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Abstract

In the present dissertation we study s-spin weight field perturbations in the Kerr
background. Such perturbations are described by an equation called Teukolsky master
equation (TME). Here we show how to obtain the TME and study it. Then, in order to
obtain the quasi-normal modes, that is, the possible frequencies of the field between the
outer horizon and infinity, we discuss the continued fraction method (known as Leaver’s
method in such context), which consists in writing a series expansion for the angular
and radial equations derived from the TME. It follows that the coefficients of the se-
ries expansions obey a three-term recurrence relation (TTRR). For this reason, we study
properties of TTRR to make clear the Leaver’s method, and then to obtain numerically
the frequencies. In the last chapter we discuss the Kerr scattering problem and explain
the Penrose process in order to make a link with black hole thermodynamics. Lastly, we
address superradiance, which is directly related with the Hawking’s area theorem.

Keywords: General relativity. Kerr black hole. Teukolsky master equation. Quasi-
normal modes. Continued fraction method. Scattering.



Resumo

Nesta dissertacao é feito um estudo sobre perturbagoes de campos de peso de spin
s no background de Kerr. Tais perturbacgoes sao descritas por uma equagao chamada
equacao master de Teukolsky (EMT). Aqui n6s mostramos como obter a EMT e a estu-
damos. Em seguida, para obter os modos quasi-normais, isto é, as possiveis frequéncias
do campo entre o horizonte externo e infinito, nés discutimos sobre o método de fracoes
continuadas (conhecido como método de Leaver neste contexto), que consiste em escrever
uma expansao em série para as equagoes angular e radial obtidas a partir da EMT. Por
conseguinte, os coeficientes das expansoes em série obedecem uma relacao de recorréncia
de trés termos (RRTT). Por isso nos estudamos propriedades das RRTT para deixar claro
o método de Leaver e assim obter numericamente as frequéncias. No ultimo capitulo nos
discutimos o problema de espalhamento de Kerr e explicamos o processo de Penrose com
o objetivo de relacionar com termodindmica de buracos negros. Por fim, nés abordamos
superradiancia, que esté diretamente relacionada com o teorema de area de Hawking.

Palavras-chave: Relatividade geral. Buraco negro de Kerr. Equacao master de
Teukolsky. Modos quasinormais. Método de fragdes continuadas. Espalhamento.
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1 Introduction

In 1915, Albert Einstein published a series of four papers with the basis of the theory of
General Relativity |2, 3, 4, 5]. In the second of these papers, he presented what we call
today the Einstein’s equation®

1
RMV — ing, = 87TTH,,. (12)

The equation above represents a coupled system of second order partial differential equa-
tions for the components of the metric, then it is anything but straightforward to find
solutions of (1.2). However, just a few months after the publication of Einstein’s papers,
making use of symmetries, Schwarzschild published the first exact solution of equation
(1.2) 6]

—1
ds® = — (1 — %) dt* + <1 — %) dr® + r*df? + r? sin® Od¢*. (1.3)
The metric above does not depend on ¢, then we say it describes a static spacetime.
Besides this, in the isometry group of such spacetime there exists a subgroup which is
isomorphic to the SO(3), and then we say that (1.3) is a spherically symmetric solution.
Such symmetry can easily be seen by fixing ¢ and r: the result is the metric of the sphere.
The Birkhoft’s theorem [11, 7] states that the Schwarzschild metric is the most general
stationary spherically symmetric solution of Einstein’s equation in vacuum, and then,
any other solution with such characteristics corresponds to a portion of the Schwarzschild
spacetime.

The first thing that stands out is that the first term of (1.3) diverges when r = 0, and
the second term diverges when r = 2M. As it turns out to be r = 0 is a singularity of the
spacetime described by (1.3), while » = 2M is just a problem of the coordinate system,
that is, the coordinate system which is being used is not useful to describe such region.
We can check if these singularities are real or not by evaluating the scalar Rgp.qR%.
Such scalar diverges for r = 0, but not for r = 2M. The r = 2M, called event horizon,
is what defines such spacetime as a “black hole™ once that something crosses the event
horizon it can not come back, and nothing from inside get out, even light.

As it is well known, sometimes divergences are not well received in physics. In 1939,
Einstein wrote in a paper [8]:

“The essential result of this investigation is a clear understanding as to why the
‘Schwarzschild singularities’ do not exist in physical reality.”

That is, even Einstein did not accept (at least in the beginning) the existence of a
singularity predicted by his own theory. But later the Schwarzschild solution showed to
be much more than a “bizarre” solution of a complicated equation. Today we know that

LAs a matter of fact, in Einstein’s paper the form of the equation is

Gy = —kT),. (1.1)
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black holes do exist. More than that, we know there is a black hole at the center of our
galaxy and there are indications that may exist a supermassive black hole at the center
of every galaxy which has a bulge component [9].

In 1963, the Kerr solution was published. Such solution is basically the spinning ver-
sion of the Schwarzschild black hole. While the Schwarzschild solution can be used as an
approximation for a nonspinning star, the Kerr solution can be used for a rotating mas-
sive body. Once that the Kerr solution represents something spinning, then there exists a
preferential axis, the axis of rotation. Therefore, the Kerr solution is not spherically sym-
metric. Because the Schwarzschild spacetime possesses more symmetries, it is expected to
be easier (but not necessarily easy) to deal with, and this is indeed what happens. While
Schwarzschild spacetime is characterized by only one parameter, the mass M, the Kerr
spacetime is characterized by two, the mass M, and the angular momentum .J.

Why study black hole perturbations? Is it not enough to have a solution of Einstein’s
equation? The answer for these questions is very simple: the Kerr solution, for example,
describes an isolated rotating black hole, it is like having a universe with a black hole
and nothing else. But, in general, as it happens in our galaxy, there is a distribution of
mass around a black hole (BH). Nevertheless, let us suppose there exists an isolated black
hole in the sense that such BH is far enough from other bodies to be considered isolated.
Then, even in this case, it would happen a perturbation because the BH would interact
with the vacuum creating pairs of particles, and then it would evaporate due to Hawking
radiation [10].

In the present thesis, our goal is to study perturbations of different types of fields in
the Kerr background. Given a metric g which is a solution of Einstein’s equation (1.2),
how can we obtain the linearized perturbation equations for a field in such background?
We can replace the metric g, in Einstein’s equation by itself plus a perturbative part
hy., that is, make ¢, — g + Ry, keeping only terms up to first order in hy,, [12]. This
method was used by some authors to obtain linearized equations for field perturbation in
the Schwarzschild background. Then, can we try to use the same method for the Kerr
background? Yes, we can. Should we do it? No, we should not. When we try to approach
the problem in this way, what follows is that, because the Kerr spacetime is not spherically
symmetric, we arrived in some partial differential equations which are not separable in
the variables r and 6.

However, there is an alternative way to deal with Kerr. In 1962, Newman and Pen-
rose proposed a formalism which uses the tetrad formalism with a special choice?. This
formalism turns out to be very interesting to be used for metrics which are of type D
in the Petrov classification®, as the Kerr metric is. And this was the approach used by
Teukolsky. The Newman-Penrose formalism was crucial for Teukolsky to obtain an equa-
tion which describes the dynamics of a s-spin field perturbation in the Kerr background
which is separable, the Teukolsky master equation (TME).

The main purpose of the first chapter is to show how to derive the Teukolsky master
equation, explain what such equation describe, and to extract some information from it.
Before doing that, in section 2.1 we are going to discuss some characteristics of the Kerr
spacetime. In this first part of the chapter we are also going to discuss briefly black holes
thermodynamics. Once that the main properties of the Kerr spacetime were exposed in
the first section, then, in section 2.2, we explain the Newman-Penrose formalism and other

2The description of such formalism is given in the next chapter.
3The Petrov classification is an important way to classify solutions of Einstein’s equation. Such
classification will be briefly discussed in chapter 1.
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tools in order to show how to derive the master equation. A big part of the process is
made without choosing a particular tetrad frame, nor even the metric, but considering
that the spacetime is of type D. In this section we will explain better some concepts which
were exposed here without details, such as Petrov classification and tetrad formalism, for
example. Finally, after having written the TME at the end of section 2.2, we finish the
chapter with the section 2.3 making an analysis of the TME. In this last section we show
that the Teukolsky master equation is separable, giving rise to the Teukolsky angular
equation and the Teukolsky radial equation. These equations will be fully explored in the
following chapter.

In the second chapter the primary purpose is to evaluate quasi-normal modes (QNMs)
of different types of field perturbations in the Kerr background. In order to do that, we
need to explore the angular and radial equations which were found in chapter 1. Because
of the nature of the singular points of such equations, we know that we can put them in
the form of a confluent Heun equation (CHE), a special second order differential equation.
Then, in section 3.4 we present the CHE and study it by writing power series solutions.
When we do it, we arrive at a recurrence relation with three terms for the coefficients
of the series solutions. Then, we use the section 3.2 to discuss some properties of linear
homogeneous three-term recurrence relations and introduce the so-called continued frac-
tions. The main result of this section is the Pincherle theorem, which will ensure the
convergence of the continued fractions. Thereafter, in section 3.3 we write the angular
and the radial equations in the CHE form and apply the results from sections 3.1 and 3.2,
and then we obtain two continued fractions. At this point we have all we need to obtain
numerically the quasi-normal modes. Lastly, in section 3.4 we use all this to evaluate
them.

To finish the present thesis, in chapter 4 we discuss the Kerr scattering problem, black
hole thermodynamics, and superradiance. In section 4.1 we discuss the scattering problem
focusing on bosonic fields. Thereafter, we discuss again black holes thermodynamics in
section 4.2. However, this time we start explaining the Penrose process in order to make
a connection with the first law of black holes thermodynamics. Then, we dedicate a short
subsection to discuss the zeroth, second, and third laws. Finally, in the last part of section
4.2 we present superradiance as a direct consequence of the Hawking’s area theorem.
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2 The Teukolsky Master Equation

The Teukolsky master equation (TME) was first published by Teukolsky in 1973 in the
first paper of a series of three [15, 16, 17]. There Teukolsky showed how to decouple and
make separable the equations for three kinds of fields: electromagnetic, gravitational, and
spin-1/2 fermionic field. The TME is a second order partial differential equation in four
variables, t, r, 6, and ¢, which describes the dynamics of a perturbation in a s-spin field in
the Kerr background. In this chapter we will first briefly describe the Kerr metric, then
we will use the Newman-Penrose formalism in order to show how to obtain the TME.
Lastly, we will do a short analysis of the TME.

2.1 The Kerr Spacetime

“When I turned to Alfred Schild, who was still sitting in the armchair smoking away, and
said ‘Its rotating!” he was even more excited than I was. I do not remember how we
celebrated, but celebrate we did!” Roy P. Kerr (2009)

Between the publication of the Einstein’s equation and the publication of the Schwarzs-
child solution passed only two months. In contrast, the Kerr solution come only in 1963,
that is, about 48 years later. In [19] one can find a pedagogical way to derive the Kerr
metric.

