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See the microcosm
In macro vision

Our bodies moving
With pure precision

One universal celebration
One evolution
One creation

(Depeche Mode, 2005) [1]



ABSTRACT

The Painlevé transcendent functions are important tools in theoretical physics, they
appear in a variety of physical systems going from quantum integrable systems to random
matrix theory. The accessory parameter problem for ODEs, which has connections to black
hole scattering problem, can be solved by using the connection between the Painlevé VI
transcendent with isomonodromic deformations of a linear ordinary differential equation.
In this case, the isomonodromic τV I function plays a major role, and finding its roots is
equivalent to solving the accessory parameter problem. The τV I function can be expressed
as a function of a Fredholm determinant. In this dissertation, we will discuss the two main
different methods of calculation of the τV I in the Fredholm determinant form. We will also
present how to construct codes for both methods and analyze them in order to understand
which one is the most numerically efficient to find the roots of the τV I function.

Keywords: Painlevé VI. Fredholm Determinant. Riemann-Hilbert Problem. Accessory
Parameter Problem. Gaussian Quadrature.



RESUMO

As funções transcendentais de Painlevé são ferramentas importantes dentro da física
teórica, elas aparecem em uma variedade de sistemas físicos indo de sistemas quânticos
integráveis à teoria de matrizes aleatórias. O problema dos parâmetros acessórios, que
tem conexões com o problema de espalhamento em buracos negros, pode ser resolvido
usando a conexão entre as funções transcendentais de Painlevé com as transformações
isomonodrômicas em uma equação diferencial ordinária linear. Neste caso a função isomo-
nodrômica τV I é de grande importância, e encontrar as raízes de tal função é equivalente a
resolver o problema de parâmetro acessório. A função τV I pode ser expressada em termos
de um determinante de Fredholm. Nesta dissertação serão discutidos os dois principais
métodos de se calcular a função τV I na sua forma de determinante de Fredholm. Também
será apresentado como construir códigos utilizando ambos os métodos e tais códigos serão
analisados de maneira a se entender qual dos dois é mais numericamente eficiente para o
cálculo das raízes da função τV I

Palavras-chave: Painlevé VI. Determinante de Fredholm. Problema de Riemann-Hilbert.
Problema de Parâmetro Acessório. Quadratura Gaussiana
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1 INTRODUCTION

In theoretical physics, it is common to find out special functions when trying
to understand the properties of a specific system. In many undergraduate courses, one
stumbles upon these functions [2]. The Gamma function, the zeta function, the theta
function, the hypergeometric function, the Bessel function, the Hermite function, and
Airy function, all of then developed by mathematicians and physicists at the necessity of
solving the problems of each epoch. The Painlevé transcendents are believed to be one of
the next to enter such a group, as said by Iwasaki et al.[3].

The Painlevé transcendents are the solutions to a set of six second order ordinary
differential equations(ODEs) whose singularities have the Painlevé property which means
that the only movable singularities are poles. The six equations can be written as

PI : d2y

dt2
= 6y2 + t (1.1)

PII : d2y

dt2
= 2y3 + ty + α (1.2)

PIII : ty
d2y

dt2
= t

(
dy

dt

)2

− ydy
dt

+ δt+ βy + αy3 + γty4 (1.3)

PIV : y
d2y

dt2
= 1

2

(
dy

dt

)2

+ β + 2(t2 − α)y2 + 4ty3 + 3
4y

4 (1.4)

PV : d2y

dt2
=
(

1
2y + 1

y − 1

)(
dy

dt

)2

− 1
t

dy

dt
+ (y − 1)2

t2

(
αy + β

y
+ γ

y

t
+ δ

y(y + 1)
y − 1

)
(1.5)

PV I : d2y

dt2
= 1

2

(
1
y

+ 1
y − 1 + 1

y − t

)(
dy

dt

)2

−
(

1
t

+ 1
t− 1 + 1

y − t

)
dy

dt
+

y(y − 1)(y − t)
t2(t− 1)2

(
α + β

t

y2 + γ
t− 1

(y − 1)2 + δ
t(t− 1)
(y − t)2

)
(1.6)

where the parameters α, β, γ, δ are complex constants. In physics those equations have
appeared in many problems, going from integrable quantum systems to random matrix
theory [4], [5], [6], [7], [8],[9], [10], [11], [12]. In this dissertation, we will focus on the sixth
Painlevé transcendent(PVI), because this transcendent has connections to the theory of
isomonodromic deformations in a Heun equation.

A Heun equation is a second-order ODE with four regular singular points, such
differential equation can be written as

y′′(w) +
(

1− θ0

w
+ 1− θ1

w − 1 + 1− θt0
w − t0

)
y′(w) +

[
q+q−

w(w − 1) −
t0(t0 − 1)K0

w(w − 1)(w − t0)

]
y(w) = 0

(1.7)
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where q± = 1− 1
2(θ0 + θt0 + θ1 ± θ∞0), the θi are called single monodromy parameters and

t0 and K0 are the accessory parameters. The accessory parameters of a Heun equation
can be written in terms of the monodromy parameters, although this task is complicated.
Finding this relation between the parameters is what we call the accessory parameter
problem. Such a problem can be seen as one version of the 21st Riemann-Hilbert problem.
Which in the words of Hilbert is “To show that there always exists a linear differential
equation of the Fuchsian class, with given singular points and monodromic group”, where
the monodromy parameters in (1.7) are a representation of the monodromy group, and
the Fuchsian class ODE is a differential equation where all the singular points are regular
singular points. In this context, the transformations in the parameters of a Heun equation
that maintain the monodromy representation, the so-called isomonodromic deformations,
are the tools that we use to solve this problem. And is here that arises the connection
between this problem and the PVI transcendent. The transformation induced in one of the
parameters by the isomonodromic deformations acts according to the Painlevé VI ODE,
therefore the accessory parameters can be cast as functions of the monodromy parameters
using this relation.

A good way to see how all those concepts come together is by examining some
physical problems as an example. Let us recall the problem of two-dimensional flow in
fluid dynamics. When the fluid is incompressible we have that it’s velocity obeys ~∇ ·~v = 0,
and if the fluid in question is also irrotational, ~∇× ~v = 0, we can express the velocity as a
scalar potential φ where ~v = ~∇φ. For such a special case in two dimensions since ∇2φ = 0,
which is the classical Laplace equation, we can use complex coordinates to describe the
system and write the analytic function Ω(w) = φ(x, y) + iψ(x, y), where φ is the potential
for the velocity and ψ is the Stokes stream function. The ψ function has the property of
giving the streamlines of the flow. Since those two functions, φ and ψ, are analytic and
obey the Laplace’s equation, a change in the coordinates of the problem through some
conformal mapping have a known formula given by(

∂2

∂x2 + ∂2

∂y2

)
ψ(x, y) =

(
∂2

∂u2 + ∂2

∂v2

)
ψ(u(x, y), v(x, y)) = 0 (1.8)

So if we are trying to analyze the streamlines of some flow with boundaries that are not
easy to deal with, we can use the solution for a case we already know, like the uniform
flow in the upper half-plane, and then use some conformal transformation and equation
(1.8) to obtain the streamlines for the problem. This use of conformal transformations
to help to solve problems in 2D is a field of great interest in fluid mechanics and, for an
introductory view in the subject, see [13].

In the context of the last paragraph, knowing how to perform a conformal mapping
to the upper half-plane from a region of interest is equivalent to solving the problem of
obtaining the streamlines of the flow in such a region. Let us examine them the problem
of finding the transformation from a channel with a half-disk barrier to the UHP (upper
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Figure 1 – Conformal mapping from the upper-half w-plane to a channel with a semi-disk
barrier in the z-plane. By T. Anselmo in [16]

half-plane), as it is exemplified in Figure 1. This problem is similar to the well known
Schwarz-Christoffel mapping, which consists of finding the transformation that goes from
the interior of some polygon to a standard domain such as the UHP or the unity disk.
For a detailed analysis of Schwarz-Christoffel transformations see [14]. Back to Figure 1
one can see it as some kind of generalization of the Schwarz-Christoffel problem where
one of the sides of the polygon is now a circular arc. Those kinds of domains are called
Polycircular arc domains, and in order to find the conformal map from the UHP to it, one
needs to solve an ODE. The so-called Schwarzian differential equation [15] can be written
as

{f(w), w} :=
(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

=
n∑
i=1

[
1− θ2

i

2(w − wi)2 + βi
w − wi

]
(1.9)

and solving it will give us the function f(w), responsible for the transformation to the
semi-disk barrier domain. The wi in equation 1.9 are the four pre-vertices points (0, t0, 1,∞)
in our domain. The parameters θi can be obtained from the geometry of the problem while
the parameters βi obey

∑n
i=1 βi = ∑n

i=1(2wiβi + 1− θ2
i ) = ∑n

i=1(βiw2
i + wi(1− θ2

i )) = 0.

The Schwarzian equation (1.9), according to [17], can be written as f(w) = y1(w)
y2(w)

where y1 and y2 are two linearly independent solutions of the second order ODE

ỹ′′(w) =
n∑
i=1

[
1− θ2

i

4(w − wi)2 + βi
2(w − wi)

]
ỹ(w). (1.10)

With the introduction of equation 1.10 one can see that the problem of finding a conformal
transformation from the UHP to the semi-disk barrier domain can be written as the
problem of finding the two linearly independent solutions of a Fuchsian class ODE. In our
case, since we have four pre-vertex points, the Fuchsian equation can be written in the
form of a Heun ODE. As is developed in [18], one can find the parameters θi using the
geometry of the domain, then it only remains to express who are the βi in term of the
θi and the wi. This is the same as solving the accessory parameter problem for a Heun
equation with some given monodromy parameters.

In conclusion, the problem of finding streamlines in the semi-disk barrier domain
resumes to the problem of finding the conformal transformation described in Figure 1.
This conformal transformation can be written as a second-order Fuchsian class ODE, with
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some of its parameters obtained by the geometry of the domain. The remaining parameters
are obtained by linking this Fuchsian ODE to a Heun equation and solving the accessory
parameter problem. The accessory parameter problem of such a Heun equation is solved
by using the connection between the isomonodromic transformations performed in the
ODE and the sixth Painlevé transcendent.

There are other examples of physical problems that make use of the PVI property,
one can solve the so-called reverse Riemann-Hilbert problem in the context of black hole
physics to find scattering amplitudes for scalar fields in a Kerr-de Sitter space-time. For
more details see [19].

Thus, there are some good motivations in theoretical physics for knowing the
properties of the PVI transcendent function. Some works in this field show us that the
best way to express the sixth transcendent function is in terms of the isomonodromic tau
function, or τV I function [20]. In the context of the accessory parameter problem, the
solutions to the parameters can be given as an initial value problem for the tau function,
where one of such parameters can be obtained as the root of the τV I . Since one can connect
the capability to calculate the τV I with the solution to the accessory parameters problem,
it is important to express such a function in an efficient numerical way.

The τV I function can be completely determined by the monodromy parameters
in the Painlevé VI ODE, in particular, it can be written as an expansion near one of its
singular points in terms of conformal blocks in conformal field theory, as stated in [21]
and [22]. Such expansion can be used to generate numerical values for the tau function,
although it is not the most efficient method known. Based on [23], one can be able to
express the τV I function as a Fredholm determinant. In that representation, the series
expansion for the tau can be computed in a relatively fast way.

By itself, the Fredholm determinant is a powerful tool in operator theory and
mathematical theory, [24], [25]. In physics, it was found significant applications for this
determinant, for example, atomic collision n theory, [26], or as the two-point correlation
function of the two-dimensional Ising model [27]. In our problem, the expansion for the
determinant is calculated by expanding the operators inside it in a Fourier basis. And
recently one general numerical method for the calculation of Fredholm’s determinant was
developed by [28]. In his paper, the quadrature method is said to be the most efficient for
the computation of this determinant. The purpose of this dissertation is to explain and
analyze both methods and to ascertain which of the two approaches introduced above is
the best suited for our application to the accessory parameters problem. To this end, codes
for the Fourier and quadrature methods were constructed, the latter as a new development,
using as standard the Julia Language.

This dissertation is divided into four chapters. In chapter 2 we will, reviewing the
work of [16], present the concepts of monodromy, the 21st Riemann-Hilbert problem(RHp),



Chapter 1. Introduction 14

the accessory parameter problem, the isomonodromic transformations of the Heun equation
and its connection to the Painlevé VI equation. It will also be shown how the Toda equation
can be connected to the accessory parameters to obtain one of the conditions for them.
Also showing the role of the τV I function, and its root, in the solution of this problem.

In chapter 3 it will be introduced the general form of the isomonodromic τ function
for a Fuchsian system with n singular points. Describing the general Riemann-Hilbert
problem defined in a n-punctured Riemann sphere, how to break such a problem into
n− 2 pairs of pants that can be described by auxiliary 3-point RHps. Then, we introduce
the Plemelj integral operators and construct a general τ function for n singular points
in N dimensions expressed in terms of a Fredholm determinant. After that, this general
form of the tau function is applied to the specific case of n = 4, N = 2, which gives us the
Painlevé τV I function.

In Chapter 4 we proceed to define the two main methods by which we can calculate
the Fredholm determinant, the Fourier, and the quadrature approach. We will show how
to construct algorithms for both methods and analyze its efficiency. We will also use the
formalism introduced here to solve one example of the accessory parameter problem as a
demonstration of the capacities of the new method

At last, in Chapter 5 it will be presented a short review of the advances made
through this dissertation and will be proposed directions in which the work can be expanded
into new problems.
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2 THE PAINLEVÉ τV I FUNCTION AND THE ACCESSORY PARAMETER
PROBLEM

In this chapter, we aim to explain the connection between the sixth Painlevé
Transcendent (PVI) to the isomonodromic deformations of a Heun ODE. To this end,
we will need to introduce some concepts. First, we will enunciate the Riemann-Hilbert
problem (RHp). Then we will see how this relates to the so-called accessory parameter
problem for the Heun equation, tying its solution to the isomonodromic transformations
of the parameters. We will review how those transformations for one of the parameters
resume to the PVI, and then we will introduce the concept of the isomonodromic tau
function (τV I). At last, it will be shown that the solution for the accessory parameters can
be written as an initial value problem for the τV I .

2.1 The Riemann-Hilbert Problem

The Riemann-Hilbert problem, also known as the twenty-first Hilbert problem, is
one of the twenty-three problems presented by Hilbert in 1900. It concerns the relation
between differential equations of the Fuchsian class and the monodromy group. To have a
better grasp at the RHp it will be necessary to introduce the concepts of the Fuchsian
equation and the Monodromy group. The next two subsections are devoted to that.

2.1.1 Fuchsian Equations

A Fuchsian equation, according to [3], is an ordinary differential equation (ODE)
defined in the Riemann sphere P1 = C ∪ {∞}, having the form of

D2y(w) + P1(w)Dy(w) + P2(w)y(w) = 0 , D = d

dw
. (2.1)

Where P1 and P2 are rational functions, the set S = {w1, w2, ..., wi, wi+1 =∞} is a subset
of P1 and wi are the singularities of the equation. The points in the set S are all regular
singularities of equation (2.1). In the context of the RHp the best way to express the
Fuchsian ODE is by its matricial form

dY
dw

=
i∑

m=1

Am

(w − wm)Y, Y =
y1(w) y2(w)
u1(w) u2(w)

 . (2.2)

This is also known as the Fuchsian system, because to every element of the matrix Y we
can associate a Fuchsian equation of the form (2.1) ([29]). The matrices Am are nonzero
and independent of w. The matrix solution Y is better suited to understand the properties
of the monodromy group in such solutions. A particular and more mathematical study of
those matrix ODEs can be found in ([30]).
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2.1.2 Monodromy Group

According to the definition written in [31], we start with the punctured Riemann
sphere as D = P1 \ S with S = {w1, w2, ..., wi, wi+1 =∞}. And then we can define a loop
in D with base point in x as a curve

γ : I = [0, 1]→ D (2.3)

starting and ending in x. Now, let L(D, x) be the set of all loops that have x as base
point. Two loops γ1 and γ2 are said to be (homotopy-)equivalent if and only if γ1 can be
continuously deformed into γ2 in D with x fixed.We represent this equivalence relation
as γ1 ' γ2. Therefore the set of equivalence classes of loops in L(D, x) is called the
fundamental group of D and is denoted as π1(D, x) = L(D, x)/ '. The monodromy group
is a GL(2,C) matricial representation of the π1(D, x).

Figure 2 – Loops and monodromy matrices of the 4-point punctured Riemann sphere. By
T. Anselmo in [16]

2.1.2.1 Fuchsian System

Given some representation of the monodromy group, one can interpret its action
by looking at how the solutions of a Fuchsian system behave. When we make analytic
continuations around a singular point one can see that the solution does not return to
itself, instead, it will be given by some linear combination of the solutions.

First let us start with some simpler case, a first-order Fuchsian equation, as written
bellow

dy

dw
− α

w − wi
y = 0, wi, α ∈ C. (2.4)

Assuming α 6∈ Z, the solution becomes

y(w) = a(w − wi)α, a ∈ C (2.5)

The function y(w) has some interesting properties. Namely if we calculate the change in
the function value when we perform a loop over the singular point wi we get

y((w − wi)e2πi + wi) = e2πiαy(w). (2.6)
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Hence, the pole in (2.5) represents a branch point in the solution (2.6). This property
is common on Fuchsian equations: the presence of regular singularities in its coefficients
induces the existence of branch points in the solutions ([32]). For this particular case, a
first-order ODE, we see that an analytic continuation around the singularity brings the
solution to itself multiplied by a complex constant.

