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ABSTRACT

For future quantum computation developments, it is important to address the issue of

quantifying the amount of resources of a certain number of copies of quantum states. This

is a hard problem, often involving optimizations over Hilbert spaces of large dimensions.

We propose a way to circumvent the direct evaluation of such quantities, provided that

the employed quantifiers satisfy a self-similarity property, which we call scalability. This

property is in essence a constraint on the way certain quantities can scale with the number

of copies of a given system. If analyticity is assumed, recursive relations can be derived for

the Maclaurin series of ℰ(𝜚⊗𝑁), which enables us to determine its possible functional forms.

Our approach sets possible ways in which a broad class of quantum functions can scale

with the number of copies of a quantum state, describing very simply the non-additivity

of some relevant resources, such as quantum coherence and distillable entanglement. A

generalization of linear scalable functions is formalized.

Keywords: Scalability. Non-Additivity. Many-qudit Resources. Quantum Coherence. Dis-

tillable Entanglement.



RESUMO

Para futuros desenvolvimentos em computação quântica, é importante abordar o

problema em quantificar o total de recursos para um certo número de cópias de estados

quânticos. Esse é um problema difícil, ocasionalmente envolvendo otimizações sobre es-

paços de Hilbert de alta dimensão. Nós propomos uma forma de contornar a avaliação

direta dessas quantidades, desde que os quantificadores estudados satisfaçam uma relação

de autossimilaridade que nós chamamos de escalabilidade. Essa propriedade é, em essên-

cia, uma restrição à maneira que certas quantidades escalam com o número de cópias de

um certo sistema. Se assumirmos analiticidade, relações de recorrência podem ser deriva-

das para a série de Maclaurin de ℰ(𝜚⊗𝑁), o que nos permite determinar as suas possíveis

formas funcionais. Nossa abordagem fixa os possíveis comportamentos de uma classe ex-

tensa de funções quânticas com o número de cópias de um estado quântico, descrevendo

de forma bastante simples a não aditividade de alguns recursos relevantes, como coerência

quântica e emaranhamento destilável. Uma generalização para funções escaláveis lineares

é formalizada.

Palavras-chaves: Escalabilidade. Não Aditividade. Recursos de Muitos Qudits. Coerên-

cia Quântica. Emaranhamento Destilável.
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1 INTRODUCTION

If one takes 𝑁 copies of a certain quantum state (maybe for doing some protocol of pro-

cess) a relevant question is how to determine the amount of resources1 for 𝜚⊗𝑁 . In quantum

mechanics this may be a impractical problem due to the exponential growth of the Hilbert

space dimension as the number of copies increases linearly, which justifies computational

optimizations (BUSCEMI; DATTA, 2010) over large dimensional Hilbert spaces. Naturally

there are asymptotic results (𝑁 → ∞) in the literature, however, in actual situations the

number of copies is always finite and the asymptotic regime may become dominant only

for an impractible number of copies (FANG X. WANG; DUAN, 2019). Therefore, an alter-

native way to addres the problem of quantifying quantum functions for a large but finite

number of copies of a state could be theoretically important and computationally usefull.

Figure 1 – Illustration of the problem we ad-

dress in this dissertation.

Source: the author (2021).

The way a quantum function ℰ(𝜚⊗𝑁) sca-

les with the number of copies may be very

simple, as the additivity of the squashed

entanglement (BUSCEMI; DATTA, 2004)

and the logarithmic negativity (VIDAL;

WERNER, 2002); or may be more compli-

cated, as the entanglement of formation

(TOMAMICHEL; RENES, 1996), which has

been ultimately shown to be non-additive

(HASTINGS, 2009), or as the entanglement

distillation (WATROUS, 2004), which has

been shown to be “nonlinear with respect

to the number of copies used in the distillation process”. This is actually the case of

most quantifiers (the relative entropy of entanglement (VEDRAL M. B. PLENIO; KNIGHT,

1997), the distillable entanglement (BUSCEMI; DATTA, 2010; RAINS, 1999), the geome-

tric distance (BARNUM; LINDEN, 2001) and the geometric measure of entanglement (ZHU;

HAYASHI, 2010)), nonlinear behaviors are quite common in nature. The main question of

this work is: is there a general property that these functions satisfy?
1 The term “resource” here is employed in the general sense, since the results are actually general

properties a quantum function might present and not necessarilly restrict to resource theories.
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Instead of directly employing the calculation of some quantifiers for large Hilbert spaces

(which can be a very hard problem) we will be interested in a different approach. If we

assume that the quantum function of interest is analytical and supose that ℰ(𝜚⊗𝑎) is a

function of ℰ(𝜚), 𝑎 being a small number of copies, then we show that the series expansion

ℰ(𝜚⊗𝑎) and the series expansion ℰ(𝜚⊗𝑁), for 𝑁 copies, are connected in a specific way if

the function is, by our definition, scalable (PARISIO, 2020). So the problem is restated

as the calculation of the coefficients in a series expansion.

The aforementioned requirement that ℰ(𝜚⊗𝑁) be a function of ℰ(𝜚), which is inspired

by the additive case ℰ(𝜚⊗𝑁) = 𝑁ℰ(𝜚) (but with linearity constraint lifted), is what we

define as 1-extensibility. This mathematical feature enables us to study a broad class

of functions (the so called 1-extensible functions) with different behaviors in terms of the

number of copies 𝑁 .

In quantum theory, a dramatic manifestation of non-additivity is the phenomenon of su-

peractivation, for which, given a particular quantifier ℰ , one may find states 𝜚, such that

ℰ(𝜚) = 0 and ℰ(𝜚 ⊗ 𝜚) > 0, as is the case of the distillation of

Figure 2 – Sketch of a

2-extensible func-

tion.

Source: the author (2021).

entanglement (WATROUS, 2004), the bound entangle-

ment (SHOR; THAPLIYAL, 2003) and the quantum stee-

ring (QUINTINO; HUBER, 2016). So ℰ(𝜚) may not contain

enough information to determine ℰ(𝜚⊗𝑁). Therefore, con-

sider the question: how the amount of resources embodied

by several copies of a state relates to those of fewer co-

pies?

To get a more general approach, we ask what are the va-

riables that possibly determine ℰ(𝜚⊗𝑁) and how it de-

pends on them. We can start enlarging the notion of ad-

ditivity, ℰ(𝜚⊗𝑁) = 𝑁ℰ(𝜚), and relax this form to get

a more general dependence: for example, ℰ(𝜚⊗𝑁) could

be a function of ℰ(𝜚) and ℰ(𝜚⊗2) (illustrated in Figure

2).
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ℰ
(︁
𝜚⊗𝑁

)︁
≈ 𝐸(𝑁) [ℰ(𝜚)] ? → 1-extensible

or

ℰ
(︁
𝜚⊗𝑁

)︁
≈ 𝐸(𝑁)[ℰ(𝜚), ℰ(𝜚⊗2)] ? → 2-extensible

𝐸(𝑁) is numerically equal to ℰ(𝜚⊗𝑁), but with a different domain. Enlarging this possibi-

lity, we study the class of functions which satisfies ℰ(𝜚⊗𝑁) = 𝐸(𝑁)[ℰ(𝜚), ℰ(𝜚⊗2), . . . , ℰ(𝜚⊗𝑖𝑞)]

(with 𝑖𝑞 < 𝑁), which we denote as q-extensible functions, and with this approach we de-

rive interesting properties that help the evaluation of non-additive behaviors of quantum

functions. The mentioned concepts of Extensibility and Scalability are the central themes

of the first chapter and the main tools for the investigation of this dissertation.

One case treated in this work is quantum coherence, which is an important feature in

quantum theory and is useful for many fields of physics. We use some of the well accep-

ted quantifiers of this resource (BAUMGRATZ; PLENIO, 2014) to ensure the validity of the

method. Also it is an interesting example of how scalability works because we show that

the way one quantifies coherence implies (or not) its non-additivity.

The structure of the dissertation is organized as follows: in chapter 2 we make preli-

minary definitions, like Extensibility, to define the concept of Scalability, and then we

apply the theory to the 𝑙1-norm of coherence and also to the squared Hilbert-Schmidt

norm (BAUMGRATZ; PLENIO, 2014). In chapter 3 we extend the previous results to the

2-𝑆 case (functions that depend only on ℰ(𝜚), ℰ(𝜚⊗2) and 𝑁 , for instance); here the one-

shot-distillable entanglement of an 𝑁 -fold mixture of Bell states (FANG X. WANG; DUAN,

2019) and the phenomenon of superactivation (SHOR; THAPLIYAL, 2003; QUINTINO; HU-

BER, 2016) are discussed as examples. Finally, chapter 4 is dedicated to formalize the

general linear solution of a 𝑞-𝑆 function (here the 3-𝑆 form is derived and compared with

computational data of a well known quantifier, the one-shot-distillable entanglement of

an 𝑁 -fold isotropic state (FANG X. WANG; DUAN, 2019)).
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2 1-SCALABLE FUNCTIONS

“On the surface, there was always an impeccably realistic world, but un-

derneath, behind the backdrop’s cracked canvas, lurked something different,

something mysterious or abstract.”

– Milan Kundera, The Unbearable Ligthness of Being

The method presented here intends to circumvent the problem of quantifying a certain

function of interest for many copies of a quantum state. The method, which can only

be used if the quantum function under study satisfies a self-similarity property called

scalability, reveals an intimate relation between a broad class of quantum functions.

2.1 PRELIMINARIES AND NOTATION

Let 𝜚 ∈ ℬ(ℋ), where ℬ(ℋ) is the Hilbert-Schmidt space1. Consider the various arbitrary

ways one can express the 𝑁 -fold quantum state 𝜚⊗𝑁 :

𝜚⊗𝑁 = 𝜚⊗𝑁/2 ⊗ 𝜚⊗𝑁/2 = 𝜚⊗𝑁/4 ⊗ 𝜚⊗𝑁/4 ⊗ 𝜚⊗𝑁/4 ⊗ 𝜚⊗𝑁/4 = . . .

. . . = 𝜚⊗ ...⊗ 𝜚⏟  ⏞  
𝑁 times

, (2.1)

where we are assuming that 𝑁 = 2𝑛. Note that one can take 𝑁 = 2𝑛 and 𝐾 = 2𝑘 with

𝑘 < 𝑛 and group the 𝑁 -fold density matrix 𝜚⊗𝑁 in a different way:

𝜚⊗𝑁 = (𝜚⊗𝐾)⊗𝑁/𝐾 = 𝜎⊗𝑁/𝐾 with 𝜎 = 𝜚⊗𝐾 . (2.2)

In general, is convenient to consider 𝑁,𝐾 ∈ P𝑎, where P𝑎 denotes the set of all integer

powers of 𝑎:

Pa = {1, 𝑎, 𝑎2 . . .}. (2.3)

We denote by quantum function ℰ(𝜚) an operation ℰ : ℬ(ℋ) → 𝑅+. It is well known that

we may have ℰ(𝜚⊗𝑁) = 0 even when the state 𝜚⊗𝑁 does contain some finite amount of

the considered quantity 2. We reserve the term “zero-resource state” for those states that
1 The space of all density matrices. It is constructed by the tensor product ℋ* ⊗ ℋ, where ℋ is the

Hilbert space and ℋ* is its dual, the space of linear maps from ℋ to the complex numbers (BENGTSSON;
ZYCZKOWSKI, 2017).

2 For instance, the negativity of bound entangled states 𝜚𝑏 vanishes, although 𝜚𝑏 is not separable (ZHU;
HAYASHI, 2010)
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indeed contain no resource, e. g., separable states for entanglement, incoherent states for

coherence, and so on. For any quantifier we will assume that ℰ(𝜚) = 0 for zero-resource

states 𝜚, but not the other way around.

In particular, we assume that a quantum function ℰ must be compatible with the tensor

product structure (2.2), this is:

ℰ(𝜚⊗𝑁) = ℰ(𝜎⊗𝑁/𝐾), (2.4)

to be physically acceptable, e. g., the quantification of ℰ for the states 𝜚⊗𝑁 and 𝜎⊗𝑁/𝐾 ,

as in (2.2), should be equivalent.

As discussed in the introduction, we intend to circumvent the problem of quantifying

ℰ(𝜚⊗𝑁) by studying the class of functions which can be written in terms of a set evaluated

for fewer copies ℰ(𝜚⊗𝑖ℓ), with {𝑖ℓ}𝑞
ℓ=1 being an arbitrary ordered set of 𝑞 integers (𝑖𝑞 < 𝑁).

The referred set is fixed and it does not depend on 𝑁 for some state 𝜚. In what follows

we call ℰ(𝜚⊗𝑖ℓ) = 𝑒𝑖ℓ
and represent an arbitrary subset of the natural numbers as 𝒮N.

Definition 1: Let ℰ(𝜚⊗𝑁) : ℬ
(︁
ℋ⊗𝑁

)︁
→ 𝑅+ be a quantum function that depends

exclusively on 𝜚 and 𝑁 ∈ 𝒮N. If one can express ℰ(𝜚⊗𝑁) as a function of the vector

(𝑒𝑖1 , ..., 𝑒𝑖𝑞) ≡ e and 𝑁 , where {𝑖ℓ}𝑞
ℓ=1 is an arbitrary ordered set of 𝑞 integers, then:

ℰ(𝜚⊗𝑁) = 𝐸(𝑁)(𝑒𝑖1 , ..., 𝑒𝑖𝑞) = 𝐸(𝑁)(e). (2.5)

We say that ℰ(𝜚⊗𝑁) is 𝑞-extensible (𝑞-𝐸) with respect to 𝜚 and 𝒮N (PARISIO, 2020).

We call the vector e a basis of functions, with respect to 𝜚 and ℰ . Note that while

ℰ(𝜚⊗𝑁) : ℬ
(︁
ℋ⊗𝑁

)︁
→ 𝑅+, 𝐸(𝑁)(e) : 𝒮N ×𝑅𝑞

+ → 𝑅+, so that, typically, the domain of the

latter has a dimension which is much lower than that of the former.

A simple example: consider 5 copies of an arbitrary qubit 𝜚 and a quantum function or

some figure of merit concerning these qubits as 𝒢, suppose that this quantifier is a 2-𝐸

function following definition (2.5). If {𝑖ℓ}2
ℓ=1 = {1, 2}, for instance, the basis of functions

g = (𝑔1, 𝑔2) = (𝒢(𝜚),𝒢(𝜚⊗2)) completely determines 𝒢(𝜚⊗𝑁) = 𝐺(𝑁)(g). So while ℬ (ℋ⊗5)

has dimension 𝑑 = 25, the referred function 𝐺(5)(𝑔1, 𝑔2) is determined by 2 numbers only.
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Because of (2.2) and the requirement that 𝑁,𝐾 ∈ P𝑎, in this dissertation we will sim-

plify our object of study to the class of quantum functions which satisfies ℰ(𝜚⊗𝑁) =

𝐸[ℰ(𝜚), ℰ(𝜚⊗𝑎), ..., ℰ(𝜚⊗𝑎𝑞−1)], with 𝑎𝑞 < 𝑁 . So we specify the set {𝑖ℓ}𝑞
ℓ=1 by 𝑖ℓ = 𝑎ℓ−1:

(ℰ(𝜚), ℰ(𝜚⊗𝑎), ..., ℰ(𝜚⊗𝑎𝑞−1)) = (𝑒1, 𝑒2, ..., 𝑒𝑞) ≡ e, (2.6)

or, in a compact form, 𝐸(𝑎ℓ)(e) = eℓ+1.

1-extensible (1-𝐸) functions (the case where the vector e has only one component 𝑒1 =

𝐸(1)(𝑒1) = ℰ(𝜚)), e. g., functions that satisfy:

ℰ(𝜚⊗𝑁) = 𝐸(𝑁)(𝑒1), (2.7)

are the object of study of this chapter. It is important to remark, as discussed in the

introduction, that several quantifiers cannot be described by this class of functions, e. g.,

those that allow for superactivation (SHOR; THAPLIYAL, 2003; QUINTINO; HUBER, 2016).

2.2 1-SCALABILITY

Now we state that there is a simple, but non-trivial, constraint that follows from ex-

tensibility (2.5) and from compatibility with the tensor product structure (2.4). It is a

self-similarity relation which we call scalability (PARISIO, 2020). For pedagogic purposes,

we initially refer to 1-𝐸 functions.

Proposition 1: Let 𝜚 ∈ ℬ (ℋ) and 𝑁,𝐾 ∈ Pa with 𝐾 < 𝑁 . If ℰ is a 1-𝐸 quantum

function with respect to 𝜚 and P𝑎, then, by definition (2.5):

𝐸(𝑁)(𝑒1) = 𝐸(𝑁/𝐾)
[︁
𝐸(𝐾)(𝑒1)

]︁
, (2.8)

where 𝑒1 = ℰ(𝜚). We say that a 1-𝐸 function that satisfies (2.8) is a 1-scalable (1-𝑆)

function (PARISIO, 2020).

Proof:

Because ℰ(𝜚⊗𝑁) is a 1-extensible function, our notation and (2.2) implies:

𝐸(𝑁)(𝑒1) = ℰ(𝜚⊗𝑁) = ℰ(𝜎⊗𝑁/𝐾) = 𝐸(𝑁/𝐾) [ℰ(𝜎)] . (2.9)
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We may use the notation again to rewrite:

ℰ(𝜎) = ℰ(𝜚⊗𝐾) = 𝐸(𝐾)(𝑒1), (2.10)

then (2.9) becomes:

𝐸(𝑁)(𝑒1) = 𝐸(𝑁/𝐾)
[︁
𝐸(𝐾)(𝑒1)

]︁
,

and the proof is finished.

