
UFPE

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

Davino Mauro Tenório da Silva Júnior

A Flexible Approach For Creating and Enforcing Intrusion Detection Rules On Internet
of Things Networks

Recife

2020

Davino Mauro Tenório da Silva Júnior

A Flexible Approach For Creating and Enforcing Intrusion Detection Rules On Internet
of Things Networks

Dissertação de Mestrado apresentada ao Programa de

Pós-Graduação em Ciência da Computação na Universi-

dade Federal de Pernambuco como requisito parcial para

obtenção do título de Mestre em Ciência da Computação.

Área de Concentração: Engenharia de Software

Orientador(a): Kiev Gama

Recife

2020

 Catalogação na fonte

Bibliotecário Cristiano Cosme S. dos Anjos, CRB4-2290

S586f Silva Júnior, Davino Mauro Tenório da

A Flexible Approach For Creating and Enforcing Intrusion Detection Rules On
Internet of Things Networks/ Davino Mauro Tenório da Silva Júnior. – 2020.

 61 f.: il., fig., tab.

 Orientador: Kiev Gama.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2020.
 Inclui referências.

1. Engenharia de Software. 2. Internet das coisas. 3. Segurança. 4. Sistemas
de detecção de intrusão de rede. I. Gama, Kiev (orientador). II. Título

 005.1 CDD (23. ed.) UFPE - CCEN 2021 – 141

Davino Mauro Tenório da Silva Júnior

"A Flexible Approach For Creating and Enforcing Intrusion Detection

Rules On Internet of Things Networks"

Dissertação de Mestrado apresentada ao Programa
de Pós-Graduação em Ciência da Computação na
Universidade Federal de Pernambuco como requi-
sito parcial para obtenção do título de Mestre em
Ciência da Computação.

Aprovado em: 06/02/2020.

BANCA EXAMINADORA

———————————————————————–
Prof. Dr. Divanilson Campelo
Centro de Informática / UFPE

———————————————————————–
Prof. Dr. Everton Ranielly

Departamento de Informática e Matemática Aplicada / UFRN

———————————————————————–
Prof. Dr. Kiev Gama

Centro de Informática / UFPE
(Orientador)

I dedicate this work to God, my family, friends, and professors who supported me.

ACKNOWLEDGEMENTS

I am extremely grateful for all the support that was given to me to get this far.

First, I am grateful for the one and only God that walked and continues to walk with

me, care for me, and help me every day of my life.

I am forever grateful for the support of my family. My grandmother, Áurea Lopes,

which passed away in 2014 (before I began my Masters) but was, and still is, my greatest

example and inspiration leading me through most of my time of pursuing my Bachelor’s degree.

My aunts, Eliane Rute and Jane Albuquerque, and my uncle, André Rui, for being with me on

the bad and good moments and remaining my pillars in this world, landing me the support that

I could never repay for.

I am also very grateful for the friends I encountered during my academic life, Luís Melo,

Jeanderson Cândido, Igor Simões, and Sotero Junior. For all the laughs and funny moments at

the INES (CIn-UFPE) laboratory, and also the cries (of joy) with the adversities, I thank you

for being present and helping me get here. You deserve all the success in this world, count with

me!

I am also grateful and blessed in finding a professor that later became an advisor but

more importantly, a friend: Kiev Gama. Thank you for the unconditional support and under-

standing, especially on the personal problems that I faced during these two and a half years. I

also thank all the professors I encountered during my journey: Marcelo d’Amorim, José Suru-

agy, Paulo Gonçalves, Darko Marinov and Atul Prakash; for all the work that we did together

and support on the travels. I thank FADE, RNP and NSF for funding the project and my work.

Finally, I am forever grateful for the people not directly named here but which also

supported me, you all know who you are! My personal, childhood and work friends, people

that walked with me through this whole process. Thank you!

"Success is the sum of small efforts - repeated day in and day out." (COLLIER, 2013, p.188)

ABSTRACT

Securing IoT devices is not an easy task, but crucial due to the rapid growth of the IoT

market in the recent past. For that, Network Intrusion Detection Systems (NIDS, or IDS for

short) can be used to employ defenses on IoT environments by making use of rules to detect

anomalies on the network traffic. Due to the nature of this market, usability must be treated

as a crucial feature of these systems, especially on the process of creating the aforementioned

rules. In this work, we present IoT-Flows: a platform built on traditional IDS’s concepts such

as network monitoring and generation of alerts once an anomaly is detected, but that focus

on enabling users to create rules in an intuitive way with a user-interface (UI). To evaluate

the proposed platform focusing specifically on usability, we compared it with Suricata, the

most popular open-source IDS. We focused the evaluation on the process of creating the rules

with a usability test of both systems where the participants were assigned the task of creating

a rule to detect a popular distributed denial-of-service attack (DDoS) attack. After the test,

we applied a System Usability Scale (SUS) questionnaire, which is tool to evaluate usability

of a given system combined with open-ended questions and general observations throughout

the test. After analyzing the results of both quantitative and qualitative feedback, we found the

consensus among the participants was that Suricata, albeit providing a complete documentation,

lacks flexibility for creating the rules due to its complex syntax and non-existing user-interface

(UI), being a negative point particularly for non-experienced users. For the proposed system,

IoT-Flows, the participants highlighted its UI and flexibility as its strongest points, providing an

intuitive way of creating the rules. However, they also noted that creating the rules was slower

if compared to Suricata. During this work, we observed that usability is indeed a crucial point

that needs to be taken into consideration when developing security systems, especially if the

systems target IoT contexts, where the presence of non-IT users is a common thing.

Keywords: Internet of things; Security; Network intrusion detection systems.

RESUMO

Garantir a segurança de dispositivos da Internet das Coisas (IoT) não é uma tarefa fácil,

mas é crucial devido ao grande crescimento do mercado IoT nos últimos tempos. Para isso,

Sistemas de Detecção de Intrusão (NIDS, ou IDS) podem ser usados como defesa em ambi-

entes IoT fazendo uso de regras que detectam anomalias no tráfego de rede. Devido a natureza

desse mercado, a usabilidade deve ser tratada como uma funcionalidade crucial nesses sis-

temas, especificamente no processo de criação destas regras. Neste trabalho, nós apresentamos

IoT-Flows: uma plataforma construída a partir de conceitos tradicionais de IDS como monitora-

mento de rede e geração de alertas quando uma anomalia é detectada, mas que foca em permitir

que usuários criem regras numa forma intuitiva por meio de uma interface de usuário (UI). Para

avaliar a plataforma proposta focando especificamente em usabilidade, nós a comparamos com

Suricata, a mais popular IDS de código aberto. Nós focamos especificamente no processo de

criação de regras com um teste de usabilidade onde aos participantes foi dada a tarefa de criar

regras para detectar um popular ataque distribuído de negação de serviço (DDoS). Depois do

teste, nós aplicamos o questionário SUS, que é uma ferramenta para avaliar usabilidade de um

dado sistema combinado com perguntas abertas e observações gerais feitas durante o teste. Após

analisar os resultados do feedback quantitativo e qualitativo, o consenso entre os participantes

foi de que Suricata, apesar de fornecer uma documentação completa, tem menor flexibilidade

para criação de regras devido à complexidade de sua sintaxe e a não existência de uma inter-

face para o usuário, sendo este um ponto negativo particularmente para usuários inexperientes.

Para o sistema proposto, IoT-Flows, os participantes destacaram sua UI e flexibilidade como

um dos pontos principais, provendo uma forma intuitiva de criar as regras. Apesar disso, eles

também pontuaram que a criação das regras foi mais lenta se comparada ao Suricata. Durante

este trabalho, nós observamos que a usabilidade é um ponto crucial que deve ser levado em

consideração no desenvolvimento de sistemas de segurança, especialmente sistemas que focam

em contextos IoT onde a presença de usuários fora da área de tecnologia é comum.

Palavras-chave: Internet das coisas; Segurança; Sistemas de detecção de intrusão de rede.

LIST OF FIGURES

Figure 1 – A simple IDS setup . 21

Figure 2 – Suricata Multithread Architecture . 24

Figure 3 – Suricata’s Process for Creating a Rule 25

Figure 4 – Suricata’s Main Configuration File . 26

Figure 5 – Original MAPE-K Architecture. 28

Figure 6 – Architecture of the IoT-Flows platform. 28

Figure 7 – JSON representing the fields of a network packet. 28

Figure 8 – Analyzer Web Server . 30

Figure 9 – IoT-Flows Process for Creating a Rule 30

Figure 10 – List of Rules on IoT-Flows . 31

Figure 11 – Form used to create a rule on IoT-Flows 31

Figure 12 – Suricata Setup . 38

Figure 13 – IoT-Flows Setup . 39

Figure 14 – Experiment Latin Square Order of Platforms 40

Figure 15 – Group 1 - SUS Boxplot on Suricata 43

Figure 16 – Group 2 - SUS Boxplot on Suricata 44

Figure 17 – Group 1 and 2 - SUS Boxplot on Suricata 44

Figure 18 – Group 1 - SUS Boxplot on IoT Flows 45

Figure 19 – Group 2 - SUS Boxplot on IoT Flows 45

Figure 20 – Group 1 and 2 - SUS Boxplot on IoT Flows 46

LIST OF TABLES

Table 1 – State-of-the-art solutions found in our non-exhaustive search, categorized

by the IoT Attacks taxonomy defined by Nawir et al. [1] 21

Table 2 – Disposition of Participants . 36

Table 3 – Steps executed on the usability test. 40

Table 4 – SUS Average Score . 43

Table 5 – Key phrases found on the coding process for the answers of Open Ended

Question(OEQ1) . 46

Table 6 – Key phrases found on the coding process for the answers of Open Ended

Question(OEQ2) . 48

Table 7 – Key phrases found on the coding process for the answers of Open Ended

Question(OEQ3) . 48

Table 8 – Group 1 Experiment Data . 50

Table 9 – Group 2 Experiment Data . 50

LIST OF ACRONYMS

IoT Internet of Things

IDS Intrusion Detection System

SUS System Usability Scale

OEQ1 Open-ended Question 1

OEQ2 Open-ended Question 2

OEQ3 Open-ended Question 3

CONTENTS

1 INTRODUCTION . 14

2 BACKGROUND . 17

2.1 IoT Security . 18

2.1.1 Vulnerabilities . 18

2.1.2 Solutions . 19

2.2 Intrusion Detection Systems . 20

3 TARGET PLATFORMS . 23

3.1 Suricata . 23

3.1.1 Architecture . 23

3.1.2 Rules Mechanism . 23

3.2 IoT-Flows . 25

3.2.1 Architecture . 27

3.2.2 Rules Mechanism . 30

4 USABILITY TEST . 33

4.1 Methods . 33

4.1.1 Experimental Design . 33

4.1.2 Questionnaire . 35

4.1.3 Participants . 35

4.2 Attacks . 36

4.3 Setup . 37

4.4 Activity Steps . 39

5 RESULTS AND DISCUSSION . 42

5.1 General . 42

5.1.1 System Usability Scale (SUS) . 42

5.1.2 Open-ended questions . 46

5.2 Observations . 49

5.3 Discussion . 50

5.4 Threats to Validity . 51

5.4.1 External Validity . 51

5.4.2 Internal Validity . 52

5.4.3 Construct Validity . 52

6 RELATED WORK . 53

7 CONCLUSIONS . 55

REFERENCES . 57

141414

1 INTRODUCTION

The Internet of Things (IoT) is built on the concept of connecting physical devices

capable of communicating with each other [2]. These devices, or "things", have the ability to

use data from the surroundings, effectively exchanging this data through the Internet with other

devices (or things).

The IoT paradigm comes with opportunities to built more secure environments (e.g., us-

ing cameras), improved medical care (e.g., using health devices such as real-time monitors) and

industry efficiency (e.g., using sensors to monitor excluded areas without human intervention).

These devices are often heterogeneous on its nature and contexts, and distributed on multiple

areas. From (Smart) Homes, to (Smart) Industries and (Smart) Cities, devices that were once

disconnected are now connected with embedded sensors capable of collecting real-time data.

Data collected by IoT devices is often sensitive enough to raise concerns involving se-

curity and privacy. This led to security on IoT to be a highly trendy topic in the last decade.

Among possible reasons we can enumerate two. First, the IoT market has been increasing

rapidly, with latest predictions on 24 billion connected devices by 2020 [3]. Second, devices

that are part of day-to-day life of consumers have been actively targeted by attackers due to

sensible information carried by those devices [4].

IoT devices are essentially network devices, therefore susceptible to traditional network

attacks. This is demonstrated by the increasing number of incidents involving IoT devices for

distributed denial-of-service (DDoS) attacks in the last year, with the number of IoT devices

involved increasing at an astounding rate of 300% [5].

