)] — 5[)12-
Now, the total incident field is given by

E(Ft) =Y EL(7,t), (4.2)

with a € {a,b}, and

(4.3)

ho (4.4)
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Figure 27 — (a) Spatial distribution of the wave-vectors of the incident and generated beams
and scheme of the transitions in a two-level system to generate (b) S; and (c) Sa.
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Source: The author (2021).

where u,(7) is normalized to unity and p$, = (1] (1 - &4)[2) (udy = pby = p12). In the
rotating wave approximation, the matrix elements of Hj,(t) are written

Hing12(t) = —hSQ, (7)eFez=wal) _ pQy () Rozment) (4.5)

We assume that the coherence p;o oscillates with frequencies wg, w, and 2w, — w, [10] and
write

Pra = O_%Qeiwat + 0_11)2€iwbt + U%g—bei(Qwa—wb)t‘ (46)
The 2w, — wp, component is responsible for the nonlinear mixing process that generates
S1. The population difference (Ap) has a stationary component and one oscillating at
|wa — ws|, and is written as

(Ap) = (Ap)™ + [(Ap)*Peie)l el (4.7)

Substituting (4.5)), (4.6 and (4.7)) into equations (4.1]), and collecting terms that oscillate
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with the same frequency, in the steady state we arrive at the set of algebraic equations

2iQ0* 5207 4 2iQr o, — 2iQ), 0%
A a—b — av 12 bY 12 a”12 48
(87) (i00 — 00y + ) ’ (48)

. . b . . b
2000y + 21 0]y — 210,075 — 21,075

(Ap)® = (Ap)" + T ) (4.9)
o 1 (Ap)% +iQ(Ap)e
012 = (i6, +T/2) ; (4.10)
s i (Ap) i, [(Ap) ]
O12 = (i, +T/2) ; (4.11)
ors "= L) i (4.12)

(2i0, — 10y +T/2)’

where Q, = Qqe *e? 5, = wa — w, is the detuning from resonance of field Q, and
w, = (Es —E;)/h is the resonance frequency. In the strong pump and weak probe regime,
Q, > 4, the full solution for all terms in is given in Ref. [10]. We are interested,
however, in a situation where both fields have similar intensities, [,| ~ |€2|, and thus
seek an expression to the nonlinear coherence that is affected somewhat similarly by €2,
and Q. With a direct substitution method, we solve for 6237° to find

g20-b _ —2i020; (Ap)(1/Aa + 1/A)
12 D(84,0) (206, — 0y +T'/2) + 2|Qq |2’

where D(8,,0,) = 0, — 10+ T, Ay = 0, +T/2, Ay = —id,+T'/2 and (Ap)9¢ can be found
as

(4.13)

dec (Ap)O
(Ap)™© = 2102 2002 (4.14)
1+

62+4T2/4 o} +T12/4

Figure shows the lineshapes of 0257° for Q, = ), with varying 8, = ,, that represents
the situation we are interested in. The spectra of the FWM signal contain a single peak
at resonance, which is in agreement with our experimental results for this configuration.

Figure shows the amplitude of output signal at resonance as a function of €2,;. The
linear coherences 0%, and o, are found as

0%, = —iQ0ap) (4.15)
16, +T/2 + 2]Qu2/T + 2|02/ A0y’
b UL (4.16)

712 T 5, A T2 1 27T + 2|0, /AL,

where A, = id, — 10, +1'/2. Note that 0% = 0% (a <> b). The nonlinear coherence given
by equation (4.13)) is related to the nonlinear susceptibility via [10]

4 _2a—b
O = N paz] 912 ’ (4.17)
eh? Q2
where A is the atomic density. We write
o) _ 2N ol () (1A +1/A0) e 1 i

Xet = D (8, 00) (2000 — i0y + T/2) + 2[Qu?
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Figure 28 — (a) Nonlinear signal power as a function of ¢, = J; for some values of Q. (b)
Amplitude of generated nonlinear signal at resonance as a function of input Rabi frequency.
Maximum output is obtained for €4, = 0.64I" (red dashed line). Inset shows the full width at
half maximum (FWHM).

(2a—b)
o 0
0.04 - : 005 _lew O
— Q) =0.25T (b) FWHM/T
........ Qup =0.5T 10
0.03 f -- Q=10 | 00
----52“4,, =2I
0.03
0.02
0.02
0.01
o 0.01
(NN
\ ’\.\
S TtNeeo _
0 = 0
20 40 0 1 2 3 4
(5,,],/271’ [RIHZ] Q,,_[,/F

Source: The author (2021).

where the subscript indicates that this an effective susceptibility, that contains terms
related to processes in the direction (QEa - Eb), but with higher orders of the fields. The
coherence and susceptibility related to signal (2w, — w,), with direction (2k, — k,), have
the same form as (4.13) and (4.18)), respectively, with the exchange of labels a <+ b. The
total linear susceptibility is obtained by the sum of the contributions from the coherences
oscillating at w, and wy,

1
XS = Xetta + Xittos

:N|M12|2 0.711124_0.71172 (419)
eoh Q, W/

Since our interest is primarily on FWM processes in a sample of cold (stationary) atoms,
we need not to include the effect of Doppler broadening. The absorptive and dispersive
responses, given by equation , are shown in figure . The information given by
these results can aid the selection of an optimal value for €2,.

4.2 Wave equation

We are interested in the intensity profile of the generated fields, and thus seek a
solution to the wave equation for field E,. We focus only on Sy, since the equations for
S, are obtained and solved in the same way. The wave equation for the FWM electric
field is - .

9= 1 0°F; 0°P
V*Ej Ear el v (4.20)
We project onto &% to get the scalar equation

2 wg 2 D %
V’E, + 3B, (P& (4.21)

= lopa
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Figure 29 — (a) Dispersive and (b) absorptive responses of the medium for the same values of
Rabi frequency amplitudes as in figure @
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The total medium polarization is P= ﬁL + ]3NL and its projection onto £7 is

(P-&") = Py(ws) + Pap(ws = 2w, — wp),

(4.22)
= EOXSF)ES + EOXSEF)E&E;'

Under the paraxial approximation we obtain the equation for the Rabi frequency €2

2;9 V2Q, + %% = i, + KO2Q e AR (4.23)

where
(7 0) = —5 I[P (70)], (4.24)
)l 8) = i @ g (4.25)

are the linear absorption coefficient and the nonlinear coupling, and Ak = |2Ea — Ky — /Zs|
is the phase mismatch. Here, n, = (1 + Re[x'§])"/2 is also spatially dependent. We use §
to represent both d, and d,. Note that the problem we are investigating has (24 1) spatial
dimensions and also the frequency degree of freedom. We highlight that, rigorously, both
oy and k carry the spatial dependence of €2, and €.

