e~
e
e

=

L

UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO CIENCIA DA COMPUTACAO

Wellington de Oliveira Jinior

Leveraging Design Diversity to Build Energy-Efficient Applications

Recife
2021

Wellington de Oliveira Jinior

Leveraging Design Diversity to Build Energy-Efficient Applications

Tese de Doutorado apresentada ao Programa de
Pés-graduacao em Ciéncia da Computacao da Uni-
versidade Federal de Pernambuco, como requisito
parcial para obtencdo do grau de Doutor em Cién-
cia da Computacdo.

Orientador (a): Fernando José Castor de Lima Filho

Coorientador (a): Jodo Paulo Fernandes

Recife
2021

Catalogacéo na fonte
Bibliotecéaria Fernanda Bernardo Ferreira, CRB4-2165

048l

Oliveira Junior, Wellington de

A Leveraging Design Diversity to Build Energy-Efficient Applications /
Wellington de Oliveira Janior. — 2021.

149 f.il., fig., tab.

Orientador: Fernando José Castor de Lima Filho.

Tese (Doutorado) — Universidade Federal de Pernambuco. Cin, Ciéncia da
Computacéo, Recife, 2021.

Inclui referéncias.

1. Engenharia de Software e Linguagens de Programacao. 2. Consumo de
energia. 3. Andlise de desempenho. I. Lima Filho, Fernando José Castor de
(orientador). II. Titulo.

005.1 CDD (23. ed.) UFPE- CCEN 2021 - 108

Wellington de Oliveira Janior

“Leveraging Design Diversity to Build Energy-Efficient Applications”

Tese de Doutorado apresentada ao Programa
de Pos-Graduacdo em Ciéncia da
Computacdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencdo do titulo de Doutor em Ciéncia da
Computacao.

Aprovado em: 31/05/2021.

Orientador: Prof. Dr. Fernando José Castor de Lima Filho

BANCA EXAMINADORA

Prof. Dr. Leopoldo Motta Teixeira
Centro de Informatica / UFPE

Prof. Dr. Kiev Santos da Gama
Centro de Informatica / UFPE

Prof. Dr. Fernando Magno Quint&o Pereira
Departamento de Ciéncia da Computacdo / UFMG

Prof. Dr. Luis Miranda da Cruz
Departamento de Tecnologia de Software / Universidade Técnica de Delft

Prof. Dr. Rui Pereira
Departamento de Engenharia Informatica / Instituto Politécnico do Porto

Dedico este trabalho a minha familia, meus colegas, meu orientadores e a todos que me

ajudaram de alguma forma.

ACKNOWLEDGEMENTS

A vida é um grande efeito borboleta
Todos os detalhes
As pequenas coisas

Tem uma consequéncia

A principio, nao da para saber qual
A principio, nao da para saber porque

A principio, tudo parece igual

mas

Tudo que acontece
Por mais insignificante
Faz com a vida seja assim

Do jeito que ela é

Cada momento
Cada instante

Cada sentimento

Tudo que passa pela vida
Tem um peso
Deixa uma marca

Fica na membdria
A vida é regida
Nas menores notas

Sinfonia célida

Agradeco ao destino

E as asas da borboleta

Por me tornarem quem sou

Agradeco do fundo do meu coracdo ao meu orientador, Fernando Castor, ter trabalhado com
vocé sempre sera sempre um dos maiores privilégios da minha vida. E um agradecimento es-

pecial por todos esses anos me aguentando e tendo paciéncia comigo.

Agradeco também meu orientador Jodo Paulo Fernandes, que me recebeu de bracos aber-
tos em Portugal, me fazendo sentir em casa desde o meu primeiro dia em solo lusitano. O

proximo jogo de futebol é minha responsabilidade.

Gostaria de agradecer aos meus colegas, por todas as dificuldades, as madrugadas de tra-
balho, as reunides constantes e especialmente por andar comigo nesse arduo processo. Muito

obrigado a todos.
Categoricamente, minha familia. Respeitosamente, durante todo o tempo que levei no pro-
jeto, sempre do meu lado. E a tnica certeza que tenho na minha vida. Tenho vocés do meu

lado, e estarei sempre do lado de vocés. Isto aqui é para vocés. Nunca duvidem disso. Obrigado.

Agradeco também a todos que cruzaram pela minha vida nessa caminhada. Cada um de

vocés, de uma forma ou de outra, contribuiu para que esse projeto se tornasse realidade.

Muito Obrigado.

ABSTRACT

Developing an application with energy consumption in mind may be difficult for a devel-
oper. First, because developers may not be familiar with techniques to reduce energy consump-
tion. Second, because it may not be clear when and where these techniques can be applied,
since apps with different characteristics require different solutions. Third, because informa-
tion about energy efficiency is spread throughout multiple sources, making it difficult to make
informed decisions. In this thesis, we introduce the concept of energy design diversity and
how it can be used by non-specialists developers to build energy optimized applications. Our
main insight is that, for many software development issues, there are multiple readily available
diversely-designed solutions that have different characteristics in terms of energy consumption.
Our objective is to help developers produce more energy efficient code without a significant
increase in code complexity. To achieve our objective, we looked into two different aspects
that impact the energy consumption of software systems: development approaches and Java
collections. Our results when analyzing the different development approaches shows that using
hybrid approaches to optimize CPU-intensive snippets for their code may result in an increase
in energy efficiency. To compare the different development approaches, we realized empirical
experiments on 33 different benchmarks and 3 applications on 5 different devices. Even with
small changes the modifications made using JavaScript or C4++ instead of Java can signif-
icantly reduce energy consumption. Regarding Java collections, we propose an approach for
energy-aware development to help non-specialists developers. Using this approach, we imple-
mented our energy saving tool, CT+, using energy profiles to compare the different collections
implementations. Across 7 devices, 2295changes were made, achieving up to 16.34% reduc-
tion in energy consumption, usually changing a single line of code. Aside from the collections
implementations itself, the results points that other factors may heavily influence collections
energy optimizations such as: workload, device, development environment, energy profile and
battery's age. It is also relevant to point out that some of the most commonly used imple-
mentations (ArraylList, Hashtable, and HashMap) can often be replaced with more energy

efficient versions, usually from alternative sources to the Java Collections Framework.

Keywords: Energy Consumption. Performance Analysis. Design Diversity. Refactoring. Mobile

Applications. Static Analysis.

RESUMO

Desenvolver um aplicativo com o consumo de energia em mente pode ser dificil para um
desenvolvedor. Primeiro, porque os desenvolvedores podem nao estar familiarizados com as
técnicas para reduzir o consumo de energia. Em segundo lugar, porque pode n3do estar claro
quando e onde essas técnicas podem ser aplicadas, uma vez que aplicativos com caracteristi-
cas diferentes requerem solucdes diferentes. Terceiro, porque as informacdes sobre eficiéncia
energética estao espalhadas por varias fontes, dificultando a tomada de decisbes por parte
dos desenvolvedores. Nesta tese, apresentamos o conceito de energy design diversity e como
ele pode ser usado por desenvolvedores para construir aplicativos energeticamente otimizados.
O raciocinio é que existem varias solucdes ja disponiveis com caracteristicas diferentes em
termos de consumo de energia. Nosso objetivo é ajudar os desenvolvedores a produzir cédigo
com maior eficiéncia energética sem um aumento significativo na complexidade do cédigo.
Nossos resultados ao analisar as diferentes abordagens de desenvolvimento mostram que o
uso de abordagens hibridas para otimizar trechos de uso intensivo de CPU para seu cédigo
pode resultar em um aumento na eficiéncia energética. Mesmo com pequenas alteracdes, as
modificacOes feitas usando JavaScript ou C ++ ao invés de Java podem reduzir significa-
tivamente o consumo de energia. Com relacdo as colecSes Java, propomos uma abordagem
para o desenvolvimento energeticamente consciente para ajudar os desenvolvedores n3o espe-
cialistas. Usando essa abordagem, implementamos nossa ferramenta de economia de energia,
o CT+, usando perfis de energia para comparar as diferentes implementacdes de colecdes.
Em 7 dispositivos, foram feitas alteracdes 2295, alcancando uma reducdo de até 16,34 %
no consumo de energia, geralmente alterando uma tnica linha de cédigo. Além das proprias
implementacdes das colecdes, os resultados apontam que outros fatores podem influenciar
fortemente as otimizacOes de energia das colecGes, tais como: carga de trabalho, disposi-
tivo, ambiente de desenvolvimento, perfil de energia e idade da bateria. Também é relevante
apontar que algumas das implementacdes mais comumente usadas (ArrayList, Hashtable, e
HashMap) podem frequentemente ser substituidas por versdes mais energeticamente eficientes,

geralmente de fontes alternativas ao Java Collections Framework.

Palavras-chaves: Consumo de energia. Analise de desempenho. Diversidade de design. Reestru-

turacdo. AplicacGes Méveis. Anélise estatica.

LIST OF FIGURES

[Figure 1 — The five levels of Android infrastructure.| 29

[Figure 2 — Screenshot of our Dashboard app user interface.| 39

[Figure 3 — Workflow of the dashboard application. The activities are executed following [

| the number beside each step.| 41

[Figure 4 — Conceptual model of the software failure process. Program execution is |

| a mapping from the set D, of all possible demands (sequences of input |

| values), into the set of output sequences, O. D f represents the totality of |

| all demands that the program, P, cannot execute correctly: they map into |

| unacceptable output sequences'®| 45

[Figure 5 — Results of the benchmarks from Rosetta Code. The bars are sorted using [

| the relative gain in energy consumption for each benchmark.| 60

[Figure 6 — Performance and energy results of the benchmarks from the Computer Lan- |

| guage Benchmark Game (CLBG) on all devices| 61

[Figure 7 — Energy-delay product (EDP) results of the benchmarks from the Computer |

| Language Benchmark Game (CLBG) across all devices without outlines,| . . 68

[Figure 8 — An overview of our approach. Phase | is application-independent, Phase |l |

| is device-independent, and Phase Il uses the energy profile and the infor- [

| mation about the system under analysis.| 80

[Figure 9 Percentage of Energy saved by Cl+4among the different software systems.|. 106

[Figure 10 — Order of dominance between the thread-safe Map implementations on server. [

| Arrows point from the dominating collection to the dominated one. | 118

[Figure 11 — Computer Language Benchmark Game benchmark results comparing React |

[Native and lonid 133

LISTA DE CODIGOS

[Codigo Fonte 1 — Original JavaScript NQUEENS|

[Codigo Fonte 2 — Original Java NQUEENS

|[Codigo Fonte 3 — Modified JavaScript NQUEENS|

LIST OF TABLES

[Table 1 — Representative list of different factors studied to reduce energy consumption

| in Android and theirs references) 22
[Table 2 — Applications collected from F-Droid. From the 109 apps, 104 were developed [
| using Java, five making use of[Native Development Kit (NDK)] and five were |
| developed using [JavaScript (JS)||o 49
[Table 3 — The selected set of benchmarks and applications. | 53
[Table 4 — Machines used on the experiments. Age shows how old the device was when [
| we executed the experiments (inyears) 57
[Table 5 — The right-hand side presents the development approach with the best results |
| for energy and the left-hand side the development approach with the best [
| performance, for each device.| 62
[Table 6 — Results for the modified apps. [Standard Deviation (SD)| stands for standard |
I deviation. | L 64
[Table 7 — Average data from the division between the values for the sequential and [
| parallel versions of the FASTA and REGEXDNA benchmarks. A value greater |
| than 1 in a cell means that the sequential version had higher execution time, |
| energy consumption, or EDP|o o000 00000 69
[Table 8 — Adoption of collections across Github Java projects. All implementations |
| came from the package java.util| 79
[Table 9 — Operations used on each collection.|. 83
[Table 10 — The selected implementations to be used in the experiments. We employed [
| three different sources: Java Collections Framework, Eclipse Collections and |
| Apache Commons Collections| 85
[Table 11 — Machines used on the study about devices. Age shows how old the device [
| was when we executed the experiments (inyears)| 91
[Table 12 — Software systems used in the study about devices and where they were |
I executed 92
[Table 13 — Results for the desktop environment. Energy results are red for the original [
| versions and green for the modified versions. Energy measured in Joules. |. . 95

[Table 14 — Recommended collection implementations for the dellmachine and how many

| times they were recommended. Implementations from Apache Common Col-

| lections are presented in blue and from Eclipse Collections inred.|.

97

[Table 15 — Recommended collections for asuslmplementations from Apache Common

| Collections are presented in blue and from Eclipse Collections in red.|

98

[Table 16 — Recommended collection implementations for the servermachine and how

| many times they were recommended. Implementations from Apache Com-

| mon Collections are presented in blue and from Eclipse Collections in red.|

99

[Table 17 — Results for the mobile environment. Energy results are red for the original

| versions and green for the modified versions. Energy measured in Joules.| .

. 101

[Table 18 — Recommended collection implementations for S8and how many times they

| were recommended. Implementations from Apache Common Collections are

| presented in blue and from Eclipse Collectionsinred.|

[Table 19 — Recommended collection implementations for J/and how many times they

| were recommended. Implementations from Apache Common Collections are

| presented in blue and from Eclipse Collectionsinred.|

[Table 20 — Recommended collection implementations for G2and how many times they

| were recommended. Implementations from Apache Common Collections are

| presented in blue and from Eclipse Collectionsinred.|

[Table 21 — Source from the recommendations made to asus, sorted by the profile size.

| ['he approximated percentage of the total is shown between parenthesis.| . .

105

[Table 22 — Recommended collections for the asuson N2. Implementations from Apache

| Common Collections are presented in blue and from Eclipse Collections in red.[107

[Table 23 — Recommended collections for the asuson N4. Implementations from Apache

| Common Collections are presented in blue and from Eclipse Collections in red.[108

[Table 24 — Recommended collections for the asuson N8. Implementations from Apache

| Common Collections are presented in blue and from Eclipse Collections in red.[109

[Table 25 — Recommended collections for the asuson N16. Implementations from Apache

| Common Collections are presented in blue and from Eclipse Collections in red.[110

[Table 26 — Recommended collections for the asuson N32. Implementations from Apache

| Common Collections are presented in blue and from Eclipse Collections in red.[111

[Table 27 — Results for Tab4. Energy results are red for the original versions and green

| for the modified versions. Energy measured in Joules.|

[Table 28 — Recommended collections for Tab4. Implementations from Apache Common |

| Collections are presented in blue and from Eclipse Collections in red.| 123

ADB
API
CLBG
CPU
CSS
CT+
DAQ
EC
EDP
EMSE

GPS

GREENS

HTML
HTTP
ICMSE
ICSE
ICT4S
IDE
INES
IVA
JCF
JDK
JIT

JRAPL

LIST OF ABBREVIATIONS AND ACRONYMS

Android Debug Bridge

Application Programming Interface
Computer Language Benchmark Game
Central Processing Unit

Cascading Style Sheets

Collections Energy Consumption Optimization tool Plus
Data acquisition systems

Eclipse Collections

Energy-delay product

Empirical Software Engineering

Global Positioning System

International Conference on Green Communications, Computing and

Technologies

HyperText Markup Language

Hypertext Transfer Protocol

International Conference on Software Maintenance and Evolution
International Conference on Software Engineering

International Conference on ICT for Sustainability

Integrated Development Environment

National Institute of Science and Technology for Software Engineering
Intelligent Virtual Assistants
Java Collections Framework
Java Development Kit
Just-In-Time

Java Running Average Power Limit

JS JavaScript
kLoC 1000 Lines of Code
LCD Liquid Crystal Display

International Workshop on Measurement and Metrics for Green and
MEGSUS
Sustainable Software

MOBILESOFT International Conference on Mobile Software Engineering and Systems

MSR Mining Software Repositories
NDK Native Development Kit
OLED Organic Light-Emitting Diode
RAPL Running Average Power Limit
RQ Research Question

SD Standard Deviation

SDK Software Development Kit

Ul User Interface

WALA Watson Libraries for Analysis

CONTENTS

1 INTRODUCTION
1.1 DEVELOPMENT APPROACHES

2 BACKGROUND

21 ANDROID INFRASTRUCTURE

22 ANDROID APPLICATION DEVELOPMENT
23 ANDROID ENERGY AWARENESS

24 MEASURING ENERGY CONSUMP TIONI
25 ANDROID POWER PROFILER

26 STATIC PROGRAM ANALYSIS

(2.6.1 T.J. Watson Libraries for Analysis| 43
2.7 DESIGN DIVERSITY!. o 44
2.7.1 Energy Design Diversity| 46

3.1 METHODOLOGY]

(3.1.1 Benchmarks and apps| 52
(3.1.2 Running the experiments| 57
.............................. 58
(3.2.1 Is there a more energy efficient app development approach? 59
(3.2.2 Can a hybrid approach to app development save energy? 62
3.3 DISCUSSIONI 66

42 OVERVIEW OF THE PROPOSED APPROACH|

18

1 INTRODUCTION

Responsible energy consumption is a problem that permeates most modern human activity.
It is not by chance that three of the UNs sustainable development goals can be linked with
better usage of energy supplie:ﬂ Energy became a particular problem for the IT industry with
the extensive adoption of battery-based devices such as mobile phones, smart watches, and
laptops, in conjunction with the already very power-hungry data-centers.

Reducing the inefficiencies on energy consumption is not only a worry for IT. Across the
globe, people are more aware of our impact on the environment and are trying to reduce it.
One of these initiatives can be seen on the ambitious goals of reducing emissions, such as the
reduction of by 40% by 2030, aiming for neutrality by 20507 set by Ursula von der Leyen,
current President of the European Commission.

Data-centers may be seen as a good example of efficient usage of energy. If left unchecked,
just the data-centers would have consumed up to 20% of global electricity and would be
responsible for 5.5% of the global greenhouse gas emissions by 2025 (ANDRAE, 2017)). In
fact, efficient usage of data-centers made data centers consume just 1% of global electricity
consumption by 2018. This represents an increase of 6% from 2010 (in the same time frame,
data center usage increased by 550%) Masanet et al.| (2020). The improvements on data-
centers are far from done but this shows the positive impact of green computing.

Over the last years, mobile devices have been ever-present in our lives. These mobile
devices do not have access to an energy outlet and rely on an external battery to function.
Battery life is seen as very important to most smartphone owners, with as much as 92%
considering battery life as a significant factor when purchasing a new smartphone, based on
a survey with 400 respondersE]. According to the same survey, 63% of all smartphones owners
are somewhat unsatisfied with their devices' battery and 66% would pay more for a device
with longer battery life. Other battery-powered devices may suffer from the same problem, like
smartwatches, tablets, and notebooks, among many others. Energy can be a serious problem
when using those devices as they usually employ a multitude of power-hungry technologies
such as high-definition screens, multicore processors, and GPS. Besides, new patterns of use

for mobile gadgets are emerging, as people have the need to be constantly connected and

1
2

<https://sdgs.un.org/goals>

< https://ec.europa.eu/commission /sites/beta-political /files/political-guidelines- next-commission_en.
pdf>

<https://aytm.com /blog/smartphone-battery-survey/>

https://sdgs.un.org/goals
https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf
https://aytm.com/blog/smartphone-battery-survey/

19

mobile. Some people have become dependent on their phone, to the point of being affected
by nomophobia (that is "a psychological condition when people have a fear of being detached
from mobile phone connectivity" (BHATTACHARYA et al., [2019)). Therefore, since these devices
run on battery power, energy efficiency has grown in importance.

The most used mobile operating system is Android, developed and maintained by Google.
Android is an open-source operating system based on a modified version of the Linux Kernel.
In recent years, Android has become a ubiquitous platform, being present in many different
types of devices like televisions, cars, smartwatches, game consoles, digital cameras, PCs, and,
specially, on smartphones. Currently, more than 71.81% of all smartphones in the world use
Android as their operating systenﬂ and the Google Play store has more than 2.97 million
apps’| available for download. Efficient use of energy on mobile devices is even more critical
when taking into consideration that mobile development is accompanied by different challenges
when compared to the desktop environment, such as: screen sizes compatibility, event-driven
development, security awareness, and a considerable focus in the graphical user interface. One
difference that draws attention from industry, academia and end-users is the importance of
energy consumption on mobile devices.

The problem of improving energy efficiency on devices has received considerable atten-
tion in the research literature. In academia, a number of conferences and journals have

presented an increasing number of papers about energy consumption (e.g., [International
|Conference on Green Communications, Computing and Technologies (GREENS)| (PEREIRA

et al., 2016} ARDITO; TORCHIANO, 2018), [International Workshop on Measurement and Met|

[rics for Green and Sustainable Software (MEGSUS)| (BAGNATO; ROCHETEAU, 2018; FOSSE

et al., 2018)), [International Conference on Software Engineering (ICSE)| (MCINTOSH; HASSAN;

HINDLE, 2019; |CRUZ; ABREU, 2019b)), |International Conference on Software Maintenance and|

[Evolution (ICMSE)| (CRUZ et al., 2019; ROMANSKY et al.,, 2017), [International Conference on|

ICT for Sustainability (ICT4S)| (HINTEMANN; HINTERHOLZER, 2019 PENZENSTADLER, 2020)),

International Conference on Mobile Software Engineering and Systems (MOBILESOFT)| (AN-

WAR, 2020; [MALAVOLTA et al., 2020), Mining Software Repositories (MSR)| (MATALONGA et

al., [2019; OLIVEIRA et al., 2019), [Empirical Software Engineering (EMSE)| (CHOWDHURY et al.,

2019; |CRUZ; ABREU, 2019a; [OLIVEIRA et al., 2021))). The importance of producing green code

(i.e., code that was developed with energy efficiency in mind) has become widespread.

4
5

< https://gs.statcounter.com /os-market-share /mobile /worldwide>
<https://www.appbrain.com/stats/number-of-android-apps>

https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.appbrain.com/stats/number-of-android-apps

20

In the past, hardware was the main focus of studies aiming to improve the energy efficiency
of IT devices (TIWARI; MALIK; WOLFE, 1994). Nevertheless, as mentioned before, a number
of works have shown that software can have considerable impact on energy consumption.
Developers themselves also want to improve their code by producing greener code, and not
just for mobile applications (MANOTAS et al.,, 2016). Notwithstanding their interest, many
developers are not specialists and many aspects of energy consumption are not clear for
them (MOURA et al), 2015). These developers have ample knowledge and experience with
their development platforms of choice, but lack both knowledge and tools when it comes
to making energy efficient applications (PINTO; CASTOR; LIU, [2014a). This comes from the
inherent complexity of developing software systems, with some of the factors that can influence
energy consumption being counterintuitive, such as internet browsers (MACEDO et al., 2020)
or enabling and disabling logging (CHOWDHURY et al., 2018).

Developers have been more aware of the importance of energy for the environment and
end-users, and are interested in building more energy efficient software (MANOTAS et al., 2016)).
Notwithstanding, thinking about algorithms and solutions that are energy efficient is not a typ-
ical skill for a developer, considering that computer science curriculum seldom offer green com-
puting courses (SARAIVA; ZONG; PEREIRA, [2021)). In addition, some solutions that developers
typically employ or recommend are not backed up by scientific evidence (PINTO; CASTOR; LIU,
2014a)). As pointed out by previous work (CHOWDHURY; HINDLE, [2016)), energy-aware projects
usually are larger and the changes that could impact the application’s energy efficiency are
most of the times relegated to specialists.

When trying to produce software, developers are presented with different options to solve a

problem. Every non-trivial software system has parts where it is possible to use different kinds

of data structures, |Application Programming Interface (API)| calls, or concurrency control

mechanisms by means of simple source code transformations. We call these parts energy
variation hotspots when these transformations reduce energy consumption. For example, the
Java language has 9 different implementations of hash tables, with different guarantees in
terms of scalability, thread-safety, and memory efficiency. Previous work (PINTO et al., 2016))
has shown that changing implementations of a collection in Java lead to a reduction in energy
consumption of more than 70% by an operation. Looking at functional languages, changing
the thread instantiation primitive in Haskell also resulted in a reduction of energy consumption
by the application (LIMA et al., [2019)). Those energy variation hotspots vary in development

stage, complexity, size, code location, and environment.

21

As research in green computing progresses, researchers have found specific constructs of
software development that may have a negative impact in energy consumption, called green
smells (GOTTSCHALK et al., 2012). Unlike the energy variation hotspots, they can be disjointed
of programming constructs. Some of energy-related factors that contained green smells are:

[APTs, binding of resources too early, code obfuscation, code smells, collections, database us-

age, design patterns, development approaches, garbage collector, [Hypertext Transfer Protocoll

(HTTP)| requests, image format, information hiding, loops, screen colors, thread switching,
and wake locks. In Table [I| we summarized a non-exhaustive list of topics and references to
studies that analyzed them. To help researchers get an overview of the field, some works or-
ganize the knowledge about green computing (C.; CHANDRASEKARAN; CHIMALAKONDA), 2020;
MYASNIKOV et al., 2020).

In this thesis, we will focus on the problem of the rapid discharge of battery-powered
devices and present ways on how to reduce it. Battery-powered devices nowadays have a
plethora of functionalities that have non-negligible energy footprint. Every so often, these
functionalities may be used in a more energy efficient way. Our main insight is that, for
many green computing issues, there are multiple readily available diversely-designed solutions
that have different characteristics in terms of energy consumption, what we call energy design
diversity. Our hypothesis is that these different solutions can be leveraged to ensure a reduction
on energy consumption without increasing significantly the development complexity.

The concept of energy design diversity is inspired by the concept of fault tolerance’s design
diversity. In fault tolerance (LITTLEWOOD; POPOV; STRIGINI, 2001)), the main idea is to avoid
an unacceptable state in the program. To ensure that, one can use different techniques such
as: replicate parts of the source code, use different teams to solve the same problem, defensive
programming, exception handling and so on. In green computing, we want to develop as many
solutions to a specific energy hotspot to ensure that the least possible energy is consumed.
Our insight is that using a similar concept from fault tolerance would help practitioners save
energy by selecting the right solution for the problems they face while developing. Not every
energy solution is applicable to each situation, and taking into account the wide variety of
mobile devices available on the market, having several different solutions to the same problem
may be a necessity. The idea behind energy design diversity is to increase the probability that,
for a specific hotspot, at least one of the solutions will apply.

To reduce energy consumption, researchers could focus on increasing the energy efficiency

of any energy hotspot, using the concept of energy design diversity to present to developers

22

Table 1 — Representative list of different factors studied to reduce energy consumption in Android and theirs

references.
Topic: Reference:
APls Linares—VAsquez et al.| (2014)), [Chowdhury et al.| (2019);
Zimmerle et al.| (2019
Binding Resources Gottschalk, Jelschen e Winter| 42014[)
Bundling Chowdhury et al.| (2019
Code Obfuscation Sahin, Pollock e Clause (2014

Cruz e Abreu| (2017)), IPalomba et al.| (2019);
Code Smells GoaEr (2020)), lannone et al. (2020
Anwar| (2020)), [Habchi, Moha e Rouvoy| (2021

Pereira et al.| (2016)), |Pinto et al.| (2016);
Collections Hasan et al .| (2016]), Saborido et al | (2018
Oliveira et al.| (2019

Databases Lyu et al, (2017

Design Pattern Sahin et al.| (2012), |Chen e Zong (2016

Corral et a|.| d2014[), |Chen e Zong| (]2016[);
Programming Languages |Oliveira, Oliveira e Castor| (2017

Kholmatoval (2020), |Pereira et al.| (2021
Energy Pattern Cruz e Abreu| (2019a
Garbage Collector Li et al. 1)
HTTP Requests Li e Halfond| (2015)), |Li et al.| (2016]), |[Anwar et al. (2020
Image Format Thiagarajan et al.| (2012

Linares-VAsquez et al | (2014);
Li e Halfond| (2014])), [Morales et al.| (2016

Information Hiding

Loops Li e Halfond| (2014

Machine Learning Mcintosh, Hassan e Hindle (2019

Off-loading Kwon e Tilevich| (2013)), [Tang et al.| (2020
Refactoring Couto, Saraiva e Fernandes| (2020

Screen Colors Dong e Zhong (2011), |Linares-VAsquez et al.| (2018
System Calls Aggarwal et al.| (2014

Thread Switching |Li et aI.| (]2013[), |Pinto, Castor e Liu| (I2014b[)

Wake Locks Pathak et al.[(2012), |Liu et al. (2016

23

more energy efficient options. In this thesis, among those different factors that impact the en-
ergy consumption of Android apps, we choose to prioritize our effort in two different aspects:
development approaches and Java collections. These factors were selected for two main rea-
sons: (i) previous works (CORRAL et al., [2014; CHEN; ZONG), 2016; HASAN et al., [2016; SABORIDO
et al, 2018) have shown that they can have significant impact on energy consumption; and
(i) they are used on a wide range of applications, running on a myriad of computing devices.
Given the importance of those factors, it is not a surprise that previous works have already

tried to find solutions to reduce the energy consumption of those energy hotspots.

In this thesis, we will answer the following [Research Question (RQ)}

= RQ1: how can we increase the energy efficiency of a fully functional Android application

using an alternative development approach to Java?

= RQ2: how can we increase the energy efficiency of a fully functional software system

optimizing the Java Collections used by it?

We consider that answering these questions would help to reduce energy consumption and
provide evidence of the importance of the concept of energy design diversity.

The following sections will introduce the two main topics of this thesis: Section [1.1] we will
present a summary of our work on the energy optimization based on development approaches
and Section we will present a summary of our work on Java Collection energy efficiency

optimization.

1.1 DEVELOPMENT APPROACHES

When developing Android apps, the developer can choose between four development ap-
proaches: Java, the default language for Android development; JavaScript, with support from

a mobile framework (such as Apache Cordova E] Monaca , or NativeScript E[) it is possible to

develop a full app using the web toolkit (HyperText Markup Language (HTML)| [Cascading

[Style Sheets (CSS)| and JavaScript); Kotlin, supported by Google as a development language
since October 2017]?]; and C/C++, through the Native Development Kit NDK, which

< https://cordova.apache.org/>

<https://monaca.io/>

<https://nativescript.org/>
<https://blog.jetbrains.com /kotlin /2017 /05 /kotlin-on-android-now-official />
10" <https://developer.android.com /ndk/ />

6
7
8
9

https://cordova.apache.org/
https://monaca.io/
https://nativescript.org/
https://blog.jetbrains.com/kotlin/2017/05/kotlin-on-android-now-official/
https://developer.android.com/ndk//

24

makes it possible for a developer to write the majority of an application in C/C++.

The developer can freely choose any approach to develop her/his app or even make a hybrid
application (i.e., using more than one programming language). When choosing among these
approaches, developers need to keep in mind different factors: memory usage, performance,
expertise in the programming language, ease of maintenance, number of available libraries,
among many others. As stated before, energy is also seen as a very important factor when
developing mobile applications. Nevertheless, developers have almost no information about the
differences in energy consumption among those different approaches.

Aiming to reduce this lack of knowledge, we conducted an empirical study using a testbed
of 33 different benchmarks and four applications. We executed our experiments on threeE] out
of four different approaches using five distinct devices.

On the topic of development approaches, we will answer the following research questions:

= RQ.1: Is there a more energy efficient approach among the most common Android

development models?

» RQ1.2: Is it possible to reduce the energy consumption of a native app by making it
hybrid?

According to our data, there is a significant difference in energy consumption between each
approach and this difference varies greatly depending on the executed benchmark. In most
cases, JavaScript was more energy efficient than the other approaches, with Java and C++
having a similar number of benchmarks where they were the most energy efficient approach.
To further investigate the energy impact of these approaches, we tried to determine whether it
was possible to reduce energy consumption of an application using a hybrid approach. Results
from modified apps showed that developers can leverage energy efficiency by choosing to
implement a hybrid application but only when the application makes heavy usage of the CPU.
More details about this study can be found in Chapter 3]

1.2 JAVA COLLECTIONS

Java collections are widely used in Java systems, both mobile and desktop. They are

the backbone of many applications as they are used to store, access, and modify information

11 Kotlin was not officially supported when the study was being conducted.

25

during the execution of an application. Several papers have focused exclusively on studying the
energy consumption of Java data structures: on Android (HASAN et al., 2016, on the desktop
(MANOTAS; POLLOCK; CLAUSE, [2014; PEREIRA et al., 2016) or using concurrency (PINTO et al.,
2016)). Some similar studies with data structures have also been conducted in Haskell (LIMA
et al, 2019).

We choose to study collections to delve deeper into their energy impact. Specifically, we
want to investigate if alternative implementations to the Java Collections Framework have a
smaller energy footprint; which collections have the greatest impact on energy consumption;
and if the environment where the application is running influences the energy impact of those
collections. To answer our questions, we develop a framework to analyze the energy consump-

tion of data structures in mobile and desktop environments. Based on this framework, we

created a tool named |Collections Energy Consumption Optimization tool Plus (CT+)|

automatically runs multiple benchmarks, on desktop and mobile environments, tar-
geting Java's collections. Based on the benchmarks' execution data, it establishes energy
consumption profiles (HASAN et al, |2016]) to the implementations of these collections in an
application-independent way. It then performs static analysis on the source code of the ap-
plication under investigation to estimate the usage frequency of each collection’s operation.
With the static analysis results, it recommends the most appropriate implementation for each
collection implementation.

On the topic of Java collections, we will answer the following research questions:

» RQ2.1: To what extent can we improve the energy efficiency of an application by

statically replacing Java Collection implementations?
» RQ2.2: Are recommendations for Java collections device-independent?

» RQ2.3: How much does the workload size impact the energy efficiency of a Java col-

lection implementation?
» RQ2.4: Are recommendations for Java collections profile-independent?.

We executed two different studies to analyze the influence of (i) devices and (ii) energy
profiles on the energy consumption of software systems using Java Collections. Across the
two studies, a total of seventeen different software systems (two mobile, twelve desktop, and
three on both environments) were used, most of them mature applications with thousands

of lines of code. On our study on devices, seven distinct devices were used while on our

26

study about energy profiles, we used six different energy profiles. A total of 64software
system versions were created during this project and used to measure the differences in energy
consumption of the aforementioned factors.

Our tool had positive results (that is, increase the energy efficiency on the application)
in most cases, up to 16.34% reduction on energy consumption. Only for a small amount
(2 out of 64 versions), the recommendations degraded the energy efficiency, up to 1.21%.
Overall, CT+made a total of 2295 recommendations that lead to a statistically significant
impact on energy efficiency. Our experiments also showed indications that some of the most
widely used collections (ArrayList, HashMap, and HashTable) may not be very energy ef-

ficient and should be used cautiously. More details about that study can be found in Chapter [4]

1.3 THE CONTRIBUTIONS

With this thesis, we made a number of contributions to the field of green computing.
Although they differ in level of importance, we believe that they help improve the state-of-art
of green computing.

Our first set of contributions are focused on our works analyzing the energy impact of
the development approach of applications running on the Android operating system. These

contributions are summarized as follows:

= JavaScript as an alternative to optimize energy consumption. In this thesis, we
present data that points towards the possibility of using JavaScript to save energy in

Android applications.

» Insights on the Native Development Kit efficiency. Another way to improve per-
formance and energy efficiency, using the NDK. From our studies, it seems to have less
probability of worsening the energy efficiency than JavaScript, even if it may increase

the development complexity.

» The importance of experiment on different devices. While analyzing the develop-
ment approaches, we found out that different devices had a similar energy consumption

pattern. The result was exactly the opposite when looking into the energy consumption

27

of Java collections. This shows the importance of analyzing using different devices when

executing empirical studies on green computing.

» Execution time is not a proxy to energy consumption but it is a good bet.
Analyzing the energy consumption of our mobile experiments, one can see that running
a task using parallelism may consume more energy than executing it sequentially, even
if it takes more time to finish. Even so, our experiments indicate that in most cases,
parallel executions consume less energy and time than their sequential counterparts and

should be used (with caution) by practitioners when trying to optimize energy efficiency.

Our second comes mainly from our works analyzing the energy impact of Java Collections

on software systems. These contributions are summarized as follows:

» Generalist approach to design energy efficient applications. We present in this
thesis an approach that can be used for general-purpose green development, unrestricted

to a scenario, development environment, device, or application.

» Automated energy optimizer refactoring tool. We instantiated our previously men-
tioned approach on a tool called [CT+] This tool can recommend the most energy effi-
cient Java collection implementation and automatically refactor the application source

code to use it.

» Insights on the importance of battery age on energy data. Across all our experi-
ments we noticed that the device battery age may have a heavy influence on the energy

data collected, even creating so much noise that invalidates any data from the device.

