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ABSTRACT

The dynamics of open quantum systems is described by a stochastic process that comes

from the inevitable interaction between the system and its environment. More precisely, the

environment is chosen as an external system which may have a finite or an infinite number of

degrees of freedom. We analyse here how the orbital degrees of freedom (position, momentum)

of a system represented by a coherent state of the quantum harmonic oscillator coupled with

an in-homogeneous magnetic field can suffer transitions when a sequence of measurements if

performed in its spin degree of freedom. In other words, the situation is as if the orbital degree

of freedom represents a system of interest and the possible outcomes of such a measurement

process represents a stochastic source. We shall explicitly show, using an analysis based on the

concept of quantum trajectories, that it is a problem to which an analytical solution could be

obtained to all relevant physical quantities. Moreover, we could derive an equal-probability rule

for the state of our system: similar to the central a priori postulate of statistical mechanics.

Through our analytical expressions and a numerical analysis, we could also determine that the

continuous measurement process, in general, raises the mean energy of the system keeping its

mean position and mean momentum invariant at the cost of making the distribution of their

uncertainties broader.

Keywords: Opens systems. Measurement. Spin. Coherent states. Quantum trajectories. Ran-

dom walks.



RESUMO

A dinâmica de sistemas quânticos abertos é descrita por um processo estocástico resul-

tante da inevitável interação de um sistema de interesse com o seu ambiente. Mais precisa-

mente, o ambiente é geralmente escolhido como um sistema externo possuindo um número

finito ou infinito de graus de liberdade. Analisaremos aqui como os graus de liberdade or-

bitais (posição, momentum) de um sistema representado por um estado coerente do oscilador

harmônico quântico em contato com um campo magnético não homogêneo podem sofrer tran-

sições quando uma sequência de medições do grau de liberdade de spin deste mesmo sistema

é efetuada. Em outras palavras, tudo se passa como se os graus de liberdade orbitais represen-

tassem um sistema de interesse e os possíveis resultados destas medições representassem uma

fonte de aleatoriedade. Mostraremos, utilizando uma análise baseada no conceito de trajetórias

quânticas, que trata-se de um problema em que expressões analíticas fechadas puderam ser

obtidas para todas as quantidades físicas de interesse. Além disso, descobrimos que o estado

do sistema obedece a uma regra de iguais probabilidades, semelhante ao postulado central a

priori da mecânica estatística. Utilizando nossas expressões analíticas, bem como uma análise

numérica, descobrimos também que, em geral, o processo de medição de spin aumenta a en-

ergia média do sistema, mantendo sua posição média e seu momentum médio invariantes às

custas de aumentar também a distribuição de suas respectivas variâncias.

Palavras-chaves: Sistemas abertos. Medição. Spin. Estados coerentes. Trajetórias quânticas.

Caminhadas aleatórias.
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1 INTRODUCTION

In quantum mechanics, the time-evolution of the wavefunction of a closed system is de-

scribed by the Schrödinger equation. It is well known that this statement is equivalent to

say that the state of the system evolves according to the action of the unitary operator

𝑈̂ = 𝑒𝑥𝑝{−𝑖𝐻̂𝑡/~}, where 𝐻̂ is the Hamiltonian operator associated with the system. How-

ever, in the situation where the system is open, that is, when the system is put in contact

with an external system (or an environment) and no longer can be treated as closed, this

unitary operator has to be replaced by other dynamical maps, described by the so called Kraus

operators (see S3.1).

Now there are not only one, but many possibilities for how exactly the system may change in

time due to the contact with the environment. Those possibilities are described by a probability

distribution and, because of that, we say that the dynamical map induces what we call a

stochastic process. In this way, the environment is said to be an stochastic source for the

system in question.

In the present work we shall explore this idea of studying an open system in a different way.

Rather than analysing the situation of an environment as a stochastic source, we will analyse

the situation where continuous observations (or measurements) of a certain degree of freedom

of a system may induce changes in another degree of freedom of the same system. Because

in quantum mechanics measurements return random outcomes (except for the case where the

system is in an eigenstate of the chosen observable), this observed degree of freedom can then

be considered as a stochastic source for the degree of freedom that we want to study.

Let us be more precise here. We shall consider the initial orbital state of our system (a spin-

1/2 particle) as a coherent state of the harmonic oscillator |𝑧⟩ and take its initial spin state as

an eigenstate of the spin angular momentum operator in the x-direction, 𝑆𝑥. In this way, the

total initial state (orbital + spin) is given by |𝜓(0)⟩ = |𝑧⟩ ⊗ |𝑠0⟩𝑥, where 𝑠0 = ±1 (the choice

of an eigenstate of 𝑆𝑥 instead of 𝑆𝑧 will be clear in a minute). Furthermore, we consider that

an external ihnomogeneous magnetic field pointing in the z-direction is present throughout

the region of the space that the particle is put in. We choose this field as varying linearly with

the position operator 𝑋̂: 𝐵̂ 𝑑𝑒𝑓= (𝐵̂0/𝑑)𝑋̂𝑒𝑧, where 𝑑 is a constant with units of length. In this

case, the spin degree of freedom interacts with the field so that the Hamiltonian of the system

can be taken as 𝐻̂ = 𝐻̂𝐻𝑂 ⊗ 𝐼 + 𝐻̂𝑖𝑛𝑡, where 𝐻̂𝐻𝑂 = 𝑃 2/2𝑚+𝑚𝜔2/2𝑋̂2 is the well known
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hamiltonian of the harmonic oscillator and 𝐻̂𝑖𝑛𝑡 = −𝛾𝐵̂ · 𝑆 = −(𝛾~𝐵0/2𝑑)𝑋̂ ⊗ 𝑆𝑧 is the

interaction energy between the spin an the field (of course 𝑆𝑧 is the spin angular momentum

operator in the z-direction).

The system is then let to evolve unitarily by a time 𝛿𝑡, so that its state turns into a

state of the form |𝜓(𝛿𝑡)⟩ = 𝐶[|𝜓+(𝛿𝑡)⟩ ⊗ |+⟩𝑥 + 𝑠0 |𝜓−(𝛿𝑡)⟩ ⊗ |−⟩𝑥], where 𝐶 is a nor-

malization constant. Now, according to the well known measuremnt postulate of quantum

mechanics, if a spin measurement in the x-direction is performed, the state of the system

must be immediately updated to either the state (|𝜓+(𝛿𝑡)⟩ /|| |𝜓+(𝛿𝑡)⟩ ||) ⊗ |+⟩𝑥 or the state

(|𝜓−(𝛿𝑡)⟩ /|| |𝜓−(𝛿𝑡)⟩ ||) ⊗ |−⟩𝑥. In other words, the measurement performed on the spin

degree of freedom induces a change in the orbital degree of freedom of the system.

If this process (time-evolution followed by a x-direction spin measurement) is repeated a

finite number 𝑁 of times from now on there will be a probability 𝑝𝑁 that at the end the

system will be in a certain state |𝜓𝑁(𝑁𝛿𝑡)⟩. A single repetition like such of this whole N-step

process (or protocol) is called a trajectory. Indeed, this terminology is not restricted to this

specific case, but rather, comes from algorithmic approaches used to simulate the dynamics of

open systems such as the one in (MøLMER; CASTIN; DALIBARD, 1993) (which shall be discussed

briefly in S3.2).

After the realization of a large number (or an ensemble) of such trajectories we can obtain

a set of all possible accessible states {
⃒⃒⃒
𝜓𝑘𝑁
⟩
} for the system together with their respective

probabilities (or frequencies) {𝑝𝑘} of occurrence. Finally, with this data in hands, we can con-

struct a density operator for the orbital state of the system simply as 𝜌𝑁𝑆 = 𝑝𝑘
∑︀
𝑘

⃒⃒⃒
𝜓𝑘𝑁
⟩ ⟨
𝜓𝑘𝑁
⃒⃒⃒

and use it to compute explicitly the expectation value of many physical quantities of interest,

such as energy, position, momentum and so on.

This idea is somewhat analogous to the idea of a so-called quantum random walk (AHARONOV

et al., 1993) (for a review, see (KEMPE, 2003), (VENEGAS-ANDRACA, 2012)). There we have

the followig: a system is prepared in a certain initial orbital state |𝜓𝑥0⟩ associated with a wave-

function centered at 𝑥 = 𝑥0 and in a certain superposed spin state, say, 𝑐+ |+⟩+𝑐− |−⟩, where

|±⟩ are the eigenstates of 𝑆𝑧. Then the orbital state is displaced from 𝑥0 by a certain distance

𝑙 through the action of an effective displacement operator of the form 𝑒𝑥𝑝{−𝑖𝑃 ⊗ 𝑆𝑧𝑙/~},

where 𝑃 is the momentum operator associated with its orbital part. After that, the state of the

system will be of the form 𝑐+ |𝜓𝑥0+𝑙⟩⊗|+⟩+ |𝜓𝑥0−𝑙⟩⊗|−⟩ and, only then, a spin measurement

is performed, so that the orbital state colapses onto |𝜓𝑥0±𝑙⟩ with probability |𝑐±|2. Therefore,

if we compare with a classical random walk, a spin measurement functions as the process of
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“throwing a coin”.

One of the differences between this approach of quantum random walks and our approach

is also that, in the former, in order to displace the center of the new wavefunction obtained

after each measurement by a further random step, we must “manually” reinitialize the spin

state of the system to a superposition like 𝑐+ |+⟩+𝑐− |−⟩; whist, in our case, it is the external

magnetic field 𝐵̂ which tends to bring the spin of the system to realign itself with the z-

direction (now it must be clear why we choose to perform measurements in the x-direction).

Nevertheless, a similar (but in fact different) situation to ours can be found in (HOROWITZ,

2012), where a system of interest is coupled with an external two-level reservoir subject to

measurement processes.

Our text is organized as follows: in chapter 2, we begin with an overview of the basic

textbook topics of quantum mechanics, such as its postulates (formulated in its simplest form),

the quasi-classical (coherent) states of the harmonic oscillator, spin and density operators.

However, it must be understood that the only aim of the chapter is to cover the basics of such

topics in order to fix notations, help the inexperienced reader to apprehend those fundamental

tools and provide a somewhat “auto-consistent” formulation of our work.

In chapter 3, we formulate also a very basic (but somewhat sufficient for our purposes)

overview of quantum open systems and analyse the so called Monte Carlo Wave Function Ap-

proach as an illustration of how to use quantum trajectories as a fundamental and algorithmic

analysis tool. Finally, we shall finish with an exposition of a measurement master equation.

Those two latter topics will be used as a motivation for what follows.

Chapter 4 is the main part of the present text. There we shall formulate in a precise way

our (already outlined here) alternative approach to open quantum systems regarding all of its

mathematical subtleties and comment all the results which we could obtain so far. Objectively,

we address the following question: “how do random outcomes of continuous measurements

performed on the spin degree of freedom of this system may induce transitions in its orbital

degree of freedom?” It shall be shown that this is a problem to which we could obtain a closed

analytical solution not only to the state of the system after the realization of an ensemble of

quantum trajectories, but also to all relevant physical quantities associated with it (such as en-

ergy, position, momentum and so on). We shall see that this state satisfies an equal-probability

rule, similarly to what happens in the context of usual statistical mechanics (without, of course

taking this analogy too far, because in this latter topic we are dealing with a closed, not an

open, system). At the end of the chapter, numerical plots are presented in order to give us
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an wide view of how those quantities exactly behave and an appendix containing all lengthy

calculations is included so that the interested reader may check precisely all of our results.

Finally, we conclude in chapter 5 with an overview of all results obtained and with some

prospects which we ma intend to consider from now on.

Quantum measurements have been studied today in the context of heat exchanges and

thermal machines, a major subject which fits in the research area of quantum thermodynamics.

Therefore, we consider relevant to explore our approach to the dynamics of open quantum

systems and refer to (ELOUARD et al., 2017b), (ELOUARD et al., 2017a), (JORDAN; ELOUARD;

AUFFèVES, 2020) as a further motivation for the present work. It must be also pointed that

we believe that a narrative more close to the context of “kicked harmonic oscillators” (part of

the subject of the research area of quantum chaos and semi-classical methods) may be also

possible and refer the interested reader to (BERMAN; ZASLAVSKY, 1991).
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2 BASICS

As our work shall require a very basic picture of what is quantum mechanics, in this first

chapter we intend to make a brief overview of specific theoretical aspects in order to clarify

concepts, fix notation and make latter references. We focus precisely in two example systems,

which shall be fundamental for us: the so called coherent states of the quantum harmonic

oscillator and a spinning particle. This introduction follows the Schrödinger picture of quantum

mechanics, where quantum states (rather than quantum operators) are the quantities which

evolve in time. Our aim is to be as simple as possible for our purposes and for further reading,

references will be given when necessary.

2.1 RULES OF QUANTUM MECHANICS

Here we state and briefly explain the basic rules used to make predictions in quantum

mechanics.

2.1.1 Postulates

Quantum mechanics is a statistical theory. This means that it only makes predictions

about frequencies of outcomes in the context of a large number of realizations of a specific

experiment ((D’ESPAGNAT, 2019), Chap.3). For example, if we want to infer some property of a

determined system, we must prepare 𝑁 equal system of such and all that quantum mechanics

call tell us is that the desired property will assume a certain specific value 𝑛 times (or with

frequency 𝑛/𝑁). Because of that, every time we refer to a system in this text, we mean

precisely an ensemble (collection) of equal systems as defined.

We begin by stating the standard rules used to make predictions and focus on the simple

case of a single-particle system 1.

We call a Hilbert space ℋ a finite or infinite inner product vector space defined on the

field of the complex numbers C. Particularly, if |𝑣⟩ is an arbitrary element of ℋ, the set of

all possible maps ℋ → ℋ, or operators, which can perform any change on |𝑣⟩ is denoted by

𝐵(ℋ). For example, if ⟨𝜑|𝜓⟩ represents an well defined inner product relation between two
1 In the many-particle context, symmetrization rules must be regarded, depending wheter the particles we

are treating are bosons or fermions.
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arbitrary vectors |𝜑⟩ , |𝜓⟩ ∈ ℋ, the operator 𝑃 ({𝑤𝑛}) represents the projection of |𝑣⟩ onto the

subspace associated with the set of vectors { |𝑤𝑛⟩}; that is, 𝑃 ({𝑤𝑛}) |𝑣⟩ = ∑︀
𝑛 ⟨𝑤𝑛|𝑣⟩ |𝑤𝑛⟩

if the index 𝑛 assumes discrete values, or 𝑃 ({𝑤𝑛}) |𝑣⟩ =
∫︀ 𝑏
𝑎 𝑑𝑛 ⟨𝑤𝑛|𝑣⟩ |𝑤𝑛⟩ if it assumes

continuous values in the range (𝑎, 𝑏) ⊆ R.

To every operator 𝐴 ∈ 𝐵(ℋ) we may assign in a one-to-one correspondence an operator

𝐴† ∈ 𝐵(ℋ) that satisfies the relation

⟨𝜑|𝐴† |𝜓⟩ = ⟨𝜓|𝐴 |𝜑⟩* ∀ |𝜓⟩ , |𝜑⟩ ∈ ℋ. (2.1)

𝐴† is called the Hermitian conjugate of 𝐴 and, for the particular case where 𝐴 = 𝐴†, it is a

well known result of linear algebra that (i) 𝐴 has a real valued set of eigenvalues (or spectrum)

{𝑎𝑛} and (ii) it is always possible to construct an orthonormal basis { |𝑎𝑛⟩} ⊂ ℋ composed

only by eigenvectors of 𝐴 (see (COHEN-TANNOUDJI; DIU; LALOë, 2019), Chap.II-D).

Note that if 𝐴 is equal to the unity, i.e. 𝐴 = 𝐼, (2.1) implies that we must have ⟨𝜓|𝜑⟩ =

⟨𝜑|𝜓⟩* for the corresponding inner product relation. We say that this relation has a Hermitian

structure.

In general, two or more eigenvectors can be associated with a specific eigenvalue 𝑎𝑛, but

when this is not the case (that is, when every eigenvalue 𝑎𝑛 of 𝐴 is associated with one and

only one eigenvector |𝑎𝑛⟩) we say that 𝐴 has a nondegenerate spectrum.

Let us fix this last situation and denote by |𝑎𝑛⟩ the eigenvector of 𝐴 in a one-to-one

correspondence with the eigenvalue 𝑎𝑛 (for the whole picture, see (COHEN-TANNOUDJI; DIU;

LALOë, 2019), Chap.III).

1. Definition of state. the system is described by a normalized vector |𝜓⟩ ∈ ℋ, where

ℋ is to be specified by the particular physical situation.

2. Definition of observable. to every classical physical quantity 𝑎 we assign an Hermitian

operator 𝐴 ∈ 𝐵(ℋ).

3. Unitary Schrödinger evolution. if at 𝑡 = 𝑡0 the system is described by the state

|𝜓(𝑡0)⟩, at an arbitrary time 𝑡 > 𝑡0 the system evolves to |𝜓(𝑡)⟩ = 𝑒−𝑖𝐻̂(𝑡−𝑡0)/~ |𝜓(𝑡0)⟩,

where 𝐻̂ is the time-independent Hamiltonian operator associated with the system 2.
2 Usually, the exponential of an operator is defined as the power series 𝑒𝐴 =

∑︀∞
𝑛

𝐴𝑛

𝑛! or the limit lim𝑛→∞

(︁
𝐼+

𝐴
𝑛

)︁𝑛

(see, for ex. (ARNOLD, 1973) Chap.2, S14). Also, the assumption that 𝐻̂ is time-independent is taken
for the sake of simplicity, because throughout the whole text this will be always the case.
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4. Born rule. if a measurement of the observable 𝐴 is performed on the system, the

outcome is certain to be an eigenvalue of 𝐴, but all that we can say beforehand is that

we have a probability

𝒫(𝑎𝑛) = | ⟨𝑎𝑛|𝜓⟩ |2 (2.2)

to obtain the specific outcome 𝑎𝑛.

5. Von Neumann measurement scheme. after a measurement of 𝐴 in which we have

obtained the outcome 𝑎𝑛, the state of the system must be updated according to

|𝜓⟩ measurement−−−−−−−→ ⟨𝑎𝑛|𝜓⟩
| ⟨𝑎𝑛|𝜓⟩ |

|𝑎𝑛⟩ . (2.3)

Note, in particular, that in postulate 1, |𝜓⟩ is allowed to be any superposition (linear com-

bination) of vectors in ℋ, because, by the definition of a vector space, every such superposition

also lies within ℋ. This is the so called superposition principle.

We stress that this statement of the set of rules is not unique, but rather, specifically

formulated for our purposes. For a more general picture (for ex. including the case of degenerate

spectra of observables), we again refer to (COHEN-TANNOUDJI; DIU; LALOë, 2019), Chap.III.

2.1.2 Wavefunction approach

It is also worth mentioning that it is possible to make predictions in an alternative manner

to the formalism stated above.

This goes as follows: to every possible state |𝜓⟩ ∈ ℋ which may describe our physical

system, we assign in a one-to-one correspondence a function, or wavefunction, 𝜓 : R3×R → C

that satisfies the condition that
∫︀∞

−∞ 𝑑3𝑥|𝜓(𝑥, 𝑡)|2 remains finite (in general, this condition

is satisfied by functions that decrease rapdly in space, such as a Gaussian or a negative

exponential). In this case, we say that 𝜓 ∈ ℒ2, where ℒ2 is the space of square-integrable

functions.

Due to Max Born, |𝜓(𝑥, 𝑡)|2 is to be interpreted as the probability of finding a particle in

the spacial region within 𝑥 and 𝑥+ 𝑑𝑥 at time 𝑡. Although 𝜓 speads itself all over the space,

because we must necessarily find the particle somewhere, the condition
∫︀∞

−∞ 𝑑3𝑥|𝜓(𝑥, 𝑡)|2 = 1

must be satisfied. |𝜓⟩ and 𝜓 being assigned, this motivates the correspondence between the

Hermitian inner product relation of ℋ defined in 2.1.1 with the relation

⟨𝜓|𝜑⟩ def=
∫︁ ∞

−∞
𝑑3𝑥𝜓*𝜑 (2.4)
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defined in ℒ2 (𝜓 and 𝜑 being arbitrary functions).

Observables are now represented by operators acting in ℒ2 and, in analogy with the last

subsection, we write 𝐴 ∈ 𝐵(ℒ2) for an arbitrary physical quantity 𝐴. For example, the extrinsic

(coordinate-system dependent) degrees of freedom of position and momentum are assigned

to the operators 𝑋̂, 𝑃 ∈ 𝐵(ℒ2) s.t. ∀𝜓 ∈ ℒ2, 𝑋̂𝜓 = 𝑥𝜓 and 𝑃𝜓 = −𝑖~∇𝜓 (using (2.4) it

is easy to show that 𝑋̂ and 𝑃 are Hermitian) 3.

If the system starts in a state assigned to the wavefunction 𝜓(𝑥, 𝑡0), to predict the dynamics

and find 𝜓 at a latter time, we must solve the Schrödinger equation

𝜕𝜓

𝜕𝑡
= 𝑖

~
𝐻̂𝜓(𝑥, 𝑡) (2.5)

where 𝐻̂ = 𝐻̂(𝑋̂, 𝑃 , 𝑡) is the classical Hamiltonian of the system 4 written with 𝑥 and 𝑝

promoted to 𝑋̂ and 𝑃 defined above (𝑡 remains only a real valued parameter). Of course,

𝜓(𝑥, 𝑡0) serves as an initial condition to the solution of this first order 5 partial differential

equation and this construction assures that 𝜓(𝑥, 𝑡) is in a one-to-one correspondence with the

state |𝜓(𝑡)⟩ obtained by postulate 3.

For a detailed treatment, we refer to (GRIFFITHS; SCHROETER, 2018) (Chap.1) and specific

illustrations of how to use the two approaches we let to be given in what follows by the

examination of the two systems mentioned at the begining of this chapter (coherent states of

the quantum harmonic oscillator and spinning particles).

2.1.3 Expectation values of observables

Suppose that we can expand the state |𝜓⟩ of the system in terms of an orthonormal basis

{ |𝑛⟩} ⊂ ℋ. That is, we can write 𝜓 = ∑︀
𝑛 𝑐𝑛 |𝑛⟩ for 𝑛 being discrete, or |𝜓⟩ =

∫︀ 𝑏
𝑎 𝑑𝑛𝑐𝑛 |𝑛⟩

for 𝑛 being continuous in (𝑎, 𝑏) ∈ R.

