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RESUMO 

 

À medida que os processos industriais se tornam mais complexos, torna-se essencial o 

desenvolvimento de novas metodologias capazes de monitorá-los de forma eficiente. Nesse 

contexto, métodos quimiométricos podem ser utilizados para o tratamento de dados 

provenientes desses processos, visando extrair informações relevantes que auxiliem na sua 

compreensão e monitoramento. Dentre as ferramentas quimiométricas aplicadas a processos, 

podem-se destacar as técnicas de calibração multivariada e os métodos de monitoramento 

estatístico de processos (Statistical Process Monitoring - SPM). No presente trabalho, essas 

ferramentas foram utilizadas em duas abordagens. Na primeira, modelos de regressão por 

mínimos quadrados parciais (Partial Least-squares - PLS) foram desenvolvidos, com base em 

dados espectroscópicos, para o monitoramento da produção de biodiesel em uma coluna de 

destilação reativa. Um espectrômetro portátil no infravermelho próximo, o MicroNIR, foi 

utilizado para o monitoramento on-line da mistura reacional na base da coluna. Além disso, 

misturas sintéticas foram empregadas na construção dos modelos com o intuito de ampliar a 

faixa de concentração dos componentes modelados: etanol, glicerol e éster alquílico 

(biodiesel). Resultados satisfatórios foram obtidos em relação aos valores da raiz do erro 

quadrático médio de predição (Root Mean Square Error of Prediction - RMSEP). A segunda 

abordagem envolveu o desenvolvimento de uma estratégia de SPM para monitorar o processo 

industrial de metalização a vácuo de filmes de poliéster, com base nos dados de densidade 

óptica (DO) do filme metalizado adquiridos ao longo da produção. Esses dados representam 

uma medida indireta da espessura do revestimento e são utilizados no controle do processo. 

Assim, esse trabalho visou possibilitar uma estratégia de monitoramento eficiente, através de 

uma análise mais elaborada dos dados de DO já coletados. Após uma análise exploratória 

desses dados, envolvendo um estudo de correlação e tendência, foi proposta a aplicação de 

uma carta de controle da média móvel exponencialmente ponderada (Exponentially weighted 

moving average - EWMA) para o monitoramento da tendência. Além disso, após 

diferenciação dos dados, utilizou-se uma carta EWMA e uma carta da amplitude para o 

monitoramento da média e da variabilidade do processo, respectivamente. Por fim, a 

avaliação dos resultados permitiu uma análise coerente dos dados, indicando a viabilidade da 

estratégia sugerida para o monitoramento do processo.  

 

Palavras-chave: Calibração multivariada. Monitoramento estatístico de processo. 

Quimiometria de processo. Tecnologia analítica de processo. 



 

 

 

 

ABSTRACT 

 

As industrial processes become more complex, the development of new 

methodologies capable of efficiently monitoring them are essential. Chemometric methods 

can be used in the analysis of the data of these processes to extract relevant information that 

will facilitate understanding and monitoring of this data. In the present work, two 

chemometric tools, multivariate calibration and statistical process monitoring (SPM) were 

used for two different approaches. In the first one, partial least squares (PLS) regression 

models were developed, based on spectroscopic data, for monitoring biodiesel production in a 

reactive distillation column. A portable spectrometer in the near infrared region was used for 

the online monitoring of the reaction mixture at the bottom of the column. In addition, 

synthetic blends were used in the development of the models in order to increase the 

concentration range of the components: ethanol, glycerol and alkyl ester (biodiesel). 

Satisfactory results were obtained in relation to the root mean square error of prediction 

(RMSEP) values. The second approach involved the development of a SPM strategy to 

monitor the industrial vacuum metallization process of polyester films, based on the optical 

density (DO) data of the metallized film acquired during production. These data represent an 

indirect measure of the coating thickness and are used in the process control. The aim of this 

present work was to suggest an efficient monitoring strategy through a further elaboration 

analysis of the DO data already collected. After an exploratory data analysis, involving 

correlation and trend investigations, the application of an exponentially weighted moving 

average (EWMA) control chart was considered for trend monitoring. In addition, an EWMA 

chart and a range control chart on the differenced data were used to monitor process mean and 

variability, respectively. Finally, the evaluation of the results enabled a coherent analysis of 

the data, indicating the viability of the suggested strategy for monitoring the process. 

 

Keywords: Multivariate calibration. Process analytical technology. Process chemometrics. 

Statistical process monitoring. 
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1 INTRODUÇÃO 

 

Nas últimas décadas, o rápido avanço tecnológico tem impulsionado o 

desenvolvimento de sensores analíticos e sistemas computacionais. A associação desses 

elementos empregados na produção industrial é um dos fatores que tem conduzido à nova 

geração dos processos industriais de manufatura, amplamente denominada Indústria 4.0. Esta 

é caracterizada, principalmente, por processos complexos, cujo monitoramento gera uma 

enorme quantidade de dados, adquiridos em uma elevada frequência e provenientes de fontes 

diversas (BAKDI; KOUADRI, 2017; HE; WANG, 2018; SZYMAŃSKA, 2018).  

Esse cenário, além de proporcionar oportunidades de crescimento e desenvolvimento, 

também envolve alguns aspectos desafiadores, que estão presentes desde a etapa de projeto 

até o controle e monitoramento do processo. Adicionalmente, existem ainda as crescentes 

exigências para a manutenção da segurança, sustentabilidade, qualidade do produto e 

capacidade de operação. Dessa forma, esse contexto atual tem requerido a utilização de 

ferramentas poderosas de análise de dados em tempo real, com o objetivo de dar agilidade ao 

processo de tomada de decisões e ao desenvolvimento de soluções eficientes diante de 

emergências no processo produtivo (BAKDI; KOUADRI, 2017; SHANG; YOU, 2019).  

É nesse contexto que está inserida a ciência de dados, que pode ser entendida como 

um campo interdisciplinar da ciência em que métodos estatísticos e matemáticos são 

associados a sistemas computacionais e da informação com o objetivo de evidenciar 

informações relevantes e novos entendimentos sobre os dados. Diversas ferramentas podem 

ser aplicadas com esse objetivo. A quimiometria, por exemplo, é considerada uma parte 

importante dessa ciência (SZYMAŃSKA, 2018).  

Usualmente, a quimiometria é definida como uma parte da química utilizada para 

extrair informações relevantes sobre um sistema químico, através da aplicação de métodos 

matemáticos e estatísticos. Entretanto, já faz um tempo que as técnicas quimiométricas têm 

ampliado o seu domínio de aplicação. Dessa forma, principalmente devido às inúmeras 

aplicações a processos industriais, a quimiometria se tornou também assunto de interesse da 

engenharia química e de processos (WISE; KOWALSKI, 1995).  

A aplicação das ferramentas quimiométricas a processos industriais é bastante 

abrangente, incluindo, por exemplo, os métodos de planejamento experimental (Design of 

Experiment - DOE), as técnicas de calibração e classificação multivariada e o monitoramento 

estatístico do processo (FERREIRA; TOBYN, 2014; GRASSI; ALAMPRESE, 2018; 
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SHANG; YOU, 2019; VIGNADUZZO; MAGGIO; OLIVIERI, 2020).  

 Considerando-se a importância dessas ferramentas de análise de dados para evidenciar 

informações relevantes que auxiliem na compreensão e no monitoramento de processos, no 

presente trabalho, técnicas quimiométricas foram empregadas no tratamento de dados 

coletados durante dois processos diferentes. Na primeira abordagem, um espectrômetro 

portátil na região do infravermelho próximo foi utilizado para o monitoramento on-line da 

produção de biodiesel em uma coluna de destilação reativa. Com base nos dados 

espectroscópicos coletados durante o processo, modelos de regressão por mínimos quadrados 

parciais (Partial Least-squares - PLS) foram desenvolvidos para estimar os teores de etanol, 

glicerol e éster alquílico (biodiesel) na base da coluna. Já na segunda abordagem, técnicas de 

monitoramento estatístico de processos foram utilizadas com o objetivo de sugerir uma 

estratégia de monitoramento para o processo industrial de metalização a vácuo de filmes de 

poliéster. Nessa abordagem, gráficos de controle foram desenvolvidos com base na densidade 

óptica do filme metalizado adquirido durante a produção, a qual representa uma medida 

indireta da espessura do revestimento aplicado ao filme polimérico. Por tratarem de processos 

distintos, cada abordagem e os seus respectivos objetivos específicos estão contemplados em 

um item específico desta tese.  
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2 FUNDAMENTAÇÃO TEÓRICA 

 

A seguir, estão inseridos alguns tópicos que fornecem embasamento teórico aos temas 

abordados nesta tese.  

 

2.1 TECNOLOGIA ANALÍTICA DE PROCESSO  

 

De modo geral, a compreensão sobre determinado processo produtivo é essencial para 

a implementação de um controle eficiente e, por conseguinte, para a redução de sua 

variabilidade. Nesse contexto, tem-se buscado desenvolver novas metodologias capazes de 

ampliar o entendimento sobre os processos industriais modernos, os quais são, em geral, 

complexos e multivariados. A partir dessa necessidade, surgiu a Tecnologia Analítica de 

Processo (Process Analytical Technology - PAT), um tema que tem sido amplamente 

estudado e aplicado, principalmente, nas indústrias farmacêuticas e de química fina,  que 

exigem um maior rigor em relação ao controle da produção (SIMON et al., 2015; 

GROBHANS et al., 2018; THAKUR; HEBBI; RATHORE, 2020; VIGNADUZZO; 

MAGGIO; OLIVIERI, 2020). 

A agência Food and Drug Administration (FDA), do Departamento de Saúde e 

Serviços Humanos dos Estados Unidos, em um guia direcionado à indústria farmacêutica, 

definiu PAT como um sistema voltado para o projeto, a análise e o controle do processo, por 

meio da medição de parâmetros de processo e atributos de qualidade em diversas etapas da 

produção, durante o processamento (FDA, 2004). Pode-se identificar quatro aspectos 

essenciais que constituem esse sistema: a compreensão sobre os principais fatores que afetam 

a dinâmica do processo e a qualidade do produto final; a análise do processo; a análise dos 

dados multivariados coletados e o controle do processo (GRASSI; ALAMPRESE, 2018).  

Existem diversas ferramentas que podem ser utilizadas a fim de satisfazer aos 

principais objetivos de estratégias PAT, dentre as quais se destacam os dispositivos para 

aquisição e análise de dados multivariados, as ferramentas de controle e monitoramento de 

processos, os modernos analisadores de processos e as técnicas aplicadas à gestão do 

conhecimento e à melhoria contínua. Essas ferramentas podem ser empregadas sozinhas ou 

em conjunto, em uma etapa do processo produtivo ou em toda a produção, visando à obtenção 

de informações que permitam ampliar a compreensão sobre o processo, o gerenciamento dos 

riscos e a melhoria contínua (FDA, 2004).  
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Por fim, faz-se necessário ressaltar que o tema PAT é bastante abrangente e tem 

natureza multidisciplinar, incluindo não apenas as análises químicas, como também as 

análises físicas, microbiológicas, matemáticas e de risco. Assim, especialistas na área de PAT 

podem vir de diversas formações, principalmente das áreas de engenharia e instrumentação. 

De modo geral, algumas aplicações e desenvolvimentos recentes na área de PAT incluem: 

monitoramento e controle de processos (cristalização, fermentação, destilação, dentre outros), 

desenvolvimento de sensores analíticos, scale-up de laboratório para planta piloto, utilização 

de técnicas espectroscópicas como ferramentas de PAT (Raman, infravermelho, terahertz) e 

emprego de métodos quimiométricos (DE BEER et al., 2011; SIMON et al., 2015; GRASSI; 

ALAMPRESE, 2018). 

 

2.2 ESPECTROSCOPIA NO INFRAVERMELHO PRÓXIMO  

 

A espectroscopia no infravermelho é um tipo de espectroscopia vibracional 

considerada uma importante tecnologia para as determinações quantitativas e qualitativas de 

compostos moleculares nos estados sólido, líquido e gasoso. O infravermelho está associado à 

região do espectro eletromagnético em que o comprimento de onda varia de 780 a 1.000.000 

nm, o que corresponde a uma variação de número de onda de 12.800 a 10 cm-1. 

Considerando-se aspectos relacionados à aplicação e à instrumentação, essa região é 

geralmente subdividida em infravermelho próximo (NIR - Near Infrared), médio (MIR - Mid 

Infrared), e distante (FIR - Far Infrared). A faixa do NIR corresponde à região espectral mais 

energética, em que o comprimento de onda varia entre 780 e 2.500 nm. Já a faixa do FIR, 

corresponde à região entre 50.000 e 1.000.000 nm. A faixa do MIR, por sua vez, é a região 

intermediária do infravermelho, que vai de 2.500 a 50.000 nm (SKOOG; HOLLER; 

CROUCH, 2009). 

De um modo geral, quando uma radiação incide sobre um composto molecular, este 

absorve apenas determinadas frequências dessa radiação. No processo de absorção de energia 

correspondente ao infravermelho médio, apenas as frequências da radiação incidente que 

coincidem com as frequências de vibração naturais da molécula são absorvidas. A absorção 

está condicionada, no entanto, à variação do momento de dipolo das ligações da molécula 

durante os movimentos de vibração ou de rotação. Dessa forma, apenas as ligações que 

apresentam um dipolo elétrico que varia na mesma frequência da radiação infravermelha 
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incidente são capazes de absorvê-la. Moléculas simétricas, por exemplo, são inativas à 

radiação em toda a região do espectro infravermelho (PAVIA et al., 2009).  

Como consequência da absorção da energia na região do infravermelho, a molécula 

passa do estado fundamental para o estado excitado, sendo essa transição energética capaz de 

proporcionar um aumento na amplitude dos seus movimentos vibracionais. Os principais 

modos vibracionais das moléculas que absorvem radiação infravermelha são a deformação 

axial e a deformação angular. A deformação axial, também denominada estiramento, é 

caracterizada por alterações na distância entre dois átomos ao longo do eixo da ligação. Já a 

deformação angular, envolve variações no ângulo formado por duas ligações. Existem 

diversos modos de deformação angular, os quais podem ocorrer dentro de um mesmo plano 

ou para fora dele (PAVIA et al., 2009; SKOOG; HOLLER; CROUCH, 2009).  

Em particular, as absorções na região do infravermelho próximo (NIR) estão 

associadas, principalmente, aos sobretons e às bandas de combinação das vibrações 

fundamentais das ligações C—H, N—H, O—H e S—H. Assim, as principais aplicações dessa 

técnica estão relacionadas às determinações quantitativas e qualitativas de espécies que 

apresentam grupos funcionais contendo essas ligações (SKOOG; HOLLER; CROUCH, 2009; 

SIMPSON, 2010).  

O crescente uso da espectroscopia NIR, incluindo em aplicações industriais, está 

associado, principalmente, às suas características fundamentais já bem estabelecidas, dentre as 

quais, pode-se citar: rapidez na aquisição espectral, elevada precisão e, na maioria dos casos, 

ausência de preparo de amostra e manutenção de sua integridade. Adicionalmente, os avanços 

na área da instrumentação e da quimiometria são fatores que têm impulsionado o rápido 

desenvolvimento da tecnologia NIR. Em relação à instrumentação, o progresso nessa área tem 

proporcionado melhorias na aquisição espectral e no tratamento de dados espectroscópicos. 

Esses avanços são orientados, principalmente, pela miniaturização dos equipamentos e pelos 

sistemas de aquisição de imagens espectrais. Já no que diz respeito aos métodos 

quimiométricos, estes são essenciais para a obtenção de informações relevantes a partir dos 

dados espectroscópicos, principalmente devido à complexa natureza dessa região espectral, 

caracterizada normalmente por bandas alargadas e sobrepostas, o que dificulta a sua 

interpretação e a atribuição das bandas de absorção (PASQUINI, 2018). 
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2.2.1 Espectroscopia no infravermelho próximo como uma ferramenta da tecnologia 

analítica de processo  

 

Em comparação com outras técnicas analíticas, na última década, a espectroscopia 

NIR tem se destacado para aplicações na área de PAT, tendo sido empregada em diversos 

setores produtivos, especialmente, nas indústrias farmacêuticas (PASQUINI, 2018). Além das 

vantagens anteriormente citadas relacionadas ao uso dessa técnica para aplicações diversas, 

existem alguns fatores que a tornam particularmente atrativa para utilização como uma 

ferramenta de PAT. Um desses fatores, por exemplo, está associado à variedade da 

instrumentação na área do NIR, que permite que essa tecnologia atenda a diversas demandas 

industriais. Assim, o instrumento de NIR pode ser selecionado de acordo com um critério 

considerado crítico para a aplicação, o qual pode ser, por exemplo, elevada precisão, rapidez 

na aquisição dos dados ou exatidão do comprimento de onda (SIMPSON, 2010).  

Adicionalmente, ainda do ponto de vista da instrumentação, outro fator que tem 

impulsionado a utilização do NIR para aplicações industriais consiste no fato de os 

instrumentos NIR serem, em geral, robustos e compactos. Além disso, possibilitam que a 

aquisição espectral da amostra seja obtida por meio de sondas conectadas ao equipamento 

através de cabos de fibra óptica ou por meio de instrumentos ultracompactos e portáteis, o que 

simplifica bastante a utilização dessa tecnologia em linhas de produção complexas (GRASSI; 

ALAMPRESE, 2018; MIRSCHEL et al., 2018; PUIG-BERTOTTO; COELLO; MASPOCH, 

2019).  

Outro aspecto do emprego da tecnologia NIR na área de PAT está relacionado à baixa 

absortividade molar dos sobretons e das bandas de combinação, quando comparada a das 

vibrações fundamentais. Apesar de torná-la uma técnica não muito sensível, apresentando 

geralmente um limite de detecção em torno de 0,1%, essa baixa absortividade é muitas vezes 

considerada vantajosa do ponto de vista de PAT, uma vez que permite que as amostras sejam 

analisadas sem a necessidade de diluição prévia ou utilização de técnicas para atenuar a 

radiação incidente. Como resultado, a espectroscopia NIR pode ser empregada para medição 

direta das amostras, atendendo a um dos principais requisitos da maioria das aplicações na 

área de PAT (SIMPSON, 2010).  

Dessa forma, a possibilidade da medição direta das amostras tem impulsionado o uso 

do NIR para o monitoramento in-line e on-line de diversos processos produtivos, visando 

aplicações, por exemplo, em indústrias farmacêuticas (DE BEER et al., 2011; HOHL et al., 
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2017), alimentícias (GRASSI; ALAMPRESE, 2018) e de biocombustíveis (DE LIMA et al., 

2014; GELINSKI et al., 2018). Além de ser empregado, inclusive, para determinações 

quantitativas e qualitativas dos produtos intermediários e finais da produção (GRASSI; 

ALAMPRESE, 2018; PUIG-BERTOTTO; COELLO; MASPOCH, 2019). 

Outro benefício do emprego da espectroscopia NIR em aplicações na área de PAT está 

relacionado à capacidade de penetração da radiação devido aos comprimentos de onda mais 

curtos dessa faixa espectral, quando comparados aos de outras técnicas espectroscópicas 

vibracionais. Ao utilizar essa técnica para a análise de alguns sólidos por reflectância difusa, o 

feixe da radiação é capaz de penetrá-los com profundidade na ordem de alguns milímetros. 

Essa característica do NIR permite utilizá-lo para análises não destrutivas, o que pode ser útil, 

por exemplo, para a avaliação da qualidade de diversos materiais comercializados e utilizados 

como matéria-prima na produção industrial, evitando-se, assim, problemas de contaminação e 

heterogeneidade das amostras (SIMPSON, 2010). Por exemplo, essa característica do NIR 

tem sido avaliada para o monitoramento da qualidade de frutas e verduras ( MAGWAZA et 

al., 2012; MARQUES et al., 2016; EISENSTECKEN et al., 2019). 

 

2.2.2 Miniaturização dos equipamentos de infravermelho próximo 

 

Conforme mencionado, um dos principais aspectos relacionados à ascensão da 

tecnologia NIR está associado aos avanços na área de instrumentação, sendo a tendência à 

miniaturização um dos fatores mais relevantes. Nesse contexto, na última década, um número 

crescente de equipamentos portáteis na região do NIR tem sido desenvolvido e 

comercializado.  Pasquini (2018), por exemplo, listou em torno de vinte instrumentos 

comerciais compactos, alguns dos quais são extremamente leves, pequenos e baratos. 

Segundo o autor, essa tendência à miniaturização tem transformado a espectroscopia NIR por 

permitir análises in loco.  

Um dos equipamentos portáteis disponíveis no mercado é o MicroNIR, produzido pela 

VIAVI. O MicroNIR abrange uma família de espectrômetros ultracompactos que incluem 

desde os instrumentos portáteis para análise em campo, como o MicroNIR Pro, utilizado no 

desenvolvimento desse trabalho, até os instrumentos diretamente voltados para as aplicações 

na área de PAT, os quais podem ser adaptados para uso em reatores ou tubulações (VIAVI, 

2020). O tamanho reduzido desses instrumentos é devido, principalmente, à utilização de um 

filtro linear variável (Linear Variable Filter - LVF) como elemento dispersor. Trata-se de um 
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filme fino de espessura variável responsável por dispersar a radiação incidente. Dessa forma, 

cada pixel do arranjo de fotodiodos, utilizado como detector, responde a um comprimento de 

onda específico da radiação dispersa, permitindo que os espectros sejam adquiridos na região 

entre 908 e 1676 nm, conforme ilustrado na Figura 1a. Por fim, esse mecanismo de aquisição 

espectral está instalado em um equipamento ultracompacto (Figura 1b) sem partes móveis, o 

que confere robustez ao MicroNIR (O’BRIEN et al., 2012; PEDERSON et al., 2014). 

 

Figura 1 – Esquema simplificado do funcionamento do MicroNIR, apresentando a dispersão da radiação 

incidente por parte do Filtro Linear Variável e a detecção dessa radiação pelo arranjo de fotodiodos, 

para aquisição espectral na região entre 908 a 1676 nm (a) e espectrômetro portátil MicroNIR Pro (b) 

a) 

 

b)  
 

      

       

Fonte: Pederson et al. (2014) 

 

As principais vantagens associadas à utilização desse tipo de sensor analítico estão 

relacionadas ao tamanho, ao peso, à robustez e ao reduzido custo de manufatura desses 

equipamentos. Além disso, por permitir análises em tempo real e in loco, tem-se avaliado o 

potencial dos espectrômetros comerciais portáteis para utilização em diversos campos de 

atuação (incluindo aplicações visando ao emprego em processos industriais) obtendo-se, em 

geral, bons resultados (MODROÑO et al., 2017; GALAVERNA et al., 2018; PASQUINI, 

2018; PUIG-BERTOTTO; COELLO; MASPOCH, 2019; DA SILVA et al., 2019).  

Apesar dos benefícios proporcionados pelos instrumentos miniaturizados na região do 

NIR, é importante ressaltar alguns desafios associados ao emprego desses equipamentos. 

Como exemplo, pode-se citar a sua resolução mais baixa e sua faixa espectral reduzida, 

quando comparadas as de um equipamento de bancada. Além disso, conforme Pasquini 

(2018), a área de medição reduzida desses instrumentos pode representar uma desvantagem 

por dificultar a obtenção de espectros representativos, especialmente para amostras não 

homogêneas. Esse problema, no entanto, pode ser contornado com o emprego de um sistema 

de amostragem e de análise apropriados. Por fim, de acordo com o mesmo autor, os modelos 

desenvolvidos utilizando-se instrumentos portáteis podem apresentar erros maiores quando 
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comparados aos métodos de referência e aos equipamentos de bancada. A escolha em utilizá-

los, então, deve ser decidida não apenas nos resultados dos modelos, mas também com base 

na adequação ao uso. Assim, apesar de proporcionarem uma menor precisão, dependendo da 

aplicação, a utilização desses equipamentos pode ser bastante vantajosa, dentre outros 

aspectos, por permitem a obtenção de medidas em tempo real por um custo relativamente 

baixo para os usuários. 

  

2.3 QUIMIOMETRIA  

 

Conforme mencionado anteriormente, assim como os avanços na área da 

instrumentação, o progresso da quimiometria é um dos fatores que tem impulsionado o uso da 

espectroscopia NIR. O termo quimiometria é frequentemente definido como a utilização de 

métodos matemáticos e estatísticos para o tratamento de dados multivariados obtidos a partir 

de um sistema químico, com o objetivo de extrair o máximo de informação significativa sobre 

esse sistema, auxiliando na sua compreensão. Geralmente, a disciplina que trata da 

quimiometria está associada à química, mais especificamente à química analítica (WISE; 

KOWALSKI, 1995).  

Há algumas décadas, no entanto, a quimiometria tem expandido o seu campo de 

aplicação, não se limitando apenas ao domínio da química analítica. Dessa forma, as 

ferramentas quimiométricas têm sido empregadas em diversas áreas, tanto do ponto de vista 

da academia quando da indústria (SHANG; YOU, 2019; VIGNADUZZO; MAGGIO; 

OLIVIERI, 2020). Por exemplo, conforme revisado por Ferreira e Tobyn (2014), métodos 

quimiométricos têm sido amplamente utilizados em aplicações nas áreas ambiental, 

biomédica e genômica, no monitoramento de biorreatores, e em aplicações nas indústrias 

farmacêuticas, petroquímicas, alimentícias e poliméricas.  