» An understanding of the energy profiles. Energy profiles are a staple concept of
green computing and in this thesis we developed techniques to optimize their creation

and analyze their influence on code refactoring.

» A glimpse on the domination on collections. Collections implementations may
present an energy domination behavior. The dominated implementation always con-
sumes more energy than the dominating. The study of this phenomena could lead to an

optimization on collections refactoring.

» The importance of energy diversity design. 89.6% of all energy saving collec-

tions refactoring done on our works are from alternative sources to the Java Collections

28

Framework. Among the most changed implementations, we had very popular ones, such
as ArrayList and HashMap. Using alternatives to these implementations could lead to

a more energy efficient program.

During the development of this thesis, the author also contributed with a paper analyzing
the energy consumption on the field of reactive applications. More specifically, an analysis of
CEP.js library energy consumption (ZIMMERLE et al} 2019). This library was developed based
on the Reactive Extensions for JavaScriptIT_Z] (RxJS) but providing Complex Event Process-

ing (BUCHMANN; KOLDEHOFE, [2009)) operators.

1.4 ORGANIZATION

The remainder of this document is organized as follows:

= Chapter [2, we will present the theoretical foundation with the objective of providing the

necessary knowledge to accompany the rest of this work.

= Chapter[3] we will present our study on energy consumption of the different development
approaches. In this chapter, we will be looking at the possibility of hybridization of mobile
applications and how much energy can be saved by using another approach together with
Java, experimenting in a number of devices. We found out that both JavaScript and

NDK can be used to reduce energy consumption in certain scenarios.

= Chapter [4] we will present our framework to reduce energy consumption and a study on
data structures, detailing our methodology, tool and results. In this chapter, our energy-
saving framework will be explained and instantiated in a tool called [CT+| Using this
tool, we analyzed different factors that may influence the energy consumption in an app
(e.g., energy profiles, development environment, devices, collections instantiating). We
found out that energy consumption optimization is heavily influenced by the applications
workload and that using the wrong energy profile may increase the energy consumption

of the application.

= Chapter [, we will summarize the results, our final considerations and presents possible

future works in the green computing field.

12 https://github.com/reactivex/rxjs

29

2 BACKGROUND

This chapter aims to detail the pillars on which this thesis was based. The chapter orga-
nized in terms of the following topics: Android Infrastructure (Section , Android Application
Development (Section [2.2)), Android Energy Awareness (Section [2.3), Measuring Energy Con-
sumption (Section , Android Power Profiler (Section , Static Analysis (Section ,
and Design Diversity (Section . Across this thesis, each chapter may have a background

section with more specific information.

2.1 ANDROID INFRASTRUCTURE

The Android infrastructure can be separated in five different layers: Applications, Appli-
cation Framework, Native Libraries and Runtime, Hardware Abstraction Layer, and Kernel, as
illustrated in the Figure [T]

In this thesis, we will focus mostly on the Applications layer. As our goal is to help the
developer create more energy-efficient applications, the application layer is the ideal place to

target our efforts. It is worth noting that all Android applications, including native ones (e.g.,

Applications

Application
Framework

Native

Libraries

Hardware Abstraction
Layer (HAL)

Figure 1 — The five levels of Android infrastructure.

30

Android’s [User Interface (Ul))), run at the application level. This layer is composed of several

components that allow system access to the application. The four main components (classified
by Googleﬂ) are:

Activities: components that represent the application screens. Each activity is independent
of each other and can represent any relevant element within the application. It is possible for
one app to call an activity from another one. When developing, the activity is implemented as
a subclass of the Activity class. The other Ul elements inside an activity are implemented as
subclasses of the View class. From all components, Activities are the only one that interacts
with the end-user.

Services: components that perform work outside the Ul, invoking some type of resource
available on the device, in software or hardware. That resource usually is a long-running
operation and needs to be executed in the background. For example, a service may play music
while the user is in a different application, or fetch data over the network without blocking
user interaction with an activity.

Broadcast receivers: components that respond to broadcast advertisements throughout
the system, enabling the system to deliver events to the app outside of a regular user flow.
Using broadcast receivers, the user can be notified without the need for the app to remain
running. Chat notifications or telling the user that the battery is low are examples of events
that send broadcasts to the screen. Usually the broadcast receiver is used to interface other
components, such as initializing a service based on an event that occurred in an activity.

Content Providers: components that manage a shared set of application data. A common
use is to manage databases such as SQLite. Using the content provider, other applications can
take advantage of the data collected, for example, access the user’s contact list to add them
to a social networking application.

On our studies, we will be focusing mostly on exploring resources of the Activities com-
ponent. Inevitably, all other components are used when execution and analyzing Android ap-
plications but their behaviors in relation to energy consumption are outside the scope of this

research.

1 <http://developer.android.com/guide/components/fundamentals.htm|>

 http://developer.android.com/guide/components/fundamentals.html

31

2.2 ANDROID APPLICATION DEVELOPMENT

Traditionally, in mobile environments, native applications, i.e., developed using a native
language of the operating system, have been regarded as faster, safer, and more adaptable to
changes in the operating system. In the iOS ecosystem, native apps are written in Objective-C
and Swift whereas Android native apps are written in Java and Kotlin. On the other hand,
web apps, i.e., applications developed using Web technologies, are seen as more portable, with
lower maintenance and development costs, and are faster to get to markeiﬂ At the same time,
it is expected that these web apps run slower than native ones. This section provides a high
level overview of web development frameworks and briefly presents the [NDK] a toolkit aiming
to support the development of apps with strict performance requirements through the use of

C and C++ code.

Web application framework. Developers who choose to develop web apps without prior
experience in mobile development may find it more difficult, as there are not as many tutorials

or support as from IDEs as in the native language. Android Studio, Google's recommended

Integrated Development Environment (IDE)| for Android development, offers limited support

for building web apps. In addition, most [APIs are native, which means that they are directly
accessible to Java code but require a plugin in the case of web apps.

Mobile development frameworks aim to ease the construction of smartphone applications
based on web technologies, such as [HTML] [CSS, and JavaScript. These frameworks are in-
tended to allow the use of standard web development technologies for cross-OS development,
i.e., the application is developed once and ported to any mobile operating systems freeing
the developer from having to deal with each OS native language. These applications are then
wrapped, so the operating system can identify them as traditional applications and give them
access to native APls.

Among the different mobile development frameworks available, this thesis was developed
using Apache Cordova. Cordova is open source and is used as the basis for other popular
frameworks like Phonegap, lonic, Intel XDK, Telerik, Monaca and TACO. Among the contrib-
utors to the Apache Cordova project are IBM, Google, Microsoft, Intel, Adobe, Blackberry,
and Mozilleﬂ We employed Cordova mainly because our experiments involved the execution

of multiple benchmarks that were implemented in JavaScript but did not specifically target

< https://www.lifewire.com /native-apps-vs-web-apps-2373133>
3 <http://wiki.apache.org/cordova/who>

https://www.lifewire.com/native-apps-vs-web-apps-2373133
http://wiki.apache.org/cordova/who

32

Android.

When using Cordova, the application is developed as a web page, being able to reference
CSS files, JavaScript code, images, media files, or other resources needed to run it. This app will
run over an encapsulated WebView* within a native application. An application using Cordova
and native components can communicate, i.e., JavaScript code can invoke native snippets
directly. Ideally, JavaScript APIs for native code are consistent across multiple platforms and
operating systems. There are also externally available plugins that allow a developer to use
features not available on all platforms. Because of the interactions between the native and web
code sections, these applications are known as hybrid apps. In Android, hybrid apps produced
using Cordova will be compiled into an .apk file, which is the default distribution format for

Android applications.

Native Development Kit. In Android apps that have strict performance requirements, it is
possible to develop parts of an application using C/C++ through the Native Development Kit
(NDK). This approach is often only employed in specialized scenarios, most notably games.
For example, in one sample of 109 apps we examined (Chapter , Table [2), only 5 employed
the NDK and all of them are games. Although it might seem a good idea to use the NDK
as much as possible to make an application achieve maximum performance, Google does not
recommend it. According to the Android Websiteﬂ there are two situations where the use of
the NDK is recommended: (i) when it is necessary to “squeeze extra performance out of a
device to achieve low latency or run computationally intensive applications, such as games or
physics simulations”; and (ii) to “reuse your own or other developers’ C or C++ libraries”.

The NDK is an optional package that can be installed using the Android [Software De{
lvelopment Kit (SDK) Manager. Unlike building native and web apps, using the NDK is not

straightforward, as pointed out on the Android website: “(...) The NDK may not be appropriate
for most novice Android programmers who need to use only Java code and framework APls
to develop their apps.". One example of complication that arises from the use of the NDK is
the need to manually manage memory, since Android keeps two separate heaps, one for the
Android Runtime and another one for the native parts of the app. Moreover, the setup of an
app that uses the NDK requires additional steps such as the construction of an additional
build script and the definition of at least one method that will serve as the interface between

the Java and C/C++ code.

< https://developer.android.com/reference/android /webkit/WebView>
® |<http://developer.android.com/ndk/guides/index.htm|>

https://developer.android.com/reference/android/webkit/WebView
http://developer.android.com/ndk/guides/index.html

33

2.3 ANDROID ENERGY AWARENESS

Since the release of the Android OS in 2008, Google introduced a number of changes
aiming exclusively to help reduce energy consumption. Before Android 5.0, most updates were
focused on reducing the energy consumption of the operating system itself. After version 5.0,
besides optimizing their infrastructure, Google has been giving developers tools and information
so they may be able to reduce the energy footprint of their own apps. In a more subtle way,

Google also has introduced ways for the end-users to indirectly reduce the energy consumption

of their devices (e.g., using dark themes on [Organic Light-Emitting Diode (OLED)| screens).

Here, we present some of the major updates regarding energy consumption on the Android

0S:

= Project Volta (Android v5.0): A set of optimizations and tools aiming to reduce
battery consumption. It included: a new battery saver mode, a job-scheduling APlIs,

batching of tasks, the Battery Historiarﬁ and the batterystats API.

= Doze mode (Android v6.0): Reducing CPU and network activity on apps when the
device is unused for long periods of time, aiming to reduce the energy consumption while

the user is not on the phone.

= App Standby feature (Android v6.0): Reducing background network activity on apps

that had not been used recently.
= Improved Doze mode (Android v7.0).
= Battery usage alerts (Android v7.1).

= Light and dark themes (Android v8.1). On OLED devices, darker themes can save

a significant amount of energy (LINARES-VASQUEZ et al., [2018)).

= App Standby Buckets and Adaptive Battery (Android v9.0): Helping prioritize

the apps requests, based on how recently and frequently the apps have been used.

= Improvements to battery saver mode (Android v9.0): When entering battery

saver mode, the OS may put apps in app standby mode more aggressively, background

6 <https://developer.android.com /topic/performance/power/setup-battery-historian>

https://developer.android.com/topic/performance/power/setup-battery-historian

34

execution limits apply to all apps, may disable location services when the screen is off,

and remove network access to background apps[].

= New system-wide dark theme/mode (Android v10.0).

Complementary to the Android updates, in Android Studio version 3.2 (released in 2018
soon after Android v9.0), they introduced an energy profiler, that is, a tool that makes it easier
for developers to see the energy footprint of their apps. The intention was to help developers
diagnose and improve the energy impact of their app.

This shows the importance of optimizing the energy consumption on mobile devices. Even
so, non-specialist developers may still introduce energy leaks to their applications, reducing the
overall battery life. When compared with other development metrics (such as performance),

excessive energy consumption is not as easy to notice without the aid of an energy profiler.

2.4 MEASURING ENERGY CONSUMPTION

In the early days of computing, hardware and the operating system were seen as the big
energy spenders. Tiwari, Malik e Wolfe| (1994) showed that software can also have a big
influence on energy consumption. Nonetheless, the developers still believed that hardware and
operating systems were the only important components. That led developers to be unconcerned
about trying to reduce the energy consumption of their applications. This has caused an
escalation in energy consumption over the years (ASAFU-ADJAYE, 2000).

In recent years, several academic works have focused on reducing the energy consumption
of an application by changing pieces of software, with different degrees of success (HASAN
et al), [2016; |OLIVEIRA; OLIVEIRA; CASTOR| [2017; IPINTO; CASTOR; LIU, [2014b; HINDLE, {2012}
COHEN et al}, [2012; [LI; HALFOND), [2014; [MANOTAS; POLLOCK; CLAUSE, [2014).

With the advent of mobile technologies and the intense usage of battery powered devices,
efficiency energy consumption has become essential. Without a constant flux of power, energy
consumption is critical and any improvement can have a positive impact on the user experience.

To measure energy, practitioners make use of a tool called energy profiler. |Jagroep et al.

(2015)) uses the following definition to describe an energy profiler:

T <https://developer.android.com/about/versions/pie/power>

https://developer.android.com/about/versions/pie/power

35

An energy profiler (EP) is a software tool that estimates the energy consumption
of a system based on the computational resources used by applications, and by

monitoring the hardware resources.

Making use of an energy profiler, practitioners can analyze the energy consumption of their
software systems, searching for energy anomalies that could decrease the energy efficiency of
their application.

In the next sections we will discuss the ways to profile energy consumption on mobile
devices, following the classification of Hoque et al.| (2015). The taxonomy of profilers have four
different main aspects to classify the profilers: Granularity, Model Type, Model Construction

and Deployment Type.

Granularity: how specific the profiler can be when looking at energy consumption from the

four possibilities: system, subcomponent, application, and API.

Model Type: which heuristics the power model follows to estimate the energy consumption

on the mobile device (e.g., linear regression, utilization, genetic model).

Model Construction and Deployment Type: where the power model to calculate energy
consumption is constructed and where the profiler is executed. Both aspects can be classified
as "on device" or "off device".

To materialize our vision, we needed a profiler fulfilling our requirements, that is, granu-
larity of (at least) application level and "on device" deployment type, to measure the energy
consumption of different constructs related to software development. Without at least a gran-
ularity of "application level", our measures would be filled with noise from other components
running on the device (e.g., GPS, screen, network, other applications). Our choice to have a
"on device" deployment is based on the possible future developers adherence of our energy
aware tools. The tools to measure energy consumption can be complex to handle and some-
times very expensive. |Cruz e Abreu| (2019b) have even suggested measuring it through the
cloud, using a Software-as-a-Service infrastructure, to reduce that complexity. To increase the
accessibility of our tools, we wanted a profiler that could be used without external instruments.

Analyzing the available profilers, we found that each one has its own advantages and
disadvantages. None of them is the best or can be used in all possible scenarios. As an
example of energy profilers diversity, previous works have several different solutions to analyze

the energy consumption of an application. On system level granularity, some examples are:

36

programmable batteries (SILVA-FILHO et al., [2012)), physical devices, including current clamps

and |Data acquisition systems (DAQ)s (Data Acquisition System) (LI et al., 2013; |PETERSON et

al., [2011; SABORIDO et al., [2015} [SILVA et al., | 2018; BESSA et al., 2019)), and even let the battery
discharge completely (COUTO et al., 2014).

On the subcomponent, application and API levels, there are works focusing specifically on
methods (COUTO et al, 2014), API calls, (LINARES-VASQUEZ et al., 2014)), whole applications
(WILKE et al., 2013} SILVA et al., 2018)), lines of code (HAO et al., 2013; LI et al., [2013), collec-
tions (HASAN et al., 2016)), and even instruction level (BESSA et al., [2019), among others. It is
worth noting that as the granularity of measurement gets finer, the impact of instrumenting
the code on energy consumption increases (HAHNEL et al., [2012).

Among the mobile profilers with "application level" granularity and "on device" deployment,
we selected Android Power Profiler. More details about it on Section 2.5l

Some of our studies have also analyzed the energy consumption of Java implementations on
development machines and servers. For that, we used the Intel RAPLE] (Running Average Power
Limit) to perform the measurements. Intel RAPL consists of a set of low-level interfaces that
provide information about energy and power consumption using a software power model. This
software power model calculates power consumption using hardware performance counters
and input and output models. It is supported by servers and development machines that
use Intel chipsets. Several papers make use of Intel RAPL to measure energy consumption

(SUBRAMANIAM; FENG, 2013; LIU; PINTO; LIU, 2015; KAMBADUR; KIM, 2014).

We used Intel RAPL via[Java Running Average Power Limit (JRAPL)|(LIU; PINTO; LIU,

2015)). JRAPL is a framework for profiling Java programs running on |Central Processing Unit|

(CPU)k with [Running Average Power Limit (RAPL)|support’] JRAPL provides an easy way to

use RAPL when analyzing Java programs. It offers refined energy analysis and synchronization-
free measurement. It is possible to use Intel RAPL]to profile the energy consumption of Android
applications using a device emulator. This solution is not without mishaps, such as: (i) system
level profiling may introduce noise on the energy data; (ii) an emulated device and a real one
may not behave the same; (iii) other solutions present better results, such as the Android

Power Profiler.

8 |<https://01.org/blogs/2014 /running-average-power-limit-%E2%80%93-rapl>
9 <http://kliu20.github.io/jRAPL/>

https://01.org/blogs/2014/running-average-power-limit-%E2%80%93-rapl
http://kliu20.github.io/jRAPL/

37

2.5 ANDROID POWER PROFILER

The Android Power Profiler was, among other alternatives, the profiler that better fulfilled

our requisites of model deployment and minimum application level, as stated in Section [2.4]

The reasons for us to choose the Android Power Profiler were:

Availability across devices. It is available on every Android device with version 5
or more (which corresponds to over 94.1% (April 2021) of all Android deviced™| and
will only increase over time). This gives us freedom to run the experiments on almost
any device. Other solutions that fulfilled our requirements (e.g., Trepn ProfilerE[) had
other limitations that reduce our device pools (e.g., could only be executed in a specific

chipset). Those limitations would undermine our results generality.

No extra application or instrumentation. As the profiler is natively executed, no
extra application is needed. As a way to decrease the noise and to make it easier for
the developer to collect the results, we opted for a profiler that could be easily used,

without extra installations on the device or external to it.

Easy of use by the developer. The commands used to collect the battery information

are quite simple and it does not require any setup or tool to be used;

Component consumption distinction. It distinguishes between the different com-

ponents used on the execution (e.g, Wi-Fi, CPU, |Global Positioning System (GPS))).

Because we used a dashboard application to store the execution data, with the distinc-
tion between the components, wifi consumption was easily discarded. More details about

the dashboard application are presented next on this Section.

The profiler is supported by Google. Other profilers were created in two different
ways: by researchers, as a tool to help solving research problems (e.g., PowerProf (KJAR-
GAARD; BLUNCK| [2011)), Eprof (PATHAK; HU; ZHANG, 2012), V-edge (XU et al., [2013)));
or by companies, as a way to better inform developers about the energy behavior of
their apps (e.g., PowerTutonH, Trepn Profiler). There is in fact an extensive number
of frameworks and tools to measure energy consumption (C.; CHANDRASEKARAN; CHI-

MALAKONDA, 2020); The Android Power Profiler was made by Google, responsible for

10" <https://developer.android.com /about /dashboards>

11
12

< https://developer.qualcomm.com /software /trepn-power-profiler>
<http://ziyang.eecs.umich.edu/projects/powertutor/documentation.html|>

https://developer.android.com/about/dashboards
https://developer.qualcomm.com/software/trepn-power-profiler
http://ziyang.eecs.umich.edu/projects/powertutor/documentation.html

38

the development of Android OS, to help developers detect fault energy behaviors on
their apps. By using a tool developed by Google, we hope that our tool can be safely

used by other researchers or developers in the future.

To support our experiments, we created an application to control the flux of executions
on mobile apps. The Dashboard App is a webservice, using HTML and JavaScript. Through
the dashboard, we could control the execution of our benchmarks and modified applications.
It allows us to select several parameters to be executed: device; number of executions; type
of experiment (e.g., benchmark or app); and main point of experiment (e.g., programming
language or framework); the number of warm-up iterations; and the number of iterations. The
last two factors may be used to debug the experiments. It also collects and stores all energy
data from our experiments. Figure [2| represents the current state of our software interface.

Part of our solution to measure energy consumption using wifi includes a library called
Dashbench. This library has the objective of making a bridge between the Dashboard App
and the mobile application. This library is easily adaptable to be used by different kinds of
apps. Using its API, it is possible to make use of the Dashboard App almost seamless. Up
to this point, Dashbench has been used with four different programming languages: Java,
JavaScript, C++, and Dart.

To use the Android Power Profiler tools it is necessary to make use of Android Debug

Bridge (Android Debug Bridge (ADB)D|T_3]. ADB is a command-line tool that works like a

communication interface, using the client-server model, where the device being used acts
as the client and the development machine acts as the server. Through ADB it is possible,
among a variety of commands, to: install and debugging apps, collect data about the device,
and execute automated tests.

For our studies, we will be focusing on the following set of commands:

» adb tcpip <PORT>: used to specify a port to be used by our wifi connection. <PORT>

is the number of the port.

» adb connect <IPADDRESS>:<PORT>: used to open an wifi connect to the device. With
this command, we can execute any adb command via wifi, removing the necessity of an
USB connection. It is important to remember that if the device is connected via USB,

the battery charge will not decrease and it will not be possible to measure the energy

13 <https://developer.android.com /studio/command-line/adb>

https://developer.android.com/studio/command-line/adb

39

"90e}I93Ul J3sn dde pJeoqyseq Jno Jo J0ysusaidg — g 24nSi4

A0 JIONVHD SONIL1IS
(sedjxa AJTATIOYUTEW" fU2]dEe]Ss " ITUOT " oT=dw>d :BuTlaelSIoJuUT N0 L¥VIS
(sedajxs AJTATIOYUTER" /U233 JE]S5 " DTUOT " OT :ButiaelgioguT (N0 L¥VIS [0 m:oE:oE:u B} woy mun_%mu ssalppe seomap | wawpadxe | wewysdxs
cp ¥a Y g f Je1s . pyC: - = 0} MdY UIHELS SylEWYIUSq n dl 8dnap b 5 o
(seu3xs ATELSNUTEW /e ST O e SuTlaelS:oluT (MO LUVIS o o e . oS 151 doig uelg
(seu3ixa) A3TATIOWUTEW /U23.E3S5 DTUOT " OT :Butjuels:iojul 0 L¥VIS

suonpy

:sUOneIa)l #

2SUONEIFY JO Jaquunpy :SUonREIS)
2]l dn-ulem Jo Jaquiny dn-wuem g
:SME)s Juswadxg =0IeQd
@0IARQ o | jomaLuel

BjoMBLIel SbumEs sankieulq | Djewyouag

S{ewyouag juswadxas abueyy
i

21e1unoo Buipug

219JUN0D [eniu]
- 13]UN0D JUB.LINY

pieoqyseq sbumas

40

consumption. The mobile device and the development machine must be on the same

wifi network. <IPADDRESS> is the local ip address of the device.

adb shell am start -n <ACTIVITY> -e param <PARAM>: used to start the applica-
tion. <ACTIVITY> is the main activity of the application. <PARAM> is used to inform a

parameter to the app (e.g., a specific data structure to be analyzed by our profiler).

adb shell dumpsys batterystats: used to collect energy data. Can be affixed with

"> file.txt" to store the data on a file or "—reset" to reset the energy data on the device.

adb shell shell pm clear <PACKAGE>: used to force stop the app, ensuring that it
is terminated after the energy logs are collected. <PACKAGE> is the application package

name.

We followed a strict procedure to execute any application or benchmark on our devices.

With that, we tried to reduce the inherent noise of measuring the energy consumption on

mobile devices. Experiments in this thesis were executed observing the following step-by-step

procedure:

. Close all running applications not involved in the tests, activating airplane mode, and

immediately rebooting the device. The Wi-Fi must be turned on to use the dashboard

app.

. Connect the device to the webservice via Wi-fi using the Android Debug Bridge;
. Reset all data regarding battery consumption;
. Execute the experiment;

. Prevent the app from running in the background at all times, not locking the screen,

not allowing the screen to shut down, or changing to another app.

. Gather the execution data from the device.

ltems 1 and 2 are partially automated using shell scripts and monkey[™* Items 3, 4, 5 and

6 were executed automatically using our web dashboard application. On Figure [3| we present

a graphic illustration of the workflow when executing the Dashboard app steps 4, 5 and 6.

14

<https://developer.android.com/studio/test/monkey>

https://developer.android.com/studio/test/monkey

41

(1) Send request
to start execution

(2) Start
application
(3) Stop execution and <_\ PRILal
[send request to store data
Dashboard app «<—>»| (4) Store data Smartphone

L N (5) Send request j

continue execution

Figure 3 — Workflow of the dashboard application. The activities are executed following the number beside
each step.

The energy and performance tools available in Android give us the information about
execution time and CPU usage in minutes and seconds. On the other hand, the units used to
measure battery discharge on mobile devices are not Joules, the unit used by the International
System of Units to measure energy. Using the Android Power Profile tools, the discharge is
presented in milliampere-hour mAh.

Milliampere-hour is a unit of electric charge, multiplying electric current (Ampere) by time
(seconds) and its measured in Coulombs. Using that measure to analyze energy consumption
is conceptually wrong, since milliampere-hour is a unit of electric charge. However, its possible
to convert the electric charge (mAh) to energy (Joules) using the voltage, using the following

equalities:

Imilliampere x hour = 3.6coulomb (2.1)

Energy = Charge x Voltage (2.2)

Equality 2.1 presents how much coulombs are present in one mAh. On equality 2.2, we can
find the energy expended by multiplying the charge (that is, the data value shown by Android
Power Profiler multiplied by 3.6) and the voltage. As an example, if the data shows that an

app used 1mAh with a voltage of 4.4v, the energy value would be
Energy = 1% 3.6 x 4.4 = 15.84 Joules (2.3)

To optimize power usage, devices use a power management technique called dynamic volt-

age scaling, that is, the voltage may increase or decrease in order to optimize the performance

42

and energy consumption.

To verify how this variation occurs while benchmarks were executed, we collected volt-
age data from two different devices and compared it with a linear distribution using the
Kolmogorov-Smirnov test. Both of our results suggested that the voltage of those devices
decreases in a linear model (with p-values of 0.847 and 0.964). Since the voltage decay during
the executions is linear, we use the mean, using the maximum and the minimum voltage during
the experiments, to estimate the current voltage in Chapter 3]

In recent versions of Android Power Profiler, it is possible to gather the voltage at the
moment of the execution. Because of that, in Chapter |4| we used the voltage informed by the
profiler to calculate the energy consumed instead of the mean.

Nucci et al.| (2017)) compared Android’s tools for measuring energy consumption with the
measurements of an oscilloscope (coarse-grained measurement) and their results indicate that

Android’s tools are accurate.

2.6 STATIC PROGRAM ANALYSIS

Software systems are complex objects by nature. When this complexity rises beyond human
analysis capacity, developers usually make use of two different methods to analyze computer
software: Static program analysis, done without the system (usually performed on the source
code or some intermediate representation); and dynamic analysis, done while the application
iS running.

Both methods are used to understand the behavior of software applications and have their
own advantages. Dynamic analysis requires less instrumentation and tools to be done (it is
currently largely used on unit tests, integration tests, system tests, and acceptance tests),
can detect vulnerabilities in execution time, may be executed without the system source code,
and it usually leads to less false negatives than static analysis. Still, it does not cover all
execution cases and can be more difficult to find the problem’s source. Static analysis can find
security vulnerabilities, memory errors, resource leaks, violations of API rules, and detection
of race conditions and other errors that usually do not appear in a typical execution of the
application, pinpointing the exact point of error; it also detects problems much earlier in the
development cycle, what has been shown to have a number of advantages (HANGAL; LAM,
2002; EMDEN; MOONEN, 2002). Automated static analysis can create a substantial number

of false positives and false negatives, and it does not find any problems created by runtime

43

variables. Static analysis can also be done manually but in that case it can become complex
and time consuming.

In this work, we used T. J. Watson Libraries for Analysis (WALAED to make the static analysis
of benchmarks and applications. Previous works have already used WALA to help analyze energy
consumption of software constructs (MANOTAS; POLLOCK; CLAUSE, 2014; HASAN et al., 2016;

FERNANDES; PINTO; CASTOR, 2017).

2.6.1 T.J. Watson Libraries for Analysis

Watson Libraries for Analysis (WALA)|is a library that supports static analysis

of Java bytecode and related languages (e.g., Android Dalvik, .NET), and for JavaScript.
Among the features provided by WALA we have: Java type system and class hierarchy analysis;
Source language framework supporting Java and JavaScript; Interprocedural dataflow analysis;
Context-sensitive tabulation-based slicer; Pointer analysis and call graph construction; SSA-
based register-transfer language IR; General framework for iterative dataflow; General analysis
utilities and data structures; A bytecode instrumentation library; and a dynamic load-time
instrumentation library for Java.

Among the features offered by WALA, we will be focusing on only a subset to execute our
experiments: Interprocedural data-flow analysis, Call graph construction, and Pointer analysis

(within WALA, we used it with ZeroOneCFA policies).

Data-flow Analysis: Data-flow analysis is the process of gathering information about the
variables used in a specific part of a program, attempting to estimate the value of it during
the execution. The analysis consists in collecting information on each point of a function or
procedure. The easiest way to do that is to analyze the boundaries of a determined block of
code (e.g., the body of a method in Java). With that information, it is possible to know what
will happen with the selected variables in a possible execution of the program.

Data-flow analysis is used in several different scenarios such as code optimization, when
soundness or automation is required, or to detect unwanted behavior. By supporting data-flow
analysis, we mean that we also consider the calling context of a method call. That is useful

to analyze the origin of the variables.

Call graph: Call graphs are used to represent the calling relationships between functions (or

15 <http://wala.sourceforge.net /wiki/index.php/Main_Page>

http://wala.sourceforge.net/wiki/index.php/Main_Page

44

methods) in a software system. On this graph, nodes represent the functions and the edges
represent method calls.

They are used to analyze the behavior of a system and can be constructed dynamically
or statically. The dynamic graph represents the execution of a software system and describes
exactly one run of the program. During software development, it is normal to find such graphs
when debugging in the shape of stack traces. The static graph is created to represent all
possible executions of a software system. Since this is an undecidable problem, when creating
static graphs, the tool needs to make approximations.

On WALA, the CallGraph class represents a call graph. It is important to note that WALA

implementations of pointer analysis perform on-the-fly call graph construction.

Pointer analysis: Pointer analysis (or Points-to-analysis) is a technique that establishes what
are the pointers pointing (memory locations or variables) at and how they can interact with it.
Among the several implementations of pointer analysis, perhaps the most used is the Andersen-
style pointer analysis (ANDERSEN, (1994)). It can be expressed as subset constraints: “different
program statements induce inferences of the form ‘points-to set A is a subset of points-to set
B’, or, computationally, ‘add all elements from points-to set A to points-to set B'" [[]

WALA provides a framework using exactly an Andersen-style pointer analysis. There are
three different context-sensitivity policies available to customize the analysis: ZeroCFA is a
simple, cheap, context-insensitive pointer analysis. It is the fastest and simplest option avail-
able. ZeroOneCFA provides an approximation of the standard Andersen’s pointer analysis.
ZeroOneContainerCFA extends the previous policy with unlimited object-sensitivity for collec-
tion objects. Each one of those offers increasingly more features but also is increasingly more
expensive. We experimented with the different policies and, in our experiments, opted to use
the ZeroOneCFA policy. This policy is the least expensive policy (in terms of performance) that

offered all the necessary resources that we needed for our studies.

2.7 DESIGN DIVERSITY

Creating reliable software and ensuring that it does not enter in an unacceptable state
(i.e., a state where the program does not work as intended) should be a priority of every

developer. More significantly, in certain critical systems, failure cannot be an option, since

16 '<https://yanniss.github.io/points-to-tutorial15.pdf>

https://yanniss.github.io/points-to-tutorial15.pdf

45

- @

| unacceptable
-"""-._‘___‘._L__‘\LH
@
acceptable

Figure 4 — Conceptual model of the software failure process. Program execution is a mapping from the set
D, of all possible demands (sequences of input values), into the set of output sequences, O. D f

represents the totality of all demands that the program, P, cannot execute correctly: they map into

unacceptable output sequences'?.

the (human and financial) consequences can be catastrophic (e.g., airship control and stock
market systems). To enhance reliability, and reduce the probability of system failure, one of
the existing approaches is design diversity["’]

Figure @ shows a representation of this model. One way to model the execution of a
software-based system is to describe it by means of demands and outputs. The set of de-
mands, D, represents all possible inputs used on the program’s execution, containing tradi-
tional software inputs and possible external factors like weather or location. All points of D
that incur in a failure are included in a subset called Df. The set of outputs, O, represents
all the possible outcomes of the program'’s execution. The set of demands can be complex to
enumerate or classify, on the other hand, the outputs can always be classified in one of two
groups: acceptable or unacceptable.

The objective of design diversity in the context of fault tolerance is to reduce D f as much as
possible. To do that, it employs several different techniques, such as: independently developed
solutions to software pieces, defensive programming, recovery mechanisms, exception handling,
and so on.

Diversity can be seen as a possible solution to reduce unwanted characteristics of a software-
based system, often by means of redundancy. When comparing to works analyzing energy
consumption, one can draw a parallel between design diversity in fault tolerance and what we

call energy design diversity.

17" Diversity here has the sense of a variety of solutions
18 Figure originated from [Littlewood, Popov e Strigini| (2001)

46

2.7.1 Energy Design Diversity

Building an application can be a complex task, requiring developers to deal with inter-
connected and sometimes conflicting objectives in order to solve non-trivial problems. One
way to mitigate this complexity is to leverage the availability of software solutions such as
libraries, APls, frameworks, gistsEg], and answers from Q&A sites such as StackOverrowFE].
In this context, designing and implementing software has become a task of selecting appro-
priate solutions among multiple options (BALDWIN; CLARK, [2000) and combining them to
build working systems. We call energy variation hotspots the programming constructs, idioms,
libraries, components, and tools in a system for which there are multiple, interchangeable,
readily-available solutions that have potentially different energy footprints.

A number of papers have measured and analyzed different types of energy variation
hotspots, such as programming languages (OLIVEIRA; OLIVEIRA; CASTOR, 2017; |PEREIRA et
al, 2017} [GEORGIOU; SPINELLIS| [2020)), API usage (AGGARWAL et al, 2014} [LINARES-VASQUEZ
et al}, | 2014; ROCHA; CASTOR; PINTO, 2019)), thread management constructs (PINTO; CASTOR;
LIU, 2014bj |LIMA et al., |2019)), data structures (HASAN et al., |2016; PEREIRA et al., [2016; PINTO
et al,, 2016; LIMA et al., 2019; OLIVEIRA et al., 2021]), color schemes (LI; TRAN; HALFOND, 2014;
LINARES-VASQUEZ et al.,[2018)), and machine learning approaches (MCINTOSH; HASSAN; HINDLE,
2019), among many others.

Unlike low-level abstractions, such as voltage and frequency scaling, developers are fa-
miliarized with energy variation hotspots. Moreover, they make it easy to experiment with
different options to analyze their impact on energy, since there are readily-available alternative
implementations. Furthermore, the cost of replacing one implementation by another tends to
be low, since they usually share common specifications (PINTO et al., 2016)). If these algorithms
adhere to a common specification, a recommendation tool can analyze their usage context so
as to recommend a potentially efficient alternative. This can yield energy savings at a cheap
cost in terms of development effort and does not require specialist knowledge.

The idea behind energy design diversity is using a more energy efficient option to improve
an application while keeping the same functionality. Although both implementations have an
acceptable output for the same demand, energy savings can be achieved by using the most

efficient option.

19 <http://gist.github.com>
20 <https://stackoverflow.com>

http://gist.github.com
https://stackoverflow.com

47

In a number of cases, there is no single solution to reduce the energy consumption of
an energy variation hotspot, as the solutions vary with external and internal factors. As an
example, when analyzing the data structures and knowing that different implementations have
different costs to each operation, we could not recommend a more energy efficient collection’s
implementation without knowing the number of insertions, removals, and access to variables
in the original implementation. Having a variety of distinct energy efficient implementations
let us make a better recommendation in a greater number of different scenarios.

This thesis tries to leverage the concept of energy design diversity by combining it with the
idea of energy variation hotspots. We will use it as proof-of-concept of how design diversity
can improve energy-aware software: When considering development approaches, we have the
possible different implementations on different programming languages to solve the same
problem. We noticed that using the same algorithm (only translated to another programming
language) in two different approaches resulted in quite diverse energy consumption data. When
considering Java collections, we have analyzed the use of different implementations to solve
the same problems. Those changes were made automatically, without the interference of any
developer. Usually the changes were very simple (many recommendations changed only a single
line of code).

