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“I should like to say two things, one intellectual and one moral:

The intellectual thing I should want to say to them is this: When you are studying any matter or

considering any philosophy, ask yourself only what are the facts and what is the truth that the

facts bear out. Never let yourself be diverted either by what you wish to believe or by what you

think would have beneficent social effects if it were believed, but look only and solely at what are

the facts. That is the intellectual thing that I should wish to say.

The moral thing I should wish to say to them is very simple. I should say: Love is wise, hatred is

foolish. In this world, which is getting more and more closely interconnected, we have to learn

to tolerate each other. We have to learn to put up with the fact that some people say things that

we don’t like. We can only live together in that way, and if we are to live together and not die

together we must learn a kind of charity and a kind of tolerance which is absolutely vital to the

continuation of human life on this planet.”

Bertrand Russell, Face-to-Face - BBC (1959)



RESUMO

O controle de temperatura em tecidos biológicos tem sido amplamente utilizado para
aplicações terapêuticas em diversas áreas da medicina tais como oncologia, fisioterapia, urologia,
cardiologia e oftalmologia. A Terapia Fototérmica (TFT) baseia-se na indução de danos celulares
por meio de absorção de luz por um tecido alvo. Entretanto, para um efetivo uso de luz em
TFT, um aquecimento controlado e localizado deve ser obtido. O aquecimento localizado pode
ser alcançado por meio da exploração de estruturas nanoplasmônicas. Este trabalho tem como
objetivos a avaliação de nanoaquecedores para alta performance em TFT. Análises teóricas e
experimentais foram realizadas para a aferição de propriedadas termo-ópticas de nanoestruturas
de ouro e colóides metálicos. Parâmetros ópticos cruciais que determinam o aquecimento
plasmônico foram avaliados, explorando a dependência com o tamanho das nanopartículas.
Baseando-se no Método dos Elementos Finitos, os comprimentos ótimos dos nanobastões de
ouro encontrados para TFT infravermelha foram de 45 nm e 60 nm para comprimentos de
onda de 800 nm e 1064 nm respectivamente, no regime de excitação de nanosegundos. Para
excitações contínuas, a geração de calor mostra uma tendência a maximizar-se em nanobastões
com comprimentos maiores que 100 nm. A avaliação da performance das nanopartículas como
nanoaquecedores é um passo fundamental no desenvolvimento de nanoplataformas eficientes
para TFT. Na caracterização térmica de coloides metálicos, foi explorada a técnica de lente
térmica, onde o aquecimento óptico de uma solução coloidal de nanoesferas de ouro com 50 nm
de diâmetro foi analisado pela técnica de duplo feixe com mode-mismatch. Variações térmicas
de até 1.28 oC foram medidas na região do laser de excitação. A introdução da técnica de lente
térmica na avaliação do foto-aquecimento de coloides consite em uma abordagem inovadora e
de grande potencial para a caracterização de nanoaquecedores.

Palavras-chave: Lente Térmica. Nanopartículas Metálicas. Ressonância de Plasmons de Super-
fície Localizados. Terapia Fototérmica. Termoplasmônica.



ABSTRACT

Tissue temperature control has been widely used for therapeutic application in several
areas of medicine as oncology, physiotherapy, urology, cardiology and ophthalmology. Photother-
mal therapy (PTT) is based on the induction of cellular damage by light absorption in a target
tissue. For an effective use of light on PTT, controlled and localized heating should be achieved.
Localized heating has been accomplished by exploring plasmonic nanostructures. This work has
as its main objective the evaluation of nanoheaters for high performance PTT. Experimental and
theoretical analysis were employed to assess thermo-optical properties of gold nanostructures and
metallic colloids. Crucial optical parameters ruling plasmonic heating were appraised, exploiting
a nanoparticle size-dependence approach. Based on the finite-element method, the optimum size
of gold nanorods for high performance infrared thermal therapy were found to be 45 nm and 60
nm at wavelengths of 800 nm and 1064 nm respectively for nanosecond pulse. For continuous
excitation, particle morphology presents high significance, and heat generation shows the ten-
dency to peak at lengths longer than 100 nm. The performance evaluation of nanoparticles as
nanoheaters is a fundamental step to the development of efficient nanoplatforms for photothermal
therapy. Here, the use of Thermal Lens technique on the characterization of nanoheaters was
introduced. Optical heating of a colloidal solution of 50 nm diameter gold nanospheres were
assessed by mode-mismatched Dual-Beam Thermal Lens technique. Temperature variations up
to 1.28 oC were evaluated at the region of the excitation beam. The introduction of the Thermal
Lens technique for the evaluation of heat generation in colloidal solutions of nanoparticles
consists in a innovative approach for nanoheater characterization, with great potential.

Keywords: Localized Surface Plasmon Resonance. Metallic Nanoparticles. Photothermal Ther-
apy. Thermal-Lens Technique. Thermoplasmonics.
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1 INTRODUCTION

Metals have always been worthy of human attention. Since the beginning of civilization,
mankind has shown interest in this type of material, employing it in many different ways
throughout history. At first, the characteristic shininess of metals when compared with small
rocks present in nature lured the attention of early human wanderers to it. They started to wear
metal shards found in the wild as ornaments and as collectible items.

Later, it was found that specific types of metals (noble metals, for instance) presented
enough softness to be worked by primitive tools and had enough resistance to endure corrosion
over time, when compared to other varieties of those “lustrous materials” that were very sturdy
and prone to corrosion. Did not take too long until these special types of metals started to be
employed as distinguishable jewelry and as a medium of exchange in early societies.

Technological advancements in metalworking led to the development of tools that were
sharper and more durable, helping to kick-start the emergence of the first known civilizations.
Thereafter, technology evolved slowly, but steadily until the advent of the age of enlightenment.
This age will mark the beginning of industrial revolution and a great boost in all fields of scientific
investigation, where metals once again proved to be vital, allowing the development of scientific
instruments, new machines and structures. To this day, metals are still extremely important in
maintaining aspects of our modern life as well as playing a significant role in technical and basic
research.

Despite of all the acknowledgement received by metals for being practically ubiquitous
in our everyday life, appearing in various shapes, ways and applications, there is a much less
known side and much less evident role played by it that is not directly noticeable. This role
is attached to what is not immediately apparent to our senses: the realm of nanoscience and
nanotechnology. Throughout history, inadvertent examples of nanotechnology can be found.

One remarkable and widespread example is the late Roman era Lycurgus Cup from the
4th century AD. The glass of the cup is dichroic, presenting a opaque greenish-yellow tone to
light reflected by the glass, while presenting a translucent ruby-red colour to light transmitted
through the glass. Experiments in samples of glass melts confirmed that the behavior of the cup
is linked to the presence of of gold (about 40 ppm) and silver (about 300 ppm) nanoparticles in
glass. This colloidal system gives rise to light scattering effects with the gold component being
responsible for the reddish transmission effect and the silver for the greenish reflection effect
(FREESTONE et al., 2007). Figure 1 shows the dichroism present in the Lycurgus Cup.

Another use of nanotechnology in old times is the production of lustre pottery. This
activity can be traced to as early as the Bronze Age (COLOMBAN, 2010). The optical properties
of the lustre are related to the concentration ratio between copper and silver nanoparticles
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Figure 1 – Dichroism present in the Lycurgus Cup. (a) Greenish reflection effect from silver
nanoparticles. (b) Redish transmission effect from gold nanoparticles.

(a) (b)

Source: adapted from (FREESTONE et al., 2007).

deposited as a thin film on the glazed surface. Changes in concentration ratio allows different
nanostructures to be formed, creating colour effects ranging from gold lustre to yellow and
red to copper-like lustre. The gold lustre is caused by a well-separated Ag and Cu mixture
of quasi-spherical nanocrystals ranging from 5 to 100 nm (BORGIA et al., 2002). This same
technique was still in use during the middle ages until the 17th century at least (CLIMENT-FONT,
2012).

The nanotechnology of the past wasn’t restricted only to the use of metallic nanocrystals
in coloring applications. It also saw applicability in warfare. The 17th century Damascus Sabre
presents extraordinary mechanical properties and exceptionally sharp cutting edges. The TEM
analysis of a sample of its blade indicated the presence of carbon nanotubes and cementite
nanowires. The general assumption is that it was forged by a sophisticated thermomechanical
treatment from small cakes of steel produced in India (REIBOLD et al., 2006), but the technique
was long lost. Figures 2a and 2b shows respectively different color effects created by nanocrystals
and nanostructures present in Damascus Sabre.

Later on, in 1857, Michael Faraday studied the optical properties of thin films made
out of various metals and alloys, including gold and silver. The analysis of light interaction
with a gold, copper and silver alloy beaten to a translucent thin film (mostly comprised of
gold) and placed over a slab of glass revealed to reflect yellow light and transmit a greenish
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Figure 2 – Examples of inadvertent nanotechnology throughout history. (a) Lustre and color
effects caused by Cu and Ag nanoparticles in a piece of 16th century Italian pottery.
(b) Cementite nanowires encapsulated by carbon nanotubes in Damascus Sabre.

(a) (b)

Source: adapted from (BORGIA et al., 2002) and (REIBOLD et al., 2006).

light (FARADAY, 1857). This work influenced later publications that would seek to rigorously
perceive the behavior of light interacting with nanostructures, paving the way to the field of
nano-optics. In the rising research fields of modern nanotechnology, a compelling subject with
promising prospects is the topic of plasmonics. Such theme is related to the physical phenomenon
of plasmon oscillations, where free electrons can sustain a damped resonant effect if excited at
the proper wavelength. Even though ancient artisans, potters, ceramists and glass-blowers could
not conceive what caused such colors and luster, their lack of understanding wasn’t enough to
avert the exploration of plasmonics in their craftsmanship. From the aforementioned examples
of nanotechnology, the only in which plasmonics doesn’t play a substantial role is in Damascus
Sabre.

The physical effects related to plasmonic properties can be employed in a wide variety of
fields and functionalities. Plasmonic phenomena offers good applicability, and plamonic driven
nanomaterials have rendered various technologies in the last years. For instance, the local field
enhancement resulting from localized plasmon resonance has been explored in fluorescence
microscopy, where the use of a gold or silver nanoparticle sheet leads to an increase in the
fluorescence quantum efficiency of a nearby fluorophore (CHEN; MUNECHIKA; GINGER,
2007; LI; LI; AROCA, 2017; USUKURA et al., 2017; MASUDA et al., 2017). The local field
enhancement has also been used in plasmon-enhanced Raman spectroscopy, to either Surface
Enhanced Raman Spectroscopy applications (ZHAO et al., 2014), as well as single molecule
sensing in SERS plataforms (MAHDI; FARSINEZHAD; SHANKAR, 2017; ZONG et al., 2019).
Plasmonic nanoparticles were also exploited in singlet oxygen generation (ZHANG et al., 2007;
ZHANG et al., 2018) for applications in Photodynamic Therapy (DING et al., 2014; ZHOU et
al., 2015).
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The high dependency of the medium dispersion to localized plasmon resonance frequency
makes the plasmonic peak shift caused by changing in the surrounding refractive index useful
for sensing applications. Its employment in bio-sensing platforms has been investigated, and
were used to identify the presence of the Influenza virus (PARK et al., 2012), as well as HIV-1
(LEE et al., 2013) and assess the occurrence of Zika-virus (TAKEMURA et al., 2019), Dengue
(CAMARA et al., 2013) and Candida Albicans (NEVES et al., 2015; FAROOQ et al., 2018).

The high temperatures reachable by nanostructures supporting plasmon resonance under
specific conditions can lead to the emergence of remarkable effects. One notable example is the
capability of a nanodot in increasing the temperature of a solvent above its vaporization point.
This effect is known as superheating, and can lead to advances in cancer treatment (CARLSON;
GREEN; RICHARDSON, 2012; BAFFOU et al., 2014). The water surrounding the nanodot is
superheated because homogeneous bubble nucleation is an activated process where a free energy
barrier must be surmounted to convert liquid to vapor (CARLSON; GREEN; RICHARDSON,
2012). Micro-bubble formation is another effect that can similarly occur around nanodots. Here,
the initial process is the same of superheating: the plasmonic effect is responsible for initial
vaporization around the particle, but the presence of adsorbed gases in the solvent and the surface
of nanoparticles induces diffusion of such gases, starting a nucleation process that leads to
micro-bubble growth (BAFFOU et al., 2014). Moreover, plasmonic generated micro-bubbles
were reported to induce cell perforation and cellular disruption (BOUTOPOULOS; BERGERON;
MEUNIER, 2015).

Laser induced high temperatures are also capable of melting nanocrystals. Shape trans-
formations are stimulated at relatively low fluences (µJ and mJ) by short and ultrashort pulses,
melting or fragmenting nanorods back to spherical shape (LINK et al., 1999). The crystalline
reorganization process has also been probed to better evaluate how this phenomenon takes place
(LINK; WANG; EL-SAYED, 2000). More recently, studies showed that reshaping of single gold
nanorods can be driven by thermal instability associated to its size. In this sense, below melting
point reshaping can be achieved driven by surface diffusion (TAYLOR; SIDDIQUEE; CHON,
2014). There is still much to be understood in this phenomenon, and molecular dynamics simula-
tions of Au clusters and nanoparticles were run to appraise the reshaping dynamics (WANG;
TEITEL; DELLAGO, 2005; PETROVA et al., 2006; WANG; DELLAGO, 2003).

This work has as its main objective the evaluation of nanoheaters for high performance
photothermal therapy (PTT). The optimization of heat generation in metallic nanoparticles for
PTT applications is a prime element to achieve such objective, thus, a novel methodology for
the optimization of metallic nanoparticles is described. The use of metallic nanoparticles in
PTT enables temperature variations that can initiate cell death mechanisms in tumorous tissues.
However, the heating of biological tissues in PTT for clinical applications is limited by safety
and sanitary standards. For instance, renal excretion of nanoparticles and particle cytotoxicity are
crucial issues that limits the administration of metallic nanoparticles for human cancer treatment.
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The reduction of laser irradiation to safe fluence levels for skin exposure is also essential. For
instance, laser exposition of human skin at 1064 nm is limited to 100 mJ/cm2 for laser pulses
shorter than 100 ns and 1 W/cm2 for CW illumination (NIEMZ, 2007). The optimization of
metallic nanoheaters plays an important role in the reduction of such fluences necessary to achieve
effective temperature variation in tissues. The thermal evaluation of nanoheater performance
may be accomplished by the employment of Thermal Lens technique. The characterization of
colloidal solutions constituted by metallic nanoparticles may be performed more effectively by
the use of Thermal Lens technique, in spite of thermocouples and thermal cameras to assess
sample temperature dynamics.

1.1 OVERVIEW

This dissertation is organized in five distinct chapters that were systematically arranged
to smoothly guide the reader across the developed work: Introduction, Thermoplasmonics,
Nanoheater Optimization for Photothermal Therapy, Characterization of Metallic Nanoparticle
Colloids by Thermal Lens Mesasurement and Conclusions.

The second chapter, Thermoplasmonics, discusses the optical and thermal properties
of metallic nanoparticles, emphasizing gold nanostructures. Here, the importance of the Drude
model for the description of metallic nanocrystal permittivities is shown. The tools to estimate
optical cross sections of nanoparticles are also presented, and the Localized Surface Plasmon
Resonance effect, as well as some of its dependencies are evaluated. Moreover, this chapter
assess the heating of single metallic nanoparticles under pulsed and continuous light excitation
regimes, providing figures of merit to quantify heating generation in each case.

Chapter 3 discloses a new methodology to engage in optimization of plasmonic nanostruc-
tures for high performance photothermal therapy. Gold nanorods are the nanoparticle morphology
of interest, and optimization to both pulsed and continuous light excitation are appraised.

The use of Thermal Lens technique to estimate and characterize metallic nanoparticle
colloids is suggested in chapter 4. Here, the collective heating of a nanoparticle ensemble is
depicted and the localized heating of each individual nanoparticle is described as a function of
the bulk temperature in the sample. The dual-beam mode-mismatched Thermal Lens technique is
employed to measure bulk temperature variations at the pumped region of a colloidal solution of
gold nanospheres. Thermal Lens is a technique that has seen widespread use to measure a variety
of optical and thermal parameters of some transparent materials. However, it has never been
directly employed to measure temperature. Advantages and limitations associated to temperature
assessment by the thermal lens technique are highlighted.

The last chapter (Conclusions and Future Prospects) discusses and highlights the useful-
ness of the accomplished results and their applicability. Subsequent steps and future efforts to
improve the disclosed techniques and outcomes are itemized as well. Two additional appendices
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are included to supply further information about the techniques and tools not reported in the main
body of this dissertation. For instance, Appendix A features the Matlab codes used to accomplish
this work. Furthermore, Appendix B describes the basics of Finite-Element Method and features
instructions to motivate the simulation of optical and thermal properties of metallic nanoparticles
in COMSOL Multiphysics.
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2 THERMOPLASMONICS

Thermoplasmonics is the field of nanoplasmonics that deals with heat generation by
nanoparticle ensembles. In thermoplasmonics, the electric field damping caused by the localized
plasmon resonance effect is explored in the heating of metallic nanoparticles and their surround-
ings, causing the nanoparticle to act as a nanoheater. Hence, the temperature increase at the
nanoparticle surface and the temperature gradient in the nanoparticle neighbourhood become
highly desirable.