A consequence of (2.8) is that the function 𝐸(𝑎)(𝑒1) completely determines 𝐸(𝑁)(𝑒1). Set-

ting 𝐾 = 𝑎 in (2.8), it is immediate via finite induction that:

𝐸(𝑁)(𝑒1) = 𝐸(𝑁/𝑎)
(︁
𝐸(𝑎)(𝑒1)

)︁
= 𝐸(𝑁/𝑎2)

(︁
𝐸(𝑎)

(︁
𝐸(𝑎)(𝑒1)

)︁)︁
= . . .

𝐸(𝑁)(𝑒1) = 𝐸(𝑎) ∘ 𝐸(𝑎) ∘ · · · ∘ 𝐸(𝑎) ∘ 𝐸(𝑎)(𝑒1)⏟  ⏞  
n times

, (2.11)

where ∘ denotes composition and 𝑛 = log𝑎 𝑁 . This means that if 𝑎 = 2, for exam-

ple, ℰ(𝜚⊗4), ℰ(𝜚⊗8), etc, are completely determined by the properties of ℰ(𝜚⊗2). In other

words, for 1-𝐸 nonlinear functions, the way 𝐸(𝑎) deviates from linearity completely de-

termines the functions 𝐸(𝑎𝑛).

To give a simple example of the kind of constraint the previous result imposes, consider a

hypothetical 1-𝐸 function 𝐸(𝑁)(𝑒1) = 𝑁𝜆𝑁−1𝑒1 (𝜆 ̸= 0). At first glance it seems a natural

candidate as a consistent quantifier of a physical quantity related to 𝑁 copies of a certain

system. Note that 𝐸(0)(𝑒1) = 0 and 𝐸(1)(𝑒1) = 𝑒1, as it should be. However, according to

(2.8):

𝐸(𝑁/𝐾)
(︁
𝐾𝜆𝐾−1𝑒1

)︁
= 𝑁

��𝐾
𝜆𝑁/𝐾−1

(︁
��𝐾𝜆𝐾−1𝑒1

)︁

= 𝑁𝜆𝑁/𝐾+𝐾−2𝑒1 ̸= 𝐸(𝑁)(𝑒1).

This result does not coincide with the left-hand side, therefore this function would not be

compatible with the tensor product structure.
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On the other hand, the additive case ℰ(𝜚⊗𝑁) = 𝑁ℰ(𝜚)3:

𝐸(𝑁/𝐾)[𝐸(𝐾)(𝑒1)] = 𝑁

𝐾
𝐸(𝐾)(𝑒1) = 𝑁

��𝐾
��𝐾𝑒1 = 𝐸(𝑁)(𝑒1), (2.12)

where 𝑒1 = ℰ(𝜚), trivially satisfies relation (2.8). This is the case of some relevant quantum

functions like the logaritmic negativity (VIDAL; WERNER, 2002) and the Von Newmann

entropy (BENGTSSON; ZYCZKOWSKI, 2017).

Another simple example, which we call multiplicative, is the function 𝐸(𝑁)(𝑒1) = 𝑒𝑁
1 (the

reader can easily check in (2.8)), this is the case of the pure-state entanglement measure

(for 𝑁 even) (LI XIANGRONG LI; LI, 2007; LI XIANGRONG LI; LI, 2009). However, (2.8)

allows for more complicated depedencies as we will see in the following sections. For

instance, this possibility can be enlarged to:

𝐸(𝑁)(𝑒1) = 𝜆(𝑁)𝑒𝑁
1 , (2.13)

with 𝜆(𝑁) being a hypotetical function of 𝑁 only. We can use the 1-scalability relation

(2.8) to determine the condition for 𝜆(𝑁):

𝜆(𝑁) = 𝜆(𝑁/𝐾)[𝜆(𝐾)]𝑁
𝐾 . (2.14)

For any compatible with the tensor product structure quantum function of the form (2.13),

the relation (2.14) must be satisfied. Note that the function 𝜆(𝑁) = 𝜆𝑁−1, with 𝜆 ∈ R+,

is a solution of (2.14).

𝜆(𝑁) = 𝜆
𝑁
𝐾

−1[𝜆𝐾−1]𝑁
𝐾 = 𝜆𝐾 𝑁

𝐾
−1 = 𝜆𝑁−1 (2.15)

The solution 𝐸(𝑁)(𝑒1) = 𝜆𝑁−1𝑒𝑁
1 is a non-trivial possibility of (2.8) and it will be derived

from the tools to be defined in the next section.

3 A stronger notion of additivity is ℰ(𝜚 ⊗ 𝜎) = ℰ(𝜚) + ℰ(𝜎), for all pairs of states 𝜚 and 𝜎, but in this
dissertation whenever we refer to additivity we mean the weaker condition.
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2.3 ANALYTIC SCALABLE FUNCTIONS

From this point we proceed by considering functions 𝐸(𝑁)(e) which are analytic in the

vicinity of e = 0. In the 1-𝑆 case this corresponds to the existence of a power series that

converges to 𝐸(𝑁)(𝑒1) in some non-vanishing interval [0, 𝜖𝑁), 𝜖𝑁 > 0. In the general 𝑞-𝑆

case, analyticity amounts to functions 𝐸(𝑁)(e) which have a power series that converges

to 𝐸(𝑁)(e) in some 𝑞-ball (𝑞 being the number of elements in the basis of functions e) of

finite radius 𝜖𝑁 (restricted to the positive hyperoctant) centered at e = 0.

2.4 1-𝑆 RECURRENCE RELATIONS

For a 1-𝑆 function take 𝑒1 = ℰ(𝜚) and supose that 𝐸(𝑁)(𝑒1) is analytic at 𝑒1 = 0. More

precisely, we will assume that the function 𝐸(𝑁)(𝑒1) has a Maclaurin series that converges

in the non-vanishing interval [0, 𝜖𝑁) with 𝜖𝑁 > 0:

𝐸(𝑁)(𝑒1) =
∞∑︁

𝑘=1
𝑑𝑘(𝑁)𝑒𝑘

1. (2.16)

If we suppose that this series, instead of being infinite, has an upper limit which depends

only on 𝑁 , 𝐸(𝑁)(𝑒1) = ∑︀𝐿(𝑁)
𝑘=1 𝑑𝑘(𝑁)𝑒𝑘

1, we can find a simple equation for it. Expanding

both sides of (2.8) with the assumption of analyticity (2.16) we get:

𝐸(𝑁)(𝑒1) =
𝐿(𝑁/𝐾)∑︁

𝑙=1
𝑑𝑙(𝑁/𝐾)

[︁
𝐸(𝐾)(𝑒1)

]︁𝑙
𝐿(𝑁)∑︁
𝑘=1

𝑑𝑘(𝑁)𝑒𝑘
1 =

𝐿(𝑁/𝐾)∑︁
𝑙=1

𝑑𝑙(𝑁/𝐾)
⎡⎣𝐿(𝐾)∑︁

𝑚=1
𝑑𝑚(𝐾)𝑒𝑚

1

⎤⎦𝑙

. (2.17)

This means that if the series is limited, the function 𝐿(𝑁) must satisfy:

𝐿(𝑁) = 𝐿(𝑁/𝐾)𝐿(𝐾). (2.18)

Choosing 𝐾 = 𝑎 (remember that 𝑁 ∈ P𝑎) and changing the notation 𝐿(𝑁) to 𝐿𝑛 we get

the recurrence 𝐿𝑛 = 𝐿𝑛−1𝐿1, which has a simple solution:

𝐿(𝑁) = [𝐿(𝑎)]log𝑎 𝑁 , (2.19)

where 𝐿(𝑎) is the upper limit of the series expansion of 𝐸(𝑎)(𝑒1). Evidently, if 𝐿(𝑎) → ∞

then, of course, 𝐿(𝑁) → ∞.
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Table 1 – Upper limit of the 1-𝑆 series.

𝑎 2 3
𝐿(𝑎) = 1 𝐿(𝑁) = 1 𝐿(𝑁) = 1
𝐿(𝑎) = 2 𝐿(𝑁) = 𝑁 𝐿(𝑁) = 2log3 𝑁

𝐿(𝑎) = 3 𝐿(𝑁) = 3log2 𝑁 𝐿(𝑁) = 𝑁

Source: the author (2021).

Table 1 lists (2.19) for 𝑎 = 2, 3 using the values 𝐿(𝑎) = 1, 2, 3, as an example. In particu-

lar, note that if 𝐿(𝑎) = 𝑎 the series for 𝑁 copies ends at 𝑁 . This will an important feature

for determining the scalability properties of coherence related quantifiers in section 2.5.

The following results do not rely on the assumption of a finite series, being also valid for

infinite expansions (2.16). Combining terms order by order in (2.17), we get (PARISIO,

2020):

𝑑1(𝑁) = 𝑑1(𝑁/𝐾)𝑑1(𝐾),

𝑑2(𝑁) = 𝑑1(𝑁/𝐾)𝑑2(𝐾) + 𝑑2(𝑁/𝐾)[𝑑1(𝐾)]2. (2.20)

Theorem 1.1: The general recursive relation for the Maclaurin series coefficients

of a 1-𝑆 analytic function is given by:

𝑑𝑗(𝑁) =
𝑗∑︁

𝑙=1
𝑑𝑙(𝑁/𝐾)

⎛⎝ 𝑗 − 1

𝑙 − 1

⎞⎠
∑︁
𝑖=1

𝜋𝑖(𝑗, 𝑙;𝐾), (2.21)

where 𝜋𝑖(𝑗, 𝑙;𝐾) = 𝑑𝜇𝑖
1
(𝐾)𝑑𝜇𝑖

2
(𝐾) . . . 𝑑𝜇𝑖

𝑙
(𝐾), with (𝜇𝑖

1, . . . , 𝜇
𝑖
𝑙) being the 𝑖-th com-

position of 𝑗 into 𝑙 parts (PARISIO, 2020).

Recalling the definition of composition: A composition of an integer 𝑗 in 𝑙 parts is an

ordered sum 𝑗 = 𝜇1 + 𝜇2 + · · · + 𝜇𝑙, of strictly positive integers. A well-known result in

enumerative combinatorics is that there are
⎛⎝ 𝑗 − 1

𝑙 − 1

⎞⎠ such compositions (MIER, 2004).

For instance, there are 2 compositions of the integer 𝑗 = 3 in 𝑙 = 2 parts: 1 + 2 and 2 + 1.

This result was previously proven and discussed in (PARISIO, 2020).
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Note that each recurrence 𝑑𝑗(𝑁) depends on the previous relations 𝑑𝑙<𝑗(𝑁). We may

continue the list (2.20) to get more coefficients. The third one, for example:

𝑑3(𝑁) = 𝑑1(𝑁/𝐾)𝜋1(3, 1, 𝐾) + 𝑑2(𝑁/𝐾)
2∑︁

𝑖=1
𝜋𝑖(3, 2, 𝐾) + 𝑑3(𝑁/𝐾)𝜋1(3, 3, 𝐾)

= 𝑑1(𝑁/𝐾)𝑑3(𝐾) + 𝑑2(𝑁/𝐾)[𝜋1(3, 2, 𝐾) + 𝜋2(3, 2, 𝐾)] + 𝑑3(𝑁/𝐾)[𝑑1(𝐾)]3.

As the number 3 can be composed as the pairs 1+2 and 2+1, 𝜋1(3, 2, 𝐾) = 𝜋2(3, 2, 𝐾) =

𝑑1(𝐾)𝑑2(𝐾) and then we have the following recurrence:

𝑑3(𝑁) = 𝑑1(𝑁/𝐾)𝑑3(𝐾) + 2𝑑2(𝑁/𝐾)𝑑1(𝐾)𝑑2(𝐾) + 𝑑3(𝑁/𝐾)[𝑑1(𝐾)]3.

These coupled recurrence relations may be solved with computational softwares, but we

will calculate the first ones for pedagogic purposes. Because 𝑁 = 𝑎𝑛 we can make 𝐾 = 𝑎,

the integer that defines the set of powers P𝑎, to simplify our relations. For 𝑑1:

𝑑1(𝑁) = 𝑑1(𝑎𝑛−1)𝑑1(𝑎) = . . .

. . . = [𝑑1(𝑎)]𝑛 = 𝑁 𝜈 → 𝜈 = log𝑎 𝑑1(𝑎). (2.22)

With the change of variables (2.22) (valid only for 𝑑1(𝑎) ̸= 0) we can rewrite 𝑑1(𝑎) = 𝑎𝜈

and iterate the 𝑑2 recurrence relation as:

𝑑2(𝑎𝑛) = 𝑑1(𝑎𝑛−1)𝑑2(𝑎) + 𝑑2(𝑎𝑛−1)[𝑑1(𝑎)]2 = . . .

. . . = 𝑑2(𝑎)[𝑑1(𝑎)]𝑛−1
𝑛−1∑︁
𝑘=0

𝑎𝜈𝑘

𝑑2(𝑁) = 𝑑2(𝑎)
(︂
𝑁

𝑎

)︂𝜈 (︂𝑁𝜈 − 1
𝑎𝜈 − 1

)︂
. (2.23)

Equations (2.22) and (2.23) were derived in reference (PARISIO, 2020). Adding the the

third order coefficient (whose demonstration is in appendix A) we write the Maclaurin

series for a 1-scalable function, up to 3rd order:

𝐸(𝑁)(𝑒1) = 𝑁 𝜈𝑒1 + 𝑑2(𝑎)
(︂
𝑁

𝑎

)︂𝜈 (︂𝑁 𝜈 − 1
𝑎𝜈 − 1

)︂
𝑒2

1 (2.24)

+
{︃

2[𝑑2(𝑎)]2
(︂
𝑁

𝑎2

)︂𝜈 (𝑁 𝜈 − 1)(𝑁 𝜈 − 𝑎𝜈)
(𝑎𝜈 − 1)(𝑎2𝜈 − 1) + 𝑑3(𝑎)

(︂
𝑁

𝑎

)︂𝜈
(︃
𝑁2𝜈 − 1
𝑎2𝜈 − 1

)︃}︃
𝑒3

1
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All 1-𝑆 analytic functions whose coefficient 𝑑1(𝑎) is non zero must satisfy (2.24). So if one

knows the expansion for 𝑎 copies 𝐸(𝑎)(𝑒1) = 𝑑1(𝑎)𝑒1 + 𝑑2(𝑎)𝑒2
1 + . . . the coefficients 𝑑𝑘(𝑁)

in (2.24) are well determined.

Note that 1-𝑆 analytic quantifiers whose regularized counterparts 𝐸𝑟𝑒𝑔 = lim𝑁→∞
𝐸(𝑁)(𝑒1)

𝑁

are finite and non-zero are necessarily additive, and, thus 𝐸𝑟𝑒𝑔 = 𝑒1, for 𝑒1 sufficiently

small (evidently this is not necessarily true for 2-𝑆 functions, as we will see). In (2.24)

this possibility means that 𝑑𝑗(𝑎) ̸= 0 only for 𝑗 = 1 and 𝜈 = 1 4.

Note also that if a 1-𝑆 function is additive for 2 copies consequently it is additive for 𝑁 co-

pies. So it is not possible for a 1-𝑆 function to present ℰ(𝜚⊗2) = 2ℰ(𝜚) but ℰ(𝜚⊗4) ̸= 4ℰ(𝜚),

for example (what we will be refering to as superactivation of non-additivity).

In the next sections we study the cases where the expansion of 𝐸(𝑎)(𝑒1) has only one

(𝐿(𝑎) = 1) or only two (𝐿(𝑎) = 2) coefficients through the recurrence relation (2.21).

4 If 𝜈 < 1 the function is subadditive.
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2.4.1 One-coefficient Case

In this section we study cases where the series expansion for 𝑎 copies has only one non-

zero coefficient and show that recurrence relations (2.21) predicts the previously studied

functional forms additive and multiplicative. First note that by (2.19) if 𝐿(𝑎) = 1 →

𝐿(𝑁) = 1𝑛 = 1, so the series to be studied here only have 1 term for 𝑁 ∈ P𝑎.

• Additive

As 𝑑𝑘(𝑎) = 𝑎𝛿𝑘1 then we have to consider in (2.21) only compositions of 𝑗 into 𝑙 = 𝑗

equal parts, this means that 𝜋𝑖(𝑗, 𝑙; 𝑎) = 𝜋1(𝑗, 𝑙; 𝑎) = 𝛿𝑙,𝑗[𝑑1(𝑎)]𝑗 and then:

𝑑𝑗(𝑁) =
𝑗∑︁

𝑙=1
𝛿𝑗𝑙𝑑𝑙(𝑁/𝑎)𝑎𝑗 = 𝑑𝑗(𝑁/𝑎)𝑎𝑗.

Changing notation by 𝑑𝑗(𝑁) = 𝑑𝑛
𝑗 (so 𝑑0

𝑗 = 𝛿𝑗1 by our requirements) we get 𝑑𝑛
𝑗 =

𝑎𝑗𝑑𝑛−1
𝑗 = 𝑎2𝑗𝑑𝑛−2

𝑗 = · · · = 𝑎𝑛𝑗𝛿𝑗1. Which is our well known result: 𝑑𝑗(𝑁) = 𝑁𝛿𝑗1.