Fixing the former (discrete) situation, we note by Born rule that if 𝑛 ̸= 𝑚 and |𝑐𝑛|2 ≥ |𝑐𝑚|2

(ensuring, of course, that ∑︀𝑛 |𝑐𝑛|2 = 1), the system is “more likely” to be observed in the

state |𝑛⟩. Still using statistical language, this motivates the definition of the expectation value
3 The precise construction of a basis set { |𝑥⟩} and { |𝑝⟩} of eigenstates of those two operators in a one

to one correspondence with functions in ℒ2 is rather complicated and, as it shall not be useful for the
development of our work, we leave the discussion as a reference to (COHEN-TANNOUDJI; DIU; LALOë, 2019),
Chap.2, SB-2.

4 We could arrive at the same equation for |𝜓(𝑡)⟩ in postulate 3 of 2.1.1 by taking its time-derivative.
5 First order in time. In space it is usually second order (i.e. it depends on the laplacian operator ∇2).
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of some observable 𝐴 ∈ 𝐵(ℋ) as

⟨𝐴⟩𝜓
def= ⟨𝜓|𝐴 |𝜓⟩ (2.6)

or, in the case of the last subsection,

⟨𝐴⟩𝜓
def=
∫︁ ∞

−∞
𝑑3𝑥𝜓*𝐴𝜓 (2.7)

where, of course, 𝜓 ∈ ℒ2 is properly assigned to |𝜓⟩ ∈ ℋ. These definitions have the precise

meaning that if we take 𝑁 equally prepared systems and measure 𝐴 in each one of them, ⟨𝐴⟩𝜓
is the average result we will get (of course, the larger the 𝑁 , the closer the inferred average is

from ⟨𝐴⟩). Finally, we mention that expectation values are, indeed, the quantities which can

be measured in laboratory.

2.1.4 Heisenberg uncertainty relation

The previous discussion suggests that because now we cannot determine the outcome of

a measurement of 𝐴 a priori and therefore must use statistical distributions (in other words,

𝐴 is a random variable and we must work with the probabilities of a determined outcome to

happen), we may be interested in knowing how broad would be the interval of those possible

outcomes.

This is also done by statistical language. We define the standard deviation of 𝐴 for a

system in the state |𝜓⟩ to be

Δ𝐴𝜓 def=
√︂

⟨𝐴2⟩𝜓 − ⟨𝐴⟩2
𝜓. (2.8)

Furthermore, it can be shown ((GRIFFITHS; SCHROETER, 2018), Chap.3, S3.5) that for any pair

of observables 𝐴1, 𝐴2, we have

Δ𝐴1Δ𝐴2 ≥ −1
4⟨[𝐴1, 𝐴2]⟩2; (2.9)

the most important result being the case of a pair of canonically conjugated operators, such as

𝑋̂ and 𝑃 , which by the definitions given in 2.1.2 implies the canonical commutation relation

[𝑋̂, 𝑃 ] = 𝑖~, leading, therefore, to the famous Heisenberg uncertainty principle

Δ𝑋𝜓Δ𝑃𝜓 ≥ ~
2 . (2.10)

The precise meaning of this result is that the more we want to measure a certain definite

value for, say, the position observable 𝑋̂, the smallest we can make Δ𝑋, but the price we pay
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is that in this case Δ𝑃 will be very large. This means that we cannot measure a precise value

for position and momentum at the same time and, therefore, these quantities are said to be

incompatible observables.

2.1.5 Tensor-product states

If we have two independent systems or two independent degrees of freedom of a single

system, each described by states lying in two distinct Hilbert spaces ℋ1 and ℋ2, we denote

the Hilbert space of the composite system by the symbolic notation ℋ def= ℋ1 ⊗ ℋ2, where

“⊗” is called the tensor product between vector spaces.

Furthermore, we require this product to be linear with respect to each of its arguments;

that is, if all set of vectors are discrete 6, given two orthonormal basis { |𝑛1⟩} ⊆ ℋ1 and

{ |𝑛2⟩} ⊆ ℋ2, we may expand |𝑣1⟩ ∈ ℋ1 and |𝑣2⟩ ∈ ℋ2 as |𝑣1⟩ = ∑︀
𝑛1 𝑐𝑛1 |𝑛1⟩ and

|𝑣2⟩ = ∑︀
𝑛2 𝑑𝑛2 |𝑛2⟩ and write

|𝑣1⟩ ⊗ |𝑣2⟩
def=

∑︁
𝑛1,𝑛2

𝑐𝑛1𝑑𝑛2 |𝑛1⟩ ⊗ |𝑛2⟩ . (2.11)

Because linear operators are also vectors belonging to vector spaces, if we have 𝐴1 ∈ 𝐵(ℋ1)

and 𝐴2 ∈ 𝐵(ℋ2) we may define 𝐴 = 𝐴1 ⊗ 𝐴2 ∈ 𝐵(ℋ1) ⊗𝐵(ℋ2) s.t.

𝐴 |𝑣1⟩ ⊗ |𝑣2⟩ = 𝐴1 |𝑣1⟩ ⊗ 𝐴2 |𝑣2⟩ . (2.12)

Finally, if there are well defined inner product relations in ℋ1 and in ℋ2, taking |𝑤1⟩ ∈ ℋ1

and |𝑤2⟩ ∈ ℋ2, we also demand

( ⟨𝑤1| ⊗ ⟨𝑤2|)( |𝑣1⟩ ⊗ |𝑣2⟩) = ⟨𝑤1|𝑣1⟩ ⟨𝑤2|𝑣2⟩ . (2.13)

From this definition we see that { |𝑛1⟩ ⊗ |𝑛2⟩} as defined above is a basis set for ℋ, be-

cause ( ⟨𝑛1| ⊗ ⟨𝑛2|)( |𝑚1⟩ ⊗ |𝑚2⟩) = 𝛿𝑛1,𝑚1𝛿𝑛2,𝑚2 . Therefore, if |𝑛1⟩ and |𝑛2⟩ represent the

eigenstates of two observables defined in 𝐵(ℋ1) and in 𝐵(ℋ2) with eigenvalues 𝑛1 and 𝑛2,

respectively, and (2.11) represents the state of the system, Born rule tells us that we have

a probability |𝑐𝑛1|2|𝑑𝑛2|2 of measuring 𝑛1 and 𝑛2 together. This last fact is consistent with

the hypothesis that the two systems, or the two degrees of freedom, are, in this case, indeed

independent (recall that for two independent events 1 and 2 which occur with probabilities 𝑝1

and 𝑝2, respectively, the probability of 1 and 2 to occur is just 𝑝1𝑝2).
6 For the continuous case, it suffices to change the summations by integrals

∑︀
𝑛 →

∫︀ 𝑏

𝑎
𝑑𝑛.
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Except when explicitly necessary for the sake of clarity, throughout the rest of this text

we shall omit the ⊗ symbol from tensor products (for ex. |𝑣1⟩ ⊗ |𝑣2⟩
def= |𝑣1⟩ |𝑣2⟩ or even

|𝑣1⟩ ⊗ |𝑣2⟩
def= |𝑣1, 𝑣2⟩).

2.1.6 Entanglement

By the discussion of the above section, still in the same context, we now know that if we are

given two states |𝜓1⟩ ∈ ℋ1 and |𝜓2⟩ ∈ ℋ2 for the uncorrelated systems 1 and 2, respectively,

we can construct a state for the composite system 1 + 2 simply as |𝜓1⟩ ⊗ |𝜓2⟩. This state,

of course, lies within ℋ = ℋ1 ⊗ ℋ2 and this space can be said to be the Hilbert space of

the composite system. Hence, we know from postulate 1 of 2.1.1 that all states within ℋ are

allowed to describe the composite system, even linear combinations of two or more vectors

(superposition principle).

But now the converse question may arise: given a state |𝜓⟩ ∈ ℋ for the composite system,

there always exists |𝜓1⟩ ∈ ℋ1 and |𝜓2⟩ ∈ ℋ2 s.t. |𝜓⟩ = |𝜓1⟩ ⊗ |𝜓2⟩? The answer is no.

For example, suppose that the Hilbert spaces of both systems have dimension 𝑁 = 2

and fix the basis sets { |01⟩ , |11⟩} ⊂ ℋ1 and { |02⟩ , |12⟩} ⊂ ℋ2. Of course a basis set for

the composite system is simply { |01, 02⟩ , |01, 12⟩ , |11, 02⟩ , |11, 12⟩}. Take now the composite

system to be in a so called Bell state |Φ+⟩ = ( |01, 02⟩ + |11, 12⟩)/
√

2 and try to write

|Φ+⟩ = (𝑐1 |01⟩ + 𝑐2 |02⟩) ⊗ (𝑐3 |02⟩ + 𝑐4 |12⟩) (2.14)

for some set of coeficients {𝑐1, 𝑐2, 𝑐3, 𝑐4} ⊂ C.

It can be verified that the system

𝑐1𝑐3 = 1√
2

𝑐1𝑐4 = 0

𝑐2𝑐3 = 0

𝑐2𝑐4 = 1√
2

(2.15)

has no solution!

Therefore, we conclude that the superposition principle implies that not every state ac-

cessible to the composite system can be decomposed into a tensor product of two states

accessible to the individual subsystems. This phenomenon is called entanglement and is a
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major feature of quantum systems with an almost infinite range of beautiful implications and

applications. If there exists no |𝜓1⟩ ∈ ℋ1 and |𝜓2⟩ ∈ ℋ2 s.t. |𝜓⟩ ∈ ℋ can be decomposed

as |𝜓⟩ = |𝜓1⟩ ⊗ |𝜓2⟩, we say that |𝜓⟩ is an entangled state. In general, many operations

can generate entanglement, such as time-evolutions with interactions and measurements. This

happens because after those operations the state of the system can (in general) be turned

into any state lying within ℋ (and now we know that not every such state is separable).

Finally, we note that because operators also lie within vector spaces, the preceding analysis

is also applicable to them. We shall come back to this important point when we talk about

density operators at the end of the chapter.

2.2 QUANTUM HARMONIC OSCILLATOR

As a useful illustration, we analyse the well known one-dimensional quantum harmonic

oscillator, described by the Hamiltonian

𝐻̂𝐻𝑂 = 𝑃 2

2𝑚 + 𝑚𝜔2𝑋̂2

2 . (2.16)

2.2.1 Ladder operator approach

Based in the expositions in (PESKIN; SCHROEDER, 2007) (Chap.2, S2.3) and (MANDL; SHAW,

2010) (Chap.1, S1.2.2) we briefly follow the so called ladder operator method to construct

explicitly the eigenvalues and the eigenstates of (2.16). This approach, first proposed by Dirac,

finds an almost infinite range of applicability in the literature and serves as a ground for the

subjects of quantum field theories and condensed matter theories where multiparticle systems

are important 7.

We begin by noting that the definitions of 𝑋̂ and 𝑃 as stated in 2.1.2 implies the canonical

commutation relation [𝑋̂, 𝑃 ] = 𝑋̂𝑃 − 𝑃𝑋̂ = 𝑖~. Therefore, defining the (non-Hermitian!)

destruction or lowering ladder operator

𝑎
def=
√︂
𝑚𝜔

2~ 𝑋̂ + 𝑖

√︃
1

2𝑚~𝜔
𝑃 (2.17)

we can show that

[𝑎̂, 𝑎̂†] = 1 (2.18)
7 Indeed, it can be shown that simmetrization rules for bosons and fermions, instead of being postulated a

priori, appear naturally in this approach.
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and

𝐻̂𝐻𝑂 = ~𝜔

⎛⎝𝑎̂†𝑎̂+ 1
2

⎞⎠. (2.19)

This last expression implies that finding the eigenvalues and the eigenstates of 𝐻̂𝐻𝑂 is equiv-

alent to finding the eigenvalues and the eigenstates of 𝑎̂†𝑎̂
def= 𝑁̂ .

Because inner products must always satisfy the condition ⟨𝜓|𝜓⟩ ≥ 0 and because (𝑎̂ |𝜓⟩)† =

⟨𝜓| 𝑎̂†, we see that ⟨𝜓| 𝑁̂ |𝜓⟩ = ⟨𝜓| 𝑎̂†𝑎̂ |𝜓⟩ ≥ 0; taking then the eigenvalue equation 𝑁̂ |𝛼⟩ =

𝛼 |𝛼⟩ we see that 𝛼 ≥ 0 (of course we are supposing |𝛼⟩ already normalized) and therefore

that all eigenvalues of 𝑁̂ are non-negative. 𝑁̂ is said to be positive semi-definite and, as a

consequence, it must have a lowest possible eigenvalue 𝛼0 ≥ 0.

Still with the eigenvalue equation and with the aid of (2.18), we see that 𝑁̂ 𝑎̂ |𝛼⟩ =

(𝛼 − 1)𝑎̂ |𝛼⟩, so that 𝑎̂ |𝛼⟩ is an eigenvector of 𝑁̂ with eigenvalue (𝛼 − 1). Moreover, this

relation also implies that 𝛼0 = 0 necessarily, because by hypothesis there is no eigenvalue

lower than 𝛼0.

Now, if |0⟩ represents the eigenstate associated with the eigenvalue 𝛼0 = 0, the above

discussion implies that 𝑎̂ |𝑛⟩ =
√
𝑛 |𝑛− 1⟩ and 𝑎̂† |𝑛⟩ =

√
𝑛+ 1 |𝑛+ 1⟩. Therefore, the states

|𝑛⟩ def= (𝑎̂†)𝑛 |0⟩√
𝑛

(2.20)

can be verified to be the eigenstates of (2.16) with eigenvalues 𝛼 = 𝑛 = 0, 1, 2, 3, ... associated.

Therefore, the energy spectrum of the harmonic oscillator is given simply by

𝐸𝑛 = ~𝜔

⎛⎝𝑛+ 1
2

⎞⎠. (2.21)

This result is consistent with solving the Schrödinger equation (2.5) explicitly (see, for ex.

(GRIFFITHS; SCHROETER, 2018) Chap.2, S2.3) if the states |𝑛⟩ are mapped in a one-to-one

correspondence to the wavefunctions 8

𝜓𝑛(𝑥) =
(︂
𝑚𝜔

𝜋~

)︂1/4 1√
2𝑛𝑛!

𝐻𝑛

(︂
𝑚𝜔

~
𝑥
)︂
𝑒−𝑚𝜔𝑥2/2~ (2.22)

where 𝐻𝑛 is the Hermite polynomial of degree 𝑛 given by the Rodriguez formula

𝐻𝑛(𝜆) = (−1)𝑛𝑒𝒵2
(︂
𝑑

𝑑𝜆

)︂𝑛
𝑒−𝒵2

. (2.23)

Because the Hamiltonian is time independent, we have simply

𝜓(𝑥, 𝑡) = 𝜓𝑛(𝑥)𝑒−𝑖𝜔(𝑡−𝑡0). (2.24)
8 This can be proven indeed by inverting (2.17), promoting 𝑥̂ and 𝑃 to operators in 𝐵(ℒ2) as in 2.1.2 and

solving the differential equation (𝑎̂†)𝑛𝜓0 = 𝛼𝑛𝜓𝑛.
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For the three-dimensional case where the particle oscillates with the same frequency 𝜔 in

all independent degrees of freedom, we simply use the tensor product construction of 2.1.5

and write |𝑛⟩ → |𝑛𝑦⟩ |𝑛𝑧⟩ |𝑛𝑥⟩ and 𝜓𝑛𝑥𝑛𝑦𝑛𝑧(𝑥) → 𝜓𝑛𝑥(𝑥)𝜓𝑛𝑦(𝑦)𝜓𝑛𝑧(𝑧).

The calculations of Δ𝑋 and Δ𝑃 for those states yield

Δ𝑋𝑛 =
√︃

~
𝑚𝜔

(︂
𝑛+ 1

2

)︂

Δ𝑃𝑛 =
√︃
𝑚~𝜔

(︂
𝑛+ 1

2

)︂ (2.25)

implying the uncertainty relation

Δ𝑋𝑛Δ𝑃𝑛 =
(︂
𝑛+ 1

2

)︂
~. (2.26)

Equation (2.25) is in accordance with (2.10) and means that the higher the 𝑛, the broader

the distribution of both 𝑋̂ and 𝑃 .

Finally, we note that (2.17) implies ⟨𝑋̂⟩𝑛 = ⟨𝑃 ⟩𝑛 = 0. This means that the states |𝑛⟩ do

not describe directly the behaviour of a classical harmonic oscillator, where 𝑥 and 𝑝 are zero

only when the energy of the motion is zero (see the topic of the next section). Because of

that, we pose the following question: is it possible so far to use the developed formalism to

construct states that lead to predictions close to classical mechanics? Indeed, we expect that

(in principle) quantum mechanics should yield the same results of classical mechanics in the

limit of large quantum numbers (for example in the limit of energies much higher than ~𝜔).

The so posed question serves as a motivation for the treatment of the next section.

2.3 COHERENT STATES

Proposed by Schrödinger in 1926 and first called coherent states by Glauber in 1963, those

states are of wide applicability in many subjects of modern science, such as quantum informa-

tion processing, quantum optics, quantum superselection principles and mathematical physics

(DEY; FRING, 2018). We follow here the simple approach of defining them as eigenvectors of

the ladder operator 𝑎̂ 9, i.e.

𝑎̂ |𝑧⟩ = 𝑧 |𝑧⟩ . (2.27)
9 We could choose also to define the so called displacement operator 𝐷(𝑧) = 𝑒𝑧*𝑎̂−𝑧𝑎̂† and apply it to the

ground state |0⟩. We would get the same results.
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Because 𝑎̂ is not Hermitian, 𝑧 is, in general, a complex number. If we write |𝑧⟩ = ∑︀
𝑛 𝑐𝑛 |𝑛⟩

and use ⟨0|0⟩ = 1, it is easy to show, by (2.27) that

|𝑧⟩ = 𝑒− |𝑧|2
2

𝑛=∞∑︁
𝑛=0

𝑧𝑛√
𝑛!

|𝑛⟩ . (2.28)

Note that two coherent states are not orthogonal.

Furthermore, this expansion together with postulate 3 in 2.1.1 implies that the time evo-

lution of |𝑧(0)⟩ = |𝑧⟩ is simply

|𝑧(𝑡)⟩ = 𝑒− 𝑖𝜔(𝑡−𝑡0)
2 |𝑧(0)𝑒−𝑖𝜔(𝑡−𝑡0)⟩ . (2.29)

This is remarkable, because, the global phase factor 𝑒− 𝑖𝜔(𝑡−𝑡0)
2 being dropped (this does not

change physical predictions, since this exponential is a global phase and, consequently, does

not change any expectation value), we see that the state remains an eigenstate of 𝑎̂ throughout

time. This has very neat consequences, which will be discussed in the following.

Let us first review 10 an useful method to describe the motion of the classical harmonic

oscillator by introducing the dimensioless parameters 𝑥𝑐(𝑡) =
√︁

𝑚𝜔
~ 𝑥(𝑡) and 𝑝𝑐(𝑡) = 1√

𝑚~𝜔𝑝(𝑡).

In that case, Newton’s equations become

𝑑𝑥

𝑑𝑡
= 𝑝(𝑡)

𝑚
→ 𝑑𝑥𝑐

𝑑𝑡
= 𝜔𝑝𝑐(𝑡)

𝑑𝑝

𝑑𝑡
= −𝑚𝜔2𝑥(𝑡) → 𝑑𝑝𝑐

𝑑𝑡
= 𝜔𝑥𝑐(𝑡).

(2.30)

These two equations can be combined into a single complex-valued differential equation:

𝑑𝑧𝑐
𝑑𝑡

= −𝑖𝜔𝑧𝑐(𝑡) (2.31)

with 𝑧𝑐(𝑡) = 1√
2 [𝑥𝑐(𝑡) + 𝑖𝑝𝑐(𝑡)]. In this case, the position and the momentum of the particle

are specified by the single complex parameter 𝑧𝑐(𝑡).

The solution of (2.31) is easy to obtain and is simply

𝑧𝑐(𝑡) = 𝑧𝑐(0)𝑒−𝑖𝜔(𝑡−𝑡0). (2.32)

It means that, if we set 𝑡0 = 0,

𝑥(𝑡) =
√︃

2~
𝑚𝜔

Re{𝑧𝑐(𝑡)} = 𝑥(0) cos𝜔𝑡+ 𝑝(0)
𝑚𝜔

sin𝜔𝑡

𝑝(𝑡) =
√

2𝑚~𝜔 Im{𝑧𝑐(𝑡)} = −𝑚𝜔𝑥(0) sin𝜔𝑡+ 𝑝(0) cos𝜔𝑡
(2.33)

10 Here we follow the exposition in (COHEN-TANNOUDJI; DIU; LALOë, 2019) (Complement 𝐺𝑉 ) in a very brief
way.
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which are exactly the classical results (note how similar are (2.32) and the evolution of 𝑧 in

(2.29)!). Moreover, using (2.33) the energy of the system can be obtained immediately:

𝐸𝑐 = ~𝜔|𝑧𝑐(0)|2 (2.34)

where, of course, we must have the condition |𝑧𝑐(0)|2 ≫ 1, because we are analyzing a classical

system.

Now, it is a simple matter to show, using Eqs.(2.27), (2.29), that ⟨𝐻̂⟩𝑧 = ~𝜔(|𝑧(𝑡)|2+1/2),

⟨𝑋̂⟩𝑧 =
√︁

2~/𝑚𝜔Re{𝑧(𝑡)} and ⟨𝑃 ⟩𝑧 =
√

2𝑚~𝜔 Im{𝑧(𝑡)}; or even,

⟨𝑋̂⟩𝑧(𝑡) = ⟨𝑋̂⟩𝑧(0) cos𝜔𝑡+ ⟨𝑃 ⟩𝑧(0)
𝑚𝜔

sin𝜔𝑡 (2.35a)

⟨𝑃 ⟩𝑧(𝑡) = −𝑚𝜔⟨𝑋̂⟩𝑧(0) sin𝜔𝑡+ ⟨𝑃 ⟩𝑧(0) cos𝜔𝑡 (2.35b)

⟨𝐻̂⟩𝑧(𝑡) = ~𝜔

⎛⎝|𝑧(0)|2 + 1
2

⎞⎠ (2.35c)

which are exactly 11 the classical results (2.33) with ⟨𝑋̂⟩𝑧(0) =
√︁

2~
𝑚𝜔

Re{𝑧(0)} and ⟨𝑃 ⟩𝑧(0) =
√

2𝑚~𝜔 Im{𝑧(0)}. This is a remarkable point.

This exposition makes it clear that (i) stationary states of the classical harmonic oscillator

(i.e. states for which the oscillator does not move, and, consequently 𝑥(𝑡) = 𝑝(𝑡) = 0) are

connected with stationary states of the quantum harmonic oscillator (where ⟨𝑋̂⟩𝑛 = ⟨𝑃 ⟩𝑛 = 0)

and (ii) the quantum nonstationary states that recover the classical motion are the states |𝑧⟩.