The main idea of diversity here is that by having multiple solutions for the same problem,
the developer can use whatever is best, depending on the expected output. In the specific case
of energy design diversity, the developer will be prioritizing energy rather than other software
quality attributes (e.g., performance, memory space).

One advantage of using energy design diversity is that as the implementations are already
available, there is considerable less effort to implement modifications based on energy design
diversity. Developers can focus on selecting appropriate software constructs and exploring their
impact, instead of building new options. Although simple, the changes can have quite positive
impacts on the energy efficiency of the application (OLIVEIRA; OLIVEIRA; CASTOR, 2017)).

Other ways to reduce energy consumption, like frequency and voltage scaling, and use of
power efficient components, can be quite complex. That complexity can result in developers
reverting their energy-improvement changes over time (MOURA et al| [2015). Using energy
design diversity, we hope to reduce the complexity of optimizing the application by lowering
the need to understand hardware-specific details, increase the pool of options and lower the
implementation overhead.

There is a slight difference between the concept of energy design diversity and energy-aware

48

refactoring. As defined by |Fowler| (2018)), refactoring is:

noun: a change made to the internal structure of software to make it easier to

understand and cheaper to modify without changing its observable behavior

verb: to restructure software by applying a series of refactorings without changing

its observable behavior.

"Its heart is a series of small behavior preserving transformations. Each transfor-
mation (called a "refactoring") does little, but a sequence of these transformations
can produce a significant restructuring. Since each refactoring is small, it's less
likely to go wrong. The system is kept fully working after each refactoring, reducing

the chances that a system can get seriously broken during the restructuring."

By definition, energy-aware refactoring would be change the code to improve energy effi-
ciency instead of making it easier to understand or cheaper to modify.

The main concept of energy design diversity is that there is several different solutions for
a specific problem and that using the most energy efficient solution would reduce the energy
consumption of an application.

This concept could lead to a single refactor, a series of refactors, or to the whole rewrite of
the solution. For example, two applications developed in distinct programming language could
have the same functionalities. Nevertheless, in the case of a more energy efficient programming
language, energy-aware refactoring would not help a developer trying to reduce the energy
footprint of their app. Because of this core different, an application design using the concept
of energy design diversity could be very different from a app refactored to consumed less
energy. Energy design diversity gives us options to refactor a program. Since these options
adopt the same interfaces and have functionally almost identical, refactoring to leverage them
is intuitive.

In summary, although the concept of energy design diversity could (and often does) lead

to energy-aware refactoring, ultimately, they deal with on layers of abstractions.

49

3 THE ENERGY FOOTPRINT OF ANDROID DEVELOPMENT APPROACHES

Currently, there are four approaches to develop apps that are directly endorsed by Google:
Java, the default language for Android development; Kotlin; JavaScript, with the support
of some frameworks, one can develop a full app using the web toolkit , and
JavaScript); C/C++, through the Native Development Kit , which makes it possible
for a developer to write the majority of an application in C/C++. In the latter case, there
is a trade-off between an increase in complexity and the benefit of (potentially) improved
performance. In summary, Android apps can be written entirely in Java or Kotlin (native
apps), in JavaScript-related technologies (web apps), or in a combination of more than one
programming language (hybrid apps)E]. Most of the Android apps, however, are written entirely
in Java. In a sample of 109 projects we examined from F-Droid, only 4% use Javascript and
4% use the resources to improve performance. Table |2 has a list of all apps from our
sample.

Although one can find scientific and anecdotal evidence about the performance of Android

1 The hybrid app denomination it is also used to refer to JavaScript-powered apps. In this work, we consider

a hybrid app to be any app that uses more than one development approach.

Table 2 — Applications collected from F-Droid. From the 109 apps, 104 were developed using Java, five making
use of [NDK] and five were developed using [J5|

Programming Applications
Languages
Java 1x1 clock, Anagram Solver, Allsimon/Alldebrid, AndroidRun, android-obd-reader,

thialfihar/apg, bpear96 /ARChon-Packager, applocker, google/google-authenticator-
android, SashOk/bluetooth-spp-terminal, boardgamegeek, jchmrt/clean-calculator,
bitfireAT /cadroid, callmeter, Car Report, CineCat, Clover, CountdownTimer,
Cowsay-android, CricketsAlarm,DeepScratch, derandom, dotty, Drinks, Droid-
Beard, Earmouse, esms, EasyDice, EnigmAndroid, external-ip,falling for reddit,
Fish,Flashlight, FreeOTP, frostwire-android, GetBack GPS, Gobandroid, Han-
dyNotes, Hash It!, HeartRateMonitor, HeaterRC,HUD, ICSdroid, IntentRadio,
JAWS, Matrix Calc, MAXS Module LocationFine, MAXS Module Ringermode, Mi-
graine Tracker, Movian Remote, MobileOrg, MyOwnNotes, MultiPing, NetMBuddy,
Network Discovery, Number Guesser, No Stranger SMS, Ol About, Ol Notepad,
OpenMensa, Page Plus Balance, Photo Bookmark, Permissions, Pocket Talk, Pock-
etSphinx Demo, Prism, Quest Player, RedScreenActivity, ReLaunch, S Tools, san-
ity, Search Light, SecDroid, Send to SD card, ShoppingList, Simply Do, Sky Map,
Sokoban, SparkleShare, Speedo, StockTicker, Sudowars, TaigIME, Temaki, Tim-
ber, Toe, Torch, Tri Rose, Twister, Visualizer, Voodoo,CarrierlQ Detector, WebSMS
Connector: GMX, weechat, WiFi Warning, WiGLE,Wifi Wardriving, WWWJDIC for
Android, Yaacc, YubiClip, YubNub Command Line.

Java with [NDK 24 Game, OpenWnn Legacy, PrBoom For Android, Lumicall, Mitzuli

JavaScript ankidroid /Anki-Android, clipcaster, Overchan, RainTime, smeir/berlin-vegan-guide

50

apps written using these different development approached]f] it is hard to find data about
the differences in energy consumption. It is not yet clear whether the four aforementioned
approaches lead to energy efficient applications.

This chapter aims to shed more light on the issue of energy efficiency among three out
of the four different Android app development approaches. We compare energy consumption

and performance of 33 benchmarks developed by several authors from Rosetta Codef_r] and the

Computer Language Benchmark Game ((Computer Language Benchmark Game (CLBG). Our

study consisted of executing multiple versions of each benchmark on a number of different
mobile devices, while measuring execution time and energy consumption.

To measure energy consumption, we used the tools available through Android Power Pro-
filer. These resources enable us to collect energy consumption information on a per-app basis.

Our goal with this study is to provide an answer to the following research question:

= RQ.1. Is there a more energy efficient approach among the most common

Android development models?

We found out that for 26 out of the 33 analyzed benchmarks, JavaScript versions exhibited
lower energy consumption than their Java counterparts. The Java versions of six of these
benchmarks outperformed their JavaScript counterparts, even though they consumed more
energy. This result indicates that, at least for CPU-intensive apps, Java may not be the most
energy efficient solution.

For the CLBG benchmarks, we compared Java, JavaScript, and C++ versions, executing
them on five devices with different characteristics, achieving similar results. We found out
that, although there are some small variations in performance, the energy consumption relation
between Java, JavaScript, and C++, remained similar across devices, with JavaScript having
the edge over the other approaches concerning energy consumption, while exhibiting a good
trade-off between energy and performance. We also noticed that using the [NDK] does improve
performance.

Even though these are interesting results, Android apps in general behave differently from
CPU-intensive benchmarks (RATANAWORABHAN; LIVSHITS; ZORN, 2010). Most of their execu-

tion time is spent waiting for user input or using sensors. Because of that, energy optimizations

2 <https://stackshare.io/stackups/android-vs-apache-cordova>

3 https://stackoverflow.com /questions/16156370/phonegap-vs-native-on-android-performance-test
* |<http://rosettacode.org/wiki/Rosetta_Code>

5 |<https://benchmarksgame-team.pages.debian.net/benchmarksgame />

https://stackshare.io/stackups/android-vs-apache-cordova
http://rosettacode.org/wiki/Rosetta_Code
https://benchmarksgame-team.pages.debian.net/benchmarksgame/

51

made on benchmarks may not have the same impact on the energy usage of real applica-
tions (SAHIN; POLLOCK; CLAUSE, |2016)). This led us to question whether one could save energy
by using a hybrid approach, adopting JavaScript and C++ in the more CPU-intensive parts

of applications. Thus, we also provide an initial answer for the following research question:

» RQ1.2. Is it possible to reduce the energy consumption of a native app by

making it hybrid?

We reengineered four open-source apps: three existing apps from the F-Droid repositoryﬁ

and one app developed by the National Institute of Science and Technology for Software

Engineering (National Institute of Science and Technology for Software Engineering (INES)[)E].

Three of those apps are also available at the Play Store. Each app was written in Java and
we made parts of them run in JavaScript and C++. Our goal was to analyze whether using
these approaches alongside Java impacted performance and energy consumption. From the
benchmark analyses, we knew that using JavaScript and C++ often led to an improvement in
performance, energy consumption, or both. However, we had no information about whether
it was possible to make improvements in performance and energy consumption by using a
hybrid approach. We analyzed different models for invoking Javascript and C++ snippets
using Java code and measured the energy consumption in all cases. Our results indicate that
it is possible to save energy using this hybrid approach - for one of the apps, a hybrid version
using a combination of Java and C4++ consumed 0.37J, under a certain workload, whereas
the original version written entirely in Java consumed 32.92J.

Knowing whether small modifications in the code promote a non-negligible reduction
in energy consumption empowers developers. Moreover, tool builders can introduce cross-
language refactorings that support developers in reengineering existing applications when a
hybrid approach may be beneficial. All data related to this study can be found at |[<https:
/ /secaada.github.io/msr2017 />

This chapter is structured as follows: Section [3.1] describes the methodology used on
this chapter; Section [3.2] displays the results from our experiments analyzing the energy
consumption of Android development approaches; Section [3.3] report our findings about the

energy efficiency of the different development approaches; Section [3.4] presents the threats to

<http://f-droid.org>
7 <https://github.com /ines-escin/>

https://secaada.github.io/msr2017/
https://secaada.github.io/msr2017/
http://f-droid.org
https://github.com/ines-escin/

52

validity; Section [3.5] presents the related work, focusing on papers analyzing different aspects

of energy consumption on Android, and Section [3.6] concludes this chapter.

3.1 METHODOLOGY

The aim of this study is to analyze the most popular development approaches for Android
and to establish whether they differ in terms of energy efficiency and performance. The metric
we use to evaluate performance in this chapter is execution time.

In this section, we explain how we selected the analyzed benchmarks and apps (Sec-

tion [3.1.1]), and how we executed the experiments (Section (3.1.2)).

3.1.1 Benchmarks and apps

Benchmarks were extracted from two software repositories: Rosetta Code and the Computer
Language Benchmark Game (CLBG). Rosetta Code is a programming chrestomathyﬁ site.
It includes a large number of programming tasks and solutions to these tasks in different
programming languages. CLBG is a website whose main purpose is to compare the performance
of several programming languages. Both have been employed in prior work for comparing
different programming languages and to analyze energy efficiency (NANZ; FURIA, 2015; COUTO
et all [2017; PEREIRA et al (2017} [LIMA et al., [2019; PEREIRA et al., 2021).

Table (3] lists all the benchmarks analyzed in this study. The benchmark set encompasses
23 benchmarks from Rosetta Code and 10 from CLBG. Most of the benchmarks from Rosetta
have already been used in other studies (NANZ; FURIA, 2015).

All benchmarks from CLBG that have implementations in all three languages were used,
which includes in some cases, sequential and parallel versions of the same benchmark.

Since the benchmarks from Rosetta were not built with optimal performance in mind, their
performances vary widely. For example, in the NQUEENS benchmark, the solutions available at
Rosetta took 20s to finish in Java and 69s in JavaScript. By converting the JavaScript version
to use the same algorithm as the Java version, this new version took 12s to finish.

To illustrate the modifications made, we will present the original JavaScript algorithm for

NQUEENS, the original Java version, and the modified JavaScript used on the experiment:

8 A selection of literary passages from a foreign language assembled for studying the language; or a text in

various languages, used especially as an aid in learning a subject.

53

Table 3 — The selected set of benchmarks and applications.

Source

Benchmark or App

Rosetta Code

BUBBLESORT, COMBINATIONS, COUNT IN FACTORS, COUNTINGSORT,
GNOMESORT, HAPPY NUMBERS, HEAPSORT, HOFSTADTERQ, INSERT-
SORT, KNAPSACK BOUNDED, KNAPSACK UNBOUNDED, MATRIX MULT
MAN OR BOY, MERGESORT, NQUEENS, PANCAKESORT, PERFECT NUM-
BER, QUICKSORT, SEQNONSQUARES, SHELLSORT, SIEVE OF ERATOS-
THENES, TOWER OF HANOI, and ZERO-ONE KNAPSACK

Computer Language

Benchmark Game

BINARYTREES, FANNKUCK, FASTA, FASTA PARALLEL, KNUCLEOTIDE,
NBODY, REGEXDNA, REGEXDNA PARALLEL, REVCOMP, and SPECTRAL

F-Droid

ANDOF, ENIGMANDROID, and TRIROSE

INES

NUCLEUSAPP

1

5

11

13

15

17

19

21

23

Cédigo Fonte 1 — Original JavaScript NQUEENS

function queenPuzzle(rows, columns) {

if (rows <=

0) {return [[1]1;}

else {return addQueen(rows - 1, columns);}
}
function addQueen(newRow, columns, prevSolution) {
var newSolutions = [];
var prev = queenPuzzle(newRow, columns);
for (var i = 0; i < prev.length; i++) (
var solution = prev[i];
for (var newColumn = @; newColumn < columns; newColumn++) {
if (!hasConflict(newRow, newColumn, solution))
newSolutions.push(solution.concat([newColumn]))}
} return newSolutions;
3
function hasConflict(newRow, newColumn, solution) {
for (var i = @; i < newRow; i++) {
if (solution[il] == newColumn ||
solution[i] + i == newColumn + newRow ||
solution[i] - i == newColumn - newRow) {
return true;}
} return false;
}

54

11

13

15

17

19

21

23

25

27

Cédigo Fonte 2 — Original Java NQUEENS

private static int[] b = new int[8];
private static int s = 0;
static boolean unsafe(int y) {

int x = blyl;

for (int i = 1; 1 <= y; i++) {

int t = b[y - i];

if (t == 1] & == - i || == x + i) {return true;}

} return false;

}

public static void putboard() {
System.out.println(”"\n\nSolution " + (++s));
for (int y = 0; y < 8; y++) {

for (int x = @0; x < 8; x++) {

System.out.print((b[y]l == x) ? "|Q" : "|_");
} System.out.println(”"|");
}
}
public static void main(String[] args) {
int y = 0; b[0] = -1;

while (y >= 0) {
do {blyl++;3}
while ((bLy] < 8) && unsafe(y));
if (bLyl < 8) {
if (y < 7) { b[++y]l = -1; }
else {putboard();}
} else {y--;}

55

Cédigo Fonte 3 — Modified JavaScript NQUEENS

var b = [1;
2 function unsafe(y){
var x = blyl;
4 for(var i = 1; i <= y; i++){
var t = bly - il;
° if (¢t ==x || t==x-1 || t==x+1) {return true;}
} return false;
8 3
function putboard(){
10 for (var y = 0; y < 8; y++) {
for (var x = 0; x < 8; x++) {
12 print ((b[yl == x) ? "[Q" : "[_");
} oprint("]");

14 }
}
16 function run(){
var y = 0; b[0] = -1;
18 while (y >= 0) {
do {blLyl++;3}
20 while ((b[y]l < 8) && unsafe(y));
if (bLyl < 8) {
22 if (y < 7) { b[++y]l = -1;}
else {putboard();}
24 } else {y--;}
}
26 3}

As the research focus is on the development approaches and not algorithm implementations,
we manually analyzed all of Rosetta Code's benchmarks and if the solutions used distinct
algorithms, we changed the slowest solution to use a similar process to the fastest.

Those modifications make the comparisons more balanced. As both languages are syntac-
tically similar, adaptations were straightforward. Since the Rosetta Code benchmarks do not
have a strong emphasis on performance, we have only used Java and JavaScript versions of
them.

In CLBG, all implementations try to achieve the best possible performance. Therefore, the
only modifications applied to those benchmarks were the ones necessary to execute them in the
Android environment. We executed Java, JavaScript, and C++ versions of these benchmarks.
Five implementations of benchmarks in Java and C++ used parallelism to solve the problems,
thus improving performance. Sometimes this also led to an increase in the energy consumption,

sacrificing energy efficiency (PINTO; CASTOR; LIU, 2014a)). Single-core implementations of such

56

benchmarks, whenever available, were also analyzed, as a way to verify whether a slower
execution would lead Java and C++ to be more energy efficient. All benchmarks in JavaScript
were optimized for a single core. As the CLBG benchmarks were more reliable, we executed
them on every device available.

Benchmarks may not be useful to provide an answer for RQ1.2, since they work differ-
ently from apps (RATANAWORABH/—\N; LIVSHITS; ZORN, [2010; [SAHIN; POLLOCK; CLAUSE, 2016).
Therefore, we have used four real-world, open-source apps for the study. These apps appear
in the last two rows of Table 3 ANDOF is an app to calculate depth of field for photog-
raphy, NUCLEUSAPPE] is an app that aims to facilitate the collection of waste cooking oil,
ENIGMANDROID is an app that simulates the enigma machine from the 2nd World War and
TRIROSE is an app that mathematically generates unique and intricate rose graphs. These
apps were chosen because, even though they spend much of their time on input and out-
put operations, they perform a non-trivial amount of computation. NUCLEUSAPP comprises

approximately 1k lines of code (LoC), TRIROSE 1.11000 Lines of Code (kLoC), ANDOF

1.7kLoC and ENIGMANDROID 4.6kLoC. ANDOF, NucLEUSAPP and TRIROSE can also
be found at the Play Store.

The four analyzed apps were written entirely in Java. We have reengineered their most
computing-intensive parts to use JavaScript and C++, creating hybrid web apps and hybrid
[NDK] apps, respectively. To detect those parts, we used the profiler from Android Studio. It is
important to determine the frequency with which Java will invoke the part written in another
language. If the former invokes the latter too frequently, much of the execution time and
possibly energy consumption will be dominated by the overhead of cross-language invocations.
If these invocations are too infrequent, application functionality may be compromised.

In this work, we used three different models to manage cross-language invocations. In
the Stepwise model, one method in Java is mapped directly to a function in JavaScript or
C++ and each time the method is supposed to be called, the function is used instead. In the
Batch model, one method in Java is mapped to a function in JavaScript or C++, bundling
several calls of the method, returning the aggregated result to Java. This model reduces the
communication overhead by dividing processing duties between Java and the other language.
Finally, in the Export model, all the work to be performed in a sequence of method invocations
in the original version is mapped to a single JavaScript or C++ function. Creating a hybrid app

by modifying an existing one instead of coding a new app allowed us to verify whether it was

9 <https://github.com /ines-escin/NucleusApp>

https://github.com/ines-escin/NucleusApp

57

Table 4 — Machines used on the experiments. Age shows how old the device was when we executed the
experiments (in years)

Device Version RAM Chipset CPU (GHz) Battery(mAh) Age
LG L90 5.0.2 1GB Snapdragon 400 4-core 1.2 3000 2
Nexus 5 5.1 2GB Snapdragon 800 4-core 2.3 2300 3
Nexus 7 51.1 2GB Tegra 3 4-core 1.2 4325 4
Samsung J7 5.1 1.5GB Exynos 7580 8-core 1.5 3000 1
Zenfone Selfie 6.0.1 3GB Snapdragon 615 2x 4-core 1.7/1.0 3000 1

possible to increase energy efficiency with minor modifications, meaning minimum effort for
developers. Each execution of the hybrid apps had the same input and output as the original
version.

All benchmarks and applications were deployed using Android Studio v2.2.2.

3.1.2 Running the experiments

All benchmarks were executed using a preset workload, individual to each benchmark. The
size of each workload was determined so as to guarantee it was executed for at least 20s even
though sometimes that was not possible due to memory limitations. All web versions of the
benchmarks were executed inside a wrapper originated from Apache Cordova.

When working with the C++4 versions of the benchmarks, it was not always possible to
pick the fastest version available in CLBG. This is due to the fact that some of the low-level
approaches that were used in order to achieve maximum performance were not available in
. For example, the fastest solution of the REVCOMP benchmark uses the not-thread-safe
version of the functions fwrite and fgetc. For that reason we tried to use the fastest compiling
version of the benchmarks.

Table |4 lists the devices we employed in this study. Five devices were used to run the
benchmarks, four smartphones and a tablet. We tried to achieve diversity by selecting devices
with different manufacturers, chipsets, and CPUs. All devices run the Lollipop version of
Android (5.x) or a more recent one. Updates to Android were only applied by means of its
updating tool, to emulate a realistic usage scenario. Alternatively, we could have manually
installed the same version on every device but this method would require unofficial versions.
Thus, we ended up with some slight variations of Lollipop.

We executed every version (Java, JavaScript, and C++) of the CLBG benchmarks at least

58

10 times in each device. In most cases, however, each benchmark version was executed 30
times in each device, with the Nexus 5 smartphone being the only exception. The reason for
this lower number of executions is that this phone stopped turning on before we could perform
the full set of executions. For the remaining four devices, we performed 30 executions of each
version of each CLBG benchmark. All C++ versions of the benchmarks were executed at least
30 times in each device. The versions of the Rosetta Code benchmarks were executed in the
Nexus 5 only. We choose to focus on the CLBG because it was a more fair comparison. As
previously mentioned, the benchmarks from Rosetta Code are not optimized as the benchmarks
found on CLBG. The execution time and battery measurements were obtained using custom-
built scripts. To collect measurement data, we have developed a webservice, the Dashboard
App, that combined with the aforementioned scripts, automatically performs clean-up on the
device, loads the app to be executed, executes the app, and records the results.

We have also executed each version (native, hybrid web, and hybrid of each of the
apps mentioned in Section [3.1.1] 30 times. Each app was executed using a predefined workload
aiming to simulate realistic usage scenarios. Alternatively, we could also have employed an
automated testing tool, such as monkeyrunnelm. This approach would be particularly advan-
tageous for apps with a stronger emphasis on user interaction, which is not the case on the
selected apps.

Our results point out that the device has little influence on the outcome of which devel-
opment approach is the most energy efficient on a specific application. Because of that, the
experiments to answer RQ1.2, about the energy efficiency of applications hybridization, were
executed only on Samsung J7. The benchmarks experiments answering RQ1.1 were executed
on all five devices. Each experiment starts with the device fully charged and keeps running until
either all the executions are over or the battery reaches 40% charge. Using this conservative

threshold, we aim to guarantee that the device will never go into battery-saving mode.

3.2 STUDY RESULTS

This section presents the results of this study. Section presents the results for RQ1.1
whereas Section [3.2.2] examines RQ1.2. All the data from the benchmarks and apps can be
found at <https://secaada.github.io/msr2017 />

10" <https://developer.android.com /studio/test/monkeyrunner/index.htm|>

https://secaada.github.io/msr2017/
https://developer.android.com/studio/test/monkeyrunner/index.html

59

3.2.1 Is there a more energy efficient app development approach?

We separated the benchmark results in two parts. The first one analyzes the data collected
from the benchmarks from Rosetta Code and the second one from CLBG. For benchmarks
with both sequential and parallel versions, to distinguish between the two, we marked the
parallel version with a ‘p’ at the end of the benchmark name, e.g., FASTA and FASTAP.

Figure [5| shows the execution time (lines) and energy consumption (bars) of the Rosetta
Code benchmarks. Overall, the JavaScript benchmarks exhibit lower energy consumption and
execution time. The Java versions of these benchmarks consume a median 2.09x more energy
than their JavaScript counterparts. Furthermore, the Java versions spend a median of 1.52x
more time to finish their execution. The figure shows that in 18 out of 22 benchmarks from
Rosetta, the JavaScript versions consumed less energy and in 16 they exhibited lower execution
time. Finally, in 3 of the 7 benchmarks where Java was faster, it also consumed more energy
than JavaScript, which suggests a non-linear relation between energy and performance.

Figure [f] shows the execution time (lines) and energy consumption (bars) of the CLBG
benchmarks across all devices. The FASTAP benchmark consumed the lowest amount of energy
in Java, with JavaScript, and C++ consuming a median of 1.72x and 3.33x more energy
across all devices, respectively. The REGEXDNAP benchmark was the most energy efficient in
JavaScript, with the other versions in Java and C++ consuming a median of 13.93x and 9.05x
more energy across all devices, respectively. The REVCOMP benchmark was the most energy
efficient in C++, with Java and JavaScript consuming a median of 2.80x and 19.64x more
energy across all devices, respectively. In spite of these differences between the development
approaches, Figure [6] shows that their relationship does not differ much across devices, in
terms of energy consumption. For example, for the spectral benchmark, Java consumed the
most energy in all devices and JavaScript consumed the least, although the amount of energy
consumed in each device was different. This can be observed for most of the benchmarks.

When comparing approach-to-approach the 50 benchmark-device pairs, contrasting JavaScript
and Java, the former exhibited a lower energy consumption in 36 out of the 50 benchmark-
device pairs and better performance in 19 out of the 50. When compared with C++4-, JavaScript
exhibited lower energy consumption in 37 out of 50 and better performance in 25 out of the
50. In a direct comparison between Java and C++-, the latter had a lower energy consumption
in 28 out of the 50 benchmark-device pairs and a better performance in 27 out of the 50.

These results suggest there is no overall winner in terms of performance, although JavaScript

60

....... '

AB1au

“jJewyouaq yoes Joy uordwinsuod ASJ1aus Ul uleS aAIle|as 9yl Suisn PalIOS dJe SJeq BY | '9POD) B119SOY WO SHIEWYDUS] BY3 JO S}NSay — G 2unSi4

LoEeUIqLIOD

Hos||auys

]

o STES

o
= =] =
w = 3 o w = 3 c =
= 3=
o = = = = == 2 o 5 o = = = = T - g3 zu =4
.o =] o o S, om o = = =2 W 2= = I = o = - = = =
95 g3 % & 28 5% § % & 2 § 3 3 © I § 5% i & 5%
m..Hlu.. WI_ @ Py Md o w “] o I = T w w 3 o oW %W =3 ww
25 2g o = L T 2 o o o = o oo o o =4 =] T2 o = o 9
w = a a w =Y a a a —= a w —h a a = W =Y ._wuq r=] _n_l_l.
ADloUz SoABS 1AUDSeAR

BAR[

Wuoserer aw |

BAET Bl

dunserer Ablau]
eaer Ablau]

05
001

0G1
00¢

Isjawn| pue (P)ABlaug

61

$921A9p [|e U0 (9HgTD) swen) yewyouag s3en3ue] 4aIndwo)) Sy WO SHIeWYduaq syl Jo s} nsat ASI9Us pue SdUBWLIOMSd — § 94nSi4

[eipeds dwoonas deupxabar eupxabal Apogu apnoajonuy dejse) E1SE} yonyuue} saaipUeug

[sjawi] pue (M46iaug

62

consumed less energy and had the worst performance on average across all devices.

To get a better understanding of which approach exhibits the best performance and energy
consumption for each device, we analyzed the 50 benchmark-device pairs across all approaches.
Performance-wise, Java had the best performance in 13 out of the 50 pairs, JavaScript in 18,
and C+4++ in 19. Energy-wise, Java consumed less energy in 9 out of the 50 pairs, JavaScript
in 31, and C++ in 10. Tablegraphically summarizes these results. In this table, we use blue
to indicate that Java won for that particular benchmark running on that particular device, red
for JavaScript, and green for C++. Device names are abbreviated: L90 stands for LG L90, N5
for Nexus 5, N7 for Nexus 7 to N7, J7 for Samsung J7, and ZF for Zenfone. For example,
JavaScript had the lowest energy consumption on the BINARYTREES benchmark on the LG
L90 whereas C++ had the lowest energy consumption for the REVCOMP benchmark on the

same device.

Table 5 — The right-hand side presents the development approach with the best results for energy and the
left-hand side the development approach with the best performance, for each device.

Performance | L90 | N5 | N7 | J7 | ZF

binarytrees

fannkuch

fasta

fastap

knucleotide

nbody

regexdna

regexdnap

revcomp

spectral

Legend

Java
JavaScript

C++

3.2.2 Can a hybrid approach to app development save energy?

The results discussed in Section [3.2.1] suggest that the three approaches for app develop-

ment in Android have different trade-offs in terms of energy consumption. However, Android

63

applications are predominantly written in Java - in a random sampld!!] of 109 apps among the
1,600 apps in F-Droid. They noticed that only 5 apps used JavaScript and another 5 used
m in any wayE]. Nevertheless, in Android, it is possible for Java code to invoke JavaScript
and vice-versa. Thus, since Java is the predominant approach to write Android apps, it may be
possible to save energy by retrofitting existing apps to perform part of their work in JavaScript
or C4++. The major obstacle to this approach is that there is the overhead of cross-language
invocations (GRIMMER et al., 2013)). In this section we examine whether it is possible to compen-
sate for this overhead so as to make existing apps more energy efficient. It is worth noting that
using two (or more) programming languages to develop an app could reduce its maintainability.

The four apps we have analyzed, ANDOF, ENIGMANDROID, NUCLEUSAPP, and TRIROSE
have different behaviors. The idea is that by using different strategies to convert the source
code between different programming languages we hope to achieve a better performance, both
in time and energy consumption. We will use as many models as possible, within the boundary
of the application behavior.

In TRIROSE's case, waiting for another development approach to perform the entire com-
putation could impose seconds of delay (the Export model — Section and thus is not
acceptable because it could hinder the user experience. Waiting a couple seconds is not a
problem in cases like ENIGMANDROID. On the other hand, the only model that makes sense
for the ENIGMANDROID is Export. Because this app makes heavy use of the CPU, the Step-
wise model (Section would increase the overhead with more cross-language invocations
with no advantage to the user and the Batch model (Section would be suboptimal, as
we would have needed to pass smaller parts of the workload as arguments. For ANDOF, the
Stepwise model was the only realistic model. This app works updating the data to the user in
real time. Any other model would hinder the user experience, imposing an unnecessary delay.
NUCLEUSAPP mainly focuses on 10 inputs (from sensors and web data) and the information
is presented to the user in real time. Batching data would create a delay between the required
data and the screen update. Thus, because of the real time requirement, Stepwise is the only
viable model. In summary, for ANDOF and NUCLEUSAPP, we employed the Stepwise model,
for Tri Rose, the Stepwise and Batch models, and for ENIGMA ANDROID, the Export model.

The specific workload for each app is determined in a way to try to make each execution

run in approximately 30s, keeping a low relative standard deviation as explained before. The

11 this scenario may have changed since our sample was collected in 2016
12" Two researchers manually analyzed the source code at GitHub

64

Table 6 — Results for the modified apps. stands for standard deviation.

App Approach Time(s) SD Energy(J) SD
Java 62.79 0.60 32.92 0.07

ANDOF
NDK 6.26 0.17 0.37 0.03
Java 12240 0.45 6.50 0.30

NUCLEUSAPP

Stepwise Web 122.27 0.24 6.65 0.36
NDK 122.30 0.18 6.55 0.44
Java 89.21 2.46 38.13 0.11

ENIGMA

Export Web 27.78 0.89 12.22 0.06
NDK 30.11 0.76 13.58 0.06
Java 27.84 0.03 4.03 0.02

TRIROSE

Stepwise Web 53.85 0.05 7.78 0.01
NDK 27.92 0.56 4.14 0.02
Java 26.74 0.02 3.95 0.02

TRIROSE

Batch Web 27.49 0.03 421 0.02
NDK 26.75 0.02 3.97 0.02

workload for ANDOF was 24 x 10° changes in a scroll that controls the depth of field. For
each change, a method is called to recalculate it. The workload for NUCLEUSAPP consisted
of the geolocation of 100 ecopoints, places where one can dispose of waste cooking oil. For
ENIGMANDROID we used a randomly generated String with 45, 000 characters. In TRIROSE,
the workload for both Stepwise and Batch models consisted of drawing 1,500 lines on the
screen, since the execution times were more similar.

Table [0] presents the results. In two cases where we employed the Stepwise model on hybrid
web apps, it degraded performance and boosted energy consumption. For example, the hybrid
web version of TRIROSE using the Stepwise model took 92.87% longer to finish than the
hybrid [NDK] version and consumed 87.92% more energy.

This result suggests that unless it is possible to group parts of the work so as to minimize
this overhead, building a hybrid web app will not save energy, due to the cost of invoking
JavaScript code. On the hybrid apps, we got significant improvements on performance

and energy consumption using the Stepwise model in AnDOF and got almost identical results

65

to the Java version in TRIROSE. Invocations to C++ snippets are done using the [NDK] and
incur in minimal overhead for the app as in the cases above. Using the [NDK] to improve the
application may be beneficial even if the developer needs to continually use cross-language
functions.

Using the Batch model on TRIROSE, the execution was changed to keep the results of the
calculations of the points that were used to draw the curves in a buffer of 11 x 10* positions.
We applied this modification to the original native version, the hybrid web app, and the hybrid
[NDK] app. With the Batch version of the app we got negligible improvements in performance
and energy consumption in the native and hybrid [NDK] apps. Nonetheless, using the Batch
model in the hybrid web app made it two times faster and cut its energy consumption almost
in half, when compared to the corresponding Stepwise version. Furthermore, the difference
in performance between the hybrid web app and the native and hybrid [NDK] apps using the
Batch model was only 2.77%, with the hybrid web app consuming 6.04% more energy.

We only apply the Export to ENIGMANDROID. It would not make sense in the context
of TRIROSE because the latter needs to continually update the Ul. Updating the graphical
interface from JavaScript code in a Java app is non-trivial because Java and JavaScript employ
different paradigms for user interface. We also did not use it on ANDOF because it creates
a potentially unrealistic scenario. The depth of field needs to be informed to the user in
real-time. Thus, the aggregated modifications may not be so useful. The results using the
Export model represent a best case scenario, since the cross-language invocation overhead is
almost entirely diluted. In the hybrid approaches, the app runs on Java but the cryptographic
processing of the String is made on the other programming languages. In the Export model,
both hybrid apps improved the performance and energy consumption of the app, with Java
version consuming 3.21x more time and 3.12x more energy than the hybrid web app and 2.96x
more time and 2.80x more energy than the hybrid [NDK] app. The hybrid web app was slightly
better in performance and energy efficiency than the hybrid [NDK] app. The latter consumed
11.12% more energy and took 8.39% longer to finish.

Using the Stepwise approach on NUCLEUSAPP did not improve or deteriorate the per-
formance or energy efficiency of the hybrid apps. That result suggests that hybridization of
[O-intensive apps may not result in improvements.

Even though these modifications promoted non-negligible improvements in performance
and energy efficiency, they did not require large-scale modifications. For each app, JavaScript,

and C++ files had, respectively: ANDOF, 160 and 192 LoC; NUCLEUSAPP, 16 and 65 LoC;

66

ENIGMANDROID, 173 and 281 LoC; TRIROSE, 100 and 166 LoC. Changes were relatively

simple and represent less than 10% of the total lines of code of each app.

3.3 DISCUSSION

In this section we discuss some of the most important lessons learned from this study. We
believe these lessons are useful for both researchers, who can investigate each one in more

depth, and practitioners, who can leverage them for their app development activities.

There is no overall winner. Analyzing the benchmarks, there was no better approach in all
scenarios. It is possible to state that, in general, JavaScript consumed less energy than Java and
C++. It had a lower average energy consumption per benchmark and the JavaScript versions
of most benchmarks exhibited the lowest energy consumption when compared to Java and,
where applicable, C++ versions. Nevertheless, this result was not universal. For example, in
the REVCOMP benchmark, the JavaScript versions had by far the highest energy consumption.
In addition, for performance, especially when we look only at the CLBG benchmarks and the
four apps, the results were much more mixed, with Java and C++ versions outperforming
JavaScript in most cases.