Devido às aplicações aos processos industriais, de acordo com Wise e Kowalski 

(1995), a quimiometria também se tornou matéria de interesse da engenharia. Dentre as 

principais ferramentas quimiométricas utilizadas nesse tipo de aplicação, empregadas 

geralmente no contexto de PAT, destacam-se as técnicas de calibração multivariada 

(FERREIRA; TOBYN, 2014; SIMON et al., 2015), e os métodos de monitoramento 

estatístico de processos (SPM – Statistical Process Control), com ênfase para os gráficos de 

controle estatístico (SEVERSON; CHAIWATANODOM; BRAATZ, 2016; TIDRIRI et al., 

2016; REIS; GINS, 2017; HE; WANG, 2018). 
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Nesse contexto, o presente tópico irá abordar alguns temas fundamentais da 

quimiometria, incluindo a Análise de Componentes Principais (PCA – Principal Component 

Analysis), que é um dos métodos quimiométricos mais importantes, e algumas técnicas de 

pré-processamento de dados espectroscópicos, as quais foram utilizadas no desenvolvimento 

deste trabalho. Adicionalmente, será apresentada também uma visão geral das ferramentas 

quimiométricas comumente aplicadas a processos, incluindo algumas aplicações importantes 

e recentes. Por fim, com o objetivo de se aprofundar nos métodos quimiométricos aplicados 

neste trabalho, os dois tópicos subsequentes descreverão dois dos principais temas da 

quimiometria aplicada a processos: a calibração multivariada, com ênfase no método PLS; e o 

SPM, com a descrição de algumas ferramentas aplicadas nessa área. 

 

2.3.1 Análise de Componentes Principais 

 

A Análise de Componentes Principais (PCA - Principal Component Analysis) é um 

dos mais importantes e versáteis métodos quimiométricos utilizados para o tratamento de 

dados multivariados e complexos. De modo geral, essa técnica facilita a avaliação desses 

dados por meio da redução de sua dimensionalidade, destacando as informações relevantes 

para a sua interpretação e compreensão. Geralmente, a PCA é utilizada no primeiro contato 

com os dados, através de uma análise exploratória. No entanto, também pode ser empregada 

para evidenciar as relações entre as variáveis e entre as amostras, para auxiliar na 

identificação de padrões, bem como para detectar e interpretar os outliers, amostras anômalas 

presentes nos dados (ESBENSEN; GELADI, 2009; BRO; SMILDE, 2014). 

A PCA promove a redução da dimensionalidade dos dados multivariados 

representando-os através de um novo conjunto de fatores, denominados componentes 

principais (PC - Principal Component), os quais são obtidos por meio de combinações 

lineares das variáveis originais do conjunto de dados. As componentes principais são 

ortogonais entre si, o que implica que cada uma contribui de forma independente para explicar 

a variabilidade presente nos dados. Além disso, elas representam de forma decrescente as 

direções de maior variabilidade. Assim, a primeira PC (denominada PC1) representa a direção 

de máxima variabilidade dos dados, a segunda PC (PC2) explica a segunda maior 

variabilidade, e assim sucessivamente (BEEBE, 1998; ESBENSEN; GELADI, 2009; BRO; 

SMILDE, 2014). 
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Os dados a serem submetidos à PCA (e a outros métodos quimiométricos de primeira 

ordem) devem ser organizados em uma matriz (𝐗), em que as i linhas contêm as informações 

de cada amostra (ou objeto) e as j colunas apresentam as informações referentes às variáveis 

originais do conjunto de dados, de acordo com a Equação 1.  

 

𝐗 =

[
 
 
 
 
x11 x12 ⋯
x21 x22 ⋯
x31

⋮
xi1

x32

⋮
xi2

⋯
⋮
⋯

    

⋯ x1j

⋯ x2j

⋯
⋮
⋯

x3j

⋮
xij ]

 
 
 
 

                                                                                     (1) 

 

Conforme mencionado, a redução da dimensionalidade dos dados multivariados com a 

PCA (ou seja, a redução da informação correlacionada e redundante) é possível através da 

representação desses dados por um conjunto de k fatores não correlacionados, em que k ≤ j. 

Matematicamente, essa representação é feita pela decomposição da matriz X em dois 

subconjuntos, de acordo com a Equação 2.  

 

X= TPT + E                                                                                                                 (2) 

 

Nessa equação, a matriz de escores (T) corresponde às coordenadas das amostras em 

relação aos eixos das componentes principais e possui dimensão i x k. Já a matriz de loadings 

(P), de dimensão k x j, representa a relação entre o eixo da PC e o eixo da variável original, 

sendo calculado pelo cosseno do ângulo entre esses eixos. Por fim, a variabilidade dos dados 

não explicada pelo modelo é expressa por uma matriz de resíduos (E), que apresenta a mesma 

dimensão da matriz 𝐗, i x j  (ESBENSEN; GELADI, 2009; BRO; SMILDE, 2014).  

Com o objetivo de exemplificar a representação de um conjunto de dados aleatórios 

utilizando os eixos das componentes principais, um esquema que ilustra a decomposição 

desses dados através da PCA está apresentado na Figura 2, considerando-se apenas duas 

variáveis.  
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Figura 2 - Representação de um conjunto de dados aleatórios descritos originalmente pelas variáveis 1 e 2, 

utilizando as componentes principais PC1 e PC2. As retas tracejadas representam a projeção das 

amostras nos eixos das PC’s (escores), enquanto as curvas tracejadas representam os ângulos entre a 

PC e a variável original (loadings) 

 
Fonte: Beebe (1998) 

 

Na Figura 2, os pontos do gráfico representam as amostras, as quais estão inicialmente 

descritas pelo conjunto de variáveis originais (Variável 1 e 2). Aplicando-se a PCA, esses 

dados passam a ser descritos pelo novo conjunto de fatores (PC1 e PC2), considerando-se as 

direções de maior variabilidade nos dados. Adicionalmente, o esquema apresenta também a 

interpretação geométrica dada aos escores e aos loadings. Assim, os escores são representados 

pela projeção das amostras nos eixos das componentes principais, identificadas pelas retas 

tracejadas. Enquanto os pesos são obtidos a partir dos ângulos entre o eixo das variáveis 

originais e o eixo das componentes principais, representados por linhas curvas tracejadas 

(BEEBE, 1998). 

 

2.3.2 Técnicas de pré-processamento aplicadas a dados espectroscópicos 

 

Uma importante etapa da análise quimiométrica consiste na utilização de técnicas de 

pré-processamento, que são transformações matemáticas aplicadas aos dados antes do 

desenvolvimento dos modelos, com o intuito de reduzir as fontes de variabilidade irrelevantes 

para a etapa de modelagem, sejam elas aleatórias ou sistemáticas (BEEBE, 1998). 

Particularmente, na modelagem de dados espectroscópicos na região do NIR, essas técnicas 

são frequentemente empregadas para evidenciar a informação química relevante e eliminar, 

ou ao menos reduzir, os efeitos indesejados do espalhamento da radiação, dentre eles, as 
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variações na linha de base e a não linearidade. A remoção desses fenômenos físicos é 

geralmente requerida para melhorar o desempenho dos modelos de calibração, de 

classificação ou de análise exploratória (RINNAN; VAN DEN BERG; ENGELSEN, 2009; 

AGELET; HURBURGH, 2010). 

Existem diversos pré-processamentos que podem ser aplicados aos dados 

espectroscópicos. A escolha da técnica mais apropriada depende do tipo do sinal (por 

exemplo, se são medidas de transmitância ou reflectância), das características das amostras e 

do objetivo final da etapa de modelagem. Usualmente, os resultados da aplicação dessas 

técnicas são avaliados de acordo com o aspecto dos dados pré-processados, bem como com os 

resultados dos modelos desenvolvidos. Dessa forma, apesar de a escolha da técnica mais 

apropriada se basear também no conhecimento dos dados, frequentemente, mais de um pré-

processamento deve ser avaliado ( BEEBE, 1998; AGELET; HURBURGH, 2010). A seguir, 

tem-se uma breve explicação das principais técnicas de pré-processamento de amostras e de 

variáveis aplicadas aos dados espectroscópicos, as quais foram empregadas no 

desenvolvimento deste trabalho. As transformações matemáticas apresentadas nesta seção 

consideram a matriz de dados 𝐗 (resposta instrumental) representada na Equação 1, em que 

cada linha (i) corresponde a um espectro e cada coluna (j) representa um comprimento de 

onda ou número de onda.  

 

2.3.2.1 Pré-processamento de variáveis 

 

Uma técnica de pré-processamento de variáveis quase sempre empregada aos dados 

espectroscópicos é a centralização na média. Essa técnica consiste em subtrair de cada 

elemento da j-ésima coluna da matriz 𝐗 (xij), a média dessa coluna (x̅j), obtendo-se assim um 

valor corrigido (xij(corr) ), conforme Equação 3 (BEEBE, 1998).  

 

xij(corr) = xij − x̅j; i =  1, 2, . . . , I, j =  1, 2, . . . , J                                                     (3) 

 

A aplicação dessa técnica aos dados espectroscópicos promove a remoção do espectro 

médio, fazendo com que os eixos das coordenadas sejam movidos para o centro dos dados. 

Numa PCA, por exemplo, essa transformação permite que as componentes principais sejam 

relacionadas, de fato, com as direções de maior variabilidade nos dados. Adicionalmente, a 

centralização na média promove também uma redução da complexidade do modelo, 
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diminuindo, frequentemente, o número de componentes requeridos na etapa de modelagem ( 

BEEBE, 1998; AGELET; HURBURGH, 2010).  

 

2.3.2.2 Pré-processamento de amostras 

 

Uma técnica de pré-processamento de amostras comumente aplicada a dados 

espectroscópicos é a variação normal padrão (SNV – Standard Normal Variate), a qual é 

empregada com o intuito de reduzir a variabilidade entre as amostras devido ao espalhamento 

da radiação. Uma vantagem da aplicação desse pré-processamento é que o formato dos 

espectros corrigidos é semelhante ao dos espectros originais, o que facilita a interpretação dos 

resultados nas análises posteriores. Na aplicação dessa técnica, o i-ésimo espectro da matriz 𝐗 

(𝐱𝐢) é subtraído do valor médio do espectro (x̅i), e o resultado é dividido por seu desvio-

padrão (si), obtendo-se assim o espectro corrigido (xi(corr)), conforme apresentado na 

Equação 4 (BARNES; DHANOA; LISTER, 1989; RINNAN; VAN DEN BERG; 

ENGELSEN, 2009). 

 

𝐱𝐢(𝐜𝐨𝐫𝐫) =
𝐱𝐢−x̅i

si
                                                                                                              (4)                                                                                  

 

Outro pré-processamento frequentemente aplicado aos dados espectroscópicos é a 

correção de espalhamento multiplicativo (MSC – Multiplicative Scatter Correction). Assim 

como a SNV, essa técnica é utilizada para a correção dos efeitos de espalhamento da radiação. 

Em geral, ambos os pré-processamentos fornecem resultados muito semelhantes, já que a 

MSC, assim como a SNV, também mantém o formato original dos espectros. A aplicação 

dessa técnica envolve basicamente duas etapas. Na primeira delas, ajusta-se uma regressão 

entre os espectros da matriz 𝐗 (𝐱𝐢) e um espectro de referência (𝐱𝐫𝐞𝐟), conforme apresentado 

na Equação 5 (RINNAN; VAN DEN BERG; ENGELSEN, 2009). 

 

𝐱𝐢 = b0,i + b1,i ∙ 𝐱𝐫𝐞𝐟 + 𝐞i                                                                                             (5)             

 

 Geralmente, o espectro médio das amostras de calibração é utilizado como referência, 

e este é empregado na correção de todos os espectros. Como resultado, tem-se uma estimativa 

dos coeficientes de regressão linear (b0,i) e angular (b1,i), denominados coeficientes de 

correção. Por fim, a parte não modelada dos espectros é computada em um vetor de erros (𝐞i).    
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Na segunda etapa da aplicação dessa técnica, os coeficientes de correção são utilizados 

para a obtenção do espectro corrigido (𝐱𝐢(𝐜𝐨𝐫𝐫)), de acordo com a Equação 6 (RINNAN; VAN 

DEN BERG; ENGELSEN, 2009).  

 

𝐱𝐢(𝐜𝐨𝐫𝐫) =
𝐱𝐢−b0,i

b1,i
= 𝐱𝐫𝐞𝐟 +

𝐞i

b1,i
                                                                                       (6) 

 

Uma desvantagem da MSC quando comparado à SNV é a necessidade de se ter um 

espectro de referência, diferentemente do que ocorre na SNV, em que cada espectro é 

corrigido de forma individualizada (AGELET; HURBURGH, 2010).  Assim, no caso de se 

utilizar o espectro médio como referência, pode haver a necessidade de repetir o 

procedimento quando uma amostra for excluída do conjunto de dados.  

 Uma extensão da técnica MSC é a correção de espalhamento multiplicativo estendido 

(EMSC – Extended Multiplicative Scatter Correction). Essa técnica funciona de forma 

semelhante à MSC, mas realiza um ajuste polinomial de segunda ordem em relação ao 

espectro de referência. Além disso, se disponível, permite a utilização de informações prévias 

sobre o espectro de interesse ou sobre os interferentes presentes (MARTENS; STARK, 1991; 

RINNAN; VAN DEN BERG; ENGELSEN, 2009).  

Outra técnica de pré-processamento bastante utilizada para a correção dos efeitos de 

dispersão da radiação é a derivação espectral, a qual é capaz de remover os efeitos aditivos e 

multiplicativos dos espectros. Enquanto a primeira derivada remove efeitos aditivos, a 

segunda derivada é capaz de remover também a tendência linear presente na linha de base 

(efeitos multiplicativos). Como essa técnica, no entanto, diminui a relação sinal/ruído dos 

espectros, ela quase nunca é empregada sozinha, sendo associada constantemente a uma 

técnica de suavização com o intuito de amenizar o aumento  indesejado do ruído  (BEEBE, 

1998; RINNAN; VAN DEN BERG; ENGELSEN, 2009).  

Nesse sentido, um método de suavização comumente empregado em conjunto com a 

derivação espectral é o filtro de Savitzky Golay. Esse filtro faz ajustes polinomiais 

subsequentes ao longo de todo o espectro, sendo capaz, portanto, de suavizá-lo. Para a 

aplicação da técnica derivativa com filtro Savitzky Golay, deve-se selecionar o grau da 

derivada, a ordem do polinômio que será ajustado e o tamanho da janela de pontos utilizados 

em cada ajuste. Assim, em cada ajuste realizado, o ponto central da janela é substituído pela 

derivada do polinômio ajustado para a janela. Esta, então, se move para realizar um novo 

ajuste, de modo que o ponto central do polinômio nesse novo ajuste seja adjacente ao ponto 
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central do polinômio ajustado anteriormente. Esse procedimento é repetido até que todo o 

espectro seja corrigido (BEEBE, 1998; RINNAN; VAN DEN BERG; ENGELSEN, 2009; 

AGELET; HURBURGH, 2010).  

Por fim, existe também a técnica de correção de sinal ortogonal (OSC – Orthogonal 

Signal Correction). Diferente das outras técnicas apresentadas, esse pré-processamento utiliza 

não apenas a informação contida na matriz 𝐗, como também a propriedade de interesse do 

analito, que pode ser física ou química. Essa propriedade, geralmente a concentração do 

analito obtida por um método de referência, é representada por um vetor (y), que contém o 

mesmo número de linhas da matriz 𝐗 analisada. De modo geral, esse pré-processamento 

remove a variação em 𝐗 que não está relacionada com a propriedade de interesse y. Assim, 

essa técnica é capaz de melhorar o desempenho do modelo de calibração e, frequentemente, 

requer menos componentes para o desenvolvimento do modelo, facilitando a sua interpretação 

(WOLD et al., 1998).  

 

2.3.3 Aplicação das ferramentas quimiométricas a processos industriais 

 

Há algumas décadas, os métodos quimiométricos têm sido utilizados para o tratamento 

de dados provenientes de processos industriais, geralmente caracterizados por uma grande 

quantidade de variáveis correlacionadas (WISE; KOWALSKI, 1995). Esses dados podem 

compreender tanto as informações químicas obtidas por sensores analíticos instalados na linha 

de produção, como as medidas espectroscópicas e cromatográficas (GRASSI; ALAMPRESE, 

2018; SZYMAŃSKA, 2018), quanto as variáveis de processo, como temperatura e pressão ( 

VITALE; NOORD; FERRER, 2014; BAKDI; KOUADRI, 2017; DU; DU, 2018).  

Devido à capacidade dos métodos de análise multivariada para lidar com a 

complexidade dos dados de processo, tem-se destacado a importância da quimiometria para as 

aplicações na área de PAT (GRASSI; ALAMPRESE, 2018). Principalmente nas indústrias 

farmacêuticas, os métodos quimiométricos têm sido cada vez mais empregados como 

ferramentas de PAT em diversas etapas da produção (FERREIRA; TOBYN, 2014; 

VIGNADUZZO; MAGGIO; OLIVIERI, 2020). Conforme revisado por Vignaduzzo, Maggio 

e Olivieri (2020), inclusive, diversas agências reguladoras têm incluído os métodos 

quimiométricos em guias e documentos direcionados a essas indústrias.  

Recentemente, o emprego de modernos analisadores de processos e ferramentas de 

controle na linha de produção, bem como o desenvolvimento de sistemas computacionais e da 
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informação, promoveram um aumento considerável no volume de dados coletados durante os 

processos industriais, tornando-os, portanto, ainda mais complexos. A possibilidade de 

utilização desses dados para monitorar e controlar os processos representa uma oportunidade 

de crescimento e desenvolvimento para as indústrias, podendo proporcionar diversas 

melhorias no processo produtivo (HE; WANG, 2018).  

É importante ressaltar, no entanto, os aspectos desafiadores desse cenário, os quais 

estão frequentemente associados ao gerenciamento, à integração e à extração de informações 

significativas desses dados, de modo que permitam o controle e o monitoramento do processo 

de forma eficiente. Nesse contexto, a quimiometria é vista como uma importante parte da 

ciência de dados que pode ser aplicada ao tratamento de dados multivariados e complexos 

coletados durante os processos industriais (GE, 2017; SZYMAŃSKA, 2018).  

A aplicação dos métodos quimiométricos a dados de processo é bastante abrangente. 

Por exemplo, ferramentas quimiométricas têm sido amplamente utilizadas no monitoramento 

estatístico de processos (TIDRIRI et al., 2016; GE, 2017; HE; WANG, 2018), no 

desenvolvimento de modelos de calibração multivariada para a predição de propriedades de 

interesse (KADLEC; GABRYS; STRANDT, 2009; LIU; XIE, 2020; VIGNADUZZO; 

MAGGIO; OLIVIERI, 2020) e na análise multivariada de imagens para monitoramento da 

qualidade dos produtos e das condições do processo (DUCHESNE; LIU; MACGREGOR, 

2012).  

Considerando o desenvolvimento de modelos de calibração multivariada, uma 

abordagem importante dessa aplicação aos processos industriais consiste no desenvolvimento 

de sensores virtuais. Esses sensores são frequentemente utilizados para estimar variáveis 

difíceis de medir no processo, através da construção de modelos preditivos com base em 

variáveis de processo mais facilmente mensuráveis (KADLEC; GABRYS; STRANDT, 2009; 

LIU; XIE, 2020).   

Outra aplicação dos modelos de calibração multivariada, que está relacionada com 

uma das abordagens descrita no presente trabalho, consiste no desenvolvimento de modelos 

de regressão para estimar propriedades de interesse, geralmente concentração, de produtos ou 

compostos intermediários do processo ou da mistura reacional durante a reação. Para esse tipo 

de aplicação, os métodos espectroscópicos como o de infravermelho próximo são 

frequentemente utilizados em indústrias farmacêutica, alimentícia e petroquímica (DE BEER 

et al., 2011; DA SILVA et al., 2015; GRASSI; ALAMPRESE, 2018; DA SILVA et al., 

2019). Conforme discutido anteriormente, essa técnica analítica apresenta características 
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favoráveis para aplicações na área de PAT, incluindo o monitoramento do processo em tempo 

real.  

No que diz respeito ao monitoramento estatístico de processos, os métodos 

quimiométricos têm sido utilizados para a detecção, a identificação e o diagnóstico de falhas 

em processos industriais (TIDRIRI et al., 2016; GE, 2017; SHANG; YOU, 2019). De modo 

geral, a detecção de falhas consiste em avaliar se o processo está ou não em controle 

estatístico, já a identificação consiste em especificar o tipo de falha e, por fim, o diagnóstico 

envolve a determinação da causa raiz do problema (GE, 2017).  

Nesse contexto, existem diversos reviews na literatura que abordam o uso de 

diferentes técnicas quimiométricas no monitoramento estatístico de processos através de 

gráficos de controle (TIDRIRI et al., 2016; GE, 2017; REIS; GINS, 2017; HE; WANG, 2018; 

SHANG; YOU, 2019). Esses trabalhos abordam desde as técnicas mais simples, como PCA e 

PLS, até técnicas não-lineares, como os métodos baseados em funções Kernel e Suport Vector 

Machine, para o monitoramento de processos contínuos e em batelada.  

 

2.4 CALIBRAÇÃO MULTIVARIADA 

 

A calibração multivariada é uma das vertentes da quimiometria bastante aplicada a 

processos no contexto de PAT (FERREIRA; TOBYN, 2014; SIMON et al., 2015). Neste 

tópico, serão abordados alguns temas relacionados à calibração multivariada aplicados no 

desenvolvimento do presente trabalho, incluindo: o método SPXY (Sample set Partitioning 

based on joint x–y distances), utilizado para a separação de um conjunto de amostras em 

calibração e predição; o método de calibração multivariada de PLS; e as métricas de 

desempenho utilizadas para avaliação dos modelos desenvolvidos.  

 

2.4.1 Método de seleção de amostras  

 

Com o objetivo de construir e validar um modelo de calibração multivariada a partir 

de N amostras conhecidas, existem algumas ferramentas que podem ser utilizadas para 

separá-las em dois conjuntos: um contendo as amostras de calibração e outro contendo as 

amostras de predição. O método utilizado no presente trabalho para o desenvolvimento de 

modelos de regressão foi o algoritmo SPXY. Basicamente, esse algoritmo calcula as 

distâncias Euclidianas entre todos os pares de amostras (p, q), com base nos dados da matriz 
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𝐗 representada na Equação 1 (dx(p, q)), e nos valores da propriedade de interesse contidos no 

vetor 𝐲 (dy(p, q)). Essas distâncias são calculadas, respectivamente, de acordo com as 

Equações 7 e 8: 

 

dx(p, q) = √∑ [xp,j − xq,j]
2J

j=1 ; p, q ∈ [1, I]                                                                 (7) 

 

dy(p, q) = √(yp − yq)
2
; p, q ∈ [1, I]                                                                          (8) 

 

Em que xp,j e xq,j são as respostas instrumentais, referentes à j − ésima variável, e yp 

e yq são os valores da propriedade de interesse, para as amostras p e q, respectivamente.  

Em seguida, de acordo com a Equação 9, a distância normalizada (dxy(p, q)) é 

calculada pela soma das distâncias dx(p, q) e dy(p, q), divididas pelos seus respectivos 

valores máximos, com o intuito de atribuir a mesma importância à distribuição das amostras 

em 𝐗 e em 𝐲 (GALVÃO et al., 2005).  

 

dxy(p, q) =
dx(p,q)

maxp,q∈[1,I]dx(p,q)
+

dy(p,q)

maxp,q∈[1,I]dy(p,q)
;  p, q ∈ [1, I]                                      (9) 

 

 No algoritmo, a seleção das amostras é feita de forma iterativa. Assim, as primeiras 

amostras selecionadas são aquelas em que a distância 𝑑𝑥𝑦(𝑝, 𝑞) é a maior. Nas próximas 

iterações, o algoritmo seleciona a próxima amostra que apresenta a maior distância em relação 

a alguma amostra já escolhida. Esse procedimento é repetido até que todas as amostras de 

calibração sejam selecionadas  (GALVÃO et al., 2005).  

 

2.4.2 Regressão por mínimos quadrados parciais 

 

A Regressão por Mínimos Quadrados Parciais (Partial Least-squares - PLS) é um dos 

métodos quimiométricos mais utilizados no desenvolvimento de modelos de calibração 

multivariada. Assim como na calibração univariada, o objetivo principal dessa técnica é 

estabelecer uma relação matemática entre os dados adquiridos de uma amostra, contidos na 

matriz 𝐗, e uma propriedade de interesse dessa amostra, a qual pode ser de natureza química 

ou física, e é representada pelo vetor 𝐲. De forma simplificada, a aplicação desse método 
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envolve essencialmente duas fases. Na primeira etapa (calibração), os dados da matriz 𝐗 bem 

como os valores do vetor 𝐲, obtidos por um método de referência, são utilizados no 

desenvolvimento do modelo de calibração. Já na segunda etapa (predição), esse modelo é 

usado para a predição da propriedade de interesse em amostras novas, as quais não foram 

empregadas na construção do modelo.  