The Kerr metric is a solution of Einstein’s equation in vacuum, namely equation
(1.2) for T, = 0. It is characterized by two parameters: the mass M, and the angular
momentum J. In the original Kerr coordinates (v, r, 8, ¢) the metric is written as

2M
ds® = — (1 — pQT) (dv + asin? Gdgo)z

+2 (dv + asin®0dy) (dr + asin® 8dp) + p*(d6” + sin® dp?) (2.1)
where p? = r? + (J/M)?cos* 0, a = J/M and we are using ¢ = G = 1 [13]. And in terms

of the Boyer-Lindquist coordinates we have

2Mr daMrsin® @ by
2 _ - 2 2 2
ds® = (1 > ) dt — dtde + —dr* + Xdb

(2.2)

IMa?rsin? 6
+sin6 ( g T) de?,

where
Y =r? 4+ a’®cos?é, A=r*—2Mr+a*=(r—r)r—r_),

and the coordinates ¢, r, 8, and ¢ are defined in the following intervals:

—00<t<oo, 0<r<oo, 0<6<7m, and 0<¢ <27,

The constants r_ and ry are the roots of A(r), ro = M + v/ M? — a?. They are the
radial position of the so-called inner and outer horizons, respectively. The parameter a,
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defined by a = J/M, is called Kerr parameter [20]. When a — 0 we recover Schwarzschild
solution.

The Kerr spacetime is asymptotically flat, stationary, and axisymmetric. It is easy
to check the asymptotically flatness taking the limit r — oo in (2.2): we obtain the
Minkowski metric in spherical coordinates. It is stationary because (2.2) does not depend
on t, and hence has a timelike Killing vector field! at infinity, 9;. The metric (2.2) does not
depend on the cyclic coordinate ¢, hence 0, is a spacelike Killing vector at infinity whose
integral curves are closed. To have this properties is the definition of a axisymmetric
spacetime. We say that a spacetime is stationary and axisymmetric when it possesses
these properties and the Killing vectors (0;)" and (0,)* commute [12]. In addition to this,
the Kerr metric is not invariant under time reversal, thus it is not a static spacetime. On
the other hand, (2.2) does not change by the simultaneously transformations ¢ — —t and
¢ — —¢. Lastly, the metric is unchanged by the transformation § — 7 — 6, that is, by a
reflection in the plane § = 7/2.

When a metric seems to have singularities we need to analyze if such singularities are
“real singularities” or, otherwise, a problem with the coordinate system which is being
used. In the case of the Kerr metric in the Boyer-Lindiquist coordinates, what follows
is that 7 = 0 (with # = 7/2) is a true singularity, that is, a “point” of infinite curvature
which does not disappear by any possible change of coordinate system, while »_ and r
are coordinate singularities. Note that the metric in the original Kerr coordinates (2.1)
is regular at r_ and r,, which means that these “points” are coordinate singularities.

The outer horizon is the one which, let us say, define the Kerr spacetime as a black hole.
Once that something passes through 7, it can not come back. From r, = M ++/M? — a?
we can see that r, exists whenever M? > a?. The case a = M is called extreme Kerr
black hole.

The Kerr metric admits two Killing vectors, as it was mentioned before, and, in
addition, it possesses a nontrivial rank-2 Killing tensor?, that is, a Killing tensor which
is not built from combinations of the Killing vectors and the metric tensor. Besides, the
metric itself is another rank-2 Killing tensor and, therefore, the Kerr spacetime possesses
enough symmetries to make the geodesic equations completely integrable, in the sense
that we can obtain the geodesic equations.

To end this section, we are going to discuss a little bit about the thermodynamics of
the Kerr black hole. In 1971, Penrose and Floyd noted that in the Penrose process® the
surface area of the Kerr black hole increases. Later, in March 1971, Hawking published a
paper with today’s so-called Hawking’s area theorem, which states that the surface area
of any black hole never decreases.

The area of the outer horizon is given by

A=8rMr,,

'We say that v* is a Killing vector field if it satisfies

V(ny) = 0.

2 Analogously, we say that T is a rank-k Killing tensor if it satisfies [11]

VuTivs..n) =0

3For an explanation about the Penrose process see [11, 20, 12].
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then, replacing ry by M + v/ M? — a2, a by J/M, and differentiating, we obtain

SM = 54+ Q6 (2.3)
8w
where M
ry — a
— d O =
" oM, ™ oM,

are the surface gravity* and the angular velocity of the outer horizon, respectively. The
equation (2.3) and the first law of thermodynamics are similar, and this was noted by
Bekenstein and Smarr. In 1972 the Bekenstein’s professor, John Weeler, asked him what
would happen if he dropped his cup of tea in a black hole [21]. Such question culminated
with Bekenstein’s proposal that a black hole should have an entropy of the form

A

In 1973, Bardeen, Carter and Hawking published a paper titled “The four laws of black
holes mechanics” |22], where they stated what the title propose. However, in this paper
they argued that /87 and A are not the temperature and the entropy of the black hole
because the temperature should be zero. How can something that does not irradiate have
a nonzero temperature? The outlook changed when in 1974 Hawking published a paper
[27] where he showed that when quantum effects are considered, a black hole can radiate
with a black body temperature given by

_fm

=5

T (2.5)

Now, using the Bekenstein proposal (2.4) and the expression for the temperature (2.5)
found by Hawking, and assuming that the first term in right hand side in (2.3) must be
T4S, one finds® n = 1/4. Therefore,

A

S=—.
4h

We are going to discuss more about black holes thermodynamics in the last chapter.

2.2  How to derive the TME

In 1973, Saul A. Teukolsky was a second-year graduate student, under the guidance of
Kip Thorne, studying the field perturbation in the Kerr background problem [19]. He
used the Newman-Penrose formalism and was able to decouple some equations, but the
variables  and # did not separate. About six months later he had an idea and finally
could obtain separated equations.

Here we are going to discuss about how Teukolsky achieved the TME.

In order to obtain the Teukolsky master equation we are going to use the so-called
tetrad formalism. Such formalism consists into using a local coordinate basis and write

4The surface gravity is defined by

V(EPE) = —2RE7,

where £ is a Killing field normal to a Killing horizon K [47].
5Obviously, this is not enough to be sure that 1 must be i.
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the relevant quantities of the problem in this basis [23]. An important advantage in using
it is that the resulting equations do not depend on covariant derivatives. How to choose
a good tetrad basis will depend on the symmetries of the problem.

Then, firstly in each point of the spacetime we have a four dimensional basis {e)}, a =
1,2,3,4. The contravariant vectors we obtain via

ew" = 9" ey,

where ¢ is the metric tensor. We automatically define the constant matrix

Nab = €(a)" €(v)u-

When {e(,)} is an orthonormal basis, 7., = diag(—1,1,1,1).

Once we have a tetrad we can project the quantities of the problem in the tetrad
frame. For example, a rank-2 tensor T is projected as

Ty = ey ew)” T,

where e = e(ydat. Following Chandrasekhar [23] we can see how the Ricci and the
Weyl tensors are decomposed, and how the Bianchi identities are written using a tetrad.

Now we use the Newman-Penrose (NP) formalism to evaluate the spin coefficients and
the Weyl scalars. The definitions of these objects are coming soon. Let us first explain
what is the NP formalism: the NP formalism consists in to writing the metric in a null
basis, also called tetrad. So, we first write the metric in an orthonormal basis {e }:

g="1"ew @ e,
€() - €() = € eq) Juv = Mij,
77’ij = 77ij = dlag(_a +7 +7 +)7
where g,,, is the metric in the coordinate basis {J,}, and e(;) means e(;*0,,.
Once that we choose an orthonormal basis, a possible way to construct a tetrad
{l,n,m,m} is, for example,

€ + es €y — €3
l= n=

(2.6)

By the definition above it is easy to check that
l-n=-1, m-m =1,

and all the other products between them are zero, as null basis must be. Then, the
components of the metric in this frame are given by

0 -1 0 0
s | -1 0 00
== 0 0 001
0 0 10

There exists an infinite number of possible null basis, however we know the Kerr
family of solutions, that is, the stationary axisymmetric asymptotically flat solutions of
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Einstein’s equation in vaccum, are of type D®. This means that there exists a tetrad such
that all the Weyl scalars vanish, but Wy. Such basis is the one which has [ and n aligned
with the principal null directions of the Weyl tensor. Here we are not going to look for
such basis. Instead, we will just provide it later. Then, from now on we will use our
tetrad denoting

e =1, € =n, e3=m, e, =m,

where the e; above are not the same as those in (2.6). Using 7% we have

e, =1=—é% es=n=—e',
e — o = 3
es=m=e€", e, =m=¢e".
Then we can define
e,=e*=D, e =e' = A,
e; =—el = -4, e4=—e=—6"

The Weyl tensor is defined by [23]

1
Cijkl = (giRji + g Rik — 9jeRa — guRjk)

1
+ (n _ 1)(n . 2) (g k3ji g lgjk‘) + jkl

where R;ji; is the Riemann tensor. The Weyl scalars, in turn, are ten real independent
components of the Weyl tensor that can be represented by five complex scalars:

Vo = —Chgrslmi™m?,
Uy = —ChgralPnil"m?,
Uy = —CpyrslPmim'n®,
\IJS = _Cpqrslpnqmrnsa
Uy = —ChgrsnPmin'm?,
with
Clzzgs = Cloz1 = ¥ = ik241 = Cf443,
Cio12 = Cayza = — (Vo + V3),
Clazs = ¥y — V5,
Copaz = —Clogp = V3 = — ik232 = ;3437

C(1314 = 02324 = C(1332 = 01442 = 0.

On the other hand, the Ricci tensor has ten linearly independent components R?;;, which
can be represented by the following ten real scalars:

Rll R22 R33 R44
00 92 ) 22 9 ; 02 9 ) 20 9 ;
R R R R
D=7 Do=-77, Po=-—F By=-—r
o - T2t fsa R Ty R
M 4 24 12

SThere is a way to classify solutions of the Einstein’s equation based on the Weyl tensor, called Petrov
classification. By such classification the metrics are categorized in six types: I, II, III; D, N, and O. In
particular, the Kerr spacetime is of type D. A metric is said to be of Petrov type D if there exists a tetrad
such that in this frame the Weyl scalars ¥, ¥, U3, and ¥, vanish, while only ¥5 remains not null [23].
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where ® and A are the tracefree and the pure trace parts of the Ricci tensor, respectively.
The components of the Riemann tensor projected on the tetrad, R;;i, can be written in
terms of the quantities above [24].

The connection coefficients are defined by

Vkij = €k - Vejez‘ = —Yijk;

and the spin coefficients, or Ricci rotation-coefficients, are defined in terms of the connec-
tion coefficients by

K =311, T = 7312, O = 7313, P = V314,

T = Y241, V = 7242, MWt = 7243, A= Y244,

1 1

€= B (Yo11 +7341), 7= 5 (V212 + V342)
1 1

@ = B} (Y214 + Y344), B = B (Y213 + Y343) -

Now we can write the Lie brackets, [e;, e;] = C*;;ex, in terms of the spin coefficients:

A, D] =(y+~)D+ (e+€)A— (m+7%)0 — (1 + 7)o",
0,D] =(a"+p—7")D+ KA — (e — €+ p*)6 — 0",
0,A] =—v'D+ (1 —a" = B)A+ (u—v+7")0 + A\*67,
6°,6] = (4" — WD + (5" — P)A + (0 — B)5 + (6 — )3

These commutation relations are useful to eliminate second order derivatives in some
equations.

