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RESUMO

Documentos questionados sdo aqueles enviados para andlise forense,
principalmente quando ha questionamento judicial. Os resultados dessas analises
devem ser objetivos e confiaveis para evitar a punicdo de inocentes. Por isso é de
fundamental importancia o estudo da autenticagcéo do papel. A composicao do papel
€ bastante complexa, pois € composto por uma mistura de substancias e sua
degradacdo pode ser influenciada por diversos fatores. Este trabalho tem como
objetivo desenvolver uma metodologia ndo destrutiva, utilizando a espectroscopia de
infravermelho associadas a técnicas quimiométricas, para avaliar o envelhecimento
artificial e o envelhecimento natural do papel. Para a realizagdo desse estudo foram
utilizados dois conjuntos de amostras. O primeiro conjunto, utilizado no
envelhecimento artificial, constou de 10 diferentes tipos e marcas de papéis,
submetidas a condi¢do de envelhecimento artificial por aquecimento a 100 °C, por
periodos de tempo, que variaram de 10 minutos até 4 meses. O segundo conjunto,
utilizado no envelhecimento natural, foi composto de documentos datados de 1998 a
2018. Utilizando analise de componentes principais (PCA), foi possivel identificar
diferencas entre as marcas dos papéis, além da oxidacdo da hidroxila da celulose
como principal processo de degradagdo. Foram desenvolvidos modelos de
regressdo por minimos quadrados parciais (PLS) para as amostras de ambos os
conjuntos de dados, com o objetivo de datacdo de documentos. Dentre os pré-
processamentos tratados, a técnica de Minimos Quadrados Generalizados
Ponderados (GLSW) mostrou-se a mais adequada para a aplicacdo. Para ambos o0s
tipos de envelhecimentos foi possivel diminuir o Bias de Previsdo. Foi utilizado o
GLSW para o envelhecimento artificial e natural com o a = 0,032 e a = 0,112,
respectivamente. Em seguida, foram comparados ambos o0s modelos de
envelhecimento, mostrando que a analise dos residuos permite evidenciar as

diferencas entre 0s processos.

Palavras-chaves: envelhecimento; forense; infravermelho; papel; PCA; PLS.



ABSTRACT

Questioned documents are those sent to forensic analysis, especially when it
involves legal issues. The results of these analyses must be objective and reliable to
avoid the conviction of innocents. In this context, it is important to study paper
authenticity. Paper vomposition is quite complex, as it is composed of a mixture of
substances and its degradation process can be influenced by several factors. This
work aims to develop a non-destructive methodology, using infrared spectroscopy
associated with chemometric techniques, for the study of artificial and natural aging
of paper over time. To carry out this study, the samples were divided into two
datasets. The first one, corresponding to artificial aging, was composed by 10
different types and brands of papers. Those samples were stored at 100°C and
analyzed in different time intervals, varying from 10 minutes up to 4 months. The
second dataset correspond to naturally aged documents, and it was composed by
documents dating from 1998 and 2018. Using principal component analysis (PCA), it
was possible to identify differences among paper brands and, additionally, identify
the oxidation of cellulose’s hydroxyl as the main degradation process. Partial least
squares (PLS) regression models were built for samples from both data sets, with the
objective of dating documents. Among the treated pre-processing, the Generalized
Weighted Least Squares (GLSW) technique proved to be the most suitable for the
application. For both aging processes it was possible to decrease the prediction Bias.
GLSW was used for artificial and natural aging with a = 0.032 and a = 0.112,
respectively. Then both aging models were compared. It was possible to identify

significant differences between the two processes by assessing the residues.

Keywords: aging; forensic; infrared; paper; PCA; PLS.
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1 INTRODUCAO

O papel € um objeto largamente utilizado no cotidiano, pois toda a vida de um
individuo € documentada. Esses documentos podem ser apresentados na forma de
cartas, envelopes, certificados, livros, cartdo de identificacdo, contratos,
testamentos, entre outros. Quando um documento é enviado para andlise forense, é
considerado um documento questionado. Nesse contexto é de fundamental
importancia atestar a legitimidade de determinados documentos, principalmente
guando ha questionamento Judicial. Os resultados das analises devem ser objetivos
e confiaveis, para atestar a infracdo e evitar a puni¢cdes de inocentes. Essas
falsificacbes, manipulacées e adulteracées de documentos sdo estudadas pela
documentoscopia (SIEGEL, 2016; BRUNELLE, 2003).