A modelagem matemática por PLS é feita através de cálculos iterativos. Para isso, 

existem diversos algoritmos que podem ser utilizados, os quais são encontrados em pacotes de 

softwares comerciais (ANDERSSON, 2009). A seguir, tem-se uma descrição simplificada das 

equações utilizadas nessa modelagem, com base no que foi apresentado por Olivieri (2018).  

A equação geral para um modelo linear entre a matriz de resposta instrumental (𝐗) e 

um vetor com a propriedade de interesse do analito (𝒚𝒏), para n amostras utilizadas na etapa 

de calibração, é dada pela Equação 10, em que 𝐞 é o vetor de erros e 𝐛n, o vetor dos 

coeficientes de regressão. 

 

𝐲𝐧 = 𝐗𝐛n + 𝐞                                                                                                            (10) 

  

No caso de as variáveis em 𝐗 serem correlacionadas, essa matriz de dados pode ser 

substituída por uma versão comprimida, calculada com base nas combinações lineares das 

variáveis originais, semelhante ao que ocorre na PCA. Essa versão comprimida de 𝐗 

corresponde à matriz de escores (𝐓A), truncada nas A primeiras colunas, sendo A o número de 

fatores utilizados na modelagem. No PLS, esses fatores são denominados variáveis latentes 

(VLs) e devem reter a principal parte das variabilidades em 𝐗 e em 𝐲𝐧. A Equação 10, após a 

substituição de 𝐗 por 𝐓A, pode ser reescrita de acordo com a Equação 11. 

 

𝐲𝐧 = 𝐓A𝐯n + 𝐞                                                                                                           (11) 

 

 É possível perceber que o vetor 𝐛n também foi substituído por 𝐯n, que é o vetor dos 

coeficientes de regressão do PLS, definido no espaço das A variáveis latentes. Para concluir a 

etapa de calibração, 𝐯n pode ser calculado a partir da Equação 12.  
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𝐯n = 𝐓A
+𝐲𝐧                                                                                                              (12) 

 

Em que 𝐓A
+ é a inversa generalizada de 𝐓A, dada por 𝐓A

+ = (𝐓A
T𝐓A)

−1
𝐓A, a qual foi 

obtida após algumas transformações matemáticas da Equação 11: multiplicação de ambos os 

lados da equação por 𝐓A
T (matriz transposta de 𝐓A) e posterior multiplicação de ambos os 

lados da equação por (𝐓A
T𝐓A)

−1
. 

Após a estimativa do vetor dos coeficientes de regressão (𝐯n), pode-se prosseguir para 

a etapa de predição. No entanto, antes de seguir para essa etapa, é importante compreender 

como 𝐓A foi obtida. De forma simplificada, a matriz de escores 𝐓A é calculada de acordo com 

a Equação 13 

 

𝐓A = 𝐗T𝐖A(𝐏A
T𝐖A)

−1
                                                                                             (13) 

 

Na Equação 13, 𝐖A é matriz de pesos (weight loadings) e 𝐏A é a matriz de loadings. 

As A colunas da matriz 𝐖A são formadas pelos vetores 𝐰A normalizados, obtidos de acordo 

com a Equação 14. 

 

 𝐰A =
𝐗T𝐲𝐧

‖𝐗T𝐲𝐧‖
                                                                                                               (14) 

 

 Já as A colunas da matriz de loadings (𝑷𝐴), são formadas pelos vetores 𝐩A, calculados 

com base nos vetores da matriz de escores 𝐓A (𝐭A), de acordo com a Equação 15. 

 

𝐩A =
𝐗T𝐭𝑨

‖𝐭𝑨
T𝐭𝑨‖

                                                                                                               (15) 

 

A utilização das duas matrizes de pesos e loadings na estimativa de 𝐓A representa um 

diferencial do PLS, uma vez que permite que as variáveis latentes do modelo sejam estimadas 

levando-se em consideração não apenas a matriz 𝐗, mas também os valores da propriedade de 

interesse do analito. Assim, a utilização dessas duas matrizes permite que as variáveis latentes 
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expliquem de forma simultânea a máxima variância espectral dos dados em 𝐗 e a máxima 

covariância entre 𝐗 e 𝐲𝐧. Isso faz com que o modelo PLS seja adaptado para cada analito, 

sendo considerado, portanto, uma ferramenta poderosa para a construção de modelos de 

calibração. 

Na etapa de predição, o vetor dos coeficientes de regressão do modelo PLS 

desenvolvido na etapa de calibração (𝐯n) é utilizado para estimar a propriedade de interesse 

do analito das amostras do conjunto de predição. Antes disso, no entanto, uma etapa 

preliminar é requerida, a qual envolve o cálculo dos escores (𝐭A) para a amostra de predição, a 

partir dos dados dessa amostra (𝐱), de acordo com a Equação 16: 

 

𝐭A = (𝐖A
T𝐏A)

−1
𝐖A

T𝐱                                                                                              (16) 

 

 Por fim, calculado o vetor 𝒕𝐴, a predição da propriedade de interesse (ŷ) da amostra 

pode ser estimada pela Equação 17: 

 

ŷ = 𝐯n
T𝐭A                                                                                                                      (17) 

  

2.4.3 Avaliação dos modelos de calibração 

 

A avaliação dos modelos de calibração pode ser realizada através da estimativa de 

alguns parâmetros estatísticos, denominados métricas de desempenho. A raiz do erro 

quadrático médio (Root Mean Square Error - RMSE), por exemplo, é um dos principais 

parâmetros utilizados para avaliar um modelo de calibração multivariada. O mesmo pode ser 

calculado para a etapa de calibração (RMSEC), de validação cruzada (RMSECV) e de 

predição (RMSEP). O RMSEP, em particular, é o parâmetro mais utilizado para expressar a 

exatidão de um modelo baseado em dados do NIR. Ele pode ser calculado a partir da Equação 

18, em que 𝑦𝑖 é o valor medido para a i-ésima amostra, obtido pelo método de referência, 𝑦̂𝑖 é 

o valor predito pelo modelo para essa amostra, e 𝑛𝑝𝑟𝑒𝑑 é o número de amostras do conjunto 

de predição (PASQUINI, 2018).  

 

RMSEP = √
∑ (yi−ŷi)

2
npred
i=1

npred
                                                                                           (18) 
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Com o objetivo de avaliar diversos modelos (desenvolvidos com diferentes técnicas de 

pré-processamento, por exemplo), os valores de RMSEP desses modelos podem ser 

comparados através do teste estatístico de Fischer (teste F), o qual é frequentemente utilizado 

para testar hipóteses sobre a igualdade entre duas variâncias populacionais.  

 Outra métrica de desempenho importante utilizada para a avaliação dos modelos de 

calibração é o bias, que avalia a presença de erro sistemático no modelo. Da mesma forma 

que ocorre para o RMSE, o bias também pode ser calculado para os conjuntos de calibração, 

validação cruzada e predição. Para a etapa de predição, pode ser estimado a partir da Equação 

19.  

 

𝑏𝑖𝑎𝑠𝑝𝑟𝑒𝑑 =
∑ (yi−ŷi)

npred
i=1

npred
                                                                                              (19) 

 

 Uma prática comum na análise dos modelos de calibração consiste em realizar um 

teste estatístico de student (teste t) com o objetivo de avaliar se a predição de um modelo 

apresenta um bias estatisticamente significativo, ou seja, se há, de fato, erros sistemáticos no 

modelo. Essa é uma recomendação, inclusive, da norma American Society for Testing and 

Materials (ASTM) E1655-05 (Standard Practices for Infrared Multivariate Quantitative 

Analysis), a qual estabelece algumas diretrizes para o desenvolvimento de modelos de 

calibração multivariada com base em dados de infravermelho (ASTM E1655-05, 2005). 

Por fim, o coeficiente de determinação (𝑅2) é comumente utilizado para avaliar os 

modelos de calibração. Também pode ser calculado para os conjuntos de calibração, 

validação cruzada e predição. Esse parâmetro permite estimar a porcentagem da variação nos 

dados que é modelada adequadamente,  sendo obtido a partir da Equação 20, em que 𝑦̅ é o 

valor médio de 𝑦 considerando todas as amostras (ASTM E1655-05, 2005). 

 

R2
pred =

∑ (ŷi−y̅)2
npred
i=1

∑ (yi−y̅)2
npred
i=1

                                                                                               (20) 

 

 O 𝑅2, no entanto, deve ser utilizado com cuidado na avaliação de um modelo de 

calibração. Pelo fato de o coeficiente de determinação depender da variabilidade dos valores 

de referência da propriedade de interesse, ele não deve ser utilizado sozinho como um critério 

de qualidade para os modelos de calibração. Assim, ele deve ser analisado juntamente com 
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outros parâmetros, como o RMSEP, por exemplo, que é considerado mais eficaz do que o 𝑅2 

(AGELET; HURBURGH, 2010; PASQUINI, 2018).  

 Além da análise dos parâmetros descritos, a avaliação de um modelo de calibração 

exige também um olhar criterioso sobre as variáveis consideradas críticas para o 

desenvolvimento do modelo. De acordo com Pasquini (2018), os resultados dos modelos de 

calibração devem ser acompanhados de uma interpretação química, com o intuito de que 

correlações internas não sejam negligenciadas. Dessa forma, evita-se que a correlação 

estabelecida pelo modelo não seja referente ao analito de interesse.  

Para a interpretação química dos modelos desenvolvidos, pode-se utilizar os gráficos 

dos coeficientes de regressão e os gráficos de importância das variáveis na projeção (VIP - 

Variable Importance in the Projection). De modo geral, a análise desses gráficos permite 

identificar as regiões consideradas mais relevantes para o estabelecimento da relação entre a 

matriz 𝐗 e o vetor 𝐲. Tais gráficos estão disponíveis para análise em muitos softwares 

comerciais. O gráfico de importância das variáveis, inclusive, é bastante empregado como 

método de seleção de variáveis (ANDERSEN; BRO, 2010), com o intuito de melhorar o 

desempenho do modelo de calibração, construindo-o com apenas algumas regiões 

selecionadas do espetro, ao invés do espectro completo.  

 

2.5 MONITORAMENTO ESTATÍSTICO DE PROCESSOS 

 

Conforme mencionado, além da calibração multivariada, o monitoramento estatístico 

de processos (SPM - Statistical Process Monitoring) é outro tema abrangido pela 

quimiometria e amplamente aplicado a processos industriais. O SPM corresponde a um 

conjunto de ferramentas utilizadas para avaliar e alcançar a estabilidade de um determinado 

processo produtivo e a melhoria do seu desempenho, através da redução de sua variabilidade 

(FERRER-RIQUELME, 2009; MONTGOMERY, 2009). Essas ferramentas, quando 

adequadamente aplicadas a processos industriais, podem acarretar benefícios do ponto de 

vista da qualidade, da segurança, da eficiência e da lucratividade (REIS; GINS, 2017).  

Para a redução da variabilidade de um processo, é necessário identificar e 

compreender as principais fontes causadoras dessa variabilidade. De modo geral, essas causas 

podem ser de dois tipos: aleatórias e especiais. As causas aleatórias ou comuns compreendem 

as diversas fontes de variação da qualidade que atuam de forma aleatória sobre o processo, 

gerando uma variabilidade natural. Usualmente, diz-se que os processos que operam apenas 
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com causas desse tipo estão sob controle estatístico, sendo considerados estáveis e previsíveis. 

Já as causas especiais ou atribuíveis, são as fontes de variação que surgem esporadicamente e 

não seguem um padrão aleatório. São consideradas falhas no processo, ocasionadas, 

principalmente, pelo uso de matéria-prima defeituosa, por erros do operador ou pelo controle 

inadequado das máquinas. Diz-se que um processo que opera também com causas especiais 

está fora de controle e, portanto, é um processo instável e imprevisível (MONTGOMERY, 

2009). 

Nesse sentido, com o objetivo de distinguir entre as causas aleatórias e especiais que 

atuam sobre um determinado processo, gráficos de controle estatístico (também denominados 

gráficos de monitoramento), podem ser utilizados para monitorá-lo. Esses gráficos são as 

ferramentas de maior destaque do SPM e permitem identificar o tipo e a magnitude da causa 

da variabilidade. Assim, o emprego dessas ferramentas de forma adequada pode promover 

uma melhoria significativa no desempenho do processo, através da remoção das causas 

especiais detectadas, ou da sua implementação, no caso de serem benéficas (FERRER-

RIQUELME, 2009). Adicionalmente, quando aplicadas em tempo real, permitem a detecção 

precoce de falhas, proporcionando celeridade na tomada de decisão, bem como o 

desenvolvimento de soluções eficientes diante de urgências no processo produtivo.  

Os gráficos de controle surgiram por volta de 1924, por meio do trabalho pioneiro de 

Walter Shewhart (MONTGOMERY, 2009). Esse marco deu início ao que normalmente se 

denomina Controle Estatístico de Processos (CEP), que representou um avanço significativo 

para o monitoramento da qualidade do processo e do produto. De acordo com He e Wang 

(2018), o CEP corresponde à primeira geração do SPM, que envolve a utilização de gráficos 

de controle univariados. Esses gráficos são geralmente empregados no monitoramento de uma 

característica da qualidade do produto, mas também podem ser usados para o monitoramento 

de uma variável de processo considerada crítica para o controle de qualidade do produto 

(FERRER-RIQUELME, 2009; MONTGOMERY, 2009). 

À medida que os processos industriais se tornam mais complexos, com a 

implementação de modernos sistemas de controle e automação e a aquisição de uma enorme 

quantidade de dados provenientes de múltiplos sensores, é necessário o desenvolvimento de 

metodologias para monitorá-los e controlá-los de forma eficiente. Nesse contexto, de modo a 

atender à evolução dos sistemas industriais, surgiu o monitoramento estatístico multivariado 

de processos (MSPM - Multivariate Statistical Process Monitoring), que corresponde à 

segunda geração do SPM. De modo geral, o MSPM abrange diversas metodologias utilizadas 
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para monitorar processos a partir de dados multivariados, em que as variáveis são analisadas 

simultaneamente. Por fim, existe ainda a terceira geração do SPM, que engloba os métodos 

multivariados que têm sido desenvolvidos para lidar com uma complexidade ainda maior, 

contemplando, por exemplo, características como dinâmica e não linearidade (BAKDI; 

KOUADRI, 2017; HE; WANG, 2018).  

 De modo geral, o conceito associado aos gráficos de controle uni e multivariados é 

semelhante. A aplicação desses gráficos envolve duas fases. Na primeira (denominada Fase I), 

dados de processo são coletados e empregados na determinação dos limites de controle 

tentativos, os quais são utilizados para identificar se o processo estava ou não sob controle 

estatístico durante a coleta desses dados. Nessa etapa, dados considerados fora de controle são 

removidos e os limites são recalculados. Esse procedimento é repetido até que os limites de 

controle do gráfico sejam estabelecidos, com base em dados coletados durante condições 

estáveis e representativas do desempenho do processo. Já na segunda fase (Fase II), o gráfico 

de controle desenvolvido é utilizado para monitorar o processo. Assim, novos dados são 

coletados e projetados no gráfico, de preferência em tempo real, permitindo determinar se o 

processo se mantém ou não em um estado de controle estatístico (MONTGOMERY, 2009). 

A principal diferença entre os gráficos de controle uni e multivariados, no entanto, não 

se resume apenas ao fato de que as cartas de controle multivariadas são utilizadas para o 

monitoramento simultâneo de diversas variáveis. Uma das principais vantagens da abordagem 

multivariada, quando comparada à univariada, consiste na possibilidade de explorar 

informações relacionadas à covariância entre as variáveis. Como resultado, os gráficos 

multivariados, em geral, são capazes de detectar situações anômalas que não seriam 

detectadas caso cartas de controle univariadas fossem utilizadas para o monitoramento 

individual de cada variável (FERRER-RIQUELME, 2009; TIDRIRI et al., 2016; HE; 

WANG, 2018) .  

Uma forma de ilustrar a comparação entre as abordagens uni e multivariadas está 

apresentada na Figura 3.  
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Figura 3 – Comparação entre as abordagens de monitoramento estatístico univariada (limites de controle em 

vermelho – linha contínua) (a) e multivariada (elipse de controle em vermelho – linha tracejada) (b) 

para o monitoramento de duas variáveis aleatórias dependentes 

 
Fonte: He; Wang (2018) 

 

 

É possível perceber através da Figura 3 que, se cada variável fosse monitorada 

utilizando-se gráficos de controle univariados (Figura 3a), estes falhariam na detecção de 

amostras anômalas (em azul), uma vez que, para ambas as variáveis, todos os pontos estão 

dentro dos limites de controle (linhas contínuas em vermelho). O comportamento incomum 

dessas amostras apenas fica evidente quando ambas as variáveis são monitoradas de forma 

simultânea (Figura 3b). Assim, se uma estatística multivariada fosse utilizada no cálculo do 

limite de controle (representado pela elipse tracejada em vermelho), as amostras anômalas 

seriam detectadas, uma vez que não seguem o padrão de correlação positiva entre as variáveis 

𝐱𝟏 e 𝐱𝟐, observada para as outras amostras. No exemplo apresentado na Figura 3, foram 

analisadas apenas duas variáveis aleatórias e dependentes. No entanto, à medida que o número 

de variáveis dependentes aumenta, há também um aumento da distorção no procedimento de 

monitoramento por parte das cartas univariadas (MONTGOMERY, 2009; HE; WANG, 

2018). 

Dessa forma, os benefícios associados ao uso de cartas de controle multivariadas são 

especialmente importantes quando se lida com dados de processos complexos, de alta 

dimensionalidade e colinearidade, como a maioria dos processos industriais modernos que 

usam sistemas avançados de aquisição de dados. Isso se observa, principalmente, em 

processos químicos, em que as variáveis do processo são altamente correlacionadas devido 

aos princípios físicos e químicos que os conduzem, como a termodinâmica, a cinética química 
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e os balanços de massa e energia (FERRER, 2014; SEVERSON; CHAIWATANODOM; 

BRAATZ, 2016; TIDRIRI et al., 2016; REIS; GINS, 2017; HE; WANG, 2018).  

No entanto, apesar de os métodos multivariados serem em geral mais eficientes para o 

monitoramento dos processos modernos, em algumas situações, a utilização de técnicas 

univariadas pode ser necessária (ou mais adequada). De modo geral, a seleção da abordagem 

mais apropriada, seja ela uni ou multivariada, depende das particularidades do processo, 

dentre as quais: das variáveis de processo ou de qualidade consideradas críticas, da estrutura 

de correlação dos dados e da dinâmica do processo. Além disso, depende também do objetivo 

final que se deseja alcançar com a aplicação da ferramenta do SPM.  

É importante ressaltar também que, em alguns estudos recentes, ambas as abordagens 

uni e multivariadas foram utilizadas em conjunto com o objetivo de melhorar o 

monitoramento do processo (BIN SHAMS; BUDMAN; DUEVER, 2011; HARROU et al., 

2015; BAKDI; KOUADRI, 2017; DU; DU, 2018). Nesses estudos, a habilidade de cartas 

univariadas em detectar pequenos desvios no processo foi explorada com o objetivo de 

melhorar o desempenho de cartas de controle multivariadas baseadas em fatores/componentes 

principais e variáveis latentes, como PCA e PLS, no que diz respeito à detecção de falhas em 

processos industriais. 

No contexto dos gráficos de controle aplicados a processos, considerando-se as 

abordagens empregadas no desenvolvimento do presente trabalho, a seguir, tem-se uma breve 

apresentação dos principais gráficos de controle univariados. Adicionalmente, serão 

introduzidas também algumas particularidades relacionadas ao monitoramento de processos 

autocorrelacionados, tema também abordado na realização deste trabalho.  

 

2.5.1 Gráficos de controle univariados  

 

Os gráficos de controle univariados que são convencionalmente empregados no 

monitoramento de uma característica da qualidade do processo são as cartas de controle de 

Shewhart, da média móvel exponencialmente ponderada (Exponentially Weighted Moving 

Average - EWMA) e da soma cumulativa (Cumulative Sum - CUSUM) (FERRER-

RIQUELME, 2009; MONTGOMERY, 2009).  

Os gráficos de controle de Shewhart compreendem os pares de gráficos para 

monitoramento da média e da variabilidade de uma variável crítica de qualidade ou de 

processo. Para o monitoramento da média, utiliza-se o gráfico de controle 𝑥̅. Já para o 
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monitoramento da variabilidade, pode-se empregar o gráfico de controle 𝑠 (gráfico de 

controle para o desvio-padrão) ou o gráfico de controle 𝑅 (gráfico de controle para a 

amplitude). Considerando-se o par de gráficos 𝑥̅ e 𝑅, os limites inferior (LIC) e superior 

(LSC) de controle para o gráfico 𝑥̅ são obtidos, respectivamente, pelas Equações 21 e 22 

(MONTGOMERY, 2009): 

 

LIC = x̿ − A2R̅                                                                                                                        (21) 

 

LSC = x̿ + A2R̅                                                                                                                       (22) 

 

Em que x̿ é a média geral das amostras utilizadas na determinação dos limites de 

controle, A2 é uma constante tabelada dependente do tamanho das amostras e R̅ é a amplitude 

média dessas amostras. Já para o gráfico 𝑅, os LIC e LSC são calculados, respectivamente, a 

partir das Equações 23 e 24 (MONTGOMERY, 2009):  

 

LIC = 𝐷3𝑅̅                                                                                                                              (23) 

 

LSC = 𝐷4𝑅̅                                                                                                                             (24) 

 

 Em que 𝐷3 e 𝐷4 também são constantes tabeladas dependentes do tamanho das 

amostras. 

De modo geral, os gráficos de controle de Shewhart permitem a captura de desvios no 

processo de grande magnitude. Dessa forma, são mais apropriados para utilização na Fase I de 

implementação do SPM. Nessa fase, em que são definidos os limites de controle, a 

possibilidade de ocorrência de grandes desvios no processo é maior, uma vez que o mesmo 

está sendo ajustado para dentro de controle. Uma desvantagem desses gráficos, no entanto, é 

que apenas a informação contida na observação mais recente é levada em consideração. Como 

resultado, os gráficos de Shewhart são relativamente insensíveis a pequenos e médios desvios, 

sendo menos úteis para a Fase II do monitoramento ( MONTGOMERY, 2009; FERRER, 

2014).  

Por outro lado, os gráficos de controle EWMA e CUSUM  consideram não apenas a 

informação da observação presente, mas também das observações passadas e, portanto, são 

mais apropriadas para a detecção de pequenos desvios no processo (MONTGOMERY, 2009; 
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FERRER, 2014). Em geral, essas estatísticas apresentam desempenho semelhante, mas a 

EWMA é considerada mais fácil de operar e implementar. A principal diferença entre essas 

cartas é que a CUSUM é calculada considerando pesos iguais às observações anteriores, 

enquanto que a EWMA considera uma média exponencialmente ponderada dessas 

observações, em que o peso diminui com a idade da amostra (MONTGOMERY, 2009; 

KADRI et al., 2016). A comparação entre o cálculo das cartas de controle de Shewhart, 

EWMA e CUSUM, do ponto de vista do peso aplicado às amostras presente e passadas, está 

esquematizada na Figura 4. 

 

Figura 4 – Comparação entre o cálculo das cartas de controle de Shewhart, EWMA e CUSUM, do ponto 

de vista do peso aplicado às amostras presente e passadas 

 
Fonte: Kadri et al. (2016) 

 

A estatística EWMA para a i-ésima observação (𝑥𝑖) pode ser calculada de acordo com 

a Equação 25: 

 

zi = λxi + (1 − λ)zi−1                                                                                               (25)       

                      

 Em que 𝑧𝑖 é a estatística EWMA no tempo i, 𝜆 é o parâmetro de suavização e 𝑧𝑖−1 é a 

estatística EWMA referente ao tempo anterior (i − 1). O parâmetro de suavização pode variar 

de zero a um (0 < 𝜆 ≤ 1), e determina o quanto da memória dos dados é retida no cálculo da 

EWMA. Assim, quanto maior o valor de 𝜆, menores os pesos aplicados às observações mais 

antigas e, consequentemente, maiores os pesos aplicados às observações mais recentes. Por 

outro lado, quanto menor o valor de 𝜆, maiores os pesos aplicados às observações mais 

antigas. Dessa forma, esse parâmetro deve ser selecionado de acordo com as características do 

processo monitorado (KADRI et al., 2016). O valor de partida (𝑧0), requerido quando 𝑖 = 1, 
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pode ser considerado como o valor alvo ou a média de valores preliminares do processo que 

estejam dentro de controle (𝜇0) (MONTGOMERY, 2009).  

 Os limites inferior e superior de controle para esse gráfico são calculados de acordo 

com as Equações 26 e 27, respectivamente, em que 𝐿 representa a largura dos limites de 

controle (MONTGOMERY, 2009). 

