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RESUMO

A medida que os processos industriais se tornam mais complexos, torna-se essencial 0
desenvolvimento de novas metodologias capazes de monitoré-los de forma eficiente. Nesse
contexto, métodos quimiométricos podem ser utilizados para o tratamento de dados
provenientes desses processos, visando extrair informacdes relevantes que auxiliem na sua
compreensdo e monitoramento. Dentre as ferramentas quimiomeétricas aplicadas a processos,
podem-se destacar as técnicas de calibracdo multivariada e os métodos de monitoramento
estatistico de processos (Statistical Process Monitoring - SPM). No presente trabalho, essas
ferramentas foram utilizadas em duas abordagens. Na primeira, modelos de regressdo por
minimos quadrados parciais (Partial Least-squares - PLS) foram desenvolvidos, com base em
dados espectroscopicos, para 0 monitoramento da producdo de biodiesel em uma coluna de
destilacdo reativa. Um espectrdmetro portétil no infravermelho préximo, o MicroNIR, foi
utilizado para o monitoramento on-line da mistura reacional na base da coluna. Além disso,
misturas sintéticas foram empregadas na construcdo dos modelos com o intuito de ampliar a
faixa de concentracdo dos componentes modelados: etanol, glicerol e éster alquilico
(biodiesel). Resultados satisfatérios foram obtidos em relacdo aos valores da raiz do erro
quadratico médio de predicdo (Root Mean Square Error of Prediction - RMSEP). A segunda
abordagem envolveu o desenvolvimento de uma estratégia de SPM para monitorar 0 processo
industrial de metalizacdo a vacuo de filmes de poliéster, com base nos dados de densidade
Optica (DO) do filme metalizado adquiridos ao longo da producdo. Esses dados representam
uma medida indireta da espessura do revestimento e séo utilizados no controle do processo.
Assim, esse trabalho visou possibilitar uma estratégia de monitoramento eficiente, através de
uma analise mais elaborada dos dados de DO ja coletados. Ap6s uma andlise exploratéria
desses dados, envolvendo um estudo de correlagdo e tendéncia, foi proposta a aplicacdo de
uma carta de controle da média mdvel exponencialmente ponderada (Exponentially weighted
moving average - EWMA) para o monitoramento da tendéncia. Além disso, apds
diferenciacdo dos dados, utilizou-se uma carta EWMA e uma carta da amplitude para o
monitoramento da média e da variabilidade do processo, respectivamente. Por fim, a
avaliagdo dos resultados permitiu uma analise coerente dos dados, indicando a viabilidade da

estratégia sugerida para 0 monitoramento do processo.

Palavras-chave: Calibragdo multivariada. Monitoramento estatistico de processo.

Quimiometria de processo. Tecnologia analitica de processo.



ABSTRACT

As industrial processes become more complex, the development of new
methodologies capable of efficiently monitoring them are essential. Chemometric methods
can be used in the analysis of the data of these processes to extract relevant information that
will facilitate understanding and monitoring of this data. In the present work, two
chemometric tools, multivariate calibration and statistical process monitoring (SPM) were
used for two different approaches. In the first one, partial least squares (PLS) regression
models were developed, based on spectroscopic data, for monitoring biodiesel production in a
reactive distillation column. A portable spectrometer in the near infrared region was used for
the online monitoring of the reaction mixture at the bottom of the column. In addition,
synthetic blends were used in the development of the models in order to increase the
concentration range of the components: ethanol, glycerol and alkyl ester (biodiesel).
Satisfactory results were obtained in relation to the root mean square error of prediction
(RMSEP) values. The second approach involved the development of a SPM strategy to
monitor the industrial vacuum metallization process of polyester films, based on the optical
density (DO) data of the metallized film acquired during production. These data represent an
indirect measure of the coating thickness and are used in the process control. The aim of this
present work was to suggest an efficient monitoring strategy through a further elaboration
analysis of the DO data already collected. After an exploratory data analysis, involving
correlation and trend investigations, the application of an exponentially weighted moving
average (EWMA) control chart was considered for trend monitoring. In addition, an EWMA
chart and a range control chart on the differenced data were used to monitor process mean and
variability, respectively. Finally, the evaluation of the results enabled a coherent analysis of

the data, indicating the viability of the suggested strategy for monitoring the process.

Keywords: Multivariate calibration. Process analytical technology. Process chemometrics.

Statistical process monitoring.
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1 INTRODUCAO

Nas ultimas deécadas, o rapido avanco tecnoldgico tem impulsionado o
desenvolvimento de sensores analiticos e sistemas computacionais. A associacdo desses
elementos empregados na producdo industrial € um dos fatores que tem conduzido & nova
geracdo dos processos industriais de manufatura, amplamente denominada Industria 4.0. Esta
¢ caracterizada, principalmente, por processos complexos, cujo monitoramento gera uma
enorme quantidade de dados, adquiridos em uma elevada frequéncia e provenientes de fontes
diversas (BAKDI; KOUADRI, 2017; HE; WANG, 2018; SZYMANSKA, 2018).

Esse cenério, além de proporcionar oportunidades de crescimento e desenvolvimento,
também envolve alguns aspectos desafiadores, que estdo presentes desde a etapa de projeto
até o controle e monitoramento do processo. Adicionalmente, existem ainda as crescentes
exigéncias para a manutencdo da seguranca, sustentabilidade, qualidade do produto e
capacidade de operacdo. Dessa forma, esse contexto atual tem requerido a utilizacdo de
ferramentas poderosas de analise de dados em tempo real, com o objetivo de dar agilidade ao
processo de tomada de decisbes e ao desenvolvimento de solucbes eficientes diante de
emergéncias no processo produtivo (BAKDI; KOUADRI, 2017; SHANG; YOU, 2019).

E nesse contexto que esta inserida a ciéncia de dados, que pode ser entendida como
um campo interdisciplinar da ciéncia em que métodos estatisticos e matematicos s&o
associados a sistemas computacionais e da informacdo com o objetivo de evidenciar
informac@es relevantes e novos entendimentos sobre os dados. Diversas ferramentas podem
ser aplicadas com esse objetivo. A quimiometria, por exemplo, é considerada uma parte
importante dessa ciéncia (SZYMANSKA, 2018).

Usualmente, a quimiometria € definida como uma parte da quimica utilizada para
extrair informacdes relevantes sobre um sistema quimico, através da aplicacdo de métodos
matematicos e estatisticos. Entretanto, ja faz um tempo que as técnicas quimiométricas tém
ampliado o seu dominio de aplicacdo. Dessa forma, principalmente devido as indmeras
aplicacdes a processos industriais, a quimiometria se tornou também assunto de interesse da
engenharia quimica e de processos (WISE; KOWALSKI, 1995).

A aplicagdo das ferramentas quimiométricas a processos industriais € bastante
abrangente, incluindo, por exemplo, os métodos de planejamento experimental (Design of
Experiment - DOE), as técnicas de calibracdo e classificacdo multivariada e 0 monitoramento
estatistico do processo (FERREIRA; TOBYN, 2014; GRASSI; ALAMPRESE, 2018;
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SHANG; YOU, 2019; VIGNADUZZO; MAGGIO; OLIVIERI, 2020).

Considerando-se a importancia dessas ferramentas de analise de dados para evidenciar
informacdes relevantes que auxiliem na compreensao e no monitoramento de processos, no
presente trabalho, técnicas quimiométricas foram empregadas no tratamento de dados
coletados durante dois processos diferentes. Na primeira abordagem, um espectrémetro
portatil na regido do infravermelho préximo foi utilizado para o0 monitoramento on-line da
producdo de biodiesel em uma coluna de destilagdo reativa. Com base nos dados
espectroscopicos coletados durante o processo, modelos de regressdo por minimos quadrados
parciais (Partial Least-squares - PLS) foram desenvolvidos para estimar os teores de etanol,
glicerol e éster alquilico (biodiesel) na base da coluna. J& na segunda abordagem, técnicas de
monitoramento estatistico de processos foram utilizadas com o objetivo de sugerir uma
estratégia de monitoramento para o processo industrial de metalizacdo a vacuo de filmes de
poliéster. Nessa abordagem, gréficos de controle foram desenvolvidos com base na densidade
Optica do filme metalizado adquirido durante a producdo, a qual representa uma medida
indireta da espessura do revestimento aplicado ao filme polimérico. Por tratarem de processos
distintos, cada abordagem e 0s seus respectivos objetivos especificos estdo contemplados em

um item especifico desta tese.
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2 FUNDAMENTACAO TEORICA

A seguir, estdo inseridos alguns topicos que fornecem embasamento tedrico aos temas

abordados nesta tese.

21 TECNOLOGIA ANALITICA DE PROCESSO

De modo geral, a compreensao sobre determinado processo produtivo é essencial para
a implementacdo de um controle eficiente e, por conseguinte, para a redugcdo de sua
variabilidade. Nesse contexto, tem-se buscado desenvolver novas metodologias capazes de
ampliar o entendimento sobre o0s processos industriais modernos, 0s quais sdo, em geral,
complexos e multivariados. A partir dessa necessidade, surgiu a Tecnologia Analitica de
Processo (Process Analytical Technology - PAT), um tema que tem sido amplamente
estudado e aplicado, principalmente, nas indUstrias farmacéuticas e de quimica fina, que
exigem um maior rigor em relacdo ao controle da producdo (SIMON et al., 2015;
GROBHANS et al., 2018, THAKUR; HEBBI; RATHORE, 2020; VIGNADUZZO;
MAGGIO; OLIVIERI, 2020).

A agéncia Food and Drug Administration (FDA), do Departamento de Saude e
Servigos Humanos dos Estados Unidos, em um guia direcionado a industria farmacéutica,
definiu PAT como um sistema voltado para o projeto, a analise e o controle do processo, por
meio da medicdo de parametros de processo e atributos de qualidade em diversas etapas da
producdo, durante o processamento (FDA, 2004). Pode-se identificar quatro aspectos
essenciais que constituem esse sistema: a compreensao sobre os principais fatores que afetam
a dinamica do processo e a qualidade do produto final; a analise do processo; a analise dos
dados multivariados coletados e o controle do processo (GRASSI; ALAMPRESE, 2018).

Existem diversas ferramentas que podem ser utilizadas a fim de satisfazer aos
principais objetivos de estratégias PAT, dentre as quais se destacam os dispositivos para
aquisicdo e anélise de dados multivariados, as ferramentas de controle e monitoramento de
processos, 0s modernos analisadores de processos e as técnicas aplicadas a gestdo do
conhecimento e a melhoria continua. Essas ferramentas podem ser empregadas sozinhas ou
em conjunto, em uma etapa do processo produtivo ou em toda a producéo, visando a obtencao
de informagdes que permitam ampliar a compreenséo sobre 0 processo, 0 gerenciamento dos

riscos e a melhoria continua (FDA, 2004).
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Por fim, faz-se necessario ressaltar que o tema PAT é bastante abrangente e tem
natureza multidisciplinar, incluindo ndo apenas as analises quimicas, como também as
analises fisicas, microbioldgicas, matematicas e de risco. Assim, especialistas na area de PAT
podem vir de diversas formacdes, principalmente das areas de engenharia e instrumentacéo.
De modo geral, algumas aplica¢fes e desenvolvimentos recentes na area de PAT incluem:
monitoramento e controle de processos (cristalizagdo, fermentacéo, destilagdo, dentre outros),
desenvolvimento de sensores analiticos, scale-up de laboratério para planta piloto, utilizacdo
de técnicas espectroscopicas como ferramentas de PAT (Raman, infravermelho, terahertz) e
emprego de métodos quimiométricos (DE BEER et al., 2011; SIMON et al., 2015; GRASSI;
ALAMPRESE, 2018).

2.2 ESPECTROSCOPIA NO INFRAVERMELHO PROXIMO

A espectroscopia no infravermelho € um tipo de espectroscopia vibracional
considerada uma importante tecnologia para as determinacdes quantitativas e qualitativas de
compostos moleculares nos estados solido, liquido e gasoso. O infravermelho esta associado a
regido do espectro eletromagnético em que o comprimento de onda varia de 780 a 1.000.000
nm, o0 que corresponde a uma variagdo de nimero de onda de 12.800 a 10 cm™.
Considerando-se aspectos relacionados a aplicacdo e a instrumentacdo, essa regido é
geralmente subdividida em infravermelho proximo (NIR - Near Infrared), médio (MIR - Mid
Infrared), e distante (FIR - Far Infrared). A faixa do NIR corresponde a regido espectral mais
energética, em que o comprimento de onda varia entre 780 e 2.500 nm. Ja a faixa do FIR,
corresponde a regido entre 50.000 e 1.000.000 nm. A faixa do MIR, por sua vez, € a regido
intermediaria do infravermelho, que vai de 2.500 a 50.000 nm (SKOOG; HOLLER;
CROUCH, 2009).

De um modo geral, quando uma radiagdo incide sobre um composto molecular, este
absorve apenas determinadas frequéncias dessa radiacdo. No processo de absor¢édo de energia
correspondente ao infravermelho médio, apenas as frequéncias da radiagdo incidente que
coincidem com as frequéncias de vibracdo naturais da molécula s&o absorvidas. A absorcao
esta condicionada, no entanto, a variagdo do momento de dipolo das ligagbes da molécula
durante os movimentos de vibracdo ou de rotacdo. Dessa forma, apenas as ligacdes que

apresentam um dipolo elétrico que varia na mesma frequéncia da radiacdo infravermelha
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incidente sdo capazes de absorvé-la. Moléculas simétricas, por exemplo, sdo inativas a
radiacdo em toda a regido do espectro infravermelho (PAVIA et al., 2009).

Como consequéncia da absorcéo da energia na regido do infravermelho, a molécula
passa do estado fundamental para o estado excitado, sendo essa transicdo energética capaz de
proporcionar um aumento na amplitude dos seus movimentos vibracionais. Os principais
modos vibracionais das moléculas que absorvem radiacdo infravermelha séo a deformacéo
axial e a deformacdo angular. A deformacdo axial, também denominada estiramento, &
caracterizada por alteracdes na distancia entre dois atomos ao longo do eixo da ligacdo. Ja a
deformacgdo angular, envolve variagdes no angulo formado por duas ligacdes. Existem
diversos modos de deformacdo angular, os quais podem ocorrer dentro de um mesmo plano
ou para fora dele (PAVIA et al., 2009; SKOOG; HOLLER; CROUCH, 2009).

Em particular, as absor¢bes na regido do infravermelho préximo (NIR) estdo
associadas, principalmente, aos sobretons e as bandas de combinacdo das vibracGes
fundamentais das ligacbes C—H, N—H, O—H e S—H. Assim, as principais aplica¢Oes dessa
técnica estdo relacionadas as determinagdes quantitativas e qualitativas de espécies que
apresentam grupos funcionais contendo essas ligacdes (SKOOG; HOLLER; CROUCH, 2009;
SIMPSON, 2010).

O crescente uso da espectroscopia NIR, incluindo em aplicacBes industriais, esta
associado, principalmente, as suas caracteristicas fundamentais ja bem estabelecidas, dentre as
quais, pode-se citar: rapidez na aquisicao espectral, elevada precisdo e, na maioria dos casos,
auséncia de preparo de amostra e manutencao de sua integridade. Adicionalmente, os avancos
na area da instrumentacdo e da quimiometria sdo fatores que tém impulsionado o rapido
desenvolvimento da tecnologia NIR. Em relacéo a instrumentacdo, 0 progresso nessa area tem
proporcionado melhorias na aquisi¢do espectral e no tratamento de dados espectroscopicos.
Esses avancos sdo orientados, principalmente, pela miniaturizacdo dos equipamentos e pelos
sistemas de aquisicdo de imagens espectrais. JA& no que diz respeito aos métodos
quimiomeétricos, estes sdo essenciais para a obtencdo de informacdes relevantes a partir dos
dados espectroscopicos, principalmente devido a complexa natureza dessa regido espectral,
caracterizada normalmente por bandas alargadas e sobrepostas, o que dificulta a sua

interpretacdo e a atribuicéo das bandas de absorcdo (PASQUINI, 2018).
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2.2.1 Espectroscopia no infravermelho proximo como uma ferramenta da tecnologia

analitica de processo

Em comparacdo com outras técnicas analiticas, na ultima década, a espectroscopia
NIR tem se destacado para aplicacfes na area de PAT, tendo sido empregada em diversos
setores produtivos, especialmente, nas industrias farmacéuticas (PASQUINI, 2018). Além das
vantagens anteriormente citadas relacionadas ao uso dessa técnica para aplicacdes diversas,
existem alguns fatores que a tornam particularmente atrativa para utilizagio como uma
ferramenta de PAT. Um desses fatores, por exemplo, estd associado a variedade da
instrumentacdo na area do NIR, que permite que essa tecnologia atenda a diversas demandas
industriais. Assim, o instrumento de NIR pode ser selecionado de acordo com um critério
considerado critico para a aplicacdo, o qual pode ser, por exemplo, elevada precisao, rapidez
na aquisicéo dos dados ou exatiddo do comprimento de onda (SIMPSON, 2010).

Adicionalmente, ainda do ponto de vista da instrumentagdo, outro fator que tem
impulsionado a utilizagdo do NIR para aplicacdes industriais consiste no fato de o0s
instrumentos NIR serem, em geral, robustos e compactos. Além disso, possibilitam que a
aquisicdo espectral da amostra seja obtida por meio de sondas conectadas ao equipamento
através de cabos de fibra dptica ou por meio de instrumentos ultracompactos e portateis, o que
simplifica bastante a utilizacdo dessa tecnologia em linhas de producdo complexas (GRASSI;
ALAMPRESE, 2018; MIRSCHEL et al., 2018; PUIG-BERTOTTO; COELLO; MASPOCH,
2019).

Outro aspecto do emprego da tecnologia NIR na area de PAT esté relacionado a baixa
absortividade molar dos sobretons e das bandas de combinagdo, quando comparada a das
vibracbes fundamentais. Apesar de torna-la uma técnica ndo muito sensivel, apresentando
geralmente um limite de deteccdo em torno de 0,1%, essa baixa absortividade é muitas vezes
considerada vantajosa do ponto de vista de PAT, uma vez que permite que as amostras sejam
analisadas sem a necessidade de diluicdo prévia ou utilizacdo de técnicas para atenuar a
radiacdo incidente. Como resultado, a espectroscopia NIR pode ser empregada para medicéo
direta das amostras, atendendo a um dos principais requisitos da maioria das aplicagfes na
area de PAT (SIMPSON, 2010).

Dessa forma, a possibilidade da medicdo direta das amostras tem impulsionado o uso
do NIR para o monitoramento in-line e on-line de diversos processos produtivos, visando

aplicacdes, por exemplo, em indlstrias farmacéuticas (DE BEER et al., 2011; HOHL et al.,
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2017), alimenticias (GRASSI; ALAMPRESE, 2018) e de biocombustiveis (DE LIMA et al.,
2014; GELINSKI et al., 2018). Além de ser empregado, inclusive, para determinacGes
quantitativas e qualitativas dos produtos intermediarios e finais da producdo (GRASSI;
ALAMPRESE, 2018; PUIG-BERTOTTO; COELLO; MASPOCH, 2019).

Outro beneficio do emprego da espectroscopia NIR em aplica¢des na area de PAT esta
relacionado a capacidade de penetracdo da radiacdo devido aos comprimentos de onda mais
curtos dessa faixa espectral, quando comparados aos de outras técnicas espectroscopicas
vibracionais. Ao utilizar essa técnica para a analise de alguns sélidos por reflectancia difusa, o
feixe da radiacdo é capaz de penetrd-los com profundidade na ordem de alguns milimetros.
Essa caracteristica do NIR permite utiliza-lo para analises ndo destrutivas, o que pode ser Util,
por exemplo, para a avaliacdo da qualidade de diversos materiais comercializados e utilizados
como mateéria-prima na producao industrial, evitando-se, assim, problemas de contaminacéo e
heterogeneidade das amostras (SIMPSON, 2010). Por exemplo, essa caracteristica do NIR
tem sido avaliada para 0 monitoramento da qualidade de frutas e verduras ( MAGWAZA et
al., 2012; MARQUES et al., 2016; EISENSTECKEN et al., 2019).

2.2.2 Miniaturizacdo dos equipamentos de infravermelho proximo

Conforme mencionado, um dos principais aspectos relacionados a ascensdo da
tecnologia NIR esta associado aos avangos na area de instrumentacdo, sendo a tendéncia a
miniaturizacdo um dos fatores mais relevantes. Nesse contexto, na Ultima década, um namero
crescente de equipamentos portateis na regido do NIR tem sido desenvolvido e
comercializado.  Pasquini (2018), por exemplo, listou em torno de vinte instrumentos
comerciais compactos, alguns dos quais sdo extremamente leves, pequenos e baratos.
Segundo o autor, essa tendéncia a miniaturizacdo tem transformado a espectroscopia NIR por
permitir analises in loco.

Um dos equipamentos portateis disponiveis no mercado é o MicroNIR, produzido pela
VIAVI. O MicroNIR abrange uma familia de espectrébmetros ultracompactos que incluem
desde os instrumentos portateis para analise em campo, como o MicroNIR Pro, utilizado no
desenvolvimento desse trabalho, até os instrumentos diretamente voltados para as aplicacdes
na area de PAT, os quais podem ser adaptados para uso em reatores ou tubulagdes (VIAVI,
2020). O tamanho reduzido desses instrumentos € devido, principalmente, a utilizacdo de um

filtro linear variavel (Linear Variable Filter - LVF) como elemento dispersor. Trata-se de um
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filme fino de espessura variavel responsavel por dispersar a radiacdo incidente. Dessa forma,
cada pixel do arranjo de fotodiodos, utilizado como detector, responde a um comprimento de
onda especifico da radiacdo dispersa, permitindo que os espectros sejam adquiridos na regido
entre 908 e 1676 nm, conforme ilustrado na Figura 1a. Por fim, esse mecanismo de aquisi¢do
espectral esta instalado em um equipamento ultracompacto (Figura 1b) sem partes méveis, 0
que confere robustez ao MicroNIR (O’BRIEN et al., 2012; PEDERSON et al., 2014).

Figura 1 — Esquema simplificado do funcionamento do MicroNIR, apresentando a disperséo da radiacéo
incidente por parte do Filtro Linear Variavel e a deteccéo dessa radiacéo pelo arranjo de fotodiodos,
para aquisi¢do espectral na regido entre 908 a 1676 nm (a) e espectrdmetro portétil MicroNIR Pro (b)

a) b)
Arranjo de fotodiodos 908 nm 1676 nm
(detector)

Radiagdo dispersa ——___ t f t
Filtro Linear Variavel —

Radiacio ///\

/ \

incidente\
~

Fonte: Pederson et al. (2014)

As principais vantagens associadas a utilizacdo desse tipo de sensor analitico estdo
relacionadas ao tamanho, ao peso, a robustez e ao reduzido custo de manufatura desses
equipamentos. Além disso, por permitir analises em tempo real e in loco, tem-se avaliado o
potencial dos espectrdmetros comerciais portateis para utilizacdo em diversos campos de
atuacdo (incluindo aplicacGes visando ao emprego em processos industriais) obtendo-se, em
geral, bons resultados (MODRONO et al., 2017; GALAVERNA et al., 2018; PASQUINI,
2018; PUIG-BERTOTTO; COELLO; MASPOCH, 2019; DA SILVA et al., 2019).

Apesar dos beneficios proporcionados pelos instrumentos miniaturizados na regido do
NIR, é importante ressaltar alguns desafios associados ao emprego desses equipamentos.
Como exemplo, pode-se citar a sua resolu¢cdo mais baixa e sua faixa espectral reduzida,
quando comparadas as de um equipamento de bancada. Além disso, conforme Pasquini
(2018), a area de medicdo reduzida desses instrumentos pode representar uma desvantagem
por dificultar a obtencdo de espectros representativos, especialmente para amostras nao
homogéneas. Esse problema, no entanto, pode ser contornado com o emprego de um sistema
de amostragem e de analise apropriados. Por fim, de acordo com 0 mesmo autor, os modelos

desenvolvidos utilizando-se instrumentos portateis podem apresentar erros maiores quando
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comparados aos métodos de referéncia e aos equipamentos de bancada. A escolha em utiliza-
los, entdo, deve ser decidida ndo apenas nos resultados dos modelos, mas também com base
na adequacdo ao uso. Assim, apesar de proporcionarem uma menor precisdo, dependendo da
aplicacdo, a utilizacdo desses equipamentos pode ser bastante vantajosa, dentre outros
aspectos, por permitem a obtencdo de medidas em tempo real por um custo relativamente

baixo para 0s USUArios.

2.3  QUIMIOMETRIA

Conforme mencionado anteriormente, assim como 0s avangos ha area da
instrumentacao, o progresso da quimiometria € um dos fatores que tem impulsionado o uso da
espectroscopia NIR. O termo quimiometria € frequentemente definido como a utilizacdo de
métodos matematicos e estatisticos para o tratamento de dados multivariados obtidos a partir
de um sistema quimico, com o objetivo de extrair o madximo de informacdo significativa sobre
esse sistema, auxiliando na sua compreensdo. Geralmente, a disciplina que trata da
guimiometria estd associada a quimica, mais especificamente a quimica analitica (WISE;
KOWALSKI, 1995).

