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“The opposite of war isn’t peace, it’s creation.” (LARSON, 1996).



RESUMO

A varicocele é uma doença caracterizada pela dilatação abnormal e tortuosidade na
veia espermática, sendo a principal causa de infertilidade entre homens. A relação entre a
varicocele e a infertilidade ainda não é bem definida. Além disso, o diagnóstico de infertili-
dade também é muito demorado, podendo chegar a 1 ano, e impreciso. Nesse âmbito, um
estudo metabonômico pode oferecer mais pistas sobre a relação entre a varicocele, infer-
tilidade e parâmetros seminais. A primeira etapa de um estudo metabonômico envolve o
preparo do material biológico para as análises químicas, onde são necessárias técnicas que
extraiam o máximo de informação mesmo em pequenas quantidades, como o QuEChERS
miniaturizado e o DLLME. Assim, como a diversidade de metabólitos alcançadas pode ser
muito vasta, o uso de técnicas cromatográficas de separação e análise tornam-se cruciais.
Quando se pensa em um estudo metabonômico com objetivo de identificar, classificar e
diagnosticar indivíduos, é importante que a instrumentação seja acessível para hospitais e
clínicas de médio e pequeno porte, como o HPLC-DAD, que é de fácil operação, robusto,
reprodutível e de baixo custo. As amostras de sêmen foram coletadas e divididas em
três classes: controle (C), varicocele fértil (VF) e varicocele infértil (VI). O preparo de
amostra deu-se por Microextração Líquido-líquido dispersiva (DLLME) e QuEChERS. A
otimização do estudo metabonômico foi realizado em um HPLC-DAD utilizando acetoni-
trila e metanol. Definidas as melhores condições, as amostras foram submetidas a análise
multivariada exploratória e classificatórias de dados através do software MATLAB, uti-
lizando o somatório dos comprimentos de onda (de 200 a 400 nm) e a absorção apenas
em 210 nm. Os dados clínicos foram colhidos de acordo com os parâmetros da OMS. A
inserção dos dados faltantes foi efetuada com os algoritmos de SVD, KNN, BPCA e subs-
tituição pela média dos valores observados. A qualidade da inserção foi feita através do
teste de Kolmogorov-Smirnov. As mesmas análises quimiométricas foram realizadas com
os dados clínicos. A otimização revelou que o melhor preparo de amostra foi o DLLME e
a melhor fase móvel foi o MeOH. A análise por PCA robusta não indicou a presença de
amostras anômalas, mas também não foi capaz de promover uma separação visual entre
as classes. Já a análise por PLS-DA conseguiu promover uma separação melhor entre as
classes, com exatidão de 95% e 75 % para o somatório e em 210 nm, respectivamente.
Já a análise por LDA com seleção de variáveis apresentou exatidão de 80% para ambas
as classes. Na tentativa de melhorar os resultados, foram construídos modelos utilizando
apenas as classes VF e VI, onde a LDA atingiu 100% de classificação correta em todos os
dados avaliados. Em relação aos dados clínicos, o modelo de KNN foi o que apresentou os
melhores resultados segundo o teste de Kolmogorov-Smirnov. Também não foi verificado
aqui a presença de amostras anômalas. A análise exploratória indicou que os parâmetros
seminais e hormonais são explicam as principais diferenças entre as classes VF e VI. Os
modelos classificatórios obtiveram acurácia de 77,5% e 87,5% para o PLS e LDA, res-
pectivamente. Assim, os estudos apresentados aqui, apesar de preliminares, apresentam
elevado potencial para funcionarem como triagem para o diagnóstico de infertilidade em
homens com varicocele.

Palavras-chaves: aprendizado de máquina; dados faltantes; fertilidade; metabolômica;

quimiometria; varicocele.



ABSTRACT

Varicocele is a disease characterized by abnormal dilation and tortuosity in the
spermatic vein, being the principal cause of infertility among men. The relationship
between varicocele and infertility is not well defined. In addition, the diagnosis of infer-
tility is also very time-consuming, reaching up to 1 year, and imprecise. In this context,
a metabonomic study can offer more shreds of evidence about the relationship between
varicocele, infertility, and seminal parameters. The first stage of a metabonomic lead-up
involves the biological material preparation for chemical analyses, where techniques that
extract the maximum amount of information even in small quantities are needed, such
as the miniaturized QuEChERS and DLLME. Once the metabolite diversity achieved by
these methods is wide, the use of chromatographic techniques for discrimination analysis
becomes fundamental. A metabonomic study to identify, classify, and diagnosing indivi-
duals, the instrumentation must be accessible for medium and small hospitals and clinics,
such as the HPLC-DAD, which is easy to operate, robust, reproducible, and Low cost.
Semen samples were divided into three classes: control (C), fertile varicocele (VF), and
infertile varicocele (VI). Sample preparation was made through DLLME and QuEChERS.
The optimization of the metabonomic study was performed on an HPLC-DAD using ACN
and MeOH. Once defined the best conditions, the samples were submitted to exploratory
multivariate analysis and data classification using the MATLAB software, using the sum
of wavelengths and absorption only at 210 nm. Clinical data were collected according
to WHO parameters. The insertion of missing data was performed with the algorithms
of SVD, KNN, BPCA, and replacement by the mean. Insertion quality was evaluated
using the Kolmogorov-Smirnov test. The same chemometric analyzes were applied to
clinical data. The optimization revealed that the best sample preparation was DLLME
and, the best mobile phase was MeOH. Robust PCA analysis did not indicate anomalous
samples presence, but there wasn’t a good visual separation between the classes. PLS
analysis promoted better discrimination between the classes, with an accuracy of 95%
and 75% for the sum and at 210 nm, respectively. The analysis by LDA with variable
selection showed an accuracy of 80% for both classes. Models were built using VF and
VI classes to improve the results, where LDA reached 100% of correct classification in all
evaluated data. In clinical data, the KNN model showed the best results according to
the Kolmogorov-Smirnov test. ROBPCA didn’t identify anomalous samples here either.
Exploratory analysis indicated that seminal and hormonal parameters explain the main
differences between classes VF and VI. The classification models obtained an accuracy
of 77.5% and 87.5% for the PLS and LDA, respectively. The studies presented here,
although preliminary, have a high potential to work as a screening method to diagnose
infertility in men with varicocele.

Keywords: chemometrics; fertility; machine learning; metabolomics; missing Data; vari-

cocele.
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1 INTRODUÇÃO

A infertilidade pode ser definida como a incapacidade de gerar filhos após um ano

regular de sexo desprotegido. Segundo a OMS (Organização Mundial de Saúde), este

problema atinge cerca de 48 milhões de casais e 186 milhões de indivíduos no mundo

inteiro [2]. As doenças que ocorrem no trato genital feminino são responsáveis por cerca

de 50% a 60% dos diagnósticos de infertilidade, enquanto as doenças do trato masculino

são responsáveis por 40% a 50% [3].

Dentre as doenças do trato masculino, a varicocele é uma das principais causas

de infertilidade entre homens, sendo responsável por cerca de 19% dos casos de infertili-

dade primária e de 45% nos casos de infertilidade secundária1. Na população de homens

saudáveis, de 10% a 15% possuem algum grau de varicocele [4].

Apesar dos mais diversos estudos sobre as causas da varicocele e como ela afeta a

fertilidade masculina, ainda não se há um diagnóstico preciso sobre os mecanismos que

sofrem interferência da doença. Além disso, não se sabe também o porque de alguns

homens possuírem varicocele e serem férteis, enquanto outros são inférteis [5].

Dentro deste cenário, é preciso se buscar técnicas capazes de inferir sobre o status

de fertilidade ou ao menos realizar uma triagem quanto ao quadro do paciente sem que

seja necessário aguardar um período de 1 ano para isso [6].

Em 2020 o nosso grupo de pesquisa realizou o estudo metabonômico para o dignós-

tico de infertilidade em homens com varicocole utilizando espectros de RMN de amostras

de soro seminal [7]. Nesse contexto e com o objetivo de continuar os estudos meta-

bonômicos da varicocele, propõe-se aqui um estudo metabonômico utilizando dados de

cromatografia líquida de alta eficiência.

1.1 OBJETIVO GERAL

Desenvolver um modelo quimiométrico capaz de diferenciar entre pacientes com

varicocele fértil e varicocele infértil utilizando dados clínicos e de cromatografia líquida

de alta eficiência assistidas por técnicas quimiométricas.
1Infertilidade primária: quando não há gestação anterior; Infertilidade secundária: há gestação ante-

rior.
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1.1.1 Objetivos específicos

• Desenvolver um método analítico para a análise de soro de sêmen em HPLC-DAD;

• Realizar a predição e validação de dados faltantes no conjunto de dados clínicos;

• Realizar análise exploratória utilizando a PCA Robusta para a detecção de amostras

anômalas;

• Construir modelos quimiométricos de classificação para a triagem de pacientes com

varicocele quanto sua fertilidade usando dados clínicos e cromatográficos.
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2 FUNDAMENTAÇÃO TEÓRICA

2.1 VARICOCELE

A varicocele é uma doença caracterizada pela dilatação abnormal e tortuosidade

na veia espermática [8]. Está associada com a dor, atrofia testicular e redução das taxas

de fertilidade. Na Figura 1 está a representação de um testículo saudável e um testículo

com varicocele.

Figura 1 - Representação de um testículo saudável comparado ao um testículo com varicocele.

Fonte: Mayo Foundation for Medical Research and Education (2015). Modificado pelo autor.

Essa dilatação é causada pelo mal funcionamento do refluxo sanguíneo nas veias.

Em um indivíduo saudável, o sistema de válvulas presente nas veias impede o retorno

do sangue, sendo o mecanismo falho em um indivíduo com varicocele, ocasionando o

acúmulo de sangue nos testículos e o consequente dilatamento das veias [8]. Na Figura 2

está representado o esquema de como acontece o refluxo.
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Figura 2 - Representação de como ocorre o refluxo nas veias escrotais.

Fonte: Shutterstock (2018). Modificado pelo autor.

A varicocele é um problema comum na medicina reprodutiva, estando presente

em 15% dos homens em todo o mundo. Sabe-se também que essa doença é uma das

principais causadoras da infertilidade masculina, sendo responsável por 19% dos casos

de infertilidade primária. A epidemiologia ainda não é bem entendida, sendo ainda ne-

cessários estudos em larga escala para determinar os fatores que contribuem para o seu

desenvolvimento [9].

Um fator interessante sobre a varicocele é o seu agravamento com o passar dos anos.

Foi comprovado que a incidência da doença aumenta cerca de 10% para cada década de

vida e que 75% dos homens com mais de 90 anos possuem varicocele. Como está associada

com a diminuição da produção de testosterona, a varicocele também pode ter correlação

com o envelhecimento acelerado entre os homens [10].

Embora existam muitas possíveis causas, nenhuma única é capaz de descrever

todos os casos, podendo muitas delas estar presentes em um único indivíduo. Além disso,

identificar a causa específica de cada paciente pode não ser economicamente viável e pouco

provavelmente traria algum benefício, considerando os tratamentos hoje já disponíveis.

Contudo, é interessante conceituar as origens da varicocele, uma vez que isto pode guiar

para o desenvolvimento de novas intervenções cirúrgicas que sejam mais direcionadas



20

[5, 11].

O diagnóstico da varicocele é feito em um exame de rotina, em um consultório

quente, sendo o paciente avaliado de pé ou deitado. O uso da manobra de Valsalva pode

ajudar na visualização das veias dilatadas, caso elas não cheguem a ser palpáveis. A

varicocele é dividida em três graus, de acordo com o exame físico proposto por Dubin and

Amelar [12, 13].

• Grau 1 - Palpável quando o paciente está de pé e fazendo a manobra de Valsalva.

• Grau 2 - Palpável quando o paciente está de pé, sem realizar a manobra de Valsalva.

• Grau 3 - Palpável e visível pelo saco escrotal quando o paciente está de pé.

2.1.1 Varicocele e Infertilidade

A relação entre a varicocele e a infertilidade ainda não é bem definida. Acredita-se

que o agravamento da doença ao ponto de causar efeitos negativos nos testículos e nos

parâmetros seminais pode ser ocasionado por diversos mecanismos que ocorrem de forma

simultânea. Dentro dessa cadeia de complexos mecanismos, o estresse oxidativo pode ser

a principal causa da disfunção [14].

O estresse oxidativo pode ser definido como a produção elevada de espécies rea-

tivas do oxigênio (ERO). Como exemplos, podem ser citados o peróxido de hidrogênio e

radicais livres que contém um elétron desemparelhado. Em concentrações normais, a pre-

sença dos EROs é essencial para produção de espermatozoides saudáveis. Entretanto, o

excesso dessas espécies já é uma conhecida causa da infertilidade masculina. O fenômeno

bioquímico pode ser resultado de vários mecanismos compensatórios que trabalham para

assegurar a produção dos espematozóides, mas que, a nível molecular, levam a formação

de muitos radicais livres [15]. Como apresentado na Figura 3, o estresse oxidativo pode

ser causado por três condições principais: A hipertermia escrotal, a hipóxia e o refluxo de

metabólitos.
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Figura 3 - Principais fatores que levam ao estresse oxidativo em pacientes com varicocele.

Fonte: Jensen et al.(2017) [14]. Modificado pelo autor.

Alguns estudos já correlacionaram a presença da varicocele com o aumento da

temperatura escrotal, denominada também como hipertermia [16–18]. Com o refluxo

sanguíneo, a produção de espermatozoides é afetada pois ela costuma ocorrer idealmente

a cerca de 2ºC abaixo da temperatura corporal [19]. Os mecanismos moleculares que

levam os compromentimento dos parâmetros seminais estão relacionados principalmente

com a diminuição da síntese de proteínas e de enzimas específicas [20].