The general case is a little more complex. As said in 2.1.1 we can relate a Fuchsian
equation to a Fuchsian system of the type (2.2). In this context, the behavior of the
solution around a singularity is not given by a function, but by a 2× 2 matrix Y. For such
a system, an analytic continuation around one of its singularities brings the solution to
the form

Φγi(w) = Φ(w)Mγi . (2.7)

Where Mγi ∈ GL(2,C) is the monodromy matrix associated with γi. So, as highlighted
before, the solution is brought to a linear combination of itself given by the monodromy
representation of the group π1. In figure 2 there is an example of the loops, singularities
and respective monodromy matrices for a 4-punctured sphere. We can see from the figure
that a loop that encircles all four points can be contractible to a point, this is true for any
number of points in the set S so we can write

Mn · · ·M2M1 = 1. (2.8)

The 4-punctured sphere that appears in figure 2 is a very special case that will be
dealt with in later sections, then we will introduce a notation that is best suited for such
domain. We define the set S = (0, t, 1,∞) and the trace coordinates

pi = 2π cos θi = Tr(Mi), pij = 2π cosσij = Tr(MiMj). (2.9)

The parameters θi and σij will be called monodromy parameters and they will be used
to represent the monodromy matrices Mi in the next sections. These trace coordinates
generate an algebra [33] and also satisfy the so called Fricke-Jimbo relation [34]:

p0ptp1p∞ + p0tp1tp01 − p0t(p0pt + p1p∞)− p1t(p0p∞ + ptp1)− p01(p0p1 + p∞pt)
+ p2

0t + p2
1t + p2

01 + p2
0 + p2

t + p2
1 + p2

∞ = 4 (2.10)

The equation (2.10) will play the role of a consistency check for the monodromy parameters.
This relation will become more relevant in chapter 4.

2.1.2.2 Monodromy Matrices from the Geometry of Complex Domains

Since the concepts of the monodromy group and its representation are very abstract,
in this short subsection we will present an example of how the monodromy information
can be related to some physical problems. In particular, we will be dealing with the same
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Figure 3 – – The sides of the quadrangle are labeled according to the identification
−∞ = f(0), −1 = f(t0), 1 = f(1) and ∞ = f(∞), By T. Anselmo in
[16]

system shown in the introduction, the conformal mapping between a polycircular arc
domain and the upper half-plane.

In the discussion at the introduction, it was mentioned that the conformal transfor-
mation f(w) should obey a Schwarzian ODE of the type (1.9). From this point one could
proceed with a linearization of the problem by expressing the solution f as a ratio

f(w) = y1(w)
y2(w) (2.11)

where solutions yi(w) would obey a Fuchsian type ODE, given by (1.10). The mapping we
are going to use here is the one showed in Figure 1, were the domain is the channel with a
half-disk barrier. In Figure 3 we have a more detailed sketch of the such domain. The set
(0, t0, 1,∞) with images f(0) = −∞, f(t0) = −1, f(1) = 1 and f(∞) = ∞, will be our
singular points. Now we will express the solutions as the row vector Y (w) = (y1(w) y2(w))
and try to find expressions for the monodromy matrices by making use of the (2.7). The
formalism in this subsection, and all the results written in the next paragraphs were
introduced in the paper [18], by Anselmo et al..

We seek to make an analytic continuation in a loop enclosing one of the singularities.
To that end, we will make use of the so-called Schwarz function

S(z(w)) := z(w) = z(w), (2.12)

that will be responsible for expressing the changes in the vector Y when an analytic
continuation is performed through one of the boundary lines.

Let us take in consideration the side t0, when making an analytic extension of f(w)
near this side one obtains the f̃(w) = St0(f(w)) := f(w) = f(w). Where St0 represents
the Schwarz function of the curve that is defined by t0 and f(w) is the Schwarz conjugate
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of an analytic function. Expressing this function using the row vector Y one can write

(y1(w) y2(w)) = (y1(w) y2(w))St0 , where St0 =
1 0

0 1

 (2.13)

When such a continuation occurs from bellow t0 to side 1, one can write

S1(w) = 1
z(w) , (2.14)

which comes from the equation for the unit circle zz̄ = zS(z) = 1. In this case, the analytic
continuation is written as

(y1(w) y2(w)) = (y1(w) y2(w))S1, where S1 = i

0 1
1 0

 (2.15)

Where the factor i was included in S1 to enforce the condition detS1 = 1. This kind of
overall factor does not change the corresponding S(z).

Going through with this kind of analysis one can obtain the full set of matrices S

S0 =
 1 0
−2hi 1

 St0 =
1 0

0 1

 S1 = i

0 1
1 0

 S∞ =
1 0

0 1

 (2.16)

where h is the parameter that represents the distance between the walls of the channel. With
those matrices in hands the process of obtaining the monodromy matrices is straightforward.
Let us examine how it goes for the point t0. We start in a point above the side t0, then
proceed to the part bellow the real line where the function pass through a branch change
due to the singularity at t0, at this region we will have

(y1(w) y2(w)) = (y1(w) y2(w))St0 . (2.17)

Now, from the lower half-plane we seek to return to the starting point, but since we are in
a positive oriented loop we should cross side 1. This crossing makes a change in our row
function given by

Y (w) = Y (w)S1 (2.18)

In the end, the change in our solutions after the continuation was performed in a loop
around t0 should take into account those two equations. Therefore, the monodromy matrix
is written as

Yγt0(w) = Y (w)Mt0 , Mt0 = S1St0 (2.19)

Where it was used that Y (w) = Y (w)S1 = Y (w)S1. Repeating this algorithm for the other
singular points give us the remaining three monodromy matrices of the domain. A general
formula for those monodromy matrices, as long as the full set of Mγi is given below

Mγi = Si+1Si (2.20)
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and

M0 =
 1 0

2hi 1

 Mt0 = i

0 1
1 0

 M1 = −i
0 1

1 0

 M∞ =
 1 0
−2hi 1

 (2.21)

Here we could use the monodromy matrices to generate the trace coordinates, that in this
particular problem are related to the angles of the polycircular-arc domain. Another good
example of a physical concept that can be associated with the monodromy matrices and
the trace coordinates is given by [19], where the scattering amplitudes of a scalar field in a
Kerr-de Sitter spacetime are written as functions of the monodromy parameters θi and σij .

Now that we have a better grasp of the concepts of monodromy and how it relates
to the Fuchsian systems, we can go further and define the Riemann-Hilbert problem, in
both its reverse and original form.

2.1.3 The 21st Riemann-Hilbert Problem

In the last section, we saw that the solutions of a Fuchsian equation are multivalued
and that analytic continuation around one of its singularities brings the solutions vector
to a linear combination of itself, given by the monodromy matrices. That property can be
used to associate a Fuchsian class ODE with the monodromy group π1(P1 \ S, x) where
S = {w1, w2, ..., wi, wi+1 =∞} this leaves us with the direct monodromy problem:

Given a differential equation with n regular singular points, find an SL(2,C)
representation associated with an equivalence class of loops around its singular
points.

From this same logic we can define the so-called reverse monodromy problem, which is
also known as the 21st Riemann-Hilbert problem (RHp):

Given an irreducible SL(n,C) representation ρ of the fundamental group of
the n-punctured Riemann sphere, find a Fuchsian differential equation which
has ρ as its monodromy representation

Or as it was said by Hilbert [35]: “To show that there always exists a linear differential
equation of the Fuchsian class, with given singular points and monodromic group.”

While the two problems may seem to be the mirror of one another a question must
be made clear: “Is the map between the space of 2nd order Fuchsian equations and the
space of representations of π1(P1 \S, x) bijective ?” To answer that letM(S) be the space
of conjugacy classes of irreducible representations of π1(P1 \ S, x) of rank 2 and E(S) be
the space of second-order irreducible Fuchsian differential equations with singular points
in at most S, then

m(S) = dim(M(S)), e(s) = dim(E(S)) (2.22)



Chapter 2. The Painlevé τV I function and the Accessory Parameter Problem 21

where dim(X) is the complex dimension of some space X. From [3] one can show that

m(S)− e(S) = n− 3 (2.23)

in that case, the only bijective example happens when n = 3 which is the hypergeometric
case of the Fuchsian equation. For n > 3 the dim(M(S)) > dim(E(S)) and so we have
that one representation of π1(P1 \S, x) can be related to more than one Fuchsian equation
at the same time. This fact leads to the theory of isomonodromic deformations, changes
in the ODE that leave the monodromy of the system preserved. This is a rich topic and it
will be explored with more details in the next sections.

2.1.4 The n=3 reverse Riemann-Hilbert problem

To have a better grasp of how the Riemann-Hilbert problem presents itself, we will
examine the case with 3 singular points in this section. We will start by remembering that,
with n = 3, the dimension of the Fuchsian space and the monodromy representation is the
same. This means that we will not face problems with accessory parameters as it happens
to the Heun case, neither we will need to make use of isomonodromic transformations.

In this problem, all information about the ODE can be given if we know the
monodromy matrices. Therefore, it is more interesting to look into the point of view of
the direct monodromy problem or the reverse Riemann-Hilbert problem as its called by
some authors. Therefore, we now seek to obtain the monodromy representation from the
Fuchsian differential equation.

First, we note that in the complex plane a Fuchsian type ODE with three singular-
ities can always have its parameters changed to become

w(1− w) d
2u

dw2 + {γ − (α + β + 1)w} du
dw
− αβu = 0, (2.24)

which is the celebrated Gauss hypergeometric ODE. So our reverse RHp turns out to be the
problem of determining the monodromy representation of the hypergeometric differential
equation. This makes our task easier now since the properties of the ODE and its solutions
are well known. There are a few different ways of determining the monodromy matrices.
Here we will make use of one of the integral representation for the function, the Euler
integrals.

Integral representations can be used to express some solutions of a given differential
equation, this kind of form is useful when trying to understand global properties of some
solutions. The Euler integral representation for hypergeometric can be derived from the
power series of the function and it has the following form

Fpq(w) =
∫ q

p
xα−γ(1− x)γ−β−1(x− w)−αdx. (2.25)
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Figure 4 – Loops encircling the singularities of the domain of the hypergeometric ODE,
by K. Iwasaki et al. from [3]

Where q → p is a path in the complex plane. Following the discussions in [3] we will use the
Euler integrals over double loops, instead of the usual arcs. Let T be an equilateral triangular
domain with vertices 0, 1 and p := (1+

√
3)i

2 , for w within T we set Yw = P1\{0, 1,∞, w} and
take p as base point for the fundamental group of this sphere. We proceed by introducing
the double loop notation

〈ξ1, ξ2〉 =
∫

[γ1,γ2]
xα−γ(1− x)γ−β−1(x− w)−αdx (2.26)

with the commutator [γ1, γ2] = γ1γ2γ
−1
1 γ−1

2 . Where this path of integration represents two
subsequent loops starting and ending in point p. In Figure 4 there are examples of loops
that could be perform around the singularities in this setting.

The commutator of equation (2.26) can be used to derive an expression for the
integrals around double loops that encircle the singular points. Here the concept of analytic
continuation encompasses deforming one point inside the double loops to perform a path.
In particular, the loops which encircles the singularities of the hypergeometric 〈γ0, γ∞〉
and 〈γ1, γ∞〉 can be shown to obey the relations bellow when an analytic continuation is
performed in such solutions.

〈γ0, γ∞〉γ1 =〈γ0, γ∞〉 (2.27)
〈γ1, γ∞〉γ0 =〈γ1, γ∞〉 (2.28)

If we put some constraints in the parameters, such as
α 6= −1,−2, 3, ...

α− β 6∈ Z

γ − β 6= 1, 2, 3... or α− γ 6= 1, 2, 3...
(2.29)
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it can be proven that the solutions 〈γ0, γ∞〉 and 〈γ1, γ∞〉 are linearly independent, by using
their power series around 1 and 0 respectively.

〈γ0, γ∞〉 =
∞∑
m=0

c(0)
m (w − 1)m (2.30)

〈γ1, γ∞〉 =
∞∑
m=0

c(1)
m wm (2.31)

where

c(0)
m =c0(α)m(1− e2πi(α−γ))(1− e2πi(β−α))Γ(α− γ + 1)Γ(β − α +m)

Γ(β − γ +m+ 1) (2.32)

c(1)
m =c1(α)m(1− e2πi(β−γ))(1− e2πi(γ−β))Γ(β − α +m)Γ(γ − β)

Γ(γ − α +m) (2.33)

For a hypergeometric that obeys (2.29), we can make use of the linear independence
of the solutions stated above and say that F = (〈γ1, γ∞〉 〈γ0, γ∞〉) form as fundamental
system of solutions. With this and the properties enforced by the commutations of the
loops one can arrive at the result that for ν = (0, 1) an analytic continuation of F gives

Fγν = FMν (2.34)

where

M0 =
1 e2πi(−α) − e2πi(−γ)

0 1 + e2πi(γ−α) − e2πi(−α)

 M1 =
 e2πi(α+β−γ) 0
e2πi(β) − e2πi(α) 1

 (2.35)

For proofs and detailed calculations of the results stated above one can look into [3]. This
example show us two important things, the first one is the natural connection between the
3-point RHp and the hypergeometric equation, which will be explored later in chapter 3.
The second is the verification of the statement given in the last section, for the 3-point
problem, one could construct the matrices Mγ only by knowing the parameters of the
ODE and vice versa. In the next section we will go further and construct the 4-point
Riemann-Hilbert problem, which comes with the aforementioned accessory parameters
problem.

2.2 Heun Equation

As stated above, the accessory parameter problem for the Heun equation is the
representation of the Riemann-Hilbert problem with four singular points. The Heun
equation itself appears in a wide range of physical problems, in particular in the conformal
mapping of polycircular arcs and the scattering problem of black holes. For those two,
the accessory parameter determination in terms of monodromy coefficients is crucial to
solving the problems. In this section, we introduce the Heun ODE and try to obtain the
accessory parameters for such an equation connecting it to a Fuchsian system formalism.
This provides us with the tools we need to solve the accessory parameter problem.
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The Heun equation is a 2nd order ODE defined in the Riemann sphere P1 with four
regular singular points, with one of them being the ∞. We can see from the discussions
on [36] that every ODE of second order that has the same numbers of singularities can be
transformed into a Heun equation by a coordinate transformation.Therefore we will work
with the so-called canonical form of such ODE:

y′′(w) +
(

1− θ0

w
+ 1− θ1

w − 1 + 1− θt0
w − t0

)
y′(w) +

[
q+q−

w(w − 1) −
t0(t0 − 1)K0

w(w − 1)(w − t0)

]
y(w) = 0

(2.36)
with q± = 1− 1

2(θ0 + θt0 + θ1± θ∞0). The parameters t0 and K0 are what we call accessory
parameters of the equation, and the set θi ∈ {θ0, θt0 , θ1, θ∞0} are the single monodromy
coefficients. Those are the same that were defined in equation (2.9), so the θi are derived
from the monodromy representation of the fundamental group associated to this ODE. We
now seek to develop the solution of the Riemann-Hilbert problem, given the monodromy θi
how can we construct the ODE above, more specifically, how are the accessory parameters
t0 and K0 related to the composite monodromy of the system in question. The next
sections will introduce the formalism we need to answer this question.

2.2.1 Fuchsian Approach

From the subsection 2.1.2 we remember that a Fuchsian system of the type of (2.2)
can be related to a matrix representation of the monodromy group π1(P1 \ S, x), so it
would be advantageous to associate the Heun equation with a Fuchsian system.

Let us introduce the appropriate system for this problem. First we write a matricial
ODE with four singularities at the points 0,t, 1, ∞ as

dΦ
dw

= A(w)Φ, Φ =
y1(w) y2(w)
u1(w) u2(w)

 (2.37)

with the A matrix being defined as:

A(w) = A0

w
+ At
w − t

+ A1

w − 1 (2.38)

The 2 × 2 matrices Ai being not dependent on w and the residue of A(w) at infinity
implying A0 + A1 + At = −A∞, where A∞ can be diagonalized by a transformation
Φ→ GΦ.

Now, using equation (2.38) we can arrive at a 2nd order ODE for y1(w):

y′′1(w)− (TrA+ (logA12)′)y′1(w) + (detA+ A′11 + A11(logA12)′)y1(w) = 0 (2.39)

where Aij corresponds to the ij-entry of the A(w) matrix (2.36). In a straightforward way
one can find a similar ODE for any of the elements of Φ. If the matrix A is invertible, and
A12 6= 0, it can be shown that the solutions y1, y2, u1 and u2 are linearly independent.
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We now seek to transform equation (2.39) into (2.36) This requirement states some
impositions on the number of free parameters of A. Making A∞ diagonal leads to the
assumption that the term A12 needs be of O(−w2) as w approaches infinity, and looking
into (2.38) we can only conclude that:

A12 = k(w − λ)
w(w − 1)(w − t) , k ∈ C (2.40)

In this way, the off diagonal element now have a single zero called λ, and after some
algebra and the comparison with (2.36) we arrive at the conclusion that Tr(Ai) = θi and
detAi = 0. In the end we obtain the ODE bellow:

y′′ +
(

1− θ0

w
+ 1− θ1

w − 1 + 1− θt
w − t

− 1
w − λ

)
y′+[

κ−(1 + κ+)
w(w − 1) −

t(t− 1)K
w(w − 1)(w − t) + λ(λ− 1)µ

w(w − 1)(w − λ)

]
y = 0 (2.41)

where µ is the residue of A11 at w = λ, A∞ = diag(κ−, κ+) with κ± = −1
2(θ0 +θt+θ1±θ∞),

and K is given by:

K(λ, µ, t) = λ(λ− t)(λ− 1)
t(t− 1)

[
µ2 −

(
θ0

λ
+ θ1

λ− 1 + θt − 1
λ− t

)
µ+ κ−(1 + κ+)

λ(λ− 1)

]
(2.42)

From equation (2.42) we see that there is a relation between the parameters K, µ and λ,
that relation shows that the singularity λ at (2.41) is in fact an apparent singularity. Which
means that its indicial exponents are (0, 2) and also (2.42) guarantee us that there is no
logarithmic behavior. This means that a loop encircling λ will have trivial monodromy,
therefore Mλ = 1. With this set of parameters (K,µ, λ, t), we now wish to relate then to
the accessory parameters of the Heun equation. In order to do this, one needs to make use
of the aforementioned isomonodromic transformations, we seek to make deformations into
equation (2.41) and force the parameters to become of the form of (2.36). Next section is
devoted to explain the details behind such deformations in the parameters.