• Multiplicative

Now as 𝑑𝑘(𝑎) = 𝑑𝑎(𝑎)𝛿𝑘𝑎 we have to consider in (2.21) only compositions of 𝑗 into

𝑙 = 𝑗
𝑎

equal parts, so 𝑗 ∈ P𝑎 so that 𝑙 is an integer. This means that 𝜋𝑖(𝑗, 𝑙; 𝑎) =

𝜋1(𝑗, 𝑙; 𝑎) = 𝛿𝑙 𝑗
𝑎
[𝑑𝑎(𝑎)]𝑗/𝑎 and then:

𝑑𝑗(𝑁) =
𝑗∑︁

𝑙=1
𝑑𝑙(𝑁/𝑎)𝛿𝑙 𝑗

𝑎
[𝑑𝑎(𝑎)]𝑗/𝑎 = 𝑑𝑗/𝑎(𝑁/𝑎)[𝑑𝑎(𝑎)]𝑗/𝑎.

We change notation again to 𝑑𝑛
𝑗 = 𝑑𝑛−1

𝑗/𝑎 [𝑑𝑎(𝑎)]𝑗/𝑎 and we have to iterate this recur-

rence in the two indexes (𝑛 and 𝑗):

𝑑𝑛
𝑗 = 𝑑𝑛−2

𝑗/𝑎2 [𝑑𝑎(𝑎)]𝑗/𝑎2 [𝑑𝑎(𝑎)]𝑗/𝑎 = · · · = 𝑑𝑛−𝑝
1 [𝑑𝑎(𝑎)]1+𝑎+𝑎2+···+𝑎𝑝−1

,

where we made 𝑗 = 𝑎𝑝, as 𝑗 ∈ P𝑎. The geometric series can be rewritten as∑︀𝑝−1
𝑙=0 𝑎

𝑙 =
1−𝑎𝑝

1−𝑎
and also, by our requirements, 𝑑𝑛−𝑝

1 = 𝑑1(𝑎𝑛−𝑝) = 𝛿𝑛𝑝 (which means that

𝑗 = 𝑁). Therefore:

𝑑𝑁(𝑁) = [𝑑𝑎(𝑎)]
𝑁−1
𝑎−1 . (2.25)

It is easy to see that the solution (2.15) fits perfectly.

These two types of quantifiers are examples of a symmetry in scalability relation (2.8)

refering to the number of elements in the series expansion (2.19). In other words: if a 1-𝑆

function is additive (multiplicative) for 𝑎 copies, it will be additive (multiplicative) for

𝑁 ∈ P𝑎 copies.
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2.4.2 Two-coefficient Case

If a quantum function ℰ(𝜚⊗𝑎) is 1-𝑆 and has the form 𝐸(𝑎)(𝑒1) = 𝑑1(𝑎)𝑒1 + 𝑑2(𝑎)𝑒2
1 (only

the first two coefficients are non-zero), e. g., 𝐿(𝑎) = 2, then the series for 𝑁 copies ends

at 𝐿(𝑁) = 2log𝑎 𝑁 (see equation (2.19) and Table 1). The higher order recurrence relations

become:

𝑑3(𝑁) = 2𝑑2(𝑁/𝑎)𝑑1(𝑎)𝑑2(𝑎) + 𝑑3(𝑁/𝑎)[𝑑1(𝑎)]3,

𝑑4(𝑁) = 𝑑2(𝑁/𝑎)[𝑑2(𝑎)]2 + 3𝑑3(𝑁/𝑎)[𝑑1(𝑎)]2𝑑2(𝑎) + 𝑑4(𝑁/𝑎)[𝑑1(𝑎)]4.

The reader may find the unsolved general fourth coefficient recurrence relation in appendix

A. By making 𝐾 = 𝑎 and taking 𝑑3(𝑎) = 𝑑4(𝑎) = 0 one gets to the relations above. Solving

the 4th coefficient with Mathematica software we get:

𝑑1(𝑁) = 𝑁 𝜈

𝑑2(𝑁) = 𝑑2(𝑎)
(︂
𝑁

𝑎

)︂𝜈 (︂𝑁 𝜈 − 1
𝑎𝜈 − 1

)︂
𝑑3(𝑁) = 2[𝑑2(𝑎)]2

(︂
𝑁

𝑎2

)︂𝜈 (︂𝑁𝜈 − 1
𝑎𝜈 − 1

)︂(︂
𝑁 𝜈 − 𝑎𝜈

𝑎2𝜈 − 1

)︂
(2.26)

𝑑4(𝑁) = [𝑑2(𝑎)]3
(︂
𝑁

𝑎3

)︂𝜈
(︃
𝑁𝜈 − 1

(𝑎𝜈 − 1)2

)︃(︂
𝑁 𝜈 − 𝑎𝜈

𝑎2𝜈 − 1

)︂(︃
𝑁𝜈(5 + 𝑎𝜈) − 1 − 5𝑎2𝜈

1 + 𝑎𝜈 + 𝑎2𝜈

)︃
.

Note that there is no clear pattern (at least not a simple one) determining how 𝑑𝑘(𝑁)

looks like. However if one takes 𝜈 = 1 and 𝑎 = 2 one gets the following series:

𝐸(𝑁)(𝑒1) = 𝑁𝑒1 + [𝑑2(𝑎)]𝑁2 (𝑁 − 1)𝑒2
1 + [𝑑2(2)]2𝑁 (𝑁 − 1)(𝑁 − 2)

1.2.3 𝑒3
1

+ [𝑑2(2)]3𝑁 (𝑁 − 1)(𝑁 − 2)(𝑁 − 3)
1.2.3.4 𝑒4

1 +𝑂(𝑒5
1), (2.27)

ending at 𝐿(𝑁) = 2log2 𝑁 = 𝑁 , as we see in Table 1 (equation (2.19)).

Observing this pattern we can induce that the series (2.27) is constructed in terms of

Newton coefficients 𝑑𝑘(𝑁) = [𝑑2(𝑎)]𝑘−1

⎛⎝ 𝑁

𝑘

⎞⎠. We summarize this result in the theorem

bellow, which has a more difficult proof.
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Theorem 1.2: Let 𝜚 ∈ ℬ(ℋ), 𝑁 ∈ P2 and ℰ be an analytic 1-𝑆 function with

respect to 𝜚 and P2. If ℰ(𝜚⊗2) can be expanded as the maclaurin series 𝐸(2)(𝑒1) =

2𝑒1 + [𝑑2(2)]𝑒2
1, then:

𝐸(𝑁)(𝑒1) =
𝑁∑︁

𝑘=1

⎛⎜⎜⎝ 𝑁

𝑘

⎞⎟⎟⎠ [𝑑2(2)]𝑘−1𝑒𝑘
1, (2.28)

where 𝑒1 = ℰ(𝜚).

Proof:

We start with (2.21) for 𝐾 = 2 (here the index 𝑙 is rewritten as 𝑗 − 𝑘):

𝑑𝑗(𝑁) =
𝑗−1∑︁
𝑘=0

𝑑𝑗−𝑘(𝑁/2)

⎛⎝ 𝑗 − 1

𝑗 − 𝑘 − 1

⎞⎠
∑︁
𝑖=1

𝜋𝑖(𝑗, 𝑗 − 𝑘; 2).

The hypotesis that only 𝑑1(2) and 𝑑2(2) are not zero means that 𝜋𝑖(𝑗, 𝑙; 2) will be a product

of combinations of these two variables only (all other contributions will vanish), this means

that we need to consider the composition of the number 𝑗 using only the numbers 1 and

2. If we compose 𝑗 with a sum of 𝑗 positive integers then each one must be equal to 1,

but if we compose 𝑗 with a sum of 𝑗 − 1 positive integers we need to take 𝑗 − 2 of the

elements equal to 1 and one element equal to 2 to complete the sum.

𝑗 → 1 + · · · + 1⏟  ⏞  
𝑗−2𝑘 times

+ 2 + · · · + 2⏟  ⏞  
𝑘 times

So actually the sum in 𝑘 has an upper limit equal to ⌊ 𝑗
2⌋ (if 𝑗 is even the sum stops at

𝑗/2 and if 𝑗 is odd the sum stops at (𝑗 − 1)/2). To summarize, the composition of the

number 𝑗 into (𝑗 − 𝑘) parts using only the numbers 1 and 2 has (𝑗−𝑘)!
𝑘!(𝑗−2𝑘)! elements, being

𝑘 the number of repetitions of the number 2:⎛⎝ 𝑗 − 1

𝑗 − 𝑘 − 1

⎞⎠
∑︁
𝑖=1

𝜋𝑖(𝑗, 𝑗 − 𝑘; 2) = (𝑗 − 𝑘)!
𝑘!(𝑗 − 2𝑘)! [𝑑1(2)]𝑗−2𝑘[𝑑2(2)]𝑘, (2.29)

where, as before, we will use 𝑑1(2) = 2𝜈 . For the proof of theorem 1.2, take 𝜈 = 1:

𝑑𝑗(𝑁) =
⌊ 𝑗

2 ⌋∑︁
𝑘=0

𝑑𝑗−𝑘(𝑁/2)

⎛⎜⎜⎝ 𝑗 − 𝑘

𝑘

⎞⎟⎟⎠ 2𝑗−2𝑘[𝑑2(2)]𝑘.
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Now we test expression 𝑑𝑗(𝑁) = [𝑑2(2)]𝑗−1

⎛⎝ 𝑁

𝑗

⎞⎠, induced in expansion (2.27):

𝑑𝑗(𝑁) =
⌊ 𝑗

2 ⌋∑︁
𝑘=0

[𝑑2(2)]𝑗−�𝑘−1

⎛⎜⎜⎝ 𝑁/2

𝑗 − 𝑘

⎞⎟⎟⎠
⎛⎜⎜⎝ 𝑗 − 𝑘

𝑘

⎞⎟⎟⎠ 2𝑗−2𝑘
���

�[𝑑2(2)]𝑘

= [𝑑2(2)]𝑗−1
⌊ 𝑗

2 ⌋∑︁
𝑘=0

⎛⎜⎜⎝ 𝑁/2

𝑘

⎞⎟⎟⎠
⎛⎜⎜⎝ 𝑁/2 − 𝑘

𝑗 − 2𝑘

⎞⎟⎟⎠ 2𝑗−2𝑘. (2.30)

In the last step we used the subset-of-a-subset property (GROSS, 2007) for the product of

binomials: (𝑛,𝑚)(𝑚, 𝑘) → (𝑛, 𝑘)(𝑛−𝑘,𝑚−𝑘). Remember that because of 𝑁 ∈ P2, 𝑁
2 is an

integer; and because of the binomial, it is also the maximum possible value for 𝑘, so 𝑗 ≤ 𝑁 .

For the evaluation of (2.30) we can use the integral representation of the binomial coeffi-

cient
⎛⎝ 𝑛

𝑚

⎞⎠ = 1
2𝜋𝑖

∮︀
Γ

(1+𝑧)𝑛

𝑧𝑚+1 𝑑𝑧 to solve the problem using the Egorychev method (EGORY-

CHEV, 1984; RIEDEL, 2021), where 𝑧 is a complex variable and Γ is a small (|𝑧| < 1)

closed contour surrounding 𝑧 = 0. Rewritting the terms in (2.30), we get:

⌊ 𝑗
2 ⌋∑︁

𝑘=0

⎛⎜⎜⎝ 𝑁/2

𝑘

⎞⎟⎟⎠
⎛⎜⎜⎝ 𝑁/2 − 𝑘

𝑗 − 2𝑘

⎞⎟⎟⎠ 2𝑗−2𝑘 =
⌊ 𝑗

2 ⌋∑︁
𝑘=0

1
2𝜋𝑖

∮︁
Γ
𝑑𝑧

(1 + 𝑧)𝑁/2−𝑘

𝑧𝑗−2𝑘+1

⎛⎜⎜⎝ 𝑁/2

𝑘

⎞⎟⎟⎠ 2𝑗−2𝑘

= 1
2𝜋𝑖

∮︁
Γ
𝑑𝑧

(1 + 𝑧)𝑁/2

𝑧𝑗+1 2𝑗

⌊ 𝑗
2 ⌋∑︁

𝑘=0

⎛⎜⎜⎝ 𝑁/2

𝑘

⎞⎟⎟⎠
(︃

𝑧2

4(1 + 𝑧)

)︃𝑘

.

The integrand is proportional to (1+𝑧)𝑁/2−𝑘

𝑧𝑗+1−2𝑘 and is easy to see that for ⌊ 𝑗
2⌋ < 𝑘 < 𝑁

2 the

integral vanishes. Make 𝑘 = ⌊ 𝑗
2⌋ + 𝑙 (so 𝑙 ≤ 𝑁

2 − ⌊ 𝑗
2⌋), then the integrand is proportional

to: ⎧⎪⎪⎨⎪⎪⎩
𝑗 even → 𝑧2𝑙−1(1 + 𝑧)

(𝑁−𝑗)
2 −𝑙

𝑗 odd → 𝑧2(𝑙−1)(1 + 𝑧)
(𝑁−𝑗+1)

2 −𝑙

(2.31)

These functions do not have residue (DENNERY; KRZYWICKI, 1996) at 𝑧 = 0 for any value

of 𝑙 ∈ (1, 𝑁
2 − ⌊ 𝑗

2⌋). Therefore, we can rewritte the sum without loss of generality with

upper limit equal to 𝑁
2 .
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Now we can use the binomial theorem to rewrite the sum:

𝑁
2∑︁

𝑘=0

⎛⎜⎜⎝ 𝑁/2

𝑘

⎞⎟⎟⎠
(︃

𝑧2

4(1 + 𝑧)

)︃𝑘

=
[︃
1 + 𝑧2

4(1 + 𝑧)

]︃𝑁
2

=
[︃

(𝑧 + 2)2

4(1 + 𝑧)

]︃𝑁
2

, (2.32)

and substitute (2.32) in the Cauchy integral:

1
2𝜋𝑖

∮︁
Γ
𝑑𝑧�

��
���(1 + 𝑧)𝑁/2

𝑧𝑗+1 2𝑗

[︃
(𝑧 + 2)2

4����(1 + 𝑧)

]︃𝑁
2

= 1
2𝜋𝑖

∮︁
Γ
𝑑𝑧

(2 + 𝑧)𝑁

𝑧𝑗+1 2𝑗−𝑁 . (2.33)

Now all we have to do is a change of variables 𝑧 → 2𝑧′ (Γ → Γ′) and the integral becomes:

1
2𝜋𝑖

∮︁
Γ
𝑑𝑧

(2 + 𝑧)𝑁

𝑧𝑗+1 2𝑗−𝑁 → 1
2𝜋𝑖

∮︁
Γ′
𝑑𝑧′ (1 + 𝑧′)𝑁

𝑧′𝑗+1 . (2.34)

The right hand side of equation (2.34) is exactly the Cauchy integral representation of

the binomial coefficient:

𝑑𝑗(𝑁) = [𝑑2(2)]𝑗−1

⎛⎜⎜⎝ 𝑁

𝑗

⎞⎟⎟⎠ , (2.35)

and the theorem is proven.
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2.5 SCALABILITY OF SOME COHERENCE RELATED QUANTIFIERS

Coherence is one of the most important features of quantum mechanics and it is the cen-

tral concept in optics and quantum information (BAUMGRATZ; PLENIO, 2014; XI; YUWEN,

2019; MALEKI; AHANSAZ, 2020). It is the heart of quantum phenomena, such as entangle-

ment and interference, and is present even in biological systems (LLOYD, 2011). In this

section we study the scalability properties of this resource.

One well accepted coherence quantifier (BAUMGRATZ; PLENIO, 2014) is the relative en-

tropy of coherence (REC):

𝒞𝑆(𝜚) = 𝒮(𝜚) − 𝒮(𝜚𝑑𝑖𝑎𝑔), (2.36)

where 𝒮(𝜚) is the Von Newmann entropy5 and 𝜚𝑑𝑖𝑎𝑔 is a matrix constructed by 𝜚’s diagonal

elements only. It is well known that entropy is an additive quantity6 and it does not depend

on the reference basis (it is invariant under 𝑈𝜚𝑈+, 𝑈 being an unitary transformation),

so if we take a matrix constructed only by the diagonal elements of 𝜚 additivity remains:

𝒞𝑆(𝜚⊗𝑁) = 𝒮(𝜚⊗𝑁) − 𝒮(𝜚⊗𝑁
𝑑𝑖𝑎𝑔) = 𝑁 (𝒮(𝜚) − 𝒮(𝜚𝑑𝑖𝑎𝑔))

𝐶
(𝑁)
𝑆 (𝑐1) = 𝑁𝑐1 (2.37)

Therefore, the relative entropy of coherence is a 1-𝑆 function, where we used 𝒞𝑆 for the

function whose domain is the set ℬ
(︁
ℋ⊗𝑁

)︁
and 𝐶

(𝑁)
𝑆 for the function whose domain is

the non-negative number 𝑐1 (numerically equal to 𝒞𝑆(𝜚)). The same is not true for the

much more intuitive 𝑙1-norm of coherence, where we sum the modulus of all non-diagonal

elements of 𝜚:

𝒞𝑙1(𝜚) =
𝑑∑︁

𝑖 ̸=𝑗

|𝜚𝑖𝑗| =
𝑑∑︁

𝑖,𝑗

|𝜚𝑖𝑗| − 1. (2.38)

The goal of the next section is to derive the scalability property of (2.38). We also study

the squared Hilbert-Schmidt norm 𝒞𝑙2(𝜚) = ∑︀
𝑖 ̸=𝑗 |𝜚𝑖𝑗|2, which is not a good candidate

to quantify coherence because it may increase under some incoherent operations (BAUM-

GRATZ; PLENIO, 2014), but we will determine its scalability properties in section 2.5.2 as

a non-trivial example.
5 In quantum statistical mechanics, the Von Newmann entropy plays the role of the classical Gibbs

entropy for the microcanonical ensemble and it vanishes if, and only if, 𝜚 represents a pure state.
6 There are other coherence quantifiers which are also additive quantities, like the logarithm coherence

number (XI; YUWEN, 2019) and the purity of coherence.