Both energy and performance are important in practice and most developers would be
interested in balancing the two. Thus, we choose to look at the weighted energy-delay product

(Energy-delay product (EDP))) by|Cameron, Ge e Feng| (2005)). The weighted EDP is calculated

using the following equation:

ExTv (3.1)

where E represents energy, T time, and W the weight factor. As we choose to focus on
the energy, the weight is set to 1. This measure highlights the trade-off between energy and
execution time (the lower the better). The boxplot in Figure [7| shows the EDP for all bench-
marks across all devices, without outlines. It highlights that some benchmarks perform better
in a certain language, e.g., FASTA and REVCOMP in Java and REGEXDNA and REGEXD-
NAP in JavaScript, whereas others perform worse, e.g., NBODY and BINARYTREES in C++
and REVCOMP in JavaScript. Furthermore, for some benchmarks the difference between the
languages is unclear (FANNKUCH and SPECTRAL).

Even though JavaScript usually has lower energy consumption per benchmark, the benefit

of running the benchmark faster may overshadow this when looking at an aggregated metric.

67

When considering all the 50 benchmark-device pairs, JavaScript presented a better EDP on 32
out of 50 pairs when compared to Java, and 29 out of 50 when compared with C++. When
comparing Java and C++, the latter had a better EDP on 27 out of 50 pairs. This result
suggests that even though there is no overall winner, JavaScript exhibits a good trade-off
between energy usage and performance, besides consuming less energy in most cases.

These results show that, in certain scenarios, the different approaches may have significant
differences in performance and energy consumption. Having that information, developers can
try to improve an app in two ways: (i) by experimenting with different approaches, depending on
application requirements; and (ii) by exploring combinations of these approaches and building

a hybrid app.

The development approaches differ little across devices, in terms of energy usage.
For the set of benchmarks, apps, and devices we analyzed, our measurements indicate that
a development approach that consumes less energy in one device is likely to do so in other
devices as well. A quick look at the bars of Figure [f] or to the Table [5] highlights this result.
This finding has a clear practical implication. There are thousands of Android smartphone
models in the market. Although there are initiatives trying to collect data from a multitude
of devices (PEREIRA et al| [2021)), it is unfeasible to analyze and test an application on every
device. Our results imply that, when trying to optimize the application by using the more en-
ergy efficient development approach, optimizing it for a small and diverse subgroup of device

models may be sufficient.

Faster != Greener. The main reason for the good performance of some of the Java and
C++ benchmarks is parallelism. While all the JavaScript versions run sequentially, the Java
and C++ versions of 5 benchmarks (FANNKUCH, FASTAP, KNUCLEOTIDE, REGEXDNAP,
and SPECTRAL) are capable of leveraging multicore processors to improve performance. All
but one (REGEXDNAP) of these versions outperform the corresponding JavaScript version.
However, all these benchmarks, with the exception of FASTAP for Java and KNUCLEOTIDE
for C++, consumed more energy. This is consistent with previous work (PINTO; CASTOR; LIU,
2014b; |LIMA et al., [2019) that found out that, for programs capable of benefiting from multi-
core processors, performance is often not a proxy for energy consumption. Other work (COUTO
et al|, [2014)) have shown a high correlation between execution time and energy consumption
but also stated that it was not the only factor. Complementarily, even when a benchmark does

not leverage parallelism, the relationship between energy and execution time is unclear. For

68

‘S3UI[IN0 1NOYLIM SIDIASP |[B SS04DE (DgTD)) swes) ylewydusg s3en3ue Js1ndwod) syl wouy syJewydusq ay1 Jo synsai (4Qq3) 1onpoid Aejsp-A3isug — 2 24n3i4

_m:n_m_n_mnEDU}Enm:uxmmEm:uxmmE _h,_“_n_n:m__”_:_”_m_u_._:”_._uﬂmﬂ Emﬂ ;u:u._::m*mmm_fﬁm:_ﬂ
| | | | | | | | | | [| | | | | | | | | | | [1 | | | | |

- 0
...... - 00002
...... — 0000F
...... 00009

...... L 00000}
...... L 00002}
...... L 0000F}

WuogesEl g [------
BABT

................ j-eeefe 00008

sjaw| L,(r)ABisuz

69

Table 7 — Average data from the division between the values for the sequential and parallel versions of the
FASTA and REGEXDNA benchmarks. A value greater than 1 in a cell means that the sequential
version had higher execution time, energy consumption, or EDP.

Benchmark Language Energy Speedup EDP

Java 1.20 1.86 2.33
REGEXDNA

C++ 0.95 1.39 1.32

Java 1.37 2.52 3.70
FASTA

C++ 1.02 3.21 3.35

example, none of the versions of the BINARYTREES benchmark exploits parallelism. Notwith-
standing, Java exhibited the best execution time while JavaScript exhibited the lowest energy

consumption.

Parallelism may be a good option anyway. Among the selected benchmarks, five (FANNKUCH,
FASTAP, SPECTRAL, REGEXDNAP and KNUCLEOTIDE) make heavy usage of parallelism. Two
of those benchmarks also had sequential versions (REGEXDNA and FASTA) that we executed
on each device and development approach. We compared the results of these two benchmarks
with their parallel versions, and the results are summarized in Table [7] From the data, we
can see that parallelism is usually better for energy efficiency and performance in Java for
REGEXDNA, having a slightly higher energy consumption than the sequential version in C++-.
The parallel version of FASTA in Java exhibited lower energy consumption while the parallel
version in C++ had the best speedup. For all benchmarks, the EDP is better using the parallel
version. In these cases, using parallelism is better both for energy consumption and perfor-

mance, and may be considered an improvement.

is a safer bet to improve performance. Analyzing the modified apps, we noticed
that using the hybrid [NDK] approach improved the application performance in two cases
(ENIGMANDROID and ANDOF'). When considering the CLBG benchmarks, C++ exhib-
ited the best performance for most of them (Table . Therefore, if performance is of utmost
importance and energy is a minor concern, using the [NDK] can be considered a safer bet. It is
interesting to note that the [NDK] exhibited good performance even in hybrid apps using the
Stepwise model. But is worth noting that across all benchmarks, eight of them (FANNKUCH,
FASTAP, KNUCLEOTIDE, NBODY, REGEXDNA, REGEXDNAP, REVCOMP and SPECTRAL)
presented a direct relation between the performance of the Java and C++ versions when

compared to JavaScript, i.e., either both approaches are better than JavaScript or both are

70

worse. One theory for that relation is that the type of problem in which Java performed better
was also the same type for C++. Although it is important to investigate this phenomenon
in other contexts, this result suggests that, in cases where Javascript outperforms Java, it
may not be useful to try to boost performance and energy efficiency by exploiting the [NDK]

approach.

3.4 THREATS TO VALIDITY

We observed that the results we obtained for the performance of the CLBG benchmarks
differ considerably from those reported on the original website. The difference exists both
in terms of the absolute values of the measurements and, in some cases, in terms of which
development approach exhibits the best performance. This could be an indication that we
committed errors in the design, implementation, or execution of our experiments. It could also
indicate that the performance of different development approaches in more powerful machines
such as desktops and laptops is not a good proxy for the performance of these approaches in
a smartphone. To confirm this, we executed all the versions of the CLBG benchmarks on a
desktop computer (Processor Intel i7-4700HQ, 24GB RAM memory using bash on Ubuntu on
Windows). Unlike the results we obtained for the mobile devices, the results obtained in this
machine were consistent with the ones reported at the CLBG website.

As stated by |Cruz et al.| (2019), energy aware changes on the code most likely will decrease
the software maintainability. This decrease could be even more pronounced if the developer
chooses to use multiple programming languages in their project, multiplying the complexity of
the project. In case larger portions of the code require changes, developers should be cautious
over the possible trade-off on hybridization and maintainability.

Benchmarks do not represent the behavior of an application using JavaScript as the main
programming language (RATANAWORABHAN; LIVSHITS; ZORN| 2010; SAHIN; POLLOCK; CLAUSE,
2016), and for that reason it is not possible to extrapolate the results for all applications,
since applications are usually much more |0-intensive. Although this is true, benchmarks
provide insight on scenarios where the performance gain is measured, by isolating usage pattern
behavior. The modifications made in the apps show that even small changes could lead to non-
negligible improvements in energy efficiency.

Some of the devices we employed were not in the same version of Android and that may

influence the results. We had some preliminary results comparing an earlier version on Zenfone

71

(5.0) with the current version (6.0.1). Some benchmarks executed faster and used less energy
and some executed slower and consumed more energy (the Java version of KNUCLEOTIDE
consumed 1.3 times more time and energy in version 5.0 and NQUEENS took 3 times longer
to execute in version 6.0.1). However, the relationships between the development approaches
did not change across versions. Furthermore, most devices were in the same version (5.1)
and our data shows that the relation between the languages remained roughly the same even
across Android versions. On Section we presented all the major updates regarding energy
consumption on Android. As far as we can tell, none of the updates made after this study was

finished should change any of the results presented here.

3.5 RELATED WORK

For a long time, the study of the energy consumption of computing systems was targeted
mainly at the hardware and operating system levels. Tiwari, Malik e Wolfe (1994) showed,
however, that software is also a fundamental part of energy consumption. Since then, several
papers have proposed solutions to help software developers in measuring (HINDLE et al., [2014;
Ll et al., 2013), analyzing (HINDLE, 2012; [MANOTAS; POLLOCK; CLAUSE 2014; |PINTO; CASTOR;
LIU, 2014b), and optimizing (MANOTAS; POLLOCK; CLAUSE, 2014; |COHEN et al., [2012) the
energy consumption of the systems they build.

Pathak, Hu e Zhang| (2012)) proposed the first fine-grained energy profiler to investigate
where the energy is spent inside an app. This study revealed that the majority of the energy
in apps is spent on 1/O operations. In particular, free apps spend a considerable amount of
energy due to third-party advertisement modules. Since |/O operations happen without much
interaction with methods or functions, it is proposed to group the 1/O operations together in
a bundle, as a way to minimize the energy consumption of those operations.

Some have attempted to find which Android methods (COUTO et al., 2014)), API-calls (LINARES-
VASQUEZ et al., 2014), or apps (WILKE et al., [2013)) are more energy-hungry. |Li et al.| (2013)
developed an accurate approach to find which source code lines are the most battery-draining
for Android apps, using a combination of hardware, path profiling, and instrumentation to
associate the energy data with the application. An evaluation tool was made to appraise the
approach and executed on five apps from the Play Store. This tool was developed to be run
on apps that used the Dalvik Virtual Machine, which was discontinued after the fifth Android

version.

72

Nucci et al| (2017) developed an energy profiling tool to assist in the measurement and
analysis of the energy consumption of Android applications. It works by installing an apk file
containing the application to be tested on an Android device, running it with predefined test
cases and using the Android APlIs to collect information about energy. Experimental results
have shown that its accuracy is comparable to that of an external hardware monitor.

A promising approach to save energy without the need for specialized knowledge is to
leverage design diversity (AVIZIENIS; KELLY, |1984]), more specifically, the availability of diversely
designed implementations of the same abstractions. Recent work has explored the impact of
different thread management constructs (PINTO; CASTOR; LIU, [2014bj LIMA et al., 2019), data
structures (HASAN et al., [2016; [PINTO et al., [2016), API calls (LINARES-VASQUEZ et al., 2014,
and concurrency control primitives (LIMA et al., 2019). This work complements previous studies
by analyzing how the availability of different development approaches can impact energy in
Android apps.

The study by (Charland e Leroux| (2011) compares the native and Web app development
approaches. However, it focuses on user interface code, user experience, and performance for
remote web apps. In particular, it does not present data on battery consumption or performance
of native applications and local web applications.

Kholmatova| (2020) conducted a meta-analytical review on impact of programming lan-
guages on energy consumption. They found out that they could not find any statistical differ-
ence between the energy consumption of C4++-, C and Java. For their meta review, they used
six papers (ABDULSAL/—\M et al., 2014} ABDULSALAM et al| 2015; |CHEN; ZONG, 2016; PEREIRA
et al|, |2017; |OLIVEIRA; OLIVEIRA; CASTOR, 2017} |COUTO et al/, 2017). However, only two out of
six had experiments on the mobile environment: |Chen e Zong (2016) used three benchmarks
to compare the energy consumption of the two programming languages. When running on
ART, they did not present any statically significant difference. However, on Dalvik, C/C++
consumed less energy on each of these benchmarks (up to only 4% of the energy consumed
by Java), and Oliveira, Oliveira e Castor| (2017)) presented a statistically significant difference
when using C/C++ instead of Java on CPU-intensive applications; This indicates there is a
difference between different mobile architectures and between mobile and desktop environ-
ments. This could lead to complete different results when analyzing programming language
energy consumption.

Some studies have focused on studying the differences between programming languages:

Nanz e Furia (2015)) have used the Rosetta Code tasks to compare eight different program-

73

ming languages (C, Go, C#, Java, F#, Haskell, Python, and Ruby) in terms of the run-time
performance and memory usage, among other factors. |Couto et al.| (2017) compared ten
different programming languages (C, C#, Fortran, Go, Java, Jruby, Lua, Ocam, Pearl, and
Racket) and ranked based on their energy consumption, using the benchmarks from CLBG
to execute the experiments. Similarly, [Pereira et al. (2021) compared the energy efficiency of
different programming languages but on a larger scale. They used the benchmarks from the
Computer Language Benchmark Game to compare and rank programming languages based
on their energy consumption. The authors analyzed a total of 27 different programming lan-
guages. Different from the work presented in this chapter, these works have focused on desktop

applications.

3.6 CONCLUSION

This chapter aimed to investigate whether there is a more energy efficient approach for
Android app development. It sheds some light on the strengths and weaknesses of each ap-
proach, based on experiments with benchmarks and hybridized apps, using Java, Javascript,
and C++. We used five devices with different characteristics on two main versions of Android.
We found out that there is no clear winner among the development approaches in Android.
Each one has its advantages in some scenarios. Our results indicate that JavaScript and C++
could save more energy albeit sometimes being slower than the other Java benchmarks and
that app hybridization may be a solution for app optimization, both in performance and energy
consumption. Furthermore, for the set of benchmarks, apps, and devices we analyzed, the rela-
tionships between the development approaches remained stable for most benchmarks on every
device tested. What we can learn from this is that the development approaches seem to have a
stronger impact on benchmark energy consumption and performance than the characteristics
of each device. Among the two options for hybridization, using the [NDK] is a safer bet for
improving performance, but using a web-based approach may have a better outcome when

there are few cross-language invocations.

74

4 OPTIMIZING JAVA COLLECTIONS

In this chapter, we share our vision of a solution to help investigate the energy behavior of
energy variation hotspots within an application and, when possible, make recommendations
that can reduce its energy consumption. The solution we propose to support non-specialists
to reduce the energy consumption of an application comprises three steps. First, the available
alternative solutions are exercised to build execution environment-specific energy consumption
profiles (HASAN et al, [2016)). These profiles provide a mean to compare the energy footprint of
these solutions in an application-independent manner. Second, the application is analyzed to
gather information about the selected energy variation hotspots, in particular, to estimate how
intensively the system uses them. That step is device-independent. Finally, these two pieces of
information are combined to make potentially energy-saving recommendations specific to the
application-device pair.

We have created a tool, instantiating our approach, named CT+. Its goal is to optimize the
energy consumption of Java collections on desktop and Android applications. Implementing
the first step of our approach, it automatically runs multiple micro-benchmarks for 39 different
Java collection implementations in an application-independent manner and builds their energy
profiles. List, Set, and Map are the three collections targeted by these collection implemen-
tations. The latter stem from the Java Collections Framework (25 implementations), Apache
Commons Collections (5 implementations), and Eclipse Collections (9 implementations). With
data from these micro-benchmarks, it builds the energy consumption profiles. For the second
step, an inter-procedural static analysis is performed on the application source code. This
analysis collects, for each instantiation of a collection implementation, information such as
frequency and location of use, method and variable names, calling methods, etc. The third
and final step consists of recommending the most efficient implementation for each energy
variation hotspot, considering both the energy consumption of the multiple operations of each
collection implementation and the extent to which each collection is used in the application.
The recommendations made by CT+are applied automatically to the application’s source code.

We evaluated CT+in two studies aiming to answer the following four research questions,

separated in two groups:

= RQ2.1: To what extent can we improve the energy efficiency of an application by

statically replacing Java Collection implementations?

75

» RQ2.2: Are recommendations for Java collections device-independent?

To answer RQ2.1 and RQ2.2, CT+analyzed the source code of 17software systems across
7 devices, making energy saving recommendations for 13 of them. By analyzing the recom-
mendations made by CT+and their effect on the energy consumption of these systems, we
concluded that some very popular collection implementations, such as ArrayList, Hashtable

and HashMap, have poor energy efficiency.

» RQ2.3: How much does the workload size impact the energy efficiency of a Java col-

lection implementation?
» RQ2.4: Are recommendations for Java collections profile-independent?

To answer RQ2.3 and RQ2.4, we created 6 different energy profiles, simulating distinct
kinds of workloads an application may be subject to. We applied the recommendations made
by CT+to 6 systems of the DaCapobenchmark suite. The results show that these different
profiles behave very differently, depending on the circumstances. The difference goes up to
6.18x more energy saved when comparing the best performing profile with the worst one for
the same software system.

Overall, 2295recommendations that impacted the energy consumption were made across
17software systems, 12targeting a desktop environment, 2targeting a mobile environment, and
3that work in both scenarios, for a total of 64modified versions. Most of these systems were
non-trivial with thousands of lines of code (LoC), such as BioJAvA with 914kLoC, CASSAN-
DRA with 466kLoC, and ToMCAT with 433kLoC. With no prior knowledge of the application
domain or system implementation, CT-+made positive recommendations for 13out of the 17sys-
tems. It was possible to reduce the energy consumption of software systems up to 16.34%
on a desktop environment and 14.78% on a mobile environment, just by replacing collection
implementations. For a small number of modified versions (2 out of 64), recommendations
made by CT+degraded the energy efficiency, up to 1.21%.

The results of our studies highlight the need to re-assess the adoption of some widely
popular, poorly-optimized collection implementations from the Java Collections Framework,
such as ArraylList, Hashtable, and HashMap. Recommendations to replace uses of these
collection implementations by more efficient alternatives were common in our evaluation. In
addition, there was not a single case where HashMap was recommended, and just three cases

for Hashtable, with data suggesting that Hashtable is becoming less used by developers.

76

Furthermore, 89% of the recommendations made by CT-+suggested the use of collection
implementations not from the JCF. The data related to this work can be found at |[<https:
/ /energycollections.github.io/>.

This chapter is structured as follows: Section [4.1] briefly describes the importance of
Java Collections; Section [4.2] introduces our approach to help develop more energy efficient
software systems; Section demonstrated how we used our proposed approach to develop
a recommendation tool, CT+. This tool focus on optimizing applications to use the most
energy efficient collections implementation in Java; Section [4.4] displays the results from our
experiments analyzing the energy consumption of different devices and energy profiles; Sec-
tion [4.5] report our findings about the energy consumption of Java Collections; Section [4.6]
presents the threats to validity; Section [4.7] presents the related work, with a particular focus
on empirical studies about energy consumption and Java Collections recommendation tools;

and Section concludes this chapter.

4.1 JAVA COLLECTIONS

Collections are widely used by developers, in both mobile and desktop environments. They
provide easy access to reliable implementations that can reduce the complexity of develop-
ing applications. Java collections in particular are usually subdivided in three different APls:
Lists, Maps, and Sets. These categories are divergent in several points but the main factors
that distinguish them are: Lists are ordered and indexed (with possible duplicates), Sets are
unordered and do not admit duplicates, and Maps are based on key-value pairs and hashing
(keys are unique but values can be duplicated).

In Java, each collection’s API has multiple implementations. This is expected since there are
a number of different algorithms and data structures that can implement the abstract concept
of lists, sets and maps. Examples include using dynamically-allocated list nodes and making
the list doubly-linked, as in LinkedList, or a resizable array, as in ArrayList. Although both
are implemented differently, they still respect the set of rules of a list and implement the same
interface, List. As a consequence, it is often possible to change the list implementation being
used in a given context by modifying a single line of code, i.e., the line where the collection
implementation class is instantiated.

Collection implementations that can be safely used by several concurrent threads are con-

sidered to be “thread-safe”. This safety usually comes with extra complexity or inferior per-

https://energycollections.github.io/
https://energycollections.github.io/

77

formance, which might favor the use of “thread-unsafe” collections. In this work, we consider
that it is never acceptable to replace the use of a thread-safe collection implementation with
a thread-unsafe one. Conversely, although it is possible to replace a thread-unsafe collection
implementation using a thread-safe one, this is not efficient in practice (PINTO et al., 2016).

There are many different ways a collection can be implemented, and these diverse imple-
mentations can have a non-negligible impact on energy consumption. The usual way to use
collections in Java is through the Java Collections Framework (JCF). Yet, previous work (PINTO
et al,, 2016; HASAN et al., [2016; |COSTA et al.,, 2017) has shown that alternative implementa-
tions can have a positive impact on the energy consumption of applications. Based on that,
for this research we are looking at collections from three different sources: Java Collections
FrameworKY} Apache Commons Collectiond?], and Eclipse Collectiong’]

To get a glimpse at the usage of these alternative implementations in Java projects, in
April 2020 we executed a query on GitHub based on the package names of Eclipse Collec-
tions (namely org. apache.commons. collections) and Apache Common Collections (namely
org.eclipse.collections). The query results showed that these collections are in widespread
use, with 1,276,939 code results for Apache Common Collections and 537,956 for Eclipse Col-
lections.

As expected, JCF collections, both thread-safe and thread-unsafe, are also in widespread
use. To investigate the adoption of JCF, we conducted another simple query but, differently
from Apache and Eclipse Collections, JCF does not have a package exclusively for collec-
tions. As a consequence, the query for its implementations collections were executed individ-
ually, using the full package name (e.g., java.util.ArraylList). The results suggest that
thread-unsafe collections are used more often than thread-safe collections by a fair margin.
For example, on the one hand, the most widely used thread-unsafe collection is ArraylList, a
List implementation, with 38,642,021 occurrences in our query. On the other hand, the most
widely used thread-safe collection is Vector, another List implementation, with 5,526,922
occurrences.

We compared our results with our original query, analyzing collection usage in Github
projects as of January of 2019 (OLIVEIRA et al., [2019)). As shown in Table , overall, there

was an increase in collection usage for all collection interfaces. The table explicitly separates

<https://docs.oracle.com/javase/8/docs/technotes/guides/collections />
< https://commons.apache.org/proper/commons-collections/>

3 <https://www.eclipse.org/collections/>

https://docs.oracle.com/javase/8/docs/technotes/guides/collections/
https://commons.apache.org/proper/commons-collections/
https://www.eclipse.org/collections/

78

thread-safe and thread-unsafe JCF collection implementations, since they represent the vast
majority of the collection implementations. Nevertheless, the Apache and Eclipse Collections
both have thread-safe and thread-unsafe implementations.

Our queries results show that the average increase in the utilization of the collection im-
plementations between January 2019 and April 2020 was 14.83% for thread-unsafe collections
and 17.77% for thread-safe. The only two collections with a growth rate of less than 10%
were ArrayList (9.54% and 3,363,929 new occurrences) and Hashtable (4.52% and 90,235
new occurrences).

Because of the extensive adoption of ArrayList, the growth rate naturally tends to slow
down, since most projects already use it. Hashtable, on the other hand, appears to have fallen
from grace, with developers opting to use other solutions when they need to use a thread-
safe map implementation, like ConcurrentHashMap (40.71% growth rate and 455,779 new
occurrences). The data from our first query shows Hashtable with 78% more occurrences
than ConcurrentHashMap. However, in our last query, that difference has been reduced to
32%. If the growth rate continues, by the end of year 2021 ConcurrentHashMap will have

more occurrences than Hashtable.

79

Table 8 — Adoption of collections across Github Java projects. All implementations came from the package

java.util
Implementation Jan. 2019 Apr. 2020 Growth
Thread unsafe collections
ArraylList 35,278,092 38,642,021 9.54%
HashMap 16,602,391 19,418,572 16.96%
HashSet 6,470,505 8,104,539 25.25%
LinkedList 3,763,660 4,577,164 21.61%
LinkedHashMap 1,470,500 1,953,047 32.82%
TreeMap 1,122,886 1,370,672 22.07%
TreeSet 950,890 1,174,078 23.47%
LinkedHashSet 689,397 044,604 37.02%
Sum of thread unsafe 66,348,321 76,184,697 14.83%
Thread safe collections
Vector 4,731,762 5,526,922 16.80%
Hashtable 1,994,173 2,084,408 4.52%
ConcurrentHashMap 1,119,704 1,575,483 40.71%
CopyOnWriteArraylList 237,541 310,188 30.58%
CopyOnWriteArraySet 70,680 94507 33.71%
ConcurrentSkipListMap 39,012 52,394 34.30%
ConcurrentSkipListSet 26,826 36,671 36.70%
Sum of thread safe 8,219,698 9,680,573 17.77%

org.apache.commons.collections 1,022,778 1,276,939 24.85%

org.eclipse.collections 466,394 537,956 15.34%

4.2 OVERVIEW OF THE PROPOSED APPROACH

In this section we propose a novel approach to help developers create energy efficient
applications. This approach can be used for general-purpose development, not being restricted
to a specific scenario, development environment, device, or application. The proposed approach
is organized in three phases: (i) creation of the energy profiles, (ii) collection usage analysis,
and (iii) recommendation of source code modifications that have the potential to reduce energy
consumption. Figure (8| provides an overview of our approach.

In this section we present a high level overview, with the three phases detailed next. In
Section we present our instantiation of this approach in the CT+tool, dealing with the

optimization of Java collections.

80

Alternatlve == -
Impl of Prog. @
Constructs

Profiles

Phase I: Creation of Data
Energy Profiles =>
A
=) => @T Phase Il Recommendations
Usage
Phase II: Usage Analysis Data Recommendation

Figure 8 — An overview of our approach. Phase | is application-independent, Phase Il is device-independent,
and Phase Il uses the energy profile and the information about the system under analysis.

Phase I: Creation of Energy Profiles. Here we select a group of programming constructs to
analyze and build their energy profiles. This selection determines the energy variation hotspots
of the applications that will be analyzed in Phase |l. Good choices are constructs that are
used intensively and that have alternative implementations. As mentioned before, collections,
concurrency control mechanisms, and APIs are examples of potential candidates. Having se-
lected the candidate constructs and their alternative versions, it is necessary to build their
energy profiles (HASAN et al,, [2016)). The energy profile can be seen as a set of numerical
values representing the energy cost of a specific construct, making it possible to compare
the energy efficiency of similar constructs under the same circumstances. The main insight of
using energy profiles is that it is possible to order interchangeable pieces of software by their
energy consumption, without actually quantifying their energy consumption. This idea can be
explored in diverse situations. For example, previous work (WAN et al., [2017} |LINARES-VASQUEZ
et al} 2018) computed energy profiles for the colors that can appear in an OLED screen and
employed this information to suggest color schemes for smartphone applications that spend
less energy. This improvement could be achieved without the need to precisely measure the
amount of energy consumed by each color individually.

Energy profiles can be produced by executing several micro-benchmarks to collect informa-
tion about the energy behavior of these programming constructs in an application-independent
way. This step needs only to be performed once for a given construct, per execution platform.
The results can then be reused across multiple software systems employing these constructs.
In Section we define energy profiles in a more precise manner for the specific context of
collection implementations. The energy profiles created in Phase | are used as input to make

the recommendations in Phase IlI.

Phase Il: Collection Usage Analysis. This phase extracts information about how the target

software systems use the selected programming constructs, for example, usage context and

81

frequency. This information can be extracted either dynamically or statically. In our instan-
tiation of this approach, we relied on a purely static approach. This has the advantage of
being platform-independent and not requiring multiple executions of the system under analy-
sis. However, the static approach is more prone to imprecision, since it is not possible to know
how often an operation will be executed until the system is actually executed.

Dynamic approaches make it possible to estimate more precisely how intensive energy
variation points will be used in realistic scenarios. Notwithstanding, the precision of dynamic
approaches depends heavily on the employed workload, specially for complex software systems
that make intensive use of multiple resources (CPU, disk, wired network, wireless network,
etc.). Dynamic approaches could benefit more Ul-focused applications, as these are harder
to exercise with static analysis. It could also be useful for cases where part of the logic is
outsourced or there's a heavy dependency on non-deterministic factors (e.g., GPS locations
or temperature).

The output of this phase is heavily dependent on a number of different factors. Examples
may include the kind of construct, line of code where the construct is used, the number of times
it is instantiated or invoked, the thread running the programming construct, if the invocation
of the programming construct is placed inside a loop, among many others. The data collected

from Phase Il is used as input to make the recommendation in Phase Ill.

Phase Ill: Recommendation. This phase combines the energy profiles and the results of
the usage analysis, taking the data produced by Phases | and Il as input. Different formulae
can be employed in this phase. A straightforward approach is to linearly combine the energy
profiles (created in Phase |) with the frequency of use (through the analysis made in Phase
[I) of the alternative constructs. Each of these combinations will yield an energy consumption
number that can be directly compared to determine the most energy-efficient alternative.
This is the approach we employed in our experiments. We make it more concrete in the next
section. Nonetheless, as with the previous phase, there is ample opportunity to explore different
solutions to combine these two pieces of information.

These three phrases summarize our approach to help developers save energy while devel-
oping software systems. To be able to offer guidance in as many scenarios as possible, they
are open to a number of different instantiations. As an example, the analyses of different
parallelism abstractions in Android. There is a number of ways a developer can implement

parallelism in their applications (such as Executors, Threads or Coroutines). On Phase |,

82

the tool would need to estimate the energy consumption of each abstraction. On Phase I,
the tool would analyze the applications and how they use parallelism abstractions. Finally, on
Phase Il, the tool would recommend the most energy efficient abstraction for a given scenario.
Phase | is application independent while Phase Il is execution-environment (device, operat-
ing system, runtime system) independent, leaving the possibility for the developer to leverage

multiple implementations of each phase.

4.3 INSTANTIATION FOR JAVA COLLECTIONS

In this section, we describe how we have instantiated the proposed approach to work with
Java collections. We developed a tool named CT+that implements the three phases explained
in the previous section.

CT+analyzes Java programs in desktop and mobile environments, recommending collec-
tions that could potentially reduce energy consumption. We organize the presentation of the

instantiation in terms of the three phases introduced by Section [4.2]

Phase I: Creation of Energy Profiles. In this phase, we build the energy profiles of the
collections. These profiles are based on implementations and operations of three kinds of col-
lections: lists, maps, and sets. We use interchangeable collection implementations for each kind
of collection and their operations to create energy profiles that allow these implementations
to be compared from an energy consumption standpoint.

The three analyzed collections have differences among them. For example, on lists it is
possible to insert or to remove an element at a specific position, differently from a map or a
set. To reflect this behaviour, we distinguish operations to insert or remove list elements at
the start, middle, or end of the list. We also consider the “default” operation for insertion or
removal. For example, for insertions, it is the add method. We iterate over lists using three
different approaches: a seeded randomly generated number as index, an explicitly created
iterator, and a for loop. Table [9] presents a summary of the operations we analyze to build
the energy profiles.

The selected operations for List's APl cover 59% of all element operations, 42% of Map's
and 50% of Sets. Most of the operations not used on this work deal with adding or remov-
ing whole data structures from the original implementation, such as addAl11(Collection<?

extends E> c).

83

Table 9 — Operations used on each collection.

Operation Types
Lists
insertions start, middle, end, and default
iterations random, iterator, and loop
removals object, start, middle, end, and default
Maps
insertions default
iteration iterator and loop
removal default
Sets
insertions default
iteration loop
removal default

The definition of a collection implementation, in this case defined as C, can be seen
abstractly as a tuple (N, 1,S,01,09,...,0,), where N is the name of the collection imple-
mentation, e.g., ArraylList, HashMap, etc., I is the interface of the collection, with I €
{List, Set, Map}, S is the thread-safety of the collection, with S € {T'hreadSafe, NotThreadSafe},
and o;, with 1 < i < n represent the operations of the collection implementation. The follow-

ing tuple is an example of how Vector could be represented:

C, = (Vector, List, ThreadSafe,insert.start(e), insert.end(e),...,0,)

In the previous example, insert.start(e) and insert.end(e) indicate that these are oper-
ations that insert an element in the beginning and at the end of the list, respectively.

The energy profile for a collection implementation is a tuple whose elements are numbers,
e.g., energy consumption in joules, that can be used to compare the energy cost of the same
operations for different collection implementations under the same execution environment.
The energy profile of a collection implementation C'is produced by a profiler, a function that,

in a given execution environment and under a set of workloads, produces an energy profile:

profiler(C,env,wy, wy, ..., w,) = (C,env, ey, e, ..., e,)

where env abstractly represents the execution environment in which the profiler is running

(machine, operating system, JVM version). w;,1 < i < n, is the workload for the operation

84

0;, defined by the function workload(N, o;), which produces a workload given the name of a
collection implementation and one of its operations. Finally, e;, with 1 <1 < n, is the energy
consumption value for o;.

Two energy profiles P, and P, for two collection implementations C, and (j, respectively,
can be compared as long as three constraints are satisfied: C,.T = C,.T, C,.S = (3.5,
and P,.env = P,.env. In other words, we cannot, for example, compare energy profiles for
a list and a set. In the same vein, it is not possible to compare a profile for a thread-safe
implementation and one for a non-thread-safe implementation, nor profiles obtained in two
different execution environments. We assume that collection implementations whose 7" and S
elements are the same are, from an implementation standpoint, functionally equivalent. For
example, adding an element to an ArrayList is functionally equivalent to adding that element
to a LinkedList, although this would not be true for a Vector, since the latter is thread-safe.
This is true in practice for the vast majority of the collection implementations in the JCF, with
very few exceptions (e.g., WeakHashMap).

Table lists all implementations analyzed in this work. Creating thread-safe collections
based on thread-unsafe collections using the JCF is straightforward: one just needs to use
specific static methods from the Collections class to create synchronized Lists, Maps,
and Sets. In this work, we labeled those wrapped, thread-safe collections as follows: “Syn-
chronized” + original collection name, e.g., SynchronizedArraylList.

We build energy profiles by running micro-benchmarks applied to the operations of each
collection implementation. Micro-benchmarks are a set of instructions to measure the energy
consumption of a specific piece of code by exercising it repeatedly. In our case, a micro-
benchmark executes our selected operations a predetermined number of times for every imple-
mentation. For example, to collect the energy data, we execute 60,000 times the ArraylList's
micro-benchmark to measure the add(start) method in one of our devices. That predeter-
mined number is energy-profile dependent and we discuss this in more depth in Section [4.4.2.1]

The executions were made in a specific cycle of operations. We first perform insertions,
then we iterate over the whole collection, and finally we remove all elements previously stored
in the collection. In cases where more than one type of insertion or removal is necessary, e.g.,
lists, where it is possible to insert at the start or end, we pair the classified insertions and
removals before the initial sequence (e.g., insert.start(e) and remove.start(e)). The
energy consumption was collected throughout each operation. We used this approach to make

sure that removals and iterations are measured without the overhead imposed by an insertion

85

Table 10 — The selected implementations to be used in the experiments. We employed three different sources:
Java Collections Framework, Eclipse Collections and Apache Commons Collections

Thread Safety

Implementations

Lists

Vector CopyOnWriteArraylList
Safe SynchronizedArraylList SynchronizedList
SynchronizedFastList
ArraylList LinkedList
Unsafe FastList CursorablelLinkedList
NodeCachinglLinkedList Treelist
Maps
Hashtable ConcurrentHashMap
ConcurrentSkipListMap SynchronizedHashMap
Safe SynchronizedlLinkedHashMap SynchronizedTreeMap
SynchronizedWeakHashMap ConcurrentHashMap (EC)
SynchronizedUnifiedMap StaticBucketMap
HashMap LinkedHashMap
Unsafe TreeMap UnifiedMap
HashedMap
Sets
ConcurrentSkipListSet CopyWriteArraySet
Safe SetConcurrentHashMap SynchronizedHashSet
SynchronizedLinkedHashSet SynchronizedTreeSet
SynchronizedTreeSortedSet SynchronizedUnifiedSet
HashSet LinkedHashSet
Unsafe TreeSet TreeSortedSet
UnifiedSet

operation.

To execute the micro-benchmarks and build the energy profiles, we developed two different

energy profilers, one for the desktop environment and one for the mobile environment. We

had to create two different applications because these environments use different methods for

gathering energy data and are implemented on different platforms. Nevertheless, we employed

the same methodology to collect the energy consumed by each operation on a specific collec-

tion implementation. In addition, both profilers were built according to the recommendations

of |Georges, Buytaert e Eeckhout| (2007) for Java performance evaluation. The energy profiles

for each collection implementation are used in Phase |l to make recommendations.