2.2.2 Isomonodromic Transformations

The concept of the isomonodromic deformations becomes possible when the di-
mension of the monodromy group exceeds the dimension of the space of Fuchsian ODEs.
In this way, some transformations can be performed in the set of parameters for such
equations that maintain the monodromy representation. According to equation (2.23) for
the Heun case, where there are four singularities, the monodromy space has one extra
complex dimension. Hence, we can associate an isomonodromic transformation with the
change of one parameter in the set (K,µ, λ, t), which will be chosen as t.

It was stated by Garnier in [37] and [38], that a change in t would give rise to a
change in the parameters according to a Hamiltonian system:

dλ

dt
= {K,λ}, dµ

dt
= {K,µ}, {f, g} = df

dµ

dg

dλ
− df

dλ

dg

dµ
(2.43)
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Or, precisely,
λ̇ = ∂K

∂µ
, µ̇ = −∂K

∂λ
(2.44)

We can see that the parameter K takes part as a Hamiltonian of the system in this
formalism. Although this Hamiltonian cannot be interpreted in a physical way, as we
are used to, it is interesting to see that the parameters are described by such equation.
However, this is not the only known approach to deal with isomonodromic deformations,
one could use the changes in the matrix A(w) to characterize such transformation.

Let us see how we could express those transformation from the point of view of
the A matrix. It was shown by Schlesinger that a deformation of a Fuchsian system of
the form (2.2), with n singular points in S = wi, is isomonodromic if Y(w) satisfies a
system of linear partial differential equations or if the matrices Ai as functions of the same
deformation parameters satisfies a completely integrable nonlinear differential system.

Theorem 1 (Schlesinger [39]). The deformation equations of the system of linear differ-
ential equations

∂Y(w, S)
∂w

=
n∑
i=1

Ai
(w − wi)

Y(w, S), S = {wi}i=1,··· ,n (2.45)

are isomonodromic if and only if either Y(w, S) satisfies the following set of linear partial
differential equations

∂Y(w, S)
∂wi

= − Ai
(w − wi)

Y(w, S) (2.46)

or the matrices Ai(S) satisfy the integrability conditions of (2.45) and (2.46) given by the
completely integrable set of nonlinear equations:

∂Aj
∂wi

= [Ai, Aj]
w − wi

, (i 6= j), ∂Ai
∂wi

= −
n∑

i 6=j,i=1

[Ai, Aj]
wi − wj

(2.47)

which is known as the Schlesinger Equations.

Now let us write how would be the Schlesinger equations for the Fuchsian system
(2.37)

∂Â0

∂t
= [Ât, Â0]

t
,

∂Â1

∂t
= [Ât, Â1]

t− 1 ,
∂Ât
∂t

= [Â0, Ât]
t

+ [Â1, Ât]
t− 1 (2.48)

Since it is a monodromy preserving transformation, the eigenvalues of Âi, related to the
parameters θi, are conserved under the effect of (2.48). For a more detailed review into
isomonodromic deformations one could go to [40].

Now, departing from both possible approaches, equation (2.43) or equation (2.48),
we can arrive at an ODE for the parameter λ as a function of the monodromy parameters
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θi and t [41]. The ODE has the following form

λ̈ = 1
2

(1
λ

+ 1
λ− 1 + 1

λ− t

)
(λ̇)2 −

(1
t

+ 1
t− 1 + 1

λ− t

)
λ̇+

+ λ(λ− 1)(λ− t)
2t2(t− 1)2

[
(θ∞ − 1)2 − θ2

0t

λ2 + θ2
1(t− 1)

(λ− 1)2 −
(θ2
t − 1)t(t− 1)

(λ− t)2

]
. (2.49)

This differential equation is one of the forms of the Painlevé VI (PVI) equation. Then, the
aforementioned connection between the theory of isomonodromic deformations and the
Painlevé sixth transcendent is given by (2.49). For more on the relation between those two
concepts one can go to ([42]). Now we are able to use the whole theory behind the PVI
equation to help us solve the accessory parameter problem.

2.2.3 Painleve VI ODE and τ function

In the last section we saw how the Painlevé VI equation appears in the context
of isomonodromic transformations, now let us take a look into some properties of such
ODE. In the seminal work did by Jimbo, Miwa and Ueno ([20]) it was stated that for
any solution of the Schlesinger equations the 1-form w = ∑

i>j Tr(ÂiÂj)d log(wi − wj) is
closed. Which allow us to introduce the concept of the τ function as being w = d log τ̂ .
Then we have:

d

dt
log τ̂ = 1

t
TrÂ0Ât + 1

t− 1TrÂ1Ât (2.50)

The relation between the τ function and the parameters in (2.41) is given by:

d

dt
log τ̂ = K + θ0θt

t
+ θ1θt
t− 1 −

κ−(λ− t)
t(t− 1) −

λ(λ− 1)µ
t(t− 1) (2.51)

Now, using the Schlesinger equations (2.48), it can be shown that d
dt

log τ̂ obeys a
differential equation. Let us consider the ζ̂(t) function bellow.

ζ̂(t) := t(t− 1) d
dt

log τ̂ , ζ̂ ′(t) = TrÂ0Ât + TrÂ1Ât, ζ̂ ′′(t) = Tr([Â0, Ât]Â1)
t(t− 1) . (2.52)

It is known that any triplet of traceless matrices obeys:

(Tr([Â0, Ât]Â1))2 = −2 det


TrÂ0

2 TrÂ0Ât TrÂ0Â1

TrÂtÂ0 TrÂt
2 TrÂtÂ1

TrÂ1Â0 TrÂ1Ât TrÂ1
2

 (2.53)

The formula above can be used to determine the differential equation for ζ̂(t). The only
issue is that the matrices defined in (2.37) are not traceless. To solve this we work with a
modified τ function: τ := t

θ0θt
2 (t − 1)

θ1θt
2 τ̂(t), such a transformation induces changes in

the traces of the Ai matrices, they will be explored in more detail in chapter 3. Then with
this new form of the tau function is straightforward to arrive at

t(t− 1) d
dt

log τ(t) = (t− 1)TrA0At + tTrAtA1 = ζ̂(t) + (t− 1)(θ0θt)
2 + t

(θ1θt)
2 (2.54)
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Now we can use A0 + At + A1 = −A∞ to write equation (2.53) in terms of ζ̂(t):

(t(t− 1)ζ̂ ′′(t))2 = −2 det


θ2

0
2 tζ̂ ′(t)− ζ̂(t) ζ̂(t)− θ2

0+θ2
t θ

2
1+θ2

∞
4

tζ̂ ′(t)− ζ̂(t) θ2
t

2 (t− 1)ζ̂ ′(t)− ζ̂(t)
ζ̂(t)− θ2

0+θ2
t θ

2
1+θ2

∞
4 (t− 1)ζ̂ ′(t)− ζ̂(t) θ2

t

2


(2.55)

The equation (2.55) above is known as the σ-form of the Painlevé VI equation (σ-PVI). We
can now think of the solution of (2.55), which is the same as thinking in the solution for
(2.48), as a representation of a class of differential equations of the type of (2.37), this also
implies that it is a representation for solutions of (2.41) that have the same monodromy
parameters. In other words, the solution for the PVI, which can be expressed in terms of
the τ function, can be used to characterize the isomonodromic deformations performed in
the Fuchsian system. The set is parameterized by the position of the singularity w = t and
it will be called the isomonodromic deformation of the Heun equation. The tau function
introduced above will play a central role in the solution of the accessory parameter problem.

2.3 Equations for the Accessory Parameters

With all the formalism introduced in the last section we can proceed with our
problem of finding the accessory parameters. Since now we are looking into the Heun
equation as an element of a family of isomonodromically deformed system, if we take a
second look at (2.41) and (2.42) and re-enforce the equality with (2.36) one can conclude
that:

λ(t0) = t0, µ(t0) = −K0

θt0 − 1 (2.56)

By doing that we are putting the Heun equation in the form (2.36), the one that does not
have the extra singularity, as a smooth limit of the isomonodromic family. The conditions
above can be seen as initial condition for solving the Schlesinger equation. To this end
one can set θt = θt0 − 1 and θ∞ = θ∞0 + 1, that implies q−q+ = κ−(1 + κ+), then we can
recover (2.36) exactly from (2.41).

The conditions above can be written using the tau function as an initial value
problem for (2.55):

t(t− 1) d
dt

log τ(θi, σij, t)
∣∣∣∣∣
t=t0

= t0
θ1θt

2 + (t0 − 1)θ0θt
2 + t0(t0 − 1)K0

d

dt

[
t(t− 1) d

dt
log τ(θi, σij, t)

]∣∣∣∣∣
t=t0

= (θ∞ − θ0)θt2 (2.57)

where the hat symbol has been dropped to make notation lighter. With these equations
is possible to obtain the accessory parameters of the Heun equation (2.36) completely in
terms of the monodromy data. Using the τ function to calculate the accessory parameters
brings more advantages to our approach. To begin with, it can be shown that the τ is
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an analytic function of t in every point except when t = 0, t = 1 or t =∞ ([43]). It is a
function of the invariant monodromy data and its existence can be seen by the conditions
(2.57) from standard theorems of the existence of solutions of ODEs such as (2.55). The
full set of arguments for the τ

θi ∈ {θ0, θt0 − 1, θ1, θ∞0 + 1}, σij ∈ {σ0t0 − 1, σ1t0 − 1, σ01} (2.58)

are the monodromy data that derives from the trace coordinates (2.9). The equations
in (2.57) are generic and can be used to relate the monodromy data to the accessory
parameters in any system involving a Heun equation. As far as we know, those equations
appeared for the first time in [19] and [44]. For a more recent discussion on the many
different connections and applications see [45].

One of the possible interpretations of the equations (2.57) is that the first one
establishes the τ function as the generating function for the canonical transformation
relating the monodromy data with the accessory parameters, moreover, the second condition
can be understood from the Toda equation for the τ function [46]:

d

dt

[
t(t− 1) d

dt
log τ(θi, σij, t)

]
− (θ∞ − θ0)θt2 = c

τ+(t)τ−(t)
τ 2(t) (2.59)

where c ∈ C is a t-independent constant, where τ± are defined as the same τ function but
for systems with modified monodromies:

θ±i = {θ0, θ1, θt ± 1, θ∞0 ∓ 1}, σ±ij ∈ {σ0t ± 1, σ1t ± 1, σ01} (2.60)

The Toda equation belongs to a rich branch of theoretical physics, and for our case can be
obtained by direct construction from the Fuchsian system by acting on the solution φ(w)
of (2.37) with a Schlesinger transformation. This connection with such equation makes
possible for us to interpret that one of the τ± goes to zero when the limit t→ t0 is applied.
That statement is equivalent to say that t0 would be the root of either τ+ or τ−. The next
subsection is devoted to explore how the Toda equation arises in this formalism and which
one of the two τ± functions has t0 as its roots.

2.3.1 The Toda equation

In Physics the Toda equation derives from a simple model in one-dimensional solid
state physics, where the interaction between the nearest neighbors in a lattice was given
by the Hamiltonian

H(p, q) =
∑
n∈Z

(
p(n, t)2

2 + V (q(n+ 1, t)− q(n, t))
)

(2.61)

With p and q being the generalized momentum and coordinates respectively, and V

assuming the Toda potential form V (r) = e−r + r− 1. From this starting point, the theory
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around the Toda lattice expanded into a whole branch of mathematics and theoretical
physics. In particular, the τ function introduced in the last sections can be written as
a Toda equation for some special Hamiltonian systems, as can be seen in [47]. In the
remainder of this section, we will examine how, departing from a particular choice of basis
for the matrices Ai, one can make use of the properties of the tau function to write it in
the form of a Toda equation.

We should start by showing that when the Ai composing the system are not traceless,
the form of the Toda equation change a bit from (2.60). The steps ahead follow the analysis
of [48]. When using matrices Ai with TrAi = θi, we define τ(t) = t−

θ0θt
2 (t − 1)−

θ1θt
2 τ̂(t)

where :
d

dt
log τ̂ = 1

t
TrA0At + 1

t− 1TrA1At (2.62)

therefore
d

dt

[
t(t− 1) d

dt
log τ̂

]
− θt(θt − θ0 − θ1 − θ∞)

2 = c
τ̂+(t)τ̂−(t)
τ̂ 2(t)

(2.63)

It can be seen that (θt−θ0−θ1−θ∞)
2 = θt + κ+ and κ+ = −(θt+θ0+θ1+θ∞)

2 . We seek to show how
to obtain the equation in this form.

Now we will use a specific parameterization to the Fuchsian system (2.38), in order
to go from the Schlesinger equations and arrive at equation 2.63. We start by writing A(w)
in a basis that diagonalizes At

A(w) = A0

w
+ A1

w − 1 + 1
w − t

α 0
0 β

 , (2.64)

where β = −α + θt. Then one could introduce the following transformation in order to
obtain a definition for τ+ (known as Schlesinger Transformation by the Japanese school
[46] [20] [?]):

Φ+(w) ≡ L+(w)Φ(w), L+ ≡

 1 0
p+ 1

w − t 0
0 1

1 q+

0 1

 (2.65)

where p+ and q+ are variables that are still to be specified. The Fuchsian system for Φ(w)
implies:

∂Φ+(w)
∂w

[
Φ+(w)

]−1
= A+(w) := L+A(w)[L+]−1 + ∂L+

∂w
(L+)−1 (2.66)

Now we will look for the conditions on p+ and q+ of (2.65) in which the transformation
that they impose leaves the monodromy of all finite singular points of the new system
Φ+(w) unchanged, except for w = t. We make this choice because we want A+ to be in
the form of:

A+(w) = A+
0
w

+ A+
1

w − 1 + 1
w − t

α + 1 0
0 β

 (2.67)
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Proceeding, we make the index i that can assume values of 0 and 1, then define:

Ai =
ai bi

ci di

 (2.68)

When comparing equations (2.66) and (2.67) we get the conditions

q+(α− β) =
∑
i

bi − (ai − di)q+ − ci(q+)2 (2.69)

p+(α + 1− β) = −
∑
i

ci
t− i

(2.70)

which guarantee equation (2.67 ), therefore, we can define H+ and τ+ as

H+ = d

dt
log τ+ = 1

t
TrA+

0 A
+
t + 1

t− 1TrA
+
1 A

+
t (2.71)

We proceed in the same way to define τ−, by introducing a transformation that
decreases α. The calculation goes analogously to the increasing case, we define

Φ−(w) = 1
w − t

1 p−

0 1

1 0
0 w − t

 1 0
q− 1

Φ(w) (2.72)

which satisfies

∂Φ−(w)
∂w

[
Φ−(w)

]−1
= A−0

w
+ A−1
w − 1 + 1

w − t

α− 1 0
0 β

 (2.73)

with A−i (w) := L−i Ai(w)[L−i ]−1 and

L− =
1 p−

0 1

(wi − t)−1 0
0 1

 1 0
q− 1

 (2.74)

The equation

A−0
w

+ A−1
w − 1 + 1

w − t

α− 1 0
0 β

 = L−A(L−)−1 + ∂L−

∂w
(L−)−1 (2.75)

implies this following relations to p− and q−

q−(β − α) =
∑
i

ci − (ai − di)q− − bi(q−)2 (2.76)

p−(β + 1− α) = −
∑
i

bi
t− wi

(2.77)

Then it could be defined

H− = d

dt
log τ− = 1

t
TrA−0 A−t + 1

t− 1TrA
−
1 A
−
t (2.78)
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With these new definitions in hand, we can try to write equation (2.60). It should be noted
that one of the terms in the Toda equation is proportional to:

exp (H+ +H− − 2H) = τ̂+τ̂−

τ̂ 2 (2.79)

And in order to calculate (2.79) in terms of the coefficients of Ai, we are going to need

[L+(wi)]−1A+
t L

+(wi) =
α + 1 0

0 β

−(α−β+1)
0 q+

0 0

− p+(wi − t)
−q+ −(q+)2

1 q+


(2.80)

and

[L−(wi)]−1A−t L
−(wi) =

α− 1 0
0 β

−(α−β−1)
 0 0

q− 0

− p−(wi − t)
 q− 1
−(q−)2 −q−


(2.81)

After some algebra we get the results:

H+ −H = a0

t
+ a1

t− 1 +
(
c0

t

c1

t− 1

)
q+ (2.82)

H− −H = −a0

t
− a1

t− 1 +
(
b0

t

b1

t− 1

)
q− (2.83)

summing those equations one obtain

ln τ̂
+τ̂−

τ̂ 2 =
(
c0

t
+ c1

t− 1

)
q+ +

(
b0

t
+ b1

t− 1

)
q− (2.84)

Our goal now is trying to write the right hand side of in terms of the τ function. Therefor
it is necessary to know more about the parameters q±, let us start by defining A∞. In our
choice of basis A∞ = −A0 − At − A1 becomes

A∞ = −
a0 + a1 + α b0 + b1

c0 + c1 d0 + d1 + β

 . (2.85)

Remembering that for any basis detA∞ = κ+κ− and TrA∞ = k+ + k−, we can come up
with equations for q±

(b0 + b1)(q−)2 − (a0 − d0 + a1 − d1 + α− β)q− − (c0 + c1) = 0 (2.86)
(c0 + c1)(q+)2 + (a0 − d0 + a1 − d1 + α− β)q+ − (b0 + b1) = 0 (2.87)

(κ±)2 + (a0 + d0 + a1 + d1 + α + β)κ± + detA∞ = 0 (2.88)

The equations above have the same discriminant ∆ = κ+ − κ− and then one can isolate ∆
for each equation and obtain the following relations

q+ = κ+ + d0 + d1 + β

c0 + c1
, q− = −κ+ + d0 + d1 + β

b0 + b1
(2.89)
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We could use the equation above to rewrite (2.84) and thus

d

dt
log τ̂

+τ̂−

2τ̂ 2 = −κ+ + d0 + d1 + β

t(t− 1)
c0b1 − c1b0

(b0 + b1)(c0 + c1) (2.90)

Using the Schlesinger equations and the parameterization of the matrices Ai and At, one
can find:

d

dt
t(t− 1) d

dt
log τ̂ = Tr((A0 + A1)At) = α(a0 + a1) + β(d0 + d1)

d2

dt2
t(t− 1) d

dt
t(t− 1) d

dt
log τ̂ = 1

t(t− 1)Tr(A0[A1, At]) = −(α− β)(c0b1 − b0c1)
t(t− 1) (2.91)

Now we use the relation A0 + At + A1 = −A∞ to manipulate the expression

(κ+ +d0 +β+d1)(κ−+d0 +β+d1) = detA∞−Tr(A∞)(d0 +β+d1)+(d0 +β+d1)2 (2.92)

and obtain the equation

(α− β)(b0 + b1)(c0 + c1)
κ+ + d0 + β + d1

= −(α− β)(κ− + d0 + β + d1) (2.93)

= d

dt
t(t− 1) d

dt
log τ̂ + α(α + κ+) + β(β + κ−) (2.94)

where we used the first equation in (2.91) and κ+ + κ− = −∑(ai + di)− α− β. Therefore,
using (2.90) and the second equation of (2.91), after some algebra, we finally establish

d

dt
t(t− 1) d

dt
log τ̂ + α(α + κ+) + β(β + κ−) = C

τ̂+τ̂−

τ̂ 2 (2.95)

This last equation is invariant by a change of basis, since the eigenvalues of the matrices
Ai and At do not change by this kind of transformation.