H& algumas décadas, no entanto, a quimiometria tem expandido o seu campo de
aplicacdo, ndo se limitando apenas ao dominio da quimica analitica. Dessa forma, as
ferramentas quimiométricas tém sido empregadas em diversas areas, tanto do ponto de vista
da academia quando da industria (SHANG; YOU, 2019; VIGNADUZZO; MAGGIO;
OLIVIERI, 2020). Por exemplo, conforme revisado por Ferreira e Tobyn (2014), métodos
quimiométricos tém sido amplamente utilizados em aplicacbes nas areas ambiental,
biomédica e genébmica, no monitoramento de biorreatores, e em aplicacbes nas industrias
farmacéuticas, petroquimicas, alimenticias e poliméricas.

Devido as aplicacdes aos processos industriais, de acordo com Wise e Kowalski
(1995), a quimiometria também se tornou matéria de interesse da engenharia. Dentre as
principais ferramentas quimiométricas utilizadas nesse tipo de aplicacdo, empregadas
geralmente no contexto de PAT, destacam-se as técnicas de calibracdo multivariada
(FERREIRA; TOBYN, 2014; SIMON et al.,, 2015), e os métodos de monitoramento
estatistico de processos (SPM — Statistical Process Control), com énfase para os graficos de
controle estatistico (SEVERSON; CHAIWATANODOM; BRAATZ, 2016; TIDRIRI et al.,
2016; REIS; GINS, 2017; HE; WANG, 2018).
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Nesse contexto, o0 presente topico ira abordar alguns temas fundamentais da
quimiometria, incluindo a Anélise de Componentes Principais (PCA — Principal Component
Analysis), que é um dos métodos quimiométricos mais importantes, e algumas técnicas de
pré-processamento de dados espectroscopicos, as quais foram utilizadas no desenvolvimento
deste trabalho. Adicionalmente, serd apresentada também uma visdo geral das ferramentas
quimiométricas comumente aplicadas a processos, incluindo algumas aplicacbes importantes
e recentes. Por fim, com o objetivo de se aprofundar nos métodos quimiométricos aplicados
neste trabalho, os dois topicos subsequentes descreverdo dois dos principais temas da
quimiometria aplicada a processos: a calibragdo multivariada, com énfase no método PLS; e 0
SPM, com a descricdo de algumas ferramentas aplicadas nessa area.

2.3.1 Analise de Componentes Principais

A Anélise de Componentes Principais (PCA - Principal Component Analysis) é um
dos mais importantes e versateis métodos quimiométricos utilizados para o tratamento de
dados multivariados e complexos. De modo geral, essa técnica facilita a avaliacdo desses
dados por meio da reducdo de sua dimensionalidade, destacando as informacdes relevantes
para a sua interpretacdo e compreensdo. Geralmente, a PCA é utilizada no primeiro contato
com os dados, através de uma andlise exploratoria. No entanto, também pode ser empregada
para evidenciar as relacGes entre as variaveis e entre as amostras, para auxiliar na
identificacdo de padrbes, bem como para detectar e interpretar os outliers, amostras anémalas
presentes nos dados (ESBENSEN; GELADI, 2009; BRO; SMILDE, 2014).

A PCA promove a reducdo da dimensionalidade dos dados multivariados
representando-os através de um novo conjunto de fatores, denominados componentes
principais (PC - Principal Component), 0s quais sdo obtidos por meio de combinacGes
lineares das varidveis originais do conjunto de dados. As componentes principais sdo
ortogonais entre si, 0 que implica que cada uma contribui de forma independente para explicar
a variabilidade presente nos dados. Além disso, elas representam de forma decrescente as
direcdes de maior variabilidade. Assim, a primeira PC (denominada PC1) representa a direcéo
de méxima variabilidade dos dados, a segunda PC (PC2) explica a segunda maior
variabilidade, e assim sucessivamente (BEEBE, 1998; ESBENSEN; GELADI, 2009; BRO;
SMILDE, 2014).
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Os dados a serem submetidos a PCA (e a outros métodos quimiométricos de primeira
ordem) devem ser organizados em uma matriz (X), em que as i linhas contém as informacodes
de cada amostra (ou objeto) e as j colunas apresentam as informacdes referentes as variaveis

originais do conjunto de dados, de acordo com a Equagéo 1.

X11 X12 X1j
X21 X322 X2j

X =|X31 X3z v -0 Xzj 1)
lXi1 Xig ot e XijJ

Conforme mencionado, a reducdo da dimensionalidade dos dados multivariados com a
PCA (ou seja, a reducdo da informacdo correlacionada e redundante) € possivel através da
representacdo desses dados por um conjunto de k fatores ndo correlacionados, em que k <j.
Matematicamente, essa representacdo é feita pela decomposicdo da matriz X em dois

subconjuntos, de acordo com a Equacdo 2.

X=TPT+E )

Nessa equacdo, a matriz de escores (T) corresponde as coordenadas das amostras em
relacdo aos eixos das componentes principais e possui dimenséo i x k. Ja a matriz de loadings
(P), de dimensdo k x j, representa a relacdo entre o eixo da PC e o eixo da variavel original,
sendo calculado pelo cosseno do angulo entre esses eixos. Por fim, a variabilidade dos dados
ndo explicada pelo modelo é expressa por uma matriz de residuos (E), que apresenta a mesma
dimensdo da matriz X, i xj (ESBENSEN; GELADI, 2009; BRO; SMILDE, 2014).

Com o objetivo de exemplificar a representacdo de um conjunto de dados aleatorios
utilizando os eixos das componentes principais, um esquema que ilustra a decomposi¢ao
desses dados através da PCA estd apresentado na Figura 2, considerando-se apenas duas

variaveis.



28

Figura 2 - Representacdo de um conjunto de dados aleatérios descritos originalmente pelas variaveis 1 e 2,
utilizando as componentes principais PC1 e PC2. As retas tracejadas representam a projecao das
amostras nos eixos das PC’s (escores), enquanto as curvas tracejadas representam os angulos entre a
PC e a variavel original (loadings)

PC2 PC1

Variavel 2

Varidvel 1

Fonte: Beebe (1998)

Na Figura 2, os pontos do gréafico representam as amostras, as quais estao inicialmente
descritas pelo conjunto de varidveis originais (Variavel 1 e 2). Aplicando-se a PCA, esses
dados passam a ser descritos pelo novo conjunto de fatores (PC1 e PC2), considerando-se as
direcbes de maior variabilidade nos dados. Adicionalmente, o esquema apresenta também a
interpretacdo geométrica dada aos escores e aos loadings. Assim, 0s escores sdo representados
pela projecdo das amostras nos eixos das componentes principais, identificadas pelas retas
tracejadas. Enquanto os pesos sdo obtidos a partir dos angulos entre o eixo das variaveis
originais e 0 eixo das componentes principais, representados por linhas curvas tracejadas
(BEEBE, 1998).

2.3.2 Técnicas de pré-processamento aplicadas a dados espectroscopicos

Uma importante etapa da anélise quimiométrica consiste na utilizacdo de técnicas de
pré-processamento, que sdo transformacfes matematicas aplicadas aos dados antes do
desenvolvimento dos modelos, com o intuito de reduzir as fontes de variabilidade irrelevantes
para a etapa de modelagem, sejam elas aleatorias ou sistematicas (BEEBE, 1998).
Particularmente, na modelagem de dados espectroscdpicos na regido do NIR, essas técnicas
sdo frequentemente empregadas para evidenciar a informagdo quimica relevante e eliminar,

ou ao menos reduzir, os efeitos indesejados do espalhamento da radiacdo, dentre eles, as



29

variacBes na linha de base e a ndo linearidade. A remogdo desses fendmenos fisicos é
geralmente requerida para melhorar o desempenho dos modelos de calibragdo, de
classificacdo ou de analise exploratoria (RINNAN; VAN DEN BERG; ENGELSEN, 2009;
AGELET; HURBURGH, 2010).

Existem diversos pré-processamentos que podem ser aplicados aos dados
espectroscopicos. A escolha da técnica mais apropriada depende do tipo do sinal (por
exemplo, se sdo medidas de transmitancia ou reflectancia), das caracteristicas das amostras e
do objetivo final da etapa de modelagem. Usualmente, os resultados da aplicacdo dessas
técnicas sdo avaliados de acordo com o aspecto dos dados pré-processados, bem como com 0s
resultados dos modelos desenvolvidos. Dessa forma, apesar de a escolha da técnica mais
apropriada se basear também no conhecimento dos dados, frequentemente, mais de um pré-
processamento deve ser avaliado ( BEEBE, 1998; AGELET; HURBURGH, 2010). A seguir,
tem-se uma breve explicacdo das principais técnicas de pré-processamento de amostras e de
variaveis aplicadas aos dados espectroscopicos, as quais foram empregadas no
desenvolvimento deste trabalho. As transformagcfes matematicas apresentadas nesta secdo
consideram a matriz de dados X (resposta instrumental) representada na Equacdo 1, em que
cada linha (i) corresponde a um espectro e cada coluna (j) representa um comprimento de

onda ou nimero de onda.

2.3.2.1 Pré-processamento de variaveis

Uma técnica de pré-processamento de varidveis quase sempre empregada aos dados
espectroscopicos € a centralizacdo na média. Essa técnica consiste em subtrair de cada

elemento da j-ésima coluna da matriz X (x;;), a média dessa coluna (X;), obtendo-se assim um

valor corrigido (Xj(corr) ), COnforme Equacdo 3 (BEEBE, 1998).

Xij(corr) = Xij_ )_(],1 = 1,2,...,I,j = 1,2,...,] (3)

A aplicacdo dessa técnica aos dados espectroscopicos promove a remog¢do do espectro
médio, fazendo com que os eixos das coordenadas sejam movidos para o centro dos dados.
Numa PCA, por exemplo, essa transformagdo permite que as componentes principais sejam
relacionadas, de fato, com as dire¢des de maior variabilidade nos dados. Adicionalmente, a

centralizacdo na média promove também uma reducdo da complexidade do modelo,
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diminuindo, frequentemente, 0 numero de componentes requeridos na etapa de modelagem (
BEEBE, 1998; AGELET; HURBURGH, 2010).

2.3.2.2 Pré-processamento de amostras

Uma técnica de pré-processamento de amostras comumente aplicada a dados
espectroscopicos € a variacdo normal padrdo (SNV — Standard Normal Variate), a qual é
empregada com o intuito de reduzir a variabilidade entre as amostras devido ao espalhamento
da radiacdo. Uma vantagem da aplicacdo desse pré-processamento é que o formato dos
espectros corrigidos é semelhante ao dos espectros originais, o que facilita a interpretacdo dos
resultados nas analises posteriores. Na aplicacdo dessa técnica, o i-ésimo espectro da matriz X
(x;) é subtraido do valor médio do espectro (X;), e o resultado é dividido por seu desvio-
padrdo (s;), obtendo-se assim o espectro corrigido (Xjccorr)), conforme apresentado na
Equacdo 4 (BARNES; DHANOA; LISTER, 1989; RINNAN; VAN DEN BERG;
ENGELSEN, 2009).

Xi—Xj
Xj(corr) = 5_1 (4)

Outro pré-processamento frequentemente aplicado aos dados espectroscépicos € a
correcdo de espalhamento multiplicativo (MSC — Multiplicative Scatter Correction). Assim
como a SNV, essa técnica é utilizada para a correcdo dos efeitos de espalhamento da radiacéo.
Em geral, ambos os pré-processamentos fornecem resultados muito semelhantes, ja que a
MSC, assim como a SNV, também mantém o formato original dos espectros. A aplicacdo
dessa técnica envolve basicamente duas etapas. Na primeira delas, ajusta-se uma regressao
entre 0s espectros da matriz X (x;) e um espectro de referéncia (xef), conforme apresentado
na Equacdo 5 (RINNAN; VAN DEN BERG; ENGELSEN, 2009).

Xj = bgi + by Xper + € (%)

Geralmente, o espectro médio das amostras de calibracdo é utilizado como referéncia,
e este € empregado na correcdo de todos os espectros. Como resultado, tem-se uma estimativa
dos coeficientes de regressdo linear (by;) e angular (by;), denominados coeficientes de

correcdo. Por fim, a parte ndo modelada dos espectros € computada em um vetor de erros (e;).
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Na segunda etapa da aplicacdo dessa técnica, os coeficientes de corre¢do sdo utilizados

para a obtencdo do espectro corrigido (Xjcorry), de acordo com a Equagdo 6 (RINNAN; VAN
DEN BERG; ENGELSEN, 2009).

_ Xi—boi _ e
Xj(corr) = by; = Xref T b (6)

1,i

Uma desvantagem da MSC quando comparado & SNV é a necessidade de se ter um
espectro de referéncia, diferentemente do que ocorre na SNV, em que cada espectro é
corrigido de forma individualizada (AGELET; HURBURGH, 2010). Assim, no caso de se
utilizar o espectro médio como referéncia, pode haver a necessidade de repetir o
procedimento quando uma amostra for excluida do conjunto de dados.

Uma extensdo da técnica MSC é a correcdo de espalhamento multiplicativo estendido
(EMSC — Extended Multiplicative Scatter Correction). Essa técnica funciona de forma
semelhante a MSC, mas realiza um ajuste polinomial de segunda ordem em relacdo ao
espectro de referéncia. Além disso, se disponivel, permite a utilizagdo de informacdes prévias
sobre o espectro de interesse ou sobre os interferentes presentes (MARTENS; STARK, 1991;
RINNAN; VAN DEN BERG; ENGELSEN, 2009).

Outra técnica de pré-processamento bastante utilizada para a correcdo dos efeitos de
dispersdo da radiacdo é a derivacdo espectral, a qual é capaz de remover os efeitos aditivos e
multiplicativos dos espectros. Enquanto a primeira derivada remove efeitos aditivos, a
segunda derivada é capaz de remover também a tendéncia linear presente na linha de base
(efeitos multiplicativos). Como essa técnica, no entanto, diminui a relacdo sinal/ruido dos
espectros, ela quase nunca é empregada sozinha, sendo associada constantemente a uma
técnica de suavizagdo com o intuito de amenizar o aumento indesejado do ruido (BEEBE,
1998; RINNAN; VAN DEN BERG; ENGELSEN, 2009).

Nesse sentido, um método de suavizagdo comumente empregado em conjunto com a
derivacdo espectral ¢ o filtro de Savitzky Golay. Esse filtro faz ajustes polinomiais
subsequentes ao longo de todo o espectro, sendo capaz, portanto, de suaviza-lo. Para a
aplicacdo da técnica derivativa com filtro Savitzky Golay, deve-se selecionar o grau da
derivada, a ordem do polindmio que sera ajustado e o tamanho da janela de pontos utilizados
em cada ajuste. Assim, em cada ajuste realizado, o ponto central da janela € substituido pela
derivada do polindmio ajustado para a janela. Esta, entdo, se move para realizar um novo

ajuste, de modo que o ponto central do polindbmio nesse novo ajuste seja adjacente ao ponto
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central do polindmio ajustado anteriormente. Esse procedimento é repetido até que todo o
espectro seja corrigido (BEEBE, 1998; RINNAN; VAN DEN BERG; ENGELSEN, 2009;
AGELET; HURBURGH, 2010).

Por fim, existe também a técnica de correcdo de sinal ortogonal (OSC — Orthogonal
Signal Correction). Diferente das outras técnicas apresentadas, esse pré-processamento utiliza
ndo apenas a informacdo contida na matriz X, como também a propriedade de interesse do
analito, que pode ser fisica ou quimica. Essa propriedade, geralmente a concentragdo do
analito obtida por um método de referéncia, é representada por um vetor (y), que contém o
mesmo numero de linhas da matriz X analisada. De modo geral, esse pré-processamento
remove a variagdo em X que nao esta relacionada com a propriedade de interesse y. Assim,
essa técnica é capaz de melhorar o desempenho do modelo de calibracédo e, frequentemente,
requer menos componentes para o desenvolvimento do modelo, facilitando a sua interpretacao
(WOLD et al., 1998).

2.3.3 Aplicacdo das ferramentas quimiométricas a processos industriais

Hé& algumas décadas, os métodos quimiométricos tém sido utilizados para o tratamento
de dados provenientes de processos industriais, geralmente caracterizados por uma grande
quantidade de varidveis correlacionadas (WISE; KOWALSKI, 1995). Esses dados podem
compreender tanto as informacGes quimicas obtidas por sensores analiticos instalados na linha
de producdo, como as medidas espectroscdpicas e cromatograficas (GRASSI; ALAMPRESE,
2018; SZYMANSKA, 2018), quanto as variaveis de processo, como temperatura e pressio (
VITALE; NOORD; FERRER, 2014; BAKDI; KOUADRI, 2017; DU; DU, 2018).

Devido a capacidade dos métodos de analise multivariada para lidar com a
complexidade dos dados de processo, tem-se destacado a importancia da quimiometria para as
aplicacBes na area de PAT (GRASSI; ALAMPRESE, 2018). Principalmente nas industrias
farmacéuticas, os métodos quimiometricos tém sido cada vez mais empregados como
ferramentas de PAT em diversas etapas da produgdo (FERREIRA; TOBYN, 2014;
VIGNADUZZO; MAGGIO; OLIVIERI, 2020). Conforme revisado por Vignaduzzo, Maggio
e Olivieri (2020), inclusive, diversas agéncias reguladoras tém incluido os métodos
quimiométricos em guias e documentos direcionados a essas industrias.

Recentemente, 0 emprego de modernos analisadores de processos e ferramentas de

controle na linha de producdo, bem como o desenvolvimento de sistemas computacionais e da
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informacg&o, promoveram um aumento considerdvel no volume de dados coletados durante os
processos industriais, tornando-os, portanto, ainda mais complexos. A possibilidade de
utilizacdo desses dados para monitorar e controlar 0s processos representa uma oportunidade
de crescimento e desenvolvimento para as inddstrias, podendo proporcionar diversas
melhorias no processo produtivo (HE; WANG, 2018).

E importante ressaltar, no entanto, os aspectos desafiadores desse cenario, os quais
estdo frequentemente associados ao gerenciamento, a integracdo e a extracdo de informacdes
significativas desses dados, de modo que permitam o controle e 0 monitoramento do processo
de forma eficiente. Nesse contexto, a quimiometria é vista como uma importante parte da
ciéncia de dados que pode ser aplicada ao tratamento de dados multivariados e complexos
coletados durante os processos industriais (GE, 2017; SZYMANSKA, 2018).

A aplicacdo dos métodos quimiométricos a dados de processo é bastante abrangente.
Por exemplo, ferramentas quimiométricas tém sido amplamente utilizadas no monitoramento
estatistico de processos (TIDRIRI et al., 2016; GE, 2017; HE; WANG, 2018), no
desenvolvimento de modelos de calibracdo multivariada para a predi¢do de propriedades de
interesse (KADLEC; GABRYS; STRANDT, 2009; LIU; XIE, 2020; VIGNADUZZO;
MAGGIO; OLIVIERI, 2020) e na andlise multivariada de imagens para monitoramento da
qualidade dos produtos e das condigdes do processo (DUCHESNE; LIU; MACGREGOR,
2012).

Considerando o desenvolvimento de modelos de calibracdo multivariada, uma
abordagem importante dessa aplicacdo aos processos industriais consiste no desenvolvimento
de sensores virtuais. Esses sensores sdo frequentemente utilizados para estimar variaveis
dificeis de medir no processo, através da construcdo de modelos preditivos com base em
variaveis de processo mais facilmente mensuraveis (KADLEC; GABRYS; STRANDT, 2009;
LIU; XIE, 2020).

Outra aplicacdo dos modelos de calibragdo multivariada, que estd relacionada com
uma das abordagens descrita no presente trabalho, consiste no desenvolvimento de modelos
de regresséo para estimar propriedades de interesse, geralmente concentracdo, de produtos ou
compostos intermediarios do processo ou da mistura reacional durante a rea¢do. Para esse tipo
de aplicacdo, os metodos espectroscopicos como o de infravermelho proximo sao
frequentemente utilizados em industrias farmacéutica, alimenticia e petroquimica (DE BEER
et al., 2011; DA SILVA et al., 2015; GRASSI; ALAMPRESE, 2018; DA SILVA et al.,

2019). Conforme discutido anteriormente, essa técnica analitica apresenta caracteristicas
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favoréveis para aplicagOes na area de PAT, incluindo o monitoramento do processo em tempo
real.

No que diz respeito ao monitoramento estatistico de processos, 0s métodos
quimiomeétricos tém sido utilizados para a deteccéo, a identificacdo e o diagnostico de falhas
em processos industriais (TIDRIRI et al., 2016; GE, 2017; SHANG; YOU, 2019). De modo
geral, a deteccdo de falhas consiste em avaliar se 0 processo estd ou ndo em controle
estatistico, ja a identificacdo consiste em especificar o tipo de falha e, por fim, o diagnostico
envolve a determinacgdo da causa raiz do problema (GE, 2017).

Nesse contexto, existem diversos reviews na literatura que abordam o uso de
diferentes técnicas quimiométricas no monitoramento estatistico de processos através de
gréficos de controle (TIDRIRI et al., 2016; GE, 2017; REIS; GINS, 2017; HE; WANG, 2018;
SHANG; YOU, 2019). Esses trabalhos abordam desde as técnicas mais simples, como PCA e
PLS, até técnicas ndo-lineares, como 0s métodos baseados em fungdes Kernel e Suport Vector
Machine, para 0 monitoramento de processos continuos e em batelada.

2.4 CALIBRACAO MULTIVARIADA

A calibracdo multivariada é uma das vertentes da quimiometria bastante aplicada a
processos no contexto de PAT (FERREIRA; TOBYN, 2014; SIMON et al., 2015). Neste
topico, serdo abordados alguns temas relacionados a calibracdo multivariada aplicados no
desenvolvimento do presente trabalho, incluindo: 0 método SPXY (Sample set Partitioning
based on joint x-y distances), utilizado para a separacdo de um conjunto de amostras em
calibracdo e predigdo; o método de calibracdo multivariada de PLS; e as métricas de

desempenho utilizadas para avaliacdo dos modelos desenvolvidos.

2.4.1 Método de selecdo de amostras

Com o objetivo de construir e validar um modelo de calibracdo multivariada a partir
de N amostras conhecidas, existem algumas ferramentas que podem ser utilizadas para
separa-las em dois conjuntos: um contendo as amostras de calibracdo e outro contendo as
amostras de predi¢cdo. O método utilizado no presente trabalho para o desenvolvimento de
modelos de regressdo foi o algoritmo SPXY. Basicamente, esse algoritmo calcula as

distancias Euclidianas entre todos os pares de amostras (p, q), com base nos dados da matriz
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X representada na Equacéo 1 (d,(p, q)), e nos valores da propriedade de interesse contidos no
vetor y (dy(p,q)). Essas distancias sdo calculadas, respectivamente, de acordo com as

EquacOes 7 e 8:

A, ) = 5[y — o o€ (11 )

dy(p,q) = ,/(yp —yy)ipae L] ®)

Em que x,; € Xq; Sd0 as respostas instrumentais, referentes a j — ésima variavel, e y,
e yq S0 os valores da propriedade de interesse, para as amostras p e q, respectivamente.

Em seguida, de acordo com a Equagdo 9, a distancia normalizada (dyy(p,q)) €
calculada pela soma das distancias dy(p,q) e dy(p,q), divididas pelos seus respectivos

valores maximos, com o intuito de atribuir a mesma importancia a distribuicdo das amostras
em X e emy (GALVAO et al., 2005).

dx(D:Q) dy(p'q) )
+ 1 ) E 1, I 9
maxp, ge1,119x(P.4)  maxp qer1,1dy(p.9) p,q [ ] ( )

dxy(pl q) =

No algoritmo, a selecdo das amostras é feita de forma iterativa. Assim, as primeiras
amostras selecionadas sdo aquelas em que a distancia d,.,, (p,q) € a maior. Nas proximas
iteragdes, o0 algoritmo seleciona a proxima amostra que apresenta a maior distancia em relacéo
a alguma amostra ja escolhida. Esse procedimento é repetido até que todas as amostras de
calibracdo sejam selecionadas (GALVAO et al., 2005).

2.4.2 Regressdo por minimos quadrados parciais

A Regressao por Minimos Quadrados Parciais (Partial Least-squares - PLS) € um dos
métodos quimiométricos mais utilizados no desenvolvimento de modelos de calibracdo
multivariada. Assim como na calibracdo univariada, o objetivo principal dessa técnica é
estabelecer uma relagdo matematica entre os dados adquiridos de uma amostra, contidos na
matriz X, e uma propriedade de interesse dessa amostra, a qual pode ser de natureza quimica

ou fisica, e é representada pelo vetor y. De forma simplificada, a aplicacdo desse método
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envolve essencialmente duas fases. Na primeira etapa (calibracdo), os dados da matriz X bem
como os valores do vetor y, obtidos por um método de referéncia, sdo utilizados no
desenvolvimento do modelo de calibracdo. J& na segunda etapa (predicdo), esse modelo €
usado para a predicdo da propriedade de interesse em amostras novas, as quais nao foram
empregadas na construgao do modelo.