Although different approaches and tools exists to address IoT threats, not all of them are

effective enough. Because IoT devices effectively work with data on multiple network layers,

it is important for security solutions to cover all layers. However, solutions often act on a single

network layer, forcing the user to have multiple tools in place as to prevent the attacks. Also,

these solutions do not provide any means to extend the tool in question for new attacks, therefore

lacking flexibility. Even if some of them do provide means to extend them, e.g., add new rules

to an Intrusion Detection System to enable the tool to detect new attacks, this process is overly

complicated even to IT domain’s users [6; 7].

One type of solution addressing IoT threats is Network Intrusion Detection Systems

(NIDS, or IDS, for short). Essentially, IDS are tools (either hardware, software, or both) used to

monitor network traffic by looking for suspicious behavior [8]. Due to the rapid growth of the

IoT market and with its market share being represented mostly by consumers on Smart Home

contexts [9], it is important for these systems to be easy to use and extend. For example, in

15

a real world scenario where multiple IoT devices exist in a Smart Home, these systems make

use of rules which can be created by the user and serve the purpose of detecting anomalies

on the network traffic involving the devices. Because of that, usability stands as one of the

crucial features of these systems, specifically on the process of creating the aforementioned

rules. However, it is often neglected, as demonstrated by previous studies, which showed that

usability was a difficult challenge for traditional Intrusion Detection Systems (IDS)s as the rules

created and enforced on these systems proved to be non-intuitive and difficult to understand

[7; 6].

In this work, we propose a platform that enables users to create rules in an intuitive

way via a user-interface (UI), while keeping the core features of traditional Intrusion Detection

Systems (IDS)s with network monitoring and detection of anomalies using a pattern-matching

method, commonly used on Signature-based systems. Although the main contribution of this

work (i.e., the platform) does not limit itself to a specific IoT context (e.g., Enterprise IoT,

Industrial IoT and Consumer IoT), it is important to notice that the platform enables even non-

IT users to be able to create rules capable of detecting IoT threats in a seamless manner, which

is a common scenario that exists on Consumer (or Smart Home) IoT context.

To evaluate the proposed platform focusing specifically on usability, we compare it with

a traditional and the most popular [10] open-source IDS, Suricata [11]. We focus specifically

on the process of creating the rules with a usability test of these systems where the participants

were assigned the task of creating a rule to detect a popular DDoS attack. After the test, we

applied a System Usability Scale (SUS) questionnaire (which is a tool to evaluate usability of a

given system) together with open-ended questions as to gather both quantitative and qualitative

feedback.

The remainder of this work is structured as follows:

⌅ Chapter 2 presents a background of the solutions targeting IoT network threats, fo-

cusing specifically on Intrusion Detection Systems (IDS);

⌅ Chapter 3 introduces the target platforms and discuss their core process for creating

the rules;

⌅ Chapter 4 describes the usability test used for comparing IoT-Flows and Suricata

focusing specifically on the process of creating the rules;

⌅ Chapter 5 discuss the results of the usability test in terms of both qualitative and

quantitative feedback;

⌅ Chapter 6 presents relevant work related to IoT security in general, focusing on IDS

and and Usability;

16

⌅ Chapter 7 draws our conclusions and presents future work.

171717

2 BACKGROUND

The IoT has come from promise to reality and forms the state-of-the practice for con-

strained networks today. In simple terms, an IoT network is built by multiple interconnected

embedded devices which can be controlled either locally or remotely using mechanisms such

as a mobile app [12]. Devices range from smart lamps to washing machines and effectively

replace traditional commodities of the everyday house, also appearing in critical areas such as

hospital’s health monitors and autonomous car’s sensors.

The concept of IoT cannot be separated from network, as IoT devices are essentially

network devices on their core. An IoT network and the smart environment it creates is built

around sensors and actuators that work together to gather and operate with different types of

information. Although the nature of this information varies, it is, more often than not, sensitive

in such a way that it raises concern to the adoption of the IoT paradigm [13]. Consider for

example a scenario where an attacker gains access to simple information such as a smart light

schedule, e.g., the exact time when it turns on/off regularly. With this information in hand, a

robber can infer the time when the house will probably be empty. By hacking the house’s smart

lock, for example, the attacker essentially gains access to a empty house. This scenario is not

far from reality as IoT devices such as smart lights and locks are often plagued with several

vulnerability issues, as reported in previous studies [14; 4]. This demonstrates that Security and

Privacy has not been taken into consideration by manufacturers of IoT devices when releasing

products to the general public [4].

IoT devices, being network appliances, are susceptible to various security threats that

plagued traditional computers over the years such as distributed denial-of-service (DDoS) at-

tacks. The combination of constrained resources (which leads to less security mechanisms to

avoid hacking those IoT devices) and also its greater numbers if compared to computers is dan-

gerous. Both new and traditional attacks plague IoT devices, as shown by Nawir et al. [1]. This

was also made public by the (in)famous Mirai botnet attack that occurred on 2016 (the largest

of its kind at the time), where a series of DDoS attacks were launched across the US using

common vulnerabilities found on IoT smart cameras and DVR players [15].

In the next sections, we will focus on the security aspect of IoT, first presenting the

different type of network attacks, and then, the tools and solutions that exists to mitigate those

attacks.

2.1. IOT SECURITY 18

2.1 IOT SECURITY

Different approaches and tools addressing security of IoT networks were presented in

the recent past. Due to a large number of attacks, it is important to categorize them to have a

better understanding and appropriately provide solutions to detect and neutralize such threats.

Nawir et al. [1] proposed a categorization for the different types of IoT attacks using a fine-

grained classification based on TCP/IP network layers. We extended the work using a non-

exhaustive search for different solutions and tools proposed to tackle each one of these type of

attacks. In the following subsections, we first revisit Nawir et al. categorization on the different

network attacks targeting IoT devices. Then, we present the state-of-the-art solutions for each

attack found in our non-exhaustive search.

2.1.1 Vulnerabilities

The three pillars of Security for any type of system (including IoT) are the cornerstone

to understand the different types of vulnerabilities on these systems. The CIA Triad, represented

by Confidentiality, Integrity and Availability have been widely used on the academic world and

shaped how security is implemented [16].

Confidentiality, as first introduced by the Bell-La Padula Model [17], established rules

to protect and limit access to information, focusing on granting access only to those who "need

to know". Integrity, introduced by the Biba Model [18], focused on preventing data modification

by unauthorized parties and maintain data consistency. Availability, introduced by the Denning

intrusion-detection model [19], was based the basics for a real-time intrusion detection system,

or IDS (which is later discussed on this Chapter). The main goal of this model was to show how

suspicious use-patterns could be detected by closely monitoring the system.

The vulnerabilities described below are centered on IoT systems and goes against one

or more of the security pillars. Table 1 shows the attacks distributed on the different TCP/IP

layers: Physical, Data Link, Network, Transport and Application; as described by Nawir et

al. [1].

In the Physical layer, Jamming consists on constantly, deceptively or randomly com-

promising the communication channel with meaningful data, whereas Tampering is physically

attacking the device [20].

On the Data Link layer, attacks are classified as collision, resource exhaustion, and

unfairness. Collision consists of sending packets at the same time of legitimate data packets,

harming specific packets instead of the whole channel [20]. Resource Exhaustion is a type of

attack that force the device to consume its resources deliberately, for example, sending multiple

requests to devices that use batteries until the battery dies. Some MAC protocols give priority

2.1. IOT SECURITY 19

to devices that are very low on battery, the Unfairness attack consists in creating a low battery

device to have priority when sending packets denying real traffic [20].

It is, however, on the Network layer that the majority of attacks are reported. The

attacks based on Spoofed, Altered or Replayed routing information are based on unprotected

ad-hoc networks, where the routing can be compromised. Selective forwarding is related to a

denial of service on a specific node with packets being dropped. Sinkhole consists of a network

node pretending to have the shortest path to other node in order to drop packets, modify data

or interfere in clustering algorithms. Sybil attacks are based on a node obtaining multiple fake

identities and misleading other nodes on the network. Wormholes attacks are based on different

devices on distinct connected networks, where the data from one network is sent to another in

order to create real, but misleading information. HELLO messages are used by some protocols

to establish connection or neighborhood relation and are used with a high power transmitter to

create fake proximity relations. Acknowledgment spoofing uses ack messages to pretend that a

disabled node is alive or the connection between two nodes is strong than it apparently is.

Regarding the Transport layer, Flooding consists of exploring the natural vulnerabil-

ities of TCP and UDP protocols as the UDP have no flow control and the TCP protocol is

vulnerable to SYN (new connection request) flood. De-synchronization is the interference of

an attacker in order to interrupt an active connection between two nodes, using fake packets

containing error or specific control flags [21].

On the Application layer, Reliability issues are often related to execution problems like

a buffer overflow. Cloning is the capability of attackers to steal information from devices or

steal the device credentials.

2.1.2 Solutions

Building on the taxonomy of the IoT vulnerabilities previously described, we did a non-

exhaustive search with the main goal of distributing the state-of-the-art solutions on the different

network layers presented [22]. Table 1 shows the results.

Starting on the Physical layer, Namvar et al. presented a novel anti Jamming strat-

egy which promotes an IoT controller to protect the IoT devices against malicious radio jam-

mers [23]. For Tampering attacks, a team at the NEC Corporation developed a lightweight-

architecture for tampering detection on IoT devices, using real-time inspection with no impact

on the device normal operations [24].

On the Data Link layer, Collision attacks are similar to jamming, thus inheriting the

same solution. Ruckebusch et al. presented a new architecture designed with IoT in mind that

mitigates Exhaustion attacks, an after-effect of the previous attacks [25]. Regarding Unfair-

ness attacks, Djedjig et al. presented a trust-based defense model to detect malicious behavior,

2.2. INTRUSION DETECTION SYSTEMS 20

calculating trust levels for participating nodes [26].

On the Network layer, solutions often tackle more than one type of attack. SVELTE

is one such case, applying real-time intrusion detection to detect Spoofing and Sinkhole at-

tacks [27]. Huijuan et al. describe a system that uses watermarked packets to identify whether

a network node is doing a Selective Forwarding attack, using a trust value to identify how many

marked packets are dropped related to normal packet loss, skipping nodes with low trust [28].

Due to the fact of Sybil attacks are based on creating fake nodes in networks, Sohail et al. de-

veloped a system based on device mobility that is capable of differentiating if a node is fake or

not by reading the RSSI (Received Signal Strength Indication) pattern [29]. For Pongle et al.,

the Wormhole attack is very location related, so the developed system periodically broadcasts

the nearby RSSI. Then, this information is used by other devices to infer if a node is nearby

or not, classifying it as compromised [30]. Singh et al. also used the RSSI but to mitigate

HELLO attacks, considering that devices have a homogeneous signal strength, any other value

too different is considered strange. If the value is close to the standard, the node will be asked to

solve a puzzle that increases exponentially in difficulty per HELLO message. If the node fails

to answer in an assigned time, the node is labeled as strange [31].

The Flooding attack is commonly used on the Transport layer for distributed denial-

of-service (DDoS) in IoT environments. Dao et al. presented how attack behavior learning can

be used to detect flooding attacks with smart filters distributed on the network [32]. Desynchro-

nization attacks can be mitigated using authentication protocols like the one proposed by Fan et

al. using an RFID protection scheme [33].

In the Application layer, common defenses include access policies to control informa-

tion flows between applications and IoT devices. One such solution was presented by Demetriou

et al. with HanGuard, applying SDNs to enforce policies on Smart Home networks [34]. An-

other approach involves increasing data security on IoT applications. Fernandes et al. devel-

oped FlowFence, a framework that enables developers to secure function executions involving

sensitive data in Android-OS’s created processes [35].

2.2 INTRUSION DETECTION SYSTEMS

The state-of-the-art solutions presented on Table 1 are essentially ad-hoc solutions tai-

lored specifically for each type of attack. There is one type of solution, however, that stands

out as it usually focus on different network layers and cover different type of attacks: Network
Intrusion Detection Systems, or (N)IDS for short.