Um segundo aspecto a ser avaliado é a pressão sanguínea nos testículos, que é

muito menor quando comparada com outras regiões do corpo. Portanto, é de se esperar

que qualquer mínima alteração da pressão seria significativa no microambiente testicu-

lar. O aumento da pressão venosa leva uma reação contrária na pressão arterial, que

diminui em um efeito compensatório, a fim de manter a homeostase em relação à pressão

intratesticular. Tal efeito leva a diminuição no fornecimento de oxigênio e nutrientes,

conhecido como hipóxia. Um dos principais problemas que podem ser gerados nesse ce-

nário é a apoptase, a morte programada de células [21,22]. A resposta à hipóxia induzida

por varicocele promove a apoptose das células germinativas, contribuindo assim para a

infertilidade masculina [23].

Outro fator contribuinte para o estresse oxidativo é o refluxo de metabólitos tóxicos
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vindos dos rins e das glândulas suprarrenais, como a ureia, prostaglandinas E, prostaglan-

dina F2-alfa e epinefrina. Esses metabólitos são responsáveis por contribuir no estresse

oxidativo em outras culturas celulares em testes realizados in vitro. Entretanto, apesar

de estarem presentes em elevados níveis em pacientes com varicocele, não há estudos que

comprovem a relação com a infertilidade, sendo os poucos realizados em animais muito

contraditórios [24].

Camoglio e colaboradores estudaram os efeitos do refluxo de metabólitos renais e

adrenais na função testicular utilizando ratos. Os dados obtidos indicaram comprome-

timento nos níveis hormonais e nos parâmetros seminais, apoiando a hipótese de que os

metabólitos citados aumentam o dano testicular induzido por varicocele [25]. Entretanto,

outros estudos indicam que não há diferença significativa entre os níveis desses metabóli-

tos no sangue venoso e arterial, o que indica que não ocorre o refluxo. Por isso, esse fator

precisa de estudos mais aprofundados [26,27].

Além de problemática em definir as causas da infertilidade, o diagnóstico também

é muito demorado e impreciso. Hoje, os testes de infertilidade são recomendados quando

a gravidez não ocorre após doze meses de sexo sem o uso de métodos contraceptivos. São

analisados então os parâmetros seminais e físicos, sendo o diagnóstico dado por um urolo-

gista ou profissional na área de reprodução humana. Entretanto, a análise individualizada

dos parâmetros seminais pode não ser uma boa preditora da infertilidade, o que torna o

diagnóstico bem mais desafiador [6, 28].

Como foi exposto, a relação entre a varicocele, infertilidade e parâmetros seminais

não é totalmente compreendida. A resposta pode estar em uma análise holística dos

diversos pontos que contribuem para o desenvolvimento desta disfunção. Nesse âmbito,

um estudo metabonômico pode oferecer mais pistas para a elucidação dessa relação.

2.2 METABONÔMICA

As ciências ômicas podem ser definidas como o estudo, identificação e caracteriza-

ção de moléculas biológicas envolvidas em um processo bioquímico a fim de inferir sobre

a dinâmica e estrutura desse processo em uma célula, tecido ou organismo. Exemplos

de ciências ômicas são a genômica, transcriptômica, proteômica e a metabolômica, que

estudam o genoma, transcriptoma, proteoma e o metaboloma, respectivamente [29].

Como já citado, a metabonômica, a ciência ômica utilizada neste trabalho, é o
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estudo do metaboloma, que representa o conjunto de metabólitos em um ambiente bi-

oquímico específico, que por sua vez são os produtos moleculares finais de processos

celulares. O principal objetivo nos estudos metabolômicos é identificar metabólitos ou

marcadores químicos que diferenciem processos ou condições características [30]. Pode

ser categorizada em duas abordagens: a metabolômica targeted, onde os metabólitos já

são conhecidos e o objetivo é a quantificação, e a metabolômica untargeted ou metabonô-

mica, onde o objetivo é determinar o maior número de metabólitos possíveis, envolvendo

principalmente a identificação e reconhecimento de padrão [31].

O fluxograma de trabalho de um estudo metabonômico deve seguir uma padroni-

zação definida pela Sociedade de Metabolômica (do inglês, Metabolomics Society), onde

inicialmente devem ser determinados o objetivo do estudo, o número de amostras e a abor-

dagem a ser utilizada. Após definido o planejamento experimental, segue-se então com a

coleta e preparo das amostras, análise instrumental, processamento e análise estatística

dos dados, identificação dos metabólitos e interpretação biológica final [32].

2.2.1 Preparo de amostras e Técnicas miniaturizadas de extração

A primeira etapa de um estudo metabonômico envolve o preparo do material bio-

lógico para as análises químicas. Logo, a escolha do tipo de preparo é fundamental, uma

vez que a composição dos metabolitos a serem observados pode ser afetada pelo processo

e interferir na interpretação biológica final. Para ser considerado um método ideal, o pre-

paro deve: ser não seletivo, a fim de garantir que o maior número possível de metabólitos

sejam alcançados; ser simples e rápido, evitando a perda de material; ser reprodutível e

garantir que os metabólitos sejam os mesmos no momento da extração e no momento da

análise [33].

O preparo de amostra pode ir desde uma diluição usando tampões e solventes

deuterados a extrações com solventes orgânicos. Em análises cromatográficas é mais

comum a realização de uma extração com solvente orgânico para adequar a amostra à

análise e reduzir a presença de interferentes que possam danificar o equipamento, por

exemplo macromoléculas [34].

Geralmente, o volume de amostras biológicas disponível é bastante reduzido, sendo

necessárias técnicas que extraiam o máximo de informação mesmo em pequenas quantida-

des. Neste cenário, o uso de técnicas miniaturizadas de extração é uma alternativa viável
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para contornar esse tipo de problema. As técnicas miniaturizadas, além de proporciona-

rem o manejo mais adequado para amostras biológicas, ainda permitem uma abordagem

mais sustentável, onde a demanda de solventes e materiais também é reduzida. Ade-

mais, essas técnicas permitem análises mais simples e diretas, aumentando a eficiência da

extração [35].

Dois métodos foram avaliados, um que se baseia na total miscibilidade do solvente

extrator e amostra com posterior partição com fase sólida (QuEChERS) e um que se

baseia na imiscibilidade entre solvente extrator e amostra (DLLME). O primeiro método

a ser citado é o QuEChERS, tipo de preparo de amostra recebe o nome através da sigla

do inglês para Quick, Easy, Cheap, Effective, Rugged, Safe - QuEChERS, que significa

rápido, fácil, barato, eficaz, robusto e seguro, respectivamente . O método foi desenvol-

vido por Anastassiades et al. [36] em 2003 para a extração de pesticidas em produtos

agrícolas. Desde então, o modelo de extração vem sofrendo modificações, inclusive na sua

miniaturização [37].

Alguns estudos metabonômicos já utilizaram o QuEChERS ou versões modificadas

para extrair metabólitos de amostras biológicas, revelando que a técnica tem potencial

para acessar um variado número de informações por sua extração eficiente e com pos-

sibilidade de ser não seletiva [38–40]. Recentemente, Casado et al. desenvolveram uma

versão miniaturizada da técnica para a quantificação de fenóis em produtos alimentícios

para bebês. A abordagem proposta conseguiu extrair as informações necessárias e utilizou

bem menos materiais [41].

Outra técnica miniaturizada de extração é a Microextração Líquido-Líquido Dis-

persiva (DLLME, do inglês Dispersive Liquid-Liquid Microextraction), proposta inicial-

mente por Rezaee e colaboradores [42]. A DLLME é caracterizada pela utilização de dois

tipos de solventes. O primeiro é o solvente extrator (fase orgânica), que irá concentrar os

analitos desejados e estará em menor quantidade. O segundo, o solvente dispersor, que

estará presente em maior quantidade e deve ser miscível tanto no solvente extrator como

na amostra (fase aquosa). O sistema de extração é definido baseado no sistema ternário

de solventes como a Extração Líquido-Líquido Homogênea (HLLE, do inglês Homogeneus

Liquid-Liquid Extraction) e a Extração em Ponto de Nuvem (CPE, do inglês Cloud Point

Extraction) [43]. Na Figura 4 está um esquema que apresenta as etapas do processo.
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Figura 4 – Esquema do método DLLME.

Fonte: Martins et al.(2012) Modificado pelo autor [43]

Conforme ilustrado na Figura 4, com o auxílio de uma seringa, a mistura de sol-

ventes é colocada em contato com a amostra, onde ocorre a mistura das fases. Assim, é

gerada uma perturbação vigorosa no sistema, tornando-se a mistura turva. A turbidez

observada é resultado da presença de microbolhas de solvente extrator dispersas por todo

a amostra. Como resultado, a área superficial disponível para a transferência de analitos

é infinitamente melhorada quando comparada a uma extração líquido-líquido tradicional,

sendo o estado de equilíbrio atingido rapidamente. Após a sedimentação acelerada por
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centrifugaçãodo solvente extrator, este pode ser coletado e analisado [43].

O uso da DLLME pode ser encontrado em alguns estudos metabonômicos disponí-

veis na literatura. Por exemplo, Zhao et al. determinaram a presença de neurotransmisso-

res e metabólitos presentes em amostras de cérebro de ratos que sofriam de Parkinson [44].

Este tipo de preparo de amostra também foi utilizado em um estudo para a determinação

de biomarcadores de diabetes na urina [45]. No campo dos estudos urológicos, Huang

et al. conseguiram extrair e determinar metabólitos na urina que indicam a presença de

câncer de próstata [46].

A diversidade de metabólitos alcançadas por eficientes métodos de extração pode

ser muito vasta. Por exemplo, no plasma humano podem ocorrer cerca de 4000 metabólitos

em nove diferentes ordem de grandeza. Nesse cenário, o uso de técnicas cromatográficas

de separação e análise tornam-se cruciais para o estudo metabonômico [47].

2.2.2 Técnicas Cromatográficas - aquisição de dados para estudos metabonô-

micos

A evolução dos estudos metabonômicos sempre esteve atrelada ao desenvolvimento

de técnicas cromatográficas cada vez mais precisas. O avanço tecnológico no empacota-

mento das colunas, processamento de dados e detecção, permitiram o aumento do acesso

a vários tipos de metabólitos com maior resolução cromatográfica. Hoje, a combinação

de tecnologias de separação e detecção utilizadas na metabonômica é muito ampla, sendo

as mais comuns o HPLC-MS, CE-MS e CG-MS [47].

O uso do detector de massas é extensamente aplicado em estudos metabonômicos

por oferecer a possibilidade de determinação das rotas metabólitas. Conduto, é impor-

tante frisar que este tipo de técnica, quando associada ao CG, exige que as moléculas

a serem analisadas sejam voláteis e termicamente estáveis, o que demanda um preparo

de amostra bem mais delicado, como a necessidade de derivatização. Já quando utili-

zado com a cromatografia líquida, o sistema apresenta pouca reprodutibilidade e diversas

dificuldades de operação e manutenção [48]. Assim, quando se pensa em um estudo meta-

bonômico com objetivo de identificar, classificar e diagnosticar indivíduos, é importante

que a instrumentação seja acessível para hospitais e clínicas de médio e pequeno porte.

Logo, o HPLC-DAD apresenta-se como uma boa alternativa para um situação como esta.

O HPLC-DAD é de fácil operação, robusto, reprodutível e de baixo custo, chegando a cus-
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tar cerca de 1/10 do valor de um LC/MS. Além destas vantagens, a técnica é bem menos

sensível à interferência da matriz, como a presença de carboidratos, ácidos graxos e co-

lesterol [48, 49]. Muitos estudos metabonômicos classificatórios já foram feitos utilizando

o HPLC-DAD como método de separação e detecção de metabólitos [50, 51] , principal-

mente em alimentos. Como exemplo, podem ser citados os estudos pra a classificação de

óleo de oliva [52], vinho [53] e café [54].

Considerando-se os aspectos citados, pode-se afirmar que o estudo metabonômico

é um importante passo para a investigação de um fenômeno bioquímico. Porém, com o

avanço de tecnologias citadas capazes de monitorar milhares de metabólitos em uma única

análise, extrair informações relevantes desses complexos e extensos conjuntos de dados

torna-se uma tarefa crucial. A quimiometria permite a utilização de variados métodos para

melhor acessar e compreender o comportamentos de metabólitos em diferentes ambientes

químicos [55].

2.3 QUIMIOMETRIA - ANÁLISE MULTIVARIADA DE DADOS

Apesar de serem comuns na rotina de análises químicas, os métodos univariados

passam a ser limitados na presença de inúmeras análises. No contexto metabonômico, um

conjunto de dados Xi×j pode facilmente ter dimensões j � i, sendo necessário então o uso

de abordagens multivariadas capazes de explorar e detectar informações importantes. Os

métodos multivariados de reconhecimento de padrão podem ser divididos em dois grupos:

os não supervisionados, que buscam a redução da dimensionalidade e análise exploratória,

e os supervisionados, dedicados à classificação e predição.

2.3.1 Análise Exploratória de Dados

A análise por componentes principais (PCA, do inglês - Principal Component

Analysis) é o principal método de análise exploratória de dados multivariados que pode

ser utilizado para a redução da dimensionalidade, detecção de amostras anômalas, agru-

pamento gráfico e entre outras aplicabilidades. Esse tipo de análise exploratória é pré-

requisito para outras análises mais específicas, como a calibração multivariada e análise

classificatória, sendo assim a primeira etapa na análise multivariada de dados [56]. O

cálculo da PCA está indicado na Equação 1. Na Figura 5 está representada de forma
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gráfica as matrizes envolvidas nos cálculos.

X = TPT + E (1)

Figura 5 - Representação matricial da equação 1.

