
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

OSMAR FREITAS DA SILVA JÚNIOR

THE INFLUENCE OF THE BOTTLENECK PROTOCOL ON THE
ADAPTATION RATE AND PREDICTABILITY

Recife
2021



OSMAR FREITAS DA SILVA JÚNIOR

THE INFLUENCE OF THE BOTTLENECK PROTOCOL ON THE
ADAPTATION RATE AND PREDICTABILITY

Dissertação apresentada ao Programa de Pós-
Graduação em Física da Universidade Federal de
Pernambuco, como requisito parcial para a obtenção
do título de Mestre em Física.

Área de Concentração: Física Teórica e Computa-
cional

Orientador: Paulo Roberto de Araújo Campos

Recife
2021



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  
                                        Catalogação na fonte 

Bibliotecária Fernanda Bernardo Ferreira, CRB4-2165                  
  

   
  
S586i Silva Júnior, Osmar Freitas da 

The influence of the bottleneck protocol on the adaptation rate and 
predictability / Osmar Freitas da Silva Júnior. – 2021. 

  99 f.: il., fig. 
 
  Orientador: Paulo Roberto de Araújo Campos. 
  Dissertação (Mestrado) – Universidade Federal de Pernambuco. CCEN, 

Física, Recife, 2021. 
                       Inclui referências e apêndices. 
 

  1. Física Teórica e Computacional. 2. Bottleneck. 3. Previsibilidade. I. 
Campos, Paulo Roberto de Araújo (orientador). II. Título. 
 
      530.1                   CDD (23. ed.)                          UFPE- CCEN  2021 - 81 

 
                             
       

 

 



OSMAR FREITAS DA SILVA JÚNIOR 

 
 
 
 
 
 

THE INFLUENCE OF THE BOTTLENECK PROTOCOL ON THE 

ADAPTATION RATE AND PREDICTABILITY 

 
 
Dissertação apresentada ao Programa de 
Pós-Graduação em Física da Universidade 
Federal de Pernambuco, como requisito 
parcial para a obtenção do título de Mestre 
em Física.  

 
 
 
 
Aprovada em: 16/04/2021. 
 
 
 
 

BANCA EXAMINADORA 
 
 
 

________________________________________ 
Prof. Paulo Roberto de Araujo Campos 

Orientador 
Universidade Federal de Pernambuco 

 
 
 

_________________________________________ 
Prof. Pedro Valadão Carelli 

Examinador Interno 
Universidade Federal de Pernambuco 

 
 
 

_________________________________________ 
Profa. Sabrina Borges Lino Araújo 

Examinadora Externa 
Universidade Federal do Paraná 



ACKNOWLEDGEMENTS

Agradeço à meu pai por ter me ensinado que pra tudo na vida se dá um jeito, à minha
mãe por me mostrar que quanto mais se vive mais a gente aprende, e aos meus irmãos, sem
os quais me faltariam cúmplices nesse dilema que é fazer parte da nossa família.

Agradeço ao Prof. Paulo Campos pela oportunidade que me foi dada e pela paciência ao
me orientar em uma área na qual sempre tive muito fascínio, porém poquíssima experiência.
Em tempos de distanciamento social, sua confiança e disponibilidade foram essenciais para
desenvolver essa pesquisa.

Em particular, aos professores Leonardo Cabral, Leonardo Menezes e Alessandro Villar, que
muito me ensinaram para além da sala de aula.

Agradeço também às instituições de fomento CNPq e CAPES, sem as quais esta pesquisa
não se realizaria; à estrutura fornecida pela UFPE, pelo Departamento de Física e pelo labo-
ratório de Dinâmica Evolucionária.

E, por fim, agradeço à estocaticidade dos eventos históricos que fizeram com que hoje eu
tenha, sempre ao meu lado, minhas companheiras de vida: Ravena e Suricat.



ABSTRACT

Bottlenecks are evolutionary events that reduce the population size. In experimental evo-
lution, the cultivation of microorganisms in laboratory conditions follows a serial passaging
protocol in which periodic bottlenecks are an inherent aspect. In this work, we study a compu-
tational model of microbial evolution to understand the influence of the bottleneck protocol on
the rate of adaptation and predictability of the population. To address these questions, evolu-
tionary simulations are run using a standard Wright-Fisher model integrated with a bottleneck
regime, and the implementation of a fitness landscape with varying ruggedness. The rate of
adaptation is analyzed as a function of bottleneck and population sizes at different time units.
It is found that the rate of adaptation depends monotonically on bottleneck size when time is
expressed per generation, but is maximal at intermediate bottleneck size for times expressed
per bottleneck and per birth. Additionally, fitness landscapes allow to register the change in
the population’s genetic composition as trajectories over the genotypic space. Under this path-
dependent perspective, an ensemble of trajectories is generated in many independent runs, for
which statistical and computational measurements of predictability are inferred. Irrespective
of the timing of population bottlenecks, we find that predictability increases with population
size. We also find that predictability of the adaptive pathways increases in increasingly rugged
fitness landscapes.

Keywords: Bottleneck. Predictability. Adaptation rate. Population genetics.



RESUMO

Gargalos, ou bottlenecks, são eventos evolutivos que reduzem o tamanho de uma pop-
ulação. Em experimentos evolutivos, o protocolo para o cultivo de microrganismos em lab-
oratório costuma impor estas amostragens de maneira regular e periódica. Neste trabalho,
estudamos um modelo computacional de evolução microbiana para entender como este prot-
colo pode influenciar a taxa de adaptação de uma população e sua previsibilidade. Para abordar
essas questões, simulamos uma população que evolui sob este protocolo usando o modelo de
Wright-Fisher e um relevo de adaptação com epistasia regulável. A taxa de adaptação é me-
dida em função da severidade do bottleneck em diferentes unidades de tempo. Verificamos que
a taxa de adaptação depende monotonicamente do tamanho do bottleneck quando o tempo
é expresso por geração, mas apresenta um máximo em tamanhos intermediários quando os
tempos são expressos em unidades por bottleneck e por nascimento. A adoção de um relevo
de adaptação permite registrar a mudança na composição genética da população, e obter um
ensemble das trajetórias evolutivas no espaço de genótipos. Utilizamos medidas estatísticas
e computacionais para inferir o grau de previsibilidade destas trajetórias. Destacamos que a
previsibilidade aumenta com o tamanho da população, independentemente do tamanho da
amostragem. Também observamos que a previsibilidade das trajetórias evolutivas aumenta em
função da epistasia do relevo de adaptação.

Palavras-chaves: Bottleneck. Previsibilidade. Taxa de adaptação. Dinâmica populacional.
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1 INTRODUCTION

“Any observation of a living system

must ultimately be interpreted

in the context of its evolution.” (1)

Evolutionary Theory is one of the most beautiful and successful theories in science. Through
the set of its essential mechanisms, we came to understand the complex collective behavior
of living organisms, to track the origin of their common ancestors, and to account for the
abundant variety of life forms.

Over the years, formal models were developed to study biological systems whose fates are
strongly driven by evolutionary processes, such as selection, mutation, migration, and genetic
drift. Working on quantification of those processes, Evolution became a field grounded in well
established mathematical foundations, in which hypotheses can be explored and confronted
with empirical data. Its body of work ranges over different scales of interaction between living
organisms - from Population Genetics to Ecology.

At the genetic level, problems revolve around the change of a population’s genetic com-
position over time. While selection favors the most adapted individuals, the nature of the
reproduction process itself affects the population’s diversity through genetic drift and muta-
tion. The non-trivial interaction between these factors over time may render the trajectory of
the evolutionary process highly susceptible to chance events.

In the 80s, a warm debate has emerged about how the fate of an evolving population
is affected by the particularities of its history - an aspect known as Contingency (2). Would
such a fate be completely arbitrary and thus unpredictable? Are there enough constraints that
effectively reduce the number of ‘paths’ an evolving population could take? If the latter is
true, how reproducible an evolutionary process is? Could we "replay the tape of life"?

Although such ideas, at the time, were more heuristic than passive of observation, it was
the seed - or Gedanken experiment, if you prefer - to consider the quantification of randomness
alongside the evolutionary history: how stochastic is the dynamic of an evolving population?
What kind of elements can affect the predictability of its composition over time? In recent years,
parallel evolution experiments alongside exhaustive analyzes of genetic material from lab and
natural populations have started to accumulate evidence that some ‘paths’ leading to the final
composition have different probabilities of occurrence (3). Such a novelty has fundamental
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implications in the understanding of mechanisms of adaptation, immune response, protein
folding, as well as antibiotic resistance (4).

Under well-controlled environment conditions, one can cultivate simple organisms - such
as bacteria, viruses, and yeast - to observe evolution acting upon them at shorter time scales,
selecting those more adapted to the lab conditions. Through an Experimental Protocol devel-
oped throughout the years, these Evolutionary Experiments became a rich niche for testing
theoretical models with empirical data (5). Inherent to this procedure, the adopted convention
of a bottleneck regime in those protocols - severe and periodic reduction in population size,
after a growth phase - is of interest to the theme of contingency, since it is well known that
larger populations are less sensitive to randomness than smaller ones, besides its effect on the
adaptation rate of the evolutionary process (6).

As such, the goal of the present work is to study a model - through computer simula-
tions - of a population of self-replicating entities evolving by selection, mutation, and genetic
drift according to a serial-transfer protocol of experimental evolution. We ought to investi-
gate whether the bottleneck regime can affect the population’s rate of adaptation and the
predictability of its genetic composition .

We resort to the study of evolution over a fitness landscape (7). We build a genotype-to-
fitness map where the genetic composition of an evolving population can be registered. Under
this path-dependent perspective, the dynamic of the genetic variation describes an adaptive
trajectory over this genotypic space (8). By generating an ensemble of trajectories over several
distinct fitness landscapes we can assess different measurements of the predictability of the
system (9).

In summary, two key factors characterize our approach:
1) A genotypic space is used to map the population dynamics. Such formulation allows us

to:
• record the genetic states visited by the population – an adaptive trajectory in this map;
• utilize statistical measures of predictability in the ensemble of trajectories;
• investigate how the correlation between the elements of the genome (epistasis) can interfere
in the accessibility of paths.

2) A bottleneck regime is implemented for the evolving population. We investigate its
implications for the adaptive rate and the predictability of the trajectories.



1 INTRODUCTION 18

By modeling any system, we should ask ourselves what are the assumptions adopted a
priori and the range of its applicability. Efforts were made for those points being highlighted
throughout this work. In Chapter 1 it is presented a brief historical context of the modern
evolutionary theory, converging to the particular topics of our research. Here is discussed the
conceptual framework of a fitness landscape, the protocol utilized in experimental evolution,
and the notion of predictability. In Chapter 2, we work out the basic concepts of population
genetic theory to better formalize the evolutionary processes involved in the dynamics. It is also
discussed the properties of the genotype space and how they affect the structure of the fitness
landscape and, hence, the accessibility of paths. In Chapter 3, we describe the methods and
models chosen to simulate our dynamics, the adopted protocols to compare adaptation rates
and generate the ensembles of trajectories, and the statistical and computational measurements
of the predictability of the system. In Chapter 4, the analytical and simulation results of our
research are presented and discussed alongside previously published works in the experimental
and theoretical fields. We highlight the implications of a bottleneck regime at the macroscopic
and microscopic level of the evolving population: from the fitness trajectories achieved by
adaptation, to the change in genetic diversity, to the statistical properties of the evolutionary
pathways. Finally, in chapter 5, we summarize the main results obtained along this dissertation,
and discuss the perspectives for future investigations.

1.1 HISTORICAL VIEW

1.1.1 Darwinism and Mendelian Genetics

In the documented history of human-kind, efforts in the understanding of life’s origin
and diversity are present in many ancient civilizations. However, the history of a modern
evolutionary theory as we know it today began recently.

In the early XIX century, Naturalists tackled the discussion of life variability using an ex-
clusive observational approach. Through the analyses of fossil records and a meticulous mor-
phological characterization of organisms, the idea of species sharing common origins and the
fact that different variations were present in the same species was already granted. To explain
why some traits prevailed while others disappeared, the Lamarckian theory of differentiation
claimed that the environment gives rise to change in animals by imposing a higher utilization
of some organs, granting them a greater development (10). To Lamarck, these changes would
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then be continuously acquired over the organisms’ life and passed to their offsprings, giving
origin to new species. From this perspective, the environment was understood as a source of
variation.

This predominant view was challenged in 1858, when Charles Darwin and Alfred Russel
Wallace announced an alternative process they have attained, independently (10), to explain
the fate of the observed variation of traits. In their view, the traits - or phenotypes - are
transferred exclusively by inheritance from the ancestral parents, with no change along the
organisms’ life, and has specific effects not only on the physical characteristics but also on the
behavior of the offspring. In a given environment, some traits would bear a relative advantage
among the others in terms of reproduction success and surviving stages of life development -
such general conditions are often referred to as fitness. Therefore, the ones with ‘bad’ traits
within a given species would leave fewer descendants, on average, than the ‘fitter’ ones.

In principle, many variations could be established simultaneously, but resource and spatial
limitation impose a limit on the number of prevailing traits. Given enough time, subsequent
generations would present a diversity of these variants, with frequency proportional to their
respective fitness.

This new perspective brought about a paradigmatic change to the understanding of life
(11). The environmental conditions together with the variation of traits would determine the
perpetuation of the organisms. Coined Natural Selection, this process would shape the diversity
of a given population over time.

Figure 1 – Simple examples of variation of traits among the same species. The beak of flinches changed
gradually as their subsequent offspring adapted to different diets such as seeds, insects, and fruits.

Source: Public domain image from (12).
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In the words of Pugliucci (11), natural selection and the inheritance of traits were "the
first two conceptual pillars of modern evolutionary theory". Their presentation and further
applications were better formalized in Darwin’s book On the Origin of Species (1859) (10).
Since a change in the environment can affect the distribution of fitness among traits within a
population, such dependence could be straightforwardly related to open problems involving the
discontinuity of fossil records, geographically isolated animals (Figure 1), and the commonly
used process of animal and plant breeding - aka artificial selection. But a convincing hypothesis
about the fundamental origin of the variations was lacking so far. "For a population to evolve
by natural selection, the members of the population must vary - if all organisms are identical,
no selection can occur" (13).

Contemporaneous to those ideas, Gregor Mendel (13) was conducting a controlled experi-
mental work on garden pea plants, interbreeding harvests with different traits. The pure plant
lineages differed, for example, by seed shape, flower color, and height. As new generations
sprouted, Mendel observed a proportionality pattern in the distribution of the different traits.
By carefully analysing the data, he hypothesized that each plant contained a pair of units that
determined its trait — for example, flower color.

Mendel’s theory was the first to conceive the inheritance of traits as discrete hereditary
components. Mendel’s units and the variations it can take (e.g. pink or white colors in the pea
plant petals) are known, respectively, as the genes and alleles of population genetics (13). Thus
recombination of the parent’s genes determines which alleles will be present in the offspring.

Although Mendel’s discoveries mark a turning point in our understanding of inheritance,
its importance took almost forty years to be noticed by the scientific community and one more
decade to be related to Darwinism’s initial variation problem.

1.1.2 Modern Synthesis and the Genome

At the turn of the 20th century, when Mendel’s ideas were rediscovered (11), Darwinians
claimed that the heredity of discrete traits - such as the flower color - studied by Mendel, was
incompatible with the gradualism view of natural selection as it could not explain the variation
in continuous traits - such as body size. Thus, it could not be responsible for the long term
change in species (7). In contrast, Mendelians emphasized that a discontinuous variation of
traits was not only universal for evolution but that major adaptive change could be produced
by single hereditary steps (13). Over the years, the accumulation of empirical evidence favoring
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Mendelianism brought an urgent need to unify both theories.
Achievements in this direction were made in the 1920s, through the efforts of R.A. Fisher,

J.B.S. Haldane and Sewall Wright (8). They developed formal mathematical models to explore
how the mechanisms of selection, drift, and mutation, would modify the population’s genetic
composition, obeying the Mendelian rules of inheritance.

In particular, Fisher’s (14) The correlation between relatives on the supposition of Mendelian

inheritance (1918) is "one of the most important papers ever written in evolutionary biology"
(11). Fisher demonstrated that if a large number of independent genes give small contributions
to the change of a continuous trait, the sum of trait effects would approximate a normal distri-
bution in a population - as happens through the Central Limit Theorem with the sum of many
independent random contributions (15). "Since the Darwinian process was widely believed to
work on continuously varying traits, the demonstration that the distribution of such traits was
compatible with Mendelism was an important step towards reconciling both theories" (13).

The conceiving of formal models to investigate the process of evolution played a key
part in the formation of the Modern Synthesis. Remarkably, they were capable to integrate
the Mendelian nature of mutation without mention to the real nature of the genomic and
molecular basis of inheritance - which was unknown at the time (11).

In the 40s, it was already known that the DNA carries the hereditary genetic material, that
it was located on chromosomes, and that each cell comprising any organism contains a chro-
mosome set (16); but at the time there was no X-ray crystallography or electron microscopy
to further increase the resolution and reveal its structure. Within a theoretical perspective, in
the series of lectures entitled What is Life? (1943) (17), Erwin Schrödinger highlighted that if
the genetic inheritance was stored in objects with the size of single molecules, it should have
an aperiodic crystal structure in order to store the abundant information about the individual
development and retain its stability.

This informational approach to the problem inspired many molecular biologists in the field
(17), including J. Watson and F. Crick. In the early 50s, they were working on a model of
code-transcription to fulfill the genetic heredity theory, when Rosalind Franklin et al. took the
famous Photo 51 from a crystalline gel composed of DNA fiber (Figure 2).

With the refinement of crystallography resolution techniques, it revealed a double-helix
string connected through bridges. Watson and Crick integrated this novel structure into their
models of code-script information and two years later (16) announced the discovery of the
genome structure present in every living being: a codified string, whose length and sequence
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Figure 2 – Photo 51 and double-helix DNA structure.

Source: Image from (16).

combination of its elements could provide the expressed traits (8). The specific sequence of
nucleotides – or genotype – is the inherent hereditary information passed through generations,
and the change in its code can cause the variation needed for natural selection to act upon.

Almost one century separates the conception of Darwinism from the discovery of the
genome. In the last third of the 20th century, Modern Synthesis was constantly modified
owing to the abundance of data provided by the genomic revolution (7), thus turning feasible
fast whole-genome sequencing. Today we know that many of its common assumptions can not
be arbitrarily generalized. For example, it has been found that the genome is not always a well-
organized set of genes and that not all genes necessarily have a single function1. Pigliucci(11)
argues that a new perspective of evolution itself may integrate genomics, complex theory, and
evolutionary genetics into an "Extended Evolutionary Synthesis". Despite that, the succession
of events here exposed consolidates the efforts of many scientists from many distinct fields
and generations to build a reasonable and accurate understanding of life itself. The Modern
Synthesis’ paradigm sheds light on the machinery shared by all living organisms - even those
separated by hundreds of millions of years of evolutionary history.

1.2 GENOTYPE TO FITNESS MAPPING

In the early development of the Modern Synthesis, most of the models were limited to the
analyses of few genes (or loci), assuming that their effects on the traits were independent of
1 See reference (11) for many more.
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the rest of the genome (8). The first attempts to formalize the effects of genes at multiple
loci were presented in the early 30s.

Fisher and Wright were protagonists of a long-standing debate regarding the effect of
mutations on the variance of traits and, ultimately, on fitness. Both of them shared the view
that the fitness of a population depends on the combined states of their traits. Therefore, there
should exist an optimum combination of those traits, such that its fitness is the maximum
possible (7). Their ideas were better visualized as a landscape-like figure (Figure 3), where
each "point" in the base grid represents a specific combination between the axis traits, and the
height corresponds to their respective fitness. Populations experiencing mutations and genetic
drift would then move at random directions and lengths over this surface, but, since selection
will act on traits to gradually change them to fitter ones, adaptation was seen, they assumed,
as an optimization process over this landscape in the search for fitness peaks.