A modelagem matematica por PLS é feita através de célculos iterativos. Para isso,
existem diversos algoritmos que podem ser utilizados, 0s quais sdo encontrados em pacotes de
softwares comerciais (ANDERSSON, 2009). A seguir, tem-se uma descri¢do simplificada das
equac0es utilizadas nessa modelagem, com base no que foi apresentado por Olivieri (2018).

A equacdo geral para um modelo linear entre a matriz de resposta instrumental (X) e
um vetor com a propriedade de interesse do analito (y,,), para n amostras utilizadas na etapa
de calibracdo, é dada pela Equacdo 10, em que e é o vetor de erros e b,, o vetor dos

coeficientes de regressao.

Vo = Xb, + e (10)

No caso de as variaveis em X serem correlacionadas, essa matriz de dados pode ser
substituida por uma versdo comprimida, calculada com base nas combinacGes lineares das
variaveis originais, semelhante ao que ocorre na PCA. Essa versdo comprimida de X
corresponde a matriz de escores (T,), truncada nas A primeiras colunas, sendo A o nimero de
fatores utilizados na modelagem. No PLS, esses fatores sdo denominados variaveis latentes
(VLs) e devem reter a principal parte das variabilidades em X e em y,,. A Equacéo 10, ap6s a

substituicdo de X por T,, pode ser reescrita de acordo com a Equacgéo 11.

Yn = Tavp +€ (11)

E possivel perceber que o vetor b,, também foi substituido por v,, que é o vetor dos
coeficientes de regressdo do PLS, definido no espaco das A variaveis latentes. Para concluir a

etapa de calibragéo, v, pode ser calculado a partir da Equacéo 12.
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Vh = TA+Yn (12)

, - . -1 .
Em que T,* € a inversa generalizada de T,, dada por T, = (TATTA) Ta, a qual foi
obtida apds algumas transformacdes matematicas da Equacdo 11: multiplicagdo de ambos 0s

lados da equacdo por T, (matriz transposta de T,) e posterior multiplicacdo de ambos os
lados da equacéo por (TATTA)_I.

Ap0s a estimativa do vetor dos coeficientes de regressao (v,), pode-se prosseguir para
a etapa de predicdo. No entanto, antes de seguir para essa etapa, € importante compreender
como T, foi obtida. De forma simplificada, a matriz de escores T, € calculada de acordo com

a Equacéo 13

TA = XTWA(PATWA)_1 (13)

Na Equacdo 13, W, é matriz de pesos (weight loadings) e P, é a matriz de loadings.
As A colunas da matriz W, sdo formadas pelos vetores w, normalizados, obtidos de acordo

com a Equacéo 14.

XTYn
W,y =
AT Xy

(14)

Ja as A colunas da matriz de loadings (P,), sdo formadas pelos vetores p,, calculados

com base nos vetores da matriz de escores T, (t,), de acordo com a Equagéo 15.

XTtA

Pa = TeaTtall (15)

A utilizacdo das duas matrizes de pesos e loadings na estimativa de T, representa um
diferencial do PLS, uma vez que permite que as variaveis latentes do modelo sejam estimadas
levando-se em consideracdo ndo apenas a matriz X, mas também os valores da propriedade de

interesse do analito. Assim, a utilizacdo dessas duas matrizes permite que as variaveis latentes
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expliquem de forma simultanea a maxima variancia espectral dos dados em X e a maxima
covariancia entre X e y,. Isso faz com que o modelo PLS seja adaptado para cada analito,
sendo considerado, portanto, uma ferramenta poderosa para a constru¢cdo de modelos de
calibracéo.

Na etapa de predicdo, o vetor dos coeficientes de regressaio do modelo PLS
desenvolvido na etapa de calibragédo (v,) é utilizado para estimar a propriedade de interesse
do analito das amostras do conjunto de predicdo. Antes disso, no entanto, uma etapa
preliminar € requerida, a qual envolve o calculo dos escores (t,) para a amostra de predicéo, a

partir dos dados dessa amostra (x), de acordo com a Equacéo 16:
tA = (WATPA)_IWATX (16)

Por fim, calculado o vetor t,, a predicdo da propriedade de interesse (§) da amostra

pode ser estimada pela Equagéo 17:

J=vn'ts (17)
2.4.3 Avaliacdo dos modelos de calibracao

A avaliacdo dos modelos de calibracdo pode ser realizada através da estimativa de
alguns parametros estatisticos, denominados métricas de desempenho. A raiz do erro
quadratico médio (Root Mean Square Error - RMSE), por exemplo, é um dos principais
parametros utilizados para avaliar um modelo de calibragcdo multivariada. O mesmo pode ser
calculado para a etapa de calibracdo (RMSEC), de validagdo cruzada (RMSECV) e de
predicdo (RMSEP). O RMSEP, em particular, € o parametro mais utilizado para expressar a
exatiddo de um modelo baseado em dados do NIR. Ele pode ser calculado a partir da Equacéo
18, em que y; é o valor medido para a i-ésima amostra, obtido pelo método de referéncia, y; é
o valor predito pelo modelo para essa amostra, e n,,.q € 0 nimero de amostras do conjunto

de predicdo (PASQUINI, 2018).

Opred, -2
RMSEP = M (18)

Npred
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Com o objetivo de avaliar diversos modelos (desenvolvidos com diferentes técnicas de
pré-processamento, por exemplo), os valores de RMSEP desses modelos podem ser
comparados atraves do teste estatistico de Fischer (teste F), o qual é frequentemente utilizado
para testar hipoteses sobre a igualdade entre duas variancias populacionais.

Outra métrica de desempenho importante utilizada para a avaliacdo dos modelos de
calibracdo é o bias, que avalia a presenca de erro sistematico no modelo. Da mesma forma
que ocorre para 0 RMSE, o bias também pode ser calculado para os conjuntos de calibragéo,
validacdo cruzada e predicdo. Para a etapa de predicdo, pode ser estimado a partir da Equacgéo
19.

anred

. i= (Y1 _yi)
biasyreq = 1“1:? (29)

Uma pratica comum na analise dos modelos de calibracdo consiste em realizar um
teste estatistico de student (teste t) com o objetivo de avaliar se a predicdo de um modelo
apresenta um bias estatisticamente significativo, ou seja, se ha, de fato, erros sisteméticos no
modelo. Essa é uma recomendacéo, inclusive, da norma American Society for Testing and
Materials (ASTM) E1655-05 (Standard Practices for Infrared Multivariate Quantitative
Analysis), a qual estabelece algumas diretrizes para o desenvolvimento de modelos de
calibracdo multivariada com base em dados de infravermelho (ASTM E1655-05, 2005).

Por fim, o coeficiente de determinacdo (R?) é comumente utilizado para avaliar os
modelos de calibracdo. Também pode ser calculado para os conjuntos de calibracéo,
validacdo cruzada e predicdo. Esse parametro permite estimar a porcentagem da variacao nos
dados que é modelada adequadamente, sendo obtido a partir da Equacdo 20, em que y é 0
valor médio de y considerando todas as amostras (ASTM E1655-05, 2005).

yoPred (g gy
R2, ., =2z Y 20
pred = yipred(y. 52 (20)

O R?, no entanto, deve ser utilizado com cuidado na avaliagdo de um modelo de
calibracdo. Pelo fato de o coeficiente de determinacdo depender da variabilidade dos valores
de referéncia da propriedade de interesse, ele ndo deve ser utilizado sozinho como um critério

de qualidade para os modelos de calibracdo. Assim, ele deve ser analisado juntamente com
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outros parametros, como 0 RMSEP, por exemplo, que é considerado mais eficaz do que o R?
(AGELET; HURBURGH, 2010; PASQUINI, 2018).

Além da analise dos parametros descritos, a avaliagdo de um modelo de calibracdo
exige também um olhar criterioso sobre as varidveis consideradas criticas para o
desenvolvimento do modelo. De acordo com Pasquini (2018), os resultados dos modelos de
calibracdo devem ser acompanhados de uma interpretacdo quimica, com o intuito de que
correlagdes internas ndo sejam negligenciadas. Dessa forma, evita-se que a correlagdo
estabelecida pelo modelo néo seja referente ao analito de interesse.

Para a interpretagdo quimica dos modelos desenvolvidos, pode-se utilizar os gréficos
dos coeficientes de regressdo e os graficos de importancia das variaveis na projecao (VIP -
Variable Importance in the Projection). De modo geral, a analise desses graficos permite
identificar as regides consideradas mais relevantes para o estabelecimento da relacdo entre a
matriz X e o vetor y. Tais graficos estdo disponiveis para andlise em muitos softwares
comerciais. O gréafico de importancia das variaveis, inclusive, € bastante empregado como
método de selecdo de variaveis (ANDERSEN; BRO, 2010), com o intuito de melhorar o
desempenho do modelo de calibragdo, construindo-o com apenas algumas regides

selecionadas do espetro, ao invés do espectro completo.

25  MONITORAMENTO ESTATISTICO DE PROCESSOS

Conforme mencionado, além da calibracdo multivariada, 0 monitoramento estatistico
de processos (SPM - Statistical Process Monitoring) € outro tema abrangido pela
quimiometria e amplamente aplicado a processos industriais. O SPM corresponde a um
conjunto de ferramentas utilizadas para avaliar e alcancar a estabilidade de um determinado
processo produtivo e a melhoria do seu desempenho, através da reducao de sua variabilidade
(FERRER-RIQUELME, 2009; MONTGOMERY, 2009). Essas ferramentas, quando
adequadamente aplicadas a processos industriais, podem acarretar beneficios do ponto de
vista da qualidade, da seguranca, da eficiéncia e da lucratividade (REIS; GINS, 2017).

Para a redugdo da variabilidade de um processo, € necessario identificar e
compreender as principais fontes causadoras dessa variabilidade. De modo geral, essas causas
podem ser de dois tipos: aleatdrias e especiais. As causas aleatorias ou comuns compreendem
as diversas fontes de variacdo da qualidade que atuam de forma aleatoria sobre o processo,

gerando uma variabilidade natural. Usualmente, diz-se que 0S processos que operam apenas
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com causas desse tipo estdo sob controle estatistico, sendo considerados estaveis e previsiveis.
J& as causas especiais ou atribuiveis, sdo as fontes de variacdo que surgem esporadicamente e
ndo seguem um padrdo aleatério. Sdo consideradas falhas no processo, ocasionadas,
principalmente, pelo uso de matéria-prima defeituosa, por erros do operador ou pelo controle
inadequado das maquinas. Diz-se que um processo que opera também com causas especiais
estd fora de controle e, portanto, € um processo instavel e imprevisivel (MONTGOMERY,
2009).

Nesse sentido, com o objetivo de distinguir entre as causas aleatdrias e especiais que
atuam sobre um determinado processo, graficos de controle estatistico (também denominados
graficos de monitoramento), podem ser utilizados para monitora-lo. Esses graficos sdo as
ferramentas de maior destaque do SPM e permitem identificar o tipo e a magnitude da causa
da variabilidade. Assim, o emprego dessas ferramentas de forma adequada pode promover
uma melhoria significativa no desempenho do processo, através da remoc¢do das causas
especiais detectadas, ou da sua implementacdo, no caso de serem benéficas (FERRER-
RIQUELME, 2009). Adicionalmente, quando aplicadas em tempo real, permitem a detec¢édo
precoce de falhas, proporcionando celeridade na tomada de decisdo, bem como o
desenvolvimento de solugdes eficientes diante de urgéncias no processo produtivo.

Os gréficos de controle surgiram por volta de 1924, por meio do trabalho pioneiro de
Walter Shewhart (MONTGOMERY, 2009). Esse marco deu inicio ao que normalmente se
denomina Controle Estatistico de Processos (CEP), que representou um avanco significativo
para 0 monitoramento da qualidade do processo e do produto. De acordo com He e Wang
(2018), o CEP corresponde a primeira geracdo do SPM, que envolve a utilizacdo de graficos
de controle univariados. Esses graficos sdo geralmente empregados no monitoramento de uma
caracteristica da qualidade do produto, mas também podem ser usados para 0 monitoramento
de uma variavel de processo considerada critica para o controle de qualidade do produto
(FERRER-RIQUELME, 2009; MONTGOMERY, 2009).

A medida que os processos industriais se tornam mais complexos, com a
implementacdo de modernos sistemas de controle e automacao e a aquisicdo de uma enorme
guantidade de dados provenientes de maltiplos sensores, é necessario o desenvolvimento de
metodologias para monitora-los e controla-los de forma eficiente. Nesse contexto, de modo a
atender a evolucdo dos sistemas industriais, surgiu 0 monitoramento estatistico multivariado
de processos (MSPM - Multivariate Statistical Process Monitoring), que corresponde a

segunda geracdo do SPM. De modo geral, 0 MSPM abrange diversas metodologias utilizadas
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para monitorar processos a partir de dados multivariados, em que as varidveis sdo analisadas
simultaneamente. Por fim, existe ainda a terceira geracdo do SPM, que engloba os métodos
multivariados que tém sido desenvolvidos para lidar com uma complexidade ainda maior,
contemplando, por exemplo, caracteristicas como dindmica e nao linearidade (BAKDI,;
KOUADRI, 2017; HE; WANG, 2018).

De modo geral, o conceito associado aos graficos de controle uni e multivariados é
semelhante. A aplicacdo desses graficos envolve duas fases. Na primeira (denominada Fase 1),
dados de processo sdo coletados e empregados na determinacdo dos limites de controle
tentativos, os quais séo utilizados para identificar se 0 processo estava ou ndo sob controle
estatistico durante a coleta desses dados. Nessa etapa, dados considerados fora de controle sdo
removidos e os limites sdo recalculados. Esse procedimento é repetido até que os limites de
controle do grafico sejam estabelecidos, com base em dados coletados durante condicdes
estaveis e representativas do desempenho do processo. Ja na segunda fase (Fase 1), o gréfico
de controle desenvolvido é utilizado para monitorar o processo. Assim, novos dados sao
coletados e projetados no gréafico, de preferéncia em tempo real, permitindo determinar se o
processo se mantém ou ndo em um estado de controle estatistico (MONTGOMERY, 2009).

A principal diferenca entre os graficos de controle uni e multivariados, no entanto, ndo
se resume apenas ao fato de que as cartas de controle multivariadas s&o utilizadas para o
monitoramento simultaneo de diversas variaveis. Uma das principais vantagens da abordagem
multivariada, quando comparada a univariada, consiste na possibilidade de explorar
informacBes relacionadas a covariancia entre as variaveis. Como resultado, os graficos
multivariados, em geral, sdo capazes de detectar situacbes andmalas que n&o seriam
detectadas caso cartas de controle univariadas fossem utilizadas para o monitoramento
individual de cada variavel (FERRER-RIQUELME, 2009; TIDRIRI et al., 2016; HE;
WANG, 2018) .

Uma forma de ilustrar a comparacdo entre as abordagens uni e multivariadas esta

apresentada na Figura 3.
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Figura 3 — Comparacdo entre as abordagens de monitoramento estatistico univariada (limites de controle em
vermelho — linha continua) (a) e multivariada (elipse de controle em vermelho — linha tracejada) (b)
para o monitoramento de duas variaveis aleatorias dependentes

a) b)
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Fonte: He; Wang (2018)

E possivel perceber através da Figura 3 que, se cada varidvel fosse monitorada
utilizando-se graficos de controle univariados (Figura 3a), estes falhariam na deteccdo de
amostras andmalas (em azul), uma vez que, para ambas as variaveis, todos os pontos estdo
dentro dos limites de controle (linhas continuas em vermelho). O comportamento incomum
dessas amostras apenas fica evidente quando ambas as variaveis sdo monitoradas de forma
simultanea (Figura 3b). Assim, se uma estatistica multivariada fosse utilizada no calculo do
limite de controle (representado pela elipse tracejada em vermelho), as amostras anémalas
seriam detectadas, uma vez que ndo seguem o padrdo de correlacdo positiva entre as variaveis
X1 € X,, observada para as outras amostras. No exemplo apresentado na Figura 3, foram
analisadas apenas duas variaveis aleatorias e dependentes. No entanto, a medida que o nimero
de variaveis dependentes aumenta, ha também um aumento da distor¢cdo no procedimento de
monitoramento por parte das cartas univariadas (MONTGOMERY, 2009; HE; WANG,
2018).

Dessa forma, os beneficios associados ao uso de cartas de controle multivariadas sdo
especialmente importantes quando se lida com dados de processos complexos, de alta
dimensionalidade e colinearidade, como a maioria dos processos industriais modernos que
usam sistemas avangados de aquisicdo de dados. Isso se observa, principalmente, em
processos quimicos, em que as variaveis do processo sdo altamente correlacionadas devido

aos principios fisicos e quimicos que os conduzem, como a termodindmica, a cinética quimica
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e os balancos de massa e energia (FERRER, 2014; SEVERSON; CHAIWATANODOM,;
BRAATZ, 2016; TIDRIRI et al., 2016; REIS; GINS, 2017; HE; WANG, 2018).

No entanto, apesar de os métodos multivariados serem em geral mais eficientes para o
monitoramento dos processos modernos, em algumas situacdes, a utilizacdo de técnicas
univariadas pode ser necessaria (ou mais adequada). De modo geral, a sele¢do da abordagem
mais apropriada, seja ela uni ou multivariada, depende das particularidades do processo,
dentre as quais: das variaveis de processo ou de qualidade consideradas criticas, da estrutura
de correlacdo dos dados e da dindmica do processo. Além disso, depende também do objetivo
final que se deseja alcancgar com a aplicagéo da ferramenta do SPM.

E importante ressaltar também que, em alguns estudos recentes, ambas as abordagens
uni e multivariadas foram utilizadas em conjunto com o objetivo de melhorar o
monitoramento do processo (BIN SHAMS; BUDMAN; DUEVER, 2011; HARROU et al.,
2015; BAKDI; KOUADRI, 2017; DU; DU, 2018). Nesses estudos, a habilidade de cartas
univariadas em detectar pequenos desvios no processo foi explorada com o objetivo de
melhorar o desempenho de cartas de controle multivariadas baseadas em fatores/componentes
principais e variaveis latentes, como PCA e PLS, no que diz respeito a deteccdo de falhas em
processos industriais.

No contexto dos graficos de controle aplicados a processos, considerando-se as
abordagens empregadas no desenvolvimento do presente trabalho, a seguir, tem-se uma breve
apresentacdo dos principais graficos de controle univariados. Adicionalmente, serdo
introduzidas também algumas particularidades relacionadas ao monitoramento de processos

autocorrelacionados, tema também abordado na realizacdo deste trabalho.

2.5.1 Graficos de controle univariados

Os gréficos de controle univariados que sdo convencionalmente empregados no
monitoramento de uma caracteristica da qualidade do processo sdo as cartas de controle de
Shewhart, da média mével exponencialmente ponderada (Exponentially Weighted Moving
Average - EWMA) e da soma cumulativa (Cumulative Sum - CUSUM) (FERRER-
RIQUELME, 2009; MONTGOMERY, 2009).

Os gréficos de controle de Shewhart compreendem os pares de graficos para
monitoramento da média e da variabilidade de uma varidvel critica de qualidade ou de

processo. Para o monitoramento da média, utiliza-se o gréafico de controle Xx. Ja para o
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monitoramento da variabilidade, pode-se empregar o gréfico de controle s (grafico de
controle para o desvio-padrdo) ou o grafico de controle R (gréfico de controle para a
amplitude). Considerando-se o par de graficos X e R, os limites inferior (LIC) e superior
(LSC) de controle para o grafico x sdo obtidos, respectivamente, pelas Equacdes 21 e 22
(MONTGOMERY, 2009):

LIC =X — A,R (21)

LSC =X+ A,R (22)

Em que X é a media geral das amostras utilizadas na determinacdo dos limites de
controle, A, é uma constante tabelada dependente do tamanho das amostras € R € a amplitude
média dessas amostras. Ja para o grafico R, os LIC e LSC sdo calculados, respectivamente, a
partir das Equaces 23 e 24 (MONTGOMERY, 2009):

LIC = DsR (23)

LSC = D,R (24)

Em que D; e D, também sdo constantes tabeladas dependentes do tamanho das
amostras.

De modo geral, os graficos de controle de Shewhart permitem a captura de desvios no
processo de grande magnitude. Dessa forma, sdo mais apropriados para utilizagcdo na Fase | de
implementacdo do SPM. Nessa fase, em que s&o definidos os limites de controle, a
possibilidade de ocorréncia de grandes desvios no processo é maior, uma vez que 0 mesmo
estd sendo ajustado para dentro de controle. Uma desvantagem desses graficos, no entanto, é
que apenas a informag&o contida na observagdo mais recente é levada em consideragdo. Como
resultado, os graficos de Shewhart sdo relativamente insensiveis a pequenos e medios desvios,
sendo menos Uteis para a Fase Il do monitoramento ( MONTGOMERY, 2009; FERRER,
2014).

Por outro lado, os graficos de controle EWMA e CUSUM consideram ndo apenas a
informacdo da observacédo presente, mas também das observacOes passadas e, portanto, séo

mais apropriadas para a detecgdo de pequenos desvios no processo (MONTGOMERY, 2009;
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FERRER, 2014). Em geral, essas estatisticas apresentam desempenho semelhante, mas a
EWMA é considerada mais facil de operar e implementar. A principal diferenca entre essas
cartas € que a CUSUM ¢ calculada considerando pesos iguais as observacdes anteriores,
enquanto que a EWMA considera uma média exponencialmente ponderada dessas
observagdes, em que o0 peso diminui com a idade da amostra (MONTGOMERY, 2009;
KADRI et al., 2016). A comparacdo entre o célculo das cartas de controle de Shewhart,
EWMA e CUSUM, do ponto de vista do peso aplicado as amostras presente e passadas, esta

esquematizada na Figura 4.

Figura 4 — Comparagdo entre o calculo das cartas de controle de Shewhart, EWMA e CUSUM, do ponto
de vista do peso aplicado as amostras presente e passadas
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Fonte: Kadri et al. (2016)

A estatistica EWMA para a i-ésima observacao (x;) pode ser calculada de acordo com

a Equacao 25:

zi = A%+ (1 =Nz, (25)

Em que z; é a estatistica EWMA no tempo i, 1 € o parametro de suavizagdo e z;_, é a
estatistica EWMA referente ao tempo anterior (i — 1). O parametro de suavizagdo pode variar
de zeroaum (0 < A < 1), e determina o quanto da memaria dos dados é retida no célculo da
EWMA. Assim, quanto maior o valor de A, menores o0s pesos aplicados as observagdes mais
antigas e, consequentemente, maiores 0s pesos aplicados as observac@es mais recentes. Por
outro lado, quanto menor o valor de A, maiores os pesos aplicados as observagdes mais
antigas. Dessa forma, esse parametro deve ser selecionado de acordo com as caracteristicas do

processo monitorado (KADRI et al., 2016). O valor de partida (z,), requerido quando i = 1,
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pode ser considerado como o valor alvo ou a média de valores preliminares do processo que
estejam dentro de controle (¢,) (MONTGOMERY, 2009).

Os limites inferior e superior de controle para esse grafico sdo calculados de acordo
com as Equacbes 26 e 27, respectivamente, em que L representa a largura dos limites de
controle (MONTGOMERY, 2009).

LIC = o — Lo \/ﬁ [1—(1-2)] (26)

LSC = o + Lo \/z—fx [1—(1-2)4] 7)

J4 a carta de controle CUSUM, ¢ baseada no célculo das somas cumulativas dos
desvios dos valores da amostra em relacdo a um valor alvo (). Na construcdo desse grafico,
calcula-se as somas cumulativas dos desvios de u, que estdo acima do alvo, denominadas
CUSUM unilateral superior (C;"), e as somas cumulativas dos desvios de u, que estdo abaixo
do alvo, denominadas CUSUM unilateral inferior (C;7). Essas estatisticas sdo estimadas,
respectivamente, pelas Equacgdes 28 e 29 (FERRER-RIQUELME, 2009; MONTGOMERY,
2009).

¢ = max[0,x; — (4o + K) + C;i24] )
C; =max[0, (o — K) —x; + C;_4] (29)

Em que K é o valor de referéncia. Além disso, na construcdo dessa carta de controle, é
definido também um intervalo de decisdo (H), que age como um limite superior de controle
para esse grafico, o qual € geralmente definido como cinco vezes o desvio-padréo do processo
(H = 50).

Por fim, as cartas de controle de CUSUM e EWMA sdo tradicionalmente empregadas
para 0 monitoramento da média do processo (MONTGOMERY, 2009). No entanto, essas
cartas e suas variacfes também tém sido utilizadas para monitorar outras caracteristicas do
processo, como a dispersdo (ZWETSLOOT; AJADI, 2019), os residuos da modelagem de
séries temporais (KADRI et al., 2016; YANG et al., 2018) e o monitoramento simultaneo da
média e da variabilidade (SANUSI; MUKHERJEE; XIE, 2019). Adicionalmente, a habilidade
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dessas cartas em detectar pequenos desvios no processo tem sido aplicada, inclusive, para
melhorar o desempenho de cartas de controle multivariadas utilizadas no monitoramento de
processos industriais (BIN SHAMS; BUDMAN; DUEVER, 2011; HARROU et al., 2015;
BAKDI; KOUADRI, 2017; DU; DU, 2018).