 

LIC = μ0 − Lσ√
λ

2−λ
[1 − (1 − λ)2i]                                                                                      (26)       

LSC = μ0 + Lσ√
λ

2−λ
[1 − (1 − λ)2i]                                                                                     (27) 

                                                          

Já a carta de controle CUSUM, é baseada no cálculo das somas cumulativas dos 

desvios dos valores da amostra em relação a um valor alvo (𝜇0). Na construção desse gráfico, 

calcula-se as somas cumulativas dos desvios de 𝜇0 que estão acima do alvo, denominadas 

CUSUM unilateral superior (𝐶𝑖
+), e as somas cumulativas dos desvios de 𝜇0 que estão abaixo 

do alvo, denominadas CUSUM unilateral inferior (𝐶𝑖
−). Essas estatísticas são estimadas, 

respectivamente, pelas Equações 28 e 29 (FERRER-RIQUELME, 2009; MONTGOMERY, 

2009). 

 

𝐶𝑖
+ = 𝑚á𝑥[0, 𝑥𝑖 − (𝜇0 + 𝐾) + 𝐶𝑖−1

+ ]                                                                                     (28) 

 

𝐶𝑖
− = 𝑚á𝑥[0,  (𝜇0 − 𝐾) − 𝑥𝑖 + 𝐶𝑖−1

− ]                                                                                    (29) 

 

Em que 𝐾 é o valor de referência. Além disso, na construção dessa carta de controle, é 

definido também um intervalo de decisão (H), que age como um limite superior de controle 

para esse gráfico, o qual é geralmente definido como cinco vezes o desvio-padrão do processo 

(H = 5𝜎).  

Por fim, as cartas de controle de CUSUM e EWMA são tradicionalmente empregadas 

para o monitoramento da média do processo (MONTGOMERY, 2009). No entanto, essas 

cartas e suas variações também têm sido utilizadas para monitorar outras características do 

processo, como a dispersão (ZWETSLOOT; AJADI, 2019), os resíduos da modelagem de 

séries temporais (KADRI et al., 2016; YANG et al., 2018) e o monitoramento simultâneo da 

média e da variabilidade (SANUSI; MUKHERJEE; XIE, 2019). Adicionalmente, a habilidade 
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dessas cartas em detectar pequenos desvios no processo tem sido aplicada, inclusive, para 

melhorar o desempenho de cartas de controle multivariadas utilizadas no monitoramento de 

processos industriais (BIN SHAMS; BUDMAN; DUEVER, 2011; HARROU et al., 2015; 

BAKDI; KOUADRI, 2017; DU; DU, 2018). 

 

2.5.2 Gráficos de controle para processos autocorrelacionados 

 

De modo geral, a aplicação das cartas de controle univariadas convencionais parte do 

pressuposto que os dados são independentes e normalmente distribuídos quando o processo 

está em controle estatístico (MONTGOMERY, 2009). Em diversas situações, no entanto, 

desvios da normalidade podem não afetar o desempenho dessas cartas (FERRER-

RIQUELME, 2009). O gráfico EWMA, por exemplo, quando desenvolvido de forma 

apropriada, apresenta desempenho satisfatório mesmo em condição de não normalidade 

(BORROR; MONTGOMERY; RUNGER, 1999; HUMAN; KRITZINGER; 

CHAKRABORTI, 2011).  

A violação da suposição de independência entre as observações, entretanto, pode 

ocasionar um impacto maior no desempenho dos gráficos de controle. Essa violação é 

geralmente expressa em termos da função de autocorrelação, que estabelece a correlação entre 

as amostras ao longo do tempo para uma mesma variável ou série temporal. Em processos 

modernos com sistemas de aquisição de dados que permitem elevadas taxas de amostragem, a 

presença de autocorrelação nos dados é algo muito comum, principalmente, devido ao 

pequeno intervalo de aquisição das medidas em comparação com a dinâmica do processo 

(FERRER-RIQUELME, 2009; KADRI et al., 2016; REIS; GINS, 2017). Sob essas 

circunstâncias, o uso de gráficos de controle convencionais pode levar a um número excessivo 

de alarmes falsos, a uma estimativa inadequada dos parâmetros do processo e a problemas na 

detecção de desvios nas condições normais de operação  (REYNOLDS; LU, 1997). 

Dessa forma, devido à ineficiência das cartas de controle tradicionais para lidar com 

processos autocorrelacionados, duas estratégias são frequentemente empregadas para esse fim 

(REYNOLDS; LU, 1997). Uma delas consiste no ajuste cuidadoso dos limites de controle das 

cartas tradicionais com o objetivo de considerar essa autocorrelação (LU; REYNOLDS JR., 

2001; REYNOLDS; LU, 1997). A outra abordagem consiste em utilizar modelos de séries 

temporais para ajustar os dados, de forma a capturar a autocorrelação, e, posteriormente, 

aplicar as cartas de controle tradicionais para monitorar os resíduos provenientes desse ajuste. 
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Para essa abordagem, constantemente são empregados os modelos de médias móveis, os 

modelos autorregressivos e os autorregressivos de médias móveis. De modo geral, essa 

abordagem se baseia na suposição de que, se um modelo de série temporal for adequadamente 

utilizado para descrever os dados autocorrelacionados, os resíduos gerados nessa aplicação 

(que corresponde à diferença entre as medições do processo e os resultados do modelo de 

séries temporais) podem ser considerados independentes, podendo ser monitorados por cartas 

de controle convencionais (KADRI et al., 2016). 

Adicionalmente, outras abordagens podem ser utilizadas no monitoramento de dados 

de processo autocorrelacionados (MA et al., 2018). Uma dessas abordagens consiste em 

reduzir ou remover a tendência dos dados através da utilização de métodos de detrending e de 

diferenciação, os quais são comumente empregados para transformar séries temporais não 

estacionárias em estacionárias (SALLES et al., 2019).  
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3 MONITORAMENTO DA PRODUÇÃO DE BIODIESEL POR ROTA 

ALTERNATIVA UTILIZANDO UM ESPECTRÔMETRO PORTÁTIL NO 

INFRAVERMELHO PRÓXIMO 

 

O biodiesel consiste em uma mistura de ésteres alquílicos derivados de ácidos graxos 

de cadeia longa. Usualmente, é produzido a partir da reação de transesterificação entre 

triacilgliceróis, principais constituintes dos óleos vegetais e gorduras animais, e um álcool de 

baixa massa molar. Os ésteres, produtos da reação, possuem uma viscosidade mais baixa do 

que o óleo vegetal, o que permite que o biodiesel produzido possa ser utilizado diretamente 

nos motores a diesel (KNOTHE; RAZON, 2017). Por conseguinte, o biodiesel tem sido 

considerado uma alternativa promissora aos combustíveis de origem fóssil, especialmente 

para o setor de transporte. Este é utilizado com maior frequência misturado ao diesel de 

petróleo, mas também pode ser empregado como um combustível puro (CHANG; HWANG; 

WU, 2017). Além disso, por ser renovável e facilmente biodegradável, é visto como uma 

opção sustentável, cujo uso pode auxiliar na redução da dependência energética e econômica 

em relação ao petróleo e na minimização de emissão de alguns poluentes gasosos, 

especialmente, gases do efeito estufa (CHANG; HWANG; WU, 2017; SINGH et al., 2019). 

 Devido aos benefícios citados, o biodiesel tem sido utilizado em diversos países 

(CHANG; HWANG; WU, 2017; KNOTHE; RAZON, 2017). No Brasil, por exemplo, o 

governo tem estimulado o uso do biodiesel através de legislações que determinam o 

percentual mínimo desse biocombustível que deve ser acrescentado ao diesel vendido ao 

consumidor final. Na Resolução nº 16, de 29 de outubro de 2018, da Agência Nacional de 

Petróleo, Gás Natural e Biocombustíveis (ANP), ficou estabelecido um cronograma prevendo 

um aumento gradual desse percentual de 11%v/v, adotado desde junho de 2019, até 15%v/v, 

previsto para março de 2023 (CNPE, 2018). Recentemente, em 1º de março de 2020, entrou 

em vigor o percentual mínimo de 12%v/v, conforme estabelecido pela Resolução (ANP, 

2020). Dessa forma, os incentivos governamentais e as vantagens proporcionadas pelo uso do 

biodiesel tornam necessários os estudos que visem a busca por rotas de produção alternativas 

e métodos de monitoramento da qualidade do produto e do processo, com o objetivo de torná-

lo técnica e economicamente competitivo em comparação aos combustíveis de origem fóssil. 

Essa necessidade é corroborada, inclusive, pela variabilidade de matéria-prima utilizada na 

produção do biodiesel, a qual, conforme discutido por Singh et al. (2019), ocasiona uma 

grande variabilidade na qualidade do produto.  
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No que tange à busca por rotas de produção alternativas, o processo contínuo de 

destilação reativa tem se mostrado uma opção promissora para a produção de biodiesel. Esse 

processo, por integrar as etapas de reação e de separação dos produtos em um único 

equipamento, tende a proporcionar a obtenção de maiores rendimentos, sem a necessidade de 

utilizar um grande excesso de álcool. Tal excesso é geralmente requerido nos processos 

convencionais em batelada com o intuito de deslocar o equilíbrio da reação para favorecer a 

formação de biodiesel. Quando o processo de destilação reativa é utilizado, no entanto, o 

equilíbrio é deslocado devido à constante retirada do produto, superando-se, assim, as 

limitações impostas pelo equilíbrio termodinâmico da reação. Há diversos trabalhos na 

literatura que descrevem o estudo da destilação reativa para a produção de biodiesel, sendo 

uma grande parte baseada em simulações do processo (BOON-ANUWAT et al., 2015; 

PÉREZ-CISNEROS et al., 2016; PETCHSOONGSAKUL et al., 2017; PODDAR; 

JAGANNATH; ALMANSOORI, 2017; JODA; AHMADI, 2019).  

No que diz respeito ao controle de qualidade do biodiesel e do seu processo de 

produção, os métodos tradicionalmente empregados na análise do produto e monitoramento 

off-line da reação são a cromatografia gasosa (CG) e a cromatografia líquida de alta eficiência 

(HPLC) ( FREEDMAN; BUTTERFIELD; PRYDE, 1986; FELIZARDO et al., 2006; 

STAMENKOVIC et al., 2008). A CG, inclusive, é o método de referência indicado pela 

norma europeia para quantificação do teor de éster em biodiesel (EN14103, 2003). Esses 

métodos, no entanto, são em geral demorados, caros e não podem ser facilmente empregados 

no monitoramento on-line de reações rápidas como a de transesterificação (TREVISAN et al., 

2008). Dessa forma, com o objetivo de melhorar o acompanhamento do processo e a 

qualidade do biodiesel produzido, vários trabalhos têm demonstrado o potencial da 

espectroscopia NIR para o monitoramento in- e on-line dessa reação (KILLNER; 

ROHWEDDER; PASQUINI, 2011; RICHARD et al., 2011; DE LIMA et al., 2014; SALES et 

al., 2017; GELINSKI et al., 2018; ROUCHI et al., 2019).  

Exceto pelo trabalho de Richard et al. (2013), os trabalhos usando NIR citados acima 

utilizaram processos em batelada. Richard et al. (2013) descreveram o uso de sondas de 

reflexão e de transflectância para o monitoramento on-line da produção de biodiesel em 

microrreatores, que operavam no modo contínuo. Modelos PLS foram utilizados para 

quantificar o teor de oleato de etila nas misturas reacionais. O objetivo principal do trabalho, 

no entanto, consistiu na transposição de uma reação de transesterificação de um processo em 

batelada para o sistema de microrreatores, objetivando, dentre outros aspectos, a coleta de 
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uma quantidade maior de dados nos primeiros instantes da reação (RICHARD et al., 2013).  

Além disso, todos os trabalhos mencionados, incluindo o de Richard et al. (2013), 

utilizaram espectrofotômetros de bancada para monitorar a produção de biodiesel. Em alguns 

trabalhos, espectros foram adquiridos na faixa de número de onda de 10.000 a 4.000 cm-1, que 

corresponde à faixa de comprimento de onda de 1.000 a 2.500 nm (RICHARD et al., 2011, 

2013; GELINSKI et al., 2018; ROUCHI et al., 2019). Em outros trabalhos, os espectros foram 

adquiridos na faixa de número de onda de aproximadamente 14.000 a 4.000 cm-1 (714 – 2.500 

nm) ( KILLNER; ROHWEDDER; PASQUINI, 2011; DE LIMA et al., 2014; SALES et al., 

2017).  

A recente tendência de miniaturização de equipamentos NIR, entretanto, tem motivado 

a utilização de espectrômetros portáteis para análises envolvendo o biodiesel, ao invés do uso 

de equipamentos de bancada. Paiva et al. (2015), por exemplo, descreveram o uso de um 

espectrômetro comercial portátil na região do NIR (MicroNIR™ Pro 1700, VIAVI Solutions) 

para estimar o teor de biodiesel e de óleo vegetal em misturas de biodiesel e diesel. Os autores 

realizaram um estudo comparativo utilizando um espectrofotômetro de Infravermelho 

Próximo por Transformada de Fourier (FT-NIR) e obtiveram desempenhos comparáveis para 

ambos os equipamentos. Em outro trabalho descrito por da Silva et al. (2017), avaliou-se o 

potencial do MicroNIR para o desenvolvimento de modelos de regressão PLS com o intuito 

de estimar parâmetros de qualidade da gasolina e misturas de diesel/biodiesel. Os autores 

também reportaram resultados satisfatórios para o uso do MicroNIR. Por fim, mais 

recentemente, Correia et al. (2018) utilizaram o MicroNIR para o controle de qualidade de 

combustíveis. O potencial do espectrômetro foi avaliado em relação à identificação de 

adulterações em diesel, gasolina do tipo C e etanol hidratado combustível. Dentre outros 

parâmetros, avaliou-se o teor de biodiesel em amostras de diesel. Em geral, os autores 

obtiveram resultados promissores, demonstrando o potencial do MicroNIR para ser utilizado 

no controle de qualidade de combustíveis. 

Apesar de já empregado em análises de biodiesel, espectrômetros portáteis na região 

do NIR ainda não foram utilizados para o monitoramento on-line da produção de biodiesel. 

Esse é, portanto, um aspecto de ineditismo do presente trabalho, o qual descreve o uso do 

MicroNIR para o monitoramento on-line da reação de transesterificação entre etanol e óleo de 

algodão em um processo contínuo de destilação reativa.  

O principal objetivo do trabalho apresentado nesse capítulo (APÊNCIDE A) foi 

avaliar a viabilidade de se utilizar um espectrômetro portátil na região do infravermelho 
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próximo (MicroNIR), como uma ferramenta de PAT, para monitorar a produção de biodiesel 

em um processo contínuo de destilação reativa. Para isso, os seguintes objetivos específicos 

foram definidos: 

 

a) Estimar a composição da mistura reacional na base da coluna de destilação reativa 

utilizada para produzir biodiesel a partir de óleo de algodão e etanol; 

b) Definir o caminho óptico mais adequado e as condições experimentais apropriadas 

para a aquisição de espectros com o MicroNIR; 

c) Coletar e analisar amostras da base da coluna com o MicroNIR e pelos métodos 

cromatográficos para quantificação de etanol e de éster alquílico; 

d) Avaliar a possibilidade de utilizar misturas sintéticas para compor o conjunto de 

calibração; 

e)  Desenvolver modelos de regressão PLS para quantificar os teores de etanol, glicerol e 

ésteres alquílicos na base da coluna e avaliar o potencial desses modelos para o 

monitoramento da produção de biodiesel na coluna de destilação reativa.  

 

3.1 METODOLOGIA 

 

A metodologia aplicada para o desenvolvimento deste trabalho está detalhada a seguir. 

 

3.1.1 Produção de biodiesel pelo processo de destilação reativa 

 

As reações de transesterificação para a produção de biodiesel foram conduzidas em 

uma coluna de destilação reativa em escala laboratorial (coluna de vidro com 150 cm de altura 

e 3 cm de diâmetro), empacotada com anéis de cobre (diâmetro de 0,7 cm). Ela é composta 

por pontos de alimentação de óleo e de catalisador no topo e um ponto de alimentação de 

álcool no fundo. O sistema reacional contém também um refervedor na base, utilizado para a 

geração de um fluxo de vapor de álcool, o qual era alimentado no fundo da coluna e transferia 

calor à medida que a percorria em sentido ascendente. Adicionalmente, na parte superior da 

coluna, há um condensador do tipo total, utilizado para recuperar o álcool não reagido que 

saía pelo topo.  

A coluna podia operar em diversas razões molares álcool/óleo, uma vez que os 

sistemas de bombeamento de ambos os reagentes permitiam o ajuste de suas vazões de 
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alimentação. Essas vazões, inclusive, podiam apresentar pequenas variações durante a 

operação devido à baixa precisão de seus medidores. Nesse trabalho, entretanto, foi adotada 

uma condição operacional que resultou em um excesso de álcool na base da coluna. No total, 

foram realizados três experimentos nessa condição. No primeiro deles, alíquotas foram 

coletadas da base da coluna e analisadas pelo MicroNIR no modo off-line, com o intuito de 

selecionar o caminho óptico mais adequado para a aquisição das medidas e definir as 

condições de análise. Nos outros dois experimentos, as aquisições espectrais com o MicroNIR 

foram realizadas no modo on-line. Adicionalmente, as alíquotas retiradas da base da coluna 

foram analisadas também por cromatografia gasosa para estimar os teores de etanol e de éster 

alquílico. Do total de amostras retiradas, 12 foram empregadas no desenvolvimento dos 

modelos de calibração.  

Nas reações, etanol p.a. (Neon, pureza de 99,85%) e óleo de algodão comercial (Flor 

de Algodão, adquirido em mercado local) foram utilizados como reagentes. Em algumas 

situações, ainda, utilizou-se óleo de algodão fornecido pela planta experimental de biodiesel 

do Centro de Tecnologias Estratégicas do Nordeste (CETENE, Caetés, Pernambuco). 

Hidróxido de sódio (Dinâmica, pureza mínima de 98%) dissolvido em etanol foi utilizado 

como catalisador em uma concentração de 1% (m/m) em relação à quantidade de óleo vegetal, 

aproximadamente. 

 

3.1.2   Análises cromatográficas 

 

Os teores de éster alquílico e de etanol das amostras retiradas da coluna (ponto 

monitorado pelo MicroNIR) foram estimados utilizando-se um cromatógrafo gasoso, modelo 

Shimadzu 17-A, com injeção automática e detector de ionização de chama (GC-FID). Do total 

do volume de cada alíquota, uma parte era enviada para a determinação do teor de etanol, cuja 

análise era realizada, preferencialmente, no mesmo dia de coleta. À outra parte era 

adicionado, aproximadamente, 10%v/v de ácido acético glacial, com o intuito de interromper 

a reação. A mistura era, então, submetida a uma etapa de purificação e mantida sob 

refrigeração para posterior determinação do teor de éster alquílico por cromatografia. 

As análises cromatográficas para estimar a concentração de éster foram realizadas de 

acordo com a norma EN14103 (EN14103, 2003), utilizando o padrão interno C17 

(heptadecanoato de metila) e a coluna capilar Carbowax. Um injetor do tipo split/splitless e 

um detector de ionização de chama foram empregados.  A etapa de purificação anterior à 
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análise consistiu em: lavagens sucessivas com água destilada seguidas de centrifugação e 

retirada da fase aquosa; secagem com adição de sulfato de sódio anidro (10% (m/m)); e 

filtração utilizando um papel de filtro qualitativo, um Kitasato e uma bomba a vácuo, 

conforme descrito por de Lima et al. (2014). Ao menos três lavagens foram realizadas para 

cada alíquota.  

Por falta de uma norma para determinar o teor de etanol em misturas com biodiesel, 

contendo um elevado teor de etanol, alguns testes foram realizados para otimizar um método 

cromatográfico que pudesse ser utilizado para esse fim. As análises foram conduzidas em uma 

coluna capilar ValcoBond VB-1 (fase estacionária 100% dimetilpolisiloxano). A temperatura 

da coluna para o método otimizado foi programada com o objetivo de se obter uma separação 

clara para o pico do etanol: a temperatura inicial foi de 50°C, mantida por 6 min, seguida de 

uma rampa a 30°C/min até 300°C, permanecendo nessa temperatura por 20 min. A curva 

analítica foi construída com base em soluções padrões contendo biodiesel e etanol p.a., 

variando-se a concentração de etanol de 50 a 90% (m/m). Cada solução foi analisada em 

triplicata e um valor de R² igual a 99,32% foi obtido para o ajuste linear. O desvio padrão 

estimado sob condições de repetibilidade (N=12) para esse método foi de 1,4% (m/m).  

 

3.1.3 Aquisição off-line de dados espectroscópicos com o MicroNIR e seleção do 

caminho óptico 

 

Neste trabalho, um espectrômetro comercial portátil (MicroNIRTM Pro 1700, Viavi 

Solutions), acoplado a um acessório de transmitância, foi utilizado para a aquisição dos dados 

espectroscópicos. Esse equipamento contém um Filtro Linear Variável e um arranjo de 

detector InGaAs de 128 pixel, que permite que os valores de absorbância sejam determinados 

de forma simultânea para todos os comprimentos de onda. A faixa espectral de operação do 

MicroNIR compreende a região entre 908 e 1676 nm e, segundo o fabricante, sua resolução 

óptica é menor do que 1,25% (geralmente, 1%) do comprimento de onda central (por 

exemplo, para 1000 nm, a resolução seria menor do que 12,5 nm).  

 Para a aquisição dos dados no modo off-line, utilizou-se um acessório de transmitância 

desenvolvido no Departamento de Química Analítica da UNICAMP, sob a supervisão do 

Prof. Dr. Jarbas José Rodrigues Rohwedder, semelhante ao descrito por Paiva et al. (2015). O 

acessório permite a utilização de cubetas de diferentes tamanhos e, portanto, foi utilizado para 

a seleção do caminho óptico mais adequado para a análise das amostras retiradas da base da 
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coluna. Nesse estudo, cubetas de quartzo de 5, 10 e 20 mm foram testadas. Os espectros 

foram adquiridos em toda faixa espectral do MicroNIR, registrados como uma média de 50 

varreduras e com tempo de integração de 50 ms. Para todas as medidas, o 100% de 

transmitância foi adquirido utilizando-se uma cubeta limpa e vazia e o 0% foi obtido 

bloqueando-se a passagem da luz entre a fonte externa do acessório (mini lâmpada de 

tungstênio) e o espectrômetro. Tanto o acessório quanto o MicroNIR foram alimentados por 

um cabo USB conectado a um laptop, em que os dados foram registrados pelo software do 

instrumento.   

 O caminho óptico selecionado para a análise das amostras da coluna foi também 

utilizado na aquisição de espectros das misturas sintéticas. Para cada mistura, as análises 

foram realizadas em triplicata, no modo off-line, seguindo-se o mesmo procedimento descrito. 

Os espectros médios de cada mistura foram, então, utilizados na construção e validação dos 

modelos de calibração.  

 

3.1.4 Misturas sintéticas 

 

Como a composição da mistura reacional na base de uma coluna de destilação reativa 

praticamente não varia depois de atingido o estado estacionário, avaliou-se a possibilidade de 

utilizar amostras preparadas em laboratório (chamadas de misturas sintéticas) para a 

construção dos modelos de calibração. A utilização de misturas sintéticas também torna o 

processo de calibração muito mais prático. Com essa finalidade, um planejamento de misturas 

foi inicialmente adotado para a preparação de misturas ternárias compostas de etanol, óleo de 

algodão e biodiesel. A faixa de concentração de cada componente foi estabelecida de acordo 

com a composição da mistura reacional na base da coluna de destilação reativa e de modo a 

garantir variabilidade suficiente para os modelos de calibração. A partir do planejamento com 

pontos adicionais, 70 misturas ternárias foram inicialmente preparadas e analisadas com o 

MicroNIR em temperatura ambiente (22 ± 2ºC). O diagrama ternário com as concentrações 

dessas misturas está apresentado no APÊNDICE B.  

Em seguida, com o objetivo de minimizar as diferenças entre os espectros das misturas 

sintéticas e das amostras retiradas da coluna, 38 novas misturas foram preparadas, analisadas 

com o MicroNIR e inseridas nos modelos de calibração. Algumas delas foram preparadas 

incluindo o glicerol (pureza de 99,5%, Synth), além dos outros três componentes já utilizados. 

Para algumas dessas misturas quaternárias, respeitou-se a relação estequiométrica entre o 
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glicerol e o éster alquílico da reação global de transesterificação (1 mol de glicerol para cada 

3 mol de éster alquílico). Para outras, no entanto, essa relação não foi levada em consideração, 

com o objetivo de evitar possíveis correlações indiretas na etapa de modelagem. Por fim, 

algumas misturas ternárias e quaternárias foram ainda analisadas na mesma temperatura 

operacional da base da coluna, a qual pode variar em entre 50 a 60°C. As amostras restantes 

foram analisadas a temperatura ambiente (22 ± 2ºC).  