Figure 3 – Simple representation of a phenotypic space. The height is proportional to the fitness of combined
traits. As selection increases the frequency of fitter individuals, adaptation is an optimization process
towards the peak.

Source: The author (2020).

In Fisher’s additive view of genetics, he considered that the independent dimensions should
be seen as the phenotypic variation of traits and, as such, they could take continuous values
- as it is continuous the length of a beak, the body size or the consumption rate of ‘food’.
"If there are many different ways to change a phenotype, it becomes very unlikely that a
random change acquires the right combination of traits in the right way to improve fitness"
(18). Moreover, the model should be limited to a few independent traits, since the existence
of maxima in that space decreases as the dimensions increases - as it happens with a saddle
point in 3 dimensions. In Fisher’s Geometric Model a continuous surface produces a smooth
single-peaked fitness landscape.
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On the other hand, Wright’s (19) adaptive landscape diagram (Figure 4) was the first
concept of a discrete genotypic space and a tentative to reconcile a higher set of genes in
the theory (7). "Within a particular environment, each genotype can be assumed to have a
particular fitness;" furthermore, "genotypes that are relatively close will tend to have more
similar fitnesses than genotypes chosen at random" (20). This hypothesis represents Wright’s
emphasis on the assumption of non-additive interactions between the genes within a single
genome - in other words, the effect of a single gene could be dependent on the genetic
background it appears - what today is known as epistasis. Through an intuitive portray of this
multidimensional map in fewer dimensions, Wright visualized a picture of a rugged landscape
that displays multiple peaks and valleys. This new topology implied some meaningful aspects
to evolutionary theory that was later confirmed: in a given environment, there could exist
multiple optimal combinations of traits for an evolving population.

Figure 4 – Wright’s landscape map representation with peaks (+) and valleys (-). Evolving populations would
travel through this discrete space in search for optimum combinations of traits.

Source: Image from (19).

Despite its recognizable importance to evolutionary theory and its great heuristic value, the
adaptive landscape as proposed by Wright was the subject of many criticisms. (7, 11, 20, 21).
Besides his ‘crude’ low-dimensional projection, there was no understanding of adaptation at
the molecular level for multilocus systems at the time and, consequently, much of Wright’s
conceptions had a pure conjecture status. In particular, the fundamental elementary units of
the model’s genotype axis were still unknown and this lack of definition rendered the notion of
distance and nearness - based on the assumption of walks through discrete steps - as empty.

In 1970, Maynard Smith addressed this problem by introducing the notion of a mutational
pathway in a protein space (21, 22). Proteins differ from one another primarily in their sequence
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of amino acids, which in turn comprises a sequence of nucleotides. From all the possible
sequences constructed with the 20 existing amino acids, only a subset of them are regarded as
functional - or beneficial. Given a protein of fixed length, Maynard asked about the frequency
and distribution of amino acid sequences which are indeed functional.

In the original paper, he presented his hypotheses in a ludic way, in the form of a word
game: given a fixed number of letters and a specific language, only a subset of combinations
encode for existing words.

Figure 5 – Maynard’s word game. Single letter transitions from WORD to GENE, over states of existing english
words.

Source: Image from (21).

In the analogy above, letters are seen as amino acids, English words correspond to functional
proteins and transitions happens towards (previously defined) fitter words (as in Figure 5). He
argued, with outstanding simplicity, that protein evolution can only happen along paths con-
necting functional proteins since natural selection would tend to purge the pathways connected
through non-functional ones. Likewise, he showed that the probability of obtaining the next
functional protein decreases as we increase the number of simultaneous amino acid changes.
Maynard’s arguments and metaphor, although echoing with Fisher and Wright’s ideas, were
neglected by the scientific community until 1990 (7, 21). When microbial populations were
followed in the lab for many generations, adaptation regarded as discrete changes in sequence
space was observed. This has renewed the interest in modeling adaptation as an adaptive walk
either in phenotypic or genotypic space.
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Under his assumptions, the high-dimensional space now gets a more mathematical descrip-
tion. Given a sequence of fixed length 𝐿 and an alphabet with 𝐴 letters, a sequence space is a
generalization of a Hypercube 𝐻𝐴

𝐿 . The Figure 6 shows the simplest case of a binary alphabet
𝐴 = {0, 1}: each combination represents a unique state connected to its neighbors through
single-step transitions. By assigning a fitness value to each state, evolution is seen as a "walk"
in this network and adaptation as a directional "climb" to fitter states. Even with this mathe-
matical formalization of the space, expressions such as "peaks", "smoothness", and "crossing
of valleys", although inadequate, are still used by the community in a heuristic manner for
their highly intuitive values. Our research is no exception.

Figure 6 – Hypercube representation for L=3 and L=4.

Source: Modified from (23).

Inspired by the protein space conception, Stuart Kauffman et al. (23, 24) developed a
statistical computational model for constructing a sequence space of random epistatic inter-
actions - the NK model - where the ruggedness of the landscape (i.e. their average number of
fitness peaks) could be "tuned" by the free parameter 𝐾, allowing the analysis of adaptation
for many families of landscapes. In our work, we use the NK model to assign fitness values to
the set of all genotype sequences of a genome of length 𝐿2.

It is important to highlight that, in reality, the relationship between genotype and fitness
can be exceedingly complex, especially in the case the environment plays a role and thereby
influences the reproductive success (25). Such complexity increases in multicellular organisms,
where the early stages of embryo development are determinant to establish the traits (2, 11).
Besides that, within a continually changing environment, a fitness attributed to a genotype
2 Since N is universally related to the population size, we adopt L for the genome length instead of the

original choice of the NK model.
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could change drastically, and hence, the "heights" of the landscape would vary accordingly
- which is sometimes referred through the analogy of a "Sea-landscape". Thus, if the time
scale needed for a population to evolve is longer than the change of the landscape itself, it is
unfeasible to ascribe absolute or relative values of fitness to genes.

"Nevertheless, a static fitness landscape that depends only on the genotype can be a good
approximation on short time scales, if all the mentioned factors remain essentially constant,
or under laboratory conditions that can be held constant over many generations" (8). Fur-
thermore, our approach places substantial emphasis on experiments with simple unicellular
microbes, for which the variety of expressed traits are less abundant and genomic variation
can be carefully registered (5).

Today, the techniques of sampling of genetic material have, so far, been improved in time
and range, making the construction of empirical fitness landscapes feasible. Properties of the
landscape - such as peak fraction, deviation from additivity, and accessibility of paths (26) -
are investigated to better understand the restrictions that the sequence space itself imposes
to evolutionary dynamics, integrating a path-dependent analysis to evolutionary theory.

1.3 EXPERIMENTAL EVOLUTION AND BOTTLENECKS

For almost 30 years, researchers have developed experimental protocols to cultivate mi-
croorganisms in laboratory conditions to study and monitor the evolutionary process. Controlled
and replicated experiments are used to test hypotheses and investigate how their genotypic
and phenotypic properties evolve over many generations.

The most suited candidates for such experiments have been viruses, bacteria, fungi, and
unicellular algae. As exhaustively addressed by Elena and Lenski (27), among the reasons to
use those organisms in lab conditions we highlight: their easiness to propagate and enumerate;
their fast reproduction rate, rapidly achieving many generations; the possibility of being stored
in a frozen state and later revived, permitting a direct comparison of ancestral and evolved
types; and the possibility of replication experiments. The environmental conditions from a
laboratory are easier to manipulate, such as resources and temperature, as well as the genetic
composition of founding populations. Additionally, the techniques presented today allows a
fast and precise genetic analysis and manipulation.

The first and longest ongoing evolution experiment started in 1988, with Richard Lenski
(2, 28, 29) cultivation of 12 identical populations of E.coli subjected to constant lab conditions.
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This Long Term Evolution Experiment (Long-Term Evolution Experiment (LTEE)) has been
carried out for more than 30 years, and became the initial standard protocol to build such
systems. At the beginning of the LTEE, a sample initially containing an identical genotype (the
common ancestor) is grown in a food-rich environment up to reaching the carrying capacity.
After this growth phase, the population is subjected to a bottleneck: a small fraction of the
population is randomly sampled and then introduced into an identical environment to form
the next founder population. This procedure is repeated over many generations. A sample
of the ancestor as well as any other individual at any generation can be frozen and stored.
Adaptation can be quantified by measuring changes in fitness. With microorganisms, fitness
can be measured using "head-to-head" competition between frozen fossils. As they compete
for a pool of resources, their population growth rates are measured (27).

Figure 7 – Distinct protocols of experimental evolution to achieve: a) accumulation of mutations through
single-individuals bottlenecks; b) adaptation of a constant population size; and c) populations
adapting under regular, periodic bottlenecks.

Source: Image from (5).

In the years that followed, a proper formalization of these protocols was built to infer
different parameters of the evolving population, such as the rate at which new genetic muta-
tions spontaneously occur from parent to offspring (Figure 7.a). In many of them, the serial
passaging with periodic bottlenecks regime is an inherent aspect.

The effects of a bottleneck in an evolving population may vary. Given its random sampling
nature, bottlenecks are directly related to the decrease in genotype diversity, but while this
imposes a risk to the perpetuation of the surviving population, it can also increase the potential
to explore new domains of the fitness landscape by increasing the strength of genetic drift and
thereby avoiding the population to be stuck in local fitness maxima of the landscape (3).
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In experimental evolution, these regular, periodic bottlenecks occur with periods of sustained
growth phase which enhances the probability of new beneficial mutations rise and increase in
frequency. Straightforwardly, the serial-transfer protocol is a method to induce and register
adaptation at shorter time scales.

However, the description above leaves aside many non-trivial aspects of the adaptive dy-
namics; there are many chance events whose consequences depend on the time and the genetic
background they occur. For instance, within the real lab resource and space limitations, there is
no guarantee that beneficial mutations will be dominating the final population size at the end
of the growth phases, which raises the probability that bottlenecks could in fact eliminate those
beneficial mutations during the random sampling procedure, thus decreasing the adaptation
rate. Taking these facts into account, Lindi Wahl et al. (30) investigated the likelihood that
single beneficial mutations are lost due to bottleneck procedures. They inferred that, although
random sampling reduces the fixation probability3, the sustained periods of exponential growth
rate can compensate the fixation rates. Following this analyses, they searched for a dilution
ratio - the ratio between final and initial population size - that could minimize the extinction
chance, thus optimizing the adaption rate in serial passaging; and found it to be 𝑒−2.

Another open question explored by evolution experiments is whether an evolving popula-
tions would continuously adapt to the invariant lab conditions, with an ever increase of mean
fitness. In fact, it was one of the formal questions that motivated Lenski to build the LTEE
(29). Wiser et al. (31) analyzed the mean fitness trajectories of many replicates of E.coli pop-
ulations for more than 50,000 generations as showed in Figure 8. The rapid growth of fitness in
the earlier stages of adaptation followed by an ever-decreasing rate of fitness increase is present
in all replicated populations and agrees with the theoretical predictions on the magnitude of
the contribution of individual mutations to fitness.

As stated by Lenski (27), "such dynamics indicate that populations, after being placed in a
new environment, evolves from a region of low fitness towards an adaptive peak". The fact that
fitness keeps increasing implies that further adaptation is being achieved by the populations,
as they reach higher fitter states.

3 The probability that a mutation spread and dominate a population
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Figure 8 – Fitness trajectories of evolving E. coli in the LTEE. a) One of the 12 replicate populations, b) mean
fitness of all 12 populations.

Source: Image from (28).

1.4 CONTINGENCY AND PREDICTABILITY

In the classic view of evolution, selection favors the perpetuation of the individuals most
adapted to a particular environment, while the stochastic processes of mutation and genetic
drift may alter the population’s composition in a random manner (3, 32). Thus, populations
that start from the same state and evolve under identical conditions might follow different
evolutionary trajectories. The idea that random events could have lead populations to develop
strikingly different characteristics from what they present today, is a theme of wonder.

Analogously, the same final outcome can be achieved through different paths. The oc-
currence of a given evolutionary path is greatly influenced by the ordering that mutations
occur and their effects - which in its turn can be dependent on the genetic background at the
moment they first arise (4, 9).

This susceptibility to the details of historical events is addressed by biologists through the
concept of contingency, coined by Stephen Jay Gould in his analogy of "replaying life’s tape"
(2). This property has been identified as "intrinsic to path-dependent systems in which there
are multiple possible paths from an initial state, multiple possible outcomes, and probabilistic
causal dependence that links the two" (32).

Straightforwardly, the only feasible way to investigate this aspect of a system is through
the replication of an experiment with initially identical populations and also evolving under
identical conditions. While this does not represent a problem from a theoretical perspective,
only recently this methodology has been implemented in microbial evolution experiments,
where the well-controlled lab conditions and the possibility of frozen fossil records make feasible
the production of replicates (see Figure 9).
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Figure 9 – Designs of microbial evolution experiments to explore historical contingency in parallel replay
experiments. a) Initially identical replicate populations are evolved under the same conditions to
see whether evolution is parallel or divergent. b) Analytic replay experiments are used to assess
the contingency of a given outcome observed in a parallel replay experiment by replaying the
population’s evolution from various points in its history to see whether the likelihood of that
outcome changes over time.

Source: Image from (2).

In a broader sense, contingency measurements need to be defined by specifying their
particular observables. For instance, in cases where distinct genotypes can culminate in the
same traits, the convergence to these traits will imply less contingency, but not at the genotypic
level. For example, in the LTEE replicate experiment, all its 12 identical initial populations
"have evolved much higher fitness, faster growth rate, and larger cells size than the ancestor"
(2). On the other hand, each of them "has accumulated a unique set of mutations".

In the present work, we are solely concerned with surveying the contingency within the
trajectories over a fitness landscape - in other words, we focus on the microscopic genotypic
change of the system. For that purpose, we utilize statistical and computational measures to
characterize aspects of contingency related to the repeatability and similarity of such paths
(9).
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A recent study on bacterial resistance to antibiotics has brought renewed interest in this
path-dependent perspective. Weinreich et al. (4) examined the combination of 5 mutations in
the 𝛽-lactamase enzyme of bacteria, which jointly increase the antibiotic resistance response.
The accumulation of such mutations could only happen one at a time but in any particular
order. Thus, from the ancestor mutant-free to the highest-resistance mutator there were 5! =

120 distinct trajectories up to reaching the highest fitness peak. Here, fitness is defined as a
proxy for antibiotic resistance.

By exhaustive analyses of all mutant combinations, they constructed a five-locus fitness
landscape. It became clear that the fitness of a specific mutation was dependent on the
presence (or absence) of the other four mutations: their contributions to antibiotic resistance
could increase, decrease and even turn over negatively to that end - that is, becoming a
deleterious mutation instead. Thus, the most notorious aspect of their research was the large
number of distinct deleterious combinations from these 5 point mutations. From the 120
possible paths, only 18 were attainable through replicate experiments (Figure 10) while the
remaining trajectories had negligible probabilities of realization.

Figure 10 – A subspace of the full fitness landscape comprising the accessible pathways from 𝛽-lactamase to-
wards higher fitness states. The symbols (+) and (-) indicates the presence or absence of mutations
at a specific locus. The number inside each circle is the fitness of their specific combination.

Source: Image from (4).

This mutational background dependence is referred to in the literature as epistasis (4, 33)
and, more specifically, this reverse change between beneficial and deleterious as sign epistasis.
As discussed in Section 2.5, epistasis has a direct relationship with the topography of the
landscape and, consequently, with the number of accessible mutational pathways. As being
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reported by many empirical studies, at the small genomic scales, sign epistasis is commonly
observed (3).

In sum, the complex correlation between mutations - captured by its fitness landscape-
mapping - imposes restraints on the contingency of genetic changes. "Evolution is more likely
to be historically insensitive and repeatable if the adaptive landscape offers few alternative
paths or many that lead to similar outcomes" (2).
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2 CONCEPTS

This chapter focuses on the basic concepts of population genetic theory to understand
qualitative and semi-quantitative aspects of an evolving population. Based on the mathematical
framework developed in its early years, many unrealistic assumptions are adopted initially, and,
as we progress, we move away from those idealized cases to more complex regimes where
numerical treatment is adequate. The reader focused on the implications of this research, may
go straight to the discussions of the last two subchapters.

We start by discussing simple stochastic processes utilized to model population growth and
integrate the implementation of selection and mutation. We highlight how the combination of
these mechanisms alters the regime by which the population evolves. In the end, we argue the
implementation of gene architecture in the models and its importance to the development of
a path-dependent perspective to study the evolutionary process.

Much of the analytical work exposed here follows the steps of J. Haldane, R. Fisher, and
especially of John Gillespie, Motoo Kimura and James Crow, from whose textbooks (34, 35)
contains many of the presented derivations. In comparison, the adoption of a fitness landscape
and its accessibility implications goes back to S. Wright and Maynard Smith’s conceptions.

2.1 POPULATION GROWTH AND DRIFT

In biology, a population is the summation of living organisms of the same group or species.
By multiplying, individuals of the same species pass on their hereditary traits to their descen-
dants. The first and simplest life forms to arise on Earth replicate themselves, and at some
point in life’s history, newly developed forms needed the combination of two parents to gener-
ate offspring. Even with a low life expectancy, a set of individuals will grow in number as long
as food, space, and other resources are available.

Throughout this work, we focus on modeling a population of asexual haploids organisms,
i.e., life forms that reproduce exclusively by replication. Although, in many models, recombi-
nation can be easily integrated. Furthermore, we are only interested in birth and death events,
with no mention of life development between them. Such a choice is an excellent approxima-
tion to microbial organisms that reproduce much faster than individuals’ life cycles. Thus, on
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average, a population with a number of individuals that fluctuates around 𝑁 , is said to have
a size of 𝑁 .

Take E. coli, for example, the most widely studied bacteria in the world. Living in the guts
of every human being, it replicates to form two to six copies of itself over a specific time scale
in ideal lab conditions (1).

Being 𝑁𝑡 the number of individuals at a discrete-time 𝑡, and 𝑐 the number of copies that
it divides at each generation, we have by recursive relations

𝑁𝑡 = 𝑐𝑁𝑡−1

= 𝑐2𝑁𝑡−2 = . . .

= 𝑐𝑡𝑁0,

(2.1)

where 𝑁0 is the initial population’s size at generation 𝑡 = 0.
Given the rapid increase in numbers over very low time scales, Equation 2.1 can be ap-

proximated by a continuous growth version, where individuals grow with a rate 𝑟

𝑑𝑁(𝑡)
𝑑𝑡

= 𝑟𝑁(𝑡)

⇒ 𝑁(𝑡) = 𝑁(0)𝑒𝑟𝑡,

(2.2)

thus, over this approximation, population’s size 𝑁(𝑡) has a exponential growth.
But of course, a population can not grow indefinitely. The limitations of space and resources

impose an upper limit on the final population size, usually dubbed as the system’s carrying
capacity 𝐾̄. Straightforwardly, one can implement such a limit simply by truncating an ex-
ponential growth as soon as it is reached. In a more realistic assumption, population growth
slows down as it approaches 𝐾̄. The simplest implementation of the latter case assumes a
linear dependence on 𝐾̄ and is known as the logistic equation,

𝑑𝑁

𝑑𝑡
= 𝑟𝑁

(︃
1 − 𝑁

𝐾̄

)︃
. (2.3)

Note that while 𝑁 << 𝐾̄, it keeps an exponential growth rate.
As long as environmental conditions changes do not interfere with the carrying capacity,

an established population may maintain their numbers invariant over long time scales.
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Figure 11 – Simple distinction between exponential and logistic growth.