Consequently, a good structure for thermoplasmonics must present high damping coeffi-
cients. In addition to that, high heat capacity and high melting points are advantageous, since
they enable the nanoheater to exchange energy quickly with its surroundings while avoiding
phase transitions. Many interesting effects take place during the heating of nanoensembles. Such
thermal phenomena can be applied in various ways.

Among thermoplasmonics applications, its employment in life and biomedical sciences
stands out. Photothermal Therapy, for instance, is a very promising technique that relies on
nanoheaters to induce localized cellular necrosis and apoptosis with applications in cancer
treatment (PATTANI et al., 2015; ZHANG et al., 2018; DOUGHTY et al., 2019). Cellular
membrane disruption mediated by the formation of microbubbles in the vicinity of a nanoparticle
is another localized effect that can be explored as cancer treatment (PRENTICE et al., 2005),
although active matter control in microfluidic environments can also be achieved by bubble
formation (JONES et al., 2019). As an inorganic example of thermoplasmonic usage, one can cite
its role in nanofluids for solar collectors. Here, the nanoparticle acts as a mediator, absorbing sun
light and releasing the energy to water as heat (HUSSEIN, 2015; JIN et al., 2020; MUHAMMAD
et al., 2016). Nanoparticles can also be used as plasmonic nanothermometers, performing the
task of measuring very localized temperature variations by detecting the blue-shifted anti-Stokes
emission spectrum of the heated nanoparticle (CARATTINO; CALDAROLA; ORRIT, 2018).

In spite of thermoplasmonics not be restricted to the domain of metallic nanocrystals,
metallic structures have thermal properties that are highly desirable for most, if not all the
applications mentioned above. Therefore, this work will focus solely on the analysis of the
optical and thermal properties of metallic nanoparticles, and primarily, gold nanocrystals.

2.1 OPTICAL PROPERTIES OF METALLIC NANOPARTICLES

2.1.1 Dielectric Function of Metallic Nanoparticles

The optical properties of metals can be explained by the model proposed by Paul Drude
in 1900 (DRUDE, 1900). This model sought to explain the transport phenomenon of electrons in
metals. At the time, it was only three years since the discovery of electrons by Thompson. The
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atomic theory lacked the fundamental particles yet to be discovered in the following years and
quantum theory had just been proposed by Planck the same year. Not much was understood about
the microscopic properties of matter and how it collaborated to the behavior of bulk materials.

In this sense, Drude applied the kinetic theory of gases to metals, in which the conduction
electrons were treated as a gas cloud and were to move in a static background of heavy ions. The
main assumptions were that the Coulomb interaction among electrons (independent carriers) and
between electrons and the background ions (unbounded/free electrons) were to be neglected. In
the presence of external fields, the electrons move accordingly to Newton’s laws of motion. This
motion is to be damped by collisions between electrons and the static ions of the background
(ASHCROFT; MERMIN, 2011).

This semi-classical approach yielded, among many outcomes, the permittivity of metals
given by:

ε(ω) = 1−
ω2
p

ω2 + jγ0ω
. (2.1)

Here, ωp =
√

Ne2

ε0me
is the plasma frequency, with N representing the density of free-electrons,

e the elementary charge, me the mass of the electron, ε0 the vacuum permittivity, and γ0 is the
bulk damping parameter.

A quick inspection of equation 2.1 shows that frequencies bellow the plasma frequency
will be absorbed by the metal, while it will be reflected for frequencies larger than the plasma
frequency. To some metals, the plasma frequency occurs around the ultraviolet region, reflecting
most of visible light and giving its shiny appearance. However, real metals are much more
complex. In bulk gold, for instance, relativistic effects shifts the absorption to lower energies,
falling from ultraviolet to visible range (PYYKKO; DESCLAUX, 1979).

While equation 2.1 accounts for intraband transitions, the interband transitions in metals
(related to the bound electrons) are known to contribute to the dielectric function (BEVERSLUIS;
BOUHELIER; NOVOTNY, 2003) and hence, have to be accounted for if one wants accurate
results at higher energies (HERRERA et al., 2014). In gold, the interband transitions start to
occur at λ = 516.6 nm, appearing yellow due to absorption of blue light (DERKACHOVA;
KOLWAS; DEMCHENKO, 2016). A good way to represent the permittivity of bulk metals is to
write it as:

εbulk(ω) = εinter(ω) + εintra(ω) , (2.2)

with εintra and εinter being the the contribution of its intraband and interband transitions.
In equation 2.1, the bulk damping parameter is proportional to the ratio between the Fermi veloc-
ity and the mean free path of the electron cloud (γ0 ∝ vF

l∞
). As the size of the metallic structure
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decreases, the probability of collisions also diminishes, while collisions with nanoparticle surface
increases. This is specially true in the nanometric regime, where the nanoparticle diameter has
dimensions comparable to the mean free path of the conduction electrons. This aspect leads to
the reduction of the mean free path and increase of the damping factor, causing the permittivity
of metallic nanoparticles to be size dependent (ROSS; SCHATZ, 2015). Therefore, the damping
parameter can be written as:

γ = γ0 + A
vF
Leff

, (2.3)

where the effective mean free path is Leff = 4V/S for convex shapes. Here, S is the nanoparticle
surface area and V is the nanoparticle volume. If the nanoparticles are spherical, Leff = 4R/3,
R representing the radius of the nanoparticle. The parameter A describes the scattering at the
surface of nanostructures or at the interface between materials at composite nanostructures. For
spheres, A is usually considered to be equal to one (CORONADO; SCHATZ, 2003), while the
surface scattering parameter for nanords lies between 0.25 and 0.5 (BERCIAUD et al., 2005;
SöNNICHSEN et al., 2002).

To compute the size dependent permittivity of metallic nanoparticles, it is wise to utilize
experimental permittivity data available for bulk metals in the literature to account for intraband
and interband contributions in the spectral region of interest. After that, the size dependence
is inserted in the equation by subtracting the term of Drude equation for γ0 and adding the
term with the modified damping factor γ instead. Therefore the size dependency of nanoparticle
permittivity is given by:

ε(ω) = εbulk(ω) +
ω2
p

ω2 + jωγ0
−

ω2
p

ω2 + jω
(
γ0 + A vF

Leff

) . (2.4)

Table 1 shows the values of each parameter of gold in equation 2.4. Together with the
bulk gold permittivity provided by Johnson et al. (JOHNSON; CHRISTY, 1972), it is possible to
evaluate the real and imaginary permittivity of gold nanospheres in the visible and near infrared
regions.

Figures 3a and 3b show, respectively, the real and imaginary permittivities of gold
nanospheres ranging from 5 to 50 nm in radius. One can notice that figure 3a presents negative
values of real permittivity , while figure 3b displays that smaller particles have higher losses. The
model derived in equation 2.4 however, is limited to nanostructures bigger than 5 nm. To smaller
structures, quantum effects related to a reduced number of atoms in the crystal start to appear
(KREIBIG; VOLLMER, 1995), and thus, the description of the crystal permittivity by means of
the Drude model becomes inappropriate.
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Table 1 – Nanoscopic and optical parameters of bulk gold.

Parameter Value Description
N 5.90× 1028 m−3 Electron density
ωp 1.369× 1016 rad/s Plasma frequency
A 1 Surface scattering constant
vF 1.4× 106 m/s Fermi velocity
γ0 1.07× 1014 s−1 Bulk damping factor

Source: belongs to the author.

Figure 3 – Size dependent permittivity of gold nanospheres. The bulk gold permittivity was
taken from (JOHNSON; CHRISTY, 1972). (a) Re{ε(ω)}. (b) Im{ε(ω)}

(a) (b)

Source: belongs to the author.

2.1.2 Quasi-Static Approximation

A simple way of evaluating what is happening locally when light interacts with nanopar-
ticles is by analyzing the simplest case possible. Due to symmetry, the easier geometry to be
analyzed is a sphere. To make matters easier, suppose that the wavelength of incident light
is considerably bigger than the sphere diameter d (λ � d). This makes the field interacting
with the nanosphere to remain approximately uniform at specific moments, allowing the use of
electrostatics techniques. This is the quasi-static approximation, depicted in figure 4. Solving
the Laplace equation to a metallic sphere of radius a and permittivity ε under the influence of
a static electric field of magnitude E0 embedded in an infinite medium of permittivity εm, will
lead to an internal (Ein) and external (Eext) fields given by:

~Ein = −
(

3εm
ε+ 2εm

)
E0n̂z , (2.5)
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~Eext = E0n̂z +

(
ε− εm
ε+ 2εm

)(
a3

r3

)
(2cosθn̂r + sinθn̂θ) , (2.6)

where r and θ are respective the radial and polar spherical coordinates.

Figure 4 – Depiction of the quasi-static approximation.

Source: belongs to the author.

The field homogeneity across the particle displaces the electron cloud, inducing a polar-
ization. This polarization created by charge accumulation on the boundaries of the nanoparticle
can be described by the dipolar moment ~p = ε0εmαp ~E0, where αp, the polarizability, indicating
the nanoparticle ability to form instantaneous dipoles. Within the nanoparticle, the electric field
is rigorously zero in the static case, since it is cancelled out by the surface charges accumulated
on its boundaries. This feature however, no longer holds under harmonic fields (BAFFOU, 2017).
To the nanosphere, αp is given by:

αp = 4πa3
(
ε− εm
ε+ 2εm

)
. (2.7)

The charge separation due to polarization is responsible for a restoring force between the
negative and positive charge centers in the nanosphere, driving the system to return to its original
stable configuration. If excited at the proper frequency, this restoring force can be the origin of a
resonance effect (BAFFOU, 2017). In fact, as seen in the previous section, the permittivity of
metals is frequency dependent, which makes the polarizability of a metallic nanoparticle also
frequency dependent. Under specific (resonance) conditions, very high electric field enhancement
can be achieved inside and outside the nanoparticle.
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2.1.3 Mie Theory

Following the Faraday comments on the behavior of incident light on gold thin films
(FARADAY, 1857), Gustav Mie derived a rigorous electromagnetic treatise on the interaction
of light with metallic spherical nanoparticles (MIE, 1908). Mie theory differs from the quasi-
static approximation by analyzing an incident plane wave, a truly harmonic field, instead of the
time-static electric field approximation. Due to the nature of the problem, Mie theory imposes a
more complex, but at the same time a more robust tool for plasmonic analysis, yielding results
compatible with experimental data.

In its essence, Mie theory deals with the absorption and the scattering of plane electro-
magnetic waves by uniform isotropic particles embedded in an infinite dispersive medium, that
is also isotropic and uniform. It follows that the scattering cross-section and the extinction cross
section are respectively given by (BOHREN; HUFFMAN, 1983):

σsca =
2π

k2

∞∑
n=1

(2n+ 1)(|an|2 + |bn|2) , (2.8)

and

σext =
2π

k2

∞∑
n=1

(2n+ 1)Re(|an|2 + |bn|2) , (2.9)

In equations 2.8 and 2.9, k is the wavenumber of incident light. Also,

an =
mrψn(mrx)ψ′n(x)− ψn(x)ψ′n(mrx)

mrψn(mrx)ξ′n(x)− ξn(x)ψ′n(mrx)
, (2.10)

bn =
ψn(mrx)ψ′n(x)−mrψn(x)ψ′n(mrx)

ψn(mrx)ξ′n(x)−mrξn(x)ψ′n(mrx)
, (2.11)

with ψn(x) and ξn(x) the Riccati-Bessel functions with x = kmr. Here, r is the nanosphere radius
and mr is the ratio between the complex refractive index of the nanoparticle and the refractive
index of the medium. The absorption cross section can be obtained by simply subtracting the
scattering cross section from the extinction cross section, as:

σabs = σext − σsca . (2.12)

The power series expansion in terms of n represents the resonant modes of the nanopar-
ticle. The dipole is represented by n = 1, the quadrupole by n = 2, and so on. Higher order
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modes are associated to higher energies and bigger particles. As the excitation energy or particle
size increases, higher order modes become more important. Figures 5a, 5b and 5c illustrate
respectively the dipolar (n = 1), quadripolar (n = 2) and sextupolar (n = 3) resonant electric
modes in an active SiO2 − Ag core-shell nanocrystal.

Figure 5 – Normalized E-field modes for an active SiO2−Ag core-shell nanocrystal. (a) Dipolar
(n = 1), (b) quadrupolar (n = 2) and (c) sextupolar (n = 3).

(a) (b) (c)

Source: adapted from (LIBERAL et al., 2014).

To particles typically smaller than 30 nm in diameter, only the lowest order contributions
are considered. This is equivalent to set an, and bn to zero, except for b1. This reduces the cross
sections to what is known as the Rayleigh approximation. Thus:

σext = k Im(αp) , (2.13)

σsca =
k4

6π
|αp|2 . (2.14)

However, equation 2.13 is accurate only if scattering is much smaller than absorption
(BOHREN; HUFFMAN, 1983). Therefore:

σabs ≈ k Im(αp) (2.15)

The validity of the Rayleigh approximation in nanoparticle resonance gives a dipole-like
radiation pattern to its scattered fields. As higher modes of oscillation gain more importance,
the radiation pattern of their scattered fields becomes more pronounced in certain directions,
giving the known forward scattering characteristic that is commonly associated with Mie Theory.
This high directivity of scatterd fields can be explored to trap light and increase solar cell
efficiency. Also, the lithographic arrangement of nanoparticles arrays over a substrate provides
high directivity to such applications (MAITY; ROY, 2013; DEKA et al., 2018).
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2.1.4 Localized Surface Plasmon Resonance (LSPR)

To obtain the cross section approximations by means of an electrodynamics approach,
one can insert equation 2.7 in the equations 2.14 and 2.15. Representing the complex dielectric
function of metals as ε = ε′ + jε′′, after some algebraic manipulations, one finds that:

σsca =
8π

3
a6k4

(ε′ − εm)2 + ε′′2

(ε′ + 2εm)2 + ε′′2
, (2.16)

σabs = k
3εmε

′′

(ε′ + 2εm)2 + ε′′2
, (2.17)

By adding equations 2.16 and 2.17, the extinction cross section for spherical nanoparticles
can be written as (KUMAR, 2013):

σext =
24π2a3ε

3/2
m

λ

ε′′

(ε′ + 2εm)2 + ε′′2
(2.18)

The above equations (2.16, 2.17 and 2.18) indicate that all cross sections increase
considerably, reaching a peak value when the denominator goes to zero, i.e., (ε′+2εm)2+ε′′2 = 0.
This is known as the Frohlich condition. This condition states that real part of the nanosphere
permittivity must be negative ε′ = −2εm, at the same time that ε′′ must be small. If the Frohlich
condition is met, a forced oscillation of the conduction electrons is sustained, giving rise to
the Localized Surface Plasmon Resonance (LSPR) (KUMAR, 2013). Figure 6 illustrates the
LSPR phenomenon. Figure 7 shows the difference between non-resonant and resonant (Frohlich)
conditions in the illumination of a single gold nanosphere embedded in water. The LSPR
properties are dependent on three main parameters that are going to be addressed: material, shape
and size.

Figure 6 – Excitation of LSPR.

Source: adapted from (KELLY et al., 2003).
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Figure 7 – Comparison of the electric-field around a spherical nanoparticle at non-resonant
and Frohlich conditions. The color bar represents the magnitude of electric-field
enhancement around the nanosphere. (a) Electric-field at off resonance wavelength. (b)
Field enhancement at resonant condition.

(a)

(b)

Source: belongs to the author.
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2.1.4.1 Material Dependence

Plasmonic properties are highly dependent on material type, since the complex permit-
tivity changes to each element. In order to achieve LSPRs in the visible region, a material with
high density of carriers is required. Noble metals such as Cu, Ag and Au constitutes the most
commonly studied plasmonic materials. Non-noble metals, such as Pb and Al, present LSPR
frequencies in the UV region of the spectrum (BAFFOU, 2017; ROSS; SCHATZ, 2015). These
nanoparticles display broader LSPR bands that can be explored in the energy harvesting of
light sources with broad spectral response, such as the sun. Due to it’s chemical instability, they
are also prone to oxidation. Doped semiconductor nanoparticles are promising structures for
thermoplasmonic applications, since they present higher thermochemical stability (THAKORE
et al., 2018). The active medium provided by doped semiconductor crystals may also be explored
in more sophisticated applications. Typically, LSPR of doped semiconductors nanoparticles
occur in the infrared. In this case, carrier densities of 1025 to 1028 m−3 are required (KUMAR,
2013). Figure 8 shows the carrier density dependency of LSPR and it spectral regions.

Figure 8 – Carrier density dependency of LSPR and it spectral regions.

Source: (KUMAR, 2013).

To better illustrate the material dependence of LSPR, the figure 9a shows the difference
between the real relative permittivity of Au and Ag. The negative values at which both real
permittivities becomes -2 (see equation 2.17) demonstrates the different wavelengths at which
LSPR occurs to Ag and Au. Figure 9b shows the absorption cross section of 20 nm Au and Ag
nanospheres in water occurring at different wavelengths due to Frohlich condition.
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Figure 9 – Material dependence of LSPR. (a) Real permittivity of Ag and Au in the visible
region and its Frohlich conditions. (b) Absorption cross section of 20 nm Au and Ag
nanospheres in water.

(a) (b)

Source: belongs to the author.