The solution to for incident plane waves was given in Chapter . For arbitrary
nonuniform fields, this wave equation can be propagated numerically inside the nonlinear
medium using a split-step Fourier method (SSFM), as in ref. [28]. In the following
section we present a general solution method by expanding €2 in terms of LG modes.
This will be done under the following considerations. Since the medium has a very
small longitudinal extension L, we expect input fields, which are strong, to undergo little
extinction and transverse structure variation along the interaction region. Thus, we treat
(4.23) uncoupled from the wave equations for €2, and €,. This simplifies the mathematical
work of our problem and is shown to bring results with good agreement with experimental
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measurements [27]. Also, to solve the wave equation, we’ll set the frequencies of the fields

at fixed values not far from resonance, and we’ll assume n, ~ 1 (Reng) ~ 0) at all
positions.

4.3 FWM field in terms of LG modes

The orthogonality and completeness of the LG modes allow to write (), as the super-
position]]
Q,(r) = Z Agp(2) ey (7). (4.26)

The problem becomes that of finding the coefficients. Substituting (4.26]) into (4.23]) we
obtain

Vi 0
Z < 2]{3 + 2 > Agp< Ugp ’F) = ZahnAKp uzp F) + KJQzQ* _ZAkZ (427)

Using the fact that ug, satisfies the homogeneous wave equation, and that the coefficients
Ay have no dependence on the transverse coordinates,

@Dt e

Z ng Agp Z OzhnAgp ng ) + KJQzQ* —idkz (429)

we arrive at

Multiplying both sides by uj, and integrating on the transverse plane, the orthogonality
relation of the LG modes, given by equation (2.85)), leads to the equation for Ag,(2)

aAgp<Z)

5, —Oéf7<Z)Agp(Z) + Af,(z)e_mkz. (4.30)

In the above equation,
= // in |tgy|*rdrde (4.31)

is the mode dependent absorption coefficient, a measure of how much each generated
mode is affected by linear absorption; and

// KU Quy,rdrde, (4.32)
is the projection of the spatially dependent nonlinear source term onto the LG function

space, called the transverse overlap integral. Consider €2, o< uy,,, and €2, o< ug,,,. Since K
has no phase information from the incident fields, the azimuthal integral in (4.32]),

21 X
/ 6_1(2€a_eb_€)¢d¢ = 271'(55’25(1_&), (433)
0

!The modes uy, used to expand Qg have the same (w,, zr) as the incident beams.
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leads to the topological charge selection rule for S
=20, — . (4.34)

Thus, the generated beam will be composed only of modes with topological charge ¢; =
20, — lp. Similarly, Sy will only contain modes with ¢, = 2¢;, — ¢,. This is a statement of
the conservation of OAM in the FWM process considered in this work.

Effects caused by the linear response are not our primary interest, and so we consider
that the absorption coefficient ay;, can be taken as a spatially uniform quantity, ag. In
this case, we have a}(2;8) = ag(d), which is independent of indices ¢ and p, and of the
coordinate z. With this, equation (4.30]) can be more easily solved. With the substitution
Agy(2) = Agy(2)e™*, we find

8A(§Z(Z) = Aﬁ(z)e_(mk_a‘))z. (4.35)
We consider an interaction medium with extension L centered at the origin, such that
the entry is located at z = —L/2 and the exit at z = L/2. In our problem, the generated
field is not existent at the medium entry, and so the boundary condition is Agp( —L/2) =
Ay (—LJ/2) =0 for all (¢,p). We integrate on the longitudinal coordinate to find the full
overlap integral

Agle) = e [ A Se0Ta, (4.36)
with z. = min[z, L/2] because for z > L/2 there are no atoms to interact with the

light fields, and Af;(z) = g = 0 in this region. The source term given by the nonlinear
polarization Pyy, drives the generation of the mixing signal until the position z = L/2,
where the beam reaches the exit of the atomic medium and begins free propagation. We
are interested in the FWM beam outside the medium, where it can be detected, and thus
we seek to evaluate Ay, (L/2). Note that, although not explicit, Ay, (2) is also a function
of 6a,b-

In the thick-medium regime, where we have L > zp, the ug, modes that are gener-
ated with greater efficiency in the FWM process are those that satisfy the Gouy phase-
matching (GPM) condition [I8| 22], i.e., (Ng)s + (Nep)s = 2(Ngp)q for the signal with
direction 2k, — l;b, where (Ngp)a = 2pa + |la] is defined as the mode number. We'll see
how this requirement arises in Section [4.7. However, in the thin-medium regime, modes
with good transverse overlap with the nonlinear source term, that posses high values of
, can be generated, and the superposition (4.26) may contain modes that do not
satisfy the GPM condition. Most of our calculations are performed considering a thin-
medium, characterized by L < zg. The variation of Al(z) in the interaction region is
thus negligible, and we can approximate

L/2

A, (L/2) ~ AZ 0 —aoL/Q/ —(iAk—ao)z’d /7
w(L/2) = A, (0)¢ et : (4.37)

= A(0)T (L; Ak, o),

where 7 can be regarded as an efficiency measure of the signal generation process inside
the medium and is a common factor to all Ag,.

We see a very close resemblance between the solution (4.26]), with the coefficients
given by , and that given at the end of Chapter . When the phase mismatch is
dominant, we get |T|* = sinc?(AkL/2). On the other hand, in a phase-matched condition,
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we get |[T]? = |(1 — e*¥)/ap|®. Until this point, we have treated the solution to the wave
equation in a fairly general manner. Throughout the rest of this work, we’ll not concern
ourselves with effects caused by the linear absorption and the phase-mismatch, and we’ll
take T (L; Ak, ap) = 1.

The total power of ), P,, as a function of the detuning from resonance, or the
lineshape of €2, is

P0) = [[ 1171, 23 6)Prards, (4.38)

where I, = Z|Q,|? is the intensity distribution of the generated field, Z = 2ce,h?/|p12|*
and z4 > L/2 is the detection position. The constant Z factors out in all calculations
involving the intensity distribution and the power of the beam, and thus we make Z = 1.
The orthogonality of LG modes leads to

Py(0) = ; | Agp(0)]7, (4.39)

which gives the normalization factor of €2, at fixed §.
Using the intensity normalized FWM beam, Uy = €2, /+/Ps, we define the mode fidelity
or mode weight

2
)

ey = ’ / / Ui, rdrde
_ |A€p|2
P

(4.40)

as a measure of the relative contribution of the mode u, to 25. The phase angle of Ay,

is @y, such that
Agy = \/ Pnepe’ ™, (4.41)

and the relative phases between the various expansion coefficients can also be responsible
for changes on the output beam superposition.

The coupling k(r, z;9) Xg’f) (r, z;d) has a complicated dependence on the input fields,
and, rigorously, on the position 7, but doesn’t contribute substantially to the transverse
shape of the far-field FWM beam, which is determined mainly by the product Q2. This
suggests that the FWM beam profile is dictated by the overlap of input beams. Indeed,
this is usually assumed in the description of nonlinear processes involving beams with
OAM or arbitrary transverse structure.