An IDS is a tool that analyze network traffic by monitoring network nodes (e.g., the IoT

devices) and its data packets with the goal of detecting suspicious behavior [8]. This analysis

is usually done by identifying signature of well-known attacks. Once detected, the IDS triggers

2.2. INTRUSION DETECTION SYSTEMS 21

Layer Attacks Methods/Strategies State-of-the-art solution

Physical
Jamming Creates radio interference and exhaustion on IoT devices Namvar et al. [23]

Tampering Creates compromised nodes NEC Corporation [24]

Data Link
Collision Simultaneous transmission of two nodes on the same frequency Namvar et al. [23]

Exhaustion By repetetively colliding the nodes Ruckebusch et al. [25]

Unfairness Using above link layer attacks Nabil et al. [26]

Network

Spoofed, altered or replayed

routing information

Creates routing loops, extend or shortening sources routes,

attracting or repelling network from select nodes.
Raza et al. [27]

Selective forwarding Choose what information to gather before transmitting. Deng et al. [28]

Sinkhole Compromised node tries to attract network traffic by fake advertising its fake routing update Raza et al. [27]

Sybil Single node duplicates its node to be in multiple locations. Abbas et al. [29]

Wormholes Selectively tunneling or retransmit information to the IoT devices. Pongle et al. [30]

HELLO flood Uses HELLO packets as weapon to launch the attack on IoT system Singh et al. [31]

Acknowledgement spoofing Spoof the link layer acknowledgments for overhead packets. Raza et al. [27]

Transport
Flooding Repeat the request of a new connection until the IoT system reaches maximum level. Dao et al. [32]

De-synchronization Disruption of an existing connection. Fan et al. [33]

Application
Clock skewing, Selective

message forwarding, Data

aggregation distortion

The adversaries usually masquerade like normal behavior in IoT system. Attackers also

can still choose a message that he/she intend in the IoT system and launched their own

malicious activities.

Demetriou et al. [34]

Fernandes et al. [35]

Table 1 State-of-the-art solutions found in our non-exhaustive search, categorized by the IoT Attacks
taxonomy defined by Nawir et al. [1]

an alert to the users or even an automated response such as disconnecting a suspicious device

from the network. Figure 1 shows a simple IDS setup, with devices such as IoT’s smart bulbs,

smart door locks, a computer and smartphone connected to a wireless modem/HUB. An IDS

system is also connected to the HUB, monitoring the network traffic coming from the devices.

Figure 1 A simple IDS setup

There are mainly three types of IDS: Anomaly-based, Specification-based, and Signature-

based, each focusing on different characteristics while monitoring the network traffic to detect

threats [36]. In this work, we focus on the Signature-based IDS type due to its popularity on the

IoT context [8].

2.2. INTRUSION DETECTION SYSTEMS 22

Anomaly-based IDS. An anomaly represents a deviation of an expected behavior, which

on network contexts comes from monitoring regular traffic, devices, users, etc. Events can be

either static or dynamic, e.g., failed login attempts and count of emails sent. An Anomaly-

based IDS compares normal traffic and looks for these type of events to recognize possible

threats [37].

Specification-based. Specification-based IDS are similar to Anomaly-based IDS in the

sense that they also detect a deviation from the expected behavior. However, instead of using

a predefined set of events to detect an anomaly, this type of IDS uses manually developed

specifications that capture legitimate system behaviors [38].

Signature-based IDS. A signature-based IDS employs a pattern matching strategy

where the system uses a predetermined set of well-known patterns to detect whether the incom-

ing monitored network packets are malicious or not [36]. Tools such as Zeek [39], Snort [40]

and Suricata [11] are examples of these type of systems. They enable users to create their own

rules and share them through the community, amplifying the capability to detect network threats

as users can download the shared rules.

Signature-based, similarly to other types of IDS in general, have some limitations how-

ever. Due to the rapid growth of network traffic and complexity of network attacks, it becomes

increasingly difficult for a signature-based IDS to keep up with current threats [41]. Recall that

signature-based IDS are based on patterns (or rules), which are applied in real-time to the net-

work traffic being monitored as to detect suspect activity, generating alerts to do so. Failing to

generate an alert during an attack (false negative) or generating alerts to benign network traffic

(false positive) can be both critical to the devices being monitored, possibly compromising the

whole network.

These systems need to be extensible as to keep up with current threats. With the rules

(or patterns) created representing the core of an IDS, they should be as intuitive as possible,

which forms the base concept of usability of an IDS [6; 7]. Measuring usability of an IDS (or

any system for that matter) presents a challenge as usability itself is a subjective concept and not

easily measurable like variables such as processing time, false positive/negatives and memory

consumption, which previous works covered in detail [36; 42; 37; 43].

232323

3 TARGET PLATFORMS

In this chapter, we describe two IDS platforms, Suricata, and IoT-Flows. The rationale

for focusing on these specific systems is that the former is the most popular traditional IDS [10]

not targeting IoT devices specifically, with the latter focusing on the IoT context, both of them

being signature-based IDSs. We give a general overview of both platforms while focusing on

the mechanism to create the rules, which is the focus of this work.

3.1 SURICATA

Suricata [11] is an open-source Signature-based IDS originally conceived in 2009 by the

US Department of Homeland Security along with a consortium of private companies forming

the Open Information Security Foundation (OISF), with its first version coming in 2010.

Suricata was based on Snort [40] in such a way that the rules written on Snort can also

be used on Suricata interchangeably. One improvement over its predecessor, however, is that

Suricata incorporates a new Hyper-Text Transfer Protocol (HTTP) parser capable of examining

HTTP traffic for traditional attack-threats that were known for circumventing Snort along with

older IDSs.

3.1.1 Architecture

Suricata is built around a multi-thread architecture, which enables smarter decisions on

how to split processing and coordinate pattern matching between the threads while monitoring

network traffic. For that reason, Suricata is able to take advantage of multiple operating CPUs

while executing its pattern-matching on multiple threads but on the same detection engine [44].

Figure 2 shows the multithread architecture of Suricata. Once acquiring the data packets

from the network, Suricata decode the packets and begins a pattern-matching process using its

rules in multiple threads, trying to identify signatures of well-known threats. The output are the

alerts generated once a pattern is matched, or none at all for benign network traffic.

It is important to clarify that, although being the most popular open-source IDS (together

with Snort) [10], there is a clear lack of documentation available regarding the platform’s

architecture. Therefore a perspective about the components that comprise Suricata will not be

presented.

3.1.2 Rules Mechanism

A rule on Suricata is the defacto method for detecting threats using this platform. Be-

ing a Signature-based IDS, Suricata uses these rules (or signatures) to match them against the

network traffic [45].

3.1. SURICATA 24

Figure 2 Suricata Multithread Architecture

1 alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"ET DOS ICMP Path MTU lowered below
,! acceptable threshold"; itype: 3; icode: 4; bytes_test:2,<,576,6; byte_test:2,!=,0,7,
,! sid:2001882; rev:10;)

Listing 3.1 Suricata’s Rule to detect an ICMP Flood Attack

A rule consists of three components:

⌅ Action: Determines what happens when the signature is matched;

⌅ Header: Defines the protocol, IP addresses, ports and direction of the rule;

⌅ Rule Options: Define the specifics of the rule.

Consider the rule shown at Listing 3.1, which serves the purpose of generating an alert

in case an ICMP Flood Attack is detected. In this example, the part "alert" is the action,

"icmp $EXTERNAL_NET any -> $HOME_NET any" is the header and the remaining text are

the options of the rule. For the action, you have four different values (pass, drop, reject and

alert), all self explanatory and reflecting actions to be taken involving the network packets. For

example, the alert word means that it would trigger an alert when a signature matches a network

pattern. On Suricata, the alert means a message on the console, with additional actions being

possible using external solutions such as Firewalls that capture Suricata’s events.

The part concerning the header options contains three main points: (i) protocol; (ii)

source and destination addresses; and (iii) port addresses. The protocol tells Suricata which

network protocol it looks while trying to match the signature to the network packets. Currently

Suricata accepts four basic protocols TCP, UDP, ICMP and IP network packets together with

seven different applications protocols such as HTTP and SMTP. The addresses and ports tell

Suricata which direction to consider when trying to match a signature to a certain network flow.

Still considering Listing 3.1, the "$EXTERNAL_NET" part represents the source of the traffic

whereas "$HOME_NET" represents the destination of the traffic (notice the direction of the

3.2. IOT-FLOWS 25

directional arrow between them). The variables "HOME_NET" and "EXTERNAL_NET" tells

Suricata to consider all addresses on the local and external network, respectively. Notice that,

instead of variables, one can also choose to specify IP addresses (both IPV4 and IPV6) as well

as IP ranges. The user also can specify which specific port to consider, both on source and

destination. The word any can be used interchangeably here, meaning any port.

Figure 3 Suricata’s Process for Creating a Rule

The process of creating a rule for Suricata can be seen in Figure 3. First, the user

should create a file adding the name of the newly created file with the extension ".rules", that

denotes a rule to be loaded by the Suricata platform. Then, the user writes the signature on

this file as in Listing 3.1. Notice this assumes that the user had either analyzed the network

traffic as to obtain sufficient information for identifying a signature of an attack or obtained this

information elsewhere. After creating the rule file, the user edits Suricata’s main configuration

file (usually located on /etc/suricata/suricata.yaml) adding the name of the newly created file

(as seen in Figure 4). Finally, the user (re)compile Suricata by restarting it so it can reload the

configuration file and the newly created rule.

3.2 IOT-FLOWS

The IoT-Flows platform was originally conceived on a project of the same name in 2019

as a means to ensure secure communication flows in IoT networks. It naturally evolved to fill a

gap on IDSs, as these systems, more often than not, do not cover all network layers or provide

an easy way to extend them for new attacks as discussed at chapter 2. The project [46] is part of

a collaboration between USA and Brazil with the National Science Foundation (NSF) and Rede

Nacional de Ensino e Pesquisa (RNP) as its funding agencies, respectively. The system was

designed and built on the Centro de Informática (CIn) of the Federal University of Pernambuco,

with support of researchers from the University of Michigan (UMICH) and the University of

Illinois at Urbana-Champaign (UIUC).

The IoT-Flows platform is built on the principle of autonomous computing [47]. The im-

portance of autonomic systems for IoT security was already pointed out in a review that gathers

different solutions emphasizing on autonomic computing to mitigate IoT threats [48], although

with a limitation of typically addressing just one or sometimes two layers from TCP/IP and

3.2. IOT-FLOWS 26

Figure 4 Suricata’s Main Configuration File

providing no means to extend to new threats. Besides the architectural approach, the concepts

of self-healing and self-protection are the main aspects taken from the self-* principle.

IoT-Flows is a system that employs this autonomic approach in a distributed architecture

with multiple components, each one possessing a specific and unique responsibility. Following

an old design principle–Separation of Concerns–one can see each component as a module ad-

dressing a different concern, i.e., a problem [49]. A component can, for example, deal with the

problem of monitoring the network in a distributed manner and filter the network traffic, while

another component analyzes this data and look for signs of suspicious behavior. This separation

of concerns alleviates the complexity of a security enforcement system monitoring different net-

works with heterogeneous devices. The architecture of the system is based on the MAPE-K, a

traditional architecture blueprint originally designed for self-adaptive systems [47]. This archi-

tecture consists on five main components (seen in Figure 5): Monitor,Analyze,Plan,Execute and

Knowledge. The Monitor component collects data from the managed resource, which is then

passed to the Analyze component that performs complex data analysis and is influenced by the

Knowledge component. The Plan component holds the actions needed to achieve a predefined

goal. Finally, the Execute component changes the behavior of the resource that is managed

based on the actions received from the Plan component [47].

The IoT-Flows platform focuses on surveilling communication between IoT devices. It

3.2. IOT-FLOWS 27

acts on the different network layers, providing a multilayer defense for IoT environments. The

system is able to monitor the traffic on the different WiFi networks that the smart devices are

connected to. It also provides extensibility, allowing the user of the system to incorporate new

attacks into the defense model, in the form of Complex Event Processing (CEP) rules, which

consists of an approach that allows the system to analyze streams of data in real-time. Currently,

we have developed patterns against attacks in three TCP/IP layers: Network, Transport, and

Application layers. For instance, while monitoring the network, the system is able to detect

that an IoT device is being targeted for Acknowledgement Spoofing with a fake device trying

to masquerade the official device. At the same time, on the transport layer, the attacker would

be flooding the IoT device with multiple requests, also acting on the application layer, trying to

masquerade normal behavior requests, like turning the device on or off. The system is able to

detect any of these behaviors while monitoring the network traffic and applying pre-configured

rules that analyze the packets being sniffed. Once a suspicious behavior is detected, the system

can alert the user or block all requests directed to the IoT device in question, therefore stopping

the attack.

IoT-Flows allows the user to download new security patches that provides detection of

new attacks while also providing manual configuration if needed. We have tested the approach

of having an extensible mechanism based on Complex Event Processing rules that allows to

easily include the identification of new attacks. Some drawbacks are the need to understand

the rule language of the CEP Engine, 1 Esper, and understanding the metadata of the packet

structure in order to write the rules. The process of creating the rules is explained in detail

on subsection 3.2.2.

3.2.1 Architecture

Based on the architectural parts of the MAPE-K blueprint [47], IoT-Flows is formed

by the components shown in Figure 6. We describe each component below according to their

matching role on the MAPE-K architecture (Figure 5). Notice that the Knowledge (K) MAPE-

K component is absent as we currently do not make use of any approach (e.g., machine learning)

to analyze historical data on IoT-Flowsś architecture, although this is envisioned to be explored

in future work.

Flow Monitors. The flow monitor relates to the Monitor component on the MAPE-

K architecture. Its main responsibility is to aggregate and filter network traffic data, i.e., the

resource that is monitored, generating “events” to be analyzed by the Analyzer component.