31

2.5.1 𝑙1-norm of Coherence

Now we calculate the coherence of the non-interacting pair 𝜚⊗ 𝜚 using the 𝑙1-norm:

𝒞𝑙1(𝜚⊗2) =
∑︁

𝑖,ℎ,𝑘,𝑙

|𝜚𝑖𝑗𝜚𝑙𝑘| − 1. (2.39)

We can take all possibilities 𝑖 = 𝑗, 𝑖 ̸= 𝑗 and 𝑘 = 𝑙, 𝑘 ̸= 𝑙 and take the trace of 𝜚:

𝒞𝑙1(𝜚⊗2) = 𝑇𝑟𝜚

⎛⎝∑︁
𝑘 ̸=𝑙

|𝜚𝑘𝑙|

⎞⎠+
⎛⎝∑︁

𝑖 ̸=𝑗

|𝜚𝑖𝑗|

⎞⎠𝑇𝑟𝜚+
⎛⎝∑︁

𝑖 ̸=𝑗

|𝜚𝑖𝑗|

⎞⎠⎛⎝∑︁
𝑘 ̸=𝑙

|𝜚𝑘𝑙|

⎞⎠ ,
𝐶

(2)
𝑙1 (𝑐1) = 2𝑐1 + 𝑐2

1 = (1 + 𝑐1)2 − 1, (2.40)

where, using the latter example notation, 𝑐1 = 𝒞𝑙1(𝜚). Note that if the 𝑙1-norm of coherence

is a 1-𝑆 function (proof in appendix B), then this is the two-coefficient case with 𝑎 = 2

(2.28)! As the coefficient 𝑑2(2) = 1, we have the following solution:

𝐶
(𝑁)
𝑙1 (𝑐1) =

𝑁∑︁
𝑘

⎛⎜⎜⎝ 𝑁

𝑘

⎞⎟⎟⎠ 𝑐𝑘
1 = (1 + 𝑐1)𝑁 − 1, (2.41)

for 𝑁 ∈ P2. This result is valid for qudits and it does not depend on the parameters of 𝜚.

Figure 3 – Regularized 𝑙1-norm of coherence of 2𝑛 qu-

dits.

Source: the author (2020).

Figure 3 shows the regulari-

zed 𝑙1-norm, 𝐶
(𝑁)
𝑙1

(𝑐1)
𝑁

, in terms

of 𝑛 = log2 𝑁 with 𝑐1 =

0.08.

Note that this quantifier is non-

additive, differently from the

relative entropy of coherence

(2.36), and it diverges for large

𝑁 . So the way one quantifies

quantum coherence implies, or

not, its non-additivity, determi-

ning its behavior for a large

number of copies.

Expression (2.40) was already deduced in (MAZIERO, 2017).
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2.5.2 Squared Hilbert-Schmidt Norm

As it was already pointed out, the squared Hilbert-Schmidt norm (also called by “𝑙2-norm

of coherence”),

𝒞𝑙2(𝜚) =
𝑑∑︁

𝑖 ̸=𝑗

|𝜚𝑖𝑗|2, (2.42)

was discarded (BAUMGRATZ; PLENIO, 2014) for not being a reasonable coherence quanti-

fier because it may increase under some incoherent operations, thus failing the quantum

resource theory requirements. But it is interesting to see how it scales with the number

of copies. For a qubit:

𝜚 =

⎛⎜⎜⎝𝑎 𝑏

𝑏* (1 − 𝑎)

⎞⎟⎟⎠ → 𝒞𝑙2(𝜚) = 2|𝑏|2.

By making the tensor product 𝜚⊗ 𝜚, we find the following relation:

𝜚⊗ 𝜚 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎2 𝑎𝑏 𝑏𝑎 𝑏2

𝑎𝑏* 𝑎(1 − 𝑎) |𝑏|2 𝑏(1 − 𝑎)

𝑏*𝑎 |𝑏|2 (1 − 𝑎)𝑎 (1 − 𝑎)𝑏

𝑏*2 (1 − 𝑎)𝑏* (1 − 𝑎)𝑏* (1 − 𝑎)2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

𝒞𝑙2(𝜚⊗ 𝜚) = 4
[︁
𝑎2|𝑏|2 + |𝑏|4 + |𝑏|2(1 − 𝑎)2

]︁
= 𝑐2

1 + 2[𝑎2 + (1 − 𝑎)2]𝑐1, (2.43)

and now we use 𝑐1 = 𝒞𝑙2(𝜚). We may use the constraint imposed by 𝑇𝑟𝜚2 to rewrite (2.43):

𝑇𝑟𝜚2 = 𝑎2 + (1 − 𝑎)2 + 2|𝑏|2 → 𝑎2 + (1 − 𝑎)2 = 𝑇𝑟𝜚2 − 𝑐1,

note that the difference 𝑇𝑟𝜚2 − 𝑐1 ≤ 1 must be satisfied. Differently from the 𝑙1-norm,

the expansion of the 𝑙2-norm depends on the parameters of the quantum state 𝜚, more

specifically on 𝜚’s purity:

𝐶
(2)
𝑙1 (𝑐1) = (2𝑇𝑟𝜚2)𝑐1 − 𝑐2

1. (2.44)

So, if the Hilbert-Schmidt norm is a 1-𝑆 function then we would have the two-coefficient

case discussed in section 2.4.2. If the state is pure (𝑇𝑟𝜚2 = 1) we get 𝜈 = 1 and the result

is (2.28) with 𝑑2(𝑎) = −1:
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𝐶
(𝑁), pure
𝑙2 (𝑐1) =

𝑁∑︁
𝑘

⎛⎜⎜⎝ 𝑁

𝑘

⎞⎟⎟⎠ (−1)𝑘−1𝑐𝑘
1 = 1 − (1 − 𝑐1)𝑁 , (2.45)

where 𝑐1 = 𝒞𝑙2(𝜚) and 𝑁 ∈ P2. In this case if 𝑁 goes to infinity the 𝑙2-norm saturates at

1 and thus its regularized part 𝐶
(𝑁)
𝑙2

(𝑐1)
𝑁

vanishes (as shown in Figure 4 for 𝑐1 = 0.01), a

very different behavior from the 𝑙1-norm of coherence, which diverges.

Figure 4 – Regularized squared Hilbert-Schmidt norm of 2𝑛 pure qubits.

Source: the author (2020).

In appendix B we show that the squared Hilbert-Schmidt norm of an arbitrary qubit 𝜚

grows with the number of copies 𝑁 as 𝐶(𝑁)
𝑙2 (𝑐1) = (𝑇𝑟𝜚2)𝑁 − (𝑇𝑟𝜚2 − 𝑐1)𝑁 . So 𝐶(𝑁)

𝑙2 (𝑐1)

depends on the purity of 𝜚, as we observed in (2.44). The scalability test on this formula

for a pure state and for a non-pure state yields different results.

Pure states:

𝐶
(𝑁/𝐾)
𝑙2 [𝐶(𝐾)

𝑙2 (𝑐1)] = 1 −
(︁
1 − 𝐶

(𝐾)
𝑙2 (𝑐1)

)︁𝑁/𝐾

= 1 − [�1 − (�1 − (1 − 𝑐1)𝐾)]𝑁/𝐾

= 1 − (1 − 𝑐1)𝑁 = 𝐶
(𝑁)
𝑙2 (𝑐1)
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Non-pure states:

𝐶
(𝑁/𝐾)
𝑙2 [𝐶(𝐾)

𝑙2 (𝑐1)] = (𝑇𝑟𝜚2)𝑁/𝐾 −
(︁
𝑇𝑟𝜚2 − 𝐶

(𝐾)
𝑙2 (𝑐1)

)︁𝑁/𝐾

= (𝑇𝑟𝜚2)𝑁/𝐾 − [𝑇𝑟𝜚2 − ((𝑇𝑟𝜚2)𝐾 − (𝑇𝑟𝜚2 − 𝑐1)𝐾)]𝑁/𝐾 ̸= 𝐶
(𝑁)
𝑙2 (𝑐1) ×

If the state is non-pure one could think that by making 𝜈 = 1 + log2(𝑇𝑟𝜚2) in (2.26)

one would solve the problem order by order, but actually the 𝑙2-norm is not scalable

for non-pure states. This difference between the 𝑙1-norm of coherence and the squared

Hilbert-Schmidt norm can be seen as another evidence that the latter cannot be used to

quantify coherence, because the purity of 𝜚 can change throught incoherent operations.
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3 2-SCALABILITY

“The simple geometrical figure had been quickly constructed, line by line,

self-reflexive...”

– Carl Sagan, Contact

We saw in the first chapter the way a 1-𝑆 function can scale with the number of copies

𝑁 and its limitations: (i) It does not allow for superactivation nor does it allow for

superactivation of non-additivity1 and (ii) its regularized part can be bounded only if the

function is additive. We define here the concept of 𝑞-scalability to enlarge our description

to more complex classes of quantum functions, like the one-shot-distillable entanglement

(FANG X. WANG; DUAN, 2019), an important example in this chapter.

3.1 𝑞-SCALABILITY

Now we provide the generalization of the previous results for physically consistent 𝑞-

scalable functions, which follows from the definition of 𝑞-extensibility. The following the-

orem was demonstrated in (PARISIO, 2020).

Theorem 2.1: Let 𝜚 ∈ ℬ(ℋ) and 𝑁,𝐾 ∈ P𝑎 with 𝐾 < 𝑁 . If ℰ can be written as a

function of the vector e ≡ (ℰ(𝜚), ℰ(𝜚⊗𝑎), . . . , ℰ(𝜚⊗𝑎𝑞−1)), e. g., a 𝑞-𝐸 function with

respect to 𝜚 and P𝑎, then:

𝐸(𝑁)(e) = 𝐸(𝑁/𝐾)(𝐸(𝐾)(e), 𝐸(𝑎𝐾)(e) . . . , 𝐸(𝑎𝑞−1𝐾)(e)). (3.1)

A more complete form of (3.1) is in (PARISIO, 2020).

Proof:

As before, we start assuming compatibility with the tensor product structure:

ℰ(𝜚⊗𝑁) = ℰ(𝜎⊗𝑁/𝐾). (3.2)
1 Remember that by superactivation of non-additivity we mean the possibility of ℰ(𝜚⊗2) = 2ℰ(𝜚) but

ℰ(𝜚⊗4) ̸= 4ℰ(𝜚).
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Since ℰ is 𝑞-𝐸 for a basis of functions e, by hypotesis:

𝐸(𝑁)(e) = 𝐸(𝑁/𝐾)
[︁
ℰ(𝜎), ℰ(𝜎⊗𝑎), . . . , ℰ(𝜎⊗𝑎𝑞−1)

]︁
= 𝐸(𝑁/𝐾)

[︁
ℰ(𝜚⊗𝐾), . . . , ℰ(𝜚⊗𝑎𝑞−1𝐾)

]︁
= 𝐸(𝑁/𝐾)

(︁
𝐸(𝐾)(e), . . . , 𝐸(𝑎𝑞−1𝐾)(e)

)︁
,

and the proof is finished. Now we enlarge definition 1 to:

Definition 2: A 𝑞-extensible (𝑞-𝐸) quantum function with respect to 𝜚 and P𝑎

that satisfy condition (3.1) is 𝑞-scalable (𝑞-𝑆) with respect to 𝜚 and P𝑎 (PARISIO,

2020).

Physically consistent 𝑞-extensible functions must be 𝑞-scalable, otherwise ℰ(𝜚⊗𝑁) ̸= ℰ(𝜎(𝑁/𝐾))

with 𝜎 = 𝜚⊗𝐾 . We now say that, for example, 𝐸(2), 𝐸(4) completely determine 𝐸(𝑁)(𝑒1, 𝑒2),

with 𝑒1 = ℰ(𝜚⊗2) and 𝑒2 = ℰ(𝜚⊗4), and this is thus a 2-scalable function. And also for

nonlinear 2-𝐸 functions we say that the way 𝐸(2)(e), 𝐸(4)(e) deviates from linearity de-

termines completely the behavior of 𝐸(2𝑛). All valid for a general 𝑞-extensible case with

respect to some state 𝜚.

3.2 2-𝑆 RECURRENCE RELATIONS

Consider 𝑒1 = ℰ(𝜚) and 𝑒2 = ℰ(𝜚⊗𝑎) as the values of ℰ for 1 and 𝑎 copies of 𝜚 respectively.

Assuming analyticity around e = (𝑒1, 𝑒2) = (0, 0), and that ℰ is a 2-𝐸 function, we may

write 𝐸(𝑁)(𝑒1, 𝑒2) as a Maclaurin series:

𝐸(𝑁)(𝑒1, 𝑒2) =
∞∑︁
𝑘,𝑙

𝑑𝑘𝑙(𝑁)𝑒𝑘
1𝑒

𝑙
2 (3.3)

= 𝑑10(𝑁)𝑒1 + 𝑑01(𝑁)𝑒2 + 𝑑20(𝑁)𝑒2
1 + 𝑑11(𝑁)𝑒1𝑒2 + 𝑑02(𝑁)𝑒2

2 + . . .

The function now depends on both 𝑒1 and 𝑒2 and we have to compute the combinations

of these terms in the expansion. In this case, the scalability relation is simply:

𝐸(𝑁)(e) = 𝐸(𝑁/𝐾)
[︁
𝐸(𝐾)(e), 𝐸(𝑎𝐾)(e)

]︁
, (3.4)

where e = (𝑒1, 𝑒2) and𝑂(2) denotes second order contributions, that is, terms proportional

to 𝑒2
1, 𝑒

2
2 and 𝑒1𝑒2. So the question is: by knowing the result for 𝑎2 copies:

𝐸(𝑎2)(e) = 𝑥 𝑒1 + 𝑦 𝑒2 +𝑂(2),

can we determine the series for 𝑁 copies 𝐸(𝑁)(e)? How the coefficients of this series scale

with 𝑁? Does this scalable quantity allow superactivation of non-additivity?
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3.2.1 First Order: The Fibonacci Polynomials

If we expand ℰ(𝜚⊗𝑁) as a Maclaurin series (3.3) in terms of e = (𝑒1, 𝑒2) we first have to

meet the requirements ℰ(𝜚) = 𝑒1 and ℰ(𝜚⊗𝑎) = 𝑒2 on coefficients 𝑑𝑘𝑙(1) and 𝑑𝑘𝑙(𝑎), which

are thus translated into 𝑑𝑘𝑙(1) = 𝛿𝑘1𝛿𝑙0 and 𝑑𝑘𝑙(𝑎) = 𝛿𝑘0𝛿𝑙1. For 𝑁 we call the first order

coefficients 𝑑10(𝑁) = 𝐴(𝑁) and 𝑑01(𝑁) = 𝐵(𝑁) and now we match them on both sides

of equation (3.4) by combining only first order terms:

𝐴(𝑁)𝑒1 +𝐵(𝑁)𝑒2 = 𝐴(𝑁/𝐾)𝐸(𝐾)(𝑒1, 𝑒2) +𝐵(𝑁/𝐾)𝐸(𝑎𝐾)(𝑒1, 𝑒2) (3.5)

= 𝐴(𝑁/𝐾) [𝐴(𝐾)𝑒1 +𝐵(𝐾)𝑒2] +𝐵(𝑁/𝐾) [𝐴(𝑎𝐾)𝑒1 +𝐵(𝑎𝐾)𝑒2] .