It is possible to rewrite (2.95) in the basis where α = θt and β = 0, in this case we
would have:

d

dt
t(t− 1) d

dt
log τ̂ + θt(θt + κ+) = C

τ̂+τ̂−

τ̂ 2 (2.96)

and thus we demonstrated how one can write the Toda equation (2.63) in terms of the τ
function and its parameters. In the next subsection it will be evaluated the consistency of
this choice of basis and it will be shown how we can arrive at the second equation in 2.57
when t→ t0.

2.3.1.1 Jimbo and Miwa parameterization

In the previous discussion, we parameterized the Fuchsian system to get At diagonal.
However, this is not the most common parameterization. It is usual to use the one by [?],
in which one could analyze the limit of equation (2.97) when we make t→ t0. Let us start
by

Ãi =
ãi b̃i

c̃i d̃i

 =
 pi + θi −qipi

1
qi

(pi + θi) −pi

 , i = 0, 1, t (2.97)
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where

Ã∞ = −Ã0 − Ãt − Ã1 =
κ+ 0

0 κ−

 , θi = TrAi, θ2
i = TrA2

i , (2.98)

the tilde is used to remind us that in this basis At is not diagonal. If we need to diagonalize
At we do

At = G−1
t ÃtGt, Gt =

qt 1
1 pt+θt

qtpt

 (2.99)

In fact the existence of Gt - which is true by construction - completes the demonstration
of (2.63)

The matrix Gt can be used to express all Ai in the basis with diagonal At. In that
way we will be able to express (2.97) in terms of θi. According to (2.97) we can find the
initial condition for the derivative of the τ by solving τ±(t0) = 0 for one of the shifted
functions. It can be noticed that if τ(t) goes to infinity at some t in 0 < t < 1 the right
side of equation (2.97) becomes zero, while the left side goes on to ±∞, which implies
by contradiction that τ(t) is always finite in the interval t ∈ (0, 1). Nonetheless, τ(t) is
holomorphic except at the fixed singular points 0, 1,∞ [43].

Then,equations (2.82) and Ãi = GiAiG
−1
i yield:

H− −H = − ã0

t
− ã1

t− 1 −
(
c̃0

t

c̃1

t− 1

)
ptqt
pt + θt

(2.100)

H+ −H = ã0

t
+ ã1

t− 1 +
(
b̃0

t

b̃1

t− 1

)
1
qt

(2.101)

from (2.97)
1
qt

= pt
ptqt

= θt − ãt
b̃t

,
ptqt
pt + θt

= − d̃t
c̃t

(2.102)

From the previous derivation of the initial conditions we can analyze the behavior of H+

and H− when t→ t0. For the case of H+ we start by noticing that in this limit at and bt
should go to zero. In the left equation of (2.102) the limit implies that 1

qt
→ ∞, which

makes H+ →∞ and therefore τ+ should go to zero. In principle, this statement answer the
question posed in the last section, but it is important that we also check the limit for τ−.
We know that if at → 0 them limλ→t0 pt = −θt, also since bt → 0 we have limλ→t0 qt = 0.
Which means that in order to understand the limit for ptqt

pt+θt another approach is going to
be necessary.

Now, we will find c̃t using the expression for K0 (in terms of the traces of the
matrices Ai), equation (2.97), and the relation b̃0 = −b̃1 = k, with arbitrary k, that comes
from

A12(λ = t) = k(w − λ)
w(w − 1)(w − t)

∣∣∣∣∣
λ=t

= b0

w
+ b1

w − 1 = − k
w

+ k

w − 1 (2.103)
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First, we state the following relations, that are valid for λ = t = t0:

p0 + p1 = Θ := 1
2(θt − θ0 − θ1 − θ∞) (2.104)

p0q0 = −p1q1 = −k := 1, c̃t = −p0 + θ0

q0
− p1 + θ1

q1
(2.105)

−t0θtΘ− c̃t + θtp0 = t0(t0 − 1)K0 + t0θtθ1 + (t0 − 1)θ0θt (2.106)

Notice that in the second line, k was chosen to be equal to −1. A different choice would
provide different parameterization for the entries of Ai, but this means no harm for the
Fuchsian differential equation, leave alone the value of the τ function at this point. The
freedom to choose the value of k only means that there is an extra degree of freedom
when we diagonalize the matrix Ã∞ - this matrix can be conjugated by any non-vanishing
diagonal SL(2,C) matrix without a problem. Using (2.104) we find:

c̃t|λ=t0 = p0(θt + θ∞)−Θ2 − θ1Θ (2.107)

p0 = Θ(Θ + θ1 − t0θt)
θ∞

+ t0(t0 − 1)
θ∞

[
K0 + θ0θt

t0
+ θ1θt
t0 − 1

]
(2.108)

Thus, at λ = t0, c̃t is nonzero, because if it is zero then K0 can be trivially written in
terms of θi and t0, which is not the case in general.

Now, by using what we constructed in this section, one sees that the second equation
in (2.55) can be interpreted as a limit for t→ t0 of the Toda equation. In this context, we
reviewed how one can use the properties of the τ function and the A(w) matrix to express
such a Toda equation and analyzed its limits when t→ t0. It was found that one of the
two tau functions with shifted parameters τ± should have a root in t0. After making use of
some known relations we concluded that this condition is fulfilled by τ+. Now we have one
simpler equation to determine the t0 accessory parameter τ+(t0) = 0. In the next section,
we will summarize this result in the context of the Riemann-Hilbert problem.

2.3.2 Solving the Riemann-Hilbert Problem

In the end, the Riemann-Hilbert problem, or the accessory parameter problem
, can be solved by this approach: we start with the monodromy data of the ODE, and
by making use of the theory of isomonodromic deformations and its connection to the
Painlevé VI transcendent we can write the solution of the problem as

τ+(t0) = 0, K0 = K(t0), K(t) := d

dt
log τ(θi, σij, t)−

(θt0 − 1)θ1

2(t− 1) −
(θt0 − 1)θ0

2t (2.109)

Remembering that the arguments for the τ function, the monodromy data, are those that
came from the Fuchsian system

ρ = {θ0, θt = θt0 − 1, θ1, θ∞ = θ∞0 + 1, σ0t = σ0t0 + 1, σ1t = σ1t0 − 1, σ01} (2.110)
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this guarantees that equation (2.41) reduces to (2.36) when λ = t. On the other hand, the
monodromy data used for τ+ is related to ρ by a shift:

ρ+ = {θ0, θt0 , θ1, θ∞0 , σ0t0 , σ1t0 , σ01} (2.111)

which are, in fact, the parameters for the solution of (2.36).

Therefore, we can interpret that knowing the τ function for a given set of monodromy
parameters is equivalent to solve the RHp. There are a few ways to express this function,
the most usual is by expanding the τ in the form of a Nekrasov sum, first proposed
by [22]. Since we need to find its roots to solve one of the equations for the accessory
parameters, we must take into account the numerical efficiency when choosing the method
of calculation. We have three main methods for the computation of the isomonodromic
τV I function:

• The first one is solving the Painlevé VI equation numerically. The dependence of the
solutions on monodromy data is computed from the asymptotic expressions given by
Jimbo. ([34])

• The next method is by using the algebraic evaluation of the Nekrasov sum. This one
excels at generating approximate analytical expressions for the τ function. Although
this kind of computation involves a lot of operations, which makes it slower than it
should be for an algorithm that needs to calculate the zeros of a function.

• The last is based on the fact that the τ function can be expressed in terms of a
Fredholm Determinant ([23]). There are two main ways of calculating the Fredholm
determinant numerically, using a Fourier expansion or the Quadrature method. And
those two are simpler than the Nekrasov sum cited in the last paragraph.

Then, the most logical choice is to use the Fredholm determinant form of the tau
function to tackle this kind of problem. In the next chapter, we will discuss how to express
such functions in terms of the Fredholm determinant, first by taking a look into the theory
for a general isomonodromic tau function and then going from the general formula to the
Painlevé VI case.
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3 CALCULATING THE τV I FUNCTION

In the last chapter, we showed that there is a relation between the accessory
parameters of a Heun equation and the monodromy data of the system. This relation
is expressed as an initial value problem for the τ function. To calculate this function
in its most numerically efficient way, we need to express it as a Fredholm determinant.
This chapter focus on how we can solve a general Riemann-Hilbert problem and obtain
the isomonodromic τ function in dimension N , for n regular singularities as a Fredholm
determinant. After that, we will explore the specific case of N = 2 and n = 4, the Painelvé
case. To avoid confusion will be referred to as τV I function through the rest of this chapter.

3.1 General isomonodromic τ function

In the work by Gavrylenko and Lisovyy’s, [23] a generalized expression for the
isomonodromic τ function is constructed. There it was used a Riemann-Hilbert formalism
to obtain the τ function in terms of a Fredholm determinant. Based on this discussion,
the next subsections focus on explaining the process by which one can obtain such
representation.

3.1.1 General Riemann-Hilbert problem

The original concept of the Riemann-Hilbert problem was explained in subsec-
tion 2.1.3, here we present a generalized form of it. Let us consider a n-punctured Riemann
sphere P1 \ a, with a being the set of points:

a := {a0 = 0, a1, ..., an−2 = 1, an−1 =∞} (3.1)

where the points are radial ordered 0 < |a1| < ... < |an−3| < 1. We can define in such a
sphere a contour Γ that encircles the n-points, as exemplified in Figure 5, we can also
define some jump matrices J such as J : Γ→ GL(N,C). With those initial definition we
state the Riemann-Hilbert problem as the task of finding a function Ψ : P1 \Γ→ GL(N,C)
such as the boundary conditions of that function, Ψ±, obey Ψ+ = JΨ−.

Furthermore we can define n matrices Θk = diag{θk,1, θk,2, ..., θk,N} ∈ CN×N that
satisfy the relations: ∑n−1

k=1 TrΘk = 0 and θk,α − θk,β 6∈ Z, where (k = 1, 2.., n− 1) . And
use then to produce a set of 2n matrices C± written as

M0→k := Ck,−e
2πiΘkC−1

k,+ = Ck+1,−C
−1
k+1,+, k = 0, ..., n− 3 (3.2)

M0→n−2 := Cn−2,−e
2πiΘn−2C−1

n−2,+ = Cn−1,−e
−2πiΘn−1C−1

n−1, (3.3)
M0→n−1 := 1 = Cn−1,−Cn+1,+ = C0,−C

−1
0,+. (3.4)
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Then it is possible to express the jump matrices J as

J(z)|lk = M−1
0→k, k = 0, ..., n− 2, (3.5)

J(z)|γk = (ak − z)−ΘkC−1
k,±, =z ≶ 0, k = 0, ..., n− 2 (3.6)

J(z)|γn−1
= (−z)Θn−1C−1

n−1,±, =z ≶ 0. (3.7)

the γk and lk are the labels of the circles and segments that belong to contour Γ, as can
be seen in Figure 5

Figure 5 – Example of a Γ contour for n = 5. By P. Gavrylenko and O. Lisovyy from [23].

As it was introduced in chapter 2 there is also a connection between this general
RHp and a Fuchsian type equation. In fact for the matricial ODE bellow:

∂zΦ = ΦA(z), A(z) =
n−2∑
k−0

Ak
z − ak

(3.8)

where the matrix function Φ defined as

Φ(z) =


Ψ(z), z outside γ0,...,n−1,

Ck(ak − z)ΘkΨ(z), z inside γk, k = 0, ..., n− 2
Cn−1(−z)−Θn−1Ψ(z), z inside γn−1

(3.9)

is a solution of the system 3.8, with monodromy exponents Θk. The monodromy repre-
sentation associated with Φ, ρ : π1(P1 \ a) → GL(N,C), is generated by the matrices

M0 = M0→0, Mk+1 = M−1
0→kM0→k+1 (3.10)

The monodromy matrices M0→k can be better dealt with when diagonalized, so we
introduce

M0→k = Ske
2πiSkS−1

k , Sk = diag(σk,1, σk,2, ..., σk,N) (3.11)
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where we impose that Tr(Sk) = ∑k
j=0 Tr(Θk), |<(σk,α − σk,β)| ≤ 1 and σk,α − σk,β 6= ±1.

At last we have that S0 ≡ Θ0 and Sn−2 ≡ −Θn−1. Therefore we have a problem similar
to those treated in the last chapter but in a more general way for n singularities and rank
N , in the next subsection we will address a way of treating this problem.

3.1.1.1 Auxiliary Riemann-Hilbert problems

The RHp described above is considerably more complex than the one introduced
in chapter 2 and to solve it one must make use of a mathematical trick. The trick consists
in dividing the n-punctured Riemann sphere from last section into n− 2 pair of pants(or
trinions). Those pairs will be written as T[1], ...,T[n−2] and connected with n− 3 annuli,
A1, ...,An−3. We will label the boundary components of an annulus A [k], belonging to
trinions T[k] and T[k+1], as C [k]

out and C [k+1]
in respectively. In Figure 6 there is an example of

such division of the Riemann sphere.

Figure 6 – Labels for the trinions, annuli and boundary curves. By P. Gavrylenko and O.
Lisovyy from [23].

Now, those trinions can be associated with a simpler 3-point RHp, then solving the
n-point Riemann-Hilbert problem can be seen as solving n− 2 auxiliary 3-point problems.
In the boundary, C [k]

out and C [k+1]
in , of the auxiliary 3-point RHps the form of the jump

matrices is changed to

J [k]
∣∣∣
C

[k]
out

= (−z)−SkS−1
k , Jk+1

∣∣∣
C

[k+1]
in

= (−z)−SkS−1
k , k = 1, ..., n− 3 (3.12)

while we have new solutions Ψ[k] that are associated with Φ[k] in an analogous way to
(3.9) and those Φ[k] are solutions of a Fuchsian system, with three regular singular points
(0, ak,∞) and monodromies M0→k−1, Mk and M0→k, written as:

∂zΦ[k] = Φ[k]A[k](z), A[k](z) = A
[k]
0
z

+ A
[k]
1

z − ak
(3.13)

In Figure 7 one can see an example of the resulting anulli after dividing the problem into
n− 2 auxiliary 3-point RHps. The utilization of this technique makes possible for us to
make use of special operators, named Cauchy-Plemlj operators, to define a τ function for
such a problem.
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Figure 7 – Contour Γ[k] (left) and Γ̂ for n = 5 (right). By P. Gavrylenko and O. Lisovyy
from [23].