Na documentoscopia uma das grandes dificuldades encontradas é o estudo do
envelhecimento do papel, pois ele € composto por uma mistura complexa de
componentes que podem sofrer degradacdo devido a diversos fatores. Nesse
contexto, a maioria dos trabalhos encontrado na literatura esta relacionada com a
analise de tinta de caneta e/ou impressdes e apenas 7 % dos trabalhos utilizam o
papel como amostra. Dentre esses trabalhos, € possivel encontrar duas abordagens
diferentes. A primeira, mais comum, tem o objetivo de caracterizar e discriminar
documentos ou lotes de papéis, enquanto o segundo estuda a degradacédo natural
ou artificial do papel ao longo do tempo (CALCERRADA e GARCIA-RUIZ, 2015).

Diversas técnicas vém sendo utilizadas para a discriminacdo e caracterizacdo
dos papéis, entre elas, tem-se: espectrometria de massa acoplada a plasma indutivo
(ICP-MS: Inductively coupled plasma mass spectrometry), Fluorescéncia de raios X
(XRF: X-ray fluorescence), ablacdo a laser acoplado ao ICP-MS (LA — ICP — MS:
Laser ablation inductively coupled mass spectrometry) e espectrometria de massa
de razdo isotdpica (IRMS: Isotope ratio mass spectrometers), difracdo de Raios-X e
espectroscopia na regido do infravermelho (IR: Infrared) (SPENCE et al, 2000; VAN
ES et al, 2009; CAUSIN et al, 2010).

Com o passar do tempo e com o desenvolvimento tecnolégico foi aumentando o

interesse na utilizacdo das técnicas espectroscopicas, como o infravermelho, para a
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caracterizacao e discriminacdo de diferentes marcas de papéis. Isso ocorreu porque
a técnica em questdo é nado destrutiva e para casos de contestacdo na justica, onde
as amostras sao evidéncias, é importante a preservacdo dos documentos. As
técnicas espectroscopicas, geralmente fornecem como resultados espectros de
natureza multivariada, e consequentemente a obtencédo de informacdes relevantes
para o estudo ndo é uma tarefa trivial. Nesse contexto, é necessario o uso de
determinadas estratégias, para extrair informac6es relevantes ao estudo, como o
uso da quimiometria. A quimiometria € uma area que envolve técnicas que utilizam a
matematica e a estatistica para a obtencéo de informac¢Bes quimicas relevantes a
partir dos dados multivariados (FERREIRA, 2015).

Dentre os véarios grupos da analise multivariada, temos as técnicas da analise
exploratoria, de calibracédo e de classificagdo. O primeiro € andlise exploratoria, cuja
ferramenta mais utilizada € a analise dos componentes principais (PCA: Principal
Component Analysis). O segundo grupo compreende as técnicas de calibracdo, que
tém o objetivo de determinar quantitativamente uma propriedade de interesse. E por
fim, tém-se as técnicas de classificacdo, na qual um modelo é construido com o
objetivo de atribuir uma amostra desconhecida a uma classe previamente modelada
(BRERETON, R., 2003; BEEBE e KOWALSKI, 1987).

A quimiometria vem sendo aplicada a dados de natureza multivariada, como o0s
espectros de infravermelho préximo e médio com transformada de Fourier (FTIR:
Fourier transform infrared). Esses espectros podem ser obtidos utilizando diversos
acessoérios, como o de refletancia total atenuada (ATR: Attenuated Total
Reflectance), refletancia difusa (DRIFTS: Diffuse reflectance infrared Fourier
transform spectroscopy), entre outros. Em estudos cujos objetivos sdo abordar a
discriminacdo e a caracterizacdo dos papéis, podem ser construidos modelos de
classificacdo como a andlise discriminante linear (PCA-LDA: principal component
analysis-linear discriminant analysis), andlise discriminante por minimos quadrados
parciais (PLS-DA: partial least squares discriminant analysis), SIMCA (SIMCA: soft
independent modeling of class analogies), maquina de vetores de suporte por
minimos quadrados (LS-SVM: least squares-support vector machine) e a analise
discriminante linear por minimos quadrados parciais (PLS-LDA: partial least squares-
linear discriminant analysis) para discriminar diferentes tipos e marcas de papéis
(KHER et al, 2001; XIA et al, 2019).
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Embora o estudo da discriminacdo de diferentes tipos de papéis seja bastante
importante para a determinacdo de fraudes, um dos grandes desafios da
documentoscopia ainda consiste na datacdo de documentos. Determinar a
autenticidade de um documento de acordo com a suposta data de preparacao ainda
€ um dos grandes desafios para os peritos da documentoscopia. Principalmente
para obter resultados objetivos, confidveis e que ndo dependa de cada da
interpretacdo de cada perito. Na literatura € possivel encontrar trabalhos que
estudam o envelhecimento natural ou artificial do papel ao longo do tempo, essa é a