Fonte: (Geladi et al., 2020.) [57].Modificado pelo autor.

Como indicado na Figura 5, a matriz Xi×j representa os dados originais, pode ser

decomposta em uma matriz Ti×a de escores, onde a correponde ao número de componentes

calculadas). A matriz Xi×j é multiplicada pela transposta da matriz Pa×j, que contêm

os pesos de cada variável. Os resíduos não explicados pela transformação estão contidos

na matriz Ei×j com as mesmas dimensões da matriz original.

O cálculo da primeira componente principal (PC1) se dá pela projeção de uma linha

no espaço multidimensional, onde a soma dos quadrados dos objetos projetados naquela

direção são maximizadas, ou seja, a PC1 corresponde a direção onde há a maior variação

dos dados. Os escores são a representação das amostras no espaço das novas variáveis

denominadas de PC, enquanto os pesos contém a informação das variáveis usadas para

avaliar similaridades e diferenças entre as amostras em cada respectiva PC. Assim, quanto

maior o valor do peso de uma variável, maior a sua contribuição para a variabilidade

entre os dados. O mesmo ocorre para a segunda componente principal (PC2), que extrai

mais informações da matriz X não explicadas pela PC1. Da mesma forma se calcula a

terceira e quarta PC, de forma que todas as PCs são ortogonais entre si. O número ideal

de PCs depende da complexidade das amostras analisadas, sendo que um modelo com
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mais de 10 PCs muito complexo e pode indicar que a análise por PCA não é a mais

adequada para o caso, sendo necessárias abordagens mais específicas, como os algoritmos

de classificação. [57]

Um dos problemas apresentados por essa versão clássica da PCA é a sua sensi-

bilidade a presença de amostras anômalas, que diferem da maioria das observações en-

contradas no espaço multidimensional. Como pode ser observado na Figura 6, existem

diferentes tipos de amostras anômalas que podem influenciar na rotação do modelo. A

PCA está representada no plano n-dimensional [58].

Figura 6 - Tipos de amostras anômalas encontrados em um conjunto de dados

Fonte: Hubert, M., Rousseeuw, P. J., Vanden Branden, K. (2020). [59]

Nota-se que maioria das amostras se encontram no centro das origens das PCs.

A observação 1 e 2, apesar de afastadas do centro (resíduo elevado), não influenciam

na rotação do modelo pois se encontram no mesmo plano. A amostra 3 possui elevada

distância ortogonal do plano da PC, que não pode ser percebido no gráfico dos resíduos

devido a sua projeção do plano. As observações 4 e 5 possuem grande distância do centro
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da origem e ortogonal, o que torna o modelo mais propício de sofrer rotações na tentativa

que explicar essas amostras. Para melhor identificar a presença e minimizar o efeito de

amostras anômalas na rotação do modelo PCA, foi proposta a abordagem da PCA robusta

(ROBPCA). [59].

Dentre as estratégias utilizadas para o cálculo da ROBPCA, o mais comum é o

determinante de covariância mínimo, o MCD (do inglês, Minimum Covariance Determi-

nant). O MCD trabalha de forma a encontrar um subconjunto de amostras que minimi-

zem o determinante da matriz de covariância. Determinado o subconjunto, é calculada a

distância robusta (DR) de cada amostra (xi) de acordo com a equação 2, em que µ̂0 é a

média das distâncias das amostras.

DR(xi) =
√

(xi − µ̂0)tXTX(xi − µ̂0) (2)

Considerando a propriedade das matrizes, o conjunto de dados X deve ter mais

linhas do que colunas, evitando assim que a matriz de covariância tenha o determinante

nulo. Deste modo, o uso do MCD torna-se limitado, sendo necessário então uma redução

de dimensionalidade para conjunto de dados maiores. Inicialmente, esta redução era feita

por decomposição de valores singulares, no entanto, algoritmos mais avançados utilizam o

project pursuit (PP, busca de projeções). Este algoritmo busca inicialmente uma projeção

onde a distribuição de dados seja a menos gaussiana possível. Uma vez que a distribui-

ção de ruídos apresenta um caráter normal, projeções que se afastam ao máximo desse

comportamento são as que mais explicam a variação entre as amostras.

A ROBPCA é então calculada utilizando apenas os pontos onde a distância or-

togonal não é muito grande definidos pelo PP e MCD, resultando em um novo espaço

k-dimensional. Como ferramenta de diagnóstico, pode ser utilizado o mapa de outliers,

que consiste em verificar a distância ortogonal pela distância de escores. Um exemplo está

representado na Figura 7, onde é possível observar as amostras em 4 quadrantes distintos.

Os valores de corte para a distância ortogonal e de escores estão indicados nas linhas

vermelhas.
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Figura 7 - Mapa de outliers.

Fonte: Hubert, M., Rousseeuw, P. J., Vanden Branden, K. (2020). [58], modificado pelo autor.

Como pode ser observado, as amostras mais homogêneas se encontram no terceiro

quadrante. Já no segundo e quarto quadrante, temos amostras com elevada distância orto-

gonal e de escore, respectivamente. Por fim, as amostras inseridas no primeiro quadrante,

indicam elevada distância ortogonal e de escore ao mesmo tempo, sendo potencialmente

anômalas e podem dificultar na construção do modelo [58].

Definido o conjunto de dados, pode-se então dar continuidade à análise explorató-

ria. Para isso, é construído um gráfico que relaciona os escores e pesos em cada uma das

PCs calculadas. Um exemplo de gráficos de escores e pesos está indicado na Figura 8.

Figura 8 - Exemplo de gráfico de escores(a) e pesos(b) obtidos no cálculo da PCA.

Fonte:O autor (2021)

A interpretação do gráfico pode ser feita da seguinte forma: Amostras próximas

entre si indica a presença de similaridades, sendo possivelmente agrupas em classes, como
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as classes A, B e C demonstradas no gráfico. Já em relação aos pesos, pode-se inferir

sobre a contribuição de cada variável para a construção da PC. Por exemplo, as variáveis

4 e 5 possuem influência na separação das amostras em PC1, mas têm baixa influência

em PC2. O comportamento exatamente contrário é encontrado na variável 3, com alta

influência em PC2 e baixa em PC1. Já a variável 3 apresenta influência em ambas as

PC, ao contrário da variável 2, que apresenta baixa influência na separação das amostras.

Além disso, pode-se averiguar sobre o comportamento das variáveis dentro de cada classe.

Por exemplo, pode-se esperar que as variáveis 4 e 5 possuam um maior valor numérico no

grupo B, assim como 3 para o grupo A e 1 para o grupo C [60].

2.3.2 Análise Classificatória de Dados

Dentre os métodos supervisionados de dados, podem ser destacados o PLS-DA

(do inglês, Partial Least Square - Discriminant Analysis) e a LDA (do inglês, Linear

Discriminant Analysis), este último comumente acoplada a seleção de variáveis.

O PLS-DA é um algoritmo muito utilizado como ferramenta quimiométrica para

otimizar a discriminação entre dois ou mais conjuntos de dados, através da análise con-

junta entre duas matrizes, uma contendo os dados originais (X) e outra contendo a indica-

ção da classe (Y) [61]. O PLS-DA trabalha de forma a maximizar as covariâncias entre as

duas matrizes citadas através da criação de um subespaço linear. Esse subespaço permite

a predição do índice de classes através de fatores reduzidos, aqui denominadas variáveis

latentes (VL). As VLs descrevem o comportamento dos valores deY no subespaço onde

as amostras de X foram projetadas [62].

Já a LDA foi proposta inicialmente por R. Fisher para a discriminação de diferentes

tipos de flores, sendo hoje utilizado em diversas aplicações [63]. O objetivo da LDA é

realizar uma transformação linear através da projeção dos dados originais em um espaço

de dimensões reduzidas e maximizando a separabilidade das classes. O critério para a

redução das dimensões é maximizar a distância entre as amostras de diferentes classes e

minimizar a distância das amostras dentro da mesma classe [64]. Entretanto, um fator

limitante para o uso da LDA está relacionado à dimensionalidade dos dados originais.

Caso a matriz inicial possua mais colunas do que linhas (como frequentemente encontrado

em conjunto de dados espectrais, por exemplo), a matriz torna-se singular e a sua inversa

não pode ser definida com exatidão. Além disso, variáveis correlacionadas também podem
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levar a singularidades no processo de inversão da matriz. Para contornar essa questão, são

utilizados alguns métodos, dentre eles, a seleção de variáveis que busca reduzir o elevado

número de variáveis a um subconjunto de tamanho inferior ao número de amostras e que

seja o minimamente correlacionadas entre sí. [64].

A seleção de variáveis, além de permitir que o cálculo da LDA possa ser realizado,

apresenta vantagens como a diminuição do custo computacional com a redução do con-

junto de variáveis iniciais. A combinação das variáveis selecionadas são as que melhor

explicam a variação entre as classes e há um menor risco de sobreajuste [65]. O melhor

algoritmo para a seleção depende da natureza dos dados e dos objetivos da aplicação.

No presente trabalho, o método avaliado foi o algoritmo genético (GA, do inglês, Genetic

Algorithm), que é uma ferramenta de otimização usada para selecionar as variáveis mais

representativas para o caso em estudo. O algoritmo genético é baseado na teoria evolu-

tiva de Darwin, onde o processo evolutivo é simulado matematicamente. O método foi

proposto por John H. Holland na década de 60, com o objetivo de otimizar sistemas com-

plexos. Desde então, o algoritmo vem sendo modificado e melhorado para ser utilizado

em diversas áreas, inclusive na química [66].

2.3.2.1 Validação dos métodos de classificação

Após a construção de um modelo de classificação, é necessário validá-lo. Há di-

versas formas de realizar uma validação de um modelo classificatório. Nesta dissertação

optou-se por particionar o conjunto de amostras em um de treinamento e um de teste e

avaliar a eficiência de classificação correta das amostras de teste baseado em erros do tipo

I e II. O diagnóstico pode ser dado através de uma matriz de confusão, onde são dispostos

os números de amostras designadas em cada classe [67] .
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Figura 9 - Matriz de confusão.

Fonte: Filho R.(2015) . [68]

Como pode ser observada na Figura 9 em um exemplo para duas classes, a matriz

de confusão gera quatro informações diferentes. Inicialmente, na diagonal da matriz

encontram-se os verdadeiros positivos (VP) e os verdadeiros negativos (VN). Os VP são

as amostras que foram classificadas corretamente como pertencentes à classe, enquanto

os VN são as amostras classificadas corretamente como não pertencentes à classe. No

canto superior direito, encontram-se os falsos negativos (FN), que são as amostras que

pertencem à classe, mas que foram classificadas erroneamente como não-pertencentes,

ou seja erro do tipo II. Já no canto inferior esquerdo, encontram-se os falsos positivos

(FP), que são as amostras que não fazem parte da classe, mas que foram classificadas

erroneamente como pertencentes, ou seja, erro do tipo I [69].

Com o conjunto de dados classificados, é possível calcular as figuras de mérito,

que indicam o quão eficiente é o modelo. Dentre essas métricas pode-se citar a exatidão,

uma medida das classificações corretas de VP e VN, a sensibilidade, que indica o quão

eficiente o modelo foi para evitar falsos negativos, a especificidade, que indica a habilidade

do modelo em evitar falsos positivos, e a precisão, que indica dentre todas as classificações

de classe positivas que o modelo fez, quantas estão corretas [70].

2.4 DADOS CLÍNICOS

Dados clínicos podem ser definidos como conjuntos de observações coletadas de

pacientes, os quais se encontram dentro de algum critério específico, como uma doença

ou condição médica [71]. Normalmente, tais dados contém variados tipos de informações,

sendo possível encontrar variáveis distintas entre si e de diferentes unidades. Assim, torna-
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se imprescindível o conhecimento aprofundado das particularidades de cada observação,

a fim de chegar em conclusões mais apropriadas sobre o problema a ser estudado [72]. O

objetivo da análise multivariada em dados clínicos é a extração de máxima informação

e reconhecimento de padrões entre as amostras, muitas vezes não acessados com uma

simples análise univariada.

2.4.1 Dados Faltantes

Um problema frequentemente encontrado em dados clínicos são os dados faltantes.

Eles ocorrem quando o valor de uma variável em uma amostra não está registrado. Isso

pode ocorrer por uma série de razões, como: o paciente se recusou a responder uma

determinada questão; erro ou indisponibilidade de algum equipamento para realizar um

exame; tal informação simplesmente não foi solicitada para aquele paciente específico,

etc [73].

A princípio, é importante entender em qual padrão os dados estão faltantes. Um

sistema desenvolvido por Rubin permite identificar os mecanismos dos dados faltantes, os

quais foram divididos em três categorias [74]:

1. MCAR (Missing completely at random): a probabilidade do dado estar faltante não

está relacionada com os valores observados nem com os valores não observados, são

completamente aleatórios.

2. MAR (Missing at random): a probabilidade do dado estar faltante está relacionada

com os valores dos dados observados.

3. MNAR (Missing not at random): a probabilidade do dado estar faltante está rela-

cionada com o próprio valor do dado faltante.

Uma das formas de lidar com a ausência de dados seria excluir completamente

uma amostra ou uma variável até que não houvessem mais dados faltantes. Entretanto, a

redução do conjunto de dados implica na redução da precisão estatística e dos parâmetros

analisados. Uma abordagem válida seria a substituição de um dado faltante por um valor

plausível, que não adicione nenhuma tendência nas análises estatísticas [73].

O SVD (do inglês, singular value decomposition) consiste em um método de im-

putação baseado na decomposição em valores singulares de uma matriz de dados. Ini-

cialmente, os dados faltantes são mapeados e substituídos pela média de sua respectiva
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coluna. É realizada então uma decomposição da matriz em três matrizes, U, S e V. Uma

nova matriz M é construída a partir destas três matrizes ( M = U ∗ S ∗ V ′) e os valores

obtidos para os dados faltantes são substituídos na matriz original. O processo é repetido

até que os valores obtidos convirjam [75].