As said before, those states have a set of very compeling properties, such as (2.29); we

end the discussion by listing two more of them.

1. (The uncertainty relation is minimum.) A simple calculation, using

⟨𝑋̂2⟩𝑧 = 2~
𝑚𝜔

⎛⎝Re2
{︁
𝑧
}︁

+ 1
4

⎞⎠
⟨𝑃 2⟩𝑧 = 2𝑚~𝜔

⎛⎝ Im2
{︁
𝑧
}︁

+ 1
4

⎞⎠ (2.36)

shows that Δ𝑋𝑧 =
√︁

~
2𝑚𝜔 , Δ𝑃𝑧 =

√︁
𝑚~𝜔

2 and, consequently,

Δ𝑋𝑧Δ𝑃𝑧 = ~
2 . (2.37)

11 Of course there is an extra factor in ⟨𝐻̂⟩𝑧 due to the zero point energy. But we know that an additive
constant in the energy does not change any physical prediction, since all that can be measured are energy
differences.



29

This is nice because, following the discussion in 2.1.4, to obtain a certain definite out-

come of, say, 𝑋̂, the price we shall pay in making the distribution of 𝑃 broader is the

lesser possible.

2. (The wavepacket remains Gaussian.) Because of (2.29), we see that the wavefunction

of the states |𝑧⟩ shall not vary its shape in time. Indeed, in (COHEN-TANNOUDJI; DIU;

LALOë, 2019) (Complement 𝐺𝑉 ) it is shown that

𝜓𝑧(𝑥, 𝑡) =
(︂
𝑚𝜔

𝜋~

)︂1/4
𝑒−𝑖𝜔𝑡/2𝑒

𝑧*2+𝑧2
4 𝑒

𝑖𝑥
~ ⟨𝑃 ⟩𝑧(𝑡)𝑒−[ 𝑥−⟨𝑋̂⟩𝑧(𝑡)

2Δ𝑋
]2 (2.38)

so that the shape of the probability density is simply

|𝜓𝑧(𝑥, 𝑡)|2 = |𝜓0[𝑥− ⟨𝑋̂⟩(𝑡)]|2. (2.39)

That means that the wavepacket (another name for the probability density) oscillates

back and forth arround 𝑥 = 0 without changing its shape (contrary to what occurs,

for example, with free particles, whose wavepackets just spread in space with time). We

note that this behaviour is very similar to the behaviour of a classical particle under the

action of a parabolic potential, further confirming the connection between the states |𝑧⟩

and the nonstationary states of a classical harmonic oscillator.

2.4 SPIN

The approach of section 2.1.2 is particularly suited for extrinsic degrees of freedom, which

are the degrees of freedom that can be described in terms of the position and the momentum

observables. However, there are degrees of freedom which cannot be described in this way, and,

therefore, are said to be intrinsic to the system. We shall, in this section, study the so called

spin angular momentum degree of freedom in order to illustrate how the general approach of

2.1.1 may be, indeed, more handful, as it allows the description of such intrinsic quantities

without making explicit reference to algebraic functions in ℒ2.

Let us begin with a brief introduction. In classical mechanics, if we imagine an spherical

body that moves in space and rotates about its own axis (such as a planet like the Earth, which

rotates around the sun and also around “itself") we can define two tipes of angular momenta:

the orbital angular momentum 𝑙 = 𝑟 × 𝑝 and the spin angular momentum 𝑠 = 𝐼𝜔, where 𝐼

represents the moment of inertia of the particle (the rest of the notation should be clear in

the classical picture). Nevertheless, both of those degrees of freedom are said to be extrinsic,
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because, classically, a macroscopic body can be decomposed as a set of smaller constituents,

and, therefore, the calculation of 𝑠 involves the motion of those constituents around the axis

of rotation (parallel to 𝜔).

In quantum mechanics, we know that electrons, for example, are said to be elementary

particles, and, therefore, cannot be decomposed into a set of smaller constituents. Precisely,

the electron cannot be described as for ex. a spinning sphere, but the very existence of an

angular momentum analogous to 𝑠 is experimentally confirmed, and that is why we inherit the

name spin angular momentum.

Spin is an essential part of the description of quantum behaviour and it allows us to

understand many properties of matter, such as ferromagnetism in metals. Its existence is

experimentally confirmed in a broad rage of phenomena, such as the fine structure of spectral

lines and the Zeeman effect (see (COHEN-TANNOUDJI; DIU; LALOë, 2019), Chap.IX); however,

it can only be deduced theoretically by relativistic approaches to quantum mechanics, where

the equation of motion is no longer the Schrödinger equation. 12. In nonrelativistic contexts

(our case), where velocities are much smaller than the velocity of light, it has to be nonetheless

postulated.

The analysis of the Stern-Gerlach apparatus (which is another experiment that confirms

the existence of spin), where silver atoms are deflected from their classical trajectories 13 when

passing through a region where an inhomogeneous magnetic field is 𝐵 present, suggests that

this intrinsic angular momentum is proportional to the magnetic moment 𝜇 of a quantum

particle. Furthermore, this same deflection, regardless of the fact that 𝜇 can have any spatial

orientation, can only occur in two possible directions, which are aligned with the direction of

𝐵. Because of that, we see that spin is also a quantized quantity, such as the energy of the

harmonic oscillator (2.21) 14.

Following this last discussion and postulate 2 of section 2.1.1, we promote 𝑠 for quantum

particles to an operator 𝑆 acting in a two dimensional Hilbert space ℋ𝑠𝑝𝑖𝑛. If in a Stern-Gerlach

apparatus we choose 𝐵 to point in the 𝑧 direction, a basis for ℋ𝑠𝑝𝑖𝑛 is denoted by the two states

|+⟩ (particle deflected to +𝑧 direction 15) and |−⟩ (particle deflected to −𝑧 direction). Those

states are constructed as being normalized eigenvectors of 𝑆𝑧 with respective experimentally
12 For fermions (half-spin perticles) it is, for example, the so called Dirac equation (see (THOMSON, 2013),

Chap.4, S4.4)
13 They are heavy enough to be considered to behave so.
14 For a detailed discussion of the Stern-Gerlach experiment, see (COHEN-TANNOUDJI; DIU; LALOë, 2019),

Chap.IV.
15 A more precise word, in the context of mathematics, would be “orientation”.
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measured eigenvalues ±~
2

16. Because 𝑆 represents a physical quantity (Hermitian operator),

the set { |±⟩} is an orthogonal set (
⟨
𝑠𝑘1
⃒⃒⃒
𝑠𝑘2
⟩

= 𝛿𝑠𝑘
1 ,𝑠

𝑘
2
, where 𝑠𝑘1, 𝑠𝑘2 = ±) and its operator

representation, together with 𝑆𝑥 and 𝑆𝑦 are given by

𝑆𝑥 = ~
2( |+⟩ ⟨−| + |−⟩ ⟨+|)

𝑆𝑦 = −𝑖~
2 ( |+⟩ ⟨−| − |−⟩ ⟨+|)

𝑆𝑧 = ~
2( |+⟩ ⟨+| − |−⟩ ⟨−|).

(2.40)

The set of eigenvectors of 𝑆𝑥 and 𝑆𝑦 can be verified to be

{ |±⟩𝑥} = { 1√
2

( |+⟩ ± |−⟩)}

{ |±⟩𝑦} = { 1√
2

( |+⟩ ± 𝑖 |−⟩)}
(2.41)

with respective eigenvalues ±~
2 .

It can also be verified that those definitions imply the so called angular momentum algebra:

[𝑆𝑖, 𝑆𝑗] = 𝑖~𝜖𝑖𝑗𝑘𝑆𝑘 (2.42)

where 𝜖𝑖𝑗𝑘 is the usual Levy-Civita total antisymetric tensor, which is equal to 1 if 𝑖𝑗𝑘 is a

cyclic permutation of 𝑥𝑦𝑧 (such as 𝑦𝑧𝑥 and 𝑧𝑥𝑦), −1 for noncyclic permutations (such as

𝑦𝑥𝑧 and 𝑧𝑦𝑥) and 0 if two indexes are equal. Note that those commutation relations together

with (2.9) imply that spins in different directions are incompatible observables.

Finally, still in the Stern-Gerlach context, if we write 𝜇𝑧 = 𝛾𝑆𝑧, the interaction energy

between the particle and the external magnetic field 𝐵
def= 𝐵𝑧𝑒𝑧 can be imported from classical

electrodynamics (𝑈 = −𝜇.𝐵) and, the composite hilbert space being symbolized by, ℋ𝑜𝑟𝑏𝑖𝑡𝑎𝑙⊗

ℋ𝑠𝑝𝑖𝑛 (sec 2.1.5), regarded as

𝑈̂𝑖𝑛𝑡 = −𝛾𝐵̂𝑧 ⊗ 𝑆𝑧 (2.43)

where the proportionality constant 𝛾 is the so called gyromagnetic ratio of the particle and

𝐵𝑧, to represent an inhomogeneous field in space, must be a function of the position operator,

i.e. 𝐵̂𝑧 = 𝐵̂𝑧(𝑋̂, 𝑌 , 𝑍) (ensuring, of course, that ∇.𝐵 = 0).
16 We are treating here electrons, which are fermions, and, therefore, have half-integer values for its spin. At

the other hand, Bosons have integer values, such as 0, ~, 2~, etc.
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2.5 THE DENSITY OPERATOR

We have formulated quantum mechanics in a way that a system 𝑆 is characterized by a state

vector |𝜓⟩ which evolves in time and can be used to compute significant physical quantities

related to that system. However, this characterization is not the most general possible, because

it can only specify quantum uncertainties; that is, uncertainties which are inherent to 𝑆 and

cannot be controlled by any means as, say, sharpening our measurement apparatus. In order to

include in our description classical uncertainties (that is, uncertainties which can be controlled

by, say, sharpening our measurement apparatus) we need a more general object, such as the

so called density operator, usually denoted by 𝜌.

Indeed, in “real life” we face the situation of not exactly knowing even if |𝜓⟩ alone can

characterize 𝑆. Perhaps all information we may have beforehand is only that there is a prob-

ability 𝑝𝛼 that 𝑆 can be characterized by the normalized state vector |𝜓𝛼⟩ from a given set

{ |𝜓𝛼⟩}. Fixing then this scenario, if the states accessible to 𝑆 lie in a Hilbert space ℋ𝑆, we

construct 𝜌 ∈ 𝐵(ℋ𝑆) simply as

𝜌
def=
∑︁
𝛼

𝑝𝛼 |𝜓𝛼⟩ ⟨𝜓𝛼| . (2.44)

It was said before that quantum mechanics can only make predictions relative to an en-

semble of equally prepared systems and that when we speak about the object |𝜓⟩ we refer

precisely to |𝜓⟩ determined via an ensemble as such. In this way, we immediately see that the

characterization through 𝜌 already includes the very nature of this “ensemble-determination”.

Of course 𝜌 must attend to some specific conditions in order to characterize 𝑆 prop-

erly. Direct from (2.44) we see that (i) 𝜌† = 𝜌 (𝜌 is Hermitian) and that (ii) ⟨𝜓| 𝜌 |𝜓⟩ =∑︀
𝛼 𝑝𝛼| ⟨𝜓|𝜓𝛼⟩ |2 ≥ 0 ∀ |𝜓⟩ ∈ ℋ𝑆 (𝜌 is positive semi-definite). If { |𝑎𝑛⟩} is a normalized eigen-

basis of the operator 𝐴 ∈ 𝐵(ℋ𝑆), because of Born rule (S2.1.1, postulate 4) and because∑︀
𝛼 𝑝𝛼 = 1, we must necessarily have (iii) Tr 𝜌 = ∑︀

𝛼 𝑝𝛼
∑︀
𝑛 | ⟨𝑎𝑛|𝜓𝛼⟩ |2 = 1 (𝜌 has unitary

trace).

If there is only one possible value for 𝛼 we say that 𝑆 is in a pure state. In this case, 𝜌 is

a single projector and we have 𝜌2 = 𝜌. If there is more than one possible value for 𝛼 we say

that 𝑆 is in a mixed state. For this latter case, in general, 𝜌2 ̸= 𝜌. Moreover, the quantity

𝑃
def= Tr

{︁
𝜌2
}︁

≤ 1 (2.45)

can measure how far 𝜌 is from a pure state (for which 𝑃 = 1) and, because of that, is called

purity.
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Now, consider an arbitrary orthonormal basis set { |𝑛⟩} ⊂ ℋ. We can define the so called

matrix elements of 𝜌 relative to the basis { |𝑛⟩} as the quantities 𝜌𝑚,𝑛 = ⟨𝑚| 𝜌 |𝑛⟩. Fur-

thermore, if we make the expansion |𝜓𝛼⟩ = ∑︀
𝑛 |𝑐𝛼,𝑛|𝑒𝑖𝜑𝑛 |𝑛⟩, 𝜑𝑛 ∈ R, we have 𝜌𝑚,𝑛 =∑︀

𝛼 𝑝𝛼|𝑐𝛼,𝑚||𝑐𝛼,𝑛|𝑒𝑖(𝜑𝑚−𝜑𝑛). The diagonal elements 𝜌𝑛,𝑛 = ∑︀
𝛼,𝑛 𝑝𝛼|𝑐𝛼,𝑛|2 are called the popu-

lations of 𝜌 because they are simply the probability that we will find the system in the state

|𝑛⟩. On the other hand, the non-diagonal elements 𝜌𝑚,𝑛, 𝑚 ̸= 𝑛, are called the coherences

of 𝜌 because they give us information about the phase difference between the states |𝑚⟩ and

|𝑛⟩. Note that this is a basis-dependent nomenclature and for the special case where { |𝑛⟩}

is a normalized eigenbasis which diagonalizes 𝜌, we see that only populations are nonzero.

Naturally, choosing this basis may simplify a lot specific analysis.

In the same context, it can be verified by expanding |𝜓𝛼⟩ in (2.44) in terms of { |𝑛⟩} that

the expectation value of the arbitrary observable 𝐴 is given simply by

⟨𝐴⟩𝜌 = Tr
{︁
𝜌𝐴
}︁

=
∑︁
𝛼

𝑝𝛼 ⟨𝜓𝛼|𝐴 |𝜓𝛼⟩
(2.46)

If we choose to characterize 𝑆 using 𝜌, we must also specify how the dynamics works.

Suppose that the Hamiltonian 𝐻̂ of 𝑆 is time-independent and that at 𝑡 = 0 the system is

in the state (2.44). Writing 𝑈̂𝑡 def= 𝑒−𝑖𝐻̂𝑡/~, postulate 3 of S2.1.1 implies that |𝜓𝛼⟩ evolves in

time to |𝜓𝛼(𝑡)⟩ = 𝑈̂𝑡 |𝜓𝛼⟩. Consequently,

𝜌(𝑡) = 𝑈̂𝑡𝜌𝑈̂
†
𝑡 . (2.47)

Differentiating this last equation, we arrive then at the so called von Neumann master

equation
𝑑𝜌

𝑑𝑡
= − 𝑖

~
[𝐻̂, 𝜌] (2.48)

which shall be very important to our subsequent analysis.

To solve this equation with initial condition 𝜌(0) = 𝜌 is, of course, equivalent to calculate

(2.47) explicitly and we shall use both approaches in due course, depending on the specific

situation.

In the next chapter we will show how the description of quantum systems in terms of

density matrices can be useful to analyze a very important and powerful context: that of an

open system. This is basically the context where a system of interest is no more isolated, but

coupled to another system in a way that they may interact.
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3 OPEN QUANTUM SYSTEMS

In this chapter, a generalization of the construction considered in the previous chapter

will be presented. Using the description of quantum system in terms of density operators,

introduced in S2.5, we shall construct a scenario which is closer to experimental realizations:

that of open quantum systems and master equations. We do so in order to set up the context

and the terminology to be used in our project (Chap.4).

3.1 DEFINITION AND TIME-EVOLUTION OF AN OPEN SYSTEM

Suppose that at 𝑡 = 0 we have a system of interest 𝑆 which is set in interaction with

another system 𝐸 (not necessarily large or having infinite degrees of freedom). We call 𝑆 the

reduced system or simply the system, 𝐸 the environment and 𝑆 + 𝐸 the composite system.

Suppose that the states of 𝑆 and 𝐸 lie within the Hilbert spaces ℋ𝑆 and ℋ𝐸, respectively.

We know from S2.1.5 that the Hilbert space of the composite system can be constructed simply

as ℋ𝑆 ⊗ℋ𝐸. Furthermore, if 𝑆 and 𝐸 are characterized at 𝑡 = 0 by the states 𝜌𝑆(0) = 𝜌𝑆 and

𝜌𝐸(0) = 𝜌𝐸, respectively, and if these states are initially uncorrelated, the initial composite

state can be constructed as

𝜌𝑆𝐸(0) = 𝜌𝑆 ⊗ 𝜌𝐸. (3.1)

Consequently, noting that, despite the fact that 𝑆 and 𝐸 can interact as times passes,

𝑆 + 𝐸 will be always isolated, the discussion of the above section implies that the state

𝜌𝑆𝐸(𝑡) = 𝑈̂𝑡𝜌𝑆 ⊗ 𝜌𝐸𝑈̂
†
𝑡 (3.2)

is not necessarily a product-form state as (3.1). This means that, in general, the interaction may

entangle 𝑆 and 𝐸. Of course, to obtain 𝑈̂𝑡 we must specify how the composite Hamiltonian

is constructed. If 𝑆 and 𝐸 when isolated have Hamiltonians 𝐻̂𝑆 ∈ 𝐵(ℋ𝑆) and 𝐻̂𝐸 ∈ 𝐵(ℋ𝐸),

respectively, the standard form of the composite Hamiltonian taken in literature is

𝐻̂ = 𝐻̂𝑆 ⊗ 𝐼 + 𝐼 ⊗ 𝐻̂𝐸 + 𝐻̂𝑆𝐸 (3.3)

where the “additional” term 𝐻̂𝑆𝐸 represents the interaction energy between 𝑆 and 𝐸.

Now, suppose that the state 𝜌𝑆𝐸(𝑡) is specified. Because 𝑆 is our system of interest, we

can define a partial trace operation ℰ : ℋ𝑆+𝐸 → ℋ𝑆 with respect only to the degrees of
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freedom of 𝐸 to know exactly what happened to 𝑆 after the interaction:

𝜌𝑆(𝑡) def= ℰ(𝜌𝑆) = Tr𝐸
{︂
𝑈̂𝑡𝜌𝑆 ⊗ 𝜌𝐸𝑈̂

†
𝑡

}︂
. (3.4)

This state is called the reduced state of 𝑆. For example, if 𝑆 + 𝐸 is in the Bell state 𝜌𝑆𝐸 =

|Φ+⟩ ⟨Φ+| = ( |0𝑆, 0𝐸⟩ ⟨0𝑆, 0𝐸|+ |0𝑆, 0𝐸⟩ ⟨1𝑆, 1𝐸|+ |1𝑆, 1𝐸⟩ ⟨0𝑆, 0𝐸|+ |1𝑆, 1𝐸⟩ ⟨1𝑆, 1𝐸|)/2,

we would have 𝜌𝑆 = ( |0𝑆⟩ ⟨0𝑆| + |1𝑆⟩ ⟨1𝑆|)/2.

It can be verified that the map ℰ satisfies (i) ℰ(𝑐𝜌) = 𝑐ℰ(𝜌), 𝑐 ∈ C; (ii) ℰ(𝜌1 + 𝜌2) =

ℰ(𝜌1) + ℰ(𝜌2); (iii) Tr{ℰ(𝜌)} = Tr{𝜌} and (iv) ℰ takes positive operators into positive

operators (S2.5 above). That is, ℰ is a linear positive-definite trace-preserving map. In the

same way, we could also define a reduced state for 𝐸 simply as 𝜌𝐸(𝑡) = Tr𝑆
{︁
𝑈̂𝑡𝜌𝑆 ⊗ 𝜌𝐸𝑈̂

†
𝑡

}︁
.

Finally, the following important question arises: we know, in principle, how to treat the

dynamics of an open system; but, for instance, would it possible to describe this dynamics in

some alternative way? Specifically, in a way s.t. we may refer only to quantities associated

with the system of interest 𝑆? Fortunately, the answer is positive. We treat that in a simple

context in the next section based in the exposition of ref. (SCHUMACHER; WESTMORELAND,

2010).

3.1.1 Kraus decomposition and the Lindblad master equation

Let { |𝑣𝑗⟩} ⊂ ℋ𝐸 be an orthonormal basis set and suppose that 𝐸 is initially in a pure

state 𝜌𝐸 = |𝜒⟩ ⟨𝜒| 1. If we define a set of operators {𝐴𝑗 : ℋ𝑆 → ℋ𝑆} s.t.

𝐴𝑗 |𝜑⟩𝑆 = ⟨𝑣𝑗| 𝑈̂𝑡 |𝜑, 𝜒⟩ ∀ |𝜑⟩𝑆 ∈ ℋ𝑆 (3.5)

the following relation can be verified 2:

ℰ(𝜌𝑆) =
∑︁
𝑗

𝐴𝑗𝜌𝑆𝐴
†
𝑗. (3.6)

That is, in this case to specify the set {𝐴𝑗} is equivalent to specify the action of ℰ . The

operators 𝐴𝑗 are known as Kraus operators and (3.6) as the Kraus decomposition of the map

ℰ . If ℋ𝐸 has dimension 𝑁 , we choose by convention 𝑗 = 0, 1, 2, ..., 𝑁 − 1. Moreover, it can

also be verified that the trace-preserving condition of ℰ implies a normalization condition for

{𝐴𝑗}, namely ∑︀𝑗 𝐴
†
𝑗𝐴𝑗 = 𝐼.

1 If it is not the case, we can always couple 𝐸 to another system 𝐸′ in a way that the total state is pure.
This method called purification.

2 This more easily achievable if we consider without loss of generality the diagonal representation (or the
spectral decomposition) of 𝜌𝑆 .
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For example, for a general qubit state 𝜌𝑆 = (𝐼 + 𝑠 · 𝜎)/2, 𝑠 = (𝑠𝑥, 𝑠𝑦, 𝑠𝑧) ∈ R3, 𝜎 =

(𝜎̂𝑥, 𝜎̂𝑦, 𝜎̂𝑧), interacting with another (environment) qubit described by the state |𝜒⟩ = ( |0⟩+

|1⟩)/
√

2 via the CNOT evolution operator (see (SCHUMACHER; WESTMORELAND, 2010), chap.