As before, we can take 𝐾 = 𝑎 and we will have 𝐴(𝑎) = 0 and 𝐵(𝑎) = 1 and, by calling

𝐴(𝑎2) = 𝑥 and 𝐵(𝑎2) = 𝑦, we use 𝑛 = log𝑎 𝑁 to simplify the notation to 𝐴(𝑁) = 𝐴𝑛

(same for 𝐵(𝑁)). Combining the terms of same type we get a system of coupled equations:

⎧⎪⎪⎨⎪⎪⎩
𝐴(𝑁) = 𝐵(𝑁/𝑎)𝐴(𝑎2)

𝐵(𝑁) = 𝐴(𝑁/𝑎) +𝐵(𝑁/𝑎)𝐵(𝑎2)
→

⎧⎪⎪⎨⎪⎪⎩
𝐴𝑛 = 𝑥 𝐵𝑛−1

𝐵𝑛 = 𝐴𝑛−1 + 𝑦 𝐵𝑛−1

By decoupling the above equations we get linear homogeneous recurrence relations with

constant coefficients 𝐵𝑛 = 𝑦 𝐵𝑛−1 +𝑥 𝐵𝑛−2 (same for 𝐴𝑛). The solution of this recurrence

relation is the generalized hybrid Fibonacci polynomials 𝐵𝑛 = 𝐹 (𝐻)
𝑛 (𝑥, 𝑦) (RANGARAJAN;

P., 2017), in two variables 𝑥 and 𝑦 and degree 𝑛, which have the following explicit form:

𝐹 (𝐻)
𝑛 (𝑥, 𝑦) =

⌊(𝑛−1)/2⌋∑︁
𝑘=0

⎛⎜⎜⎝ 𝑛− 1 − 𝑘

𝑘

⎞⎟⎟⎠𝑥𝑛−1−2𝑘𝑦𝑘

= 1√
4𝑥+ 𝑦2

[︃(︃
𝑦 +

√
4𝑥+ 𝑦2

2

)︃𝑛

−
(︃
𝑦 −

√
4𝑥+ 𝑦2

2

)︃𝑛]︃
. (3.6)

Coefficients (3.6) are called the Fibonacci Polynomials (which become the famous Fibo-

nacci Numbers if 𝑥 = 𝑦 = 1 (RANGARAJAN; P., 2017)) and the first five iterations of

the sequence are represented in Table 2. This result was previously achieved in reference

(PARISIO, 2020):
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Table 2 – Table of Fibonacci polynomials and Fibonacci numbers.

𝑛 𝐹 (𝐻)
𝑛 (𝑥, 𝑦) 𝐹𝑛(1, 1)

1 1 1
2 1 1
3 𝑥+ 𝑦2 2
4 2𝑥𝑦 + 𝑦3 3
5 𝑥4 + 3𝑥2𝑦 + 𝑦2 5

Source: (RANGARAJAN; P., 2017).

Theorem 2.2: Let 𝜚 ∈ ℬ (ℋ) and 𝑛 be an arbitrary integer. If ℰ is a 2-𝑆 func-

tion such that 𝐸(𝑁)(e) depends on e = (𝑒1, 𝑒2) = (ℰ(𝜚), ℰ(𝜚⊗𝑎)) and on 𝑛, where

𝐸(𝑎2)(e) = 𝑥𝑒1 + 𝑦𝑒2 + 𝑂(2), with 𝑥 and 𝑦 known, then, for 𝑒1 and 𝑒2 sufficiently

small, we have:

𝐸(𝑎𝑛)(e) = 𝑥𝐹
(𝐻)
𝑛−1(𝑥, 𝑦)𝑒1 + 𝐹 (𝐻)

𝑛 (𝑥, 𝑦)𝑒2 +𝑂(2), (3.7)

where 𝐹 (𝐻)
𝑛 (𝑥, 𝑦) are the generalized hybrid Fibonacci polynomials (PARISIO, 2020).

The first terms of the series are:

𝐸(𝑎2)(e) = 𝑥 𝑒1 + 𝑦 𝑒2 +𝑂(2),

𝐸(𝑎3)(e) = 𝑥𝑦 𝑒1 +
(︁
𝑥+ 𝑦2

)︁
𝑒2 +𝑂(2), (3.8)

𝐸(𝑎4)(e) = 𝑥
(︁
𝑥+ 𝑦2

)︁
𝑒1 + 𝑦

(︁
2𝑥+ 𝑦2

)︁
𝑒2 +𝑂(2),

...

Note that superactivation of non-additivity may happen in scenarios involving 𝑞-𝑆 func-

tions. In the present case we may have ℰ(𝜚⊗2) = 2ℰ(𝜚), that is, 𝑒2 = 2𝑒1 (in this case,

𝑎 = 2), however, with ℰ(𝜚⊗4) = (𝑥+2𝑦) 𝑒1 ̸= 4ℰ(𝜚) whenever 𝑥 ̸= 4−2𝑦 (PARISIO, 2020).

This behavior would not be possible for a 1-𝑆 function (2.24).

Substituting (3.6) in the recurrence of coefficients 𝐴𝑛 and 𝐵𝑛 in expansion 𝐸(𝑎𝑛)(e) =

𝐴𝑛𝑒1 +𝐵𝑛𝑒2 +𝑂(2) we get:
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𝐴𝑛 = 𝑥√
4𝑥+ 𝑦2

⎡⎣(︃𝑦 +
√

4𝑥+ 𝑦2

2

)︃𝑛−1

−
(︃
𝑦 −

√
4𝑥+ 𝑦2

2

)︃𝑛−1
⎤⎦ , (3.9)

𝐵𝑛 = 1√
4𝑥+ 𝑦2

[︃(︃
𝑦 +

√
4𝑥+ 𝑦2

2

)︃𝑛

−
(︃
𝑦 −

√
4𝑥+ 𝑦2

2

)︃𝑛]︃
. (3.10)

Note that not any values of 𝑥 and 𝑦 are permited, the inequality 𝑦2 > −4𝑥 must be

satisfied. Now, simirlaly to (2.22), we can make a change of variables to rewrite coefficients

𝐴𝑛 and 𝐵𝑛 throught:

𝑦 +
√

4𝑥+ 𝑦2

2 = 𝑎𝜈1 and 𝑦 −
√

4𝑥+ 𝑦2

2 = 𝑎𝜈2 . (3.11)

As 𝑎𝑛 = 𝑁 , by substituting (3.11) into (3.9) and (3.10) (As
√

4𝑥+ 𝑦2 = 𝑎𝜈1 − 𝑎𝜈2) we get

the following expressions in terms of the number of copies 𝑁 :

𝐴(𝑁) = −𝑎𝜈1+𝜈2

𝑎𝜈1 − 𝑎𝜈2

[︃(︂
𝑁

𝑎

)︂𝜈1

−
(︂
𝑁

𝑎

)︂𝜈2
]︃
, (3.12)

𝐵(𝑁) =
(︂
𝑁 𝜈1 −𝑁𝜈2

𝑎𝜈1 − 𝑎𝜈2

)︂
. (3.13)

With these new representations a 2-𝑆 analytic function must be of the form:

𝐸(𝑁)(e) =
(︂
𝑁 𝜈2𝑎𝜈1 −𝑁 𝜈1𝑎𝜈2

𝑎𝜈1 − 𝑎𝜈2

)︂
𝑒1 +

(︂
𝑁 𝜈1 −𝑁𝜈2

𝑎𝜈1 − 𝑎𝜈2

)︂
𝑒2 +𝑂(2). (3.14)

Equation (3.14) is symmetric by exchange of 𝜈1 and 𝜈2 and they must satisfy 𝜈1 ̸= 𝜈2

(𝑦2 > −4𝑥) for the coefficients not to diverge. Note in (3.14) that, differently from a

1-𝑆 function, whose regularized part is bounded only if the quantum function is additive,

a regularized 2-𝑆 function can be bounded in many different ways: if parameters satisfy

𝜈1, 𝜈2 < 1 the function vanishes as 𝑛 increases, while if 𝜈1 = 1 and 𝜈2 ≤ 1 the function is

limited by a finite value. Of course, if 𝜈𝑖 > 1, 𝑖 = 1, 2, the function diverges for a large

number of copies.

We will see in next subsections some simple examples of 2-𝑆 functions with selected values

of 𝜈1 and 𝜈2 but, of course, in a general physical situation these parameters (As long as

they are different) may be arbitrary numbers, not even rational ones; and there may be

much more interesting properties in these scenarios.
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3.2.1.1 About 𝑥 and 𝑦

The change of variables (3.11) determines 𝜈1 and 𝜈2 in terms of 𝑥 and 𝑦 for a certain

number of copies 𝑎2. By inverting the expressions (3.11) we get:⎧⎪⎪⎨⎪⎪⎩
𝑥 = −𝑎𝜈1+𝜈2

𝑦 = 𝑎𝜈1 + 𝑎𝜈2

. (3.15)

Note that 𝑥 is always a negative number. Also, 𝑥 and 𝑦 are intrinsically dependent of each

other and the relation between them is governed by the number of copies 𝑎, which can be

essentially determinated by the state 𝜚 and the quantifier of interest.

Because of equations (3.9) and (3.10), these coefficients must satifsy 𝑦2 ≥ 4|𝑥| for (3.14)

to be a physically acceptable quantifier: this means that 𝑎2𝜈1 + 𝑎2𝜈2 ≥ 2𝑎𝜈1+𝜈2 must be

satisfied. According to equations (3.8), 𝐸(𝑎2)(e) = 𝑥 𝑒1 + 𝑦 𝑒2, up to first other, so:

𝑥 = ℰ(𝜚⊗𝑎2) − 𝑦 𝑒2

𝑒1
. (3.16)

The statement that 𝑥 is negative is equivalent to:

ℰ(𝜚⊗𝑎2)
ℰ(𝜚⊗𝑎) < 𝑦. (3.17)

This inequality sets an upper bound for the growth of the amount of resources, if this

quantity is well described by a 2-𝑆 function, when we go from 𝑎 to 𝑎2 copies.
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3.2.2 Vanishing Second Order

Now, we are looking for possible contributions 𝐸2𝑜(e), e. g., terms proportional to 𝑒2
1, 𝑒

2
2

and 𝑒1𝑒2. Defining the functions 𝑑20(𝑁) = 𝑊 (𝑁), 𝑑11(𝑁) = 𝑃 (𝑁) and 𝑑02(𝑁) = 𝑄(𝑁) as

the second order components of the series we get the expression:

𝑊 (𝑁)𝑒2
1 + 𝑃 (𝑁)𝑒1𝑒2 +𝑄(𝑁)𝑒2

2 =

𝑊(𝑁/𝐾)[𝐸(𝐾)(e)]2 + 𝑃(𝑁/𝐾)[𝐸(𝐾)(e)𝐸(𝑎𝐾)(e)] +𝑄(𝑁/𝐾)[𝐸(𝑎𝐾)(e)]2,
(3.18)

and then:

𝐸2𝑜(e) = 𝑊 (𝑁/𝐾)
[︁
[𝑑10(𝐾)]2𝑒2

1 + 2𝑑10(𝐾)𝑑01(𝐾)𝑒1𝑒2 + [𝑑01(𝐾)]2𝑒2
2

]︁
+ 𝑃 (𝑁/𝐾) [𝑑10(𝐾)𝑒1 + 𝑑01(𝐾)𝑒2] [𝑑10(𝑎𝐾)𝑒1 + 𝑑01(𝑎𝐾)𝑒2] (3.19)

+ 𝑄(𝑁/𝐾)
[︁
[𝑑10(𝑎𝐾)]2𝑒2

1 + 2𝑑10(𝑎𝐾)𝑑01(𝑎𝐾)𝑒1𝑒2 + [𝑑01(𝑎𝐾)]2𝑒2
2

]︁
.

Combining same order terms in (3.19) we will get coupled recurrence relations for𝑊 (𝑁), 𝑃 (𝑁)

and 𝑄(𝑁). Choosing 𝐾 = 𝑎 and using the requirements for 𝑑10(𝑁) and 𝑑01(𝑁) we get rid

of some terms (because 𝑑10(𝑎) = 0 and 𝑑01(1) = 0):

𝑊 (𝑁) = (((
((((

((
𝑊 (𝑁/𝑎)[𝑑10(𝑎)]2 +

((((
((((

(((
𝑃 (𝑁/𝑎)𝑑10(𝑎)𝑑01(𝑎2) +𝑄(𝑁/𝑎)[𝑑10(𝑎2)]2,

𝑃 (𝑁) = 2
((((

((((
(((

𝑊 (𝑁/𝑎)𝑑10(𝑎)𝑑01(𝑎) + 𝑃 (𝑁/𝑎)
[︁
(((

((((𝑑10(𝑎)𝑑01(𝑎2) + 𝑑10(𝑎2)
]︁

+ 2𝑄(𝑁/𝑎)𝑑10(𝑎2)𝑑01(𝑎2),

𝑄(𝑁) = 𝑊 (𝑁/𝑎) + 𝑃 (𝑁/𝑎)𝑑01(𝑎2) +𝑄(𝑁/𝑎)[𝑑01(𝑎2)]2.

As before, we define 𝑑10(𝑎2) = 𝑥 and 𝑑01(𝑎2) = 𝑦 and change notation to 𝑃 (𝑁) = 𝑃𝑛:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝑊𝑛 = 𝑥2𝑄𝑛−1

𝑃𝑛 = 𝑥𝑃𝑛−1 + 2𝑥 𝑄𝑛−1

𝑄𝑛 = 𝑊𝑛−1 + 𝑦𝑃𝑛−1 + 𝑦2𝑄𝑛−1

,

where 𝑛 = log𝑎 𝑁 . Substituting 𝑊𝑛−1 in the third equation and making algebric manipula-

tions one derives the same recurrence relation for 𝑃𝑛 and 𝑄𝑛 (consequently 𝑊𝑛 = 𝑥2𝑄𝑛−1

obeys the same recurrence):

𝑃𝑛+1 = (𝑥+ 𝑦2)𝑃𝑛 + (𝑥𝑦 + 𝑥2)𝑃𝑛−1 − 𝑥3𝑃𝑛−2. (3.20)

So the three coefficients obey a recurrence that depends on the last 3 steps. This means

that as 𝑊0 = 𝑊1 = 0 and 𝑊2 = 𝑥2𝑄1 = 0 then 𝑊𝑛 = 0 for any 𝑛. This leads to a

sequential vanishing of all second order coefficients. So we have an empty solution for all

2nd order coefficients 𝑑20(𝑁) → 0, 𝑑11(𝑁) → 0, 𝑑02(𝑁) → 0 for any value of 𝑁 = 𝑎𝑛.
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3.3 SOME EXAMPLES AND PLOTS

3.3.1 Example I: 𝜈1 = 0 and 𝜈2 = 1

In this case, coefficients (3.12) and (3.13) are simpler and the 2-𝑆 function becomes:

𝐸(𝑁)(e) =
(︂
𝑁 − 𝑎

1 − 𝑎

)︂
𝑒1 +

(︂1 −𝑁

1 − 𝑎

)︂
𝑒2 +𝑂(3). (3.21)

So the asymptotic limit grows linearly with the difference between 𝑒1 and 𝑒2 (fixed 𝑎):

lim
𝑛→∞

𝐸(𝑎𝑛)(e)
𝑎𝑛

= 𝑒2 − 𝑒1

𝑎− 1 .

3.3.2 Example II: 𝜈1 = 1
2 and 𝜈2 = 1

If (𝜈1, 𝜈2) =
(︁

1
2 , 1

)︁
, we have in (3.14) the following 2-𝑆 function and asymptotic limit:

𝐸(𝑁)(e) =
(︃
𝑁

√
𝑎−

√
𝑁𝑎√

𝑎− 𝑎

)︃
𝑒1 +

(︃√
𝑁 −𝑁√
𝑎− 𝑎

)︃
𝑒2 +𝑂(3), (3.22)

lim
𝑛→∞

𝐸(𝑎𝑛)(e)
𝑎𝑛

=
√
𝑎𝑒1 − 𝑒2√
𝑎− 𝑎

.

Figure 5 - Asymptotic limits of different 2-𝑆 functions.

Source: the author (2020).

Figure 5 shows a 2-𝑆 function with e = (0.2, 0.8) and 𝑎 = 2 for different pairs of parameters

(𝜈1, 𝜈2) and 𝑛 = log2 𝑁 . The asymptotic limits for (𝜈1, 𝜈2) = (0, 1) (represented by the

blue line) and (𝜈1, 𝜈2) = (1
2 , 1) (represented by the yellow line) are the ones predicted

in example I and in exemple II. Also we see that if 𝜈1, 𝜈2 < 1 the regularized series

vanishes in the large number of copies limit.
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3.3.3 Example III: Superactivation

Superactivation is an interesting phenomenon in which ℰ(𝜚) = 0 and ℰ(𝜚⊗𝑎) > 0, for a

certain number of copies 𝑎. Evidently, the number of states 𝜚⊗𝑎 necessary for the supe-

ractivation to occur depends on the quantifier of interest ℰ(𝜚), on the quantum state 𝜚

(WATROUS, 2004; SHOR; THAPLIYAL, 2003), and may also depend on the measurement

procedure as well (QUINTINO; HUBER, 2016) 2. In this example we visualize the behavior of

a 2-𝑆 function which presents superactivation for 𝑎 copies. In our framework, e = (0, 𝑒2),

so:

𝐸(𝑁)(e) =
(︂
𝑁 𝜈1 −𝑁 𝜈2

𝑎𝜈1 − 𝑎𝜈2

)︂
𝑒2 +𝑂(3) (3.23)

where 𝑁 = 𝑎𝑛. Note that in this case 𝐸(𝑎2)(0, 𝑒2) = 𝑦 𝑒2 is actually not enough information

to determine parameters 𝜈1 and 𝜈2, because of 𝑒1 = 0 the quantification of ℰ for 𝑎2 copies

do not offer any information about 𝑥. So, additionally, one would need the quantity

𝐸(𝑎3)(0, 𝑒2) = (𝑥 + 𝑦2)𝑒2, up to first order (3.8), to determine the number 𝑥; this way,

equations (3.11) give the values of parameters 𝜈1 and 𝜈2 and the series is well determined.