Um segundo método é o BPCA (do inglês, Baeysean Principal Component Analy-

sis). O método está baseado na estimação dos valores faltantes através da abordagem

bayesiana, acoplada ao algoritmo interative expectation maximization. A estimativa de

valores é divida em basicamente três processos. A regressão dos valores existentes em

componentes principais, inserção dos dados através da estimativa bayesiana e expecta-

tion–maximization (EM)-like repetitiven algorithm [76].

O último método abordado neste trabalho é baseado na imputação de valores

através dos vizinhos mais próximos (KNN, do inglês, k nearest neighbors). A premissa do

algoritmo é bastante simples. Os dados são projetados em um espaço multidimensional

e os valores estimados para os dados faltantes são obtidos através da média do valores

dos k vizinhos mais próximo. A distância entre as amostras é definida pelo cálculo da

distância de Mahalanobis. Em alguns casos, essa média pode ser ponderada de acordo

o quão distante está o vizinho do indivíduo em questão. Quanto mais distante, menor o

peso atribuído, sendo o número de vizinhos utilizados deve otimizado caso a caso [77].

Essa versão clássica do KNN pode exigir um esforço computacional muito elevado,

uma vez que é necessário calcular a distância entre todas as amostras. Por isso, foi desen-

volvido um algoritmo chamado SKNN (do inglês, sequential KNN, ou KNN sequencial).

Aqui, as amostras são divididas em dois grupos. As que não possuem dados faltantes

e as que possuem dados faltantes. No segundo, as amostras são colocadas em ordem

crescente em relação ao número de dados faltantes. A primeira amostra a ser realizada

a imputação é a que possui menos dados faltantes. Após o cálculo da distância em re-

lação às amostras completas e preenchimento dos dados, essa amostra passa a ser parte

do conjunto de amostras completas, sendo também utilizada para as predições futuras.

Assim, as amostras são preenchidas sequencialmente até que a última amostra, aquela

que possui mais dados faltantes, seja completa. Vale salientar que para que o algoritmo

funcione, deve haver um conjunto inicial de amostras completas. Nessa abordagem, o

consumo computacional é bem menor e pode ser utilizado para conjuntos de dados com

muitas variáveis e amostras [78].
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Considerando que os modelos de imputação utilizam os valores observados para

predizer os valores faltantes, resultados com tendência podem ser produzidos e conduzir

a interpretações finais equivocadas. Assim, faz-se necessária a avaliação da qualidade de

predição dos dados. Uma alternativa plausível é o uso do teste de Kolmogorov-Smirnov

[79].

2.4.2 Teste De Kolmogorov-Smirnov

O teste de Kolmogorov-Smirnov (teste KS) é utilizado para medir e comparar a

distribuição acumulativa com um modelo de referência ou entre duas amostras unidi-

mensionais (2KS). O teste torna-se um bom método para verificar se duas amostras têm

origem na mesma população e possuem distribuições semelhantes. o teste KS calcula a

distância máxima (D) entre a função de referência ou entre outra amostra através da

equação 4 [80].

D(a,b) = sup|Fa − Fb| (3)

onde Fa e Fb as funções de distribuição acumulativas das amostras a e b e sup a

função de máximo [80]. Na Figura 10, D está representada graficamente.

Figura 10 - Representação gráfica de D em (a) KS teste para uma amostra e (b) KS teste para
duas amostras. Em vermelho a distribuição antes da inserção e em azul a distribuição após a
inserção.

Fonte: Teste Kolmogorov-Smirnov. Em: Wikipédia (2021). [81], modificado pelo autor.
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Deve ser aplicada a hipótese nula de que:

H0: as amostras são da mesma distribuição.

H1: as amostras são de distribuições diferentes.

A hipótese nula é aceita a nível de confiança α se:

D(n,m) < c(α)
√
n+m

n ·m
(4)

sendo n e m os tamanhos das amostras, respectivamente, e c(α) o valor tabelado

para cada nível de confiança [80].

O teste KS para duas amostras é muito sensível para diferenças locais e de forma

das amostras, sendo considerado um bom teste para comparar amostras antes e após

a inserção de dados que estavam faltantes. O teste já se mostrou eficiente quando o

mecanismo presente do conjunto de dados é MCAR. O diagnóstico utilizando o teste KS

foi realizado em dados de precipitação de chuva [82], em dados sociais [83] e em estudo

clínicos epidemiológicos [84].
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3 METODOLOGIA

3.1 SELEÇÃO DOS INDIVÍDUOS

O presente estudo foi aprovado pelo comitê de ética da Universidade Federal de

Pernambuco e pelo Instituto de Medicina Integral Professor Fernando Figueira (número de

aprovação: 2.075.028). Homens que possuíam idade entre 18 e 50 anos atendidos em uma

clínica de fertilidade foram avaliados por um médico especialista em reprodução humana.

A infertilidade foi diagnosticada segundo o Practice Committee of the American Society

of Reproductive Medicine [85]. Os pacientes que apresentaram as seguintes características

foram excluídos do estudo:

• Evidência de infecção urinária;

• Doenças urológicas diagnosticadas por qualquer exame hormonal;

• Defeitos genéticos;

• Histórico de criptorquidia;

• Uso de testosterona ou de qualquer outro anabolizante durante os últimos 12 meses;

• Histórico de quimioterapia ou radioterapia;

• Histórico de qualquer lesão nos testículos;

• Histórico de cirurgia escrotal.

No total, 90 pacientes foram avaliados e tiveram o sêmen coletado. Desses, dez

foram descartados devido a baixa qualidade do material coletado (baixo volume ou eluição

elevada do sêmen). Os 80 pacientes restantes foram divididos em três classes, apresentados

na Tabela 1:
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Tabela 1 - Número e características em grupos dos pacientes que tiveram o sêmen coletado.

Nome Código Número de

amostras

Características

Grupo Controle C 24 Homens saudáveis sem varicocele pal-

pável, que possuíam pelo menos um fi-

lho nascido nos últimos 12 meses, sem

histórico de infertilidade e tratamento,

que desejavam fazer a cirurgia de vasec-

tomia

Varicocele Fértil VF 21 Homens férteis com varicocele palpável,

que possuíam pelo menos um filho nas-

cido nos últimos 12 meses, sem histó-

rico de infertilidade ou tratamento.

Varicocele Infértil VI 35 Homens inférteis com varicocele palpá-

vel, que não conseguiram ter filhos após

12 meses de sexo regular, sem prote-

ção e sem evidências de infertilidade na

parceira.
Fonte: O autor (2021).

O exame físico foi realizado em um ambiente quente e bem iluminado com o pa-

ciente de pé. O tamanho do testículo foi medido usando um orquidômetro de Prader

e o grau da varicocele foi determinado segundo o critério de Dubion e Amelar [13]. As

parceiras dos pacientes foram questionadas sobre a sua idade, histórico de tratamento

de fertilidade, histórico de cirurgia ou doença pélvica e sobre a regularidade do ciclo

menstrual.

3.2 ESTUDO METABONÔMICO

Devido ao tempo entre coleta e o estudo metabonômico, as 80 amostras de sê-

men não estavam mais completamente disponíveis, uma vez que o material também foi

utilizado para outros estudos e o volume disponível era reduzido. Deste modo, o estudo

metabonômico foi conduzido utilizando 9 amostras do grupo de controle, 11 amostras de
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varicocele fértil e 11 amostras de varicocele infértil.

3.2.1 Preparo de Amostra

Para o preparo de amostra com o DLLME, foram coletados 250 µL de cada amos-

tra, sendo então adicionados 250 µL de acetonitrila para a precipitação das proteínas e

macromoléculas. A mistura foi levada ao centrifugador (Hettich - Mikro 185) por dez

minutos , 6000 RPM e 45° de inclinação (1814 g). Logo após, todo o sobrenadante foi

coletado, ao qual foi adicionado rapidamente, com o auxílio de uma seringa, 1,25 mL

de uma solução 1:4 de diclometano/acetona. As amostras foram então levadas a -40 °C

para a separação total do solvente extrator (diclorometano) e para favorecer a remoção

de água residual e gorduras (lipídeos). Em seguida as amostras ainda congeladas foram

centrifugadas nas mesmas condições anteriores. O solvente extrator foi coletado, filtrado

e armazenado em um vial com insert de 150 µL. No método QuEChERS foram adicio-

nados 250 µL de acetonitrila e centrifugada nas mesmas condições do método prévio ao

DLLME. Todo o sobrenadante foi coletado e adicionou-se uma mistura 2:1 de sulfato de

magnésio (MgSO4) e acetato de sódio (ACNa) até a saturação para promover a partição

das fases orgânica e aquosa. A mistura, agitada vigorosamente para a solubilização dos

sais, foi levada a centrifugação nas mesmas condições já descritas. A fase orgânica foi

coletada, filtrada e armazenada em um insert de 150 µL.

3.2.2 Otimização

A otimização foi estruturada com o objetivo de avaliar o melhor resultado cro-

matográfico em quatro condições diferentes, utilizando dois tipos de preparo de amostra

(DLLME e QuEChERS) e de duas fases móveis na corrida cromatográfica(ACN e MeOH).

Uma amostra de cada classe foi selecionada, totalizando três amostras para cada método

de preparo.

3.2.3 Cromatografia Líquida

A definição do método cromatográfico foi realizada com base no maior número de

picos e resolução cromatográfica. As análises e obtenção dos espectros foram realizadas

em um HPLC-DAD (Shimadzu UFLC - 13327). A coluna utilizada foi uma C18 (Luna,
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00G-4252-E0, H20-209701, 250 x 4,6 mm, 100 Å, 5 µm).Uma bomba binária de água ultra

pura (Milli-Q) e fase orgânica foi utilizada para fazer a mistura dos solventes. O fluxo

definido foi de 1,5 mL/min e temperatura de forno constante de 30°C. O detector DAD

(Shimadzu - SPD-M20A). O gradiente de concentração da fase orgânica seguiu os valores

descritos na Figura 11.

Figura 11 - Gradiente de concentração da fase orgânica.

Fonte: O autor (2021).

A aquisição de dados foi realizada utilizando o software LabSolutions. Após a

definição da melhor condição de trabalho, foram realizadas algumas mudanças no método

cromatográfico. Cada amostra foi injetada em duplicata, sendo injetado um branco entre

diferentes amostras. Para a correção do sinal cromatográfico foi realizada a subtração

pelo branco, que consistiu em acetonitrila pura.

3.2.4 Modelos quimiométricos com dados cromatográficos

A construção dos modelos quimiométricos com os dados cromatográficos foram

realizados utilizando duas abordagens: (1) Com o λ selecionado em 210 nm; (2) com o

somatório de todos os comprimentos de onda (de 200 a 400 nm).

A avaliação e correção dos dados foi feita no software Matlab (MATLAB R2010a,

MathWorks). O cálculo da ROBPCA foi realizado através da biblioteca LIBrary for

Robust Analysis (LIBRA) [58], enquanto que para o métodos de Classificação foram uti-

lizados os ToolBox Classification Milano [67]. Para a seleção das variáveis pelo algoritmo

genético, foi utilizada uma população inicial de 200 indivíduos, 100 gerações e taxa de



43

mutação de 5%. Todas as figuras foram geradas em ambiente Python (versão 3.5.6) em

interface Jupyter Notebook (versão 6.2.0).

3.3 DADOS CLÍNICOS

Todos os participantes selecionados passaram por análise de sêmen, ultrassonogra-

fia do escroto e o nível dos hormônios sexuais. A análise seminal foi feita de acordo com

os parâmetros da Organização Mundial de Saúde (OMS), enquanto o pH foi testado uti-

lizando uma fita de pH. A ultrassonografia do escroto foi realizada utilizando uma sonda

de alta frequência (MARCA), onde foi definido o tamanho dos testículos, o diâmetro da

varicocele e o refluxo venoso. Sangue venoso foi coletado de cada paciente entre as 7 e

11 horas da manhã. Os níveis de testosterona total (206 a 1200 ng/dL), estradiol (11.6 a

41.2 pg/mL), hormônio folículo-estimulante (FSH) ( 1.4 a 18.1 mUI/mL), hormônio lu-

teinizante (LH) (1.5 a 9.3 mUI/mL) e a globulina ligadora de hormônios sexuais (SBHG)

(10 a 57 nmol/L) foram medidos em tempo real por um imunoensaio quimioluminescente

de fase sólida com o uso de um analisador automático (ADVIA Centaur XP, Siemens

Healthcare Diagnostics). A albumina (3.4 a 4.8 g/dL) foi quantificada usando um ensaio

colorimétrico (Abbott Diagnostics, Abbott Park, IL, USA) com um analisador automático

(Architect® c16000, Abbott Diagnostics). Os níveis de testosterona livre (49.9 a 199.9

pg/mL) foram calculados usando a fórmula validada de Vermeulen et al [37]. A tabela

inicial obtida com os dados coletados está indicada no Anexo A.

3.3.1 Modelos quimiométricos com dados clínicos

As análises exploratórias e classificatórias dos dados clínicos foram realizadas uti-

lizando apenas os grupos VF e VI, totalizando 56 observações. O grupo controle foi

removido desta análise, pois uma única variável (grau de varicocele palpável) é suficiente

para distinguir pacientes com varicocele dos demais. Algumas variáveis foram removidas

da tabela disponível no Anexo A. Foram elas: Idade do paciente, da parceira, da puber-

dade e o IMC, pois não traziam informações úteis ao modelo; e o grau de varicocele e o

refluxo da ultrassonografia, por serem dados categóricos. Foram então consideradas 22

variáveis para a construção do modelo. São elas: exame clínico para avaliar o tamanho

dos testículos (2 variáveis); os parâmetros seminais (7 variáveis); níveis hormonais (9 va-
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riáveis); ultrassografia (4 variáveis).Todas as variáveis e o número de dados faltantes estão

dispostos na Tabela 2.