86

Phase Il: Collection Usage Analysis. CT-+employs an inter-procedural data flow static
analysis to gather information about the frequency of use and the context in which the col-
lection operations are invoked. For a given program starting point, e.g., the main method, it
analyzes all the paths in the program method call graph that can be reached from there. This
analysis aims to identify calls to collection operations that appear within loops, including loops
from different methods. Each time an operation appears on the source code, CT+adds it to
the file containing all operations used by that software system. One operation can be counted
more than once, depending on its context. For example, the operation “collection.bar()”
can be called from the method “foo()" in different parts of the code; one invocation of
“collection.bar ()" might be inside a loop while another one may not be involved in loops.
Each of these operations is counted separately by CT+.

In this phase, among other pieces of information, for each invocation of a collection op-
eration, we collect: class name, collection type, concrete type, calling method, name of the
field storing the collection implementation object, invoked collection operation, line of code,
whether the invocation appears within a loop, and whether the invocation is performed from
within a recursive method.

Taking loops into account is important because operations inside them are usually exe-
cuted several times and thus consume more energy than ones not invoked within loops. In our
implementation, we use the nesting level of the loops as a heuristic to give weights to the
operations that are performed within them. Even though there are some approaches to deter-
mine loop bounds (e.g., Rodrigues et al.|(2014)), these works (1) do not cover many practical
loop usage scenarios for languages such as Java, where arrays are allocated dynamically, and
(2) typically require program execution. We then opted to use a more conservative approach

and only take into account the nesting level of the loops.

Phase Ill: Recommendation. CT+makes the recommendations based on three different
factors about each collection implementation, for each target system: (i) the energy profile
information for that collection implementation; (ii) data about occurrences of the collection
operations within the target system; and (iii) whether those occurrences appear within loops
or not.

More specifically, for each object ¢ that is an instance of a collection implementation C
and each path in the program call graph where an operation on c is invoked, considering every

collection implementation C’ such that C.T' = C".T, C.S = C".S, and the profiles for C' and

87

C" were built on the same execution environment, CT+calculates (1) the energy cost of the
operations outside loops, (2) the energy of operations inside loops, and then combines these
two pieces of information to calculate the energy factor EF according to equation (3), which

combines equations (1) and (2).

E~E (! Z e; * NL(c.0;) (4.1)

=1

In this formula, n is the number of operations in C, e; is the i** element of the energy profile
of C’, notation c.o; indicates operation o; from collection implementation C” invoked at object
¢, NL is a function that yields the number of non-loop occurrences of o; targeting c for every

path in the program call graph.

o) = Zn: i ((La(c.0j) + 1) — 1) (4.2)

Differently from equation (1), here L, yields the number of occurrences of o, applied to ¢
appearing within a loop of nesting level d for every path in the program call graph, and m
is the maximum loop depth of the program. The nesting level of a loop affects the energy
factor by increasing the exponent which dictates the weight of operations appearing within
loops. The “41" in the exponent and in the innermost summation guarantee that operations
appearing within a loop always have a greater weight than those that do not. The “-1"
within the innermost summation guarantees that operations not appearing within loops (i.e.,

Ly(c.05) = 0) get canceled out.

EF(C',c) = E™(C' ¢c)+ E*(C',¢) (4.3)

The first factor of each summation is originated from the energy profile created in Phase |
(i.e., e; and e;) while the second factor comes from data collected in Phase Il (i.e., NL and
Ly).

CT+makes its recommendation based on the energy factors of the collection implemen-
tations. It provides as output an ordered list of collection implementations with better energy
footprint than the original collection. Once the implementation is chosen, CT+can automat-
ically refactor the application, within the context of the recommendation, to use the first

element of the ordered list.

88

Implementation. To collect the energy consumption of the different devices, two profilers
were created, one for the desktop environment and one for the mobile environment.

The Desktop Profiler is a simple Java program that uses the jRAPL (LIU; PINTO; LIU,
2015) library to measure energy consumption on desktop applications. It works on Intel ar-
chitectures (starting with Sandy Bridge, released in 2011). The Mobile Energy Profiler
comprises two subsystems: an Android app, responsible for executing the micro-benchmarks
for each operation of each collection implementation, and a dashboard application, responsible
for collecting and storing the produced data. We used the Android Power Profiler to measure
energy consumption on the mobile applications. This loosely limits our profiler implementation
since it only works on Android version 5 (released in 2014) or later.

In both environments, the whole application energy consumption data is collected. That
means that we analyze how much energy was consumed by the entire application during its
execution while running different collection implementations. On mobile devices, the Android
Power Profile is used to isolate the energy consumption of the application. On desktop devices,
RAPL uses machine specific registers (MSR) to read the stored energy consumption. The
energy cost of an operation is calculated using the difference between the energy data on the
register before and after its execution. jRAPL includes the execution cost of the underlying
system.

The analysis and recommendation aspects of CT+are based on WALAE], a static analysis
library developed by IBM. Since a collection may be thread-safe or not, we employ WALA's
built-in type inference and points-to analysis to discover the concrete types of objects, making
it possible to recommend collections satisfying the same constraints of thread-safety. This is
also useful to support recommendations that account for collection objects being passed as
method arguments.

The whole CT+project was developed in Java and has 23kLoc, comprising two energy
profilers, the analysis tool, the recommendation tool, and the auxiliary dashboard application
for mobile experiments. To help developers and researchers, we also made available in our

website a cookbook guiding the developer to use it together with DaCapo.

* <http://wala.sourceforge.net/wiki/index.php/Main_Page>

http://wala.sourceforge.net/wiki/index.php/Main_Page

89

4.4 EVALUATION

In this section, we present the evaluation of the proposed approach. We applied CT+to a
number of software systems, running on multiple execution environments. The main objective
of this evaluation is to compare the energy consumption of the original versions of these
systems with modified versions where the recommendations made by CT-were applied.

The evaluation is divided into two parts. In Section 4.4.1], we examine the efficiency of
CT+'s recommendations when considering different execution environments. Then, in Sec-
tion we analyze the impact on energy efficiency of using six different strategies to build
energy profiles. For this second part, we run all experiments on a laptop.

When executing the benchmarks on the desktop devices, two different versions of the
DaCaposuite (BLACKBURN et al., 2006) were used: version 9.12 and development version 19.07.
This was the case because since January 15, 2020, Maven's Central Repository no longer
supports communication over HTTPE]. Because of that, the older versions of DaCapothat
required the usage of Java Development Kit (JDK) up to version 6 do not work anymore. Using
these older versions on newer devices can be challenging, as it requires in-depth knowledge
about DaCapo as well as rewriting potentially dozens of configuration files. While executing
version 19.07, JDK 8 was used. This newer JDK version is supported by current versions of
DaCapoand complies with Maven's new policy. The study presented in Section [4.4.1] uses
version 9.12 of DaCapofor two devices and version 19.07 for one. The study presented in
Section [4.4.2 uses exclusively the latest version.

Although execution time is not, in general, a proxy to energy consumption (HAO et al., 2013;
LI; HALFOND), 2014; PANG et al., 2016; [CHOWDHURY et al., 2019), sometimes it can be a good
approximation that is more convenient to use. To verify if there was a correlation between the
execution time and the energy consumption, we calculate the Spearman Correlation between
execution time and energy consumption on the device used in Section [4.4.2] for the systems
where CT+recommendations made a statistically significant impact on the energy consump-
tion. We found out that there was a statistically significant difference for 62.86% of the cases.
This result suggests that analyzing the energy consumption separately from execution time
may still be the more appropriate approach, since it was not a good approximation for energy

in more than 1/3 of the cases.

5 https://central.sonatype.org/articles/2019/Apr/30/http-access-to-repol mavenorg-and-

repomavenapacheorg-is-being-deprecated /

90

4.4.1 Analyzing different devices

This section describes our experimental environment and results from the study using
CT+to analyze the energy efficiency of Java collections on different devices. Overall, seven
different devices were used in this experiment: a high-end server, two notebooks, three smart-
phones, and a tablet.

The remainder of this section is organized as follows. Section describes the method-
ology of this study, including the seven aforementioned devices and the target software systems

of the study; and Section [4.4.1.2] presents the results.

4.4.1.1 Methodology

Our evaluation comprises two different execution environments, desktop and mobile.
These environments differ in terms of the available processing power and memory, use of
batteries, and measurement procedure.

Desktop environment. CT-+was executed across three different machines on the desktop
environment, two notebooks and a high-end server. We labeled the notebooks as dell (Dell
Inspiron 7000) and asus(Asus X555U), and the server as server. dell has an Intel Core i7-
7500U processor with two 2.7GHz cores with four threads, and 16GB of RAM. asus has an
Intel Core i5-6200U processor with two 2.2GHz physical cores, with four threads and 8GB of
RAM. server has two-node Intel Xeon E5-2660 v2 processor with 20 2.20GHz physical cores
(10 per node) and 20 “virtual” cored’) and 256GB of RAM. In the experiments, we always
execute benchmarks on dell and asus while they are connected to the power outlet, since we
are using it as a desktop machine.

Mobile environment. We executed our tool on three smartphones and a tablet: Samsung
Galaxy J7 (J7), Samsung Galaxy S8 (S8), Motorola G2 (G2), and Samsung Galaxy Tab 4
(Tab4). Table[11]presents a summary of the devices used in this study in both environments. All
experiments were executed while these mobile devices were in discharge mode (not connected
to a power outlet), their more typical usage scenario. For all cases, battery charges ranged
between 100% and 80%. The latter restriction aims to reduce influence of dynamic voltage

and frequency scaling on the measurements. We also report the age of each mobile device at

6 |<https://en.wikipedia.org/wiki/Hyper-threading>

https://en.wikipedia.org/wiki/Hyper-threading

91

Table 11 — Machines used on the study about devices. Age shows how old the device was when we executed
the experiments (in years)

Device Alias RAM Chipset CPU (GHz) Battery Age
Desktop
Inspiron 7000 dell 16GB i7-7500U 2-core 2.70 N/A N/A
Server server 256GB Xeon E5-2660 20-core 2.2 N/A N/A
Asus X555U asus 8GB i5-6200U 2-core 2.80 N/A N/A
Mobile
Samsung J7 J7 1.5GB Exynos 7580 8-core 1.5 3000 mAh 3
Samsung S8 S8 4GB Exynos 8895 8-core 2.3'1.7 3000 mAh 1
Motorola G2 G2 1GB Snapdragon 400 4-core 1.2 2070 mAh 4
Samsung Tab4 Tab4 1.5GB Cortex-A7 4-core 1.2 4000 mAh 6

the time the experiments were run, since older batteries tend to exhibit more erratic discharge
patterns (LEE; CHON; CHA| 2015)). Section discusses this further.

When creating the energy profiles for our devices, we chose the same methodology as
previous works (HASAN et al., 2016; OLIVEIRA; OLIVEIRA; CASTOR, 2017)), although we leverage
a larger number of collection implementations (Table. We executed the micro-benchmarks,
each one representing an operation-collection pair, and calculated their energy consumption.
This procedure is repeated 30 times for each micro-benchmark, for each machine. Before

collecting the energy data samples, we performed a warmup execution. In the warmup, we

executed up to 10% of our workload. By doing this, we minimized [Just-In-Time (JIT)| noise

on the measurements (BARRETT et al., 2017)).

As previously explained, for this experiment, two different versions of DaCapo were used.
To execute the benchmarks on dell and server, we used DaCapo version 9.12, and on asus,
we used version 19.07. Because different versions of DaCapowere used, there are also two
distinct versions of TOMCAT. DaCapo version 9.12 uses TOMCAT 6.0.20 (ToMcAT v6for
short) while version 19.07 uses TOMCAT 9.0.2 (TOMCAT Vv9for short).

On dell, we analyzed seven desktop-based software systems: BARBECUE, BATTLECRY,
JODATIME, TOMCAT V6, TWFBPLAYER, XALAN, and XISEMELE; two mobile-based soft-
ware systems: FASTSEARCH and PASSWORDGEN; and three libraries that work on both envi-
ronments: APACHE COMMONS MATH 3.4 (COMMONS MATH for short), GOOGLE GSON,
and XSTREAM: These systems were employed in related work on energy profilling (SAHIN;
POLLOCK; CLAUSE, [2014} IPINTO et al/| [2016; |[HASAN et al., 2016} IPEREIRA et al., 2018), and

their workloads are available for replication purposes. For server, we only ran TOMCAT v6and

92

Table 12 — Software systems used in the study about devices and where they were executed.

Device Selected Software Systems

Environment: Desktop

TOMCAT V6 XALAN BARBECUE BATTLECRY
dell JODATIME TWFBPLAYER XISEMELE
COMMONS MATH 3.4 GOOGLE GSON XSTREAM

TOMCAT V9 Biojava CASSANDRA GRAPHCHI
asus
KAFKA ZXING
server TOMCAT V6 XALAN
Environment: Mobile
" FASTSEARCH PASSWORDGEN
a

COMMONS MATH 3.4 GOOGLE GSON XSTREAM

XALAN since these are applications one would expect to execute on a high-end server machine.

For asus, we executed six systems: Bi0oJAvA, CASSANDRA, GRAPHCHI, KAFKA, TOM-
CAT V9and ZXING. XALAN was not executed on asus because the project seems to be
abandoned. As of April 2020, the last update on GitHub's page was in June 200. Table
summarizes the software systems used in this study and the devices in which they were ana-
lyzed.

It is possible to tune the workload size on DaCapo’s benchmarks and different benchmarks
have distinct options for their workloads. TOMCAT is a particular application among DaCapo as
it has four different workload sizes (SMALL, DEFAULT, LARGE, and HUGE). XALAN has three
different workload sizes (SMALL, DEFAULT, and LARGE). The other applications used in this
study only have one (DEFAULT). The advice of DaCapo developers is to use the biggest option
availablefl

Each system has a specific workload and routine, defined by Dacapo developers, to follow
with the objective of exercising different aspects of their source code. As an example, executing
B10JAVA creates 10 physico-chemical properties of different-sized protein sequences, TOMCAT
runs a number of web applications, and GRAPHCHI uses the Netflix Prize dataset (BENNETT;

LANNING; NETFLIX, 2007) to drive it's engine. These routines are all selected and curated by

7
8

< https://github.com/apache/xalan-java>
<http://dacapobench.sourceforge.net/benchmarks.html>

https://github.com/apache/xalan-java
http://dacapobench.sourceforge.net/benchmarks.html

93

DaCapo developers. For TOMCAT v6and XALAN on the desktop development machines, we
used the same workloads sizes (i.e., LARGE) while on asus, TOMCAT v9 was executed with
two different workloads sizes (i.e., LARGE and HUGE). The number of threads also varied
between devices: forty on server and four on dell and asus.

The workloads of systems outside of DaCapo suite were done in a more individualized
manner. For four systems (BARBECUE, JODATIME, TWFBPLAYER, XISEMELE) we used
unitary tests, following the same methodology as previous work (PEREIRA et al.,, [2018)). On
BATTLECRY, we executed a class inside the benchmark designed to test it. On GOOGLE
GSON and XSTREAM we tried to exercise each Java primitive using methods inside those
systems. With ApPACHE COMMONS MATH 3.4, we executed multiple statistical functions
from its APl. As both PASSWORDGEN and FASTSEARCH are utility programs that work
like functions, their workloads consist of executing their main methods (e.g., generating pass-
words).

For TOMCAT v6, we could not recommend any implementation from the Eclipse Collec-

tions library. This happened because version 9.12 of DaCaporequires the use of Java Devel-

opment Kit (Java Development Kit (JDK)|) up to version 6 to ensure the correct operation

of its benchmarks. Unfortunately, the current version of Eclipse Collections is incompatible

with JDK 6. For this particular benchmark, our tool still makes recommendations with

[Collections Framework (JCF)| and Apache Commons Collections.

Different devices require different workloads to run for enough time for the energy measure-
ment to have expressive values. This adjustment was especially important when running the
mobile profiler. Whereas jRAPL (LLIU; PINTO; LIU, |2015)) is capable of code-level, fine-grained
measurement, the Android battery dump collects battery data at the process level. In order
to mitigate potential imprecisions, we adjusted the mobile micro-benchmark workload sizes to
run for at least 20 seconds.

For the experiments, we collected the results of 30 executions of each software system.
When experimenting with thread-safe collections, we used four threads for each operation;
with non thread-safe collections, only one thread was used. Since most of our samples are
not normally distributed, based on Shapiro-Wilk's normality test (SHAPIRO; WILF, |1965)), we
used the Wilcoxon-Mann-Whitneytest (WILKS| 2011) to test whether the difference in energy
consumption between the original and modified versions of each software system is statistically
significant. We did not remove any outliers. We also employed Cliff's Delta (CLIFF, 1993) as a

measure of effect size. Wilcoxon-Mann-Whitneytest and Cliff's Delta are non-parametric tests.

94

4.4.1.2 Study results

We present the results in terms of the desktop and mobile environments. For each one, we
first present the energy consumption results and then proceed to discuss the recommendations
that were made for each software system. We will only present the energy results, because
as mentioned in Section most executions had a designed workload based on the time
necessary to execute them. The specific amount of time each system took to be executed can
be found at <https://energycollections.github.io/>. In this experiment, across all devices, a

total of 831recommendations were made.

Desktop environment. Table [13] summarizes the energy consumption for the desktop envi-
ronment. The most important column of the table is Improvement, which shows how much
more energy the original version consumed, when compared to a modified version where CT+'s
recommendations have been applied. A positive percentage in this column indicates that the
modified version consumes less energy than the original one.

The versions of all the software systems modified according to the recommendations of
CT+consumed less energy than the original versions. For five of them, TWFBPLAYER and
X1SEMELE on dell, TOMCAT Vv9using the HUGE workload, KAFKA, and CASSANDRA on
asus, the difference between the original and modified versions was not statistically significant.
In the case of TOMCAT v9using the LARGE workload, there was a significant difference with
a small effect size. Notwithstanding, for the remaining systems, the difference is statistically
significant and the effect size is large.

According to Romano et al. (2006)), effect size as measured by Cliff's Delta has four
different categories: large (> 0.474), medium (between 0.474 and 0.33), small (between 0.33
and 0.147), and negligible (< 0.147). For example, on XALAN in the dellmachine, the effect
size was 1, which means that every execution of the modified version exhibited lower energy
consumption than every execution of the original version.

Among the software systems that only ran in the dell machine, JODATIME exhibited
the greatest improvement, with the modified version consuming 6.66% less energy than the
original one. To make it easier for the reader to focus on the relevant data, this section focused
on the results for which p —value < 0.05, thus indicating a statistically significant difference,
either positive or negative, between the original version and the modified one.

The two software systems that were executed in the dell and server machines, XALAN

https://energycollections.github.io/

95

Table 13 — Results for the desktop environment. Energy results are red for the original versions and green for
the modified versions. Energy measured in Joules.

System Improvement p-value Mean(J) Stdev Effect Size

Development Machine: dell

Barbecue 4.38% 7.07% 56.17 2.10 0.50
53.71 2.53
67.95 2.67

Battlecry 2.78% 1.573 6 0.48
66.06 3.18
29.93 0.22

Google Gson 0.72% 8.075 0.57
290.72 0.16
48.93 0.29

Commons Math 1.04% 6.3712 0.90
48.43 0.15

JodaTime 6.66% < 29716 123.02 242 0.94
114.83 3.50

Tomcat v6 3.96% < 29716 3217 1.02 0.86
31.47 0.41
107.04 1

Xalan 4.77% < 29716 07.0 0.19 1
101.93 0.15

Xstream 2.52% 3.12713 59.91 0.52 0.94
58.45 0.49

Development Machine: asus

193.69 0.11

Biojava 0.60% 2.20716 1
192.53 0.17
Graphchi 10.17% 5.79~13 10.90 0.35 0.94
9.80 0.42
74.93 1.37
Tomcat v9-LARGE 1.04% 2.5373 0.31
74.16 1.78
.82 .
Zxing 5.84% 2.20~16 85.82 036 1
80.80 0.41

Development Machine: server

89.21 2.99

Tomcat v6 4.12% < 22716 0.66
85.54 2.37
242.29 4.4

Xalan 5.49% <2216 0.86
228.98 7.02

and TOMCAT V6, exhibited positive results in both scenarios. For XALAN, the modified
version consumed 4.77% and 5.49% less energy than the original version in the delland
servermachines, respectively. For TOMCAT V6, the differences were 3.96% and 4.12%, re-
spectively. We found that systems running on server consumed more than twice the energy
they consumed on dell, for the same workload. This can be justified in terms of their differences

in processing power. Notwithstanding, the results were consistent across the two machines.

96

Meanwhile, TOMCAT Vv9exhibited a different behavior on asus. Using the workload size
HUGE, the recommendations made by CT+did not result in energy reduction. Nevertheless,
while using the same workload as in dell and server, there was a reduction of 1.04%, an
improvement that represents less than 25% the improvement made on the other two devices.
Since on asuswe executed a newer version of TOMCAT, smaller improvements were expected,
since developers behind the newer versions of TOMCAT are likely to be more mindful of the
collection implementations being used.

For all other systems executed on asus, CT+recommendations resulted in a reduction in
energy consumption with a large effect size. In particular, GRAPHCHI was the system with
the most significant reduction in energy consumption among all systems across all desktop
development machines (10.17% of improvement).

Tables [14] and summarize the recommendations for each application on dell,
asus, and server, respectively. The first column lists the names of the target systems for the
desktop environment. The second column presents the names of collection implementations
used in these systems, whereas the third column indicates the collection implementations
that CT+recommended using instead. Finally, the fourth column displays the number of times
CT+recommended the one in the third column as a replacement to the corresponding collection
implementation in the second column. Overall, on the desktop environment, CT+made and
applied 724recommendations lead to statistically significant results.

In dell and server machines XALAN had a significant number of Hashtable implemen-

tations changed to ConcurrentHashMap(Eclipse Collections (EC)) (48 and 49 times on

dell and server, respectively). For both machines, we can observe a trend of recommendations
to replace well-known collections from the JCF (Vector, ArrayList, HashMap) by alternatives
from Eclipse Collections and Apache Commons Collections. For the specific case of XALAN,
among the 119 recommendations across the two desktop machines, just three were for JCF

collection implementations.

97

Table 14 — Recommended collection implementations for the dellmachine and how many times they were
recommended. Implementations from Apache Common Collections are presented in blue and from
Eclipse Collections in red.

System Original Recommended # of times
Development Machine: dell
Barbecue HashMap HashedMap 13
ArrayList FastList 8
LinkedLi ArrayLi
Battlecry !n ed !st rray- ist
LinkedList FastList
ArrayList FastList 112
HashSet UnifiedSet 6
Commons
HashMap HashedMap 9
Math o
HashMap UnifiedMap 3
ArrayList TreeList 3
G | ArrayList FastList 12
Googe HashMap HashedMap 3
son
ConcurrentHashMap ~ ConcurrentHashMap(EC) 1
ArrayList FastList 8
JodaTime HashMap HashedMap 7
ConcurrentHashMap ConcurrentHashMap(EC) 1
Hashtable ConcurrentHashMap 6
HashM HashedM 4
Tomcat vb ashivlap as.ed ap
Hashtable StaticBucketMap 2
Vector SynchronizedLinkedList 1
Hashtable ConcurrentHashMap(EC) 48
ArrayList FastList 10
Xalan Vector SynchronizedFastList
ArrayList NodeCachingLinkedList
HashMap HashedMap
HashMap HashedMap 52
ArrayList FastList 21
HashSet UnifiedSet 12
Xstream HashMap UnifiedMap 7
LinkedList TreeList 1
ArrayList LinkedList 1
HashSet TreeSortedSet 1

98

Table 15 — Recommended collections for asuslmplementations from Apache Common Collections are pre-
sented in blue and from Eclipse Collections in red.

System Original Recommended # of times

Development Machine: asus

HashMap HashedMap 100
ArrayList FastList 37
LinkedList ArrayList 2
.. TreeSet TreeSortedSet 2
Biojava . L .
Arraylist NodeCachingLinkedList 1
HashSet UnifiedSet 1
Hashtable ConcurrentHashMap 1
Vector SynchronizedArrayList 1
HashM HashedM
Graphchi * -ap ase- P 3
ArrayList FastList 1
HashMap HashedMap 47
Arraylist FastList 9
ConcurrentHashMap ConcurrentHashMap(EC) 8
CopyOnWriteArrayList ~ SynchronizedArrayList 8
ConcurrentHashMap SynchronizedHashMap 5
ConcurrentHashMap Hashtable 3
Tomcat v9
Hashtable ConcurrentHashMap(EC) 4
Hashtable SynchronizedHashMap 4
LinkedList TreeList 2
LinkedList FastList 1
TreeSet TreeSortedSet 1
Vector SynchronizedArrayList 1
] ArrayList FastList 3
Zxing
HashMap HashedMap 2

TOMCAT v6recommendations differed across these two machines. On dell, the tool made
thirteen recommendations, seven for collections from the JCF, and six for collections from
the Apache Commons Collections. On server, there were 60 recommendations, 40 for Apache
Commons Collections, and 20 for JCF collections. In particular, there were 68 recommenda-
tions to replace Hashtable, HashSet, or HashMap by more energy-efficient alternatives and
no recommendation to use any of those. As pointed out in Table [8 these are widely-used
collections. We reiterate that Eclipse Collections could not be recommended for TOMCAT
V6 (Section 4.4.1.1)).

ToOMCAT V9 has a substantial number of modifications on asus, with a total of 93

recommendations by CT—+. For the sake of comparison, TOMCAT v6had 60 recommendations

99

Table 16 — Recommended collection implementations for the servermachine and how many times they were
recommended. Implementations from Apache Common Collections are presented in blue and from
Eclipse Collections in red.

System Original Recommended # of times

Development Machine: server

HashMap HashedMap 39
Hashtable ConcurrentHashMap 16
Tomcat v6 LinkedList TreeList 2
LinkedList ArrayList 1
HashSet LinkedHashSet 1
Vector SynchronizedArrayList 1
Hashtable ConcurrentHashMap(EC) 49
Vector SynchronizedArrayList 3
Xalan ArrayList TreeList 2
HashMap HashedMap 1
HashMap UnifiedMap 1

on serverand only 13 on dell. Being two different versions of TOMCAT, differences in the
implementations recommended by CT+were expected. However, two cases show a contrast
in this expectation: Hashtable and HashMap when comparing asus and server. Hashtable
was changed 49 times on server (26% of the total recommendations for TOMCAT v6) while
it was only changed 8 times on asus (8.6% of the total for TOMCAT V9), clearly showing
a significant difference. On the other hand, the most common recommendation for both
asus and server was to replace HashMap by HashedMap. That recommendation was made 47
times on asus and 39 for server, representing 50% and 65% of all recommendations made
for TOMCAT on these devices. Although there are considerable differences between the two
TOMCAT versions, it seems like, for several cases, changing HashMap for more energy efficient
implementation still is an effective recommendation.

Across the 724 recommendations made to the desktop systems, 92% (666) of these came
from alternative sources to JCF, being 52% (372) from Eclipse Collections and 40% (294)
from Apache Commons. Once again it is possible to observe a trend of replacing well-known
collections such as ArraylList, Hashtable, and HashMap by more energy-efficient but less-

known alternatives.

Mobile environment. Table summarizes the results for the mobile environment. Overall,
CT+made 107 recommendations among the analyzed devices with their effectiveness varying

strongly. One of the mobile devices used in our experiments (i.e., Tab4) did not present

100

any statistically significant difference between the original and the modified versions. A more
thorough discussion about this specific device can be found in Section [4.6]

The modified versions of PASSWORDGEN on the S8 and J7 devices exhibited significant
improvements: the modified versions consumed 4.49% and 14.78% less energy than the original
ones, with a large effect size. However, G2 had no recommendations for this specific system
(more on this in Section [4.5)).

GOOGLE GSON exhibited a significant improvement of 4.79% on the J7, with a medium
effect size. Nonetheless, the recommendations of CT+yielded a statistically significant but
small 0.95% improvement on S8.

COMMONS MATH had more inconsistent results. Although the modified version consumed
10.16% less energy than the original version on S8, the original versions consumed 1.2% and
0.33% less energy than the modified ones on G2 and J7. Albeit small, these results are
statistically significant and the effect size for both cases was negative (medium and large,
respectively). This intuitively means that it was more common for executions of the modified
versions to exhibit greater energy consumption.

Finally, FASTSEARCH was arguably the most consistent of the software systems on the
mobile environment, in the sense that there was no practical difference between original and
modified versions. ForJ7 and G2 the results for the modified and original versions did not
differ in a statistically significant way. On the S8, albeit statistically significant, the difference
was small with the modified version consuming just 0.09% less than the original version. It
is worth noting that on S8 the effect size was negative when analyzing FASTSEARCH. That
implies that although we observed an decrease in energy consumption in our analysis, when
choosing a random element from both groups, there's a 47% chance that the value would be
smaller if the element was from the original version.

These results suggest that (i) the energy consumption of different collection implementa-
tions varies considerably across mobile devices, and (ii) although the results were not as strong
as in the desktop environment, for most cases, the recommendations of CT+ either yielded
an improvement or did not have a strong impact on the energy consumption of the software

systems.

101

Table 17 — Results for the mobile environment. Energy results are red for the original versions and green for
the modified versions. Energy measured in Joules.

System Improvement p-value Mean(J) Stdev Effect Size
Device: S8
92.06 2.59
Commons Math 10.16% 1.2578 0.86
82.70 9.61
35.06 3.32
FastSearch 0.09% 1.6773 -0.47
35.03 1.78
16.45 0.22
Google Gson 0.95% 6.4274 0.40
16.29 0.20
16.86 41
PasswordGen 4.49% 2.3879 0 0.90
16.11 0.65
Device: J7
23.82 2.33
Commons Math -0.33% 24 -0.56
23.90 2.62
13.7 1.
Google Gson 4.79% 3.273 378 59 0.44
13.12 2.67
12.83 0.90
PasswordGen 14.78% 6.449 0.87
10.94 0.76
Device: G2
17.22 0.51
Commons Math -1.20% 9.073 -0.41
17.42 0.14

Table [18] [19, and presents the recommendations that CT+made for S8, J7, and
G2, respectively (the data from our experiments on Tab4 can be found on COMMONS
MATH running on the S8has more recommendations for JCF collection implementations than
all the software systems we evaluated on the dellmachine combined. On the one hand, the
only collection recommended by CT—+ that is not from the JCF for this software system is
TreeList from the Apache Commons Collections. On the other hand, it follows the pattern
of recommending alternatives to widely popular collections, e.g., it recommends the use of
TreelList instead of ArrayList and LinkedHashMap in place of HashMap. For the remaining
systems, CT+ made few recommendations, 11 for GSON, 2 for PASSWORDGEN, and 5 for
FASTSEARCH. Overall, the recommendations only produced a large effect size for COMMONS
MATH and PASSWORDGEN. Furthermore, these were the only systems that could achieve
energy savings greater than 1% in the S8.

Among the 22 recommendations of COMMONS MATH on J7, 14 were for Eclipse Collec-
tions, and eight were for Apache Commons Collections. In all these cases, CT+ recommended

that developers replace ArrayList with an alternative implementation. For this specific con-

102

Table 18 — Recommended collection implementations for S8and how many times they were recommended. Im-
plementations from Apache Common Collections are presented in blue and from Eclipse Collections

in red.
System Original Recommended # of times
Device: S8
ArrayList TreeList 8
HashMap LinkedHashMap 7
Commons HashSet LinkedHashSet 6
Math TreeSet LinkedHashSet 2
TreeMap LinkedHashMap 2
ArrayList LinkedList 1
ArrayList FastList 6
HashMap LinkedHashMap 3
Google Gson)]
ArrayList TreelList 1
ConcurrentHashMap Synch LinkedHashMap 1
PasswordGen ArraylList FastList 2
ArraylLi FastLi 4
FastSearch rrayList astlist
HashMap HashedMap

Table 19 — Recommended collection implementations for J7and how many times they were recommended. Im-
plementations from Apache Common Collections are presented in blue and from Eclipse Collections

in red.
System Original Recommended # of times
Device: J7
ArrayList FastList 14
Commons , L .
Math ArrayList NodeCachinglinkedList 5
a
ArrayList TreeList 3
ArrayList FastList
Google Gson) L .
ArrayList NodeCachinglLinkedList 2
PasswordGen Arraylist FastList 5

text, the recommendations did not yield

energy savings. CT+ also recommended replacing

ArraylList by alternatives in the case of GSON and PASSWORDGEN. These substitutions

yielded considerable energy savings. The G2 differed from the others in this study in the sense

that only one of the software systems exhibited significant differences between the original and

modified versions. Notwithstanding, the trend of CT+ recommending less popular collections

as replacements for widely-used ones such as ArraylList and HashMap can still be observed.

103

Table 20 — Recommended collection implementations for G2and how many times they were recommended. Im-
plementations from Apache Common Collections are presented in blue and from Eclipse Collections

in red.
System Original Recommended # of times
Device: G2

HashMap LinkedHashMap 12
ArrayList FastList 8

Commons .)

Math ArrayList TreeList 5

a

CopyOnWriteArrayList Vector 1
ArrayList LinkedList 1

4.4.2 Analyzing different profiles

This section describes our experimental environment and results from a study analyzing
different energy profiles. Each profile was created simulating a different workload size, in a
way to try to analyze how they can affect the energy consumption of Java collections. For this
study, only asuswas used and all the target systems come from the most recent version of the
DaCapo benchmark suite, that is, the developer branch of the version 19.07.

The following sections are organized as follows. Section [4.4.2.1] explains the methodology

of this study; and Section [4.4.2.2] presents the results of our experiments.

4.4.2.1 Methodology

Through the following experiment, a single device was used, asus, described in detail on
Table [11] Six target systems present in DaCapo019.07 were used, that is: Biojava, CAs-
SANDRA, GRAPHCHI, KAFKA, TOMCAT v9and ZXING. These systems were executed using
JDK 8.

To explore the impact of different energy profiles on the energy-efficiency of Java collection
implementations, six energy profiles were created for asus, namely N1, N2, N4, N8, N16, and
N32. Starting with N1(the profile used in Section [4.4.1]), created using a specific load size for
each API i.e., 15,000 for Lists, 18,750 for Sets, and 50,000 for Maps. We then proceeded
to multiply this load size by a factor of two and then used it to create a new profile, with
N2 having two times the load size of N1, N4 having four times, until the maximum of 32
times the load size of N1 with N32. These profiles were created to simulate different workload

sizes a collection may face, with the smaller ones representing lightweight applications that

104

do not depend too much on collections and the bigger ones representing data-structure heavy
applications that make more intensive usage of collections.

Load sizes smaller than N1 made it unreliable to sample the energy consumption for some
of the faster operations, such as removing from the tail of a LinkedList. The values of N1 we
employed were the lowest loads where it was possible to perform energy measurement, i.e., the
results were consistently above zero, with a stable standard deviation, i.e., increasing the load
size did not lower it. This phenomenon, in which RAPL is unable to reliably measure energy
consumption for small segments of program execution, has been previously reported (HAHNEL
et al, 2012).

For the experiments, we collected the data from 30 executions of each target system,
considering the original and all six modified versions. Each instance was executed in a clean
machine state, that is, we restarted the notebook to make sure there were no residual traces
from the previous execution. All executions were made in Ubuntu 19.04, booting without a
graphic user interface. When experimenting with thread-safe collections, we used four threads

for each operation; with non thread-safe collections, only one thread was used.

4.4.2.2 Study Results

This section first presents the energy consumption results for the original and modified
versions. It then proceeds to discuss the recommendations made for each target system when
considering the three different profiles.

In this experiment, considering all six profiles, CT+ made a total of 1711 recommendations.

Figure [9] summarizes the energy consumption of all software systems executed on asus in
which CT+ made statistically significant recommendations, with the exception of Tomcat
v9-HUGE. Out of the six target systems, three were more susceptible to improvements, with
high effect size and low p-value across all profiles: BioJAvA, GRAPHCHI, and ZXING. For
two applications, CASSANDRA and KAFKA, CT-+was not able to make any impactful recom-
mendations on any of the six different profiles. For all scenarios involving these applications,
the energy consumption of the original and modified versions did not differ significantly. As
a consequence, we do not report the results for CASSANDRA and KAFKA in the remainder
of this section. Instead, we focus on statistically significant results. TOMCAT v9had mixed
results, presenting an energy reduction in all profile sizes for the workload LARGE, usually with

a small effect size. For the workload size HUGE, TOMCAT v9presented a reduction in energy

105

Table 21 — Source from the recommendations made to asus, sorted by the profile size. The approximated
percentage of the total is shown between parenthesis.