2.1.4.2 Shape Dependence

Nanoparticle morphology is another factor that comes into place when evaluating plas-
monic properties. Many geometries have been synthesized in the most diversity of shape. For
instance, nanocubes (ZHAO et al., 2019; CLARK et al., 2019; YIN et al., 2019; STEWART et
al., 2019; SHERRY et al., 2005; JEON; TSALU; HA, 2019), nanocages (ZHAO et al., 2019;
GENÇ et al., 2016), nanoprisms (FRANK et al., 2010; HABER; SOKOLOV, 2017), nanorods
(ZHUO et al., 2019; CHEN et al., 2013; GUTIÉRREZ; SCARPETTINI, 2019; BECKER et
al., 2010), nanodisks (VERRE et al., 2019; ZORIĆ et al., 2011), and nanoshells (LAL et al.,
2002; RADLOFF; HALAS, 2004; HUANG et al., 2017) have been tried and explored in various
applications recently. Figure 10 illustrates some of the shapes that are possible to be obtained.
Those shapes are normally synthesized by chemical methods. High shape control can be obtained
by lithographic techniques, although it limits the nanocrystals to be attached to a substrate
(TRAN; NGUYEN, 2017).

Figure 10 – Examples of different nanoparticle morphologies.

Source: adapted from (BOLAÑOS; KOGAN; ARAYA, 2019).

Such structures allow the control of absorption and scattering contributions to plasmon
spectrum due to their anisotropy. In those cases, different resonant modes can be excited, shifting
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LSPR wavelength. Plasmon peak shift behavior is displayed in figure 11.

Figure 11 – LSPR shift due to morphology differences in Ag nanoparticles.

Source: adapted from (MOCK et al., 2002).

2.1.4.3 Size Dependence

As the size of a nanoparticle changes, it plasmon peak shifts. As the particle grows
bigger, it cannot be effectively approximated by a dipole anymore. The non-homogeneity of the
electric field acting in the nanoparticle induces dephasing to the oscillating electrons, creating a
retardation effect. This causes a broadening and red-shift in plasmon peak (BAFFOU, 2017).
Also, higher order oscillation modes of the electronic cloud becomes more significant (LINK;
EL-SAYED, 2000).

2.1.4.4 Plasmonic Properties of Nanorods

In some cases, a new resonant mode arises due to anisotropy in nanoparticle shape. This
is specially true for nanorods, where their size is directly related to its longitudinal mode LSPR
tunability (ZULOAGA; PRODAN; NORDLANDER, 2010). The fact that matallic nanorods
can present LSPR in the near infrared region when compared to a nanosphere with same
volume, makes them exceptionally desirable in biomedical (STONE; JACKSON; WRIGHT,
2010; LOCATELLI; MONACO; FRANCHINI, 2015; JUSTE et al., 2005) and imaging (MA et
al., 2013) applications. Figure 12 shows the shift in LSPR to a Au nanosphere and Au nanorod of
same volume. It is remarkable the enhancement in absorption caused by change in morphology.
The tunability of a nanorod is a function of its aspect ratio (AR). The AR is defined by the
ratio of nanorod length to width. The LSPR position red-shifts in direct proportion of its AR, as
exhibited by figure 13.
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Figure 12 – Absorption spectrum of Au nanosphere (red dotted line) and nanorod of same
volume (solid blue line).

Source: belongs to the author.

Figure 13 – Absorption spectra of Au nanorods for several ARs and different volumes.

Source: belongs to the author.
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2.2 THERMAL PROPERTIES OF METALLIC NANOPARTICLES

As mentioned before, nanoparticles must present good electric properties in order to be
employed in heat generation. Heat is generated by the light energy absorbed by the nanoparticle.
This process is know as photothermal conversion. An efficient nanoheater must, then, have
good thermal characteristics with supporting LSPR modes. Metallic nanoparticles fall into this
category, showing good thermal and optical coefficients. After illumination, the conduction
electrons of a metallic nanoparticle oscillate in response to the incident excitation field, with the
same frequency. The oscillation of this electron cloud inside the nanoparticle is, therefore, an
electric current. This current dissipates energy via Joule effect (BAFFOU, 2017), giving rise to a
heat power density within the nanoparticle given by

q(~r) =
1

2
ωε0Im{ε(ω)}

∣∣∣ ~E(~r)
∣∣∣2 , (2.19)

where ω is the angular frequency of oscillation, ε(ω) is the frequency dependent complex
permittivity of the metal and ~r is the position vector of a location inside the nanoparticle. The
total heat power delivered by a nanoparticle can be obtained by integrating equation 2.19 in the
spatial domain of the nanostructure. Therefore, the total heat power, Pabs, can be written as:

Pabs =
1

2
ωε0Im{ε(ω)}

∫
V

dV
∣∣∣ ~E(~r)

∣∣∣2 . (2.20)

The heat power density is proportional to the square of the electric field, i.e, is propor-
tional to the intensity of incident light. Equation 2.20 can also be written as Pabs = σabsI , where
I is the intensity of the excitation source. This allows the above solutions to be used by arbitrarily
shaped nanoparticles. It also enables the determination of optical cross sections by computational
methods, such as Discrete Dipole Approximation (DDA) (XU et al., 2012) and Finite Element
Method (FEM) (please refer to Appendix B) to be used in thermoplasmonic simulations.

To quantify the nanoparticle performance as a nanoheater, the figure of merit that is most
widespread in literature is the Photothermal Conversion Efficiency (η) (ABADEER; MURPHY,
2016), that is defined as the ratio of absorption cross section to extinction cross section:

η =
σabs
σext

=
σabs

σsca + σabs
. (2.21)

A quick inspection of equation 2.21 shows that η quantifies only the percentage of the
incident EM field absorbed by the nanostructure. It is readily known that small particles presents
very efficient coupling of light, absorbing almost all energy with barely any scattering when
illuminated by a plane wave. As the particle grows bigger, both the absorption and scattering
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increase, until they reach a threshold where scattering starts to command the interaction. Higher
absorption by itself doesn’t necessarily means better heat delivery. The ability of a particle to
lose heat to its surroundings is related to its surface area and volume. To grant efficient heat loss,
the volume must be minimized while surface area maximized. That’s where particle morphology
becomes relevant on thermoplamonics.

2.2.1 Timescales of Photothermal Phenomena

To better understand the heat delivery of excited nanoparticles, one must comprehend
from a solid-state stand point how heat is generated and how long it takes to the generated heat
start being transferred to the surroundings. Figure 14 illustrates the timescale of photothermal
generation and the Fermi-Dirac distribution of metallic nanoparticles during the process.

Figure 14 – Timescale of photothermal phenomena (upper panels) and F-D distribution of each
step (lower panels).

Source: adapted from (BRONGERSMA; HALAS; NORDLANDER, 2015).

When radiation strikes a metallic nanocrystal at the right wavelength and stimulates the
LSPR effect, the electron cloud gain enough energy to promote some electrons from a lower
energy level to an excited state above the Fermi level, changing the population distribution and
leaving holes that are readily occupied by the high density of electrons in the conduction band
of the metal. The excited conduction electrons will collide among themselves until they are
thermalized. This electron-electron scattering is completely elastic, i.e., the total kinetic energy of
the excited carriers remains constant throughout the process. This promotion and thermalization
of carriers takes from 1 to 100 fs to occur.



41

After that, the electrons in the hot F-D distribution start to suffer relaxation by interacting
to the lattice of the nanoparticle. This carrier relaxation takes from 100 fs to 1 ps, and the
Fermi-Dirac distribution starts to gradually retreat back to a lower temperature state. From 100
ps to the nanosecond scale, thermal dissipation to the surroundings starts to take place, and the
nanoparticle starts to lose heat. The processes of thermal dissipation in nanometric scales are the
same as the macroscopic case. The thermalization time associated to the thermal conductivity of
a typical system of size d and thermal diffusivity Dth is given by (GOVOROV et al., 2006)

τ ∼
d2

Dth

. (2.22)

To a spherical region containing water with a typical radius of 20 µm, the thermalization time is
on the order 3 ms.

2.2.2 Single Nanoparticle Heating under Nanosecond Pulse Excitation

From our previous discussion, one can state that after some nanoseconds from the
beginning of plasmonic excitation, all the absorbed energy is stored in the nanoparticle. Moreover,
the high thermal conductivity of metals compared to the surrounding materials (usually solvents)
allows the consideration that the nanoparticle is an homogeneous heat source. Particle with
dimensions in the order of tens of nanometers presents thermalization constants in the order of
a few nanoseconds. Figure 15 shows the simulation of a 20 ns excitation pulse with 9 GW/m2

peak intensity of a gold nanosphere and its thermal response. The pulse was capable of inducing
a 20 oC temperature variation in the nanosphere. Notice the delay between optical excitation and
thermal response, and the slow thermal decay due to heat transfer to the surrounding volume.

Figure 15 – Nanosecond pulse excitation and thermal response of single Au nanosphere in water.

Source: belongs to the author.
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For timescales smaller than thermalization time τ , no transport effects are involved on
heating the external environment. In nanoparticle heating by pulses with timewidth in the order
of τ or shorter, it is possible to safely assume that all the energy absorbed by the nanoparticle
will be employed to elevate its temperature, as long as no phase transitions are involved. The
energy absorbed by the nanoparticle is given by

Q = MCp∆Tnp = ρV Cp∆Tnp . (2.23)

In equation 2.23, M is the mass of the nanoparticle, ρ is nanoparticle density, V is its
volume, Cp is it specific heat, and ∆Tnp is the temperature variation induced by the nanosecond
pulse. Moreover, the energy absorbed by the irradiated nanoparticle can be written as Q =

σabs
∫ t
0
I(t′)dt′. Thus:

σabs

∫ t

0

I(t′)dt′ = ρV Cp∆Tnp . (2.24)

Rearranging the equation 2.24, it is possible to notice that the temperature variation in the
nanoparticle is:

∆Tnp =
1

ρCp

∫ t

0

I(t′)dt′
(σabs
V

)
. (2.25)

The temperature variation is directly proportional to the ratio of its absorption cross section to
volume.

2.2.2.1 Figure of Merit for Nanosecond Heating: the Joule Number

A way to evaluate the performance of thermoplasmonic structures is by exploring figures
of merit. Photothermal Conversion Efficiency, as described before, is an example of figure
of merit for thermoplasmonics. Quality Factor and Faraday Number are two more figure of
merits examples of that measure respectively spectra linewidth and the field enhancement of a
nanostructure (BAFFOU, 2017). Each figure of merit, however, measures a specific characteristic
of nanostructes, and not necessarily will be effective to evaluate different parameters. For instance,
the Faraday Number is pretty much useless to measure thermoplasmonic capabilities, while η
provides inconclusive data.

An effective way of evaluating the ability of nanoparticles to generate heat is the Joule
Number (LALISSE et al., 2015), a dimensionless number named after the Joule Effect. By
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definition:

J0 =
eε′′
√
εm

∣∣∣∣∣ ~Ein~E0

∣∣∣∣∣
2

, (2.26)

where e is the ratio of the wavelength equivalent to 1 eV (1240 nm) to the excitation wavelength,
~Ein is the internal electric field of the nanoparticle and ~E0 is the incident field. It also can be
written as (LALISSE et al., 2015):

J0 =
λref
2π

(σabs
V

)
. (2.27)

Here, λref ≈ 1240 nm. Comparing equations 2.25 and 2.27, one can see that ∆Tnp ∝ J0 and,
hence, the Joule Number presents itself as a good figure of merit for nanoheater optimization to
short pulse applications.

2.2.3 Single Nanoparticle Heating under Continuous Excitation

For excitation times longer then the thermalization constant τ , condutive transport of
heat must be taken into account to accurately predict the thermal response of nanostructures. In
such cases, the Laplace equation given by:

ρCp
∂T (~r, t)

∂t
= κ∇2T (~r, t) + q(~r, t) , (2.28)

must be solved. In equation 2.28, ρ, C and κ are respectively the density, specific heat and
thermal conductivity. In the absence of phase transformations, and considering the single particle
a continuous source of energy, the solution of equation 2.28 is known for a spherical nanoparticle
of radius a (PITSILLIDES et al., 2003). The dynamic heating is relatively fast, which makes
the nanoparticle reach half of its maximum temperature in the characteristic thermalization time
of the nanoparticle τnp. For times bigger than τnp, the spatial and temporal dependency of the
temperature outside the nanoparticle can be described by (GOVOROV et al., 2006):

T (r, t)− T∞ =
Pabs

4πκmr

(
1− 1√

πt/τm

)
, r > a (2.29)

with κm and τm being respectively the thermal conductivity and the thermalization constant of
the medium, Pabs = σabsI is the power absorbed by the structure and T∞ is the temperature
far away from the nanoparticle, i.e., the initial temperature of the system. Thus, equation 2.29
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describes the system spatiotemporal temperature variation. For times t → ∞ or t � τm, the
solution of the Laplace equation reaches the steady-state (KEBLINSKI et al., 2006), and the
maximum temperature of the nanoparticle at the interface (r = a) becomes

∆Tnp =
σabsI

4πκma
. (2.30)

To better illustrate the temporal behavior of temperature rise at the nanoparticle interface,
figure 16 shows the exact, the approximated solutions and the steady-state value of equation 2.28
to Pabs = 35 W/cm2, I = 4 × 10−14 m2, κm = 0.3 W m−1K−1 and a = 65 nm (KEBLINSKI
et al., 2006). According to the figure, both the approximate and exact solutions exhibit fast
heating in the first 100 ns and approach asymptotically the steady-state temperature of 0.06 K
(KEBLINSKI et al., 2006). The small value of temperature variation obtained will be discussed
in a further chapter.

Figure 16 – Surface temperature during transient heating of a single nanoparticle.

Source: (KEBLINSKI et al., 2006).

2.2.3.1 Figure of Merit for Continuous Heating: the Steady-State Factor

Equations 2.29 and 2.30 describe the dynamics of temperature variation for a spherical
nanoparticle embedded in an arbitrary medium. Although these approximations acuratelly
elucidate the thermal behavior of a sphere, they cannot be employed in different nanoparticle
shapes. Despite equation 2.28 being well suited for the calculation of any arbitrarily shaped
nanosctructure, it may not be possible to obtain the analytical solution for shapes other than the
sphere. Approximations for highly symmetrical shapes may be obtained by onerous power series
expansions and by computation techniques, but it is somewhat impractical.
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The morphology of a nanostructure plays an important role in how it loses energy
to its surroundings. The ability to lose heat to external bodies is related to the surface area
of the nanostructure, and thus, a higher surface area allows for more efficient conduction of
heat outwards. This means that particle morphology defines how fast a shape loses heat in
comparison to another. To overcome this difference, an electrostatics analogy can be drawn. To
better elucidate the problem, a thermal capacitance can be defined as the ratio between the power
absorbed by a nanoparticle and the thermal variation caused by such absorption (BAFFOU;
QUIDANT; ABAJO, 2010). Therefore:

Cth =
Pabs
∆Tnp

. (2.31)

One can notice that if a particle loses heat quickly to its surroundings, the temperature
variation caused by a constant absorbed power is smaller, changing the thermal capacitance. Due
to this fact, each nanoparticle shape will present a different thermal capacitance. For a sphere, the
thermal capacitance is given by Csphere

th = 4πκma (BAFFOU; QUIDANT; ABAJO, 2010). For
non-spherical shapes, the thermal capacitance can be calculated by treating the nanostructure as
an equivalent sphere of same volume as the particle with equivalent radius Req. A dimensionless
thermal-capacitance coefficient β is considered to compensate the differences in shape. Then, the
thermal capacitance becomes Cth = 4πκmReqβ, and the temperature increase (equation 2.30)
can be written as:

∆Tnp =
I

4πκm

σabs
Reqβ

. (2.32)

Equation 2.32 (BAFFOU; QUIDANT; ABAJO, 2010) shows a clear dependency on particle
properties (∆Tnp ∝ σabs/Reqβ). The shape factor β, the absorption cross section and the
equivalent radius are all a function of nanoparticle shape, and changing its dimensions may
increase or reduce the steady-state temperature that a particle can reach. For nanospheres, β = 1,
while for nanorods β ≈ 1+0.096587 ln2(AR) (BAFFOU, 2017; BAFFOU; QUIDANT; ABAJO,
2010). Reference (BAFFOU; QUIDANT; ABAJO, 2010) carries a mistake in the β attributed to
nanorods. Such inconsistency was rectified in (BAFFOU, 2017). Therefore, a good metric for
steady-state heating, the Steady-State Factor, can be defined as:

S2F =
σabs
βReq

. (2.33)

With the figures of merit of interest established, it is possible to employ them in nanopar-
ticle optimization for heat generation. This procedure is described in the next chapter.
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3 NANOHEATER OPTIMIZATION FOR PHOTOTHERMAL THERAPY

In recent years, the use of metallic nanostructures for localized delivery of heat in biomed-
ical endeavors has been the subject of numerous studies and researches (MENDES et al., 2017;
HIRSCH et al., 2003; BUCHARSKAYA et al., 2016; ESTELRICH; BUSQUETS, 2018; LIU;
CRAWFORD; VO-DINH, 2018; MOON et al., 2018; PHAN et al., 2018; CHEN et al., 2010).
The use of nanoparticles as treatment platforms in humans raises concerns regarding accessi-
bility from a clinical standpoint. For instance, the amount of laser energy administrable within
safety levels may not be enough to efficiently induce adequate thermal variations, rendering the
technique to become impractical (NIEMZ, 2007). In this chapter we appraise the optimization of
nanoheaters for application in photothermal therapy.