18) 𝑈̂𝑐 = 𝐼 ⊗ |0⟩ ⟨0| + 𝜎̂𝑥 |1⟩ ⟨1|, we have 𝐴0 = 𝐼/
√

2 and 𝐴1 = 𝜎̂𝑥/
√

2. In this case, 𝑆

evolves to the state 𝜌𝑆(𝑡) = (𝐼+𝑠𝑥𝜎̂𝑥)/
√

2, which is just the projection of 𝜌𝑆 onto the 𝑥-axis.

This approach is very useful because it allows us to develop a master equation to describe

the dynamics of 𝑆 “alone” without referring specifically to 𝐸. Although the most general

deduction of such a master equation requires a discussion about dynamical semi-groups in

Markovian dynamics and Liouville operators, we choose to follow the simpler procedure in

(SCHUMACHER; WESTMORELAND, 2010) and deduce it using a set of assumptions which shall

suffice for us in due course. For the most general case, we refer to (BREUER; PETRUCCIONE,

2007), Chap. 3.

First, we suppose that after a short time interval 𝛿𝑡, we have

ℰ(𝜌𝑆) = 𝜌𝑆 + 𝛿𝜌𝑆

=
∑︁
𝑗

𝐴𝑗𝜌𝑆𝐴
†
𝑗

(3.7)

where the 𝐴𝑗’s are written in an appropriate form to describe an infinitesimal change:

𝐴0 = 𝐼 + 𝛿𝑡(𝐿̂0 − 𝑖

~
𝐻̂)

𝐴𝑗 =
√
𝛿𝑡𝐿̂𝑗 (𝑗 ̸= 0).

(3.8)

Note that this choice recovers the infinitesimal dynamics of a closed system in the limit

𝐿̂𝑗 → 0. Indeed, if we apply 𝐴0, in this case, a large number of times we recover the exponential

representation 𝐴0 = 𝑈̂𝛿𝑡 = 𝑒−𝑖𝐻̂𝛿𝑡/~ for a finite (non-infinitesimal) time-evolution (see footnote

2 in S2.1.1).

Now, substituting (3.8) into (3.7), we get

𝐴0𝜌𝑆𝐴
†
0 = 𝜌𝑆 + 𝛿𝑡(𝐿̂0𝜌𝑆 + 𝜌𝑆𝐿̂0 − 𝑖

~
𝐻̂𝜌𝑆 + 𝑖

~
𝜌𝑆𝐻̂) + 𝒪(𝛿𝑡2)

𝐴𝑗𝜌𝑆𝐴
†
𝑗 = 𝛿𝑡𝐿̂𝑗𝜌𝑆𝐿̂

†.

(3.9)

Therefore, neglecting second order terms in 𝛿𝑡,

𝛿𝜌

𝛿𝑡
=
⎛⎝{𝐿̂0, 𝜌𝑆} − 𝑖

~
[𝐻̂, 𝜌𝑆] +

∑︁
𝑗

𝐿̂𝑗𝜌𝑆𝐿̂
†
𝑗

⎞⎠ (3.10)

where {𝐿̂0, 𝜌𝑆} def= 𝐿̂0𝜌𝑆 + 𝜌𝑆𝐿̂0 is the usual anticommutator symbolic notation. Taking then

explicitly the limit 𝛿𝑡 → 0, we have
𝑑𝜌𝑆
𝑑𝑡

= − 𝑖

~
[𝐻̂, 𝜌𝑆] +

∑︁
𝑗

𝐿̂𝑗𝜌𝑆𝐿̂
†
𝑗 + {𝐿̂0, 𝜌𝑆}. (3.11)
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Finally, because Tr{𝜌} = 1 ⇒ Tr{𝑑𝜌/𝑑𝑡} = 0 for arbitrary 𝜌, we get the restriction

𝐿̂0 = −1
2
∑︀
𝑗 𝐿̂

†
𝑗𝐿̂𝑗, 𝑗 ̸= 0, so that we arrive at

𝑑𝜌𝑆
𝑑𝑡

= − 𝑖

~
[𝐻̂, 𝜌𝑆] +

∑︁
𝑗

⎛⎝𝐿̂𝑗𝜌𝑆𝐿̂𝑗 − 1
2{𝐿̂†

𝑗𝐿̂𝑗, 𝜌𝑆}

⎞⎠. (3.12)

This is the so called Lindblad equation, which represents the time-evolution of an open system

only in terms of quantities related to the system of interest 𝑆 (recall that 𝐴𝑗 : ℋ𝑆 → ℋ𝑆.

Consequently, 𝐿̂ : ℋ𝑆 → ℋ𝑆).

It can be seen imediately by (3.12) that in the limit 𝐿̂𝑗 → 0 the Lindblad equation reduces

to the von Neumann equation (2.48), but there are some subtleties that shall be pointed out

in the following.

Recall that we are assuming since the very beginning that the state of 𝐸 is pure. Thus, we

are also considering that the initial composite state is separable. This means that we cannot

simply evolve the system from, say, 𝑡 = 0 to 𝑡 = 2𝛿𝑡 just applying the map (3.6) two times.

After the first evolution the state of the composite system could become an entangled state

and, consequently, the second evolution using the same map would not be justified. Therefore,

we see that the exact regime where we can apply the Lindblad equation so deduced is that

of 𝛿𝑡 ≪ 𝑇𝑆 and 𝛿𝑡 ≫ 𝑇𝐸, where 𝑇𝑆 is the time scale over which the state of 𝑆 does not

change significantly (although it may indeed change) and 𝑇𝐸 is the timescale over which the

entanglement between 𝑆 and 𝐸 is no longer present.

As an example of those subtleties, consider the case of a two-level atom 𝑆 in the sur-

roundings of an electromagnetic field 𝐸 in its vacuum state |0⟩𝐸 (a state where no photon

is present). The interaction between 𝑆 and 𝐸 may induce a transition in the atom making

it emit a photon to 𝐸 whose state can be entangled to the state of 𝑆. Therefore, as the

photon pertains now to 𝐸, we can say that the state of 𝑆 + 𝐸 became entangled. However,

the photon quickly propagates away, making the whole process to happen as if the state of

𝐸 have remained |0⟩𝐸. Therefore, 𝑇𝑆 would be the timescale over which the atom emits the

photon and, consequently, has its state altered, and 𝑇𝐸 would be the timescale over which the

photon is gone away (making the state of 𝐸 become |0⟩𝐸 again).

We shall regard the Lindblad equation as an effective model to describe the dynamics of

open quantum systems and, consequently, the specification of a set of Lindblad operators {𝐿̂}

must take this into account.

As a plausible illustration, we could model the transition of a two-level atom accompanied

by the emission of a photon taking a single Lindblad operator 𝐿̂ = Λ |0⟩ ⟨1|, where Λ is
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a constant with units of
√

time, and writing 𝜌 = 𝜌00 |0⟩ ⟨0| + 𝜌01 |0⟩ ⟨1| + 𝜌10 |1⟩ ⟨0| +

𝜌11 |1⟩ ⟨1|. Plugging that into the Lindblad equation we get a simple system of ordinary

differential equations for the components 𝜌𝑖,𝑗 whose solution is 𝜌0,0(𝑡) = 1 − 𝜌1,1(0)𝑒−𝑡2 ,

𝜌0,1(𝑡) = 𝜌0,1(0)𝑒−𝒵2𝑡/2, 𝜌1,0(𝑡) = 𝜌1,0(0)𝑒−𝒵2𝑡/2, 𝜌1,1(𝑡) = 𝜌1,1(0)𝑒−𝒵2𝑡. Note then that given

any initial state, for 𝑡 → ∞ the system approaches the ground state |0⟩ ⟨0|.

3.2 THE MONTE CARLO WAVEFUNTION APPROACH

After the discussion about the deduction of the Lindblad equation, whose objective is

to describe the evolution of the system 𝑆 “alone” without making explicit reference to its

environment 𝐸, we shall discuss now the alternative algorithmic approach given in (MøLMER;

CASTIN; DALIBARD, 1993). It may serve to shed some more light between the analysis of open

systems formulated in terms of density operators and in terms of state vectors. The equivalence

between the two methods shall be explicitly shown.

3.2.1 General presentation

Suppose that our system of interest 𝑆 in contact with an environment 𝐸 can be described

at time 𝑡 by the normalized vector state |𝜓𝑆(𝑡)⟩. We can predict its time-evolution basically

in two steps:

1. We define a new non-Hermitian Hamiltonian

𝐻̂ = 𝐻̂𝑆 − 𝑖~
2
∑︁
𝑗

𝐿̂†
𝑗𝐿̂𝑗 (3.13)

where 𝐻̂𝑆 is the Hamiltonian of the system 𝑆 (when isolated) and {𝐿̂𝑗} is a set of

Lindblad operators constructed as in the previous section. Then, for a sufficiently small

𝛿𝑡 we write

|𝜓𝑆(𝑡+ 𝛿𝑡)⟩ =
⎛⎝𝐼 − 𝑖

~
𝐻̂𝛿𝑡

⎞⎠ |𝜓𝑆(𝑡)⟩ (3.14)

for an infinitesimal time-evolution of the state |𝜓𝑆(𝑡)⟩. But because 𝐻̂ is not Hermitian,

we cannot guarantee that this evolved state ket will be normalized. Its norm will be

⟨𝜓𝑆(𝑡+ 𝛿𝑡)|𝜓𝑆(𝑡+ 𝛿𝑡)⟩ = ⟨𝜓𝑆(𝑡)|
⎛⎝𝐼 + 𝑖

~
𝐻̂†𝛿𝑡

⎞⎠⎛⎝𝐼 − 𝑖

~
𝐻̂𝛿𝑡

⎞⎠ |𝜓𝑆(𝑡)⟩

def= 1 − 𝛿𝑝

(3.15)
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where

𝛿𝑝 = 𝑖

~
⟨𝜓𝑆(𝑡)| (𝐻̂ − 𝐻̂†) |𝜓𝑆(𝑡)⟩ 𝛿𝑡 def=

∑︁
𝑗

𝛿𝑝𝑗

𝛿𝑝𝑗 = 𝛿𝑡 ⟨𝜓𝑆(𝑡)| 𝐿̂†
𝑗𝐿̂𝑗 |𝜓𝑆(𝑡)⟩ ≥ 0.

(3.16)

The magnitude of 𝛿𝑡 is adjusted so that the calculation is valid to first order and 𝛿𝑝 ≪ 1.

2. Now we simulate the effect of 𝐸 which may cause in 𝑆 a possible quantum jump, such

as a transition between accesible states of 𝑆 or even a projection of its state associated

with a possible measurement process (postulate 5 in S2.1.1). Because such change of

the state of 𝑆 may or may not happen, we decide it by throwing a coin 𝜖; i.e. we generate

a random number 𝜖 between 0 and 1 and compare the outcome with the value of 𝛿𝑝.

If 𝛿𝑝 < 𝜖, which is more likely to occur, we update the state of 𝑆 to

|𝜓′
𝑆(𝑡+ 𝛿𝑡)⟩ = |𝜓𝑆(𝑡+ 𝛿𝑡)⟩√

1 − 𝛿𝑝
. (3.17)

But if 𝛿𝑝 > 𝜖, we choose the new state of 𝑆 as 𝐿̂𝑗 |𝜓𝑆(𝑡)⟩ with probability 𝑝𝑗 = 𝛿𝑝𝑗/𝛿𝑝

and normalize it:

|𝜓′
𝑆(𝑡+ 𝛿𝑡)⟩ = 𝐿̂𝑗 |𝜓𝑆(𝑡)⟩⃒⃒⃒⃒

𝐿̂𝑗 |𝜓𝑆(𝑡)⟩
⃒⃒⃒⃒

= 𝐿̂𝑗 |𝜓𝑆(𝑡)⟩√︁
𝛿𝑝𝑗/𝛿𝑡

(3.18)

(Note that (3.16) implies ∑︀𝑗 𝑝𝑗 = 1.)

This algorithm is called the Monte Carlo wavefunction (MCWF) approach and, as an

illustration, we take a situation very similar to the one analyzed in the last paragraph of S

3.1.1. Consider a quibit state of the Harmonic oscillator (see S2.2)

|𝜓𝑆(0)⟩ = 𝛼0 |0⟩ + 𝛽0 |1⟩ . (3.19)

Suppose that we know that by interacting with some environment, the system will relax into

the state |0⟩. This process may occur accompanied by the emission of a photon (probability

|𝛼0|2) or without emiting any photon (probability |𝛽0|2). (Note also that this is very similar to

the situation of a measurement process of the number operator 𝑁̂ = 𝑎̂†𝑎̂, whose eigenstate

set is { |𝑛⟩}).
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If we fix the energy reference point as the energy of the ground state |0⟩, 𝐸0 = ~𝜔/2, we

may use the Hamiltonian 𝐻̂𝑆 = ~𝜔𝑁̂ instead of (2.21). Choosing a single Lindblad operator

𝐿̂1 =
√

Γ𝑎̂, the first step of the algorithm leads to

|𝜓′
𝑆(𝛿𝑡)⟩ = 𝛼0 |0⟩ + 𝑒−𝑖𝜔𝛿𝑡𝑒

−Γ𝛿𝑡
2 𝛽0 |1⟩ (3.20)

where we used that 𝑥 ≪ 1 ⇒ 1 + 𝑥 ≈ 𝑒𝑥. The probability for a quantum jump emitting a

photon between 𝑡 = 0 and 𝑡 = 𝛿𝑡 to happen is then 𝛿𝑝 = Γ|𝛽0|2𝛿𝑡. After that, by (3.18), the

system relax into the state |0⟩ and remains there.

This last situation corresponds to the case where 𝛿𝑝 > 𝜖. For the case 𝛿𝑝 < 𝜖 the state of

the system would simply evolve to

|𝜓′
𝑆(𝛿𝑡)⟩ = 𝛼0

⎛⎝1 + Γ𝛿𝑡
2 |𝛽0|2

⎞⎠ |0⟩ + 𝛽0

⎛⎝1 − Γ𝛿𝑡
2 |𝛼0|2

⎞⎠𝑒−𝑖𝜔𝛿𝑡 |1⟩ . (3.21)

Note that the probability of being in the state |0⟩ has increased, whilst the probability of being

in the state |1⟩ has decreased. This indicates that the system indeed evolves into relaxation

(in this case emitting no photon).

3.2.2 Equivalence between the MCWF approach and the Lindblad equation ap-

proach

Before proceeding, we show explicitly that the two presented methods for describing the

effective evolution of a quantum open system are actually equivalent.

First, because in the MCWF approach we are using the state ket formalism of S2.1.1, we

must look at an ensemble of copies of the same system in order to determine its state at

time 𝑡. More precisely, to construct the density matrix which describe the system at time 𝑡,

we must average the projectors |𝜓𝑆(𝑡)⟩ ⟨𝜓𝑆(𝑡)| over all possible states |𝜓𝑆(𝑡)⟩ in which the

system may be at time 𝑡.

At 𝑡+ 𝛿𝑡 we have a probability 𝛿𝑝 of being in the state (3.18) and a probability 1 − 𝛿𝑝 of

being in the state (3.17). Therefore, we get

𝜌𝑆(𝑡+ 𝛿𝑡) = 𝛿𝑝
∑︁
𝑗

𝑝𝑗
𝐿̂ |𝜓𝑆(𝑡)⟩ ⟨𝜓𝑆(𝑡)| 𝐿̂†

𝛿𝑝𝑗/𝛿𝑡
+

+ (1 − 𝛿𝑝) |𝜓𝑆(𝑡+ 𝛿𝑡)⟩ ⟨𝜓𝑆(𝑡+ 𝛿𝑡)|
1 − 𝛿𝑝

.

(3.22)
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Now, if we use (3.14) this last equation reads

𝜌𝑆(𝑡+ 𝛿𝑡) = |𝜓𝑆(𝑡)⟩ ⟨𝜓𝑆(𝑡)| + 𝑖𝛿𝑡

~
[ |𝜓𝑆(𝑡)⟩ ⟨𝜓𝑆(𝑡)| , 𝐻̂𝑆]+

+ 𝛿𝑡
∑︁
𝑗

⎛⎝𝐿̂𝑗 |𝜓𝑆(𝑡)⟩ ⟨𝜓𝑆(𝑡)| 𝐿̂𝑗 − 1
2{𝐿̂†

𝑗𝐿̂𝑗, |𝜓𝑆(𝑡)⟩ ⟨𝜓𝑆(𝑡)|}
⎞⎠. (3.23)

Taking then the average of this last equation over all possible states |𝜓𝑆(𝑡)⟩ ⟨𝜓𝑆(𝑡)| and

making 𝛿𝑡 → 0 we arrive at the Lindblad equation (3.12). Q.E.D.

We point that although the two methods lead to the same physical predictions, there

are many computational advantages in using the MCWF approach instead of the Lindblad

equation. Many examples of such are given in (MøLMER; CASTIN; DALIBARD, 1993).

3.2.3 Expectation values of observables

Because after repeating the MCWF approach to an ensemble of equally prepared systems

we shall have at time 𝑡 a set of 𝑁 → ∞ state vectors { |𝜓𝑛𝑆(𝑡)⟩}, 𝑛 = 0, 1, 2, ..., 𝑁 , we can

define the expectation value of some observable 𝐴 ∈ 𝐵(ℋ𝑆) at time 𝑡 simply as the mean

value

⟨𝐴⟩(𝑡) = 1
𝑁

∑︁
𝑛

⟨𝜓𝑛𝑆(𝑡)|𝐴 |𝜓𝑛𝑆(𝑡)⟩ . (3.24)

Because 𝑁 is supposed to be large, this shall give us a correct value for the expectation value

defined in S2.1.3. We shall come back to this point in Chap.4.

3.3 MEASUREMENT MASTER EQUATION

In S3 we presented the map ℰ defined by (3.4) and (3.6) in the context of time-evolutions,

but we made no restriction about what it can represent. In particular, it may also represent the

effective action of a sequence of measurements made in some isolated system described by

the state 𝜌(𝑡) at time 𝑡 (just as if the system was the reduced system 𝑆 and the experimental

apparatus was the environment 𝐸). This process is also called continuous monitoring process

of the system and we shall see here, following (CRESSER et al., 2006), that a simple master

equation of Lindblad-form can also be derived in this context.

Let ℋ be the Hilbert space of our system and {𝑎𝑛} be the spectrum of the observable

𝐴 ∈ 𝐵(ℋ). Suppose that the eingenvalue 𝑎𝑛 is associated with the eingenvector |𝑎𝑛⟩ of 𝐴.

In terms of density operators, the von Neumann measurement scheme (S2.1.1, postulate 5)
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can be represented simply by

𝜌
measurement−−−−−−−→ 𝑃𝑎𝑛𝜌𝑃𝑎𝑛

Tr
{︁
𝑃𝑎𝑛𝜌

}︁ (3.25)

where 𝑃𝑎𝑛

def= |𝑎𝑛⟩ ⟨𝑎𝑛| = 𝑃 †
𝑎𝑛

is the projector onto the subspace asosciated with |𝑎𝑛⟩. In this

case, note that if 𝜌 = |𝜓⟩ ⟨𝜓|, Tr
{︁
𝑃𝑎𝑛𝜌

}︁
= | ⟨𝑎𝑛|𝜓⟩ |2 is the probability that the outcome

will be 𝑎𝑛.

If the result of the measurement is not known (or, in other words, is not recorded), we

must also incorporate that into the density operator (S2.5):

𝜌 →
∑︁
𝑛

| ⟨𝑎𝑛|𝜓⟩ |2 𝑃𝑎𝑛𝜌𝑃𝑎𝑛

Tr
{︁
𝑃𝑎𝑛𝜌

}︁ =
∑︁
𝑛

𝑃𝑎𝑛𝜌𝑃𝑎𝑛 . (3.26)

The set {𝑃𝑎𝑛} will be then the Kraus decomposition of the evolution caused by the monitoring

process.

Let 𝐻̂ be the Hamiltonian of the system as usual and suppose that now we make a sequence

of measurements of the observable 𝐴 at a measurement rate 𝑅. After a small time interval 𝛿𝑡

there will be a probability 𝑅𝛿𝑡 that the state of the system will be given by the above equation

(that is, that a measurement occurs in the time interval 𝛿𝑡) and a probability 1 − 𝑅𝛿𝑡 that

the state of the system will be

𝜌(𝑡+ 𝛿𝑡) = 𝜌(𝑡) − 𝑖

~
[𝐻̂, 𝜌]𝛿𝑡 (3.27)

according to the von Neumann master equation (2.48) (this is the case where a measurement

does not occur in the time interval 𝛿𝑡). We know that the density operator must also incorporate

those two possibilities at 𝑡+ 𝛿𝑡. Therefore, we have

𝜌(𝑡+ 𝛿𝑡) = (1 −𝑅𝛿𝑡)𝜌(𝑡) − 𝑖

~
[𝐻̂, 𝜌]𝛿𝑡+𝑅𝛿𝑡

∑︁
𝑛

𝑃𝑎𝑛𝜌𝑃𝑎𝑛 (3.28)

at first order in 𝛿𝑡. Finally, taking the limit 𝛿𝑡 → 0 and using that 𝑃 2
𝑎𝑛

= 𝑃𝑎𝑛 , we arrive at the

master equation
𝑑𝜌

𝑑𝑡
= − 𝑖

~
[𝐻̂, 𝜌] +𝑅

⎡⎣∑︁
𝑛

𝑃𝑎𝑛𝜌𝑃𝑎𝑛 − 𝜌

⎤⎦ (3.29)

which is clearly of Lindblad form (3.12) with Lindblad operators {𝐿̂𝑎𝑛

def=
√
𝑅𝑃𝑎𝑛}.

As an example, suppose that we have a two-level atom whose resonant interaction with a

driven laser field is described by the Hamiltonian 𝐻̂ = −~Ω𝜎̂𝑥/2, where Ω is a constant called

Rabi frequency of the atom. If at time time 𝑡 the atom is subject to a monitoring process as



43

described above and its state may be projected to |0⟩ or |1⟩, we take the elements of the set

{𝑃𝑎𝑛} to be

𝑃0 = |0⟩ ⟨0|

𝑃1 = |1⟩ ⟨1| .
(3.30)

In this case, the master equation (3.29) takes the form (see S2.4)

𝑑𝜌

𝑑𝑡
= 𝑖Ω

2 [𝜎̂𝑥, 𝜌] + 𝑅

2 (𝜎̂𝑧𝜌𝜎̂𝑧 − 𝜌). (3.31)

Writing then 𝜌 as a general time-dependent qubit state,

𝜌(𝑡) = 1
2

(︂
𝐼 + 𝑢(𝑡)𝜎̂𝑥 + 𝑣(𝑡)𝜎̂𝑦 + 𝑤(𝑡)𝜎̂𝑧

)︂
(3.32)

we arrive at the following system of linear differential equations

𝑑𝑢

𝑑𝑡
= −𝑅𝑢

𝑑𝑣

𝑑𝑡
= Ω𝑤 −𝑅𝑣

𝑑𝑤

𝑑𝑡
= −Ω𝑣.