Sources

Profiles Total Java Collections Apache Collections Eclipse Collections

N1 247 26 (10%) 154 (63%) 67 (27%)
N2 352 19 (5%) 292 (83%) 41 (12%)
N4 456 7 (2%) 116 (25%) 333 (73%)
N8 173 38 (22%) 82 (47%) 53 (31%)
N16 82 40 (49%) 25 (30%) 17 (21%)
N32 360 41 (11%) 125 (34%) 235 (65%)

consumption of 0.36% only when using N32 (with a medium effect).

Among the profiles, there was no overall winner. No profile presented the best results among
all different software systems and no profile dominated another one, i.e., for every profile, if a
target system had lower energy consumption under profile p; than profile p,, there was some
other target system that consumed less under profile po. TOMCAT V9, on both workloads
sizes, consumed less energy using the recommendations made using N32; GRAPHCHI using
N2; ZXING using N1; and B10JAVA using N8. When looking at the profile sizes, it's possible to
have a glimpse of a trend of some systems performing better for smaller profiles (the case of
GRAPHCHI) and others performing better for bigger ones (such as BioJAvAa and ToMCAT
v9).

Table 21] summarises the data about the recommendations made across all different pro-
files. The total number of implementation changes differs significantly on each profile,with
N4having the most with 456 recommendations and N16having the least, with 82. Most of
these recommendations changed an implementation from JCF to an alternative collection im-
plementation from Eclipse Collections or Apache Commons Collections. Up to 98% (in the
case of N4) of the collections recommended were from alternative sources. On the other hand,
N16had the greater number of recommendations within the JCF, for a total of 49%.

Tables[15] 22] [23] [24] [25] and [26] show the specific recommended collections for asusamong
the six different profiles. CT+often recommended alternatives from ArraylList across all
devices, for a total of 849 implementations of ArrayList being changed by CT+, representing
49.6% of all modifications made across all profiles. That is even clearer for two specific profiles,
N2and N4, having 76.7% and 64.2% respectively of all their modifications being changes from

ArrayList. On the other hand, N16had only two ArraylList modifications, representing a total

106

"SWIS1SAS 91eM1J0S 1USIRJIP Yl Suowe—+ |) Aq panes ASusug Jo a8ejusdusd — ¢ 24n3i4

ZEN 9N N PN N IN
%G9'E %9 \.mmm-
%80’V %l v
%¥8°G
Buixz
ZEN 9IN 8N PN ZN IN
%62 %66F
%10l
%8 L1
%be 9l
1yoydeio

ol

Gl

0¢

(o5) panes ABlaug

(o4) panes ABlsug

CEN 9LN 8N N
- H-\;«UN-O
%€6°0
%8071
%9¢" |
abliel-1eowo]
CEN 9LN 8N PN
%P0
%280
%Cl’L
%rEeL

eaeloig

¢N IN

%S0

cN

%l L

%0l

IN

Go

00

gL 0l

0L ¢o 00 0¢

Gl

0¢

(o5) panes ABlaug

(o4) panes ABlsug

107

of 2.4% of all modifications made on this profile. Surprisingly, that was not the case for N32,
which had 210 ArrayList implementations being modified, 52.3% of the total modifications
of this profile. The second and third most changed List implementations across all profile
sizes were CopyOnWriteArraylList and LinkedList, with 47 and 30 changes respectively.
B10JjAvA showed a special behavior when compared with the other systems. For N4,
CT-+recommended 291 changes to BI0JAVA while for N16the number of recommendations
was only 28, less than 10% the recommendations made for N4. Even so, N16saved more energy
than N4(1.12% and 0.4%, respectively), although in both cases the savings were modest. Not
only the recommendations between profiles differ in quantity, but also which collections were
recommended by CT+. Among all applications tested on asus, on profiles N2and N4there
was a large number of list implementations that were changed: 283 and 309, respectively.

Meanwhile, on profile N16, that number was much smaller: just 15 changes.

Table 22 — Recommended collections for the asuson N2. Implementations from Apache Common Collections
are presented in blue and from Eclipse Collections in red.

System Original Recommended #£ of times
Profile: N2
ArrayList NodeCachinglLinkedList 179
HashSet UnifiedSet 18
BioJava ArrayList FastList 6
HashMap HashedMap 5
LinkedList NodeCachingLinkedList 2
Hashtable ConcurrentHashMap 1
Graphchi ArrayList Nod.eCachingLinkedList 4
HashSet UnifiedSet 1
ArrayList NodeCachingLinkedList 64
HashMap HashedMap 18
HashSet UnifiedSet 10
Hashtable ConcurrentHashMap 9
Tomcat
CopyOnWriteArrayList ~ SynchronizedArrayList 6
ConcurrentHashMap ConcurrentHashMap(EC) 5
CopyOnWriteArrayList Vector 2
LinkedList TreeList 2
ConcurrentHashMap SynchronizedHashMap 1
LinkedList NodeCachingLinkedList 1
TreeSet TreeSortedSet 1
ArrayList NodeCachingLinkedList 16

Zxin
& ArrayList TreelList 1

108

Table 23 — Recommended collections for the asuson N4. Implementations from Apache Common Collections
are presented in blue and from Eclipse Collections in red.

System Original Recommended # of times
Profile: N4
ArrayList FastList 214
HashMap HashedMap 70
LinkedList FastList 2
BioJava TreeSet TreeSortedSet 2
ArrayList NodeCachingLinkedList 1
Hashtable ConcurrentHashMap 1
Vector SynchronizedFastList 1
Graphchi ArrayList FastList 7
ArrayList FastList 69
HashMap HashedMap 43
ConcurrentHashMap ConcurrentHashMap(EC) 16
Hashtable ConcurrentHashMap(EC) 13
CopyOnWriteArrayList ~ SynchronizedArrayList 6
Tomcat CopyOnWriteArrayList ~ SynchronizedFastList 2
LinkedList TreeList 2
Vector SynchronizedFastList 2
HashSet UnifiedSet 1
LinkedList FastList 1
TreeSet TreeSortedSet 1
Zxing ArrayList FastList 2

109

Table 24 — Recommended collections for the asuson N8. Implementations from Apache Common Collections
are presented in blue and from Eclipse Collections in red.

System Original Recommended # of times
Profile: N8

HashMap HashedMap 45

HashSet LinkedHashSet 18

.. ArrayList FastList 15
Biojava)))

LinkedList ArrayList 2

ArrayList LinkedList 1

HashTable ConcurrentHashMap(EC) 1

Graphchi ArrayList F.astList 2

HashSet LinkedHashSet 1

HashMap HashedMap 34

ConcurrentHashMap ConcurrentHashMap(EC) 19

HashSet LinkedHashSet 9

Hashtable ConcurrentHashMap(EC) 9

CopyOnWriteArrayList ~ SynchronizedArrayList 4

Tomcat CopyOnWriteArrayList ~ SynchronizedFastList 2

CopyOnWriteArrayList Vector 2

LinkedList TreeList 2

ArrayList FastList 1

HashSet UnifiedSet 1

LinkedList ArrayList 1

. ArrayList FastList 3
Zxing))

ArrayList TreeList 1

110

Table 25 — Recommended collections for the asuson N16. Implementations from Apache Common Collections
are presented in blue and from Eclipse Collections in red.

System Original Recommended # of times
Profile: N16
HashSet LinkedHashSet 18
HashMap HashedMap 5
. . LinkedList ArrayList 2
Biojava] . . .
ArrayList NodeCachingLinkedList 1
Hashtable ConcurrentHashMap(EC) 1
TreeSet TreeSortedSet 1
Graphchi HashSet LinkedHashSet 1
HashMap HashedMap 16
HashSet LinkedHashSet 10
Hashtable ConcurrentHashMap(EC) 9
ConcurrentHashMap ConcurrentHashMap(EC) 6
Tomcat
CopyOnWriteArrayList ~ SynchronizedArrayList 6
CopyOnWriteArrayList ~ Vector 2
LinkedList TreeList 2
LinkedList ArrayList 1
Zxing ArrayList TreeList 1

111

Table 26 — Recommended collections for the asuson N32. Implementations from Apache Common Collections
are presented in blue and from Eclipse Collections in red.

System Original Recommended # of times
Profile: N32
ArrayList FastList 145
HashMap HashedMap 80
HashSet LinkedHashSet 18
Biojava HashMap UnifiedMap 3
LinkedList FastList 2
ArrayList LinkedList 1
Hashtable ConcurrentHashMap 1
ArrayList FastList 2
Graphchi HashSet LinkedHashSet 1
HashMap HashedMap 1
ArrayList FastList 48
HashMap HashedMap 40
ConcurrentHashMap ConcurrentHashMap(EC) 14
HashSet LinkedHashSet 10
Hashtable ConcurrentHashMap(EC) 7
Tomcat CopyOnWriteArrayList ~ SynchronizedLinkedList 3
CopyOnWriteArrayList ~ SynchronizedArrayList 2
CopyOnWriteArrayList Vector 2
Hashtable ConcurrentHashMap 2
LinkedList TreeList 2
HashMap UnifiedMap 1
LinkedList ArrayList 1
ArrayList FastList 13
Zxing ArrayList NodeCachingLinkedList 1
HashMap HashedMap 1

When analyzing uses of Set implementations, 35.4% of the recommendations made by

CT-for the N16profile suggested using some alternative to HashSet. On the other hand, for

N1and N4, only 0.4% and 0.2% of the recommendations involved this collection implemen-

tation, respectively. Lastly, HashMap was the Map implementation most often recommended

against by CT+. This implementation was frequently changed across all profiles, up to 61.54%

on N1, with the solo exception being N2, where its changes represented only 6.53% of the to-

tal recommendations. Across all profiles, from all recommendations to change from HashMap,

99.2% were to use HashedMap. Only in 4 cases when analyzing N32, CT+recommended using

UnifiedMap as a replacement for HashMap. This suggests that developers should consider

112

using HashedMap as an alternative to HashMap.

As shown in Section and in other papers (PINTO; CASTOR; LIU, 2014b; |PINTO et al.,
2016)), Hashtable has poor performance and energy efficiency. Therefore, we expected CT+to
make multiple recommendations of alternative collection implementations aiming to improve
uses of Hashtable. Surprisingly, though, there were only a few such recommendations. More
specifically, CT+recommended replacing uses of Hashtable 8 times for N1, 9 times for N2,
N8, N16, N32, and 13 times to N4when analyzing TOMCAT Vv9and a single case for each
profile for BIOJAVA. An examination of the source code of the target systems reveals that,
differently from TOMCAT V9, where there were 49 instances of uses of Hashtable, the others
either used it scarcely (2 cases for BioJava, CASSANDRA, and KAFKA) or did not use it
at all (GRAPHCHI and ZXING). This decreased Hashtable usage in more modern software
corroborates the results from our queries on GitHub projects using Java collections, presented
in Table 8l

To verify if there was any correlation between the execution time and the energy con-
sumption, we executed the Spearman Correlation on the asus. We found out that for only
62.86% of the scenarios on the experiment there was a statistically significant the two factors
were correlated. This result suggests that analyzing the energy consumption separately from
performance may still be the more appropriate approach, since performance is not a good

approximation for energy in more than 1/3 of our cases.

4.5 DISCUSSION

This section discusses in more depth the results from the two studies presented in Sec-

tions [4.4.1.2| and |4.4.2.2] This section is organized as follows. We start by examining the

implementations of JCF, Apache Collections, and Eclipse Collections and how they interact
during our experiments. We then proceed by analyzing the energy consumption of the most
popular implementations, answering RQ2.1, and discussing the importance of analyzing differ-
ent devices when running experiments on energy efficiency, answering RQ2.2. We also discuss
how the optimization of the collection implementations change based on the expected work-
load, answering RQ2.3 and the impact that different energy profiles have on the expected
consumption on an optimized application, answering RQ2.4. Finally, we illustrate how some
implementations dominate others and explain the employed procedure to optimize the creation

of energy profiles.

113

JCF recommendations. The majority of the CT-+recommendations were for collection
implementations outside the JCF. Considering only the statistically significant occurrences,
out of 724recommendations made in the desktop environment in the first study, only 58sug-
gested the use of JCF collections (8% of the recommendations). When analyzing the data
on the study about different energy profiles, out of 1711lrecommendations, 171came from
JCF (10% of the recommendations). This means that overall, in the desktop environment,
across all 2188recommendations made, only 9.2% of the CT+recommendations suggested
the use of JCF implementations. The contrast is less stark in the mobile environment, where
CT+recommended JCF collection implementations in one-third of the cases (36 out of 107
recommendations). However it is worth noting that none of the cases where energy was saved
on J7used JCF implementations. If we aggregate over all of these recommendations, the JCF

was recommended in just 10.4% of the cases.

Popular collections and energy efficiency. Our results indicate that there seem to be
more energy-efficient alternatives to some popular collection implementations. In the desktop
environment, CT+recommended replacing 184 uses of Hashtable, 654 uses of HashMap,
138 uses of HashSet, 38 uses of LinkedList, and 1027 uses of ArrayList. Overall, those
recommendations amount to 93.2% of all the recommendations in cases where there was a
statistically significant difference in energy consumption. This percentage is consistent with
the popularity of those JCF collections (Table ; since they are used often, there will be
many recommendations to replace them with alternatives. Some of these commonly used
implementations were not recommended by CT—+, e.g., HashMap, and HashSet, while others
were very rarely recommended, such as LinkedList (3 times), Hashtable (3 times), and
ArrayList (12 times). Hashtable, in particular, replaced ConcurrentHashMap on N1. For
as much performance and scalability problems Hashtable may have, it seems like it can still
perform better than other implementations for a very small number of elements.

Out of the 12 times ArraylList was recommended, all of them as a replacement for
LinkedList, a collection that is not efficient for random accesses. These results, combined
with the significant improvements in energy efficiency that could be achieved by following
CT+'s recommendations in the desktop environment, suggest that these collections might
not be good choices in scenarios where energy efficiency has a high priority.

As pointed out previously, in the mobile environment CT+recommended the use of JCF

collections more often. Nevertheless, a similar trend of modifying popular collections can

114

be observed. CT-+suggested alternatives to HashMap 23 times, to HashSet 6 times, and to
ArraylList 72 times. That amounts to 94.39% of all its recommendations. At the same time,
not once did it recommend the use of these collections.

Given the importance of the aforementioned collections, we conducted a more in-depth
investigation into why ArraylList was replaced an expressive number of times and only rarely
recommended. We focus on ArraylList because it is arguably the most popular collection
implementation in the Java language. Two factors help explain the lack of recommendations
in its favor. First, the most common operations in the software systems for list collections are
List.insert(value) and List.iteration(random). ArrayList does not perform these op-
erations well on most devices. In particular, FastList was explicitly designed as an alternative
to ArraylList that performs those operations more efficiently, since it does not support con-
current modification exceptions. As a consequence, FastList can “provide optimized internal
iterators which use direct access against the array of items.”ﬂ This kind of direct access is not
allowed by ArrayList. Second, there are many cases where ArraylList is the most efficient
alternative, but it is already being used. That is what occurred, for example, for FastSearch
and PasswordGen in the G2. In other words, due to the widespread use of this collection
implementation, in most cases where it would be the best option, it is already being employed,

and thus no benefits can be achieved.

Different devices matter. The recommendations and results varied heavily across devices,
even when executing the same application. Although for some specific applications, such as
FASTSEARCH, our tool made similar recommendations across devices and those recommen-
dations did not impact energy efficiency, for most software systems, different devices resulted
in different recommendations. For instance, CT+recommended ten ArrayList instances to be
changed to FastList and one to NodeCachinglLinkedList when analyzing XALAN on dell.
However, for the same system on server, it made recommendations for only two instances
of ArraylList and suggested the use of TreelList. In both machines, energy consumption
decreased.

In addition, the effectiveness of CT+'s recommendations for the same software systems
varied across machines. XSTREAM presents an interesting example. The recommendations
made by CT-+did not result in a version of the software system that had a statistically sig-

nificant difference in energy consumption on mobile devices, even if the modified versions

9 <https://www.eclipse.org/collections/>

https://www.eclipse.org/collections/

115

consumed less energy. On the other hand, on dell, the energy consumption of the modified
version exhibited a statistically significant difference (with a p-value of 3.127'%) when com-
pared to the original version. Also, the effect was large (0.94). This difference may be attributed
to the number of implementation changes as well as differences between devices. On dell, our
tool suggested 95 modifications to XSTREAM while the mobile device with most changes,
G2, only had 41. Those changes also did not target the same implementations: On dell, we
replaced ArrayList by FastList 21 times and by LinkedList one time. On G2, ArrayList
was replaced by TreelList just three times. Those devices had different energy profiles and by
the number of changes, we noticed that the implementations used on the mobile versions were
already optimized for that environment, which was not the case for the desktop environment.

For this topic, results from asuswere not analyzed because they are not comparable. The
only target system used on it and on the other two desktop devices, namely delland server,
was TOMCAT, but with a different version. Besides that, we used six different profiles on
asus, producing different recommendations, and making the comparison infeasible. The next

sections will give more details about our findings on the different profiles for asus.

The best implementation is workload dependent. With the experiments on asus, we
used six different profiles to try to simulate the different scenarios that the application could
be submitted to. The amount of energy saved on different applications was heavily influenced
by the profile being used, specially in two cases: GRAPHCHI, with 12.73% of energy was
saved using N2but only 2.64% using N32; and B1roJava, with 1.34% of energy was saved
using N8but only 0.40% using N4. These results indicate that, even though profile creation
is an application-independent step of the proposed approach, knowledge about actual usage
profiles can be leveraged to produce more useful profiles.

Recommendations applied to TOMCAT V9using the six different profiles on the LARGE
workload resulted in a positive impact on energy efficiency with statistical significance. On
the other hand, for the HUGE workload, the results did not have statistical significance for
five profiles sizes (N1, N2, N4, N8, and N16), having only a positive impact when using the
biggest profile size, N32. Comparing the recommendations made to TOMCAT V9-HUGE using
N32(Table and using the smaller sized profiles, such as N1(Table and N2(Table 22),
we can see that they differ greatly.

Although both LARGE and HUGE were bigger than normal workload sizes, the difference

between these two was enough to make CT+unable to recommend better collections imple-

116

mentations to any of the profile sizes with the only exception being N32.

Energy profiles also matter. As the profiles were created to represent different scenarios,
a different behavior was expected. In this topic, we take a deeper look at the implementations
recommended for these different profiles on asus, in particular as replacements to uses of
ArraylList and HashSet.

Across all profiles, 90.8% of list modifications were changes from ArraylList to another
implementation. In particular, FastList was the implementation of choice by CT-+in 68% of
the cases (577 cases out of 849). On the other hand, out of 270 changes on N2from ArrayList,
only 6 were to FastList. On this particular profile size, the most often used implementation
to replace ArraylList was NodeCachinglLinkedList, with a total of 263 changes. The main
reason behind the substantial difference in recommendations between the different profiles
is the distinct operations used by each application. Taking a deeper look at the behavior of
those two collections, we noticed that on N2, ArrayList has higher energy consumption in five
out of ten operations than FastList and NodeCachinglLinkedList. When comparing between
themselves, FastList and NodeCachinglLinkedList had an even number of operations where
they performed better, five each. Even being the best replacement for ArrayList on every
other profile size, for N2, NodeCachinglLinkedList exhibited better results than FastList.

The modifications from ArrayList on N2were mostly focused on one application: Bio-
JAVA. On this system, two operations were heavily used and had a greater impact on CT+recommendations
List.insert(value) andList.iteration(iterator). On the other hand, NodeCachinglLinkedList
(on profile N2) consumed less energy than ArrayList for these two operations. In contrast,
when looking at profile N8and N16, ArrayList did not have a single implementation that
had lower consumption for these two operations. These two are precisely the profiles with the
smaller number of modifications from ArrayList: 23 changes on N8and only 2 on N16.

HashSet had a total of 118 modifications across the different profiles on asus. Most of
these changes replaced it by one of two particular implementations: LinkedHashSet (72%) and
UnifiedSet (26%). These changes were not equally divided among the profiles. For smaller
profiles, CT+recommended UnifiedSet to replace HashSet on every change on N1, N2and N4.
For bigger profiles, CT+recommended LinkedHashSet to replace HashSet on every change
on N16and N32, and all but one on N8(the only exception being a recommendation to use
UnifiedSet).

A change in the expected scenario (represented here by a change in profile sizes) had a

117

sizable impact on the recommended implementations and in the energy efficiency results. As
researchers, we could only faintly foresee what kind of scenario would better represent a normal
usage pattern for a specific application. On the other hand, developers would have an easier
time figuring it out how much work the most important parts of the application are expected
to have. This kind of information could be very valuable for the creation of the energy profile
and could improve even more the efficiency of CT+, allowing us to combine different profiles

to make the recommendations.

Dominance among collection implementations. Out of the 39possible implementa-
tions available to CT+only 20 were recommended. When trying to understand this behav-
ior, we observed that some collection implementations consistently dominate (PETERSON,
2009) others. Given two collection implementations C; = (N, T, S, 01,09, ...,0,) and Cy =
(N',T,S,01,09,...,0,) with energy profiles (T, env, ey, e, ...,e,) and (T, env, €}, €, ..., e),
respectively, we say that C'; dominates Cj if e; < € for all 1 < ¢ < n. Since every dominated
collection implementation has a dominating alternative collection implementation, it will never
be recommended by CT+.

Figure depicts dominance relations for the thread-safe Map implementations on the
servermachine. Based on this figure, only four thread-safe Map implementations could be rec-
ommended by CT—+on the server development machine: ConcurrentHashMap, the Eclipse Col-
lections version, ConcurrentHashMap (EC), and the Synchronized versions of LinkedHashMap
and UnifiedMap. These are the collections that are not dominated by any other collection.
Furthermore, as the figure shows, Hashtable is dominated by ConcurrentHashMap(EC),
even though Hashtable itself also dominates Synchronized TreeMap. Therefore, in server,
instances of Synchronized TreeMap and Hashtable are never recommended, in favor of
ConcurrentHashMap(EC). More specifically, we observed that Hashtable was dominated on
dell, server, and on every mobile device that we experimented with. This result, combined with
the well-known scalability limitations of this collection (PINTO et al., [2016]), and the plethora of
more efficient alternatives suggest that it should rarely be used in practice. Implementations
such as ConcurrentSkipListSet, Synchronized TreeMap, and Synchronized UnifiedMap,
were dominated in three devices.

Among all implementations, ConcurrentHashMap shows a particular behavior that is worth

mentioning. That implementation was replaced by more efficient alternatives 79 times on the

desktop environment, the majority of the time, (i.e, 70 out of 79 cases) for the Eclipse Col-

118

Concurrent Synchronized Concurrent Synchronized
HashMap LinkedHashMap | | HashMap(EC) UnifiedMap
[[

3 Y

: Synchronized

StaticBucketMap HashMap Hashtable
R R
Concurrent Synchronized
SkipListMap TreeMap

Figure 10 — Order of dominance between the thread-safe Map implementations on server. Arrows point from
the dominating collection to the dominated one.

lections version (i.e., ConcurrentHashMap(EC)). Even so, ConcurrentHashMap was also rec-
ommended 37 times, every single time replacing Hashtable. This illustrates that even if some
implementation is usually recommended over another one (e.g., ConcurrentHashMap (EC) rec-
ommendations over ConcurrentHashMap), as long as this implementation is not dominated,

there will be cases where the generally worse implementation may still perform better.

Scaling up profile creation. We used two different profilers in this work, one for mobile
devices and one for desktop devices, as described in Section . During our experiments, we
noticed that some factors could make it unfeasible to create profiles at a larger scale. If left
unchecked, the original process of creating the energy profiles can take a long time, i.e., hours
for desktop devices and days for mobile devices. This is due to the enormous variation in the
execution time of operations for different collections.

On the one hand, some operations are so fast that it is necessary to increase the number of
times they are executed during profiling in order to obtain reliable energy measurements, e.g.,
insertions at the beginning of a LinkedList. On the other hand, some operations are so slow
that we need to reduce the number of executions, e.g., updates to CopyOnWriteArraylList
when the list has many elements. For example, when creating the profile N16, the opera-
tion insert(start) on LinkedList would be 554 times faster than on ArrayList while
insert(value) would be 934 times slower on CopyOnWriteArrayList than on Vector. To

address this issue, we employed two strategies, described below.

» Excluding collections that were dominated. First we executed each operation for each
implementation three times, measured and collected the energy consumption of those

operations. In the case where we found one collection implementation exhibiting domi-

119

nation over another, the dominated collection was not included as an option for recom-
mendation. As an example, when creating N2on asus, there were 13 initial possibilities
for Sets. Out of that initial pool, four implementations, that is, LinkedHashSet, and the
Synchronized versions of UnifiedSet, TreeSet, and LinkedHashSet, were excluded
because they were dominated by other implementations. In this case, these techniques
represent savings of at least 30% of the time to generate the Set portion of the profile
N2, potentially more. Because the dominated implementations would never be recom-
mended by CT+, they can be safely removed from our recommendation pool without

reducing CT+capacity of improving the energy efficiency of the application.

» Using timeouts. Because of the long time it took to execute some operations on mobile
devices, e.g., insertions on instances of CopyOnWriteArraylList, very expensive opera-
tions were discarded based on the time it took for them to complete. To define which
operations should not be measured, a single warmup session was executed, collecting
the energy consumption for each operation on each collection implementation. Each
operation implementation was executed in sequence and the values for the fastest ones
were stored, separated by thread-safety and API (e.g., insert(start) for thread-safe
Lists). Because some of those operations could take a long time to finish, we estab-
lished a threshold on the number of times that an operation could be slower than the

fastest. Any operation slower than that was stopped in the middle of its executiorﬁo].

We assumed that such a large difference is unlikely to stem from random performance
fluctuations. Since CT+needs estimated energy consumption measurements per opera-
tion to recommend the implementations, we used the energy consumed by the fastest
operation multiplied by our threshold. This approach loses some energy consumption
information during profile construction. On the one hand, this means that suboptimal
collection implementations may end up being recommended by CT+because we end
up underestimating the cost of the very expensive operations. On the other hand, in
our experiments, we have observed that scenarios where such collection implementa-
tions would thrive, e.g., CopyOnWriteArrayList in a scenario where a large collection
is subject to many concurrent accesses almost exclusively for reading, were rare. As a
consequence, collections in which most of the operations were expensive almost never

got recommended.

10 On our experiments, the threshold was 100 times slower

120

4.6 THREATS TO VALIDITY

Although we conducted experiments in a number of different devices, we did not use
all possible devices available, which is far from feasible. We selected representative devices
with very different hardware characteristics (from a mobile phone with 1.5GB of RAM to a
server with 256GB of RAM). Second, our findings cannot be generalized to other software
applications that use collections. We then chose representative software systems from very
different domains (e.g., a XML serializer, a webserver, and mobile apps). Still, the chosen
software systems are non-trivial, e.g., TOMCAT has more than 433k lines of code and has
been used in multiple studies (PINTO et al., 2016; HASAN et al., 2016; [PEREIRA et al., 2018).

Even though we observed an overall good energy savings with our tool, for some software
systems it was not possible to reduce the energy consumption reported in other studies. We
hypothesize this happens due to the care we took of preventing thread-safety problems due
to recommendations that ignore this aspect. We checked that among the recommendations in
the study of Pereira et al.| (2018) there were cases where a thread-safe collection was replaced
by a non-thread-safe one. Similarly, our tool does not guarantee thread-safety when thread-
safe collections are performing compounded operations (LIN; DIG, 2015) (e.g., verifying if an
item is stored in a collection before adding it). In other words, it does not break thread-safety
requirements, but, at the same time, it cannot guarantee thread-safety for non-thread-safe
operations. The software construct versions (such as libraries and applications) may influence
the recommendations made by CT+.

The Java Development Kit version may have a non-negligible influence on our results.
Through this chapter, JDK 6 was used for the study presented in Section and JDK 8 for
Section [4.4.2] Other versions of Java may have different implementations of the collections
used on this chapter and this may lead to different results.

Another limitation of this work is the way loops are accounted for in Phase Il of the pro-
posed approach (Section . Estimating loop counts is difficult in a high-level programming
language such as Java, where collections are allocated dynamically, usually based on informa-
tion from outside the system’s source code (RODRIGUES et al|, 2014). On the one hand, the
approach employed in this work is very cheap and takes loop nesting into account. Neverthe-
less, it is inherently imprecise; in extreme cases, it may consider that loops that are executed
millions of times have the same impact on energy consumption as loops that execute just

a dozen times. Even though these two situations would be equivalent from an asymptotic

121

perspective, they differ significantly in practice. Exploring different approaches to account for
loops, recursion, and API functions that encapsulate repetition, e.g., map/reduce, is left for
future work.

The methodology used to collect energy consumption may have an impact on the data
presented in this study. The energy measurement was made at the application level for the
mobile devices and at the system level for the desktop devices. As explained in Sections[4.4.1.1]
and [4.4.2.T we mitigated the influence of external factors by executing only the application
under analysis on mobile devices and executing our experiments on an operating system without
a graphic user interface. Nevertheless, the energy data presented in this chapter may differ
from other devices or operating systems.

Finally, we did not perform experiments with actual developers, so it is unclear whether
developers would face any difficulties while using the tool or whether they would find the

recommendations useful.

Results without statistical significance

For some applications, applying the recommendations made by CT+to a target system
did not yield a more energy efficient, at least not enough to exhibit a statistically significant
difference to the original version. That was the case for two systems on Section desktop
environment (XISEMELE and TWFBPLAYER) and also two on Section (CASSANDRA
and KAFKA). On the mobile environment there were four in this situation: GOOGLE GSON
and PASSWORDGEN on Gb5; FASTSEARCH on every device except S8; and XSTREAM on
every device. The only device where there was no statistically significant difference in the
energy consumption of the original and modified versions of the target systems was Tab4.

Table [27] shows the results of the experiments on Tab4while Table 28| presents the modi-
fications made. Albeit 194 recommendations were made on five different software systems for
Tab4, none of them had statistically significant results. Unlike other devices from our mobile
pool, Tabdis a special device, being a tablet and not a smartphone. The idea was to try to
investigate a distinct type of device and see if the applications running on it could also be
optimized by CT+. Even though Table suggests that the CT+recommendations yielded
positive results for most of the apps, the effect sizes were all small or negligible and there was
no statistical difference.

We hypothesize that the reason for this result was the very high standard deviation present

122

in the collected samples. Even though the standard deviations we observed for mobile devices
(Table was in general much higher than for the desktop devices (Table [13)), they were
even higher for Tab4. Considering the two versions of each of the five apps we have analyzed
on Tab4, only one version exhibited a standard deviation lower than 10% of the mean energy
consumption (the original GOOGLE GSON) and the worst-case scenario reached more than
30% (the original PASSWORDGEN), as shown in Table 27]

When investigating the reasons behind this result, we noticed that the battery was discharg-
ing at an inconsistent rate, even when in an idle state. We hypothesize that this inconsistency
stems from the device's age. For reference, Table [11] shows the age of the devices when exe-
cuted the experiments on them. On older devices, the energy consumption difference between
the original and the modified version seems to be more indistinguishable, that is, the impact
made by optimizing the collections were not represented in the final energy consumption. Al-
though these experiments involved only 4 mobile devices, they suggest that battery age can
impact energy measurements. Since real-world device usage involves both old and new devices,
simply using newer devices is not an appropriate solution. Instead, we recommend that future
studies include the age of the devices (or their batteries) when reporting experimental
results. Future experiments about this could involve measuring the energy consumption on a

device using an old battery and then re-execute the experiments, using a brand new battery.

Table 27 — Results for Tab4. Energy results are red for the original versions and green for the modified versions.
Energy measured in Joules.

System Improvement p-value Mean Stdev Effect Size
Device: Tab4
23.62 31
Commons Math 1.99% 0.39 33 0.10
23.04 4.47
56.01 5.04
Google Gson 1.58% 0.80 0.05
55.15 6.77
26. 4
Xstream 6.16% 0.24 0.93 0.48 0.17
25.20 6.91
28.80 9.65
PasswordGen 6.23% 0.24 0.03
27.36 6.77
11 7.34
FastSearch 4.44% 0.80 50 3 0.27

47.08 7.49

123

Table 28 — Recommended collections for Tab4. Implementations from Apache Common Collections are pre-
sented in blue and from Eclipse Collections in red.

System Original Recommended # of times
Device: Tab4
ArrayList TreelList 50
ArrayList NodeCachingLinkedList 9
HashMap ConcurrentSkipListMap 8
Arrayli FastLi
Commons Math rrayList astlList 5
HashSet LinkedHashSet 5
TreeSet LinkedHashSet 2
HashMap TreeMap 1
HashSet TreeSortedSet 1
FastSearch ArrayList TreelList 2
ArrayList NodeCachinglLinkedList 2
ArrayList TreeList 9
ArrayLi N hingLinkedLi
Google Gson rrayList odeCac mg-ln-ed ist 3
HashMap ConcurrentSkipListMap 3
ConcurrentHashMap ~ SynchornizedLikedHashMap 1
ArrayLi TreelLi
PasswordGen rrayList ree -|st 8
ArrayList FastList 1
HashMap ConcurrentSkipListMap 48
ArrayList TreeList 15
HashSet LinkedHashSet 8
HashMap TreeMap 3
HashMap UnifiedMap 3
Xstream ArrayList NodeCachingLinkedList 2
HashSet TreeSortedSet 1
ArrayList FastList 1
LinkedHashMap UnifiedMap 1
LinkedHashSet TreeSortedSet 1
LinkedList NodeCachingLinkedList 1

4.7 RELATED WORK

Energy profiling research has been conducted in different contexts, including embedded

systems (SIMUNIC et al., 2000), cloud computing (CHEN et al., 2011)), concurrent programming

primitives (PINTO; CASTOR; LIU, 2014b; LIMA et al.,, 2019), neural networks and models (RO-

MANSKY et al., [2017)). These studies share a common finding: simple changes can reduce energy

124

consumption considerably. However, most of these studies do not provide tool support for de-
velopers. If interested, developers are still required to have: (1) the infrastructure (software
and, eventually, hardware) to conduct the experiments, and (2) in-depth knowledge of low-level
implementation details. As a result, non-specialist developers have little chance to apply the
findings in real-world scenarios. In contrast, our approach is focused on non-expert developers.
They do not have the knowledge neither, time, or tools to understand the energy impact of
energy variation hotspots, but still want to reduce energy consumption. With an appropriate
design and implementation (Sections and , we believe that our approach can be reused
and useful at scale.

In this chapter, we introduce a general idea to save energy during software development
and instantiate it in a tool called CT+. We take this into account by organizing related
work in terms of empirical studies (which create knowledge about energy efficiency) and

recommendation tools (which apply that knowledge).

Empirical studies. In recent years, researchers have empirically analyzed several different
aspects of energy consumption on software engineering. Rocha, Castor e Pinto| (2019)) took
a look at the energy behavior of 1/O APIs on 22 Java benchmarks and 3 macro-benchmarks.
They showed that there is not a single API that can be used on every application independently.
Another important aspect of their work was that small modifications on these APIs can result
in a better energy performance by already optimized applications. Georgiou e Spinellis (2020)
investigated the energy consumption impact of seven different programming languages on inter-
process communication, finding out that the implementations on Javascript and Go usually are
the most energy efficient. Duarte et al.| (2019) developed a framework based on model analysis
to study the energy consumption of software systems and then evaluated it experimentally.
Among the different usages of their framework, one is to detect refactoring points that could
be changed to reduce energy consumption.

Another way to look into the ways developers can save energy is try to optimize their
energy choices even before the system development starts, that is, at the design phase. Sahin
et al|(2012) made an investigation about the energy impact of 15 different design patterns.
Their results show that design patterns could have a high effect on the energy consumption,
going from a pattern that consumes 10 times more energy than the original code to another
one that only consumes half the energy. In a similar fashion, |Cruz e Abreu (2017 analyzed the

energy impact of code smells on Android applications. In their work, they present empirical

125

evidence that these anti-patterns increase the energy consumption of mobile applications and
should be avoided by developers to help create more energy efficient apps. |Lyu et al.| (2017)
analyzed the usage of local database requests in Android applications, founding out that the
most expensive operations are database initialization and write operations. These operations
are often used in loops and developers could design them to be bundled to reduce their
energy consumption. (Chowdhury et al.| (2019)) studied the impact of different strategies to
optimize the energy consumption of the Model-View-Controller architectural pattern (MVC).
Two strategies were used to optimize how these types of applications handle data influx: (i)
bundling the data updates or (ii) using only the most recent one. These strategies were used
to create new versions of the applications. With changes that are almost imperceptible to the
human eye and do not impact the user experience, they showed that it is possible to reduce
the energy consumption of a MVC application up to 36%.