3.1.2 The τ function

By breaking the general RHp into the auxiliary problems one can be able to express
the generalized τ function for such a system in terms of a Fredholm determinant, as written
bellow

τ(a) = Υ(a) · det(1−K) (3.14)

where
Υ(a) =

n−3∏
k=1

a
1
2TrS2

k−
1
2TrS2

k−1−
1
2TrΘ2

k

k (3.15)

and the kernel K inside the determinant is expressed by

Uk =
 0 a[k+1]

d[k] 0

 , k = 1, ...n− 3, (3.16a)

Vk =
b[k+1] 0

0 0

 , Wk =
0 0

0 c[k+1]

 , k = 1, ..., n− 4, (3.16b)

K =



U1 V10 . 0
W1 U2 V2 . 0
0 W2 U3 . 0
. . . . Vn−4

0 0 . Wn−4 Un−3


(3.16c)

The operators a[k], b[k], c[k], d[k] , are the Plemelj Operators. Those are integral operators
defined in the boundaries of the auxiliary 3-point RHp, they are written as functions of
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the solutions Φ[k]

(
a[k]g

)
= 1

2πi

∮
C

[k]
in z

[
Ψ[k]

+ (z)(Ψ[k]
+ (z′))−1 − 1

]
g(z′)dz′

z′ − z
, z ∈ C [k]

in , (3.17a)

(
b[k]g

)
= 1

2πi

∮
C

[k]
outz

Ψ[k]
+ (z)(Ψ[k]

+ (z′))−1g(z′)dz′
z′ − z

, z ∈ C [k]
in , (3.17b)

(
c[k]g

)
= 1

2πi

∮
C

[k]
in z

Ψ[k]
+ (z)(Ψ[k]

+ (z′))−1g(z′)dz′
z′ − z

, z ∈ C [k]
out, (3.17c)

(
d[k]g

)
= 1

2πi

∮
C

[k]
outz

[
Ψ[k]

+ (z)(Ψ[k]
+ (z′))−1 − 1

]
g(z′)dz′

z′ − z
, z ∈ C [k]

out. (3.17d)

3.2 The 4-point problem

The general solution obtained above can be used in our case of interest. We first
treat the with four singular points, n = 4. Now, this is the simplest non-trivial case of
Fuchsian systems. Three of those points are already fixed at a0 = 0, a2 = 1, a3 =∞, so
it remains only one time variable a1 = t. We will assume, for the sake of being able to
apply the results of the last few sections, that 0 < t < 1. Also to make the connection
with Chapter 2 easier we will use the notation with indices 0, t, 1,∞ instead of 0, 1, 2, 3.

The monodromy data are given by the 4 diagonal matrices Θ0,t,1,∞ of the local
monodromy exponents and by the connection matrices C0, Ct,±, C1,±, C∞, satisfying the
relations

M0 ≡ C0e
2πiΘ0M−1

0 = Ct,−C
−1
t,+, e2πiS = Ct,−e

2πtΘiC−1
t,+ = C1,−C

−1
1,+ (3.18)

Since for n = 4 there is only one non-trivial matrix M0→1 it becomes convenient to
work in a distinguished basis where M0→1 is given by a diagonal matrix e2πiS with
TrS = Tr(Θ0 + Θt) = −Tr(Θ1 + Θ∞). In terms of the previous notation it corresponds to
setting S1 = S and S1 = 1.

For this case we have a 4-punctured sphere, which will be divided into two trinions
and one ring. To lighten notation we will express the trinions by left [L] and right [R],
instead of 1 and 2. In Figure 8 there is a sketch of the contour two trinions and the
respective jump matrices. Now, equation (3.14) becomes

τ(t) = t
1
2Tr(S2−Θ2

0−Θ2
t ) det (1− U), U =

0 a

d 0

 ∈ End(HC ), (3.19)

where the operators a ≡ a[R] ≡ a[2] and d ≡ d[L] ≡ d[1] are given by

(ag)(z) = 1
2πi

∮
C
a(z, z′)g(z′)dz′, a(z, z′) = Ψ[R](z)(Ψ[R](z′))−1 − 1

z − z′
, (3.20a)

(dg)(z) = 1
2πi

∮
C
d(z, z′)g(z′)dz′, d(z, z′) = 1−Ψ[L](z)(Ψ[L](z′))−1

z − z′
, (3.20b)
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Figure 8 – Contour Γ̂ and jump matrices for n = 4. By P. Gavrylenko and O. Lisovyy
from [23].

The contour C is oriented counterclockwise, which is the origin of the sign difference in
the expression for d (see equations (3.17)).

The matrix functions Ψ[L](z), Ψ[R](z) appearing in the integral kernels of a an d
solve the 3-point RHps associated to Fuchsian systems with regular singularities at 0, t,∞
and 0, 1,∞, respectively. In order to understand the dependence of the 4-point τ function
on the time variable t, let us re-scale the fundamental solution of the first system by
setting

Φ[L](z) = Φ̃[L]
(
z

t

)
. (3.21)

Te re-scaled matrix Φ̃[L](z) solves a Fuchsian system characterized by the same monodromy
as Φ[L](z) but the corresponding singular points are located at 0, 1,∞. Denote by Ψ̃[L] the
solution of the RHp associated to Φ̃[L]. In figure 9 it is explicitly indicated the contours
and jump matrices for the two RHp, note the independence of jumps on t. In particular,
inside the disk around∞ we have Φ̃[L](z) = (−z)SΨ̃[L](z). Since the annulus A belongs to
the disk around ∞ in the RHp for Ψ[L], the formula (3.21) yields the following expression
for Ψ[L] inside A :

Ψ[L](z)
∣∣∣
A

= (−z)−SΦ[L](z) = t−SΨ̃[L]
(
z

t

)
(3.22)

3.2.1 Rank 2 solutions

Now we proceed to solve the auxiliary 3-point RHp for the special case of rank
2 (N = 2). We can express the solution in this rank in terms of Gauss hypergeometric
functions. This relation was explored in subsection 2.1.4, when we reviewed the 3-point
reverse RHp. And for this case, the Fredholm determinant will have an analytic form. The
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Figure 9 – Contours and jump matrices for Ψ̃[L] (left) and Ψ[R] (right). By P. Gavrylenko
and O. Lisovyy from [23].

formalism in this section is for the τ function with n singular points. After we understand
how to write the 3-point solution we will address the Painlevé case (n = 4 , N = 2). Before
we write the solutions, we will need to introduce some important concepts.

The form of the Fuchsian system (3.8) is preserved by the following non-constant
scalar gauge transformation of the fundamental solution and coefficient matrices:

Φ(z)→ Φ̂(z)
n−2∏
l=0

(z − al)κl (3.23)

Al → Âl + κl1, l = 0, ..., n− 2 (3.24)

Under this transformation, the monodromy matrices Ml are multiplied by e−2πκl , and the
associated Jimbo-Miwa-Ueno tau function transforms as

τ(a)→ τ̂(a)
∏

0≤k<l≤n−2
(al − ak)−Nκlκk+κkTrΘl+κlTrΘk (3.25)

This means that if necessary one can make transformations such as (3.23) to obtain
a set of monodromy matrices,Θ0, ...Θn−2, that have one of the eigenvalues equal to 0.

With that in mind, we could change to a notation that better suits our problem

• The color indices will take values in the set {+,−} and will be denoted by ε, ε′

• According to the last paragraph, the diagonal matrix Θ has a zero eigenvalue for
k = 0, ..., n− 2. Its second eigenvalue will be denoted by −2θk. The eigenvalues of
the remaining local monodromy exponent Θn−1 may be parameterized as

θn−1,ε =
n−2∑
k=0

θk + εθn−1, ε = ± (3.26)

• Also, since TrSk = ∑k
j=0 TrΘj, we may write the eigenvalues of Sk as

σk,ε = −
k∑
j=0

θj + εσk, ε = ±, k = 0, ..., n− 2, (3.27)
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where σ0 ≡ θ0 and σn−2 ≡ −θn−1 The parameters σ1, ..., σn− are associated to annuli
A1, ...,An−3.

For the remaining of this subsection we will assume that

2θk 6∈ Z \ {0}, k = 0, ..., n− 1, (3.28)

|<σk| ≤
1
2 , σk 6= ±

1
2 , k = 1, ..., n− 3 (3.29)

σk−1 + σk ± θ 6∈ Z, σk−1 − σk ± θ 6∈ Z, k = 1, ..., n− 2 (3.30)

Now we proceed in defining the 3-point solution Ψ[k], our freedom in the nor-
malization gives us the opportunity to choose any representation in the conjugacy class[
A

[k]
0 , A

[k]
1

]
. In constructing the Fuchsian system (3.13) one makes use of the fact that in

the N = 2 the conjugacy class is fixed by the local monodromy Sk−1,Θk and S. Then

A
[k]
0 = diag{σk−1,+, σk−1,−}, akA

[k]
1 = −u[k] ⊗ v[k] (3.31)

with σk−1,± parameterized as in (3.58) and

u
[k]
± = (σk−1 ± θk)2 − σ2

k

2σk−1
ak, v

[k]
± = ±. (3.32)

As it was demonstrated in section 3.2, one should first construct the solution Φ̃[k]

of the re-scaled system

∂zΦ̃[k] = Φ̃[k]A[k](z), A[k](z) = A
[k]
0
z

+ A
[k]
1

z − 1 (3.33)

having the same monodromy around 0, 1,∞ as the solution Φ[k] of the original system
(3.13) has around 0, ak,∞. To write it explicitly in terms of the Gauss hypergeometric

function 2F1

a, b
c

; z
 we introduce the notation

χ

 b
a c

; z
 :=2 F1

a+ b+ c, a+ b− c
2a

; z
 , (3.34)

φ

 b
a c

; z
 := c2 − (a+ b)2

2a(1 + 2a) z2F1

1 + a+ b+ c, 1 + a+ b− c
2 + 2a

; z
 . (3.35)

Therefore, the solution of (3.33) can be written as

Φ̃[k](z) = Sk−1(−z)Sk−1Ψ̃[k]
in (z) (3.36)

where Sk−1 is a constant matrix encoding the monodromy (see 3.11), and Ψ̃[k]
in (z) is given

by

(Ψ̃[k]
in )±±(z) = χ

 θk

±σk−1 σk
; z
 , (3.37)

(Ψ̃[k]
in )±∓(z) = φ

 θk

±σk−1 σk
; z
 . (3.38)
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It follows that Φ[k](z) = Φ̃[k]( z
ak

) and

Ψ[k]
+ (z) = a−Sk−1

k Ψ̃[k]
(
z

ak

)
, z ∈ C [k]

in (3.39)

Also it can be noted that det Φ̃[k](z) = const · (−z)TrA
[k]
0 (1 − z)TrA

[k]
1 implies that

det Φ̃[k]
in (z) = (1 − z)2θk , which in turns yields a simple representation for the inverse

matrix

(Ψ[k]
+ (z))−1 =

(
1− z

ak

)2θk
 (Ψ̃[k]

in )−−( z
ak

) −(Ψ̃[k]
in )+−( z

ak
)

−(Ψ̃[k]
in )−+( z

ak
) (Ψ̃[k]

in )++( z
ak

)

 aSk−1
k , z ∈ C [k]

k (3.40)

The equations (3.37)-(3.39) are adapted for the description of local behavior of Ψ[k](z)
inside the disk around 0 bounded by the circle C [k]

in ,check the left part of figure 9. To
calculate Ψ[k]

+ (z) inside the disk around∞ bounded by C [k]
out, let us first rewrite (3.39) using

the well-known 2F1 transformations formulas. Then we get

Φ̃[k](z) = Sk−1C
[k]
∞ (−z)SkΨ̃[k]

out(z)G[k]
∞ (3.41)

where

(Ψ̃[k]
out)±±(z) = χ

 θk

∓σk σk
; z
 , (3.42)

(Ψ̃[k]
out)±∓(z) = φ

 θk

∓σk σk
; z
 . (3.43)

and

G[k]
∞ = 1

2σk

−θk + σk−1 + σ+ θk + σk−1 − σ+

−θk + σk−1 − σ+ θk + σk−1 + σ+

 (3.44)

C [k]
∞ =

 Γ(2σk−1Γ(1+2σk)
Γ(1+σk−1+σk−θk)Γ(σk−1+σk+θk) − Γ(2σk−1Γ(1−2σk)

Γ(1+σk−1−σk−θk)Γ(σk−1−σk+θk) <

− Γ(−2σk−1>Γ(1+2σk)
Γ(1+σk−1+σk−θk)Γ(σk−1+σk+θk)

Γ(2σk−1Γ(1+2σk)
Γ(1+σk−1+σk−θk)Γ(σk−1+σk+θk)

 . (3.45)

Where Γ is the well known Gamma function Γ(x) = (x− 1)!. And, as consequence of it

Ψ[k]
+ = D[k]

∞a
Sk
k Ψ̃[k]

outG
[k]
∞ , z ∈ C [k]

out, (3.46)

where D[k]
∞ = diag{d[k]

∞,+, d
[k]
∞,−} is a diagonal matrix expressed in terms of monodromy as

D[k]
∞ = S−1

k Sk−1C
[k]
∞ . (3.47)

Analogously to what we did in (3.40), one can arrive at

(Ψ[k]
+ (z))−1 =

(
1− z

ak

)2θk
(G[k]
∞ )−1

 (Ψ̃[k]
out)−−( z

ak
) −(Ψ̃[k]

out)+−( z
ak

)
−(Ψ̃[k]

out)−+( z
ak

) (Ψ̃[k]
out)++( z

ak
)

 aSk−1
k (D[k]

∞ )−1

(3.48)
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With those solutions in hand we have what we needed to express the explicit form
of the integral kernels a[k], b[k], c[k], d[k] in the Fredholm determinant representation of the
Jimbo-Miwa-Ueno tau function (3.14)

(
a[k]g

)
= a

−Sk−1
k

(
1− z′

ak

)2θk
K++(z) K+−(z)
K−+(z) K−−(z)

 K−−(z′) −K−+(z′)
−K+−(z′) K++(z′)

− 1

z − z′
a
Sk−1
k

(3.49a)

(
b[k]g

)
= a

−Sk−1
k

(
1− z′

ak

)2θk
K++(z) K+−(z)
K−+(z) K−−(z)

 (G[k]
∞ )−1

 K−−(z′) −K−+(z′)
−K+−(z′) K++(z′)


z − z′

aSkk (D[k]
∞ )−1

(3.49b)

(
c[k]g

)
= D[k]

∞a
−Sk
k

(
1− z′

ak

)2θk
K̄++(z) K̄+−(z)
K̄−+(z) K̄−−(z)

G[k]
∞

 K̄−−(z′) −K̄−+(z′)
−K̄+−(z′) K̄++(z′)


z − z′

a
Sk−1
k

(3.49c)

(
d[k]g

)
= D[k]

∞a
−Sk
k

1− (1− z′

ak

)2θk
K̄++(z) K̄+−(z)
K̄−+(z) K̄−−(z)

 K̄−−(z′) −K̄−+(z′)
−K̄+−(z′) K̄++(z′)


z − z′

aSkk (D[k]
∞ )−1

(3.49d)

Where it was used a shorthand notation K(z) = Ψ[k]
in ( z

ak
) and K̄(z) = Ψ[k]

out( z
ak

).

One last important thing to introduce before going to the Painlevé case is the
space of conjugacy classes of monodromy representations of the fundamental group for
this general case

MΘ =
{

[M0, ...,Mn−1] ∈ (GL(N,C))n/ |M0...Mn−1 = 1,Mk ∈ [e2πiΘk ], k = 0, ..., n− 1
}

(3.50)
This space has dimMΘ = 2n − 6, and the parameters ~σ := (σ1, ..., σn−3) ∈ Cn−3 are
responsible for filling n− 3 of those dimension. It remains half of the dimensions of the
space of the conjugacy classes to be defined, and so we introduce

~η := (η1, ..., ηn−3), eiηk := d
[k]
∞,−

d
[k]
∞,+

, (3.51)

η provides the remaining n− 3 local coordinates on the space MΘ of monodromy data.
The η parameter is of great importance for the PVI case as we will see in the next section.

3.2.2 The Painlevé case

The result here presented was first derived by ([23]). Let the independent variable t
of Painlevé VI equation vary inside the real interval ]0, 1[ and let C = { z ∈ C : |z| = R, t <



Chapter 3. Calculating the τV I Function 47

R < 1} be a counter-clockwise oriented circle. Let σ, η be a pair of complex parameters
satisfying the conditions

|<σ| ≤ 1
2 , σ 6= 0,±1

2 , (3.52)

θ0 ± θt + σ 6∈ Z, θ0 ± θt − σ 6∈ Z, θ1 ± θ∞ + σ 6∈ Z, θ1 ± θ∞ − σ 6∈ Z. (3.53)

The isomonodromic τV I function of the Painlevé VI equation (2.55) admits the following
Fredholm determinant representation:

τV I = const.tσ
2−θ2

0−θ
2
t (1− t)−2θtθ1 det(1− U), U =

0 a

d 0

 , (3.54)

where the operators a and d are:

(ag) (z) = 1
2πi

∮
C
a(z, z′)g(z′)dz′, (dg) (z) = 1

2πi

∮
C
d(z, z′)g(z′)dz′ (3.55)

and their kernels are explicitly given by

a(z, z′) =
(1− z′)2θ1

K++(z) K+−(z)
K−+(z) K−−(z)

 K−−(z′) −K−+(z′)
−K+−(z′) K++(z′)

− 1

z − z′
(3.56a)

d(z, z′) =
1−

(
1− t

z′

)2θt
K̄++(z) K̄+−(z)
K̄−+(z) K̄−−(z)

 K̄−−(z′) −K̄−+(z′)
−K̄+−(z′) K̄++(z′)


z − z′

(3.56b)

with

K±±(z) =2 F1

 θ1 + θ∞ ± σ, θ1 − θ∞ ± σ
±2σ

; z
 , (3.57a)

K±∓(z) = ±θ
2
∞ − (θ1 ± σ)2

2σ(1± 2σ) z2F1

 1 + θ1 + θ∞ ± σ, 1 + θ1 − θ∞ ± σ
2± 2σ

; z
 , (3.57b)

K̄±±(z) =2 F1

 θt + θ0 ∓ σ, θt − θ0 ∓ σ
∓2σ

; t
z

 (3.57c)

K̄±∓(z) = ∓t∓2σe∓iη
θ2

0 − (θt ∓ σ)2

2σ(1∓ 2σ)
t

z 2
F1

 1 + θt + θ0 ∓ σ, 1 + θt − θ0 ∓ σ
2∓ 2σ

; t
z

 (3.57d)

The η in the expressions above is the remaining local coordinate of the Painlevé
MΘ, and it can be written in terms of monodromy data as [49]

eiη = [p′1t − p1t − (p′01 − p01)e2πiσ0t ]
16 sin 2π(σ0t+θ0−θt

2 ) sin 2π(σ0t+θ1−θ∞
2 )

(3.58)

where we used the trace coordinates introduced in equation (2.9), and also introduced the
notation p′0t = p0pt + ptp∞ − p0t − p01p1t, and p′01 = p0p1 + p1p∞ − p01 − p0tp1t ([22]) to
make the equation more concise.
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4 COMPUTATIONAL METHODS FOR CALCULATION OF THE FREDHOLM
DETERMINANT

Through the past chapters, we have shown that the accessory parameters problem
for the Heun equation can be solved by using the τV I Painlevé function. We also have
shown how one of those parameters is expressed as a zero of the τV I . With this in mind, it
is necessary to have a numerically efficient method for the calculation of such function. In
chapter 3 we have seen how one can write the tau function as a Fredholm determinant.
By expressing the τV I in such form we can construct faster algorithms for the function.
In this chapter, we aim to show the two possible numerical methods to calculate the tau
function in the Fredholm form. The first was already developed in the paper ([50]), which
consists in expanding the operators a and d, from (3.54), in a Fourier basis. The second
method is our main result, it is an extension of the algorithm proposed by [28] in which
the Fredholm determinant could generally be expanded using the quadrature formalism.
The first section is devoted to explaining both approaches. Then it will be shown how to
construct algorithms for the two methods. After that, we will proceed with an analysis of
the efficiency of both codes to understand which one is the best suited for our problem.
At last, we will show the calculations for the accessory parameters of a Heun equation
with a given set of monodromy data.