Dessa forma, um total de 108 misturas sintéticas foram preparadas e analisadas com o 

MicroNIR. As composições dessas misturas, em termos de % (m/m), bem como a temperatura 

de análise de cada uma, estão apresentadas no APÊNDICE C. Na preparação de cada mistura, 

a quantidade previamente calculada de cada componente foi pesada em um frasco âmbar, 

utilizando uma balança analítica Sartorius (modelo BL210S), com precisão de 0,0001 g. 

Foram pesados em sequência, do menos volátil (glicerina ou óleo) até o mais volátil (etanol). 

O mesmo etanol e óleo de algodão utilizados na reação de transesterificação, descrita 

anteriormente, foram usados nessa etapa. Além disso, com o intuito de evitar a ocorrência de 

erros sistemáticos no preparo das misturas, quatro amostras de biodiesel de algodão com 

diferentes teores de éster alquílico foram utilizadas (77,8% (m/m), 81,5% (m/m), 90,5% 

(m/m) e 95,0% (m/m)). Essas amostras foram provenientes da produção de biodiesel em 

bateladas realizadas no laboratório, empregando-se diferentes condições experimentais. O 

seguinte procedimento geral foi adotado para cada batelada: inicialmente, o óleo de algodão 

foi introduzido ao reator e submetido à agitação e aquecimento até alcançar a temperatura de 

interesse; posteriormente, a solução contendo catalisador (NaOH) previamente dissolvido em 

etanol foi adicionada ao reator, mantendo-se a reação por aproximadamente 60 min. No fim, o 

biodiesel foi purificado e analisado por cromatografia gasosa para estimar o teor de éster 

alquílico, seguindo o mesmo procedimento descrito para as amostras da coluna.  

 

3.1.5 Monitoramento on-line da produção de biodiesel com o MicroNIR 

 

Uma vez que o caminho óptico foi selecionado e as condições de análise com o 

MicroNIR no modo off-line foram estabelecidas, uma pequena adaptação foi realizada ao 

acessório de transmitância com o objetivo de utilizar uma cubeta de quartzo de fluxo, de 

modo a permitir o monitoramento on-line da produção de biodiesel. Para essas análises, foram 

aplicadas as mesmas configurações estabelecidas na aquisição de medidas off-line, descritas 

anteriormente. A diferença é que, no modo on-line, a mistura reacional da base da coluna era 
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continuamente enviada à célula de fluxo, onde os espectros eram coletados automaticamente a 

cada segundo, utilizando o software do MicroNIR. Um esquema da coluna de destilação 

reativa e do monitoramento on-line com o MicroNIR está ilustrado na Figura 5.  

 

Figura 5 – Esquema da coluna de destilação reativa e do monitoramento on-line com o MicroNIR 

 

Fonte: A Autora (2020) 

 

3.1.6 Pré-processamento dos dados e desenvolvimento dos modelos de calibração 

 

Na etapa de desenvolvimento dos modelos de regressão PLS, alguns pré-

processamentos foram avaliados: SNV, MSC, EMSC, 1ª derivada com filtro Savitzky-Golay e 

SNV, seguido de OSC. Os dados pré-processados foram também centrados na média para a 

construção dos modelos, com o objetivo de quantificar os teores de etanol, éster alquílico e 

glicerol das amostras da coluna.  

Na construção dos modelos para quantificação de etanol e éster, 104 misturas 

sintéticas foram separadas em um conjunto de calibração e predição, aproximadamente 70% 

para a calibração e 30% para a predição. Esses conjuntos foram selecionados utilizando-se o 

algoritmo SPXY (GALVÃO et al., 2005). Já na construção do modelo PLS para a 
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quantificação de glicerol, apenas 38 misturas sintéticas foram utilizadas. Os conjuntos de 

calibração e de validação também foram selecionados utilizando-se o SPXY, de modo que 30 

amostras foram separadas para a calibração e 8 para a previsão. Após a seleção, no entanto, 2 

misturas separadas para a calibração foram enviadas para o conjunto de validação, com o 

intuito de obter uma melhor distribuição dos dados ao longo da faixa de concentração do 

glicerol.  

Adicionalmente, além das misturas sintéticas, para cada modelo, 3 amostras coletadas 

da coluna foram adicionadas ao conjunto de calibração. As nove amostras da coluna 

remanescentes foram incluídas no conjunto de predição desses modelos. Com o objetivo de 

sintetizar essas informações, a quantidade de amostras da coluna e de misturas sintéticas 

utilizadas no desenvolvimento de cada modelo, antes da exclusão de outliers, está apresentada 

na Tabela 1.  

 

Tabela 1 - Número de misturas sintéticas e amostras da coluna aplicadas às etapas de calibração e predição para 

o desenvolvimento de modelos PLS para quantificar etanol, éster alquílico e glicerol, antes da 

exclusão de outliers 

Componente 

Etapa de calibração  Etapa de predição 

Misturas 

sintéticas 

Amostras da 

coluna 
 

Misturas 

sintéticas 

Amostras da 

coluna 

Etanol 73 3  31 9 

Ester alquílico 73 3  31 9 

Glicerol 28 3  10 9 

Fonte: A Autora (2020) 

 

Na construção dos modelos PLS, as composições conhecidas das misturas sintéticas 

(APÊNDICE C) foram empregadas como valores de referência (vetor y). Para as amostras da 

coluna, os valores de referência para o etanol foram obtidos diretamente por análise 

cromatográfica, conforme descrito no tópico 3.3.2. Já os valores de referência do éster 

alquílico e do glicerol, para cada amostra, foram calculados considerando-se os seguintes 

dados: teor de etanol obtido por cromatografia, teor de éster alquílico obtido por 

cromatografia após purificação (que corresponde ao teor de éster da mistura de biodiesel e 

óleo de algodão não reagido), e razão estequiométrica entre o glicerol e o éster alquílico da 

reação global de transesterificação, conforme descrito no APÊNDICE D.  

Na construção de todos os modelos, a detecção e eliminação de amostras anômalas 

(outliers) foi conduzida utilizando-se os gráficos dos resíduos. A seleção do número ótimo de 
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variáveis latentes baseou-se na técnica de validação cruzada venetian blinds, aplicada na etapa 

de validação interna dos modelos. Por fim, todas as análises quimiométricas e tratamento dos 

dados espectroscópicos foram realizados utilizando o software MATLAB® (R2010a 

7.10.0.499, MathWorks) e os modelos foram desenvolvidos utilizando o PLS toolbox 

(Eigenvector Research Inc., EUA). O cálculo do limite de detecção dos modelos foi realizado 

através da interface MVC1_GUI, que funciona em ambiente MATLAB (CHIAPPINI; 

GOICOECHEA; OLIVIERI, 2020). 

 

3.2 RESULTADOS E DISCUSSÃO 

 

Os principais resultados obtidos estão apresentados e discutidos a seguir. 

 

3.2.1 Seleção do caminho óptico e estimativa da composição da mistura reacional no 

ponto monitorado com o MicroNIR  

 

Inicialmente, algumas alíquotas foram retiradas da base da coluna de destilação 

reativa, após estabilização da coluna, com o intuito de definir as condições adequadas para a 

aquisição espectral, incluindo a seleção do caminho óptico, e de estimar a composição da 

mistura reacional nesse ponto. Essas alíquotas foram analisadas com o MicroNIR, no modo 

off-line, utilizando cubetas de quartzo com diferentes caminhos ópticos (5, 10 e 20 mm). Os 

espectros adquiridos de uma dessas alíquotas utilizando as três cubetas estão mostrados na 

Figura 6.  
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Figura 6 - Espectros adquiridos utilizando cubetas de quartzo de diferentes caminhos ópticos 

 

Fonte: A Autora (2020) 
 

É possível perceber através da Figura 6 que o espectro obtido com a cubeta de 20 mm 

(em vermelho) apresentou sinais de absorção saturados na região entre 1400 e 1700 nm, 

aproximadamente. Já que a banda de formato alargado nessa região é devida ao primeiro 

sobretom do grupamento O-H (WORKMAN; WEYER, 2012), a saturação do sinal foi 

atribuída, principalmente, ao excesso de etanol na mistura reacional. Já o espectro adquirido 

com a cubeta de 5 mm (em azul), apresentou valores mais baixos de absorbância. 

Particularmente, para os comprimentos de onda em torno de 1160 e 1450 nm, esses baixos 

valores poderiam dificultar a quantificação do teor de éster alquílico, já que esses 

comprimentos de onda são atribuídos, respectivamente, ao quarto e terceiro sobretons do 

grupamento C=O (WORKMAN; WEYER, 2012). Dessa forma, com base nessas 

observações, o caminho óptico de 10 mm foi selecionado para a aquisição espectral utilizando 

o MicroNIR, tanto no modo off-line, quanto no modo on-line.   

 Posteriormente, com o intuito de estimar a composição da mistura reacional na base da 

coluna, as alíquotas coletadas nessa primeira etapa foram tratadas, conforme procedimento 

descrito no tópico 3.3.2, e analisadas pelos métodos cromatográficos para a quantificação dos 

teores de éster alquílico (biodiesel) e etanol. O teor de éster para essas amostras ficou em 

torno de 85% (m/m), considerando apenas a fase contendo biodiesel e óleo não reagido, e o 

teor de etanol ficou em torno de 80 e 90% (m/m). Esse estudo preliminar foi essencial para 

definir as faixas de concentração dos modelos de calibração e orientar na preparação das 

misturas sintéticas. 
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3.2.2 Análises cromatográficas das amostras da coluna 

 

Após a seleção do caminho óptico e estimativa da composição da mistura reacional na 

base da coluna, prosseguiu-se com a preparação das misturas sintéticas e, em paralelo, com o 

monitoramento on-line da produção de biodiesel. Das amostras da coluna coletadas durante os 

experimentos e analisadas por cromatografia, 12 foram utilizadas na construção dos modelos 

de calibração. Outras foram excluídas por estarem fora das faixas de concentração dos 

modelos. Os teores de etanol e de éster alquílico (considerando apenas a fase contendo 

biodiesel e óleo de algodão não reagido), obtidos por cromatografia, para essas 12 amostras 

estão apresentados na Tabela 2.  

 
Tabela 2 – Teores de etanol e éster alquílico, em % (m/m), das amostras retiradas da coluna, obtidos 

por cromatografia gasosa 

Amostra 
Teor de etanol obtido por CG 

(% (m/m)) 

Teor de éster alquílico obtido por 

CG após purificação (% (m/m)) 

C01 80,0 86,0 

C02 80,2 82,6 

C03 81,6 91,0 

C04 83,2 90,4 

C05 81,2 85,9 

C06 84,9 88,9 

C07 89,4 89,2 

C08 72,4 92,6 

C09 85,9 91,7 

C10 86,0 89,9 

C11 82,9 91,9 

C12 88,3 87,2 
Fonte: A Autora (2020) 

 

 Os teores de etanol e de éster alquílico das amostras da coluna, apresentados na Tabela 

2, estão de acordo com as faixas de concentração dos modelos de calibração desenvolvidos. 

  

3.2.3 Misturas sintéticas 

 

Como a composição da mistura reacional na base da coluna de destilação reativa 

praticamente não varia após atingido o estado estacionário, as misturas sintéticas foram 

utilizadas com o objetivo de ampliar as faixas de concentração dos modelos. Embora alguns 

pequenos ajustes tenham sido realizados nas condições operacionais da coluna com o intuito 
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de ampliar a faixa de concentração das amostras retiradas da base (Tabela 2), essa variação, 

por si só, não fornece variabilidade suficiente para a etapa de modelagem, requerendo, 

portanto, o uso das misturas sintéticas. Além disso, é importante ressaltar que esse tipo de 

flexibilidade operacional, em geral, não é possível em ambientes industriais. Por fim, o 

emprego dessas misturas trouxe também simplicidade do ponto de vista experimental, uma 

vez que reduziu a necessidade de fazer análises cromatográficas, as quais são demoradas, 

caras e requerem uma etapa de purificação das amostras.  

A princípio, por questão de simplicidade, optou-se por preparar misturas ternárias 

contendo etanol, biodiesel e óleo de algodão. O glicerol foi inicialmente desconsiderado por 

ser produzido em uma quantidade menor quando comparado ao biodiesel e, principalmente, 

ao etanol presente em excesso. No entanto, depois de desenvolvidos e analisados os primeiros 

modelos, sentiu-se a necessidade de melhorar a representatividade das misturas, minimizando 

as diferenças entre os espectros das amostras coletadas na base da coluna e os espectros das 

misturas sintéticas. Com esse objetivo, 38 novas misturas foram preparadas, incluindo 

amostras quaternárias contendo glicerol e amostras analisadas na mesma temperatura de 

operação da base da coluna (em torno de 50 e 60°C). A princípio, o efeito da temperatura 

tinha sido considerado insignificante devido à perda de calor que ocorre entre a parte inferior 

da coluna, de onde sai a amostra, e a posição do MicroNIR no sistema de medição on-line. No 

entanto, os resultados obtidos ao longo do desenvolvimento desse trabalho indicaram a 

importância de considerar o efeito da temperatura. De forma ilustrativa, estão apresentados na 

Figura 7 os espectros médios, pré-processados com SNV, das misturas sintéticas 97 e 98 

(APÊNDICE C), de mesma composição, mas cujos os espectros foram adquiridos, 

respectivamente, na temperatura ambiente (22 ± 2°C) (em azul) e na faixa de temperatura 

entre 50 e 60°C (em vermelho).  
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Figura 7 – Espectros médios, pré-processados com SNV, de misturas sintéticas de mesma composição (97 e 98 – 

APÊNDICE C), adquiridos, respectivamente, na temperatura ambiente (22 ± 2°C) (em azul) e na faixa de 

temperatura entre 50 e 60°C (em vermelho) 

 

Fonte: A Autora (2020) 

 

Conforme observado na Figura 7, a faixa espectral que foi mais afetada pelo aumento 

da temperatura foi a região correspondente ao primeiro sobretom do grupamento O-H, 

presente no etanol e no glicerol. 

Para fins de comparação, os espectros médios das 108 misturas sintéticas e das 12 

amostras coletadas na base da coluna de destilação reativa, antes da exclusão de outliers, 

estão apresentados na Figura 8. 

.  
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Figura 8 – Espectros médios das 108 misturas sintéticas preparadas (em cinza) e das 12 amostras retiradas da 

coluna de destilação reativa (em preto), antes da exclusão dos outliers 

 

Fonte: A Autora (2020). 

 

É possível perceber pela Figura 8 que, apesar da inclusão das novas amostras, ainda 

existem diferenças entre os espectros dos dois conjuntos de dados, especialmente em torno de 

1400 nm, as quais devem ser minimizadas com a aplicação de técnicas de pré-processamento 

adequadas. Essas técnicas devem ser utilizadas também para corrigir os efeitos de 

espalhamento da radiação, os quais são atribuídos, principalmente, à emulsão formada durante 

a reação e à heterogeneidade de algumas misturas sintéticas, sobretudo aquelas com alta 

concentração de glicerol e de óleo de algodão. Além disso, a passagem de pequenas bolhas de 

ar na cubeta de fluxo durante a aquisição espectral on-line também pode ser uma das causas 

do espalhamento da radiação e do aspecto ruidoso dos espectros. 

 

3.2.4 Pré-processamento dos dados e desenvolvimento dos modelos de calibração  

 

Na etapa de construção dos modelos, algumas técnicas de pré-processamento foram 

testadas com o intuito de corrigir os efeitos de espalhamento da radiação e minimizar as 

diferenças entre os espectros das misturas sintéticas e os espectros das amostras da coluna, 

conforme discutido anteriormente. Os seguintes métodos de pré-processamento foram 
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testados com essa finalidade: SNV, MSC, EMSC, primeira derivada com filtro Savitzky-

Golay (com janela de 7 pontos e polinômio de 2ª ordem) e OSC.   

Antes da aplicação das técnicas citadas, as regiões ente 908-1112 nm e 1400-1676 nm 

dos espectros utilizados na construção dos modelos para quantificação de etanol e glicerol 

foram suavizados com filtro Savitzky-Golay (janela de 9 pontos e polinômio de 2ª ordem), 

com o intuito de amenizar o aspecto ruidoso dos espectros nessas regiões. O filtro não foi 

aplicado à região central para não haver perda de informação no pico em torno de 1200 nm, 

que é atribuído ao segundo sobretom de estiramento C-H.  

Após a aplicação das técnicas de pré-processamento, os espectros foram centrados na 

média para desenvolvimento de modelos de regressão PLS para quantificação de etanol, éster 

alquílico e glicerol. Os resultados das etapas de calibração e de predição dos modelos 

desenvolvidos estão apresentados na Tabela 3. Os modelos para etanol e éster alquílico foram 

construídos levando-se em consideração toda a faixa espectral do MicroNIR, que vai de 908 a 

1676 nm. Já para a quantificação do glicerol, os modelos foram desenvolvidos considerando-

se apenas a região entre 1348 e 1676 nm, a qual abrange, principalmente, a faixa associada ao 

glicerol e ao etanol (grupamento O-H).  

 

Tabela 3 – Resultados para as etapas de calibração e de predição dos modelos de regressão PLS para 

quantificação dos teores de etanol, glicerol e éster alquílico 

Composto 

Faixa de 

concentração 

(% (m/m)) 

Pré-

processamento 
VL 

RMSEC 

(% (m/m)) 

RMSECV 

(% (m/m)) 
R²cv 

RMSEP 

(% (m/m)) 
R²p 

Etanol 70 – 90 

EMSC 5 0,95 1,25 0,93 1,66 0,75 

SNV 6 1,00 1,36 0,91 1,48 0,80 

MSC 6 1,07 1,44 0,90 1,34 0,84 

1ª derivada 5 1,05 1,33 0,92 1,81 0,71 

SNV e OSC 2 0,70 1,27 0,93 1,79 0,70 

Glicerol 0 – 7.5 

EMSC 2 0,76 0,86 0,90 1,08 0,73 

SNV 5 0,50 0,78 0,93 1,29 0,73 

MSC 4 0,56 0,80 0,92 1,25 0,73 

1ª derivada 3 0,76 0,89 0,90 0,94 0,76 

SNV e OSC 2 0,36 0,51 0,96 0,98 0,76 

Éster 

alquílico 
0 – 23 

EMSC 7 2,06 2,65 0,79 2,15 0,79 

SNV 6 2,45 2,95 0,74 2,79 0,64 

MSC 6 2,49 3,04 0,72 2,83 0,63 

1ª derivada 6 2,71 3,13 0,71 3,09 0,60 

SNV e OSC 2 2,03 3,42 0,66 3,05 0,58 
Fonte: A Autora (2020). 
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A partir das métricas de desempenho apresentadas na Tabela 3, foi possível selecionar 

a estratégia de pré-processamento mais adequada para a construção dos modelos PLS e 

discussão dos resultados. Isso foi feito de modo a priorizar, se possível, a escolha de um único 

pré-processamento para os três modelos apresentados neste trabalho (para quantificação de 

etanol, éster alquílico e glicerol).  

No que diz respeito à quantificação de etanol, os valores de RMSEP dos modelos 

desenvolvidos com SNV, MSC, 1ª derivada e SNV seguido de OSC, não apresentaram 

diferença estatística em relação ao modelo obtido com EMSC, com base em um teste F a um 

nível de 95% de confiança. O modelo obtido com SNV e OSC foi desenvolvido com um 

número menor variáveis latentes (VL). No entanto, essa estratégia de pré-processamento não 

foi selecionada pois, para a quantificação dos três compostos, os modelos desenvolvidos não 

apresentaram uma predição satisfatória para as amostras da coluna: os valores de RMSEP 

para a predição das amostras da coluna foram superiores aos valores de RMSEP para a 

predição das misturas sintéticas (teste F, 95% de confiança). Dessa forma, EMSC e 1ª 

derivada poderiam ser utilizadas, já que nesses casos, 5 variáveis latentes foram requeridas 

para a construção dos modelos. No entanto, a técnica EMSC foi selecionada por ser 

considerada mais simples do ponto de vista de implementação e interpretação dos resultados, 

uma vez que mantém o formato dos espectros brutos. Na construção do modelo com EMSC, 

após a eliminação de outliers, 71 misturas sintéticas e 3 amostras da coluna (C10 - C12), 

totalizando 74 amostras, foram utilizadas na etapa de calibração. Já na etapa de predição, 31 

amostras sintéticas e 9 amostras da coluna (C01 - C09) foram consideradas. Os resultados 

obtidos para esse modelo foram considerados satisfatórios tanto para a calibração (RMSEC de 

0,95% (m/m)) quanto para a predição (RMSEP de 1,66% (m/m)). 

Para a quantificação do teor de glicerol, o valor de RMSEP do modelo desenvolvido 

com EMSC não apresentou diferença estatisticamente significativa, com base em um teste F a 

um nível de 95% de confiança, dos valores de RMSEP dos modelos desenvolvidos com as 

outras técnicas. O modelo com EMSC foi escolhido, no entanto, pelo fato de ter sido 

desenvolvido com um número menor de variáveis latentes (VL). Após a investigação e 

exclusão de outliers, esse modelo foi construído utilizando-se 28 amostras no conjunto de 

calibração: 25 misturas sintéticas e 3 amostras da coluna (C10 à C12). Além disso, 18 

amostras foram utilizadas para a etapa de predição, incluindo 9 amostras da coluna (C01 à 

C09) e 9 misturas sintéticas. Com base nas métricas de desempenho apresentadas, resultados 



68 

 

 

 

satisfatórios foram obtidos tanto para a etapa de calibração (RMSEC = 0,76% (m/m)) quanto 

para a de predição (RMSEP = 1,08% (m/m)).  

Quanto aos modelos para quantificação de éster alquílico, exceto para a técnica SNV, 

os valores de RMSEP dos modelos desenvolvidos com os outros pré-processamentos não são 

estatisticamente semelhantes aos obtido com EMSC, com base em um teste F de 95% de 

confiança. Nesse caso, embora a construção do modelo com SNV tenha requerido menos 

variáveis latentes, com o objetivo de unificar o pré-processamento utilizado nos três modelos 

PLS apresentados nesse trabalho, a técnica EMSC foi selecionada. Dessa forma, o modelo 

com EMSC, construído com 7 variáveis latentes, apresentou resultados aceitáveis para as 

etapas de calibração (RMSEC de 2,06% (m/m)) e de predição (RMSEP de 2,15% (m/m)). Na 

construção desse modelo, após a retirada de outliers, 74 amostras foram utilizadas para a 

calibração, incluindo 3 amostras da coluna (C10-C12). Já na predição, 31 misturas sintéticas e 

8 amostras da coluna foram utilizadas. Das 9 amostras da coluna (C01 à C09), uma foi 

excluída (C08) por apresentar um valor de resíduo studentizado muito negativo quando 

comparado ao das outras amostras, conforme ilustrado no gráfico de leverage versus resíduos 

studentizados da Figura 9 para o modelo PLS com os dados pré-processados com EMSC. De 

acordo com o apresentado em Burns e Ciurczak (2008), os resíduos studentizados indicam 

quão bem o modelo consegue prever a propriedade de interesse para uma determinada 

amostra.  

 

 

Figura 9 – Resíduos studentizados vs. leverage para as amostras de calibração (em cinza) e de predição 

(misturas sintéticas em azul e amostras da coluna em vermelho) para o modelo para quantificação 

de éster alquílico construído com os dados pré-processados com EMSC 

 

Fonte: A Autora (2020) 
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Para comparação, Richard et al. (2013) obtiveram valores de RMSEP de 4,10% (m/m) 

e 3,52% (m/m) quando utilizaram sondas de reflexão e de transflectância, respectivamente, 

para estimar o teor de oleato de etila na mistura reacional durante a produção de biodiesel. A 

faixa de concentração adotada para o oleato de etila variou entre zero e 100% (m/m). Para o 

monitoramento com a sonda de reflexão, 25 amostras foram utilizadas na etapa de predição do 

modelo, o qual foi desenvolvido considerando uma razão molar etanol/óleo variando de 6 a 

45,4. Já para o monitoramento com a sonda de transflectância, 21 amostras constituíram o 

conjunto de predição e o modelo de calibração foi construído considerando uma razão molar 

etanol/óleo de 45,4. Dessa forma, o modelo apresentado no presente trabalho para a 

quantificação de éster alquílico apresentou valor de RMSEP mais baixo quando comparado 

aos valores obtidos por Richard et al. (2013). No entanto, como o número de amostras 

utilizadas e as faixas de concentração foram diferentes nos dois trabalhos, não se pode fazer 

uma comparação direta entre esses resultados.  

Diante do exposto, a técnica EMSC foi selecionada para a construção dos três modelos 

PLS desenvolvidos nesse trabalho. É importante ressaltar que esses modelos não 

apresentaram bias estatisticamente significativo, de acordo com um teste t, em um nível de 

confiança de 95% (bias de predição para os modelos de etanol, éster alquílico e glicerol, 

respectivamente: -0,22, 0,17 e -0,09). Assim, com o objetivo de avaliar a aplicação dessa 

técnica na correção espectral, os espectros pré-processados com EMSC para as misturas 

sintéticas (em cinza) e as amostras da coluna (em preto) que foram utilizadas no 

desenvolvimento dos modelos, após exclusão de outliers, estão apresentados na Figura 10. 