Source: The author (2020).

So far, these models express a growing population in pure absolute numbers. However,
individuals among the same species can bear distinct traits that can ultimately affect their
reproduction rate. To further model such evolutionary processes, references must be made to
the heritage passed on to the next generation, i.e., a model that can trace what descendants
came from what parents. Given our lack of knowledge about the real hereditary tree, we employ
stochastic models to approximate this fundamental aspect of evolution by considering the next
generations as random samples from the previous ones.

To take this next step, let us begin with the simplest and intuitive model, a stochastic
branching process. It consists of a set of random variables 𝑘 = 0, 1, 2, . . ., where each of
the parents in generation 𝑛 produces a random number 𝑘 of individuals in generation 𝑛 + 1.
Accordingly, in the simplest case, the random number 𝑘 is obtained from a fixed probability
distribution 𝑝𝑘.

First, we distinguish between individual traits by what we shall call for now as their lineage
- schematically represented in Figure 12 as the colors. Second, we assume the simplest case
where 𝑝𝑘 does not vary from individual to individual. Thus, we are only interested in the
reproduction’s dynamics itself and how it affects the lineages’ fate.

We may dive into these aspects by following the fate of a single lineage (color) while it
evolves in a branching process much like the above. We follow the line of Haldane, and Fisher
(35) by assuming that the population is already at its carrying capacity and that population
size 𝑁 is very large but countable.

The probability of extinction of a lineage can be derived as soon it appears in the population.
Let 𝑝0, 𝑝1, 𝑝2, .. be the probabilities that the lineage will leave 0, 1, 2, ... descendants in the next
generation, i.e. ∑︀𝑘 𝑝𝑘 = 1. In particular, 𝑝0 is the probability that given lineage will go extinct.
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Figure 12 – Merely illustrative figure showing the perpetuation of a lineage.

Source: The author (2020)

Such assumption have a probability generating function (Probability Generating Function
(PGF)):

𝑓(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥
2 + ... =

∞∑︁
𝑘=0

𝑝𝑘𝑥𝑘, (2.4)

where the probability of leaving 𝑘 mutant genes for the next generation is given as the coeffi-
cient of 𝑥𝑘.

The mean number of descendants, i.e. the mean of this distribution is given by 𝑑𝑓
𝑑𝑥

⃒⃒⃒
𝑥=1

=

𝑓 ′(1), since

𝑓 ′(𝑥) = 𝑝1 + 2𝑝2𝑥 + 3𝑝3𝑥
2 + ... =

∞∑︁
𝑘=0

𝑘𝑝𝑘𝑥𝑘

𝑓 ′(1) =
∞∑︁

𝑘=0
𝑘𝑝𝑘 =< 𝑘 >= 𝜇.

Assuming that the subsequent offspring distribution is independent of the previous gener-
ations, in the next generation

𝑓
(︁
𝑓(𝑥)

)︁
=

∞∑︁
𝑘=0

𝑝𝑘(𝑓(𝑥))𝑘 (2.5)

and analogously, after 𝑛 generations (𝑛 = 0, 1, 2, ...)

𝑓(𝑓(𝑓(. . . 𝑓⏟  ⏞  
𝑛 𝑡𝑖𝑚𝑒𝑠

(𝑥) . . .)) = 𝑓𝑛−1(𝑓(𝑥)) = 𝑓(𝑓𝑛−1(𝑥)) = 𝑓𝑛(𝑥), (2.6)
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which one denotes by 𝑓𝑛(𝑥), with 𝑓1(𝑥) = 𝑓(𝑥) (35). Therefore, the statistics of the nth
generation is the compound of its generating functions. Hence, by the chain rule, the average
number of descendants at the nth generation is (15)

𝜇𝑛 = 𝑓 ′
𝑛(1)

= 𝑓 ′
𝑛−1

(︁
𝑓(1)

)︁
𝑓 ′(1)

= 𝑓 ′
𝑛−1(1) 𝑓 ′(1)

= 𝑓 ′
𝑛−1(1) 𝜇

= 𝑓 ′
𝑛−2(1) 𝜇2 = . . .

= 𝜇𝑛.

So if each individual is expected to have more than one offspring, then the population will
increase. If each individual is expected to have either one or no offspring, then the population
will remain constant or decrease until eventually die out. On average, if the lineage leaves
𝜇 < 1 descendants per generation it is bound to go extinct as 𝑛 increases, in contrast to the
case 𝜇 > 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜇 < 1 𝜇𝑛 → 0,

𝜇 = 1 𝜇𝑛 → 1,

𝜇 > 1 𝜇𝑛 → 𝑁.

Of course, in this large population limit, conclusions about 𝜇 > 1 may be misleading. The
lineage might have an appreciable probability of extinction, despite its replication rate. We
refine these qualitative results by investigating the probability of the lineage being extinct by

generation 𝑛 (stress on the italic). Let

𝜃𝑛 = Prob (nth generation has no individuals )

= Prob (extinction occurs by nth generation)

= 𝑓𝑛(0)

= 𝑓𝑛−1(𝑓(0))

= 𝑓(𝑓...(0)...))

= 𝑓(𝑓𝑛−1(0))

𝜃𝑛 = 𝑓(𝜃𝑛−1).

(2.7)
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Since such an event could happen in any previous generation, we add the probabilities:

Prob (extinct by nth generation) = Prob (extinct by (n - 1)th) + Prob (extinct at nth).

or 𝜃𝑛 = 𝜃𝑛−1 + Prob (extinct at nth)

⇒ 𝜃𝑛 ≥ 𝜃𝑛−1, ∀ n.

Assuming the non-trivial case where 𝜃0 = 0, we have that

0 = 𝜃0 ≤ 𝜃1 ≤ 𝜃2 ≤ 𝜃3 ≤ ... ≤ 1, (2.8)

thus 𝜃𝑛 is a non-decreasing sequence bounded by 1 (its a probability), hence, there exists
a value 𝜃 such that 𝜃𝑛 converges to 𝜃, as 𝑛 → ∞. We call 𝜃 the probability of ultimate
extinction, and it is the solution of Equation 2.7 when taking this limit:

lim
𝑛→∞

𝜃𝑛 = lim
𝑛→∞

𝑓(𝜃𝑛−1)

𝜃 = 𝑓(𝜃),
(2.9)

with 𝜃 ∈ [0, 1]. Remember that 𝑓(𝜃) is just the probability generating function in Equation
2.4,

𝑓(𝜃) =
∞∑︁

𝑘=0
𝑝𝑘𝜃𝑘. (2.10)

It is easy to see that 𝑓(1) = 1 is a trivial solution. To investigate the existence of other
roots, i.e., if there exists other points in which the 𝑓(𝜃) curve intersects Equation 2.9, we note
that its derivative 𝑓 ′(𝜃) is strictly increasing for 0 < 𝜃 < 1 and 𝑓 ′′(𝜃) is convex on that same
interval; as shown in Figure 13. Thus, for 𝑓(0) = 𝑝0 > 0, the existence of another solution
depends on the slope of the curve at 𝜃 = 1, which happens to be 𝑓 ′(1) = 𝜇, the average
number of descendants.

Figure 13 – Depending on the slope at 𝜃 = 1, the PGF 𝑓(𝜃) may have one additional solution at 𝜃*.

Source: The author (2020).

In the line of our previous discussion, we see that ultimate extinction is inevitable when
the mean number of offspring is 𝜇 ≤ 1. On the other hand, despite the average increase in
individuals’ frequency with 𝜇 > 1, there is still a probability 0 < 𝜃* < 1 of such lineage
disappears over time. This result evinces the role of random genetic drift1, a stochastic effect
1 The "genetic" part is referent to our particular problem.
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inherent to the sampling process. It is known that when there are few copies of a lineage,
the effect of genetic drift is larger (34). We can calculate the variance of the process to
investigate this observation mathematically. Still, sadly, the branching process variance is rather
cumbersome and makes no explicit reference to the size 𝑁 of the population.

As such, we use this opportunity to address another model of sampling. In the Wright-Fisher
model (34), the descendants of generation 𝑛+1 are randomly sampled with replacement from
the parents’ generation 𝑛 with some probability 𝑝 ∈ [0, 1]. In its non-overlapping generation
version, all individuals reproduce and die simultaneously, i.e., once generation 𝑛+1 is obtained,
it replaces the previous one. With a constant population size 𝑁 , let 𝑋 = 0, 1, 2, ..., 𝑁 be a
random variable assigning the number of copies of one of the lineages present. The probability
to sample a number 𝑋 = 𝑗 in 𝑁 independent trials follows a binomial distribution 𝑋 ∼

𝐵𝑖𝑛(𝑁, 𝑝), where

𝑃𝑟𝑜𝑏 (𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖) = 𝑁 !
𝑗!(𝑁 − 𝑗)!𝑝

𝑗(1 − 𝑝)𝑁−𝑗, (2.11)

which is known to have mean 𝐸[𝑋] = 𝑁𝑝 and variance 𝑉 𝑎𝑟[𝑋] = 𝑁𝑝(1 − 𝑝). Here, 𝑝 is
simply the fraction of the individuals present of a given lineage,

𝑝 = 𝑝𝑘∑︀
𝑘 𝑝𝑘

= 𝑖/𝑁
𝑖

𝑁
+ 𝑁−𝑖

𝑁

= 𝑖

𝑁
, (2.12)

which makes the sample process equivalent to randomly picking balls from a box with replace-
ment2.

To investigate the stochasticity of the process it is essential to characterize the variability
of 𝑋 over time. To obtain a rough measure of the magnitude of the effects of random genetic
drift, we describe the short-term fluctuations by quantifying the expected mean and variance
of its frequency(34). Defining a generation transition as Δ𝑡 = 1

𝑁
, let 𝑝′ = 0, 1

𝑁
, 2

𝑁
, ..., 𝑁−1

𝑁
, 1,

be the allowed frequencies of 𝑋. The mean and variance of a sample proportion of 𝑝′ is given
by

𝐸[𝑝′] = 𝐸

[︃
𝑋

𝑁

]︃
= 1

𝑁
𝐸[𝑋] = 𝑝

𝑎𝑛𝑑

𝑉 𝑎𝑟[𝑝′] = 𝐸

[︃(︃
𝑋

𝑁

)︃2]︃
−
(︃

𝐸

[︃
𝑋

𝑁

]︃)︃2

= 1
𝑁2 𝑉 𝑎𝑟[𝑋] = 𝑝(1 − 𝑝)

𝑁
.

(2.13)

2 This case represents the absence of selection.
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Here we obtain another example of random genetic drift. While the average lineage fre-
quencies are invariant over generation times, the actual lineage frequencies change at a rate
inversely proportional to population size. Thus, the Wright-Fisher model indicates that random
drift is stronger in small populations. Furthermore, its dependency on the current frequency
implies that rare lineages (very low frequency) have a higher chance of being extinct in sub-
sequent steps.

The phenomenon of drift is not exclusive to these mathematical models. In real populations,
random drift is inherently bound to the reproduction process, since chance has a role in
determining whether a given individual survives and reproduces - which the stochastic nature
of sampling and the distribution of offsprings tries to approximate. Random drift does not
have a preferential direction, it can increase or decrease a frequency, leading a lineage to reach
fixation3 or being lost. In this sense, it is a mechanism that lowers the diversity present in a
population.

Of course, random drift is only one of the many evolutionary mechanisms which can change
a population’s composition. As we shall see, the selective advantage between traits modify the
probabilities of fixation and extinction of lineages, and mutation rates supply the population
diversity over generations.

2.2 SELECTION AND SURVIVAL

In a given environment, lineages may carry traits that confer an advantage over the others.
Let it be a higher growth rate, a resistance to some pathogen, or even the efficiency to
assimilate resources. In a broader sense, despite the particularity of the causes, the ultimate
consequence of a species favored by Natural Selection is its descendants’ perpetuation. In
other words, selection must increase the reproduction process’s success and later survival of
individual development. As such, one can relate the relative advantage among traits - or
selective advantage - to the simple measure of reproductive success or fitness.

In the previous section, we called the carries of these distinct traits as lineages. As addressed
in the discussion of a genotype-to-fitness mapping (Section 1.2), we assume that the genetic
code is the sole responsible for expressing such traits. Therefore, from now on, we shall address
the distinct lineages as distinct configurations of the genetic code - or genotypes.

Selection is implemented in any model through the adoption of a fitness distribution 𝐹 (𝑠).
3 Fixation is attainable when all or the majority of the population is comprised of a given lineage.



2 CONCEPTS 42

Assuming that the advantage is purely additive and does not change regarding individuals’
frequency, in an isogenic population with fitness 𝐹 = 1, a distinct genotype is said to have
fitness 𝐹𝜎 = 1 + 𝑠. If 𝑠 > 1, this genotype is favored by selection to increase its frequency.

However, since reproduction is a stochastic sample process, all genotypes are susceptible to
random genetic drift. Even the fittest among them can be purged in subsequent generations
- especially in small populations. So it is natural to ask the probability of a genotype with
relative fitness 𝐹𝜎 = 1 + 𝑠 to escape random drift.

To understand how this advantageous effect acts on the probability of genotype survival let
us return to the branching process approach of following the fate of a single copy (35). We now
assume a particular form of distribution 𝑝𝑘 for the number of descendants of this genotype.
For large 𝑁 , a simple but realistic assumption is that the values 𝑝0, 𝑝1, 𝑝2, . . . follows a Poisson
distribution such that the probability of leave 𝑘 descendants, has mean 𝜆 = 1 + 𝑠, i.e.,

𝑝𝑘 = 𝜆𝑘

𝑘! 𝑒−𝜆. (2.14)

The probability generating function, Equation 2.4, for this distribution is

𝑓(𝑥) =
∞∑︁

𝑘=0
𝑝𝑘𝑥𝑘

=
∞∑︁

𝑘=0

𝜆𝑘

𝑘! 𝑒−𝜆𝑥𝑘

=
∞∑︁

𝑘=0

(𝜆𝑥)𝑘

𝑘! 𝑒−𝜆

= 𝑒𝜆𝑥𝑒−𝜆

= 𝑒𝜆(𝑥−1)

= 𝑒(1+𝑠)(𝑥−1).

(2.15)

From Equation 2.9, extinction occurs with probability 𝜃*, which are solutions of

𝑓(𝜃) = 𝑒(1+𝑠)(𝜃−1) = 𝜃. (2.16)

Defining its complementary by 𝜋 = 1−𝜃, we may obtain the probability of ultimate survival
by solving the equation,

𝑓(1 − 𝜋) = 𝑒−(1+𝑠)𝜋 = 1 − 𝜋, (2.17)

which is a transcendental equation for 𝜋. We then solve for the selective advantage 𝑠:
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−(1 + 𝑠)𝜋 = 𝑙𝑛(1 − 𝜋)

𝑠 = −1 − 𝑙𝑛(1 − 𝜋)
𝜋

.

Assuming that 𝜋 is small, and hence 𝑠, we expand the natural log and neglect the terms
of order 𝑂(𝜋3) and higher, such that

𝑠 = −1 − 1
𝜋

[︃
− 𝜋 − 𝜋2

2 + 𝑂(𝜋3)
]︃

⇒ 𝜋 ≈ 2𝑠.

(2.18)

Therefore, the probability of ultimate survival of an individual genotype is approximately
equal to twice its selective advantage when the selective advantage 𝑠 is small.

As we will see in the next section, with the assumptions made so far, when a new arising
genotype survives drift, it rapidly grows until it reaches fixation. Therefore, to new arising
genotypes, the probability of survival and the probability of fixation are interchangeable 𝜋 in
this simple scenario (36).

Based on the branching-process method, the above treatment, though simple and intuitively
appealing, has assumptions that may not render the same approximation on other models. To
investigate the generality of its results, work in deriving 𝜋 for other models had been extensively
done (35, 36). Motoo Kimura was the first to investigate such aspects of the Wright-Fisher
model through a diffusion approximation. Its famous demonstration considers more generally
the probability, 𝜋(𝑝, 𝑡), that a genotype becomes fixed in the population by the generation 𝑡,
given that its frequency is 𝑝 at 𝑡 = 0. When the population size is large enough, gene frequency

change is treated as a continuous stochastic process in a good approximation.
As such, the Kolmogorov backward equation can be applied to the problem to describe

how the probability 𝜋(𝑝, 𝑡) changes over time:

𝜕𝜋(𝑝, 𝑡)
𝜕𝑡

= 𝑉𝛿𝑝

2
𝜕2𝜋(𝑝, 𝑡)

𝜕𝑝2 + 𝑀𝛿𝑝
𝜕𝜋(𝑝, 𝑡)

𝜕𝑝
, (2.19)

where 𝑀𝛿𝑝 = 𝐸[𝛿𝑝] and 𝑉𝛿𝑝 = 𝐸[𝛿𝑝2] are the diffusion coefficients of the rate of change
in gene frequency per generation. Considering the limit to obtain the probability of ultimate
survival, we have that

lim
𝑡→∞

𝜋(𝑝, 𝑡) = 𝜋(𝑝), (2.20)
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for which 𝜕𝜋
𝜕𝑡

= 0. And, hence, we need to find a solution 𝜋(𝑝) that satisfies the equation

𝑉𝛿𝑝

2
𝑑2𝜋(𝑝)

𝑑𝑝2 + 𝑀𝛿𝑝
𝑑𝜋(𝑝)

𝑑𝑝
= 0, (2.21)

with trivial boundary conditions

𝜋(0) = 0 and 𝜋(1) = 1, (2.22)

since 𝑝 is a frequency. We can rewrite the above differential equation as

𝑑

𝑑𝑝
(𝑙𝑜𝑔

𝑑𝜋

𝑑𝑝
) = −2 𝑀𝛿𝑝

𝑉𝛿𝑝

. (2.23)

Therefore, solutions are bounded to the definitions of 𝑀𝛿𝑝 and 𝑉𝛿𝑝. To identify these
appropriate diffusion variables, we need to establish 𝛿𝑝, the change in the proportion over a
time interval of length 𝛿𝑡, as 𝛿𝑡 → 0. To the Wright-Fisher population growth model, it is
intuitive to take 𝛿𝑡 = 1/𝑁 , i.e., one generation.

Going back to the binomial process (Equation 2.11), let us now consider the weighted
probability of success as

𝑝𝑠 = 𝑤𝑘𝑝𝑘∑︀
𝑘 𝑤𝑘𝑝𝑘

= (1 + 𝑠)𝑖
(1 + 𝑠)𝑖 + (𝑁 − 𝑖) . (2.24)

Thus, the number of offspring of the fittest lineage in the next generation is provided by
𝑋 ∼ 𝐵𝑖𝑛(𝑁, 𝑝𝑠). Note that when 𝑠 = 0 we restore the neutral case in which the success
probability is simply 𝑝 = 𝑖

𝑁
for 𝑋 = 𝑖.