All flow monitors are connected to the Analyzer component and, after decoding the network

packets, periodically send the aggregated traffic data to the Analyzer component in a platform-
1www.espertech.com/esper

3.2. IOT-FLOWS 28

Figure 5 Original MAPE-K Architecture.

Figure 6 Architecture of the IoT-Flows platform.

specific format containing the possible network packet fields. Figure 7 shows the JSON message

that is sent to the analyzer by the monitors containing the possible network packet fields that

can be used on the creation of rules.

Figure 7 JSON representing the fields of a network packet.

IoT-Flows has 2 types of monitors, one targeting the first and second TCP/IP layers

(Physical and Data Link), and the other focusing its efforts on the remaining layers (Network,

Transport, Application). The rationale for that is because monitoring the top TCP/IP layers often

involves analyzing encrypted network packets. Thus, it is imperative to the top-layer monitors to

be connected directly to the router that has the encryption key, enabling the monitors to relay the

unencrypted information to the Analyzer. For that reason, the top-layer monitors are connected

3.2. IOT-FLOWS 29

1 select * from NetworkPackets where ’ICMPType’ = 3 and ’ICMPCode’ = 3 group by ’dstAddrMac’
,! having count(*) > 250

Listing 3.2 Translated query on CEP Analyzer to detect an ICMP Flood Attack.

directly to the router. Monitoring the physical and data link layer, however, does not involve

any encrypted information from the network packets. This enables these type of monitors to

be distributed on the network without being directly connected to the router, monitoring the

wireless network and its devices.

Pattern Mapper. This is a core component of the platform and the focus of this work

with the largest contribution from the authors (together with the Analyzer). This component

relates to the Analysis part of the MAPE-K architecture and has the goal of maintaining the

rules of the IoT-Flows platform.

A Pattern maps a rule to a certain action. For example, one can create a rule to block

flows from a certain IoT device to an unwanted address. The system detects this behavior trying

to match the pre-defined rules to the network data received from the Monitors. Then, once

matched, the system performs a pre-configured action, e.g., alert the user or block the network

request. A support application allows IoT-Flows’s users to write these rules and deploy them

directly into the system in real time. This component also has an API which is consumed

directly by the Analyzer and has the responsibility of storing and managing all rules created on

the system.

CEP Analyzer. This component also refers to the Analysis part of the MAPE-K archi-

tecture. Its main responsibility is to receive the aggregated traffic data from the monitors and

apply Complex Event Processing (CEP) to match these data against pre-defined patterns. These

patterns are gathered from the Pattern API every X interval (the "X" here being configurable)

and translated to the rule language of the CEP Esper’s Engine 2. For instance, Listing 3.2 shows

the final pattern to be applied to the traffic data. After gathering the rules listed at Figure 10

for the ICMP Flood attack, the analyzer combines them in a pattern that is applied to every

network packet (translated into events by the Esper engine). The resemblance with an SQL-like

query is expected due to the nature of the CEP Engine, however it is important to note that

the Esper language contains several additional operators that could be used, please refer to the

documentation for a full list [50].

The main process of the IoT-Flows uses the CEP Analyzer at its core. First, the analyzer

gather all rules stored on the Pattern API at startup, and at a timely interval after that. Then,

the analyzer receives the network traffic data from the flow monitors in a JSON message format

(as described earlier). These messages are essentially an array of network packets in that JSON
2http://www.espertech.com/

3.2. IOT-FLOWS 30

structure, which are loaded into the CEP Engine and pattern-matched in real time with the

configured rules. If the engine finds a match, it raises an alert (seen at Figure 8).

Figure 8 Analyzer Web Server

Execute. The Alerter and Router components are logically the same in terms of respon-

sibility. The Alerter component is responsible for generating an email or SMS alert to the user

after a suspicious activity is detected or the component is configured to do so under certain

circumstances, e.g., if a smartphone tries to connect to an IoT device. The Router component

is responsible for applying enforcement policies to the devices. For instance, it can block a

request to an unwanted endpoint originating from an IoT device on the network. At the mo-

ment of writing, only the Router is used to enforce rules such as disconnect an IoT device from

the network once its involved in suspicious behavior. However, future work envisions usage of

multiple execute components as to complement the detection part of the IoT-Flows platform.

3.2.2 Rules Mechanism

A rule on the IoT-Flows platform is represented by a pattern. The Pattern Mapper
enables users to seamless create a rule through a UI, while also having an API that is actively

consumed by the CEP Analyzer component in real time as to reconfigure the rules being used

on the IoT-Flows platform.

Figure 9 IoT-Flows Process for Creating a Rule

Figure 9 illustrates the process for creating a rule or pattern. Users can see which rules

are active at any moment while also create, edit and delete rules, as per Figure 10. These rules

represent the direct input for the Analyzer component (together with the network data being

monitored). They are built internally as SQL-like queries and matched against the network

packets being monitored.

3.2. IOT-FLOWS 31

Figure 10 List of Rules on IoT-Flows

For the example on Figure 10, the rules being showed are used for detection of the

ICMP Flood attack (refer to section 4.2 for a full description of this attack). There are three

rules, the first one being the main one and representing a pattern that evaluates whether the

field ICMPType of the packets (Term) "is equal to" (Operator) the value 3 (Compared Value).

The second rules extends the first and has the same goal, this time using the ICMPCode field.

Finally, the last rule tells the Analyzer component to group the network packets by their MAC

address (represented by dstAddrMac on the packet) and look for matches of these three rules

on 250 or more cases (Type Variable). These rules are compiled internally by the Analyzer and

together form the full signature for detecting an ICMP Flood Attack.

Figure 11 Form used to create a rule on IoT-Flows

Figure 11 shows the UI that enables the users to create a rule on IoT-Flows and contains

the necessary network packet’s fields. Considering the same fields that were described in the

earlier example for the ICMP attack, the Term field has a selection of all possible fields that

can be analyzed on the network packet. For instance, it contains flags such as ICMPType and

SYNFlag (used for identifying ICMP and SYN packets, respectively); and addresses fields such

as srcAddrMac/dstAddrMac and srcAddrIP/dstAddrIP.

3.2. IOT-FLOWS 32

The Operator field contains a selection of possible operators, e.g., "=", "!=", "<" and

">" and is used to compare two network packet fields. The field to be compared can be seen in

Compared Value, which follows the same pattern as the Term field. The remaining fields can

be used to create more complex rules. For instance, if one needs to identify a certain pattern in

a group of packets coming all from the same device (as the ICMP example), they can create a

rule using the field Group By Terms with the selected packet field srcAddrMac and the number

of occurrences on Type Variable.

In the next chapter, we present an evaluation of usability of Suricata and IoT-Flows

focusing on the target of our work, i.e., the creation of rules.

333333

4 USABILITY TEST

While there are several studies that evaluate IDSs in terms of correctness, false posi-

tive/negatives and performance [51; 52; 44], to the best of our knowledge, no previous work

focused on the usability of these systems. This is mainly because usability is an often subjective

topic. For example, one can analyze usability looking at different factors such as productivity,

satisfaction, accessibility and learnability, to name a few [6].

An IDS system needs to be easy to use and extend, with the creation of rules being a

determining factor here [7]. We focus on the process of creating a rule to compare the platform

proposed on this work, IoT-Flows, against the most popular open-source IDS, Suricata [11].

To compare IoT-Flows and Suricata, we conducted a usability test evaluating the cre-

ation of rules on these systems. This experiment was done with participants who did not have

any prior knowledge of Intrusion Detection Systems (IDS)s. We first demonstrated the selected

tool using the ICMP flood attack (see section 4.2 for details). While demonstrating the creation

of the rule for this attack, we focused on the syntax, not considering other factors such as con-

figuring the rule on the platform. This is mainly because, by doing so, we leave no margin to

configuration-complexity to interfere with the experiment and feedback from the participants.

After demonstrating the creation of the rule, we presented another DDoS attack, SYN

Flood [53] (also described in 4.2), focusing on the intrinsics of the attack and asking the par-

ticipants to create a rule to detect the attack once we launched it on the network. We split the

total time of the experiment with each tool in such a way that the participants would have a

chance to test the rule in the platform. Each test consisted on running the attack targeting a

device connected to the network and evaluating whether the tool would detect the attack with

the created rule. We describe the method used in detail next.

4.1 METHODS

In the next subsections, we give an overview of the experimental design and introduce

the questionnaire that was applied to the participants. Then, we elaborate on the attacks that

were used as well as the tasks that were assigned to the participants on the experiment.

4.1.1 Experimental Design

The experimental design is the core of any experiment and defines which variables will

be examined, which data will be collected and how the experiment should be executed and

repeated (if needed) [54].

The goal of this study is to compare the usability of Signature-based Intrusion Detection

4.1. METHODS 34

Systems (IDS)s focusing on the creation of rules, which is one of the core aspects of these

systems. After the goal is defined, we can determine which factors the experimental subjects,

i.e., the participants, will be subjected to evaluate the experimental units, i.e., the platforms [54].

In this work, the participants were assigned the task of creating the same rule on both IDSs on

three rounds (or time intervals). The first one consisting on 30 minutes and the remaining two

consisting on 15 minutes each.

Another core concept of the experiment is to decide which data will be collected. On

this work, the collected data consisted of both qualitative and quantitative variables, forming a

mixed-method to assess the usability of the systems [55].

During the experiment, we evaluate the following quantitative variables:

⌅ Did the participant write the correct rule?

⌅ If so, how many rounds were needed?

⌅ How many times did the participant ask for help?

We also requested the participants to answer a System Usability Scale (SUS) question-

naire, which is a straightforward and reliable tool to measure usability of systems [56].

On the same questionnaire, we included three open-ended questions as to gather addi-

tional information not covered by the SUS questionnaire and general feedback of the experience

as a whole with a qualitative feedback on the platforms.

To evaluate the answers, we used a process known as Coding, which is a heuristic with

the goal of discovering the meaning of individual data by labeling, classifying and reorganizing

the qualitative data in different categories for analysis [57]. The coding process is done by

selecting pieces of code (represented by a word or small phrase) that capture the essence of a

portion of data, in this case, the answer of the participants. By doing that, we synthesize these

answers classifying the codes that were found them into similar clusters which share the same

category. It is important to note that different researchers can analyze the same piece of data

and develop different codes, depending on their interpretation. However, this proves to be a

thorough process to analyze qualitative data [57].

We also made general observations on the participants behavior (e.g., how did they look

for information online, how long they took to start writing the rule, etc.) throughout the whole

experiment as to provide qualitative feedback on the process.

Finally, to complement our analysis and mitigate the complexity of analysing various

sources of data of both quantitative and qualitative feedback, we did a triangulation of the

results. For that, we compared the SUS questionnaire with the open-ended answers as well as

the general observations made throughout the experiment. We discuss these on chapter 5.

4.1. METHODS 35

4.1.2 Questionnaire

The SUS questionnaire was applied twice (one for each system) and followed a scale-

based method, presenting an affirmative which the participant would choose from 1 to 5, i.e.,

Strongly disagree to Strongly Agree, respectively. The SUS questionnaire consists of the fol-

lowing questions:

(Q1) I think that I would like to use this system frequently.

(Q2) I found the system unnecessarily complex.

(Q3) I thought the system was easy to use.

(Q4) I think that I would need the support of a technical person to be able to use this

system.

(Q5) I found the various functions in this system were well integrated.

(Q6) I thought there was too much inconsistency in this system.

(Q7) I would imagine that most people would learn to use this system very quickly.

(Q8) I found the system very cumbersome to use.

(Q9) I felt very confident using the system.

(Q10) I needed to learn a lot of things before I could get going with this system.

Other than the standard questions listed above, we also asked the participants the fol-

lowing open-ended questions regarding the experiment experience:

(OEQ1) How would you compare the two approaches for writing rules?

(OEQ2) What were the biggest difficulties found?

(OEQ3) What is your opinion regarding the flexibility on the rules creation?

4.1.3 Participants

For the experimental evaluation, eight male and one female volunteered for this ex-

periment. They are students from the Federal University of Pernambuco. Table 2 shows the

disposition of the participants. All of them were undergraduate students at the time and all of

them were involved on IT courses. Five of them studied Computer Science while four of them

studied Computer Engineering. All of them were between the third and tenth semester of their

4.2. ATTACKS 36

Participant Gender Course Semester
P1 Male Computer Science 7th

P2 Male Computer Engineering 6th

P3 Male Computer Science 5th

P4 Male Computer Engineering 10th

P5 Male Computer Engineering 4th

P6 Male Computer Science 5th

P7 Male Computer Science 5th

P8 Female Computer Science 3rd

P9 Male Computer Engineering 5th

Table 2 Disposition of Participants

courses (for reference, at Federal University of Pernambuco the IT courses usually goes up to

the ninth semester in normal circumstances, i.e., fulfilling all possible credits every semester).