(3.33)

The solution can verified to be:

𝑢(𝑡) = 𝑢(0)𝑒−𝑅𝑡

𝑣(𝑡) = 𝑣(0)𝑒−𝑅𝑡/2

⎛⎝ cos Ω′𝑡− 𝑅

2Ω′ 𝑡

⎞⎠+ 𝑤(0)𝑒−𝑅𝑡/2 Ω
Ω′ sin Ω′𝑡

𝑤(𝑡) = 𝑤(0)𝑒−𝑅𝑡/2

⎛⎝ cos Ω′𝑡+ 𝑅

2Ω′ 𝑡

⎞⎠+ 𝑣(0)𝑒−𝑅𝑡/2 Ω
Ω′ sin Ω′𝑡

(3.34)

with Ω′ def=
√

Ω2 − 𝛾2. Note that at 𝑡 → ∞ the atom reaches the steady state 𝜌 = 𝐼/2, which

is a fully mixed state as described in S2.5.
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4 SIMULATING AN OPEN SYSTEM VIA CONTINUOUS SPIN MEASURE-

MENTS

This chapter contains the main results of our project. We shall investigate precisely how

continuous observations of the spin degree of freedom of an harmonic oscillator put in a region

of space where an inhomogeneous magnetic field is present may affect its orbital degree of

freedom. In analogy with the notation of the previous chapter, we shall refer to this orbital

degree of freedom of the system as 𝑆 and to the spin degree of freedom coupled with 𝑆 through

the inhomogeneous magnetic field as 𝐸. The situation can be pictured “imaginatively” as if

𝐸 was a “diathermal wall” mediating the interaction between the system and an effective

environment (the measurement apparatus). Particularly, this is a problem to which we could

find a detailed closed analytical solution not only for the state of the system, but also for all

relevant physical quantities (something unusual given the complexity intuitively expected by

its statement). Numerical simulations shall be presented in order to double-check or clarify

those results and an appendix containing lengthily calculations is also included at the end for

the sake of fluidity and cleanness of the discussion.

4.1 PRESENTATION OF THE SYSTEM

Suppose that we put a spin-1/2 oscillating particle (S2.4) initially described by a coherent

state |𝑧⟩ in a region where an inhomogeneous magnetic field B is present. If we fix our

coordinate system (𝑥, 𝑦, 𝑧) in a way that the particle oscillates in the 𝑥-direction and B points

effectively in the 𝑧-direction, we may write B = 𝐵0𝑓(𝑥)e𝑧, where 𝑓 is, for now, an arbitrary

dimensionless function of the coordinate 𝑥.

Following Postulate 2 of S2.1.1 and taking Eqs.(2.16),(2.43) into account, we may, there-

fore, write the Hamiltonian of the system simply as

𝐻̂ = 𝐻̂𝐻𝑂 ⊗ 𝐼 − 𝛼𝑓(𝑋̂) ⊗ 𝜎𝑧 (4.1)

where 𝛼 = 𝛾𝐵0~
2 is the coupling constant that describes the strength of interaction between

the system and the magnetic field B (or, in other words, how strongly B may affect the

spin of the particle). Note that this last equation is already in the form of Eq.(3.3) (with

𝐻̂𝐸
def= 0), indicating that we may study, indeed, how changes in 𝐸 may affect 𝑆 (as if 𝐸 was

a “diathermal wall” through which energy coming from the external world may pass).
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4.1.1 Time-evolution of a superposition of coherent states

As mentioned, our aim is to study in the following sections how continuous measurements

performed on 𝐸 may affect 𝑆. However, before that, we need to address the question of how

a state of the form

|𝜓(0)⟩ def=
⎛⎝ 𝑛∑︁
𝑖=1

𝑐𝑖 |𝑧𝑖⟩

⎞⎠⊗ |𝑠⟩𝑥 (4.2)

unitarily evolves in time (S2.1.1, postulate 3) given the Hamiltonian (4.1). In this formula, the

states |𝑧𝑖⟩, 𝑖 = 1, 2, 3, ..., 𝑛, are all eigenstates of the operator 𝑎̂ (coherent states), the 𝑐𝑖’s

are, for now, arbitrary complex coefficients, and 𝑠 = ±1. The evolution of the initial state |𝑧⟩

of 𝑆 would correspond naturally to the case where 𝑖 = 1, 𝑐1 = 1. Latter on, when we discuss

our spin measurement protocol (S4.2), it will be clarified why we need to evolve a state of this

specific type and why we are considering the state of 𝐸 written in terms of the eigenstates of

𝜎̂𝑥, not of 𝜎̂𝑧, as would be more natural to regard if we look at our Hamiltonian 1.

First, we begin by noting that, by Eqs.(2.41), we have

|𝑠⟩𝑥 = 1√
2

( |+⟩ + 𝑠 |−⟩) (4.3)

so that, writing for now |𝜑⟩ def= ∑︀
𝑖 𝑐𝑖 |𝑧𝑖⟩,

|𝜓(𝛿𝑡)⟩ = 𝑒− 𝑖
~ 𝐻̂𝛿𝑡 |𝜓(0)⟩

=
⎡⎣ ∞∑︁
𝑛=0

⎛⎝− 𝑖

~
𝛿𝑡

⎞⎠𝑛 𝐻̂𝑛

𝑛!

⎤⎦ |𝜑⟩ 1√
2

( |+⟩ + 𝑠 |−⟩).
(4.4)

But,

𝐻̂ |𝜑⟩ |±⟩ = {[𝐻̂𝐻𝑂 ∓ 𝛼𝑓(𝑋̂)] |𝜑⟩} |±⟩

= (𝐻̂± |𝜑⟩) |±⟩

⇒ 𝐻̂𝑛 |𝜑⟩ |±⟩ = (𝐻̂𝑛
± |𝜑⟩) |±⟩

(4.5)

where 𝐻̂𝐻𝑂 = 𝑃 2/2𝑚 + 𝑚𝜔2𝑋̂2/2 is the Hamiltonian of the harmonic oscillator [Eq.(2.16)]

and 𝐻̂±
def= 𝐻̂𝐻𝑂 ∓ 𝛼𝑓(𝑋̂).

Therefore, writing 𝑈̂ 𝛿𝑡
± , we arrive at

|𝜓(𝛿𝑡)⟩ = 1√
2

[(𝑒− 𝑖
~ 𝐻̂+𝛿𝑡) |𝜑⟩ |+⟩ + 𝑠(𝑒− 𝑖

~ 𝐻̂−𝛿𝑡) |𝜑⟩ |−⟩]

= 1√
2

[(𝑈̂ 𝛿𝑡
+ |𝜑⟩) |+⟩ + 𝑠(𝑈̂ 𝛿𝑡

− |𝜑⟩) |−⟩]

= 1
2{[(𝑈̂ 𝛿𝑡

+ + 𝑠𝑈̂ 𝛿𝑡
− ) |𝜑⟩] |+⟩𝑥 + [(𝑈̂ 𝛿𝑡

+ − 𝑠𝑈̂ 𝛿𝑡
− ) |𝜑⟩] |−⟩𝑥}.

(4.6)

1 Nonetheless, some information about this choice can be already obtained in the Introduction of this present
text.
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Now, in order to finish the calculation we must explicitly obtain 𝑈̂± |𝜑⟩ = 𝑒−𝑖𝐻̂±𝛿𝑡/~ |𝜑⟩.

This is not (analytically) easy in general because it may depend on the specific dependence

of 𝑓(𝑋̂) on 𝑋̂. However, this is achievable, for example, for the case 𝑓(𝑋̂) def= 𝑋̂/𝑑, where

𝑑 =
√︁
~/2𝑚𝜔 2. We believe that this is also true for 𝑓(𝑋̂) ∝ 𝑋̂2, but in this project we shall

focus in the former case.

4.1.2 Linear external magnetic field

Let us begin by writing the Hamiltonians 𝐻̂± using the representation of Eq.(2.16) in terms

of 𝑋̂ and 𝑃 , the position and the momentum operators of the harmonic oscillator. We have

𝐻̂± = 𝑃 2

2𝑚 + 𝑚𝜔2𝑋̂2

2 ∓ 𝛼

√︃
2𝑚𝜔
~

𝑋̂. (4.7)

Completing the square, this gives

𝐻̂± = 1
2𝑚𝑃 2 + 𝑚𝜔2

2 (𝑋̂ ∓𝑋𝛼)2 − 𝑚𝜔2

2 𝑋2
𝛼 (4.8)

where 𝑋𝛼
def= 𝛼

𝑚𝜔2

√︁
2𝑚𝜔
~ . Defining a further parameter 𝑧𝛼 def= 𝑋𝛼

√︁
𝑚𝜔/2~, this last equation

can be rewritten in terms of the non-Hermitian operators

𝑎̂±
def=
√︂
𝑚𝜔

2~ (𝑋̂ ∓𝑋𝛼) + 𝑖

√︃
1

2𝑚~𝜔
𝑃 2

= 𝑎̂∓ 𝑧𝛼.

(4.9)

That is,

𝐻̂± = ~𝜔
(︂
𝑎̂†

±𝑎̂± + 1
2

)︂
− ~𝜔𝑧2

𝛼. (4.10)

This is handful, because now we note the following fact: if the state |𝑧𝑖⟩ is an eigenstate

of 𝑎̂ with eigenvalue 𝑧𝑖, so it is an eigenstate of 𝑎̂± with eigenvalue 𝑧𝑖 ∓ 𝑧𝛼. Hence, following

the discussion of S2.2, if |𝑛±⟩ is an eigenstate of 𝑁̂±
def= 𝑎̂†

±𝑎̂± (and, consequently, of 𝐻̂±)

with eigenvalue 𝑛±, the following expansion is possible:

|𝑧𝑖⟩ = 𝑒− |𝑧𝑖∓𝑧𝛼|2
2

∞∑︁
𝑛=0

(𝑧𝑖 ∓ 𝑧𝛼)𝑛√
𝑛!

|𝑛±⟩ . (4.11)

2 This expression for 𝑑 is a convenient choice. Because the purpose of this parameter is only to make 𝑓
dimensionless, any parameter with units of length would in principle suffice.
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Using this last equation together with Eq.(2.29), now it becomes very easy to obtain 𝑈̂ 𝛿𝑡
± |𝜑⟩

explicitly 3:

𝑈̂ 𝛿𝑡
± |𝜑⟩ = 𝑈̂ 𝛿𝑡

±

⎛⎝∑︁
𝑖

𝑐𝑖 |𝑧𝑖⟩

⎞⎠
=
∑︁
𝑖

𝑐𝑖𝑈̂
𝛿𝑡
± |𝑧𝑖⟩

= 𝑒−𝑖𝜔( 1
2 −𝑧2

𝛼)∑︁
𝑖

𝑐𝑖 |(𝑧𝑖 ∓ 𝑧𝛼)𝑒−𝑖𝜔𝛿𝑡⟩± .

(4.12)

where the subscript “±” indicates that we are expanding the coherent state |(𝑧𝑖 ∓ 𝑧𝛼)𝑒−𝑖𝜔𝛿𝑡⟩

using the basis { |𝑛±⟩}. We may come back to the eigenstate basis { |𝑛⟩} of 𝑁̂ = 𝑎̂†𝑎̂ by

noting that, conversely to the previous fact, if |𝑧±⟩ is an eigenstate of 𝑎̂± with eigenvalue 𝑧±,

so it is an eigenstate of 𝑎̂ = 𝑎̂± ± 𝑧𝛼 with eigenvalue 𝑧± ± 𝑧𝛼. That is,

𝑈̂ 𝛿𝑡
± |𝜑⟩ = 𝑒−𝑖𝜔( 1

2 −𝑧2
𝑖 𝛼)𝛿𝑡 |(𝑧𝑖 ∓ 𝑧𝛼)𝑒−𝑖𝜔𝛿𝑡 ± 𝑧𝛼⟩ . (4.13)

Finally, for a fixed value of 𝛿𝑡, we may define the set of maps{︂
𝒵± : R × C → C

⃒⃒⃒⃒
𝒵±(𝑧𝛼, 𝑧; 𝛿𝑡) def= (𝑧 ∓ 𝑧𝛼)𝑒−𝑖𝜔𝛿𝑡 ± 𝑧𝛼

}︂
(4.14)

and drop the unimportant global phase factor 𝑒−𝑖(1/2−𝑧2
𝛼)𝛿𝑡 4 to write (4.6) simply as

|𝜓(𝛿𝑡)⟩ = 1
2

⎧⎨⎩∑︁
𝑖

𝑐𝑖 [ |𝒵+(𝑧𝛼, 𝑧𝑖)⟩ + 𝑠 |𝒵−(𝑧𝛼, 𝑧𝑖)⟩] |+⟩𝑥 +

+
∑︁
𝑖

𝑐𝑖 [ |𝒵+(𝑧𝛼, 𝑧𝑖)⟩ − 𝑠 |𝒵−(𝑧𝛼, 𝑧𝑖)⟩] |−⟩𝑥

⎫⎬⎭
(4.15)

For the special case where 𝑖 = 1, 𝑐1 = 1, 𝑧1 = 𝑧, we have

|𝜓(𝛿𝑡)⟩ = 1
2

{︂
[ |𝒵+(𝑧𝛼, 𝑧)⟩ + 𝑠 |𝒵−(𝑧𝛼, 𝑧)⟩] |+⟩𝑥 +

+ [ |𝒵+(𝑧𝛼, 𝑧)⟩ − 𝑠 |𝒵−(𝑧𝛼, 𝑧)⟩] |−⟩𝑥
}︂
.

(4.16)

The importance of those mathematical results shall become clear in the next section, where

we will define our measurement protocol. For the sake of latter reference, we state also here

the general form of 𝑁 compositions of the map (4.14):

𝒵𝐼𝑁
(𝑧𝛼, 𝑧; 𝛿𝑡) def= (𝑧 − 𝑖1𝑧𝛼)𝑒−𝑖𝑁𝜔𝛿𝑡 + 𝑧𝛼

⎡⎣𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1)𝑒−𝑖(𝑁−𝑗)𝜔𝛿𝑡 + 𝑖𝑁

⎤⎦ . (4.17)

3 Note only the additional phase factor 𝑒−𝑖𝜔𝑧2
𝛼 in comparison to Eq.(2.29). It comes from the definition of

𝐻̂± (Eq.(4.10)), which is basically the Hamiltonian of the Harmonic oscillator with an additive constant.
However, this phase factor shall not be important for us.

4 This is possible, as mentioned before, because expectation values are not changed by a global phase factor.
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In this notation, 𝐼𝑁 = {𝑖𝑁 , 𝑖𝑁−1, 𝑖𝑁−2, ..., 𝑖2, 𝑖1} denotes an specific arrangement of 𝑁 ele-

ments 𝑖𝑘 = ±1. It is to be understood that the map 𝒵𝑖1 is applied first, followed the maps

𝒵𝑖2 , 𝒵𝑖3 , 𝒵𝑖4 , ..., 𝒵𝑖𝑁 (notice that the ordering of the set 𝐼𝑁 runs from 𝑖𝑁 to 𝑖1, not from 𝑖1

to 𝑖𝑁). This last result can be proved straightforwardly by finite induction.

We further fix that all capital subscripts (such as 𝐼𝑁) will denote specific arrangements,

such as, say, for 𝑁 = 3, {+,+,+}, {+,−,+}, {−,−,−}, and so on. For the sake of

clarity, we anticipate that latter on we shall perform summations over all possibilities of such

arrangements; that is, we shall write, for example, expressions like

∑︁
𝐼𝑁

|𝒵𝐼𝑁
⟩ (4.18)

or even ∑︁
𝐼𝑁 ,𝐽𝑁

|𝒵𝐼𝑁
⟩ ⟨𝒵𝐽𝑁

| . (4.19)

(From now on let us also omit the arguments 𝑧𝛼, 𝑧 and 𝛿𝑡 from the maps 𝒵𝑁
𝐼 in order to clean

the notation even further.)

We are now in a position to begin our analysis.

4.2 SPIN MEASUREMENT PROTOCOL

Let us return to our first question of how continuous observations (measurements) of the

spin degree of freedom 𝐸 can affect the orbital degree of freedom 𝑆. More precisely, we want to

predict what happens to physical quantities related to 𝑆 when the following simple procedure

is repeated a certain number 𝑁 of times:

1. The state of the system (𝑆+𝐸) is let to evolve unitarily in time by 𝛿𝑡 units: |𝜓𝑆+𝐸(𝑡)⟩ →

|𝜓𝑆+𝐸(𝑡+ 𝛿𝑡)⟩.

2. A von Neumann measurement is performed on 𝐸 returning a random outcome and

projecting its state onto some state |𝜒𝐸⟩.

According to our Hamiltonian (Eq.(4.1)), the presence of the magnetic field may induce

interactions between 𝑆 and 𝐸 as time passes, so that the projection of 𝐸 in the second step

may induce transitions in 𝑆. This shall become fully clear in the next section.

This is a so called stochastic process, because it involves a set of random outcomes. In

other words, if the procedure is repeated a certain number 𝑁 of times for a given initial state
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and, then, repeated again the same number 𝑁 of times for the same given initial state, the

state of the system after the second set of repetitions will not, in general be equal to the state

of the system after the first set of repetitions. In the literature it is common to call a step

a single realization of 1 and 2 above and a trajectory, usually symbolized by 𝛾𝑁 , a set of 𝑁

steps repeated in sequence.

As discussed briefly in Chap.2, quantum mechanics is an ensemble theory. Because of that,

a large enough set {𝛾𝑁𝑘 }𝑛𝑘=1 of 𝑁 -steps trajectories must be realized so that we obtain a set

{ |𝜓𝑘𝑁⟩}𝐽𝑘=1 of all possible states which may describe the system at step 𝑁 together with their

respective probabilities 𝑝𝑘 to occur (or their frequencies of occurrence). More precisely, if we

realize a large set of 𝑛 𝑁 -steps trajectories, we may determine with accuracy that there are

𝐽 possible states accessible to the system at step 𝑁 and that, if one of such state, say,
⃒⃒⃒
𝜓𝑘𝑁
⟩

occurs 𝑛𝑘 times, its probability of occurence is simply 𝑝𝑘 = 𝑛𝑘/𝑛. In this way, the quantity

⟨𝐴⟩ =
𝐽∑︁
𝑘=1

𝑝𝑘 ⟨𝜓𝑘𝑁 |𝐴 |𝜓𝑘𝑁⟩ (4.20)

coincides with the expectation value of some observable 𝐴 ∈ 𝐵(ℋ), where ℋ is the Hilbert

space of the system. This is very similar to the well known context of statistical mechanics,

where a system let to evolve sufficiently long in time access all of its possible microstates,

and those microstates, given their respective probabilities to occur as time passes, are used to

compute mean values of physical quantities related to the system.

This treatment for our specific case (that is, of a single coherent state whose spin is subject

to continuous observations in a region of space where an inhomogeneous linear magnetic field

is present) shall be explicitly developed in the following two subsections.

4.2.1 Determination of a single trajectory

Let us analyse what happens in a single trajectory 𝛾𝑁𝑘 if the initial state of the system is

prepared as

|𝜓(0)⟩ = |𝑧⟩ |𝑠0⟩𝑥 (4.21)

and we subject 𝐸 to continuous observations of 𝑆𝑥.

But, why 𝑆𝑥? Indeed, we could have chosen to perform measurements of 𝑆𝑛, where 𝑛 is an

arbitrary direction. However, not of 𝑆𝑧, as Eq.(4.5) implies that after the first measurement

the state of 𝐸 would be projected onto |+⟩ or |−⟩ and remain there even throughout a
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time-evolution. In other words, in the case where we choose to measure 𝑆𝑧, if the outcome

of the first measurement happens to be, say, +~/2, the outcome of all the subsequent ones

would be simply +~/2 with probability 1, meaning that the process would not be random at

all. Hence, it would not be possible to simulate the contact of a system of interest with an

environment.

This choice of 𝑆𝑥 (or 𝑆𝑛, 𝑛 ̸= 𝑧) is also physically interesting, because the magnetic field B

points in the 𝑧-direction and we know (as mentioned in S2.4) that the magnetic moment 𝜇 ∝ S

of the system will tend to align with it after some time. This means that if a measurement of

𝑆𝑥 is performed, the state of 𝐸 is projected onto |+⟩𝑥 or |−⟩𝑥 and the time-evolution tends

to bring it back to the 𝑧-direction. This is more or less as if we were “hitting 𝐸” onto the

𝑥-direction whilst the field tries to realign it with the 𝑧-direction.

That said, we turn now to the protocol.

STEP 0.

The state of the system is given simply by Eq.(4.21) and after a time 𝛿𝑡, it evolves to

Eq.(4.16):

|𝜓0(𝛿𝑡)⟩ = 1
2{[(𝑈̂ 𝛿𝑡

+ + 𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩] |+⟩𝑥 + [(𝑈̂ 𝛿𝑡

+ − 𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩] |−⟩𝑥}

= 1
2[( |𝒵+⟩ + 𝑠0 |𝒵−⟩) |+⟩𝑥 + ( |𝒵+⟩ − 𝑠0 |𝒵−⟩) |−⟩𝑥)].

If now a measurement of 𝑆𝑥 is performed on 𝐸, Born rule (S2.1.1, postulate 4) implies

that we have a probability

𝑝1(𝑠𝑘1|𝑠0) = 1
4 ||(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘1𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩ ||2

= 1
4 || |𝒵+⟩ + 𝑠𝑘1𝑠0 |𝒵−⟩ ||2

(4.22)

that the outcome will be 𝑠𝑘1~/2 = ±~/2. Consequently, immediately after that, 𝐸 will

be projected onto |𝑠𝑘1 = ±⟩𝑥.

STEP 1.

A measurement of 𝑆𝑥 was performed on 𝐸, the outcome was 𝑠𝑘1~/2 and, according to

the previous mathematical analysis, the state of 𝑆 + 𝐸 is now

|𝜓𝑘1(𝛿𝑡)⟩ =
⎡⎣ (𝑈̂ 𝛿𝑡

+ + 𝑠𝑘1𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩

||(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘1𝑠0𝑈̂ 𝛿𝑡

− ) |𝑧⟩ ||

⎤⎦ |𝑠𝑘1⟩𝑥

=
⎡⎣ |𝒵+⟩ + 𝑠𝑘1𝑠0 |𝒵−⟩

|| |𝒵+⟩ + 𝑠𝑘1𝑠0 |𝒵−⟩ ||

⎤⎦ |𝑠𝑘1⟩𝑥 .
(4.23)
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Note that the projection of the state of 𝐸 effectively changes the state of 𝑆, meaning

that something happened to 𝑆 after an observation of 𝐸. More precisely, an observation

of 𝐸 has turned now 𝑆 into a normalized linear combination of coherent states.