In 1962, Newman and Penrose published a set of 18 equation involving the quantities
we mentioned above. We can find these equations in the Chandrasekhar’s book with the
indication of from what component of the Riemann tensor the equation comes from. Using
a set of symmetries of the problem and the Bianchi identities, we get a set of equations
[23, 15] which will be referred as the Newman-Penrose (NP) equations.

The next step is to make a first order perturbation in the NP equations. We will
use the upper index B for the perturbed part. That is, we will replace all the quantities
mentioned before by what follows

U; — U, 4 U5, i=0,1,2,3,4,

D—=D+eDB A= A+cAB §—6+e6”,

k—k+exB, o—o0+e0® andso on,

with
v, =0, 71=0,1,3,4, k=c=v=A=0,

and keep only terms up to first order in . In other words, every term without an
upper index takes the original expression, while each one with the upper index B is
the perturbative part, and ¢ is small. We already mentioned that we are going to work
with a tetrad frame such that only Wy does not vanish, thus the first part of the equation
above is justified. By the Goldberg-Sachs theorem [25], if the metric is a solution of the
Einstein’s equation in vacuum, given a tetrad {l,n,m,m}, l is a repeated null direction
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if, and only if, I is geodesic and shearfree. To be geodesic means that [*V I = 0,
consequently kK = V,I#m,l” = 0. Besides this, I be shearfree means —m*m"V,l, = 0, and
by consequence o = V,[,m'm” = 0. The null vector n is also a repeated null direction,
therefore the same applies and, analogously, we have v = 0 and A = 0, explaining the
second part of the equation above.

Three important identities, valid for type D metrics, are:

D\IJQ = 3p\112, (5‘1’2 = 3’7'\112, and
[D—(p+1)e+e +qp—p](0 —pB+qr)
—[0—(p+1)—a" +7"+q7|(D — pe + gp) =0, (2.7)

where p and q are any two constants.

In order to obtain the TME we need to make the perturbation mentioned for each kind
of field, that is, for Maxwell’s equations (vector field), for Dirac equations (spinor field),
etc. And then we can summarize all the equations in only one, the Teukolsky master
equation.

Here we are not going to do each s-spin field perturbation. Moreover, we will only
give the instructions for the vector field case. In the NP formalism, the components of
the Maxwell-tensor F' are written in terms of three complex scalars [23]:

¢0 =Fi3= Ejlimj7
1

¢1 = §(F12 + F43) = 5172']'([171] + fn’mj)7

g = Fyp = Fijminja
and the Maxwell’s equations are
F[ij|k] = 0, and nlmFi”m = 0,

where the bar is a notation for intrinsic derivative”.
After some manipulations we arrive at the following equations

(D —2p)p1 — (0" + 71 —2a)pp = 21}, (2.8)
(0 =27)¢1 — (A + p—27)¢o = 21y, (2.9)
(D — p+2€)py — (0" 4 2m) 1 = 2m T, (2.10)
(0 —T+2B)ps — (A4 2u)p1 = 21w, (2.11)

where J,, is the 4-current density and J; = J,I*, J, = J,n*, and so on. Now we perform
the following three manipulations:

1) we apply (0 — f — o* — 27 + 7*) in (2.8), and (D — e + € — 2p — p*) in (2.9), and
then subtract one from the other;

2) we use the identity (2.7) with p = 0 and ¢ = —2 in order to simplify the result in
step 1);

"The following definition can be seen in the chapter 1 of [23]:

Aa|b = eau(vVAu)ebV
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3) we interchange I and n, and m and m.

Before these 3 steps we obtain the following decoupled equations for the components
¢o and ¢o:

[(D—et+e =20+ p")(A+p—29)

—(0—=p—a" =21+ 7)(0* + ¢ — 2a)]|pg = 27y, (21
(A4 =7+ 20+ w)(D — p+2) |

—(0*+a+ 421 —7)(0 — 7" 4+ 20)| o = 27 5.

Note that, up to here, we did not use an explicit tetrad, even a metric, we only assumed
it is of Petrov type D. We have just decoupled the equations for the components of the
Maxwell’s tensor, now it is time to make these equations separable. We are going to
use the Kerr metric in the Boyer-Lindquist coordinates, and a “good basis” for the Kerr
spacetime, that is, a basis such that only Wy does not vanish, is the so called Kinnersley
tetrad:

" = %( *+a*A,0,a),
nt = % (r* +a*,—A,0,a),
mt = \_/—g (iasin@,(), 1, aﬁ) ,
where p = —1/(r —iacos ) is a “key variable” as was called by Teukolsky in [19], and we

will see why.

The nonvanishing spin coefficients are «, 3, v, u, p, 7, and 7, and their expressions can
be seen in [24]. Additionally, we have Wy = Mp3. The first equation in (2.12) is already
separable, and the second one becomes separable when we replace ¢s by s = ¢p?, and
this is why p was called a key variable by Teukolsky.

The procedure to decouple and make separable the equations for gravitational pertur-
bations can be seen in [15].

Finally, the equations can be summarized in only one, the Teukolsky Master Equation:

(r*+a*? 5 5. ]10*% 4Mar 0% a? 1 ] 0%
————— —a“sin“6 + ~ 7| 75
A ot? A Otdo A sin®0| 0¢?
A= 0 R D T S A a(r—M) icosf| Oy
A or (A E)r) sin 6 00 <Sm0 06 2 AT sin?6 | d¢
2 _ 2
—2s [w — 1 —iacos 9} %—f + (s cot® § — s)p = 47X T, (2.13)

where s, the spin weight, can assume the values 0, +1/2, 41, £3/2% +2, and T is the
source term. Then, for example, when we take s = 1 we obtain the equation for ¢, and
with s = —1 we have a equation for p~'¢;.

8See [18].
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2.3 A Brief Study of the TME

In this section we are going to know the separated equations, they are known as angular
Teukolsky equation and radial Teukolsky equation.

2.3.1  Description and Separability

The TME, as already was said, describes a perturbation in a s-spin field in the Kerr
background. The scheme below shows what is ¢ in equation (2.13) for each s:

S type Y
0 scalar U, the KG field
+1/2 spinor Yo and p~ 1y
+1 vector oo and p~2¢,, from the Maxwell tensor
+3/2 | vector-spinor Qp and p=3Q3
+2 tensor U, and p~4W,, from the Weyl tensor

Box 1: The corresponding kind of field for each s.

The vacuum case (7' = 0) is separable in the following form:
Y =e @™ R(r)S(6). (2.14)

Using (2.14) we can easily find the Teukolsky Radial Equation (TRE) and the Teukolsky
Angular Equation (TAE):

d dR K? — 2is(r — M)K ,
s+1 4 — = 2.1
AT? . (A r) + ( + duswr S)\lm> R =0, (2.15)

1 d ) 2 2 2 (m + scosf)?
-2 L S A _
s d o (sm@de) (a w’ cos” 0 aws cos 0 2 g + s+ A ) S =0,

(2.16)

where K = (r’+a?)w—am, ,A;, is the separation constant and (A, = (A, +a’w?—2maw.
The eigenfunctions 4S,,(#) become the so called spin-weighted spherical harmonics when
aw = 0. Both equations have two regular singularities, _ and r, for the TRE, 0 and 7
for the TAE, and one irregular singularity of Poincaré rank® 1 at oo!?. Therefore, they
can be put in the confluent Heun equation!! (CHE) form by a change of variables. The

9Consider a n-order differential equation:

dZ" Z fm dzm -

Let z = zp a singular point. The Poincaré rank of the singularity zo is the least integer r such that all
(z — 20)"~™*"™ f,.(2) are analytic at z = zg. [DLMF]

10While the irregular singularity of the TRE is r = oo, for the TAE would be cosf = co. However,
the variables of the metric are real, then we can not have cosf = co. In the next chapter we will see
that the change of variables performed in order to put the TAE in a CHE form is v = cosf. As a result,
we obtain a ODE with two regular singularities, © = —1 and w = 1, and an irregular one, u = co. The
points © = 1 and u = —1 correspond to # = 0 and 6 = 7, respectively, while u = co does not have a map
to the real variable 6.

A confluent Heun equation is a second order differential equation of the form:

612710+ + ) L dw+az—qw_0
dz? -1 dz  z(z—1)
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TAE, in particular, is a Sturn-Liouville problem with eigenvalues ;A;,, and eigenfunctions
sS1m(0). For fixed s, m, and aw, the smallest A, has [ = max(|m|,|s|) [15].
The good news is that we do not need to solve the TRE and the TAE for both s = |s]|

and s = —|s|. Once we have solved the equations for s, we can use the Teukolsky-
Starobinsky identities (TSI) to obtain the solutions to —s. The TSI are [26]
A*(Dg)**(A°R,) = C,R_,, A*(DH*R_, = C*(A°R,),

LiLo g Lo LySs=BS_,, £l cb ..cl cis , =B,S,,

with the operators D,, L,, DI, and LI given by

K
Dn:87n+i—+ﬁ(3rA, En:09+<£—awsin9>+ncot9,

A A sin 0
K n m
D) =0, —i—+ —0,.A, L = 0y (sin@ aw sm@) + ncot 6.

Note that D,, and L, act as lowering operators, while D} and L] act as raising ones.

Then, from the Maxwell equations, for example, we have

ADyDyR_; = ARy,  ADIDI(ARy) = CiR_,
LoL1S) =CS_q, Licts_ | =¢ 8,

with C; = /(A + 2 + 4maw — 4a2w?). The Maxwell tensor'?, F, depends on three com-
plex scalar functions: ¢, ¢1, and ¢5. And, as it was commented before, Ry;(r) and
S11(0) are the radial and the angular part of the solutions for ¢g = Ry (r)S;(0)e~witime
and ¢y = p~?R_1(r)S_1(0)e Mo,

We can define
P, = RS, P.=p 2RS4,

and then . A
¢O =P 6@(—wt+m¢)’ ¢2 =P, ez(—wt—f—m(z))‘

2.3.2  Asymptotic Behavior

In order to study the behavior of the solutions near the outer horizon, r,, and infinity,
we are going to use the tortoise coordinate r* defined by
dr* r*+a?
_ , (2.17)
dr A
[DLMF]. More details about such ODE will be discussed in the next chapter.
12The matrix representation of the Maxwell tensor in terms of the tetrad is given by:

0 T 2
Fusfulerer=| LR T |
—90 ¢2 1 — 91 0

where

o 1 1 . o o
bo = Fig = Fyl'm?,  ¢1 = §(F12 + Fu3) = §Fij(llnj +m'm’),  ¢2 = Fip = Fjym'm’.
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Integrating the equation above, we obtain

2M — —r_
r*(r) :T+r+—r, [mlog (T Mu) —r_log (T MT )},

where the integration constant was chosen to make the argument of the logarithmic func-
tions dimensionless. We have the correspondent limits

r— 7y means 1 — —oQ,

r — oo means 1" — 00.