2.5.2 Graficos de controle para processos autocorrelacionados

De modo geral, a aplicacdo das cartas de controle univariadas convencionais parte do
pressuposto que os dados sdo independentes e normalmente distribuidos quando o processo
estd em controle estatistico (MONTGOMERY, 2009). Em diversas situacdes, no entanto,
desvios da normalidade podem ndo afetar o desempenho dessas cartas (FERRER-
RIQUELME, 2009). O grafico EWMA, por exemplo, quando desenvolvido de forma
apropriada, apresenta desempenho satisfatério mesmo em condi¢cdo de ndo normalidade
(BORROR,; MONTGOMERY; RUNGER, 1999; HUMAN; KRITZINGER,;
CHAKRABORTI, 2011).

A violacdo da suposicdo de independéncia entre as observacOes, entretanto, pode
ocasionar um impacto maior no desempenho dos graficos de controle. Essa violacdo é
geralmente expressa em termos da funcéo de autocorrelacéo, que estabelece a correlacéo entre
as amostras ao longo do tempo para uma mesma variavel ou série temporal. Em processos
modernos com sistemas de aquisicdo de dados que permitem elevadas taxas de amostragem, a
presenca de autocorrelacdo nos dados é algo muito comum, principalmente, devido ao
pequeno intervalo de aquisi¢cdo das medidas em comparagdo com a dindmica do processo
(FERRER-RIQUELME, 2009; KADRI et al.,, 2016; REIS; GINS, 2017). Sob essas
circunstancias, o uso de graficos de controle convencionais pode levar a um nimero excessivo
de alarmes falsos, a uma estimativa inadequada dos parametros do processo e a problemas na
deteccdo de desvios nas condi¢des normais de operacdo (REYNOLDS; LU, 1997).

Dessa forma, devido a ineficiéncia das cartas de controle tradicionais para lidar com
processos autocorrelacionados, duas estratégias sao frequentemente empregadas para esse fim
(REYNOLDS; LU, 1997). Uma delas consiste no ajuste cuidadoso dos limites de controle das
cartas tradicionais com o objetivo de considerar essa autocorrelagdo (LU; REYNOLDS JR.,
2001; REYNOLDS; LU, 1997). A outra abordagem consiste em utilizar modelos de séries
temporais para ajustar os dados, de forma a capturar a autocorrelagdo, e, posteriormente,

aplicar as cartas de controle tradicionais para monitorar os residuos provenientes desse ajuste.
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Para essa abordagem, constantemente sdo empregados os modelos de médias moveis, 0s
modelos autorregressivos e 0s autorregressivos de médias moveis. De modo geral, essa
abordagem se baseia na suposicdo de que, se um modelo de série temporal for adequadamente
utilizado para descrever os dados autocorrelacionados, os residuos gerados nessa aplicacéo
(que corresponde a diferenca entre as medicGes do processo e os resultados do modelo de
séries temporais) podem ser considerados independentes, podendo ser monitorados por cartas
de controle convencionais (KADRI et al., 2016).

Adicionalmente, outras abordagens podem ser utilizadas no monitoramento de dados
de processo autocorrelacionados (MA et al., 2018). Uma dessas abordagens consiste em
reduzir ou remover a tendéncia dos dados através da utilizacdo de métodos de detrending e de
diferenciacdo, os quais sdo comumente empregados para transformar séries temporais nao

estacionarias em estacionarias (SALLES et al., 2019).
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3 MONITORAMENTO DA PRODUCAO DE BIODIESEL POR ROTA
ALTERNATIVA UTILIZANDO UM ESPECTROMETRO PORTATIL NO
INFRAVERMELHO PROXIMO

O biodiesel consiste em uma mistura de ésteres alquilicos derivados de &cidos graxos
de cadeia longa. Usualmente, é produzido a partir da reacdo de transesterificacdo entre
triacilglicerdis, principais constituintes dos 6leos vegetais e gorduras animais, e um alcool de
baixa massa molar. Os ésteres, produtos da reacdo, possuem uma viscosidade mais baixa do
que o 6leo vegetal, o que permite que o biodiesel produzido possa ser utilizado diretamente
nos motores a diesel (KNOTHE; RAZON, 2017). Por conseguinte, o biodiesel tem sido
considerado uma alternativa promissora aos combustiveis de origem féssil, especialmente
para 0 setor de transporte. Este é utilizado com maior frequéncia misturado ao diesel de
petroleo, mas também pode ser empregado como um combustivel puro (CHANG; HWANG;
WU, 2017). Além disso, por ser renovavel e facilmente biodegradavel, é visto como uma
opcao sustentavel, cujo uso pode auxiliar na reducdo da dependéncia energética e econémica
em relacdo ao petréleo e na minimizacdo de emissdo de alguns poluentes gasosos,
especialmente, gases do efeito estufa (CHANG; HWANG; WU, 2017; SINGH et al., 2019).

Devido aos beneficios citados, o biodiesel tem sido utilizado em diversos paises
(CHANG; HWANG; WU, 2017; KNOTHE; RAZON, 2017). No Brasil, por exemplo, o
governo tem estimulado o uso do biodiesel através de legislacbes que determinam o
percentual minimo desse biocombustivel que deve ser acrescentado ao diesel vendido ao
consumidor final. Na Resolugdo n° 16, de 29 de outubro de 2018, da Agéncia Nacional de
Petrdleo, Gas Natural e Biocombustiveis (ANP), ficou estabelecido um cronograma prevendo
um aumento gradual desse percentual de 11%v/v, adotado desde junho de 2019, até 15%v/v,
previsto para marco de 2023 (CNPE, 2018). Recentemente, em 1° de mar¢o de 2020, entrou
em vigor o percentual minimo de 12%v/v, conforme estabelecido pela Resolugdo (ANP,
2020). Dessa forma, 0s incentivos governamentais e as vantagens proporcionadas pelo uso do
biodiesel tornam necessarios 0s estudos que visem a busca por rotas de producdo alternativas
e métodos de monitoramento da qualidade do produto e do processo, com o objetivo de torna-
lo técnica e economicamente competitivo em comparagdo aos combustiveis de origem féssil.
Essa necessidade é corroborada, inclusive, pela variabilidade de matéria-prima utilizada na
producdo do biodiesel, a qual, conforme discutido por Singh et al. (2019), ocasiona uma

grande variabilidade na qualidade do produto.
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No que tange & busca por rotas de producdo alternativas, o processo continuo de
destilacédo reativa tem se mostrado uma opcao promissora para a producdo de biodiesel. Esse
processo, por integrar as etapas de reacdo e de separacdo dos produtos em um Unico
equipamento, tende a proporcionar a obtencdo de maiores rendimentos, sem a necessidade de
utilizar um grande excesso de &lcool. Tal excesso é geralmente requerido nos processos
convencionais em batelada com o intuito de deslocar o equilibrio da reacdo para favorecer a
formacdo de biodiesel. Quando o processo de destilacdo reativa é utilizado, no entanto, o
equilibrio € deslocado devido a constante retirada do produto, superando-se, assim, as
limitagcBes impostas pelo equilibrio termodindmico da reacdo. Ha diversos trabalhos na
literatura que descrevem o estudo da destilagdo reativa para a producdo de biodiesel, sendo
uma grande parte baseada em simulacdes do processo (BOON-ANUWAT et al., 2015;
PEREZ-CISNEROS et al., 2016; PETCHSOONGSAKUL et al., 2017; PODDAR;
JAGANNATH; ALMANSOORI, 2017; JODA; AHMADI, 2019).

No que diz respeito ao controle de qualidade do biodiesel e do seu processo de
producdo, os métodos tradicionalmente empregados na analise do produto e monitoramento
off-line da reacdo sdo a cromatografia gasosa (CG) e a cromatografia liquida de alta eficiéncia
(HPLC) ( FREEDMAN; BUTTERFIELD; PRYDE, 1986; FELIZARDO et al., 2006;
STAMENKOVIC et al., 2008). A CG, inclusive, € o método de referéncia indicado pela
norma europeia para quantificacdo do teor de éster em biodiesel (EN14103, 2003). Esses
métodos, no entanto, sdo em geral demorados, caros e ndao podem ser facilmente empregados
no monitoramento on-line de reagdes rapidas como a de transesterificacdo (TREVISAN et al.,
2008). Dessa forma, com o objetivo de melhorar o acompanhamento do processo e a
qualidade do biodiesel produzido, vérios trabalhos tém demonstrado o potencial da
espectroscopia NIR para o monitoramento in- e on-line dessa reacdo (KILLNER;
ROHWEDDER; PASQUINI, 2011; RICHARD et al., 2011; DE LIMA et al., 2014; SALES et
al., 2017; GELINSKI et al., 2018; ROUCHI et al., 2019).

Exceto pelo trabalho de Richard et al. (2013), os trabalhos usando NIR citados acima
utilizaram processos em batelada. Richard et al. (2013) descreveram 0 uso de sondas de
reflexdo e de transflectancia para o monitoramento on-line da producdo de biodiesel em
microrreatores, que operavam no modo continuo. Modelos PLS foram utilizados para
quantificar o teor de oleato de etila nas misturas reacionais. O objetivo principal do trabalho,
no entanto, consistiu na transposicdo de uma reacdo de transesterificacdo de um processo em

batelada para o sistema de microrreatores, objetivando, dentre outros aspectos, a coleta de
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uma quantidade maior de dados nos primeiros instantes da reacdo (RICHARD et al., 2013).

Além disso, todos os trabalhos mencionados, incluindo o de Richard et al. (2013),
utilizaram espectrofotémetros de bancada para monitorar a producéo de biodiesel. Em alguns
trabalhos, espectros foram adquiridos na faixa de nimero de onda de 10.000 a 4.000 cm™, que
corresponde a faixa de comprimento de onda de 1.000 a 2.500 nm (RICHARD et al., 2011,
2013; GELINSKI et al., 2018; ROUCHI et al., 2019). Em outros trabalhos, os espectros foram
adquiridos na faixa de nimero de onda de aproximadamente 14.000 a 4.000 cm™ (714 — 2.500
nm) ( KILLNER; ROHWEDDER; PASQUINI, 2011; DE LIMA et al., 2014; SALES et al.,
2017).

A recente tendéncia de miniaturizacdo de equipamentos NIR, entretanto, tem motivado
a utilizacdo de espectrémetros portateis para analises envolvendo o biodiesel, ao invés do uso
de equipamentos de bancada. Paiva et al. (2015), por exemplo, descreveram o uso de um
espectrometro comercial portéatil na regido do NIR (MicroNIR™ Pro 1700, VIAVI Solutions)
para estimar o teor de biodiesel e de 6leo vegetal em misturas de biodiesel e diesel. Os autores
realizaram um estudo comparativo utilizando um espectrofotdmetro de Infravermelho
Proximo por Transformada de Fourier (FT-NIR) e obtiveram desempenhos comparaveis para
ambos 0s equipamentos. Em outro trabalho descrito por da Silva et al. (2017), avaliou-se 0
potencial do MicroNIR para o desenvolvimento de modelos de regressdo PLS com o intuito
de estimar parametros de qualidade da gasolina e misturas de diesel/biodiesel. Os autores
também reportaram resultados satisfatorios para o uso do MicroNIR. Por fim, mais
recentemente, Correia et al. (2018) utilizaram o MicroNIR para o controle de qualidade de
combustiveis. O potencial do espectrdmetro foi avaliado em relacdo a identificacdo de
adulteracdes em diesel, gasolina do tipo C e etanol hidratado combustivel. Dentre outros
parametros, avaliou-se o teor de biodiesel em amostras de diesel. Em geral, os autores
obtiveram resultados promissores, demonstrando o potencial do MicroNIR para ser utilizado
no controle de qualidade de combustiveis.

Apesar de ja empregado em analises de biodiesel, espectrdmetros portateis na regido
do NIR ainda nédo foram utilizados para 0 monitoramento on-line da producgéo de biodiesel.
Esse é, portanto, um aspecto de ineditismo do presente trabalho, o qual descreve o uso do
MicroNIR para o monitoramento on-line da reacdo de transesterificacao entre etanol e 6leo de
algoddo em um processo continuo de destilacdo reativa.

O principal objetivo do trabalho apresentado nesse capitulo (APENCIDE A) foi

avaliar a viabilidade de se utilizar um espectrdmetro portatil na regido do infravermelho
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proximo (MicroNIR), como uma ferramenta de PAT, para monitorar a producdo de biodiesel
em um processo continuo de destilacdo reativa. Para isso, 0s seguintes objetivos especificos

foram definidos:

a) Estimar a composicdo da mistura reacional na base da coluna de destilagéo reativa
utilizada para produzir biodiesel a partir de éleo de algodéo e etanol,;

b) Definir o caminho Optico mais adequado e as condi¢cdes experimentais apropriadas
para a aquisicao de espectros com o0 MicroNIR;

c) Coletar e analisar amostras da base da coluna com o MicroNIR e pelos métodos
cromatograficos para quantificacdo de etanol e de éster alquilico;

d) Avaliar a possibilidade de utilizar misturas sintéticas para compor o conjunto de
calibracéo;

e) Desenvolver modelos de regressao PLS para quantificar os teores de etanol, glicerol e
ésteres alquilicos na base da coluna e avaliar o potencial desses modelos para o

monitoramento da producéo de biodiesel na coluna de destilacdo reativa.

3.1 METODOLOGIA

A metodologia aplicada para o desenvolvimento deste trabalho esta detalhada a seguir.

3.1.1 Producao de biodiesel pelo processo de destilacdo reativa

As reacOes de transesterificacdo para a producdo de biodiesel foram conduzidas em
uma coluna de destilacdo reativa em escala laboratorial (coluna de vidro com 150 cm de altura
e 3 cm de didmetro), empacotada com anéis de cobre (didmetro de 0,7 cm). Ela é composta
por pontos de alimentacdo de 6leo e de catalisador no topo e um ponto de alimentacdo de
alcool no fundo. O sistema reacional contém também um refervedor na base, utilizado para a
geragdo de um fluxo de vapor de alcool, o qual era alimentado no fundo da coluna e transferia
calor a medida que a percorria em sentido ascendente. Adicionalmente, na parte superior da
coluna, hd um condensador do tipo total, utilizado para recuperar o alcool ndo reagido que
saia pelo topo.

A coluna podia operar em diversas razbes molares alcool/6leo, uma vez que 0s

sistemas de bombeamento de ambos 0s reagentes permitiam o ajuste de suas vazdes de



54

alimentacdo. Essas vazOes, inclusive, podiam apresentar pequenas variagcbes durante a
operacdo devido a baixa precisdo de seus medidores. Nesse trabalho, entretanto, foi adotada
uma condicao operacional que resultou em um excesso de alcool na base da coluna. No total,
foram realizados trés experimentos nessa condicdo. No primeiro deles, aliquotas foram
coletadas da base da coluna e analisadas pelo MicroNIR no modo off-line, com o intuito de
selecionar o caminho Optico mais adequado para a aquisicdo das medidas e definir as
condicdes de analise. Nos outros dois experimentos, as aquisi¢cdes espectrais com o MicroNIR
foram realizadas no modo on-line. Adicionalmente, as aliquotas retiradas da base da coluna
foram analisadas também por cromatografia gasosa para estimar os teores de etanol e de éster
alquilico. Do total de amostras retiradas, 12 foram empregadas no desenvolvimento dos
modelos de calibracao.

Nas reacdes, etanol p.a. (Neon, pureza de 99,85%) e 6leo de algoddo comercial (Flor
de Algodao, adquirido em mercado local) foram utilizados como reagentes. Em algumas
situacdes, ainda, utilizou-se 6leo de algoddo fornecido pela planta experimental de biodiesel
do Centro de Tecnologias Estratégicas do Nordeste (CETENE, Caetés, Pernambuco).
Hidroxido de sédio (Dinamica, pureza minima de 98%) dissolvido em etanol foi utilizado
como catalisador em uma concentracao de 1% (m/m) em relacdo a quantidade de 6leo vegetal,

aproximadamente.

3.1.2  Andlises cromatograficas

Os teores de éster alquilico e de etanol das amostras retiradas da coluna (ponto
monitorado pelo MicroNIR) foram estimados utilizando-se um cromatégrafo gasoso, modelo
Shimadzu 17-A, com injecdo automatica e detector de ionizacdo de chama (GC-FID). Do total
do volume de cada aliquota, uma parte era enviada para a determinacédo do teor de etanol, cuja
analise era realizada, preferencialmente, no mesmo dia de coleta. A outra parte era
adicionado, aproximadamente, 10%v/v de acido acético glacial, com o intuito de interromper
a reacdo. A mistura era, entdo, submetida a uma etapa de purificagdo e mantida sob
refrigeracdo para posterior determinacéo do teor de éster alquilico por cromatografia.

As andlises cromatograficas para estimar a concentracdo de éster foram realizadas de
acordo com a norma EN14103 (EN14103, 2003), utilizando o padrdo interno C17
(heptadecanoato de metila) e a coluna capilar Carbowax. Um injetor do tipo split/splitless e

um detector de ionizagdo de chama foram empregados. A etapa de purificacdo anterior a
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andlise consistiu em: lavagens sucessivas com agua destilada seguidas de centrifugacdo e
retirada da fase aquosa; secagem com adi¢do de sulfato de sodio anidro (10% (m/m)); e
filtracdo utilizando um papel de filtro qualitativo, um Kitasato e uma bomba a vacuo,
conforme descrito por de Lima et al. (2014). Ao menos trés lavagens foram realizadas para
cada aliquota.

Por falta de uma norma para determinar o teor de etanol em misturas com biodiesel,
contendo um elevado teor de etanol, alguns testes foram realizados para otimizar um método
cromatografico que pudesse ser utilizado para esse fim. As andlises foram conduzidas em uma
coluna capilar ValcoBond VB-1 (fase estacionaria 100% dimetilpolisiloxano). A temperatura
da coluna para 0 método otimizado foi programada com o objetivo de se obter uma separagéo
clara para o pico do etanol: a temperatura inicial foi de 50°C, mantida por 6 min, seguida de
uma rampa a 30°C/min até 300°C, permanecendo nessa temperatura por 20 min. A curva
analitica foi construida com base em solu¢des padrGes contendo biodiesel e etanol p.a.,
variando-se a concentracdo de etanol de 50 a 90% (m/m). Cada solucdo foi analisada em
triplicata e um valor de R2 igual a 99,32% foi obtido para o ajuste linear. O desvio padréo

estimado sob condicdes de repetibilidade (N=12) para esse método foi de 1,4% (m/m).

3.1.3 Aquisicao off-line de dados espectroscépicos com o MicroNIR e selecédo do
caminho optico

Neste trabalho, um espectrdmetro comercial portatil (MicroNIR™ Pro 1700, Viavi
Solutions), acoplado a um acessoério de transmitancia, foi utilizado para a aquisicdo dos dados
espectroscopicos. Esse equipamento contém um Filtro Linear Variavel e um arranjo de
detector InGaAs de 128 pixel, que permite que os valores de absorbancia sejam determinados
de forma simultdnea para todos os comprimentos de onda. A faixa espectral de operacdo do
MicroNIR compreende a regido entre 908 e 1676 nm e, segundo o fabricante, sua resolugéo
optica € menor do que 1,25% (geralmente, 1%) do comprimento de onda central (por
exemplo, para 1000 nm, a resolucdo seria menor do que 12,5 nm).

Para a aquisi¢do dos dados no modo off-line, utilizou-se um acessorio de transmitancia
desenvolvido no Departamento de Quimica Analitica da UNICAMP, sob a superviséo do
Prof. Dr. Jarbas José Rodrigues Rohwedder, semelhante ao descrito por Paiva et al. (2015). O
acessorio permite a utilizacdo de cubetas de diferentes tamanhos e, portanto, foi utilizado para

a selecdo do caminho dptico mais adequado para a anélise das amostras retiradas da base da
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coluna. Nesse estudo, cubetas de quartzo de 5, 10 e 20 mm foram testadas. Os espectros
foram adquiridos em toda faixa espectral do MicroNIR, registrados como uma média de 50
varreduras e com tempo de integracdo de 50 ms. Para todas as medidas, o 100% de
transmitancia foi adquirido utilizando-se uma cubeta limpa e vazia e o 0% foi obtido
bloqueando-se a passagem da luz entre a fonte externa do acessorio (mini ldmpada de
tungsténio) e o espectrometro. Tanto o acessorio quanto o MicroNIR foram alimentados por
um cabo USB conectado a um laptop, em que os dados foram registrados pelo software do
instrumento.

O caminho O&ptico selecionado para a analise das amostras da coluna foi também
utilizado na aquisicdo de espectros das misturas sintéticas. Para cada mistura, as anlises
foram realizadas em triplicata, no modo off-line, sequindo-se 0 mesmo procedimento descrito.
Os espectros médios de cada mistura foram, entdo, utilizados na construcéo e validacdo dos

modelos de calibracéo.

3.1.4 Misturas sintéticas

Como a composic¢ao da mistura reacional na base de uma coluna de destilacéo reativa
praticamente ndo varia depois de atingido o estado estacionario, avaliou-se a possibilidade de
utilizar amostras preparadas em laboratério (chamadas de misturas sintéticas) para a
construcdo dos modelos de calibracdo. A utilizacdo de misturas sintéticas também torna o
processo de calibragdo muito mais pratico. Com essa finalidade, um planejamento de misturas
foi inicialmente adotado para a preparacdo de misturas ternarias compostas de etanol, dleo de
algodéo e biodiesel. A faixa de concentracdo de cada componente foi estabelecida de acordo
com a composi¢cdo da mistura reacional na base da coluna de destilacdo reativa e de modo a
garantir variabilidade suficiente para os modelos de calibragcdo. A partir do planejamento com
pontos adicionais, 70 misturas ternarias foram inicialmente preparadas e analisadas com o
MicroNIR em temperatura ambiente (22 + 2°C). O diagrama ternario com as concentragoes
dessas misturas esta apresentado no APENDICE B.

Em seguida, com o objetivo de minimizar as diferencas entre os espectros das misturas
sintéticas e das amostras retiradas da coluna, 38 novas misturas foram preparadas, analisadas
com o MicroNIR e inseridas nos modelos de calibragdo. Algumas delas foram preparadas
incluindo o glicerol (pureza de 99,5%, Synth), além dos outros trés componentes ja utilizados.

Para algumas dessas misturas quaternarias, respeitou-se a relagdo estequiométrica entre o
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glicerol e o éster alquilico da reagdo global de transesterificagdo (1 mol de glicerol para cada
3 mol de éster alquilico). Para outras, no entanto, essa relacdo ndo foi levada em considerac&o,
com o objetivo de evitar possiveis correlacGes indiretas na etapa de modelagem. Por fim,
algumas misturas ternarias e quaternarias foram ainda analisadas na mesma temperatura
operacional da base da coluna, a qual pode variar em entre 50 a 60°C. As amostras restantes
foram analisadas a temperatura ambiente (22 £ 2°C).

Dessa forma, um total de 108 misturas sintéticas foram preparadas e analisadas com o
MicroNIR. As composic¢des dessas misturas, em termos de % (m/m), bem como a temperatura
de anélise de cada uma, estdo apresentadas no APENDICE C. Na preparacio de cada mistura,
a quantidade previamente calculada de cada componente foi pesada em um frasco ambar,
utilizando uma balanca analitica Sartorius (modelo BL210S), com precisdo de 0,0001 g.
Foram pesados em sequéncia, do menos volatil (glicerina ou 6leo) até o mais volatil (etanol).
O mesmo etanol e Oleo de algoddo utilizados na reacdo de transesterificacdo, descrita
anteriormente, foram usados nessa etapa. Além disso, com o intuito de evitar a ocorréncia de
erros sistematicos no preparo das misturas, quatro amostras de biodiesel de algoddo com
diferentes teores de éster alquilico foram utilizadas (77,8% (m/m), 81,5% (m/m), 90,5%
(m/m) e 95,0% (m/m)). Essas amostras foram provenientes da producdo de biodiesel em
bateladas realizadas no laboratdrio, empregando-se diferentes condi¢des experimentais. O
seguinte procedimento geral foi adotado para cada batelada: inicialmente, o 6leo de algodéo
foi introduzido ao reator e submetido a agitacdo e aquecimento até alcancar a temperatura de
interesse; posteriormente, a solu¢do contendo catalisador (NaOH) previamente dissolvido em
etanol foi adicionada ao reator, mantendo-se a reagao por aproximadamente 60 min. No fim, o
biodiesel foi purificado e analisado por cromatografia gasosa para estimar o teor de éster

alquilico, seguindo 0 mesmo procedimento descrito para as amostras da coluna.