It is useful to make a table associating the label of each state of the linear combination

in the numerator of Eq.(4.23) with its respective associated coefficient:

Z+ (s𝑘1𝑠0)0

Z− (s𝑘1𝑠0)1

Proceeding further, after a time 𝛿𝑡, the state of the system evolves to

|𝜓𝑘1 (2𝛿𝑡)⟩ = 1
2

{︃
(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑈̂

𝛿𝑡
− )
[︃

(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩

||(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑠0𝑈̂ 𝛿𝑡− ) |𝑧⟩ ||

]︃
|+⟩𝑥 +

+ (𝑈̂ 𝛿𝑡+ − 𝑠𝑘1𝑈̂
𝛿𝑡
− )
[︃

(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩

||(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑠0𝑈̂ 𝛿𝑡− ) |𝑧⟩ ||

]︃
|−⟩𝑥

}︃

= 1
2

{︃[︃
|𝒵+,+⟩ + 𝑠𝑘1𝑠0 |𝒵+,−⟩ + 𝑠𝑘1 |𝒵−,+⟩ + (𝑠𝑘1)2𝑠0 |𝒵−,−⟩

|| |𝒵+⟩ + 𝑠𝑘1𝑠0 |𝒵−⟩ ||

]︃
|+⟩𝑥 +

+
[︃

|𝒵+,+⟩ − 𝑠𝑘1𝑠0 |𝒵+,−⟩ − 𝑠𝑘1 |𝒵−,+⟩ + (𝑠𝑘1)2𝑠0 |𝒵−,−⟩
|| |𝒵+⟩ + 𝑠𝑘1𝑠0 |𝒵−⟩ ||

]︃
|−⟩𝑥

}︃
(4.24)

where we have used Eq. (4.15). (Now it should be fully clear why we have evolved an

state of the form (4.2) in S4.1.1.)

If a measurement of 𝑆𝑥 is again to be performed, we have a probability

𝑝2(𝑠𝑘2|𝑠𝑘1, 𝑠0) = 1
4

||(𝑈̂ 𝛿𝑡+ + 𝑠𝑘2𝑠
𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑠0𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||2

||(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑠0𝑈̂ 𝛿𝑡− ) |𝑧⟩ ||2

= 1
4

|| |𝒵+,+⟩ + 𝑠𝑘1𝑠0 |𝒵+,−⟩ + 𝑠𝑘2𝑠
𝑘
1 |𝒵−,+⟩ + 𝑠𝑘2(𝑠𝑘1)2𝑠0 |𝒵−,−⟩ ||2

|| |𝒵+⟩ + 𝑠𝑘1𝑠0 |𝒵−⟩ ||2

(4.25)

that the outcome will be 𝑠𝑘2~/2 = ±~/2. Naturally, immediately after that, 𝐸 will be

projected onto |𝑠𝑘2 = ±⟩𝑥.

STEP 2.

The outcome of the last measurement performed on 𝐸 was 𝑠𝑘2 and 𝑆+𝐸 is now described
by the state

|𝜓𝑘2 (2𝛿𝑡)⟩ =
[︃

(𝑈̂ 𝛿𝑡+ + 𝑠𝑘2𝑠
𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑠0𝑈̂

𝛿𝑡
− ) |𝑧⟩

||(𝑈̂ 𝛿𝑡+ + 𝑠𝑘2𝑠
𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡+ + 𝑠𝑘1𝑠0𝑈̂ 𝛿𝑡− ) |𝑧⟩ ||

]︃
|𝑠𝑘2⟩𝑥

=
[︃

|𝒵+,+⟩ + 𝑠𝑘1𝑠0 |𝒵+,−⟩ + 𝑠𝑘2𝑠
𝑘
1 |𝒵−,+⟩ + 𝑠𝑘2(𝑠𝑘1)2𝑠0 |𝒵−,−⟩

|| |𝒵+,+⟩ + 𝑠𝑘1𝑠0 |𝒵+,−⟩ + 𝑠𝑘2𝑠
𝑘
1 |𝒵−,+⟩ + 𝑠𝑘2(𝑠𝑘1)2𝑠0 |𝒵−,−⟩ ||

]︃
.

(4.26)
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It is also useful to construct a table associating each label of the states in the linear com-

bination of the numerator of this last expression and its respective associated coefficient,

exactly as we did in the previous step:

Z+,+ (s𝑘2𝑠𝑘1)0(𝑠𝑘1𝑠0)0

Z+,− (s𝑘2𝑠𝑘1)0(𝑠𝑘1𝑠0)1

Z−,+ (s𝑘2𝑠𝑘1)1(𝑠𝑘1𝑠0)0

Z−,− (s𝑘2𝑠𝑘1)1(𝑠𝑘1𝑠0)1

Notice that for each index +(−) on the left side we have a power 0(1) on the right side.

Now, the state of the system evolves to

|𝜓𝑘2(3𝛿𝑡)⟩ = 1
2

⎧⎨⎩(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘2𝑈̂

𝛿𝑡
− )×

×

⎡⎣ (𝑈̂ 𝛿𝑡
+ + 𝑠𝑘2𝑠

𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘1𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩

||(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘2𝑠

𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘1𝑠0𝑈̂ 𝛿𝑡
− ) |𝑧⟩ ||

⎤⎦ |+⟩𝑥 +

+ (𝑈̂ 𝛿𝑡
+ − 𝑠𝑘2𝑈̂

𝛿𝑡
− )×

×

⎡⎣ (𝑈̂ 𝛿𝑡
+ + 𝑠𝑘2𝑠

𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘1𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩

||(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘2𝑠

𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘1𝑠0𝑈̂ 𝛿𝑡
− ) |𝑧⟩ ||

⎤⎦ |−⟩𝑥

⎫⎬⎭.

(4.27)

(Let us not write this and the next expression explicitly in terms of the set { |𝒵𝐼3⟩} in

order to avoid even longer equations.)

Consequently, there is a probability

𝑝3(𝑠𝑘3|𝑠𝑘2, 𝑠𝑘1,0 ) = 1
4

||(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘3𝑠

𝑘
2𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘2𝑠
𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘1𝑠0𝑈̂
𝛿𝑡
− ) |𝑧⟩ ||2

||(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘2𝑠

𝑘
1𝑈̂

𝛿𝑡
− )(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘1𝑠0𝑈̂ 𝛿𝑡
− ) |𝑧⟩ ||2

(4.28)

that the outcome of a further measurement of 𝑆𝑥 will be 𝑠𝑘3~/2.

STEP 3. It can be demonstrated that, if we write the state of the system now (before

evolving it in time), we would have the following table
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Z+,+,+ (s𝑘3𝑠𝑘2)0(𝑠𝑘2𝑠𝑘1)0(𝑠𝑘1𝑠0)0

Z+,+,− (s𝑘3𝑠𝑘2)0(𝑠𝑘2𝑠𝑘1)0(𝑠𝑘1𝑠0)1

Z+,−,+ (s𝑘3𝑠𝑘2)0(𝑠𝑘2𝑠𝑘1)1(𝑠𝑘1𝑠0)0

Z+,−,− (s𝑘3𝑠𝑘2)0(𝑠𝑘2𝑠𝑘1)1(𝑠𝑘1𝑠0)1

Z−,+,+ (s𝑘3𝑠𝑘2)1(𝑠𝑘2𝑠𝑘1)0(𝑠𝑘1𝑠0)0

Z−,+,− (s𝑘3𝑠𝑘2)1(𝑠𝑘2𝑠𝑘1)0(𝑠𝑘1𝑠0)1

Z−,−,+ (s𝑘3𝑠𝑘2)1(𝑠𝑘2𝑠𝑘1)1(𝑠𝑘1𝑠0)0

Z−,−,− (s𝑘3𝑠𝑘2)1(𝑠𝑘2𝑠𝑘1)1(𝑠𝑘1𝑠0)1

(We restrict ourselves here to just construct the table because the explicit expressions

for the state of the system are too long and because all of the relevant information which

will allow us to generalize the procedure is contained in it.)

Notice that, again, for each subscript +(−) on the left we have an associated power

0(1) on the right.

...

Now, it may be verified that at the 𝑁 -th step we would have the following.

STEP N.

The state of the system is projected onto

|𝜓𝑘𝑁(𝑁𝛿𝑡)⟩ =
⎡⎣ ∏︀𝑁

𝑚=1(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘𝑚𝑠

𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩

||∏︀𝑁
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||

⎤⎦ |𝑠𝑘𝑁⟩𝑥

def=
⎡⎣ ∑︀

𝐼𝑁
𝑎𝑘𝐼𝑁

|𝒵𝐼𝑁
⟩

||∑︀𝐼𝑁
𝑎𝑘𝐼𝑁

|𝒵𝐼𝑁
⟩ ||

⎤⎦ |𝑠𝑘𝑁⟩𝑥

(4.29)

where ⎧⎨⎩𝑎𝑘𝐼𝑁
∈ R

⃒⃒⃒⃒
⃒⃒𝑎𝑘𝐼𝑁

def=
𝑁∏︁
𝑗=1

(𝑠𝑘𝑚𝑠𝑘𝑚−1)𝛿𝑖𝑚,−1 = ±1

⎫⎬⎭. (4.30)

In this formula, 𝛿𝑖,𝑗 is simply the Kronecker delta symbol, which is equal to 1 if 𝑖 = 𝑗

and 0 otherwise 5.
5 This is not the only possible representation for the coefficients. Indeed, any “binary” function which assumes

only an even and an odd value would in principle suffice. We have chosen the Kronecker delta because it
is well known.
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According to the above analysis, the state (4.29) evolves to

|𝜓𝑘𝑁((𝑁 + 1)𝛿𝑡)⟩ = 1
2

⎧⎨⎩(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘𝑁 𝑈̂

𝛿𝑡
− )×

×

⎡⎣ ∏︀𝑁
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩

||∏︀𝑁
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||

⎤⎦ |+⟩𝑥 +

+ (𝑈̂ 𝛿𝑡
+ − 𝑠𝑘𝑁 𝑈̂

𝛿𝑡
− )×

×

⎡⎣ ∏︀𝑁
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩

||∏︀𝑁
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||

⎤⎦ |−⟩𝑥

⎫⎬⎭.

(4.31)

Finally, it implies that we have a probability

𝑝𝑁(𝑠𝑘𝑁+1|𝑠𝑘𝑁 , ..., 𝑠0) = 1
4

||(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘𝑁+1𝑠

𝑘
𝑁 𝑈̂

𝛿𝑡
− )∏︀𝑁

𝑚=1(𝑈̂ 𝛿𝑡
+ + 𝑠𝑘𝑚𝑠

𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||2

||∏︀𝑁
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||2

= 1
4

||∏︀𝑁+1
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||2

||∏︀𝑁
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||2

= 1
4

||∑︀𝐼𝑁+1 𝑎
𝑘
𝐼𝑁+1

|𝒵𝐼𝑁+1⟩ ||2

||∑︀𝐼𝑁
𝑎𝑘𝐼𝑁

|𝒵𝐼𝑁
⟩ ||2

(4.32)

that the outcome of a further measurement of 𝑆𝑥 will be 𝑠𝑘𝑁+1~/2, and so on.

In Fig.1 we use a matrix-representation algorithm to implement this measurement protocol

and plot the energy of the system for three different trajectories. We see that random fluctu-

ations arise during each process, meaning that the process is indeed stochastic. In the next

section we shall analyse the behaviour of 𝑆 if we consider not only one, two or three, but an

ensemble of such trajectories.

Figure 1 – Energy of the system for three different implementations of our measurement pro-
tocol. Here 𝑧 = 1/

√
2 + 𝑖/

√
2, 𝜔𝛿𝑡 = 0.1. In each plot the dashed line indicates

the energy of the system for 𝑧𝛼 = 0 as a reference.

(a) (b) (c)

Source: personal archive.
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4.2.2 Full ensemble: emergence of an equal-probability rule for orbital microstates

Now that we have determined the general form of the state of the system for the 𝑘-th

trajectory 𝛾𝑁𝑘 , we apply the discussion in S2.5 to calculate the average of those results over

an entire ensemble of 𝑁 -steps trajectories {𝛾𝑁𝑘 }𝑛𝑘=1, 𝑛 → ∞. Note that, given an initial state

|𝑠0⟩𝑥 for 𝐸, the 𝑘-th trajectory is uniquely characterized by the set {𝑠𝑘1, 𝑠𝑘2, 𝑠𝑘3, ..., 𝑠𝑘𝑁} of 𝑁

specific outcomes.

First, in expression (4.29), because each 𝑖𝑚 assumes only two values, all the 2𝑁 possible

arrangements of the set 𝐼𝑁 = {𝑖𝑁 , 𝑖𝑁−1, .., 𝑖1} take part in the labeling of the indexes in the

state of the system at step 𝑁 (for example, at the second step there is a state with label

𝒵+,+, another with label 𝒵+,−, another with label 𝒵−,+ and, finally, another with label 𝒵−,−).

This implies that the state of 𝑆 after the trajectory 𝛾𝑁𝑘 differs from the state of 𝑆 after the

trajectory 𝛾𝑁𝑗 , 𝑘 ̸= 𝑗, only through the values assumed by the coefficients used to construct

the linear combinations of the coherent states {|𝒵𝐼𝑁
⟩} (Eq.(4.30)). Moreover, because 𝑠𝑘𝑗 also

assumes only two possible values, like 𝑖𝑚, at step 𝑁 there are 2𝑁 possible states (or linear

combinations of coherent states) which the system can reach after the trajectory 𝛾𝑁𝑘 .

Note that Eq.(4.32) implies that the probability for the trajectory 𝛾𝑁𝑘 to occur is given by

𝑝𝑁 [𝛾𝑁𝑘 ] = 𝑝1(𝑠𝑘1|𝑠0)𝑝2(𝑠𝑘2|𝑠𝑘1, 𝑠0)...𝑝𝑁(𝑠𝑘𝑁 |𝑠𝑘𝑁−1, ..., 𝑠0)

= ||∏︀𝑁
𝑚=1(𝑈̂ 𝛿𝑡

+ + 𝑠𝑘𝑚𝑠
𝑘
𝑚−1𝑈̂

𝛿𝑡
− ) |𝑧⟩ ||2

4𝑁

=
||∑︀𝐼𝑁

𝑎𝑘𝐼𝑁
|𝒵𝐼𝑁

⟩ ||2

4𝑁 .

(4.33)
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Therefore, we can construct the density operator of the system 𝑆 + 𝐸 at step 𝑁 as

𝜌𝑁𝑆+𝐸 =
2𝑁∑︁
𝑘=1

𝑝𝑁 [𝛾𝑁𝑘 ] |𝜓𝑘𝑁 (𝑁𝛿𝑡)⟩ ⟨𝜓𝑘𝑁 (𝑁𝛿𝑡)|

=
[︃ 2𝑁∑︁
𝑘=1

⃒⃒⃒⃒⃒⃒ ∑︀
𝐼𝑁
𝑎𝑘𝐼𝑁

|𝒵𝐼𝑁
⟩
⃒⃒⃒⃒⃒⃒2

4𝑁 ×

×
(︃ ∑︀

𝐽𝑁
𝑎𝑘𝐽𝑁

|𝒵𝐽𝑁
⟩

||
∑︀
𝐼𝑁
𝑎𝑘𝐼𝑁

|𝒵𝐼𝑁
⟩ ||

)︃(︃ ∑︀
𝐿𝑁

𝑎𝑘𝐿𝑁
⟨𝒵𝐿𝑁

|
||
∑︀
𝐼𝑁
𝑎𝑘𝐼𝑁

|𝒵𝐼𝑁
⟩ ||

)︃]︃
⊗

⊗ |𝑠𝑘𝑁 ⟩𝑥 𝑥 ⟨𝑠𝑘𝑁 |

= 1
4𝑁

[︃ 2𝑁∑︁
𝑘=1

(︃∑︁
𝐼𝑁

𝑎𝑘𝐼𝑁
|𝒵𝐼𝑁

⟩
)︃(︃∑︁

𝐿𝑁

𝑎𝑘𝐿𝑁
⟨𝒵𝐿𝑁

|
)︃]︃

⊗ |𝑠𝑘𝑁 ⟩𝑥 𝑥 ⟨𝑠𝑘𝑁 |

= 1
4𝑁

(︃ ∑︁
𝑘,𝐼𝑁 ,𝐿𝑁

𝑎𝑘𝐼𝑁
𝑎𝑘𝐿𝑁

|𝒵𝐼𝑁
⟩ ⟨𝒵𝐿𝑁

|
)︃

⊗ |𝑠𝑘𝑁 ⟩𝑥 𝑥 ⟨𝑠𝑘𝑁 |

= 1
4𝑁

(︃ ∑︁
𝑘,𝐼𝑁

|𝒵𝐼𝑁
⟩ ⟨𝒵𝐼𝑁

| +

+
∑︁

𝑘,𝐼𝑁 ̸=𝐿𝑁

𝑎𝑘𝐼𝑁
𝑎𝑘𝐿𝑁

|𝒵𝐼𝑁
⟩ ⟨𝒵𝐿𝑁

|
)︃

⊗ |𝑠𝑘𝑁 ⟩𝑥 𝑥 ⟨𝑠𝑘𝑁 |

(4.34)

where we have used that
(︂
𝑎𝑘𝐼𝑁

)︂2
= 1.

Let us concentrate now in the second term inside the parenthesis. Expanding the summation
over, say, 𝐼𝑁 , we have

∑︁
𝑘,𝐼𝑁 ̸=𝐿𝑁

𝑎𝑘𝐼𝑁
𝑎𝑘𝐿𝑁

|𝒵𝐼𝑁
⟩ ⟨𝒵𝐿𝑁

| =
2𝑁∑︁
𝑘=1

[︃
𝑎𝑘𝐼1

𝑁
|𝒵𝐼1

𝑁
⟩
(︃ ∑︁
𝐿𝑁 ̸=𝐼1

𝑁

𝑎𝑘𝐿𝑁
⟨𝒵𝐿𝑁

|
)︃

+

+ 𝑎𝑘𝐼2
𝑁

|𝒵𝐼2
𝑁

⟩
(︃ ∑︁
𝐿𝑁 ̸=𝐼2

𝑁

𝑎𝑘𝐿𝑁
⟨𝒵𝐿𝑁

|
)︃

+ ...+

+ 𝑎𝑘
𝐼2𝑁

𝑁

|𝒵
𝐼2𝑁

𝑁

⟩
(︃ ∑︁
𝐿𝑁 ̸=𝐼2𝑁

𝑁

𝑎𝑘𝐿𝑁
⟨𝒵𝐿𝑁

|
)︃]︃

(4.35)

where 𝐼𝑗𝑁 , 𝑗 = 1, 2, 3, ..., 2𝑁 , is used to indicate all specific “values” (or arrangements of

“+”-es and “−”-es) that 𝐼𝑁 may assume (it does not matter which arrangement is associated

with each 𝐼𝑗𝑁). For example, for 𝑁 = 2, we could choose 𝐼1
2 = {+,+}, 𝐼2

2 = {+,−}, 𝐼3
2 =

{−,+} and 𝐼1
2 = {−,−}. Now, looking at the definition of the coefficients 𝑎𝑘𝐼𝑁

(Eq.(4.30))

note that for each possible trajectory 𝛾𝑁𝑘 where 𝑎𝑘
𝐼𝑗

𝑁

= 1, 𝐼𝑗𝑁 ̸= {+,+,+, ...,+}, there always

exist a “reciprocal” trajectory 𝛾𝑝𝑁 where 𝑎𝑝
𝐼𝑗

𝑁

= −1. This implies that when the summation
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over all possible trajectories is performed, this last quantity will simply vanish 6.

∑︁
𝑘,𝐼𝑁 ̸=𝐿𝑁

𝑎𝑘𝐼𝑁
𝑎𝑘𝐿𝑁

|𝒵𝐼𝑁
⟩ ⟨𝒵𝐿𝑁

| = 0. (4.36)

This happens because for each trajectory 𝛾𝑁𝑘 where at step 𝑁 the outcome is 𝑠𝑘𝑁 = 1,

there corresponds a “reciprocal” trajectory 𝛾𝑁𝑝 where 𝑠𝑝𝑁 = −1 (and the coefficients 𝑎𝑘𝐼𝑁
are

defined in terms of the 𝑠𝑘𝑗 ’s, 𝑗 = 1, 2, 3, ..., 𝑁 , so that this fact occurs —again, it can be

verified by checking Eq.(4.30)).

Finally, noting that the first term inside the parenthesis is a summation of 2𝑁 terms which

do not depend on the index 𝑘, and tracing off 𝐸 from 𝜌𝑁𝑆+𝐸, we have finally

𝜌𝑁𝑆 = 1
2𝑁

∑︁
𝐼𝑁

|𝒵𝐼𝑁
⟩ ⟨𝒵𝐼𝑁

| . (4.37)

That is, given the definitions in Eqs.(4.17),(4.30) for the composite maps 𝒵𝐼𝑁
and the

coefficients 𝑎𝑘𝐼𝑁
, respectively, we could construct an analytic expression for the state of the

system after the realization of all possible trajectories {𝛾𝑁𝑘 }2𝑁

𝑛=1 (taking into account, of course,

their respective probabilities to occur).

However, what makes Eq.(4.37) interesting is that, regarding the discussion of S2.5, it can

be interpreted as follows: each of all 2𝑁 possible microstates accessible to the system { |𝒵𝐼𝑁
⟩}

occurs with probability 1/2𝑁 . In other words, this is an equal-probability rule, such as we have,

for example, in the well known case postulated a priori in statistical mechanics (of course

there we are dealing with a closed system, whilst here we are dealing with an open system).

Nevertheless, this is a somewhat simple result, given the expected complexity of our problem.

Finally, we point that, because of the mathematical arguments given right above, such a fact

would occur for any choice of the function 𝑓(𝑋̂) that defines the magnetic field B.