It is important to notice that although participants were all IT students, they did not have any

prior knowledge of IDSs, effectively being a representative of a non-experienced user.

The participants were split into two groups according to their preferences of time: one

group did the evaluation in a Saturday morning and the other a Saturday afternoon. The first

group consisted of five students, and the second with the four remaining ones. Due to the

complexity of the experimental setup with the number of devices, computers, and overall limited

space, we originally chose to use up to 10 participants on this experiment but one of them could

not make it due to external reasons.

4.2 ATTACKS

The two network attacks presented in this section and used throughout the experiment

belongs to a category named distributed denial-of-service (DDoS) attacks. By definition, a

denial-of-service (DoS) is characterized by a tentative of an attacker to prevent legitimate users

from using a certain resource, i.e., the service [58]. A distributed denial-of-service (DDoS) oc-

curs when the tentative comes from multiple sources, usually by unaware devices that were pre-

viously compromised and are actively used as a bot, therefore representing a botnet [58]. This

is a common scenario when it comes to IoT as these devices are often constrained in terms of

resources and security in general, therefore representing an easy target to be compromised [4].

The two attacks described next represent a DDoS Flood attack, largely used on IoT

contexts and distinct from common DDoS attacks where the device is compromised to execute

malicious code. A Flood attack has the single goal of flooding the victim with a large and

4.3. SETUP 37

continuous volume of traffic, preventing the victim to provide services to legitimate users [32].

ICMP Flood Attack. The first network attack that we used to demonstrate the process

of creating a rule was the Internet Control Message Protocol (ICMP) Flood, which is largely

used as a DDoS attack. The ICMP protocol is used for sending messages that convey informa-

tion about the network conditions, e.g., "TTL exceeded" or "need more fragments" [59]. An

ICMP packet is not, by default, an "evil" packet and therefore should not be blocked. However,

when the occurrences of these packets on the network increase to the point of exhausting a

target server, this consists of a ICMP Flood attack.

This attack is often executed through botnets, i.e., a number of once unaffected internet-

connected devices, each running a malicious software after being compromised. These bot-

nets are largely present on the IoT context, especially in conjunction with the ICMP Flood

attack [60]. For reproducing this attack, one can make use of a program to send multiple ICMP

network packets (e.g., a ping) targeting a certain device that if not prepared, will have its re-

sources exhausted while trying to answer these packets.

SYN Flood Attack. The second network attack was the SYN Flood and, similarly to

the first attack, represents a common DDoS threat used in IoT contexts as a means to flood a

certain server. We used this attack as an assignment to participants to evaluate the process of

creating a rule by the participants of the experiment for both IDSs.

The "SYN" acronym stands for Synchronize flag used on TCP headers. This flag is

turned on whenever a system sends a network packet to start a new TCP connection. First,

a TCP packet is sent with the flag SYN activated to a destination device. Then, this device

answers by sending an acknowledgment (ACK) packet, initiating the connection [61].

Being a core part of any network communication, a network packet with the SYN flag

does not represent a threat by itself. However, if an attacker uses multiple SYN requests with

a spoofed IP address to a victim, they will not be able to answer the packet to the source

address as it does not exist. This results in rapid increase of half-open connections where the

victim cannot answer with the corresponding ACK packet, to the point of exhausting the victim

resources when it can no longer store the open connections. For reproducing this attack, one

can use a program to send multiple SYN packets with different IP source addresses to a victim,

which was exactly what we did on the experiment.

4.3 SETUP

The experimental setup consisted of the components seen in Figure 12 and 13 repre-

senting the Suricata and IoT-Flows setup, respectively.

⌅ 1 Raspberry PI 3 running an OpenWRT software;

4.3. SETUP 38

⌅ 1 Raspberry PI 3 running the top-layer network protocol monitor from IoT-Flows

system;

⌅ 1 Notebook running a Windows system and acting as a victim IoT device;

⌅ 1 Notebook running the Analyzer and Pattern Mapper components from IoT-Flows

system;

⌅ 1 Notebook running the Suricata system;

⌅ 1 Notebook for each participant in which they could create the rules for the system

in question.

Figure 12 Suricata Setup

Network. For the experiment, the raspberry PI running the OpenWRT 1 software on

Access Point mode was used to create a network so that all devices could connect to. The pseu-

dorouter also enforced security with a pre-shared key (PSK) authentication via WPA2 (WPA2-

PSK). All devices were linked to the router and connected on the same generated network.

Notebooks. Each participant was given a notebook connected to the OpenWRT router

to create the rule. For Suricata, the participants could choose to write the rule directly on the

command-line or use a text editor. We advised using Google Docs 2 for simplicity as after the
1https://openwrt.org/
2https://docs.google.com/

4.4. ACTIVITY STEPS 39

Figure 13 IoT-Flows Setup

rule were created, we would need to load them on Suricata(as seen in 3.1). For IoT-Flows, the

participants used the notebook to navigate to the system’s URLs for creating and seeing the

rules. These were loaded automatically to the platform as described in 3.2.

Monitor. Although the IoT-Flows platform has two types of monitors, as described

in 3.2.1, for the experiment only one of them was needed due to the nature of both types of

attack, which needed information from the top network layers, i.e., Network, Transport and

Application layer.

Target Device. For simplicity on validating the attack, we used a notebook acting as the

victim device. The notebook was connected to the Internet and actively consuming a streaming

video website, which made it easier to identify exactly when the device lost connection to the

Internet, i.e., the video streaming stopped whenever the device was attacked.

4.4 ACTIVITY STEPS

Recall the goal of the study is to evaluate usability of an IDS focusing on the creation

of the rules and the two platforms described on chapter 3, Suricata and IoT-Flows. To remove

undesired variability and bias on the experiment due to previous experience on one platform or

the other (depending which one were presented first), we used a experimental block design with

a Latin square approach [54]. Figure 14 illustrates the group/platform accommodation for the

experiment.

For each of the two groups of participants, the following tasks were assigned (see Ta-

4.4. ACTIVITY STEPS 40

Figure 14 Experiment Latin Square Order of Platforms

Duration (in minutes) Description
15 Overview of target platform focusing on creation of rules

5 ICMP Flood Attack demonstration

10 Presenting the SYN Flood Attack

30 1st round for creation of rules on target platform

10
Execution of the SYN Flood attack validating whether

the created rules detected it or not

15 2nd round for creation of rules on target platform

10
Execution of the SYN Flood attack validating whether

the created rules detected it or not

15 3nd and final round for creation of rules on target platform

10
Execution of the SYN Flood attack validating whether

the created rules detected it or not

Table 3 Steps executed on the usability test.

ble 3 for the duration of each step):

1. The first of the two platforms were presented (Suricata in the first group, and IoT-

Flows on the second). In this step, we gave an overview of the platform in question,

emphasizing on how to create a rule for detecting the ICMP Flood Attack.

2. We executed the ICMP flood attack with the same rule created on the previous step.

3. We present the basics of the SYN Flood attack. Notice that no hint was given on

how to create the rule itself for either platform.

4. We start the first round of 30 minutes, where the participants are asked to create a

rule to detect the SYN Flood attack on the platform in question.

4.4. ACTIVITY STEPS 41

5. After the first and initial round, we gather the rules created by the participants and

execute the SYN Flood attack, verifying whether any participant created a rule able

to detect the attack.

6. For the participants that did not get the rule right, we gave two more rounds of 15

minutes each and repeated the previous step.

7. After these steps were completed for the first IDS, we repeated the process starting

at Step 4.

Next, we describe the details of configuring each platform, first with Suricata, and then

with IoT-Flows.

Configuration of Suricata. The Suricata configuration was straightforward. We com-

piled the software and removed all Suricata’s default rules belonging to the Emerging Threat

(ET) [62], a set of rules that cover several traditional network attacks. Instead, for the first part

of the experiment in which we demonstrated the Suricata platform with the ICMP flood attack,

we compiled Suricata with the rule responsible to detect the ICMP attack (seen at Listing 3.1).

Then, for the second part of the experiment, we configured the rules created by each participant

on the platform to detect the SYN Flood attack. For every time we executed the SYN Flood

attack, we compiled all rules for the participants and observed the log from Suricata to check

whether or not the rules detected the attack.

Configuration of IoT-Flows. Because the IoT-Flows platform has different compo-

nents, these were configured separately and prior to the experiment. First, the the monitor was

connected to the router (emulated by the raspberry PI) using the wireless 2.4GHz network cre-

ated by the raspberry with the OpenWRT software. By doing that, all network packets traffic

on the surrounding Wi-Fi networks were captured and sent to the IoT-Flows’s Analyzer compo-

nent. Both the Analyzer and the Mapper components from IoT-Flows were deployed to one of

the notebooks, which served as a web server for both components. For the Analyzer, one could

navigate to the URL (http:{notebook-ip:8080}/analyzer) to check the latest alerts generated by

the component (see Figure 8). For the Pattern Mapper, the participants were instructed to navi-

gate to the URL (http:{notebook-ip:5001}) so they could create the rule using the UI provided

by this component. Figure 10 shows the list of the registered rules whereas Figure 11 shows the

form to create a new rule.

As described in section 4.1, it is important to note that configuration had no relevance

on evaluating the platforms, focusing solely on the process of creating the rule. In the following

chapter, we discuss the results for the experiment analyzing both quantitative and qualitative

feedback from the participants for each platform.

424242

5 RESULTS AND DISCUSSION

In this section, we will present the results of the experiment and discuss them in detail.

We start discussing the collected data with a summary of the general findings. Then, we present

the results of the SUS questionnaire as well as the open-ended questions. Finally, we describe

the observations made during the experiment and discuss the results, also presenting the threats

to validity of the experiment and how we mitigated them.

5.1 GENERAL

Regarding the Suricata system, only one participant wrote a rule able to detect the SYN

flood attack whereas on the IoT-Flows platform, seven out of nine participants got the rule right.

It is important to note that we did not focus our evaluation on whether or not the par-

ticipant could write the correct rule, but the process of creating the aforementioned rule itself.

However, we did take note of the number of rounds each participant took to write the correct

rule (recall that we executed the attack with the participant’s rules three times in total). For the

Suricata system, the participant who wrote the correct rule did so after three rounds. On the

IoT-Flows out of the seven participants who got it right, five used two rounds and two used all

three rounds.

During the experiment, we also provided answers to questions the users had, focusing

specifically on the creation of the rules for each system. Tables 8 and 9 shows how many times

each participant asked for help. For the IoT-Flows system, three users requested help once,

four users requested twice, and two users requested help three times in total. On the Suricata

system, one user requested no help, three users requested help once, two asked twice, two asked

questions three times and, finally, one requested help four times.

Regarding the nature of the questions, they were more focused on the syntax for the

creation of the rule and the SYN flood attack, and less on the system itself. We elaborate on this

on subsection 5.1.2.

It is worth noting that, during the initial presentation of the system, the participants

showed a great interest on the topic overall, discussing possible scenarios in which the system

could be used and how.

5.1.1 System Usability Scale (SUS)

Interpreting scoring on the SUS questionnaire can be complex. Due to the nature of the

scale and the number of questions, one can be tempted to interpret them as percentages, which

they are not. A standardized way involves normalizing the resulting answers by adding them

5.1. GENERAL 43

Group Suricata IoT-Flows
Group 1 50 65

Group 2 33,75 73,75

Table 4 SUS Average Score

1 2 3 4 5

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10

Figure 15 Group 1 - SUS Boxplot on Suricata

together in the following way: (1) for each of the odd numbered questions, subtract 1 from the

score; (2) for each of the even numbered questions, subtract their value from 5; and (3) take

the new values and add up to the total score, then multiply this by 2.5. Albeit not a percentage,

this method gives an approximate percentile ranking. A SUS score above 68 can be considered

average, with anything below it being below average [56].

Table 4 shows the SUS Average score for each platform. Considering the Suricata

system, the participants on Group 1, which had (Suricata presented first) rated an average SUS

score of 50, which shows the system as slightly below average. Group 2, which had Suricata

presented last, gave an average SUS score of 33,75, indicating the system as below average.

For the IoT-Flows platform, the participants on Group 1, which had IoT-Flows presented

last, rated the system with an average SUS score of 65, which shows the system as slightly below

average. Group 2, which had IoT-Flows presented first, gave an average SUS score of 73,75,

indicating the system as above average. Figures 15 to 20 shows the distribution of the answers

for both groups. Notice the questions are labeled (Q1) to (Q10) for space limit reasons.