More specifically, some works have dealt only with recommending more energy-efficient
collections. Hasan et al.|(2016)) compared the energy consumption of collections in Java. They
built an energy consumption profile for each collection they analyzed, aiming to answer which
implementation of each collection (Lists, Sets, and Maps) consumed less energy. They used
that information to manually improve the efficiency of a set of selected applications. [Pinto et
al| (2016) studied the thread-safe Java Collections on two different desktop machines. The
authors found that the cost of each operation varies widely among different implementations
of the same collection. For instance, the authors found energy improvements of 66%, when
changing to a more energy efficient implementation of Map. Saborido et al.| (2018) compared
two Android-specific collection implementations of Maps: SparseArray and ArrayMap. These
implementations were developed to be more efficient than HashMap. In summary, ArrayMap
was considered worse than HashMap when optimizing energy consumption and SparseArray
was considered better when the keys are primitive types. |Cruz, Abreu e Rouvignac (2017)
developed a refactoring tool called Leafactor, capable of statically analyzing and refactor
code applying energy-efficient optimizations to Android apps, focusing on removing energy
smell from applications. They executed their tool in 140 open-source apps and did a total of
222 code refactors.

Here we investigate the impact of software constructs in energy consumption while also
offering a recommendation tool that can be used by developers to save energy. Therefore, this
work builds upon knowledge produced by previous studies to make recommendations in an

automated manner.

126

Recommendation tools. Manotas, Pollock e Clause| (2014) developed a general purpose
framework called SEEDS to guide developers on the laborious work of creating energy-aware
software systems. They instantiate the concepts of that framework with the objective of analyz-
ing the consumption of different collection implementations from the JCF. While our proposal
uses the concept of energy profile and static analysis to analyze the applications and suggest
an implementation of a collection, SEEDS leverages dynamic analysis, executing each different
collection for every application and comparing their energy consumption. Furthermore, it did
not consider the impact of multithreading and only targeted a desktop environment.

Pereira et al|(2018) implemented an energy-aware tool called jStanley, aiming to recom-
mend the best collection implementation among several over the Java Collections Framework.
jStanley was implemented as an Eclipse plugin and worked using experimental results from
prior work by the same authors (PEREIRA et al., [2016)). It does not account for the impact of
loops and it works exclusively in a mobile environment. Furthermore, it does not account for

thread-safety.

4.8 CONCLUSION

With this work, we present our vision of a general-purpose approach to aid non-specialist
developers to create energy-aware software. This vision was instantiated within a tool to rec-
ommend energy-efficient collection implementations. We evaluated two different experiments
studies, analyzing the influence of devices and energy profiles on software systems’ energy-
efficiency using Java collections. Overall, we executed our tool in seven different devices run-
ning seventeen different software systems (two mobile, twelve desktop, and three on both
environments), and six other energy profiles for a total of 64software versions.

Although in some cases, the recommendations provided did not have a direct impact on
energy consumption, our tool was able to reduce energy consumption of some applications
up to 16.34%. Overall, CT+made a total of 2295recommendations that lead to a statistically
significant impact on energy-efficiency.

Developers trying to increase the energy efficiency of their apps should use alternative
sources of collections besides the Java Collections Framework, once our results suggest that
some of the most popular collections implementations (e.g., ArrayList, HashMap, HashSet,
and Hashtable) are often not the most energy-efficient ones. Another important point is try-

ing to estimate the application’s workload, since the implementations have different energy

127

behavior while dealing with different quantities of data and developers should try to choose
a collection based on the expected work. Finally, optimizing for a single device is not repre-
sentative of the full spectrum of Android devices. Developers should try to run their tests on
different devices and optimize based on their results.

Practitioners trying to use CT+ would want to create an energy profile for better recom-
mendations on a specific device or use one of our energy profiles that matches their hardware.
Using non-specific energy profiles could lead to less than optimal recommendations. The soft-
ware system collection analysis and the recommendations are done entirely by CT+. On our
companion website, practitioners can find CT+ repository, the energy profiles used in this work

and a cookbook to make it easier to use CT+.

128

5 THESIS CONCLUSION

Unnecessary energy consumption on mobile devices is a problem that affects developers and
end-users. Despite its importance, there is still a notable lack of tools and knowledge to address
the shortcomings of green computing development. With this work, we hope to mollify this
problem by bringing data and knowledge about various factors that have a significant impact
on energy consumption, namely development approaches and Java collections.

In this chapter we summarize our results and the contributions made to the state-of-art.
We also present further improvements for the main works presented in this thesis and ideas

about future work in the area of green computing.

51 SUMMARY

The work presented in this thesis aims to mitigate the problem of the rapid discharge
of battery-powered devices. Although that problem was present as soon as battery-powered
devices started to be used, it became a more urgent matter with the rise of smart devices and
how people depend on them.

Focusing on this problem and using the concept of energy design diversity, we presented
our hypothesis, that is, different solutions can be leveraged to ensure a reduction on energy
consumption but without significantly increasing the development complexity.

To test our hypothesis, two research questions were made: RQ1: how can we increase the
energy efficiency of a fully functional Android application using an alternative development
approach to Java? and RQ2: how can we increase the energy efficiency of a fully functional
software system optimizing the Java Collections used by it?

The two research questions were answered on the Chapter [3 and Chapter [, using em-
pirical studies and analysis of the energy consumption on the different scenarios. We tried
on these chapters to show the importance of the understating of energy design diversity. In
both cases, some of the solutions already established were not the most energy efficient ones.
By analyzing the energy behavior of the available solutions, we were able to find the optimal
solution, reducing the energy consumption without increasing the complexity of the source
code. We believe that developers that design their applications using the concept of energy

design diversity should produce more energy efficient applications.

129

5.2 THE CONTRIBUTIONS

With this thesis, we make the following contributions to the field of green computing:

1. Insights on the energy footprint of the development approaches on Android.

2. The importance of experimenting on different devices on mobile.

3. An understanding of factors that influence energy experiments with energy profiles.

4. The viability of energy diversity design as the main concept to improve energy efficiency.
5. A general approach to design energy-efficient applications.

6. Automated energy optimizer refactoring tool.

7. An automatic wireless experiment runner for Android.

Across this thesis, we showed the impact of using the concept of energy design diversity to
develop more energy efficient software systems. That was presented in the scenario of develop-
ment approaches for Android applications and on Java Collections. In both cases, our solutions
saved a non-negligible amount of energy across the modified apps. Our results show that de-
velopers can save energy by using JavaScript and C+4 on CPU-bound applications; using
parallelism on specific scenarios, using alternative sources to the Java Collections Framework,
and optimizing their application to an expected workload. We believe that there are plenty of
opportunities to save energy by developing using the concept of energy design diversity and

hope that this thesis fosters that in practitioners.

5.3 FUTURE WORK

Although much has been done in the field of green computing, we believe that there are
still some areas that could receive more attention. This section is split in two sub-sections: the
first one, Section [5.3.1] lists some direct extensions to the work presented in this thesis; the
second one, Section [5.3.2] presents paths where design diversity could be leveraged to improve

energy efficiency in new ways.

130

5.3.1 Refining this thesis

The research work conducted on Chapter [3| could be extended in the following ways:

» By investigating the reasons behind the different results on execution time

and energy consumption of the different approaches. Although we have empirical
evidence that different types of applications can be improved by the different approaches,
right now, there is still room for improving our knowledge about the reasons behind these

differences.

By extending the analysis of Chapter [3] to the Kotlin programming language.
In recent years, Kotlin is becoming more popularE] and it is fully supported by Google
as a development approach for Android. Including Kotlin as another possible approach

would enrich the work with one more possible way to save energy.

By producing a guide to aid in the selection of the most appropriate devel-
opment approach. It may be useful to develop a guide discussing specific scenarios
where the developer should choose one approach over the other, if energy efficiency is a
pressing concern. It is also possible to make this recommendation having in mind other

quality attributes, such as performance, ease of use, and maintainability.

The research work conducted on Chapter [4f could be extended in the following ways:

» By modifying software systems using and submitting patches to develop-

ers. is capable of reducing the energy consumption of software systems on mobile
and desktop environments. Applying these modifications on real software systems and

submitting these changes as patches would enrich the work.

By experimenting with and developers. was made to be fairly simple

to use. It can automatically detect inefficiencies, make recommendations of changes for
more energy-efficient collections implementations, and apply those recommendations.
Nevertheless, until now, has only been used by researchers. The feedback of de-

velopers would greatly help further improve the tool.

1

< https://alignminds.com /kotlin-fastest-growing-language />

https://alignminds.com/kotlin-fastest-growing-language/

131

» Reduce the time to create an energy profile. The process of creating an energy
profile can be very time-consuming. On our work, we mitigated it (Section |4.5)) but there

is still room for improvement.

5.3.2 Beyond this thesis

In this section we present three ideas that can lead to further improvements in the energy

efficiency of existing software.

5.3.2.1 Cross-platform frameworks

With the increasing use of applications by users, companies that want to develop using
native code often have to maintain at least three repositories using three different programming
languages to cover most of their possible customers (i.e., Swift for 10S, Java or Kotlin for
Android, and Javascript for web). Hybrid development platforms aim to solve this problem,
unifying the development language in Javascript and, sometimes, bringing native graphical
interface elements in order to improve the interaction with the user.

Early hybrid development frameworks, such as lonic, needed to use some bridge (e.g.,
Cordova, PhoneGap) to connect native APIs and functions available in Javascript. One of the
problems with this approach was the need to use a WebView (i.e., a scaled-down version of
a web browser) to execute the code. Because the code was being executed in a WebView,
the application’s performance could be impacted. Another downside of this approach was
its lack of support for graphical user interface elements. Modern solutions to the different
repositories problem abandoned the concept of hybrid framework and adopted instead what
we call cross-platforms frameworks. The difference is that they are not executed on top of a
WebView. Instead, their code runs on a virtual machine or is translated to native while they
are compiled. Some examples of these frameworks are React Native (developed by Facebook),
Flutter (developed by Google), Xamarin (developed by Microsoft), and NativeScript (developed
by Progress). These frameworks offer native elements and support graphics, making them easier
to use by developers, increasing the performance by eliminating the need to use a WebView.

Although hybrid and cross-platform frameworks have the same objective, i.e., to reduce
the complexity of maintaining three different source code repositories, developers may find it

difficult to gather information about their energy footprint. Furthermore, differently from hybrid

132

frameworks that were written in JavaScript, cross-platforms frameworks may have different
programming languages (React Native uses JavaScript, Flutter uses Dart and Xamarin uses
C+#) The different programming languages add another layer of complexity to the problem.
These frameworks are used by thousands of projects (in April 2021, we executed a query on
GitHub with the name of each of these frameworks. The tag "React Native" returned 24,852
public repositories, while the tag "Flutter" 19,719 and the tag "lonic" 3,728) but there is a
lack of knowledge about the energy cost of using them.

To have an initial understanding of the energy footprint of these hybrid and cross-platform
frameworks, we conducted some preliminary experiments, analyzing the differences in energy
consumption of lonic, an hybrid framework, and React Native, a cross platform framework.
They are selected as preliminary candidates because they are the most popular choices in
their categoriesE] and both use JavaScript as the main programming language, also a popular
programming language’]

For our preliminary experiments, we have used the benchmarks from the Computer Lan-
guage Benchmark Game. Because React Native does not have native parallelism, all bench-
marks we used were sequential. The selected benchmarks were: BINARYTREE, FANNKUCH,
FASTA, KNUCLEOTIDE, NBODY, PIDIGITS, REGEX, and REVCOMP. All our experiments were
executed in a single device (Motorola Gb).

Figure [11] shows the results of the execution of these benchmarks on React Native and
lonic. For every benchmark tested, React Native consumed more energy and took more time
to execute than lonic, even though, performance wise, React Native is seen by developers as
better [

Although these are very preliminary results, they show that there is a difference in energy
consumption among cross-platform frameworks and that this difference can be non-intuitive.
Because these platforms are open-source (with the exception of Xamarin), researchers could
analyze the code looking for points of excessive energy consumption that can be optimized.
Understating the energy inefficiencies of these frameworks could lead to improvements on their
infrastructure. This could reduce the energy consumption of thousands of apps and help future

developers choose the right framework for their project.

2 |<https://insights.stackoverflow.com /survey /20204 most-popular-technologies>

3 Same as footnote [2]
* <https://enappd.com/blog/ionic-vs-react-native-which-one-is-better/116 />

https://insights.stackoverflow.com/survey/2020#most-popular-technologies
https://enappd.com/blog/ionic-vs-react-native-which-one-is-better/116/

133

o (=]
brs) — O
™ React Native Energy Lo
lonic Energy
o F‘.ea_act _Natrve Time H H H H i (=]
a lonic: Time : : - peemeed : 9
= : H : : : ~
W W
L o o 2
ST S e
o — © o
2 o
= n
2 o o o
L1k} (=] — O =
c - N =
I ==
(=]
(=]
B =
o — O

Binarytree Fannkuch Fasta Knucleotide Mbody Pidigits Regex Revcomp

Figure 11 — Computer Language Benchmark Game benchmark results comparing React Native and lonic

5.3.2.2 Screen Colors

Mobile device screens currently have very high pixel densities, sometimes surpassing even
TVs and computer monitors that are several times larger than mobile screens. This sharp
growth in image quality is accompanied by an equally sharp growth in energy consumption by
the device's display. That is a problem because unlike TVs and monitors, smartphones are not
plugged into a power outlet all the time. Screens became one of the most energy-hungry factors

of a modern device, and even a small increase in energy efficiency can lead to a meaningful

increase in battery life over time (TAWALBEH; EARDLEY et al., [2016)).

Manufactures mainly use two different types of displays on mobile devices:
[Display (LCD)| (Liquid Crystal Display) or [OLED| (Organic Light-Emitting Diode). Devices

with LCD screens draw energy from the battery constantly, regardless of the colors displayed
on the screen. This is not the case for OLED screens. Previous work has pointed out that

the energy consumed by the device's display is heavily correlated with the screen colors and

it's brightness (DONG; ZHONG, [2011} |AGOLLI; POLLOCK; CLAUSE, 2017} |LINARES-VASQUEZ et
, 2018)). Given the large amount of energy destined for the screen in mobile devices, several

studies have tried to reduce it. Having in mind that OLED's screen consumption is heavily

related to colors, some works have used power profilers to reduce energy consumption by

changing the colors scheme of browsers (DONG; ZHONG) [2011)), mobile apps (DONG; ZHONG,
2012; \WAN et al., 2017]), and mobile web apps (LI; HALFOND, 2014)). As those works are guided to

maximize the energy efficiency, focusing on reducing the energy consumption of the application

above all things, leaving aside other important factors such as aesthetics and usability.

134

Linares-VAsquez et al. (2018)) tried to solve the problem of high energy consumption by
the incorrect color scheme in a different way. They developed a tool, called GEMMA, to modify
applications and reduce the screen energy consumption by changing the color schemes. Unlike
the previous solutions, they took into consideration three important factors: (i) consistency
of color schemes, (ii) different windows within the same app, and (iii) different time spans
spent in these interfaces. GEMMA aims to produce pleasant and consistent color combinations,
to provide an appealing GUI based on the original color scheme of the app while still saving
energy.

Researchers could investigate deeper in the optimization of colors schemes to Android apps
using static analysis. Previous work has looked into several different aspects of static data-flow
analysis, particularly into security properties, leak defects, energy consumption, correctness,
and performance properties (WU; YANG; ROUNTEV, [2016; [ZHANG; LU; ERNST, 2012; BANERJEE
et al., [2014; PAYET; SPOTO, [2012; FERNANDES; PINTO; CASTOR, 2017))). The possibility of
statically analyzing the energy consumption of Android graphical user interfaces is still an
open problem.

A possible solution could make use of the Program Analysis Toolkit For Android (also
known as GATOR), described by [Yang et al.| (2018). It uses a new methodology to represent the
GUI on Android, using a window transition graph (WTG). The possible Ul window sequences
and their associated events are represented on the WTG model. The objective would be to
model the stack of currently-active windows, the changes to this stack, and the effects of
callbacks related to these changes.

This work could have an impact on the energy efficiency of all [OLED] devices. OLED s a
popular technology, with more than 1 billion devices using it, representing more than 30% of
all smartphone screensﬂ Optimizing the color pattern of an application can have a significant

impact on the energy consumption of the application.

5.3.2.3 Energy Linter

Developing an application with energy consumption in mind may be difficult for a developer.
First, because developers may not be familiar with techniques to reduce energy consumption.

Second, because it may not be clear when and where these techniques can be applied, since

5 https://newzoo.com/insights/articles/over-one-billion-smartphones-globally-have-an-oled-

screen /#:~:text=0ver%200ne%20Billion%20Smartphones%20Globally%20Have%20an%200LED%20Screen,-
Bernd%20van%20der

135

apps with different characteristics (e.g., CPU-bound, network-bound, making intensive use of
GPS, etc.) require different solutions. Third, because information about energy efficiency is
spread throughout multiple sources, making it difficult to make informed decisions. Further-
more, that information is often imprecise, incomplete, or incorrect (LI; HALFOND, 2014; PINTO;
CASTOR; LIU| 2014a).

Recently, a new technology has been gaining traction with developers and users: intelligent

virtual assistants or IVA (e.g., Apple’s Siri, Amazon's Alexa, Google Assistant, and Microsoft’s

Cortana). The market for Intelligent Virtual Assistants (IVA)|is growing fast, and it is estimated

to grow at an annual growth rate of 34.9% between 2016 and 2024@. This market involves
not only IT applications but also automotive, education, healthcare, and retaiﬂ Some recent
studies have focused on developing or improving intelligent virtual assistants (GILBERT et al.,
2011; JOHNSTON et al,, [2014). In the context of aiding developers, Bradley, Fritz e Holmes
(2018)) has used an IVA to help developers manage tasks while developing applications.

Linters are tools to help developers increase their overall code quality. They work based
on static analysis, searching and highlighting snippets of code that could decrease factors
related to software quality (e.g., correctness, usability, security, performance, among others).
Because of their efficiency, most IDEs (e.g., Android Studio) have a built-in linter to help
developers avoid bad practices. Nevertheless, most Android developers do not rely on linters
when dealing with performance matters (LINARES-VASQUEZ et al., [2015)). Some of the reasons
for that are: (i) the information the tool provides is not clear enough; (ii) it is hard and time
consuming to write linter rules; (iii) developers did not see the real impact the change can
make (HABCHI; BLANC; ROUVOY, 2018). Our hypothesis is that, using an IVA could solve most
of these problems, helping to communicate the importance of the changes and giving the
developers more information about them.

Goakr| (2020) made use of the Android Studio Linter to recommend changes based on the
energy consumption, helping developers to reduce the energy consumption of their Android
applications. Their methodology was to warn developers every time an energy smell was present
in their code. Although this work has a lot of potential, there is still space to improve on the
concept, such as: a more general approach, not only for Android applications; use of an IVA to
help developers understand the rationale behind the chances; increase the number of energy

smells available and allow the user to add new smells.

https://gminsights.com/industry-analysis/intelligent-virtual-assistant-iva-market

" https://gminsights.wordpress.com/tag/intelligent-virtual-assistant-market-statistics/ /

136

Other works have presented different ways to try to help developers save energy while in
the process of creating their apps. Pereira et al.[(2020]) developed a technique, SPELL, capable
of helping developers create more energy-aware applications. Their technique is capable of
finding energy inefficient portions of the code and presenting it to the developers. The authors
executed an empirical experiment, asking participants to optimize the energy efficiency of a
program on three scenarios: without any assistance, using an energy profiler and using SPELL.
In all cases, the participants were able to reduce the energy consumption however, SPELL had
the best results, with statistical significant difference from the energy profiler, with SPELL
performing up to 72% better.

Raising developer awareness about the energy consumption of their apps could greatly
increase the energy efficiency of applications across different environments. We believe that
an Energy Linter (specially with the help an IVA to increase developers adoption), making use of
energy-efficient energy patterns (CRUZ; ABREU, 2019a)) could guide non-specialist developers to
use energy efficient green computing, greatly reducing the lack of tools and knowledge (PINTO;

CASTOR, [2017)) that cripples the energy efficiency of applications.

137

REFERENCES

ABDULSALAM, S.; LAKOMSKI, D.; GU, Q.; JIN, T.; ZONG, Z. Program energy efficiency:
The impact of language, compiler and implementation choices. In: International Green
Computing Conference. [S.l.: s.n.], 2014. p. 1-6.

ABDULSALAM, S.; ZONG, Z.; GU, Q.; QIU, M. Using the greenup, powerup, and speedup
metrics to evaluate software energy efficiency. In: 2015 Sixth International Green and
Sustainable Computing Conference (IGSC). [S.l.: s.n.], 2015. p. 1-8.

AGGARWAL, K.; ZHANG, C.; CAMPBELL, J. C.; HINDLE, A.; STROULIA, E. The power
of system call traces: predicting the software energy consumption impact of changes. In:
Proceedings of 24th Annual International Conference on Computer Science and Software
Engineering, CASCON 2014. [S.l.]: IBM / ACM, 2014. p. 219-233.

AGOLLI, T.; POLLOCK, L.; CLAUSE, J. Investigating decreasing energy usage in mobile
apps via indistinguishable color changes. In: 2017 IEEE/ACM 4th International Conference
on Mobile Software Engineering and Systems (MOBILESoft). [S.l.: s.n.], 2017. p. 30-34.

ANDERSEN, L. O. Program analysis and specialization for the C programming language.
Tese (Doutorado) — University of Cophenhagen, 1994.

ANDRAE, A. Total consumer power consumption forecast. Nordic Digital Business Summit,
v. 10, 2017.

ANWAR, H. Towards greener android application development. In: 2020 IEEE/ACM
42nd International Conference on Software Engineering: Companion Proceedings
(ICSE-Companion). [S.l.: s.n.], 2020. p. 170-173.

ANWAR, H.; DEMIRER, B.; PFAHL, D.; SRIRAMA, S. Should energy consumption influence
the choice of android third-party http libraries? In: Proceedings of the IEEE/ACM T7th
International Conference on Mobile Software Engineering and Systems. New York, NY,
USA: Association for Computing Machinery, 2020. (MOBILESoft '20), p. 87-97. ISBN
9781450379595. Disponivel em: <https://doi.org/10.1145/3387905.3392095> .

ARDITO, L.; TORCHIANO, M. Creating and evaluating a software power model for linux
single board computers. In: 2018 IEEE/ACM 6th International Workshop on Green And
Sustainable Software (GREENS). [S.l.: s.n.], 2018. p. 1-8.

ASAFU-ADJAYE, J. The relationship between energy consumption, energy prices and
economic growth: time series evidence from asian developing countries. Energy Economics,
v. 22, n. 6, p. 615 — 625, 2000. ISSN 0140-9883.

AVIZIENIS, A.; KELLY, J. P. J. Fault tolerance by design diversity: Concepts and experiments.
Computer, v. 17, n. 8, p. 67-80, ago. 1984.

BAGNATO, A.; ROCHETEAU, J. Towards green metrics integration in the measure platform.
In: MeGSuS@ ESEM. [S.1.: s.n.], 2018. p. 39.

BALDWIN, C. Y.; CLARK, K. B. Design Rules, Volume 1: The Power of Modularity. 1. ed.
[S.I.]: The MIT Press, 2000. v. 1.

https://doi.org/10.1145/3387905.3392095

138

BANERJEE, A.; CHONG, L. K.; CHATTOPADHYAY, S.; ROYCHOUDHURY, A. Detecting
energy bugs and hotspots in mobile apps. In: ACM. Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software Engineering. [S..], 2014. p. 588-598.

BARRETT, E.; BOLZ-TEREICK, C. F.; KILLICK, R.; MOUNT, S.; TRATT, L. Virtual
machine warmup blows hot and cold. Proc. ACM Program. Lang., ACM, New York,
NY, USA, v. 1, n. OOPSLA, p. 52:1-52:27, out. 2017. ISSN 2475-1421. Disponivel em:
<http://doi.acm.org/10.1145/3133876>.

BENNETT, J.; LANNING, S.; NETFLIX, N. The netflix prize. In: In KDD Cup and Workshop
in conjunction with KDD. [S.l.: s.n.], 2007.

BESSA, T.; GULL, C.; QUINTAO, P.; FRANK, M.; NACIF, J.; PEREIRA, F. M. Q.
Jetsonleap: A framework to measure power on a heterogeneous system-on-a-chip
device. Science of Computer Programming, v. 173, p. 21-36, 2019. ISSN 0167-6423.
Brazilian Symposium on Programming Languages (SBLP '15+16). Disponivel em:
<https:/ /www.sciencedirect.com /science/article/pii /S0167642317301776> .

BHATTACHARYA, S.; BASHAR, M.; SRIVASTAVA, A.; SINGH, A. Nomophobia: No mobile
phone phobia. Journal of Family Medicine and Primary Care, v. 8, p. 1297, 04 2019.

BLACKBURN, S. M.; GARNER, R.; HOFFMANN, C.; KHANG, A. M.; MCKINLEY, K. S;
BENTZUR, R.; DIWAN, A.; FEINBERG, D.; FRAMPTON, D.; GUYER, S. Z.; HIRZEL, M
HOSKING, A.; JUMP, M.; LEE, H.; MOSS, J. E. B.; PHANSALKAR, A.; STEFANOVI¢, D.;
VANDRUNEN, T.; DINCKLAGE, D. von; WIEDERMANN, B. The dacapo benchmarks: Java
benchmarking development and analysis. In: Proceedings of the 21st Annual ACM SIGPLAN
Conference on Object-oriented Programming Systems, Languages, and Applications. New
York, NY, USA: ACM, 2006. (OOPSLA '06), p. 169-190. ISBN 1-59593-348-4. Disponivel
em: <http://doi.acm.org/10.1145/1167473.1167488>.

BRADLEY, N. C.; FRITZ, T.; HOLMES, R. Context-aware conversational developer
assistants. In: Proceedings of the 40th International Conference on Software Engineering.
New York, NY, USA: ACM, 2018. (ICSE '18), p. 993-1003. ISBN 978-1-4503-5638-1.
Disponivel em: <http://doi.acm.org/10.1145/3180155.3180238>.

BUCHMANN, A. P.; KOLDEHOFE, B. Complex event processing. it Inf. Technol., v. 51,
n. 5, p. 241-242, 2009. Disponivel em: <https://doi.org/10.1524/itit.2009.9058>.

C., M.; CHANDRASEKARAN, K.; CHIMALAKONDA, S. Energy diagnosis of android
applications: A thematic taxonomy and survey. ACM Comput. Surv., Association for
Computing Machinery, New York, NY, USA, v. 53, n. 6, dez. 2020. ISSN 0360-0300.
Disponivel em: <https://doi.org/10.1145/3417986>.

CAMERON, K. W.; GE, R.; FENG, X. High-performance, power-aware distributed computing
for scientific applications. Computer, v. 38, n. 11, p. 40-47, nov 2005. ISSN 0018-9162.

CHARLAND, A.; LEROUX, B. Mobile application development: Web vs. native. Commun.
ACM, ACM, New York, NY, USA, v. 54, n. 5, p. 49-53, maio 2011. ISSN 0001-0782.
Disponivel em: <http://doi.acm.org/10.1145/1941487.1941504> .

CHEN, Q.; GROSSO, P.; Van Der Veldt, K.; De Laat, C.; HOFMAN, R.; BAL, H. Profiling
energy consumption of VMs for green cloud computing. In: Proceedings - IEEE 9th

http://doi.acm.org/10.1145/3133876
https://www.sciencedirect.com/science/article/pii/S0167642317301776
http://doi.acm.org/10.1145/1167473.1167488
http://doi.acm.org/10.1145/3180155.3180238
https://doi.org/10.1524/itit.2009.9058
https://doi.org/10.1145/3417986
http://doi.acm.org/10.1145/1941487.1941504

139

International Conference on Dependable, Autonomic and Secure Computing, DASC 2011.
[S.1.: s.n.], 2011. p. 768-775. ISBN 9780769546124,

CHEN, X.; ZONG, Z. Android App Energy Efficiency: The Impact of Language, Runtime,
Compiler, and Implementation. In: 2016 IEEE International Conferences on Big Data and
Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable
Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom). [S.I.
s.n.], 2016. p. 485-492,

CHOWDHURY, S.; BORLE, S.; ROMANSKY, S.; HINDLE, A. Greenscaler: Training software
energy models with automatic test generation. Empirical Softw. Engg., Kluwer Academic
Publishers, USA, v. 24, n. 4, p. 1649-1692, ago. 2019. ISSN 1382-3256. Disponivel em:

< https://doi.org/10.1007 /s10664-018-9640-7> .

CHOWDHURY, S.; NARDO, S. D.; HINDLE, A.; JIANG, Z. M. J. An exploratory study
on assessing the energy impact of logging on android applications. Empirical Software
Engineering, v. 23, n. 3, p. 1422-1456, Jun 2018. ISSN 1573-7616. Disponivel em:
<https://doi.org/10.1007 /s10664-017-9545-x>.

CHOWDHURY, S. A.; HINDLE, A. Characterizing energy-aware software projects:
Are they different? In: Proceedings of the 13th International Conference on Mining
Software Repositories. New York, NY, USA: ACM, 2016. (MSR '16), p. 508-511. ISBN
978-1-4503-4186-8. Disponivel em: <http://doi.acm.org/10.1145/2901739.2903494>.

CHOWDHURY, S. A;; HINDLE, A.; KAZMAN, R.; SHUTO, T.; MATSUI, K.; KAMEI,
Y. Greenbundle: An empirical study on the energy impact of bundled processing. In: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE). [S.l.: s.n.], 2019,
p. 1107-1118.

CLIFF, N. Answering ordinal questions with ordinal data using ordinal statistics. Multivariate
Behavioral Research, v. 31, p. 331-350, 06 1993.

COHEN, M.; ZHU, H. S.; SENEM, E. E.; LIU, Y. D. Energy types. In: Proceedings of
the 27th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA,
October 21-25, 2012. [S.l.: s.n.], 2012. p. 831-850.

CORRAL, L.; GEORGIEV, A. B.; SILLITTI, A.; SUCCI, G. Method Reallocation to
Reduce Energy Consumption: An Implementation in Android OS. In: Proceedings
of the 29th Annual ACM Symposium on Applied Computing. New York, NY, USA:
ACM, 2014. (SAC '14), p. 1213-1218. ISBN 978-1-4503-2469-4. Disponivel em:
<http://doi.acm.org/10.1145/2554850.2555064 > .

COSTA, D.; ANDRZEJAK, A.; SEBOEK, J.; LO, D. Empirical study of usage and performance
of java collections. In: Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering. New York, NY, USA: ACM, 2017. (ICPE '17), p. 389-400. ISBN
978-1-4503-4404-3. Disponivel em: <http://doi.acm.org/10.1145/3030207.3030221>.

COUTO, M.; CARCAO, T.; CUNHA, J.; FERNANDES, J. P.; SARAIVA, J. Detecting
anomalous energy consumption in android applications. In: PEREIRA, F. M. Q. (Ed.).
Programming Languages. Cham: Springer International Publishing, 2014. p. 77-91. ISBN
978-3-319-11863-5.

https://doi.org/10.1007/s10664-018-9640-7
https://doi.org/10.1007/s10664-017-9545-x
http://doi.acm.org/10.1145/2901739.2903494
http://doi.acm.org/10.1145/2554850.2555064
http://doi.acm.org/10.1145/3030207.3030221

140

COUTO, M.; PEREIRA, R.; RIBEIRO, F.; RUA, R.; SARAIVA, J. a. Towards a green
ranking for programming languages. In: Proceedings of the 21st Brazilian Symposium on
Programming Languages. New York, NY, USA: ACM, 2017. (SBLP 2017), p. 7:1-7:8. ISBN
978-1-4503-5389-2. Disponivel em: <http://doi.acm.org/10.1145/3125374.3125382>.

COUTO, M.; SARAIVA, J.; FERNANDES, J. P. Energy refactorings for android in the large
and in the wild. In: 2020 IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). [S.l.: s.n.], 2020. p. 217-228.

CRUZ, L.; ABREU, R. Performance-based Guidelines for Energy Efficient Mobile Applications.
In: Proceedings of the 4th International Conference on Mobile Software Engineering and
Systems. Piscataway, NJ, USA: IEEE Press, 2017. (MOBILESoft '17), p. 46-57. ISBN
978-1-5386-2669-6. Disponivel em: <https://doi.org/10.1109/MOBILESoft.2017.19> .

CRUZ, L.; ABREU, R. Catalog of energy patterns for mobile applications. Empirical
Software Engineering, v. 24, n. 4, p. 2209-2235, Aug 2019. ISSN 1573-7616. Disponivel em:
<https://doi.org/10.1007 /s10664-019-09682-0> .

CRUZ, L.; ABREU, R. Emaas: Energy measurements as a service for mobile applications.
In: 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER). [S.l.: s.n.], 2019. p. 101-104.

CRUZ, L.; ABREU, R.; GRUNDY, J.; LI, L.; XIA, X. Do energy-oriented changes hinder
maintainability? In: 2019 IEEE International Conference on Software Maintenance and
Evolution (ICSME). [S.l.: s.n.], 2019. p. 29-40.

CRUZ, L.; ABREU, R.; ROUVIGNAC, J.-N. Leafactor: Improving energy efficiency of android
apps via automatic refactoring. In: 2017 IEEE/ACM 4th International Conference on Mobile
Software Engineering and Systems (MOBILESoft). [S.l.: s.n.], 2017. p. 205-206.

DONG, M.; ZHONG, L. Chameleon: A Color-Adaptive Web Browser for Mobile OLED
Displays. CoRR, abs/1101.1, 2011. Disponivel em: <http://arxiv.org/abs/1101.1240>.

DONG, M.; ZHONG, L. Power modeling and optimization for oled displays. I[EEE Transactions
on Mobile Computing, |IEEE, v. 11, n. 9, p. 1587-1599, 2012.

DUARTE, L. M.; ALVES, D. da S.; TORESAN, B. R.; MAIA, P. H.; SILVA, D. A model-based
framework for the analysis of software energy consumption. In: Proceedings of the XXXIII
Brazilian Symposium on Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2019. (SBES 2019), p. 67-72. ISBN 9781450376518. Disponivel em:
<https://doi.org/10.1145/3350768.3353813>.

EMDEN, E. V.; MOONEN, L. Java quality assurance by detecting code smells. In: IEEE.
Reverse Engineering, 2002. Proceedings. Ninth Working Conference on. [S.l.], 2002. p.
97-106.

FERNANDES, B.; PINTO, G.; CASTOR, F. Assisting non-specialist developers to build
energy-efficient software. In: Proceedings - 2017 IEEE/ACM 39th International Conference
on Software Engineering Companion, ICSE-C 2017. [S.l.: s.n.], 2017. p. 158-160. ISBN
9781538615898.

FOSSE, T. B. L.; MOTTU, J.-M.; TISI, M.; SUNYE, G. Characterizing a source code
model with energy measurements. In: Workshop on Measurement and Metrics for Green and
Sustainable Software Systems (MeGSuS). [S.l.: s.n.], 2018.

http://doi.acm.org/10.1145/3125374.3125382
https://doi.org/10.1109/MOBILESoft.2017.19
https://doi.org/10.1007/s10664-019-09682-0
http://arxiv.org/abs/1101.1240
https://doi.org/10.1145/3350768.3353813

141

FOWLER, M. Refactoring: improving the design of existing code. [S.l.]: Addison-Wesley
Professional, 2018.

GEORGES, A.; BUYTAERT, D.; EECKHOUT, L. Statistically rigorous java performance
evaluation. SIGPLAN Not., ACM, New York, NY, USA, v. 42, n. 10, p. 57-76, out. 2007.
ISSN 0362-1340. Disponivel em: <http://doi.acm.org/10.1145/1297105.1297033>.

GEORGIQOU, S.; SPINELLIS, D. Energy-delay investigation of remote inter-process
communication technologies. Journal of Systems and Software, v. 162, p. 110506, 2020.
ISSN 0164-1212. Disponivel em: <http://www.sciencedirect.com/science/article/pii/
S0164121219302808>/.