In references [57, 58, 59], that focus on second order nonlinearities, the relevant sus-
ceptibility x® has no spatial dependence, and the quantity analogous to that
determines the SHG beam components is an overlap integral of three LG modes. In refs.
[18, 22], that treat FWM processes in atomic vapours, the intensity profile of the gener-
ated blue light beam is successfully predicted by calculating overlap integrals of four LG
modes, where x® is also regarded as a uniform quantity. In this manner, the medium
quantities do not affect the expansion coefficients. With the present study, we seek to
understand the influence of the atomic medium on the FWM process, more specifically,
the role of the full spatial and spectral dependencies of Xg?f}) (75 9) on the features of signals
S1 and Sy in the particular FWM configuration considered.

In general, the FWM field expansion contains multiple p orders, and the presence
of modes with different Ny, = (2p + |¢|) can lead to the interference of the various Gouy
phase factors exp{i(1 + Ny,) tan~*(z/zg)} that affects the radial structure of |Q|? upon
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propagation [60) [61]. We show that the combined spatial and spectral degrees of freedom
of the nonlinear susceptibility can produce changes on the distributions of mode weights
Ne,p and phases @, ,, which in turn generate modifications of the free space propagation
parameters of the FWM beams.

4.4 FWM lineshapes

Here we discuss the origin of the effect of the narrowing of FWM spectra that occurs
when incident beams possess OAM. We first give a qualitative explanation only in terms
of the intensity distributions of incident fields. Next, to evidence the narrowing, instead
of the lineshape P;(0), that can be problematic in some cases, we calculate an averaged
lineshape function that takes into account the spatial distributions of the incident fields.

We highlight that, as pointed in other works [56], 62], the vorticity of LG beams plays no
role in this narrowing effect. Instead, the ring shaped intensity distribution, characteristic
of LG beams, is responsible for this feature. This seems reasonable since ngg, that carries
the frequency response of the medium, has no dependence on the phases of the incident
beams, only on their intensity distributions, as seen from equation . Now we picture
the FWM process in two situations: both incident beams FE, and Ej, with Gaussian
distributions; and F, with Gaussian and E, with Laguerre-Gaussian distributions. In
both cases, we consider beams with equal power. Figure [30|shows the beam radial profiles
in both configurations, with ¢, = 1 and 2. Due to the central valley of the LG beam,

Figure 30 — Representation of the spatial overlap of the incident beams involved in the FWM
process when F, is Gaussian and Ej has Gaussian and LG distributions with ¢, = 1 and 2.

Source: The author (2021).

the red shaded area, that represents the spatial overlap of the beams, is greater when
E,, is Gaussian and decreases for increasing ¢,. Thus, the region where the incident fields
effectively interact to generate the nonlinear signal becomes smaller when beam FEj, carries
greater {;, values. This can be seen as a loss of efficiency in the conversion of power from
incident to generated beams, as ¢} increases. When measuring the power spectra of the
FWM process with Ej, given by an LG beam, the output power at all detuning values
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Figure 31 — Normalized nonlinear signal power, calculated by averaging a%‘;*b(f’; ) over the
interaction region V, as a function of J,; (equation [4.42)) for three values of the topological
charge of field Ej, fp = 0,1 and 2, and two incident Rabi frequency amplitudes Qg}b =TI and 2I.
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will be lower than when both beams are Gaussian. As a result, the lineshapes become
narrower, compared to those obtained with incident Gaussian beams.

This intuitive explanation in terms of the incident fields alone is useful, but now we
attempt to quantify the lineshapes by taking into account the full spatial dependence of
the nonlinear susceptibility generated in the medium as a result of the interaction. With
this objective, we define the averaged nonlinear coherence over the interaction volume V,

1
5Oy = 3 [[[ B aav. (4.42)
Vv JJ)v
The spatially uniform susceptibility associated with this quantity is defined as

- N o] * (o757°(9))
G5y = v
)= T el

(4.43)

The lineshapes obtained by calculating considering F, Gaussian and F} Laguerre-
Gaussian are shown in figure [3I We see that they become narrower for increasing topo-
logical charges ¢,. Also, note that the lineshapes considering only Gaussian beams of Fig.
(black curves) are narrower than those obtained considering plane waves (figure 28p)
with the same Rabi frequency amplitudes. This suggests that Gaussian shaped beams
promote a less efficient FWM process than beams with uniform spatial distributions.

4.5 Longitudinal parameters of the FWM beam

The spot size of an arbitrary beam with cylindrical symmetry is well described by
1
Fins(2) = |5 [ r?I(F)rdrd¢]z, where I(F) is the intensity distribution and P is the total
power in the beam. For a single LG mode uy,, an exact result is found [63]

2p+ ||+ 1
Tems,ep(2) = W(2)4/ p|2|’ (4.44)
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where w(z) = wyy/1 + (2/2r)2. For a Gaussian beam, we get 7ms00(2) = w(2)/v/2. For

g, a superposition of LG modes, at z > L/2, we obtain

erms (2 [ / / P{UF, ) Prdrde) (4.45)

Using (4.26)), it’s possible to arrive at [64]

rens(2) = S 1+ (V) — (a1 (446
where
N) =) 1eNg (4.47)
4p

is the mean value of the mode number Ny, = 2p + |¢| in the superposition and
f(z) _ Re{spe%taufl(z/zR)}7

1 *
=5 > 240 A}, 1\ p(p + |£])

S 0,p>0

(4.48)

carries the contribution of the various Gouy phase factors. The divergence angle is an-
other important beam parameter and in the paraxial regime can be defined as 0,5 =
lim, o rrms(2) /2. From (4.46), we find

Ormns = \/ng [1+ (N) +Re{p}]?. (4.49)
It is useful to cast in the form [64]
Trms (2 \/7“2 + 602 (2 — zn)?, (4.50)
where, with a = 1 4+ (),
2 2 (2
T = U;“C%, (4.51)
S ) (0 (4.52)

ZRa + Re{e}’

are the minimum spot size (squared) and the z position where it occurs, respectively.
Figure[32]shows the geometrical representation of these quantities. We use these quantities
to obtain the beam quality factor, given by

270 msTm,

M? =
)\ Y

(4.53)
that describes how close to "pure Gaussian' a beam is. For a pure Gaussian beam, M2
is equal to 1. For beams that deviate from a pure Gaussian beam, M? is greater than
1. Note that (N), ¢, and consequently, Oys, 7'm, 2m and M? depend on 4, and on the
field amplitudes ng. In order to highlight that this dependence arises in the theory due

to the spatial distribution of Xg?f’f) (r,z;0), we consider the averaged nonlinear coupling

R(0) YS}) (6). In this case it is straightforward to show that 1' does not vary with
da,6 nOT With €,



4.6. ARBITRARY INCIDENT BEAMS o8

Figure 32 — Longitudinal profile and parameters of the superposition of LG modes €.
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4.6 Arbitrary incident beams

We have discussed general aspects of the FWM beam solution when the incident fields
are given by pure LG modes. An interesting situation is when the incident beams are
described by general superpositions of LG modes. The modifications are straightforward.
Consider

Qa = Qg Z CiqUiq,
lq
4.54
= Qg Z dmnumna ( )

m,n
where the coefficients satisfy >, [ciq|* = 1 and 3°,,, ,, |dimn|* = 1. For the case that we are

studying, the FWM process that generates a signal in direction 21521 — Eb, the generated
field expansion coefficients become