.  
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Figura 10 – Espectros médios das misturas sintéticas (em cinza) e das amostras da coluna (em preto) pré-

processados com EMSC, após a exclusão de outliers 

 
Fonte: A Autora (2020) 

 

Como pode ser observado na Figura 10, de modo geral, a aplicação de EMSC permitiu 

a correção das regiões ruidosas e dos efeitos resultantes do espalhamento da radiação, apesar 

de que algumas diferenças entre os espectros das misturas sintéticas e os espectros das 

amostras da coluna ainda persistiram.   

Em relação aos modelos PLS construídos com a técnica EMSC, os gráficos de valores 

de referência versus preditos para as amostras de calibração (em cinza) e as amostras do 

conjunto de predição (misturas sintéticas em azul e amostras da coluna em vermelho), estão 

apresentados na Figura 11 (a, c, e). Além disso,  os gráficos de importância das variáveis 

(VIP) para esses modelos estão apresentados na Figura 11 (b, d, f). De acordo com Andersen 

e Bro (2010), esse tipo de gráfico examina a importância de cada variável para a construção 

do modelo. A linha tracejada em vermelho representa o limiar de significância. De modo 

geral, variáveis com valores de VIPs escores acima do limiar são consideradas importantes 

para a construção do modelo. Embora esses gráficos sejam bastante utilizados para a seleção 

de variáveis, os modelos apresentaram resultados melhores quando toda a faixa espectral do 

MicroNIR foi utilizada para a quantificação de éster e etanol. 
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Figura 11 – Gráficos dos valores preditos vs. referência (a, c e e) para o conjunto de calibração (em cinza) e o 

conjunto de predição, composto de misturas sintéticas (em azul) e amostras da coluna (em vermelho); 

e os VIPs escores (b, d e f) dos modelos PLS para quantificar etanol (a e b), éster alquílico (c e d) e 

glicerol (e e f) 

 
Fonte: A Autora (2020) 

 

Como observado na Figura 11 (a, c, e), de modo geral, pode-se perceber que as 

amostras de calibração e de predição estão, de certa forma, bem distribuídas ao longo da 

bissetriz. Apenas as amostras da coluna (em vermelho), ficaram agrupadas em uma faixa 

pequena de concentração de éster (Figura 11b) e de glicerol (Figura 11c). Conforme 

mencionado, embora alguns ajustes tenham sido intencionalmente impostos ao processo, com 

o intuito de produzir amostras com uma variabilidade maior na composição, essa 

variabilidade não foi suficiente para abranger toda a faixa dos modelos. 

Na Figura 11b, é possível perceber que as variáveis mais importantes para a 

quantificação do teor de etanol estão localizadas principalmente nas regiões em torno de 1200 

nm, atribuída ao 2ª sobretom da ligação C-H, de 1400 nm, relacionada ao primeiro sobretom 

do grupamento O-H, e de 1670 nm, associada ao 1º sobretom de estiramento da ligação C-H. 

Conforme observado, essas regiões são, de fato, importantes para caracterizar o etanol. Ao 
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analisar a Figura 11d, vê-se que a região em torno de 1200 nm também foi importante na 

quantificação do éster alquílico. Adicionalmente, as regiões das combinações do grupo C-H, 

por volta de 1500 nm, e do primeiro sobretom de estiramento da ligação C-H, em torno de 

1670 nm, também foram consideradas importantes na predição do teor de éster. Essa última 

região foi também identificada como importante em outros trabalhos descritos por de Lima et 

al. (2014) e Killner, Rohwedder e Pasquini (2011), que utilizaram um espectrofotômetro de 

bancada FT-NIR para monitoramento da produção de biodiesel em batelada. No que diz 

respeito à quantificação do glicerol, a região em torno de 1400 nm também foi identificada 

como mais importante.  

Ainda com relação aos modelos PLS construídos com a técnica EMSC, os limites de 

detecção para esses modelos foram estimados empregando a interface MVC1_GUI 

(CHIAPPINI; GOICOECHEA; OLIVIERI, 2020). Para a quantificação de etanol, a faixa para 

o limite de detecção é de 7,9 % (m/m) a 8,3% (m/m). Já para o glicerol, essa faixa é, 

aproximadamente, em torno de 1,0 % (m/m) e 1,8 % (m/m). Por fim, para o biodiesel, a faixa 

para o limite de detecção encontra-se entre 3,4% (m/m) e 5,9% (m/m). Conforme observado 

na Figura 11, as amostras da coluna apresentaram concentrações de etanol e de biodiesel bem 

acima dos respectivos limites de detecção. Já para o glicerol, algumas amostras da coluna 

apresentaram teores desse componente abaixo do limite.    

 

3.2.5 Avaliação dos modelos quanto à predição das amostras da coluna 

 

A aplicação apresentada no presente trabalho compreende basicamente dois aspectos 

principais. O primeiro deles está relacionado à avaliação do desempenho do espectrômetro 

portátil MicroNIR para quantificar o teor de éster alquílico em misturas sintéticas contendo 

um elevado teor de etanol em diferentes concentrações (variando entre 70 e 90% (m/m)). 

Conforme mencionado, essa faixa de concentração foi empregada com o intuito de simular as 

condições operacionais da coluna no ponto monitorado com o MicroNIR e de modo a 

fornecer a variabilidade necessária para a etapa de modelagem. De acordo com o que foi 

discutido, os modelos de calibração apresentaram resultados considerados satisfatórios, 

conforme as métricas de desempenho apresentadas. 

O segundo aspecto abordado nesse trabalho está relacionado à avaliação da capacidade 

dos modelos em quantificar a composição da mistura reacional na base da coluna. Esse ponto 

representou um dos grandes desafios desse trabalho, uma vez que os modelos foram 
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desenvolvidos com base em espectros adquiridos com um espectrômetro portátil, que 

apresenta uma faixa espectral reduzida, e utilizando, em sua maior parte, misturas sintéticas. 

As vantagens associadas ao uso das misturas sintéticas já foram discutidas anteriormente. No 

entanto, existem também alguns desafios relacionados a essa aplicação. O primeiro deles 

consiste na dificuldade de se obter misturas representativas das amostras da coluna, as quais 

são mais complexas do que as misturas sintéticas preparadas em laboratório de forma 

controlada. Adicionalmente, o monitoramento on-line das amostras da coluna foi outro fator 

que trouxe mais complexidade as medidas dessas amostras, quando comparadas às das 

misturas sintéticas adquiridas no modo off-line.  

Com o intuito de minimizar as implicações associadas ao uso das misturas sintéticas 

na etapa de modelagem, algumas estratégias foram utilizadas durante o desenvolvimento 

desse trabalho, com o objetivo de diminuir as diferenças entre os espectros dessas misturas e 

das amostras da coluna. Conforme discutido, essas estratégias envolveram basicamente a 

inclusão de novas misturas aos modelos, passando a considerar a presença do glicerol e o 

efeito da temperatura. Como consequência dessa inclusão, os modelos PLS apresentaram 

resultados melhores, considerados satisfatórios. No entanto, é importante ressaltar que esses 

modelos poderiam apresentar resultados ainda melhores caso o glicerol estivesse presente em 

todas as misturas e se os espectros dessas misturas fossem adquiridos na mesma temperatura 

em que as amostras da coluna foram monitoradas. 

Com o objetivo de avaliar os modelos desenvolvidos quanto à predição das amostras 

da coluna, bem como compará-la com a das misturas sintéticas, realizou-se a predição desses 

dois conjuntos de dados de forma separada. Os parâmetros resultantes dessa análise estão 

apresentados na Tabela 4.  

 

Tabela 4 – Resultados para a predição das misturas sintéticas e amostras da coluna para os modelos PLS 

desenvolvidos com EMSC, para quantificação de etanol, éster alquílico e glicerol 

Modelo PLS 

Amostras sintéticas  Amostras da coluna 

RMSEP  

(% (m/m)) 
Bias  

RMSEP  

(% (m/m)) 
Bias 

Etanol 0,85 -0,19  3,14 -0,32 

Éster alquílico 2,13 0,02  2,19 0,75 

Glicerol 1,03 -0,23  1,12 0,05 

Fonte: A Autora (2020) 
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Conforme observado na Tabela 4, em todos os casos, o bias de predição não foi 

estatisticamente diferente de zero, de acordo com um teste t a um nível de confiança de 95%. 

Adicionalmente, os valores de RMSEP para as predições das misturas sintéticas e das 

amostras da coluna não apresentaram diferença estatisticamente significativa para os modelos 

de éster alquílico e glicerol, com base em um teste F com 95% de confiança. Para a 

quantificação de etanol, entretanto, o RMSEP para a predição das amostras da coluna 

(RMSEP = 3,14) foi estatisticamente superior ao das misturas sintéticas (RMSEP = 0,85), de 

acordo com um teste F (95% de confiança). Isso pode ser observado também através da 

análise da Figura 11ª  do item 3.4.4, em que é possível perceber que as amostras da coluna 

(em vermelho) estão mais afastadas da bissetriz quando comparadas às misturas sintéticas (em 

azul). Tal fato pode estar associado, dentre outros aspectos, ao problema de reprodutibilidade 

do método cromatográfico desenvolvido para quantificação do teor de etanol das amostras da 

coluna. Por exemplo, o desvio-padrão sob condições de repetibilidade para esse método foi 

estimado em torno de 1,4%(m/m) (com base em 12 amostras). Além disso, o fato de a região 

atribuída à ligação O-H ser mais afetada pelas diferenças entre os modos on-line e off-line de 

aquisição espectral, poderia ser uma possível explicação para essa ocorrência.  

Por fim, apesar da dificuldade de reproduzir os espectros das amostras da coluna 

obtidos on-line utilizando as misturas sintéticas analisadas no modo off-line, os resultados dos 

modelos desenvolvidos foram satisfatórios no que diz respeito à predição das amostras da 

coluna. Considerando a complexidade do sistema analisado, especialmente devido ao excesso 

de etanol e a faixa de variação de sua concentração, esses resultados foram considerados 

satisfatórios até mesmo para o modelo do etanol, principalmente quando se considera a 

aplicação da metodologia proposta para o monitoramento do processo em tempo real.  

 

3.2.6 Estimativa do rendimento de biodiesel das amostras da coluna 

 

A partir dos valores preditos dos três modelos desenvolvidos com EMSC para a 

quantificação de etanol, éster alquílico e glicerol, foi possível estimar o rendimento de éster 

alquílico (conversão de óleo de algodão em biodiesel) para as amostras coletadas da coluna. 

Das 9 amostras utilizadas na etapa de predição dos três modelos, a amostra C08 foi excluída 

na etapa de modelagem do teor de éster, por apresentar um alto valor residual. Dessa forma, 

foi possível estimar o rendimento de 8 amostras da coluna e compará-los aos valores de 

referência obtidos diretamente por cromatografia, através do cálculo do erro relativo entre as 
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medidas. Os valores para cada uma das 8 amostras estão apresentados na Tabela 5.  

Tabela 5 – Comparação entre os resultados dos rendimentos de éster alquílico das amostras da coluna 

estimados a parti dos modelos PLS e adquiridos por cromatografia 

Amostra 

Rendimento de éster alqúilico 

estimado pelos modelos PLS 

(%(m/m)) 

Rendimento de éster 

alquílico obtido por 

cromatografia (%(m/m)) 

Erro 

relativo 

(%) 

C01 81,0 86,0 5,8 

C02 80,5 82,6 2,5 

C03 88,3 91,0 3,0 

C04 89,9 90,4 0,6 

C05 90,5 85,9 5,4 

C06 91,5 88,9 2,9 

C07 98,6 89,2 10,5 

C09 91,9 91,7 0,2 

Fonte: A Autora (2020) 

 

Como pode ser visto na Tabela 5, a maioria dos erros relativos ficou abaixo de 5%. 

Apenas a amostra 7 apresentou um erro relativo considerado bastante alto, em torno de 10%. 

Apesar disso, um teste t, com 95% de confiança, demonstrou que não há diferença 

estatisticamente significativa entre os resultados fornecidos pelos dois métodos. De modo 

geral, os resultados foram considerados satisfatórios do ponto de vista de monitoramento do 

processo, principalmente quando se leva em consideração o excesso de etanol nas misturas 

analisadas. 

  

3.3 CONCLUSÃO 

 

O presente capítulo avaliou o desempenho de um espectrômetro portátil na região do 

NIR (MicroNIR) para o monitoramento on-line de um processo contínuo de destilação reativa 

empregado na produção de biodiesel. Apesar do elevado teor de etanol no ponto monitorado 

com o MicroNIR, os modelos construídos aplicando-se o pré-processamento EMSC 

apresentaram resultados satisfatórios para a quantificação de etanol (RMSEP = 1,66%(m/m)), 

éster alquílico (RMSEP = 2,15%(m/m)) e glicerol (RMSEP = 1,08%(m/m)). Os resultados 

foram considerados satisfatórios, inclusive, quando os modelos foram utilizados na predição 

de amostras da coluna, apenas.  
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Os valores preditos a partir dos modelos de calibração foram então utilizados para 

estimar o rendimento de éster alquílico das amostras da coluna. Os resultados foram 

comparáveis às medidas de referência obtidas por cromatografia gasosa, com erros relativos 

abaixo de 5% para a maioria das amostras. É importante ressaltar que, para fins de 

monitoramento do processo em tempo real, a informação do teor de éster alquílico na mistura 

reacional seria suficiente. No entanto, o rendimento do biodiesel foi calculado como uma 

forma de validar a metodologia proposta.  

Dessa forma, o presente trabalho demonstrou a viabilidade de utilização do 

espectrômetro portátil na região do NIR para monitorar a produção de biodiesel em um 

processo contínuo, mesmo trabalhando-se com uma concentração de etanol elevada, a qual 

representou uma condição desafiadora para a etapa de modelagem. Além disso, o trabalho 

demonstrou a possibilidade de se utilizar misturas sintéticas na construção dos modelos de 

calibração. Conforme discutido, o uso dessas misturas, além de necessário para ampliar a 

variabilidade dos dados, trouxe benefícios do ponto de vista experimental. Adicionalmente, 

reduz a dependência em relação aos métodos cromatográficos, utilizados como referência. 
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4 MONITORAMENTO ESTATÍSTICO DO PROCESSO INDUSTRIAL DE 

METALIZAÇÃO A VACUO DE FILMES DE POLIÉSTER 

 

A deposição a vácuo é o processo tradicionalmente empregado para a aplicação de 

revestimentos metálicos, geralmente alumínio, sobre substratos poliméricos, como o 

politereftalato de etileno e o polipropileno. Os materiais resultantes desse processo são 

utilizados principalmente na produção de embalagens (BISHOP, 2015). Em geral, os 

revestimentos são aplicados para atribuir novas propriedades aos filmes poliméricos, dentre as 

quais, destacam-se as aplicações de barreira, decorativas, de segurança e funcionais. Os 

revestimentos de barreira, em particular, representam uma categoria de materiais que 

conferem à embalagem um bloqueio à passagem de luz, vapor de água, oxigênio e outro 

gases. Eles são aplicados, principalmente, para prolongar o prazo de validade dos produtos, 

especialmente no ramo alimentício (STRULLER; KELLY; COPELAND, 2014; BISHOP; 

MOUNT, 2016) .   

Considerando os processos industriais de deposição a vácuo aplicados na produção de 

revestimentos de barreira, a deposição de alumínio utilizando barcos de evaporação aquecidos 

por resistência (também conhecidos como evaporadores) é o método mais empregado 

(BISHOP, 2015). De um modo geral, os evaporadores são materiais compactos formados por 

misturas intermetálicas bi ou trifásicas. Usualmente, as misturas bifásicas são compostas por 

diboreto de titânio, que apresenta baixa resistividade elétrica e alta molhabilidade para o 

alumínio, e nitreto de boro, que possui alta resistividade elétrica e resistência ao choque 

térmico. Já às misturas trifásicas, é adicionado também o nitreto de alumínio, que confere 

condutividade térmica e resistência elétrica ao evaporador (BISHOP, 2011; HERRMANN et 

al., 2011).  

A deposição a vácuo é geralmente conduzida em um sistema industrial conhecido 

como metalizadora. Em cada corrida desse processo, um rolo de filme polimérico é 

desenrolado para ser revestido com uma fina camada de alumínio, e é então enrolado na 

forma de um novo rolo de filme metalizado. Nesse sistema, vários barcos de evaporação são 

comumente utilizados com o intuito de revestir o filme em toda sua extensão. Eles ficam 

situados abaixo do filme e ao longo de sua largura. Durante o processo, fios de alumínio são 

constantemente alimentados à superfície aquecida de cada barco. Quando o alumínio se 

funde, uma nuvem do metal evaporado é formada e uma fina camada desse metal é depositada 

sobre uma das superfícies do filme (BISHOP, 2015).  
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Diversos fatores podem influenciar o desempenho de barreira de filmes revestidos a 

vácuo. Um desses fatores consiste na qualidade dos materiais utilizados no processo, tais 

quais do fio de alumínio, dos barcos de evaporação e dos substratos (BISHOP, 2015; 

BISHOP; MOUNT, 2016). Outro aspecto crítico está relacionado às condições do processo de 

deposição. Conforme discutido por Mount (2008), as variáveis de processo apresentam um 

importante e complexo efeito sobre as propriedades de barreira dos filmes metalizados. Nesse 

contexto, dentre as principais variáveis de processo que influenciam na propriedade de 

barreira do filme, pode-se destacar a sua densidade óptica, a velocidade com que o filme é 

desenrolado/enrolado, a taxa de evaporação, a pressão da câmara de evaporação e a 

temperatura do rolo frio por onde passa o filme que está sendo revestido. 

Como a camada de revestimento de um filme metalizado a vácuo é geralmente muito 

fina, o que dificulta a medição direta da sua espessura, é comum se utilizar outra propriedade 

para o controle da espessura do revestimento. A densidade óptica (DO) do filme metalizado, 

por exemplo, pode ser monitorada para esse fim. Trata-se de uma medida da opacidade do 

filme, a qual está relacionada à espessura da camada metálica depositada sobre o substrato 

polimérico e, consequentemente, ao seu desempenho de barreira. Geralmente, durante um 

processo de deposição conduzido em metalizadoras comerciais, medidas de DO são 

constantemente adquiridas do filme metalizado e utilizadas no controle da alimentação do fio 

de alumínio e da temperatura do barco de evaporação, com o intuito de controlar o tamanho 

da poça de fusão no evaporador e a taxa de evaporação do alumínio. Como a taxa de 

evaporação é facilmente afetada por variações da temperatura, esse controle por meio da DO é 

essencial para a obtenção de um revestimento metálico uniforme (BISHOP, 2015; BISHOP; 

MOUNT, 2016). Dessa forma, o monitoramento e controle da DO representam uma maneira 

eficaz de garantir a consistência da deposição metálica, o que é particularmente importante 

para evitar defeitos na superfície do revestimento e, portanto, garantir a qualidade do 

desempenho de barreira do filme.  

Nesse contexto, o monitoramento estatístico do processo pelo uso de cartas de controle 

pode ser considerado uma ferramenta adequada para o processo de metalização a vácuo, com 

base nas medidas de DO. Por permitir a detecção de situações anômalas, os gráficos de 

controle são ferramentas da qualidade eficientes para reduzir a variabilidade do processo e 

melhorar o seu desempenho (MONTGOMERY, 2009). Dessa forma, o presente trabalho 

descreve uma estratégia de monitoramento estatístico para um processo industrial de 

metalização a vácuo. Mais especificamente, a abordagem de monitoramento foi baseada nas 
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medidas de DO de filmes de poliéster revestidos com alumínio, adquiridas continuamente 

durante a metalização. A literatura relacionada à aplicação de cartas de monitoramento 

estatístico a esse tipo de processo é bastante escassa. Existe, por exemplo, um trabalho com 

abordagem diferente da apresentada nesta tese, o qual descreve a aplicação de um controlador 

preditivo generalizado, associada ao uso de uma carta de monitoramento estatístico CUSUM, 

para controlar a espessura do filme em um processo de deposição de uma fina camada de 

revestimento, utilizando a temperatura como variável de entrada do modelo (JIN; GUO; 

ZHOU, 2006).  

O principal objetivo do trabalho descrito neste capítulo consistiu em propor uma 

estratégia de monitoramento estatístico ao processo industrial de metalização a vácuo de 

filmes de poliéster, com base nas medidas de DO coletadas ao longo do processo. Para isso, 

foram estabelecidos os objetivos específicos detalhados a seguir: 

a) Investigar, em um estudo preliminar, as correlações existentes nos dados de DO 

adquiridos durante a produção sequencial de 8 filmes de poliéster metalizados; 

b) Sugerir uma estratégia de monitoramento estatístico para o processo de metalização 

com base no estudo preliminar realizado e nas características do processo; 

c) Avaliar a estratégia de monitoramento estatístico proposta utilizando dados de DO 

coletados durante a produção sequencial de 12 novos rolos de filme metalizado, não 

utilizados anteriormente; 

d) Complementar a estratégia de monitoramento sugerida com um estudo da capacidade 

do processo.  

 

4.1 METODOLOGIA 

 

A metodologia empregada no desenvolvimento deste trabalho está descrita a seguir. 

 

4.1.1 Processo de metalização a vácuo e aquisição dos dados de densidade óptica 

 

Os dados de processo utilizados no desenvolvimento do presente trabalho foram 

disponibilizados por uma empresa com planta industrial no estado de Pernambuco, que atua 

na fabricação de filmes especiais de poliéster. Esses dados consistem em medidas de 

densidade óptica adquiridas durante a produção industrial de rolos de filmes metalizados, 

através do processo de deposição metálica por evaporação a vácuo, conduzido em uma 
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metalizadora TOPMETTM 2450 (Applied Materials). Esse equipamento utiliza barcos de 

evaporação aquecidos por resistência com composição padrão, dispostos de forma alternada a 

cada 0,1 m ao longo da largura do filme, semelhante ao ilustrado na Figura 12.   

 

Figura 12 - Evaporadores dispostos de forma alternada dentro 

da metalizadora 

 
Fonte: Bishop (2015) 

 

 Durante a deposição, valores de DO do filme revestido foram obtidas por sensores 

alinhados a cada evaporador na direção do comprimento do filme. Nessa metalizadora, até 26 

barcos de evaporação podem ser instalados. Entretanto, o número de evaporadores utilizados 

em cada corrida, bem como o número de sensores ativos, depende da largura do rolo a ser 

revestido.  

 De um modo geral, as produções seguiram a operação básica desse tipo de processo, 

de acordo com o procedimento descrito por Bishop (2015). Durante cada corrida, carretéis de 

fios de alumínio de alta pureza (mínimo de 99%) são continuamente desenrolados utilizando 

bombas com motores a passos, as quais permitem o controle da alimentação do fio de 

alumínio em cada evaporador. Os fios passam, então, por tubos rígidos e são conduzidos até 

os barcos de evaporação para serem alimentados no local desejado, geralmente a região 

central dos barcos. Uma vez que o fio entra em contato com a superfície aquecida do 

evaporador, uma poça de fusão é formada, a partir da qual o alumínio evapora, criando uma 

nuvem de vapor dentro da metalizadora. À medida que o filme polimérico passa por essa 

nuvem, o revestimento metálico é depositado sobre uma de suas superfícies.   

 Inicialmente, dados de DO adquiridos durante a produção sequencial de oito rolos de 

filmes de poliéster de 12 µm de espessura foram avaliados. Essas corridas foram identificadas 

como A1 a A8, numeradas de acordo com a ordem de produção. Os dados, para essas oito 

corridas, foram obtidos por meio de 18 sensores de DO alinhados a 18 evaporadores, a cada 
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15 s aproximadamente. Antes do início dessa produção em sequência, um conjunto de 

evaporadores novos foi instalado na metalizadora.  

 Ao fim da metalização de cada rolo de filme polimérico, um relatório contendo os 

perfis de DO ao longo dos sentidos transversal e longitudinal do filme revestido foi extraído 

da metalizadora. Cada relatório foi organizado no formato de uma matriz de dados e, para o 

desenvolvimento do presente trabalho, cada barco de evaporação foi considerado uma 

variável. Por conseguinte, para cada rolo de filme produzido, foi gerada uma matriz de dados 

contendo 𝐽 =  18 colunas e 𝐾 linhas, em que 𝐾 representa a quantidade de medidas de DO 

adquiridas ao longo do tempo, podendo ter um valor diferente para cada corrida. 

 Uma representação esquemática simplificada do processo de metalização de um rolo 

de filme de poliéster, da aquisição dos dados de DO e da geração da matriz para cada corrida, 

está apresentada na Figura 13.  

 

Figura 13 - Representação esquemática simplificada do processo de metalização de um rolo de filme de 

poliéster, da aquisição dos dados de DO e da geração da matriz para cada corrida 

 

Fonte: A Autora (2020) 

 

A matriz de dados da Figura 13, com os valores de DO coletados ao longo de cada 

corrida do processo, foram coletados como arquivos em Excel. Esses dados foram importados 

e analisados no MATLAB (MathWorks, MA, USA), utilizando-se rotinas desenvolvidas 

durante este trabalho.  