Following Teukolsky [15], we will replace R by Y = AS/ 2(r?2 + a®)Y2R. In this way, the
TRE becomes
Ay
dr*2

+f(r)Y =0
with
K? = 2is(r — M)K + A(diswr — \)

I ==y ar——dcar

and G = s(r — M)/(r* + a*) + rA/(r* + a?)%
When we take r — 0o in the equation (1.32) the result is

d?Y (r* 24
d?"g‘; ) + (w2 + —Z:JS) Y(r*)=0

and the solutions are Y ~ 7T« Translating to R, the asymptotic solutions are
R ~ e ™" [y and e /r2stL,
Now when we take the limit r* — —oo in (1.32), the ODE becomes

d*Y (r*) is(ry — M)]?
—_— k————| Y(r") =0
dr+? 2Mr, (") =0,
S(T-&-*M)r* -
with k = w — am/(2Mr,), and in this case the solutions are Y (r*) ~ e~ M+ = etk

Once that we are analyzing the solution when r — 7, we can replace r by r, + €. Note
that, with this replacement, A = (r —ry ) (r—r_) = e(rp +e—r_) = (ry —r_)e+ O(e).
Therefore, keeping only up to the first order in € and identifying (r, —r_)e as A, we can
check that the first exponential simplifies as

(r+7M) «

e M+ o A+ O().

Summarizing the asymptotic behaviors, we have

R ~ e, ingoing wave when r — 7,
_ —a * .

R ~ A=%e7*"  outgoing wave when r — 7,
i * . .

R ~e ™" /1, ingoing wave when r — oo,

R ~ e [r¥+l outgoing wave when 7 — oo.
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3 Quasi-Normal Modes by The Contin-
ued Fraction Method

We call normal modes and normal frequencies the complete set of solutions and frequen-
cies, ¥,, and w,, respectively, of the following equation

d*v

dr*2

+ [w? — f(r)]¥ = 0. (3.1)

The normal frequencies are real numbers and the normal modes can be written as
W, (t,7) = e “rlap,(r). (3.2)

Depending on the boundary conditions the label n can assume discrete values. An example
is the propagation of stationary waves in a string with fixed endings [28]. However, the
boundary conditions for a black hole perturbation are not the same as in the string
example. In our case the frequencies w,, will assume complex values and then they will be
called quasi-normal frequencies, while the respective solutions will be called quasi-normal
modes' |29].

In 1985, Leaver used the method of continued fractions in order to evaluate the QNMs
for perturbations in the Kerr background [33]. In this chapter we will first introduce the
confluent Heun equation, and then we will present and apply such method, which is often
called Leaver’s method in the black hole theory context because he was the first one to
apply it to this problem?.

3.1  The Confluent Heun Equation

Special functions (or special equations) as hypergeometric, hypergeometric confluent, Her-
mite polynomials, etc, commonly appear in problems of physics. In 1889, Karl Heun pub-
lished a new special equation [14]. Since then, a large variety of applications of the Heun
equation and its confluent versions has emerged. In [14] the author cites many examples
of application of Heun’s equations in physics.

3.1.1  Some forms of the Confluent Heun Equation

As discussed in the previous chapter, both the Teukolsky radial and angular equations
have two regular singular points and one irregular singular point with Poincaré rank r = 1,
and, for this reason, we can put both of them in the Confluent Heun Equation form, which
is obtained from the General Heun Equation (GHE). The GHE is a second order linear
differential equation with four regular singularities {0, 1, zp, 00} [37],

d2w+<7 ) L€ >dw afflz —q

dz? ;+z—1 z— 2y %—i_z(z—l)(z—zo)

w =0, (3.3)

!Sometimes we call the frequencies quasi-normal modes.
2In his paper, Leaver [33] refer to previous papers of Jaffé [30] and Baber & Hassé [31], where the
continued fraction method was used.
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where v, 0, €, a, 5, q, and 2y are complex constants. In particular, g is known as accessory
parameter 35|, and «, B, 7, §, and € obey a + 3+ 1 = v+ 0 + €. The confluent limit
consists in first make

B — 203, € — Zp€, q — 204

n (3.3), and then take the limit zo — co. The result is the ODE below

d*w v ) dw g a—gq
—_— - =0. 3.4
d22+(z+z—1+>dz+< +z—1>w (3:4)

Now z = 0 and z = 1 are regular singular points, while z = 2y = oo is the irregular
singular one. When the CHE is written in the format above, we say it is written in the
nonsymmetrical canonical form.

Besides the form given above, other two commonly used forms of the CHE are found
in the literature: the Bocher symmetrical form and the normal symmetric form. The first
one is given by

ééPﬁ—lﬂ%ﬁﬂ}—{QDQQW—D—gﬁn+n+uLtjfﬁwﬂf&@ﬁza
(3.5)

where

Hy(z) = (¢ — 1)3 @+1)”?w(1;I>, v=1-22

Note that the change of variables x = 1 — 2z maps the singularities 0 into 1, and 1 into
—1. The second one, in turn, is given by

2H 2 v—142
—d;Vz() <;6(3: —1)—£:L’+/<9+MV i u”) Hy(z) =0, (3.6

2
1
(2" = 1) 2 22— 1

where

Hy(2) = (1 - )/ Hp(2),

and the constants are

H:i{ (”y+7 5) w+ﬂ)—2@+5_2q]

-9

B:—<——+7+5) w= ;(wré 2), V:T

From (3.5) we can see that when €3 = 0 the CHE reduces to the spheroidal wave equation?.

3The spheroidal differential equation is

dw 2

- {(1 _ZQ)CA " {)\4—72(1 )

w = 0.

1—22

The points z = £1 are regular singularities and, if v # 0, z = oo is an irregular singularity of rank 1.
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3.1.2  Power series solutions of the Confluent Heun Equation

We represent a solution of (3.4) by Hco(7, 6, €, a, q; z). Firstly, let us observe the asymp-
totic behavior of Heo(7,d, €, o, q; z), which is determined by the characteristic exponents.
Writing

wo(z) = Zanz"ﬂm, wi(z) = an(z — 1)t (3.7)
n=0 n=0

when we insert (3.7) in (3.4), by the characteristic equation we find py = {0,1 — v} and
w1 =4{0,1— 0}, then

li_r{(l) He(v,6,6,a,q;2) ~ 1 or 2177, (3.8)
ll_rg He(7,6,€6,a,q;2) ~ 1 or (z — 1) (3.9)

And for the solution around z — co we obtain
ZlLIgo He(vy, 0,6, 0, q;2) ~ 27¢ or e Fye I, (3.10)

The CHE has two types of solutions: they are usually called “angular”, denoted by
Hc (v, 6,€, a,q; 2), and “radial” solution, denoted by Hc™(v,4, ¢, o, q; z) [37]. The first
one is a Frobenius solution around a regular singularity, z = 0, with the condition
Hc (v, 68,¢,a,q;0) = 1. Then, in summary,

He(y,6,6,0,q:2) =y 2", (3.11)
k=0

Hc D (v,6,€,0,q;0) = 1. (3.12)

While the second one, sometimes called Tomé’s type solution [34], is defined by its behavior
at infinity:

H " (y,0,e;0,q:2) =Y e 27k, (3.13)
k=0
lim Hc" (v, 0,6 a,q; 2) = 27 ¢. (3.14)

zZ—00

Because (3.4) is a second order differential equation, we know it has two linearly
independent solutions. Hc® (7,6, €; o, q; z) satisfies the first behavior in (3.8), then, we
need to find the second solution, that is, the one which satisfies the second behavior in
(3.8).

There exists a set of transformations which does not change the form of the CHE
(3.4), and by those transformations we can find other solutions. More details can be seen
in [37, 34]. For example, (3.4) is invariant by the following transformation:

w(z) = v(z), v(z) = 27 tw(z),

and this one gives us the second solution. Then we obtain the two linearly independent
solutions around z = 0:

Hc9(y,0,6 a,q;2),
ZTVHAD (2= 7,6, 6a+ 2, g+ (1 =) (e = 0); 2) .
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In order to obtain the linearly independent solutions local to z = 1, we use the
transformation z — 1 — z. Such transformation interchange the singular points 0 and 1,
and then we obtain [38]

HC(G)(’%(S, —6Q,4 —Q 1- Z)a
(z = D' HLY (7,2 -6, —a—6+1,g— (1 -0y —a—el—0);1—=2).

In order to satisfy the conditions (3.12) and (3.14) we must have c(()a)zl and cér) =1.

Now, replacing w in (3.4) by the series (3.11), we obtain a three-term recurrence
relation (TTRR)

fk;a l:jﬂ"‘gl(ga) +h 1—0

with
A =1+ k) (v +k), (3.15)
G\ = k2 —k(y+6—e—1)+q, (3.16)
WY = —a —e(k—1). (3.17)

Dividing the TTRR by f,ga) c,(f) it is easy to check that

(a)

c
lim 2L — 1
k—o00 C(a)

k

Y

and then, by the test of convergence, we see that the radius of convergence of the series
(3.11) is equal to 1, which is the distance to the next singular point.
Similarly, using the series given in (3.13) we obtain the following TTRR

O o) 10, =0
with
£ = —elk+1), (3.18)
- 2a ala—(y+6—1)e+ €
g\ = k2 — k(1—7—5+?+e)—q+ =& = fexe) (3.19)
, k—1
In this case, when we evaluate limg_,o, cx11/ck, We obtain
(r) (r)
c k c 1
lim 2+ =24 0(1) = lim £H = Zoo,
k—o00 C](J) € k—o0 C](:) €

which means that the series (3.13) diverges [37].
Obviously, once that both the series expansions (3.11) and (3.13) start from k£ = 0,

c(f?l:()and C(L)l:O,Vn>O.

A special case of confluent Heun functions happens when the series terminates: the
confluent Heun polynomials. Observe that, in equations (3.17) and (3.20), if —a/e = p,
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with p being a positive integer, then hgﬂ) = 0. If, in addition, cgﬂ) = 0, then necessarily
all the ¢ with k& > p vanish and the series (3.11) and (3.13) terminate, becaming a (p+1)-
th order polynomial. These two conditions can be summarized in the equation A, =0,
where A,1; is defined by the determinant

g fo O 0
hi g1 fi 0
Appi=1 0 hy ¢ 0
o o . .0
0 0 ... hy g4

3.2 Linear Homogeneous Three-Term Recurrence Relations

In the previous section appeared a linear homogeneous three-term recurrence relation. In
order to be able to evaluate quasi-normal modes, it is important to know some character-
istics of such kind of recurrence relation. For this reason, the goals of this short section
are to present the linear homogeneous TTRR and shows some definitions and theorems
which will be important later.