The codes presented in this chapter were written using the Julia Language. This
choice was made because of the fast environment and of the multi-threading support that
this language provides([51]).

4.1 Calculating the Fredholm determinant

4.1.1 Fourier method

In equation (3.54) we saw how the τV I can be written in its Fredholm determinant
form. Now we will analyze what happens when we expand the operators a and d in (3.56)
on a Fourier basis. First we write

a(z, z′) =
∑
p,q∈Z′

ap−qz
− 1

2 +pz′−
1
2 +q, d(z, z′) =

∑
p,q∈Z′

d−pq z−
1
2−pz′−

1
2−q (4.1)

Using equation (4.1) we can build expressions for the solutions of the 3-point RHP, Ψ[L]

and Ψ[R]

Ψ[L](z)
∣∣∣
A

= t−S
(

1 +
∞∑
k=1

g
[L]
k tkz−k

)
G[L]
∞ , (4.2a)

Ψ[R](z)
∣∣∣
A

=
(

1 +
∞∑
k=1

g
[R]
k zk

)
G

[R]
0 (4.2b)
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Where the N × N matrix coefficients g[L]
k , g

[R]
k are independent of t. These formulas

allow us to extract from the determinant representation the asymptotics of the 4-point
Jimbo-Miwa-Ueno tau function, τV I(t), as t→ 0 to any desired order.

We start by rewriting the integral kernel d(z, z′) as

d(z, z′) = t−S
1− Ψ̃[L]( z

t
)(Ψ̃[L]( z′

t
))−1

z − z′
tS. (4.3)

Then, the block matrix elements d in the Fourier basis become

d−pq = t−S · d̃−pq · tp+q, p, q ∈ Z′+ (4.4)

and the N ×N matrix coefficients d̃−pq are independent of t. They can be extracted from
the Fourier series

1− Ψ̃[L]( z
t
)(Ψ̃[L]( z′

t
))−1

z − z′
=

∑
p,q∈Z′+

d̃−pq z−
1
2−pz′−

1
2−q, (4.5)

and are, therefore, expressed in terms of the coefficients of local expansion of the 3-point
solution Φ̃[L](z) around z = ∞ by straightforward algebra. For example , the first few
coefficients can by written as

d̃
− 1

2
1
2

= g
[L]
1 , (4.6a)

d̃
− 1

2
3
2

= g
[L]
2 − g

[L]2
1 , d̃

− 1
2

1
2

= g
[L]
2 (4.6b)

d̃
− 1

2
5
2

= g
[L]
3 − g

[L]
2 g

[L]
1 − g

[L]
1 g

[L]
2 + g

[L]
1 , d̃

− 3
2

3
2

= g
[L]
3 − g

[L]
2 g

[L]
1 , d̃

− 5
2

1
2

= g
[L]
3 (4.6c)

...... ...... ...... (4.6d)

Different lines above contain the coefficients of fixed degree p+ q ∈ Z>0 which appears in
the power of t in (4.4). Similarly, we can derive the formulas for the matrix elements of
a(z, z′):

a
1
2
− 1

2
= g

[R]
1 , a

1
2
− 3

2
= g

[R]
2 − g

[R]2
1 , a

3
2
− 1

2
= g

[R]
2 , ... (4.7)

Then, we can use those expansions to build the approximate formula for τJMU , let
us set the number Q to be the order of approximation that we desire. To obtain a uniform
approximation it suffices to account for Fourier coefficients d̃−pq and ap−q with p+ q ≤ Q,
since p, q ∈ Z′+ the total number of relevant coefficients is finite and equal to Q(Q−1)

2 .

We start imposing Q ∈ Z>0. The 4-point tau function τV I(t) has the following
asymptotics as t→ 0:

τJMU ' t
1
2Tr(S2−Θ2

0−Θ2
t )
[
det (1− UQ) +O(tQ)

]
, UQ =

 0 aQ

dQ 0

 (4.8)
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Here UQ denotes a 2NQ × 2NQ finite matrix whose NQ × NQ-dimensional blocks aQ
and dQ are themselves block lower and block upper triangular matrices of the form

aQ =



a
Q− 1

2
− 1

2
0 · · · 0

... a
Q− 3

2
− 3

2
˙ ...

a
3
2
− 1

2
˙ . . . 0

a
1
2
− 1

2
a

1
2
− 3

2
· · · a

1
2
1
2−Q


, dQ = t−S



d̃
− 1

2
Q− 1

2
tQ · · · d̃

− 1
2

3
2
t2 d̃

− 1
2

1
2
t

0 . . . ˙ d̃
− 3

2
1
2
t2

... ˙ d̃
3
2−Q
3
2

...

0 · · · 0 d̃
− 1

2−Q
1
2

tQ


tS,

(4.9)
where ap−q, d̃−pq are determined by (3.20), (4.1) and (4.5) and the conjugation by tS in
the expression for dQ is understood to act on each N × N block of the interior matrix.
Moreover, strengthening the condition |<(σα − σβ)| ≤ 1(introduced in chapter 3) to strict
inequality |<(σα − σβ)| < 1 improves the error estimate in (4.8) to O(tQ). This approach
was first outlined in [23]. For our case, the rank will be 2, which will leave us with two
upper and lower triangular matrices with 2× 2 blocks.

4.1.2 Quadrature method

In the last subsection, we made use of some properties of the kernel (3.56) to obtain
an approximate expression for the τV I function, while using the Fredholm determinant
form. Now we turn into a more general way to treat this determinant, using what we
will call the quadrature method. The discussion below is heavily based on Bornemann’s
paper [28]. We start with showing Fredholm’s initial problem [52], this one is now called
Fredholm equation of the second kind:

u(x) + z
∫ b

a
K(x, y)u(y)dy = f(x) (x ∈ (a, b)), (4.10)

Where f(x) and K(x, y) are both assumed to be known continuous functions, Fredholm
was interested in the solvability of this equation and explicit formulas for the solution.
Then, he introduced the determinant

d(z) =
∞∑
k=0

zn

n!

∫ a

b
· · ·

∫ a

b
det(K(tp, tq))|np,q=1 dt1...dtn (4.11)

which is an entire function of z ∈ C, and succeeded in showing that the integral equation
is uniquely solvable if and only if d(z) 6= 0.

Furthermore, in Hilbert’s work [53] the determinant was put into its generalized
form

u+ zAu = f, d(z) = det(1 + zA), (4.12)

Where u and f are vector valued functions, and A is a compact operator in some Hilbert
space. The numerical method for solving such equation was developed over the classical
quadrature method by Nyström([54]). It is exceptionally efficient for smooth kernels,
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yielding small absolute errors (small to the scale of det(1) = 1). Then, given the quadrature
rule

Q(f) =
m∑
j=1

wjf(xi) ≈
∫ a

b
f(x)dx, (4.13)

Nystöm discretized (4.10) as the linear system

ui + z
m∑
j=1

wjK(xi, xj)uj = f(xi), i = 1, ...,m; (4.14)

which has to be solved for ui ≈ u(xi)(i = 1, ...,m). By keeping this conceptual simplicity,
Bornemann introduces the approximation of the Fredholm determinant by the determinant
of an m×m-matrix that is applied to the vector (ui):

dQ(z) = det(δij + zwiK(xi, xj))|mi,j=1 . (4.15)

In the special cases when we expect the weights of quadrature rule to be all positive, we
can switch to a more symmetric formula given by:

dQ(z) = det(δij + zw
1
2
i K(xi, xj)w

1
2
j )
∣∣∣∣m
i,j=1

. (4.16)

So to make the computation of equation (3.54) using this method one only just
needs to calculate the quadrature weights and input the values in (4.16) with the kernel
(3.56), and calculate the determinant of it. In [28] the Gauss-Legendre or Curtis-Clenshaw
quadrature rules are recommended. For our case, we have a complex 2× 2 matrix kernel,
which motivated us to use a formalism based in Riemann’s sums over a circular path.

4.2 Algorithms for the τV I function

This section is devoted to explain the details on how to use expressions (4.8) and
(4.16) in a code to calculate the tau function. The next subsection shows the similarities
between the two possible ways of calculation, since both approaches seek to obtain (3.54)
we start with the same input, the monodromy data ~θ = (θ0, θt, θ1, θ∞), ~σ = (σ0t, σ1t, σ01)
and t.

4.2.1 Common grounds

Starting with the monodromy parameters described above, they are not completely
independent of each other. As we saw in subsection 2.1.2, the monodromy data has to
obey the Fricke-Jimbo relation:

p0ptp1p∞ + p0tp1tp01 − p0t(p0pt + p1p∞)− p1t(p0p∞ + ptp1)− p01(p0p1 + p∞pt)
+ p2

0t + p2
1t + p2

01 + p2
0 + p2

t + p2
1 + p2

∞ = 4 (4.17)
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which can be rearranged in a quadratic equation for p01 as

p2
01 + (p0tp1t − (p0p1 + p∞pt))p01 + (p0ptp1p∞ − p0t(p0pt + p1p∞)− p1t(p0p∞ + ptp1)

+ p2
0t + p2

1t + p2
01 + p2

0 + p2
t + p2

1 + p2
∞ − 4) = 0 (4.18)

Then, the algorithm should take this into account and run a consistency check in the
parameters before doing anything else.

After the confirmation of relation (4.17), the code should generate the last parameter
necessary for the calculation of the tau function, the η defined in (3.58). At this point both
approaches will have to construct the matrices a and d, which appear in the operator U in
(3.54). The process by which one can do that depends on what method was chosen to do
the Fredholm determinant calculation. However, the steps after we obtain the matrices
are the same. Using the fact that 1 and U are block-diagonal, one can write:

det(1− U) = det(1− (a× d)) (4.19)

then the expression for τV I reads:

τV I = tσ
2−θ2

0−θ
2
t (1− t)−2θtθ1 det(1− (a× d)) (4.20)

Therefore, the usual script would start calculating η and enforcing the Fricke-Jimbo
relation. Then it would calculate a and d and making use of (4.20) obtain the full value
of τV I . It should be noted that some re-parameterization of the monodromy matrices
could end up changing the value of the monodromy data used. Now the calculation of the
matrices a and d can be done by the Fourier or the quadrature method, logical steps for
both of them are provided in the next subsections.

4.2.2 Constructing the Fourier approach

The Fourier code, developed in [50], was the standard approach to interpret the
Fredholm representation of the tau function. It relies on expressions (4.1) to build the
2× 2 blocks of (4.9). Computationally one can take advantage of the similarities between
equations (3.34) and (3.35) to write a faster code. Since both equations are hypergeometrics,
one can construct an algorithm that generates the Fourier expansion of such function.
With this in hand, solutions χ and φ can be generated by putting the right parameters
into the expansion.

In other words, the algorithm for the Fourier case would need to generate the
expansion of the hypergeometric solutions φ and χ, use them to calculate the 2 × 2
matrices ap−q and d−pq . Then, it would organize those values in two 2Np × 2Np lower and
upper triangular matrices, a and d respectively, where here Np represents the order of
approximation for the code, similar to Q in (4.9) . An example of such a code for matrix a
can be seen below (the full Fourier code is in appendix A):
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function invseries(ser) #ser only being a 2x2 matrix vector

inverse = zeros(ComplexF64, 2, 2, Np+1);
inverse[:,:,1] = [ 1 0 ; 0 1 ];
Threads.@threads for i = 2:(Np+1)

A = -ser[:,:,i];
Threads.@threads for j = 2:(i-1)

A += - (ser[:,:,j]*inverse[:,:,(1+i-j)]);
end
inverse[:,:,i] = A

end
return inverse

end

function gee(sig,th1,th2,t0=1.0)
psi = zeros(ComplexF64,2,2, Np+1);
# wrong sign of th1 to recover Nekrasov expansion

a = (sig-th1+th2)/2;
b = (sig-th1-th2)/2;
c = sig
psi[:,:,1] = [ 1 0 ; 0 1 ];
psi[:,:,2] = [ ((a*b)/c*t0) (-a*b/c/(1+c)*t0) ;

((a-c)*(b-c)/c/(1-c)*t0) ((a-c)*(b-c)/(-c)*t0) ];
Threads.@threads for p = 3:(Np+1)

psi[1,1,p] = ((a+p-2)*(b+p-2)/((p-1)*(c+p-2))*psi[1,1,p-1]*t0)
psi[1,2,p] = ((a+p-2)*(b+p-2)/((p-2)*(c+p-1))*psi[1,2,p-1]*t0)
psi[2,1,p] = ((a-c+p-2)*(b-c+p-2)/((p-2)*(-c+p-1))*psi[2,1,p-1]*t0)
psi[2,2,p] = ((a-c+p-2)*(b-c+p-2)/((p-1)*(-c+p-2))*psi[2,2,p-1]*t0)

end
return psi

end

function BuildA(sig,th1,th2)
vecg = gee(sig,th1,th2)
vecginv = invseries(vecg)
bigA = zeros(ComplexF64,2Np,2Np)
Threads.@threads for p = 1:Np

Threads.@threads for q = 1:Np
result = zeros(ComplexF64,2,2)
if q + p <= Np+1
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for r = 1:q
result += vecg[:,:,p+r]*vecginv[:,:,q-r+1]

end
end
bigA[(2p-1):(2p), (2q-1):(2q)] = result

end
end
return bigA

end

Where gee is the function responsible for generating the fourier expansion terms
and invseries is an algorithm that calculate the inverse of a series. The function BuildA
is responsible for putting together the right terms, generating (a[k])p;α−q;β and organizing the
results into a lower triangular matrix. The matrix d can be constructed using a similar
function, as one can see in Appendix A.

4.2.3 Kernel of the Quadrature approach

The main result of this dissertation is the adaptation of the Quadrature approach
explained in section 4.1.2 to our particular kernel. In order to use this method with the
kernel described in (3.56) and (3.57) a few changes had to be performed. First, as said in
subsection 4.1.2, we used a Riemann sum formalism for the quadrature points and weights.
Second, due to the form of our kernel, the finite matrix generated by the quadrature
method is undefined when i = j in 4.16. This happens because of the fact that when z = z′

the equations (3.56) become 0
0 . One way to circumvent this problem is by applying the

L’Hôpital rule and operating with ∂z in both terms of the fractions.Also, we can make use
of equation (3.33) to express the derivative of the solution φ(z) in a most efficient way. At
last, we discretized the variables z, z′ by making a transformation defined as z = Re

2πin
Np ,

where n = (1, 2, ...) and Np represents the order of approximation (equivalent to m in
4.15). By operating with this change of variables we will have a transformation in the
differential of 3.55 as well, which will give rise to a multiplicative factor of 2πi

Np
(Re

2πin
Np ) in

the expression for the kernels.