So, the 𝑀𝛿𝑝 can be defined as the expected value of the change of gene proportion from
𝑝 = 𝑋/𝑁 to the next generation, in other words,

𝑀𝛿𝑝 = 𝐸[𝛿𝑝] = 1
𝑁

𝐸[𝑋𝑡+1 − 𝑋𝑡] = 1
𝑁

(︁
𝑁𝑝𝑡+1 − 𝑁𝑝𝑡

)︁
(2.25)

but, while 𝑝𝑡 = 𝑖/𝑁 , realize that 𝑝𝑡+1 is chosen from 𝑝𝑠, hence

𝑁𝑝𝑠 − 𝑖 = 𝑁(1 + 𝑠)𝑖
(1 + 𝑠)𝑖 + (𝑁 − 𝑖) − 𝑖

= 𝑁𝑖 + 𝑁𝑠𝑖 − 𝑁𝑖 − 𝑠𝑖2

𝑁 + 𝑠𝑖

= 𝑁𝑠𝑖 − 𝑠𝑖2

𝑁 + 𝑠𝑖

=
𝑁2𝑠( 𝑖

𝑁
− 𝑖2

𝑁2 )
𝑁(1 + 𝑠 𝑖

𝑁
)

(2.26)
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substituting 𝑝 = 𝑖
𝑁

, where 𝑝 ≤ 1, and considering the limit of 𝑠 small, such that 𝑠𝑝 ≪ 1, we
obtain

𝑀𝛿𝑝 = 𝑠𝑝(1 − 𝑝). (2.27)

And, as showed by Kimura (35), since 𝐸2[𝛿𝑝] is negligible small, we have

𝐸[𝛿𝑝2] = 𝑉 𝑎𝑟[𝛿𝑝] + 𝐸2[𝛿𝑝] ∼ 𝑉 𝑎𝑟[𝛿𝑝], (2.28)

where 𝑉 𝑎𝑟[𝛿𝑝] is the same as in the no-selection case of Equation 2.13, thus

𝑉𝛿𝑝 = 𝑝(1 − 𝑝)
𝑁

. (2.29)

Substituting these results in 2.23, and integrating from 0 to 𝑝, one has

𝑑

𝑑𝑝
(𝑙𝑜𝑔

𝑑𝜋

𝑑𝑝
) = −2𝑁𝑠

𝑙𝑜𝑔
𝑑𝜋

𝑑𝑝
= −2𝑁𝑠𝑝 + 𝐶1

𝑑𝜋

𝑑𝑝
= 𝐶1 𝑒−2𝑁𝑠𝑝

𝜋(𝑝) = 𝐶1

2𝑁𝑠

(︁
1 − 𝑒−2𝑁𝑠𝑝

)︁
+ 𝐶2.

(2.30)

Utilizing the boundary conditions 2.22, we can solve the constants:

𝜋(0) = 0 =⇒ 𝐶2 = 0

𝜋(1) = 1 =⇒ 𝐶1 = 2𝑁𝑠(︁
1 − 𝑒−2𝑁𝑠

)︁ .
(2.31)

And finally, substituting the above result, the probability of surviving drift in terms of the
population size and selection coefficient is

𝜋(𝑝) = 1 − 𝑒−2𝑁𝑠𝑝

1 − 𝑒−2𝑁𝑠
. (2.32)

If a single genotype are present in the population, i.e., 𝑝 = 1
𝑁

, the probability of fixation
is given by

𝜋 = 1 − 𝑒−2𝑠

1 − 𝑒−2𝑁𝑠
. (2.33)

As standard, by considering 𝑠 small and using a Taylor expansion,

𝜋 = 2𝑠

1 − 𝑒−2𝑁𝑠
. (2.34)
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And for large 𝑁 , we recover the result 𝜋 ≈ 2𝑠.
As emphasized in the text, each model relies on its assumptions to better represent real-

life observations. As stressed by Kimura and Crow (35), if we assume a population which
size fluctuates or changes periodically, the survival probability becomes 𝜋 ≈ 2𝑠𝑁𝑒

𝑁
, where 𝑁𝑒

corresponds to some definition of effective population size. An extensive revision made by
Wahl and Patwa (36), summarizes many different approaches to determine the probability of
survival of a genotype (or to escape drift) as a function of its selective advantage. Strikingly,
all the models’ predictions point to a linear dependence on 𝜋 ≈ 𝑐𝑠, differing only by a scalar
magnitude 𝑐 ∈ 𝑅. This semi-quantitative result implies that, despite the distinction in the
approaches, the analyses are valid for a large class of exchangeable models, as they converge
to expected general results. Thus, even if we can not make direct inferences about the real
microscopic behavior, the probabilistic framework underlying the assumptions made so far
obtains good approximations.

Lastly, we would like to address the interplay between selection and drift. If there is no
selective advantage 𝑠 = 0, the probability that a single genotype reaches fixation is equal to
𝜋 = 1

𝑁
. So, there should be a threshold for fitness values, small enough such that

𝜋 = 2𝑠 ≈ 1
𝑁

, (2.35)

Therefore, for a fixed 𝑠, drift dominates in very small populations, where 𝑁𝑠 ≪ 1, despite
selection. On the other hand, in the 𝑁𝑠 ≫ 1 limit, corresponding to large populations sizes, se-
lection plays a role by increasing the frequency of the fitter genotypes (37). Given enough time,
the fitter individual will rapidly sweep through the population until fixation. These selective
sweeps are discussed in the next section, but we highlight its contribution to the population’s
mean fitness for now.

Adaptation by natural selection occurs through the spread and substitution of new geno-
types that improve the performance of an organism and its reproductive success in its envi-
ronment.

So, as long as the population is supplied with new genotypes, selection can act on this
diversity to increase the frequency of the fitter ones and, ultimately, drive the whole population
mean fitness to higher values. This mean fitness increase in populations is synonymous of its
adaptation to the pressures of environmental conditions (3, 27, 28, 5).
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2.3 MUTATION AND ADAPTATION REGIME

A mutation refers to the change of the discrete hereditary information in the macro-
molecules of DNA or RNA. Although it can happen along with the organism’s development or
maturation through external factors such as wavelength radiation incidence and cancer, it is
also an inherent aspect of the gene transfer process in life reproduction from parents to their
offspring.

During reproduction, there exists a chance 𝑈 for the descendant being born with a different
genetic code 4 from their parents. Hence, considering a population of size 𝑁 , 𝑁𝑈 is the influx
of new mutants in the evolving population at each generation, providing a genotypic diversity
upon which selection can act. Newly arising mutations (de novo mutations) are regarded as
beneficial or deleterious depending on their contribution to the population’s overall fitness
(37). As we already have seen, selection can increase or decrease these genotypes’ frequency
depending on their fitness. Given sufficient time, beneficial mutations can spread through the
population until it eventually fixes. A mutation is said to fix when the majority of the organisms
inherit such hereditary genes.

While drift and selection decrease genetic diversity, mutation is a fundamental source of
variation. To understand the effect of these processes on the composition of the population, let
us study rare mutations’ fate. By rare, we mean that a new single genotype arises, through the
mutation process, in an isogenic population. This case recovers our previous sections’ scenario
where only coexist two distinct genotypes, one of which is a single copy.

Assuming that mutation rates are constant in time, we ask the waiting time for a de novo

beneficial mutation with relative fitness 1 + 𝑠 to rise and fix.
Over the generations, mutations arise at rate 𝑁𝑈 but can be lost through genetic drift

(see Figure 14), the probability they survive drift is ∼ 𝑠 (as worked in Section 2.2). Thus, on
average, a mutation takes a time 𝑡 = 1

𝑁𝑈
to arise, and a time

𝑡𝑒𝑠𝑡 ∼ 1
𝑁𝑈𝑠

, (2.36)

to get established within the population. The establishment refers to a threshold frequency
needed for a genotype to no longer be extinct by drift. It does not have a priori definition, is
an ad hoc threshold imposed by an arbitrary confidence interval. Upon our assumptions from
4 In principle, not so different, since simultaneous mutations have lower probabilities of occurrence.
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previous sections, the mutant lineage must reach a size 𝑛 ∼ 1/𝑠 before it becomes “safe”
from extinction and begins to grow mostly deterministically (37).

Figure 14 – Mutations arise at short time scales but are rapidly purged by genetic drift. With a probability
proportional to their fitness 𝑠, mutations can reach a threshold frequency to survive drift and,
once done, they rapidly reach fixation at time t𝑓𝑖𝑥.

Source: The author (2020).

Once established, i.e. once its reachs a size 1/𝑠 ,it is known to rapidly grows in frequency
until it fixes. An exponential growth usually approximates such an event,

𝑛(𝑡) = 1
𝑠

𝑒𝑠𝑡, where 𝑛(𝑡 = 0) = 1/𝑠. (2.37)

Therefore, from the establishment, the time it takes to reach fixation, i.e. 𝑛(𝑡) ≈ 𝑁 , from
this point onward is given by

𝑡𝑓𝑖𝑥 ∼ ln [𝑁𝑠]
𝑠

. (2.38)

These results help us understanding the rate at which the population evolves. It is a semi-
quantitative approximation that does not depend on the microscopic details of the processes
- which we can not access. The relation between these waiting times is used to delineate
adaptive regimes (3, 33, 37).

In the simplest case, when mutations are rare 𝑈 ≪ 1, it follows that

𝑡𝑒𝑠𝑡 ≫ 𝑡𝑓𝑖𝑥

1
𝑁𝑈𝑠

≫ ln [𝑁𝑠]
𝑠

𝑁𝑈 ≪ 1
ln [𝑁𝑠] .

(2.39)
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Figure 15 – Representation of the discussed regimes in asexual and sexual populations. a) In SSWM, the
population changes its whole genotype configuration, one at a time. b) If de novo mutations
establishes before the previous fix, they compete for fixation. c) From clonal interference, we see
how recombination decreases the competing aspect by assimilating both genotypes in the same
descendant.

Source: Modified from (5).

As long as the last inequality holds, de novo beneficial mutations will fix in the popula-
tion before a new one arises and establishes. In this strong-selection-weak-mutation (Strong-
Selection Weak-Mutation (SSWM)) regime, the population can be seen as an isogenic entity
whose dynamics can be visualized as transitions from one genetic configuration to another;
analogously to a random walker restricted to move over states of fitness increase. This rapid
and sole substitution is called a selective sweep, as represented in Figure 15a. Since deleterious
mutations are purged, and there is effectively only one beneficial mutation present at a time,
in the SSWM regime the population mean fitness always increases and fast.

However, "genetic dynamics in evolution experiments rarely seem to be in this simple
regime" (5). Typically, before a mutation can sweep to fixation, de novo beneficial mutations
arise in a different lineage and become established, leading to a competition between each
other (Figure 15b). As equation 2.39 suggests, this effect is pronounced in large populations
or at higher mutation rates. In asexual populations, this competition between these multiple
mutations slows down their fixation rates, since mutations must now "displace fitter competi-
tors rather than only its less fit ancestor" (5). This phenomenon is called clonal interference
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(Clonal Interference (CI)), common in asexual populations where there is no recombination.
Recombination is the process of combining the genes from the parents to the emerging off-
spring. By doing so, previously competing mutations can coexist in the offspring, leading to
an increase in fitness (Figure 15c). It is one of the factors that make sex an advantageous
process (38).

One attempt to overcome these complex but more common scenarios is to integrate ge-
nomic architecture aspects into the models.

The above solution’s principal motivation is that given the genetic composition of a popu-
lation at time 𝑡, we can make an explicit reference to the arising genotypes accessible through
mutational events at a time 𝑡 + 1. This multilocus approach allows us to look at evolutionary
dynamics as changes in the population’s genetic configurations.

2.4 GENE AND SEQUENCE SPACE

In this section, we pass to integrate the genomic architecture into the previous models.
In sum, it is possible to map a genetic code in a sequence space upon which a population,
with a given fitness distribution 𝐹 (𝑠), evolves. The genotypic map concept was born to build
a mathematical framework that underlies the evolutionary mechanisms and the fundamental
structure encoding the traits - the genome (7).

The genome itself is a collection of "sites"(loci) which codes the information to be read
by sequence reading proteins that, ultimately, express itself through the phenotypic traits (8).
As discussed in Section 1.2, this relation is non-trivial to more complex organisms in nature
but can be a good approximation for simple lifeforms in a laboratory environment.

In the molecular context, by modeling RNA Polymerase, each locus can be filled with one
of the four possible nucleotides 𝐴 = {𝐴, 𝑇, 𝐺, 𝑈}. In a given genome with a length of 𝐿 loci,
there are 4𝐿 unique combinations of this four-letter alphabet. In the case of a protein, the
𝐿 elements correspond to amino acids in the primary sequence, and so there are 20 possible
amino acid states to be considered. A binary alphabet 𝐴 = {0, 1} can be used as well, merely
to indicate if a mutation is present or absent in the original sequence (24).

Mutations are, therefore, a change in such a code.

In most models, mutations are copying errors in the form of point mutations (base sub-
5 Available in: <http://biology4alevel.blogspot.com/2016/06/133-genetic-mutations.html>.
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Figure 16 – Visualization of a genome structure as a chain of nucleotides, and common types of mutational
process.

Source: Public image accessed in 2020. 5

stitution in Figure 16). Although other forms of modification of genetic information are well
known (such as insertion and deletion), the heuristic arguments for their negligible occurrence
relies on the mechanism of self-correction present in the code transcription process (8).

Thus, mutations are modeled as 1-single letter transitions between sequence states. This
assumption is also based on Wright, Fisher, and Maynard’s arguments about the notion of
nearness between elements of a genotypic space (Section 1.2), and it starts to gives us a notion
of distance and neighborhood.

Many studies, including the present one, restrict their scope to a binary alphabet because
it is more easily simulated and sometimes allows analytical treatment. In many instances, they
are also mapped by many combinatorial problems (25). This gives origin to a binary space
connected through single digits flip - or a L-dimensional hypercube 𝐻2

𝐿.
This space is equipped with a Hamming metric 𝑑, and because of that, it is usually called

a Hamming graph. One measures distance in units of single flips to go from one sequence
to another. Therefore, a given sequence has 𝐿 immediate neighbors, i.e., states that can be
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Figure 17 – Hypercube representation for L=3 and L=4. Only in the first case, fitness is assigned to each
vertex in parenthesis. Arrows heads represent transitions to fitter states, while the circles outline
a maximum state.

Source: Modified from (23, 39)

reached through a single flip, 𝑑 = 1. Likewise, the longest possible distance is a chain of single
transitions until all the digits of a sequence have been flipped, thus 𝑑 = 𝐿. This space is
characterized by short distances and high dimensionality (1).

In order to quantify the reproductive value of a certain genotype 𝜎, a fitness value 𝐹 (𝜎) ∈ 𝑅

is assigned to each sequence following a given fitness distribution 𝐹 (𝑠). This final mapping is
called a fitness landscape (23).

For consistency, let us visit again the canonical case of a de novo beneficial mutation
𝜎𝑔 arising in an isogenic population. Let the genotype of the population be, for example,
𝜎 = {000}. With the restriction of single-step transitions new mutations can only emerge at
the next generation with one of the following configurations 𝜎𝑔 = {001}, {010} or {100}. In
either choice, change is occurring at a single locus.

In the SSWM regime, natural selection will increase fitter individuals’ frequency by increas-
ing the average number of offspring per generation. Given enough time, the whole population
will jump to the genetic state 𝜎𝑔. Therefore a population undergoing adaptation propagates
through the space of genotypes along a monotonic path of increasing fitness. The process stops
when a fitness peak is reached. As conceived by S. Wright (7, 19), one visualizes evolution as
trajectories over the fitness landscape and adaptation as a search for fitness peaks.

A definition of a trajectory on the CI regime is more troublesome: the population is now
better described as a cloud around a given sequence moving on the landscape, but in some
cases can divide itself into subpopulations, each of them describing their particular trajectories,
which can culminate in the same or even different fitness peaks.

The existence of multiple peaks opens a new discussion about the landscape topology and
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is intrinsically related to multilocus systems analyses. Many experimental lines (4, 3, 5, 40)
have observed that the selective effect contributions to the states of a specific locus can
change regarding the states of other loci. This degree of correlation between a mutation and
the genetic background at which they appear is known as epistasis. As we shall discuss in the
next section, epistasis is responsible for determining landscape topography, which, ultimately,
affects the evolutionary trajectories.

Lastly, let us discuss some implications of using this model to approximate empirical obser-
vations. First of all, not all the loci on a genome results in an expression: some are responsible
for the regulatory activity of reading-and-coding, catalytic tasks in the cells, and some others
are regarded as inactive - many of those being remnants of some ancestor (8). A complete
gene has several loci, typically of the order of ∼ 104 in simple prokaryotes, reaching about
∼ 109 in humans - where, in the latter, only ∼ 3 percent code for proteins (1). Despite that,
even if we could neglect the ‘irrelevant’ ones, making a full analysis of all loci combinations is
unfeasible.

As stated by Drossel (8), "because the structure of the full fitness landscape is unknown
and complex beyond any modeling capability, toy landscapes are introduced that may hopefully
reflect some features of the real landscape."

We utilize one of these models, the Kauffman’s NK model, which conveniently integrates
epistasis effects. That being said, what is usually considered when short sequences (e.g. 8 ≤

𝐿 ≤ 16) are studied, is that we are making a local but complete analysis of the real sequence
space (3). In this focal set of loci, variation is attainable in a typical time scale and mutations
share some effect on the population’s fitness.

2.5 EPISTASIS AND ACCESSIBILITY OF PATHS

With the presentation of the previous contents, the dynamic of genetic variation can be
seen as directional state transitions over a configuration space; or adaptive trajectories over a
fitness landscape.

In general, the fitness function 𝐹 (𝜎), attributed to a genotype 𝜎, can not be decomposed
into a sum of independent contributions from each locus 𝐿 (3, 24). Therefore, the fitness
effect of a mutation at a given locus may depend on the mutations at other loci - in other
words, it may depend on the genetic background. At the genotypic level, epistasis is defined
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as this interactive coupling of sequences (33).
In many analytical models, 𝐹 (𝑠) assumes the form of a typical probability distribution of

available mutations (37)6. In these models, no mention is made about the mutational proximity
between mutations as well as their fitness effects correlation. Therefore, many of the analytical
models do not integrate epistasis effects.

At the genotypic level, epistasis is characterized according to the differences in the combined
fitness effects of mutations. We follow the intuitive and pedagogic approach of Manhart et al.
(33), by analyzing the four possible types using a two-letter, two-locus model.

In Figure 18, the sequence AA evolves towards the fittest sequence BB along single-letter
transitions. In the first case 18a, the fitness effect of a substitution at locus 𝑥2 is the same
regardless of the state of locus 𝑥1, and vice versa. Thus the fitness of each sequence can be
decomposed into a sum of additive contributions from each locus: 𝐹 (𝜎) = 𝐹 (𝑥1) + 𝐹 (𝑥2),
i.e., there is no epistasis.

Figure 18 – The simplest representation of genetic epistasis. From left to right: a) no epistasis, b) magnitude
epistasis, c) sign epistasis and d) reciprocal sign epistasis. The fitness of each loci combination is
given by its height.

Source: Image from (33).

In the case of 18b, the fitness effect at locus 𝑥2 differs in magnitude but not in sign
depending on whether locus 𝑥1 has A or B, thus both the combinations remain beneficial. This
case is known as magnitude epistasis (3, 33). With magnitude or no epistasis, a landscape
has a single sequence state comprised of the optimum combination between its loci’s states.
Thus, generating a single-peaked fitness landscape.

The next case of Figure 18c shows how the substitution at locus 𝑥2 can have opposite
effects on fitness depending on the state of locus 𝑥1: it is deleterious if 𝐴, but beneficial if
𝐵. Since this interaction causes a reverse change on the effects of mutations on fitness, it
6 Usually a different distribution is used for beneficial and deleterious mutations.
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is coined as sign epistasis. If sign epistasis is predominant at multiple loci, it is known as
reciprocal sign epistasis 18d. As many studies have addressed, reciprocal sign epistasis is a
necessary condition for the existence of multiple fitness maxima (4, 33, 40).

To investigate the effects of contingency on the overall dynamics of a population evolving
in a fitness landscape, many theoretical works utilize the adaptive walker of an SSWM regime
to characterize the accessibility of paths as a function of the degree of epistasis (3, 9, 41). As
discussed in the previous section, under the walker’s move-rule, transitions happen at random
but only between states of ever-increasing fitness 𝐹 (𝜎𝑖) < 𝐹 (𝜎𝑖+1), such paths have therefore
been termed selectively accessible.