! / lm
— QozzzKé’qn l o A’qlq nfg(z)dz] ,

la Uq' mn (4.55)
_ 00 Wm Al'me
=D > KegnAggmp:
lg Vg mn
where Q° = (Q2)2(Q0)*, K¥'m — ¢, cpod*  the summations are performed over all indices
a b qq'n q-"q" Y'mn p
contained in superposmons (4.54) and the transverse integral with extra indices is
AflqulfJ z) = // KU1 Uy g Uy, Up, T AT d . (4.56)

As before, the azimuthal integral leads to the topological charge selection rule. We see
that all modes that compose the output field must possess ¢ orders that satisfy

(=1+1—m. (4.57)

4.7 Analytical overlap integral and Gouy phase-matching

In general, it is not possible to find an analytical expression to the full overlap integral.
It is, however, possible to do so when the spatial distribution of X((;’f) is neglected. Al-
though we are mainly interested in the effects caused by the full spatial dependence of the
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nonlinear susceptibility, it is important to understand the conditions imposed in the case
where the nonlinear medium simply allows the FWM process to take place. Con51der1ng
the spatially uniform susceptibility yg?f’f), the coupling K(J) o Xeﬁ (5) factors out of (4

which then becomes the overlap integral of four LG modes, as in references [18] 22]. The
FWM field can be written as Q; = ®(0)U(7), the spatial and spectral degrees of freedom
are thus completely separated and the result from Chapter[2], that the FWM signal power
is proportional to the square of the nonlinear susceptibility, Ps(d) o | Xeﬁ( )|?, is recov-
ered. Also, in this case, the spectral degrees of freedom do not affect the distribution of
normalized coefficients 7y, = |Ay,|/v/Ps and phases ®;,. Using the full expression of the
LG modes, we can separate the z dependence of the transverse integral asE|

672'262 tan~1(z/zR)

All’m@( ) All’mf (0)

qq'np qq'np 14+ (z/zg)% (4.58)
with
Q=p+n—q—q+; (|€|+|m|—|l|—|ll)
1 (4.59)
- §(N€p + Nmn - qu - Nl’q’)a
and
'm, 'm, o il I m o2
AL (0) *ﬁcffq ied UO plIHHUIHmIHE L2 LI (p2) Lim) (02) LI (p?)e =2 pdp
o
X / e—iH=m=00 44 (4.60)
Jo

. U'mlpll'ml
- w? qu nquq np(s@:”l'*m’

where p = v/2r/w(z) and C”'me = C1,Crgy CrnnCyp is the product of LG normalization

qq'np
constants. The azimuthal integral ensures the topological charge selection rule, ¢ =

[+1'—m. Note that this makes @ an integer. The radial integral R can be calculated

using the series expansion of the associated Laguerre polynomials Llf'(x) =>"0 cﬁ'ﬁ‘xk ,

where ¢}, o = k,) 0 EP?;;‘@!_k)!. It is possible to arrive at the general expression

Ribm = Z Z el AP (G 4 12761, (4.61)
2 s haka
where I'(+) is the Gamma function and G = (|l| + [I'| + |m| + |€])/2 + k1 + k2 + k3 + k4.
The full overlap integral over the medium extension L is

Al (L/2) = ALt 0) / " fo(2)dz,

qq'np qq’'np 7L/2 (462)
= Agrnp(0) 1 (L).

2Since k and zg are the same for all modes inside the integral, the phases exp[—ikr?/2R(z)], related
to the curvature radius, cancel out.
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The z integral over the extension of the interaction region,

Io(L) = / R (1 —iz/ ZR) ’ dz, (4.63)

—r2 1+ (2/zp)2 \1+iz/z2g

is not relevant in a thin medium, where Io(L) ~ L for all () values. On the other hand,
when the medium length L is comparable to zg, it may lead to significant differences.
Note that @) can be null, and in this case

L2 d»
Io(L :/ =
o(L) ~1/2 1+ (2/zgr)?

4.64
. ( I ) (4.64)
= 2zp tan — .
QZR
On the other hand, if Q) # 0, it is possible to find
Io(L) = 28 (wf —w;?) (4.65)
QQ L L )
where L2
1+ ZR
=, 4.66
L T L2 (4.66)
In the thick medium limit, L/zr — oo and
TZR Q = 07
I — { 020 (4.67)

We conclude that the only modes that survive the mixing process in a thick medium are
those that satisfy Q = 0, or equivalently,

Ny + Ny = Nig + Nuvgr, (4.68)

which is the Gouy phase-matching condition [22]. Figure |33|shows the behaviour of fg(z)
and Ig(L) for different @) values. The imaginary part of fg is an odd function of z for
integer Q.

Figure shows the values of 7y, for €, = up1 and €, = ugo, calculated using the
analytical overlap integral , and numerically integrating the product of four LG
modes over the interaction volume for different ratios L/zr. We see good agreement
between the numerical and analytical values obtained for the mode fidelity. Furthermore,
the radial mode selection due to the Gouy phase-matching becomes evident as L/zg
increases. The only mode that is generated for higher L/zg values is ugs.

4.8 Suppression in a thick medium

We now use the results of the previous section to discuss the possibility of the supres-
sion of either of S or Sy in a thick medium due to the Gouy phase matching requirement.
Considering that one of the beams is Gaussian, €2, = wugy, and the other beam is a su-
perposition of two LG modes with null radial indices and topological charges 1 and m,
Q, = ®,,, where
U0 — Umo

o= =5 (4.69)
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Figure 33 — Longitudinal function fg(z) and its integral Ig(L) over the medium extension L
for different values of Q. For a thick medium, only Iy(L) has a significant value.
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Figure 34 — Analytical and numerical values of the FWM field mode fidelity 7, for incident

fields Q, = up1, Q% = ugp and different ratios L/zr. Mode selection due to the Gouy phase-
matching occurs for increasing L/zg.
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Figure [35| shows the transverse profile of ®,, at z = 0 for different integers m. In this
case, the transverse integral for field Sp, (2w, — wp), becomes

1 m 1 mm!
Af)(O) —Aé(l)gf;(O) Aéoo%€(0)+§A000£E(O) (4.70)

and we see that the topological charges in the output superposition are £ = 2,2m, 1+ m.
Taking into account the z dependence and integrating over the medium extension, we get

A = [51&2/\(1)(1)%( )+ G0 2m AT (0)] L(L) = 81,10y Aoy (0) Ty (14m -l —1)/2( L),
(4.71)

Here we consider the limiting case L/zp — oo, and thus the generated signal will be
composed only of modes with p =0 or S, where S = (14 |m| — |1 +m])/2 > 0. We write

Aép = [55 2A(1)(1)8;i( ) + 5&2mA6%g;9€<0)} 5p,0Ip(L> - 56,(1+m)Aé%(;e(O)ép,SIpfS(L)- <4~72)
Similarly, for S, (2w, — w,), we can find

AP = 55&71/\88(1);»(0)5@71[p+1(L) V)
However, since p > 0 is required, in the thick medium limit the generation of signal S5 is
suppressed. The above steps can be readily modified for the case where €2, is given by a
more general composition of two LG modes.