3.3.4 One-Shot-Distillable Entanglement of a Mixture of Bell States

Entanglement is the most striking phenomenon in quantum theory and there are many

ways to quantify it. The one shot distillation of entanglement of a bipartite state 𝜚𝐴𝐵

(BUSCEMI; DATTA, 2010; FANG X. WANG; DUAN, 2019), for example, is related to the

maximal dimension 𝑘 of the maximally entangled state |𝜓⟩ =
∑︀

|𝑘𝑘⟩√
𝑘

that can be obtained

from 𝜚⊗𝑁 via non-entangling operations for 𝑁 finite (for details see (BUSCEMI; DATTA,

2010)). This quantity, here we denote it by ℰ𝑂𝑆𝐷(𝜚⊗𝑁
𝐵𝑒𝑙𝑙), has been analytically determined

for the family of mixtures of Bell diagonal states (𝜚Bell = 𝑝|Ψ+⟩⟨Ψ+| + (1 − 𝑝)|Ψ−⟩⟨Ψ−|

with |Ψ±⟩ = (|01⟩ ± |10⟩)/
√

2, the maximally entangled states in 2 dimensions):

ℰ𝑂𝑆𝐷(𝜚⊗𝑁
𝐵𝑒𝑙𝑙) = 𝑁(1 − ℎ(𝑝)) +

√︁
𝑁𝑝(1 − 𝑝)

⃒⃒⃒⃒
⃒ln
(︃

1 − 𝑝

𝑝

)︃⃒⃒⃒⃒
⃒Φ−1(𝜖) +𝑂(ln𝑁) (3.24)

where 𝜖 is the associated error and Φ−1 is the cumulative distribution (FANG X. WANG;

DUAN, 2019). Considering 𝑁 > 𝑀 > 𝐿 large numbers we can neglect the 𝑂(ln𝑁) contri-

bution and it is possible to express (3.24) in terms of quantities 𝑒1 and 𝑒2 as:
2 For example, the quantum steering, throught projective measurements, is superactivated with 𝑎 = 7

copies for dimension 𝑑 = 2 while it is superactivated with only 𝑎 = 2 copies for dimension 𝑑 ≥ 6
(QUINTINO; HUBER, 2016).
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𝐸
(𝑁)
𝑂𝑆𝐷(𝑒1, 𝑒2) =

√
𝑁√

𝑀 −
√
𝐿

[︃(︃√
𝑀 −

√
𝑁√

𝐿

)︃
𝑒1 +

(︃√
𝑁 −

√
𝐿√

𝑀

)︃
𝑒2

]︃
(3.25)

with ℰ𝑂𝑆𝐷(𝜚⊗𝐿
𝐵𝑒𝑙𝑙) = 𝑒1 and ℰ𝑂𝑆𝐷(𝜚⊗𝑀

𝐵𝑒𝑙𝑙) = 𝑒2 (note that if we take 𝑁 = 𝐿 and 𝑁 = 𝑀

we get 𝑒1 and 𝑒2 respectively, as it should be), for any fixed 𝑀 and 𝐿 and arbitrary,

but large, 𝑁 . It has been proven that “any quantum measure that can be expressed as

ℰ(𝜚⊗𝑁) = 𝐹𝑁 + 𝐺
√
𝑁 + 𝑂(ln𝑁), where 𝐹 and 𝐺 depend on the state 𝜚 and on fixed

parameters, is a 2-𝑆 function up to logarithmic order in the limit of a large but finite

number of copies 𝑁”3 (PARISIO, 2020).

To get equation (3.25) from the 2-𝑆 relation (3.4) one would have to consider 𝑒1 = ℰ(𝜚⊗𝐿)

and 𝑀 = 𝑎𝐾 = 𝑎𝐿 (with 𝐿 ∈ P𝑎), but actualy (PARISIO, 2020) states that the 𝑞-

scalability relation (3.1) is also valid for the set of integer powers of 𝑎 multiplied by an

integer 𝑏:

P𝑏
𝑎 = {𝑏, 𝑏𝑎, 𝑏𝑎2, ...}. (3.26)

This is easy to understand because what realy matters for the mathematical derivation of

𝑞-𝑆 relations is the ratio between these numbers and 𝑏 will always be canceled out. With

(3.26) one can simply make 𝑏 = 𝐿 and 𝑀 = 𝑎𝐿 (so 𝑀,𝑁 ∈ P𝐿
𝑎 ), so that the ratio 𝑎

1 = 𝑀
𝐿

is maintained.

𝐸(𝑁)(e) = 𝐸(𝑁/𝐾)[𝐸(𝐾)(e), 𝐸(𝑎𝐾)(e)]

↓

𝐸(𝑁)(e) = 𝐸(𝑁/𝐾)[𝐸(𝐿𝐾)(e), 𝐸(𝑀𝐾)(e)]

As demonstrated in (PARISIO, 2020), (3.25) satisfies this constraint (evidently, if 𝐿 is

large 𝑀 is also). Equation (3.25) is exactly our solution (3.22) for a 2-𝑆 function with

parameters (𝜈1, 𝜈2) = (1
2 , 1), thus the coefficient that multiplies 𝑒1 (𝑒2) is the variable 𝑥

(𝑦). Also, since 𝑁 > 𝑀 , the term proportional to 𝑒1 gives a negative contribution to

ℰ𝑂𝑆𝐷(𝜚⊗𝑁
𝐵𝑒𝑙𝑙), which is exactly the mandatory negativity of the variable 𝑥 (3.15).

3 This constitutes a proof of principle, showing that a complex figure of merit as the OSD entanglement
is a 2-𝑆 quantity for the whole family of Bell-diagonal states in the large-number regime. In fact,
the details of the factors multiplying the terms in 𝑁 and

√
𝑁 are irrelevant to the proof (completely

analogous results hold for arbitrary pure states (FANG X. WANG; DUAN, 2019)).
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4 GENERAL 𝑞-𝑆 LINEAR SOLUTION

“A equação me propõe

Computador me resolve”

– Os Mutantes / Tom Zé, Dois Mil e Um

Is there a general form for a 𝑞-scalable function? In this chapter we show that it is possi-

ble to generalize the 1st order recurrence relations structure for the general 𝑞-𝑆 case. We

present here a method based on linear algebra concepts to solve the general form of the

first order structure for a 𝑞-scalable quantity under some circunstances determinated by

our framework.

The definition of scalability can be seen as a generalization of additivity in two indepen-

dent ways. For additive functions we simply have 𝐸(𝑁)(𝑒1) = 𝑁𝑒1, that is, a dependence

on the single real variable 𝑒1 = ℰ(𝜚) and linearity. For a general 𝑞-scalable quantity, we

may have a dependence with several real variables (𝑒1, 𝑒2, . . . , 𝑒𝑞) = e and also nonlinear

behaviors. It is instructive to lift each of these constraints separately, i. e., (i) to allow

for nonlinear dependences in the single variable 𝑒1, as we did in chapter 1, and (ii) to

consider only linear functions of the several variables (𝑒1, 𝑒2, . . . , 𝑒𝑞):

𝐸(𝑁)(e) = 𝜂1(𝑁)𝑒1 + · · · + 𝜂𝑞(𝑁)𝑒𝑞 = 𝜂𝑁 · e.

This would constitute a direct generalization of the primitive notion of additivity (𝐸(𝑁)(𝑒1)

= 𝑁𝑒1), where 𝜂𝑁 ≡ (𝜂1(𝑁), 𝜂2(𝑁), . . . , 𝜂𝑞(𝑁)) and e are cartesian vectors in R𝑞. There-

fore, a 𝑞-𝑆 function has the form:

𝐸(𝑁)(e) =
𝑞∑︁

ℓ=1
𝜂ℓ(𝑁)𝑒ℓ, (4.1)

up to linear order, and the goal of this chapter is to determine the coefficients 𝜂ℓ(𝑁).
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4.1 GENERALIZING FIRST ORDER RECURRENCES

Does (4.1) constitute a 𝑞-scalable function? This question leads to the kind of recur-

rence relations that we referred to. Remember that, by our requirements in section 2.1,

𝐸(𝑎ℓ)(e) = eℓ+1 so, up to linear order (4.1), theorem 2.1 reads:

𝐸(𝑁)(e) =
𝑞∑︁

ℓ=1
𝜂ℓ(𝑁/𝐾)𝐸(𝑎ℓ−1𝐾)(e) (4.2)

=
𝑞∑︁

ℓ=1
𝜂ℓ(𝑁/𝐾)

𝑞∑︁
𝑗=1

𝜂𝑗(𝑎ℓ−1𝐾)𝑒𝑗,

which is equivalent to:

𝐸(𝑁)(e) =
𝑞∑︁

𝑗=1

(︃
𝜂𝑗(𝑎ℓ−1𝐾)

𝑞∑︁
ℓ=1

𝜂ℓ(𝑁/𝐾)
)︃
𝑒𝑗. (4.3)

Comparing equations (4.1) and (4.3) we get:

𝜂𝑗(𝑁) = 𝜂𝑗(𝑎ℓ−1𝐾)
𝑞∑︁

ℓ=1
𝜂ℓ(𝑁/𝐾). (4.4)

Therefore, expression (4.1) represents a 𝑞-scalable function if (4.4) is satisfied. In the sim-

plest case we have 𝑞 = 1 with 𝑗 = 1 and then 𝜂1(𝑁) = 𝜂1(𝐾)𝜂1(𝑁/𝐾).

In order to obtain the general recurrence it suffices to set 𝐾 = 𝑎. As before, we change

notation to 𝜂𝑗(𝑁) = 𝜂𝑗
𝑛, where 𝑛 = log𝑎 𝑁 , and then we obtain:

𝜂𝑗
𝑛 =

𝑞∑︁
ℓ=1

𝜂𝑗
ℓ𝜂

ℓ
𝑛−1. (4.5)

Now note that, by our requirements, 𝜂1
ℓ = 0 except for ℓ = 𝑞 (which we called 𝑥 in previous

sections) and 𝜂2
ℓ = 0 except for ℓ = 1 (𝑎 copies) and for ℓ = 𝑞 (which we have called 𝑦 in

previous sections). This will go on and on and we may write:

𝜂𝑗
ℓ = 𝛿𝑗−1

ℓ⏟  ⏞  
for ℓ < 𝑞

+𝛿𝑞
ℓ𝜂

𝑗
𝑞 . (4.6)

Recurrence relations (4.6) states that every coefficient is null except if it fulfills our requi-

rements that 𝐸(𝑎ℓ)(e) = eℓ+1, and that for 𝑎𝑞 copies we have the new values 𝜂1
𝑞 (𝑎𝑞) = 𝑥,

𝜂2
𝑞 (𝑎𝑞) = 𝑦 etc: so the delta symbols are labeled by an index ℓ < 𝑞 or for ℓ = 𝑞. Substituting

(4.6) into (4.5), we find the general 1st order recurrences:

𝜂𝑗
𝑛 =

𝑞∑︁
ℓ=1

( 𝛿𝑗−1
ℓ⏟  ⏞  

for ℓ < 𝑞

+𝛿𝑞
ℓ𝜂

𝑗
𝑞) 𝜂ℓ

𝑛−1

= 𝜂𝑗−1
𝑛−1 + 𝜂𝑞

𝑛−1𝜂
𝑗
𝑞 . (4.7)
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4.1.1 Decoupled 𝑞-𝑆 Recurrence Relations

Recurrences (4.7) can be easily decoupled and solved with some software. Note that the

1st equation in (4.7) must be substituted on the 2nd and the latter will be substituted in

the 3rd and so on. The only way to decouple all equations is to begin from the last one

𝜂𝑞
𝑛, so by making 𝑚 = 𝑞:

𝜂𝑞
𝑛 = 𝜂𝑞−2

𝑛−2 + 𝜂𝑞
𝑛−2𝜂

𝑞−1
𝑞 + 𝜂𝑞

𝑛−1𝜂
𝑞
𝑞

= 𝜂𝑞−3
𝑛−3 + 𝜂𝑞

𝑛−3𝜂
𝑞−2
𝑞 + 𝜂𝑞

𝑛−2𝜂
𝑞−1
𝑞 + 𝜂𝑞

𝑛−1𝜂
𝑞
𝑞

...

𝜂𝑞
𝑛 =

𝑞∑︁
𝑘=1

𝜂𝑞+1−𝑘
𝑞 𝜂𝑞

𝑛−𝑘. (4.8)

The pattern forms a sum which ends at 𝑞, where 𝜂𝑞+1−𝑘
𝑞 are the 1st order coefficients

in ℰ(𝜚⊗𝑞). With the decoupled recurrence for the higher-order term 𝜂𝑞
𝑛 (4.8), we can see

that all coefficients in the 1st order expansion of a 𝑞-𝑆 function obeys the same relation.

Once we know that the higher-order term 𝜂𝑞
𝑛 obeys (4.8), we can “go downstairs” (the

procedure can be made for 𝜂2
𝑛, 𝜂3

𝑛 and so on):

𝜂1
𝑛 = 𝜂1

𝑞𝜂
𝑞
𝑛−1 = 𝜂1

𝑞

𝑞∑︁
𝑘=1

𝜂𝑞+1−𝑘
𝑞 𝜂𝑞

𝑛−1−𝑘

=
𝑞∑︁

𝑘=1
𝜂𝑞+1−𝑘

𝑞

(︁
𝜂1

𝑞𝜂
𝑞
𝑛−1−𝑘

)︁
=

𝑞∑︁
𝑘=1

𝜂𝑞+1−𝑘
𝑞 𝜂1

𝑛−𝑘.

So we can state that the recurrence relations for 1st order coefficients of a 𝑞-𝑆 function

expansion depends on the last 𝑞 steps:

𝜂𝑙
𝑛 =

𝑞∑︁
𝑘=1

𝜂𝑞+1−𝑘
𝑞 𝜂𝑙

𝑛−𝑘, (4.9)

with 𝑙 ≤ 𝑞. Evidently, for 𝑞 = 1 we get the recurrence 𝜂1
𝑛 = 𝜂1

1𝜂
1
𝑛−1 = 𝑥𝜂1

𝑛−1, where

𝑥 = 𝑑1(𝑎) as in (2.22). While for 𝑞 = 2 we have a sum of 2 terms: 𝜂𝑙
𝑛 = 𝜂2

2𝜂
𝑙
𝑛−1 + 𝜂1

2𝜂
𝑙
𝑛−2 =

𝑦𝜂𝑙
𝑛−1+𝑥𝜂𝑙

𝑛−2 (with 𝑥 = 𝑑10(𝑎2) and 𝑦 = 𝑑01(𝑎2)), giving the hybrid Fibonacci polynomials

recurrence for each coefficient 𝑙 = 1, 2.

• 3-Scalability: we can easily find the 1st order recurrences for the 3-𝑆 case:

𝜂𝑙
𝑛 = 𝜂3

3𝜂
𝑙
𝑛−1 + 𝜂2

3𝜂
𝑙
𝑛−2 + 𝜂1

3𝜂
𝑙
𝑛−3 = 𝑧𝜂𝑙

𝑛−1 + 𝑦𝜂𝑙
𝑛−2 + 𝑥𝜂𝑙

𝑛−3, (4.10)

for 𝑙 = 1, 2, 3.
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4.2 GENERAL SOLUTION

Equations (4.6) can also be transcripted into a matrix structure (4.11):

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝜂1

𝑛

...

𝜂𝑞
𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 𝜂1
𝑞

1 0 . . . 0 𝜂2
𝑞

0 1 . . . 0 𝜂3
𝑞

0 0 . . . 0 ...

0 0 . . . 1 𝜂𝑞
𝑞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝
𝜂1

𝑛−1

...

𝜂𝑞
𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.11)

Note that the first line is null except for the last term 𝜂1
𝑞 , while the following lines form

an (𝑞− 1)×(𝑞− 1) identity on the lower-left block and the last columm is constructed by

the numbers 𝜂𝑚
𝑞 . Using 𝜂𝑛 to represent the 𝑞-vector in (4.11), we have in a compact form:

𝜂𝑛 = 𝒬𝜂𝑛−1. (4.12)

• We may check this structure for the 2-𝑆 case and we will find the same coupled

system of recurrence relations as in 3.2.1:⎛⎜⎜⎝𝜂1
𝑛

𝜂2
𝑛

⎞⎟⎟⎠ =

⎛⎜⎜⎝𝜂1
1 𝜂1

2

𝜂2
1 𝜂2

2

⎞⎟⎟⎠
⎛⎜⎜⎝𝜂1

𝑛−1

𝜂2
𝑛−1

⎞⎟⎟⎠ =

⎛⎜⎜⎝0 𝑥

1 𝑦

⎞⎟⎟⎠
⎛⎜⎜⎝𝜂1

𝑛−1

𝜂2
𝑛−1

⎞⎟⎟⎠ , (4.13)

which generates the hybrid Fibonacci polynomials (3.6).