4.2.3 Expectation values of physical quantities

With Eq.(4.37) in hands, we may use Eq.(2.46) to explicitly compute the expectation value

of some observable 𝐴 ∈ 𝐵(ℋ𝑆), where ℋ𝑆 is the Hilbert space of 𝑆. We have simply

⟨𝐴⟩𝑁 = 1
2𝑁

∑︁
𝐼𝑁

⟨𝒵𝐼𝑁
|𝐴 |𝒵𝐼𝑁

⟩ . (4.38)

6 The fact that the coefficient 𝑎𝑘
𝐼𝑗

𝑁
={+,+,+,...,+} is always equal to 1 is not relevant, because in the summa-

tions of Eq.(4.35) we are considering only terms 𝐿𝑁 ̸= 𝐼𝑗
𝑁 .
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Nevertheless, we have also arrived at a somewhat simple expression for the expectation value

of any observable 𝐴 ∈ 𝐵(ℋ𝑆). Note the similarity of the above equation with Eq.(3.24) in

our discussion about the MCWF approach (S3.2).

Because the states |𝒵𝐼𝑁
⟩ are all coherent states, we may use Eqs.(2.35), (2.36) to write

⟨𝐻̂𝑆⟩𝑁 = 1
2𝑁 ~𝜔

∑︁
𝐼𝑁

⎛⎝|𝒵𝐼𝑁
|2 + 1

2

⎞⎠ (4.39a)

⟨𝑋̂⟩𝑁 = 1
2𝑁

√︃
2~
𝑚𝜔

∑︁
𝐼𝑁

Re{𝒵𝐼𝑁
} (4.39b)

⟨𝑃 ⟩𝑁 = 1
2𝑁

√
2𝑚~𝜔

∑︁
𝐼𝑁

Im{𝒵𝐼𝑁
} (4.39c)

⟨𝑋̂2⟩𝑁 = 1
2𝑁

2~
𝑚𝜔

∑︁
𝐼𝑁

⎛⎝Re2
{︂

𝒵𝐼𝑁

}︂
+ 1

4

⎞⎠ (4.39d)

⟨𝑃 2⟩𝑁 = 1
2𝑁 2𝑚~𝜔

∑︁
𝐼𝑁

⎛⎝ Im2
{︂

𝒵𝐼𝑁

}︂
+ 1

4

⎞⎠ (4.39e)

Although the above formulae may seem compact enough, it is possible to use Eq.(4.17) to

simplify it even further in terms of the parameters {𝑧, 𝑧𝛼, 𝑁, 𝛿𝑡}. Because this shall elucidate

considerably the analysis of what precisely happens to 𝑆 due to continuous observations of 𝐸,

we describe the explicit calculations (which are somewhat heavy for the purpose of exposition)

in the Appendix S𝐴.

4.2.4 Energy

It can be demonstrated (S𝐴.1) that the expectation value of the energy of S at the 𝑁 -th

step is given by

⟨𝐻̂𝑆⟩𝑁 = ~𝜔
(︂

|𝑧|2 + 1
2

)︂
+ 4𝑁~𝜔𝑧2

𝛼 sin2
(︃
𝜔𝛿𝑡

2

)︃
. (4.40)

Because the first term is just the energy of the initial state, |𝑧⟩, we see that every observation of

𝐸 raises the expectation value of the energy of the system by an ammount 4~𝜔𝑧2
𝛼 sin2(𝜔𝛿𝑡/2).

The maximum and the minimum energy gain at each measurement occurs when we choose

𝜔𝛿𝑡 = 𝑛𝜋: the maximum being 4~𝜔𝑧2
𝛼, for 𝑛 odd, and the minimum being 0, for 𝑛 even.

If the continuous measurement process occurs between the instants 𝑡0 = 0 and 𝑡, and we

take 𝛿𝑡 ≪ 1 (so that ⟨𝐻̂𝑆⟩𝑁 is a continuous function), we may write 𝑁 = 𝑡/𝛿𝑡 and state the
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rate of change of the expectation value of the energy at step 𝑁 simply as

𝜕⟨𝐻̂𝑆⟩𝑁
𝜕𝑡

= 4~𝜔𝑧2
𝛼

𝛿𝑡
sin2

(︃
𝜔𝛿𝑡

2

)︃
≥ 0. (4.41)

(Note that the total time elapsed 𝑡 and the time-step 𝛿𝑡 have different meanings.)

Furthermore, we see that in the limit 𝛼 → 0 ⇒ 𝑧𝛼 → 0 (that is, in the limit where the

influence of the magnetic field is no longer present) the energy of 𝑆 remains simply the energy

of its initial state. This happens, of course, because 𝐸 never leaves the |𝑠0⟩𝑥 state, so that

the process is no longer random.

Figure 2 – (a) Energy of 𝑆 through direct implementation of Eq.(4.39a) (not (4.40)). (b)
Comparison between a matrix representation algorithm and Eq.(4.40). The higher
the number of terms we keep in the expansion of the initial coherent state, the
better the curve approaches our theoretical model. Here we considered a set of 105

trajectories such as the one described in our protocol (S4.2.1).

(a) 𝑧 = 1/
√

2 + 𝑖/
√

2, 𝜔𝛿𝑡 = 0.1. (b) 𝑧 = 1/
√

2 + 𝑖/
√

2, 𝜔𝛿𝑡 = 0.5, 𝑧𝛼 = 5.0

Source: personal archive.

We can also further confirm this result for the energy with a numerical analysis. In Fig.2a

we implement Eq.(4.39a) using a simple algorithm to calculate all 𝒵𝐼𝑁
’s so that, comparing it

with Eq.(4.40), we see that it confirms the linear dependence of the energy on 𝑁 . Moreover,

in Fig.2b we implemented also a very basic algorithm using the matrix representations of all

relevant quantities (operators and state vectors) and directly applied steps 1 and 2 of our

protocol (S4.2) for 105 trajectories. In this last algorithm we used the qutip python package

for the study of open quantum systems, which is a handful and well known tool for this kind

of implementation (J.R.JOHANSSONA1; NATIONB; NORI, 2013),(J.R.JOHANSSONA1; NATIONB;

NORI, 2012). However, it must be pointed that, in this latter case, the finite representation of

the infinite sum in the expansion of the coherent state |𝑧⟩ (Eq.(2.28)) may lead us to wrong
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conclusions if we are not careful 7. It is explicitly shown in that figure that, the higher the

number of terms we keep in the expansion of |𝑧⟩, the better the curve plotted by the algorithm

approaches our analytic closed expression.

We comment finally that, at first, we intended to study the problem numerically, but noted

after some time that this “finite-representation difficulty” was not so easy to overcome. Then

we decided to invest in the present analytical solution, which, for instance (and luckily!), could

be obtained in a very neat and closed form.

4.2.5 Position and momentum

Following, the expectation value of the position and the momentum at step 𝑁 are obtained

in S𝐴.2. They are given, respectively, by

⟨𝑋̂⟩𝑁 =
√︃

2~
𝑚𝜔

[︂
Re{𝑧} cos (𝑁𝜔𝛿𝑡) + Im{𝑧} sin (𝑁𝜔𝛿𝑡)

]︂
(4.42)

⟨𝑃 ⟩𝑁 =
√

2𝑚~𝜔
[︂

− Re{𝑧} sin (𝑁𝜔𝛿𝑡) + Im{𝑧} cos (𝑁𝜔𝛿𝑡)
]︂
. (4.43)

Comparing those expressions with the previous results for a single coherent state (Eqs.(2.35)),

we see that they are exactly the same expressions we would obtain by a simple unitary time

evolution of the initial state by 𝑁𝛿𝑡 units. Therefore, we conclude that continuous observations

of 𝐸 do not affect the expectation values of the position and the momentum of 𝑆 throughout

time. Nevertheless, we shall see soon that the uncertainties (Δ𝑋 and Δ𝑃 ) related to those

quantities change drastically with respect of those of a Simple harmonic oscillator.

Note that the above results are independent of the coupling constant 𝛼, meaning that

it does not matter how strong the field drives the system, the behaviour of 𝑆 is exactly the

same (Figs 3a and 3b). This latter result together with the expression that we obtained for the

expectation value of the energy shows that, just though observations of 𝐸, we could obtain

a very effective way of raising the expectation value of the energy of 𝑆 without changing the

expectation value of its position or its momentum.

In Fig.4a we, again, confirm our analytical results with a simple matrix-representation al-

gorithm, exactly as we did for the expectation value of the energy. Finally, in Fig.4b we make

a phase-space plot of the position and the momentum of the system through direct imple-

mentation of our analytic expressions. The figure is exactly equal to the standard “textbook”
7 It is not possible to implement an infinite sum in a numerical (not symbolic) algorithm.
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Figure 3 – Expectation values of the position (a) and the momentum (b) of 𝑆 for 𝑧 = 1/
√

2+
𝑖/

√
2 and 𝜔𝛿𝑡 = 0.5 through direct implementation of Eqs.(4.42),(4.39c). In both

plots all curves are superposed so that there is no dependence on 𝑧𝛼, as indicated
by our theoretical model (Eqs.(4.42), (4.43)). Although we would prefer to make
those plots for a lower value of 𝜔𝛿𝑡 (so that the measurement process is closer to
what we could call “continuous"), this choice would make the oscillation frequencies
too low, forcing us to use more steps and making the algorithm too heavy. (For
example, the dimension of the set 𝐼𝑁 would be 225 = 33554432 for 25 steps.)

(a) (b)

Source: personal archive.

phase-space plot of a simple (isolated) harmonic oscillator and shall be used in the next section

for the sake of comparison.

Figure 4 – (a) A new comparison between a matrix-representation algorithm which directly
implements our protocol and our theoretical results. (b) A Phase space plot for
𝑁 = 100. The result is the same as that of a simple harmonic oscillator. In both
figures 𝑧 = 1/

√
2 + 𝑖/

√
2.

(a) 𝜔𝛿𝑡 = 0.5, 𝑧𝛼 = 5.0 (b) 𝜔𝛿𝑡 = 0.1, 𝑧𝛼 = 1.0

Source: personal archive.
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4.2.6 Uncertainty relation

Finally, we would like to shed some light on the behaviour of the position-momentum
uncertainty relation throughout the continuous measurement process. In order to do this we
need the expressions for the expectation values of the position squared and the momentum
squared. It can be shown (S𝐴.3) that they are given by

⟨𝑋̂2⟩𝑁 = ⟨𝑋̂⟩2
𝑁 + 2~

𝑚𝜔

{︃
𝑧2
𝛼

[︃
2(𝑁 − 1) sin2

(︃
𝜔𝛿𝑡

2

)︃
−

− sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

(︃
cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)

)︃
+

+ 1 + cos2 (𝑁𝜔𝛿𝑡) − 2 cos (𝜔𝛿𝑡)
]︃

+ 1
4

}︃
(4.44)

and

⟨𝑃 2⟩𝑁 = ⟨𝑃 ⟩2
𝑁 + 2𝑚~𝜔

{︃
𝑧2
𝛼

[︃
2(𝑁 − 1) sin2

(︃
𝜔𝛿𝑡

2

)︃
+

+ sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

(︃
cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)

)︃
+

+ sin2 (𝑁𝜔𝛿𝑡)
]︃

+ 1
4

}︃
(4.45)

for 𝜔𝛿𝑡 ̸= 𝑛𝜋, respectively. For 𝜔𝛿𝑡 = 𝑛𝜋, we have simply

⟨𝑋̂2⟩𝑁 = 2~
𝑚𝜔

⎛⎝Re2 {𝑧} + 4𝑁𝑧2
𝛼 + 1

4

⎞⎠ (4.46)

and

⟨𝑃 2⟩𝑁 = 2𝑚~𝜔

⎛⎝ Im2 {𝑧} + 1
4

⎞⎠. (4.47)

Considering the Hamiltonian of the harmonic oscillator (Eq.(2.16)), we see that with these

equations in hands we may also study the expectation values of the kinetic and the potential

energy of 𝑆. Fig.?? indicates that the amount of energy gained by 𝑆 at each step can be stored

both as kinetic or potential energy because the particle is oscillating. Note that, naturally, when

one type of such is increased, the other type is decreased. Moreover, Eqs.(4.46),(4.47) indicate

that when the energy increment rate is a maximum, the energy given to the system at each

measurement is purely potential. This is further confirmed by Fig.5.
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Figure 5 – Position squared (a) and momentum squared (b) as a function of 𝜔𝛿𝑡 (not as a
function of time! The parameter that represents time is, essentially,𝑁). Because the
expectation value of the kinetic energy is proportional to ⟨𝑃 2⟩ and the expectation
value of the potential energy is proportional to ⟨𝑋̂2⟩, for 𝜔𝛿𝑡 = 𝜋 we see that all
the mean energy gained by 𝑆 is purely potential. For 𝜔𝛿𝑡 ̸= 𝜋, we see that the gain
is partially potential and partially kinetic. Nevertheless, it is never purely kinetic. In
both plots 𝑧𝛼 = 1.0 and 𝑧 = 1/

√
2 + 𝑖/

√
2.

(a) (b)

Source: personal archive.

From the definitions of Δ𝑋 and Δ𝑃 (S2.1.4) we see that the uncertainty relation for the
state of the system at the 𝑁 -th step is given by

Δ𝑋𝑁Δ𝑃𝑁 = ~
2

{︃
4𝑧2
𝛼

[︃
2(𝑁 − 1) sin2(𝜔𝛿𝑡/2) − sin((𝑁 − 1)𝜔𝛿𝑡)

sin(𝜔𝛿𝑡)

(︃
cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)

)︃
+ 1+

+ cos2 (𝑁𝜔𝛿𝑡) − 2 cos (𝜔𝛿𝑡)
]︃

+ 1
}︃1/2{︃

𝑧2
𝛼

[︃
2(𝑁 − 1) sin2(𝜔𝛿𝑡/2) + sin((𝑁 − 1)𝜔𝛿𝑡)

sin(𝜔𝛿𝑡) ×

×
(︃

cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)
)︃

+ sin2 (𝑁𝜔𝛿𝑡)
]︃

+ 1
}︃1/2

(4.48)

for 𝜔𝛿𝑡 ̸= 𝑛𝜋. For 𝜔𝛿𝑡 = 𝑛𝜋, we have simply

Δ𝑋𝑁Δ𝑃𝑁 = ~
2
√︁

1 + 16𝑁𝑧2
𝛼. (4.49)

Although the expression (4.48) may not seem so elegant as those for the energy, the

position and the momentum, we note that in the limit 𝛼 → 0 we recover the minimum

relation of Eq.(2.37). Before analysing the uncertainty relation, in Fig.6 we have a plot of Δ𝑋

and Δ𝑃 as a function of 𝑁 for the sake of clarity. As mentioned in the previous section, the

plot indicates that those quantities grow as further measurements are performed on 𝐸.
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Figure 6 – Uncertainties of the position (a) and the momentum (b) of 𝑆. In both plots 𝜔𝛿𝑡 =
0.1 and 𝑧 = 1/

√
2 + 𝑖/

√
2.

(a) (b)

Source: personal archive.

This last result, together with the previous ones, indicates that there is indeed a “cost”

in using the measurement process on 𝐸 to raise the energy of 𝑆 maintaining the expecta-

tion value of its position and its momentum “invariant”. For example, as further and further

measurements are performed on 𝐸, in order to obtain a certain definite value for, say, the

position of 𝑆, we must make the distribution of all possible values which can be obtained for

the momentum broader and broader (and vice-versa).

Finally, in Fig.7a we see that, for 𝑧𝛼 ̸= 0, the uncertainty relation always grows as further

measurements are performed on the system. Also, in Fig.7b we make a phase-space plot for

Δ𝑋 and Δ𝑃 . If 𝑧𝛼 = 0, the uncertainty remains a point (exactly as the case of an isolated

harmonic oscillator), bur if 𝑧𝛼 ̸= 0, the uncertainty of the position (momentum) always grows

as the uncertainty of the momentum (position) grows.
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Figure 7 – (7a). Uncertainty relation for various orders of magnitude of 𝑧𝛼 according to our
analytic expressions (Eqs.(4.48),(4.49)). (7b). Phase-space plot for the uncertain-
ties Δ𝑋 and Δ𝑃 . We see that, in comparison with the simple (isolated) harmonic
oscillator, the uncertainties do not remain only a point throughout time. In both
plots 𝑧 = 1/

√
2 + 𝑖/

√
2.

(a) 𝜔𝛿𝑡 = 0.1 (b) 𝜔𝛿𝑡 = 0.1, 𝑁 = 100.

Source: personal archive.
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5 CONCLUSION AND PERSPECTIVES

In chapter 2 we introduced the mathematical tools that were essential for the development

of our project (postulates of quantum mechanics, tensor products, density operators, etc) and

in chapter 3 we used those tools in order to study the (non-unitary) dynamics of systems that

are no longer closed, but in contact with an external environment. In this way, we could situate

to which context our project represents an alternative approach.

We considered our proposal in chapter 4, and it consists basically in studying no longer

the situation of an external environment as an stochastic source to some system of interest

as in chapter 3. Rather, we are interested in studying random outcomes of measurements

performed in one degree of freedom of some system as an stochastic source for another

degree of freedom of the same system. This latter degree of freedom was indeed the one in

which we had interest and we even made the analogy that the observed degree of freedom

may be seen as a diathermal wall for it. In this way, we could formulate a closed analytical

solution for the problem of a quantum harmonic oscillator whose spin degree of freedom is

subject to a continuous measurement process in a region of space where the influence of an

external inhomogeneous magnetic field which depends linearly on the position of the oscillator

is present.

More precisely, considering an ensemble of quantum trajectories (defined earlier) for this

spin observation process, we concluded that the state of the system in question obeys an equal-

probability rule, similarly to what happens in statistical mechanics. From there on, we studied

in detail the expectation values of all physical quantities related to the system and discovered

that continuous observations of its spin degree of freedom induce a mean-energy gain in

its orbital degree of freedom, leaving the expectation value of its position and momentum

invariant at the cost of raising the distribution of their uncertainties. We also determined,

using numerical plots and algorithm comparisons, that the position-momentum uncertainty

relation always grows as a higher number of spin measurements are considered.

As prospects for the present work, we intend to study the case of the same system (coherent

state + spin) under the influence not of a magnetic field which depends linearly on the position

of the oscillator, but of a magnetic field which depends quadratically on the position of the

oscillator (as said earlier). We also intend to search for measurement regimes where, for

example, a thermalization process could be achieved (thermalization in the sense that the
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energy of the system can become time-independent at some stage). In a certain manner, the

idea of the present project walks in the pathway of the so called quantum thermodynamics

research area, a very promising scientific perspective nowadays. This motivates us also to

address questions relative to entropy production, reversibility and fluctuation theorems (major

characteristics of this subject) to the study of our alternative approach to open quantum

system.
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APPENDIX A – EXPLICIT CALCULATIONS FOR CHAPTER 4

Here we describe in details how we may obtain an analytic closed form to Eqs.(4.38).

A.1 EXPLICIT CALCULATION OF THE ENERGY

First we need to obtain |𝒵𝐼𝑁
|2. Indicating by 𝑇 (𝐼𝑁) terms that depend linearly on any

of the 𝑖𝑘 = ±1 (such as, for example, 𝑖4𝑖9𝑧2
𝛼, 𝑖1𝑧𝛼𝑒𝑖𝑁𝜔𝛿𝑡, etc.), using that 𝑧𝛼 ∈ R and the

identity |∑︀𝑛
𝑖=1 𝑧𝑖|2 = ∑︀𝑛

𝑖=1 |𝑧𝑖|2 + 2∑︀𝑚<𝑛 Re{𝑧*
𝑚𝑧𝑛}, where 𝑧𝑖, 𝑖 = 1, ..., 𝑛, are arbitrary

complex numbers, we have

|𝒵𝐼𝑁
|2 = {(𝑧 − 𝑖1𝑧𝛼)𝑒−𝑖𝑁𝜔𝛿𝑡 + 𝑧𝛼[

𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1)𝑒−𝑖(𝑁−𝑗)𝜔𝛿𝑡 + 𝑖𝑁 ]}×

× {(𝑧* − 𝑖1𝑧𝛼)𝑒𝑖𝑁𝜔𝛿𝑡 + 𝑧𝛼[
𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1)𝑒𝑖(𝑁−𝑗)𝜔𝛿𝑡 + 𝑖𝑁 ]}

= |𝑧 − 𝑖1𝑧𝛼|2 + 𝑧𝛼2

⃒⃒⃒⃒
⃒⃒𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1)𝑒−𝑖(𝑁−𝑗)𝜔𝛿𝑡 + 𝑖𝑁

⃒⃒⃒⃒
⃒⃒
2

+

+ 2𝑧𝛼 Re

⎧⎨⎩(𝑧* − 𝑖1𝑧𝛼)𝑒𝑖𝑁𝜔𝛿𝑡
⎡⎣𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1)𝑒−𝑖(𝑁−𝑗)𝜔𝛿𝑡 + 𝑖𝑁

⎤⎦⎫⎬⎭+ 𝑇 (𝐼𝑁)

= |𝑧|2 + 𝑧2
𝛼 + 𝑧2

𝛼

⎡⎣⃒⃒⃒⃒⃒⃒𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1)𝑒−𝑖(𝑁−𝑗)𝜔𝛿𝑡

⃒⃒⃒⃒
⃒⃒
2

+ 1 − 2 cos𝜔𝛿𝑡
⎤⎦+ 𝑇 (𝐼𝑁).

But⃒⃒⃒⃒
⃒⃒𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1)𝑒−𝑖(𝑁−𝑗)𝜔𝛿𝑡

⃒⃒⃒⃒
⃒⃒
2

=
𝑁−1∑︁
𝑗=1

|𝑖𝑗 − 𝑖𝑗+1|2+

+ 2
∑︁
𝑗<𝑘

(𝑖𝑗 − 𝑖𝑗+1)(𝑖𝑘 − 𝑖𝑘+1) Re
{︁
𝑒−𝑖(𝑗−𝑘)𝜔𝛿𝑡

}︁

=
𝑁−1∑︁
𝑗=1

[1 + 1] + 2
⎡⎣(𝑖2 − 𝑖3)(𝑖1 − 𝑖2)𝑒−𝑖(1−2)𝜔𝛿𝑡+

+ (𝑖3 − 𝑖4)
𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1) Re
{︁
𝑒−𝑖(𝑗−3)𝜔𝛿𝑡

}︁
+ ...+

+ (𝑖𝑁−1 − 𝑖𝑁)
𝑁−2∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1) Re
{︁
𝑒−𝑖(𝑗−𝑁+1)𝜔𝛿𝑡

}︁⎤⎦+ 𝑇 (𝐼𝑁)

= 2(𝑁 − 1) + 2[
𝑁 − 2 times⏞  ⏟  

− cos𝜔𝛿𝑡− cos𝜔𝛿𝑡− ...− cos𝜔𝛿𝑡] + 𝑇 (𝐼𝑁)

= 2𝑁 − 2(𝑁 − 2) cos𝜔𝛿𝑡− 2 + 𝑇 (𝐼𝑁)

= 4𝑁 sin2
(︂
𝜔𝛿𝑡

2

)︂
− 2 + 4 cos𝜔𝛿𝑡+ 𝑇 (𝐼𝑁)
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so that

|𝒵𝐼𝑁
|2 = |𝑧|2 + 2𝑧2

𝛼 − 4𝑧2
𝛼 cos𝜔𝛿𝑡+

+ 𝑧2
𝛼

⎡⎣4𝑁 sin2
(︂
𝜔𝛿𝑡

2

)︂
− 2 + 4 cos𝜔𝛿𝑡

⎤⎦+ 𝑇 (𝐼𝑁)

= |𝑧|2 + 4𝑁𝑧2
𝛼 sin2

(︂
𝜔𝛿𝑡

2

)︂
+ 𝑇 (𝐼𝑁).