3.1.5 Monitoramento on-line da producéo de biodiesel com o MicroNIR

Uma vez que o caminho optico foi selecionado e as condi¢cdes de analise com o
MicroNIR no modo off-line foram estabelecidas, uma pequena adaptagdo foi realizada ao
acessorio de transmitancia com o objetivo de utilizar uma cubeta de quartzo de fluxo, de
modo a permitir o monitoramento on-line da producéo de biodiesel. Para essas anélises, foram
aplicadas as mesmas configuracoes estabelecidas na aquisicdo de medidas off-line, descritas

anteriormente. A diferenca é que, no modo on-line, a mistura reacional da base da coluna era



58

continuamente enviada a célula de fluxo, onde os espectros eram coletados automaticamente a
cada segundo, utilizando o software do MicroNIR. Um esquema da coluna de destilagéo

reativa e do monitoramento on-line com o MicroNIR esté ilustrado na Figura 5.

Figura 5 — Esquema da coluna de destilacdo reativa e do monitoramento on-line com o MicroNIR
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Fonte: A Autora (2020)
3.1.6 Pré-processamento dos dados e desenvolvimento dos modelos de calibragéo

Na etapa de desenvolvimento dos modelos de regressdo PLS, alguns pré-
processamentos foram avaliados: SNV, MSC, EMSC, 12 derivada com filtro Savitzky-Golay e
SNV, seguido de OSC. Os dados pré-processados foram também centrados na média para a
construcdo dos modelos, com o objetivo de quantificar os teores de etanol, éster alquilico e
glicerol das amostras da coluna.

Na constru¢cdo dos modelos para quantificacdo de etanol e éster, 104 misturas
sintéticas foram separadas em um conjunto de calibracdo e predicdo, aproximadamente 70%
para a calibracdo e 30% para a predi¢cdo. Esses conjuntos foram selecionados utilizando-se o
algoritmo SPXY (GALVAO et al., 2005). Ja4 na construcdo do modelo PLS para a
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quantificacdo de glicerol, apenas 38 misturas sintéticas foram utilizadas. Os conjuntos de
calibracdo e de validacdo também foram selecionados utilizando-se o SPXY, de modo que 30
amostras foram separadas para a calibracdo e 8 para a previsdo. Apos a selecdo, no entanto, 2
misturas separadas para a calibragdo foram enviadas para o conjunto de validacdo, com o
intuito de obter uma melhor distribuicdo dos dados ao longo da faixa de concentracdo do
glicerol.

Adicionalmente, além das misturas sintéticas, para cada modelo, 3 amostras coletadas
da coluna foram adicionadas ao conjunto de calibracdo. As nove amostras da coluna
remanescentes foram incluidas no conjunto de predicdo desses modelos. Com o objetivo de
sintetizar essas informacGes, a quantidade de amostras da coluna e de misturas sintéticas
utilizadas no desenvolvimento de cada modelo, antes da exclusdo de outliers, estd apresentada

na Tabela 1.

Tabela 1 - Namero de misturas sintéticas e amostras da coluna aplicadas as etapas de calibracdo e predicéo para
o desenvolvimento de modelos PLS para quantificar etanol, éster alquilico e glicerol, antes da
exclusdo de outliers

Etapa de calibracéo Etapa de predicédo
Componente Misturas Amostras da Misturas Amostras da
sintéticas coluna sintéticas coluna
Etanol 73 3 31 9
Ester alquilico 73 3 31 9
Glicerol 28 3 10 9

Fonte: A Autora (2020)

Na construcdo dos modelos PLS, as composicdes conhecidas das misturas sintéticas
(APENDICE C) foram empregadas como valores de referéncia (vetor y). Para as amostras da
coluna, os valores de referéncia para o etanol foram obtidos diretamente por analise
cromatografica, conforme descrito no topico 3.3.2. Ja os valores de referéncia do éster
alquilico e do glicerol, para cada amostra, foram calculados considerando-se 0s seguintes
dados: teor de etanol obtido por cromatografia, teor de éster alquilico obtido por
cromatografia apds purificagdo (que corresponde ao teor de éster da mistura de biodiesel e
6leo de algodao ndo reagido), e razdo estequiométrica entre o glicerol e o éster alquilico da
reacdo global de transesterificacdo, conforme descrito no APENDICE D.

Na construcdo de todos os modelos, a deteccdo e eliminagdo de amostras andmalas

(outliers) foi conduzida utilizando-se os graficos dos residuos. A selecdo do numero 6timo de
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variaveis latentes baseou-se na técnica de validacao cruzada venetian blinds, aplicada na etapa
de validag&o interna dos modelos. Por fim, todas as analises quimiométricas e tratamento dos
dados espectroscopicos foram realizados utilizando o software MATLAB® (R2010a
7.10.0.499, MathWorks) e os modelos foram desenvolvidos utilizando o PLS toolbox
(Eigenvector Research Inc., EUA). O célculo do limite de deteccdo dos modelos foi realizado
através da interface MVC1_GUI, que funciona em ambiente MATLAB (CHIAPPINI;
GOICOECHEA,; OLIVIERI, 2020).

3.2 RESULTADOS E DISCUSSAO

Os principais resultados obtidos estdo apresentados e discutidos a seguir.

3.2.1 Selecdo do caminho Optico e estimativa da composi¢ao da mistura reacional no
ponto monitorado com o MicroNIR

Inicialmente, algumas aliquotas foram retiradas da base da coluna de destilacdo
reativa, apds estabilizacdo da coluna, com o intuito de definir as condi¢cdes adequadas para a
aquisicdo espectral, incluindo a selecdo do caminho dptico, e de estimar a composi¢do da
mistura reacional nesse ponto. Essas aliquotas foram analisadas com o MicroNIR, no modo
off-line, utilizando cubetas de quartzo com diferentes caminhos dpticos (5, 10 e 20 mm). Os
espectros adquiridos de uma dessas aliquotas utilizando as trés cubetas estdo mostrados na
Figura 6.
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Figura 6 - Espectros adquiridos utilizando cubetas de quartzo de diferentes caminhos 6pticos
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Fonte: A Autora (2020)

E possivel perceber através da Figura 6 que o espectro obtido com a cubeta de 20 mm
(em vermelho) apresentou sinais de absorcdo saturados na regido entre 1400 e 1700 nm,
aproximadamente. J& que a banda de formato alargado nessa regido € devida ao primeiro
sobretom do grupamento O-H (WORKMAN; WEYER, 2012), a saturacdo do sinal foi
atribuida, principalmente, ao excesso de etanol na mistura reacional. Ja o espectro adquirido
com a cubeta de 5 mm (em azul), apresentou valores mais baixos de absorbancia.
Particularmente, para os comprimentos de onda em torno de 1160 e 1450 nm, esses baixos
valores poderiam dificultar a quantificacdo do teor de éster alquilico, ja que esses
comprimentos de onda sdo atribuidos, respectivamente, ao quarto e terceiro sobretons do
grupamento C=0 (WORKMAN; WEYER, 2012). Dessa forma, com base nessas
observacdes, o caminho éptico de 10 mm foi selecionado para a aquisicao espectral utilizando
0 MicroNIR, tanto no modo off-line, quanto no modo on-line.

Posteriormente, com o intuito de estimar a composi¢ao da mistura reacional na base da
coluna, as aliquotas coletadas nessa primeira etapa foram tratadas, conforme procedimento
descrito no tdpico 3.3.2, e analisadas pelos métodos cromatograficos para a quantificacdo dos
teores de éster alquilico (biodiesel) e etanol. O teor de éster para essas amostras ficou em
torno de 85% (m/m), considerando apenas a fase contendo biodiesel e éleo ndo reagido, e 0
teor de etanol ficou em torno de 80 e 90% (m/m). Esse estudo preliminar foi essencial para
definir as faixas de concentracdo dos modelos de calibracdo e orientar na preparacdo das

misturas sintéticas.
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3.2.2 Analises cromatograficas das amostras da coluna

Ap0s a selecdo do caminho dptico e estimativa da composicdo da mistura reacional na
base da coluna, prosseguiu-se com a preparacao das misturas sintéticas e, em paralelo, com o
monitoramento on-line da producéo de biodiesel. Das amostras da coluna coletadas durante os
experimentos e analisadas por cromatografia, 12 foram utilizadas na construcdo dos modelos
de calibracdo. Outras foram excluidas por estarem fora das faixas de concentracdo dos
modelos. Os teores de etanol e de éster alquilico (considerando apenas a fase contendo
biodiesel e 6leo de algoddo ndo reagido), obtidos por cromatografia, para essas 12 amostras

estdo apresentados na Tabela 2.

Tabela 2 — Teores de etanol e éster alquilico, em % (m/m), das amostras retiradas da coluna, obtidos
por cromatografia gasosa

Teor de etanol obtido por CG Teor de éster alquilico obtido por

Amostra

(% (m/m)) CG apos purificacdo (% (m/m))
Cco1 80,0 86,0
Co02 80,2 82,6
Co03 81,6 91,0
Co4 83,2 90,4
CO05 81,2 85,9
CO06 84,9 88,9
co7 89,4 89,2
Co08 72,4 92,6
CO09 85,9 91,7
C10 86,0 89,9
Cl1 82,9 91,9
Cl12 88,3 87,2

Fonte: A Autora (2020)

Os teores de etanol e de éster alquilico das amostras da coluna, apresentados na Tabela

2, estdo de acordo com as faixas de concentracdo dos modelos de calibracdo desenvolvidos.

3.2.3 Misturas sintéticas

Como a composicdo da mistura reacional na base da coluna de destilagcdo reativa
praticamente ndo varia apds atingido o estado estacionario, as misturas sintéticas foram
utilizadas com o objetivo de ampliar as faixas de concentracdo dos modelos. Embora alguns

pequenos ajustes tenham sido realizados nas condicGes operacionais da coluna com o intuito
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de ampliar a faixa de concentracdo das amostras retiradas da base (Tabela 2), essa variagéo,
por si sO, ndo fornece variabilidade suficiente para a etapa de modelagem, requerendo,
portanto, 0 uso das misturas sintéticas. Além disso, é importante ressaltar que esse tipo de
flexibilidade operacional, em geral, ndo € possivel em ambientes industriais. Por fim, o
emprego dessas misturas trouxe também simplicidade do ponto de vista experimental, uma
vez que reduziu a necessidade de fazer analises cromatograficas, as quais sdo demoradas,
caras e requerem uma etapa de purificacdo das amostras.

A principio, por questdo de simplicidade, optou-se por preparar misturas ternarias
contendo etanol, biodiesel e dleo de algoddo. O glicerol foi inicialmente desconsiderado por
ser produzido em uma quantidade menor quando comparado ao biodiesel e, principalmente,
ao etanol presente em excesso. No entanto, depois de desenvolvidos e analisados os primeiros
modelos, sentiu-se a necessidade de melhorar a representatividade das misturas, minimizando
as diferencas entre 0s espectros das amostras coletadas na base da coluna e os espectros das
misturas sintéticas. Com esse objetivo, 38 novas misturas foram preparadas, incluindo
amostras quaternarias contendo glicerol e amostras analisadas na mesma temperatura de
operacdo da base da coluna (em torno de 50 e 60°C). A principio, o efeito da temperatura
tinha sido considerado insignificante devido a perda de calor que ocorre entre a parte inferior
da coluna, de onde sai a amostra, e a posi¢do do MicroNIR no sistema de medigdo on-line. No
entanto, os resultados obtidos ao longo do desenvolvimento desse trabalho indicaram a
importancia de considerar o efeito da temperatura. De forma ilustrativa, estdo apresentados na
Figura 7 os espectros médios, pré-processados com SNV, das misturas sintéticas 97 e 98
(APENDICE C), de mesma composi¢ido, mas cujos 0s espectros foram adquiridos,
respectivamente, na temperatura ambiente (22 £ 2°C) (em azul) e na faixa de temperatura

entre 50 e 60°C (em vermelho).
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Figura 7 — Espectros medios, pré-processados com SNV, de misturas sintéticas de mesma composicéo (97 e 98 —
APENDICE C), adquiridos, respectivamente, na temperatura ambiente (22 + 2°C) (em azul) e na faixa de
temperatura entre 50 e 60°C (em vermelho)
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Fonte: A Autora (2020)

Conforme observado na Figura 7, a faixa espectral que foi mais afetada pelo aumento
da temperatura foi a regido correspondente ao primeiro sobretom do grupamento O-H,
presente no etanol e no glicerol.

Para fins de comparacdo, os espectros médios das 108 misturas sintéticas e das 12
amostras coletadas na base da coluna de destilacdo reativa, antes da exclusdo de outliers,
estdo apresentados na Figura 8.
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Figura 8 — Espectros médios das 108 misturas sintéticas preparadas (em cinza) e das 12 amostras retiradas da
coluna de destilagdo reativa (em preto), antes da excluséo dos outliers
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Fonte: A Autora (2020).

E possivel perceber pela Figura 8 que, apesar da inclusdo das novas amostras, ainda
existem diferencas entre os espectros dos dois conjuntos de dados, especialmente em torno de
1400 nm, as quais devem ser minimizadas com a aplicacdo de técnicas de pré-processamento
adequadas. Essas técnicas devem ser utilizadas também para corrigir os efeitos de
espalhamento da radiacédo, os quais sdo atribuidos, principalmente, a emulsdo formada durante
a reacdo e a heterogeneidade de algumas misturas sintéticas, sobretudo aquelas com alta
concentracdo de glicerol e de 6leo de algoddo. Além disso, a passagem de pequenas bolhas de
ar na cubeta de fluxo durante a aquisicdo espectral on-line também pode ser uma das causas

do espalhamento da radiacdo e do aspecto ruidoso dos espectros.
3.2.4 Pré-processamento dos dados e desenvolvimento dos modelos de calibragio

Na etapa de constru¢do dos modelos, algumas técnicas de pré-processamento foram
testadas com o intuito de corrigir os efeitos de espalhamento da radiacdo e minimizar as
diferencas entre os espectros das misturas sintéticas e 0s espectros das amostras da coluna,

conforme discutido anteriormente. Os seguintes métodos de pre-processamento foram
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testados com essa finalidade: SNV, MSC, EMSC, primeira derivada com filtro Savitzky-
Golay (com janela de 7 pontos e polindmio de 22 ordem) e OSC.

Antes da aplicacdo das técnicas citadas, as regides ente 908-1112 nm e 1400-1676 nm
dos espectros utilizados na constru¢cdo dos modelos para quantificacdo de etanol e glicerol
foram suavizados com filtro Savitzky-Golay (janela de 9 pontos e polindmio de 22 ordem),
com o intuito de amenizar o aspecto ruidoso dos espectros nessas regides. O filtro ndo foi
aplicado a regido central para ndo haver perda de informacdo no pico em torno de 1200 nm,
que é atribuido ao segundo sobretom de estiramento C-H.

Apos a aplicacdo das técnicas de pré-processamento, os espectros foram centrados na
média para desenvolvimento de modelos de regressdo PLS para quantificagdo de etanol, éster
alquilico e glicerol. Os resultados das etapas de calibracdo e de predi¢cdo dos modelos
desenvolvidos estdo apresentados na Tabela 3. Os modelos para etanol e éster alquilico foram
construidos levando-se em consideracdo toda a faixa espectral do MicroNIR, que vai de 908 a
1676 nm. Ja para a quantificacdo do glicerol, os modelos foram desenvolvidos considerando-
se apenas a regido entre 1348 e 1676 nm, a qual abrange, principalmente, a faixa associada ao

glicerol e ao etanol (grupamento O-H).

Tabela 3 — Resultados para as etapas de calibracéo e de predico dos modelos de regresséo PLS para
quantificacdo dos teores de etanol, glicerol e éster alquilico

Faixa de

Composto concentracao Pre- 5 MSEC FSMSECV Zev ORMSEP R2
(% (m/m)) processamento (% (m/m)) (% (m/m)) (% (m/m))

EMSC 5 0,95 125 093 166 0,75

SNV 6 1,00 136 091 148 0,80

Etanol 70-90 MSC 6 1,07 144 090 134 0,84

123 derivada 5 1,05 133 092 181 0,71

SNVeOSC 2 0,70 127 093 179 0,70

EMSC 2 0,76 0,86 090 1,08 0,73

SNV 5 0,50 0,78 093 1,29 0,73

Glicerol 0-75 MSC 4 0,56 080 092 125 0,73

12 derivada 3 0,76 0,89 090 094 0,76

SNVeOSC 2 0,36 051 09 098 0,76

EMSC 7 2,06 265 0,79 215 0,79

Ester SNV 6 2,45 295 0,74 279 0,64

alquilico 0-23 MS_C 6 2,49 304 0,72 283 0,63

12 derivada 6 2,71 313 0,71 3,09 0,60

SNVeOSC 2 2,03 342 066 305 0,58

Fonte: A Autora (2020).
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A partir das métricas de desempenho apresentadas na Tabela 3, foi possivel selecionar
a estratégia de pré-processamento mais adequada para a construgdo dos modelos PLS e
discussdo dos resultados. Isso foi feito de modo a priorizar, se possivel, a escolha de um Unico
pré-processamento para os trés modelos apresentados neste trabalho (para quantificacdo de
etanol, éster alquilico e glicerol).

No que diz respeito a quantificacdo de etanol, os valores de RMSEP dos modelos
desenvolvidos com SNV, MSC, 12 derivada e SNV seguido de OSC, ndo apresentaram
diferenca estatistica em relacdo ao modelo obtido com EMSC, com base em um teste F a um
nivel de 95% de confianga. O modelo obtido com SNV e OSC foi desenvolvido com um
namero menor variaveis latentes (VL). No entanto, essa estratégia de pré-processamento ndo
foi selecionada pois, para a quantificacdo dos trés compostos, os modelos desenvolvidos ndo
apresentaram uma predicdo satisfatdria para as amostras da coluna: os valores de RMSEP
para a predicdo das amostras da coluna foram superiores aos valores de RMSEP para a
predicdo das misturas sintéticas (teste F, 95% de confianca). Dessa forma, EMSC e 12
derivada poderiam ser utilizadas, ja que nesses casos, 5 variaveis latentes foram requeridas
para a construcdo dos modelos. No entanto, a técnica EMSC foi selecionada por ser
considerada mais simples do ponto de vista de implementacdo e interpretacdo dos resultados,
uma vez que mantém o formato dos espectros brutos. Na constru¢do do modelo com EMSC,
apos a eliminacdo de outliers, 71 misturas sintéticas e 3 amostras da coluna (C10 - C12),
totalizando 74 amostras, foram utilizadas na etapa de calibracdo. Ja na etapa de predicdo, 31
amostras sintéticas e 9 amostras da coluna (C01 - C09) foram consideradas. Os resultados
obtidos para esse modelo foram considerados satisfatorios tanto para a calibracdo (RMSEC de
0,95% (m/m)) quanto para a predi¢do (RMSEP de 1,66% (m/m)).

Para a quantificacdo do teor de glicerol, o valor de RMSEP do modelo desenvolvido
com EMSC ndo apresentou diferenca estatisticamente significativa, com base em um teste F a
um nivel de 95% de confianca, dos valores de RMSEP dos modelos desenvolvidos com as
outras técnicas. O modelo com EMSC foi escolhido, no entanto, pelo fato de ter sido
desenvolvido com um ndmero menor de varidveis latentes (VL). ApoOs a investigacdo e
exclusdo de outliers, esse modelo foi construido utilizando-se 28 amostras no conjunto de
calibracdo: 25 misturas sintéticas e 3 amostras da coluna (C10 a C12). Além disso, 18
amostras foram utilizadas para a etapa de predicdo, incluindo 9 amostras da coluna (CO1 a

C09) e 9 misturas sintéticas. Com base nas métricas de desempenho apresentadas, resultados
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satisfatorios foram obtidos tanto para a etapa de calibracdo (RMSEC = 0,76% (m/m)) quanto
para a de predicdo (RMSEP = 1,08% (m/m)).

Quanto aos modelos para quantificacdo de éster alquilico, exceto para a técnica SNV,
os valores de RMSEP dos modelos desenvolvidos com 0s outros pré-processamentos nao sao
estatisticamente semelhantes aos obtido com EMSC, com base em um teste F de 95% de
confianca. Nesse caso, embora a construgdo do modelo com SNV tenha requerido menos
variaveis latentes, com o objetivo de unificar o pré-processamento utilizado nos trés modelos
PLS apresentados nesse trabalho, a técnica EMSC foi selecionada. Dessa forma, o modelo
com EMSC, construido com 7 variaveis latentes, apresentou resultados aceitaveis para as
etapas de calibragdo (RMSEC de 2,06% (m/m)) e de predicdo (RMSEP de 2,15% (m/m)). Na
construcdo desse modelo, apds a retirada de outliers, 74 amostras foram utilizadas para a
calibracdo, incluindo 3 amostras da coluna (C10-C12). Ja na predicdo, 31 misturas sintéticas e
8 amostras da coluna foram utilizadas. Das 9 amostras da coluna (C01 a C09), uma foi
excluida (C08) por apresentar um valor de residuo studentizado muito negativo quando
comparado ao das outras amostras, conforme ilustrado no grafico de leverage versus residuos
studentizados da Figura 9 para o0 modelo PLS com os dados pré-processados com EMSC. De
acordo com o apresentado em Burns e Ciurczak (2008), os residuos studentizados indicam
qudo bem o modelo consegue prever a propriedade de interesse para uma determinada

amostra.

Figura 9 — Residuos studentizados vs. leverage para as amostras de calibragdo (em cinza) e de predi¢do
(misturas sintéticas em azul e amostras da coluna em vermelho) para o modelo para quantificacdo
de éster alquilico construido com os dados pré-processados com EMSC

|
3777;7777777777777777 7777777777777777777777 ® Calibragéo
° | Validagao
oL | . s
® . ** R ® R g’nl_l\s/t/ur:;li.&r?ttetlcas)
» ®», 0° e ! - m) Limite
S 1t toce ° e } ———+/-3 Limite
N 8° o'. e | . Zero
= D,s,:g,gr,,g ,,,,, T 20 A , Validagdo
% ‘* o9 ® 9 } (amostras da coluna)
It SO LR I ¢
8 ’ 0 @ ° 1 °
<) \
3 2f ¢ °® :
[%2]
o) |
[h'd |
3 4‘
|
|
4+ |
\ Cco8
|
5 L L [ L K3 |
0 0.1 0.2 0.3 0.4 0.5 0.6

Leverage

Fonte: A Autora (2020)



69

Para comparacéo, Richard et al. (2013) obtiveram valores de RMSEP de 4,10% (m/m)
e 3,52% (m/m) quando utilizaram sondas de reflexdo e de transflectancia, respectivamente,
para estimar o teor de oleato de etila na mistura reacional durante a producao de biodiesel. A
faixa de concentracdo adotada para o oleato de etila variou entre zero e 100% (m/m). Para o
monitoramento com a sonda de reflexdo, 25 amostras foram utilizadas na etapa de predicdo do
modelo, o qual foi desenvolvido considerando uma razdo molar etanol/6leo variando de 6 a
45,4. Ja para o monitoramento com a sonda de transflectancia, 21 amostras constituiram o
conjunto de predicdo e o modelo de calibracéo foi construido considerando uma razdo molar
etanol/6leo de 45,4. Dessa forma, o modelo apresentado no presente trabalho para a
quantificacdo de éster alquilico apresentou valor de RMSEP mais baixo quando comparado
aos valores obtidos por Richard et al. (2013). No entanto, como 0 nUmero de amostras
utilizadas e as faixas de concentracdo foram diferentes nos dois trabalhos, ndo se pode fazer
uma comparagéo direta entre esses resultados.

Diante do exposto, a técnica EMSC foi selecionada para a construcao dos trés modelos
PLS desenvolvidos nesse trabalho. E importante ressaltar que esses modelos ndo
apresentaram bias estatisticamente significativo, de acordo com um teste t, em um nivel de
confianca de 95% (bias de predicdo para os modelos de etanol, éster alquilico e glicerol,
respectivamente: -0,22, 0,17 e -0,09). Assim, com 0 objetivo de avaliar a aplicacdo dessa
técnica na correcdo espectral, os espectros pré-processados com EMSC para as misturas
sintéticas (em cinza) e as amostras da coluna (em preto) que foram utilizadas no

desenvolvimento dos modelos, apds exclusdo de outliers, estdo apresentados na Figura 10.
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Figura 10 — Espectros médios das misturas sintéticas (em cinza) e das amostras da coluna (em preto) pré-
processados com EMSC, apds a excluséo de outliers
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Fonte: A Autora (2020)

Como pode ser observado na Figura 10, de modo geral, a aplicacdo de EMSC permitiu
a correcdo das regides ruidosas e dos efeitos resultantes do espalhamento da radiacdo, apesar
de que algumas diferencas entre os espectros das misturas sintéticas e 0s espectros das
amostras da coluna ainda persistiram.