5.1. GENERAL 44

1 2 3 4 5

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10

Figure 16 Group 2 - SUS Boxplot on Suricata

1 2 3 4 5

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10

Figure 17 Group 1 and 2 - SUS Boxplot on Suricata

5.1. GENERAL 45

1 2 3 4 5

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10

Figure 18 Group 1 - SUS Boxplot on IoT Flows

1 2 3 4 5

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10

Figure 19 Group 2 - SUS Boxplot on IoT Flows

5.1. GENERAL 46

1 2 3 4 5

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
Q9

Q10

Figure 20 Group 1 and 2 - SUS Boxplot on IoT Flows

Syntax Learning Documentation UI Speed

Suricata
"conventional way ofwiring rules"

"command-line approach"

"overcomplicated syntax"

"difficult for first-time users"

"less intuitive"

"confuse for first-time users"

"complex"

"confuse"

"lots of parameters"

-
"conventional way of writing rules"

"faster to long-time users"

"faster not considering finding parameters"

IoT-Flows
"more intuitive"

"easier to write the rules"

"easier for first-time users"

"parameters all presenton UI"

"more explicit"

-
"UI makes it easier to write rules"

"More intuitive due to its UI"

"Easier to use due to its UI"

"slower but more intuitive"

"slower to combine rules"

Table 5 Key phrases found on the coding process for the answers of Open Ended Question(OEQ1)

5.1.2 Open-ended questions

To better understand the process of creating the rules for the Suricata and IoT-Flows

systems, we asked the participants open-ended questions not related to the SUS scale. We also

Codified the answers (see section 4.1 for details) to better understand the overall qualitative

feedback on writing the rule on both platforms. Tables 5, 6 and 7 summarizes the key word-

s/phrases found during the coding process of the answers which lead to the clustered topics

described below.

(OEQ1) How would you compare the two approaches for writing rules?

For this question, we evaluated the answers and coded the following topics: Syntax,

Learning, Documentation, User-interface (UI), and Speed.

Syntax. The consensus among the participants was that although Suricata presents

a conventional way of creating the rules with its command-line approach, its syn-

tax is over-complicated and presents several parameters that are rarely used and are

difficult to find on the documentation. Regarding IoT-Flows, the participants high-

lighted the fact that the system provides a more intuitive way to create the rules

5.1. GENERAL 47

with its UI, allowing the users to select among a predetermined set of parameters,

however still presents some problems relative to understanding the syntax due to the

project immaturity. Participant 2 wrote: "IoT-Flows, albeit a promising system, stil

have some problems relative to the understanding of the syntax and semantics that

can be mitigated to improve user’s experience.".

Learning. The participants pointed that Suricata, although presenting a thorough

documentation, was difficult for first-time users due to its complexity. On IoT-Flows,

the consensus was that the system provided a more intuitive way to learn the rules

due to fact that the parameters were all presented in the UI, therefore being more

"explicit to the users". Participant 4 wrote: "The approach for creating rules on

Suricata is simple in terms of code, but hard for first-time users as the documentation

is too vast and make it difficult understanding the parameters to be used for detecting

the attacks".

Documentation. The consensus among the participants was that Suricata presented

a vast documentation but made it hard to find the multiple parameters one can use

to create a rule. Participant 8 wrote: "Suricata has a very complex documentation,

which made it difficult to write even a simple rule". The IoT-Flows system did not

provide documentation for consulting and as such, did not qualified for this topic.

User-interface (UI). For Suricata, the participants pointed the fact that creating a

rule was straightforward but confusing for first-time users as everything was made

through a command-line terminal or text editor. On the IoT-Flows, the users high-

lighted its user-interface as the strongest point of the system, presenting an easier

way for the creation of rules. Participant 9 wrote the following: "The IoT-Flows sys-

tem presented a more friendly user interface, making it easy for creating the rules

on the network. However, Suricata seemed to have more variety for creating and

combining the rules."

Speed. The participants cited Suricataas faster than IoT-Flows in terms of creation

of the rules, highlighting, however, the trade-off between speed and complexity,

specially for first-time users of this system. Participant 6 wrote: "The approach of

the IoT-Flows platform, albeit slower, seemed to be more intuitive and different from

Suricata, which was a little harder for producing the correct commands but faster

to write the rules."

(OEQ2) What were the biggest difficulties found?

For this question, we coded the following topics: Documentation, Parameters, and

5.1. GENERAL 48

Documentation Parameters Rules

Suricata
"confuse documentation"

"complex"

"too many parameters"

"difficult to find"

"understanding the syntax

to build a rule"

IoT-Flows "no documentation available"
"hard to combine parameters"

"using the correct parameters"
"combining the rules"

Table 6 Key phrases found on the coding process for the answers of Open Ended Question(OEQ2)

Rules Parameterization UI

Suricata
"consistency"

"straightforward to build rule"

"lots of parameters to choose"

"more options"
"no UI available"

IoT-Flows "more options to build rules" "limited number of parameters"
"possible parameters explicit to users"

"greater flexibility due to its UI"

Table 7 Key phrases found on the coding process for the answers of Open Ended Question(OEQ3)

Rules.

Documentation. Looking at the answers showed a general feeling from the par-

ticipants that although Suricata provided a complete documentation, it proved too

confuse/complex for non-experienced users. Participant 5 answered: "One of the

biggest difficulties was the time to understand the documentation". Participants also

highlighted the fact that IoT-Flows had no documentation available.

Parameters. The consensus among the participants was that finding parameters on

Suricata’s documentation proved to be a difficult task. On IoT-Flows, the partici-

pants noted that although the parameters were made clear with the UI, they were not

easy to combine with the goal of building a rule. Participant 3 wrote: "One difficult

that I experienced was understanding how to combine the parameters to build a rule

as there was no documentation available".

Rules. Understanding the syntax used to build a rule for Suricata was hard, accord-

ing to the participants. Participant 8 noted: "Understanding the syntax used and

how the rules work was hard". On IoT-Flows, consensus was that combining the

"child rules" (a characteristic of IoT-Flows only) was not easy due to the fact that no

documentation was available.

(OEQ3) What is your opinion regarding the flexibility on the rules creation?

For this question, the coding process returned the following topics: Rules, Param-
eterization, and UI.

Rules. While using Suricata, the participants highlighted the consistency while cre-

ating the rules, with the system offering a great deal of customization and number of

parameters to choose from. Participant 2 wrote: "The process of creating rules on

Suricata was consistent offering good tools to customize the rules". On IoT-Flows,

5.2. OBSERVATIONS 49

consensus was that the system had more options to build rules if considering the

different combinations one could make with the parameters.

Parameterization. The participants noted that Suricata presented a great deal of

parameters to choose from whereas IoT-Flows showed a limited number. However,

more parameters did not make it easier to write the rule itself. Participant 3 wrote:

"I find it important to the system to have a great number of parameters as a means

to provide flexibility. The price to pay is how easy it is to use this system".

UI. The consensus among the participants was that the absense of a UI on Suricata

made it harder to write the rules if compared to IoT-Flows. On IoT-Flows, the par-

ticipants also noted that the available UI enabled the process of creation of rules to

be more intuitive in general. Participant 4 wrote: "With practice, it was much more

easier to understand the interface and create the rules".

All in all, we noted that the participants which had Suricata introduced first highlighted

the UI of IoT-Flows as a strong point in terms of flexibility and consistency for creating the rules.

This is understandable as when using the IoT-Flows, the users already had some experience in

terms of syntax for creating the provided rule but had to do it through a command-line or text-

editor interface. However, this did not hold true for the second group where the participants

pointed the high number of parameters and documentation of Suricata as the biggest difference

with IoT-Flows, leading to a more flexible process while creating the rules.

5.2 OBSERVATIONS

Recall that the goal of the experiment was not writing the correct rule, but evaluating

the process of creating the rule for each system. During the experiment, we made notes about

the different questions asked by the participants and whether they wrote the correct rule by the

end of the interaction with the system in hand. This provided qualitative feedback for each tool

in an indirect manner, indicating the difficulties found and overall learning experience which

were not covered by the questionnaire. We split the different answers asked into the two groups

of participants.

Group 1. Out of the five participants introduced to Suricata first, only one wrote the

correct rule, needing three rounds to do so 1. Questions about Suricata were focused on the

syntax and the nature of the proposed SYN Flood attack. The participants pointed that finding

the necessary parameters on the documentation as to enable them to create the rule for the attack

was a difficult task.
1round here means the time window we gave the participants for writing the rule before executing the attack)

5.3. DISCUSSION 50

Participants
Suricata IoT-Flows

Wrote the correct
rule?

Rounds to write
correct rule

Times that asked
for help

Wrote the correct
rule?

Rounds to write
correct rule

Times that asked
for help

Participant 1 NO N/A 1 YES 3 1

Participant 2 NO N/A 2 NO N/A 1

Participant 3 NO N/A 0 NO N/A 1

Participant 4 NO N/A 1 YES 2 2

Participant 5 YES 3 1 YES 2 2

Table 8 Group 1 Experiment Data

Participants
Suricata IoT-Flows

Wrote the correct
rule?

Rounds to write
correct rule

Times that asked
for help

Wrote the correct
rule?

Rounds to write
correct rule

Times that asked
for help

Participant 6 NO N/A 3 YES 2 2

Participant 7 NO N/A 2 YES 2 2

Participant 8 NO N/A 3 YES 2 3

Participant 9 NO N/A 4 YES 3 3

Table 9 Group 2 Experiment Data

For the IoT-Flows system, out of five participants, three wrote the correct rule, one

needing three rounds and the other two rounds to do so. The questions revolved around the

possible parameters for creating the rule, specifically the network packet fields that were valid.

The participants also asked details of the SYN Flood attack as a means to identify the parameters

to be used and create the rule.

Group 2. For this group, the participants were introduced the IoT-Flows system first.

All of the participants wrote the correct rule, three of them after two rounds, and one of them

after three rounds. The questions revolved around syntax and the rules structure on the system,

e.g., whether one could create a rule and link to other, both targeting detection of the same

attack.

None of the participants wrote the correct rule on the Suricata system. The difficulties

encountered by the participants revolved mostly around the compilation of the rules, citing the

complex syntax and hard-to-read documentation as the causes.

5.3 DISCUSSION

In this discussion we confront the data from the SUS questionnaire data against the

answer of the open-ended and our observations. Considering the order which the participants

were exposed to the platforms on the experiment (as seen in Figure 14), we can analyze the

difference and similarities of the SUS answers and relate them to the open-ended questions.

For instance, consider the SUS Q4 ("I think that I would need the support of a technical

5.4. THREATS TO VALIDITY 51

person to be able to use this system."). Answers from Group 1 for Suricata ranged from 1 to 4

whereas Group 2, which had IoT-Flows presented first, had no answer rated less than 4. This is

in line with the (OEQ3), which had Group 2 consensus on the opinion that IoT-Flows presented

greater flexibility due to its UI comparing to Suricata when being presented to the system after

IoT-Flows.

Considering SUS Q7 ("I would imagine that most people would learn to use this system

very quickly"), answers from Group 1 ranged from 1 to 3 whereas Group 2 had three out of

four participants rating 1 for Suricata while varying from 1 to 5 on IoT-Flows. Looking at

the answers for (OEQ2), this is in line with the opinion of participants on Suricata presenting

a detailed but hard to read documentation whereas IoT-Flows had no documentation at the

moment of the experiment.

Considering SUS Q8 ("I found the system very cumbersome to use."), both Group 1 and

Group 2 rated Suricata with an average of 4, which is in line with the answers of open-ended

(OEQ1) that presented a consensus that the process of creating the rule with a command-line or

text editor was not intuitive. This drastically contrasts with IoT-Flows, which had answers rating

from 1 to 3 on both groups. This is also compatible to the pointed fact from the participants that

IoT-Flows’s UI made the process of creating the rules easier than Suricata.

Considering SUS 10 ("I needed to learn a lot of things before I could get going with

this system."), both Group 1 and Group 2 rated Suricata from 2 to 5 while rating IoT-Flows 1

to 3. This corroborates to (OEQ1) answers which highlighted the difficult in finding the correct

parameters to use on Suricata while pointing that, although IoT-Flows had no documentation,

presented itself with greater learnability as the parameters were all presented on the UI.

5.4 THREATS TO VALIDITY

In this section, we discuss the limitations of our study, specifically the experimental

evaluation process and how we handled them. We describe the external, internal, and construct

threats to the validity of our results.

5.4.1 External Validity

External validity concerns the representativeness of our results to the population ob-

served, in our case, the participants of the experiment. Our findings were limited to the scope

of the experiment, which as described in chapter 4, had a relative small population of nine par-

ticipants. This is in line with the nature of the experiment and complexity of the setup where

multiple devices were involved, therefore limiting the physical space for the experiment and

how the resources were distributed among the participants.

Because the participants were all IT students, one can question whether or not they

5.4. THREATS TO VALIDITY 52

represent the target user of the proposed platform, i.e., a non-experienced user (consumer).

Although the participants were experienced on the IT domain, they did not have any prior

experience with IDS, which led them to perform similarly to a non-experienced user. The work

of Salman et al. [63] provides evidence that students and practitioners tend to perform similarly

in software engineering experiments that evaluate development approaches where participants

do not have prior experience. Thus, minimizing threats to validity under that perspective.