Tabela 2 - Dados faltantes por variável.

n Variável nº de dados nº de dados faltantes

1 Tamanho testículo direito 56 0

2 Tamanho testículo esquerdo 56 0

3 Concentração 48 8

4 Contagem Total 48 8

5 Motilidade Progressiva 48 8

6 Total de espermatozoides progressivos 48 8

7 Kruger 45 11

8 Volume 55 1

9 pH 55 1

10 Testosterona 56 0

11 Testosterona Livre 53 3

12 Estradiol 55 1

13 Hormônio luteinizante (LH) 56 0

14 Hormônio folículo-estimulante (FSH) 56 0

15 Globulina carreadora de hormônios se-

xuais (SHBG)

53 3

16 Albumina 55 1

17 Hormônio estimulante da tireoide

(TSH)

47 9

18 T4 Livre 47 9

19 USG Testículo Direito 55 1

20 USG Testículo Esquerdo 55 1

21 USG veia Direita (Tamanho) 49 7

22 USG veia esquerda (Tamanho) 54 2
Fonte: O autor (2021).

O conjunto de dados inicial continha dimensão 56x22, com 6,65 % de dados faltan-

tes. Todos os cálculos foram realizados em ambiente MATLAB 2010a. Foram escolhidos
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quatro tipos diferentes de algoritmos para a inserção dos dados, sendo eles: SVD, KNN,

BPCA e Média. Após a inserção dos dados, os conjuntos de dados gerados foram avaliados

quanto a sua qualidade de predição através do teste de Kolmogorov-Smirnov.

Selecionado o melhor conjunto de dados, este foi selecionado e autoescalonado para

as análises quimiométricas posteriores. Foi realizada uma PCA robusta a fim de detectar

amostras anômalas. Após isso, foi realizada uma análise exploratória através dos escores

e pesos gerados pela PCA robusta.

Em seguida, foram realizados cálculos de classificação através dos algoritmos PLS

e LDA-GA utilizando as mesmas metodologias aplicadas aos dados cromatográficos.Para

a seleção das variáveis pelo algoritmo genético, foi utilizada uma população inicial de

22 indivíduos, 50 gerações e taxa de mutação de 5% O conjunto inicial foi divido entre

conjunto de treinamento (70%) e conjunto de teste (30%), sendo a divisão feita pelo al-

goritmo de Kennard-Stone. Os modelos foram avaliados quanto a exatidão, sensibilidade,

precisão e especificidade, através de uma tabela de confusão.
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4 RESULTADOS

4.1 ESTUDO METABONÔMICO

4.1.1 Otimização dos parâmetros de análise cromatográfico

A otimização foi realizada avaliando-se o desempenho de dois tipos de preparo de

amostra e dois tipos fase móvel. O cromatograma em 210 nm de cada classe estudada nos

diferentes parâmetros utilizados está apresentado na Figura 12.

De acordo com os resultados apresentados na Figura 12, nas condições (b) e (d),

onde foi utilizado o método QuECHERS, praticamente não há picos, indicando que a

metodologia não foi capaz de extrair informações bioquímicas necessárias para o estudo

metabonômico, sendo então esta abordagem descartada. Já nas condições (a) e (b),

onde foi utilizado o DLLME, é possivel constatar que o método extraiu muita informação

bioquímica, evidenciada pela presença numerosa de picos. É importante que o preparo de

amostra escolhido apresente o máximo de informações possíveis que poderão ser usadas

para melhorar a sensibilidade e seletividade dos modelos metabonômicos.
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Figura 12 - Cromatograma registrado em 210 nm nos diferentes parâmetros avaliados. Preparo
de amostra usando DLLME (a) e QuEChERS (b) com fase orgânica de ACN e Preparo de
amostra usando DLLME (c) e QuEChERS (d) com fase orgânica de MeOH. Volume de injeção
= 20 µL; Vazão = 1,0mL.min−1; Temperatura do forno = 30°C; λ = 210 nm. Onde: C ( ),
VF ( ) e VI ( ).

Fonte: O autor (2021).

O metanol apresentou melhor desempenho na resolução dos picos, o que garantiu

reprodutibilidade e melhor desempenho dos estudos quimiométricos apresentados nesta

dissertação. Sendo assim, o DLLME foi selecionado como método de extração e o metanol

como fase móvel orgânica. Todos os constituintes de interesse eluiram até 20 minutos, por

este motivo o gradiente foi ajustado de forma a reduzir o tempo de análise de 45 para 36

minutos. Outro ajuste no método foi que o volume de injeção da amostra foi reduzido de

20 para 5 µL, uma vez que a absorção em 210 nm estava saturada em alguns picos o que

poderia levar a desvios da lei de Lambert-Beer. A fim de visualizar os sinais analíticos

em todos os comprimentos de onda, um cromatograma em 3D de uma amostra do grupo

de controle está representado na Figura 13.
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Figura 13 - Cromatograma em 3D de uma amostra do grupo de controle (a) e após a subtração
do branco usado para corrigir a linha de base (b). Em destaque, o sinal referente ao tempo
morto da coluna (deflexão do solvente). Volume de injeção = 5 µL; Vazão = 1,0mL.min−1;
Temperatura do forno = 30°C; λ = 200 a 400 nm.

Fonte: O autor (2021).

Dois aspectos importantes podem ser visualizados na Figura 13(a). O primeiro diz

a respeito do deslocamento da linha de base que começa em torno de 18 minutos. Isso

ocorre devido ao ponto de corte do metanol que é próximo de 205 nm. O segundo aspecto,

é o sinal em cerca de três minutos, como mostrado no destaque. Tal efeito acontece pela

mudança no índice de refração causada pela passagem do solvente da amostra injetada

no detector o que caracteriza o tempo morto da coluna. Devido a irreprodutibilidade do

sinal próximo ao tempo morto os sinais analíticos de interesse são observados após este

tempo de retenção. Após a subtração do branco nenhum sinal analítico foi observado

após 20 minutos de eluição, assim os dados selecionados para os estudos quimiométricos

posteriores compreendia os sinal entre os tempos de retenção de 2,9 e 20 minutos, como

indicado na Figura 13(b).

As modelagens matemáticas foram realizadas utilizando-se dois tipos de dados. O

primeiro, utilizando o somatório de todos os comprimentos de onda para cada tempo de

retenção, enquanto o segundo selecionando-se apenas os dados no comprimento de onda

de 210 nm. Ambos os dados foram posteriormente avaliados, pois apesar da maioria dos
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constituintes apresentarem absorbância em 210 nm alguns apresentaram absorbância mais

intensa em comprimento de onda distintos. Os cromatogramas corrigidos do somatório

dos comprimentos de onda e em 210 nm estão indicados na Figura 14.

Figura 14 - Somatório do Cromatograma para cada amostras de 200 a 400 nm após a subtração
e seleção entre o ponto de deflexação do branco e o final da região analítica de interesse (a) e após
a centragem na média (b). Em destaque, a média de cada classe. Controle: ( ), Varicocele Fértil
( ) e Varicocele Infértil ( ) Volume de injeção = 5 µL; Vazão = 0,6 mL.min−1; Temperatura
do forno = 30°C;

Fonte: O autor (2021).

Como indicado na Figura 14(a), na região onde havia sinal analítico de interesse

há a presença de muitos picos cromatográficos que indicam diferenças entre as três classes

estudadas. Nota-se também que o pico presente em todas as amostras um pouco antes

de 32 minutos tem o mesmo tempo de retenção, o que indica reprodutilidade no método.

Na Figura 14 está apresentada a centragem na média das amostras. Todas as modelagens

matemáticas foram realizadas utilizando esse tipo de pré-processamento para os dados

cromatográficos.
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4.1.2 Detecção de amostras anômalas e Análise Exploratória - Dados croma-

tográficos

A identificação de amostras anômalas dentro de um conjunto de dados é fundamen-

tal para evitar que sejam carregados erros e tendências na modelagem. A detecção dessas

amostras foi realizada utilizando o algoritmo da PCA robusta (ROBPCA). A Figura 15

apresenta o gráfico que dispõe a distância ortogonal e a distância de escores para cada

amostra e os escores obtidos para cada conjunto de dados.

Figura 15 - Mapa de outliers para a somatório (a) e para os dados em 210 nm (c). Escores
obtidos para as primeiras PCs para o somatório (b) e em 210 nm (d), onde : C ( ), VF ( ),
VI ( ).

Fonte: O autor (2021).

Ao observar os mapas de outliers na Figura 15(a) e Figura 15(b), em ambas as

abordagens não foram verificadas a presença de amostras anômalas no primeiro quadrante

que pudessem influenciar no modelo exploratório. Logo, todas as amostras foram conside-

radas para os modelos posteriores. Em relação aos gráficos de escores obtidos através do

cálculo da PCA robusta (Figura 15(b) e Figura 15(d)), não foi capaz de proporcionar uma

boa separabilidade entre as classes, onde pode-se notar que todas elas se encontram so-

brepostas. Assim, faz-se necessária a utilização de modelos supervisionados apresentados
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a seguir.

4.1.3 Análise Classificatória dos Dados Cromatográficos

O primeiro modelo classificatório avaliado foi o PLS-DA. O número ideal de variá-

veis latentes foi definido através da validação cruzada, onde se relaciona o erro associado

ao número de VLs. Deste modo foi obtido um número de seis VLs para o somatório, com

70% de variância total explicada no conjunto de dados e de 54% no índice de classes. Para

os dados em 210 nm, foi obtido apenas uma VL, com 44% de variância total explicada

no conjunto de dados e de 28% no índice de classes. O gráfico de escores e pesos obtidos

estão indicados na Figura 16.

Figura 16 - Gráfico de escores (a) e pesos (b) e (c) para o somatório e de escores (d) e pesos
(e) e (f) para 210 nm no algoritmo PLS-DA. Onde: C treino ( ), C teste ( ) VF treino ( ),
VF teste ( ), VI treino ( ) e VI teste ( ).

Fonte: O autor (2021).

Começando pelos somatório dos dados cromatográficos, na Figura 16(a) se observa
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que as classes apresentaram um padrão de separação melhor do que o apresentado pela

análise exploratória (Figura 15(b)). Na variável latente 1 há a melhor separação entre

os indivíduos saudáveis (c) e com varicocele (VF e VI). Ou seja, é possível inferir que a

varicocele em si já influencia no perfil cromatográfico obtido através do soro do sêmen.

Já a variável latente dois consegue explicar melhor as diferenças em relação ao status de

fertilidade entre os indivíduos que possuem varicocele. Tal resultado indica que pode-

se obter diferenças bioquímicas no sêmen de homens inférteis com varicocele quando

comparados com homens férteis com varicocele. Assim, esse pode ser o primeiro passo de

um diagnóstico mais rápido e preciso.

Em relação aos dados apenas em 210 nm, o comportamento apresentado foi muito

semelhante quando se faz uma comparação visual dos escores. Assim, é interessante

analisar a matriz de confusão dos dois modelos para averiguar qual apresenta melhores

resultados. A matriz de confusão está indicada na Tabela 3.

Tabela 3 - Matrizes de confusão obtido para o somatório dos dados e em 210 nm através do
algoritmo de PLS-DA. Em negrito estão os acertos feitos pelos modelos. Classe real na vertical
e classe predita na horizontal.

Treinamento Teste

Somatório

C VF VI Exatidão C VF VI Exatidão

C 5 0 1 C 1 1 1

VF 0 7 0 95% VF 0 4 0 63%

VI 0 0 7 VI 0 2 2

210 nm

C VF VI Exatidão C VF VI Exatidão

C 5 1 0 C 0 3 0

VF 0 6 1 75% VF 0 4 0 54%

VI 0 3 4 VI 0 2 2
Fonte: O autor (2021).

A exatidão obtida tanto no treinamento como no teste foram mais baixas no modelo

de 210 nm do que no obtido no somatório. Ou seja, ao utilizar todo o espectro de 200

a 400 nm, o modelo tem menos chances de cometer erros através do PLS-DA. Isso pode

indicar a presença de informações químicas detectadas em comprimentos de onda maiores.

Ao também observar os pesos obtidos no modelo de PLS-DA na Figura 16, o pico um

pouco antes de 32 minutos apresenta o maior peso na classificação das amostras utilizando
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o somatório, mas praticamente não tem peso quando utilizando o λ de 210 nm. Tal

comportamento pode ser um indicativo de algum marcador presente que interage com a

radiação na região de comprimentos de onda mais alto no espectro.

Mesmo com o somatório, os resultados do PLS-DA através de somatório ainda

deixa a desejar em relação à exatidão. As exatidãos entre o treinamento e teste variam

muito, de 95% no treinamento e 63% no teste. Essa característica pode ser um sinal

de sobreajuste do modelo, porém no presente caso ocorre devido ao número de amostras

uma vez que o número de erros foram apenas dois do grupo controle no teste e 1 no

treinamento.

Como o cromatograma possui muitas informações químicas, sendo cada pico uma

substância diferente, alguns desses podem causar o confundimento entre as classes, uma

vez que o PLS-DA utiliza todo o espectro disponível. Assim, o modelo de GA-LDA pode

ser uma boa alternativa para selecionar os picos que realmente influenciam na separação

das amostras. Considerando também que os dados cromatográficos são muito numerosos,

a seleção de variáveis permite também a redução dos dados necessários para a análise,

diminuindo o esforço computacional na predição de novas amostras. A Figura 17 apresenta

os gráficos de escores, pesos e os tempos de retenção selecionados pelo GA-LDA.
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Figura 17 - Gráfico de escores do somatório obtidos pelo GA-LDA, onde: C treino ( ), C teste
( ) VF treino ( ), VF teste ( ), VI treino ( ) e VI teste ( ). Gráficos de pesos (b). Tempos
de retenção selecionados pelo modelo de GA-LDA em destaque em amarelo em comparação com
a médias das classes (c), onde C ( ), VF ( ) e VI ( ).