Em relacdo aos modelos PLS construidos com a técnica EMSC, os graficos de valores
de referéncia versus preditos para as amostras de calibracdo (em cinza) e as amostras do
conjunto de predicdo (misturas sintéticas em azul e amostras da coluna em vermelho), estao
apresentados na Figura 11 (a, c, €). Além disso, os graficos de importancia das variaveis
(VIP) para esses modelos estdo apresentados na Figura 11 (b, d, f). De acordo com Andersen
e Bro (2010), esse tipo de grafico examina a importancia de cada variavel para a construcao
do modelo. A linha tracejada em vermelho representa o limiar de significancia. De modo
geral, variaveis com valores de VIPs escores acima do limiar sdo consideradas importantes
para a construcdo do modelo. Embora esses graficos sejam bastante utilizados para a selecéo
de variaveis, os modelos apresentaram resultados melhores quando toda a faixa espectral do

MicroNIR foi utilizada para a quantificagdo de éster e etanol.
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Figura 11 — Graficos dos valores preditos vs. referéncia (a, ¢ e €) para o conjunto de calibracdo (em cinza) e o
conjunto de predi¢do, composto de misturas sintéticas (em azul) e amostras da coluna (em vermelho);
e 0s VIPs escores (b, d e f) dos modelos PLS para quantificar etanol (a e b), éster alquilico (ce d) e
glicerol (e e f)
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Fonte: A Autora (2020)

Como observado na Figura 11 (a, c, €), de modo geral, pode-se perceber que as
amostras de calibracdo e de predicdo estdo, de certa forma, bem distribuidas ao longo da
bissetriz. Apenas as amostras da coluna (em vermelho), ficaram agrupadas em uma faixa
pequena de concentracdo de éster (Figura 11b) e de glicerol (Figura 11c). Conforme
mencionado, embora alguns ajustes tenham sido intencionalmente impostos ao processo, com
0 intuito de produzir amostras com uma variabilidade maior na composigdo, essa
variabilidade ndo foi suficiente para abranger toda a faixa dos modelos.

Na Figura 11b, é possivel perceber que as variaveis mais importantes para a
quantificacdo do teor de etanol estdo localizadas principalmente nas regibes em torno de 1200
nm, atribuida ao 22 sobretom da ligagdo C-H, de 1400 nm, relacionada ao primeiro sobretom
do grupamento O-H, e de 1670 nm, associada ao 1° sobretom de estiramento da ligagédo C-H.

Conforme observado, essas regides sdo, de fato, importantes para caracterizar o etanol. Ao
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analisar a Figura 11d, vé-se que a regido em torno de 1200 nm também foi importante na
quantificacdo do éster alquilico. Adicionalmente, as regides das combinac¢bes do grupo C-H,
por volta de 1500 nm, e do primeiro sobretom de estiramento da ligacdo C-H, em torno de
1670 nm, também foram consideradas importantes na predicdo do teor de éster. Essa Ultima
regido foi também identificada como importante em outros trabalhos descritos por de Lima et
al. (2014) e Killner, Rohwedder e Pasquini (2011), que utilizaram um espectrofotometro de
bancada FT-NIR para monitoramento da producdo de biodiesel em batelada. No que diz
respeito a quantificacdo do glicerol, a regido em torno de 1400 nm também foi identificada
como mais importante.

Ainda com relacdo aos modelos PLS construidos com a técnica EMSC, os limites de
deteccdo para esses modelos foram estimados empregando a interface MVC1 GUI
(CHIAPPINI; GOICOECHEA,; OLIVIERI, 2020). Para a quantificacdo de etanol, a faixa para
o limite de deteccdo é de 7,9 % (m/m) a 8,3% (m/m). J& para o glicerol, essa faixa &,
aproximadamente, em torno de 1,0 % (m/m) e 1,8 % (m/m). Por fim, para o biodiesel, a faixa
para o limite de detec¢cdo encontra-se entre 3,4% (m/m) e 5,9% (m/m). Conforme observado
na Figura 11, as amostras da coluna apresentaram concentracdes de etanol e de biodiesel bem
acima dos respectivos limites de deteccdo. J& para o glicerol, algumas amostras da coluna

apresentaram teores desse componente abaixo do limite.

3.2.5 Avaliacdo dos modelos quanto a predicdo das amostras da coluna

A aplicacdo apresentada no presente trabalho compreende basicamente dois aspectos
principais. O primeiro deles esté relacionado a avaliacdo do desempenho do espectrémetro
portatil MicroNIR para quantificar o teor de éster alquilico em misturas sintéticas contendo
um elevado teor de etanol em diferentes concentracdes (variando entre 70 e 90% (m/m)).
Conforme mencionado, essa faixa de concentracdo foi empregada com o intuito de simular as
condig¢Bes operacionais da coluna no ponto monitorado com o MicroNIR e de modo a
fornecer a variabilidade necessaria para a etapa de modelagem. De acordo com o que foi
discutido, os modelos de calibracdo apresentaram resultados considerados satisfatorios,
conforme as métricas de desempenho apresentadas.

O segundo aspecto abordado nesse trabalho esta relacionado a avaliacdo da capacidade
dos modelos em quantificar a composi¢ao da mistura reacional na base da coluna. Esse ponto

representou um dos grandes desafios desse trabalho, uma vez que os modelos foram
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desenvolvidos com base em espectros adquiridos com um espectrémetro portatil, que
apresenta uma faixa espectral reduzida, e utilizando, em sua maior parte, misturas sintéticas.
As vantagens associadas ao uso das misturas sintéticas ja foram discutidas anteriormente. No
entanto, existem também alguns desafios relacionados a essa aplicacdo. O primeiro deles
consiste na dificuldade de se obter misturas representativas das amostras da coluna, as quais
sd0 mais complexas do que as misturas sintéticas preparadas em laboratorio de forma
controlada. Adicionalmente, 0 monitoramento on-line das amostras da coluna foi outro fator
que trouxe mais complexidade as medidas dessas amostras, quando comparadas as das
misturas sintéticas adquiridas no modo off-line.

Com o intuito de minimizar as implicagdes associadas ao uso das misturas sintéticas
na etapa de modelagem, algumas estratégias foram utilizadas durante o desenvolvimento
desse trabalho, com o objetivo de diminuir as diferencas entre 0s espectros dessas misturas e
das amostras da coluna. Conforme discutido, essas estratégias envolveram basicamente a
inclusdo de novas misturas aos modelos, passando a considerar a presenca do glicerol e o
efeito da temperatura. Como consequéncia dessa inclusdo, os modelos PLS apresentaram
resultados melhores, considerados satisfatérios. No entanto, é importante ressaltar que esses
modelos poderiam apresentar resultados ainda melhores caso o glicerol estivesse presente em
todas as misturas e se os espectros dessas misturas fossem adquiridos na mesma temperatura
em que as amostras da coluna foram monitoradas.

Com o objetivo de avaliar os modelos desenvolvidos quanto a predicdo das amostras
da coluna, bem como compara-la com a das misturas sintéticas, realizou-se a predicdo desses
dois conjuntos de dados de forma separada. Os parametros resultantes dessa analise estdo
apresentados na Tabela 4.

Tabela 4 — Resultados para a predi¢do das misturas sintéticas e amostras da coluna para os modelos PLS
desenvolvidos com EMSC, para quantificacdo de etanol, éster alquilico e glicerol

Amostras sintéticas Amostras da coluna
Modelo PLS RMSEP ) RMSEP .
Bias Bias
(% (m/m)) (% (m/m))
Etanol 0,85 -0,19 3,14 -0,32
Ester alquilico 2,13 0,02 2,19 0,75
Glicerol 1,03 -0,23 1,12 0,05

Fonte: A Autora (2020)
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Conforme observado na Tabela 4, em todos os casos, 0 bias de predicdo nédo foi
estatisticamente diferente de zero, de acordo com um teste t a um nivel de confianga de 95%.
Adicionalmente, os valores de RMSEP para as predicBes das misturas sintéticas e das
amostras da coluna nao apresentaram diferenca estatisticamente significativa para os modelos
de éster alquilico e glicerol, com base em um teste F com 95% de confianca. Para a
quantificacdo de etanol, entretanto, o RMSEP para a predicdo das amostras da coluna
(RMSEP = 3,14) foi estatisticamente superior ao das misturas sintéticas (RMSEP = 0,85), de
acordo com um teste F (95% de confianga). Isso pode ser observado também através da
andlise da Figura 11% do item 3.4.4, em que é possivel perceber que as amostras da coluna
(em vermelho) estdo mais afastadas da bissetriz quando comparadas as misturas sintéticas (em
azul). Tal fato pode estar associado, dentre outros aspectos, ao problema de reprodutibilidade
do método cromatografico desenvolvido para quantificacdo do teor de etanol das amostras da
coluna. Por exemplo, o desvio-padrdo sob condi¢des de repetibilidade para esse método foi
estimado em torno de 1,4%(m/m) (com base em 12 amostras). Além disso, o fato de a regido
atribuida a ligacdo O-H ser mais afetada pelas diferencas entre os modos on-line e off-line de
aquisicdo espectral, poderia ser uma possivel explicacdo para essa ocorréncia.

Por fim, apesar da dificuldade de reproduzir os espectros das amostras da coluna
obtidos on-line utilizando as misturas sintéticas analisadas no modo off-line, os resultados dos
modelos desenvolvidos foram satisfatorios no que diz respeito a predicdo das amostras da
coluna. Considerando a complexidade do sistema analisado, especialmente devido ao excesso
de etanol e a faixa de variacdo de sua concentracdo, esses resultados foram considerados
satisfatorios até mesmo para o modelo do etanol, principalmente quando se considera a
aplicacdo da metodologia proposta para 0 monitoramento do processo em tempo real.

3.2.6 Estimativa do rendimento de biodiesel das amostras da coluna

A partir dos valores preditos dos trés modelos desenvolvidos com EMSC para a
quantificacdo de etanol, éster alquilico e glicerol, foi possivel estimar o rendimento de éster
alquilico (conversdo de 6leo de algoddo em biodiesel) para as amostras coletadas da coluna.
Das 9 amostras utilizadas na etapa de predi¢cdo dos trés modelos, a amostra C08 foi excluida
na etapa de modelagem do teor de éster, por apresentar um alto valor residual. Dessa forma,
foi possivel estimar o rendimento de 8 amostras da coluna e compara-los aos valores de

referéncia obtidos diretamente por cromatografia, através do calculo do erro relativo entre as
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medidas. Os valores para cada uma das 8 amostras estdo apresentados na Tabela 5.

Tabela 5 — Comparacdo entre os resultados dos rendimentos de éster alquilico das amostras da coluna
estimados a parti dos modelos PLS e adquiridos por cromatografia

Rendimento de éster alquilico Rendimento de éster Erro
Amostra  estimado pelos modelos PLS alquilico obtido por relativo

(%(m/m)) cromatografia (%(m/m)) (%)

Co1 81,0 86,0 5,8
Co2 80,5 82,6 2,5
Co03 88,3 91,0 3,0
Co4 89,9 90,4 0,6
CO05 90,5 85,9 54
Co06 91,5 88,9 2,9
Co7 98,6 89,2 10,5
C09 91,9 91,7 0,2

Fonte: A Autora (2020)

Como pode ser visto na Tabela 5, a maioria dos erros relativos ficou abaixo de 5%.
Apenas a amostra 7 apresentou um erro relativo considerado bastante alto, em torno de 10%.
Apesar disso, um teste t, com 95% de confianca, demonstrou que ndo ha diferenca
estatisticamente significativa entre os resultados fornecidos pelos dois métodos. De modo
geral, os resultados foram considerados satisfatérios do ponto de vista de monitoramento do
processo, principalmente quando se leva em consideracdo o excesso de etanol nas misturas

analisadas.

3.3 CONCLUSAO

O presente capitulo avaliou o desempenho de um espectrémetro portétil na regido do
NIR (MicroNIR) para 0 monitoramento on-line de um processo continuo de destilacdo reativa
empregado na producdo de biodiesel. Apesar do elevado teor de etanol no ponto monitorado
com o MicroNIR, os modelos construidos aplicando-se o pre-processamento EMSC
apresentaram resultados satisfatorios para a quantificagdo de etanol (RMSEP = 1,66%(m/m)),
éster alquilico (RMSEP = 2,15%(m/m)) e glicerol (RMSEP = 1,08%(m/m)). Os resultados
foram considerados satisfatorios, inclusive, quando os modelos foram utilizados na predigdo

de amostras da coluna, apenas.
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Os valores preditos a partir dos modelos de calibracdo foram entéo utilizados para
estimar o rendimento de éster alquilico das amostras da coluna. Os resultados foram
comparaveis as medidas de referéncia obtidas por cromatografia gasosa, com erros relativos
abaixo de 5% para a maioria das amostras. E importante ressaltar que, para fins de
monitoramento do processo em tempo real, a informac&o do teor de éster alquilico na mistura
reacional seria suficiente. No entanto, o rendimento do biodiesel foi calculado como uma
forma de validar a metodologia proposta.

Dessa forma, o presente trabalho demonstrou a viabilidade de utilizacdo do
espectrOmetro portatil na regido do NIR para monitorar a producdo de biodiesel em um
processo continuo, mesmo trabalhando-se com uma concentracdo de etanol elevada, a qual
representou uma condicdo desafiadora para a etapa de modelagem. Além disso, o trabalho
demonstrou a possibilidade de se utilizar misturas sintéticas na construcdo dos modelos de
calibragdo. Conforme discutido, o uso dessas misturas, além de necessario para ampliar a
variabilidade dos dados, trouxe beneficios do ponto de vista experimental. Adicionalmente,

reduz a dependéncia em relacdo aos métodos cromatograficos, utilizados como referéncia.
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4 MONITORAMENTO ESTATISTICO DO PROCESSO INDUSTRIAL DE
METALIZACAO A VACUO DE FILMES DE POLIESTER

A deposicdo a vacuo é o processo tradicionalmente empregado para a aplicacdo de
revestimentos metélicos, geralmente aluminio, sobre substratos poliméricos, como o
politereftalato de etileno e o polipropileno. Os materiais resultantes desse processo sao
utilizados principalmente na producdo de embalagens (BISHOP, 2015). Em geral, os
revestimentos sdo aplicados para atribuir novas propriedades aos filmes poliméricos, dentre as
quais, destacam-se as aplicacOes de barreira, decorativas, de seguranca e funcionais. Os
revestimentos de barreira, em particular, representam uma categoria de materiais que
conferem a embalagem um bloqueio a passagem de luz, vapor de agua, oxigénio e outro
gases. Eles sdo aplicados, principalmente, para prolongar o prazo de validade dos produtos,
especialmente no ramo alimenticio (STRULLER; KELLY; COPELAND, 2014; BISHOP;
MOUNT, 2016) .

Considerando os processos industriais de deposicéo a vacuo aplicados na producéo de
revestimentos de barreira, a deposicao de aluminio utilizando barcos de evaporacdo aquecidos
por resisténcia (também conhecidos como evaporadores) € o método mais empregado
(BISHOP, 2015). De um modo geral, os evaporadores sdao materiais compactos formados por
misturas intermetalicas bi ou trifasicas. Usualmente, as misturas bifasicas sdo compostas por
diboreto de titdnio, que apresenta baixa resistividade elétrica e alta molhabilidade para o
aluminio, e nitreto de boro, que possui alta resistividade elétrica e resisténcia ao choque
térmico. J& as misturas trifasicas, é adicionado também o nitreto de aluminio, que confere
condutividade térmica e resisténcia elétrica ao evaporador (BISHOP, 2011; HERRMANN et
al., 2011).

A deposicdo a vacuo é geralmente conduzida em um sistema industrial conhecido
como metalizadora. Em cada corrida desse processo, um rolo de filme polimérico é
desenrolado para ser revestido com uma fina camada de aluminio, e € entdo enrolado na
forma de um novo rolo de filme metalizado. Nesse sistema, varios barcos de evaporacéo sdo
comumente utilizados com o intuito de revestir o filme em toda sua extensdo. Eles ficam
situados abaixo do filme e ao longo de sua largura. Durante o processo, fios de aluminio s&o
constantemente alimentados a superficie aquecida de cada barco. Quando o aluminio se
funde, uma nuvem do metal evaporado é formada e uma fina camada desse metal é depositada
sobre uma das superficies do filme (BISHOP, 2015).
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Diversos fatores podem influenciar o desempenho de barreira de filmes revestidos a
vacuo. Um desses fatores consiste na qualidade dos materiais utilizados no processo, tais
quais do fio de aluminio, dos barcos de evaporacdo e dos substratos (BISHOP, 2015;
BISHOP; MOUNT, 2016). Outro aspecto critico esta relacionado as condi¢bes do processo de
deposicdo. Conforme discutido por Mount (2008), as variaveis de processo apresentam um
importante e complexo efeito sobre as propriedades de barreira dos filmes metalizados. Nesse
contexto, dentre as principais variaveis de processo que influenciam na propriedade de
barreira do filme, pode-se destacar a sua densidade dptica, a velocidade com que o filme é
desenrolado/enrolado, a taxa de evaporagcdo, a pressdo da cédmara de evaporacdo e a
temperatura do rolo frio por onde passa o filme que esta sendo revestido.

Como a camada de revestimento de um filme metalizado a vacuo é geralmente muito
fina, o que dificulta a medicdo direta da sua espessura, € comum se utilizar outra propriedade
para o controle da espessura do revestimento. A densidade 6ptica (DO) do filme metalizado,
por exemplo, pode ser monitorada para esse fim. Trata-se de uma medida da opacidade do
filme, a qual esta relacionada a espessura da camada metalica depositada sobre o substrato
polimérico e, consequentemente, ao seu desempenho de barreira. Geralmente, durante um
processo de deposicdo conduzido em metalizadoras comerciais, medidas de DO séo
constantemente adquiridas do filme metalizado e utilizadas no controle da alimentagéo do fio
de aluminio e da temperatura do barco de evaporagdo, com o intuito de controlar o tamanho
da poca de fusdo no evaporador e a taxa de evaporacdo do aluminio. Como a taxa de
evaporacdo ¢ facilmente afetada por variacGes da temperatura, esse controle por meio da DO é
essencial para a obtencdo de um revestimento metalico uniforme (BISHOP, 2015; BISHOP;
MOUNT, 2016). Dessa forma, o monitoramento e controle da DO representam uma maneira
eficaz de garantir a consisténcia da deposicdo metélica, o que é particularmente importante
para evitar defeitos na superficie do revestimento e, portanto, garantir a qualidade do
desempenho de barreira do filme.

Nesse contexto, 0 monitoramento estatistico do processo pelo uso de cartas de controle
pode ser considerado uma ferramenta adequada para o processo de metaliza¢do a vacuo, com
base nas medidas de DO. Por permitir a deteccdo de situagdes anémalas, os graficos de
controle sdo ferramentas da qualidade eficientes para reduzir a variabilidade do processo e
melhorar o seu desempenho (MONTGOMERY, 2009). Dessa forma, o presente trabalho
descreve uma estratégia de monitoramento estatistico para um processo industrial de

metalizacdo a vacuo. Mais especificamente, a abordagem de monitoramento foi baseada nas
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medidas de DO de filmes de poliéster revestidos com aluminio, adquiridas continuamente
durante a metalizacdo. A literatura relacionada a aplicacdo de cartas de monitoramento
estatistico a esse tipo de processo é bastante escassa. Existe, por exemplo, um trabalho com
abordagem diferente da apresentada nesta tese, 0 qual descreve a aplicacdo de um controlador
preditivo generalizado, associada ao uso de uma carta de monitoramento estatistico CUSUM,
para controlar a espessura do filme em um processo de deposicdo de uma fina camada de
revestimento, utilizando a temperatura como variavel de entrada do modelo (JIN; GUO;
ZHOU, 2006).

O principal objetivo do trabalho descrito neste capitulo consistiu em propor uma
estratégia de monitoramento estatistico ao processo industrial de metalizacdo a vacuo de
filmes de poliéster, com base nas medidas de DO coletadas ao longo do processo. Para isso,
foram estabelecidos os objetivos especificos detalhados a seguir:

a) Investigar, em um estudo preliminar, as correlagfes existentes nos dados de DO
adquiridos durante a producao sequencial de 8 filmes de poliéster metalizados;

b) Sugerir uma estratégia de monitoramento estatistico para o processo de metalizacédo
com base no estudo preliminar realizado e nas caracteristicas do processo;

c) Avaliar a estratégia de monitoramento estatistico proposta utilizando dados de DO
coletados durante a producdo sequencial de 12 novos rolos de filme metalizado, néo
utilizados anteriormente;

d) Complementar a estratégia de monitoramento sugerida com um estudo da capacidade

do processo.
41 METODOLOGIA

A metodologia empregada no desenvolvimento deste trabalho esta descrita a seguir.
4.1.1 Processo de metalizacdo a vacuo e aquisi¢éo dos dados de densidade Optica

Os dados de processo utilizados no desenvolvimento do presente trabalho foram
disponibilizados por uma empresa com planta industrial no estado de Pernambuco, que atua
na fabricacdo de filmes especiais de poliéster. Esses dados consistem em medidas de

densidade Optica adquiridas durante a producdo industrial de rolos de filmes metalizados,

através do processo de deposicdo metalica por evaporacdo a vacuo, conduzido em uma
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metalizadora TOPMET™ 2450 (Applied Materials). Esse equipamento utiliza barcos de
evaporacdo aquecidos por resisténcia com composic¢ao padréo, dispostos de forma alternada a

cada 0,1 m ao longo da largura do filme, semelhante ao ilustrado na Figura 12.

Figura 12 - Evaporadores dispostos de forma alternada dentro
da metalizadora

Fonte: Bishop (2015)

Durante a deposicdo, valores de DO do filme revestido foram obtidas por sensores
alinhados a cada evaporador na direcdo do comprimento do filme. Nessa metalizadora, até 26
barcos de evaporacdo podem ser instalados. Entretanto, 0 nimero de evaporadores utilizados
em cada corrida, bem como o numero de sensores ativos, depende da largura do rolo a ser
revestido.

De um modo geral, as producdes seguiram a operacdo basica desse tipo de processo,
de acordo com o procedimento descrito por Bishop (2015). Durante cada corrida, carretéis de
fios de aluminio de alta pureza (minimo de 99%) s&o continuamente desenrolados utilizando
bombas com motores a passos, as quais permitem o controle da alimentacdo do fio de
aluminio em cada evaporador. Os fios passam, entdo, por tubos rigidos e sdo conduzidos até
os barcos de evaporacdo para serem alimentados no local desejado, geralmente a regido
central dos barcos. Uma vez que o fio entra em contato com a superficie aquecida do
evaporador, uma poca de fusdo é formada, a partir da qual o aluminio evapora, criando uma
nuvem de vapor dentro da metalizadora. A medida que o filme polimérico passa por essa
nuvem, o revestimento metalico é depositado sobre uma de suas superficies.

Inicialmente, dados de DO adquiridos durante a producdo sequencial de oito rolos de
filmes de poliéster de 12 um de espessura foram avaliados. Essas corridas foram identificadas
como Al a A8, numeradas de acordo com a ordem de produgéo. Os dados, para essas 0ito

corridas, foram obtidos por meio de 18 sensores de DO alinhados a 18 evaporadores, a cada
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15 s aproximadamente. Antes do inicio dessa producdo em sequéncia, um conjunto de
evaporadores novos foi instalado na metalizadora.

Ao fim da metalizacdo de cada rolo de filme polimérico, um relatorio contendo os
perfis de DO ao longo dos sentidos transversal e longitudinal do filme revestido foi extraido
da metalizadora. Cada relatdrio foi organizado no formato de uma matriz de dados e, para 0
desenvolvimento do presente trabalho, cada barco de evaporagdo foi considerado uma
variavel. Por conseguinte, para cada rolo de filme produzido, foi gerada uma matriz de dados
contendo / = 18 colunas e K linhas, em que K representa a quantidade de medidas de DO
adquiridas ao longo do tempo, podendo ter um valor diferente para cada corrida.

Uma representacdo esquematica simplificada do processo de metalizacdo de um rolo
de filme de poliéster, da aquisicéo dos dados de DO e da geracdo da matriz para cada corrida,

esta apresentada na Figura 13.

Figura 13 - Representacdo esquematica simplificada do processo de metalizagdo de um rolo de filme de
poliéster, da aquisicdo dos dados de DO e da geragdo da matriz para cada corrida

Filme metalizado :
Aquisi¢do dos dados Matriz de dados

Filme polimérico o
|
I
| « | Corrida i
! (KxJ)
_Nuvem de Vapor ARXAXAAXALAXAXALAAAXXXAXXXXRXXR }155
P22 2222222222222 222222224
WWNWWWH”NNWWW”HNNW B S o LT Tareues
(evaporadores)

Barcos de evaporagdo

Fonte: A Autora (2020)

A matriz de dados da Figura 13, com os valores de DO coletados ao longo de cada
corrida do processo, foram coletados como arquivos em Excel. Esses dados foram importados
e analisados no MATLAB (MathWorks, MA, USA), utilizando-se rotinas desenvolvidas

durante este trabalho.

4.1.2 Analise exploratoria dos dados de densidade Optica

Com o objetivo de compreender melhor os dados e, assim, propor uma estratégia de
monitoramento mais adequada para o processo, uma analise exploratoria foi realizada.
Inicialmente, avaliou-se a velocidade dos filmes e as matrizes de dados coletadas para as
corridas Al a A8. Os perfis de DO foram investigados com o objetivo de detectar tendéncia e

correlagdes nos dados. Dessa forma, os mapas de correlagcdo de cada corrida foram avaliados
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com o intuito de identificar padrbes de correlacdo entre as 18 varidveis (barcos de
evaporagéo), assim como para comparar o0 comportamento de diferentes corridas. Esses mapas
foram construidos com base no célculo dos coeficientes de correlacdo (r) entre todos 0s
possiveis pares de varidveis. Trata-se de uma medida da dependéncia linear entre duas

variaveis e pode ser calculado de acordo com a Equacgéo 30.

r= 2 () (%) @

Sy

Em que: X e s, sdo, respectivamente, a meédia e o desvio-padréo da variavel x; y e s,
sdo, respectivamente, a média e o desvio-padrdo da variavel y; N é o nimero de observacGes
de cada variavel; e o subindice t indica a posicdo da medida no tempo.