Bt A (00 Ty (). (473)

Figure 35 — Intensity and phase distributions of ®,, at z =0 for m = —2, —1,0,3 and 4.
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5 RESULTS

In this chapter we present and discuss our main results. Together, they comprise a
theoretical investigation of various aspects of the FWM signal generation and free space
propagation after leaving the nonlinear medium.

Our calculations consist of evaluating the expansion coefficient Ay, for the two sym-
metric signals S; and S;. With the set {Ag,}, all of the quantities we are interested
in can be obtained, such as the intensity distribution |,|* and its propagation outside
the medium, the mode components 7;,,, and others. We do this for a number of con-
figurations. Here, one configuration is defined by the superpositions of LG modes that
determine the shapes of ,(7) and (), the amplitudes QY and QY that determine the
total power of the incident beams, and the detunings from resonance 9, and dy,

In our calculations, all beams possess the same wavelength A\ and minimum waist w,,
giving the same Rayleigh range zp. Also, a field with amplitude &, described by uyy,
equation , will be taken as proportional to wé&yuy,, where factor w ensures that
this field will possess the same power as a plane wave with the same amplitude. For this
condition to hold, we must have w = /A, where A, is the transverse area of the spatially
uniform beam. For a circular beam of radius wpy, A¢ = mugw. It is reasonable to take
Wpy = W,, and thus w = \/mw, is used in this work.

Recalling Chapter [3] all beams in our setup possess w, ~ 1 mm near the MOT region.
For the wavelength A = 780 nm, the Rayleigh range is 2z = mw?/\ ~ 4 m. The size of
the cold atom cloud we usually obtain with our MOT is L ~ 3 — 4 mm. The condition
L/zr < 1 is satisfied and, for the most part, we focus on the thin medium regime. For
this reason, we mainly use equation to calculate the expansion coefficients. In the
thick medium regime, L >> zg, a situation more easily achievable in a Rb vapor cell, we
discuss the suppression of one of the symmetric signals due to the Gouy phase-matching
condition.

For Gaussian inputs, the transverse shapes of the FWM beams are mainly Gaussian,
and we show how free space propagation is affected by the detunings 6, and d,. In the
case of input beams with OAM, we show that the generated beams comply with the OAM
conservation condition and obtain differences in the free space propagation between S; and
S5 that arise due to the spatial distributions of fields £, and Ej,. The phase discontinuities
of LG beams reveal that by setting the detunings of incident beams off resonance, the
phase distribution of the nonlinear coherence is rotated and distorted, similar to what is
reported in other works.

5.1 Gaussian beams

For Gaussian input beams (¢, = ¢, = 0) with equal intensities and detunings 6, =
dp = 6, Sy and S, carry ¢; = 5 = 0 and possess completely symmetric transverse shape
and free space propagation characteristics. This is because the nonlinear coherence, given
by eq. , remains the same with an exchange of labels a <+ b. For resonant input
fields with Qg,b = 0.64' — which maximizes nonlinear power output for incident plane
wave fields —, we show in Fig. the spatial characteristics of the generated beams. It is
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Figure 36 — (a) Intensity distribution at the medium exit |Qs(z = L/2)|?, (b) free space propa-
gation of the generated beam, (c) mode components 7y, ,, and (d) normalized radial distribution
of the FWM beam at z/zr = 0,1/2, 1. ng = 0.64I" and 6, = 0, = 0.
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Source: The author (2021).

seen that the output beams possess almost no contribution from modes with p # 0, i.e.,
they are essentially purely Gaussian.

5.1.1 Effect of pump intensity

Now, we investigate the effect of incident beam amplitudes on the generated beam
shape. Figure |37/ shows the FWM beam propagation for different values of Q% = QY = Q.
We note that as the amplitudes increase, the overall shape of the generated beam changes
significantly. Near the medium exit, z/zg ~ 0, the beam becomes ring shaped. We
attribute this effect to a spatial saturation effect, which can be understood by inspecting
equation (4.13]). In all cases, the near field intensity profile will be determined by the
nonlinear coherence, |onr|?, and due to the Gaussian distribution of the fields, for greater
amplitudes, the denominator in is larger at the center, making |o7g °(7)| smaller
in this region. Nonetheless, after propagating distances of the order of zg, the beams
become mainly Gaussian in all cases, as we can see in the radial profile at z = zr (green
line) in the last column of Fig. . In Figure We show the dependence of rms quantities
with €. Since we are dealing with the thin medium regime, we consider the medium exit
located at z/zr = L/2zr = 0.

Sensible change of the longitudinal profile is achieved by increasing 2. We highlight
that the generated beam outside the medium has greater amplitude at positions z/zg
far from 0, for all incident beam amplitudes. In fact, for increasing €2, this position is
shifted towards greater z/zg, as seen from figures and . This would make one
expect the position of minimum 7,,5(z) to be shifted as well. However, from figure [38] we
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Figure 37 — Distribution of mode weights. propagation of the generated beam and radial
profiles at positions z = L/2 (blue), z = zr/2 (magenta) and z = zgr (green) for Gaussian
incident beams with different input Rabi frequency amplitudes ng =Q.
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see that this is not the case. The position where 7y,5(2) is minimum, z,,, is practically
unchanged by 2. We conclude that the positions of maximum field amplitude and of
minimum rms radius don’t necessarily coincide. To explain this, we refer to figure [36(d,
that shows the radial distribution of the generated field at different z positions. Indeed,
the peak field amplitude at z = zp/2, is greater than at z = L/2, but the wings are
wider, thus balancing the distribution. We note that r.,s(2) does not correspond to the
radial position where the field amplitude decreases by a factor of 1/e with respect to the
amplitude at the center, which is true for Gaussian beams. For smaller €2, the values for

Ne.p approach those obtained with the analytical expression (4.62)), because the influence

of the denominator of x(7) on the overlap integral decreases. Also, for smaller amplitudes,
the quality factor M? approaches unity, its lower bound [64].
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Figure 38 — Behaviour of 7ys(2) and the longitudinal parameters (fyms, 7'm, zm and M?) for
the symmetric generated beams for different incident Rabi frequency amplitudes Qg}b = Q.
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5.1.2 Effect of detunings from resonance

To understand the influence of the medium resonances on the spatial characteristics
of the generated beams, we investigate the effect of the detunings from resonance, 9,4, on
the free space propagation of the generated beam. First, we consider a situation where
both beams have equal detunings, i.e., come from the same laser source. This represents
our experimental setup. We see from Fig. that 0,5 has an intuitive effect on the
FWM beams. On resonance, the beams are generated with the maximum radius and the
minimum divergence. As we move away from the resonance, the initial radius decreases,
while the divergence angle increases. It is interesting to note that z,, changes considerably
for varying incident beam detunings. Above resonance, z,, is shifted to negative values,
while below resonance, it is shifted to positive values. The quality factor is maximum at
resonance and approaches unity as d,; goes away from resonance. These results suggest
that it is possible to translate the position where the minimum waist of the FWM beam
occurs by controlling the frequency of the incident beams. This translation comes with
not much change on the other beam parameters.