Summarizing, the quadrature code would need to create the transformation of z, z′,
build the functions for the solutions Ψ, Ψ−1 and the derivative of Ψ, then it would need to
use those functions to construct a and d using a Riemann sum. The piece of code below
shows how that calculation can be written for the a matrix (the full quadrature code is
available in appendix A):

function ze(R,n,i)
R*exp(2pi*im*n[i]/Np)
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end

function psi(th1, th2, th3,z)
result = zeros(Complex{Float64},2,2)
a = (th1-th2+th3)/2
b = (th1-th2-th3)/2
c = th1
result[1,1] = _2F1(a,b,c,z)
result[1,2] = -a*b/(c*(1+c))*z*_2F1(1+a,1+b,2+c,z)
result[2,1] = ((a-c)*(b-c))/(c*(1-c))*z*_2F1(1+a-c,1+b-c,2-c,z)
result[2,2] = _2F1(a-c,b-c,-c,z)
return result

end

function psiinv(th1, th2, th3,z)
result = zeros(Complex{Float64},2,2)
a = (th1-th2+th3)/2
b = (th1-th2-th3)/2
c = th1
result[1,1] = _2F1(a-c,b-c,-c,z)
result[1,2] = a*b/(c*(1+c))*z*_2F1(1+a,1+b,2+c,z)
result[2,1] = -((a-c)*(b-c))/(c*(1-c))*z*_2F1(1+a-c,1+b-c,2-c,z)
result[2,2] = _2F1(a,b,c,z)
return (1-z)^(-th2).*result

end

function dpsi(th1,th2,th3,z)
result = zeros(Complex{Float64},2,2)
sigma = [ 0 0 ; 0 th1 ]
A1 = [ ((th3^2-(th1-th2)^2)/(4*th1)) (-(th3^2-(th1-th2)^2)/(4*th1)) ;

((th3^2-(th1+th2)^2)/(4*th1)) (-(th3^2-(th1+th2)^2)/(4*th1)) ]
param = psi(th1,th2,th3,z)
result = (sigma*param-param*sigma)/z+param*A1/(z-1)
return result

end

function BuildNA(sig, th1, th2)
bigA = zeros(ComplexF64,2Np,2Np)
n = [(i) for i in range(1,stop=Np)]
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id = Matrix{ComplexF64}(I,2,2)
Threads.@threads for i = 1:Np

Threads.@threads for j = 1:Np
z = ze(R,n, i)
zp = ze(R,n,j)
psiz =psi(sig, th1, th2, z)
psiinvzp = psiinv(sig,th1,th2,zp)
if (i==j)

dpsiz = dpsi(sig,th1,th2,z)
bigA[(2i-1):(2i),(2i-1):(2i)] =(z/Np).*(dpsiz*psiinvzp)

else
bigA[(2i-1):(2i),(2j-1):(2j)] =(sqrt(zp)*sqrt(z)/Np).*
( (psiz*psiinvzp)-id )./(z-zp)

end
end

end
return bigA

end

Where ze performs the transformation z = Re
2πin
Np , psi, psiinv and dpsi generate

Ψ, Ψ−1 and ∂zΨ respectively. The function BuildNA is responsible for generating the
truncated matrix for the quadrature method. To make the interpretation of this method
easier for the reader, there is below a schematic representation of the matrix a(xi, xj) from
the code above, where the aij are constructed using the solutions Ψ as in (3.17):

(w1)a11(x1, x1) (w1)a12(x1, x1) . . . (w1wNp)
1
2a11(x1, xNp) (w1wNp)

1
2a12(x1, xNp)

(w1)a21(x1, x1) (w1)a22(x1, x1) . . . (w1wNp)
1
2a21(x1, xNp) (w1wNp)

1
2a22(x1, xNp)

... ... . . . ... ...
(wNpw1) 1

2a12(xNp, x1) (wNpw1) 1
2a11(xNp, x1) . . . (wNp)a11(xNp, xNp) (wNp)a12(xNp, xNp)

(wNpw1) 1
2a21(xNp, x1) (wNpw1) 1

2a22(xNp, x1) . . . (wNp)a21(xNp, xNp) (wNp)a22(xNp, xNp)


(4.21)

4.3 Comparing the methods

This section is devoted to analyze and compare the efficiency of both codes described
in the last section. The objective of constructing the quadrature method was to obtain a
faster way to calculate the τV I function. In the next paragraphs, taking the Fourier code
as a standard, we will compare the precision and efficiency of the quadrature method.

The first thing we need to look into is the precision. The quadrature code must be
able to replicate the results given by the Fourier method to a certain degree of numerical
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tolerance. Since both codes come from the Fredholm determinant form of tau function it
is expected that they present at least similar behaviors. In Figure 10 one can see graphs
for the real and imaginary parts of the τV I for both codes.

Figure 10 – Plots for three different orders of approximation of the τV I function, using
~θ = (0.3804 + 0.6212i, 0.8364− 0.4218i, 0.6858 + 0.6628i, 0.0326 + 0.3610i) and
~σ = (−0.6544− 0.9622i, 0.1916 + 0.6336i, 0.9524 + 0.2056i)

We observe that the two methods present the same behavior when t < 0.5. One
can notice that, for the quadrature method, there is a strange formation of spikes close to
t = 0.6, this happens because of our choice of the parameter R defined in the last section.

The parameter R can be associated with the definition of the tau function in its
Fredholm form, see subsection 3.2.2, and it must obey t < R < 1. For our code, we choose
R = 0.6, which means that the method starts to lose accuracy close to this point. Since
we wish to compare the two methods in its entirety, we need to analyze how changes in
the values of R affect the accuracy of the quadrature approach. In Figure 11 we can see
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(a) Re(τV I) R=0.7 (b) Imag(τV I) R=0.7

(c) Re(τV I) R=0.85 (d) Imag(τV I) R=0.85

Figure 11 – Plots of the real and imaginary parts of the τV I function for different values of
R, with N = 400 and using ~θ = (0.3804 + 0.6212i, 0.8364− 0.4218i, 0.6858 +
0.6628i, 0.0326+0.3610i) and ~σ = (−0.6544−0.9622i, 0.1916+0.6336i, 0.9524+
0.2056i)

two graphs for the τV I function with different values of R. The first two are plots for
R = 0.7, in this case, we see that there is a very good agreement not only between the
quadrature and Fourier method but also with the quadrature graph for R = 0.6. The
graphs for R = 0.85 present a good agreement between the Fourier and the quadrature
methods. However, the quadrature method starts to lose accuracy at this point, which
can be seen by comparing the graphs for R = 0.6 and R = 0.7 with the one for R = 0.85.
From our analysis, we concluded that for 0.6 < R < 0.7 the accuracy of the quadrature
code remains good, for 0.7 < R < 0.85 there is a little loss in precision, and for R > 0.85,
the method becomes unstable, with little changes in Np making big changes in τV I . Now
that we understand the role of the R parameter in the quadrature method, we can finally
assert that, up to R, this approach has a very good agreement with the Fourier one. It
is also worth pointing out that both methods are approximations of the τV I for t close
to 0. This means that the precision of the two codes when t > 0.5 is not guaranteed. If
necessary, an expansion of the τV I function close to t = 1 can be found by making

t↔ (1− t), θ0 ↔ θ1, σ0t ↔ σ1t, p01 ↔ p′01, (4.22)

where pµ = 2cos(2πθµ), pµν = 2cos(2πσµν) and p′01 = p0pt + p1p∞ − p0t − p01p1t, see [22].
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Now we seek to analyze which one of the codes has the best numerical efficiency.
To start, we should remember that both codes present the same operations to obtain the
tau function aside from the calculation of the matrices a and d. So we could understand
which one of the methods will be faster by making a quick inspection of the functions
responsible for generating the operator.

For the Fourier code, we construct a and d by using a double loop to place the 2×2
block matrices into the desired 2Np × 2Np triangular form. Those blocks are constructed
by a sum of 2× 2 matrices generated through the Fourier expansion of the 3-point solution.
On the other hand, the quadrature algorithm constructs the same matrices by placing 2×2
blocks into a truncated form of the operator a and d. The block matrices are generated
through direct evaluation of the functions Ψ,Ψ−1, and ∂zΨ using Gauss hypergeometric
function. We can observe from this superficial analysis that the Fourier code seems to be
more complex than the quadrature one. To clarify, more details within the algorithms
could impact the efficiency of each method and this last analysis was made only to give a
hint of what we could expect. For example, in the quadrature code, the method used for
the calculation of the hypergeometric functions could have a great impact on the time
of compilation. To determine the most efficient code, we performed a test using a macro
of the Julia language to calculate the time of compilation. In Figure 12 there is a graph
comparing the times for the two algorithms as a function of Np.

Figure 12 – Run time for both approaches, using ~θ = (0.3804 + 0.6212i, 0.8364 −
0.4218i, 0.6858+0.6628i, 0.0326+0.3610i) and ~σ = (−0.6544−0.9622i, 0.1916+
0.6336i, 0.9524 + 0.2056i) and t = 0.1

From the graph, we can arrive at the following conclusions. For low values of Np

(Np < 200), the two approaches present almost the same efficiency. Also, for Np > 200, we
begin to see that the run time of the Fourier code exceeds the times of the quadrature
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method. We see that the quadrature code is faster when we work with better approximations,
bigger Np. However, we must perform one final test. Through this dissertation, we addressed
the Riemann-Hilbert problem and the equivalent Accessory Parameter problem. We also
showed how the τV I Painlevé function could be used to solve such a problem. The main
reason for the construction of the quadrature code was to have a fast and accurate
method to obtain the zeros of the tau function. Furthermore, we should find out if the
quadrature method is the best suited for this task. Since τV I is a complex-valued function,
it was developed a two-dimensional algorithm to find the roots, based on the well-known
Newton-Raphson method. We used the same time macro to determine the run time of the
2D Newton method applied to the Fourier and quadrature codes. The data obtained is
portrayed in Figure 13. (A copy of the 2D Newton-Raphson algorithm can be found in
Appendix A).

Figure 13 – Run time to find t0 for both methods, using ~θ = (0.3804 +
0.6212i, 0.8364−0.4218i, 0.6858+0.6628i, 0.0326+0.3610i) and ~σ = (−0.6544−
0.9622i, 0.1916 + 0.6336i, 0.9524 + 0.2056i), where t0 = 0.30833646036160434 +
0.1908672621287217i is the result

Inspecting the graph, we can finally conclude that the quadrature method is, indeed,
the fastest way to calculate the τV I function and its roots. From this point, we can go
further and use the quadrature code to obtain high accuracy values for the tau function.
As an example and consistency check, in the next section, we reproduce calculations of
the accessory parameters from the literature comparing the results with values obtained
by the quadrature method.
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4.4 Obtaining the accessory parameters

As said in the last sections, the accessory parameter problem was one of the main
motivations for the development of the quadrature code. In this section, we will test the
consistency of the quadrature method. We will compute the accessory parameter of some
specific examples and compare those values with the results in [18]. In Anselmo et al.’s
paper, the accessory parameters were obtained using the expansion of the tau function,
from [22]. We will present two examples in the next subsections, the generic polycircular
arc domain and the half-disk barrier in an infinite channel.

A quick review of the topic is necessary to better understand the examples. We
start with a generic polycircular domain (the half-disk barrier is a special case) and we
wish to find a mapping between this domain and the upper half plane. As reviewed in the
introduction, one needs to solve an ODE to find such map. The Schwarzian differential
equation is a nonlinear ODE describing the mapping f(w) that we desire to find. Writing
f(w) = y1(w)

y2(w) the yi can be found by solving a second order differential equation of the
form

ỹ′′(w) =
n∑
i=1

[
1− θ2

i

4(w − wi)2 + βi
2(w − wi)

]
ỹ(w). (4.23)

Where the parameters wi are associated with the vertices of the domain, and θi represents
the monodromy of the problem. We can obtain the parameters βi, by using θi and wi,
through complex expressions. We will restrict ourselves to the case where the polycircular
domain has four vertices. In this particular form, one can write (4.23) as a Heun equation
and use all the formalism introduced in chapter 2. With four vertices, the parameters βi
become the accessory parameters of the Heun equation, and we can determine then using
the expressions introduced in the end of chapter 2.

τ+(t0) = 0, K0 = K(t0), K(t) := d

dt
log τ(θi, σij, t)−

(θt0 − 1)θ1

2(t− 1) −
(θt0 − 1)θ0

2t (4.24)

Where the parameters for the τ and τ+ functions are, respectively

ρ ={θ0, θt = θt0 − 1, θ1, θ∞ = θ∞0 + 1, σ0t = σ0t0 + 1, σ1t = σ1t0 − 1, σ01} (4.25)
ρ+ ={θ0, θt0 , θ1, θ∞0 , σ0t0 , σ1t0 , σ01}. (4.26)

Next two subsections will treat examples in which we use (4.24) to find the accessory
parameter t0 and K0.

4.4.1 Generic polycircular arc domain

A generic polycicular domain with four vertices is formed by the region between
four intersecting circles, as we can see in Figure 14. From [18], we are able to obtain the
monodromy data ρ+ using the geometry of the polycircular domain, the matrices for the
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Figure 14 – Example of polycircular arc domain with four vertices. The circles forming
region D are centered −1.1,−i, 1+0.1i, i with respective radii 0.8, 0.75, 0.9, 0.7.
By Anselmo et al in [18]

general case are written as

Mi = 1
riri+1

 ziz̄i+1 + r2
i − |zi|

2 z̄i+1 − z̄i
zi(r2

i+1 − |zi+1|2)− zi+1(r2
i − |zi|

2) z̄izi+1 + r2
i+1 − |zi+1|2

 . (4.27)

Where ri and zi are the radius and position of the center of each circle. The monodromy
parameters derive from the trace coordinates reviewed in chapter 2, 2 cos(πθi) = −Tr(Mi)
and 2 cos(πσij) = Tr(MiMj). With those formulas we are able to obtain the set ρ for the
domain defined in Figure 14. We will use the numbers with precision up to 10 digits both
for the values of [18] and the ones generated by our method.The monodromy values will
be given by

θ0 = 0.1827991846 σ0t0 = 1− 0.4304546489i
θt0 = 0.2869823004 σ1t0 = 1− 0.5385684561i
θ1 = 0.3673544015 σ01 = 0.9631297769 + 0.7221017400i
θ∞ = 0.0853271421

. The parameters t0 and K0 of the original paper and the ones that we calculated using
the quadrature method, and the 2D Newton code, are displayed in the table bellow.

quadrature expansion
t0 0.2086468768 0.2086468690
K0 -0.4365581454 + 8.3433 ×10−6i −0.4364792362

We can see that the values generated by the quadrature method have relatively
good agreement with the previous ones from the literature. One of the outstanding facts
here is that for the quadrature code a K0 with a small imaginary part was generated,
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while the values of the expansion method are purely real. We know, from Anselmo et al’s
paper, that the value of K0 and t0 should both be real, which means that there is some
source of error in the method. By observing the values for t0, we see that the agreement
between the two methods can be expected to hold up to 6 − 7 digits. Then, the small
imaginary part of K0 can be interpreted as an effect of the intrinsic approximation errors
in the method. An example of what could have caused this low accuracy in K0 is the fact
that we used differentiation through finite differences, a more sophisticated method would
be necessary to find this parameter with better precision. The optimization of the code as
a whole, including more precise methods for computing K0, will be addressed in the future.
In the next section, we will treat an especial case where some of the arcs are straight lines.

4.4.2 Semi-disk barrier in an infinite channel

Reviewed in the introduction of this dissertation, the problem of finding the
transformation from the upper-half plane to the semi-disk barrier domain is well known
and has several applications ([55], [56], [57]). In the introduction, we have shown how
one can generate the streamlines for the flow in this domain, using these transformations.
The problem of finding the monodromy data associated with this semi-disk barrier was
reviewed in subsection 2.1.2, where it was shown how to use the Schwarz function to
obtain the Mi matrices. Applying the formulas for the trace coordinates to such matrices,
we obtain ~θ = (0.0, 0.5, 0.5, 0.0) and ~σ = ( cos−1(−h)

π
, 0.0, cos−1(h)

π
), where h is the channel

width. Here we will use, as an example, the monodromy obtained when h = 2, which give
us the following values:

quadrature expansion
t0 3.904625 ×10−4 3.904625 ×10−4

K0 - 2.725525 ×102 − 2.991370× 10−5i −2.725462 ×102

.

Here, we can see that the value of t0 for the quadrature method has a stunning
agreement with the result from Anselmo et al.. We can explain this agreement by the fact
that the series expansion method, used in [18], excels when the values are closer to zero,
which is the case in the semi-disk barrier. On the other hand, the accessory parameter K0

only agrees with the expansion method up to 4− 5 digits. As in the polycircular domain
from the last subsection, there is a small imaginary part associated with K0. The problem
here is the same, the precision is smaller than expected. Since the agreement for K0 is
only up to the fourth digit, we can argue that this imaginary term can be neglected. The
relatively low precision in this example is possibly explained by the fact that t0 is so close
from zero, remembering that the τV I is not well defined when t = 0 (see subsection 3.2.2).
In fact, for this particular case, the proximity with zero creates the possibility of working
using an approximate expression for the parameter t0. This expression is constructed with
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the first terms of the expansion for the tau function using conformal blocks from [34].

t
1−σ0t0
0 ' 1 + sin (πσ0t0)

1− sin (πσ0t0)
Γ4(1

4 + 1
2σ0t0)

Γ4(5
4 −

1
2σ0t0)

Γ2(1− σ0t0)
Γ2(σ0t0 − 1) , h = − cosπσ0t0 (4.28)

Using this expression, the value obtained for the accessory parameter is t0 ' 3.905353×
10−4(for h = 2). Comparing this value with the one obtained by the quadrature method,
we see that the accuracy goes up to 3− 4 digits. This approximation serves as another
consistency check for the code. This formula can be used to generate the parameter K0,
as

K0 = d

dt
log τ(θi, σij, t)

∣∣∣∣∣
t0

− (θt0 − 1)θ1

2(t0 − 1) −
(θt0 − 1)θ0

2t0
' (σ0t − 1)2 − (θ0 + θt0 − 1)2

4t0
.

(4.29)
Using this expression, we obtain K0 ' −2.725292×102, which agrees up to 3−4 digits with
the quadrature values. With this, we reiterate the argument used for the imaginary part of
K0. Even with the intrinsic errors of the actual quadrature code, the values agree relatively
good with the previous ones, and we can assume that the imaginary part generated is a
result of the fact that the code is not completely optimized yet.

Those two examples show us how the quadrature method behaves in comparison
with other approaches. There is a good agreement between the method and the previous
results from the literature. With this in hand, we can assume that the quadrature method
is the best for the computation of the τV I . However, before finishing this discussion, it is
important to stress the cases for Np ≤ 200 in Figure 12. In the graph, one can see that, for
a low Np, the Fourier and the quadrature methods are almost equivalent in run time, with
a few points where the Fourier code is faster. This better efficiency for the Fourier code
arises from the previous discussions about the complexity of the method. We expect that
the quadrature method is more efficient, but a few processes in the code for a low Np are
responsible for this increase in the run time. This means that the quadrature code is not
fully optimized, and further improvements will be necessary to achieve complete efficiency.
With that in mind, the quadrature approach should be taken as the standard method
for the computation of the τV I , since it behaves well for all values of the approximation
constant Np. We are looking forward to using the efficiency and precision of the quadrature
code to unravel new physical problems in the future.
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5 CONCLUSION

The Painlevé Transcendents are functions defined as solutions of the six Painlevé
ODEs, a set of nonlinear second-order differential equations. Those functions appear in
a considerable number of physical problems, ranging from integrable quantum systems
to random matrix theory. In this dissertation, we explored the properties of the Painlevé
sixth transcendent and its connection to the theory of isomonodromic transformations.
The τV I function is associated with the solution of the sixth Painlevé ODE and can be
used to represent such a solution in some specific problems.