(A.1)

Note that in each step we are simply using that 𝑖2𝑘 = 1 to select all terms which do not

depend on any 𝑖𝑘 and “absorbing” all the remaining terms into 𝑇 (𝐼𝑁). That will be so also in

all subsequent calculations of this type.

Now we note that if we fix all 𝑖𝑘’s except but one, say, 𝑖𝑗, there will be a term in the

expansion of the summation ∑︀
𝐼𝑁

|𝒵𝐼𝑁
|2 where 𝑖𝑗 = 1 and a term exactly equal but with

𝑖𝑗 = −1. Because those two terms shall cancel out and the same argument is valid for each

𝑖𝑘, we see that ∑︀𝐼𝑁
𝑇 (𝐼𝑁) = 0. This is basically the same argument that led us to (4.38)

(there we have explained it with more details). Therefore,

⟨𝐻̂𝑆⟩𝑁 = ~𝜔

⎛⎝|𝑧|2 + 1
2

⎞⎠+ 4𝑁~𝜔𝑧2
𝛼 sin2

⎛⎝𝜔𝛿𝑡
2

⎞⎠. (A.2)

A.2 EXPLICIT CALCULATION OF THE POSITION AND THE MOMENTUM

Repeating the arguments of the above section, those expectation values are simpler to ob-

tain. First we compute Re{𝒵𝐼𝑁
} and Im{𝒵𝐼𝑁

} using that, for two arbitrary complex numbers

𝑧1 and 𝑧2, Re{𝑧1𝑧2} = Re{𝑧1} Re{𝑧2} − Im{𝑧1} Im{𝑧2} and Im{𝑧1𝑧2} = Re{𝑧1} Im{𝑧2} +

Im{𝑧1} Re{𝑧2}.

Re{{𝒵𝐼𝑁
}} = Re

{︁
(𝑧 − 𝑖1𝑧𝛼)𝑒−𝑖𝑁𝜔𝛿𝑡

}︁
+ 𝑇 (𝐼𝑁)

= Re{(𝑧 − 𝑖1𝑧𝛼)} cos (𝑁𝜔𝛿𝑡) − Im{(𝑧 − 𝑖1𝑧𝛼)} sin (𝑁𝜔𝛿𝑡) + 𝑇 (𝐼𝑁)

= Re{𝑧} cos (𝑁𝜔𝛿𝑡) + Im{𝑧} sin (𝑁𝜔𝛿𝑡) + 𝑇 (𝐼𝑁)

Im{{𝒵𝐼𝑁
}} = Im

{︁
(𝑧 − 𝑖1𝑧𝛼)𝑒−𝑖𝑁𝜔𝛿𝑡

}︁
+ 𝑇 (𝐼𝑁)

= Re{(𝑧 − 𝑖1𝑧𝛼)} sin (𝑁𝜔𝛿𝑡) + Im{(𝑧 − 𝑖1𝑧𝛼)} cos (𝑁𝜔𝛿𝑡) + 𝑇 (𝐼𝑁)

= − Re{𝑧} sin (𝑁𝜔𝛿𝑡) + Im{𝑧} cos (𝑁𝜔𝛿𝑡) + 𝑇 (𝐼𝑁).

Therefore, using once again that ∑︀𝐼𝑁
𝑇 (𝐼𝑁) = 0, we have

⟨𝑋̂⟩𝑁 =
√︃

2~
𝑚𝜔

(︂
Re{𝑧} cos (𝑁𝜔𝛿𝑡) + Im{𝑧} sin (𝑁𝜔𝛿𝑡

)︂
(A.3)
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⟨𝑃 ⟩𝑁 =
√

2𝑚~𝜔
(︂

− Re{𝑧} sin (𝑁𝜔𝛿𝑡) + Im{𝑧} cos (𝑁𝜔𝛿𝑡)
)︂
. (A.4)

A.3 EXPLICIT CALCULATION OF THE POSITION AND THE MOMENTUM SQUARED

Regarding the two previous subsections, we proceed here straightforwardly to obtain Re2
{︂

𝒵𝐼𝑁

}︂
and Im2

{︂
𝒵𝐼𝑁

}︂
.

Re2
{︂

𝒵𝐼𝑁

}︂
=

⎧⎨⎩Re
{︁
(𝑧 − 𝑖1𝑧𝛼)𝑒−𝑖𝑁𝜔𝛿𝑡

}︁
+ 𝑧𝛼

⎡⎣𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1) cos ((𝑁 − 𝑗)𝜔𝛿𝑡) + 𝑖𝑁

⎤⎦⎫⎬⎭
2

= Re
{︁
(𝑧 − 𝑖1𝑧𝛼)𝑒−𝑖𝑁𝜔𝛿𝑡

}︁
+

+ 𝑧2
𝛼

⎧⎨⎩
⎡⎣𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1) cos ((𝑁 − 𝑗)𝜔𝛿𝑡)
⎤⎦2

+ 1 − 2 cos𝜔𝛿𝑡

⎫⎬⎭−

− 2𝑧2
𝛼 cos (𝑁𝜔𝛿𝑡) cos (𝑁 − 1)𝜔𝛿𝑡+ 𝑇 (𝐼𝑁)

But, using that (∑︀𝑛
𝑖=1 𝑧𝑖)2 = ∑︀𝑛

𝑖=1 𝑧
2
𝑖 + 2∑︀𝑖<𝑗 Re{𝑧𝑖𝑧𝑗} for arbitrary complex numbers 𝑧𝑖,

𝑖 = 1, ..., 𝑛, we have that
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⎡⎣𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1) cos ((𝑁 − 𝑗)𝜔𝛿𝑡)
⎤⎦2

=
𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1)2 cos2 ((𝑁 − 𝑗)𝜔𝛿𝑡)+

+
∑︁
𝑗<𝑘

⎡⎣(𝑖𝑗 − 𝑖𝑗+1) cos ((𝑁 − 𝑗)𝜔𝛿𝑡)]×

× [(𝑖𝑘 − 𝑖𝑘+1) cos ((𝑁 − 𝑘)𝜔𝛿𝑡)
⎤⎦

= 2
𝑁−1∑︁
𝑗=1

cos2 (𝑗𝜔𝛿𝑡) + 2
[︂
(𝑖2 − 𝑖3) cos ((𝑁 − 2))×

× (𝑖1 − 𝑖2) cos ((𝑁 − 1)) + (𝑖3 − 𝑖4) cos ((𝑁 − 3))×

×
2∑︁

𝑘=1
(𝑖𝑘 − 𝑖𝑘+1) cos ((𝑁 − 𝑘)𝜔𝛿𝑡) + ...+

+ (𝑖𝑁−1 − 𝑖𝑁) cos (𝜔𝛿𝑡)×

×
𝑁−2∑︁
𝑘=1

(𝑖𝑘 − 𝑖𝑘+1) cos ((𝑁 − 𝑘)𝜔𝛿𝑡)
]︂
+

+ 𝑇 (𝐼𝑁)

= 2
𝑁−1∑︁
𝑗=1

cos2 (𝑗𝜔𝛿𝑡) + 2
⎡⎣− cos ((𝑁 − 2)𝜔𝛿𝑡)×

× cos ((𝑁 − 1)𝜔𝛿𝑡) − cos ((𝑁 − 3)𝜔𝛿𝑡)×

× cos ((𝑁 − 2)𝜔𝛿𝑡) − ...− cos (𝜔𝛿𝑡) cos (2𝜔𝛿𝑡)
⎤⎦+ 𝑇 (𝐼𝑁)

= 2
𝑁−1∑︁
𝑗=1

cos2 (𝑗𝜔𝛿𝑡)−

− 2
𝑁−2∑︁
𝑗=1

cos (𝑗𝜔𝛿𝑡) cos ((𝑗 + 1)𝜔𝛿𝑡) + 𝑇 (𝐼𝑁).

Hence,

Re2
{︂

𝒵𝐼𝑁

}︂
= Re2 {𝑧} cos2 (𝑁𝜔𝛿𝑡) + Im2 {(𝑁𝜔𝛿𝑡)} sin2 (𝑁𝜔𝛿𝑡)+

+ 2 Re{𝑧} Im{𝑧} cos (𝑁𝜔𝛿𝑡) sin (𝑁𝜔𝛿𝑡)+

+ 𝑧2
𝛼

⎡⎣]2
𝑁−1∑︁
𝑗=1

cos2 (𝑗𝜔𝛿𝑡) − 2
𝑁−1∑︁
𝑗=1

cos (𝑗𝜔𝛿𝑡) cos ((𝑗 + 1)𝜔𝛿𝑡) + 1+

+ cos2 (𝑁𝜔𝛿𝑡) − 2 cos (𝑁𝜔𝛿𝑡)
⎤⎦+ 𝑇 (𝐼𝑁).
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In the same way,

Im2
{︂

𝒵𝐼𝑁

}︂
=

⎧⎨⎩ Im
{︁
(𝑧 − 𝑖1𝑧𝛼)𝑒−𝑖𝑁𝜔𝛿𝑡

}︁
− 𝑧𝛼

⎡⎣𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1) sin ((𝑁 − 𝑗)𝜔𝛿𝑡)
⎤⎦⎫⎬⎭

2

= Im2 (𝑧 − 𝑖1𝑧𝛼)𝑒−𝑖𝑁𝜔𝛿𝑡 + 𝑧2
𝛼

⎡⎣𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1) sin ((𝑁 − 𝑗)𝜔𝛿𝑡)
⎤⎦2

−

− 2𝑧2
𝛼 sin (𝑁𝜔𝛿𝑡) sin ((𝑁 − 1)𝜔𝛿𝑡) + 𝑇 (𝐼𝑁).

Now, by a calculation similar to the above one, it can be shown that⎡⎣𝑁−1∑︁
𝑗=1

(𝑖𝑗 − 𝑖𝑗+1) sin ((𝑁 − 𝑗)𝜔𝛿𝑡)
⎤⎦2

= 2
𝑁−1∑︁
𝑗=1

sin2 (𝑗𝜔𝛿𝑡)−

− 2
𝑁−2∑︁
𝑗=1

sin (𝑗𝜔𝛿𝑡) sin ((𝑗 + 1)𝜔𝛿𝑡) + 𝑇 (𝐼𝑁).

This leads to

Im2
{︂

𝒵𝐼𝑁

}︂
= Re2 {𝑧} sin2 (𝑁𝜔𝛿𝑡) + Im2 {𝑧} cos2 (𝑁𝜔𝛿𝑡)−

− 2 Re{𝑧} Im{𝑧} sin (𝑁𝜔𝛿𝑡) cos (𝑁𝜔𝛿𝑡) + 𝑧2
𝛼×

×

⎡⎣2
𝑁−1∑︁
𝑗=1

sin2 (𝑗𝜔𝛿𝑡)−

− 2
𝑁−1∑︁
𝑗=1

sin (𝑗𝜔𝛿𝑡) sin ((𝑗 + 1)𝜔𝛿𝑡) + sin2 (𝑁𝜔𝛿𝑡)
⎤⎦+ 𝑇 (𝐼𝑁).

(It may be explicitly verified that Re2 {𝒵𝐼𝑁
} + Im2 {𝒵𝐼𝑁

} concides with Eq. (A.1)).

Now, using Eqs.(4.38) and effecting the summation over 𝐼𝑁 , we have

⟨𝑋̂2⟩𝑁 = 2~
𝑚𝜔

⎧⎨⎩Re2 {𝑧} cos2 (𝑁𝜔𝛿𝑡) + Im2 {(𝑁𝜔𝛿𝑡)} sin2 (𝑁𝜔𝛿𝑡)+

+ 2 Re{𝑧} Im{𝑧} cos (𝑁𝜔𝛿𝑡) sin (𝑁𝜔𝛿𝑡)+

+ 𝑧2
𝛼

⎡⎣2
𝑁−1∑︁
𝑗=1

cos2 (𝑗𝜔𝛿𝑡) − 2
𝑁−1∑︁
𝑗=1

cos (𝑗𝜔𝛿𝑡) cos ((𝑗 + 1)𝜔𝛿𝑡) + 1+

+ cos2 (𝑁𝜔𝛿𝑡) − 2 cos (𝜔𝛿𝑡)
⎤⎦+ 1

4

⎫⎬⎭

(A.5)



75

and

⟨𝑃 2⟩𝑁 = 2𝑚~𝜔

⎧⎨⎩Re2 {𝑧} sin2 (𝑁𝜔𝛿𝑡) + Im2 {𝑧} cos2 (𝑁𝜔𝛿𝑡)−

− 2 Re{𝑧} Im{𝑧} sin (𝑁𝜔𝛿𝑡) cos (𝑁𝜔𝛿𝑡)+

+ 𝑧2
𝛼

⎡⎣2
𝑁−1∑︁
𝑗=1

sin2 (𝑗𝜔𝛿𝑡)−

− 2
𝑁−1∑︁
𝑗=1

sin (𝑗𝜔𝛿𝑡) sin ((𝑗 + 1)𝜔𝛿𝑡) + sin2 (𝑁𝜔𝛿𝑡)
⎤⎦+ 1

4

⎫⎬⎭.

(A.6)

But, using the partial sum of the geometric series ∑︀𝐽
𝑛=1 𝑎𝑟

𝑛 = 𝑎(1 − 𝑟𝐽)/(1 − 𝑟), 𝑟 ̸= 1,

we may write

𝐽∑︁
𝑛=1

sin(𝑛𝑥) = sin(𝐽𝑥/2)
sin(𝑥/2) sin

⎛⎝(𝐽 + 1)𝑥
2

⎞⎠
𝐽∑︁
𝑛=1

cos(𝑛𝑥) = sin(𝐽𝑥/2)
sin(𝑥/2) cos

⎛⎝(𝐽 + 1)𝑥
2

⎞⎠
𝐽∑︁
𝑛=1

sin2(𝑛𝑥) = 1
2

⎡⎣𝐽 − sin(𝐽𝑥)
sin(𝑥) cos

(︂
(𝐽 + 1)𝑥

)︂⎤⎦
𝐽∑︁
𝑛=1

cos2(𝑛𝑥) = 1
2

⎡⎣𝐽 + sin(𝐽𝑥)
sin(𝑥) cos

(︂
(𝐽 + 1)𝑥

)︂⎤⎦
𝐽∑︁
𝑛=1

cos(𝑛𝑥) cos((𝑛+ 1)𝑥) = 1
2

⎡⎣𝐽 cos(𝑥) + sin(𝐽𝑥)
sin(𝑥) cos

(︂
(𝐽 + 2)𝑥

)︂⎤⎦
𝐽∑︁
𝑛=1

sin(𝑛𝑥) sin((𝑛+ 1)𝑥) = 1
2

⎡⎣𝐽 cos(𝑥) − sin(𝐽𝑥)
sin(𝑥) cos

(︂
(𝐽 + 2)𝑥

)︂⎤⎦

(A.7)
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so that
𝑁−1∑︁
𝑗=1

[︂
cos2(𝑗𝜔𝛿𝑡) − cos(𝑗𝜔𝛿𝑡) cos((𝑗 + 1)𝜔𝛿𝑡)

]︂
= 1

2×

× 1
2

⎡⎣2(𝑁 − 1) sin2(𝜔𝛿𝑡/2)−

− sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

⎛⎝ cos ((𝑁 + 1)𝜔𝛿𝑡)−

− cos (𝑁𝜔𝛿𝑡)
⎞⎠⎤⎦

𝑁−1∑︁
𝑗=1

[︂
sin2(𝑗𝜔𝛿𝑡) − sin(𝑗𝜔𝛿𝑡) cos((𝑗 + 1)𝜔𝛿𝑡)

]︂
= 1

2×

× 1
2

⎡⎣2(𝑁 − 1) sin2(𝜔𝛿𝑡/2)+

− sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

⎛⎝ cos ((𝑁 + 1)𝜔𝛿𝑡)−

− cos (𝑁𝜔𝛿𝑡)
⎞⎠⎤⎦.

(A.8)

Therefore, for 𝜔𝛿𝑡 ̸= 𝑛𝜋 (that is, sin(𝜔𝛿𝑡) ̸= 0) we have

⟨𝑋̂2⟩𝑁 = 2~
𝑚𝜔

⎧⎨⎩Re2 {𝑧} cos2 (𝑁𝜔𝛿𝑡) + Im2 {(𝑁𝜔𝛿𝑡)} sin2 (𝑁𝜔𝛿𝑡)+

+ 2 Re{𝑧} Im{𝑧} cos (𝑁𝜔𝛿𝑡) sin (𝑁𝜔𝛿𝑡)+

+ 𝑧2
𝛼

⎡⎣2(𝑁 − 1) sin2(𝜔𝛿𝑡/2)−

− sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

⎛⎝ cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)
⎞⎠+ 1+

+ cos2 (𝑁𝜔𝛿𝑡) − 2 cos (𝜔𝛿𝑡)
⎤⎦+ 1

4

⎫⎬⎭

(A.9)
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and

⟨𝑃 2⟩𝑁 = 2𝑚~𝜔

⎧⎨⎩Re2 {𝑧} sin2 (𝑁𝜔𝛿𝑡) + Im2 {𝑧} cos2 (𝑁𝜔𝛿𝑡)−

− 2 Re{𝑧} Im{𝑧} sin (𝑁𝜔𝛿𝑡) cos (𝑁𝜔𝛿𝑡)+

+ 𝑧2
𝛼

⎡⎣2(𝑁 − 1) sin2(𝜔𝛿𝑡/2)+

+ sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

⎛⎝ cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)
⎞⎠+

+ sin2 (𝑁𝜔𝛿𝑡)
⎤⎦+ 1

4

⎫⎬⎭.

(A.10)

And for the case 𝜔𝛿𝑡 = 𝜋,

⟨𝑋̂2⟩𝑁 = 2~
𝑚𝜔

⎡⎣Re2 {𝑧} + 4𝑁𝑧2
𝛼 + 1

4

⎤⎦ (A.11)

⟨𝑃 2⟩𝑁 = 2𝑚~𝜔

⎡⎣ Im2 {𝑧} + 1
4

⎤⎦. (A.12)

It may be verified explicitly that, indeed, ⟨𝐻̂⟩𝑁 = ⟨𝑃 2⟩𝑁/2𝑚+𝑚𝜔2⟨𝑋̂⟩𝑁/2.

A.4 EXPLICIT CALCULATION OF THE UNCERTAINTY RELATION

With Eqs.(A.3), (A.4), (A.5) and (A.10) in hands we may compute Δ𝑋2
𝑁 = ⟨𝑋̂2⟩𝑁−⟨𝑋̂⟩2

𝑁

and Δ𝑃 2
𝑁 = ⟨𝑃 2⟩𝑁 − ⟨𝑃 ⟩2

𝑁 explicitly.

We have

⟨𝑋̂⟩2
𝑁 = 2~

𝑚𝜔

⎧⎨⎩Re2 {𝑧} cos2 (𝑁𝜔𝛿𝑡) + Im2 {(𝑁𝜔𝛿𝑡)} sin2 (𝑁𝜔𝛿𝑡)+

+ 2 Re{𝑧} Im{𝑧} cos (𝑁𝜔𝛿𝑡) sin (𝑁𝜔𝛿𝑡)

(A.13)

and

⟨𝑃 ⟩2
𝑁 = 2𝑚~𝜔

⎧⎨⎩Re2 {𝑧} sin2 (𝑁𝜔𝛿𝑡) + Im2 {𝑧} cos2 (𝑁𝜔𝛿𝑡)−

− 2 Re{𝑧} Im{𝑧} sin (𝑁𝜔𝛿𝑡) cos (𝑁𝜔𝛿𝑡)

(A.14)
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so that

Δ𝑋2
𝑁 = 2~

𝑚𝜔

⎧⎨⎩𝑧2
𝛼

⎡⎣2(𝑁 − 1) sin2(𝜔𝛿𝑡/2)−

− sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

⎛⎝ cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)
⎞⎠+ 1+

+ cos2 (𝑁𝜔𝛿𝑡) − 2 cos (𝑁𝜔𝛿𝑡)
⎤⎦+ 1

4

⎫⎬⎭
(A.15)

and

Δ𝑃 2
𝑁 = 2𝑚~𝜔

⎧⎨⎩𝑧2
𝛼

⎡⎣2(𝑁 − 1) sin2(𝜔𝛿𝑡/2)+

+ sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

⎛⎝ cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)
⎞⎠+

+ sin2 (𝑁𝜔𝛿𝑡)
⎤⎦+ 1

4

⎫⎬⎭.
(A.16)

Therefore,

Δ𝑋𝑁Δ𝑃𝑁 = ~
2

{︃
4𝑧2
𝛼

[︃
2(𝑁 − 1) sin2(𝜔𝛿𝑡/2) − sin((𝑁 − 1)𝜔𝛿𝑡)

sin(𝜔𝛿𝑡)

(︃
cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)

)︃
+ 1+

+ cos2 (𝑁𝜔𝛿𝑡) − 2 cos (𝑁𝜔𝛿𝑡)
]︃

+ 1
}︃1/2

×
{︃

4𝑧2
𝛼

[︃
2(𝑁 − 1) sin2(𝜔𝛿𝑡/2)+

+ sin((𝑁 − 1)𝜔𝛿𝑡)
sin(𝜔𝛿𝑡)

(︃
cos((𝑁 + 1)𝜔𝛿𝑡) − cos(𝑁𝜔𝛿𝑡)

)︃
+ sin2 (𝑁𝜔𝛿𝑡)

]︃
+ 1

}︃1/2

.

(A.17)

for 𝜔𝛿𝑡 ̸= 𝑛𝜋 and

Δ𝑋𝑁Δ𝑃𝑁 = ~
2
√︁

1 + 16𝑁𝑧2
𝛼 (A.18)

for 𝜔𝛿𝑡 = 𝑛𝜋.
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