Linear homogeneous three-term recurrence relations have some similarity with second
order differential equations. A TTRR of the form

AnYn+1 + bnyn + Cp¥Yn—1 = 0 (321)

has two linearly independent solutions, let us denote them by yg) and yg). Also, we say
that two solutions are LI if their Casorati determinant,

W

1 2
yif)l yézl

does not vanish [39]. Assuming that a,, # 0, from (3.21) and (3.22) we obtain
Doy = D,
a

n

D, = : (3.22)

Assuming ¢, # 0, we have that D, vanish if and only if D,, = 0. Therefore, if D,, # 0
for a given n, then D,, # 0 Vn.

In what follows, we will present some results that will be of great importance when
get back to discuss about the angular and radial equations.

Definition 3.2.1. Minimal and dominant solutions. Let f,, be a solution of a TTRR. If
there exists another solution linearly independent g, such that

lim & =0,
n—oo gn

then f, is said to be a minimal solution, while g, is called dominant solution.

Theorem 1. A TTRR admits a minimal solution if, and only if, the limit

(1)
lim I
n—00 yﬁf)

exists or diverges, where yg) and y,(?) are any two linearly independent solutions of this
TTRR.
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Proof. Let {yr(f), y,(f)} be a pair of linearly independent solutions of the TTRR. If the limit

lim,, o0 y,(ll) / y,(f) = ¢, then f, = y,(}) — cyg) is a minimal solution, once
lim % = 0.
n—oo yn

@) i minimal, since the limit of the

If, on the other hand, lim,, . yg)/yg) = 00, then y
inverse, yg) / yﬁll), gives zero. If the recurrence relation admits a minimal solution then
there exists a pair {f,, g,} of minimal and dominant solutions, and then any other pair
of linearly independent solutions can be written as a linear combination of f,, and g,, and

then the limit will exist or diverge. O

Minimal solutions are useful for backward recursion, that is, it gives a good result if
we start from yy and yy1, and use the minimal solution to obtain y,,, with M < N; but
not for forward recursion, which means when we start from yy and yy.1 to evaluate yp,
with P > N. For dominant solutions, the opposite works: such solutions are useful for
forward recursion, bot not for backward recursion. To understand it better we are going
to give an example that can be seen in [39]. Consider the TTRR

Yns1 — 2coshxy, +yn_1 =0, n >0,

which has the pair of minimal and dominant solutions {f,, g.} = {¢7"*,€"*}. Now sup-
pose we want to evaluate e 0. Taking # = 1 and using the minimal solution, e™", in the
TTRR above, starting from f, = 1 and f; = e~!, we obtain 340 ~ —1.0568583, that is
obviously a very wrong answer.

Now, it is convenient to introduce the definition of ratio of a solution, r,, = yZ—“, and
then we can rewrite equation (3.21) as
1 c
rn:——(bn—l— = )
Qp Tn—1
Then, making n — n + 1 in the above expression, we obtain
—c
= ias . n=0,1,2.. (3.23)
bn+1 + An+1Tn+1
—Cnt1
bn+1 — Gp41 Cnt3
btz — Gpy2 b
nt3 e
A compact notation commonly used for the continued fraction (3.24) is
—Cpt1 Qpt1Cnt2 ApiaC
T, = n+1 Un4+1tn42 Unt26n4-3 . (325)

bn+1_ bn+2_ bn+3_

Now we are going to state an important theorem which relates the existence of a
minimal solution and the convergence of the CF (3.25).

Theorem 2 (Pincherle). Given a TTRR, the continued fraction (3.25) converges if, and
only if, the TTRR admilts a minimal solution. Furthermore, if a minimal solution f,
exist, r, converges to f,/ fn_1.

The proof of the Pincherle’s theorem can be seen in [40].
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3.3 The Teukolsky Angular and Radial Equations as a CHE

3.3.1  The Teukolsky Angular Equation

It is straightforward to put the TAE in the Bdcher symmetrical form. Indeed, performing
the change of variable u = cos 6, the equation (2.16) becomes

2
2 {(1 - u2)d5diu)} + {cauz ~ 2esu % + 5t A | Sw) =0, (3.26)

which is equivalent to equation (3.5) with the following identification of parameters:
€ = 4c, B =s, = +m, v = s, K= Am+s(s+1)+c  (3.27)

where ¢ = aw is defined for convenience. Note that if we exchange p and v in (3.5), the
equation remains the same, that is, the parameters p and v are symmetric. Thus, another
solution for the parameters is 4 = +s and v = £m.

Equation (3.26) is actually a complex Sturn-Liouville eigenvalue problem, where the
eigenvalues are the separation constant ;A;,(c), which are complex, in general [15]. The
solutions ¢Sy, (u; ¢) with the ortogonality condition

/ |¢Sim|?sin 0dO = 1
0

are called Spin-Weighted Spheroidal Harmonics (SWSH) and, when s = 0, that is, for the
scalar case, they reduce to the Scalar Spheroidal Harmonics [36]. Once that (3.26) is a
Sturn-Liouville problem, for fixed s, m, and ¢, the eigenfuntions ¢S, (u; ¢) form a complete
and orthogonal set of functions for u € [—1, 1] or, equivalently, for § € [0, 7]. Besides
that, when ¢ = 0, the SWSH becomes the familiar spin-weighted spherical harmonics, and
the separation constant takes the form ;A;,, = {(l+1) — s(s+ 1), that corresponds to the
Schwarzchild case. In general, the parameter ¢ is complex, so we can write ¢ = cgr + icy.
In the case when ¢; = 0, we say that the eigenfunctions are oblate; when cg = 0, we say
that they are prolate.
The separation constant has two important symmetries:

fsAlm = sAlm + 257
sAl—m = sAzkm

Because of these properties we can only consider, for example, s < 0 and m > 0. There is
one more important symmetry: it is easy to see that the Kerr metric is invariant by the
simultaneously change t — —t and ¢ — —¢, and then the solution of the TME, equation
(2.14), automatically inherits this symmetry. But in (2.14) exchange the signs of ¢ and ¢
is equivalent to exchange the signs of w and m. Thus we also have the following symmetry

sA—lm(C) = sAlm(_C)-

We usually write 4S;,(c;u) as

Sim(ciu) = e (14 u)* (1= u)* Y (1 +u)", (3.28)
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where the solutions for the constants k_ and k; are k_ = (s£m)/2 and ky = £(m+s)/2.
Besides substituting (3.28) in (3.26), we can also use directly the result found in section
3.1.2 for Hc\® (v, 8, ¢,q, ; z). The set of parameters {7, 4, g, a} from (3.4) is related with
the set {5, u, v, k} via

y=14+p+v, d=1+4pu—uv, a=¢l-p04pn),
q:m—mu+w+§u—ﬁ+u+m.
Therefore, the coefficients b, obey the TTRR
b1+ gibo = 0,
fobuiq +glb, +h0b, 1 =0, (3.29)
with
fa=m+1)(n+7),
¢ =-—n®—dn+yq, (3.30)
ho = —e(n+1—p).
In the above expressions we have used the following definitions: p = a/e and d = v +

0 — e — 1. Hence, following the discussion in section 3.2, we find the following continued
fraction

o fohi fINS f3hs

Yol g g
Recall that, as we saw in section 3.2, by the Pincherle theorem, the continued fraction
above will converge if, and only if, the TTRR (3.29) admits a minimal solution. Conse-
quently, for fixed ¢, s, and m, the eigenvalue A, is a root of (3.31).

. =0. (3.31)

3.3.2  Small-c Expansion

An special case occurs when ¢ is small. In such case we can write the separation constant
as a Taylor expansion around ¢ = 0.

We already know that when ¢ = 0 the separation constant must becomes [(l + 1) —
s(s + 1). Then, for small ¢ it makes sense to write ;A;, as a Taylor expansion around
¢ = 0 such that the order zero term is [(l + 1) — s(s + 1). That is,

Amm(c) =) duc, (3.32)
n=0

with dy = I(l + 1) — s(s + 1). Now, observe that by equation (3.30) all h? vanish when
c = 0, because h’ is proportional to € = 4c. If we impose that g? = 0 for some j > 0, we
find j = | — m.Taking the nth inversion of (3.31) we obtain

RS PR, S
9= 9= =g = gl
Substituting the expansion (3.32) in (3.33) we obtain the coefficients d,:
do=1(l+1)—s(s+1),
2ms>
CIl+1)

(3.33)

dy =

and so on.
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3.3.3  The Teukolsky Radial Equation

In order to write the TME in the nonsymmetrical canonical form of the CHE, we perform
the following transformation

R(r) = (r—ry)%(r —r_)"e"K(r).

Then, inserting the above expression to R(r) in (2.15) find that the exponent must be

+(2icy +5s) s +(2ic_ —s) s ,
=T ‘7 _ _= = . __= = +iw =
£ 92 92 fia n 9 2 N+, C W Ci?
with
w—my 9T ry—1r_ a
0’ = - _— o
* AnTy =T AMry =T oMy

where T, is the temperature at the outer horizon and €24 are the angular velocities at
the horizons. Moreover, in order to map the singular points {r_,r,, oo} into {0, 1, oo},
we do the transformation

re(ry —r_)z+r,

and hence K (z) will obey equation (3.4) with
v=1+s+2n, 0=14s+2¢, e=2(ry —r_)(,
a:e(1+8+§+n—2]\/[(+is%> ,

q:sAlm—l—aQwQ—8(Mw)2+§(204+7—5)+ (1—1—5—775) (54—77—“;) :
for any combination of &4, 14, and (4. Then, we need to analyze which set of plus and
minus signs upholds the desired asymptotic behavior. If we want only ingoing waves at
the horizons we must choose £ = ¢_ and n = n_. Likewise, for outgoing waves at infinity
the correct choice is ( = (..
Notice that, since the asymptotic behaviors of K(z) are given by (3.8), (3.9), and
(3.10), we know the asymptotic behaviors for R(z):

R(z) = (ry — r_)§+7’e<“ 2"(z — 1)56(”_“)42}((2'),

lim, o R(z) o< 2" or 2L
lim, ,; R(z) o< (2 — 1)¢ or (z — 1)&-0H1,
hmz_mo R(Z) X ZE—H]_%e(’”r_T*)CZ or Z§+7I—W—5+%e—ez+(r+—7u)(z‘

Now, using the results from section 3.1.2 for the Tomé’s type solution, equations (3.13)

and (3.14), we find the following TTRR for the radial equation:
101 + gobo =0,

otk =0 (3:34)

fnbn+1 + gnbn + hnbnfl = 07

with
fn=¢€n+1),
gr = —n+ (d—2p)n+p(d — p) +q,
h=n*+2p—1—y)n+(p-1)(p-—"),
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where the constants p and d are, again, defined as a/e and v+ § — € — 1, respectively, but,
obviously, they take different values from the p and d defined before, because now «, e,
v, and ¢ are different. However, as we saw in section 3.1.2, the Tomé’s type power series
solution does not converge. Nevertheless, doing the transformation K(z) — 2~%/<W (2)
and performing the change of variables z — 1/(1 — z), the function W(x) obeys the
following ODE:

W dy dy—dy do+di+dy\ dW ds ds ds + dy
— — - W =0
dac2+(x+x—1+ (x —1)? dx x x—1+(9c—1)2
with
d0:57
d1:€—2p+7—(5—2,
d2:2p—7+27

d3:p(6_5)_q7
dy=plp—~v+1).