Through the first chapters, we introduced the concept of the Riemann-Hilbert
problem(RHp), which is the task to associate a Fuchsian type ODE to a given represen-
tation of the monodromy group. The accessory parameter problem of the Heun ODE
is an example of the RHp, with four singular points. The Heun equation accessory pa-
rameter problem has applications in theoretical physics, such as in conformally invariant
boundary dynamics in two dimensions and the scattering theory of black holes. This
problem is described as the task to find two parameters t0 and K0 as functions of the
monodromy data ~θ = (θ0, θt, θ1, θ∞) and ~σ = (σ0t, σ1t, σ01), which are connected to the
monodromy representation associated to the ODE. We showed how one can use the theory
of isomonodromic deformations, transformations that keep the monodromy representation
of the ODE unchanged, to solve the accessory parameter problem with the help of the τV I
function.

Then, we reviewed the generalized RHp, for n singular points and rank N , and
showed how we can associate an isomonodromic tau function to this kind of problem.
We can solve the generalized RHp by dividing the domain into (n− 2) auxiliary 3-point
problems. By doing this, one can write the tau function in a Fredholm determinant
form using Plemelj operators. When n = 4 and N = 2, we recover the τV I Painlevé
function as Fredholm determinant with the operators being given in terms of Gauss
hypergeometric functions. This form for the τV I is the most efficient way to calculate the
function numerically.

Afterward, two possible computational methods for the calculation of the τV I in the
determinant form were analyzed and compared. The first one, the Fourier method, was the
current standard method for this kind of computation. It relies on expanding the Plemelj
operator inside the determinant in the Fourier basis, enabling the matrix to be written in
an approximated truncated form. The second, the quadrature method, was developed in
this work based on an algorithm already proposed on how to approximate the Fredholm
determinant in a more general way. This method uses the well-known quadrature rule
for integrals to approximate the operator inside the determinant as truncated matrices
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with values being given by the evaluation of the kernel in the quadrature points. The
adaptation of the method to the kernel of the Plemelj operators brought different aspects
to the algorithm. Instead of using the Gauss-Legendre quadrature rule, we used a Riemann
sum formalism, since the operators were defined in the complex plane. Some new terms
were introduced in the formalism by the transformation that discretized the coordinates of
the operator. And, at last, the singular behavior of the kernel was circumvented through
the L’Hôpital rule in the diagonal of the matrices.

The quadrature method was developed to be more efficient than the Fourier one.
Through some analyzes of the compilation time and precision of both codes, we concluded
that, indeed, the quadrature approach has superior efficiency. Also, we made tests to
see if this method had a good agreement with previous results from the literature. The
theory of conformal mappings from a polycircular arc domains to the upper-half plane is
governed by the Schwarz differential equation, which solution can be written as a ratio of
two independent solutions of a Heun equation. We can find the monodromy representation
for such a Hoen equation by an analysis of the geometry for the polycircular arc domain.
And the accessory parameters of this ODE are obtained by making use of the τV I function.
In this context, a recent work by Anselmo et al ([18]) has generated numerical results for
some specific polycircular configurations. Particularly, one interesting special case of such
a polycircular domain, the half-disk barrier, have also been analyzed. Due to the possible
application in some theoretical physics problems, such as the theory of potential flow in
fluid dynamics, this problem was also addressed in the tests made.

The improved accuracy of the quadrature method in the calculation of the tau
function opens new paths to understand some problems. For example, from general
relativity, the quasinormal fluctuations of black holes is a topic of great interest. For the
specific background of the Kerr-AdS5 black hole, the quasinormal modes depend on the
connection problem of the solutions of a Fuchsian ODE. The connection problem can be
solved by using the τV I function. In [50], the quasinormal modes are obtained using the
Fourier method. Applying the quadrature approach to this problem might give rise to new
results.

Also in the theory of black hole quasinormal modes, the Kerr background presents
an interesting case. For this metric, one solves the connection problem by making use of
the Painlevé V transcendent [58]. We can extend the quadrature method introduced in
this dissertation to the Painlevé τV . The development of a quadrature code for the τV and
its applications to such contexts might be the goal of future works.

Another possible utilization of the quadrature method used here is related to
the tau function associated with more than four singular points. The formula on [23] is
generalized for any set n,N , which means that it is possible to develop a code with the
n = 5, rank 2 case. This kind of formalism can be used, for example, to find accessory
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parameters for the mapping of a polycircular arc with five vertices to the upper-half plane.
The development of a quadrature method to the 5-point τ will be addressed in the future.
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APPENDIX A – FREDHOLM DETERMINANT CODES IN JULIA

A.0.1 Fourier method

using LinearAlgebra
using SpecialFunctions
using Plots

JULIA_NUM_THREADS=8
Np = 400

function frickejimbo(Pµ, Pµ)
b = Pµ[1]*Pµ[2] - Pµ[1]*Pµ[3] - Pµ[2]*Pµ[4];
c = (Pµ[1])^2 + (Pµ[2])^2 + (Pµ[1])^2 + (Pµ[2])^2 + (Pµ[3])^2 +

(Pµ[4])^2 +(Pµ[1]*Pµ[2]*Pµ[3]*Pµ[4])-Pµ[1]*(Pµ[1]*Pµ[2]+Pµ[3]*Pµ[4]) -
Pµ[2]*(Pµ[1]*Pµ[4]+Pµ[2]*Pµ[3])-4.0;

return (-b - sqrt((b^2 - 4c)))/2
end

function pii(th1,th2,th3,th4,sig)
return (gamma(1-sig)^2/gamma(1+sig)^2 *

gamma(1+(th3+th4+sig)/2)/gamma(1+(th3+th4-sig)/2) *
gamma(1+(th3-th4+sig)/2)/gamma(1+(th3-th4-sig)/2) *
gamma(1+(th2+th1+sig)/2)/gamma(1+(th2+th1-sig)/2) *
gamma(1+(th2-th1+sig)/2)/gamma(1+(th2-th1-sig)/2))

end

function ess(th1,th2,th3,th4,sig1,sig2,sig3)
w1t = cospi(th2)*cospi(th3)+cospi(th1)*cospi(th4)
w01 = cospi(th1)*cospi(th3)+cospi(th2)*cospi(th4)
num = (w1t-cospi(sig2)-cospi(sig1)*cospi(sig3)) -

(w01-cospi(sig3)-cospi(sig1)*cospi(sig2)) *exp(1im*pi*sig1)
den = (cospi(th4)-cospi(th3-sig1)) *

(cospi(th1)-cospi(th2-sig1))
return num/den

end

function invseries(ser) #ser only being a 2x2 matrix vector
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inverse = zeros(ComplexF64, 2, 2, Np+1);
inverse[:,:,1] = [ 1 0 ; 0 1 ];
Threads.@threads for i = 2:(Np+1)

A = -ser[:,:,i];
Threads.@threads for j = 2:(i-1)

A += - (ser[:,:,j]*inverse[:,:,(1+i-j)]);
end
inverse[:,:,i] = A

end
return inverse

end

function gee(sig,th1,th2,t0=1.0)
psi = zeros(ComplexF64,2,2, Np+1);
# wrong sign of th1 to recover Nekrasov expansion

a = (sig-th1+th2)/2;
b = (sig-th1-th2)/2;
c = sig
psi[:,:,1] = [ 1 0 ; 0 1 ];
psi[:,:,2] = [ ((a*b)/c*t0) (-a*b/c/(1+c)*t0) ;

((a-c)*(b-c)/c/(1-c)*t0) ((a-c)*(b-c)/(-c)*t0) ];
Threads.@threads for p = 3:(Np+1)

psi[1,1,p] = ((a+p-2)*(b+p-2)/((p-1)*(c+p-2))*psi[1,1,p-1]*t0)
psi[1,2,p] = ((a+p-2)*(b+p-2)/((p-2)*(c+p-1))*psi[1,2,p-1]*t0)
psi[2,1,p] = ((a-c+p-2)*(b-c+p-2)/((p-2)*(-c+p-1))*psi[2,1,p-1]*t0)
psi[2,2,p] = ((a-c+p-2)*(b-c+p-2)/((p-1)*(-c+p-2))*psi[2,2,p-1]*t0)

end
return psi

end

function BuildA(sig,th1,th2)
vecg = gee(sig,th1,th2)
vecginv = invseries(vecg)
bigA = zeros(ComplexF64,2Np,2Np)
Threads.@threads for p = 1:Np

Threads.@threads for q = 1:Np
result = zeros(ComplexF64,2,2)
if q + p <= Nf+1

for r = 1:q
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result += vecg[:,:,p+r]*vecginv[:,:,q-r+1]
end

end
bigA[(2p-1):(2p), (2q-1):(2q)] = result

end
end
return bigA

end

function BuildD(sig,th1,th2,x,t)
vecg = gee(sig,th1,th2,t);
vecginv = invseries(vecg)
bigD = zeros(ComplexF64,2Np,2Np)
left = [ (1/x) 0 ; 0 1 ]
right = [ (x) 0 ; 0 1 ]
Threads.@threads for p = 1:Np

Threads.@threads for q = 1:Np
result = zeros(ComplexF64,2,2)
if q + p <= Np+1

for r = 1:p
result += -vecg[:,:,p-r+1]*vecginv[:,:,q+r]

end
end
bigD[(2p-1):(2p), (2q-1):(2q)] = left*result*right

end
end
return bigD

end

function tauhat(th,sig,esse,t)
x = esse*pii(th[1],th[2],th[3],th[4],sig)*t^sig
OpA = BuildA(sig,th[3],th[4])
OpD = BuildD(-sig,th[2],th[1],x,t)
id = Matrix{ComplexF64}(I,2Np,2Np)
Fred =(id-OpD*OpA)
factor = (t^(((sig[1]^2) - (th[1]^2) - (th[2]^2))/4))*((1-t)^(-th[2]*th[3]/2))
return factor*det(Fred)

end
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A.0.2 Quadrature method

using SpecialFunctions
using LinearAlgebra
using Base.Threads
using FastGaussQuadrature
using SingularIntegralEquations.HypergeometricFunctions

JULIA_NUM_THREADS=8
Np = 400
function frickejimbo(Pµ, Pµ)

b = Pµ[1]*Pµ[2] - Pµ[1]*Pµ[3] - Pµ[2]*Pµ[4];
c = (Pµ[1])^2 +(Pµ[2])^2 +(Pµ[1])^2 +(Pµ[2])^2 +(Pµ[3])^2 +(Pµ[4])^2 +

(Pµ[1]*Pµ[2]*Pµ[3]*Pµ[4])-Pµ[1]*(Pµ[1]*Pµ[2]+Pµ[3]*Pµ[4])-
Pµ[2]*(Pµ[1]*Pµ[4]+Pµ[2]*Pµ[3]);

return (-b - sqrt((b^2 - 4c)))/2
end

function pii(th1,th2,th3,th4,sig)
return (gamma(1-sig)^2/gamma(1+sig)^2 *

gamma(1+(th3+th4+sig)/2)/gamma(1+(th3+th4-sig)/2) *
gamma(1+(th3-th4+sig)/2)/gamma(1+(th3-th4-sig)/2) *
gamma(1+(th2+th1+sig)/2)/gamma(1+(th2+th1-sig)/2) *
gamma(1+(th2-th1+sig)/2)/gamma(1+(th2-th1-sig)/2))

end

function ess(th1,th2,th3,th4,sig1,sig2,sig3)
w1t = cospi(th2)*cospi(th3)+cospi(th1)*cospi(th4)
w01 = cospi(th1)*cospi(th3)+cospi(th2)*cospi(th4)
num = (w1t-cospi(sig2)-cospi(sig1)*cospi(sig3)) -

(w01-cospi(sig3)-cospi(sig1)*cospi(sig2)) *exp(1im*pi*sig1)
den = (cospi(th4)-cospi(th3-sig1)) *

(cospi(th1)-cospi(th2-sig1))
return num/den

end

function ze(R,n,i)
R*exp(2pi*im*n[i]/Np)

end
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function psi(th1, th2, th3,z)
result = zeros(Complex{Float64},2,2)
a = (th1-th2+th3)/2
b = (th1-th2-th3)/2
c = th1
result[1,1] = _2F1(a,b,c,z)
result[1,2] = -a*b/(c*(1+c))*z*_2F1(1+a,1+b,2+c,z)
result[2,1] = ((a-c)*(b-c))/(c*(1-c))*z*_2F1(1+a-c,1+b-c,2-c,z)
result[2,2] = _2F1(a-c,b-c,-c,z)
return result

end

function psiinv(th1, th2, th3,z)
result = zeros(Complex{Float64},2,2)
a = (th1-th2+th3)/2
b = (th1-th2-th3)/2
c = th1
result[1,1] = _2F1(a-c,b-c,-c,z)
result[1,2] = a*b/(c*(1+c))*z*_2F1(1+a,1+b,2+c,z)
result[2,1] = -((a-c)*(b-c))/(c*(1-c))*z*_2F1(1+a-c,1+b-c,2-c,z)
result[2,2] = _2F1(a,b,c,z)
return (1-z)^(-th2).*result

end

function dpsi(th1,th2,th3,z)
result = zeros(Complex{Float64},2,2)
sigma = [ 0 0 ; 0 th1 ]
A1 = [ ((th3^2-(th1-th2)^2)/(4*th1)) (-(th3^2-(th1-th2)^2)/(4*th1)) ;

((th3^2-(th1+th2)^2)/(4*th1)) (-(th3^2-(th1+th2)^2)/(4*th1)) ]
param = psi(th1,th2,th3,z)
result = (sigma*param-param*sigma)/z+param*A1/(z-1)
return result

end

function BuildNA(sig, th1, th2)
bigA = zeros(ComplexF64,2Np,2Np)
n = [(i) for i in range(1,stop=Np)]
id = Matrix{ComplexF64}(I,2,2)
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Threads.@threads for i = 1:Np
Threads.@threads for j = 1:Np

z = ze(R,n, i)
zp = ze(R,n,j)
psiz =psi(sig, th1, th2, z)
psiinvzp = psiinv(sig,th1,th2,zp)
if (i==j)

dpsiz = dpsi(sig,th1,th2,z)
bigA[(2i-1):(2i),(2i-1):(2i)] =(z/Nf).*(dpsiz*psiinvzp)

else
bigA[(2i-1):(2i),(2j-1):(2j)] =(sqrt(zp)*sqrt(z)/Np).*
( (psiz*psiinvzp)-id )./(z-zp)

end
end

end
return bigA

end

function BuildND(sig,th1,th2,x,t)
bigD = zeros(ComplexF64,2Np,2Np)
n = [(i) for i in range(1,stop=Np)]
id = Matrix{ComplexF64}(I,2,2)
left = [ (1/x) 0 ; 0 1 ]
right = [ (x) 0 ; 0 1 ]
Threads.@threads for i = 1:Np

Threads.@threads for j = 1:Np
z = ze(R,n, i)
zp = ze(R,n,j)
psiz =psi(sig, th1, th2, (t/z))
psiinvzp = psiinv(sig,th1,th2,(t/zp))
if (i==j)

dpsiz = dpsi(sig,th1,th2,(t/z))
bigD[(2i-1):(2i),(2i-1):(2i)] =( ((z/Nf)*(t/z^2)).*
(left*dpsiz*psiinvzp*right) )

else
bigD[(2i-1):(2i) , (2j-1):(2j)] = ((sqrt(zp)*sqrt(z)/Nf)).*
( id -(left*psiz*psiinvzp*right) )./(z-zp)

end
end
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end
return bigD

end

function tauhat(th,sig,esse,t)
x = esse*pii(th[1],th[2],th[3],th[4],sig)*t^(sig)
OpA = BuildNA(sig,th[3],th[4])
OpD = BuildND(-sig,th[2],th[1],x,t)
id = Matrix{ComplexF64}(I,2Np,2Np)
Fred =(id-OpD*OpA)
factor = (t^(((sig[1]^2) - (th[1]^2) - (th[2]^2))/4))*((1-t)^(-th[2]*th[3]/2))
return factor*det(Fred)

end

A.0.3 2D Newton-Raphson Method

function newton2d(f,x,verb,tol=1e-15::Float64,maxsteps=100::Int64)
h = 1e-6
local counter = 0
xnew = transpose(x)
while true

jac = zeros(ComplexF64,2,2)
xold = xnew
f0 = f(xold)
fx = f(xold + [ h 0 ])
fy = f(xold + [ 0 h ])
jac[1,1] = (fx[1] - f0[1])/h
jac[1,2] = (fy[1] - f0[1])/h
jac[2,1] = (fx[2] - f0[2])/h
jac[2,2] = (fy[2] - f0[2])/h
step = inv(jac)*f0
#xnew = xold-step

xnew[1] = (xold[1] - step[1])[1]
xnew[2] = (xold[2] - step[2])[1]
counter += 1
println( counter," ",Complex{Float64}(xnew[1]),"
",Complex{Float64}(xnew[2])," ",Float64(abs2d(f0)) )
( (counter > maxsteps) || ( abs2d(step) < tol)
|| (abs2d(f0) < tol ) ) && break

end
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if counter >= maxsteps
error("Did not converge in ", string(maxsteps), " steps")

else
xnew, counter

end
end
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