This restriction is unaltered for transitions occurring between sequence states correlated
through magnitude or no epistasis. On the other hand, sequence states correlated through
sign or reciprocal-sign epistasis imposes further restraints on its movements by reducing the
number of accessible paths - which in turn increases its determinism.

However, when analyzing landscapes with more loci, other aspects regarding the contin-
gency of genotypic change emerge, since the number of peaks in a rugged landscape increases
with the number of loci (3, 23, 33).

While in the first case a smooth single-peaked landscape has only one maximum to be
reached, multiple peaks emerge from the latter case. Given its inability to move ‘downhill’,
adaptive walkers suffer from a suboptimal search of higher peaks, getting trapped in the local
maxima solutions. "The higher the number of local optima in the fitness landscape the smaller
the probability that populations with the same starting genotypes will reach the same optimum"
(40). Hence, in the SSWM regime, contingency is an interplay between the restriction to the
accessible paths and the abundance of final outcomes.

Those move-rule constraints are relaxed for populations under the CI regime. Following
the statements above, this might imply that clonal interference necessarily reduces the de-
terminism, given the dispersion of its individuals among the available states. Despite that,
determinism can be enhanced through the effects of two factors (3): that individuals reaching
lower fitness states have a higher probability of leaving fewer to none descendants, making the
probability of transition between these states more negligible; and that among the available
fitter states, competition between multiple mutations might promote the fittest ones if given
enough time.

In this sense, we can see the SSWM regime as a limit case when these probabilities are
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further enhanced. Allied with its walker-like statistics, this regime is usually adopted to investi-
gate the structures of the landscape itself (23, 25), which is independent of the particularities
of a population’s dynamics.

On the other hand, the non-trivial behavior of multiple mutations can only be investigated
through numerical means. In this work, we characterize a pathway followed by the population on
this regime and, through an ensemble of many independent runs, we infer statistical measures
regarding the repeatability of the taken pathways and their degree of similarity (3, 9, 33).

We further note that no mention is made to the natural causes of epistasis. Following
many lines of works, the focus is given only to its consequences.
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3 METHODS

This chapter presents the adopted models and protocols that guide our work. We start
with the NK model that generates the fitness landscape in which our dynamics occur, and
the Wright-Fisher model that simulates a population evolving under a periodic bottleneck
regime. Following, we expose the criteria to compare bottleneck ratios and adaptation rates;
as well as measurements of Hill numbers to infer the impact of bottlenecks on the population
genetic diversity. Lastly, concerning the path-dependent approach, it follows our definition of
a trajectory over the fitness landscape, the protocol to generate an ensemble of them, and
the statistical and computational methods used to analyze the contingency properties of such
ensembles.

3.1 NK LANDSCAPE MODEL

In this section, we build our fitness landscape, a mapping from a set of genotypes into real
fitness values; equipped with some notion of dimensionality, distance, and neighborhood.

Our analyses have concentrated on the NK model of random epistatic interactions, intro-
duced by Kauffman et al. (23, 24), to study the influence of the landscape ruggedness on
adaptive evolution. It belongs to a class of mathematical models applied to systems composed
of many unitary parts. The state of the system is a function of each part’s states - and some
degree of correlation between them.

It bears close resemblance with spin-like models of disordered magnetic materials, common
in solid-state physics, where each of the atom spins can assume one of two possible states
{±1} (42). Likewise, both systems share the existence of frustration.

In our case, we consider a population of asexually reproducing haploid organisms. Each
organism in the population is represented by 𝐿 loci, or genes, where each of the loci can be in
either of the two possible states, designated by 0 or 1. By definition, the fitness of an organism
is the fitness of its genotype sequence 𝜎, and calculated as (23)

𝐹 (𝜎) = 1
𝐿

𝐿∑︁
𝑖=1

𝑓(𝑥𝑖), where 𝜎 = {𝑥1, 𝑥2, .., 𝑥𝐿} and 𝑥𝑖 = {0, 1}. (3.1)



3 METHODS 58

Each locus’ fitness contribution, 𝑓(𝑥𝑖), is drawn from a uniform probability distribution
𝑈(0, 1], and the fitness of a genotype sequence is simply the average among the L loci, as
shown above. Once one ascribes a fitness value to all 2𝐿 possible genotypes, we obtain one
realization of our discrete sequence space or fitness landscape.

However, one meaningful aspect of this model is that the correlation between the loci -
and therefore, between fitness values - can be tuned through the parameter 𝐾. Going back to
the disordered spin analogy, this would be equivalent to change the degree of frustration of the
system. This is one of the strong motivations for its adoption in researches involving spin-glass
like structures (42, 43). Hence, the fitness contribution of a specific locus 𝑓(𝑥𝑖) depends not
only on its own state but also on the states of 𝐾 other genes. There are different ways to
implement this aspect of the model, called in the literature as its structure (25). Figure 19
summarizes some common choice.

Figure 19 – Illustration of genetic structure implementations to L=9 and K=2. From left to right: adjacent,
block and random structures. By following a specific row, we represent the dependence between
the row locus and the other loci as a grayed square. For example, in the first panel, locus number
five is correlated with loci 5, 6 and 7. As expected, the diagonal of all structure choices is always
grayed.

Source: Image from (25).

Without loss of generality, we choose the random neighbor structure. In the simplest case
𝐾 = 0, the fitness contribution attributed to the locus 𝑥𝑖 depends exclusively on its own state
being 0 or 1 (resulting in a diagonal-only grayed visualization), thus we draw 2 real values
𝑓(𝑥𝑖), each of them for each state of locus 𝑖. In the example of Figure 19 (third panel), with
𝐾 = 2, the fitness attributed to gene 4 depends not only on its own state but also on the
states of genes 1 and 9. Thus, there are 23 distinct state combinations, and hence, 23 real
values are drawn for each state of locus 𝑖. Analogously, in the 𝐾 = 𝐿 − 1 limit case, with a
full grayed figure, a locus 𝑥𝑖 has a range of 2𝐿 possible fitness real values, since it also depends
on the possible states of the 𝐿 − 1 remaining genes.

In sum, for a given 𝐾, each realization of a landscape randomly generates a random
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neighborhood structure (such as the example above) and, together with that, a real valued
matrix 𝐹 consisting of 𝐿 numbering loci rows and 2𝐾+1 columns, where each of its entry
receives a fixed real value drawn from 𝑈(0, 1]. These two ‘ingredients’ define the fitness
contribution of each locus to a all genotypes 𝜎.

To understand how the parameter 𝐾 of the model is related to the epistasis, and ultimately
to the ruggedness of the landscape, we can analyze the autocorrelation function of fitness’

effects between states. Define

𝜌(𝑑) = 𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛
[︁
𝜎𝑖(𝑥), 𝜎𝑖+𝑑(𝑥)

]︁
,

as the probability that the fitness contribution from a specific locus 𝑥 remains unchanged after 𝑑

neighbors. This can only happen if neither 𝑥 nor its 𝐾 coupled neighbors are chosen to mutate.
Since each locus has an equal probability of being chosen, in the immediate neighborhood
(𝑑 = 1), we have: 𝜌 (1) = 1− 𝐾+1

𝐿
, where 𝐾+1

𝐿
is the probability that a mutation does happen

in 𝑥 or in any of its 𝐾 neighbors. Thus,

𝜌 (1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − 1
𝐿

𝐾 = 0,

0 𝐾 = 𝐿 − 1,

𝐿−𝐾−1
𝐿

for arbitrary K.

(3.2)

We can generalize for an arbitrary distance 𝑑, by assuming that the next mutation necessar-
ily occurs at a different locus from the previous one. The chance that two sequential mutations
do not affect the contribution of the same locus 𝑥 is given by (𝐿−𝐾−1)(𝐿−𝐾−2)/[𝐿(𝐿−1)]

and, as demonstrated by Campos et al. (44), the autocorrelation function 𝜌(𝑑) can be obtained
by induction, and written as:

𝜌(𝑑) = (𝐿 − 𝐾 − 1)!(𝐿 − 𝑑)!
𝐿!(𝐿 − 𝐾 − 𝑑 − 1)! (3.3)

In other words, 𝜌(𝑑) measures how similar the fitness values of "𝑑-mutant" variants are
(23). In the highly correlated case (𝐾 = 0), each locus is independent of all other loci, and
their contributions to fitness are simply additive. Hence, neighbors have similar fitness values,
and fitness values smoothly vary as we move on to the landscape. Furthermore, there exists a
single sequence ‘comprised’ of the fitter state of each locus. For example, if 𝑓(0) > 𝑓(1) for
every locus, there is a single optimum at the sequence 𝜎 = 𝑎𝑙𝑙 (0). Following the discussion
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on Section 2.5, a sequence space map free of epistasis results in a smooth, additive landscape
with a single peak, as in Figure 20.

Figure 20 – Landscape’s smoothness representation in the Hypercube. Maxima are enlarged and underlined.
Arrows heads represent transitions to fitter states, while colors outline the basin of attraction of
a peak.

Source: Modified from (39).

In contrast, for 𝐾 = 𝐿 − 1, each locus’ fitness contribution depends on the remaining loci
comprising sequence, therefore altering any locus’ state alters each locus’ fitness contribution
to a new random value. Hence, fitness contributions are the most randomly possible, with
each sequence having an independent, non-correlated value. This situation results in a full
uncorrelated landscape, with 2𝐿/(𝐿 + 1) local maxima, on average (Figure 21).

Figure 21 – Landscape’s ruggedness representation in the Hypercube. Maxima are enlarged and underlined.
Arrows heads represent transitions to fitter states, while colors outline the basin of attraction of
a peak.

Source: Modified from (39).

For large values of 𝐿, this fully random case resumes to Derrida’s random energy model
of spin glasses, where the uniform distribution converges to a gaussian (42). Only in these
limiting cases, 𝐾 = 0 and 𝐾 = 𝐿 − 1, general aspects of the landscapes can be analytically
derived, such as the number of peaks, or maximum fitness.
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As argued before, along with many experimental lines (2, 4, 3), there is strong evidence
of partially-correlated landscapes. Therefore, the range of 0 < 𝐾 < 𝐿 − 1 is of substantial
interest to this and further studies1. Since we aim to analyze general aspects of landscapes,
this controlled correlation brings a strong motivation for adopting the NK-Model.

Furthermore, as demonstrated in (44), the fitness correlation function is independent of
the chosen interaction scheme. And since it is a function of 𝐾 and 𝐿 only, it serves as a base
to compare results from distinct combinations of the genome’s length and epistasis.

3.2 WRIGHT-FISHER MODEL

To implement an evolving population, a replication process and an appropriate definition
of generation must be chosen. From the vast pool of models serving those purposes - and to
account for the evolutionary processes of random genetic drift, mutation, and selection - we
use the Wright-Fisher model with discrete non-overlapping generations.

We consider a finite population of haploid individuals that grow exponentially for a period
of length 𝜏 . During the growth phase, the population size 𝑁(𝑡) changes according to 𝑁(𝑡) =

𝑁(0) 𝑒𝑟𝑡 with 𝑟 = 𝑙𝑛 2 and 𝑡 = 0, 1, ..., 𝜏 . To account for selection, individuals at time 𝑡 < 𝜏

contribute to form the next generation 𝑡 + 1 with probability 𝑝𝑘 proportional to their fitness
(38). With 𝑛𝑘 being the number of individuals of type (or equivalently, class) 𝑘, this probability
equals

𝑝𝑘 = 𝑛𝑘𝑓𝑘∑︀
𝑘 𝑛𝑘𝑓𝑘

(3.4)

where ∑︀𝑘 𝑝𝑘 = 1, ∑︀𝑘 𝑛𝑘 = 𝑁(𝑡), and 𝑓𝑘 being the fitness assigned to genotype 𝑘. Hence,
the composition of the population at time 𝑡 + 1 is built from the population at time 𝑡, in a
process of random sampling with replacement.

To implement this sample, for each trial, draw a number X from the uniform distribution
𝑈(0, 1] and add the weighted probabilities 𝑝𝑘 in any particular order until obtains the individual
𝑗 which satisfies the condition⎛⎝ 𝑗∑︁

𝑘=1
𝑝𝑘

⎞⎠− 𝑋 ≥ 0 𝑤𝑖𝑡ℎ 𝑗 = 1, .., 𝑘. (3.5)

To account for mutation, the chosen individual to reproduce from each trial has a fixed
probability of 1 − 𝑈 to make an exact copy of itself or has a probability 𝑈 to leave an
1 In this sense, the asymptotic limits of 𝐾 = 0 and 𝐾 = 𝐿 − 1 serves as a null model.
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offspring with a different genetic state. In the latter case, since we are working with single-
step mutations, the resulted state must be at a Hamming distance 𝑑 = 1 from the former -
therefore, it must be one of its 𝐿 neighbors with an equal probability of 1/𝐿, i.e.,

𝑃𝑟𝑜𝑏 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 − 𝑈 𝑑 = 0,

𝑈 𝑑 = 1,

0 𝑑 > 1.

These processes are repeated a number of 𝑁(𝑡 + 1) times and, once done, generation
𝑁(𝑡) is replaced. Finally, at the end of the growth phase, the population of 𝑁(𝜏) individuals
is subjected to a bottleneck protocol, which is simply a random sample of 𝑁(0) individuals
without replacement.

However, the aforementioned implementation has a high computational cost for large pop-
ulation sizes. Similarly, the process of random sampling with selection can be implemented
more efficiently by using a multinomial distribution, such as,

𝑁 (𝑡 + 1) ∼ 𝑀𝑢𝑙𝑡𝑖𝑛𝑜𝑚𝑖𝑎𝑙 [𝑁(𝑡 + 1); 𝑝1, ..., 𝑝𝑘] . (3.6)

That way, the probability to sample a specific configuration 𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑘} is given
by

𝑃 (𝑛1, 𝑛2, .., 𝑛𝑘) = 𝑁(𝑡 + 1)!
𝑛1!𝑛2!...𝑛𝑘!𝑝

𝑛1
1 𝑝𝑛2

2 ...𝑝𝑛𝑘
𝑘 , (3.7)

here, ∑︀𝑘 𝑛𝑘 = 𝑁(𝑡 + 1). Equivalently, the number of mutants within a given class 𝑘 is taken
from a binomial distribution

𝑁𝑈,𝑘 = 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 [𝑛𝑘; 𝑈 ] . (3.8)

3.3 SIMULATION PROTOCOLS

We simulate the evolution of haploid organisms as they undergo repeated cycles of growth
and dilution. At the start of each simulation, the population consists of 𝑁0 identical clones.
The population goes through rounds of growth according to the adopted protocol, and each
individual produces offspring depending on its fitness, 𝐹 (𝜎). After 𝜏 generation steps, a bottle-
neck, modeled as a random sampling, reduces the population size back to 𝑁0, hence initiating
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another round of exponential growth. This procedure is iterated until the desired number of
generations is reached.

To capture the statistical properties of an evolving population visiting the states of the
genotype space, our simulation was designed to ensure that populations of different parameter
sets experienced the same fitness landscape. To determine the generality of our results, in
all the proceedings below we sampled a number of 50 distinct randomly-drawn fitness land-
scapes, and for each of them we study ∼ 1000 evolutionary trajectories for populations of
different bottleneck sizes. This way, we neglect the implications of the particularities of a sin-
gle landscape and drive our attention to the sensitivity of the model to its free parameters
only: the sequence length 𝐿, the mutation transition rate 𝑈 , the epistasis’ parameter 𝐾, and
the bottleneck dilution ratio 𝐷 = 𝑁0/𝑁𝑓 .

For the simulations regarding the adaptation rate, we mainly use a mutation rate of 𝑈 =

10−4, genome length 𝐿 = 8 and epistasis 𝐾 = 2. The last two parameters are increased only
to investigate the sensitivity of the observed patterns to the chosen values.

For the simulations regarding the predictability of the trajectories, most results were
obtained with a mutation rate of 𝑈 = 5 × 10−2, genome’s length 𝐿 = 8 and epistasis
𝐾 = {1, 2, 3, 4}. To further investigate and compare landscapes with increased ruggedness
and length, we also utilized a varying combination of 𝐾 and 𝐿 such that the landscape’s
fitness correlation 𝜌 = 1 − (𝐾 + 1)/𝐿 remained constant - in particular we take 𝜌 = 0.5

and 0.75. Additionally, regarding the predictability of the endpoints, lower mutation rates were
considered, ranging from 𝑈 = 5 × 10−3 to 5 × 10−5.

Following, we present the adopted bottleneck parameters; our definition of adaptation and
its respective time units; and our criteria to build an adaptive trajectory.

3.3.1 Bottleneck parameters

In the Wright-Fisher model, we adopt a constant growth rate of 𝑟 = 𝑙𝑛(2). Starting with
a number of 𝑁0 ≡ 𝑁(0) = 2𝑛 initial individuals with 𝑛 ∈ 𝑁 , the population doubles in size at
each generation from 2𝑛 → 2𝑛+1 → 2𝑛+2.. until it reaches a previously defined 𝑁𝑓 ≡ 𝑁(𝜏).

By fixing 𝑁𝑓 and varying 𝑁0 we can investigate the effects of different serial-transfer
regimes; ranging from a severe bottleneck with a long growth phase 𝑁0 << 𝑁𝑓 , to the
opposite situation when 𝑁0 ≈ 𝑁𝑓 . Similarly, we can maintain 𝑁0 fixed and vary 𝑁𝑓 to
emphasize the effects of the growth phase’s length.
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Figure 22 – Serial-transfer example with 𝑁(𝜏) = 210 and 𝑁(0) = 27

Source: The author (2020).

Over the simulations, the population’s size can range from the order of some tens to
104. Looking at the interplay between drift and selection of Equation 2.35, we see that the
populations subjected to more severe bottlenecks are more affected by random genetic drift
than the contrary, at least at the early generations of their growth phase.

3.3.2 Measurements of Adaptation rate

When investigating the effects of bottleneck protocols on the adaptation rate, we must
explicitly define the time unit of this rate. Here, we consider the rate at which the mean
population fitness increases, that is, the rate at which de novo beneficial mutations occur,
survive, and increase mean fitness. The mean fitness is measured immediately after each
bottleneck event, establishing a standard bottleneck time scale 𝑡𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 regarding the numbers
of bottlenecks. One may ask, despite that, if the observable rates differ if we consider the
adaptation rate per replication event or per generation (doubling), in which these time units
relate through

𝑡𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜏𝑡𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 (3.9)

where 𝜏 is the number of discrete generations along the growth phase, and

𝑡𝑏𝑖𝑟𝑡ℎ = 2𝑁0(2𝜏 − 1)𝑡𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 (3.10)

accounts for the total number of new descendants at the end of the growth phase. Each
of these rates may have practical relevance: if the population is resource-limited, a limited
total number of new births may be possible, and thus the adaptation rate per birth might be
the critical factor in an evolutionary rescue scenario; if we are concerned with environmental
change that occurs at a pace set by calendar time, the adaptation rate per generation time
may be relevant; if we consider an experimental population for which the bottleneck process
itself is labor-intensive, per bottleneck will be the appropriate rate to compare across cases.
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3.3.3 Ensemble of Trajectories

At the genotypic level, evolution is modeled by trajectories over the fitness landscape, de-
fined as paths of connected walks through a succession of neighboring sequences. The Ham-
ming distance 𝑑(𝜎𝑖, 𝜎𝑗) is the minimal number of mutations required to change the genotype
from 𝑖 to 𝑗. By starting with a population of identical genetic individuals at 𝜎0, the succession

𝜎0 → 𝜎1 → ... → 𝜎𝑛

is called a path 𝜑, if 𝑑(𝜎𝑖, 𝜎𝑖+1) = 1 for all 𝑖.
As discussed in Section 2.3, under the SSWM2 regime, the population is nearly analogous

to a single walker transitioning over the sequence states - thus describing a monotonic path
where 𝐹 (𝜎𝑖+1) > 𝐹 (𝜎𝑖).