With this substitution, we have mapped the points {0, 1, 0o} into {—o0, 0, 1}, which means
that, in terms of the variable r, r_ — —o0, ry — 0, and r = oo — 1. Thus, writing W (x)
as W(x) = >~ ,a,z" we obtain the following recurrence rule:

funi1 + gnan + hpa,—1 =0, with n>0, a_;=0, and, (3.35)

fu =04 (dy + 1)n + do,
gn = —2n2—|—(d1+2)n+d3,
B =n*+ (dy — 3)n + 2+ dy — ds.

Once that lim,_,o K(2) ~ 27¢, all the three limits, 2 — —oo0,  — 0, and x — 1, give
finite numbers for W (x), and then the solution for a,, must provide it.

We know that the series D~ a,z" is absolutely convergent if » ° |a,z"| con-
verges, and the convergence test states that a series » .S, converges if the limit
lim,, 500 |Sny1/Sy| is a finite number L < 1, and the convergence radius is L™!. Applying
the convergence test for the series of W (x), we obtain that it converges for x < 1. But
W (z) must converge for x — 1 because, as it was said at the end of the last paragraph,
the limit lim, ,; W (z) must be a number, and for this case we have

iy W(w) =2 on
n=0
We define the inverse of the convergence radius as p = lim,_,o apy1/a,. Dividing
equation (3.35) by a,f, and taking the limit when n — oo, we obtain a second order
polynomial equation for p. The two roots of such equation are the inverse of the conver-
gence radii of each of the possible solutions for the TTRR. When we do it we find the
double root p = 1 and hence, in this case, the convergence test is inconclusive. In order
to try to overcome this problem, we assume that p has higher order behavior in n |33, 38]:

Cyq
n2

pzlima”“fljtz ,L—1+ + 255 (3.36)
mn:2

n—oo an
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In the limit n — oo we can write the derivative of a,, whith respect to n as

dan Gpy1 — Gp

lim ~
Then,
(o]
. 1 dan An+1 Cn
lim —— ~ lim — :E —
n—00 (y, dn n—00  (y, . n”/2
n—

= lim log(an)z/(c—ﬁ+%+c_§)+%...>dn.

n—oo nz2 n nz2

Integrating the right hand side of the above expression up to second order, we obtain the
following asymptotic behavior for a,,:

lim a, o ne’1V™, (3.37)

n—o0

Hence, substituting the expansion (3.36) into (3.35), and taking the limit n — oo, we find
the coefficients

Ccl = :|:\/ —E€,

+y+0
=—F1F0
2
1
c3 = 8?[—4(}—1— [4+4q — 8a+ (v +6)*)]e +2(4 + v+ 30)e + €],
1

04:%[(1+5)(7+5+6)—%

(2+6+e)+q+2],

and so on.

In (3.37) the dominant term is the exponential and we have two solutions for ¢;, each
of them corresponding to one of the solutions of the recurrence relation (3.35). If we
call y,, the solution which has Re(¢;) < 0 and x,, the other one, we automatically have
lim,, 00 Yn/xn, = 0, which means that, if these solutions do exist, then y, and z, are the
minimal and the dominant solutions, respectively. Remember, at the beginning of this
section, we found € = 2(r; — r_)(, and before that we concluded ¢ should be (; = iw.
Therefore, if Re(w) < 0 and Re(y/—¢) < 0, then the minimal solution is the one with
c1 = /—¢.

Because lim, ,; K(z) = 1 and W(z) = 2*/“K(z) we can see that with ap = 1 the
boundary condition at the outer event horizon is obeyed. Then, from (3.35), setting
n = 0, we have

foar + goao =0 = a__%
Qo Jo

Using (3.25) we obtain

_ —hai1 foriboge forohngs

'n = )
In+1— Gnt+2— In+3—
with r, = “ZZI. In particular, for n = 0 we have the following continued fraction
hy fihs foh
Ozgo—f01f12f2 3 (3.39)

g1— 92— g3—
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Again, by the Pincherle theorem, the continued fraction above will converge if, and only
if, the TTRR (3.35) admits a minimal solution and, if such solution do exist, ry must
converge to y; /yo, where a,, = y,, is the minimal solution. On the other hand, we already
know (3.38) converges because ry = o= —3—3. Therefore, by the Pincherle theorem, the
TTRR (3.35) admits a minimal solution. Besides that, as it was mentioned before, it is
necessary that >~ a, converges absolutely, and this will happen when, for a given a,
s, m, and gA;,, w = w, is a root of (3.38) or any of its inversions. The roots w, are the
quasi-normal frequencies. The nth inversion of (3.38) gives us

fn—lhn fn—th—l f1h2 thl o fnhn-‘rl fn+1hn+2
PR — g — SN n > O

In-1— Gn-2— gi— 9o " In+1— Gn4+2—

3.4  The Quasi-Normal Modes

Finally, we have all we need to find the quasi-normal modes numerically by the continued
fraction method. The angular Teukolsky equation gave us a continued fraction such that
the eigenvalues A, are roots for given s, [, m and w. At the same time, the radial
Teukolsky equation provided us another continued fraction where this time the quasi-
normal modes are the roots for given s, [, m, and 4A;,,. Then, what we need is to find out
sAm and w which are simultaneously roots of (3.31) and (3.23) or any of their inversions.
This is the continued fraction method.

In 3.3.3 we found an expansion for p = lim,, ,,, r,,, where r,, = “Z“ , and we concluded

that the minimal solution for the TTRR (3.35) does exist and it is the one with ¢; = \/—e.
We can use such expansion* to approximate ry for a large NN,

(N + 1)0262c1\/N+1

N~ Nez2 6201\/ﬁ ’

and then look for the roots of the truncated continued fraction. In 3.3.1 we discussed
about A, be equal to I(l + 1) — s(s + 1) when aw — 0. Therefore, we already have a
“guess” for jA;,, at least for small c¢. Also, we know that given s and m, the smallest
eigenvalue has the label l,;, = max (|s|,|m|) [15]. We already discussed the symmetries
of the problem, then if we know (A;,, for given s, [, and m, we automatically know _ A;,

and 4A;_,, (see section 3.3.1). Besides this, if w is a solution, so it is —w*.
Remember, the solution of the TME has the form

Ut r,0,0) = e “f(r0,¢) =e “re I f(r 0, ¢), (3.39)

where wg and w; are the real and imaginary parts of w, respectively. Therefore, by (3.39)
a condition for the solution be stable is w; < 0, otherwise the solution diverges as t — oo.
It is useful to define a parameter ¢ by

Ty —T_ .
———— =sin()
Ty +7r_
and we parameterize
a = M cos(¢), r_ = M][1 —sin(4)], ri = M[1+sin()].

For gravitational waves (s = —2), for example, for | = 2 we obtain
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cost=a/M Re(w) Im(w) Re(_242) Im(_2As)
0.01 0.74735055 -0.17792335 3.99999310 0.00000348
0.02 0.74737210 -0.17791952 3.99997240 0.00001393
0.03 0.74740803 -0.17791314 3.99993790 0.00003134
0.04 0.74745834 -0.17790419 3.99988960 0.00005572
0.05 0.74752306 -0.17789267 3.99982740 0.00008707
0.10 0.74806358 -0.17779618 3.99930860 0.00034837
0.20 0.75024789 -0.17740081 3.99721620 0.00139472
0.30 0.75397013 -0.17670656 3.99366660 0.00314249
0.40 0.75936317 -0.17565311 3.98855960 0.00559598
0.50 0.76663655 -0.17413810 3.98173840 0.00875742
0.60 0.77610784 -0.17198934 3.97296910 0.01262019
0.70 0.78825858 -0.16890524 3.96190150 0.01715280
0.80 0.80383470 -0.16431253 3.94799660 0.02225636
0.90 0.82400893 -0.15696539 3.93038430 0.02763286
0.97 0.84171178 -0.14861264 3.91511080 0.03109069
0.98 0.84450849 -0.14706484 3.91268770 0.03151647

Table 1: Quasi-normal modes obtained computationally for s = —2, [ = 2, and m = 0.

COS L = CL/M Re(w) Im(w) R€(_2A21) Im(_2A21)
0.01 0.74861005 -0.17790345 3.99500160 0.00118987
0.02 0.74989494 -0.17787979 3.98997080 0.00238713
0.03 0.75119832 -0.17785363 3.98490690 0.00359179
0.04 0.75252048 -0.17782492 3.97980930 0.00480385
0.05 0.75386169 -0.17779361 3.97467760 0.00602330
0.10 0.76086451 -0.17759660 3.94848430 0.01223122
0.20 0.77649564 -0.17697704 3.89315180 0.02519706
0.30 0.79466079 -0.17599034 3.83320640 0.03888096
0.40 0.81595822 -0.17451429 3.76757440 0.05324058
0.50 0.84126479 -0.17234599 3.69474520 0.06817770
0.60 0.87193694 -0.16912836 3.61247340 0.08346989
0.70 0.91024297 -0.16417045 3.51715390 0.09859410
0.80 0.96046141 -0.15590996 3.40228200 0.11217341
0.90 1.03258280 -0.13960869 3.25344620 0.11951010
0.97 1.11265720 -0.11128712 3.10648450 0.10799748
0.98 1.12831020 -0.10328544 3.07965980 0.10215726

Table 2: Quasi-normal modes obtained computationally for s = —2, [ = 2, and m = 1.
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cost=a/M Re(w) Im(w) Re(_2A2) Im(_2A9)
0.01 0.74987314 -0.17788366 3.98999190 0.00237669
0.02 0.75243219 -0.17784055 3.97989580 0.00476211
0.03 0.75502112 -0.17779524 3.96971000 0.00715630
0.04 0.75764056 -0.17774768 3.95943280 0.00955925
0.05 0.76029115 -0.17769780 3.94906240 0.01197100
0.10 0.77403508 -0.17741140 3.89574880 0.02416212
0.20 0.80429065 -0.17662233 3.78096840 0.04920850
0.30 0.83905336 -0.17545854 3.65313720 0.07512744
0.40 0.87968384 -0.17376392 3.50867840 0.10185231
0.50 0.92824605 -0.17127767 3.34226030 0.12919566
0.60 0.98808956 -0.16753040 3.14538660 0.15669039
0.70 1.06520050 -0.16158575 2.90316700 0.18315825
0.80 1.17203390 -0.15125910 2.58529400 0.20529749
0.90 1.34322850 -0.12973847 2.10981960 0.21112358
0.97 1.58641650 -0.08958071 1.48920120 0.16919868
0.98 1.65085900 -0.07726039 1.33361870 0.14999429

Table 3: Quasi-normal modes obtained computationally for s = —2, [ = 2, and m = 2.

These results can be compared with the Leaver’s results [33] or with the Berti’s results,
which can be found in his page [41]. Plotting the points starting from a/M = 0.01 up to
a/M = 0.98 in steps of 0.01, we obtain the curves below. The same can be done for other

values of s.
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Figure 1: Numerical results for a grav-

itational perturbation with [ = 0. In
this case, the only allowed value for m is
m = 0.