Fonte: O autor (2021).

O algoritmo genético selecionou 10 variáveis para fazer a classificação dos dados

em duas funções discriminantes. O gráfico de escores Figura 17(a) apresenta uma melhor

separação visual quando comparado ao PLS-DA(Figura 16(a)). Os tempos de retenção

que apresentaram os maiores pesos na classificação de acordo com a Figura 17(b) foram

os tempo de 11,5 min, 13,1 min e 24,5 min. Ou seja, com apenas 10 variáveis é possível

fazer a classificação dos dados. O modelo para os dados em 210 nm também foi avaliado

e está apresentado na Figura 18.
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Figura 18 - Gráfico de escores em 210 nm obtidos pelo GA-LDA, onde: C treino ( ), C teste
( ) VF treino ( ), VF teste ( ), VI treino ( ) e VI teste ( ). Gráficos de pesos (b). Tempos
de retenção selecionados pelo modelo de GA-LDA em destaque em amarelo em comparação com
a médias das classes (c), onde C ( ), VF ( ) e VI ( ).

Fonte: O autor (2021).

Utilizando apenas o λ de 210 nm, a seperação entre as classes é um pouco prejudi-

cada, como observado na Figura 18(a). Apesar do modelo ter selecionado menos tempos

de retenção (nove), o desempenho foi reduzido. O algoritmo genético selecionou tempos

de retenção muito próximos entre si, que podem até corresponder ao mesmo metabólito.

Na tentativa de aumentar ao máximo a diferença entre as classes, o LDA acaba atribuindo

pesos oposto pra informações muito parecidas, como os tempos de retenção próximos de

19,5 min, que estão em oposto no gráfico de pesos (Figura 18(b)). Além disso, a grandeza

da FD1 é de uma ordem maior que a FD2 (Figura 18(a)), ou seja, praticamente toda a

variação dos dados se encontram na VL1, o que prejudica a classificação. Assim, apenas

com os dados em 210 nm há a perda de muita informação química que ajudem na discri-

minação das classes. As matrizes de confusão obtidas pelos modelos de LDA para as três

classes estão dispostas na Tabela 4.
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Tabela 4 - Matrizes de confusão obtido para o somatório dos dados e em 210 nm através dos
algoritmos de PLS e LDA. Em negrito estão os acertos feitos pelos modelos. Classe real na
vertical e classe predita na horizontal.

Treinamento Teste

Somatório

C VF VI Exatidão C VF VI Exatidão

C 5 0 1 C 2 1 0

VF 0 6 1 80% VF 0 4 0 81%

VI 1 1 5 VI 0 1 3

210 nm

C VF VI Exatidão C VF VI Exatidão

C 4 0 2 C 2 1 0

VF 0 6 1 80% VF 0 4 0 90%

VI 0 1 6 VI 0 0 4
Fonte: O autor (2021).

O desempenho em relação a exatidão da LDA em relação ao PLS no somatório

foi superior. Apesar da exatidão no conjunto de treinamento ter sido menor, o modelo

conseguiu manter a taxa da acertos semelhante no conjunto de teste, indicando que não

há sobreajuste nem subajuste na classificação. Como já citado anteriormente, o modelo

em 210 nm não apresentou um resultado interessante, apesar da alta taxa de acerto no

grupo de teste. A diferença de 10 % entre as exatidãos do grupo de treinamento e teste

pode ser um indicativo de subeajuste, o que não é ideal para um modelo de discriminação.

Talvez o problema que impeça uma taxa de acerto maior nos modelos seja porque

até agora se buscou a discriminação de três classes diferentes. Dentro de um cenário

onde já se há o diagnóstico de varicocele no paciente, busca-se apenas inferir sobre a sua

capacidade de fertilização. Como o objetivo é o diagnóstico da infertilidade, decidiu-se

avaliar o desempenho dos modelos apenas com as classes de varicocele fértil e infértil,

removendo assim o grupo de controle. Para ser mais objetivo e fluido na descrição dos

dados aqui apresentados, os gráficos de escores, pesos e possíveis variáveis apresentadas

para o PLS-DA e GA-LDA estão apresentados no APÊNDICE B e C, respectivamente.

As matrizes de confusão dos modelos calculados com apenas as classes Vf e VI estão

apresentados na Tabela 5.
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Tabela 5 - Matrizes de confusão obtido para o somatório dos dados e em 210 nm através do
algoritmo de GA-LDA. Em negrito estão os acertos feitos pelos modelos. Classe real na vertical
e classe predita na horizontal.

Treinamento Teste

PLS-DA

Somatório

VF VI Exatidão VF VI Exatidão

VF 6 1
93%

VF 2 2
75%

VI 0 7 VI 0 4

210 nm

VF VI Exatidão VF VI Exatidão

VF 6 1
71%

VF 4 0
75%

VI 3 4 VI 2 2

LDA

Somatório

VF VI Exatidão VF VI Exatidão

VF 7 0
100%

VF 4 0
100%

VI 0 7 VI 0 4

210 nm

VF VI Exatidão VF VI Exatidão

VF 7 0
100%

VF 4 0
100%

VI 0 7 VI 0 4
Fonte: O autor (2021).

Como pode ser observado na Tabela 5, de modo geral, o algoritmo de LDA com

a seleção de variáveis apresentou um resultado bem melhor quando comparado ao PLS.

Em linhas gerais, pode-se afirmar que a remoção do grupo de controle para a classificação

apenas com os grupos com varicocele aumentou o número de acertos promovidos pelos

modelos. Deste modo, a seleção dos picos cromatográficos é a melhor abordagem para

esse tipo de dado.

O modelo de LDA não cometeu nenhum erro, tanto no somatório quando em 210

nm. Além do excelente resultado, isso também indica que apenas com os comprimentos

de onda mais baixos é possível fazer a discriminação entre fértil e infértil nesse conjunto

de dados. Em termos de praticidade, a obtenção dos dados também poderia ser realizada

em equipamentos mais simples e baratos, como o HPLC com detector de ultravioleta, que

lê não todo o espectro, mas alguns comprimentos de onda específicos.

Os dados cromatográficos foram capazes de fornecer informações úteis para a dife-

renciação e classificação de pacientes com varicocele fértil e varicocele infértil. Isso indica

que no soro do sêmen há evidências sobre o status de infertilidade, o que pode acelerar o
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diagnóstico e promover tratamentos mais assertivos.

4.2 DADOS CLÍNICOS

Apesar dos resultados promissores das análises cromatográficas, aqui foi analisado

se é possível usar um modelo para predizer infertilidade usando os dados clínicos realiza-

dos nos pacientes. Essa estratégia pode ser útil como uma triagem clínica e auxiliar os

estudos metabonômicos ao indicar quais informações clínicas são mais importantes para

este estudo. Na Figura 19 estão representados os dados faltantes indicados em quadrados

vermelho.

Figura 19 - Mapa da matriz de dados. Os dados assinalados em vermelho indicam um dado
faltante.

Fonte: O autor (2021).

Das 1232 observações esperadas, 82 não foram obtidas, o que equivale a 6,65% do

total. Considerando os dados da Tabela 2, apenas as variáveis referentes ao tamanho dos

testículos, testosterona, LH e FSH não possuem nenhum dado faltante. Sem a estratégia

de inserção de dados, a análise multivariada só seria possível com estas variáveis. O teste

de Little MCAR apresentou um valor de ρ igual a 0,829 para 252 graus de liberdade,

indicando que o mecanismo dos dados faltantes é de fato MCAR, o que permite que a

inserção seja feita com mais segurança, sem adicionar tendência aos dados [86].
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4.2.1 Validação dos métodos de inserção dos dados faltantes

A inserção dos dados foi realizada utilizando os algoritmos BPCA, KNN, SVD e

pela substituição pela média. Na Figura 20 estão apresentadas as densidades dos dados

antes e depois da inserção para cada um dos modelos. Foram apresentadas apenas as

quatro variáveis com mais dados faltantes.

Figura 20 - Gráficos para a densidade dos dados para as variáveis (a)Motilidade, (b)Kruger,
(c)TSH e (d)T4 Livre antes e após a inserção de dados. Em que: Dados Originais ( ), BPCA
( ), KNN ( ), SVD ( ) e Média ( ).

Fonte: O autor (2021).

O gráfico de densidade nos permite visualizar como os valores estão distribuídos

para cada variável e como os resultados diferem dos dados originais, onde a densidade

é obtida ignorando os valores ausentes. É evidente a diferença entre os dados originais

e os dados produzidos pelo SVD ( ). Os resultados mais próximos do original são os

encontrados em KNN ( ) e BPCA ( ).

Antes de tirar conclusões do resultado do gráfico de densidade é necessário avaliar

diferenças entre as distribuições dos dados após a inserção dos dados e os dados origi-

nais, usando o teste Kolmogorov-Smirnov. O valor do parâmetro D para cada variável,

comparada com os dados iniciais, estão representadas na Figura 21.
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Figura 21 - Valores de Dm para dos modelos de inserção para cada variável. Em que: BPCA
( ), KNN ( ), SVD ( ) e Média ( ).

Fonte: O autor (2021).

Como é possível observar na Figura 21, o algoritmo SVD ( ) foi o que apresentou

o maior valor de D para todas as variáveis, inclusive nas variáveis onde não haviam valores

faltantes. Esse comportamento pode ser explicado pelo fato do SVD desconstruir toda a

matriz considerando os dados faltantes como zero. Por isso, ao reconstruir a matriz de

dados, pode carregar erros para as outras variáveis. Logo, não pode ser considerado como

um bom candidato para fazer a inserção de valores nesse conjunto de dados.

Os valores de D para inserção feita com a média ( ) também foi considerado alto

quando comparada com os outros algoritmos. Esse resultado é esperado, pois sabe-se que

os valores seguem uma distribuição e que a inserção feita apenas com a média pode levar

a tendências que não estariam presentes nos dados originais.

Para os algoritmos de KNN ( ) e BPCA ( ), os valores de D apresentados foram

bem próximos, onde podemos perceber que o KNN se apresentou melhor em algumas va-

riáveis, o BPCA foi melhor em outras e em certas variáveis, não houve diferença. Ambos

os métodos seriam ideais para o conjunto de dados e não apresentariam discrepâncias

nas modelagens futuras. Porém, ao avaliar os valores produzidos pela BPCA, foram ob-

servados que haviam alguns dados faltantes inseridos com valores negativos. O BPCA

assume que as amostras possuem uma distribuição bayseana, e para manter essa premissa

como verdadeira, é possivel que seja feita a inserção de valores negativos. Porém, como
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o conjunto de dados se trata de respostas positivas, não há significado físico em qualquer

valor negativo. Por isso, o algoritmo KNN foi o selecionado para continuar com as mode-

lagens, por inserir valores que não levaram a tendências no conjunto de dados e por terem

um significado físico. Na tabela Tabela 6 estão apresentados os valores médios de D das

variáveis de acordo com os métodos de inserção.

Tabela 6 - Média de D para cada um dos algoritmos utilizados para a inserção de dados.

algoritmo média valor de D

BPCA 0,0267

KNN 0,0244

SVD 0,1148

Média 0,0435
Fonte: O autor (2021).

Quanto menor o valor de Dm, mais próxima é a similaridade entre dois conjuntos

de dados. Nota-se que o melhor resultado é encontrado no KNN, o que reforça a escolha

sobre o método de inserção.

4.2.2 Pré-Processamento dos dados

Após a inserção dos dados faltantes, foi avaliada a necessidade do pré-processamento

nos dados. Os dados antes e após o pré-processamento foram plotados e apresentados na

Figura 22.

Figura 22 - Dados antes (a) e após o pré-processamento (b).

Fonte: O autor (2021).
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De acordo com a Figura 22(a) nota-se que os dados possuem diferentes ordens de

grandeza. Tal característica pode levar a uma tendência nas modelagens futuras, onde

uma variável com maior ordem pode maior influência na distribuição das amostras, o

que pode mascarar a importância de uma variável com menor variância, sendo necessária

a aplicação de um pré-processamento. Os dados são compostos por variáveis discretas

com valores contínuos, logo, a melhor escolha para pré-processamento é fazer o autoes-

calonamento. Como pode-se perceber, os dados após o autoescolonamento (Figura 22

(b) apresentam a mesma ordem de grandeza e não levará a tendência voltadas a maior

importância para as variáveis com maior variância. Por esse motivo todas as análises

realizadas serão feitas com os dados autoescalonados.

4.2.3 Detecção de amostras anômalas e Análise Exploratória

A detecção de amostras anômalas foi realizada utilizando o algoritmo da PCA

robusta (ROBPCA). A Figura 23 apresenta o gráfico que dispõe a distância ortogonal e

a distância de escores para cada amostra.

Figura 23 - Distância ortogonal e dos escores das amostras.

Fonte: O autor (2021).

As amostras estão presentes nas 4 regiões distintas do gráfico. Apesar de quatro

amostras estarem no primeiro quadrante, estas não foram consideradas anômalas, uma

vez que as distâncias ortogonais e de escores são elevadas suficiente ao ponto de causar
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uma rotação no modelo. Além disso, essas 4 amostras foram analisadas quanto ao perfil

em comparação com a média de cada classe e não foi observada nenhuma indicação de

resultado anômalo. Neste caso, nenhuma amostra foi considerada anômala e as etapas

posteriores foram realizadas com todas as 56 amostras.