3.1 PHOTOTHERMAL THERAPY (PTT)

Traditional cancer therapies rely heavily on drug administration (chemotherapy) and
radioactive inactivation of tumorous cells. Although such therapies have been proven effec-
tive, many collateral effects arise from it (ABADEER; MURPHY, 2016). As an alternative to
traditional cancer treatments, electromagnetic radiation has been explored in many different
therapeutic applications that require the generation of high temperatures. For instance, microwave
heating was used in thermal therapy for prostate tumors (SHERAR et al., 2001) and induced
hyperthermia for breast cancer (NGUYEN; ABBOSH; CROZIER, 2017; OKE et al., 2018). PTT
is a laser induced hyperthermia based thermal treatment and, thus, light-to-heat conversion plays
a significant role in it. Accordingly, photosynthesizers must be administrated to obtain high
efficiency photothermal conversion (LUCKY; SOO; ZHANG, 2015). PTT is based on two major
components: laser light and absorbing agent. In some cases, a third element, a carrier, becomes
necessary (KUMAR; SRIVASTAVA, 2017).

Biological tissues present two optical windows known as Near Infrared (NIR) trans-
parency windows. The first window ranges from 650-950 nm, while the second spans from
1000-1350 nm (HEMMER et al., 2016). On these wavelengths, constituents such as blood, fat
and proteins present a valley in their absorption spectrum. The wavelengths between 700 to 980
nm fall in the spectral range where hemoglobin and water are least absorbed by the body. This
low attenuation and low scattering enable light to penetrate deeper, and thus, radiation in the
NIR region must be employed for a more effective PTT. Figure 17 illustrates both NIR windows
of transparency.

The absorbing agent is responsible for light-to-heat conversion. Many photosensitizers,
such as organic dyes (indocyanine green and rhodamine 6B, for instance) and carbon quantum-
dots have been explored to this task. Despite organic dyes exhibit good absorption of light,
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Figure 17 – NIR transparency windows of biological tissues.

Source: (HEMMER et al., 2016).

plasmonic nanoparticles present higher absorption cross-sections, making them a more suitable
PTT agent. Table 2 compares the absorption cross section of photosensitizer types. Gold nanopar-
ticles, in special, present good plasmonic response and biocompatibility (FAN et al., 2009). The
tunability of gold nanorods, capable of reaching LSPR in the NIR region and matching the
transparency windows makes it a strong candidate for PTT applications (DAI, 2016).

Table 2 – Absorption cross-section of some photosensitizers.

Photosensitizer σabs (m2) Ref.
Indocyanine Green 10−20 (CHEN et al., 2005; BONI; MENDONÇA, 2010)
Rhodamine 6G 10−20 (DJOROVIĆ et al., 2017)
Au Nanosphere 10−15 to 10−14 (JAIN et al., 2006)
Au Nanoshell 10−14 to 10−13 (JAIN et al., 2006)
Au Nanorod 10−14 (JAIN et al., 2006)

Source: belongs to the author.

Selective killing of tumorous cells demands a system based on a carrier, usually a
targeting ligand capable of attaching to a specific targeted tissue. A good carrier should be
bio-compatible, biodegradable and easy to functionalize. Nanoparticle targeting to cancer cells
can be either passive or active. Passive targeting may involve intratumoral administration of
nanoparticles being injected directly into the particular site of the tumor or involve intravenous
administration. Nanoparticles with diameters ranging from 50 and 800 nm are not capable of
penetrating blood vessel walls, since the spacing between vascular endothelial cells ranges from
15 to 30 nm. However, the cellular disorganization caused by the quick and deficient generation
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of new blood vessels taking place in tumorous cells triggers the formation of fenestrations with
spacing up to 200 nm between vascular endothelial cells. Such fact leads to an enhancement in
permeability, favoring nanoparticle uptake and accumulation within tumorous tissues near blood
vessels. Therefore, passively administered drugs are more prone to accumulate in tumors rather
than in healthy tissues. Nevertheless, the presence of a carrier in active targeting renders a more
efficient cell uptake. In this case, small molecules such as antibodies are attached to the particles
to assist its accumulation in tumors (KUMAR; SRIVASTAVA, 2017).

In some cases, such nanoparticles must be capable of penetrating the cell membrane,
allowing accumulation of nanoheaters. This uptake is dependent on nanoparticle morphology and
enables a more effective treatment. However, the concentration of nanoparticles administered
must not be too high due to the cytotoxicity of gold nanoparticles (PAN; BARTNECK; JAHNEN-
DECHENT, 2012; ZHU et al., 2014). Wang (WANG et al., 2013) et al. analyzed the effectiveness
of gold nanohexapods in comparison with other nanoparticles in tumor-bearing mice. Figure
18a shows a comparison between localized heat obtained in-vivo in a tumor-bearing mice by the
administration of Au nanohexapods, nanorods, nanocages and saline solution. Figure 18b shows
the temperature behavior of each administered particle ensemble.

Figure 18 – Comparative study of Au nanostructures for in-vivo photothermal cancer treat-
ment. (a) Localized heat generation. (b) Comparison in temperature evolution.

(a) (b)

Source: adapted from (WANG et al., 2013).

The highly localized hyperthermia generated as consequence of photothermal conversion
leads to membrane disruption or protein denaturation of tumorous cells, resulting in cell death.
Cell death can be estimated by Arrhenius Law (NIEMZ, 2002; FENG; ODEN; RYLANDER,
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2008; YAKUNIN; AVETISYAN; TUCHIN, 2015), given by

ln
C(t)

C0

= −Arrh
∫ t

0

exp

(
− ∆E

RgasT (t′)

)
dt′ , (3.1)

where C0 is the initial concentration of cells, C(t) is the concentration at a time t, Arrh is
Arrhenius’ constant and Rgas is the universal gas constant. The Arrhenius’ constant and ∆E

are specific tissue properties (NIEMZ, 2002). Equation 3.1 shows that exposition time plays
an important role in cell death and that bulk relaxation time (characteristic thermalization
time of the heated volume) is not enough to induce cell damage in photothermal applications
(YAKUNIN; AVETISYAN; TUCHIN, 2015; MURPHY; TORSTENSSON, 2013). The time
dependent temperature T (t) of the heated region present in Arrhenius’ equation is dependent on
medium thermal diffusivity. In general, the thermal diffusivity of a tissue is approximately equal
to that of water (1.3× 10−7m2/s) (WALSH et al., 2010), so thermal generation measurements
performed in water samples may represent a good estimation for nanoparticle based tissue
heating in PTT.

3.2 NANOHEATER OPTIMIZATION

As discussed at the beginning of the chapter, the clinical application of PTT assisted by
nanoparticles may be harmed by limitations imposed by safety and health standards. Therefore,
nanoparticle optimization becomes highly desirable, since it can maximize light-to-heat con-
version. Efforts to appraise the best Au nanorod for PTT applications were made by Mackey

et al., and it was concluded that a 28 × 8 nm rod is the most effective structure for plasmonic
photothermal heat generation (MACKEY et al., 2014). For gold nanoshells, Harris et al. found
80 nm diameter (64 nm water core) to be the best heater under solar irradiation, while for
irradiation by laser light, maximum efficiency is achieved for 50 nm nanoshells (45 nm water
core) (HARRIS; FORD; CORTIE, 2006). These results were based on absorption efficiency
analysis, i.e., the ratio of absorption cross-sections to geometrical cross-sections, and by compar-
ison of absorption and scattering magnitudes. Due to heat generation dependency on particle
morphology, optimizations based on absorption efficiency tend to restrict particles to small sizes
exclusively (where scattering is negligible compared to absorption), imposing limitations on
nanoparticle optimization. The methodology described in the following section investigates an
approach to overcome such constraints.

3.2.1 Optimization Methodology

The very promising NIR region illustrated by figure 17 shows that low absorption occurs
between 650-1350 nm. Thus, Au nanorods with LSPR in this region are preferable for PTT
applications. The laser lines of 800 nm and 1064 nm are widespread. The presence of both lines
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in laser equipment available in laboratories and hospitals renders its importance. Besides both
lines being within NIR region, each one comprises a transparency window: 800 nm in the first,
and 1064 nm in the second. The nanorod ARs with longitudinal LSPR on the chosen wavelengths
are 4.0 and 6.4 to ∼ 800 nm and ∼ 1064 nm respectively, as can be noticed in figure 13. By
changing nanorod dimensions while maintaining a fixed AR to each case, the peak position of
resonance barely moves (within certain size conditions). It becomes convenient, thus, to evaluate
the previously discussed figures of merit to each AR. It is important to point out that the current
analysis assumes Au nanorods embedded in aqueous medium.

Figure 19 is a colormap that depicts the LSPR as function of nanorod length and
diameter. The blue line represents nanorod dimensions with LSPR in 800 nm, while the red line
represents nanorod dimensions with LSPR in 1064 nm. The dephasing effect that arises from
increasing nanorod length shifts the LSPR peak position. The red-shift becomes more noticeable
to voluminous nanorods. The inset of 19 illustrates the process of increasing nanorod size while
maintaining a fixed AR.

Figure 19 – LSPR peak position for gold nanorods of different lengths and diameters. The inset
figure shows the sweep procedure for a fixed AR.

Source: belongs to the author.

Plasmonic properties of a single rod were appraised by means of FEM simulations in
COMSOL Multiphysics. The Electromagnetic Waves, Frequency Domain module was used to
perform the simulations. The simulation models a single gold nanorod of length L and diameter
D embedded in water. The nanoparticle permittivity is size-corrected accordingly to the Drude
formulation described in chapter 2, while the aqueous medium is assumed to be wavelength
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independent. The nanoparticle-water set is surrounded by a spherical perfectly matched layer

(PML) shell responsible for mimicking an open boundary, and assumes the propagation of a
linearly polarized monochromatic plane wave with polarization parallel to the longitudinal axis
of the nanorod. A normal mesh was used in the PML and nanorod surroundings, while a finer

mesh was implemented in the nanorod domain. To both aspect ratios, the nanorod length L was
swept from 15 nm up to 200 nm. Figure 20 illustrates the cross-section of the meshed simulation
setup.

Figure 20 – Meshed simulation setup used for nanorod optimization.

Source: belongs to the author.

3.2.2 Photothermal Conversion Efficiency

The first figure of merit to be evaluated is the Photothermal Conversion Efficiency (η).
figure 21a is a colormap that shows how this parameter changes with nanorod dimensions, while
figure 21b illustrates the decreasing behavior observed in η, expected for increasing nanoparticle
sizes as scattering overcomes absorption. To this analysis alone, it is clear that the extinction of a
small nanoparticle results in almost all energy being absorbed and converted into heat. At first, it
may be compelling to think that a smaller size is preferable for heat generation. However, since
the relation between nanoparticle surface area to nanoparticle volume is a significant element on
how energy is transferred to its surroundings, particle morphology turns into a critical parameter,
and η becomes an insufficient criterion to evaluate heat generation by plasmonic nanoparticles.
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Figure 21 – Photothermal Conversion Efficiency for gold nanorods with LPSR in 800 nm (blue)
and 1064 nm (red). (a) Colormap for various gold nanorod lengths and diameters. (b)
Photothermal Conversion Efficiency as a function of nanorod length.

(a) (b)

Source: belongs to the author.

3.2.3 Joule Number - Optimization for Nanosecond Pulse Excitation

To nanosecond pulses, the adequate figure of merit for optimization is the Joule Number
(equation 2.27). The Joule Number colormap of figure 22a show the J0 of gold nanorods at the
LSPR for various lengths and diameters. The blue and red lines highlight, respectively, the J0
for LSPR at 800 nm and 1064 nm. Figure 22b transcribes the behavior of J0 along the blue and
red lines as a function of nanorod length. From such figures, it becomes noticeable that, for a
fixed LSPR wavelength, there exists an optimal length at which J0 magnitude is maximized. As
nanoparticle size increases, J0 magnitude grows, until it reaches a maximum value and starts to
decrease. This result contradicts the expectations caused by η analysis alone. A quick inspection
of equation 2.27 shows that the heat generation capacity of a nanoparticle is proportional to its
absorption cross-section and is inversely related to its volume (σabs/V ). As the particle grows
bigger, so do both contributions. However, absorption and volume grows at different rates,
depending mainly on particle morphology. This fosters the existence of a threshold dimension at
which the volume contribution overcomes absorption.

To nanorods with AR 4.0, presenting LSPR peak at around 800 nm, the higher J0 value
occurs for a length of 45 nm (∼ 11 nm diameter). This indicates that nanorods with dimensions
L = 45 nm and D = 11 nm are the most suitable gold rod-like particles for photothermal heat
generation at 800 nm concerning nanosecond excitation. Similarly, for nanorods with LSPR
around 1064 nm, the ideal dimensions to maximize J0 magnitude are a length of 60 nm and ∼ 9
nm diameter. The localized heat generated internally by such nanorods under single nanosecond
pulse excitation yields an optimal value of maximum temperature variation that may be explored
in PTT.
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Figure 22 – Joule Number for gold nanorods with LPSR in 800 nm (blue) and 1064 nm (red). (a)
Joule number colormap for various gold nanorod lengths and diameters. (b) J0 as
function of nanorod length for LSPR at 800 nm and 1064 nm.

(a) (b)

Source: belongs to the author.

3.2.4 Steady-State Factor - Optimization for Continuous Excitation

In this case, the de-facto heat generation optimization is exerted by the Steady-State
Factor (equation 2.33). Figure 23a depicts the S2F of gold nanorods at the LSPR for various
lengths and diameters. The blue and red lines highlight, respectively, the S2F for LSPR at
800 nm and 1064 nm. Figure 23b transcribes the behavior of S2F along the blue and red lines
as a function of nanorod length. In figure 23b, one can notice a substantial increase in S2F

as the nanorod grows larger. Similarly to what happens in the case of J0, the existence of a
maximum value at which S2F magnitude peaks is also apparent. Differently from J0, where the
morphology dependency isn’t explicit in its equation, equation 2.33 highlights shape dependency
by introducing the shape factor β. Nanoparticle volume dependency is indirectly represented
by an equivalent radius, rendering the figure of merit S2F a unit of length. The maximum S2F

value happens at longer nanorod lengths when compared to the single nanosecond pulse case.

The behavior of steady-state factor values as function of the nanorod length is shown
in figure 23b. The blue line show that the best gold nanorod with LSPR in 800 nm to undergo
continuous excitation photothermal conversion has length L = 105 nm and diameter D = 26
nm, while continuous excitation heat generation at 1064 nm is optimized at dimensions L =
180 nm and D = 28 nm. The red-shift caused by dephasing of conduction electrons in bigger
structures is more significant here due to the exploration of longer nanorod sizes necessary to
achieve maximum S2F . At such sizes scattering plays an important role in light extinction and
may reduce the penetration depth of light in PTT assays comprising of bigger nanoparticles.
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Figure 23 – Steady-State Factor for gold nanorods with LPSR in 800 nm (blue) and 1064 nm
(red). (a) S2F colormap for various gold nanorod lengths and diameters. (b) S2F as
function of nanorod length for LSPR at 800 nm and 1064 nm.

(a) (b)

Source: belongs to the author.

3.2.5 Practical Concerns

Each particle morphology will provide a different behavior to Joule number and steady-
state factor, shifting the optimal points to longer or shorter nanoparticle sizes. Morphology
is an important aspect on the field of thermoplasmonics. As discussed before, blood vessel
fenestrations impose an upper limit on nanoparticle size, and large nanoparticles may not be
absorbed by tumorous tissues. Moreover, for PTT applications, attention must be given to
post treatment excretion of nanoparticles, since its accumulation in the kidney may lead to
complications. The nanoparticle shape, surface chemistry, and charge may lead to distinct renal
handling of such structures. In general, nanoparticles with diameters smaller than 5 nm can
undergo renal clearance (CHOI et al., 2007; LONGMIRE; CHOYKE; KOBAYASHI, 2008). For
larger nanoparticles, surface charge and chemistry can optimize this excretion pathway (CHOI et
al., 2007; LONGMIRE; CHOYKE; KOBAYASHI, 2008). Renal excretion represents a desirable
pathway for nanoparticle removal with minimal catabolism, avoiding the possible side effects
(CHOI et al., 2007; LONGMIRE; CHOYKE; KOBAYASHI, 2008). To overcome such problem,
the use of charge-coupled (CCP) and charge-transfer structures (CTP) may be considered. CCP
and CTP structures are dimers comprised of two nanoparticles closely connected by a bridging
material. The bridging material keeps both nanoparticles close within nanometric distance, and
is made of a dielectric material (CCP dimer) or a metal (CTP dimer). Under light irradiation,
the near field of both nanoparticles superimpose, generating a high intensity electric field in
the bridge. Due to this interaction, the field enhancement seen in the LSPR condition is more
pronounced in dimers when compared to single nanoparticles. Also, due to tunneling effects
between nanoparticles, the electrons see a longer nanostructure, red-shifting the LSPR to infrared
wavelengths (FONTANA et al., 2016; FONTANA et al., 2017).
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4 CHARACTERIZATION OF METALLIC NANOPARTICLE COLLOIDS BY THER-
MAL LENS MEASUREMENT

Evaluate the performance of nanoparticles as nanoheaters is a fundamental step to the
development of efficient platforms and techniques that rely on either distributed or localized heat
generation. The assessment of temperature response enables the development and use of high
performance nanoparticles to an effective heat generation.