segunda area de estudo do papel, como ja mencionado.

Risoluti e colaboradores no ano de 2018 estudaram o envelhecimento natural do
papel. As amostras utilizadas foram livros e folhas datadas do século XVI ao XXI e
as analises foram realizadas em um equipamento portétil no infravermelho proximo.
Os espectros obtidos foram submetidos a wuma andlise quimiométrica,
especificamente a PCA, na qual foi possivel distinguir corretamente os papéis com
base no século ao qual pertencem. Os resultados mostraram que a utilizacdo do
equipamento MicroNIR para distinguir papéis de acordo com o periodo de fabricagéo
€ promissora e € possivel analisar documentos de origem desconhecida, além de
ser uma técnica totalmente portatil e ndo destrutiva. Nesse contexto, é necessario
salientar a importancia da representatividade das amostras, pois durante a
fabricacdo dos papéis a sua composicdo muda ao longo dos anos, de modo que
essa diferenca, encontrada na PCA, pode estar relacionada a composigéo do papel
e nao ao processo de degradacéo (
RISOLUTI et al, 2018).

Zieba-Palus e colaboradores (2020) estudaram o envelhecimento artificial do
papel. Para esse estudo foram utilizadas como amostras 5 diferentes marcas de
papéis, submetidas a um envelhecimento artificial em uma camara, com umidade
relativa abaixo de 65% e temperatura de 90 °C. Essas amostras foram avaliadas
durante um periodo de tempo de 38 dias. As analises foram realizadas por
espectroscopia FTIR na regidao do infravermelho médio e UV/VIS. As amostras de
papéis envelhecidas foram diferenciadas analisando determinadas regibes dos
espectros, associadas a correlacdo 2D e a PCA. A mudanca espectral relacionada a
mudanca do papel ao longo do tempo foi observada nas faixas de 1000 - 1120 cm™,
2860 - 2950 cm™ e 1300 - 1380 cm™ no infravermelho. Para os espectros UV / VIS
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foi possivel observar mudancas na intensidade das bandas 280 e 350 nm durante o
envelhecimento. Ambas as técnicas oferecem informacdes complementares Uteis na
andlise do papel para fins forenses, possibilitando a identificacdo de um papel ou
documento especifico. Esse grupo de pesquisa utilizou a correlacdo 2D e a PCA
para determinar a faixa espectral relacionada a informacdo da mudanca do papel ao
longo do tempo, mas nao foram construidos modelos de calibracdo voltados para a
datacéo (ZIEBA-PALUS et al, 2020).

Nos Ultimos anos, nosso grupo de pesquisa tem se voltado para o estudo de
datacdo de documentos. Silva e colaboradores realizaram um estudo preliminar
sobre o envelhecimento natural de amostras de papéis, datados de 1986 a 2012 e
espectroscopia do infravermelho médio. Com o objetivo de contornar o problema da
variabilidade das amostras foi utilizada uma diversidade de amostras para cada ano

e foi realizada uma calibracdo multivariada voltada para datacéo (SILVA et al, 2018).