5.4.2 Internal Validity

Internal validity concerns the consistency of our measurements during and after the

experiment. External factors may affect the causality of the observed results during our ex-

periments. The results could be influenced by a possible bias towards the platform presented

on this work. To mitigate this, we explicitly let the participants know that feedback from both

platforms used on the experiment were crucial to the future of the project, i.e., if the platform

proposed in this work were to be poorly evaluated during the experiment, it could be dropped

in favor of the other without concerns. Judging by the feedback for both platforms, this advice

was fruitful as the participants did not show any bias towards one system or the other.

5.4.3 Construct Validity

In this work, we considered a number of metrics that could influence some of our in-

terpretations towards them. Specifically, the open-ended questions were subjective and open to

our own interpretation, which could lead to bias towards the proposed platform. This is demon-

strated by the possible limitation on the Coding process explained on 4.1, as this process was

done only by one person.

535353

6 RELATED WORK

Multiple studies discussed how vulnerable IoT devices are to traditional and new threats

in the recent years, especially on Smart Home contexts [14; 64]. Yoon et al. focused on the

Smart Home IoT scenario, pointing that although this context provides a more convenient life

as supplementary services are provided through day-to-day IoT devices, the more home devices

linked, the more security flaws are revealed [64]. Still focusing on the Smart Home context,

alarming threats involving IoT devices also made the news with baby monitors and smart locks

proving to be vulnerable to both local and remote attacks [4; 65]. This work proposes a plat-

form that can mitigate these threats, as even non-IT users are enabled to create rules to detect

suspicious behavior involving the Smart Home devices with an intuitive user-interface, contrary

to standard solutions that proved to be complex as they often target network admins and experts.

Khaled Salah presented a comprehensive review of IoT security with multiple open-

challenges and future research directions [12]. Among them, limitations of resources on IoT

devices and interoperability of protocols used stand out, with the former representing a core

feature of IoT devices (i.e., being limited in processing, memory, etc.) and the latter presenting

a challenge as these devices, being network devices, encompass multiple network layers. This

work proposes a platform that mitigates those challenges as detection of traditional and new

threats occurs independently of the IoT devices. The platform covers all network layers by

monitoring the devices, analysing the network traffic, and enforcing intrusion detection
rules while enabling rules to be created intuitively without deep knowledge of network features,

characteristics and protocols.

Due to the rapid growth of the IoT market, a number of solutions addressing security

concerns on IoT networks emerged on the recent past. Considering Intrusion Detection Systems

(IDS)s, specifically Signature-based ones that make use of pattern matching to detect threats,

few of them have its focus on IoT contexts. SVELTE is one such Intrusion Detection Systems

(IDS) which focus on targeting specific routing attacks such as spoofed or altered information,

sinkhole, and selective-forwarding while presenting small overhead, a crucial feature when it in-

volves constrained networks such as IoT environments [27]. IoT-IDM presented a Host-Based

Intrusion Detection Systems (IDS) focusing specifically on Smart Home IoT [66]. On that work,

Nobakht et al., used a software-defined networking techonlogy and its protocol, OpenFlow, to

detect intrusions with customized machine learning techniques and learned signature patterns

of known threats. Similarly to these, the proposed platform on this work envisions addressing

network IoT threats by providing a flexible way to create rules to detect attacks on all network

layers.

54

Werlinger et al., analyzed the challenges of Intrusion Detection Systems (IDS) by in-

terviewing 9 IT Security practitioners who have worked with IDSs and performed participatory

observations in an organization deploying a network IDS [7]. The work showed that other

than the expected difficulties involving configuration of these systems, usability was a crucial

challenge when using the system as the rules enforced by Intrusion Detection Systems (IDS)s

are mostly non-intuitive and difficult to understand. [7]. In this work, we proposed a platform

that focus on tackling this problem by enabling users to create Intrusion Detection Systems

(IDS) rules in an intuitive way while also enforcing these rules with a real time monitoring and

analysis, similar to traditional Intrusion Detection Systems (IDS)s.

Similarly to this work, a number of studies also involved evaluation of Intrusion Detec-

tion Systems (IDS)s in general. However, the evaluation of these platforms focused on variables

such as performance, memory consumption and number of false positives/negatives by repli-

cating network traffic while running the systems. For instance, Eugene Albin compared two

open-source IDSs, Suricata and the system that originated it, Snort [44]. Albin pointed that

Suricata required more memory and CPU resources than Snort due to its multi-thread architec-

ture. However, Snort’s need for multiple instances running to accomplish what Suricata does

counter this factor. In terms of false positive/negatives, the study was inconclusive on which of

the IDSs has a better detection algorithm.

Jun Chen et al. proposed an Intrusion Detection Systems (IDS) architecture that used

Complex Event Processing (CEP) technology to detect threats on IoT networks [67]. The

authors demonstrated that CEP mechanisms are more suitable for applications and services

which needs to process streaming originating from underlying sensors and devices in IoT en-

vironments. Similarly, we proposed a platform that uses CEP analysis to detect threats on IoT

environments, but focusing on two points that are crucial to these systems, extensibility and

usability with the creation and enforcing of user-created rules.

All in all, although these studies explored the security concerns on IoT in general, they

often focused on proposing solutions that show a clear trade-off between robustness and us-

ability of the proposed systems. This work proposed a platform that focus on usability (among

other things) enabling users to create rules for detecting both traditional and new threats on IoT

networks. By comparing the proposed platform with Suricata, this work also corroborated with

previous studies [6; 7] demonstrating that usability is a crucial point of any security system

targeting IoT devices.

555555

7 CONCLUSIONS

Securing IoT devices it not an easy task, but crucial due to the rapid growth of the

IoT market in the recent past. For that, Network Intrusion Detection Systems (NIDS) can be

used to employ defenses on IoT networks. However, due to the nature of this market, with its

large share being represented by consumers on Smart Home contexts, usability is one of the

core features of these systems but is often neglected, as discussed on previous studies [6; 7].

Previous studies also demonstrated that these systems often act on a single network layer and

provides no easy means to extended them [41]. To mitigate these limitations, in this work we

proposed IoT-Flows: a platform that stands as an Intrusion Detection Systems (IDS) that treats

usability as a core feature. The proposed system enables users to create rules on the platform

with a user-interface (UI). IoT-Flows also acts on all network layers and provides extensibility

enabling users to create rules for detecting both traditional and new threats in real-time.

To evaluate the proposed platform focusing specifically on the creation of rules, we con-

ducted a usability test comparing the platform with the most popular open-source IDS, Suricata.

The usability test consisted on splitting nine student volunteers into two groups following a

Latin-square approach (as a means to eliminate bias) and later assigning them the task of cre-

ating a rule to detect a popular DDoS attack for each system. We then asked the participants

to answer a SUS questionnaire and three open-ended questions that provided qualitative feed-

back on the process of creating the rules. We also made general observations throughout the

test and later triangulated the results of both qualitative and quantitative feedback. The con-

sensus among the participants was that Suricata, albeit providing a complete documentation,

lacks flexibility for creating the rules due to its complex syntax and non-existing user-interface

(UI), being a negative point specially for new users. For the proposed system, IoT-Flows, the

participants highlighted its UI and flexibility as its strongest points, providing a intuitive way

of creating the rules. However, they also noted that creating the rules was slower if compared

to Suricata, which shows a trade-off between complexity and easy-of-use on these systems. To

sum, during this work, we observed that usability is indeed a crucial point that needs to be taken

into consideration when developing security systems, especially if the systems focus on IoT

contexts, where the presence of non-IT users is a common thing.

For future work, we envision usage of machine-learning techniques applied to the his-

torical network data coming from the IoT devices with the goal of finding new threats auto-

matically. This is in-line with the concept of a self-managing platform, which could employ

MAPE-K’s Knowledge component for this. We also plan to expand the capability of monitor-

ing network data from a distributed perspective using only one type of monitor instead of two

56

and expand the Execute components of the platform (e.g., enabling users to configure email

and SMS alerts to be generated), which will provide even more flexibility for the platform and

its users. Finally, we look forward to evaluate the system against other traditional IDSs by

exploring common variables in such comparisons such as number of false positive/negatives,

performance and resources consumption.

575757

REFERENCES

[1] M. Nawir, A. Amir, N. Yaakob, and O. B. Lynn, “Internet of things (iot): Taxonomy of
security attacks,” in Electronic Design (ICED), 2016 3rd International Conference on.
IEEE, 2016, pp. 321–326.

[2] I. Lee and K. Lee, “The internet of things (iot): Applications, investments, and challenges
for enterprises,” Business Horizons, vol. 58, no. 4, pp. 431 – 440, 2015. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0007681315000373

[3] Business Insider, “There will be 24 billion iot devices installed on earth by 2020,” 2016.
[Online]. Available: https://www.businessinsider.com/
there-will-be-34-billion-iot-devices-installed-on-earth-by-2020-2016-5

[4] Michigan News, “Hacking into homes: ‘smart home’ security flaws found in popular
system,” 2016. [Online]. Available: https://news.umich.edu/
hacking-into-homes-smart-home-security-flaws-found-in-popular-system/

[5] Forbes, “Cyberattacks on iot devices surge 300% in 2019, ‘measured in billions’, report
claims,” 2019. [Online]. Available: https://www.forbes.com/sites/zakdoffman/2019/09/
14/dangerous-cyberattacks-on-iot-devices-up-300-in-2019-now-rampant-report-claims/
#71e1b7a65892

[6] D. S. Butt and V. A. Gnevasheva, “Efficiency in the processes of intrusion detection
system through usability evaluation methods,” Available at SSRN 3151216, 2018.

[7] R. Werlinger, K. Hawkey, K. Muldner, P. Jaferian, and K. Beznosov, “The challenges of
using an intrusion detection system: Is it worth the effort?” in Proceedings of the 4th
Symposium on Usable Privacy and Security, ser. SOUPS ’08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 107–118. [Online]. Available:
https://doi.org/10.1145/1408664.1408679

[8] T. Sherasiya, H. Upadhyay, and H. B. Patel, “A survey: Intrusion detection system for
internet of things,” International Journal of Computer Science and Engineering (IJCSE),
vol. 5, no. 2, 2016.

[9] Forbes, “2017 roundup of internet of things forecasts,” 2005. [Online]. Available:
https://www.forbes.com/sites/louiscolumbus/2017/12/10/
2017-roundup-of-internet-of-things-forecasts/#7b71aae11480

[10] InfoSec Institute, “Open source ids: Snort or suricata?” 2019. [Online]. Available:
https://resources.infosecinstitute.com/open-source-ids-snort-suricata/#gref

[11] OISF, “Suricata open source ids.” [Online]. Available: https://suricata-ids.org/

[12] M. A. Khan and K. Salah, “Iot security: Review, blockchain solutions, and open
challenges,” Future Generation Computer Systems, vol. 82, pp. 395 – 411, 2018.
[Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X17315765

http://www.sciencedirect.com/science/article/pii/S0007681315000373
https://www.businessinsider.com/there-will-be-34-billion-iot-devices-installed-on-earth-by-2020-2016-5
https://www.businessinsider.com/there-will-be-34-billion-iot-devices-installed-on-earth-by-2020-2016-5
https://news.umich.edu/hacking-into-homes-smart-home-security-flaws-found-in-popular-system/
https://news.umich.edu/hacking-into-homes-smart-home-security-flaws-found-in-popular-system/
https://www.forbes.com/sites/zakdoffman/2019/09/14/dangerous-cyberattacks-on-iot-devices-up-300-in-2019-now-rampant-report-claims/#71e1b7a65892
https://www.forbes.com/sites/zakdoffman/2019/09/14/dangerous-cyberattacks-on-iot-devices-up-300-in-2019-now-rampant-report-claims/#71e1b7a65892
https://www.forbes.com/sites/zakdoffman/2019/09/14/dangerous-cyberattacks-on-iot-devices-up-300-in-2019-now-rampant-report-claims/#71e1b7a65892
https://doi.org/10.1145/1408664.1408679
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#7b71aae11480
https://www.forbes.com/sites/louiscolumbus/2017/12/10/2017-roundup-of-internet-of-things-forecasts/#7b71aae11480
https://resources.infosecinstitute.com/open-source-ids-snort-suricata/#gref
https://suricata-ids.org/
http://www.sciencedirect.com/science/article/pii/S0167739X17315765

REFERENCES 58

[13] Z. B. Celik, L. Babun, A. K. Sikder, H. Aksu, G. Tan, P. McDaniel, and A. S. Uluagac,
“Sensitive information tracking in commodity iot,” arXiv preprint arXiv:1802.08307,
2018.