Assim, foi realizada uma análise exploratória utilizando os escores e pesos calcu-

lados pela ROBPCA. Na Figura 24 estão apresentados os gráficos de escores e pesos da

PC1 e PC2 obtidos pela ROBPCA.

Figura 24 - Escores (a), em que:VF ( ) e VI ( ) e pesos (b) obtidos pelo cálculo da ROBPCA.
.

Fonte: O autor (2021).

Pela análise exploratória, nota-se que há uma tendência de separação das classes

de VF ( ) e VI ( ) no gráfico de escores (Figura 24a), principalmente na direção da

PC1. Apesar das fronteiras não estarem bem definidas, é possível perceber que a classe

VF encontra-se a direita da PC1, enquanto a classe VI fica localizada mais a esquerda. No

gráfico de pesos (Figura 24b) é possível inferir que as variáveis (Tabela 2) que apresentam

valores positivos de peso de PC1 apresentam maiores valores para a classe de pacientes VF

quando comparado aos de VI. De forma similar, as variáveis (Tabela 2) que apresentam

valores negativos de peso em PC1 apresentam maiores valores para a classe de pacientes

VI quando comparado aos de VF.

De início, pode-se avaliar o comportamento das variáveis 1, 2, 19 e 20 em relação

distribuição no gráfico de pesos (Figura 24b), onde se encontram mais a direita do gráfico.

Estas variáveis carregam informações semelhantes em relação ao tamanho dos testículos
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dos indivíduos, sendo 1 e 2 o tamanho avaliado com um orquidômetro de Prader e 19 e 20

através da ultrassonografia. Esse comportamento é justificado pelo fato do tamanho do

testículo ser negativamente afetado pela presença da varicocele [87], mesmo sem afetar o

status de fertilidade [88] . Como todos os indivíduos avaliados aqui possuem varicocele,

os pesos da variáveis nos indicam que os pacientes férteis possuem em média o volume

testicular maior do que aqueles inférteis. Apesar de não haver estudos que expliquem

esse comportamento especificamente para a varicocele, uma recente investigação realizada

por Bellurkar et. al (2020) com 354 homens, concluiu-se que o tamanho médio dos

testículos está significativamente correlacionado com os parâmetros seminais, que por sua

vez estão relacionados com a infertilidade. Logo, esses parâmetros podem ser um bom

indicativo sobre a qualidade seminal do paciente, mesmo antes de serem realizados testes

mais avançados.

Um comportamento semelhante é encontrado nas variáveis 5 e 7, que correspondem

à motilidade progressiva e à morfologia de Kruger, respectivamente. São duas variáveis

que estão relacionadas por avaliarem a qualidade dos espermatozoides. A morfologia

definida pelo critério de Kruger indica a porcentagem de espermatozoides saudáveis que

têm potencial de fertilização. Um porcentagem menor que 4% de células saudáveis denota

uma grande chance do indivíduo ser infértil [90]. Na Figura 25 estão representadas as

formas dos espermatozoides avaliados no parâmetro de Kruger.

Figura 25 - Representação das formas dos espermatozoides avaliados no parâmetro de Kruger.

Fonte: Nova IVF Fertility (2020) [91]. Modificado pelo autor.

Os padrões para os espermatozoides mais saudáveis são os que se encontram à

esquerda Figura 25, enquanto os menos saudáveis se encontram a direita. A morfologia

influencia diretamente a motilidade do esperma e a sua capacidade de fecundação. A
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motilidade é o parâmetro utilizado para avaliar como os espematozóides se movimentam

(Figura 26), sendo dividido em graus [92]:

• Grau A (progressivo rápido): se movimentam para frente e rapidamente em linha

reta;

• Grau B (progressivo lento): se movimentam para frente, mas em uma linha curva

ou torta (motilidade linear lenta ou não linear);

• Grau C (não progressivo): os espermatozoides movem suas caudas, mas não avan-

çam (apenas motilidade local);

• Grau D (imóvel): os espermatozoides não se movem.

Figura 26 - Graus de motilidade dos espermatozoides.

Fonte: Health Jade (2021) [93]. Modificado pelo autor.

Ambas as variáveis estão relacionadas com a capacidade de fertilização presente no

esperma. Logo, é de se esperar que elas sejam mais pronunciadas no grupo fértil, como

observado na Figura 24.

Partindo agora para lado oposto, temos as variáveis mais pronunciadas em VI,

são elas: FSH (13), LH (14), SHBG (15), TSH (17) e USG Varicocele Direita (21). O

LH e o FSH são dois hormônios relacionados com o pleno funcionamento das gônadas

masculinas. O LH, através das células de Leydig, estimula a produção de esteroides

sexuais, enquanto o FSH atua nas células de Sertoli para estimular a garantir a produção

de espermatozoides [94].

Pelas funções citadas, é de se esperar que os níveis de FSH e LH sejam mais pro-

nunciados em VF, uma vez que eles estimulam positivamente os parâmetros seminais.
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Porém, o contrário é encontrado, onde os níveis estão mais pronunciados em VI. Ape-

sar de curioso, o resultado está de acordo com outro encontrados na literatura [95, 96].

Acontece que em função da insuficiência nos parâmetros testiculares, o corpo tenta tra-

balhar em um efeito compensatório a fim de recuperar os níveis normais de produção

espermática [97]. Assim, é importante perceber que dentro de um quadro de varicocele,

uma maior concentração desses hormônios na corrente sanguínea pode ser um indicativo

de infertilidade.

A SHBG, outra variável numericamente pronunciada no grupo VI, é a chamada

globulina ligadora de hormônios sexuais. A SHBG é secretada pelo fígado e está relaci-

onada diretamente com a concentração de testosterona livre do sangue. Isso porque, a

testosterona pode estar presente em três formas diferentes: a livre, a ligada à albumina

e a ligada à SHBG. Como esta última ligação é muito forte, o hormônio quando ligado

à globulina não está biologicamente disponível. Assim, um maior nível de SBHG na

corrente sanguínea, como observado na classe VI, pode levar diminuição da testosterona

disponível. Esta por sua vez influencia na qualidade seminal e status de fertilidade [98].

O comportamento da variável TSH pode ser justificado pelo papel indireto que esta

possui no mecanismo de produção de espermatozoides. O TSH, hormônio estimulador da

tireoide, é responsável por estimular a produção de T3 e T4 [99]. Os hormônios produzidos

na tireoide agem nos testículos de várias maneiras, incluindo nas células de Leydig e

Sertoli e nas células germinativas. O excesso de T3 e T4 resulta em alterações da função

testicular, incluindo anormalidades do sêmen, como redução do volume e da densidade,

motilidade e morfologia dos espermatozoides [100]. Como pode ser observado também no

Apêndice B, o TSH possui uma correlação, mesmo que leve, negativa com os parâmetros

seminais.

Por fim, o último parâmetro apresentado em relação ao grupo VI é o tamanho

da varicocele direita. Antes de entender as justificativas desse comportamento, é preciso

entender como funciona o mecanismo que causa a varicocele e o porquê dele ser diferente a

depender do testículo esquerdo ou direito. Já se foi citado que a varicocele é uma dilatação

da veia espermática, porém, ela costuma ocorrer em 90% dos casos no testículo esquerdo,

quando a varicocele é unilateral [14]. Na Figura 27 está representado uma ilustração do

caso.
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Figura 27 - Anatomia das veias espermáticas.

Fonte: Jensen C. F. S. et al. (2017) [14]. Modificado pelo autor.

Em termos práticos, a varicocele acontece nas veias do plexo pampiniforme, de onde

o sangue venoso sai dos testículos e segue para as veias espermáticas. A veia espermática

esquerda forma um ângulo de 90° com a veia renal, onde tal arranjo proporciona o aumento

da pressão, o que por sua vez facilita o refluxo sanguíneo, causando o dilatamento. Já

a veia espermática direita forma um ângulo oblíquo com a veia cava, o que facilita o

escoamento do sangue, já que não há aumento na pressão como ocorre na esquerda. Por

isso, a frequência e intensidade do dilatamento são mais severas no testículo esquerdo [14].

Deste modo, segundo a análise exploratória, o tamanho da varicocele direita apre-

senta um peso maior na dispersão entre as classes de amostras. Provavelmente, o tamanho

da dilatação do testículo esquerdo não seja tão diferente entre as duas classes, uma vez

que todos os indivíduos estudados possuem a doença. Nesse caso, o resultado leva a crer

que a dilatação no testículo direito é maior nos casos onde a infertilidade está presente.

Mesmo a PCA apresentando uma tendência de separação clara, esta é uma aná-
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lise exploratória que não nos permite inferir em qual classe a amostra está inserida. A

construção de modelos classificatórios nos fornecerá informações sobre amostra futuras e

possibilitará a predição de que classe esta amostra pertence.

4.2.4 Análise Classificatória

A primeira etapa para a análise classificatória é a separação do conjunto de da-

dos entre o conjunto de treinamento e o conjunto de teste, selecionados com o algoritmo

de Kenard-Stone. Na Figura 28 estão indicadas as amostras de treinamento e de teste.

Como o conjunto de dados é pequeno, as amostras foram separadas apenas entre treina-

mento (70%) e teste (30% ). Assim, para a classe VF, foram utilizadas 14 amostras para

treinamento e 6 para teste, e 21 e 9 pra a classe VI, respectivamente.

Figura 28 - Amostras de treinamento ( ) e teste ( ).

Fonte: O autor (2021).

4.2.4.1 Análise Classificatória por PLS-DA

A primeira classificação foi realizada utilizando o algoritmo de PLS-DA. A fim

de definir o número ideal de variáveis latentes no modelo, foi realizada uma validação

cruzada. Os erros para cada número de VL estão indicados no gráfico na Figura 29.
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Figura 29 - Erro calculado para cada quantitativo de Variáveis Latentes.

Fonte: O autor (2021).

Como pode ser observado, o menor erro encontrado na validação cruzada dos dados

foi utilizando apenas uma variável latente. Desde modo, a classificação por PLS-DA foi

realizada apenas com uma VL, com variância explicada de 22%. A justificativa pelo uso

de apenas uma variável latente está indicada na Figura 30.

Figura 30 - Porcentagem da variância explicada para cada variável latente na matriz de dados
(a) e na matriz de identificação de classe (b).

Fonte: O autor (2021).

Com exposto na Figura 30, apesar da pouca variância explicada pela primeira
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variável latente (22%), esta é suficiente para diferenciar e classificar ambas as classes.

Deste modo, a classificação foi realizada utilizando apenas uma VL. O gráfico dos escores

e pesos para o modelo estão indicados na Figura 31.

Figura 31 - Análise classificatória dos grupos de varicocele fértil (VF) e varicocele infértil (VI)
PLS_DA. Gráfico dos escores (a), em que: VF treino ( ), VF teste ( ). VI treino ( ) e VI
teste ( ) e pesos(b).

Fonte: O autor (2021).

Segundo a distribuição das amostras na Figura 31(a), há um bom padrão de sepa-

ração entre as classes, o que indica que os dados clínicos possuem poder de discriminação

em relação a fertilidade. Nota-se também que o modelo foi capaz de classificar corre-

tamente boa parte das amostras de teste em destaque. Em relação aos pesos na VL, o

comportamento é semelhante ao encontrado na análise exploratória, onde as variáveis de

três a cinco mais pronunciadas em VF e as variáveis 13, 14 e 21 mais pronunciadas na

classe VI.

As variáveis de 3 a 6 são os parâmetros seminais e, como pode ser observado,

possuem um peso maior em relação a classe fértil. De fato, é de se esperar que os pacientes

férteis possuam parâmetros seminais melhores do que aqueles encontrados nos inférteis.

Nota-se também, de acordo com o APÊNDICE D que estas variáveis são positivamente

correlacionadas, ou seja, elas carregam as mesmas informações em relação aos dados. As

justificativas em relação as variáveis 13, 14 e 21 são as mesmas dadas na discussão da

análise exploratória, o que reforça o igual comportamento dos dados em duas abordagens

diferentes. A matriz de confusão e as figuras de mérito do modelo classificatório calculado

estão indicados na Tabela 7.
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Tabela 7 - Tabela de confusão e figuras de mérito para o método de classificação PLS-DA entre
os grupos de VF e VI.

Treinamento

VF VI sensibilidade especificidade precisão Exatidão

VF 10 5 0,667 0,840 0,714
77,5%

VI 4 21 0,840 0,667 0,807

Teste

VF VI sensibilidade especificidade precisão Exatidão

VF 3 3 0,50 1 1
81,2%

VI 0 10 1 0,50 0,769
Fonte: O autor (2021).

Como indicado na Tabela 7, no conjunto de treinamento o modelo foi capaz de clas-

sificar as amostras com 77,5 % de exatidão. Na classe VF, 5 amostras foram classificadas

como VI, enquanto 4 amostras da classe VI foram inseridas no grupo VF. No conjunto

de teste, o modelo conseguiu classificar corretamente todas as amostras do conjunto VI,

mas errou metade das amostras em VF.

Nesse conjunto de dados específicos, existe um tipo de resultado ideal esperado

em relação a classificação. Considerando que um paciente seja infértil e classificado como

fértil, esse tipo de erro é menos desejável, uma vez que, hipoteticamente, o paciente

não seguiria com nenhum tratamento. Já se o contrário ocorresse, um paciente fértil

classificado como infértil, futuros tratamentos iriam provar o contrário. Assim, o modelo

construído consegue muito bem classificar corretamente o grupo VI, evitando que eles

sejam classificados como férteis. Já o grupo VF, apesar de metade estar classificada

erroneamente, indica que o modelo tende a designar como infértil, o que no pior cenário

levaria apenas a um diagnóstico mais tardio.