4We can use as much terms of the expansion (3.36) as we want.
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Figure 2: Numerical results for a grav-
itational perturbation with [ = 2. The
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itational perturbation with [ = 1. The
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4 Scattering and Superradiance

The goals of the present chapter are to describe the scattering problem in the Kerr back-
ground, discuss black holes thermodynamics and superradiance.

4.1  Kerr Scattering

Let us start rewriting the boundary conditions in a little bit different way:

P~ TA e g7l 4 Qe et for "=y, (4.1)
W~ Ie_;m et + R%e_wt, for T — 00, (4.2)
with am
k=w—-—mf, =w— N,

A scheme representing such boundary conditions can be seen below.

T I
LAVAV AV AAVAVAW
o o0
A VAVANS A VAVAVS
(@) R

Figure 4: Simple representation of the scattering problem.

The first term in (4.1) represents an ingoing wave at the event horizon r,, while the
second term represents an outgoing wave, where we are calling “ingoing” and “outgoing”
as a local observer should refer to the directions of the waves. Analogously, in (4.2) the
first term refers to ingoing, and the second to outgoing waves. Classically, one should
require only ingoing waves at the event horizon, thus we should have O = 0.

Remember the definition of tortoise coordinate used in section 2.3.2. For r — r, we
have

* = L7“~Lo r—r
= | oyt~ ey =

where ) )
r°+a

= =me =y

Now, taking v =t + r*, the second term of (4.1) becomes

. » " . . -
Oe tw(—r +t)6 imQyr* Oe imQir e zwveQZw’r‘

2iw

~ Oe—im9+r* e—iwv (7’ . T+) Py
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The function above is smooth only if 2iw/ f'(r,) is a positive integer. Thus, in principle,
we should not consider this solution.

The conserved energy and angular momentum flux vectors are given in terms of the
stress-energy tensor by [44|

et =—T",(0)", " ="1T",(04)",
respectively. And then, over a hypersurface dX,, we have
OF = e'dy,, 0J = 1"dX,,

where dX, = nurzdtdQ and n, is an unit vector normal to the surface in the radial
direction. Considering a scalar field of the form (2.14), that is,

b(t,1,0,0) = f(r,0)e i,
with the stress-energy tensor given by
1
T/u/ = 3,ﬂwu¢ - §9uu¢2, (43)

one can find that for s = 0 and s = 41, the energy flux at infinity per unit solid angle is
given by

S K 2
71d0) _rlgglor T".
Using the asymptotic behavior (4.2), one finds for the bosonic fields s = 0, +1, £2
[17]:
e e’

YE) = e—iwt—i-imd)PO — P ~ e—iwt+im¢05«lm<0) <I . +R - ) 7

‘ A ) ) —iwr™ ezwr*
le = e—zwt+zm¢P1 — ¢0 ~ e—zwt+zm¢1slm(9> (1Kn , + 1Y°ut7,._3) 5

—iwr™

Y—l = e—iwt—i—imqbp_l — p—2¢2 ~ e—iwt+im¢_1slm<0) <I + Reiwr*r) :

—iwr™ iwr™

. . . . e €
Y, = e—zwt+zm¢P2 = Uy ~ e—zwt+zm¢25'lm(9) (QYin . + QYQutT_E-’) )

Y_Q = e—iwt—l—imqbp_z — \If4p_4 ~ e—iwt—i-im(b_zslm(e) <I€ + Reiwr* T‘> ’
r
where
B(1Yi) = —8w’LZ, —2w* Youe = BR
C(3Ya) = 64w'T, whhYo = C*R,

and Ps = R,(r)Ss(0).
And then, the fluxes of energy at infinity for s = 0, 1 are related with the coefficients
in (4.1) and (4.2) via

dE,, 2 dE; 2
t_ Y 2 = %|I|2, for s=0,

dt 2 ’ dt
dBy 4wt Ay, 1,
a — g RIS a = o s=4h
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with B? = [(Aj, + a*w? — 2maw + s(s + 1)]? + 4maw — 4a*w?. The expressions for s = —1
can be found using the TS identities.
For gravitational waves one finds [44, 42|

e |CP

dEout 8(,06 |2 dEzn _ 1 ‘ |2
’ dt 32w?

, for s=2,

with |C|? = B?[(s4im + a*w? — 2maw + s(s + 1))?] + [2(sApm + a*w? — 2maw + s(s + 1)) —
1](96a*w? — 48maw).

For an observer at infinity, the flux of energy and angular momentum at the horizon
are given by

§E = T, (9,)"d’S,, §J =T,"(9s)"d’S,, (4.4)
with the 3-surface element given by
d3ZM = nyy/ —gdtddde = n,2Mr, sin 0 dtdode,

where g is the determinant of the induced metric at the horizon r,, and n* at the horizon
is equal to the vector —x*, as defined in the previous section. From (4.4) we obtain
d*F d*J

—_ — v H
qaa = M L0 e, e

=2Mr,T,"04"n,,

and thus we have that for any wave which enters into the black hole

PE 27
dtdQ T atdQ

= 2Mr T"n,n,.

Besides this, for a stress-energy tensor of the form (4.3) one can find

5J_ TTd,_m

- — —— 4.5
oF Trt w ( )
Using the two equations above and 0 = § M, we obtain
d’E  w
— Y oMr. T"™n,n,, 46
dtdQ ko (4.6)
with kg = w — mQpy. Then, using the asymptotic behavior (4.2) we find
d2Ehole 0527)1(0)
prroai Mr wky lQT{‘ |77, for s=0, (4.7)
d? Fyole S2 (0
hoe ___&0__ 150 )|T|2, for s=1. (4.8)

dtdQ — SMr kg 27

4.2 Thermodynamics and Superradiance

In section 2.1 we mentioned the Penrose process without an explanation. Now we are
going to understand such process and its relation with the Hawking’s area theorem.
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4.2.1  The Penrose Process and Black Hole Thermodynamics

In order to understand the Penrose process it is important to know that in the Kerr geom-
etry there is a special region called ergoregion. The ergoregion is the region between the
outer horizon and the ergosurface. The ergosurface, in turn, is defined by g;; = 0, that is,
r = M++/M? — a2 cos? §. Hence it assumes the values 2M and r, in the equatorial plane
and at the polos, respectively, for example. A representative picture of the ergoregion can
be seen below. In such region it is not possible to have a static particle in the point of
view of an observer at infinity. We can also define the ergoregion as the place where the
Killing vector £* = (0;)*, which is timelike at infinity, becomes spacelike. Outside the
ergoregion & is timelike, at the ergosurface it is null, and inside the ergoregion it becomes
spacelike.

r=2M

Figure 5: Ergoregion.

Penrose showed that because of the existence of the ergoregion it is possible to extract
energy from a rotating black hole [43]. If p* is the four-momentum of a particle, its energy
is given by £ = —¢,p". At infinity both £ and p* are timelike (actually, p* is null for a
massless particle and timelike otherwise), and then E > 0. However, in the ergoregion &~
becomes spacelike, and thus an observer at infinity can measure a negative energy for a
particle there.

The geodesic equation is given by

u'Vyu” =0, (4.9)
where u* is the tangent vector, that is,
ut — ﬁ —
dA ’

where A is an affine parameter and, as it is clear by the equation above, the dot means
derivative with respect to A. Equation (4.9) is equivalent to

aoc_oc
d\ 0 Oxo’
with

1
L(xh, iH) = §gm,$“x'”.
In section 2.1 we said that the Kerr metric has two Killing vectors, let us denote them

by k* = (1,0,0,0) and m* = (0,0,0,1). Then, it follows that along the geodesic one has
two conserved quantities:

E = —k,u" = —p,

L = m,u" = py,
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where p; and pg are components of the conjugate momenta

oL .
Pu = % = T = Ty.
For a massive particle, £ and L are the energy at infinity per mass unit and the angular
momentum per mass unit, respectively. While for a massless particle they represent the
energy at infinity and the angular momentum.

The geodesic equations for a pointlike particle in the equatorial plane (6 = 7/2) are

-1 9 ,  2Ma? _ 2Ma
t_K [(T +a®+ = )E . L], (4.10)
o1 2M 2Ma

=—|({1—-——|L E 4.11
r¥ = A(Et — Lo + k), (4.12)

where k = g, ufu” is equal to —1 for timelike geodesics, 0 for null geodesics, and 1 for
spacelike geodesics.

Now, consider a particle with rest mass y; at infinity of the Kerr spacetime following
a geodesic in the equatorial plane. Let us say that in the turning point ¢ (7|, = 0) such
particle decays in two identical particles with rest mass py. We will denote by FE; the
energy per mass unit of the first particle, and by Ey and Ey, the energies per mass unit
of the identical particles. In the same way, we will denote by L;, L, and Lo the angular
momentum per mass unit of them. We require that the energy and angular momentum
E; and L; are such that the turning point occurs in the ergoregion, that is, ro < 2M.
Besides, we write E; = &/, =1, Ep1 5o = Epp2/1hf, Li = Li/ i, and Ly g0 = L1 2/ 115

Using (4.12) in 7o, we obtain:

 2aM — IMTA

N 2M — To ’

2aM Ejy 12 F \/ArO[QM + (B2, 5, — Do)
2M — To ‘

L;

Lpip2 =

And by energy and angular momentum conservation
En+Er=¢E, L+ L =Ly,

we obtain

i oM 117 1L 2M 13
Epp=—|1L£4/—(1—-4— Ep=—11 — |1 -4—=
=9 \/ 0 ( w2 ’ 1279 T To 2

Once we are talking about one particle decaying into two identical particles, the term
4/@ /p? is smaller than 1. Besides, we already said that rq is inside the ergoregion, and
thus 2M /ro > 1 = 2M (1 —4u3/43)/ro > 1. Therefore, the energy which takes the minus
sign is negative while the one which takes the plus sign is larger than the energy of the
incoming particle. Let us associate £ to the negative energy and £y, to the positive one.
Hence if the particle “ f1” falls into the black hole and “f2” escapes, in summary, from
the point of view of an observer at infinity, one particle comes into the ergoregion and
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another one gets out with a larger energy. The energy must have come from somewhere
and there is no other option besides the black hole.
How much energy can a particle extract from a black hole? We define 7 as the ratio®

_&p 1

2M 11
i s R ey (Y
7 &o 2 +\/7’0 ( N?)

From the equation above we can see that 7 is maximum for the minimum value of ry, that
is, for 9 = ry. Besides, 7 is larger for s — 0, then

1 2M
Thnax, jip =0 = 5 1+ Z .

There are some ways to explain the Penrose process. The present explanation was
strongly based on [44]. Moreover, in [43] Penrose and Floyd, for example, state the
process as a particle which in some point of the ergoregion splits into two (not necessarily
identical) particles. In [11] Carroll uses the idea of someone coming into the ergoregion
with a big rock, there he throws the rock, which falls into the black hole, and then escapes
to infinity with a gain of energy.

Now, what is the link between the Penrose process and black hole thermodynamics?
We said that in the process occurs an extraction of energy from the black hole and soon
we will understand how.