We can find a basis that diagonalizes 𝒬 throught the operation 𝜂𝑛 = 𝐷−1𝜁𝑛 (the matrix

𝐷 has dimension 𝑞 × 𝑞):

𝐷−1𝜁𝑛 = 𝒬𝐷−1𝜁𝑛−1,

𝐷𝐷−1⏟  ⏞  
ℐ

𝜁𝑛 = 𝐷𝒬𝐷−1𝜁𝑛−1,

where 𝜂𝑛 = 𝐷−1𝜁𝑛 can be expanded as a linear combination ∑︀𝑞
𝑘=1 𝐶

𝑚
𝑘 𝜁

𝑘
𝑛 and the coeffici-

ents 𝐶𝑚
𝑘 can be easily determined. In this basis the solution is simply:

𝜁𝑘
𝑛 = (𝜆𝑘)𝑛, (4.14)

where 𝜆𝑘 is the 𝑘-th eigenvalue of the diagonalized matrix [𝐷𝒬𝐷−1]𝑘𝑙 = 𝜆𝑘𝛿𝑘𝑙. Then we

have that the solution of recurrences (4.7) is:

𝜂𝑚
𝑛 =

𝑞∑︁
𝑘=1

𝐶𝑚
𝑘 𝜁

𝑘
𝑛 =

𝑞∑︁
𝑘=1

𝐶𝑚
𝑘 (𝜆𝑘)𝑛. (4.15)
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4.2.1 Eigenvalues and Coefficients Equations

The eigenvalues of the matrix (4.11) are the key ingredients of the method. Note that the

eigenvalues of (4.13) are exactly the values we used in the change of variables (3.11). So

we can generalize this step to:

𝜈𝑘 = log𝑎 𝜆𝑘, (4.16)

where 𝜆𝑘 is the 𝑘-th eigenvalue of the matrix (4.11) (so 𝑘 goes from 1 to 𝑞). Then the

general solution, by making the change of variables (4.16) is, because 𝑎𝑛 = 𝑁 :

𝜂𝑚
𝑛 =

𝑞∑︁
𝑘=1

𝐶𝑚
𝑘 (𝜆1, ..., 𝜆𝑞)(𝜆𝑘)𝑛 → 𝜂𝑚(𝑁) =

𝑞∑︁
𝑘=1

𝐶𝑚
𝑘 (𝑎𝜈1 , ...𝑎𝜈𝑞)𝑁𝜈𝑘 , (4.17)

where the coefficients 𝐶𝑚
𝑘 are functions of the eigenvalues of (4.11) and they must satisfy

the requirements 𝐸(𝑎ℓ)(e) = eℓ+1. As each coefficient 𝜂𝑚(𝑎𝑙) is a sum (4.17) with coeffici-

ents 𝐶𝑚
𝑘 (𝑎𝜈1 , ..., 𝑎𝜈𝑞) these conditions give rise to 𝑞 systems of 𝑞 coupled equations to be

solved. After one solves these systems of equations the problem is finished.

Theorem 3.1: Let 𝜚 ∈ ℬ(ℋ), 𝑁 ∈ P𝑎 and ℰ be a 𝑞-𝑆 function with respect to 𝜚

and P𝑎. If e = (ℰ(𝜚), ℰ(𝜚⊗𝑎), . . . , ℰ(𝜚⊗𝑎𝑞−1)), then for 𝜚⊗𝑁 :

𝐸(𝑁)(e) =
𝑞∑︁

𝑚=1

𝑞∑︁
𝑘=1

𝐶𝑚
𝑘 𝑁

𝜈𝑘𝑒𝑚 +𝑂(2),

where 𝜈𝑘 = log𝑎 𝜆𝑘, with 𝜆𝑘 being the 𝑘-th eigenvalue of the matrix (4.11) and 𝐶𝑚
𝑘

are coefficients determined by the systems of equations:
𝑞∑︁

𝑘=1
𝐶𝑚

𝑘 𝑎
ℓ𝜈𝑘 = 𝛿𝑚−1

ℓ , with ℓ = 0, ..., 𝑞 − 1.

We see that the form of a 𝑞-scalable function gets much more complicated as we increase

𝑞, the fact that there is a general solution to 1st order and a practical simple method

is the main result of this chapter. The solutions of the system of equations determining

coefficients 𝐶𝑚
𝑘 can be easily found with computational softwares.

In the next subsection we apply this method to revisit the 2-𝑆 case under this new

mathematical framework and after that we solve the 3-𝑆 case (which would be an almost

impossible task without this formalism).
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4.2.1.1 2-Scalability Revisited

The eigenvalues of (4.11) for the 2-𝑆 case:

𝒬 =

⎛⎜⎜⎝0 𝑥

1 𝑦

⎞⎟⎟⎠ (4.18)

are 𝜆1 = 𝑦+
√

4𝑥+𝑦2

2 and 𝜆2 = 𝑦−
√

4𝑥+𝑦2

2 . Then:

𝐴𝑚(𝑁) = 𝐶𝑚
1 𝑁

𝜈1 + 𝐶𝑚
2 𝑁

𝜈2 , (4.19)

where 𝜈1 = log𝑎 𝜆1 and 𝜈2 = log𝑎 𝜆2. With the requirements that 𝜂1(1) = 1, 𝜂1(𝑎) = 0 and

𝜂2(1) = 0, 𝜂2(𝑎) = 1, we will have two systems of equations to solve:

⎧⎪⎪⎨⎪⎪⎩
𝐶1

1 + 𝐶1
2 = 1

𝐶1
1𝑎

𝜈1 + 𝐶1
2𝑎

𝜈2 = 0
→ 𝐶1

1(𝑎𝜈1 , 𝑎𝜈2) = −𝑎𝜈2

𝑎𝜈1 − 𝑎𝜈2
= 1 − 𝐶1

2(𝑎𝜈1 , 𝑎𝜈2),

and:

⎧⎪⎪⎨⎪⎪⎩
𝐶2

1 + 𝐶2
2 = 0

𝐶2
1𝑎

𝜈1 + 𝐶2
2𝑎

𝜈2 = 1
→ 𝐶2

1(𝑎𝜈1 , 𝑎𝜈2) = 1
𝑎𝜈1 − 𝑎𝜈2

= −𝐶2
2(𝑎𝜈1 , 𝑎𝜈2).

This solution is exactly the one we have found in (3.13).
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4.3 3-SCALABILITY

Now we are looking for the general form of a scalable function with e = (𝑒1, 𝑒2, 𝑒3). Up to

1st order, this means that coefficients 𝑑100(𝑁), 𝑑010(𝑁) and 𝑑001(𝑁) are to be determined:

𝐸(𝑁)(e) =
∑︁

𝑘,𝑙,𝑚

𝑑𝑘𝑙𝑚(𝑁)𝑒𝑘
1𝑒

𝑙
2𝑒

𝑚
3 . (4.20)

In this case the matrix (4.11) is:

𝒬 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 0 𝑥

1 0 𝑦

0 1 𝑧

⎞⎟⎟⎟⎟⎟⎟⎟⎠ . (4.21)

One can find the three eigenvalues of this matrix and make the change of variables 𝜈𝑘 =

log𝑎 𝜆𝑘, 𝑘 = 1, 2, 3 (these parameters are determined by the values 𝜂1(𝑎3) = 𝑥, 𝜂2(𝑎3) = 𝑦

and 𝜂3(𝑎3) = 𝑧 respectively) and then write:

𝐴𝑚(𝑁) = 𝐶𝑚
1 𝑁

𝜈1 + 𝐶𝑚
2 𝑁

𝜈2 + 𝐶𝑚
3 𝑁

𝜈3 . (4.22)

Now we consider the requirements 𝜂1(1) = 1, 𝜂1(𝑎) = 𝜂1(𝑎2) = 0, 𝜂2(1) = 𝜂2(𝑎2) =

0, 𝜂2(𝑎) = 1 and 𝜂3(1) = 𝜂3(𝑎2) = 0, 𝜂3(𝑎2) = 1. So there are three systems of equations

to be solved:
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝐶𝑚
1 + 𝐶𝑚

2 + 𝐶𝑚
3 = 𝛿𝑚−1

0

𝐶𝑚
1 𝑎

𝜈1 + 𝐶𝑚
2 𝑎

𝜈2 + 𝐶𝑚
3 𝑎

𝜈3 = 𝛿𝑚−1
1

𝐶𝑚
1 𝑎

2𝜈1 + 𝐶𝑚
2 𝑎

2𝜈2 + 𝐶𝑚
3 𝑎

2𝜈3 = 𝛿𝑚−1
2

.

These systems can be easily solved with some software, like mathematica. In these solu-

tions we see that all three exponents must be different from each other 𝜈1 ̸= 𝜈2 ̸= 𝜈3 and

𝜈3 ̸= 𝜈1, for none of the coefficients to diverge.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐶1

1 = 𝑎𝜈2+𝜈3
(𝑎𝜈1 −𝑎𝜈2 )(𝑎𝜈1 −𝑎𝜈3 )

𝐶1
2 = 𝑎𝜈1+𝜈3

(𝑎𝜈2 −𝑎𝜈1 )(𝑎𝜈2 −𝑎𝜈3 )

𝐶1
3 = 𝑎𝜈1+𝜈2

(𝑎𝜈3 −𝑎𝜈1 )(𝑎𝜈3 −𝑎𝜈2 )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐶2

1 = −(𝑎𝜈2 +𝑎𝜈3 )
(𝑎𝜈1 −𝑎𝜈2 )(𝑎𝜈1 −𝑎𝜈3 )

𝐶2
2 = −(𝑎𝜈1 +𝑎𝜈3 )

(𝑎𝜈2 −𝑎𝜈1 )(𝑎𝜈2 −𝑎𝜈3 )

𝐶2
3 = −(𝑎𝜈1 +𝑎𝜈2 )

(𝑎𝜈3 −𝑎𝜈1 )(𝑎𝜈3 −𝑎𝜈2 )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐶3

1 = 1
(𝑎𝜈1 −𝑎𝜈2 )(𝑎𝜈1 −𝑎𝜈3 )

𝐶3
2 = 1

(𝑎𝜈2 −𝑎𝜈1 )(𝑎𝜈2 −𝑎𝜈3 )

𝐶3
3 = 1

(𝑎𝜈3 −𝑎𝜈1 )(𝑎𝜈3 −𝑎𝜈2 )
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Recombining the terms in (4.17), we can write the scaled function as 𝐸(𝑁)(e) = (𝐶1
1𝑒1 +

𝐶2
1𝑒2 +𝐶3

1𝑒3)𝑁𝜈1 + (𝐶1
2𝑒1 +𝐶2

2𝑒2 +𝐶3
2𝑒3)𝑁 𝜈2 + (𝐶1

3𝑒1 +𝐶2
3𝑒2 +𝐶3

3𝑒3)𝑁 𝜈3 . This simplifies

the final expression because the coefficients 𝐶𝑚
𝑙 have the same denominator for the same 𝑙.

So we can state the following theorem:

Theorem 3.2: Let 𝜚 ∈ ℬ (ℋ) and 𝑁 ∈ P𝑎. If ℰ is a 3-𝑆 function such that

ℰ(𝜚⊗𝑁) = 𝐸(𝑁) depends on e = (𝑒1, 𝑒2, 𝑒3) = (ℰ(𝜚), ℰ(𝜚⊗𝑎), ℰ(𝜚⊗𝑎2)) and on 𝑛,

where 𝐸(𝑎3)(e) = 𝑥 𝑒1 + 𝑦 𝑒2 + 𝑧 𝑒3 + 𝑂(2), with 𝑥, 𝑦 and 𝑧 known, then, for e

sufficiently small, we have, up to 1st order:

𝐸(𝑁)(e) = 𝑎𝜈2+𝜈3𝑒1 − (𝑎𝜈2 + 𝑎𝜈3)𝑒2 + 𝑒3

(𝑎𝜈1 − 𝑎𝜈2)(𝑎𝜈1 − 𝑎𝜈3) 𝑁 𝜈1 + 𝑎𝜈1+𝜈3𝑒1 − (𝑎𝜈1 + 𝑎𝜈3)𝑒2 + 𝑒3

(𝑎𝜈2 − 𝑎𝜈1)(𝑎𝜈2 − 𝑎𝜈3) 𝑁𝜈2

+ 𝑎𝜈1+𝜈2𝑒1 − (𝑎𝜈1 + 𝑎𝜈2)𝑒2 + 𝑒3

(𝑎𝜈3 − 𝑎𝜈1)(𝑎𝜈3 − 𝑎𝜈2) 𝑁 𝜈3 ,

where 𝜈𝑘 = log𝑎 𝜆𝑘, 𝑘 = 1, 2, 3, with 𝜆𝑘 being the 𝑘-th eigenvalue of matrix (4.21).

Of course, the regularized 3-𝑆 function 𝐸(𝑁)(e)
𝑁

is bounded if 𝜈1, 𝜈2, 𝜈3 ≤ 1 and vanishes if

𝜈1, 𝜈2, 𝜈3 < 1 (again we have symmetry throught 𝜈1 ↔ 𝜈2, 𝜈2 ↔ 𝜈3 or 𝜈1 ↔ 𝜈3).

In the next section we compare a 3-𝑆 function with computational data of a well known

quantifier in literature, wich is the one-shot-distillable entanglement, for an 𝑁 -fold iso-

tropic state.

4.3.1 Comparison with Computational Data

In this section we compare a 3-𝑆 function with the one-shot-distillable entanglement of

an 𝑁 -fold 𝑑 dimensional isotropic state 𝜚⊗𝑁
𝐹 . The quantum state 𝜚𝐹 is defined as:

𝜚𝐹 = 𝐹Ψ𝑑 + (1 − 𝐹 )I − Ψ𝑑

𝑑2 − 1 , with 0 ≤ 𝐹 ≤ 1, (4.23)

where 𝐹 is the fidelity of the quantum state 𝜚𝐹 with Ψ𝑑, the maximally entangled state

in 𝑑 dimensions. Differently from the case in section 3.3.4, the one-shot-distillable entan-

glement of a 𝑑-dimensional isotropic state (4.23), which we denote as ℰ𝑂𝑆𝐷(𝜚⊗𝑁
𝐹 ), does
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not have an analytical expression. However, the unitary symmetry of this family of states

facilitates the optimization process on softwares for the avaliation of this figure of merit.

Figure 6 – One-shot-distillable entanglement of an 𝑁 -fold

3D isotropic state 𝜚⊗𝑁
𝐹 with 𝐹 = 0.9.

Source: the author and Thiago Melo (2021).

It is mentioned in reference

(FANG X. WANG; DUAN,

2019) that a suitable fit

for this function contains

terms in 𝑁,
√
𝑁, ln𝑁 and

an additive constant, so we

study a 3-𝑆 function with

parameters (𝜈1, 𝜈2, 𝜈3) =

(1, 1
2 , 0) to compare the ac-

curacy of the scalability

method in describing the

quantifier ℰ𝑂𝑆𝐷(𝜚⊗𝑁
𝐹 ).

The first result of the computational code is that this quantity is superactivated with

𝑎 = 6 copies when one takes 𝐹 = 0.9 and 𝑑 = 3 (for details about the optimization pro-

gram and the computational data see appendix C). A 3-𝑆 function as in theorem 3.2

which superactivates at 𝑎 copies (so e = (0, 𝑒2, 𝑒3)) with the aforementioned parameters

𝜈1, 𝜈2, 𝜈2 has the form:

𝐸(𝑁)(e) = −
[︃

(
√
𝑎+ 1)𝑁

(𝑎−
√
𝑎)(𝑎− 1) + (𝑎+ 1)

√
𝑁

(
√
𝑎− 𝑎)(

√
𝑎− 1) + (𝑎+

√
𝑎)

(1 − 𝑎)(1 −
√
𝑎)

]︃
𝑒2[︃

𝑁

(𝑎−
√
𝑎)(𝑎− 1) +

√
𝑁

(
√
𝑎− 𝑎)(

√
𝑎− 1) + 1

(1 − 𝑎)(1 −
√
𝑎)

]︃
𝑒3, (4.24)

with 𝑒2 = ℰ(𝜚⊗𝑎) and 𝑒3 = ℰ(𝜚⊗𝑎2). Naturally, we will use expression (4.24) for arbitrary

𝑁 as a fit curve of the points 𝑁 ∈ P6, the ones that actually satisfies recurrences (4.10).

The asymptotic limit of the regularized part becomes simply:

lim
𝑛→∞

𝐸(𝑎𝑛)(e)
𝑎𝑛

= −(
√
𝑎+ 1)𝑒2 + 𝑒3

(𝑎−
√
𝑎)(𝑎− 1) . (4.25)

Thiago Melo - Departamento de Física, Universidade Federal de Pernambuco (UFPE).
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The computational data for the one-shot-distillable entanglement of an 𝑁 -fold isotropic

state is listed on Table 3 (see appendix C), where the values of ℰ(𝜚⊗6) and ℰ(𝜚⊗36) were

used to plot (4.24) in Figure 7.

Figure 7 – Comparison of a 3-𝑆 function with the one-shot-distillable entanglement of an
𝑁 -fold 3D isotropic state 𝜚⊗𝑁

𝐹 with 𝐹 = 0.9.

Source: the author and Thiago Melo (2021).

The asymptotic limit predicted by the 3-𝑆 form is ∼ 0.85, while the actual result is ∼ 0.81,

an accuracy of ∼ 95%. This means that at some point, according to some error tolerance,

the 3-𝑆 funtion will disagree with the computational data and thus one would need to

consider an approximative iteration to correct this error. This can be an pathway to the

development of an approximative method for quantum figures of merit in terms of the

number of copies using 𝑞-scalability as an ingredient in some computational framework.

Note in this example that, as it was discussed in the introduction, the asymptotic regime

may become dominant only for 𝑁 → ∞, which is impractical, so is important to be able

to predict results for 𝑁 large but finite.
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5 CONCLUSIONS AND PERSPECTIVES

In this dissertation we have addressed the concept of scalability (PARISIO, 2020), which

enabled us to study an interesting class of quantum functions by using combinatorics and

elementary tools of analysis. The derived results can naturally be seen as a generalization

of the restrictive notion of additivity. In the case of quantum coherence, for example, we

showed that the way one quantifies this resource for 𝜚⊗𝑁 may, or not, imply a non-additive

behavior for this quantity with the number of copies 𝑁 (the relative entropy of coherence

is additive while the 𝑙1-norm is not).