To evidence that the influence of the frequency degrees of freedom depend on the
incident beam amplitudes, we show in figure 40| the rms radii of the symmetric generated
beams when Q) , = 0.35'. We see that all five curves, at each d,; value, are now closer
to each other. The longitudinal parameters are not shown, but we can see that r,, varies
much less with the detunings and z,, appears to be approximately 0 for all d,p. In the
limit ngb — 0, all curves in figure {40, would become equal. This is because the coupling
x would factor out of the integral in and the frequency degrees of freedom would
not affect the overall shape of the generated beam, only its power. Also, in this limit, the
overlap integral can be calculated with (4.62)).

A common configuration in many experiments uses a strong pump beam frequency
locked near resonance and a weak probe beam that has its frequency scanned around
resonance. We now turn to a situation where the two incident beams do not have the
same detuning, but maintain the Rabi frequency amplitudes equal, Q2 = QY. When the
detunings of fields £, and E, are not equal, there is no longer a symmetry under the
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Figure 39 — Behaviour of r,¢(2) and the longitudinal parameters for the symmetric generated
beams with varying d, = ;. Incident field Rabi frequency amplitudes are Qg’b =T.
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Figure 40 — Behaviour of 7,4(2) for the symmetric generated beams with varying 6, = d.
Incident Rabi frequency amplitudes ng =0.35I".
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exchange a <> b in equation , and the generated signals S; and S5 are shown to
differ.

First, we set the frequency of F, on resonance, 6, = 0, and make 9, vary around
o = 0. Figure [dTh shows the radii of both mixing beams on free space propagation in this
situation. We see that the same detuning shifts from resonance only on d, also result in
changes in the focusing region of both FWM beams. However, the positions of minimum
radius, z,, of the two signals are translated to opposite directions (figure ) A more
focused beam on direction (ZEa — /;b) is accompanied by a more spread beam on direction
(2];:}, — Ea), and vice versa. The values of the divergence angle 6., minimum radius 7,,
and quality factor M2, also shown in figure , are very similar for both signals. Further,
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their dependence on dy, is similar that seen in the case with 6, = ;. In figure we show
the longitudinal profile of S; and Sy for 9, = 0 and d, = 0.75I', corresponding to the
purple curves of figure [fTh. Referring to the discussion of Section [5.1.1] we see that in
this case, the position of minimum 7,,5(z) seems to be closer to the position of maximum
field amplitude outside the nonlinear medium.

Figure 41 — (a) Behaviour of rms(2) of signals S and Sp for ng =T, 6, = 0, and different
values of 0. (b) Longitudinal parameters of both generated beams. (c) Propagation of both
generated beams outside the interaction medium and mode components 7, , and phases @y,
for 6, = 0 and &, = 0.75I". Red squares refer to S; and black x refer to So.
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Also, the distributions of 7, are similar for both signals, with 1o having the greatest
contribution, as before, and slightly different weights for the modes with p # 0. However,
the relative phases of the modes ug, that are being superimposed are quite different
between S; and Ss, and this is the dominant factor that leads to the differences in the
longitudinal profiles. To confirm this, we show in figure [42) the propagation of the intensity
profile of the field expansion obtained with the same distribution of 7, , of figure @3k,
but neglecting the phases ®,, ,. We see that the two fields calculated in this manner have
very similar longitudinal behaviors, and no noticeable shift of z,, occurs.

Now, we set the detuning of F, fixed at 6, = —0.75I" and vary d,, that takes the same
values as before. We see from Fig. that the longitudinal beam parameters of both
FWM signals are also affected by d,. The distributions of these parameters now become
asymmetric with respect to d,. Figure shows the propagation of the intensity profiles
for §, = —0.75T" and 0, = 0, corresponding to the yellow curves of figure d3h. Once
again, the distribution of weights 7, is very similar for S; and S;, and the differences
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Figure 42 — Propagation of the intensity profile and r,s(2) of both generated signals for 6, = 0
and &, = 0.75I" calculated considering the same 7y, , distributions of figure @c and neglecting
the phases @y .
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Figure 43 — Same as figure 41| but with é, = —0.75T

(b) Orms [107% rad] T /W,
3.0 0.6 5
=
x a
= L
2.5 o 05] . .
2.0 0.4
2 0 2 2 0 2
an/ZR ]\[2
0.5 1.10
x
o =
= =]
x o
0~ S %1105 n
x
x
0.5 1.00 X
2 0 2 2 0 2
5/:]? 6[,/].—‘ 6[)/r
Ne,p
N 2 4
n
g
£ i . x
x n
Q(”,p
0.8 . ; ) : 2 4

P

Source: The author (2021).

seen between both beams are due to the distributions of relative phases ®,.
The effect our calculations reveal resembles that of Kerr lensing, where the total index
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of refraction in the medium can be written as n = ng+nol, where ng and ny are the linear
and nonlinear refractive indices and [ is the beam intensity. The total index of refraction
is thus modulated by the spatial distribution of the beam. Evidently, the source term in
the wave equation we started with isn’t written in this form. However, in the near-field,
the product Q27 is in some cases very much representative of ;. Experimentally, the
overlap of input intensities is shown to coincide with the FWM beam intensity distribution
[19]. In light of these facts, we write as

0,
0z

i

2k

V2O, + = = k20,

(5.1)
~ grSD.

where ¢ is a parameter that can be thought of a conversion efficiency factor. We expect
Q) to be nearly Gaussian, and for simplicity we consider |V2 Q,/2k,| < [0Q,/0z|. From

equation (4.25]), we see that x can be written as kK = —moxfgf). Because of the thin-

medium condition, we neglect the z dependence of X‘(;f}), and take its value at z = 0. The
solution to the generated beam at the medium exit is

Oy(L)2) = Qy(—L/2)e 90X, (5.2)

where, in order to avoid a trivial null solution, Q,(—L/2) is taken as a Gaussian seed field.
We write the final form

3)

Oy (L)2) = Qy(—L/2)es 0 Imxcis L—igroRexcy L (5.3)

We see that the imaginary part of x is responsible for modulating the FWM field ampli-
tude, while the real part affects the phase distribution of the FWM field. The modification
to the phase distribution is equivalent to a spatially dependent change in the total index
of refraction inside the medium,

Niotal = Mg T nIQRexg? (’I“, 5)7 (54)

where nl, = gckoL /ws. Now we look at the first situation considered: incident fields with
equal detunings, d, = &,. We show in ﬁgurea plot of the real part of Xé‘? (r) as a function
of the radial coordinate for different values of d,;,. The Rabi frequency amplitudes are
Q) , = I'. We see that below resonance, d,p < 0, the total index of refraction is greater at
the center, r = 0, and decreases at greater r positions (red curve). Thus, the FWM beam
is focused. On resonance, d,; = 0, the total index of refraction is unaffected by ng) at all
r positions. The FWM beam is neither focused or defocused. Above resonance, d,; > 0,
Niotal 18 smaller at the center, and increases as we move away from this position (green
curve). As a result, the FWM beam is defocused. This agrees with the behaviour of z,,
shown in figure [39]