Adicionalmente, no estudo preliminar, também foram avaliadas a autocorrelacdo e a
correlacdo cruzada para todas as varidveis. A fungdo de autocorrelagcdo (ACF), calculada de
acordo com a Equacdo 31, é uma medida da correlagdo entre duas observacdes (medidas em
tempos diferentes) para uma mesma variavel (série temporal). Ja a funcdo de correlacdo
cruzada (CCF), calculada a partir das Equacdes 32 e 33, é a medida da correlacdo entre duas
observacdes em tempos diferentes, para duas varidveis diferentes (MONTGOMERY, 2009;
MILLS, 2011).

N-Kkc, _ 3 %
ACF = Yt=1 (x¢—%) (Xe—k X)’ para k:0, 1, 2, (31)

Tte (x¢—%)?

CCF = %Zgiw ,parak=0,1,2, ... (32)

SxSy

Y ok =0, -1, -2, . (33)

SxSy

CCF — %Z‘t[:—i{ (Xt—k_)_(

Em que k é o nimero de periodos de tempo que separam as observacdes e T 0 nimero

de pares de observacoes.
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4.1.3 Estratégia de monitoramento estatistico

Com o intuito de estimar a linha de tendéncia da trajetoria de cada variavel, a
estatistica EWMA foi empregada com o objetivo de suavizar o perfil de DO, permitindo
assim, uma melhor visualizacdo da tendéncia dos dados. Para essa abordagem especifica, 0s
limites de controle inferior e superior da carta EWMA n&o foram considerados. Na construgéo
dessa carta, um parametro de suavizacdo (4) de 0,2 foi empregado e a média das cinco
primeiras observacdes foi considerada como valor inicial (z,), requerido no primeiro célculo
da estatistica EWMA.

Outra estratégia empregada para 0 monitoramento estatistico do processo envolveu a
construcdo de cartas de controle EWMA e da amplitude (R), que foram usadas,
respectivamente, para 0 monitoramento da média e da variabilidade do processo. Essas cartas
foram construidas apds a remocdo da tendéncia dos dados. Para isso, as técnicas de
diferenciacdo de primeira, segunda e terceira ordens foram avaliadas. Apos a diferenciacdo
aplicando-se a ordem mais apropriada, as cartas de controle EWMA foram, entdo,
desenvolvidas para cada variavel. Para a construcdo dessa carta, um parametro de suavizagao
(1) de 0,5 foi empregado e a média das cinco primeiras observacdes da variavel foi
considerada como valor inicial (z,). Além disso, o fator largura dos limites de controle (L) foi
estabelecido em 2,7. Na definicdo dos limites de controle e da linha central dessa carta, 0
desvio-padrdo e a média do processo foram calculados com base nos dados diferenciados das
8 corridas analisadas (Al a A8), para aquela variavel especifica. O objetivo dessa estratégia
foi adotar a média representativa dos dados histéricos com o intuito de usar a carta de controle
EWMA para o monitoramento do processo em tempo real.

Por fim, a carta de controle R foi também desenvolvida com base nos dados
diferenciados. Na construcdo dessa carta, a amplitude mdével foi calculada para cada 5
observacdes. A linha central do grafico foi estimada pelo valor médio da amplitude mével (R)
calculado considerando os dados diferenciados das 8 corridas analisadas (Al a A8), para uma
posicao especifica de evaporador. Os limites inferior e superior de controle dessa carta foram
calculados com base nas Equacdes 23 e 24, respectivamente, considerando D; =0 e D, =
2,114. Conforme mencionado, essas constantes séo tabeladas e dependem do numero de
pontos utilizados no calculo da média movel (MONTGOMERY, 2009).
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4.1.4 Avaliagdo da estratégia de monitoramento estatistico proposta

Ap0s a proposicdo de uma estratégia de monitoramento estatistico para o processo
estudado, um novo conjunto de dados de DO foi analisado seguindo-se 0 mesmo
procedimento descrito para as corridas Al a A8. Essa andlise foi realizada com o intuito de
avaliar a estratégia de monitoramento proposta e examinar se a mesma poderia ser utilizada
no monitoramento de outras corridas do processo. Adicionalmente, o0 comportamento das
novas corridas péde ser comparado ao observado para as oito corridas analisadas inicialmente
(Al a A8).

O novo conjunto de dados de DO foi coletado durante a producéo sequencial de 12
rolos de filme metalizado e as corridas de processo foram identificadas por B1 a B12, de
acordo com a ordem de producdo. Essas corridas foram produzidas na mesma metalizadora
utilizada na produgéo das corridas Al a A8, sob condigfes semelhantes, mas variando-se o
filme de poliéster utilizado como substrato e o nimero de sensores de DO ativos. Para as
primeiras 5 corridas (identificadas como B1 a B5), filmes de poliéster de 10 um de espessura
foram revestidos e as medidas de DO provenientes de 20 sensores foram consideradas. Ja para
as corridas B6 a B12, filmes de poliéster de 12 um de espessura foram metalizados e medidas
de DO de 22 sensores foram levadas em consideracdo. Apesar de terem sido utilizados trés
tipos de substratos diferentes nesse trabalho, o valor especificado para a densidade dptica do
filme metalizado foi igual a 2,15 para todos os casos, valor comumente adotado pelas
industrias. Por fim, vale ressaltar que, antes das corridas B1 e B8, um conjunto de novos

evaporadores foi instalado na metalizadora.

4.1.5 Analise da capacidade do processo

Outra estratégia que pode ser utilizada para 0 monitoramento de um processo em
controle estatistico consiste na analise de sua capacidade. No presente trabalho, essa anéalise
foi realizada pelo célculo da razdo de capacidade de um processo descentrado (Cpy). NO
calculo da Cpy para cada variavel, a média do processo (ji) foi estimada com base na média
dos valores de DO para essa variavel especifica. J& o desvio-padrdo (G) foi calculado pela
expressdo 6 = R/d,, em que R é a média da amplitude mdvel (calculada para cada 5 pontos)
dos valores de DO para aquela variavel, e d, = 2,326 é uma constante tabelada, dependente

do numero de observacgdes utilizados no calculo da amplitude movel (MONTGOMERY,
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2009). Enquanto as cartas de controle podem ser aplicadas para 0 monitoramento do processo
em tempo real, a anélise de capacidade sugerida deve ser realizada ap6s o término da corrida.

4.2  RESULTADOS E DISCUSSAO

Os resultados e discussao deste trabalho estéo apresentados a seguir.

4.2.1 Analise exploratoria dos dados de densidade dptica

A velocidade com que o filme de poliéster é desenrolado para ser revestido com uma
fina camada metalica e posteriormente enrolado na forma de um novo rolo de filme
metalizado é uma das varidveis de processo controladas durante a metalizagdo. Associada
com outras variaveis, como a taxa de alimentacdo do fio de aluminio e a temperatura do barco
de evaporacdo, a velocidade do filme tem um efeito importante sobre os perfis de DO do
filme metalizado. No periodo inicial do processo de deposicdo, a alimentacdo do fio ao
evaporador deve ser realizada de forma gradual, com o objetivo de formar uma poca de fusao
adequada, ja que o tamanho e o formato da poca exercem influéncia sobre o perfil da
deposicdo, de acordo com Bishop (2011). Nesse periodo, a velocidade do filme também ¢é
ajustada até alcancar as condi¢fes de operacdo, mantendo-se aproximadamente constante até
0 término da deposicdo. No caso de ocorrer uma perturbacdo no processo, essas variaveis sao
reguladas com o intuito de manter constante, a medida do possivel, a relacdo entre a
velocidade do filme e a taxa de evaporacdo. Por essa razdo, a velocidade do filme e a taxa de
alimentacdo do fio de aluminio apresentam perfis semelhantes. Com o objetivo de ilustrar o
comportamento da velocidade do filme estabelecida para o processo e dos perfis de DO, estdo
apresentados na Figura 14 o perfil da velocidade do filme (em m/s) (a) e os perfis de DO para

0s 18 evaporadores (b) para a corrida A2.
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Figura 14 — Perfil da velocidade do filme (a) e perfis de DO adquiridos ao longo
dos 18 evaporadores (b) para a corrida A2
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Devido a influéncia da velocidade do filme nos perfis de DO, assim como aos ajustes
iniciais nas condicOes de operacdo do processo (por exemplo, ajuste para alcancar a
velocidade de 10 m/s), todas as analises apresentadas nesse trabalho foram realizadas a partir
do momento em que a velocidade do filme foi mantida aproximadamente constante. Um
critério de convergéncia envolvendo o célculo consecutivo do desvio-padrdo da velocidade do
filme foi utilizado para definir esse momento para cada corrida. Para a corrida A2, por
exemplo, a velocidade do filme foi considerada constante a partir de 600 s, aproximadamente
(Figura 14).

Com o objetivo de auxiliar na selecdo de uma estratégia de monitoramento adequada
para o processo, foi realizada uma anélise exploratdria nos dados das corridas Al a A8. De
modo geral, esse estudo preliminar envolveu a investigacdo dos perfis de DO para a deteccédo
de tendéncia e correlagfes nos dados. Inicialmente, foram avaliados os mapas de correlagdo
para cada corrida, apresentados na Figura 15. Nesses mapas, a escala de cores esta relacionada
com os valores do coeficiente de correlacdo entre todos os possiveis pares de variaveis

(evaporadores).



87

Figura 15 — Mapas de correlacéo para as corridas Al a A8. As escalas de cores estéo relacionadas com os
coeficientes de correlacdo entre as variaveis
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Os mapas de correlagdo apresentados na Figura 15 demonstraram que os dados

coletados ao longo dos 18 evaporadores séo pouco correlacionados. A fraca correlagdo entre

o0s dados esta provavelmente relacionada com a dificuldade de se ter evaporadores operando

com temperaturas iguais. Ainda que o mesmo valor de corrente seja aplicado a todos os

barcos de evaporagdo, a temperatura ndo necessariamente é a mesma para todos eles, uma vez

que as resistividades dos barcos podem apresentar pequenas diferencas. Além disso, a taxa de

alimentacdo do fio de aluminio também pode variar um pouco para cada barco. Como

resultado, o tamanho da poca de fusdo e, consequentemente, da nuvem de vapor, pode ser

diferentemente formada para cada evaporador, ocasionando uma diferenca no perfil de

deposicdo. Dessa forma, a soma desses fatores podem influenciar na uniformidade da

espessura da camada metalica depositada sobre o filme ao longo de sua largura e, portanto,
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justificam a importancia de se utilizar as medidas de DO no controle da alimentacdo do fio de
aluminio e da temperatura do barco de evaporacgdo, conforme discutido por Bishop (2015).

Por outro lado, é possivel perceber a partir dos mapas de correlacdo (Figura 15) que,
em alguns casos, os dados de DO adquiridos ao longo de evaporadores vizinhos apresentam
uma correlagdo um pouco maior. Esse fato estd provavelmente relacionado com o
funcionamento do sistema de controle da metalizadora. Basicamente, nesse sistema, quando
uma acao corretiva € necessaria, a mesma € realizada ndo apenas no evaporador que a
requereu, mas também nos dois evaporadores vizinhos a esse.

Por fim, os mapas de correlacdo apresentados na Figura 15 indicaram a auséncia de
um padrdo de correlacdo que se repita para as 8 corridas analisadas. Isso pode estar
relacionado as diferencas no processo entre uma corrida e outra. Dentre os quais, pode-se
citar: as variacbes nos materiais utilizados (barcos de evaporacdo, fio de aluminio e
substratos); a limpeza do equipamento; a utilizagdo de evaporadores mais novos ou mais
antigos (desgastados); e as mudancas no sistema de alimentacdo do aluminio (por exemplo,
utilizacdo de carretéis de fios de aluminio mais cheios ou mais vazios e posicdo da
alimentacdo do aluminio no evaporador).

Além da anélise dos mapas de correlacdo, realizou-se também a avaliacdo das fungdes
de autocorrelagdo (ACF) e de correlagdo cruzada (CCF) para todas as varidveis das corridas
Al a A8. De um modo geral, o autocorrelograma (gréfico para apresentacdo da ACF) de cada
variavel permitiu a detec¢do de uma alta correlacdo entre observagdes adquiridas em tempos
diferentes, o que pode ser um indicativo de tendéncia nos dados. Por outro lado, a CCF para
cada par de variaveis indicou uma fraca correlacdo cruzada para as medidas adquiridas ao
longo de evaporadores vizinhos. Medidas coletadas ao longo de evaporadores mais distantes
ndo apresentaram, de modo geral, correlacdo cruzada.

A quantidade de graficos geradas nesse estudo impossibilitam a apresentacdo de todos
eles, dessa forma, apenas alguns resultados s&o mostrados a fim de se exemplificar o que foi
discutido. Estdo apresentadas na Figura 16, por exemplo, as fungdes ACF e CCF para as
variaveis 1 e 2 (Figura 16a) e 1 e 15 (Figura 16b), da corrida A2.
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Figura 16 - ACF das variaveis 1 (em azul) e 2 (em preto) e CCF dessas varidveis (em magenta), para a
corrida A2 (a); e ACF das variaveis 1 (em azul) e 15 (em verde) e correlagéo cruzada
dessas variaveis (em magenta), para a mesma corrida (b). Em vermelho, limites com 99%
de confianca para ACF e CCF
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E possivel perceber através da Figura 16, que todas as trés variaveis analisadas (1, 2 e
15) apresentaram autocorrelacdo (valores acima dos limites com 99% de confianca). A andlise
da CCF indicou correlacdo cruzada entre as variaveis 1 e 2 (Figura 16a) e entre as variaveis 1
e 15 (Figura 16b), com valores de correlacdo acima dos limites. Nesse exemplo, as medidas
adquiridas ao longo de evaporadores mais distantes também apresentaram uma alta correlacéo
cruzada.

Com o intuito de dar mais um exemplo sobre o estudo das correlacdes, estdo
apresentadas na Figura 17, as funcGes ACF e CCF para as varidveis 1 e 2 (Figura 17a)e 1 e
15 (Figura 17b), da corrida Ab5.
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Figura 17 - ACF das variaveis 1 (em azul) e 2 (em preto) e CCF dessas variaveis (em magenta), para a corrida
A5 (a); e ACF das variaveis 1 (em azul) e 15 (em verde) e correlagdo cruzada dessas variaveis (em
magenta), para a mesma corrida (b). Em vermelho, limites com 99% de confianga para ACF e CCF
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Conforme apresentado na Figura 17, nesse caso, as variaveis 2 e 15 apresentaram
valores mais baixos de autocorrelagdo. Além disso, tanto os evaporadores vizinhos (1 e 2)

guanto os mais distantes (1 e 15) da corrida A5 ndo apresentaram correlacdo cruzada.

4.2.2 Estratégia de monitoramento estatistico

As caracteristicas do processo de metalizacdo a vacuo abordadas anteriormente, bem
como a fraca correlacdo dos dados de DO adquiridos ao longo de diferentes evaporadores,
motivaram a aplicagdo de cartas de controle univariadas para 0 monitoramento do processo.
Novamente, a quantidade de graficos gerados nesse estudo impossibilita a apresentacdo de
todos eles. Dessa forma, apenas alguns resultados selecionados serdo mostrados com o
objetivo de ilustrar as principais conclusoes.

A principio, levando-se em consideragdo a importancia de monitorar a tendéncia dos
dados, a estatistica EWMA foi utilizada como uma ferramenta para suavizacao dos dados de
modo a facilitar a detec¢do da linha de tendéncia. O objetivo é que essa deteccdo, feita de
forma mais répida e clara, possa auxiliar os operadores nas tomadas de decisdes e agdes
corretivas requeridas ao longo do processo. A comparagéo entre as cartas EWMA para todas
as variaveis de cada corrida confirmou que as medidas de DO adquiridas ao longo de

evaporadores diferentes, de fato, apresentam um comportamento independente. Assim,
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embora evaporadores vizinhos possam apresentar tendéncias similares, as medidas de DO
adquiridas ao longo de evaporadores distintos, em geral, apresentam trajetorias diferentes.
Para ilustrar essa observacdo, as cartas EWMA para as 18 varidveis da corrida A2 estdo
apresentadas no APENDICE E.

Adicionalmente, uma analise comparativa entre as corridas Al a A8, permitiu verificar
gue um mesmo evaporador apresentou comportamento distinto para diferentes corridas. 1sso
pode ser explicado pelos possiveis ajustes no processo realizados entre as corridas, conforme
discutido anteriormente.

Com o objetivo de ilustrar essa discusséo, as cartas de controle EWMA para o
monitoramento da linha de tendéncia de trés varidveis diferentes (barcos 1, 2 e 15) das

corridas A2 e A5 estdo apresentados, respectivamente, nas Figura 18a e Figura 18b.

Figura 18 — Cartas de controle EWMA para o monitoramento da tendéncia dos dados (0s
simbolos conectados por linhas finas representam os dados originais enquanto
as linhas grossas mostram a tendéncia) para os barcos de evaporacdo 1, 2 e 15
das corridas A2 (a) e A5 (b)
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Principalmente na Figura 18a, é possivel perceber a similaridade entre as medidas de
DO adquiridas ao longo dos barcos 1 e 2, e a dissimilaridade entre essas medidas em relagdo
aos valores coletados para o barco 15. Adicionalmente, ao comparar ambas as figuras, é
possivel identificar que evaporadores na mesma posicdo (por vezes, 0 mesmo evaporador)
apresentam um comportamento diferente para corridas distintas.

Outra estratégia que pode ser utilizada para 0 monitoramento do processo envolve o
uso de cartas de controle univariadas para 0 monitoramento da média e da variabilidade do
processo. A maioria das cartas de controle convencionais utilizadas para esse fim, entretanto,
assumem que os dados sdo distribuidos de forma independente ao longo do tempo
(MONTGOMERY, 2009). Conforme discutido anteriormente, o processo estudado apresenta
dados autocorrelacionados, violando a suposicdo de independéncia temporal. EXistem
diversas técnicas que podem ser utilizadas para lidar com esse tipo de dado ( REYNOLDS;
LU, 1997; LU; REYNOLDS JR., 2001). No presente trabalho, a seguinte estratégia foi
adotada: a tendéncia foi previamente removida pelo processo de diferenciacdo e, entdo, cartas
de controle convencionais foram desenvolvidas com base nos dados diferenciados. Essa
estratégia foi selecionada por ser considerada de facil interpretacdo e implementacdo no
processo estudado, quando comparado com outras abordagens como a de modelagem de
séries temporais e posterior monitoramento dos residuos.

Embora a tendéncia possa ser importante para conhecimento dos dados estudados, ela
frequentemente pode prejudicar a interpretacdo dos dados do processo e, portanto, deve ser
removida (SHUMWAY; STOFFER, 2017). No presente trabalho, a primeira, segunda e
terceira ordens de diferenciacdo foram aplicadas para a remoc¢édo da tendéncia. Observou-se
que, em geral, a segunda e terceira ordens de diferenciacdo introduziram ruido aos dados, o
gue motivou a escolha da primeira ordem, que permitiu, de um modo geral, a efetiva remocéo
da tendéncia, conforme ilustrado na Figura 5-1 do APENDICE F.

Apb6s a selecdo da ordem de diferenciacdo adequada, cartas de controle foram
desenvolvidas com base nos dados diferenciados, para monitoramento da média e da
variabilidade. Para monitoramento da média, a carta de controle EWMA foi selecionada pois,
segundo Montgomery (2009), ela permite a deteccdo de desvios de pequena magnitude no
processo. A analise da carta EWMA para os dados diferenciados, em geral, resultou em
valores aleatoriamente distribuidos, sem uma tendéncia evidente. No que diz respeito ao
monitoramento da variabilidade do processo, cartas de controle da amplitude (R) foram

também construidas a partir dos dados diferenciados. Para ilustrar a aplicacdo dessas
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estratégias, cartas EWMA e da amplitude (R) estdo apresentadas na Figura 19, para o
monitoramento do barco de evaporagdo 1 da corrida A2 (Figura 19a e c) e do barco 15 da
corrida A5 (Figura 19b e d).

Figura 19 — Carta de controle EWMA nos dados diferenciados para o barco de evaporacdo 1 da corrida A2 (a) e
0 barco 15 da corrida A5 (b); e carta de controle da amplitude (R) nos dados diferenciados para o barco de
evaporacdo 1 da corrida A2 (c) e o barco 15 da corrida A5 (d). As linhas continuas em vermelho representam os
limites superior e inferior (LSC / LIC) de controle e a linha tracejada em vermelho o limite central (LC) para 0s
gréficos de controle
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Conforme observado na Figura 19a (carta EWMA para o barco 1 da corrida A2), a
média do processo se encontra dentro dos limites de controle. Ja para o barco 15 da corrida
A5, (Figura 19b), é possivel identificar uma situacdo fora de controle evidenciada por um pico
em torno de 1600 s. Esse tipo de distarbio é comumente observado em caso de falhas na
medicdo do sensor ou no sistema de aquisicdo de dados (JIN; GUO; ZHOU, 2006). Se o
mesmo ocorrer com muita frequéncia, no entanto, uma investigacdo mais elaborada do

processo deve ser realizada com o intuito de corrigir esse tipo de perturbacéo.
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No que diz respeito ao monitoramento da variabilidade do processo para o barco 1 da
corrida A2 (Figura 19c), esté indicada no gréafico da amplitude uma tendéncia ascendente na
variabilidade dos dados ao longo do processo. De um modo geral, para as duas primeiras
corridas (Al e A2), esse comportamento foi identificado para alguns barcos de evaporagédo
(ver APENDICE G para a corrida A2). Apenas com a analise realizada, ndo é possivel
garantir a causa para esse tipo de ocorréncia. No entanto, uma possivel explicacdo pode estar
relacionada as particularidades associadas ao primeiro uso de um barco de evaporacao.
Basicamente, conforme discutido por Bishop (2011) e (2015), barcos de evaporacdo novos
podem conter compostos volateis e umidade. Sendo assim, é essencial que se respeite a rampa
de aquecimento indicada pelo fabricante com o intuito de eliminar esses compostos e, dessa
forma, estabilizar o evaporador para que seja utilizado na corrida seguinte. Para as corridas
produzidas na sequéncia, de A3 em diante, essa tendéncia de variabilidade crescente ao longo
do processo ndo foi evidenciada (de forma ilustrativa, ver Figura 19d para o barco 15 corrida
AB).

Nas Ultimas corridas (mais especificamente, A6, A7 e A8), as cartas de controle
EWMA e R apresentaram, de um modo geral, mais sinais fora de controle, sugerindo um
processo mais instavel. Durante as oito corridas (Al a A8), ndo se obteve informacéo de que
algum evaporador tenha sido substituido. Portanto, a instabilidade das medi¢des de DO para
as Ultimas corridas dessa producdo em sequéncia pode estar relacionada a vida Gtil dos barcos
de evaporacdo. Conforme discutido por Bishop (2011) e (2015), no final da vida Util do barco,
seu desempenho geralmente é reduzido. Essa reducdo é comumente atribuida as reacdes
quimicas que ocorrem no processo, as quais podem ocasionar a erosdo e a reducdo da
resistividade do barco. Além disso, pode estar associada também ao processo de corrosao e

desgaste do barco, devido a natureza altamente corrosiva do aluminio fundido.

4.2.3 Avaliacdo da estratégia de monitoramento proposta

Com o intuito de avaliar se a estratégia de monitoramento empregada poderia ser
utilizada para monitoramento de outras corridas do processo e se 0 comportamento observado
para as corridas Al a A8 se repetiria, os dados de DO adquiridos ao longo da producao
sequencial de 12 novas corridas (B1 a B12) foram analisadas seguindo o mesmo
procedimento. Assim, inicialmente, foram avaliados os mapas de correlagdo para essas novas

corridas, apresentados na Figura 20.
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Figura 20 — Mapas de correlacéo para as corridas B1 a B12. As escalas de cores estéo relacionadas com os
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Fonte: A Autora (2020)

Em geral, conforme observado na Figura 20, um comportamento semelhante foi

observado para as corridas B1 a B12, principalmente no que se refere a baixa correlacéo entre

as variaveis e a auséncia de um padrdo de correlacdo quando diferentes corridas sdo

comparadas. A abordagem de monitoramento proposta poderia, portanto, ser usada no

monitoramento desses novos dados. Para ilustrar essa utilizacdo, a estratégia de

monitoramento para a varidvel 1 da corrida B2 esta apresentada na Figura 21.
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Figura 21 - Estratégia de monitoramento proposta para a corrida B2: carta EWMA para monitoramento da
tendéncia dos dados (simbolos conectados por uma linha fina representam os dados originais enquanto a linha
grossa mostra a tendéncia) (a), carta EWMA nos dados diferenciados (b) e carta de controle R nos dados
diferenciados (c), para a variavel 1
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Conforme apresentado na Figura 21, é possivel perceber que, a variavel 1 da corrida
B2, o processo esta em controle estatistico. Apenas um pico fora de controle foi detectado em
torno de 4000 s. Em comparagdo com as cartas de controle para as corridas Al a A8, em
geral, as corridas B1 a B12 apresentaram um comportamento similar em relacdo ao
desempenho do evaporador ao longo de sua vida util. Corridas produzidas usando
evaporadores com um tempo de vida mais longo, geralmente, apresentaram um
comportamento mais instavel, sinalizando mais valores fora de controle nas cartas EWMA e
R.