A possible method to analyze temperature variation around a nanostructure is by means
of nanothermometry, where a fluorescent nanocrystal is used to measure temperature by assess-
ing changes in fluorescent emission. There are two ways of conducting nanothermometrical
measurements: by looking at peak shifts on fluorescent emission (SCHRUM et al., 1994; ROSAL
et al., 2016) or by fluctuations in fluorescence intensity (JAQUE; VETRONE, 2012). To conduct
a nanothermometrical essay on a plasmonic nanoparticle, it is necessary to bind a fluorescent
nanocrystal to the metallic nanoparticle. For instance, Quintanilla et al. described a way to
appraise the heating of single gold nanostars by combining it with CaF2 : Y 3+ and CaF2 : Nd3+

nanoparticles, two common near-infrared fluorescent nanothermometers (QUINTANILLA et al.,
2019). Despite allowing measurements where conventional methods are ineffective, nanother-
mometry imposes experimental difficulties in sample preparation. Similarly complex sensors
were developed to estimate temperature variation in metallic nanoparticles (CARLSON; KHAN;
RICHARDSON, 2011), where gold nanoparticles were placed on an fluorescent substrate.
Microscopic thermal imaging have also been explored (BAFFOU et al., 2012; BAFFOU; GI-
RARD; QUIDANT, 2010) to map heat generation, but such techniques are as complex as the
aforementioned.

Simpler and more widespread methods in temperature evaluation, such as thermocouples
(RICHARDSON et al., 2006; RICHARDSON et al., 2009) and thermal cameras (WONG et
al., 2013; LÓPEZ-VARELA et al., 2018) are somewhat limited. Thermocouples present bad
accuracy (0.5-5.0 oC) and slow response (0.1-10 s), while thermal cameras have small dynamic
range, fixed focus, time response in the order of the second and low spatial resolution, relying
upon a CCD/CMOS sensor and signal processing to create an image in addition to the much
smaller array of thermal sensors. For instance, Richardson et al. explored thermocouples to
measure the laser heating (280 mW @ 532 nm) of a droplet containing a colloidal solution of
20 nm gold nanospheres. The droplet is formed at the tip of a thermocouple, and temperature
variations induced in the sample are measured by it. Figure 24a illustrates the thermocouple
assessment. Varela et al. shows the use of thermal camera to sense temperature variation in a
skin-equivalent sample, caused by multibranched gold nanoparticles present in the material, as
can be seen in figure 24b. The irradiation of 150 mW @ 785 nm laser light induced a thermal
variation of 4.5 oC, for sample concentration of 5.2× 108 mL-1.
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Figure 24 – Methods of measuring temperature evaluation of colloids. (a) Thermocouple mea-
suring photothermal effects in a drop. (b) Thermal camera assessment of heat
generation.

(a) (b)

Source: adapted from (RICHARDSON et al., 2009) and (LÓPEZ-VARELA et al., 2018).

A new strategy to assess thermal-optical properties of metallic nanoparticle colloids is
required. This chapter introduces the use of Thermal Lens measurement to establish a middle
ground betwixt macro (global) and nano assessment of temperature on nanoheater characteriza-
tion.

4.1 HEATING OF A NANOPARTICLE ENSEMBLE

Here, it will be analyzed the heating phenomenon of a macroscopic ensemble of particles
embedded in a solvent, and its relation to each individual nanoscopic heat source. Differently
from what happens in steady-state heating of a single particle, as illustrated in figure 16, sus-
tained heating of a large number of dispersed nanostructures can produce a significant global
temperature rise, even if the local temperature rise at each particle is negligible (KEBLINSKI et
al., 2006).

To global temperature analysis, both the time scale needed for thermal fields from
neighboring particles to overlap and the time scale for thermalization across the entire volume
of the colloid must be considered. The global thermalization time can be obtained by the use
of equation 2.22. Keblinski et al. (KEBLINSKI et al., 2006) systematized a simulation to
obtain the global temperature as the superposition of the temperature fields given by the exact
solution Laplace equation (2.28) originated from the contribution of all nanoheaters. To do so,
he considered the heating of a spherical medium with 1 mm of radius and limited the problem
to an ensemble of 5000 randomly dispersed nanoheaters. The nanoparticle radius was 65 nm
and each particle acted as a power source of 1.4 ×10−14 W (KEBLINSKI et al., 2006). The
assumed volumetric concentration of particles was 1015 m−3. Figure 25 shows the obtained result
of reference (KEBLINSKI et al., 2006).
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Figure 25 – Temperature rise near the surface of a nanoparticle as a function of heating time to
an ensemble of nanoheaters.

Source: adapted from (KEBLINSKI et al., 2006).

The temperature rise is limited to the nanoparticle itself, until it reaches the nanoparticle
steady-state at τnano. Thereafter, as the temperature fields of the surrounding particles reaches
the particle in analysis (τ0), this intermediate steady-state is surpassed and the global temperature
rise dominates the total temperature change. The global steady-state is reached at τglobal. The
ratio between the final global temperature and the initial localized steady-state (∆Tglobal/∆Tnano)
can be several orders of magnitude higher (KEBLINSKI et al., 2006), depending on nanoparticle
concentration.

The superposition effect can be described by the equation 4.1:

∆Tglobal =

Np∑
i=1

σabsI

4πκmβ|~r − ~ri|
, (4.1)

Here, ∆Tglobal represents the global temperature variation and Np the number of nanoparticles.
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For excitation times longer than τglobal, an analogy with electrostatics can be drawn, and
one can replace the nanoparticles by a homogeneous heat source distributed throughout the entire
heated region (KEBLINSKI et al., 2006). Assuming that the global volume is thermalyzed, it
is possible to rewrite equation 4.1 as a volume integral. Therefore, a temperature analysis at
the center of the system can be done without loss of generality. Solving the “thermal potential”
integral for a cylindrical region of length `, radius w0 and nanoparticle concentration Cnp, one
gets

∆Tglobal = πw2
0 CnpReq ln

(
2`

w0

)
∆Tnp . (4.2)

One can notice that the global to nanoparticle temperature ratio is independent from
administered power. A depiction of global heating induced by plasmonic nanoparticles can be
seen in figure 26. Here, the incident radiation (reddish arrow) excites a sample. The black dashed
circle symbolizes the limits of the region of radius w0 containing the nanoparticle ensemble
to undergo photothermal generation. The small yellow dots represents the randomly dispersed
nanoheaters, and the circles that surrounds it are regarded as the time dependent range of the
“heat front” generated by each nanoparticle. When all individual heat fronts overlap, the region
bounded by black dashes can be considered to be completely thermalyzed.

Figure 26 – Global heating induced by plasmonic nanoparticles.

Source: belongs to the author.
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4.2 TEMPERATURE ASSESSMENT BY THERMAL LENS TECHNIQUE

On roads, during some of the hottest days of the year, it may look as if some sort of
liquid has been spilled over the pavement, mirroring in a wobbling fashion the objects that pass
through it. In such hot conditions, the asphalt exposed to the sun easily reaches temperatures
higher then the air above it, and convective effects help the formation of a gradient in air density,
consequently changing the refractive index of air. This phenomenon is called inferior mirage, and
leads to a smooth refraction of light, continuously bending it. Figure 27 illustrates the inferior
mirage effect. As the refractive index of the air near the pavement is smaller (due to a smaller
air density), part of the light coming from the sky that would not reach observer eyes in normal
conditions suffers refraction, reaching the observer from below. As sky light is reaching the
observer from the bottom up simultaneously with the direct light from other objects that are
not affected by the refractive index gradient (sky, truck and road), the sky seen from below is
interpreted as a mirror or puddle.

Figure 27 – Mirage formation due to refractive index gradient.

Source: adapted from (SYDNEY AUSTRALIA, 2009).

A gradient in refractive index effect may arise during the propagation of a light beam
in a transparent medium. Laser energy may be absorbed by the sample, and the temperature
gradient that appears in the material due to non-radiative relaxation causes a refractive index
gradient, as a divergent lens, that can be exploited to measure optical and thermal properties of
liquids and solids. This phenomenon is known as thermal lensing. The thermal lens effect (TL)
was accidentally discovered by the insertion of liquid samples inside a He-Ne laser resonator
(GORDON et al., 1965), and was readily noticed that the insertion caused long-transient effects
in laser build-up. This effect has since been used to measure low absorption liquid samples
(GORDON et al., 1965; LEITE; MOORE; WHINNERY, 1964; WHINNERY, 1974; DOVICHI;
HARRIS, 1979; LEACH; HARRIS, 1981).
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Among TL applications, it is worth mentioning its use to measure thermal diffusivity
of liquids and glasses (BAESSO; SHEN; SNOOK, 1992; BERNAL-ALVARADO et al., 2003;
COMEAU; HACHÉ; MELIKECHI, 2003), its use in chromatographic analysis (BUFFETT;
MORRIS, 1982), and application in fluorescence/quantum-yield measurements (CRUZ; PILLA;
CATUNDA, 2010; ESTUPIÑÁN-LÓPEZ; DOMINGUEZ; ARAUJO, 2013). TL theory has also
seen applicability in thermally controlled reconfigurable focal length lenses (D. et al., 2016) and
the thermal management of high-repetition rate measurements of non-linear optical parameters
by Z-Scan (FALCONIERI, 1999; GOMES et al., 2007; GNOLI; RAZZARI; RIGHINI, 2005). A
TL spectrophotometer was also developed using a xenon lamp to determine the absorption spectra
of scattering samples (MARCANO et al., 2014). More recent efforts to improve the sensibility
of TL measurements were performed by Marcano (MARCANO; LOPER; MELIKECHI, 2002),
and ultra sensitive TL measurements of water were conducted (CRUZ et al., 2009).

The TL measurement is an example of time-resolved spectroscopy (FARR et al., 2018),
and is based on the analysis of the temporal evolution of light intensity transmitted through a
sample. This intensity profile presents the peculiar feature of using laser light to either pump
and probe TL effects. In single-beam TL, pumping and probing are performed by a single laser
exciting and sensing thermally induced effects. On a dual beam TL measurements, pumping
is achieved by an interacting wavelength laser beam and probing is accomplished by a second
laser of non-resonant wavelength. In both cases, the thermally induced phase delay on laser
wavefront is measured by a photodetector. The phase-shift nature of such measurements renders
the accuracy of TL assessments comparable to interferometric methods (MARCANO; LOPER;
MELIKECHI, 2002), being able to perform measurements of refractive-index variations as
low 10−8, which is associated to temperature variations of 10−5 oC (HU; WHINNERY, 1973).
Besides that, the essay requires a minimum amount of material when compared to sample
volumes demanded by the thermal camera method, and shows a faster response when compared
to thermocouple measurements.

4.2.1 Single Beam TL Technique (STL)

The STL experiment comprises a relatively simple experimental setup. A chopped and
collimated laser beam with Gaussian profile, wavelength λ and power Pexc passes through a
focusing lens f, acquiring a beam waist w0 at the focus of Rayleigh lenght zR. A thin absorptive
sample of size ` < zR and absorption coefficient α is then placed within the confocal parameter
b (focus depth) of the focused beam at a certain position z. After interacting with the sample,
the beam travels a long distance before reaching a small aperture in the far-field. The aperture
size Σ = 1− e−2(r/w0)2 , the aperture linear transmittance in the absence of a sample (where r is
the aperture radius), is important, and must be treated in accordance to Sheik-Bahae (SHEIK-
BAHAE et al., 1990). The use of Σ ≈ 0.7 is a good compromise between having a large signal
which averages possible beam nonuniformities (ARAÚJO; GOMES; BOUDEBS, 2016). The
light intensity transmitted by the aperture is then measured by a photodetector (SHELDON;
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KNIGHT; THORNE, 1982). Figure 28 illustrates the concept.

Figure 28 – Basic setup of a STL experiment.

Source: belongs to the author.

The small spot area within zR ensures a high laser intensity at the sample. The energy of
the beam is partially absorbed by the sample and converted into heat. The heat generation in the
illuminated region will follow the beam intensity profile, and thus the temperature variation will
also be Gaussian. The radial characteristic of temperature will induce a volumetric expansion in
the heated region, generating a refractive index gradient. If ` is smaller or has the same order of
zR, heat generation can be considered bi-dimensional. The induced phase shift caused by the
sample can be written as (SHELDON; KNIGHT; THORNE, 1982):

∆Φ =
2π`

λ
∆n . (4.3)

In equation 4.3, ∆n = n(T )− n0 is the thermally induced refractive index difference and n0 is
the refractive index of a relaxed sample. To better represent the temperature dependent variation
of refractive index, it can be expanded in Taylor Series as:

n(T ) = n0 +

(
dn

dT

)
∆T +

1

2

(
d2n

dT 2

)
(∆T )2 + . . . , (4.4)

where ∆T is the induced temperature variation, dn/dT is the thermo-optic coefficient and
d2n/dT 2 is the second-order thermo-optic coefficient. To most liquids, the first order approxima-
tion is sufficient to represent thermally induced changes in refractive index. It is possible, thus,
to rewrite equation 4.3 as:

∆Φ = −2π`

λ

(
dn

dT

)
∆T . (4.5)
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To most regular solvents, dn/dT is negative, which means that refractive index decreases
as the temperature rises. Figure 29 qualitatively illustrates this behavior.

Figure 29 – Temperature and refractive index gradient profiles.

Source: belongs to the author.

The top-left figure shows the Gaussian temperature variation induced in the sample
by the laser, while the top-right graph illustrates the temperature profile as a function of the
radial distance from laser beam center. The bottom-left image depicts the thermally induced
refractive index variation at the sample, while the bottom-right graph indicates how refractive
index changes with radial distance from laser beam axis. Such figures illustrate the optical
and thermal behavior of a sample with negative thermo-optic coefficient. For instance, if the
thermo-optic coefficient of the sample is positive, the refractive index would increase with the
temperature, generating a decreasing refractive index profile with radial distance from laser beam
axis. Such refractive index behavior supports the formation of a converging thermal lens. The
change of this parameter depends mainly on the change in density caused by the coefficient of
thermal expansion.
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By solving the Laplace equation, obtaining ∆T and solving the diffraction problem, the
evolution of TL signal measured by the photodetector over time, I(V, t), can be expressed as
(SHEN; LOWE; SNOOK, 1992):

I(V, t)

I(V, 0)
=

{
1− θ

2
tan−1

[
2V

(9 + V 2) tc
2t

+ 3 + V 2

]}2

. (4.6)

Here, I(V, 0) is the measured signal before heating, and tc = w2
0/4Dth is the lens formation

characteristic time, with Dth being the thermal diffusivity of the medium. The thermal lens
strength and normalized sample position are respectively θ = −Pexcα`

κmλ
dn
dT

and V = z/zR. The
ln term present in equation 4.6 was dropped for interpolation reasons accordingly to Shen et al.
(SHEN; LOWE; SNOOK, 1992).

4.2.2 Dual Beam Mode-Mismatched TL Technique (DTL)

The dual beam TL experiment presents many similarities to the STL approach. The only
substantial difference when compared to the technique previously presented is the requirement of
a second laser (probe beam) with wavelength λp. The method allows the measurement of thermal
effects induced by a pump beam, by means of a probing beam. The probing beam Rayleigh
length zop must be longer than the pump Rayleigh length to allow off-axis optical probing. The
probe waist wp must also be bigger than the pump waist wex. Such fact means that for a fixed
pump waist, the characteristic time tc = w2

p/4Dth associated to the DTL experiment must be
longer than the characteristic times seen in the STL experiment.

The difference between pump and probe beam waists requires a reformulation of equation
4.6, introducing the mode-matching factor m. The mode-matching factor accounts for the spatial
matching of the electric field distributions of both pump and probe laser beams, and is given
by m = (wp/wex)

2. The two beams are said to be mode-matched if m = 1, and are said to be
mode-mismatched if m > 1. Therefore, the DTL signal is described by (SHEN; LOWE; SNOOK,
1992):

I(V, t)

I(V, 0)
=

{
1− θ

2
tan−1

[
2mV

((1 + 2m)2 + V 2) tc
2t

+ 1 + 2m+ V 2

]}2

, (4.7)

with

θ = −PexcαL
κmλp

dn

dT
, (4.8)

and

V =
z

zop
+
zop
z2

[
1 +

(
z

zop

)2
]
. (4.9)
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Here, z2 is the distance between sample and photodetector. If m = 1, equation 4.7
restores equation 4.6, as expected. Again, the ln term present in equation 4.7 was dropped for
interpolation reasons as reported by Shen et al. (SHEN; LOWE; SNOOK, 1992). Here, z2 is
the distance between sample and photodetector. If m = 1, equation 4.7 restores equation 4.6,
as expected. Again, the ln term present in equation 4.7 was dropped for interpolation reasons
as reported by Shen et al. (SHEN; LOWE; SNOOK, 1992). The implementation of the DTL
experiment introduce many advantages in comparison to the STL method. Due to a probe beam
waist wider than the pump beam waist, the DTL experiment take advantage of the overall
thermal contribution induced by the pump beam, testing a larger volume when compared to STL
measurements (MARCANO; LOPER; MELIKECHI, 2002). Thus, the mode matching factor
magnifies the thermally induced phase-shift by a factor of m (SHEN; LOWE; SNOOK, 1992):

∆Φ = m (2π`/λp)∆n . (4.10)

Since equation 4.10 is related to system sensibility, the use of the DTL experiment
allows the measurement of temperature variations that are imperceptible to the STL setup.
Another advantage of the DTL technique, is the prospect of measuring the thermal relaxation
response in time, as the probe beam is not required to be chopped. The method also enables
spectroscopic measurements by changing pumping beam wavelength. As long as the sample
remains transparent to the probe beam, the same probe-photodetector arrangement can be used in
spectroscopic analysis, removing the need for broadband photodetectors. The figure 30 illustrates
DTL technique details.