In contrast, for the parameters used in our simulations, our population is under the CI3

regime, where multiple genotypes are present and competing for fixation. In this case, the pop-
ulation is better described as a cloud of mutants around a given sequence, and to characterize
a pathway under this regime, we are concerned with the fittest genotype along the evolutionary
trajectory. Therefore, when a fitter genotype appears, it is added to the path. Furthermore,
before analysis, the trajectories are purged of loops, i.e., if a sequence appears more than once
in an evolutionary pathway, which characterizes a loop structure, the pathway is redefined with
the loop removed. This is to avoid situations in which a fitter genotype is generated and then
lost (not increase in frequency), not genuinely characterizing a displacement of the population
to a new fitter sequence.

The simulation starts with an identical population from an initial genotype 𝜎0, and it stops
once the fitter genotype reach the global optimum (Global Optimum (GO)), thus 𝜎𝑛 = 𝜎𝐺𝑂.
All the statistical measures utilized need fixed initial and ending points. For establishes the
initial condition, we adopt two procedures based on its Hamming distance from the GO:
𝑑(𝜎0, 𝜎𝐺𝑂) = 𝑑𝐺𝑂 ≤ 𝐿. On the first one, an initial condition is naturally and uniquely attained
for 𝑑𝐺𝑂 = 𝐿, since the further and only possible state from the global maximum is the antipode
of 𝜎𝐺𝑂. After many independent trials, an ensemble of the trajectories is then considered to
produce the statistical analysis.

However, the number of steps in the evolutionary pathway is variable and dictated by the
dynamics itself, and for high values of 𝐾 or 𝐿, it becomes computationally costly to keep this
2 Strong-Selection Weak-Mutation
3 Clonal Interference
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Figure 23 – Representation of simulations starting from sequences at a length 𝑑𝐺𝑂. a) For 𝑑𝐺𝑂 = 𝐿; and b)
for 𝑑𝐺𝑂 < 𝐿. In the latter case, measures are obtained for the ensemble of each starting point,
and then averaged.

搀  
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Source: The author (2020).

approach. It also enhances the probability that populations get trapped in local maxima, thus
never reaching the GO.

To handle this obstacle, we follow the protocol utilized by Szendro et al. (41) by setting a
fixed Hamming distance 𝑑𝐺𝑂 < 𝐿 and choosing different initial conditions among the possible
ones. We carry out independent evolutionary runs for each of the starting points and determine
the statistical measures separately. Next, these results are averaged over the different starting
points.

Both approaches are highlighted in the presentation of the results in Section 4.2.3.

3.4 DIVERSITY MEASURES

With the possibility of multiple mutations and the effects of bottlenecks on the population
composition, it is fundamental to understand how bottleneck sizes affect the lineage genetic
diversity. Several measures of genetic variation can be used to assess the amount of genetic
variation among individuals within as well as between populations. The simplest and most
commonly used are the genotypic richness (number of different genotypes in the population)
𝑛, heterozygosity 𝐻, and various related measures of entropy, such as the Shannon entropy
(45). These measures can be unified through the use of Hill numbers, which capture essential
properties of genetic diversity in a population (46).



3 METHODS 67

The Hill diversity number of order 𝑎 is defined as

𝐷𝑎 =
(︃∑︁

𝑖

𝑝𝑎
𝑖

)︃ 1
1−𝑎

(3.11)

where 𝑝𝑖 is the frequency of genotype 𝑖 in the population. These diversity numbers can be
understood as the weighted sum of each 𝑝𝑖 to the power 𝑎−1, where the weights are themselves
the 𝑝. We then take the (𝑎 − 1)-th root of that sum, thus 𝐷𝑎 is simply a weighted (𝑎 − 1)-

Norm of the vector of genotype frequencies. The Hill diversity numbers can be easily related to
the three commonly used measures of diversity, and most importantly, they provide a unified
understanding (and consistent units) across which the other measures of diversity can be
compared:

• 𝐷0 = number of different genotypes = 𝑛;

• 𝐷1 = exp(𝑆), where 𝑆 is the Shannon entropy4;

• 𝐷2 = 1
1−𝐻

, where 𝐻 = 1 −∑︀
𝑖 𝑝2

𝑖 is the heterozygosity.

Note that the 𝐷𝑎 of any order measures diversity in units of genotypes, and can be interpreted
as an effective number of genotypes or number of lineages in the population. While 𝐷0 simply
counts the number of distinct genotypes in the population, as the order 𝑎 increases, the
contribution of rare types to the corresponding diversity 𝐷𝑎 is reduced.

3.5 STATISTICAL MEASURES

As mentioned, evolution studied under a path-dependent analysis allows statistical tools
to explore aspects of contingency (2, 3, 9). Among them are the measures of Predictability
𝑃2 and the Mean Path Divergence 𝐷̄.

𝑃2 is a natural measure of the repeatability of a system of many possible outcomes. With
the ensemble of trajectories at hand, let 𝑝(𝜑) be the weight or the frequency of path 𝜑 observed
in independent trials. Thus, the probability of observing this path twice in two replicate runs
is 𝑝2(𝜑) and, hence, the sum over all the paths

𝑃2 =
∑︁

𝜑

𝑝2(𝜑) (3.12)

4 For its less intuitivity, a demonstration is shown in Appendix B.
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is the probability of observing any pathway twice in two replicate runs (3). This quantity is a
simple metric for pathway repeatability that varies between

𝑃2 =

⎧⎪⎪⎨⎪⎪⎩
1 for the occurrence of a single path,

1/𝑛 for n equally likely paths.

Equivalent results are obtained for similar observables such as the entropy measure 𝑆 =

−∑︀
𝜑 𝑝(𝜑) 𝑙𝑛 𝑝(𝜑) (41) . Common to all of them, determinism is quantified about how often

each outcome occurs.
With 𝑃2 or its equivalent measures, paths that diverge by at least a single sequence are

treated as distinct. To better refine the contingency’s notion, it is possible to quantify the
degree of similarity between the paths - or, analogously, of dissimilarity. The alternative idea
proposed by Lobkovsky et al. (9), is that "many similar clustered paths represent a high degree
of repeatability, whereas a small number of different paths signifies a lower one". We utilize
a measure of divergence among accessible paths to quantify this diversity more precisely. One
define the mean pathway divergence 𝐷̄ as

𝐷̄ =
∑︁

𝜑1 ̸=𝜑2

𝑑(𝜑1, 𝜑2) 𝑝(𝜑1)𝑝(𝜑2), (3.13)

where the sum is over all pairs of distinct paths in an ensemble, 𝑝(𝜑) is the previously defined
probability of path 𝜑, and 𝑑(𝜑1, 𝜑2) is the distance, or divergence, between two paths 𝜑1 and
𝜑2. A natural definition of this divergence should account for the inner-path distance between
trajectories, thus should be a function of the Hamming distance between all genotypes of pair
of paths (33):

𝑑(𝜑1, 𝜑2) = 1
𝐿(𝜑1) + 𝐿(𝜑2)

(︃ ∑︁
𝜎1∈𝜑1

ℎ(𝜎1, 𝜑2) +
∑︁

𝜎2∈𝜑2

ℎ(𝜎2, 𝜑1)
)︃

. (3.14)

In definition above, 𝐿(𝜑) is the length (number of steps) of path 𝜑, and ℎ(𝜎1, 𝜑2) is the
shortest Hamming distance between a genotype 𝜎1 and all genotypes 𝜎2 ∈ 𝜑2. To be clear,
for each genotype 𝜎1 comprising pathway 𝜑1, one estimate its Hamming distance to every

genotype 𝜎2 ∈ 𝜑2. The lowest distance is then stored, and the process is repeated until all
genotypes in 𝜑1 are rated. The process is then repeated in reverse, from 𝜑2 to 𝜑1 (see Figure
24). The divergence 𝑑(𝜑1, 𝜑2) is taken as the mean value of those shortest Hamming distances.

The mean path divergence 𝐷̄ therefore captures not only how many paths are available,
but weighs them by their spatial proximity.
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Figure 24 – Representation of two distinct paths with same initial and final points. On the right, the Hamming
distance is measured for each point 𝜎1 ∈ 𝜑1 to every point 𝜎2 ∈ 𝜑2, and vice-versa. The shortest
measure is stored.

Source: Modified from (9).

The measures 𝑃2 and 𝑆 can be used to quantify the repeatability of "any replicate ex-
periment in which the outcome belongs to a discrete set" (3), for example, the genotypic
trajectory of evolution or its endpoints. While 𝐷̄ is a refinement to compare trajectories in
terms of similarity.

3.6 MULTIDIMENSIONAL SCALING

The Multidimensional Scaling (Multidimensional Scaling (MDS)) technique allows a lower-
dimensional visualization of a higher dimensional data set. Our last method is completely
computational and can be applied to many different kinds of data. Its central motivation
is to map the information about the pairwise distances among a set of N objects, into a
configuration of N points mapped into an abstract Cartesian space. This analysis can make
explicit some patterns from the data set otherwise inaccessible in the high dimensional case.

The technique presumes a measure of dissimilarity (47). In Euclidean space, it could be the
real length connecting two points. In statistical theory, it is often the covariance between two
random variables. In our case, the divergence 𝑑(𝜑𝑥, 𝜑𝑦), defined as a function of the inner-path
distance from Equation 3.14, has an appropriate definition of dissimilarity between trajectories.
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These distances are the entry of the dissimilarity matrix:

Δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑(𝜑1, 𝜑1) 𝑑(𝜑1, 𝜑2) ... 𝑑(𝜑1, 𝜑𝑛)

𝑑(𝜑2, 𝜑1) 𝑑(𝜑2, 𝜑2) ... 𝑑(𝜑2, 𝜑𝑛)
... . . . ...

𝑑(𝜑𝑛, 𝜑1) 𝑑(𝜑𝑛, 𝜑2) ... 𝑑(𝜑𝑛, 𝜑𝑛)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑11 𝑑12 ... 𝑑1𝑛

𝑑21 𝑑22 ... 𝑑2𝑛

... . . . ...

𝑑𝑛1 𝑑𝑛2 ... 𝑑𝑛𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.15)

where 𝑑𝑖𝑗 = 𝑑𝑗𝑖 and 𝑑𝑖𝑖 = 0.
The goal of MDS is, given Δ, to find 𝑀 vectors 𝑥1, 𝑥2, .., 𝑥𝑀 ∈ 𝑅 such that

||𝑥𝑖 − 𝑥𝑗|| ≈ 𝑑𝑖𝑗 for all i,j = 1, 2, .., M (3.16)

The algorithm for recovering coordinates from dissimilarities between pairs of points is as
follows5:

1) Form the squared matrix of dissimilarities Δ2 = [𝑑𝑖𝑗]2;
2) Compute the matrix 𝐵Δ = 𝐽Δ2𝐽 , where 𝐽 is the centering matrix 𝐽 = 𝐼 − 1

𝑛
1𝑛1𝑇

𝑛 ,
where 1𝑛 is a vector of ones.

3) Find the spectral decomposition of 𝐵Δ, 𝐵Δ = 𝑄Λ𝑄′, where Λ is the diagonal matrix
formed from the eigenvalues of 𝐵Δ, and 𝑄 is the column of corresponding eigenvectors;

4) Find 𝑋 = 𝑄Λ1
2 ; the coordinates of the points are given by the rows of 𝑋.

The higher the value of a eigenvalue 𝜆 of Λ, the better its eigenvector approximates
Equation 3.16. By choosing a number 𝑚 < 𝑀 of the highest ones, as long as the sum of the
eigenvalues in Λ𝑚 approaches the sum of all eigenvalues in Λ𝑀 , in other words, as long as∑︀𝑚

𝑖=1 𝜆𝑖∑︀𝑀
𝑖=1 |𝜆𝑖|

≈ 1 (3.17)

is satisfied, the chosen dimension brings a good approximation for the input data. In sum, this
technique allows a representation, usually in two or three dimensions, that better preserves the
divergence 3.14.

Consequently, the analysis of the result is not based on the point coordinates and instead
relies on the visualization of the patterns and clusters (48).

5 The derivations behind such steps are worked out in Appendix A.
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4 RESULTS AND DISCUSSION

4.1 ANALYTICAL RESULTS

For consistency, we began our analysis by inferring some general properties of the used
models: the expected fitness values of an NK landscape, and the relation between a Wright-
Fisher model with constant population size and our bottleneck protocol.

4.1.1 Expected fitness values

The expected fitness value of the global optimum (GO) of the NK fitness landscape can
be predicted analytically for any sequence length 𝐿, for the two asymptotic cases 𝐾 = 0

(a smooth landscape) and 𝐾 = 𝐿 − 1 (a maximally rugged landscape). These expectations
are not only of theoretical interest, but, importantly, allow us to independently validate the
computational implementation of the fitness landscape.

We use an additive fitness function in which the contribution of locus 𝑥𝑖, 𝑓(𝑥𝑖), is drawn
from a uniform distribution, 𝑈(0, 1]. When 𝐾 = 0, the contribution of locus 𝑥𝑖 to the GO
fitness, 𝑓𝑚𝑎𝑥, is the maximum of the two possible fitness values at locus 𝑖. It is straightforward
to demonstrate that the expected value of the maximum of two draws from 𝑈(0, 1] is 2/3. Thus
the GO fitness 𝑓𝑚𝑎𝑥 is given by 1/𝐿 times the sum of 𝐿 independent, identically-distributed
random variables, each of which has expected value 2/3. The expected value of the GO,
𝐸[𝑓𝑚𝑎𝑥], is thus 2/3.

When 𝐾 = 𝐿 − 1, each of 2𝐿 possible sequences is independently assigned a fitness value.
Each of these fitness values is computed as 1/𝐿 times the sum of 𝐿 draws from 𝑈(0, 1]

(Equation 3.1). The cumulative density function (Cumulative Density Function (CDF)) for
the sum of 𝐿 draws from 𝑈(0, 1] is given by the Irwin-Hall distribution (49, 50):

𝐻𝐿(𝑥) = 1
𝐿!

⌊𝑥⌋∑︁
𝑖=0

(−1)𝑖

(︃
𝐿

𝑖

)︃
(𝑥 − 𝑖)𝐿 . (4.1)

To determine the expected value of the GO, we first compute the CDF of the GO, 𝑀(𝑥). If
we let 𝐹 denote the random variable for the fitness of a sequence, 𝑀(𝑥) gives the probability
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that the maximum of 2𝐿 independently drawn values of 𝐹 is less than or equal to 𝑥.

𝑀(𝑥) = Prob(maximum of 2𝐿 values of 𝐹 ≤ 𝑥)

= Prob(maximum of 2𝐿 draws from 𝐻𝐿 ≤ 𝐿𝑥)

= Prob(each of 2𝐿 draws from 𝐻𝐿 ≤ 𝐿𝑥)

=
2𝐿∏︁

𝑘=1
𝐻𝐿(𝐿𝑥)

=
2𝐿∏︁

𝑘=1

1
𝐿!

⌊𝐿𝑥⌋∑︁
𝑖=0

(−1)𝑖

(︃
𝐿

𝑖

)︃
(𝐿𝑥 − 𝑖)𝐿 .

(4.2)

The expected value of the GO is then given by integrating the product of 𝑥 with the
probability density function associated with 𝑀(𝑥):

𝐸[𝑓𝑚𝑎𝑥] =
∫︁ ∞

0
𝑥

𝑑

𝑑𝑥
𝑀(𝑥)𝑑𝑥 . (4.3)

In Figure 25, we illustrate these analytical predictions of 𝐸[𝑓𝑚𝑎𝑥], for 𝐾 = 0 and 𝐾 = 𝐿−1,
along with results for the observed value of 𝑓𝑚𝑎𝑥, averaged over 100,000 simulated landscapes.
As expected, the analytical predictions agree with simulation results when 𝐾 = 0 or 𝐾 = 𝐿−1,
and in all other cases give upper and lower bounds on 𝐸[𝑓𝑚𝑎𝑥]. We further observe that for the
relatively short sequences we investigate, the GO fitness depends strongly on the ruggedness
of the landscape (𝐾) and weakly on sequence length (𝐿).

For comparison, we also plot the global minimum fitness (black) and the fitness of the
antipode of the GO (blue) in Figure 25. By analogous arguments, is straightforward to demon-
strate that the expected value of the global minimum is simply 1 − 𝐸[𝑓𝑚𝑎𝑥]. When 𝐾 = 0,
the global minimum corresponds to the antipode of the GO, and thus the expected value of
the global minimum and the antipode of the GO is 1/3 (black dotted line). When 𝐾 = 𝐿 − 1,
the fitness of the GO antipode is given by a randomly chosen fitness from the landscape,
conditioned by the fact that the chosen fitness is not the GO. Thus the GO antipode fit-
ness approaches the mean landscape fitness, 1/2, as 𝐿 increases. For smaller values of 𝐿, the
expected fitness of the GO antipode is less than 0.5, because this conditioning has a more
pronounced effect when 𝐿 is small.

4.1.2 Wright fisher comparison

Consider a discrete time Wright-Fisher model with constant population size 𝑁 , in which
the 𝑖th individual in the population has absolute fitness 𝑊𝑖. This parent individual 𝑖 has
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Figure 25 – Global optimum, antipode of global optimum and global minimum fitness values, versus sequence
length, 𝐿. The analytical prediction (Equation 4.3, evaluated numerically) for the global optimum
fitness, 𝐸[𝑓𝑚𝑎𝑥], is shown for 𝐾 = 𝐿−1 (magenta solid line), along with the analytical prediction
of 𝐸[𝑓𝑚𝑎𝑥] = 2/3 for 𝐾 = 0 (magenta dotted line). Analogous analytical predictions for the
global minimum fitness are shown for comparison (black lines). Simulation results are shown for
comparison for 𝐾 = 1, 2, 3 and 4 (magenta and black symbols as indicated). Simulation results
for the expected fitness of the antipode of the global optimum are shown in blue, along with the
asympotic expectation (0.5 for large 𝐿 and 𝐾 = 𝐿 − 1, dashed line). Simulation results show the
mean across 100,000 randomly generated fitness landscapes in each case. Error bars for simulation
results are similar to symbol heights and omitted for clarity.
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a Poisson-distributed number of offspring with expected value 𝑊𝑖, and these offspring are
sampled to form the next generation. It is standard to assume that the number of offspring is
large, such that offspring can be sampled with replacement, that is, each offspring is selected
independently with a fixed probability. To maintain a constant population size, the sampling
probability must be 1/𝑊̄ , where 𝑊̄ is the mean population fitness. The probability generating
function (PGF) for the descendants of individual 𝑖 in the next generation, 𝐹𝑖(𝑥), is then given
by the composition of the Poisson offspring PGF (Equation 2.15), exp(𝑊𝑖(𝑥 − 1)) and the
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binomial sampling PGF, (1 − 𝑝) + 𝑝𝑥 (where 𝑝 = 1/𝑊̄ is the sampling probability):

𝐹𝑖(𝑥) = exp [𝑊𝑖(𝑥′ − 1)]

= exp
[︂
𝑊𝑖

(︂(︂
1 − 1

𝑊̄

)︂
+ 1

𝑊̄
𝑥 − 1

)︂]︂
= exp

[︂
𝑊𝑖

𝑊̄
(𝑥 − 1)

]︂
.

(4.4)

Thus, the net effect of this process – a large, Poisson-distributed number of offspring, followed
by independent sampling with a constant probability – is the same as a Poisson distribution
of descendants with mean 𝑊𝑖

𝑊̄
.