Em relacdo as particularidades associadas ao primeiro uso do evaporador, com 0
intuito de reduzir os efeitos disso no processo, as corridas que utilizaram evaporadores novos
(B1 e B8) foram conduzidas com a aplicacdo de uma velocidade de filme mais baixa. Como
possivel resultado dessa estratégia adotada, a analise das cartas de controle para essas corridas
(B1 e B8) nédo evidenciou um aumento na variabilidade do processo ao longo da producéo,
como foi observado para as corridas Al e A2 (resultados ndo apresentados devido a grande

quantidade de graficos gerados).
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4.2.4 Analise da capacidade do processo

Além das cartas de monitoramento estatistico apresentadas, o presente trabalho sugere
também a avaliacédo da capacidade do processo, com o objetivo de estimar a sua variabilidade
em relacdo aos limites de especificacdo do produto e de ajudar na eliminagdo ou reducdo
dessa variabilidade. Uma maneira bem estabelecida de expressar a capacidade de um processo
descentralizado consiste em estimar a sua razdo de capacidade (Cpyx). De modo geral, para um
Cpx de valor unitario, o processo é geralmente considerado razoavelmente capaz e quanto
maior o valor de Cpy, maior a capacidade do processo de atender as especificagdes do
produto. Essa andlise deve ser realizada, no entanto, em conjunto com a avaliacdo das cartas
de monitoramento, uma vez que é valida para um processo em controle estatistico
(MONTGOMERY, 2009).

Para ilustrar como a anéalise de capacidade pode ser aplicada ao processo em estudo,
estdo apresentados na Figura 22 os valores de Cpy para 0s 18 barcos de evaporacao da corrida
A2.

Figura 22 — Valores de Cp) para cada barco de evaporagdo da corrida A2. A linha tracejada € o limite unitario
para o Cpy
25
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Fonte: A Autora (2020)

Como pode ser visto na Figura 22, o valor de Cpy foi superior a um para todos os
barcos, exceto o 5. Tomando-se como exemplo o barco 4, este apresentou um valor de Cpy
maior do que 1,5. O perfil de DO e as cartas EWMA e R para esse barco estdo apresentados

na Figura 23.
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Figura 23 — Perfis de DO e limites superior (LSE) e inferior (LIE) de especificacdo (a), carta EWMA nos dados
diferenciados (b) e carta de controle R nos dados diferenciados (c), para a variavel 4 da corrida A2
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A partir da andlise da Figura 23, é possivel perceber que o barco 4 apresentou apenas

alguns poucos pontos fora dos limites de especificagdo (Figura 23a), 0 que sugere que 0

evaporador estava em boas condi¢Ges. Adicionalmente, as cartas EWMA (Figura 23b) e R

(Figura 23c) para essa variavel ndo sinalizaram pontos fora dos limites de controle, apenas a

carta da amplitude apresentou algumas sequéncias de pontos abaixo da linha central do

grafico. Sendo assim, pode-se concluir que o processo é, de fato, capaz de atender as

especificacOes para essa variavel.

Tomando-se como exemplo agora o barco de evaporacdo 5 da corrida A2, vé-se que

este apresentou um valor de Cp, bem menor do que 1 (Figura 22). O perfil de DO e as cartas

EWMA e R para esse barco estdo apresentados na Figura 24.
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Figura 24 — Perfis de DO e limites superior (LSE) e inferior (LIE) de especificacdo (a), carta EWMA nos dados
diferenciados (b) e carta de controle R nos dados diferenciados (c), para a variavel 5 da corrida A2
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Quando o perfil de DO do barco 5 ¢é analisado (Figura 24a), percebe-se que as medidas
para esse barco, de fato, apresentaram diversos valores acima do limite superior de
especificacdo (LSE). No entanto, o resultado da analise de capacidade para esse barco deve
ser avaliado com cautela, uma vez que a carta de monitoramento da amplitude, apresentada
Figura 24c, indica uma tendéncia crescente da variabilidade ao longo do processo, além de
algumas sequéncias de pontos abaixo da linha central. Essa tendéncia estd associada,
provavelmente, a estabilizacdo do barco durante as primeiras vezes que é utilizado, conforme
discutido anteriormente. Dessa forma, esse comportamento pode indicar uma situacéo fora de
controle estatistico, o que prejudica a analise do Cpy.

Outro exemplo da analise da capacidade do processo pode ser visto na Figura 25, em
que estdo apresentados os valores de Cpy para os barcos de evaporacdo da corrida A7. Essa foi
a penultima corrida da producéo sequencial e, provavelmente, barcos de evaporagdo com um
tempo de servico maior foram utilizados, o que pode levar a algumas situacbes fora de

controle.
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Figura 25 - Valores de Cpy para cada barco de evaporacédo da corrida A7. A linha tracejada é o limite unitario

para o Cpy
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Fonte: A Autora (2020).

Como pode ser visto na Figura 25, para a corrida A7, os valores de Cpy ficaram abaixo
do limite unitario para diversos evaporadores. De forma a ilustrar a andlise, pode-se tomar
como exemplo o barco 3, que apresentou um valor de Cp, bem abaixo do limite. O perfil de

DO e as cartas EWMA e R para esse barco estdo apresentados na Figura 26.

Figura 26 — Perfis de DO e limites superior (LSE) e inferior (LIE) de especificacdo (a), carta EWMA nos dados
diferenciados (b) e carta de controle R nos dados diferenciados (c), para a variavel 3 da corrida A7
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A andlise do perfil de DO para o barco 3 (Figura 26a) indicou a ocorréncia de alguns
pontos fora de especificagdo, principalmente, entre 600 e 900 s de producdo. Adicionalmente,
a avaliacdo das cartas EWMA e R para essa variavel, (Figura 26b e c, respectivamente),
detectaram alguns pontos fora de controle no inicio e no fim da corrida. Como consequéncia,
a anélise de capacidade deve ser realizada com parcimonia, j& que 0 processo ndo estava em
controle estatistico para essa variavel.

Considerando ainda a corrida A7, pode-se pegar outro exemplo para ilustrar a
estratégia de monitoramento proposta. O barco de evaporacgéo 1, por exemplo, que foi um dos
barcos que apresentou um valor de Cpy acima do limite unitéario, conforme ilustrado na Figura

25. O perfil de DO e as cartas EWMA e R para essa variavel estdo apresentados na Figura 27.

Figura 27 — Perfis de DO e limites superior (LSE) e inferior (LIE) de especificacdo (a), carta EWMA nos dados
diferenciados (b) e carta de controle R nos dados diferenciados (c), para a variavel 1 da corrida A7
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Conforme observado na Figura 27, de modo geral, quase todas as medidas de DO para
essa varidvel ficaram dentro dos limites de especificacdo (Figura 27a). As cartas de controle

EWMA e R, ilustradas, respectivamente, na Figura 27b e ¢, também indicaram que o processo
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estava em controle estatistico para essa varidvel, possibilitando a anélise da capacidade do
processo de forma coerente.

Enquanto a estratégia de monitoramento estatistico proposta pode ser utilizada para o
monitoramento do processo em tempo real, a analise de capacidade sugerida deve ser usada
apos a conclusdo de cada corrida. Embora ela ndo auxilie nas a¢Bes corretivas ao longo do
processo, sdo Uteis para indicar, de forma mais rapida e clara, as posi¢cdes dos evaporadores
em gue mais valores de DO foram obtidos fora de especificacdo. Isso permite, portanto, guiar

0s ajustes realizados entre a metalizacao de um filme e outro.

43 CONCLUSAO

O presente capitulo apresentou uma estratégia de monitoramento estatistico para as
medidas de DO de filmes de poliéster metalizados, adquiridas ao longo de um processo
industrial de metalizacdo a vacuo utilizando barcos de evaporacdo aquecidos por resisténcia.
Um estudo preliminar para detectar tendéncia e correlacdo nos dados foi apresentado e a baixa
correlacdo entre as medidas coletadas ao longo de diferentes barcos motivou a utilizacdo de
técnicas de monitoramento univariadas. A estratégia proposta consistiu no uso de uma carta
EWMA para o monitoramento da linha de tendéncia dos dados, e cartas EWMA e da
amplitude (R), construidas com base nos dados diferenciados, para 0 monitoramento da média
e da variabilidade do processo, respectivamente. A ideia aplicada no desenvolvimento dessas
cartas visou ao monitoramento do processo em tempo real, de forma que elas possam ser
usadas para auxiliar os operadores em relacdo as acdes corretivas requeridas ao longo do
processo. Além disso, 0 uso dessas cartas apresenta um potencial para reducdo da
variabilidade do processo, buscando-se uma deposi¢do metalica mais consistente e uniforme
ao longo de todo o filme.

Adicionalmente, o presente capitulo também apresentou uma andlise de capacidade
para o processo. No entanto, conforme discutido, essa andlise precisa ser utilizada com
parcimdnia, j& que a mesma deve ser aplicada quando o processo estiver em controle
estatistico. Ao contrario das cartas de monitoramento estatistico, a analise de capacidade do
processo proposta visa a0 monitoramento do processo no modo off-line, apos a sua concluséo.
E uma forma mais simples e rapida de guiar os ajustes que sdo realizados entre corridas,

mostrando a posi¢ao do evaporador que apresentou mais valores fora de especificagéo.
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Por fim, a ideia principal € que a utilizagdo das ferramentas de monitoramento
estatistico apresentadas, através de uma analise mais elaborada dos dados de DO ja coletados
e disponiveis para uso, possam auxiliar no monitoramento do processo, com o intuito de
reduzir a sua variabilidade e, consequentemente, melhorar o desempenho de barreira dos

filmes metalizados produzidos.
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5 PERSPECTIVAS

Em relacdo ao monitoramento da producdo de biodiesel, uma dificuldade encontrada
no desenvolvimento do presente trabalho consistiu na coleta de amostras da mistura reacional
em outros pontos da coluna de destilacdo reativa utilizada. Dessa forma, trabalhos futuros
poderiam otimizar essas coletas de modo que permitissem a aquisicdo de espectros em
diversos pontos da coluna de destilacdo reativa. A ideia seria obter um perfil da concentracéo
de ésteres alquilicos (biodiesel) ao longo da coluna, o que poderia auxiliar na definicdo de
suas condicGes operacionais.

Além disso, os modelos de regressdo PLS desenvolvidos no presente trabalho, para
estimar as concentracdes de éster alquilico, etanol e glicerol, poderiam ser alimentados com
mais espectros provenientes de amostras da coluna e de amostras quaternarias, adquiridos na
faixa de temperatura de 50 — 60°C. Conforme discutido, a inclusdo de algumas amostras
nessas condi¢des nos modelos promoveu uma melhoria dos resultados. Dessa forma, se mais
amostras fossem incluidas, os resultados apresentados poderiam ser ainda melhores.

No que diz respeito ao monitoramento da metalizacao de filmes poliméricos, trabalhos
futuros poderiam viabilizar o uso de métodos multivariados para 0 monitoramento estatistico
do processo. Conforme discutido, a baixa correlacdo entre as varidveis e as caracteristicas do
processo motivaram a aplicacdo de técnicas univariadas no presente trabalho. No entanto,
uma desvantagem associada ao uso dessas técnicas esta relacionada a quantidade de gréaficos
que precisam ser analisados. Dessa forma, métodos multivariados ndo convencionais
poderiam ser aplicados a esse processo com o intuito de reduzir a quantidade de graficos e,
assim, facilitar o monitoramento. E importante ressaltar que o uso de métodos multivariados
tradicionais tem sido avaliado, no entanto, resultados satisfatorios ainda ndo foram obtidos, o

que indica a necessidade de um maior aprofundamento no tema.
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ARTICLEINFO ABSTRACT
Keywords: In this work, the use of a handheld near-infrared spectrometer (MicroNIR) for on-line monitoring of biodiesel
Near infrared production in a continuous process is described. The process consists of a laboratory scale reactive distillation
Handheld spectrometer column where transesterification reactions between cottonseed oil and ethanol take place. This column can

Process monitoring
Biodiesel production
Reactive distillation

operate with different ethanol to oil molar ratios. In the present study, a severe condition using an excess of
ethanol at the point monitored with NIRS was applied. This condition caused problems in modelling the content
of the alkyl ester, particularly because of the broad and intense band related to the ethanol in the spectral region
covered by MicroNIR. Therefore, for process monitoring and control, both an estimate of the alkyl ester as well
as of ethanol contents were carried out. To deal with this, PLS calibration models were developed to estimate
concentrations of ethanol and alkyl ester at the bottom of the column. In addition, in order to estimate the yield
of the alkyl ester, a PLS model to assess glycerol content was also developed. In spite of the problematic con-
ditions under which the column operated, mainly related to the excess of ethanol, the models presented sa-
tisfactory results for ethanol (RMSEP = 1.66wt%), alkyl ester (RMSEP = 2.15wt%) and glycerol
(RMSEP = 1.08 wt%) quantifications and have demonstrated the feasibility of the handheld instrument to
monitor biodiesel production in a continuous process.

1. Introduction industrial manufacturing is of the utmost importance to reduce process
variability, ensuring that product specifications and quality require-
Implementation of process monitoring and control methods in ments are met. Given the difficulty of handling complex and
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APENDICE B - Diagrama ternario proveniente do planejamento de misturas com
pontos adicionais

Figura — Composigao das misturas sintéticas usadas nos modelos de calibragéo.
0
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Fonte: A Autora (2020).
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APENDICE C - Misturas sintéticas preparadas para o desenvolvimento dos modelos de

calibracao

Tabela — FragGes massicas de 0leo, etanol, éster alquilico e glicerol para cada mistura sintética e a respectiva
temperatura de analise com o MicroNIR

(continua)
Mistura Temperatura Teor de Teor de etanol Teor,d_e ester Teor de glicerol
sintética de andlise (°C) 0% 0 op myy  AAulico % my)
(m/m)) (m/m))
1 25 6,25 82,49 11,25 0,00
2 25 6,25 75,00 18,75 0,00
3 25 3,75 85,00 11,25 0,00
4 25 4,11 78,04 17,85 0,00
5 25 5,73 76,91 17,36 0,00
6 25 4,33 81,96 13,71 0,00
7 25 3,48 81,51 15,01 0,00
8 25 1,76 81,50 16,74 0,00
9 25 4,00 81,50 14,50 0,00
10 25 2,50 81,48 16,02 0,00
11 25 5,00 80,00 15,01 0,00
12 25 4,00 80,00 16,00 0,00
13 25 3,50 80,00 16,50 0,00
14 25 3,00 79,99 17,01 0,00
15 25 2,50 79,99 17,50 0,00
16 25 1,99 80,01 18,00 0,00
17 25 20,00 80,00 0,00 0,00
18 25 18,00 80,01 2,00 0,00
19 25 16,00 79,99 4,01 0,00
20 25 14,00 80,00 6,01 0,00
21 25 12,00 80,01 8,00 0,00
22 25 10,00 80,00 10,00 0,00
23 25 8,00 80,00 12,00 0,00
24 25 6,00 79,99 14,00 0,00
25 25 1,50 80,00 18,50 0,00
26 25 1,00 80,00 19,00 0,00
27 25 5,35 82,37 12,28 0,00
28 25 15,17 77,44 7,39 0,00
29 25 17,63 82,37 0,00 0,00
30 25 2,90 82,33 14,77 0,00
31 25 20,08 77,46 2,46 0,00
32 25 5,35 77,45 17,19 0,00
33 25 7,81 82,37 9,82 0,00
34 25 15,09 79,91 5,00 0,00
35 25 17,63 77,46 4,91 0,00
36 25 7,81 77,46 14,73 0,00
37 25 2,90 77,46 19,64 0,00
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Tabela — Fracdes massicas de 6leo, etanol, éster alquilico e glicerol para cada mistura sintética e a respectiva
temperatura de analise com o0 MicroNIR.
(continuacdo)

Mistura Temperatura Teor de Teor de etanol Teor,d_e ester Teor de glicerol
sintética de andlise °C) 010 0 " op ymyy  Aauilico %7 n )
(m/m)) (m/m))
38 25 5,09 79,91 15,00 0,00
39 25 12,72 77,46 9,82 0,00
40 25 10,26 77,46 12,28 0,00
41 25 10,26 82,37 7,36 0,00
42 25 13,63 82,37 4,00 0,00
43 25 1,54 177,47 21,00 0,00
44 25 22,54 77,46 0,00 0,00
45 25 5,36 84,82 9,82 0,00
46 25 10,27 75,00 14,73 0,00
47 25 20,10 74,99 4,91 0,00
48 25 25,00 75,00 0,00 0,00
49 25 12,72 74,99 12,29 0,00
50 25 2,90 84,81 12,29 0,00
51 25 15,00 85,00 0,00 0,00
52 25 5,36 75,00 19,64 0,00
53 25 7,81 74,99 17,20 0,00
54 25 6,50 77,99 15,51 0,00
55 25 22,54 75,00 2,46 0,00
56 25 12,72 84,83 2,45 0,00
57 25 10,27 84,81 4,91 0,00
58 25 15,18 75,00 9,82 0,00
59 25 7,81 84,83 7,37 0,00
60 25 17,63 75,00 7,37 0,00
61 25 7,50 83,51 8,99 0,00
62 25 1,18 84,83 13,99 0,00
63 25 14,18 84,82 1,00 0,00
64 25 1,00 85,01 14,00 0,00
65 25 2,90 75,00 22,10 0,00
66 25 2,00 75,00 23,00 0,00
67 25 1,70 75,30 23,00 0,00
68 25 1,59 79,90 18,51 0,00
69 25 1,13 82,37 16,50 0,00
70 25 15,00 76,00 9,00 0,00
71 25 7,26 78,92 6,85 6,97
72 25 21,06 70,08 2,30 6,55
73 25 1,87 70,08 21,49 6,56
74 25 9,59 70,07 13,76 6,58
75 25 7,30 70,07 16,07 6,56
76 25 14,19 70,09 9,18 6,54
77 25 1,05 76,50 15,32 7,13

78 25 7,01 78,04 8,40 6,55
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Tabela — Fracdes massicas de 6leo, etanol, éster alquilico e glicerol para cada mistura sintética e a respectiva
temperatura de analise com o0 MicroNIR.
(continuacdo)

Mistura Temperatura Teor de Teor de etanol Teor,d_e ester Teor de glicerol
sintética de andlise °C) 00 0 " op qymyy  Aauilico %7 n )
(m/m)) (m/m))
79 25 14,02 71,04 8,41 6,54
80 25 13,25 79,23 0,93 6,59
81 25 2,50 82,47 15,02 0,00
82 50-60 2,50 82,47 15,02 0,00
83 25 5,38 82,49 11,01 1,12
84 50-60 5,38 82,49 11,01 1,12
85 25 5,38 82,50 9,00 3,12
86 50-60 5,38 82,50 9,00 3,12
87 25 4,00 80,01 16,00 0,00
88 50-60 4,00 80,01 16,00 0,00
89 25 3,47 79,95 14,99 1,59
90 50-60 3,47 79,95 14,99 1,59
91 25 3,37 80,00 15,50 1,12
92 50-60 3,37 80,00 15,50 1,12
93 25 2,50 77,49 20,01 0,00
94 50-60 2,50 77,49 20,01 0,00
95 25 8,17 77,50 13,01 1,32
96 50-60 8,17 77,50 13,01 1,32
97 25 3,50 77,48 14,02 5,00
98 50-60 3,50 77,48 14,02 5,00
99 25 1,75 89,98 6,97 1,30
100 25 0,73 95,23 2,78 1,27
101 25 1,40 89,38 7,78 1,44
102 25 0,64 94,55 3,55 1,26
103 25 1,09 89,81 8,93 0,18
104 25 0,58 94,57 4,75 0,10
105 25 0,00 100,00 0,00 0,00
106 25 2,15 75,80 15,16 6,89
107 25 5,17 73,14 14,24 7,45

108 25 6,74 72,99 14,00 6,27
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APENDICE D - Descrigéo dos calculos dos valores de referéncia para o éster alquilico e
o glicerol

A descricdo dos calculos dos teores de biodiesel (fg;,) € de glicerol (fg;), em %(m/m),
utilizados como valores de referéncia para as amostras da coluna, esta apresentada a seguir.

Os teores de etanol das amostras da coluna (fgioh), em %(m/m), utilizados como
valores de referéncia para a construcdo do modelo, foram obtidos diretamente por

cromatografia gasosa. Dessa forma, considerando uma amostra de massa 100 g, tem-se que a

, f] -100 .
massa de etanol da amostra (mgoy) € dada por mgoy = Et‘;ﬁo = frron. ASSim, a massa

restante da amostra (100 — fg.og) foi atribuida ao glicerol, ao biodiesel e ao éleo ndo reagido.

Considerando apenas essa quantidade restante da amostra (100 — fgion), pode-se
considerar uma massa m correspondente & mistura de biodiesel e 6leo ndo reagido. Sabendo-
se a pureza do biodiesel (Pg;,), obtida por cromatografia gasosa apés purificacdo da amostra,
pode-se calcular a massa de biodiesel (mg;,) € de 6leo (mg,,.,) através das Equacéo 3-1 e

Equacdo 3-2, respectivamente:
mgj, = m " Pgjo (3-1)
Mgleo = M (1 = Pgjo) (3-2)
A massa de glicerol (mg;) pode ser calculada com base na relacdo estequiométrica

entre o biodiesel e o glicerol (3 mols de biodiesel sdo formados para cada mol de glicerol), a

partir da Equagéo 3-3:

MMy
mgy; = m - Pgj, (ﬁ) (3-3)

Em que MMg,; é a massa molar do glicerol e MMg;, € a massa molar do biodiesel.

Dessa forma, considerando a mistura de biodiesel, glicerol e 6leo, o teor de biodiesel

fgio » €M m/m, pode ser calculado a partir da Equacdo 3-4:

ffio = TBio -100% (3-4)

mpgjo+mMgeo+tMali
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Substituindo as Equacdes 3-1, 3-2 e 3-3 na Equacéo 3-4, tem-se a Equacgéo 3-5:

m-Pgjo

+100% = —— 22— 100% (3-5)

friy' =
Bio ™ 14P ( )
Bio\3Mmp;,

MMgr;
m'PBio+m'(1_PBio)+m'PBio( Gli )

3MMgjo

Esse teor (fg;,’), NO entanto, considera apenas o biodiesel, o 6leo e o glicerol. Para

encontrar o teor de biodiesel na mistura total (fg;,), basta multiplicar fg;," pela fragdo massica

. ;- . 100—f; . . .
da mistura ternaria na mistura total (ﬂ) que inclui o etanol, obtendo-se, assim, a
Equacéo 3-6:
.
fBio _ 1]330 = fo. = 100—fEton /
frn:r  __JBio Bio — 100 Bio
Bio
100-fgtoH
Pgi 100—f;
faio = bio (F2ek) - 100% (3-6)
1+Pg; (MMG“) 100
Bio 3MMgj,

A partir da relacdo estequiométrica entre biodiesel e glicerol, pode-se obter o teor de glicerol

na mistura total (fg);), a partir da Equacéo 3-7:

MMgi
faii = faio (3MM(;O) 3-7)
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APENDICE E — Monitoramento da tendéncia dos dados de densidade dptica para a

corrida A2

Figura — Cartas EWMA para monitoramento da tendéncia para as 18 variaveis da corrida A2

2 4
2.25
<
=
= ‘
w X
..‘Y
5 L
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Tempo (s) Tempo (s) Tempo (s) Tempo (s)
2.25
<
=
=
w
2.05
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Tempo (s) Tempo (s) Tempo (s) Tempo (s)
10 12
< <
= =
= =
w w
2.05
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Tempo (s) Tempo (s) Tempo (s) Tempo (s)
13
2.25 2.25
< < < <
= = = =
= = = =
1] w w ]
2.05 2.05
1000 2000 3000 1000 2000 3000 1000 2000 3000 1000 2000 3000
Tempo (s) Tempo (s) Tempo (s) Tempo (s)
17 18
2.25 2.25
< <
= =
= ; =
w w
L
J
1000 2000 3000 1000 2000 3000
Tempo (s) Tempo (s)

Fonte: A Autora (2020).



APENDICE F — Comparag4o entre os dados originais e diferenciados

Figura — Dados originais (a) e dados diferenciados com 12 (b), 22 (c) e 32 (d) ordens para a
variavel 1 da corrida A2.
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Fonte: A Autora (2020).
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APENDICE G — Monitoramento da variabilidade para a corrida A2

Figura — Cartas da amplitude para as 18 variaveis da corrida A2.
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Fonte: A Autora (2020).