Figure 30 – Ilustration of DTL setup at the focal region. The position z of a sample of thickness
` and the photodetector distance z2 are described, as well as pump and probe waists
(wex and wp).

Source: adapted from (ESTUPIÑÁN-LÓPEZ; DOMINGUEZ; ARAUJO, 2013).
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4.2.3 Temperature Measurements by TL Methods

The development of TL techniques to temperature analysis provides a useful non invasive
tool to acquire the global temperatures of liquids and transparent solids in many applications. The
model for laser induced mode-mismatched DTL published by Shen (SHEN; LOWE; SNOOK,
1992) describes the spatial-temporal dependence of temperature variation as:

∆T (r, t) =
2Pextα

πCpρw2
ex

∫ t

0

1

1 + 2t′/tc
exp

(
− 2r2/w2

ex

1 + 2t/tc

)
dt′ . (4.11)

The temperature variation is completely induced by the pump beam, and the characteristic
time tc is obtained by interpolation of equation 4.7. Using the relation 4.8, one can write the
above equation as a function of θ (also acquired by interpolation of equation 4.7). Expanding the
exponential term in Taylor series

(
e−x =

∑∞
µ=0(−x)µ/µ!

)
, the equation 4.11 can be rewritten

as:

∆T (r, t) = − θκmλ

(dn/dT )

2

πCpρ`w2
ex

∫ t

0

∞∑
µ=0

(−1)µ(2r2/w2
ex)

µ

µ!

(
1

1 + 2t′/tc

)µ+1

dt′ . (4.12)

where λ = λex (in case of performing the STL experiment) or λ = λp (in case of performing the
DTL experiment). Separating the terms for µ = 0 and µ > 0 and integrating, it is possible to
obtain the following equation:

∆T (r, t) = − θκmλ

(dn/dT )

tc
πCpρ`w2

ex

{
ln

(
1 +

2t

tc

)
+

∞∑
µ=1

(−1)µ(2r2/w2
ex)

µ

µ.µ!

[
1−

(
1

1 + 2t/tc

)µ]}
.

(4.13)

One can notice that the thermal diffusivity of the sample Dth is given by Dth = κm/Cpρ.
In addition, the pump beam characteristic time is described by tc = w2

ex/4Dth. Hence, equation
4.13 can be written as:

∆T (r, t) = − θλ

4π`(dn/dT )

{
ln

(
1 +

2t

tc

)
+

∞∑
µ=1

(−2r2/w2
ex)

µ

µ.µ!

[
1−

(
1

1 + 2t/tc

)µ]}
.

(4.14)

Equation 4.14 describes the heat profile that arises from TL experiments. In space, the
equation 4.14 describes an almost Gaussian distribution, while in time it increases logarithmically
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until saturation (steady-state) is reached. Defining the global temperature of the heated region as
the volumetric average temperature of a cylindrical region of radius wp and length ` and applying
the mean value theorem in equation 4.14, it is possible to obtain:

∆Tglobal ≈ −
(θ/m) λ

4π`(dn/dT )

{
ln

(
1 +

2t

tc

)
+

∞∑
µ=1

(−2)µ

µ(µ+ 1)!

[
1−

(
1

1 + 2t/tc

)µ]}
. (4.15)

For STL measurements, m = 1. This is equivalent to take the volumetric average of
a cylindrical region of radius wex (same beam for pumping and probing). If enough time has
elapsed, t� tc, and equation 4.15 can be approximated as:

∆Tglobal ≈ −
(θ/m) λ

4π`(dn/dT )

[
ln

(
2t

tc

)
+

∞∑
µ=1

(−2)µ

µ(µ+ 1)!

]
. (4.16)

Since the summation of equation 4.16 converges to approximately −0.75160 and we can
reduce it to:

∆Tglobal ≈ −
(θ/m) λ

4π`(dn/dT )

[
ln

(
2t

tc

)
−3

4

]
. (4.17)

4.2.4 Associated Heat Loss Measurement

One experimental difficulty one can envisage throughout the measurement of small
temperature variations is the loss of energy to the environment. All steady-states discussed so
far are a local equilibrium where the influx and outflux of energy from a system cancels out.
One way of measuring energy loss of a closed system is by the assessment of decay rate. The
rate at which the temperature of a system evolves depends on its energy balance. If its gains are
bigger than its losses, the temperature increases with time. If the opposite is true, the temperature
decreases. The energy balance is described as:

∑
i

miCp i
dT

dt
=
∑
i

Pabs i − Ploss , (4.18)

where Pabs i is the power absorbed by each nanoheater and Ploss is the total outflow of energy
(dissipated by transfer to an external reservoir). The left-hand side of equation 4.18 represents
every mass contribution and its respective heat capacities. If only conductive heat transfer is
considered, the dissipated power can be represented as boundary of surface area S and heat
transfer coefficient h, therefore:

Ploss = hS∆T . (4.19)
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Thus, the equation 4.18 can be recast as

d (∆T )

dt
= G−B (∆T ) . (4.20)

Here, G is the rate of temperature change (energy absorption) and B is the rate constant associated
with heat loss. By comparison between equations 4.18 and 4.20, B can be written as

B =
hS∑
imiCp i

=
h

ρCp

S

V
(4.21)

to a domain of overall volume V, density ρ and heat capacity Cp. If the laser is turned off, the
influx of energy is null (G = 0), and the rate constant of heat loss from the system domain to an
external reservoir (B) is determined by

T (t) = T0 + ∆Tmaxe
−Bt (4.22)

One can notice that the temperature decay happens in a characteristic time τ = B−1,
reaching the ambient temperature T0. ∆Tmax is the temperature when laser excitation ceases.
The parameter B may be written as B = −ln[(T (t) − T0)/∆Tmax]/t (RICHARDSON et al.,
2009).

Figure 31 describes the thermal behavior of a laser heated gold nanoparticle colloidal
sample described by Richardson et al. (RICHARDSON et al., 2009). In such experiments, a
droplet of a absorbing solution was placed at a thermocouple tip, and temperature increase
and relaxation were monitored. The red dashed lines of figure 31 illustrates the interpolation
temperature increase data in the droplet. The dashed blue decay line displays the interpolation
of thermal relaxation data. The the associated heat loss is obtained by interpolation of equation
4.22.

4.3 EXPERIMENTAL RESULTS

Although thermal-lens techniques have been extensively used to measure a variety of
optical and thermal properties in materials, it has never been directly employed as temperature
probe. This section presents the results obtained in experimental essays regarding the employment
of STL and DTL to measure temperature variations induced in a colloidal sample of gold
nanoparticles. The experimental setup is described in figure 32. The experiment comprises of
a pump laser (Coherent Compass 215M-20, 20 mW CW @ 532 nm) and a He-Ne probe laser
(6.5 mW CW @ 633 nm). The pump laser is chopped and passes through a beam expander (fL1
= 35 mm and L2 = 100 mm). After collimation, the pump beam passes through focusing lens
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Figure 31 – Thermal excitation (red) and relaxation (blue) obtained by Richardson et al.

Source: adapted from (RICHARDSON et al., 2009).

(fL3 = 150 mm) and is focused at the sample. After interaction with the sample, the pump beam
is partially blocked by an aperture before reaching the photodiode PD1 (Vishay BPW21R) for
acquisition of STL data. The probe beam travels through a different beam expander (fL4 = 25.4
mm and fL5 = 45 mm) and is focused at the sample (fL6 = 300 mm) and reaches it at an angle of
approximately 5o with reference to the pump beam. After the sample, the probe beam suffers
attenuation from a neutral density filter and is partially blocked by an aperture before reaching
the photodiode PD2 (VTB8440BH).

Figure 32 – Experimental TL setup.

Source: belongs to the author.
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TL measurements were performed on a 0.05 mg/mL gold nanospheres (50 nm diameter)
aqueous solution from NanoComposix, placed in a cuvette with 2 mm length. The TL setup
explores different pump powers, ranging from 3.5 to 14.0 mW. The chopper was operated at 5 Hz
with 50% duty cycle, achieving an optical window of 100 ms. The samples included 4 different
colloid concentrations, from 0.5 to 2.1 ×1016 m−3 with 500 µL each. The waist measurement of
the pump and probe beams were carried-out by the knife-edge method (SUZAKI; TACHIBANA,
1975), and waist sizes of wex = 20 µm and wp = 74 µm were obtained, yielding a mode-
mismatched factor of about 13.5.

The samples were spectroscopically examined before and after the experiments were
performed to assure that the thermal assessment didn’t influence nanoparticle stability. The
spectra were analyzed by the Ocean Optics USB2000 spectrometer, capable of performing
visible and NIR spectroscopy. Figure 33a depicts the normalized absorbance spectrum of 50
nm gold nanosphere colloidal sample with concentration of 2.1× 1016 m-3. The graph shows
a peak around 530 nm, compared to the 528 nm maximum specified by the manufacturer
(NANOCOMPOSIX, 2016). To assure the influence of absorbing nanoparticles on the induction
of thermal lens effect, a sample containing distilled water was placed in the experimental setup
and its thermal response was evaluated. Water is notable for presenting low thermal-optic effects,
and thus its TL signal confers very low excursion as shown in figure 33b. The distilled water
sample was excited by 14.2 mW, yielding a global thermal variation of 0.01 oC in the pump
beam region.

Figure 33 – Sample characteristics. (a) Normalized absorbance spectrum of colloidal sample
with 50 nm Au nanospheres. (b) Dual thermal lens signal induced in distilled water
sample.

(a) (b)

Source: belongs to the author.

In the TL experiment, as the thermally induced refractive index gradient is formed, a time
dependent divergent lens effect arises due to the negative nature of the thermo-optic coefficient.
The signal that reaches the photodetectors can thus be interpreted as the interaction of the pump
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beam with two lenses: the beam focusing lens and the thermal lens induced at the sample.
Sample placement after the focusing lens focal position confers a decreasing beam intensity
at the photodetector as the lens effect takes place. When the pump laser beam is blocked, the
thermal effect relaxes and the probe beam intensity at the detection plane rises, returning to
its initial value. Figure 34 depicts the dynamics of the measured TL signal in the single beam
experiment.

Figure 34 – STL experimental data (scatter plot) for Cnp = 2.1 ×1016 m−3 and Pexc = 14 mW.
The solid line depicts the best fit to the experimental data.

Source: belongs to the author.

The interpolating the experimental data using equation 4.6, it’s possible to obtain θ and tc.
This allows the determination of the averaged time dependent global temperature variation of the
colloidal sample employing equation 4.16. Figure 35a shows the experimental behavior of the
global temperature variation for sample concentration of 2.1 ×1016 m−3 and various pumping
powers. Figure 35b shows the experimental global temperature variation in the steady-state
(t = 100 ms) obtained for different pumping powers and several NP concentrations. As expected,
higher temperatures are obtained increasing excitation power. The dashed lines in Figure 35b
indicates the theoretical values obtained from equation 4.1. Figure 35c is a colormap depicting
the theoretical global temperature variation expected from equation 4.15 and the experimental
values obtained from STL evaluation (circles) at t = 100 ms. The circles are filled with the
color representing its experimental temperature variation (see colorbar), which indicates a good
agreement between the experimental and theoretical values.

The experimental values shows good agreement with the theory, and the measurement
error associated to temperature variation was ± 0.04 oC for sample concentration of 2.1 × 1016

m−3 and ± 0.01 oC for sample concentrations of 1.2 × 1016 m−3 and 0.8 × 1016 m−3. The
temperatures values obtained with the 0.5 × 1016 m−3 NP concentration sample showed an error
of ± 0.03 oC.

Figure 36 illustrates the TL signal acquired in the dual beam setup. From it, it is possible
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Figure 35 – Temperature measurement by single beam TL technique. (a) Averaged global tem-
perature variation for the 2.1 ×1016 m−3 colloidal sample concentration at various
laser excitation powers. (b) Averaged temperature variation as function of pumping
power for several NP concentrations, at 100 ms. (c) Theoretical averaged global
temperature variation colormap, at 100 ms. The experimental data are denoted by
the scattered circles..

(a) (b)

(c)

Source: belongs to the author.
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to notice that the DTL experiment confers a larger TL signal excursion, which also leads to
a larger signal-to-noise ratio. Furthermore, the DTL setup allows the assessment of thermal
relaxation in the sample. The solid line is the best fit of the thermal lens formation process.

Figure 36 – DTL experimental data (scatter plot) for Cnp = 2.1 ×1016 m−3 and Pexc = 14
mW. The solid line depicts the best fit to the experimental data during thermal lens
formation.

Source: belongs to the author.

The process of temperature acquisition by DTL follows a four-step transformation from
DTL signal to temperature profile. First TL formation signal is separated from the TL relaxation
signal. The signal obtained within pump excitation time is then fitted by equation 4.7 to produce
the thermal lens parameters θ and tc. From the acquired TL parameters, equation 4.16 can be
explored to obtain the thermal response of the sample. Similarly to the STL case, Figure 37a
shows the experimental behavior of the global temperature variation for sample concentration
of 2.1 ×1016 m−3 and various pumping powers. Notice the presence of the thermal relaxation
dynamics. Again, Figure 37b shows the experimental global temperature variation in the steady-
state (t = 100 ms) obtained for different pumping powers and several NP concentrations with
the dashed lines depicting the theoretical values obtained from equation 4.1. Figure 37c is a
colormap showing the theoretical global temperature variation expected from equation 4.15 and
the experimental values obtained from DTL evaluation (circles) at t = 100 ms. The circles are
filled with the color representing its experimental temperature variation (see colorbar).

The experimental values aren’t as good as the obtained by the STL technique, even though
good agreement with theoretical values is achieved. Here, the measurement error associated to
temperature variation was ± 0.02 oC for sample concentration of 2.1 × 1016 m−3 and ± 0.07
oC for sample concentrations of 1.2 × 1016 m−3. For temperatures values obtained with 0.8 ×
1016 m−3 and 0.5 × 1016 m−3 NP concentrations the error was ± 0.01 oC. In both cases, global
temperature variations up to 1.28 oC were observed. Also, the assessment of the TL technique
shows that the temperature variation of the colloidal sample and excitation power are linearly
dependent, in accordance with theoretical expectations.
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Figure 37 – Temperature measurement by dual beam TL technique. (a) Averaged global tem-
perature variation for the 2.1 ×1016 m−3 colloidal sample concentration at various
laser excitation powers. (b) Averaged temperature variation as function of pumping
power for several NP concentrations, at 100 ms. (c) Theoretical averaged global
temperature variation colormap, at 100 ms. The experimental data are denoted by
the scattered circles.

(a) (b)

(c)

Source: belongs to the author.
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The assessment of sample thermal relaxation through temperature decay rate is associated
to the heat lost by convection to the surrounding medium and can be explored in dual beam TL
experiments. Interpolating experimental temperature relaxation curves using equation 4.22 yields
the heat loss parameter B. Since the beam diameter in the sample is very small in comparison
to the cuvette dimensions, it is safe to assume that convection occurs only in the faces where
the laser beam enters and exits the sample. For all measurements, the rate of constant heat loss
to the surroundings averages B = 68.3 s−1. In systems where high temperatures are achieved,
convective heat loss becomes important since it is proportional to temperature variation between
the sample and surrounding medium. The heat loss parameter, thus, is decisive in estimating the
temperatures achievable by the sample in the steady-state.

From the global temperature variation, it is possible to estimate the intermediate steady-
state temperature variation of each nanoparticle (∆Tnp) using equation 4.2, since the steady-state
global temperature variation (∆Tglobal) is established by the contribution of each individual
nanoheater. Using the experimental global temperature data obtained from experimental TL
measurements with known sample and laser parameters, the average NP temperature variation
〈∆Tnp〉 can be obtained experimentally for different excitation powers. Since the intermediate
steady-state temperature variation is independent of NP concentration (see equation 4.1), the
∆Tnp values were averaged for the different colloidal sample concentrations available. Figures
38a and 38b depicts the average intermediate steady-state temperature variation of individual
NPs (before collective heating) for various excitation powers. The faint stripe indicates the error,
considering the experimental ∆Tglobal values obtained with different NP sample concentrations.
The dashed line in figures 38a and 38b correspond to theoretical ∆Tnp results, and demonstrates
accordance with experimental findings. As expected, the nanoparticle temperature rises linearly
as excitation power increases.

Figure 38 – Average intermediate steady-state temperature variation of individual NPs. (a) From
STL measurements. (b) From DTL measurements.