The main results of this work are: (i) more orders of the 1-𝑆 series expansion, (ii) sca-

lability properties of some coherence related quantifiers, (iii) the general linear solution

of a 𝑞-𝑆 function for arbitrary 𝑞, and (iv) an approximation of the one-shot-distilable

entanglement of an 𝑁 -fold isotropic state by a scalable function.

Figure 8 – Can we demonstrate, at least in some

cases of interest, that a quantum func-

tion is scalable without calculating its

explicit form?

Source: Fernando Parisio (2021).

We point out that there is a limita-

tion of the method concerning the cer-

tification that some function is sca-

lable. One can calculate series coef-

ficients and determine the expansion

for 𝑁 copies once the scalability of

the quantififer is shown to hold. In

the current stage of the development

of the method, it would be an im-

portant advance to infer a quantifier’s

scalability only by knowing its defini-

tion.

Moreover, the fact that many different behaviors of quantum functions can be derived

from one simple relation is an interesting description from a mathematical point of view.

We saw that many types of quantifiers (additive, multiplicative, with binomial coeffici-

ents, with bounded coefficients) can have the same origin in a single equation.
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A curious observation is that some results provided by the theory, which, at first, take

place for 𝑁 ∈ P𝑎, are actually valid for arbitrary 𝑁 (as is the case of the 𝑙1-norm of cohe-

rence and the squared Hilbert-Schmidt norm of pure states). In particular, the comparison

of a scalable function with the one-shot-distillable entanglement of an 𝑁 -fold isotropic

state (see Figure 7) is quite accurate.

Also we think that these concepts may be usefull for a computational procedure that

could test functions for a certain number of copies of 𝜚 and extend it to many copies

through an iterative procedure. This iterative task would search for a matching pattern

to determine the quantum function’s scalability. For example, if ℰ(𝜚⊗2) = 2ℰ(𝜚), the eva-

luation of ℰ(𝜚⊗4) would fix the quantififer as a 1-𝑆 function if ℰ(𝜚⊗4) = 2ℰ(𝜚⊗2) and

𝑥 ̸= 4 − 2𝑦 or would infer it as a 𝑞 > 1 scalable function instead (defining ℰ(𝜚⊗4) as

a new element of a bigger vector e = (ℰ(𝜚), ℰ(𝜚⊗2)) for the following tests). Of course

this is just a simple glance of how such computational procedure would work: as it was

demonstrated, there are more ways for a quantum function to be 1-𝑆 beyond additivity

and evidently this must be considered.

This computational method could be usefull to another potentially interesting approach,

which is to consider the description of physical quantities via scalable functions as an

approximative method. Given that a certain quantifier is not scalable, how well can we

approximate it via a scalable expression? The squared Hilbert-Schmidt norm, not scalable

on specific domains, is a good candidate for the development of an approximative method.
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APPENDIX A - ADDITIONAL RESULTS

A.1 3TH ORDER COEFFICIENTS SOLUTION

The recurrence relation for 𝑑3(𝑁) is (2.20):

𝑑3(𝑁) = 𝑑1(𝑁/𝑎)𝑑3(𝑎) + 2𝑑2(𝑁/𝑎)𝑑1(𝑎)𝑑2(𝑎) + 𝑑3(𝑁/𝑎)[𝑑1(𝑎)]3.

Appyling the already known recurrence relations for 𝑑1(𝑎𝑛) and 𝑑2(𝑎𝑛):

𝑑3(𝑎𝑛) = 𝑎𝜈(𝑛−1)𝑑3(𝑎) + 2[𝑑2(𝑎)]2𝑎𝜈(𝑛−1)
(︃
𝑎𝜈(𝑛−1) − 1
𝑎𝜈 − 1

)︃
+ 𝑑3(𝑎𝑛−1)𝑎3𝜈 ,

where we have to make the recursive substitution of 𝑑3(𝑎𝑛) into itself and iterate 𝑙 = 𝑛−1

times:

𝑑3(𝑁) = 𝑑3(𝑎)
[︁
𝑎𝜈(𝑛−1) + 𝑎𝜈(𝑛−2)𝑎3𝜈 + . . .

]︁
+ 2[𝑑2(𝑎)]2

𝑛−1∑︁
𝑙=1

{︃
𝑎𝜈(𝑛−𝑙)

(︃
𝑎𝜈(𝑛−𝑙) − 1
𝑎𝜈 − 1

)︃
𝑎3𝜈(𝑙−1)

}︃

. . . = 𝑑3(𝑎)
𝑛∑︁

𝑙=1
𝑎𝜈(𝑛−𝑙)𝑎3𝜈(𝑙−1) + 2[𝑑2(𝑎)]2

𝑎𝜈 − 1

(︂
𝑁

𝑎3

)︂𝜈 𝑛−1∑︁
𝑙=1

𝑎2𝜈𝑙
(︁
𝑁𝜈𝑎−𝜈𝑙 − 1

)︁
.

By substituting 𝑎𝑛 = 𝑁 . Redefining all sums to begin in 𝑙 = 0:

𝑑3(𝑁) = 𝑑3(𝑎)
(︂
𝑁

𝑎3

)︂𝜈
(︃

𝑛∑︁
𝑙=0

𝑎2𝜈𝑙 − 1
)︃

+2[𝑑2(𝑎)]2
𝑎𝜈 − 1

(︂
𝑁

𝑎3

)︂𝜈
[︃
𝑁𝜈

(︃
𝑛−1∑︁
𝑙=0

𝑎𝜈𝑙 − 1
)︃

−
(︃

𝑛−1∑︁
𝑙=0

𝑎2𝜈𝑙 − 1
)︃]︃

.

We may use the geometric series ∑︀𝑛−1
𝑙=0 𝑥

𝑙 = 1−𝑥𝑛

1−𝑥
to rewrite all the sums and then we get

the third coefficient in expansion (2.24):

𝑑3(𝑁) = 𝑑3(𝑎)
(︂
𝑁

𝑎

)︂𝜈
(︃

1 −𝑁2𝜈

1 − 𝑎2𝜈

)︃
+ 2[𝑑2(𝑎)]2

(︂
𝑁

𝑎2

)︂𝜈 (𝑁 𝜈 − 1)(𝑁 𝜈 − 𝑎𝜈)
(𝑎𝜈 − 1)(𝑎2𝜈 − 1) .
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A.2 4TH ORDER RECURRENCE RELATION

As for the 4th coefficient, we can determine it’s recurrence relation and solve it by pro-

graming on mathematica language. Expanding (2.21):

𝑑4(𝑁) = 𝑑1(𝑁/𝐾)
1∑︁
𝑖

𝜋𝑖(4, 1;𝐾) + 𝑑2(𝑁/𝐾)
3∑︁
𝑖

𝜋𝑖(4, 2;𝐾)

+ 𝑑3(𝑁/𝐾)
3∑︁
𝑖

𝜋𝑖(4, 3;𝐾) + 𝑑4(𝑁/𝐾)
1∑︁
𝑖

𝜋𝑖(4, 4;𝐾),

and then, following the definition of 𝜋𝑖(𝑗, 𝑙;𝐾), we get:

𝑑4(𝑁) = 𝑑1(𝑁/𝐾)𝜋1(4, 1;𝐾) + 𝑑2(𝑁/𝐾)[𝜋1(4, 2;𝐾) + 𝜋2(4, 2;𝐾) + 𝜋3(4, 2;𝐾)]

+ 𝑑3(𝑁/𝐾)[𝜋1(4, 3;𝐾) + 𝜋2(4, 3;𝐾) + 𝜋3(4, 3;𝐾)] + 𝑑4(𝑁/𝐾)𝜋1(4, 4;𝐾).

As the compositions for the number 4 are (1+3, 2+2, 3+1), (1+1+2, 1+2+1, 2+1+1)

and, for last, (1+1+1+1):

𝑑4(𝑁) = 𝑑1(𝑁/𝐾)𝑑4(𝐾) + 𝑑2(𝑁/𝐾){2𝑑1(𝐾)𝑑3(𝐾) + [𝑑2(𝐾)]2}

+ 3𝑑3(𝑁/𝐾)[𝑑1(𝐾)]2𝑑2(𝐾) + 𝑑4(𝑁/𝐾)[𝑑1(𝐾)]4. (5.1)

Then if 𝑑3(𝐾) = 0 and 𝑑4(𝐾) = 0 we get the fourth recurrence for the two-coefficient

case, explored in section 2.4.2.
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APPENDIX B - DEMONSTRATIONS

B.1 SCALABILITY OF THE 𝑙1-NORM OF COHERENCE

According to the quantifier (2.38), 𝑁 tensor products will have the following 𝑙1-norm of

coherence:

𝒞𝑙1(𝜚⊗𝑁) =
𝑑𝑁∑︁

𝑖1, ..., 𝑖𝑁

𝑗1, ..., 𝑗𝑁

|𝜚𝑖1𝑗1 ...𝜚𝑖𝑁 𝑗𝑁
| − 1, (5.2)

where 𝑑 is the dimension of 𝜚. Taking all the combinations of the indices, the sum of the

products is the product of the sums by taking the indice 𝑙 to vary from 0 to 𝑁 :

𝒞𝑙1(𝜚⊗𝑁) =
⎛⎝ 𝑑∑︁

𝑖1𝑗1

|𝜚𝑖1𝑗1| × ...×
𝑑∑︁

𝑖𝑁 𝑗𝑁

|𝜚𝑖𝑁 𝑗𝑁
|

⎞⎠− 1 =
𝑁∏︁

𝑙=0

𝑑∑︁
𝑖𝑙𝑗𝑙

|𝜚𝑖𝑙𝑗𝑙
| − 1. (5.3)

The productory in (5.3) is equivalent to simply multiply the sum 𝑁 times:

𝒞𝑙1(𝜚⊗𝑁) =
⎛⎝ 𝑑∑︁

𝑖,𝑗

|𝜚𝑖𝑗|

⎞⎠𝑁

− 1 =
⎛⎝ 𝑑∑︁

𝑖=𝑗

|𝜚𝑖𝑗| +
𝑑∑︁

𝑖 ̸=𝑗

|𝜚𝑖𝑗|

⎞⎠𝑁

− 1,

where we break the sum into two parts: the trace, hence the unity, and the other is our

coherence quantifier (2.38):

𝐶
(𝑁)
𝑙1 (𝑐1) = (1 + 𝑐)𝑁 − 1 =

𝑁∑︁
𝑘=1

⎛⎜⎜⎝ 𝑁

𝑘

⎞⎟⎟⎠ 𝑐1
𝑘, (5.4)

where 𝑐1 = 𝒞𝑙1(𝜚).
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B.2 SCALABILITY OF THE SQUARED HILBERT-SCHMIDT NORM

In this section we show that the squared Hilbert-Schmidt norm is scalable only if the state

𝜚 is pure. With 𝑑 being the dimension of 𝜚 and 𝑁 being the number of copies, we start

splitting the sum ∑︀𝑑
𝑙 ̸=𝑘 |𝜚𝑙𝑘|2 for 𝜚⊗𝑁 in two parts:

𝒞𝑙2(𝜚⊗𝑁) =
𝑑𝑁∑︁

𝑖1...𝑖𝑁

𝑗1...𝑗𝑁

|𝜚𝑖1𝑗1 ...𝜚𝑖𝑁 𝑗𝑁
|2 −

𝑑𝑁∑︁
𝑖1...𝑖𝑁

|𝜚𝑖1𝑖1 ...𝜚𝑖𝑁 𝑖𝑁
|2

=
𝑁∏︁

𝑙=1

𝑑∑︁
𝑖𝑙𝑗𝑙

|𝜚𝑖𝑙𝑗𝑙
|2 −

𝑁∏︁
𝑙=1

𝑑∑︁
𝑖𝑙

|𝜚𝑖𝑙𝑖𝑙
|2.

As all matrices are equal, the product of the sums can de rewrited as the sums elevated

to the 𝑁th power:

𝒞𝑙2(𝜚⊗𝑁) =
⎛⎝ 𝑑∑︁

𝑖𝑗

|𝜚𝑖𝑗|2
⎞⎠𝑁

−
(︃

𝑑∑︁
𝑙

|𝜚𝑙𝑙|2
)︃𝑁

. (5.5)

For qubits, the sum of the squared modulus of all elements is equal to 𝑎2 +(1−𝑎)2 +2|𝑏|2,

which is the same as 𝑇𝑟𝜚2 (easy to check). The second sum is simply 𝑎2 + (1 − 𝑎)2, the

difference between the trace of 𝜚2 and 2|𝑏|2 = 𝑐1, so:

𝐶
(𝑁)
𝑙2 (𝑐1) =

(︁
𝑇𝑟𝜚2

)︁𝑁
−
(︁
𝑇𝑟𝜚2 − 𝑐1

)︁𝑁
,

where 𝑐1 = 𝒞𝑙2(𝜚). Then the scalability test in section 2.5.2 states that the squared

Hilbert-Schmidt norm is scalable only in the domain 𝑇𝑟𝜚2 = 1.
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APPENDIX C - COMPUTATIONAL DATA

This section was written and planned in collaboration with Thiago Melo 1, who wrote and

ran the computer code and generated the computational data.

According to reference (FANG X. WANG; DUAN, 2019), for any 𝑁 -fold isotropic state 𝜚⊗𝑁
𝐹 ,

where 𝜚𝐹 is:

𝜚𝐹 = 𝐹Ψ𝑑 + (1 − 𝐹 )I − Ψ𝑑

𝑑2 − 1 , with 0 ≥ 𝐹 ≤ 1,

the one-shot-distillable entanglement (under PPT2 operations) ℰ 𝜖
𝑂𝑆𝐷(𝜚⊗𝑁

𝐹 ), within some

error tolerance 𝜖, can be solved by the following non-linear optimization program:

ℰ 𝜖
𝑂𝑆𝐷(𝜚⊗𝑁

𝐹 ) = log max ⌊1
𝜂

⌋ (5.6)

0 ≤ 𝑚𝑖 ≤ 1, ∀𝑖 = 0, 1, . . . , 𝑁 (5.7)

𝑁∑︁
𝑖=0

⎛⎜⎜⎝ 𝑁

𝑖

⎞⎟⎟⎠𝐹 𝑖(1 − 𝐹 )𝑁−𝑖𝑚𝑖 ≥ 1 − 𝜖, (5.8)

−𝜂 ≤
𝑁∑︁

𝑖=0
𝑥𝑖,𝑘𝑚𝑖 ≤ 𝜂, ∀ 𝑘 = 0, 1, . . . , 𝑁 (5.9)

with coefficients 𝑥𝑖,𝑘 equal to:

𝑥𝑖,𝑘 = 1
𝑑2

𝑚𝑖𝑛𝑖,𝑘∑︁
𝑚=𝑚𝑎𝑥{0,𝑖+𝑘−𝑁}

⎛⎜⎜⎝ 𝑘

𝑚

⎞⎟⎟⎠
⎛⎜⎜⎝ 𝑁 − 𝑘

𝑖−𝑚

⎞⎟⎟⎠ (−1)𝑖−𝑚(𝑑− 1)𝑘−𝑚(𝑑+ 1)𝑁−𝑘+𝑚−𝑖.

Equations (5.7 - 5.9) are constraints to be satisfied by the program and (5.6) is the

objective function of the optimization. For the computational calculations we used the

PuLP library for Python, where we ran equations (5.6 - 5.9) for 𝜖 = 0.001, 𝑑 = 3 and

𝐹 = 0.9. The computational data were made for 𝑁 ∈ [1, 40] and the results are listed

in Table 3. Note that superactivation occurs for 𝑎 = 6 copies and the components of the

vector e = (0, 𝑒2, 𝑒3) are 𝑒2 = ℰ(𝜚⊗6) = 1 and 𝑒3 = ℰ(𝜚⊗36) ≈ 18.678.

1 Departamento de Física, Universidade Federal de Pernambuco.
2 Completely positive partial transpose preserving.
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Table 3 – Data for the one-shot-distillable entanglement of an 𝑁 -fold 3D isotropic state
𝜚⊗𝑁

𝐹 with 𝐹 = 0.9.

𝑁
𝐸𝑂𝑆𝐷(𝜚⊗𝑁

𝐹 )
𝑁

𝑁
𝐸𝑂𝑆𝐷(𝜚⊗𝑁

𝐹 )
𝑁

1 0 21 0, 4201603448
2 0 22 0, 4414002924
3 0 23 0, 4512773203
4 0 24 0, 4396545109
5 0 25 0, 4474940829
6 0, 1666666667 26 0, 4618895688
7 0, 1428571429 27 0, 4788819698
8 0, 1981203126 28 0, 4904875327
9 0, 2579920105 29 0, 4774746072
10 0, 2584962501 30 0, 4825075593
11 0, 2727272727 31 0, 4934465977
12 0, 3083699765 32 0, 5070306698
13 0, 3430332014 33 0, 5217379365
14 0, 3433824944 34 0, 5112409818
15 0, 3419522011 35 0, 5113460791
16 0, 3613349821 36 0, 5188596493
17 0, 3873507353 37 0, 5224750652
18 0, 4134968609 38 0, 5387927054
19 0, 3943080577 39 0, 546191108
20 0, 4024924275 40 0, 5081069313

Source: Thiago Melo (2021).