The same analysis can be made regarding the second case, where ¢, is fixed at reso-
nance, and 0, varies. The nonlinear susceptibility related to Sy has a radial dependence
similar to that shown in figure 4] for 6, > 0 and ¢, < 0, while for S;, the curves cor-
responding to d, < 0 and d, > 0 are switched. Thus, the changes in the total index of
refraction for S5 are the same for the case with 6, = d;, and for S; these changes are
opposite. This agrees with the behaviour of z, shown in figure 1] for both generated
beams.
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Figure 44 — Radial distribution of Rexg? (r;6) for different values of d, considering Gaussian

incident beams with amplitudes ng =T.
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5.2 LG beams

First, we consider a configuration where input beams possess different topological
charges, ¢, # (,. In this case, the coherences responsible for the generation of S; and
S, are not symmetrical, regardless of the frequency degrees of freedom. The transverse
shapes of the FWM beams are dictated by the OAM conservation condition. For signal
(2a — b), we have

= Z Aﬁlpuflp(fl’ Z)
p

= q(r, z)e’”m

(5.5)

where (1 = 2{, — {; is the only topological charge that emerges due to the OAM conser-
vation selection rule in the azimuthal integral of . Assuming ¢, # 0, 2y will show a
phase singularity and null intensity at » = 0. Since all azimuthal dependence is contained
in the exponential e~1¢, the intensity profile |Q;]?> = |g1(r, 2)|> will be ring-shaped, but
differ in some degree from a pure LG mode with TC ¢; since there are multiple p orders
contributing to g;(r, z). It is possible, however, to have ¢; = 0, and in this case the output
beam will show no phase singularity and its intensity profile will be Gaussian shaped, but
differ from a pure Gaussian beam because there will also be multiple p orders contributing
to the signal. Similarly, for Sy, Qy = go(r, 2)e~2? where ¢, = 2, — {,. The same points
can be made about 2.

The free space propagation properties of both signals also depend on the medium
quantities in a manner similar to what has been shown for Gaussian inputs. This suggests
that beams with OAM don’t change qualitatively the effect of X,ﬁ? (r,2;0) on rs(2). As
an example, if incident fields have equal topological charges ¢, = ¢, and detunings 6, = dp,
the full symmetry between coherences 025" and 025~ is recovered, and we get a behaviour
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very similar to that of Fig. . The difference is that the values of r,s(2) at the medium
exit and the divergences are greater due to the fact that the output beams possess ¢ # 0

(figure [45).

Figure 45 — Behaviour of r.ys(z) and of the longitudinal parameters for different values of
dap/T". Input Rabi frequency amplitudes are ngb =T and ¢, =¥, = 1.

1.5 Orms [1() . rad] 10 7‘,“/11,.‘0
— 00y = -L5T a a '
Lar s, =-075T . . .
§up = OT 3.0 0.9
1.3} L - o
2 —0,5 = 0.75T o o o
£ o] [==fu =150 25 0.8
12 2 0 2 2 0 2
EXE )
g0 Zm /2 M?
= 0.1 /28 24
1 a
o
0 o 221 ° °
09t a o o
o o
0.8 : : : : 0.1 2.0
0 0.2 0.4 0.6 0.8 1 2 0 2 2 0 2
,:/ZR (sn,h/r (Sth/F
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The phase discontinuities inherent to beams with OAM can help one understand how
ch}) (r,2;0) affects the superposition coeflicients A,. Figure 46| shows the phase distribu-
tion of 62370 oc e~ ta=0)? for ¢, = 2, ¢, = 0, §, = 0 and varying & and different values
of Q). In this case, {; = 4. Off resonance, we see that the phase distribution suffers a
global rotation and a distortion near the origin, relative to d, = 0 (center). The rotation
direction is opposite to the distortion direction and the orientation of both effects change
with the sign of §,. Further, the distortion is larger for increasing incident Rabi frequency
amplitude. We chose to show these effects on the phase distribution of the coherence,
and not of the FWM field, because the latter presents discontinuity rings that result from
higher p order modes with negligible contribution. Similar results have been reported in
refs. |29, B0], where more complicated atomic systems are considered. In ref. [29], it is
shown that the phase mismatch also distorts the phase distribution of the FWM field.
In these works, however, connection is established between this effect and other spatial
properties of the FWM signal. In the case of Gaussian beams, the detunings also affect
the phases of oy, but since the phase distributions are always circularly symmetric, these
effects can’t be seen.

We now turn to a situation where ¢, = [ and ¢, = nl, where n is an integer. The

topological charge selection rule leads to
(01,05) = (2 —n,2n —1)I. (5.6)
A few cases are of special interest:
o For n =1, both outputs possess the same OAM as the inputs, (¢1,02) = (I,1).

o For n = —1, we get two outputs with a three-fold increase in OAM magnitude and
opposite handedness, (¢1,03) = 3(I, —1).
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Figure 46 — Phase distribution of 02$™" at z = L/2 for £, = 2, £, = 0, 6, = 0 and §,/T" =
—0.75;0;0.75 (from left to right), for different field amplitudes ngb = I';4T" (from top to bottom).
Red and black arrows indicate the orientation of the rotation and distortion effects, respectively.
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o For n =2, we’ll have one output beam with the sum of input OAM, while the other
will possess no topological charge, (¢1,¢s) = (0, 30).

Considering [ = 1, in the first case, n = 1, both generated beams are completely
symmetrical, and we see in figure [{7h all of their spatial properties and the distributions
of mode weights and phases. They are very close to pure u;yp LG beams. The OAM is
evident from the number of radial discontinuities on the phase distribution. The twisting
of the phase distribution as the beams propagate is due to their helicity, and has no
relation with the frequency degrees of freedom.

When n = —1 the spatial properties and expansion coefficients are shown in figure
[d7b. The relative phases are all equal, and thus become a global phase that does not affect
the expansion of LG modes of the generated fields. Further, we note that the distribution
of ng,p is exactly the same for both S; and S;. The intensity distributions of the two
beams are thus equal throughout all propagation from the medium exit to z = zr. The
only difference is the helicity of the beams, which can be verified by looking at the phase
distributions at z = 0 and z = z/zg. This can be understood by inspecting the integrand
of equation and the LG mode expression, given by . Mathematically, the
only role of the handedness of the incident topological charges is to determine the OAM,
Uy, via the azimuthal integral. For the radial integral, only the absolute values of ¢, and
l, are relevant. Once again, the twisting of the phases upon propagation — in opposite
directions for S; and S, — is due solely to the helicities of the beams.

Finally, for n = 2, we get two beams with that are asymmetric with respect to in-
tensity and phase distributions. Figure {7k shows the spatial properties of the generated
FWM beams. In this case, S; and Sy present very different behaviors. S is generated
with a ring shape, but has no phase singularity, and transitions to a Gaussian shaped
beam upon propagation. Ss, on the other hand, maintains its initial shape, propagating
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Figure 47 — Intensity and phase distributions, mode weights 7, , and relative phases ®, , and
radial profiles at positions z = L/2,zr/2 and zr for the two generated signals for the cases
(a) n =1, (b) n = —1 and (¢) n = 2. Where no distinction is made between S; and Sy, it is

applicable to both. In all cases, Qg}b =I,0,=0=0andl=1.
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Figure 48 — Behavior of rys(z) for S1 and Sy of cases n = £1,2. Detunings are fixed at
resonance, d, = o, = 0, and Rabi frequency amplitudes are ng =T.
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approximately as one would expect from an LG beam with nonzero topological charge.