 

4.1.2 Análise exploratória dos dados de densidade óptica 

 

Com o objetivo de compreender melhor os dados e, assim, propor uma estratégia de 

monitoramento mais adequada para o processo, uma análise exploratória foi realizada. 

Inicialmente, avaliou-se a velocidade dos filmes e as matrizes de dados coletadas para as 

corridas A1 a A8. Os perfis de DO foram investigados com o objetivo de detectar tendência e 

correlações nos dados. Dessa forma, os mapas de correlação de cada corrida foram avaliados 
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com o intuito de identificar padrões de correlação entre as 18 variáveis (barcos de 

evaporação), assim como para comparar o comportamento de diferentes corridas. Esses mapas 

foram construídos com base no cálculo dos coeficientes de correlação (r) entre todos os 

possíveis pares de variáveis. Trata-se de uma medida da dependência linear entre duas 

variáveis e pode ser calculado de acordo com a Equação 30. 

 

𝐫 =
𝟏

𝐍−𝟏
∑ (

𝐱𝐭−𝐱̅

𝐬𝐱
)𝐍

𝐭=𝟏 (
𝐲𝐭−𝐲̅

𝐬𝐲
)                                                                                          (30) 

 

Em que: x̅ e sx são, respectivamente, a média e o desvio-padrão da variável x; y̅ e sy 

são, respectivamente, a média e o desvio-padrão da variável y; N é o número de observações 

de cada variável; e o subíndice t indica a posição da medida no tempo.  

Adicionalmente, no estudo preliminar, também foram avaliadas a autocorrelação e a 

correlação cruzada para todas as variáveis. A função de autocorrelação (ACF), calculada de 

acordo com a Equação 31, é uma medida da correlação entre duas observações (medidas em 

tempos diferentes) para uma mesma variável (série temporal). Já a função de correlação 

cruzada (CCF), calculada a partir das Equações 32 e 33, é a medida da correlação entre duas 

observações em tempos diferentes, para duas variáveis diferentes (MONTGOMERY, 2009; 

MILLS, 2011). 

 

ACF =
∑ (xt−x̅)(xt−k−x̅)N−k

t=1

∑ (xt−x̅)2N
t=1

, para k=0, 1, 2,...                                                                (31) 

                               

𝐂𝐂𝐅 =
𝟏

𝛕
∑

(𝐱𝐭−𝐱̅)(𝐲𝐭+𝐤−𝐲̅)

𝐬𝐱𝐬𝐲

𝛕−𝐤
𝐭=𝟏  , para 𝐤 = 0, 1, 2, ...                                                        (32) 

 

𝐂𝐂𝐅 =
𝟏

𝛕
∑

(𝐱𝐭−𝐤−𝐱̅)(𝐲𝐭−𝐲̅)

𝐬𝐱𝐬𝐲

𝛕−𝐤
𝐭=𝟏  , para 𝐤 =0, −𝟏, −𝟐, ...                                                   (33) 

 

Em que k é o número de períodos de tempo que separam as observações e 𝜏 o número 

de pares de observações. 
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4.1.3 Estratégia de monitoramento estatístico  

 

Com o intuito de estimar a linha de tendência da trajetória de cada variável, a 

estatística EWMA foi empregada com o objetivo de suavizar o perfil de DO, permitindo 

assim, uma melhor visualização da tendência dos dados. Para essa abordagem específica, os 

limites de controle inferior e superior da carta EWMA não foram considerados. Na construção 

dessa carta, um parâmetro de suavização (𝜆) de 0,2 foi empregado e a média das cinco 

primeiras observações foi considerada como valor inicial (𝑧0), requerido no primeiro cálculo 

da estatística EWMA. 

Outra estratégia empregada para o monitoramento estatístico do processo envolveu a 

construção de cartas de controle EWMA e da amplitude (R), que foram usadas, 

respectivamente, para o monitoramento da média e da variabilidade do processo. Essas cartas 

foram construídas após a remoção da tendência dos dados. Para isso, as técnicas de 

diferenciação de primeira, segunda e terceira ordens foram avaliadas. Após a diferenciação 

aplicando-se a ordem mais apropriada, as cartas de controle EWMA foram, então, 

desenvolvidas para cada variável. Para a construção dessa carta, um parâmetro de suavização 

(𝜆) de 0,5 foi empregado e a média das cinco primeiras observações da variável foi 

considerada como valor inicial (𝑧0). Além disso, o fator largura dos limites de controle (𝐿) foi 

estabelecido em 2,7. Na definição dos limites de controle e da linha central dessa carta, o 

desvio-padrão e a média do processo foram calculados com base nos dados diferenciados das 

8 corridas analisadas (A1 a A8), para aquela variável específica. O objetivo dessa estratégia 

foi adotar a média representativa dos dados históricos com o intuito de usar a carta de controle 

EWMA para o monitoramento do processo em tempo real. 

Por fim, a carta de controle R foi também desenvolvida com base nos dados 

diferenciados. Na construção dessa carta, a amplitude móvel foi calculada para cada 5 

observações. A linha central do gráfico foi estimada pelo valor médio da amplitude móvel (R̅) 

calculado considerando os dados diferenciados das 8 corridas analisadas (A1 a A8), para uma 

posição específica de evaporador. Os limites inferior e superior de controle dessa carta foram 

calculados com base nas Equações 23 e 24, respectivamente, considerando 𝐷3 = 0 e 𝐷4 =

2,114. Conforme mencionado, essas constantes são tabeladas e dependem do número de 

pontos utilizados no cálculo da média móvel (MONTGOMERY, 2009). 
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4.1.4 Avaliação da estratégia de monitoramento estatístico proposta 

 

Após a proposição de uma estratégia de monitoramento estatístico para o processo 

estudado, um novo conjunto de dados de DO foi analisado seguindo-se o mesmo 

procedimento descrito para as corridas A1 a A8. Essa análise foi realizada com o intuito de 

avaliar a estratégia de monitoramento proposta e examinar se a mesma poderia ser utilizada 

no monitoramento de outras corridas do processo. Adicionalmente, o comportamento das 

novas corridas pôde ser comparado ao observado para as oito corridas analisadas inicialmente 

(A1 a A8).  

O novo conjunto de dados de DO foi coletado durante a produção sequencial de 12 

rolos de filme metalizado e as corridas de processo foram identificadas por B1 a B12, de 

acordo com a ordem de produção. Essas corridas foram produzidas na mesma metalizadora 

utilizada na produção das corridas A1 a A8, sob condições semelhantes, mas variando-se o 

filme de poliéster utilizado como substrato e o número de sensores de DO ativos. Para as 

primeiras 5 corridas (identificadas como B1 a B5), filmes de poliéster de 10 µm de espessura 

foram revestidos e as medidas de DO provenientes de 20 sensores foram consideradas. Já para 

as corridas B6 a B12, filmes de poliéster de 12 µm de espessura foram metalizados e medidas 

de DO de 22 sensores foram levadas em consideração. Apesar de terem sido utilizados três 

tipos de substratos diferentes nesse trabalho, o valor especificado para a densidade óptica do 

filme metalizado foi igual a 2,15 para todos os casos, valor comumente adotado pelas 

indústrias. Por fim, vale ressaltar que, antes das corridas B1 e B8, um conjunto de novos 

evaporadores foi instalado na metalizadora. 

 

4.1.5 Análise da capacidade do processo 

 

Outra estratégia que pode ser utilizada para o monitoramento de um processo em 

controle estatístico consiste na análise de sua capacidade. No presente trabalho, essa análise 

foi realizada pelo cálculo da razão de capacidade de um processo descentrado (CPk). No 

cálculo da CPk para cada variável, a média do processo (μ̂) foi estimada com base na média 

dos valores de DO para essa variável específica. Já o desvio-padrão (σ̂) foi calculado pela 

expressão σ̂ = R̅ d2⁄ , em que R̅ é a média da amplitude móvel (calculada para cada 5 pontos) 

dos valores de DO para aquela variável, e d2 = 2,326 é uma constante tabelada, dependente 

do número de observações utilizados no cálculo da amplitude móvel (MONTGOMERY, 
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2009). Enquanto as cartas de controle podem ser aplicadas para o monitoramento do processo 

em tempo real, a análise de capacidade sugerida deve ser realizada após o término da corrida.  

 

4.2 RESULTADOS E DISCUSSÃO 

 

Os resultados e discussão deste trabalho estão apresentados a seguir. 

 

4.2.1 Análise exploratória dos dados de densidade óptica 

 

A velocidade com que o filme de poliéster é desenrolado para ser revestido com uma 

fina camada metálica e posteriormente enrolado na forma de um novo rolo de filme 

metalizado é uma das variáveis de processo controladas durante a metalização. Associada 

com outras variáveis, como a taxa de alimentação do fio de alumínio e a temperatura do barco 

de evaporação, a velocidade do filme tem um efeito importante sobre os perfis de DO do 

filme metalizado. No período inicial do processo de deposição, a alimentação do fio ao 

evaporador deve ser realizada de forma gradual, com o objetivo de formar uma poça de fusão 

adequada, já que o tamanho e o formato da poça exercem influência sobre o perfil da 

deposição, de acordo com Bishop (2011). Nesse período, a velocidade do filme também é 

ajustada até alcançar as condições de operação, mantendo-se aproximadamente constante até 

o término da deposição. No caso de ocorrer uma perturbação no processo, essas variáveis são 

reguladas com o intuito de manter constante, à medida do possível, a relação entre a 

velocidade do filme e a taxa de evaporação. Por essa razão, a velocidade do filme e a taxa de 

alimentação do fio de alumínio apresentam perfis semelhantes. Com o objetivo de ilustrar o 

comportamento da velocidade do filme estabelecida para o processo e dos perfis de DO, estão 

apresentados na Figura 14 o perfil da velocidade do filme (em m/s) (a) e os perfis de DO para 

os 18 evaporadores (b) para a corrida A2.  
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Figura 14 – Perfil da velocidade do filme (a) e perfis de DO adquiridos ao longo 

dos 18 evaporadores (b) para a corrida A2 

 
Fonte: A Autora (2020) 

 

 

 Devido à influência da velocidade do filme nos perfis de DO, assim como aos ajustes 

iniciais nas condições de operação do processo (por exemplo, ajuste para alcançar a 

velocidade de 10 m/s), todas as análises apresentadas nesse trabalho foram realizadas a partir 

do momento em que a velocidade do filme foi mantida aproximadamente constante. Um 

critério de convergência envolvendo o cálculo consecutivo do desvio-padrão da velocidade do 

filme foi utilizado para definir esse momento para cada corrida. Para a corrida A2, por 

exemplo, a velocidade do filme foi considerada constante a partir de 600 s, aproximadamente 

(Figura 14).  

 Com o objetivo de auxiliar na seleção de uma estratégia de monitoramento adequada 

para o processo, foi realizada uma análise exploratória nos dados das corridas A1 a A8. De 

modo geral, esse estudo preliminar envolveu a investigação dos perfis de DO para a detecção 

de tendência e correlações nos dados. Inicialmente, foram avaliados os mapas de correlação 

para cada corrida, apresentados na Figura 15. Nesses mapas, a escala de cores está relacionada 

com os valores do coeficiente de correlação entre todos os possíveis pares de variáveis 

(evaporadores).  
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Figura 15 – Mapas de correlação para as corridas A1 a A8. As escalas de cores estão relacionadas com os 

coeficientes de correlação entre as variáveis 

 

Fonte: A Autora (2020) 

 

Os mapas de correlação apresentados na Figura 15 demonstraram que os dados 

coletados ao longo dos 18 evaporadores são pouco correlacionados. A fraca correlação entre 

os dados está provavelmente relacionada com a dificuldade de se ter evaporadores operando 

com temperaturas iguais. Ainda que o mesmo valor de corrente seja aplicado a todos os 

barcos de evaporação, a temperatura não necessariamente é a mesma para todos eles, uma vez 

que as resistividades dos barcos podem apresentar pequenas diferenças. Além disso, a taxa de 

alimentação do fio de alumínio também pode variar um pouco para cada barco. Como 

resultado, o tamanho da poça de fusão e, consequentemente, da nuvem de vapor, pode ser 

diferentemente formada para cada evaporador, ocasionando uma diferença no perfil de 

deposição. Dessa forma, a soma desses fatores podem influenciar na uniformidade da 

espessura da camada metálica depositada sobre o filme ao longo de sua largura e, portanto, 
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justificam a importância de se utilizar as medidas de DO no controle da alimentação do fio de 

alumínio e da temperatura do barco de evaporação, conforme discutido por Bishop (2015).  

Por outro lado, é possível perceber a partir dos mapas de correlação (Figura 15) que, 

em alguns casos, os dados de DO adquiridos ao longo de evaporadores vizinhos apresentam 

uma correlação um pouco maior. Esse fato está provavelmente relacionado com o 

funcionamento do sistema de controle da metalizadora. Basicamente, nesse sistema, quando 

uma ação corretiva é necessária, a mesma é realizada não apenas no evaporador que a 

requereu, mas também nos dois evaporadores vizinhos a esse.  

Por fim, os mapas de correlação apresentados na Figura 15 indicaram a ausência de 

um padrão de correlação que se repita para as 8 corridas analisadas. Isso pode estar 

relacionado às diferenças no processo entre uma corrida e outra. Dentre os quais, pode-se 

citar: as variações nos materiais utilizados (barcos de evaporação, fio de alumínio e 

substratos); a limpeza do equipamento; a utilização de evaporadores mais novos ou mais 

antigos (desgastados); e as mudanças no sistema de alimentação do alumínio (por exemplo, 

utilização de carretéis de fios de alumínio mais cheios ou mais vazios e posição da 

alimentação do alumínio no evaporador). 

Além da análise dos mapas de correlação, realizou-se também a avaliação das funções 

de autocorrelação (ACF) e de correlação cruzada (CCF) para todas as variáveis das corridas 

A1 a A8. De um modo geral, o autocorrelograma (gráfico para apresentação da ACF) de cada 

variável permitiu a detecção de uma alta correlação entre observações adquiridas em tempos 

diferentes, o que pode ser um indicativo de tendência nos dados. Por outro lado, a CCF para 

cada par de variáveis indicou uma fraca correlação cruzada para as medidas adquiridas ao 

longo de evaporadores vizinhos. Medidas coletadas ao longo de evaporadores mais distantes 

não apresentaram, de modo geral, correlação cruzada.  

A quantidade de gráficos geradas nesse estudo impossibilitam a apresentação de todos 

eles, dessa forma, apenas alguns resultados são mostrados a fim de se exemplificar o que foi 

discutido. Estão apresentadas na Figura 16, por exemplo, as funções ACF e CCF para as 

variáveis 1 e 2 (Figura 16a) e 1 e 15 (Figura 16b), da corrida A2.  
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Figura 16 - ACF das variáveis 1 (em azul) e 2 (em preto) e CCF dessas variáveis (em magenta), para a 

corrida A2 (a); e ACF das variáveis 1 (em azul) e 15 (em verde) e correlação cruzada 

dessas variáveis (em magenta), para a mesma corrida (b). Em vermelho, limites com 99% 

de confiança para ACF e CCF 

 
Fonte: A Autora (2020) 

 

É possível perceber através da Figura 16, que todas as três variáveis analisadas (1, 2 e 

15) apresentaram autocorrelação (valores acima dos limites com 99% de confiança). A análise 

da CCF indicou correlação cruzada entre as variáveis 1 e 2 (Figura 16a) e entre as variáveis 1 

e 15 (Figura 16b), com valores de correlação acima dos limites. Nesse exemplo, as medidas 

adquiridas ao longo de evaporadores mais distantes também apresentaram uma alta correlação 

cruzada.  

Com o intuito de dar mais um exemplo sobre o estudo das correlações, estão 

apresentadas na Figura 17, as funções ACF e CCF para as variáveis 1 e 2 (Figura 17a) e 1 e 

15 (Figura 17b), da corrida A5.  
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Figura 17 - ACF das variáveis 1 (em azul) e 2 (em preto) e CCF dessas variáveis (em magenta), para a corrida 

A5 (a); e ACF das variáveis 1 (em azul) e 15 (em verde) e correlação cruzada dessas variáveis (em 

magenta), para a mesma corrida (b). Em vermelho, limites com 99% de confiança para ACF e CCF 

 
Fonte: A Autora (2020) 

 

Conforme apresentado na Figura 17, nesse caso, as variáveis 2 e 15 apresentaram 

valores mais baixos de autocorrelação. Além disso, tanto os evaporadores vizinhos (1 e 2) 

quanto os mais distantes (1 e 15) da corrida A5 não apresentaram correlação cruzada.  

 

4.2.2 Estratégia de monitoramento estatístico  

 

As características do processo de metalização a vácuo abordadas anteriormente, bem 

como a fraca correlação dos dados de DO adquiridos ao longo de diferentes evaporadores, 

motivaram a aplicação de cartas de controle univariadas para o monitoramento do processo. 

Novamente, a quantidade de gráficos gerados nesse estudo impossibilita a apresentação de 

todos eles. Dessa forma, apenas alguns resultados selecionados serão mostrados com o 

objetivo de ilustrar as principais conclusões. 

A princípio, levando-se em consideração a importância de monitorar a tendência dos 

dados, a estatística EWMA foi utilizada como uma ferramenta para suavização dos dados de 

modo a facilitar a detecção da linha de tendência. O objetivo é que essa detecção, feita de 

forma mais rápida e clara, possa auxiliar os operadores nas tomadas de decisões e ações 

corretivas requeridas ao longo do processo. A comparação entre as cartas EWMA para todas 

as variáveis de cada corrida confirmou que as medidas de DO adquiridas ao longo de 

evaporadores diferentes, de fato, apresentam um comportamento independente. Assim, 
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embora evaporadores vizinhos possam apresentar tendências similares, as medidas de DO 

adquiridas ao longo de evaporadores distintos, em geral, apresentam trajetórias diferentes. 

Para ilustrar essa observação, as cartas EWMA para as 18 variáveis da corrida A2 estão 

apresentadas no APÊNDICE E. 

Adicionalmente, uma análise comparativa entre as corridas A1 a A8, permitiu verificar 

que um mesmo evaporador apresentou comportamento distinto para diferentes corridas. Isso 

pode ser explicado pelos possíveis ajustes no processo realizados entre as corridas, conforme 

discutido anteriormente.  

Com o objetivo de ilustrar essa discussão, as cartas de controle EWMA para o 

monitoramento da linha de tendência de três variáveis diferentes (barcos 1, 2 e 15) das 

corridas A2 e A5 estão apresentados, respectivamente, nas Figura 18a e Figura 18b.  

 

Figura 18 – Cartas de controle EWMA para o monitoramento da tendência dos dados (os 

símbolos conectados por linhas finas representam os dados originais enquanto 

as linhas grossas mostram a tendência) para os barcos de evaporação 1, 2 e 15 

das corridas A2 (a) e A5 (b) 

 
Fonte: A Autora (2020) 
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Principalmente na Figura 18a, é possível perceber a similaridade entre as medidas de 

DO adquiridas ao longo dos barcos 1 e 2, e a dissimilaridade entre essas medidas em relação 

aos valores coletados para o barco 15. Adicionalmente, ao comparar ambas as figuras, é 

possível identificar que evaporadores na mesma posição (por vezes, o mesmo evaporador) 

apresentam um comportamento diferente para corridas distintas. 

Outra estratégia que pode ser utilizada para o monitoramento do processo envolve o 

uso de cartas de controle univariadas para o monitoramento da média e da variabilidade do 

processo. A maioria das cartas de controle convencionais utilizadas para esse fim, entretanto, 

assumem que os dados são distribuídos de forma independente ao longo do tempo 

(MONTGOMERY, 2009). Conforme discutido anteriormente, o processo estudado apresenta 

dados autocorrelacionados, violando a suposição de independência temporal. Existem 

diversas técnicas que podem ser utilizadas para lidar com esse tipo de dado ( REYNOLDS; 

LU, 1997; LU; REYNOLDS JR., 2001). No presente trabalho, a seguinte estratégia foi 

adotada: a tendência foi previamente removida pelo processo de diferenciação e, então, cartas 

de controle convencionais foram desenvolvidas com base nos dados diferenciados. Essa 

estratégia foi selecionada por ser considerada de fácil interpretação e implementação no 

processo estudado, quando comparado com outras abordagens como a de modelagem de 

séries temporais e posterior monitoramento dos resíduos.  

Embora a tendência possa ser importante para conhecimento dos dados estudados, ela 

frequentemente pode prejudicar a interpretação dos dados do processo e, portanto, deve ser 

removida (SHUMWAY; STOFFER, 2017). No presente trabalho, a primeira, segunda e 

terceira ordens de diferenciação foram aplicadas para a remoção da tendência. Observou-se 

que, em geral, a segunda e terceira ordens de diferenciação introduziram ruído aos dados, o 

que motivou a escolha da primeira ordem, que permitiu, de um modo geral, a efetiva remoção 

da tendência, conforme ilustrado na Figura 5-1 do APÊNDICE F. 

Após a seleção da ordem de diferenciação adequada, cartas de controle foram 

desenvolvidas com base nos dados diferenciados, para monitoramento da média e da 

variabilidade. Para monitoramento da média, a carta de controle EWMA foi selecionada pois, 

segundo Montgomery (2009), ela permite a detecção de desvios de pequena magnitude no 

processo. A análise da carta EWMA para os dados diferenciados, em geral, resultou em 

valores aleatoriamente distribuídos, sem uma tendência evidente. No que diz respeito ao 

monitoramento da variabilidade do processo, cartas de controle da amplitude (R) foram 

também construídas a partir dos dados diferenciados. Para ilustrar a aplicação dessas 
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estratégias, cartas EWMA e da amplitude (R) estão apresentadas na Figura 19, para o 

monitoramento do barco de evaporação 1 da corrida A2 (Figura 19a e c) e do barco 15 da 

corrida A5 (Figura 19b e d).  

 

Figura 19 – Carta de controle EWMA nos dados diferenciados para o barco de evaporação 1 da corrida A2 (a) e 

o barco 15 da corrida A5 (b); e carta de controle da amplitude (R) nos dados diferenciados para o barco de 

evaporação 1 da corrida A2 (c) e o barco 15 da corrida A5 (d). As linhas contínuas em vermelho representam os 

limites superior e inferior (LSC / LIC) de controle e a linha tracejada em vermelho o limite central (LC) para os 

gráficos de controle 

 
Fonte: A Autora (2020) 

 

Conforme observado na Figura 19a (carta EWMA para o barco 1 da corrida A2), a 

média do processo se encontra dentro dos limites de controle. Já para o barco 15 da corrida 

A5, (Figura 19b), é possível identificar uma situação fora de controle evidenciada por um pico 

em torno de 1600 s. Esse tipo de distúrbio é comumente observado em caso de falhas na 

medição do sensor ou no sistema de aquisição de dados (JIN; GUO; ZHOU, 2006). Se o 

mesmo ocorrer com muita frequência, no entanto, uma investigação mais elaborada do 

processo deve ser realizada com o intuito de corrigir esse tipo de perturbação. 
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 No que diz respeito ao monitoramento da variabilidade do processo para o barco 1 da 

corrida A2 (Figura 19c), está indicada no gráfico da amplitude uma tendência ascendente na 

variabilidade dos dados ao longo do processo. De um modo geral, para as duas primeiras 

corridas (A1 e A2), esse comportamento foi identificado para alguns barcos de evaporação 

(ver APÊNDICE G para a corrida A2). Apenas com a análise realizada, não é possível 

garantir a causa para esse tipo de ocorrência. No entanto, uma possível explicação pode estar 

relacionada às particularidades associadas ao primeiro uso de um barco de evaporação. 

Basicamente, conforme discutido por Bishop (2011) e (2015), barcos de evaporação novos 

podem conter compostos voláteis e umidade. Sendo assim, é essencial que se respeite a rampa 

de aquecimento indicada pelo fabricante com o intuito de eliminar esses compostos e, dessa 

forma, estabilizar o evaporador para que seja utilizado na corrida seguinte. Para as corridas 

produzidas na sequência, de A3 em diante, essa tendência de variabilidade crescente ao longo 

do processo não foi evidenciada (de forma ilustrativa, ver Figura 19d para o barco 15 corrida 

A5). 

Nas últimas corridas (mais especificamente, A6, A7 e A8), as cartas de controle 

EWMA e R apresentaram, de um modo geral, mais sinais fora de controle, sugerindo um 

processo mais instável. Durante as oito corridas (A1 a A8), não se obteve informação de que 

algum evaporador tenha sido substituído. Portanto, a instabilidade das medições de DO para 

as últimas corridas dessa produção em sequência pode estar relacionada à vida útil dos barcos 

de evaporação. Conforme discutido por Bishop (2011) e (2015), no final da vida útil do barco, 

seu desempenho geralmente é reduzido. Essa redução é comumente atribuída às reações 

químicas que ocorrem no processo, as quais podem ocasionar a erosão e a redução da 

resistividade do barco. Além disso, pode estar associada também ao processo de corrosão e 

desgaste do barco, devido à natureza altamente corrosiva do alumínio fundido.  