[14] TrendMicro, “Inside the smart home: Iot device threats and attack scenarios,” 2018.
[Online]. Available: https://www.trendmicro.com/vinfo/us/security/news/
internet-of-things/inside-the-smart-home-iot-device-threats-and-attack-scenarios

[15] The Guardian, “Ddos attack that disrupted internet was largest of its kind in history,
experts say,” 2018. [Online]. Available:
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

[16] S. Samonas and D. Coss, “The cia strikes back: Redefining confidentiality, integrity and
availability in security.” Journal of Information System Security, vol. 10, no. 3, 2014.

[17] D. E. Bell and L. J. LaPadula, “Computer security model: Unified exposition and multics
interpretation,” MITRE Corp., Bedford, MA, Tech. Rep. ESD-TR-75-306, June, 1975.

[18] R. S. Sandhu, “On five definitions of data integrity.” in DBSec. Citeseer, 1993, pp.
257–267.

[19] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on software
engineering, no. 2, pp. 222–232, 1987.

[20] A. Tayebi, S. Berber, and A. Swain, “Wireless sensor network attacks: An overview and
critical analysis,” in Sensing Technology (ICST), 2013 Seventh International Conference
on. IEEE, 2013, pp. 97–102.

[21] D. R. Raymond and S. F. Midkiff, “Denial-of-service in wireless sensor networks:
Attacks and defenses,” IEEE Pervasive Computing, no. 1, pp. 74–81, 2008.

[22] D. M. Junior, W. Rodrigues, K. Gama, J. A. Suruagy, and P. A. da S. Gonçalves,
“Towards a multilayer strategy against attacks on iot environments,” in Proceedings of
the 1st International Workshop on Software Engineering Research & Practices for the
Internet of Things, SERP4IoT@ICSE 2019, Montreal, QC, Canada, May 27, 2019, 2019,
pp. 17–20. [Online]. Available: https://doi.org/10.1109/SERP4IoT.2019.00010

[23] N. Namvar, W. Saad, N. Bahadori, and B. Kelley, “Jamming in the internet of things: A
game-theoretic perspective,” in 2016 IEEE Global Communications Conference
(GLOBECOM), 2016, pp. 1–6.

[24] NEC Corporation, “Lightweight-architecture tamper detection technology to protect iot
devices,” 2018. [Online]. Available:
https://www.nec.com/en/global/rd/technologies/falsification_find/index.html

[25] P. Ruckebusch, E. De Poorter, C. Fortuna, and I. Moerman, “Gitar: Generic extension for
internet-of-things architectures enabling dynamic updates of network and application
modules,” Ad Hoc Networks, vol. 36, pp. 127–151, 2016.

[26] D. Nabil, D. Tandjaoui, I. Romdhani, and F. Medjek, “Trust-based defence model against
mac unfairness attacks for iot,” 07 2017.

https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/inside-the-smart-home-iot-device-threats-and-attack-scenarios
https://www.trendmicro.com/vinfo/us/security/news/internet-of-things/inside-the-smart-home-iot-device-threats-and-attack-scenarios
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://doi.org/10.1109/SERP4IoT.2019.00010
https://www.nec.com/en/global/rd/technologies/falsification_find/index.html

REFERENCES 59

[27] S. Raza, L. Wallgren, and T. Voigt, “Svelte: Real-time intrusion detection in the internet
of things,” Ad hoc networks, vol. 11, no. 8, pp. 2661–2674, 2013.

[28] H. Deng, X. Sun, B. Wang, and Y. Cao, “Selective forwarding attack detection using
watermark in wsns,” in Computing, Communication, Control, and Management, 2009.
CCCM 2009. ISECS International Colloquium on, vol. 3. IEEE, 2009, pp. 109–113.

[29] S. Abbas, M. Merabti, D. Llewellyn-Jones, and K. Kifayat, “Lightweight sybil attack
detection in manets,” IEEE systems journal, vol. 7, no. 2, pp. 236–248, 2013.

[30] P. Pongle and G. Chavan, “Real time intrusion and wormhole attack detection in internet
of things,” International Journal of Computer Applications, vol. 121, no. 9, 2015.

[31] V. P. Singh, S. Jain, and J. Singhai, “Hello flood attack and its countermeasures in
wireless sensor networks,” International Journal of Computer Science Issues (IJCSI),
vol. 7, no. 3, p. 23, 2010.

[32] N. Dao, T. V. Phan, U. Sa’ad, J. Kim, T. Bauschert, and S. Cho, “Securing heterogeneous
iot with intelligent ddos attack behavior learning,” CoRR, vol. abs/1711.06041, 2017.
[Online]. Available: http://arxiv.org/abs/1711.06041

[33] K. Fan, W. Jiang, H. Li, and Y. Yang, “Lightweight rfid protocol for medical privacy
protection in iot,” IEEE Transactions on Industrial Informatics, vol. 14, no. 4, pp.
1656–1665, April 2018.

[34] S. Demetriou, N. Zhang, Y. Lee, X. Wang, C. A. Gunter, X. Zhou, and M. Grace,
“Hanguard: Sdn-driven protection of smart home wifi devices from malicious mobile
apps,” in Proceedings of the 10th ACM Conference on Security and Privacy in Wireless
and Mobile Networks. ACM, 2017, pp. 122–133.

[35] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and A. Prakash,
“Flowfence: Practical data protection for emerging iot application frameworks.” in
USENIX Security Symposium, 2016, pp. 531–548.

[36] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, and M. Rajarajan, “A survey of
intrusion detection techniques in cloud,” Journal of Network and Computer Applications,
vol. 36, no. 1, pp. 42 – 57, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804512001178

[37] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection system: A
comprehensive review,” Journal of Network and Computer Applications, vol. 36, no. 1,
pp. 16 – 24, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804512001944

[38] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou,
“Specification-based anomaly detection: A new approach for detecting network
intrusions,” in Proceedings of the 9th ACM Conference on Computer and
Communications Security, ser. CCS ’02. New York, NY, USA: Association for
Computing Machinery, 2002, p. 265–274. [Online]. Available:
https://doi.org/10.1145/586110.586146

[39] International Computer Science Institute-Berkley CA, “The zeek network security
monitor,” 2019. [Online]. Available: https://www.zeek.org/

http://arxiv.org/abs/1711.06041
http://www.sciencedirect.com/science/article/pii/S1084804512001178
http://www.sciencedirect.com/science/article/pii/S1084804512001944
https://doi.org/10.1145/586110.586146
https://www.zeek.org/

REFERENCES 60

[40] Sourcefire, “Snort,” 1998. [Online]. Available: https://www.snort.org/

[41] SANS Institute, “Network intrusion detection - keeping up with increasing information
volume,” 2019. [Online]. Available: https://www.sans.org/reading-room/whitepapers/
detection/network-intrusion-detection-keeping-increasing-information-volume-347

[42] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection systems in
wireless sensor networks,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp.
266–282, First 2014.

[43] F. Sabahi and A. Movaghar, “Intrusion detection: A survey,” in 2008 Third International
Conference on Systems and Networks Communications, Oct 2008, pp. 23–26.

[44] E. Albin and N. C. Rowe, “A realistic experimental comparison of the suricata and snort
intrusion-detection systems,” in 2012 26th International Conference on Advanced
Information Networking and Applications Workshops. IEEE, 2012, pp. 122–127.

[45] OISF, “Suricata rules.” [Online]. Available:
https://suricata.readthedocs.io/en/suricata-4.1.5/rules/intro.html

[46] CIn-UFPE, “Iot-flows,” 2019. [Online]. Available: https://iot-flows.cin.ufpe.br/

[47] IBM, “An architectural blueprint for autonomic computing„” 2005. [Online]. Available:
https:
//www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf

[48] Q. M. Ashraf and M. H. Habaebi, “Autonomic schemes for threat mitigation in internet
of things,” Journal of Network and Computer Applications, vol. 49, pp. 112–127, 2015.

[49] R. J. Mitchell, Managing complexity in software engineering. IET, 1990, no. 17.

[50] EsperTech, “Esper,” 2019. [Online]. Available: http://www.espertech.com/esper/

[51] E. Biermann, E. Cloete, and L. M. Venter, “A comparison of intrusion detection systems,”
Computers & Security, vol. 20, no. 8, pp. 676–683, 2001.

[52] M. K. Rafsanjani, A. Movaghar, and F. Koroupi, “Investigating intrusion detection
systems in manet and comparing idss for detecting misbehaving nodes,” World Academy
of Science, Engineering and Technology, vol. 44, pp. 351–355, 2008.

[53] Cloudfare, “Syn flood ddos attack.” [Online]. Available:
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/

[54] N. Juristo and A. M. Moreno, Basics of software engineering experimentation.
Springer, 2011.

[55] V. J. Caracelli and J. C. Greene, “Data analysis strategies for mixed-method evaluation
designs,” Educational Evaluation and Policy Analysis, vol. 15, no. 2, pp. 195–207, 1993.
[Online]. Available: https://doi.org/10.3102/01623737015002195

[56] usability.gov, “System usability scale.” [Online]. Available:
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

[57] S. Johnny, Fundamentals of qualitative research. Oxford University Press, 2011.

https://www.snort.org/
https://www.sans.org/reading-room/whitepapers/detection/network-intrusion-detection-keeping-increasing-information-volume-347
https://www.sans.org/reading-room/whitepapers/detection/network-intrusion-detection-keeping-increasing-information-volume-347
https://suricata.readthedocs.io/en/suricata-4.1.5/rules/intro.html
https://iot-flows.cin.ufpe.br/
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%20White%20Paper%20V7.pdf
http://www.espertech.com/esper/
https://www.cloudflare.com/learning/ddos/syn-flood-ddos-attack/
https://doi.org/10.3102/01623737015002195
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

REFERENCES 61

[58] F. Lau, S. H. Rubin, M. H. Smith, and L. Trajkovic, “Distributed denial of service
attacks,” in Smc 2000 conference proceedings. 2000 ieee international conference on
systems, man and cybernetics. ’cybernetics evolving to systems, humans, organizations,
and their complex interactions’ (cat. no.0, vol. 3, Oct 2000, pp. 2275–2280 vol.3.

[59] N. Gupta, A. Jain, P. Saini, and V. Gupta, “Ddos attack algorithm using icmp flood,” in
2016 3rd International Conference on Computing for Sustainable Global Development
(INDIACom), March 2016, pp. 4082–4084.

[60] Cloudfare, “Ping (icmp) flood ddos attack.” [Online]. Available:
https://www.cloudflare.com/learning/ddos/ping-icmp-flood-ddos-attack/

[61] M. Bogdanoski, T. Shuminoski, and A. Risteski, “Analysis of the syn flood dos attack,”
International Journal of Computer Network and Information Security, vol. 5, pp. 1–11,
06 2013.

[62] Emerging Threat, “Emerging threat suricata rules,” 2019. [Online]. Available:
https://rules.emergingthreats.net/open/suricata/rules/

[63] I. Salman, A. T. Misirli, and N. Juristo, “Are students representatives of professionals in
software engineering experiments?” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. IEEE, 2015, pp. 666–676.

[64] S. Yoon, H. Park, and H. S. Yoo, “Security issues on smarthome in iot environment,” in
Computer science and its applications. Springer, 2015, pp. 691–696.

[65] Washington Post, “‘I’m in your baby’s room’: A hacker took over a baby monitor and
broadcast threats, parents say,” 2018. [Online]. Available:
https://www.washingtonpost.com/technology/2018/12/20/
nest-cam-baby-monitor-hacked-kidnap-threat-came-device-parents-say/

[66] M. Nobakht, V. Sivaraman, and R. Boreli, “A host-based intrusion detection and
mitigation framework for smart home iot using openflow,” in 2016 11th International
Conference on Availability, Reliability and Security (ARES), Aug 2016, pp. 147–156.

[67] C. Jun and C. Chi, “Design of complex event-processing ids in internet of things,” in
2014 Sixth International Conference on Measuring Technology and Mechatronics
Automation, Jan 2014, pp. 226–229.

https://www.cloudflare.com/learning/ddos/ping-icmp-flood-ddos-attack/
https://rules.emergingthreats.net/open/suricata/rules/
https://www.washingtonpost.com/technology/2018/12/20/nest-cam-baby-monitor-hacked-kidnap-threat-came-device-parents-say/
https://www.washingtonpost.com/technology/2018/12/20/nest-cam-baby-monitor-hacked-kidnap-threat-came-device-parents-say/

	Introduction
	Background
	IoT Security
	Vulnerabilities
	Solutions

	Intrusion Detection Systems

	Target Platforms
	Suricata
	Architecture
	Rules Mechanism

	IoT-Flows
	Architecture
	Rules Mechanism

	Usability Test
	Methods
	Experimental Design
	Questionnaire
	Participants

	Attacks
	Setup
	Activity Steps

	Results and Discussion
	General
	System Usability Scale (SUS)
	Open-ended questions

	Observations
	Discussion
	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Related Work
	Conclusions
	REFERENCES