Como foi observado tanto na análise exploratória como na classificatória, existem

variáveis que não contribuem para a diferenciação entre as classes, o que pode dificultar

a discriminação. Assim, apesar do resultados satisfatórios, é possível ainda refinar as

variáveis e alcançar classificações mais assertivas através da seleção de variáveis.
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4.2.4.2 Seleção de variáveis e Classificação por LDA

A classificação dos grupos Varicocele Fértil e Varicocele Infértil foi realizada utili-

zando o método de seleção de variáveis algoritmo Genético (GA), seguido de uma Análise

Discriminante Linear (LDA). Os resultados obtidos estão indicados na Figura 32. A tabela

de confusão e as figuras de mérito dos grupos de treinamento e teste estão apresentados

na Tabela 8.

Figura 32 - Análise classificatória dos grupos de varicocele fértil (VF) e varicocele infértil (VI)
por GA-LDA. Gráfico dos escores (a), em que: VF treino ( ), VF teste ( ). VI treino ( ) e
VI teste ( ) e pesos(b).

Fonte: O autor (2021).

Nota-se de acordo com a Figura 32(a) que visualmente houve uma boa separação

entre as classes. As variáveis selecionadas pelo GA foram as 2, 4, 15, 17 e 20. Na Figura

33 se encontram os boxplot de cada uma das variáveis selecionadas.

Figura 33 - Gráfico boxplot de cada uma das variáveis selecionadas pelo GA.

Fonte: O autor (2021).

As variáveis 2 e 4 possuem os maiores pesos do modelo, indicando que ambas são

as que mais contribuem para a separação das classes. Eles correspondem respectivamente



73

ao tamanho do testículo esquerdo e a contagem total de espermatozoides progressivos. De

fato, como já foi exposto nas discussões da análise exploratória, o tamanho do testículo

esquerdo (o mais afetado pela varicocele) parece ser um parâmetro interessante sobre o

status de fertilidade. No caso do conjunto de dados, o testículo esquerdo é maior naqueles

pacientes férteis, mesmo que possuam varicocele (Figura 33). A variável quatro, que é um

dos parâmetros seminais, também foi importante para a diferenciação dos grupos, onde a

maior contagem de espematozóides se encontram no grupo fértil (Figura 33).

As variáveis 15 e 17, SHBG e TSH, respectivamente, apesar de possuírem ummenor

peso na classificação (Figura 32), também contribuem para o diagnóstico. Como já citado,

ambas são parâmetros hormonais e estão ligadas com a produção e disponibilidade dos

espematozóides. Como observado no gráfico de pesos, elas se pronunciam mais no grupo

VI. Como observado também a Figura 33, o SHBG é maior no grupo VI.

Por fim, a variável 20 (USG Testículo Esquerdo) possuem peso negativo e mais

pronunciado na classe VI. Esse comportamento é contrário ao encontrado na análise ex-

ploratória, onde a variável estava mais pronunciada no grupo VF. É importante lembrar

que a LDA trabalha de forma a aumentar a distância entre as classes e aproximar as

amostras do mesmo grupo. Aqui, a variável 20, apesar de apresentar um comportamento

de início estranho, é responsável por diminuir a dispersão entre as amostras da mesma

classe. Esse comportamento é interessante para garantir uma correta classificação de

amostras futuras. Nota-se também que na Figura 33 que a diferença entre as classe é

baixa, apesar da distribuição de valores em VF ser maior para essa variável.Na Tabela 8

está os resultados da matriz de confusão obtida para este modelo.
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Tabela 8 - Tabela de confusão e figuras de mérito para o método de classificação GA-LDA entre
os grupos de VF e VI.

Treinamento

VF VI sensibilidade especificidade precisão Exatidão

VF 13 2 0,87 0,88 0,81
87,5%

VI 3 22 0,88 0,87 0,92

Teste

VF VI sensibilidade especificidade precisão Exatidão

VF 5 1 0,83 1 1
93,8%

VI 0 10 1 0,83 0,90
Fonte: O autor (2021).

Os resultados obtidos pela classificação através do LDA foram superiores aos ob-

tidos por PLS, mesmo utilizando apenas 5 variáveis, conforme indicado na Tabela 8. A

exatidão obtida para o grupo de treino e teste foi de cerca de 87 % e 93 %, respectiva-

mente. Aqui, o número de falsos negativos em relação ao grupo VF também caiu, mas as

amostras VI continuam sendo classificadas corretamente, o que é uma vantagem para o

tipo de diagnóstico que se almeja.

Apesar dos bons resultados apresentados na seleção de variáveis pelo AG é im-

portante avaliar quanto a reprodutibilidade das mesmas. O modelo construído de LDA

foi considerado satisfatório mas as variáveis de maior peso, que estão relacionadas com

o tamanho, dependem muito de quem está fazendo o exame. Esse tipo de dado quando

aplicado em análises multivariadas pode levar a tendências e interpretações não muito

assertivas.

Os dados clínicos que foram utilizados para a construção de modelos de classifica-

ção mostraram-se capazes de fornecer informação suficiente sobre o status de fertilidade

de pacientes com varicocele. Apesar disso, algumas variáveis não apresentaram muita

influência nessa classificação. Aqui, vale ressaltar que isso não significa que elas não são

importantes no diagnóstico, mas que dentro desse conjunto específico de dados elas não

apresentaram peso suficiente de separação quando comparadas à outras variáveis. São

elas: o pH, a albumina, a testosterona e a testosterona livre, onde os valores podem ser

observados nos boxplots disponível no APÊNDICE E.
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Começando pelo pH, a falta de influência desta variável pode estar associada com

algumas razões, principalmente pela forma como ela foi medida. Segundo a metodologia

utilizada, o pH foi determinado utilizando fitas de pH, o qual só permite resultados abso-

lutos entre 0 e 14. Como o corpo humano trabalha para que o pH seja mantido na faixa

neutra, alterações nessa medida seriam mínimas e não detectadas por uma simples fita

de pH. Essa variável merece um foco especial pois ela pode ser um indicativo do estresse

oxidativo, conhecida consequência da varicocele.

Um estudo publicado por Ghabili e colaboradores (2009), onde se propõe um meca-

nismo causador da infertilidade em casos de varicocele, indica que o aumento de espécies

oxidativas de oxigênio são responsáveis pela degradação ácida dos produtos testiculares.

Como consequência dessa acidificação, a motilidade dos espermatozoides é negativamente

afetada, e, como o pH se encontra em desequilíbrio, algumas proteínas antioxidantes im-

portantes para o pleno funcionamento das células também não funcionam. Logo, somando

todo esse cenário com o refluxo presente, ocorre a diminuição do pH no meio. Por isso,

vale aqui destacar que o uso de um pH-metro seria ideal para esse tipo de avaliação.

Em relação à albumina, além de ser um antioxidante, parte da testosterona que não

está biologicamente disponível está associada com esta proteína. Em um estudo realizado

por Boeri et al. (2019), foi verificado que baixos níveis de albumina no sangue estão

relacionados não só com a baixa qualidade seminal mas também com níveis hormonais

não controlados. De certo modo, nos modelos construídos neste trabalho, as principais

influências nas classificações estão ligadas com a resposta da baixa albumina. Talvez esse

comportamento possa justificar a sua ausência de peso como variável.

Em relação a testosterona, sabe-se que esse hormônio apresenta uma menor con-

centração em pacientes com varicocele, como provado no estudo apresentado por Ando et

al.(1984). A principal razão se dá pelos danos que a varicocele causa nas células de Ley-

dig, que são responsável pela produção de hormônios andrógenos. Porém, são necessários

estudos mais aprofundados que justifiquem a causa dessa baixa influência entre homens

férteis e inférteis com varicocele, uma vez que a testosterona também está associada com

a infertilidade [104].
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5 CONCLUSÕES E PERSPECTIVAS FUTURAS

A partir de amostras de soro de sêmen foi possível realizar um estudo metabonô-

mico através de dados cromatográficos e dados clínicos para a discriminação de homens

com varicocele quanto à fertilidade. O DLLME foi o método de extração que melhor

conseguiu extrair informações da matriz.

Foi verificado que se obtem melhores resultados de classificação quando o grupo de

controle não é incluído na modelagem matemática. O algoritmo de LDA foi o que melhor

classificou os dados cromatográficos, sendo a taxa de acerto de 100% tanto pra o soma-

tório dos comprimentos de onda quanto para os dados em 210 nm. A inserção dos dados

faltantes foi melhor alcançada utilizando o algoritmo de KNN sequencial, sendo possível

então realizar as análises multivariadas nos dados completos. A análise exploratória dos

dados clínicos indicou que os parâmetros físicos seminais e hormonais foram os principais

responsáveis pela diferenciação entre as classes. Os estudos classificatórios com os dados

clínicos apresentaram resultados semelhantes, sendo necessário estudos mais aprofunda-

dos sobre o papel específico e os efeitos sinérgicos de cada variável nas diferentes classes.

Assim, os estudos apresentados aqui, apesar de preliminares, apresentam elevado poten-

cial para funcionarem como triagem para o diagnóstico de infertilidade em homens com

varicocele. Podendo então, após o diagnóstico inicial de varicocele, ser realizada a triagem

inicial a partir dos dados clínicos e, em caso, positivo para infértil, proceder com a vali-

dação a partir do cromatograma do soro do sêmen. Assim, o tempo de diagnóstico será

reduzido, quando comparado com o método tradicional hoje disponível. Logo, mesmo

com os resultados promissores aqui encontrados, as abordagens necessitam de maiores

validações e melhorias que podem ser alcançadas com:

• Aumento do número de amostras analisadas;

• Realizar o estudo metabolômico de soro de sêmen com detector de espectroscopia de

massas a fim de determinar a estrutura dos metabólitos que diferenciam as classes

envolvidas e propor rotas de ação da doença.

• Como a infertilidade na varicocele é uma condição que depende de vários mecanismos

e fatores, o uso de outras ciências ômicas, como a genômica e a proteômica podem

prover pistas mais claras sobre as principais causas e rotas de ação da doença.
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• Balancear o número de amostras entre as classes, tanto para os dados cromatográ-

ficos quanto para os dados clínicos
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APÊNDICE B – GRÁFICOS DE ESCORES E PESOS PARA OS
MODELOS CLASSIFICATÓRIO UTILIZANDO AS CLASSES VF E VI

PARA O SOMATÓRIO DOS DADOS CROMATOGRÁFICOS

Fonte: O autor (2021).
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APÊNDICE C – GRÁFICOS DE ESCORES E PESOS PARA OS
MODELOS CLASSIFICATÓRIO UTILIZANDO AS CLASSES VF E VI

EM 210 nm DOS DADOS CROMATOGRÁFICOS

Fonte: O autor (2021).
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APÊNDICE D – HEATMAP DE CORRELAÇÃO DOS DADOS CLÍNICOS

Fonte: O autor (2021).
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APÊNDICE E – BOXPLOTS DE TODAS AS VARIÁVEIS DO
CONJUNTO DE DADOS CLÍNICOS

Fonte: O autor (2021).


	5a3d7772927d5cb313a765aa0838d7a1076b155474edc402b6f7af1bafad9c72.pdf
	5a3d7772927d5cb313a765aa0838d7a1076b155474edc402b6f7af1bafad9c72.pdf
	5a3d7772927d5cb313a765aa0838d7a1076b155474edc402b6f7af1bafad9c72.pdf
	Introdução
	OBJETIVO GERAL
	Objetivos específicos


	fundamentação teórica
	VARICOCELE
	Varicocele e Infertilidade

	METABONÔMICA
	Preparo de amostras e Técnicas miniaturizadas de extração
	Técnicas Cromatográficas - aquisição de dados para estudos metabonômicos

	QUIMIOMETRIA - ANÁLISE MULTIVARIADA DE DADOS
	Análise Exploratória de Dados
	Análise Classificatória de Dados
	Validação dos métodos de classificação


	DADOS CLÍNICOS
	Dados Faltantes
	Teste De Kolmogorov-Smirnov


	Metodologia
	SELEÇÃO DOS INDIVÍDUOS
	ESTUDO METABONÔMICO
	Preparo de Amostra
	Otimização
	Cromatografia Líquida
	Modelos quimiométricos com dados cromatográficos

	DADOS CLÍNICOS
	Modelos quimiométricos com dados clínicos


	resultados
	ESTUDO METABONÔMICO
	Otimização dos parâmetros de análise cromatográfico
	Detecção de amostras anômalas e Análise Exploratória - Dados cromatográficos
	Análise Classificatória dos Dados Cromatográficos

	DADOS CLÍNICOS
	Validação dos métodos de inserção dos dados faltantes
	Pré-Processamento dos dados
	Detecção de amostras anômalas e Análise Exploratória
	Análise Classificatória
	Análise Classificatória por PLS-DA
	Seleção de variáveis e Classificação por LDA



	CONCLUSÕES E PERSPECTIVAS FUTURAS
	REFERÊNCIAS
	APÊNDICE A – TABELA INICIAL DOS DADOS CLÍNICOS
	APÊNDICE B – GRÁFICOS DE ESCORES E PESOS PARA OS MODELOS CLASSIFICATÓRIO UTILIZANDO AS CLASSES VF E VI PARA O SOMATÓRIO DOS DADOS CROMATOGRÁFICOS
	APÊNDICE C – GRÁFICOS DE ESCORES E PESOS PARA OS MODELOS CLASSIFICATÓRIO UTILIZANDO AS CLASSES VF E VI EM 210 nm DOS DADOS CROMATOGRÁFICOS
	APÊNDICE D – HEATMAP DE CORRELAÇÃO DOS DADOS CLÍNICOS
	APÊNDICE E – BOXPLOTS DE TODAS AS VARIÁVEIS DO CONJUNTO DE DADOS CLÍNICOS