(a) (b)

Source: belongs to the author.
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It is important to notice that despite TL setups being capable of measuring only small
temperature changes on optically-heated metallic colloids, our alternative approach employing
TL measurements introduce a new thermometric technique capable of obtaining the localized
temperature variation of nanoheaters with low cost and good thermal resolution. Thereafter, we
establish a technique to analyze the thermo-optic performance of optically transparent samples
containing metallic colloids.
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5 CONCLUSIONS AND FUTURE PROSPECTS

5.1 CONCLUSIONS

The implementation of optimal metallic nanoparticles for heat generation can provide
a substantial increase in the effectiveness of photothermal therapies. A new methodology to
optimize heat generation by nanoparticle means was described, and gold nanorods were optimized
to both nanosecond pulse and continuous excitation. Two figures of merit were identified to
nanosecond and continuous pumping. The Joule Number (J0) and the Steady-state Factor (S2F )
are adequate for most nanoparticle morphologies and material compositions. The results obtained
by FEM simulations show that for nanosecond pulses, the optimal nanorod dimensions are D
= 11 nm and L = 45 nm (AR ≈ 4.0) for the 800 nm laser line located at the first biological
transparency window, and D = 9 nm and L = 60 nm (AR≈ 6.4) for the 1064 nm laser line located
at the second biological transparency window. For continuous excitation, however, the S2F

indicated the use of nanostructures with longer lengths (volume), which conveys an increase in
the steady state temperature reachable by the nanorod. The optimal dimensions of gold nanorods
found for the continuous excitation regime were L = 105 nm (D = 26 nm) for optimal heating
generation at 800 nm and L = 180 nm (D = 28 nm) in case of optimal heating generation at 1064
nm.

Therefore, both figures of merit presents substantial potential and may be applied to
optimize nanoheaters other than gold nanorods. The use of optimal nanoheaters may imply a
reduction in the amount of assimilated nanoparticles required to produce a significant temperature
variation enough to induce cell death in PTT applications. The administration of a dose containing
smaller amounts of nanoparticles may lead to less cytotoxicity, while simultaneously requiring
smaller tumor uptake of nanoheaters. Such factors may be capable of reducing the risks associated
to renal clearance and shorten the way for clinical applications of metallic nanoparticle mediated
thermal therapies.

A new and simple method to characterize the thermal-optical properties of metallic
nanoparticle colloids was described. The single beam and dual-beam mode-mismatched thermal
lens technique are good and simple methods to optical heating of nanoparticle colloids. This
technique presents high accuracy, being able to detect temperature variations as low as 0.01
oC. The mode-mismatched DTL method also enables the the assessment of parameters beyond
thermal variations. For instance, its pump-probe configuration allows for real-time appraisal
of heat lost to the surrounding medium. The global temperature variation obtained by this
approach can be employed to estimate the steady-state localized temperature reached by a
single nanoheater before thermalization of the pumped region, yielding a practical procedure to
quantify the Steady-state Factor. Moreover, measurement of the transient heat loss factor B is
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an interesting tool for the evaluation of temperature dynamics in in-vitro essays. Such analysis
allows a better estimation of the temperatures reached by nanoparticle mediated heating in
in-vivo systems.

In this work, it was possible to measure average global temperature variations up to 1.28
ºC in the laser pumped region. The experimental bulk temperature variations presented a linear
dependence on either the incident pump power and metallic colloidal solution concentration, as
predicted by the theoretical thermal-lens and heating of a nanoparticle ensemble models. Such
results indicate that STL and DTL can be explored as a powerful tool for thermal analysis of
nanoheaters. Concerning themo-optical conversion of energy, in comparison to thermal imaging
cameras and thermocouples, TL methods presents higher accuracy and a fast response that allows
real-time sample evaluation. Additionally, the technique bestow the capacity of undergoing
refinements, allowing its applications on a larger variety of samples and optical regimes of
excitation.

5.2 FUTURE PROSPECTS

In possession of the two figures of merit for nanoheater selection, the optimization of
different gold nanoparticles morphologies, such as spherical nanoshells, nanocages, nanodisks
and nanoprisms must be performed to yield the best dimensions suitable to high performance
heat generation and photothermal therapy applications. Moreover, the figures of merit must
also be extended for non-metallic nanoheaters, such as semiconductor nanoparticles and other
materials that presents radiative damping.

Although the figures of optimization delivers the best nanoparticle dimensions for heat
generation to a given morphology, it does not assure that the optimal nanoparticle sizes can
undergo renal clearance in clinical applications. The exploration of different nanostructures with
distinct surface charges may allow a better excretion of nanoparticles. Charged coupled plasmon
(CCP) and charged transfer plasmon (CTP) structures can be investigated to the development of
human-friendly nanoplataforms for photothermal therapies. CCP and CTP crystals can present
absorption cross-sections comparable to bigger particles, while simultaneously showing plasmon
peak at the NIR region, rendering a convenient morphology for PTT applications. The possibility
of breaking CCP and CTP nanocrystals into smaller fragments is another encouraging feature
that may lead to breakthrough in PTT.

Even though thermal-lens techniques have seen extensive use to measure a variety of
optical and thermal properties in materials, it has never been directly employed as temperature
probe. An electronic compact device device to perform automatic nanoparticle colloid temper-
ature measurements employing STL is already under development. The DTL technique can
be modified to evaluate the temperature dynamics at the nanosecond scale. Such feat would
allow the use of DTL to experimentally appraise the Joule number of nanoheaters, as well as the
emergence of superheating phenomena around a nanoparticle. The appearance of superheating in
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plasmonic particles excited by nanosecond laser pulses can lead to a further reduction in energy
density needed to induce cell death. The DTL model for the assessment of thermal variations
can be easily modified to account for quantum yield in radiative samples, providing a technique
suitable for non-metallic colloidal nanoparticle solutions.

TL measurements will be employed to experimentally analyze the thermo-optic charac-
teristics of optimal and non-optimal Au nanorods described in this work.
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APPENDIX A – MATLAB SCRIPTS

In this section, the Matlab scripts employed throughout the progress of this research are
presented.

SIZE DEPENDENT DRUDE MODEL FOR METALLIC NANOPARTICLES

% Script criado por Túlio Pedrosa (Laboratório de Óptica Biomédica e Imagem

% - DES/CTG UFPE) - Setembro de 2019

% Este script corrige a Teoria de Drude para Metais para nanobastões de

% ouro com comprimentos variando de 5 nm a 200 nm (limite superior

% arbitrário). A permissividade bulk é obitida a partir dos índices de

% refração do ouro medidos por Johnson e Christy

clear

clc

format long

% Inicialização de parâmetros

N = 5.90e28; % Densidade de elétrons livres

e = 1.6e-19; % Carga fundamental

eps0 = 8.854e-12; % Permissividade do vácuo

me = 9.11e-31; % Massa do elétron

wp = sqrt((N*e^2)/(eps0*me)); % Frequência de plasma

y0 = 1.07e14; % Amortecimento

vf = 1.40e6; % Velocidade de Fermi

A = 0.25; % Parâmetro fenomenológico de espalhamento

% (este é um parâmetro associado as

% contribuições e-e, e-lattice e e-surface

% e e-ph. Seu valor muda para diferentes

% formatos e para diferentes materiais)

L = 100e-9; % Comprimento do bastão

D = 10e-9; % Diâmetro do bastão

AR = L/D; % Razão de aspecto do bastão

import1 = csvread(’n_(Johnson_Au).csv’,1); % Importa a parte real do

% índice de refração do ouro

import2 = csvread(’k_(Johnson_Au).csv’,1); % Importa a parte imaginária do
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% índice de refração do ouro

% https://refractiveindex.info/

wl = import1(:,1); % Importando os comprimentos de

% onda (um)

wlexport = (1e9).*wl; % Forma de "exportação" do

% comprimento de onda (nm)

n = import1(:,2); % Índice de refração (Re)

k = import2(:,2); % Índice de refração (im)

eb_r = n.^2 - k.^2; % Permissividade (Re)

eb_i = 2*(n.*k); % Permissividade (Im)

eb = eb_r + i*eb_i; % Permissividade complexa

w = (2*pi*(3e8))./wl; % Frequência angular

drude = (wp^2)./(w.*(w+i*y0));

V = (pi/4)*(D.^3).*(AR - 1/3); % Volume do nanobastão

S = pi*(D.^2).*AR; % Área do nanobastão

Leff = 4*V./S; % Livre caminho médio efetivo

yeff = y0 + A*vf./Leff; % Correção do amortecimento

drude_correction = (wp^2)./(w.*(w+i*yeff));

e = eb + drude - drude_correction; % Permissividade corrigida

er = real(e); % Parte real corrigida

ei = imag(e); % Parte imaginária corrigida

figure(1)

plot(wlexport,er); % Plota a parte real da

% permissividade corrigida

figure(2)

plot(wlexport,ei); % Plota a parte imaginária da

% permissividade corrigida

output_r = [wlexport(:),er(:,k)]; % Concatenação

output_i = [wlexport(:),ei(:,k)]; % Concatenação

nome_real = strcat(’Permissividade_Corrigida_Re.xlsx’);

nome_imag = strcat(’Permissividade_Corrigida_Im.xlsx’);

writematrix(output_r,nome_real); % Exporta em .xlsx
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writematrix(output_i,nome_imag); % Exporta em .xlsx

MIE-GANS THEORY FOR PROLATE SPHEROIDS

% Script criado por Túlio Pedrosa (Laboratório de Óptica Biomédica e Imagem

% - DES/CTG UFPE) - Setembro de 2019

% Este script calcula as propriedades ópticas e térmicas de nanobastões

% por meio da teoria de Mie-Gans para esferoides prolatos. Este script

% a correção de Drude para Metais para nanobastões de ouro descrita no

% script anterior. A permissividade bulk é obitida a partir dos índices de

% refração do ouro medidos por Johnson e Christy, e pode ser obtida em

% https://refractiveindex.info/

clear

clc

format long

% PARÂMETROS DO NANOBASTÃO

L = 75e-9; % Comprimento do nanobastão

AR = 6.7; % Razão de aspecto do nanobastão

D = L/AR; % Diâmetro do nanobastão

% CORREÇÃO DE DRUDE PARA O TAMANHO (AuNRs)

M = csvread(’Au_Bulk.csv’,1);

wl = M(:,1);

wl2 = (1e-6).*wl;

n = M(:,2);

k = M(:,3);

N = 5.90e28;

e = 1.6e-19;

eps0 = 8.854e-12;

me = 9.11e-31;

lambda_ref = 1240e-9;

wp = sqrt((N*e^2)/(eps0*me));

y0 = 1.07e14;

y0 = y0*ones(1,length(L));

vf = 1.40e6;
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A = 0.25;

epsm = 1.33^2;

eb_r = n.^2 - k.^2;

eb_i = 2*(n.*k);

eb = eb_r + i*eb_i;

w = (2*pi*(3e8))./wl2;

drude = (wp^2)./(w.*(w+i.*y0));

V = ((pi/4)*(D.^3)).*(AR - 1/3);

S = (pi*(D.^2)).*AR;

Leff = 4*V./S;

yeff = y0 + A*vf./Leff;

drude_correction = (wp^2)./(w.*(w+i.*yeff));

e = eb + drude - drude_correction;

er = real(e);

ei = imag(e);

wl_array = 200e-9:1e-10:2000e-9;

interp_r = zeros(length(wl_array),1);

interp_i = zeros(length(wl_array),1);

interp_r(:) = spline(wl2,er(:),wl_array);

interp_i(:) = spline(wl2,ei(:),wl_array);

% MODELO DE GANS PARA NANOBASTÕES

depolarization_a = (1./(AR.^2 - 1)).*((AR./(2.*sqrt(AR.^2 - 1))).*log((AR+

sqrt(AR.^2 - 1))./(AR-sqrt(AR.^2 - 1))) - 1);

depolarization_a = real(depolarization_a);

depolarization_b = (1 - depolarization_a)/2;

depolarization_c = (1 - depolarization_a)/2;

e1 = interp_r;

e2 = interp_i;

factor_abs_a = (e2./((depolarization_a).^2))./((e1 + (1 - depolarization_a)

*epsm./depolarization_a).^2 + e2.^2);
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factor_abs_b = (e2./((depolarization_b).^2))./((e1 + (1 - depolarization_b)

*epsm./depolarization_b).^2 + e2.^2);

factor_abs_c = (e2./((depolarization_c).^2))./((e1 + (1 - depolarization_c)

*epsm./depolarization_c).^2 + e2.^2);

factor_sca_a = ((e1 - epsm).^2 + ((e2.^2)/((depolarization_a).^2)))./((e1 +

((1 - depolarization_a)./depolarization_a)*epsm).^2 + e2.^2);

factor_sca_b = ((e1 - epsm).^2 + ((e2.^2)/((depolarization_b).^2)))./((e1 +

(1 - depolarization_b).*epsm/depolarization_b).^2 + e2.^2);

factor_sca_c = ((e1 - epsm).^2 + ((e2.^2)/((depolarization_c).^2)))./((e1 +

(1 - depolarization_c).*epsm/depolarization_c).^2 + e2.^2);

sum_abs = factor_abs_a+factor_abs_b+factor_abs_c;

sum_sca = factor_sca_a+factor_sca_b+factor_sca_c;

wl_trans = wl_array.’;

sigma_abs = ((2*pi)*(epsm^(3/2)).*sum_abs.*V)./(3*wl_trans);

sigma_sca = ((8*pi^3)./(9*wl_trans.^4))*(epsm^2)*(V.^2).*sum_sca;

sigma_ext = sigma_sca + sigma_abs;

J0 = (lambda_ref/(2*pi)).*(sigma_abs./V);

beta = 1 + 0.096587*(log(AR))^2;

Req = ((3*V/(4*pi))^(1/3));

S2F = sigma_abs/(beta*Req);

wlexport = (1e9).*wl_array;

% RESULTADOS

output_absorption = [wlexport(:),sigma_abs];

output_scattering = [wlexport(:),sigma_sca];

output_extinction = [wlexport(:),sigma_ext];

output_Joulenumber = [wlexport(:),J0];

output_SteadyStateFactor = [wlexport(:),S2F];

writematrix(output_absorption,’NR_AbsorptionCS.xlsx’);

writematrix(output_scattering,’NR_AbsorptionCS.xlsx’);

writematrix(output_extinction,’NR_AbsorptionCS.xlsx’);

writematrix(output_Joulenumber,’NR_AbsorptionCS.xlsx’);

writematrix(output_SteadyStateFactor,’NR_AbsorptionCS.xlsx’);

DATA PROCESSING FOR THERMAL LENS MEASUREMENTS

% Script criado por Túlio Pedrosa (Laboratório de Óptica Biomédica e Imagem

% - DES/CTG UFPE) - Janeiro de 2020
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% Este script processa os arquivos (.csv) dos experimentos de lente térmica

% de duplo feixe mode-mismatched obtidos em osciloscópio

clear

clc

% ---------------------------- Initialization -----------------------------

import1 = csvread(’ARQUIVO.csv’,1,3);

x_axis = import1(:,1);

y_axis = import1(:,2);

% --------------------------- Z-Scan parameters ---------------------------

z_op = 27.5e-3; % Comprimento Rayleigh to feixe de sonda

z_2 = 1; % Distância óptica entre amostra e fotodetector

% (em metros - feixe sonda)

w_probe = 74.4e-6; % Cintura do feixe sonda (633 nm)

w_pump = 20.3e-6; % Cintura do feixe de excitação (532 nm)

dndT = -0.8e-4; % Coeficiente termo-óptico da água

L = 2e-3; % Espessura da cubeta

lambda_probe = 633e-9; % Comprimento de onda de sonda

z_foco = 17.09; % Posição focal da amostra (mm)

z_effect = 15.33; % Posição de máximo efeito térmico (mm)

z = abs(z_foco - z_effect)*(1e-3); % Posição Z-scan

m = (w_probe/w_pump)^2; % Fator de mode-mismatch

V = z/z_op + (z_op/z_2)*(1 + (z/z_op)^2);

num = 2*m*V;

den_a = ((1+2*m)^2 + V^2)/2;

den_b = 1 + 2*m + V^2;

% -------------------------------------------------------------------------

% Detecção dos períodos de absorção e relaxação térmica

y_smooth = y_axis;

for index = 1:256

y_smooth = smooth(y_smooth);
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end

diff = y_axis - y_smooth;

fs = 1000;

[sdiff,d3] = lowpass(diff,20,fs,’ImpulseResponse’,’iir’,’Steepness’,0.95);

sdiff = smooth(sdiff);

max_diff = max(sdiff);

sdiff = sdiff/max_diff;

sdiff = abs(sdiff);

[val,pos] = findpeaks(sdiff,’MinPeakProminence’,1-1/exp(1));

period_fall = x_axis(pos(2)) - x_axis(pos(1));

period_rise = x_axis(pos(3)) - x_axis(pos(2));

time_fall = zeros(pos(2)-pos(1),1);

val_fall = zeros(pos(2)-pos(1),1);

time_rise = zeros(pos(3)-pos(2),1);

for index = pos(1):pos(2)

time_fall(index - pos(1) + 1) = x_axis(index);

val_fall(index - pos(1) + 1) = y_axis(index);

end

for index = pos(2):pos(3)

time_rise(index - pos(2) + 1) = x_axis(index);

end

time_fall_norm = time_fall - min(time_fall);

time_rise_norm = time_rise - min(time_rise);

% Interpolação do sinal DTL para obtenção dos coeficientes \theta e t_c

I0_fall = max(val_fall);

fun = @(coeff,time_fall_norm) I0_fall*(1 - (coeff(1)./2).*atan(num./(den_a

*(coeff(2)./time_fall_norm) + den_b))).^2;

initial_values = [0.5,1e-4];