In the simulations to follow, the population size doubles for 𝜏 generations, with each
individual contributing offspring to the next generation in proportion to their relative fitness.
The population is then sampled with sampling probability 2−𝜏 . When 𝜏 = 1, the contribution
of the 𝑖th member of the initial population (of size 𝑁0) to the next population of size 𝑁0

(after one cycle of growth and one bottleneck) is therefore given by:

𝑓𝑖(𝑥) = exp
[︂2𝑊𝑖

𝑊̄

(︂(︂
1 − 1

2

)︂
+ 1

2𝑥 − 1
)︂]︂

(4.5)

= exp
[︂
𝑊𝑖

𝑊̄
(𝑥 − 1)

]︂
= 𝐹𝑖(𝑥). (4.6)

Thus, in the results to follow, cases illustrated for 𝜏 = 1 (often the extreme or asymptotic
cases) are equivalent to a standard discrete time Wright-Fisher model at fixed population size
𝑁0. In other words, the case 𝜏 = 1 reveals the behaviour of a Wright-Fisher population in the
absence of population bottlenecks.

4.2 SIMULATION RESULTS

We will first investigate the role of population bottlenecks in adaptation. In particular, we
are interested in the conditions that optimize the rate of adaptation. In a second section, we
turn our attention to the characterization of evolutionary pathways, and how their statistical
properties are affected by the bottlenecks.

4.2.1 Fitness trajectories

Figure 26 shows average fitness trajectories for different bottleneck ratios. The data cor-
respond to an average of 1000 replicates each for over 50 distinct randomly-drawn fitness
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landscapes. Here, the population size after the growth phase is fixed, 𝑁𝑓 = 215 = 32768. The
fitness trajectories are shown in time units of bottlenecks (left panels) and in time units of
generations (right panels).

Figure 26 – Fitness trajectories, that is, mean population fitness versus time for different bottleneck ratios
(upper panels) and fitness versus bottleneck size at different times (lower panels). Time is measured
in units of bottlenecks (left panels) and generations (right panels). The parameter values are
mutation rate 𝑈 = 10−4, sequence size 𝐿 = 8, epistasis parameter 𝐾 = 2, and 𝑁𝑓 is set at
𝑁𝑓 = 215 = 32768. The bottleneck sizes are indicated in the legends. In the bottom panels the
curves correspond to fixed numbers of bottlenecks (or generations) as indicated in the legends.
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We first observe that fitness trajectories are concave, thus evincing a pattern of diminishing-
returns in which fitness quickly grows at the early stages of adaptation and then slows at later
times (note the semi-log scale of the plot) (51, 52).

This feature is in contrast with results obtained in others fitness landscape models (53),
in which the availability of beneficial mutations and their selection coefficients remain the
same as adaptation proceeds, allowing population fitness to grow exponentially over time.
Our results are, however, compatible with empirical observations of E. coli populations over
long-term adaptation (28, 31, 5, 54).

As previously seen, adaptation occurs through the accumulation of beneficial mutations
of ever-increasing fitness. To investigate its correspondence with the observed pattern, we
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measure the supply of beneficial mutation available to be acquired by the population and their
respective mean selective advantage (Figure 27) as a function of the time between bottlenecks.
The rapid drop of both quantities is a clear signature of the pattern of diminishing returns
(51), and explains why the rate of increase of fitness slows down with time.

Figure 27 – Mean selective effect and proportion of beneficial mutations as a function of time in units of
bottleneck events. Since fitness is a relative measure, the selective effects of the beneficial mu-
tations correspond to the fitness advantage they confer at the genetic background they arise. Its
clear from the plot, that those arising at a later time have a smaller effect. Also, note that both
measures decrease under severe bottleneck regimes, which suggests a decrease in adaptation rate.
The different curves correspond to distinct values of 𝑁0, as indicated in the legends. The other
parameter values are 𝑁𝑓 = 32768, mutation rate 𝑈 = 10−4, sequence size 𝐿 = 8 and epistasis
parameter 𝐾 = 2.
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We do not expect the bottleneck ratio to produce any considerable discrepancy in the long-
term fitness attained by the populations; however bottlenecks do play a clear role at earlier
stages of adaptation. These findings are better summarized in the lower panels of Figure
26. Here, curves correspond to distinct times at which fitness was reported. As explained in
Section 3.3.2, different time units may render different results: when measured in bottleneck
events (left panels), the mean fitness has a maximum at intermediate bottleneck protocols;
however, if time is measure in generations (right panels), mean fitness grows monotonically
with bottleneck size 𝑁0. In the latter case, larger effective population sizes lead to a higher
rate of adaptation, although this increase begins to saturate for very large population sizes.
Thus, the adaptation rate per generation is simply maximized by experimental protocols that
maximize the supply of beneficial mutations 𝑁𝑈 , that is, by the largest effective population
size.
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To understand the role of bottlenecks in adaptation, three main factors must be considered.
First, the severity of the bottleneck itself clearly poses an obstacle for the survival of a new
lineage. Second, unless the population goes extinct or can grow infinitely large, bottlenecks
must occur hand-in-hand with periods of sustained growth; these periods of growth favor the
survival of beneficial lineages. Finally, bottlenecks, and the inherent changes in population size
they confer, change the rate of supply of beneficial mutations 𝑁𝑈 , at each generation step.

In sum, our results indicate that there is a trade-off between sampling the population
too frequently and imposing infrequent, but more severe, bottlenecks. Moreover, these results
predict that sampling about 10−20 % of the population will maximize the speed of adaptation
per bottleneck ; this agrees with previous studies addressing the impact of bottleneck ratios
on the fixation probability of beneficial mutations, predicting that the optimum ratio occurs
around a dilution 𝐷 ∼ 1/𝑒2 (6, 30). 1

The existence of an optimal bottleneck ratio seems to be inherent to the dynamics when
time is given in units of bottlenecks, being observed at different times and across landscape
structures; Figure 28 shows analogous results for varying degrees of epistasis in the landscape.
The lowest panels corresponds to the extreme condition, where 𝐾 = 𝐿 − 1, at which any
single mutation changes the fitness value of a given genotype in a random manner, and so
the fitness landscape is said to be completely uncorrelated. We notice that under this extreme
case, the optimal adaptation seems to be slightly shifted towards larger bottleneck sizes when
compared to low and intermediate correlated fitness landscapes.

Finally, when time is measured in units of birth events (see Figure 35 in the Appendix C),
one recovers the scenario shown on the left in Figures 26 and 28, and once again the highest
adaptation rates are found at intermediate bottleneck sizes. In the results above we changed
the bottleneck ratio by varying 𝑁0, while holding 𝑁𝑓 fixed. Analogous results, with 𝑁0 constant
while 𝑁𝑓 varies, are shown in Figure 37. Whether time is measured in units of bottlenecks and
generations, the mean population fitness displays a monotonic increase with 𝑁𝑓 in this case.
Overall, we conclude that when time is measured in generations, the adaptation rate increases
monotonically in larger populations, irrespective of population bottlenecks.

We now pass to understanding the optimal adaptation rate at intermediate bottleneck
sizes by investigating its effects on the population’s genetic diversity and fitness variance.
1 Although the cited study does not account for clonal competition and epistasis.
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Figure 28 – Dependence of mean fitness on bottleneck size, measured at different times, for varying degrees
of epistasis. Time is expressed in units of bottlenecks (generations) on the left (right) panels. The
parameter values are 𝑁𝑓 = 215, mutation rate 𝑈 = 10−4, sequence size 𝐿 = 16 and epistasis
parameters as indicated in the titles.
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4.2.2 Effects of bottlenecks on genetic diversity

Figure 29 shows the time evolution of the mean population fitness, the fitness variance
as well the fitness increase at each time step. Three different bottleneck sizes are compared:
𝑁0 = 25 = 32, 𝑁0 = 212 = 4096 and 𝑁0 = 214 = 16384. In all cases the population size at
the end of the growth phase is 𝑁𝑓 = 215, and mean fitness and fitness variance are compared
(in this figure) just after each population bottleneck, for a population of size 𝑁0.

First, in the earlier stages of adaptation, while adaptation occurs at a faster pace, the
fitness variance is considerably enhanced. As expected, in each population the adaptation rate
(slope in top panel) is greatest when the fitness variance is maximized; we can confirm this
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Figure 29 – Mean population fitness, fitness variance and change in fitness Δ𝑓 as a function of time. Time
is expressed in units of bottlenecks (generations) on the left (right) panels. The parameter values
are 𝑁𝑓 = 215 = 32768, mutation rate 𝑈 = 10−4, sequence size 𝐿 = 8 and epistasis and 𝐾 = 2.
The bottleneck sizes are 𝑁0 = 32 (blue dashed-lines), 𝑁0 = 4096 (orange dashed-lines) and
𝑁0 = 16384 (green dashed-lines). Δ𝑓 is simply the mean population fitness at time 𝑡 + 1 minus
the mean population fitness at time 𝑡, for 𝑡 in the units indicated.
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by comparing the fitness variance with the change in fitness per time step (bottom panel).
We also note in the centre panels that the peak fitness variance is reduced for the smallest
population 𝑁0 = 32, but is not sensitive to the bottleneck for less severe bottleneck ratios. As
the fitness variance is measured just after a bottleneck, this loss in fitness variance is attributed
to the loss of lineages through the bottleneck; severe bottlenecks retard the adaptation rate
through the loss of fitness variance.

As can be corroborated from Figure 29, measuring time in generations reconciles the time
courses of mean fitness and fitness variance, and isolates the effects of the bottlenecks. We see
clearly here that only the most severe bottleneck ratio in this example (2−10) reduces fitness
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variance and thus retards the adaptation rate. Importantly, we note that when 𝑁0 = 214 and
𝑁𝑓 = 215 (green lines), the simulated population dynamics are mathematically equivalent to
a discrete time Wright-Fisher process, in a population of fixed size 214 (see Analytical Results,
above). Thus, the green lines plot the time course of adaptation that would be obtained in the

absence of population bottlenecks. We see that when time is measured in units of generations,
the rate of adaptation is almost insensitive to bottlenecks, once the bottleneck size exceeds
several thousand individuals.

Since the fitness variance is related to the genetic diversity within the population, we
investigate the change in genetic composition by measuring its diversity (in Hill numbers)
immediately after, and before a bottleneck event.

Figure 30 – Hill diversity numbers 𝐷0, 𝐷1 and 𝐷2 versus time. Time is expressed in units of bottlenecks
(generations) on the left (right) panels. The measures of diversity are presented at the end of the
growth phase (solid lines) and just after the bottleneck protocol (dashed lines). The parameter
values are 𝑁𝑓 = 215 = 32768, mutation rate 𝑈 = 10−4, sequence size 𝐿 = 8 and epistasis
parameter 𝐾 = 2. The bottleneck sizes are 𝑁0 = 32 (blue lines), 𝑁0 = 4096 (orange lines) and
𝑁0 = 16384 (green lines) as indicated in the legends. The symbol 𝑎 in the legend means just after
bottlenecks, whereas 𝑏 means just before bottlenecks.
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Remember that the Hill numbers 𝐷𝑎, gives smaller weight to rare entities as we increase
its parameter 𝑎. Therefore, 𝐷0 accounts for the absolute genetic diversity within a population,
corresponding to the number of distinct lineages; while 𝐷1 and 𝐷2 ignores the lowest frequency
genes, putting less emphasis on rare genotypes.

In Figure 30, the Hill numbers 𝐷0, 𝐷1 and 𝐷2 are plotted over time for the same populations
(𝑁0 = 25, 𝑁0 = 212 and 𝑁0 = 214, with 𝑁𝑓 = 215). Values computed just before the
population bottleneck (solid lines), and immediately after the bottleneck protocol (dashed
lines) are shown. Taking time in units of generations allows us to isolate the effect of the
bottlenecks on genetic diversity.

We see that the first and second order Hill numbers, 𝐷1 and 𝐷2, change only negligibly
over the course of a single bottleneck (solid versus dashed lines). In contrast, the zero-th order
Hill number 𝐷0 is greatly reduced, especially when the dilution ratio 𝑁0/𝑁𝑓 is small (blue
lines correspond to a ratio of 2−10 ≈ 1 × 10−3). This loss of rare lineages, revealed by 𝐷0,
has long term consequences for the population; although a single bottleneck has little effect
on 𝐷1 or 𝐷2, we see that both of these diversity measures are greatly reduced in the 𝑁0 = 32

population. Thus the loss of rare lineages through the bottleneck feeds forward, resulting in
overall reduced diversity at later times, even as measured by higher order metrics that are
less sensitive to rare lineages, and despite the supply of mutations happening along with the
sustained growth phase.

4.2.3 Effects of bottlenecks on genetic contigency

At this point, we aim to carry out a more detailed analysis of the evolutionary pathways
at the genotypic level.

As fitness landscapes are complex and may have multiple peaks, some mutational paths may
lead to ‘dead ends’ with no, or at least fewer, opportunities to further improve. In other cases,
certain mutations may open up new opportunities for evolution that could not be accessed if
other routes were taken. As mentioned previously, the two quantities, predictability and mean
path divergence, may elucidate these dynamics.

Computationally, simulations that quantify predictability and mean path divergence are
costly, as they require that the starting and ending points of the trajectories are the same. We
first investigate adaptive trajectories assuming that the population starts from the antipode
of 𝜎𝑚𝑎𝑥, the global optimum of the fitness landscape. In this case, the Hamming distance
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from the starting point to the global optimum takes its maximum value, being equal to the
sequence size 𝐿, 𝑑𝐺𝑂 = 𝐿. While the route is smooth for an additive landscape (𝐾 = 0), it
becomes increasingly tortuous as the landscape becomes more rugged. For low mutation rates,
the population is easily trapped by local optima of the landscape, and so the time needed to
reach the global optimum rises substantially.

As an overall result, we observe from Figure 31 a monotonic increase of predictability
with 𝑁0, along with the decline in mean path divergence. This corroborates the observed
negative correlation between predictability and mean path divergence on simulations over
two empirical fitness landscapes (55), although such a claim may not be generalizable, as
such correlations may strongly depend on the topological properties of the underlying fitness
landscape. We note further that predictability rises steeply with 𝑁0 when 𝑁0 is small, but
saturates at larger 𝑁0 values. Therefore, we find that irrespective of the timing of population
bottlenecks, predictability increases and saturates with an increasing mutational supply.

Figure 31 – Predictability and mean path divergence. In the upper panels both quantities are shown as a
function of the population size at the end of the growth phase 𝑁𝑓 . In these panels the population
size after the bottleneck is set at 𝑁0 = 32. In the lower panels both quantities are shown as a
function of the population size after the bottleneck 𝑁0. In these panels the population size 𝑁𝑓 is
set at 𝑁𝑓 = 4096, whereas the mutation rate is set at 𝑈 = 5 × 10−2 and sequence size at 𝐿 = 8.
The epistasis parameter 𝐾 is displayed in the legends.
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It is generally accepted that large populations will tend to evolve more rapidly than smaller
ones. This is caused by two related factors. First, large populations have an increased supply
of beneficial mutations each generation 𝑁𝑈 , which decreases the waiting time for new ad-
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vantageous mutations to arise. Second, large populations have increased access to mutations
that confer large benefits (as seen in Figure 27). These factors imply that larger populations
gain an advantage by taking larger adaptive steps during population evolution.

Because large populations tend to fix the most advantageous mutations first, they thereby
follow a very limited set of adaptive trajectories. In contrast, smaller populations become fixed
for a wider range of possible beneficial mutations which leads to increased variation in adaptive
trajectories across populations.

The simulation results also demonstrate that the predictability seems to be much more
sensitive to the ruggedness of the fitness landscape than the mean path divergence. While
the predictability rises monotonically with 𝐾, the mean path divergence seems to be bounded
already at intermediate ruggedness, and the curves for 𝐾 = 2, 3 and 4 nearly collapse. Overall,
when considering adaptive trajectories that are constrained to start at the antipode and end at
the GO, any increase in epistasis (landscape ruggedness) very quickly reduces the divergence
of pathways, and more gradually increases predictability.

Bearing the difficulty of directly access the microscopic change, we recur to the compu-
tational analysis of multidimensional scaling in the hope that its patterns can contrast or
corroborate our hypotheses. Figure 32 provides two-dimensional representations of the ensem-
ble of distinct evolutionary pathways collected in one thousand replicates each starting with
an isogenic population at the antipode of 𝜎𝑚𝑎𝑥, and ending at the global optimum 𝜎𝑚𝑎𝑥 of
the fitness landscape.

For direct comparison, parameters of Figure 31 were adopted, i.e.: 𝑈 = 5 × 10−2, 𝐿 = 8

and 𝐾 = 2. In Figure 32, 𝑁𝑓 is set at 𝑁𝑓 = 4096, whereas we vary 𝑁0 = {2048, 64, 32} (first
three panels). An extreme case, of 𝑁0 = 32 to 𝑁𝑓 = 128, is ploted on the last panel (bottom
right). Paths that are used with a frequency of 5% or higher are highlighted.

For the largest population size 𝑁𝑓 = 4096, the distribution of trajectories becomes substan-
tially more compact as we increase 𝑁0. Remember that the axis distances are approximations
of the inner-path distance (Equation 3.16), thus this closeness reflects the decrease in the
mean path divergence reported in Figure 31. Furthermore, we also note its effects in the paths
that achieve high frequencies; the most frequent path is taken in nearly 33% of the indepen-
dent runs, to 50% and 67% at higher 𝑁0. This change is likewise captured by the measure of
predictability in the right panel of Figure 31.

Thus, when the bottleneck size, 𝑁0, is increased, the bundle of evolutionary paths becomes
less widespread over genotype space, and some paths are more frequently used. These two
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Figure 32 – Multidimensional scaling plot of the evolutionary pathways. In the upper panels 𝑁𝑓 is set at
𝑁𝑓 = 4096, whereas 𝑁0 = 2048 (left upper panel) and 𝑁0 = 64 (right upper panel). In the lower
panels, 𝑁0 is set at 𝑁0 = 32, whereas 𝑁𝑓 = 4096 (left lower panel) and 𝑁𝑓 = 128 (right lower
panel). The data correspond to a fixed fitness landscape with epistasis parameter 𝐾 = 2. Those
evolutionary pathways that achieve a frequency higher than 0.05 are highlighted in the plot (dark
circles, with numbers indicating path frequency).

Source: The author (2020).

facts - that the paths are less scattered over genotype space, and that the frequency of the
most-used paths increases - explain both the increase in predictability and decrease in the
mean path divergence seen in the panels of Figure 31.

The lower panels of Figure 32 show analogous results if the bottleneck size 𝑁0 = 32 is fixed
while 𝑁𝑓 is increased. Thus, the constraint of pathways can also be ascribed to the expansion
of the growth phase, boosting the determinism of the evolutionary process. On the right, for
𝑁𝑓 = 128, the effective population size is correspondingly small. As expected, the distribution
of evolutionary paths is quite diffuse in this extreme case; besides the higher dispersion of
points, none of the paths reach a frequency of 5%.

The main limitation of the previous protocol is that the study cannot be generalized
to larger sequence sizes or to less restrictive ranges of correlation in the fitness landscape,
because the population tends to become trapped at local maxima, making the global optimum
essentially inaccessible. To address this issue, as discussed in Section 3.3.4, instead of initiating
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the dynamics from the antipode of the GO, the evolutionary process is now initiated from
genotypes that are placed at a given Hamming distance, 𝑑𝐺𝑂 < 𝐿, from the global optimum.