The far-field intensity distributions in all cases correspond to the OAM content of
the FWM beams. In the near-field, the situation is a little more subtle, and an intuitive
explanation is the following. The near-field beam profiles are dictated by the nonlinear
coherences, 02¢7" and 0?5, The denominator in equation has little influence here,
and thus the FWM beam shape leaving the interaction medium is mainly determined
by the product of incident fields. For n = +£1, the coherences that generate both FWM
signals contain products of LG modes with |¢| = 1 only. For both of these cases, S; and
Sy will possess ring shaped intensity profiles close to that of an LG mode with [¢| = 1,
leaving the interaction medium. For n = —1, the generated beams have three times
the topological charge, and a stronger diffraction occurs upon propagation. The ring
size increases considerably as compared to n = 1. On the other hand, when n = 2,
the coherences that generate S; and S; are products of LG modes with ¢ = 1,2. Both
generated beams thus leave the medium with larger intensity rings, in comparison with
n = £1. Because of the topological charge difference, Sy (¢2 = 3) diffracts much more
than S; (¢/1 = 0). All of this can be confirmed by looking at r.,s(z) for the three cases,
shown in figure [48]

A statement that summarizes the previous paragraph is that the near-field intensity
distributions are dictated by the product of incident fields, but upon free-space propa-
gation, they are not necessarily stable. This is because the FWM fields must satisfy the
nonhomogeneous PWE inside the nonlinear medium, where the source term that drives
the signal generation is nonzero; but in the region z > L/2, they must satisfy the homo-
geneous PWE. As an example, signal Sy for n = 2 possesses a dark valley at z = L/2
because the source term has this shape at z < L/2. Outside the medium, where the field
propagates freely, this shape is not stable for beams with no topological charge, and this
is the reason for the transition to the final Gaussian shape at z = zy.
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5.3 Suppression in a thick medium

As mentioned, when L/zr — 0o, the modes in the expansion for €23 must satisfy the
mode number selection rule. In Chapter [] we showed how this requirement arises and
how it results in the suppression of one of the generated signals. Here we briefly discuss
two cases. We'll take k(r, z;9) ~ &(d), such that equation (4.62)) can be used to calculate
the FWM expansion coefficients.

First, consider resonant input fields with (¢,,¢,) = (1,0). From the OAM conservation,
the output topological charges will be (¢, f5) = (2, —1). The generated fields are written
as

=3 Aooo,(0)Ip(L)usy,

’ 0011 (5.7)
Q=3 Agoop (0)Tpr1(L)u—1y.
p

We see that when L/zr — 00, Sy will possess only p = 0 and S; will be suppressed. Thus,
the simultaneous transfer of OAM to both FWM is not achievable in a thick medium.

Next, for pumps Q, = ®,,, where ®,, = (u19 — Umo)/Vv/2, and , = ug, the expansion
coefficients are given by equations and . Figure 49| shows the beam power of
both FWM signals as a function of L/zg when Q, = ®4. For L &~ zy, the output power
of S7 and S, are comparable. As L increases, however, P, reaches a maximum and begins
to decrease, until it is negligible in comparison to P;. In this manner, the simultaneous
transfer of arbitrary shape to both FWM beams is not possible in a thick medium.

In general, the suppression occurs to the signal that is a result of the interaction with
two contributions from wugg, and one from the higher order field.

Figure 49 — Beam power of S and S as a function of L/zp for incident fields given by Q, = &4
and Qb = UpQ-
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6 CONCLUSIONS

In this work we conducted a detailed theoretical analysis of the spatial shape of two
FWM signals (S; and Sy) generated in a sample of cold two-level atoms. The FWM
field was found in terms of a superposition of LG modes, where the coefficients are given
by the projection of the nonlinear polarization onto the LG function space. A thin-
medium regime was considered. For equal incident beams, the two signals are completely
symmetric. This symmetry is lost when the spatial distributions or the detunings from
resonance of incident beams E, and Ej are different.

Considering only Gaussian incident beams, we showed that the combined spatial and
spectral degrees of freedom of the nonlinear susceptibility Xg?f’f) lead to modifications on
the expansion coefficients. These modifications resulted in intuitive effects on the free
space propagation of the generated beam when the frequencies of incident beams are set
off resonance. The most notable of these effects is the focusing or defocusing of the FWM
beam upon free space propagation, outside the interaction medium. This was seen as a
translation of the position of minimum beam waist, z,, to positive or negative z values,
depending on the signal of the detuning shift. When the frequency of one of the incident
fields is set on resonance, the generated signals are non symmetric, and the translation of
zm for S and Sy occurs in opposite directions.

With a modification to the original wave equation for the FWM field, a solution is
found that explains these results in terms of a change in the total index of refraction
inside the interaction medium. The behaviour of this modified solution resembles that of
the Kerr effect, where the index of refraction is modulated by the intensity distribution
of the incident beam.

When incident beams posses Laguerre-Gaussian distributions, our calculations reveal a
rotation and bending of the phase distribution of the FWM field that occurs when we vary
the frequency degrees of freedom. This effect is similar to what is reported in references
[29,30]. However, in these works no connection is established with the longitudinal profile
of the FWM beam outside the medium.

Finally, in the thick-medium regime, we considered incident fields given by pure LG
modes or a superposition of two LG modes. This regime can be more easily reproduced
in a cell of Rb vapor, a system that has been widely explored with numerous objectives.
In this scenario, using the overlap integral of four LG modes only, we showed that the
requirement of the Gouy phase-matching can result in the suppression of one of the two
generated signals.

We also described our experimental apparatus and presented preliminary experimental
results of FWM in our magneto-optical trap. The narrowing of the FWM lineshapes
(of Sy and S3) due to the non trivial intensity distribution of incident LG beams was
evidenced in our measurements and the origin of this effect was discussed. By calculating
an effective lineshape, that takes into account the full spatial dependence of the incident
fields participating in the nonlinear process, we obtained FWM spectra that become
narrower for increasing topological charge of one of the incident beams. This makes
us believe that both detected FWM signals carried OAM when the experiments were
performed introducing a topological charge onto beam FE,. However, we do not have
additional data to support this hypothesis.
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The intensity profile of the FWM signal generated in our MOT was obtained using
incident Gaussian beams. A procedure was employed to eliminate unwanted scattered
light and the revealed FWM beam seems to be approximately Gaussian shaped with
some ellipticity. In future projects, we seek to capture the intensity profile of the generated
beam when incident beams possess LG distributions as well. The characteristic shape of
beams with OAM or an interferometric measurement to reveal information about the
phase structure will be important to confirm the presence of OAM in both generated
signals.
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