[coeff,resTDL,jacTDL,covTDL,errvarTDL,errmodTDL] = nlinfit(time_fall_norm,

val_fall,fun,initial_values);

theta = coeff(1);
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tc = coeff(2);

timesDTL = linspace(time_fall_norm(1),time_fall_norm(end));

figure(2)

hold on

plot(time_fall_norm,val_fall,’ko’);

plot(timesDTL,fun(coeff,timesDTL),’-’,’linewidth’,2,’color’,’#77AC30’);

hold off

xlabel(’t (s)’,’FontSize’,12,’FontWeight’,’bold’);

ylabel(’Thermal lens Intensity (arb. units)’,’FontSize’,12,’FontWeight’,’

bold’);

box on

set(gca,’FontSize’,12,’FontWeight’,’bold’,’linewidth’,1.1);

lgd = legend(’Experimental’,’Best fit’);

legend boxoff

% Transformação do efeito de lente em variação de temperatura

window_max = 100e-3; % Janela de excitação do chopper

time_window = linspace(0,window_max,100);

syms k;

f_max = (((-2)^k)/(k*factorial(k+1))).*(1-(1./(1+2.*window_max./tc)).^k);

sum_max = symsum(f_max,k,1,100);

sum_max = double(sum_max);

deltaT_max = -((theta*lambda_probe)/(4*pi*L*dndT))*(log(1+2*window_max/tc)

+ sum_max)

deltaT_curve = deltaT_max*(-y_axis - min(-y_smooth))/max(-y_smooth - min(-

y_smooth));

figure(3)

plot(x_axis,deltaT_curve,’-’,’linewidth’,2,’color’,’#A2142F’);

xlabel(’t (s)’,’FontSize’,12,’FontWeight’,’bold’);

ylabel(’\DeltaT_{bulk} (\^oC)’,’FontSize’,12,’FontWeight’,’bold’);

box on

set(gca,’FontSize’,12,’FontWeight’,’bold’,’linewidth’,1.1);

for index = pos(2):pos(3)

thermal_decay(index - pos(2) + 1) = deltaT_curve(index);

end

% Obtenção do parâmetro associado a perda de calor (B)

thermal_decay = thermal_decay.’;

loss = @(B,time_rise_norm) deltaT_max*exp(-B*time_rise_norm);
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B0 = 60;

[B,resLoss,jacLoss,covLoss,errvarLoss,errmodLoss] = nlinfit(time_rise_norm,

thermal_decay,loss,B0);

timesLoss = linspace(time_rise_norm(1),time_rise_norm(end));

figure(4)

hold on

plot(time_rise_norm,thermal_decay,’ko’);

plot(timesLoss,loss(B,timesLoss),’-’,’linewidth’,2,’color’,’#D95319’);

hold off

xlabel(’t (s)’,’FontSize’,12,’FontWeight’,’bold’);

ylabel(’\DeltaT_{bulk} (\^oC)’,’FontSize’,12,’FontWeight’,’bold’);

box on

set(gca,’FontSize’,12,’FontWeight’,’bold’,’linewidth’,1.1);

lgd = legend(’Experimental decay’,’Best fit of B’);

legend boxoff

% Resultados

[theta,tc,deltaT_max,B]
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APPENDIX B – FINITE ELEMENT METHOD SIMULATIONS

OVERVIEW OF FINITE ELEMENT METHOD (FEM)

The Finite Element Method (FEM) is a numeric computational procedure with the
purpose of solving multiphysics systems described by differential equations under the influence
of specific boundary value problems. The employment of the FEM allows the analysis of physical
phenomena with high accuracy, yielding results in good agreement with experimental data when
compared to other numeric and analytical methods. Therefore, the assessment of a good part of
physical phenomena in research and the design of systems in engineering is performed by FEM
calculations.

The applicability of the FEM method supposes the problem to be to be subjected to
an integral law or differential equation, enabling such equations to be replaced in all domains
by a finite summation of discretized sub-domains that remain under the same physical regime.
Each sub-domain features a simple geometry in which the problem preserves continuity and
differentiability. The sub-domains are integrated and the individual results are added together.
Equation B.1 describes the reconstitution of a discretized problem, while equation B.2 shows the
discretization of a domain V into sub-domains Vi.

∫
V

fdV =
n∑
i=1

∫
V i

fdV (B.1)

in which

V =
n∑
i=1

Vi (B.2)

Suppose that a function f is a variable of a differential function. One can approximate
f as a function fi that is the linear combination of a base of building orthogonal functions{
λ1, λ2, · · · , λn

}
:

f ≈ fi (B.3)

fi =
∑
n

fnλn (B.4)
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Here, fn characterizes as the coefficients of the basic building functions. The geometry is then
discretized in smaller elements called Mesh cells, allowing the solution of complex problems
with less computational effort due to fragmentation of the problem. In such fragments, the
number of physical variables associated to the problem (that are infinitely many real variables)
are replaced by a limited number of well behaved variables. The accuracy of the FEM is related to
the type of elements associated to the model. For instance, hexahedral mesh is preferable to solve
bi-dimensional problems, while the tetrehedral one performs better in three-dimensions. The
figure 39 shows a spherical region partitioned in many sub-domains to endure FEM computation.
An increase in mesh number can lead to a refinement in accuracy, but processing times also
increase. Besides that, not always an increase in mesh number will lead to an increase in accuracy.
The steps associated to any FEM analysis are listed below:

1. Discretization of the region to be analyzed in a finite number of sub-domains (meshing);

2. Derivation of equations that govern the behavior of each sub-domain;

3. Grouping of all elements in the region undergoing analysis and conjugation of individual
results;

4. Solving set of the linear system of equations.

Figure 39 – Sub-domains in a model undergoing FEM analysis. The region is said to be meshed..

Source: adapted from (COMSOL, 2016).

In problems where EM fields are involved, the FEM approximation is implemented in
Maxwell Equations for electrodynamics. In order to be resolvable, a set of boundary conditions
and material constitutive relations are necessary. The COMSOL formulation of Maxwell equa-
tions are the same to both the Radio-Frequency - Frequency Domain module and the Waveoptics
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- Wavelength Domain module, and presents a classical analysis at macroscopic level based on the
solution of the non-homogeneous wave equation

~∇×
[
µ−1r
(
~∇× ~E

)]
− ω2ε0µ0

(
εr − j

σ

ωε0

)
~E = 0 (B.5)

in which µ0 and ε0 are respectively the vacuum magnetic permeability and electric permittivity,
and µr and εr designate respectively the relative permeability and relative permittivity of material
media associated to the problem.

Similarly, in problems where transient conductive heat transfer are involved, the Laplace
equation is implemented by FEM method. The COMSOL formulation to a generic heat-transfer
problem is given by equation B.6, where ~u is the fluid velocity and Q is the volumetric power
density.

ρCp
∂T

∂t
+ ρCp ~u · ∇T +∇ · (−κ∇T ) = Q (B.6)

SIMULATION OF METALLIC NANOSTRUCTURES IN COMSOL MULTIPHYSICS

This tutorial describes the procedures performed to simulate gold nanoparticles using
the Electromagnetic Waves model of COMSOL. Here, at the end of the simulation, the optical
cross sections of scattering, absorption and extinction of a nanoparticle are going to be obtained,
as well as the Joule number and the Steady-state factor of a single nanorod. Furthermore, this
tutorial can be employed as a basic framework to the simulation of nanoparticles of any other
material or morphology of interest.

After opening COMSOL, you will come across the New project window. In the window
New, click in Model Wizard, and after that, select 3D in the space dimension menu. It’s necessary
now to select the physical module that will be employed to analyze the problem. In Select

Physics, expand the drop-down bar Radio Frequency, and select the Frequency Domain (emw)

option and Click in Add. With such physics interface selected, click in Study and in the Select

Study screen click in Frequency Domain and after that, click in Done. A new screen with many
elements will show, as can be seen in figure 40. Take the opportunity to save the project in at a
desired location with a desired name.

In figure 40, the main screen is divided in four parts. Section 1 is the Toolbar, and has
among its functions the role of adding new and diverse elements to the project. Section 2 (Model

Builder) is the menu that allows the user to navigate throughout the project. Here, it is also
possible to perform some of the Toolbar functionalities. Section 3 (Settings) has all alterable
properties (parameters) a selected object. The section 4 (Graphics) exhibits the system geometry
and resulting curves obtained in the simulation. It is possible to rotate the geometry by holding
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Figure 40 – Screen after the project setup. This is the main project screen of COMSOL.

Source: belongs to the author.

the left click button and moving the mouse. Translation can be accomplished by holding the right
button of the mouse and dragging the cursor. In possession of such information, let’s begin the
construction of our project by defining some global parameters associated to the problem. To do
so, click in Home (toolbar), after that click in Definitions. Then, select Parameters. Notice now
that the Setting session has changed, and now it contains a table to be filled by global parameters.
Fill this table accordingly to table 3.

Table 3 – Global simulation parameters in COMSOL.

Name Expression Value Description
length L-D - -
D L/AR - Nanorod diameter
radius D/2 - Nanorod radius
L 45 - Nanorod length
AR 4.0 - Nanorod aspect ratio
r_pml 3500 - PML radius
lambda_ref 1240[nm] - -
lambda 1064 - Wavelength
t_pml 1000 - PML thickness
E_0 1[V/m] - Incident electric field
n_water 1.33 - Water refractive index
Vol (pi*((D[nm]) ˆ 3)/2)*(AR/2 - 1/6) - Nanorod volume
Sin ((n_water*(E0 ˆ 2))/(2*Z0_const)) - Poynting vector of

incident EM wave
beta 1 + 0.096587*(ln(AR)ˆ2) - S2F shape factor
Req (3*Vol/(4*pi))ˆ(1/3) - Equivalent radius

Source: belongs to the author.
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With table filled, click in Geometry 1 (model builder) and in the Length unit drop down
bar replace from m to nm. Right click Geometry 1 and select a sphere. At the sphere Settings

section, fill the field Radius and z with the parameters radius and length/2 respectively. In the
superior part of the settings menu, click Build All Objects. Repeat the step to add a second sphere.
Fill the field Radius and z with the parameters radius and -length/2 respectively. Now, add a
cylinder. Fill the field Radius and z with the parameters radius and -length/2 respectively. The
field Height must be filled with length. Click in Build All Objects. After that, in the Graphics

section, click in Go to Default View. You should now be able to see a nanorod. It is now necessary
to connect the geometries into a single entity. To do so, left click Geometry 1 in the model
builder, go to Booleans and partitions and click in Union. In the Graphics screen, select the three
geometries placed, and unckeck the field Keep interior boundaries. Click in Build All Objects.
The nanorod now must be a single entity.

Add another sphere to the problem, and fill the Radius field with r_pml. In the bottom
of the page, yet in the Settings menu, expand the Layers field and add a new layer of thickness
t_pml. In Graphics, click in Go to Default View. With the full view of the outside sphere that
limits the nanorod domain, it is now necessary to define the domains and boundaries of the
problem. Click in Definitions (toolbar) and then click in Explicit. In Geometry, enable the option
Click and Hide, and hide the spherical shell as a whole (click in the pieces to hide them). Disable
the option Click and Hide and select the remaining surface. Enable the option Click and Hide

once again, hide the surface (exposing the nanorod), disable the option Click and Hide and select
the nanoparticle. In the settings panel you must be able to notice the domains 5 and 6 selected.
Rename the label Explicit 1 to Physical Domains. In Graphics, click in Reset Hiding.

In Definitions (toolbar), click in Complement and rename its label to PML Domains. Yet
in the settings, look for the field Input Entities and click in Add in Selections to invert. A pop-up
will appear. Select Physical Domains and click in OK. Add now a new Explicit and rename it as
Nanoparticle. Hide once again the external sphere and the surface, and select the nanorod. Add
another explicit, click in Zoom Extents (graphics) and in the parameter Geometric Entity Level

(settings), replace Domain with Boundary. Select all the pieces of the nanoparticle surface and
then rename the explicit to Nanoparticle surface. Add a fourth Explicit, click in Reset Hiding,
Zoom Extents and change the Geometric Entity Level from Domain to Boundary. Select all parts
of the external surface and rename the explicit as External PML Surface. Add a fifth and a last
Explicit, change the option Domain with Boundary and rename it to Internal PML Surface. Hide
the spherical shell and select only the remaining surface.

To define the PML, click in Definitions (toolbar) and click in Perfectly Matched Layer.
In Domain Selection (settings) change Manual with PML Domains. In the bottom part of the
menu, change the option Geometry from Cartesian to Spherical. Look for the field PML Scaling

factor and define it as 0.5. Now, we proceed to add the materials of the problem. Using the
scripts provided in the previous appendix, create the real and imaginary permittivity tables of
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gold nanorods for the desired dimensions. With the files in hand, go to Definitions, and select
Interpolations. Click in Load from File, browser to the real permittivity file and select it. In
Interpolation and Extrapolation bars, change Interpolation from Linear to Cubic Spline. In the
field Function name, write eps_real. Repeat this process to the imaginary permittivity, and write
the field Function name as eps_img.

In the Model builder toolbar, right click Materials. Select Blank material. In the Ge-

ometric Entity Section change the drop down bar Selection from Manual to Nanoparticle. In
Material Contents, fill the Relative permittivity value with eps_real(lambda)-i*eps_img(lambda).
The Relative permeability and electrical conductivity must be filled with 1 and 0 respectively.
Add a new Blank material. In Selection, replace Manual with All domains. Click in domains
6 (nanoparticle) and click to Remove from Selection. Fill the permittivity, permeability and
conductivity fields with n_waterˆ2, 1 and 0 respectively. Now, we have to define the incident
electromagnetic wave that will interact with the nanorod. To do so, in Model Builder click in
Electromagnetic Waves, Frequency Domain. In Settings, replace the option Solver from Full field

with Scattered field. Bellow, in Background electric field, fill the z component with E0*exp(-

j*2*n_water*pi/(lambda[nm])*x), while keeping the x and y components null. Right click Elec-

tromagnetic Waves, Frequency Domain and select Scattering Boundary Condition. In Boundary

selection replace manual with Internal PML Surface.

It is necessary to fragment the structure into many finite elements in order to proceed
with electrodynamics calculations. To do so, in Model Builder, right click in Mesh, expand the
More Operations option and select Free triangular. In Boundary selection change the option
from Manual to External PML Surface. Click in Build All. Right click once again in Mesh,
but this time, select the Swept option. Change the Geometric Entity Level from Remaining to
Domain, and change Selection from Manual to PML Domains. Right click Swept and select
Distribution. Verify if the field Number of elements is defined as 5, and click in Build All. Right
click Mesh once again, but this time choose Free Tetrahedral. Right click Free Tetrahedral and
select Size. In the option Element size, expand the drop down bar and change from Normal to
Extra Fine. Click in Build All.

To define the analysis to be performed, the parametrization of frequency excitation is
necessary. In Model Builder right click in Study, and select Parametric Sweep. In Study Settings

click in Add. In the new parameter that showed up, select lambda. Fill the column Parameter

Value List with range(650,5,1050). In Model Builder click in Step 1: Frequency Domain, and in
the field Frequency unit, write Hz. Replace the field Frequencies with c_const/(lambda[nm]). In
the Model Builder click in Component 1. In the toolbar field Definitions, click in Component

Couplings and select Integration. Modify the field Operator Name from intop1 to intop_vol, and
change the Selection field from Manual with Nanoparticle. Repeat the same proceedings, but
instead, the name of the new operator is intop_surf. In Source Selection, modify the Geometric

Entity Level from Domain with Boundary and choose the Selection field as Nanoparticle Surface.
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Right click Definitions in Model Build, and select Variables. Fill the table that pops up accordingly
to table 4. Now we are ready to begin the simulation. Click in Study and select Compute. Wait
until the simulation is finished. The results are presented in figure 41.

Table 4 – Thermoplasmonic variables to be appraised in COMSOL.

Name Expression Value Description
nrelPoav nx*emw.relPoavx + ny*emw.relPoavy + -

nz*emw.relPoavz - Poynting vector
sigma_sc intop_surf(nrelPoav)/S_in - Scattering
sigma_abs intop_vol(emw.Qh)/S_in - Absorption
sigma_ext sigma_sc + sigma_abs - Extinction
J0 (lambda_ref/(2*pi))*(sigma_abs/Vol) - Joule number
S2F sigma_abs/(beta*Req) - Steady-state Factor

Source: belongs to the author.

To obtain such plots after the simulation is finished, it is necessary to evaluate the
calculated data. Click in Results (toolbar). In Derived Values look for Global Evaluation. In the
settings, select the field Data set and choose Study 1/Parametric Solution 1 (Sol2). In Expression,
type the name of the expression of table 4 that you desire to appraise. In this case, type all
variables, except for the Poynting vector. After the expressions were selected, click in Evaluate

and wait the results to be processed. The generated table can be exported to an external file.
Figure 41a presents the optical absorption cross-section response of the gold nanorod. Figures
41b and 41c depict the thermoplasmonic properties of such structure, i.e., its capacity to generate
heat. One can observe that all the aforementioned phenomenon occurs for wavelengths around
800 nm in this specific particle.
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Figure 41 – Simulated optical and thermoplasmonic properties of a gold nanorod (45 nm x
11 nm) obtained by FEM in COMSOL. (a) Absorption cross-section. (b) Joule
number. (c) Steady-state factor.

(a)

(b)

(c)

Source: belongs to the author.
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