Figure 33 – Predictability and mean path divergence against the bottleneck size 𝑁0. In all plots, the population
size at the end of the growth phase is 𝑁𝑓 = 32768, and the mutation rate is 𝑈 = 5 × 10−3.
The sequence size 𝐿 and epistasis parameter 𝐾 are both varied such that the correlation 𝜌 =
1 − (𝐾 + 1)/𝐿 is kept constant. In the upper panels 𝜌 = 0.75, whereas in the bottom panels
𝜌 = 0.5. The Hamming distance from starting points to the global optimum is five, 𝑑𝐺𝑂 = 5.
The simulation data plot an average over 10 distinct fitness landscapes, and 10 random starting
points for each landscape.

6 8 10 12 14
log2N0

0.00

0.05

0.10

0.15

pr
ed

ict
ab

ilit
y

6 8 10 12 14
log2N0

0.1

0.2

0.3

0.4

0.5

m
ea

n 
pa

th
 d

iv
er

ge
nc

e

L = 8, K = 1
L = 12, K = 2
L = 16, K = 3

6 8 10 12 14
log2N0

0.0

0.1

0.2

0.3

0.4

pr
ed

ict
ab

ilit
y

6 8 10 12 14
log2N0

0.1

0.2

0.3

0.4

m
ea

n 
pa

th
 d

iv
er

ge
nc

e

L = 8, K = 3
L = 12, K = 5
L = 16, K = 7

Source: The author (2020).

Results are shown in Figure 33 for 𝑑𝐺𝑂 = 5, where the sequence size, as well as the
epistasis parameter 𝐾, are varied such that the degree of correlation among fitness effects of
neighbors mutations, 𝜌 = 1 − (𝐾 + 1)/𝐿, remains unchanged. In the plot, this correlation is
set at 𝜌 = 0.75 (upper panels) and 𝜌 = 0.5 (lower panels).

In spite of the Hamming distance from the starting points to the global optimum being
the same, 𝑑𝐺𝑂 = 5, the population have a number 𝐿! of distinct combination of paths to
reach a same final state. Thus, we observe that predictability decreases while the mean path
divergence increases with the sequence size 𝐿. Note that here both quantities are measured
with respect to the paths, i.e., the starting and ending points for each ensemble of trajectories
are the same. The data refer to an average of over 10 distinct starting points, all chosen at
the same distance 𝑑𝐺𝑂 from the global optimum.

In Figure 34, the predictability with respect to the ending points, denoted by 𝑃2,𝑒𝑛𝑑𝑖𝑛𝑔,
is shown as a function of 𝑁0. The quantity 𝑃2,𝑒𝑛𝑑𝑖𝑛𝑔 gives the probability that two randomly
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chosen paths terminate at the same genotype. Here, the evolutionary trajectories begin at a
fixed distance from the global optimum, and are simulated up to a fixed time, 𝑡𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 =

2, 000. In the left panel, the dependence on the sequence size 𝐿 is shown as the correlation 𝜌

is fixed. Note that for 𝐿 = 8 and 𝐾 = 3 the predictability is very close to one, meaning that
the global optimum is easily accessible. As 𝐿 increases, the accessibility of the global optimum
decreases and so does the predictability.

Figure 34 – Predictability with respect to the ending points. In all plots, the population size at the end of the
growth phase is 𝑁𝑓 = 32768. In the left panel, the mutation rate is 𝑈 = 5 × 10−3 whereas the
sequence size 𝐿 and epistasis parameter 𝐾 are both varied such that the correlation is 𝜌 = 0.5.
In the right panel, the sequence size is 𝐿 = 8 and the epistasis parameter is set at 𝐾 = 3. The
Hamming distance from starting points to the global optimum is five, 𝑑𝐺𝑂 = 5. The simulation
data refers to an everage over 10 distinct fitness landscapes, and 10 random starting points for
each landscape. The dashed-lines correspond to the predictability with respect to ending points
for random adaptation walks (RAW) and for S-weighted walks (SWW).
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In the right panel we investigate the role of the mutation rate. Higher mutation rates lead to
higher predictability with respect to the ending points as they also allow the population to more
easily escape from local maxima of the landscape and ultimately reach the global optimum.
When the mutation rate 𝑈 and bottleneck size are sufficiently small, predictability becomes
independent of the mutation rate. In order to understand this effect, we additionally simulated
two versions of adaptive walks, named "random adaptation walks" (Random Adaptation Walks
(RAW)) and the "S-weighted walks" (S-Weighted Walks (SWW)) (56, 55). In the former, the
walker randomly chooses one of its fitter neighbors, whereas in the SWW version the next step
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is chosen with probability proportional to the fitness advantage of its fitter neighbors. From
these results, we find that in the limit 𝑁0/𝑁𝑓 ≪ 1 the predictability 𝑃2,𝑒𝑛𝑑𝑖𝑛𝑔 lies between the
two adaptive walk variants. We hypothesize that when the population size and mutation rate
are sufficiently small, the simulated populations exist in the strong-selection weak-mutation
regime (57), and thus the dynamics are well-approximated by adaptive walk dynamics. In
particular, the predictability with respect to the ending points, 𝑃2,𝑒𝑛𝑑𝑖𝑛𝑔 at low mutation rates
is sensitive to the earliest stages of adaptation, in which the selective effects of mutations are
expected to be larger. This explains why the dynamics in those limits are well captured by
adaptive walk dynamics.

In all of the scenarios illustrated here, predictability exhibits a monotonic dependence on the
bottleneck size 𝑁0, meaning that the underlying dynamics become increasingly deterministic
for larger populations, not only with respect to the paths but also with respect to the ending
points.
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5 CONCLUSIONS

In this work, we used an epistatic fitness landscape to explore two hypotheses: whether
the adaptation rate is affected by population bottlenecks, and whether population bottlenecks
reduce the predictability of adaptation.

In the first results, we obtain that adaptive trajectories in populations experiencing regular
bottlenecks can be reconciled when time is scaled in units of generations (in our case, popula-
tion doublings). We demonstrate that the time course of fitness increase, fitness variance and
genetic diversity are all insensitive to population bottlenecks when time is expressed in popula-
tion generations, provided the bottleneck size exceeds a few thousand individuals (Figures 29
and 30). Thus, in contrast with previous results that adaptation per bottleneck is fastest at
intermediate bottleneck ratios (6), we demonstrate that the adaptation rate per generation is
simply maximized by experimental protocols that maximize the supply of beneficial mutations,
that is, by the largest effective population size (Figure 26, right panels).

We demonstrate that small bottleneck sizes can retard adaptation through the elimination
of rare lineages, but this effect disappears when 𝑁0 is of order of one thousand individuals,
rather than tens of individuals. Thus, for most microbial populations, the adaptation rate per

generation will be largely insensitive to the bottleneck ratio. Overall these results imply that
the "natural" time unit for adaptation is generations, irrespective of the number of generations
that elapse between population bottlenecks, as long as the bottleneck size is not too small.

When adaptation rate is measured in bottleneck events, an optimum at intermediate bot-
tleneck size is obtained. The optimum ratio at 10 − 20% approximates the analytically derived
results by Wahl et al. (6, 30) for the probability of survival and fixation of a lineage. This may
have practical applications to studies where the maintenance of specific beneficial mutations,
or their tracking, is of importance. In natural populations, where bottlenecks are related to
extinction events or host-to-host contagious, this sample ratio might determine the fate of the
surviving individuals or the efficiency of a host invasion.

We also investigated the role of population bottlenecks at a microscopic level by tracking
the evolutionary process at the genetic level. We observe a higher level of determinism of
the adaptive process when either the bottleneck size 𝑁0 or the population size at the end
of the growth phase 𝑁𝑓 is increased. In other words, predictability is maximized in larger
populations irrespective of population bottlenecks. This dependence was also reported when
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repeatability was measured at the fitness level in experiments with unicellular algae (58), for
which large populations presented a higher degree of repeatability, and small populations were
more susceptible to chance events.

More generally, the increase in predictability that we observe in large populations can be
ascribed to an increased determinism in the underlying process due to the combined effects of
three factors: more beneficial mutations are generated, these mutations have longer times to
increase in frequency, and there is greater interference among mutant lineages, thus promoting
those that confer larger selective advantage.

In all the scenarios investigated here, we observed a monotonic dependence of predictability
on both 𝑁0 and 𝑁𝑓 . In contrast, Szendro et al. observed a non-monotonic dependence of
predictability measures on population size (41) for the Rough Mount Fuji landscape, which
is not expected to display a pattern of diminishing returns. As well as this key difference
between the topographies of the fitness landscapes, here we are mostly not concerned with
the SSWM regime, which in the range of mutation rates here considered is only attainable when
𝑁0/𝑁𝑓 ≪ 1. Another point to highlight is that the decrease of predictability with population
size observed in (41) was due to the appearance of second-step mutations, increasing when
the value of 𝑁𝑈2 was in the range 10−6 − 10−7. For computational efficiency in the very
large fitness landscapes simulated here, we have studied comparatively large mutation rates,
in which the value of 𝑁𝑈2 is typically several orders of magnitude larger than this threshold,
and thus the appearance of second-step mutations is practically assured. We hypothesize that
in principle, as the mutation rate increases, alternating regimes in which predictability increases
or decreases with population size may be possible, as higher-order mutational neighbourhoods
become newly accessible. This would be a clear avenue for future works.

The main results presented in this dissertation have been published in the article:
- Ref. (59): Robustness and predictability of evolution in bottlenecked populations,
Osmar Freitas, Lindi M. Wahl, and Paulo R. A. Campos, Phys. Rev. E (2021)
DOI: 10.1103/PhysRevE.103.042415
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APPENDIX A – MATRIX ALGEBRA OF MDS

We formalize the algorithm of Section 3.6, used to obtain the coordinate axis of the
multidimensional scaling technique. Here, we explicit the contents in the references (48, 47).

Let 𝑋𝑛×𝑚 be the matrix of coordinates of points. Each row 𝑖 of 𝑋 gives the coordinates
of point 𝑖 on 𝑚 dimensions, that is, 𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑚. In MDS we are concerned with the
distances among all n points. We can use the matrix algebra to obtain a compact expression
for computing the squared Euclidean distances between all points. The squared Euclidean
distance is defined by

𝑑2
𝑖𝑗(𝑋) = 𝑑2

𝑖𝑗 =
𝑚∑︁

𝑎=1
(𝑥𝑖𝑎 − 𝑥𝑗𝑎)2 =

𝑚∑︁
𝑎=1

(𝑥2
𝑖𝑎 + 𝑥2

𝑗𝑎 − 2𝑥𝑖𝑎𝑥𝑗𝑎) (A.1)

Suppose that 𝑋 contains the coordinates of three points in two dimensions. Now the
matrix of squared distances, denoted by 𝐷2(𝑋), is

𝐷2(𝑋) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 𝑑2

12 𝑑2
13

𝑑2
21 0 𝑑2

23

𝑑2
31 𝑑2

32 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
𝑚∑︁

𝑎=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥2

1𝑎 𝑥2
1𝑎 𝑥2

1𝑎

𝑥2
2𝑎 𝑥2

2𝑎 𝑥2
2𝑎

𝑥2
3𝑎 𝑥2

3𝑎 𝑥2
3𝑎

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+
𝑚∑︁

𝑎=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥2

1𝑎 𝑥2
2𝑎 𝑥2

3𝑎

𝑥2
1𝑎 𝑥2

2𝑎 𝑥2
3𝑎

𝑥2
1𝑎 𝑥2

2𝑎 𝑥2
3𝑎

⎤⎥⎥⎥⎥⎥⎥⎥⎦− 2
𝑚∑︁

𝑎=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣
𝑥1𝑎𝑥1𝑎 𝑥1𝑎𝑥2𝑎 𝑥1𝑎𝑥3𝑎

𝑥2𝑎𝑥1𝑎 𝑥2𝑎𝑥2𝑎 𝑥2𝑎𝑥3𝑎

𝑥3𝑎𝑥1𝑎 𝑥3𝑎𝑥2𝑎 𝑥3𝑎𝑥3𝑎

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑐1′ + 1𝑐′ − 2

𝑚∑︁
𝑎=1

𝑥𝑎𝑥′
𝑎 = 𝑐1′ + 1𝑐′ − 2𝑋𝑋 ′

(A.2)

where 𝑥𝑎 is column a of matrix 𝑋, 1 is an 𝑛 × 1 vector of ones, and 𝑐 is a vector that has
elements ∑︀𝑚

𝑎=1 𝑥2
𝑖𝑎, the diagonal elements of 𝑋𝑋 ′. Calling 𝐵 = 𝑋𝑋 ′, we can find the MDS

coordinates through its eigendecomposition

𝐵 = 𝑄Λ𝑄′ = (𝑄Λ
1
2 )(𝑄Λ

1
2 )′ = 𝑋𝑋 ′ (A.3)

where Λ and 𝑄 are the eigenvalues and eigenvectors of 𝐵, respectively. Then, the coordinate
matrix of classical scaling is given by 𝑋 = 𝑄Λ1

2 .
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Now, if we start with a given matrix of distances 𝐷, we can find 𝐵 by we multiplying the
left and the right sides of Equation A.2 by the centering matrix 𝐽 = 𝐼 − 1

𝑛
11′ and by the

factor −1
2 :

−1
2𝐽𝐷2𝐽 = −1

2𝐽(𝑐1′ + 1𝑐′ − 2𝑋𝑋 ′)𝐽

= −1
2𝐽𝑐1′𝐽 − 1

2𝐽1𝑐′𝐽 + 𝐽(𝑋𝑋 ′)𝐽

= −1
2𝐽𝑐0′ − 1

2 0𝑐′𝐽+ 𝐽𝐵𝐽

= 𝐵

(A.4)

The first two terms are zero, because centering a vector of ones yields a vector of zeros.
Since relative distances do not change under translations, we assume that X has column means
equal to 0. Thus, centering around B can be removed because X is column centered, and hence
so is B (48). The method of multidimensional scaling only differs from this procedure in that
the matrix of squared distances 𝐷2 is replaced by the squared dissimilarities Δ2 (47).
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APPENDIX B – HILL NUMBER DERIVATION

For consistency, we expose in this appendix the derivation of the Hill number 𝐷1, of Section
3.4. What follows is nothing more than a reproduction of what can be found in the original
Hill’s paper (46), and it is presented in this dissertation by seeking its completeness.

Given an event with probabilities 𝑝0, 𝑝1, . . . , 𝑝𝑖, where ∑︀𝑖 𝑝𝑖 = 1, we have

𝑆 = −
∑︁

𝑖

𝑝𝑖 𝑙𝑛 𝑝𝑖, (B.1)

as its the respective Shannon entropy. And, as defined by Hill:

𝐷𝑎 =
(︁∑︁

𝑝𝑎
𝑖

)︁ 1
1−𝑎 and 𝐷1 = exp 𝑆. (B.2)

So, its left to show that, in the limit 𝐷1 = lim𝑎→1 𝐷𝑎, we should obtain that

lim
𝑎→1

(︁∑︁
𝑝𝑎

𝑖

)︁ 1
1−𝑎 = exp

[︃
−
∑︁

𝑖

𝑝𝑖 𝑙𝑛 𝑝𝑖

]︃
. (B.3)

By taking the logarithm of both sides and making the substition 𝑎 = 𝑏 + 1, we have that

−
∑︁

𝑖

𝑝𝑖 𝑙𝑛 𝑝𝑖 = lim
𝑎→1

1
1 − 𝑎

𝑙𝑛
(︁∑︁

𝑖

𝑝𝑎
𝑖

)︁
= − lim

𝑏→0

1
𝑏

𝑙𝑛
(︁∑︁

𝑖

𝑝𝑏+1
𝑖

)︁
= − lim

𝑏→0

1
𝑏

𝑙𝑛
(︁∑︁

𝑖

𝑝𝑏
𝑖 𝑝𝑖

)︁
= − lim

𝑏→0

1
𝑏

𝑙𝑛
(︁∑︁

𝑖

𝑝𝑏
𝑖 exp(𝑏 𝑙𝑛 𝑝𝑖)

)︁
.

(B.4)

Since 𝑏 is small, we can expand the exponential to obtain

∑︁
𝑖

𝑝𝑖 𝑙𝑛 𝑝𝑖 = lim
𝑏→0

1
𝑏

𝑙𝑛
(︁∑︁

𝑖

𝑝𝑖

(︁
1 + 𝑏 𝑙𝑛 𝑝𝑖

)︁)︁
. (B.5)

Finally, remembering that ∑︀𝑖 𝑝𝑖 = 1, we can expand the resulted logarithm, thus

lim
𝑏→0

1
𝑏

𝑙𝑛
(︁∑︁

𝑖

𝑝𝑖 + 𝑏
∑︁

𝑖

𝑝𝑖 𝑙𝑛 𝑝𝑖

)︁
= lim

𝑏→0

1
𝑏

𝑙𝑛
(︁
1 + 𝑏

∑︁
𝑖

𝑝𝑖 𝑙𝑛 𝑝𝑖

)︁
=
∑︁

𝑖

𝑝𝑖 𝑙𝑛 𝑝𝑖, 𝑄𝐸𝐷.
(B.6)
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APPENDIX C – COMPLEMENTARY RESULTS

For their complementary nature, we separate some results from the main body of Section
4.2.1. Here we expose the results reported for the adaptation rate in units of births, for
intermediate genome’s length 𝐿 = 12, and when 𝑁0 is fixed with varying 𝑁𝑓 .

TIME MEASURED IN UNITS OF BIRTHS

As stressed along the work, the adaptation rate depends on the definition of its time units.
When time is measured in units of births, we obtain the similar scenario shown on the left
in Figures 26 and 28, and once again the highest adaptation rates are found at intermediate
bottleneck sizes.

Figure 35 – Fitness trajectories for different bottleneck ratios (upper panel) and fitness at fixed times for
various bottleneck sizes (lower panel). Time is measured in units of births. The parameter values
are 𝑁𝑓 = 32768, mutation rate 𝜇 = 10−4, sequence size 𝐿 = 8 and epistasis and 𝐾 = 2. The
bottleneck sizes and times at which fitness are recorded are indicated in the legends.
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RESULTS FOR 𝐿 = 12

At the first steps of our work, we investigated if the pattern of adaptation rates was
invariant over the adopted parameters. In Figure 36, the genome length is set at 𝐿 = 12, an
intermediate parameter compared with the results in 26 and 28. As we can see, the pattern is
maintained in along all time units.

Figure 36 – Fitness trajectories for different bottleneck ratios. The data correspond to an average over 50
fitness landscapes. The parameter values are 𝑁𝑓 = 32768, mutation rate 𝜇 = 10−4, sequence size
𝐿 = 12 and epistasis parameter 𝐾 = 2. The bottleneck sizes are indicated in the legends. Time
is measured in units of bottlenecks (upper panel ), generations and births (lower panels). In the
right upper panel the curves correspond to fitness reported at different times.
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FIXED 𝑁0 WHILE CHANGING 𝑁𝑓

In the results of Section 4, we changed the bottleneck ratio by varying 𝑁0, while holding 𝑁𝑓

fixed. Analogous results, with 𝑁0 constant while 𝑁𝑓 varies, are shown in Figure 37. Whether
time is measured in units of bottlenecks and generations, the mean population fitness displays
a monotonic increase with 𝑁𝑓 in this case. Overall, this further corroborates our conclusions
that when time is measured in generations, the adaptation rate increases monotonically in
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larger populations, irrespective of population bottlenecks.

Figure 37 – Fitness trajectories for fixed bottleneck sizes 𝑁0. The different curves correspond to distinct values
of 𝑁𝑓 , as indicated in the legends. Time is measured in units of bottlenecks (left panels) and
doublings (right panels). The other parameter values are mutation rate 𝑈 = 1 × 10−4, sequence
size 𝐿 = 8 and epistasis parameter 𝐾 = 2.
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