A stationary and not static spacetime has a Killing horizon, that is, a hypersurface
Y where the vector field x* = (0;)* + Qu(0,)* is null, with Qp being a constant [11].
Besides, any event horizon of a stationary spacetime is a Killing horizon. For the Kerr
spacetime the outer horizon is a Killing horizon with 25 being the angular velocity at
the horizon:

a

QH:Q+:2MT ‘
+

The momentum p‘;l of the particle which falls into the black hole is timelike, while the
vector x* is null at the horizon, then the inner product between them is negative at 7.
Therefore, at r,

p’;lxu <0 = pﬁfl(ku +Qpm,) <0 = —En+QuLp <0

= Lp<—. (4.13)

Thus, once that Ef; < 0 and Qp > 0, equation (4.13) implies Ly < 0. In other words, the
particle f1 has an angular momentum in the opposite direction of the angular momentum

of the black hole.

'For a generic stationary axisymmetric spacetime, the result would be [44]

n:% [1+\J(1+gtt) (1—4:2”)].
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As a consequence, before the Penrose process, the mass and the angular momentum
of the black hole changes by

SM = Ep,  6J =Ly
And then, by (4.13)

0J < 5%, (4.14)
Qu
where the equality would happen for the limit case when p’]ﬁl is null, that is, when the
incoming particle decays into massless particles. In summary, at the end of the process,
both M and J decrease.
On the other hand, Christodoulou showed that there is a quantity which can not
decrease |45, 46]. Such quantity is called irreducible mass and for the Kerr black hole is

given by
Mr, \/ A
M, = = , 4.15
\/ 2 167 ( )

where A is the area of the black hole, as was said in 2.1. We can do the same that we
did in section 2.1, but now for the irreducible mass: substituting A by 47 (r2 +a?), r4 by
M + /M2 — a2, a by J/M, and differentiating M?

irr?

a oM
oMy, = —40J ). 4.16
ZJU\/[irr\/]\Jz_a2 (QH ) ( )

Then, it follows by (4.14) that, in fact,

we obtain

5Mirr Z 0.

By equation (4.15) one can conclude that if M, can not decrease, the same is true for
the area A (JA > 0 is the Hawking’s area theorem). Using equations (4.15) and (4.16)
we recover the equation (2.3) showed in section 2.1. For a Kerr-Newman black hole, a
rotating charged black hole, the equation is given by

SM = 8£5A + Qo + DydQ, (4.17)
T

where £ is the surface gravity and @y is the electrostatic potential at the horizon [44].

4.2.2  The Zeroth, Second, and Third Laws of Black Hole Thermodynamics

Equation (4.17) is already the “first law” of black holes thermodynamics for the case of a
spinning charged BH. For the zeroth law there are two versions [47]. The first one states
that k, the surface gravity, must be constant at its event horizon. The second one states
that x must be constant at any Killing horizon when the dominant energy condition? is
satisfied.

The second law of thermodynamics states that the entropy of a system never decreases.
But such law does not seem to make much sense in the black hole context, because once

2Let v® be either a timelike or null future directed vector. The dominant energy condition states that
w?® = —T%w" is also a future directed vector. Physically, it means that the observer v® can not measure

a speed of energy flow of matter faster then ¢ [12].
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that something crosses the event horizon, in principle, all the information about it is lost.
However, we can define the generalized entropy as the sum of the BH entropy and the
entropy of the matter distribution outside the BH. That is,

Sl = Sbh + Sout-

And then, the generalized second law (GSL), which was proposed by Bekenstein, states
that the generalized entropy S’ never decreases with time:

AS" > 0.

Nevertheless, it is questionable if the GSL do hold. By energy conservation, because of
the Hawking radiation a black hole should lose mass while irradiates, what means that
the area of the BH will decrease and then the GSE should not hold. On the other hand,
in the Hawking process we have particle creation. So there is hope for the GSL if the
amount of entropy generated outside by the particle creation compensates the decrease
of area. When the factor 7 in (2.4) is indeed 1/4, and then Sy, = A/4 in Plank units, the
generalized second law holds. A great discussion about the GSL can be seen in section 4
of [47].

The first way to think about the third law is to state that S — 0 as " — 0. (Remember
that, as was said in section 2.1, the temperature and the entropy of a BH are given by
T = k/2m and S = A/4.) However, extremal BHs have x = 0 and a finite A. Another
way to state the third law for BHs is: it is impossible, by a finite number of processes,
to reduce k to zero. Discussions about the third law and its possibilities can be seen in
[47, 48].

4.2.83  Superradiance

The result (4.5) written in section 4.1 also holds for other kinds of fields [44]. Substituting
(4.5), exchanging 6 E' by dM, into the first law (4.17) with @ = 0, we obtain
wk  0A

oM = Ep——w. (4.18)
The Hawking area theorem states that 0A > 0, as already was said. Therefore, the
equation above tells us that for w > 0, waves with w < mQy extract energy from the black
hole, once that 6FE = 0M < 0. We say that in such regime occur superradiance. In this
sense, superradiance appears as a consequence of the Hawking’s area theorem.

On the other hand, in section 4.1 we obtained an expression for the energy flux per
solid angle unit, equation (4.6). By such equation, assuming 7""n,n, > 0, we already
have that the energy flux is negative if 0 < w < mfy. This can be seen explicitly for
s = 0 and s = 1 by equations (4.7) and (4.8). When we write 0 < w < m{y we are,
obviously, considering w € R.

We define the amplification factor as

dEyy (dEy\ "
st = —1.
: dt ( dt )

In terms of dE;, out/dt, the superradiance regime corresponds to

dEm < dEout
dt dt ’




46

which follows from % < 0. Then, clearly, Zy., > 0 in the superradiance regime.
Zame inherit the symmetries of the TME, and then we have

Zslmw = Lsl-m—w-

As an example, for bosonic fields we have [44]

IR
Zsimew = W -1, for s=0,
IR[Z (16w ™
Zslmw - W B2 - ]., for s= :t]_,
IR /256w \ ™"
slmw — - ]., f = +2.
eI \ICP oo

Where B and C are the same as defined in section 4.1.

By equation (4.18) we can note that 0M is larger as w — mQy is smaller. In other
words, the extraction of energy will be larger for small frequencies. In the low-frequency
regime, Mw < 1, it follows that [44, 49, 50]

(Z—s)!(z+s)!r7 (4.19)

Zslmw = ZOlmw |: (l'>2

with

M2k
14+ —
+12 (7”’+T+>

Expanding equation (4.19) for large [, we infer that in the low-frequency regime, for
[ > 25 the amplification factor does not depend on the spin of the field.

The maximum amplification for electromagnetic waves occur when [ = m = 1. Then,
substituting [ = 1 and s = 1 in (4.19) we obtain that, in the low-frequency regime,
the maximum amplification factor for such waves is 4 times the amplification factor for
scalar waves. Analogously, for gravitational waves the maximum amplification occur when
[ = m = 2, and when we substitute [ = 2 and s = 2 in (4.19) the result is an amplification
factor 36 times Zy,,.. This shows that it is easiest to measure a sign resulting from a
gravitational perturbation than one caused by scalar or electromagnetic perturbation.

I— (1 +s)72% 4
Lot = —8mr ko (ry — 1) {( <)u§2 )} Hl
]:
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5 Conclusion

The Kerr spacetime has a rich geometry; because the black hole possesses an angular mo-
mentum .J, it is not spherically symmetric, which makes harder the study of perturbation
fields in such background when compared with the Schwarzschild black hole. On the other
hand, it is precisely this property that makes the Kerr black hole so interesting. In order
to be able to discuss perturbations in the Kerr spacetime, we first studied such spacetime
in chapter 2. There, in the first section, we discussed the symmetries of such solution of
Einstein’s equations in vacuum, some properties, and the nature of the singularities of
the metric. Then we started to approach the problem. The equation which describes a
s-spin perturbation in the Kerr background is the so-called Teukolsky master equation.

The TME is a partial differential equation in four variables, ¢, r, #, and ¢, the vari-
ables used to write the Kerr metric in the Boyer-Lindiquist coordinates, for the function
Ys(t,r,0,¢). The TME also depends on the spin-weight s of the field. For example,
when s = £1 the functions ¥4 (¢, 7,0, ¢) are related with the components ¢y and ¢, of
the Maxwell tensor, and when s = 42 the functions ¥.5(t,7,0,¢) are related with the
components ¥, and ¥, of the Weyl tensor.

The formalism which was used to obtain the TME is the tetrad formalism, which
consists of writing the metric in terms of a null basis. We used such formalism and then
we made a first-order perturbation on the so-called Newman-Penrose equations. To a
certain degree, it was not necessary to use explicitly the metric, it was only necessary to
state that is a metric of type D. Therefore, the same mechanism applies for any other
type D solution of Einstein’s equations.

The great characteristic of the TME is its separability. The function v4(t, 7,0, ¢) can
be written as a product of four functions, each one depending on one of the variables. In
particular, the ¢ part is given by ¢®*. The possible values for w in the region r, < r < co
are the so-called quasi-normal modes. We dedicated the chapter 2 to find them by the
continued fraction method or, as it is referred sometimes, the Leaver’s method, once that
Leaver was the first one who applied the method in the black hole context.

Both angular and radial Teukolsky equations can be put in the confluent Heun equa-
tion form. The continued fraction method consists of after writing them in one of the
forms of the CHE, write a series expansion for each of them. When we do this for the
TAE we obtain a three-term recurrence relation, which gives a convergent continued frac-
tion. When we do the same for the TRE, we first obtain a continued fraction that does
not converge (the TRE has different asymptotic behavior and a different kind of series
expansion). However, using a variable transformation, we obtain a new ODE such that
the series expansion gives us another TTRR, which in turn gives us a convergent contin-
ued fraction. The convergence of the continued fraction is discussed in chapter 2. The
Pincherle theorem is very important to ensure the convergence of both continued frac-
tions: the one which comes from the angular part, and the one which comes from the
radial part. Both the continued fractions depend on w and ,A;,,, the separation constant.
Once we have them we are able to obtain numerically w and ,A;,. We showed some
results at the end of chapter 2.

The last chapter is dedicated to discussing black hole thermodynamics and superradi-
ance. In order to do that, we first discussed the Kerr scattering problem, which is actually
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what we were doing since the first chapter. The way we choose to introduce black hole
thermodynamics was by explaining the Penrose process. There exists a special region
in the Kerr spacetime called ergoregion. Penrose noted that because of the existence of
such region, it is possible to extract energy from the black hole. Exploring the Penrose
process we found 0J < 0M/Qpy (equation (4.14)), and because of the existence of the
irreducible mass, showed by Christodoulou, we concluded that the area of the black hole
can not decrease, which is the Hawking’s area theorem. We also obtained an equation
that is very similar to the first law of thermodynamics, and it is the first law of black
hole thermodynamis. After doing that, we briefly discussed the zeroth, second and third
laws of BH thermodynamics. Lastly, to end the chapter, we discussed superradiance as a
consequence of BH thermodynamics. We observed, for example, that in the low-frequency
regime the amplification factor is larger when s = 2, that is, for gravitational waves.
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