 

4.2.3 Avaliação da estratégia de monitoramento proposta 

 

Com o intuito de avaliar se a estratégia de monitoramento empregada poderia ser 

utilizada para monitoramento de outras corridas do processo e se o comportamento observado 

para as corridas A1 a A8 se repetiria, os dados de DO adquiridos ao longo da produção 

sequencial de 12 novas corridas (B1 a B12) foram analisadas seguindo o mesmo 

procedimento. Assim, inicialmente, foram avaliados os mapas de correlação para essas novas 

corridas, apresentados na Figura 20. 



95 

 

 

 

Figura 20 – Mapas de correlação para as corridas B1 a B12. As escalas de cores estão relacionadas com os 

coeficientes de correlação entre as variáveis 

 
Fonte: A Autora (2020) 

 

Em geral, conforme observado na Figura 20, um comportamento semelhante foi 

observado para as corridas B1 a B12, principalmente no que se refere à baixa correlação entre 

as variáveis e à ausência de um padrão de correlação quando diferentes corridas são 

comparadas. A abordagem de monitoramento proposta poderia, portanto, ser usada no 

monitoramento desses novos dados. Para ilustrar essa utilização, a estratégia de 

monitoramento para a variável 1 da corrida B2 está apresentada na Figura 21.  
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Figura 21 - Estratégia de monitoramento proposta para a corrida B2: carta EWMA para monitoramento da 

tendência dos dados (símbolos conectados por uma linha fina representam os dados originais enquanto a linha 

grossa mostra a tendência) (a), carta EWMA nos dados diferenciados (b) e carta de controle R nos dados 

diferenciados (c), para a variável 1 

 
Fonte: A Autora (2020) 

 

Conforme apresentado na Figura 21, é possível perceber que, a variável 1 da corrida 

B2, o processo está em controle estatístico. Apenas um pico fora de controle foi detectado em 

torno de 4000 s. Em comparação com as cartas de controle para as corridas A1 a A8, em 

geral, as corridas B1 a B12 apresentaram um comportamento similar em relação ao 

desempenho do evaporador ao longo de sua vida útil. Corridas produzidas usando 

evaporadores com um tempo de vida mais longo, geralmente, apresentaram um 

comportamento mais instável, sinalizando mais valores fora de controle nas cartas EWMA e 

R. 

 Em relação às particularidades associadas ao primeiro uso do evaporador, com o 

intuito de reduzir os efeitos disso no processo, as corridas que utilizaram evaporadores novos 

(B1 e B8) foram conduzidas com a aplicação de uma velocidade de filme mais baixa. Como 

possível resultado dessa estratégia adotada, a análise das cartas de controle para essas corridas 

(B1 e B8) não evidenciou um aumento na variabilidade do processo ao longo da produção, 

como foi observado para as corridas A1 e A2 (resultados não apresentados devido à grande 

quantidade de gráficos gerados).  
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4.2.4 Análise da capacidade do processo 

 

Além das cartas de monitoramento estatístico apresentadas, o presente trabalho sugere 

também a avaliação da capacidade do processo, com o objetivo de estimar a sua variabilidade 

em relação aos limites de especificação do produto e de ajudar na eliminação ou redução 

dessa variabilidade. Uma maneira bem estabelecida de expressar a capacidade de um processo 

descentralizado consiste em estimar a sua razão de capacidade (CPk). De modo geral, para um 

CPk de valor unitário, o processo é geralmente considerado razoavelmente capaz e quanto 

maior o valor de CPk, maior a capacidade do processo de atender às especificações do 

produto. Essa análise deve ser realizada, no entanto, em conjunto com a avaliação das cartas 

de monitoramento, uma vez que é válida para um processo em controle estatístico 

(MONTGOMERY, 2009).  

Para ilustrar como a análise de capacidade pode ser aplicada ao processo em estudo, 

estão apresentados na Figura 22 os valores de CPk para os 18 barcos de evaporação da corrida 

A2.  

 

Figura 22 – Valores de 𝐂𝐏𝐤 para cada barco de evaporação da corrida A2. A linha tracejada é o limite unitário 

para o 𝐂𝐏𝐤 

 
Fonte: A Autora (2020) 

 

Como pode ser visto na Figura 22, o valor de CPk foi superior a um para todos os 

barcos, exceto o 5. Tomando-se como exemplo o barco 4, este apresentou um valor de CPk 

maior do que 1,5. O perfil de DO e as cartas EWMA e R para esse barco estão apresentados 

na Figura 23.  
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Figura 23 – Perfis de DO e limites superior (LSE) e inferior (LIE) de especificação (a), carta EWMA nos dados 

diferenciados (b) e carta de controle R nos dados diferenciados (c), para a variável 4 da corrida A2 

 
Fonte: A Autora (2020) 

 

A partir da análise da Figura 23, é possível perceber que o barco 4 apresentou apenas 

alguns poucos pontos fora dos limites de especificação (Figura 23a), o que sugere que o 

evaporador estava em boas condições. Adicionalmente, as cartas EWMA (Figura 23b) e R 

(Figura 23c) para essa variável não sinalizaram pontos fora dos limites de controle, apenas a 

carta da amplitude apresentou algumas sequências de pontos abaixo da linha central do 

gráfico. Sendo assim, pode-se concluir que o processo é, de fato, capaz de atender às 

especificações para essa variável.  

Tomando-se como exemplo agora o barco de evaporação 5 da corrida A2, vê-se que 

este apresentou um valor de CPk bem menor do que 1 (Figura 22). O perfil de DO e as cartas 

EWMA e R para esse barco estão apresentados na Figura 24.  
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Figura 24 – Perfis de DO e limites superior (LSE) e inferior (LIE) de especificação (a), carta EWMA nos dados 

diferenciados (b) e carta de controle R nos dados diferenciados (c), para a variável 5 da corrida A2 

 
Fonte: A Autora (2020) 

 

Quando o perfil de DO do barco 5 é analisado (Figura 24a), percebe-se que as medidas 

para esse barco, de fato, apresentaram diversos valores acima do limite superior de 

especificação (LSE). No entanto, o resultado da análise de capacidade para esse barco deve 

ser avaliado com cautela, uma vez que a carta de monitoramento da amplitude, apresentada 

Figura 24c, indica uma tendência crescente da variabilidade ao longo do processo, além de 

algumas sequências de pontos abaixo da linha central. Essa tendência está associada, 

provavelmente, à estabilização do barco durante as primeiras vezes que é utilizado, conforme 

discutido anteriormente. Dessa forma, esse comportamento pode indicar uma situação fora de 

controle estatístico, o que prejudica a análise do CPk.  

Outro exemplo da análise da capacidade do processo pode ser visto na Figura 25, em 

que estão apresentados os valores de CPk para os barcos de evaporação da corrida A7. Essa foi 

a penúltima corrida da produção sequencial e, provavelmente, barcos de evaporação com um 

tempo de serviço maior foram utilizados, o que pode levar a algumas situações fora de 

controle. 
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Figura 25 - Valores de 𝐂𝐏𝐤 para cada barco de evaporação da corrida A7. A linha tracejada é o limite unitário 

para o 𝐂𝐏𝐤 

 
Fonte: A Autora (2020). 

 

Como pode ser visto na Figura 25, para a corrida A7, os valores de CPk ficaram abaixo 

do limite unitário para diversos evaporadores. De forma a ilustrar a análise, pode-se tomar 

como exemplo o barco 3, que apresentou um valor de CPk bem abaixo do limite. O perfil de 

DO e as cartas EWMA e R para esse barco estão apresentados na Figura 26.  

 

 
Figura 26 – Perfis de DO e limites superior (LSE) e inferior (LIE) de especificação (a), carta EWMA nos dados 

diferenciados (b) e carta de controle R nos dados diferenciados (c), para a variável 3 da corrida A7 

 
Fonte: A Autora (2020) 
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A análise do perfil de DO para o barco 3 (Figura 26a) indicou a ocorrência de alguns 

pontos fora de especificação, principalmente, entre 600 e 900 s de produção. Adicionalmente, 

a avaliação das cartas EWMA e R para essa variável, (Figura 26b e c, respectivamente), 

detectaram alguns pontos fora de controle no início e no fim da corrida. Como consequência, 

a análise de capacidade deve ser realizada com parcimônia, já que o processo não estava em 

controle estatístico para essa variável.  

Considerando ainda a corrida A7, pode-se pegar outro exemplo para ilustrar a 

estratégia de monitoramento proposta. O barco de evaporação 1, por exemplo,  que foi um dos 

barcos que apresentou um valor de CPk acima do limite unitário, conforme ilustrado na Figura 

25. O perfil de DO e as cartas EWMA e R para essa variável estão apresentados na Figura 27.  

 

 

Figura 27 – Perfis de DO e limites superior (LSE) e inferior (LIE) de especificação (a), carta EWMA nos dados 

diferenciados (b) e carta de controle R nos dados diferenciados (c), para a variável 1 da corrida A7 

 
Fonte: A Autora (2020) 

 

Conforme observado na Figura 27, de modo geral, quase todas as medidas de DO para 

essa variável ficaram dentro dos limites de especificação (Figura 27a). As cartas de controle 

EWMA e R, ilustradas, respectivamente, na Figura 27b e c, também indicaram que o processo 
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estava em controle estatístico para essa variável, possibilitando a análise da capacidade do 

processo de forma coerente.  

Enquanto a estratégia de monitoramento estatístico proposta pode ser utilizada para o 

monitoramento do processo em tempo real, a análise de capacidade sugerida deve ser usada 

após a conclusão de cada corrida. Embora ela não auxilie nas ações corretivas ao longo do 

processo, são úteis para indicar, de forma mais rápida e clara, as posições dos evaporadores 

em que mais valores de DO foram obtidos fora de especificação. Isso permite, portanto, guiar 

os ajustes realizados entre a metalização de um filme e outro.  

 

4.3 CONCLUSÃO 

 

O presente capítulo apresentou uma estratégia de monitoramento estatístico para as 

medidas de DO de filmes de poliéster metalizados, adquiridas ao longo de um processo 

industrial de metalização a vácuo utilizando barcos de evaporação aquecidos por resistência. 

Um estudo preliminar para detectar tendência e correlação nos dados foi apresentado e a baixa 

correlação entre as medidas coletadas ao longo de diferentes barcos motivou a utilização de 

técnicas de monitoramento univariadas. A estratégia proposta consistiu no uso de uma carta 

EWMA para o monitoramento da linha de tendência dos dados, e cartas EWMA e da 

amplitude (R), construídas com base nos dados diferenciados, para o monitoramento da média 

e da variabilidade do processo, respectivamente. A ideia aplicada no desenvolvimento dessas 

cartas visou ao monitoramento do processo em tempo real, de forma que elas possam ser 

usadas para auxiliar os operadores em relação às ações corretivas requeridas ao longo do 

processo. Além disso, o uso dessas cartas apresenta um potencial para redução da 

variabilidade do processo, buscando-se uma deposição metálica mais consistente e uniforme 

ao longo de todo o filme.  

Adicionalmente, o presente capítulo também apresentou uma análise de capacidade 

para o processo. No entanto, conforme discutido, essa análise precisa ser utilizada com 

parcimônia, já que a mesma deve ser aplicada quando o processo estiver em controle 

estatístico. Ao contrário das cartas de monitoramento estatístico, a análise de capacidade do 

processo proposta visa ao monitoramento do processo no modo off-line, após a sua conclusão. 

É uma forma mais simples e rápida de guiar os ajustes que são realizados entre corridas, 

mostrando a posição do evaporador que apresentou mais valores fora de especificação.  
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Por fim, a ideia principal é que a utilização das ferramentas de monitoramento 

estatístico apresentadas, através de uma análise mais elaborada dos dados de DO já coletados 

e disponíveis para uso, possam auxiliar no monitoramento do processo, com o intuito de 

reduzir a sua variabilidade e, consequentemente, melhorar o desempenho de barreira dos 

filmes metalizados produzidos.   
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5 PERSPECTIVAS  

 

Em relação ao monitoramento da produção de biodiesel, uma dificuldade encontrada 

no desenvolvimento do presente trabalho consistiu na coleta de amostras da mistura reacional 

em outros pontos da coluna de destilação reativa utilizada. Dessa forma, trabalhos futuros 

poderiam otimizar essas coletas de modo que permitissem a aquisição de espectros em 

diversos pontos da coluna de destilação reativa. A ideia seria obter um perfil da concentração 

de ésteres alquílicos (biodiesel) ao longo da coluna, o que poderia auxiliar na definição de 

suas condições operacionais.  

Além disso, os modelos de regressão PLS desenvolvidos no presente trabalho, para 

estimar as concentrações de éster alquílico, etanol e glicerol, poderiam ser alimentados com 

mais espectros provenientes de amostras da coluna e de amostras quaternárias, adquiridos na 

faixa de temperatura de 50 – 60°C. Conforme discutido, a inclusão de algumas amostras 

nessas condições nos modelos promoveu uma melhoria dos resultados. Dessa forma, se mais 

amostras fossem incluídas, os resultados apresentados poderiam ser ainda melhores. 

No que diz respeito ao monitoramento da metalização de filmes poliméricos, trabalhos 

futuros poderiam viabilizar o uso de métodos multivariados para o monitoramento estatístico 

do processo. Conforme discutido, a baixa correlação entre as variáveis e as características do 

processo motivaram a aplicação de técnicas univariadas no presente trabalho. No entanto, 

uma desvantagem associada ao uso dessas técnicas está relacionada à quantidade de gráficos 

que precisam ser analisados. Dessa forma, métodos multivariados não convencionais 

poderiam ser aplicados a esse processo com o intuito de reduzir a quantidade de gráficos e, 

assim, facilitar o monitoramento. É importante ressaltar que o uso de métodos multivariados 

tradicionais tem sido avaliado, no entanto, resultados satisfatórios ainda não foram obtidos, o 

que indica a necessidade de um maior aprofundamento no tema.   
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APÊNDICE A – Artigo publicado em revista científica 
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APÊNDICE B – Diagrama ternário proveniente do planejamento de misturas com 

pontos adicionais  

 

Figura – Composição das misturas sintéticas usadas nos modelos de calibração. 

 

Fonte: A Autora (2020). 
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APÊNDICE C – Misturas sintéticas preparadas para o desenvolvimento dos modelos de 

calibração 

Tabela – Frações mássicas de óleo, etanol, éster alquílico e glicerol para cada mistura sintética e a respectiva 

temperatura de análise com o MicroNIR 

(continua) 

Mistura 

sintética 

Temperatura 

de análise (°C) 

Teor de 

óleo (% 

(m/m)) 

Teor de etanol 

(% (m/m)) 

Teor de éster 

alquílico (% 

(m/m)) 

Teor de glicerol 

(% (m/m)) 

1 25 6,25 82,49 11,25 0,00 

2 25 6,25 75,00 18,75 0,00 

3 25 3,75 85,00 11,25 0,00 

4 25 4,11 78,04 17,85 0,00 

5 25 5,73 76,91 17,36 0,00 

6 25 4,33 81,96 13,71 0,00 

7 25 3,48 81,51 15,01 0,00 

8 25 1,76 81,50 16,74 0,00 

9 25 4,00 81,50 14,50 0,00 

10 25 2,50 81,48 16,02 0,00 

11 25 5,00 80,00 15,01 0,00 

12 25 4,00 80,00 16,00 0,00 

13 25 3,50 80,00 16,50 0,00 

14 25 3,00 79,99 17,01 0,00 

15 25 2,50 79,99 17,50 0,00 

16 25 1,99 80,01 18,00 0,00 

17 25 20,00 80,00 0,00 0,00 

18 25 18,00 80,01 2,00 0,00 

19 25 16,00 79,99 4,01 0,00 

20 25 14,00 80,00 6,01 0,00 

21 25 12,00 80,01 8,00 0,00 

22 25 10,00 80,00 10,00 0,00 

23 25 8,00 80,00 12,00 0,00 

24 25 6,00 79,99 14,00 0,00 

25 25 1,50 80,00 18,50 0,00 

26 25 1,00 80,00 19,00 0,00 

27 25 5,35 82,37 12,28 0,00 

28 25 15,17 77,44 7,39 0,00 

29 25 17,63 82,37 0,00 0,00 

30 25 2,90 82,33 14,77 0,00 

31 25 20,08 77,46 2,46 0,00 

32 25 5,35 77,45 17,19 0,00 

33 25 7,81 82,37 9,82 0,00 

34 25 15,09 79,91 5,00 0,00 

35 25 17,63 77,46 4,91 0,00 

36 25 7,81 77,46 14,73 0,00 

37 25 2,90 77,46 19,64 0,00 
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Tabela – Frações mássicas de óleo, etanol, éster alquílico e glicerol para cada mistura sintética e a respectiva 

temperatura de análise com o MicroNIR.  

(continuação) 

Mistura 

sintética 

Temperatura 

de análise (°C) 

Teor de 

óleo (% 

(m/m)) 

Teor de etanol 

(% (m/m)) 

Teor de éster 

alquílico (% 

(m/m)) 

Teor de glicerol 

(% (m/m)) 

38 25 5,09 79,91 15,00 0,00 

39 25 12,72 77,46 9,82 0,00 

40 25 10,26 77,46 12,28 0,00 

41 25 10,26 82,37 7,36 0,00 

42 25 13,63 82,37 4,00 0,00 

43 25 1,54 77,47 21,00 0,00 

44 25 22,54 77,46 0,00 0,00 

45 25 5,36 84,82 9,82 0,00 

46 25 10,27 75,00 14,73 0,00 

47 25 20,10 74,99 4,91 0,00 

48 25 25,00 75,00 0,00 0,00 

49 25 12,72 74,99 12,29 0,00 

50 25 2,90 84,81 12,29 0,00 

51 25 15,00 85,00 0,00 0,00 

52 25 5,36 75,00 19,64 0,00 

53 25 7,81 74,99 17,20 0,00 

54 25 6,50 77,99 15,51 0,00 

55 25 22,54 75,00 2,46 0,00 

56 25 12,72 84,83 2,45 0,00 

57 25 10,27 84,81 4,91 0,00 

58 25 15,18 75,00 9,82 0,00 

59 25 7,81 84,83 7,37 0,00 

60 25 17,63 75,00 7,37 0,00 

61 25 7,50 83,51 8,99 0,00 

62 25 1,18 84,83 13,99 0,00 

63 25 14,18 84,82 1,00 0,00 

64 25 1,00 85,01 14,00 0,00 

65 25 2,90 75,00 22,10 0,00 

66 25 2,00 75,00 23,00 0,00 

67 25 1,70 75,30 23,00 0,00 

68 25 1,59 79,90 18,51 0,00 

69 25 1,13 82,37 16,50 0,00 

70 25 15,00 76,00 9,00 0,00 

71 25 7,26 78,92 6,85 6,97 

72 25 21,06 70,08 2,30 6,55 

73 25 1,87 70,08 21,49 6,56 

74 25 9,59 70,07 13,76 6,58 

75 25 7,30 70,07 16,07 6,56 

76 25 14,19 70,09 9,18 6,54 

77 25 1,05 76,50 15,32 7,13 

78 25 7,01 78,04 8,40 6,55 
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Tabela – Frações mássicas de óleo, etanol, éster alquílico e glicerol para cada mistura sintética e a respectiva 

temperatura de análise com o MicroNIR.  

(continuação) 

Mistura 

sintética 

Temperatura 

de análise (°C) 

Teor de 

óleo (% 

(m/m)) 

Teor de etanol 

(% (m/m)) 

Teor de éster 

alquílico (% 

(m/m)) 

Teor de glicerol 

(% (m/m)) 

79 25 14,02 71,04 8,41 6,54 

80 25 13,25 79,23 0,93 6,59 

81 25 2,50 82,47 15,02 0,00 

82 50-60 2,50 82,47 15,02 0,00 

83 25 5,38 82,49 11,01 1,12 

84 50-60 5,38 82,49 11,01 1,12 

85 25 5,38 82,50 9,00 3,12 

86 50-60 5,38 82,50 9,00 3,12 

87 25 4,00 80,01 16,00 0,00 

88 50-60 4,00 80,01 16,00 0,00 

89 25 3,47 79,95 14,99 1,59 

90 50-60 3,47 79,95 14,99 1,59 

91 25 3,37 80,00 15,50 1,12 

92 50-60 3,37 80,00 15,50 1,12 

93 25 2,50 77,49 20,01 0,00 

94 50-60 2,50 77,49 20,01 0,00 

95 25 8,17 77,50 13,01 1,32 

96 50-60 8,17 77,50 13,01 1,32 

97 25 3,50 77,48 14,02 5,00 

98 50-60 3,50 77,48 14,02 5,00 

99 25 1,75 89,98 6,97 1,30 

100 25 0,73 95,23 2,78 1,27 

101 25 1,40 89,38 7,78 1,44 

102 25 0,64 94,55 3,55 1,26 

103 25 1,09 89,81 8,93 0,18 

104 25 0,58 94,57 4,75 0,10 

105 25 0,00 100,00 0,00 0,00 

106 25 2,15 75,80 15,16 6,89 

107 25 5,17 73,14 14,24 7,45 

108 25 6,74 72,99 14,00 6,27 
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APÊNDICE D – Descrição dos cálculos dos valores de referência para o éster alquílico e 

o glicerol 

 

 A descrição dos cálculos dos teores de biodiesel (fBio) e de glicerol (fGli), em %(m/m), 

utilizados como valores de referência para as amostras da coluna, está apresentada a seguir. 

 Os teores de etanol das amostras da coluna (fEtOH), em %(m/m), utilizados como 

valores de referência para a construção do modelo, foram obtidos diretamente por 

cromatografia gasosa. Dessa forma, considerando uma amostra de massa 100 g, tem-se que a 

massa de etanol da amostra (mEtOH) é dada por mEtOH =
fEtOH∙100

100
= fEtOH. Assim, a massa 

restante da amostra (100 − fEtOH) foi atribuída ao glicerol, ao biodiesel e ao óleo não reagido.  

 Considerando apenas essa quantidade restante da amostra (100 − fEtOH), pode-se 

considerar uma massa m correspondente à mistura de biodiesel e óleo não reagido. Sabendo-

se a pureza do biodiesel (PBio), obtida por cromatografia gasosa após purificação da amostra, 

pode-se calcular a massa de biodiesel (mBio) e de óleo (mÓleo) através das Equação 3-1 e 

Equação 3-2, respectivamente: 

 

mBio = m ∙ PBio                                                                                                         (3-1) 

 

 mÓleo = m ∙ (1 − PBio)                                                                                            (3-2) 

 

 A massa de glicerol (mGli) pode ser calculada com base na relação estequiométrica 

entre o biodiesel e o glicerol (3 mols de biodiesel são formados para cada mol de glicerol), a 

partir da Equação 3-3: 

 

mGli = m ∙ PBio (
MMGli

3MMBio
)                                                                                          (3-3) 

 

Em que MMGli é a massa molar do glicerol e MMBio é a massa molar do biodiesel.  

 

 Dessa forma, considerando a mistura de biodiesel, glicerol e óleo, o teor de biodiesel 

fBio′, em m/m, pode ser calculado a partir da Equação 3-4: 

 

fBio
′ =

mBio

mBio+mÓleo+mGli
∙ 100%                                                                                 (3-4) 
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Substituindo as Equações 3-1, 3-2 e 3-3 na Equação 3-4, tem-se a Equação 3-5: 

 

fBio′ =
m∙PBio

m∙PBio+m∙(1−PBio)+m∙PBio(
MMGli

3MMBio
)
∙ 100% =

PBio

1+PBio(
MMGli

3MMBio
)
∙ 100%              (3-5) 

  

 Esse teor (fBio′), no entanto, considera apenas o biodiesel, o óleo e o glicerol. Para 

encontrar o teor de biodiesel na mistura total (fBio), basta multiplicar fBio′ pela fração mássica 

da mistura ternária na mistura total (
100−fEtOH

100
), que inclui o etanol, obtendo-se, assim, a 

Equação 3-6: 

 

fBio

fBio′
=

mBio
100

mBio
100−fEtOH

⟹ fBio =
100−fEtOH

100
fBio′    

 

fBio =
PBio

(1+PBio(
MMGli

3MMBio
))

(
100−fEtOH

100
) ∙ 100%                                                             (3-6) 

 

A partir da relação estequiométrica entre biodiesel e glicerol, pode-se obter o teor de glicerol 

na mistura total (fGli), a partir da Equação 3-7: 

 

  fGli = fBio (
MMGli

3MMBio
)                                                                                                 (3-7) 
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APÊNDICE E – Monitoramento da tendência dos dados de densidade óptica para a 

corrida A2 

 
Figura – Cartas EWMA para monitoramento da tendência para as 18 variáveis da corrida A2 

 

Fonte: A Autora (2020). 
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APÊNDICE F – Comparação entre os dados originais e diferenciados  

 
Figura – Dados originais (a) e dados diferenciados com 1ª (b), 2ª (c) e 3ª (d) ordens para a 

variável 1 da corrida A2. 

 

Fonte: A Autora (2020). 
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APÊNDICE G – Monitoramento da variabilidade para a corrida A2  

 

Figura – Cartas da amplitude para as 18 variáveis da corrida A2. 

 

Fonte: A Autora (2020). 