GILBERT, M.; ARIZMENDI, I.; BOCCHIERI, E.; CASEIRO, D.;: GOFFIN, V.; LIOLIJE, A.;
PHILLIPS, M.; WANG, C.; WILPON, J. G. Your mobile virtual assistant just got smarter! In:
INTERSPEECH. [S.l.: s.n.], 2011. p. 1101-1104.

GOAER, O. L. Enforcing green code with android lint. In: 2020 35th IEEE/ACM International
Conference on Automated Software Engineering Workshops (ASEW). [S.1.: s.n.], 2020. p.
85-90.

GOTTSCHALK, M.; JELSCHEN, J.; WINTER, A. Saving Energy on Mobile Devices by
Refactoring. 28th International Conference on Informatics for Environmental Protection
(Envirolnfo 2014), p. to appear, 2014.

GOTTSCHALK, M.; JOSEFIOK, M.; JELSCHEN, J.; WINTER, A. Removing energy code
smells with reengineering services. In: GOLTZ, U.; MAGNOR, M.; APPELRATH, H.-J;
MATTHIES, H. K.; BALKE, W.-T.; WOLF, L. (Ed.). INFORMATIK 2012. Bonn: Gesellschaft
fur Informatik e.V., 2012. p. 441-455.

GRIMMER, M.; RIGGER, M.; STADLER, L.; SCHATZ, R.; M6SSENBGCK, H. An efficient
native function interface for java. In: Proceedings of the 2013 International Conference on
Principles and Practices of Programming on the Java Platform: Virtual Machines, Languages,
and Tools. [S.l.]: ACM, 2013. p. 35-44.

HABCHI, S.; BLANC, X.; ROUVQY, R. On adopting linters to deal with performance
concerns in android apps. In: 2018 33rd IEEE/ACM International Conference on Automated
Software Engineering (ASE). [S.l.: s.n.], 2018. p. 6-16.

HABCHI, S.; MOHA, N.; ROUVQY, R. Android code smells: From introduction to refactoring.
Journal of Systems and Software, v. 177, p. 110964, 2021. ISSN 0164-1212. Disponivel em:
<https:/ /www.sciencedirect.com /science/article/pii/S0164121221000613> .

HAHNEL, M.; DOBEL, B.; VOLP, M.; HARTIG, H. Measuring energy consumption for
short code paths using rapl. SIGMETRICS Perform. Eval. Rev., Association for Computing
Machinery, New York, NY, USA, v. 40, n. 3, p. 13-17, jan. 2012. ISSN 0163-5999. Disponivel
em: <https://doi.org/10.1145/2425248.2425252>

HANGAL, S.; LAM, M. S. Tracking down software bugs using automatic anomaly detection.
In: IEEE. Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd International
Conference on. [S.1.], 2002. p. 291-301.

http://doi.acm.org/10.1145/1297105.1297033
http://www.sciencedirect.com/science/article/pii/S0164121219302808
http://www.sciencedirect.com/science/article/pii/S0164121219302808
https://www.sciencedirect.com/science/article/pii/S0164121221000613
https://doi.org/10.1145/2425248.2425252

142

HAQO, S.; LI, D.; HALFOND, W. G. J.; GOVINDAN, R. Estimating mobile application energy
consumption using program analysis. In: Proceedings of the 2013 International Conference on
Software Engineering. Piscataway, NJ, USA: IEEE Press, 2013. (ICSE '13), p. 92-101. ISBN
978-1-4673-3076-3. Disponivel em: <http://dl.acm.org/citation.cfm?id=2486788.2486801> .

HASAN, S.; KING, Z.; HAFIZ, M.; SAYAGH, M.; ADAMS, B.; HINDLE, A. Energy Profiles
of Java Collections Classes. In: Proceedings of the 38th International Conference on Software
Engineering. New York, NY, USA: ACM, 2016. (ICSE '16, 9), p. 225-236. ISBN 978-1-4503-
3900-1. ISSN 1098-6596. Disponivel em: <http://doi.acm.org/10.1145/2834781.2884869>.

HINDLE, A. Green mining: A methodology of relating software change to power consumption.
In: Mining Software Repositories (MSR), 2012 9th IEEE Working Conference on. [S.l.: s.n.],
2012. p. 78-87. ISSN 2160-1852.

HINDLE, A.; WILSON, A.; RASMUSSEN, K.; BARLOW, E. J.; CAMPBELL, J. C;
ROMANSKY, S. Greenminer: a hardware based mining software repositories software energy
consumption framework. In: 11th Working Conference on Mining Software Repositories. [S.|.:
s.n.], 2014, p. 12-21.

HINTEMANN, R.; HINTERHOLZER, S. Energy consumption of data centers worldwide. In:
The 6th International Conference on ICT for Sustainability (ICT4S). Lappeenranta. [S.].:
s.n.], 2019.

HOQUE, M. A.; SIEKKINEN, M.; KHAN, K. N.; XIAO, Y.; TARKOMA, S. Modeling,
Profiling, and Debugging the Energy Consumption of Mobile Devices. ACM Comput. Surv.,
ACM, New York, NY, USA, v. 48, n. 3, p. 39:1—-39:40, dec 2015. ISSN 0360-0300.
Disponivel em: <http://doi.acm.org/10.1145/2840723>

IANNONE, E.; PECORELLI, F.; NUCCI, D. D.; PALOMBA, F.; LUCIA, A. D. Refactoring
android-specific energy smells: A plugin for android studio. In: Proceedings of the 28th
International Conference on Program Comprehension. [S.l.: s.n.], 2020. p. 451-455.

JAGROEP, E.; WERF, J. M. E. M. van der; JANSEN, S.; FERREIRA, M.; VISSER, J. Profiling
energy profilers. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing.
New York, NY, USA: Association for Computing Machinery, 2015. (SAC '15), p. 2198-2203.
ISBN 9781450331968. Disponivel em: <https://doi.org/10.1145/2695664.2695825>.

JOHNSTON, M.; CHEN, J.; EHLEN, P.; JUNG, H.; LIESKE, J.; REDDY, A.; SELFRIDGE,
E.: STOYANCHEYV, S.: VASILIEFF, B.;: WILPON, J. Mva: The multimodal virtual assistant.
In: 15th Annual Meeting of the Special Interest Group on Discourse and Dialogue. [S.l.: s.n.],
2014. p. 257.

KAMBADUR, M.; KIM, M. A. An experimental survey of energy management across
the stack. In: Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications. New York, NY, USA:
ACM, 2014. (OOPSLA '14), p. 329-344. ISBN 978-1-4503-2585-1. Disponivel em:
<http://doi.acm.org/10.1145/2660193.2660196> .

KHOLMATOVA, Z. Impact of programming languages on energy consumption for mobile
devices. In: Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. New York, NY,
USA: Association for Computing Machinery, 2020. (ESEC/FSE 2020), p. 1693-1695. ISBN
9781450370431. Disponivel em: <https://doi.org/10.1145/3368089.3418777>.

http://dl.acm.org/citation.cfm?id=2486788.2486801
http://doi.acm.org/10.1145/2884781.2884869
http://doi.acm.org/10.1145/2840723
https://doi.org/10.1145/2695664.2695825
http://doi.acm.org/10.1145/2660193.2660196
https://doi.org/10.1145/3368089.3418777

143

KJAERGAARD, M. B.; BLUNCK, H. Unsupervised power profiling for mobile devices. In:
SPRINGER. International Conference on Mobile and Ubiquitous Systems: Computing,
Networking, and Services. [S.l.], 2011. p. 138-149.

KWON, Y. W.; TILEVICH, E. Reducing the energy consumption of mobile applications
behind the scenes. In: Proceedings of the 29th IEEE International Conference on Software
Maintenance. Eindhoven, The Netherlands: [s.n.], 2013. p. 170-179.

LEE, J.; CHON, Y.; CHA, H. Evaluating battery aging on mobile devices. In: 2015 52nd
ACM/EDAC/IEEE Design Automation Conference (DAC). [S.l.: s.n.], 2015. p. 1-6.

LI, D.; HALFOND, W. G. J. An investigation into energy-saving programming practices
for Android smartphone app development. In: Proceedings of the 3rd International
Workshop on Green and Sustainable Software - GREENS 2014. New York, NY,

USA: ACM, 2014. (GREENS 2014), p. 46-53. ISBN 9781450328449. Disponivel em:
<http://dl.acm.org/citation.cfm?doid=2593743.2593750>.

LI, D.; HALFOND, W. G. J. Optimizing energy of HTTP requests in Android applications.
Proceedings of the 3rd International Workshop on Software Development Lifecycle for Mobile
(DeMobile 2015), p. 25-28, 2015.

LI, D.; HAO, S.; HALFOND, W. G. J.; GOVINDAN, R. Calculating Source Line Level Energy
Information for Android Applications. In: Proceedings of the 2013 International Symposium

on Software Testing and Analysis. New York, NY, USA: ACM, 2013. (ISSTA 2013), p. 78-89.
ISBN 978-1-4503-2159-4. Disponivel em: <http://doi.acm.org/10.1145/2483760.2483780>.

LI, D.; LYU, Y.; GUI, J.; HALFOND, W. G. J. Automated Energy Optimization of HTTP
Requests for Mobile Applications. In: Proceedings of the 38th International Conference on
Software Engineering. New York, NY, USA: ACM, 2016. (ICSE '16), p. 249-260. ISBN
978-1-4503-3900-1. Disponivel em: <http://doi.acm.org/10.1145/2884781.2834867>.

LI, D.; TRAN, A. H.; HALFOND, W. G. J. Making web applications more energy efficient for
OLED smartphones. In: 36th International Conference on Software Engineering (ICSE'2014).
[S.I.]: ACM, 2014. p. 527-538.

LIMA, L. G.; SOARES-NETO, F.; LIEUTHIER, P.; CASTOR, F.; MELFE, G
FERNANDES, J. P. On haskell and energy efficiency. Journal of Systems and
Software, v. 149, p. 554-580, 2019. ISSN 0164-1212. Disponivel em: |[<https:
/ /www.sciencedirect.com /science/article/pii/S0164121218302747>.

LIN, Y.; DIG, D. A study and toolkit of CHECK-THEN-ACT idioms of java concurrent
collections. Softw. Test., Verif. Reliab., v. 25, n. 4, p. 397-425, 2015.

LINARES-VASQUEZ, M.; BAVOTA, G.; BERNAL-CARDENAS, C.; OLIVETO, R;
PENTA, M. D.; POSHYVANYK, D. Mining energy-greedy api usage patterns in android
apps: An empirical study. In: Proceedings of the 11th Working Conference on Mining
Software Repositories. New York, NY, USA: ACM, 2014. (MSR 2014), p. 2-11. ISBN
978-1-4503-2863-0. Disponivel em: <http://doi.acm.org/10.1145/2597073.2597085>.

LINARES-VASQUEZ, M.; BAVOTA, G.; BERNAL-CARDENAS, C.; PENTA, M. D ;
OLIVETO, R.; POSHYVANYK, D. Multi-objective optimization of energy consumption
of guis in android apps. ACM Trans. Softw. Eng. Methodol., Association for Computing

http://dl.acm.org/citation.cfm?doid=2593743.2593750
http://doi.acm.org/10.1145/2483760.2483780
http://doi.acm.org/10.1145/2884781.2884867
https://www.sciencedirect.com/science/article/pii/S0164121218302747
https://www.sciencedirect.com/science/article/pii/S0164121218302747
http://doi.acm.org/10.1145/2597073.2597085

144

Machinery, New York, NY, USA, v. 27, n. 3, set. 2018. ISSN 1049-331X. Disponivel em:
<https://doi.org/10.1145/3241742> .

LINARES-VASQUEZ, M.: VENDOME, C.; LUO, Q.: POSHYVANYK, D. How developers
detect and fix performance bottlenecks in android apps. In: 2015 IEEE International
Conference on Software Maintenance and Evolution (ICSME). [S.1.: s.n.], 2015. p. 352-361.

LITTLEWOOD, B.; POPQV, P.; STRIGINI, L. Modeling software design diversity: A review.
ACM Comput. Surv., ACM, New York, NY, USA, v. 33, n. 2, p. 177-208, jun. 2001. ISSN
0360-0300. Disponivel em: <http://doi.acm.org/10.1145/384192.384195>.

LIU, K.; PINTO, G.; LIU, D. Data-oriented characterization of application-level energy
optimization. In: Proceedings of the 18th International Conference on Fundamental
Approaches to Software Engineering. [S.l.: s.n.], 2015. (FASE'15).

LIU, Y.; XU, C.; CHEUNG, S.-C.; TERRAGNI, V. Understanding and Detecting Wake
Lock Misuses for Android Applications. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. New York, NY,

USA: ACM, 2016. (FSE 2016), p. 396-409. ISBN 978-1-4503-4218-6. Disponivel em:
<http://doi.acm.org/10.1145/2950290.2950297>.

LYU, Y.; GUI, J.; WAN, M.; HALFOND, W. G. J. An Empirical Study of Local Database
Usage in Android Applications. In: Proceedings of the International Conference on Software
Maintenance and Evolution (ICSME). [S.l.: s.n.], 2017.

MACEDO, J. A. de; ALOISIO, J. A.; GONCALVES, N.; PEREIRA, R.; SARAIVA, J. A. Energy
wars - chrome vs. firefox: Which browser is more energy efficient? In: Proceedings of the 35th
IEEE/ACM International Conference on Automated Software Engineering Workshops. New
York, NY, USA: Association for Computing Machinery, 2020. (ASE '20), p. 159-165. ISBN
9781450381284. Disponivel em: <https://doi.org/10.1145/3417113.3423000> .

MALAVOLTA, I.; CHINNAPPAN, K.; JASMONTAS, L.; GUPTA, S.; SOLTANY, K.

A. K. Evaluating the impact of caching on the energy consumption and performance of
progressive web apps. In: Proceedings of the IEEE/ACM 7th International Conference on
Mobile Software Engineering and Systems. New York, NY, USA: Association for Computing
Machinery, 2020. (MOBILESoft '20), p. 109-119. ISBN 9781450379595. Disponivel em:
<https://doi.org/10.1145/3387905.3388593>.

MANOTAS, |.; BIRD, C.; ZHANG, R.; SHEPHERD, D.; JASPAN, C.; SADOWSKI, C;
POLLOCK, L.; CLAUSE, J. An empirical study of practitioners’ perspectives on green
software engineering. In: ICSE. [S.].: s.n.], 2016. p. 237-248. ISBN 978-1-4503-3900-1.

MANQOTAS, I.; POLLOCK, L.; CLAUSE, J. Seeds: A software engineer's energy-optimization
decision support framework. In: Proceedings of the 36th International Conference on Software
Engineering. [s.n.], 2014. (ICSE 2014), p. 503-514. ISBN 978-1-4503-2756-5. Disponivel em:
<http://doi.acm.org/10.1145/2568225.2568297 >,

MASANET, E.; SHEHABI, A.; LEI, N.; SMITH, S.; KOOMEY, J. Recalibrating global
data center energy-use estimates. Science, American Association for the Advancement
of Science, v. 367, n. 6481, p. 984-986, 2020. ISSN 0036-8075. Disponivel em:

< https:/ /science.sciencemag.org/content /367 /6481 /984>

https://doi.org/10.1145/3241742
http://doi.acm.org/10.1145/384192.384195
http://doi.acm.org/10.1145/2950290.2950297
https://doi.org/10.1145/3417113.3423000
https://doi.org/10.1145/3387905.3388593
http://doi.acm.org/10.1145/2568225.2568297
https://science.sciencemag.org/content/367/6481/984

145

MATALONGA, H.; CABRAL, B.; CASTOR, F.; COUTO, M.; PEREIRA, R.; SOUSA, S. a. M.
de; FERNANDES, J. a. P. Greenhub farmer: Real-world data for android energy mining. In:

Proceedings of the 16th International Conference on Mining Software Repositories. |IEEE Press,
2019. (MSR '19), p. 171-175. Disponivel em: <https://doi.org/10.1109/MSR.2019.00034>.

MCINTOSH, A.; HASSAN, S.; HINDLE, A. What can android mobile app developers

do about the energy consumption of machine learning? Empirical Softw. Engg., Kluwer
Academic Publishers, USA, v. 24, n. 2, p. 562—601, abr. 2019. ISSN 1382-3256. Disponivel
em: <https://doi.org/10.1007 /s10664-018-9629-2>.

MORALES, R.; SABORIDO, R.; KHOMH, F.; CHICANO, F.; ANTONIOL, G. Anti-patterns
and the energy efficiency of Android applications. CoRR, abs/1610.0, 2016. Disponivel em:
<http://arxiv.org/abs/1610.05711>.

MOURA, |; PINTO, G.; EBERT, F.; CASTOR, F. Mining energy-aware commits. In: 2015
IEEE/ACM 12th Working Conference on Mining Software Repositories. [S.l.: s.n.], 2015. p.
56-67. ISSN 2160-1852.

MYASNIKOV, V.; SARTASOV, S.; SLESAREV, |.; GESSEN, P. Energy consumption
measurement frameworks for android os: A systematic literature review. In: Fifth Conference

on Software Engineering and Information Management (SEIM-2020)(full papers). [S.l.: s.n],
2020. p. 18.

NANZ, S.; FURIA, C. A. A comparative study of programming languages in rosetta code.
In: Proceedings of the 37th International Conference on Software Engineering - Volume 1.
Piscataway, NJ, USA: IEEE Press, 2015. (ICSE '15), p. 778-788. ISBN 978-1-4799-1934-5.
Disponivel em: <http://dl.acm.org/citation.cfm?id=2818754.2818848> .

NUCCI, D. D.; PALOMBA, F.; PROTA, A.; PANICHELLA, A.; ZAIDMAN, A.; LUCIA,
A. D. Software-based energy profiling of Android apps: Simple, efficient and reliable?

In: 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). [s.n.], 2017. p. 103-114. ISBN 978-1-5090-5501-2. Disponivel em:
<http://ieeexplore.ieee.org/document /7884613 />

OLIVEIRA, W.; OLIVEIRA, R.; CASTOR, F. A Study on the Energy Consumption of Android
App Development Approaches. In: 2017 IEEE/ACM 14th International Conference on Mining
Software Repositories (MSR). [S.l.: s.n.], 2017. ISBN 9781538615447.

OLIVEIRA, W.; OLIVEIRA, R.; CASTOR, F.; FERNANDES, B.; PINTO, G. Recommending
energy-efficient java collections. In: 2019 IEEE/ACM 16th International Conference on
Mining Software Repositories (MSR). [S.l.: s.n.], 2019. p. 160-170.

OLIVEIRA, W.; OLIVEIRA, R.; CASTOR, F.; PINTO, G.; FERNANDES, J. P.
Improving energy-efficiency by recommending java collections. Empirical Software
Engineering, v. 26, n. 3, p. 55, Apr 2021. ISSN 1573-7616. Disponivel em: <https:
//doi.org/10.1007 /s10664-021-09950-y>.

PALOMBA, F.; Di Nucci, D.; PANICHELLA, A.; ZAIDMAN, A.; De Lucia, A. On the
impact of code smells on the energy consumption of mobile applications. Information
and Software Technology, v. 105, p. 43-55, 2019. ISSN 0950-5849. Disponivel em:
<https:/ /www.sciencedirect.com /science/article/pii /S0950584918301678> .

https://doi.org/10.1109/MSR.2019.00034
https://doi.org/10.1007/s10664-018-9629-2
http://arxiv.org/abs/1610.05711
http://dl.acm.org/citation.cfm?id=2818754.2818848
http://ieeexplore.ieee.org/document/7884613/
https://doi.org/10.1007/s10664-021-09950-y
https://doi.org/10.1007/s10664-021-09950-y
https://www.sciencedirect.com/science/article/pii/S0950584918301678

146

PANG, C.; HINDLE, A.; ADAMS, B.; HASSAN, A. E. What do programmers know about
software energy consumption? IEEE Software, v. 33, n. 3, p. 83-89, May 2016. ISSN
0740-7459.

PATHAK, A.; HU, Y. C.; ZHANG, M. Where is the energy spent inside my app?: Fine grained
energy accounting on smartphones with eprof. In: Proceedings of the 7th ACM European

Conference on Computer Systems. New York, NY, USA: ACM, 2012. (EuroSys '12), p. 29-42.
ISBN 978-1-4503-1223-3. Disponivel em: <http://doi.acm.org/10.1145/2168836.2168841>.

PATHAK, A.; JINDAL, A.; HU, Y. C.; MIDKIFF, S. P. What is keeping my phone awake?:
Characterizing and detecting no-sleep energy bugs in smartphone apps. In: Proceedings of
the 10th International Conference on Mobile Systems, Applications, and Services. New York,
NY, USA: ACM, 2012. (MobiSys '12), p. 267-280. ISBN 978-1-4503-1301-8. Disponivel em:
<http://doi.acm.org/10.1145/2307636.2307661>.

PAYET, E.; SPOTO, F. Static analysis of android programs. Information and Software
Technology, Elsevier, v. 54, n. 11, p. 1192-1201, 2012.

PENZENSTADLER, B. Where attention goes, energy flows: Enhancing individual
sustainability in software engineering. In: Proceedings of the 7th International Conference
on ICT for Sustainability. New York, NY, USA: Association for Computing Machinery,
2020. (ICT4S2020), p. 139-146. ISBN 9781450375955. Disponivel em: |<https:
//doi.org/10.1145/3401335.3401684 >

PEREIRA, R.; a0, P. S.; CUNHA, J.; SARAIVA, J. jStanley: Placing a Green Thumb on Java
Collections. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. New York, NY, USA: ACM, 2018. (ASE 2018), p. 856—859. ISBN
978-1-4503-5937-5. Disponivel em: <http://doi.acm.org/10.1145/3238147.3240473>.

PEREIRA, R.; CARc3O, T.; COUTO, M.; CUNHA, J.; FERNANDES, J. P.; SARAIVA,
J. Spelling out energy leaks: Aiding developers locate energy inefficient code. Journal
of Systems and Software, v. 161, p. 110463, 2020. ISSN 0164-1212. Disponivel em:
<https://www.sciencedirect.com /science/article/pii/S0164121219302377>.

PEREIRA, R.; COUTO, M.; RIBEIRO, F.; RUA, R.; CUNHA, J.; FERNANDES, J. a. P
SARAIVA, J. a. Energy efficiency across programming languages: How do energy, time, and
memory relate? In: Proceedings of the 10th ACM SIGPLAN International Conference on
Software Language Engineering. New York, NY, USA: ACM, 2017. (SLE 2017), p. 256-267.
ISBN 978-1-4503-5525-4. Disponivel em: <http://doi.acm.org/10.1145/3136014.3136031>.

PEREIRA, R.; COUTO, M.; RIBEIRO, F.; RUA, R.; CUNHA, J.; FERNANDES,

J. P.; SARAIVA, J. Ranking programming languages by energy efficiency. Science of
Computer Programming, v. 205, p. 102609, 2021. ISSN 0167-6423. Disponivel em:
<https://www.sciencedirect.com /science/article/pii/S0167642321000022>.

PEREIRA, R.; COUTO, M.; SARAIVA, J.; CUNHA, J.; FERNANDES, J. P. The Influence
of the Java Collection Framework on Overall Energy Consumption. In: Proceedings of
the 5th International Workshop on Green and Sustainable Software. New York, NY,
USA: ACM, 2016. (GREENS '16), p. 15-21. ISBN 978-1-4503-4161-5. Disponivel em:
<http://doi.acm.org/10.1145/2896967.2896963 > .

http://doi.acm.org/10.1145/2168836.2168841
http://doi.acm.org/10.1145/2307636.2307661
https://doi.org/10.1145/3401335.3401684
https://doi.org/10.1145/3401335.3401684
http://doi.acm.org/10.1145/3238147.3240473
https://www.sciencedirect.com/science/article/pii/S0164121219302377
http://doi.acm.org/10.1145/3136014.3136031
https://www.sciencedirect.com/science/article/pii/S0167642321000022
http://doi.acm.org/10.1145/2896967.2896968

147

PEREIRA, R.; MATALONGA, H.; COUTO, M.; CASTOR, F.; CABRAL, B.; CARVALHO,
P.; SOUSA, S.; FERNANDES, J. Greenhub: a large-scale collaborative dataset to battery
consumption analysis of android devices. Empirical Software Engineering, v. 26, 05 2021.

PETERSON, M. Decisions under ignorance. In: . An Introduction to Decision Theory.
[S.I.]: Cambridge University Press, 2009. (Cambridge Introductions to Philosophy), p. 40-63.

PETERSON, P. A. H.; SINGH, D.; KAISER, W. J.; REIHER, P. L. Investigating energy and
security trade-offs in the classroom with the atom leap testbed. In: Proceedings of the 4th
Conference on Cyber Security Experimentation and Test. [S.l.: s.n.], 2011. (CSET'11), p.
11-11.

PINTO, G.; CASTOR, F. Energy efficiency: a new concern for application software developers.
Communications of the ACM, ACM, v. 60, n. 12, p. 68-75, 2017.

PINTO, G.; CASTOR, F.; LIU, Y. Mining questions about software energy consumption. In:
Proceedings of the 11th Working Conference on Mining Software Repositories. [S.l.: s.n.],
2014. (MSR 2014), p. 22-31.

PINTO, G.; CASTOR, F.; LIU, Y. D. Understanding energy behaviors of thread management
constructs. In: Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages and Applications. [S.l.: s.n.], 2014. (OOPSLA '14), p.
345-360. ISBN 978-1-4503-2585-1.

PINTO, G.; LIU, K.; CASTOR, F.; LIU, Y. D. A comprehensive study on the energy efficiency
of java thread-safe collections. In: ICSME. [S.1.: s.n.], 2016.

RATANAWORABHAN, P.; LIVSHITS, B.; ZORN, B. G. Jsmeter: comparing the behavior
of javascript benchmarks with real web applications. In: Proceedings of the 2010 USENIX
conference on Web application development. [S.l.: s.n.], 2010. p. 3-3.

ROCHA, G.; CASTOR, F.; PINTO, G. Comprehending energy behaviors of java i/o apis.
In: 2019 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). [S.I.: s.n.], 2019. p. 1-12.

RODRIGUES, R. E.; ALVES, P.; PEREIRA, F.; GONNORD, L. Real-world loops are easy to
predict: a case study. In: Workshop on Software Termination (WST'14). [S.l.: s.n.], 2014.

ROMANO, J.; KROMREY, J. D.; CORAGGIO, J.; SKOWRONEK, J. Appropriate statistics
for ordinal level data: Should we really be using t-test and cohen'’s d for evaluating group
differences on the NSSE and other surveys? In: Annual meeting of the Florida Association of
Institutional Research. [S.l.: s.n.], 2006.

ROMANSKY, S.; BORLE, N. C.; CHOWDHURY, S.; HINDLE, A.; GREINER, R. Deep
green: Modelling time-series of software energy consumption. In: 2017 IEEE International
Conference on Software Maintenance and Evolution (ICSME). [S.l.: s.n.], 2017. p. 273-283.

SABORIDO, R.; ARNAOUDOVA, V. V.; BELTRAME, G.; KHOMH, F.; ANTONIOL, G. On
the impact of sampling frequency on software energy measurements. [S.1.], 2015.

SABORIDO, R.; MORALES, R.; KHOMH, F.; GUEHENEUC, Y.-G.; ANTONIOL, G. Getting
the most from map data structures in Android. Empirical Software Engineering, mar 2018.
ISSN 1573-7616. Disponivel em: |<https://doi.org/10.1007 /s10664-018-9607-8>.

https://doi.org/10.1007/s10664-018-9607-8

148

SAHIN, C.; CAYCI, F.; GUTIERREZ, I. L. M.; CLAUSE, J.; KIAMILEV, F.; POLLOCK, L.;
WINBLADH, K. Initial explorations on design pattern energy usage. In: 2012 1st International
Workshop on Green and Sustainable Software, GREENS 2012 - Proceedings. [S.l.: s.n.],
2012. p. 55-61. ISBN 9781467318327.

SAHIN, C.; POLLOCK, L.; CLAUSE, J. How do code refactorings affect energy usage?
In: Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. [S.l.: s.n.], 2014. (ESEM '14), p. 36:1-36:10. ISBN
978-1-4503-2774-9.

SAHIN, C.; POLLOCK, L.; CLAUSE, J. From benchmarks to real apps: Exploring the energy
impacts of performance-directed changes. Journal of Systems and Software, v. 117, p.
307-316, 2016. ISSN 0164-1212. Disponivel em: <https://www.sciencedirect.com /science/
article/pii/S0164121216000893>.

SARAIVA, J. A.; ZONG, Z.; PEREIRA, R. Bringing green software to computer science
curriculum. In: To appear in 26th ACM Conference on Innovation and Technology in
Computer Science Education. [S.].: s.n.], 2021.

SHAPIRO, S. S.; WILF, M. B. An Analysis of Variance Test for Normality (complete
samples). Biometrika, v. 52, n. 3-4, p. 591-611, 1965.

SILVA-FILHO, A.; BEZERRA, P.; SILVA, F. Q.; JUNIOR, A.; SANTOS, A. L.; COSTA, P,
MIRANDA, R. Energy-aware technology-based dvfs mechanism for the android operating
system. In: IEEE. Computing System Engineering (SBESC), 2012 Brazilian Symposium on.
[S.1.], 2012. p. 184-187.

SILVA, J. C. R. da; PEREIRA, F. M. Q.; FRANK, M.; GAMATIE, A. A compiler-centric
infra-structure for whole-board energy measurement on heterogeneous android systems.

In: IEEE. 2018 13th International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC). [S.l.], 2018. p. 1-8.

SIMUNIC, T.; BENINI, L.; De Micheli, G.; HANS, M. Source code optimization and profiling
of energy consumption in embedded systems. In: Proceedings of the International Symposium
on System Synthesis. [S.l.: s.n.], 2000. v. 2000-January, p. 193-198. ISBN 0769507654. ISSN
10801820.

SUBRAMANIAM, B.; FENG, W.-c. Towards energy-proportional computing for enterprise-
class server workloads. In: Proceedings of the 4th ACM/SPEC International Conference on
Performance Engineering. [S.l.: s.n.], 2013. (ICPE '13), p. 15-26. ISBN 978-1-4503-1636-1.

TANG, Q.; LYU, H.; HAN, G.; WANG, J.; WANG, K. Partial offloading strategy for mobile
edge computing considering mixed overhead of time and energy. Neural Computing and
Applications, v. 32, n. 19, p. 15383-15397, Oct 2020. ISSN 1433-3058. Disponivel em:
<https://doi.org/10.1007 /s00521-019-04401-8>.

TAWALBEH, M.; EARDLEY, A. et al. Studying the energy consumption in mobile devices.
Procedia Computer Science, Elsevier, v. 94, p. 183-189, 2016.

THIAGARAJAN, N.; AGGARWAL, G.; NICOARA, A.; BONEH, D.; SINGH, J. P. Who Killed
My Battery: Analyzing Mobile Browser Energy Consumption. In: Proceedings of the 21st
international conference on World Wide Web - WWW '12. New York, NY, USA: ACM, 2012.

https://www.sciencedirect.com/science/article/pii/S0164121216000893
https://www.sciencedirect.com/science/article/pii/S0164121216000893
https://doi.org/10.1007/s00521-019-04401-8

149

(WWW '12), p. 41. ISBN 9781450312295. Disponivel em: <http://doi.acm.org/10.1145/
2187836.2187843http://dl.acm.org/citation.cfm?doid=2187836.2187843>.

TIWARI, V.; MALIK, S.; WOLFE, A. Power analysis of embedded software: A first step
towards software power minimization. [EEE Transactions on VLS| Systems, v. 2, p. 437-445,
1994.

WAN, M.; JIN, Y.; LI, D.; GUI, J.; MAHAJAN, S.; HALFOND, W. G. Detecting display
energy hotspots in android apps. Software Testing, Verification and Reliability, Wiley Online
Library, v. 27, n. 6, p. e1635, 2017.

WILKE, C.; PIECHNICK, C.; RICHLY, S.; PuSCHEL, G.; G6TZ, S.; ASSMANN, U. Comparing
mobile applications’ energy consumption. In: Proceedings of the 28th Annual ACM Symposium
on Applied Computing. New York, NY, USA: ACM, 2013. (SAC '13), p. 1177-1179. ISBN
978-1-4503-1656-9. Disponivel em: <http://doi.acm.org/10.1145/2480362.2430583>.

WILKS, D. S. Statistical methods in the atmospheric sciences. Amsterdam; Boston:
Elsevier Academic Press, 2011. ISBN 9780123850225 0123850223. Disponivel em:
<https://www.amazon.com/Statistical-Atmospheric-Sciences-International-Geophysics /
dp/0123850223 /ref=pd_bxgy_14_img_37_encoding=UTF8&psc=1&refRID=
ESPQQOR2PB1TP1VISGCZ>|

WU, H.; YANG, S.; ROUNTEV, A. Static detection of energy defect patterns in android
applications. In: International Conference on Compiler Construction. [S.l.: s.n.], 2016. p.
185-195.

XU, F.; LIU, Y.; LI, Q.; ZHANG, Y. V-edge: Fast self-constructive power modeling of
smartphones based on battery voltage dynamics. In: nsdi. [S.l.: s.n.], 2013. v. 13, p. 43-56.

YANG, S.; WU, H.; ZHANG, H.; WANG, Y.; SWAMINATHAN, C.; YAN, D.; ROUNTEV,
A. Static window transition graphs for Android. International Journal of Automated Software
Engineering, p. 1-41, jun. 2018.

ZHANG, S.; LU, H.; ERNST, M. D. Finding errors in multithreaded gui applications. In:
ACM. Proceedings of the 2012 International Symposium on Software Testing and Analysis.
[S.1.], 2012. p. 243-253.

ZIMMERLE, C.; OLIVEIRA, W.; GAMA, K.; CASTOR, F. Reactive-based complex event
processing: An overview and energy consumption analysis of cep.js. In: Proceedings of the
XXXIII Brazilian Symposium on Software Engineering. New York, NY, USA: Association for
Computing Machinery, 2019. (SBES 2019), p. 84-93. ISBN 9781450376518. Disponivel em:
<https://doi.org/10.1145/3350768.3352492> .

http://doi.acm.org/10.1145/2187836.2187843 http://dl.acm.org/citation.cfm?doid=2187836.2187843
http://doi.acm.org/10.1145/2187836.2187843 http://dl.acm.org/citation.cfm?doid=2187836.2187843
http://doi.acm.org/10.1145/2480362.2480583
https://www.amazon.com/Statistical-Atmospheric-Sciences-International-Geophysics/dp/0123850223/ref=pd_bxgy_14_img_3?_encoding=UTF8&psc=1&refRID=ESPQQ0R2PB1TP1VJSGCZ
https://www.amazon.com/Statistical-Atmospheric-Sciences-International-Geophysics/dp/0123850223/ref=pd_bxgy_14_img_3?_encoding=UTF8&psc=1&refRID=ESPQQ0R2PB1TP1VJSGCZ
https://www.amazon.com/Statistical-Atmospheric-Sciences-International-Geophysics/dp/0123850223/ref=pd_bxgy_14_img_3?_encoding=UTF8&psc=1&refRID=ESPQQ0R2PB1TP1VJSGCZ
https://doi.org/10.1145/3350768.3352492

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Development Approaches
	Java Collections
	The Contributions
	Organization

	Background
	Android Infrastructure
	Android Application Development
	Android Energy Awareness
	Measuring Energy Consumption
	Android Power Profiler
	Static Program Analysis
	T.J. Watson Libraries for Analysis

	Design Diversity
	Energy Design Diversity

	The Energy Footprint of Android Development Approaches
	Methodology
	Benchmarks and apps
	Running the experiments

	Study results
	Is there a more energy efficient app development approach?
	Can a hybrid approach to app development save energy?

	Discussion
	Threats to Validity
	Related Work
	Conclusion

	Optimizing Java Collections
	Java Collections
	Overview of the Proposed Approach
	Instantiation for Java Collections
	Evaluation
	Analyzing different devices
	Methodology
	Study results

	Analyzing different profiles
	Methodology
	Study Results

	Discussion
	Threats to Validity
	Related Work
	Conclusion

	Thesis Conclusion
	Summary
	The Contributions
	Future Work
	Refining this thesis
	Beyond this thesis
	Cross-platform frameworks
	Screen Colors
	Energy Linter

	References