A autora desta dissertacdo, em estudo prévio, avaliaou o envelhecimento artificial
de diferentes tipos de papéis submetidos a diferentes condicbes de envelhecimento
utilizando a espectroscopia na regido do infravermelho e quimiometria. As amostras
utilizadas consistiram em papéis sulfites, couchés e reciclados, e foram submetidas
a 4 condicOes de envelhecimento, alta temperatura, radiagdo UV, radiacéo solar e
ao abrigo de luz. Os espectros foram analisados utilizando a PCA. Os resultados
obtidos mostraram que a utilizacéo da espectroscopia IR € promissora para o estudo
da degradacéo do papel. A partir desses estudos observou-se que um dos desafios
desta analise esta relacionado a grande variabilidade da composi¢do nas folhas de
papéis e como essas diferencas influenciam o processo de degradacéo. Além disso,
relacionar o envelhecimento artificial e o natural também se mostra bastante
complexo. Nesse contexto, o objetivo desse trabalho € o estudo de datacdo de
documentos, para detectar falsificacbes. Para isso, foram avaliadas e comparadas
as amostras de papel envelhecidas de forma natural e artificial (utilizando o

tratamento térmico).
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2 HIPOTESE E OBJETIVOS

As mudancas do papel ao longo do tempo, apds exposicdo a diferentes
condicbes de armazenamento, sdo causadas por modificagbes, na molécula de
celulose, dentre outras. Essas modificacbes podem nao ser facilmente identificadas
por inspecdo visual do espectro, sendo necessario 0 uso de técnicas mais
avancadas para extrair a informacgfes Uteis. Nesse contexto, esse trabalho tem
como hipoteses: (1) o processo de degradacdo do papel causa mudancas na
molécula de celulose que podem ser detectadas por IR e modeladas com técnicas
de reconhecimento de padrdes supervisionadas; (2) O envelhecimento artificial dos
papéis pode simular o processo de envelhecimento natural e, portanto, forjar a

autenticidade de um documento.

O objetivo deste trabalho € desenvolver uma metodologia ndo destrutiva,
utiizando a espectroscopia de infravermelho médio associada a técnicas
quimiométricas, para o estudo do envelhecimento artificial e natural do papel, com o
intuito de determinar a datacdo de documentos e o potencial dessa metodologia

para determinar falsificacbes de documentos.

2.1 OBJETIVOS ESPECIFICOS

e Utilizar a espectroscopia de infravermelho médio para adquirir 0os espectros
das amostras envelhecidas artificialmente e naturalmente.

e Avaliar o envelhecimento artificial por tratamento térmico e natural do papel
utilizando a técnica de analise por componentes principais.

e Construir modelos PLS para as amostras envelhecidas naturalmente e
artificialmente avaliando técnicas de pré-processamentos e de selecdo de
variaveis.

e Comparar o envelhecimento natural e artificial a partir dos modelos PLS

visando identificar falsificagdes de documentos.
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3 FUNDAMENTACAO TEORICA

3.1 COMPOSICAO DOS PAPEIS

O papel é composto por uma mistura complexa de componentes, tais como a
celulose, hemicelulose e lignina, que sao os principais constituintes da madeira, mas
também é possivel encontrar alguns compostos inorganicos, como o carbonato de
calcio, CaCOs e a caulinita, Al2Si2Os5(OH)4. Esses compostos sdo frequentemente
utilizados para o revestimento do papel no processo de fabricacdo para ajustar a
coloracao, brilho, opacidade, a suavidade e a receptividade de tintas de impressao
(CAUSIN et al,2010 e UDRISTIOIU et al, 2012). Dentre esses compostos, a celulose
é encontrada em maior quantidade. E um polimero ndo ramificados (Figura 1),
constituido por moléculas de glicose ligadas por ligacédo 1,4-B-glucosidica. O numero
de unidades de glicose € varidvel e depende de dois fatores: da matéria prima e do
processo de extracdo. O grau de organizacao das unidades glicosidica € expresso
pelo grau de polimerizagdo, o DP (DP: Degree of Polimerization), que sofre

mudancas devido ao processo de degradacéo, entre outros fatores.

Figura 1 - Representacdo da molécula de celulose

l\\‘ _/n/2

Fonte: Adaptado de Margutti et al (2001).

O estudo do papel é bastante complexo, pois 0 mesmo pode sofrer degradacao
devido a fatores externos, como 0 ambiente de armazenamento, a temperatura e a

umidade, mas também devido a fatores internos, tais como, a presenca de ions
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metalicos e a degradacdo da lignina. A degradacdo da celulose, pode seguir
diversos mecanismos tais quais, a biodegradacdo, a fotodegradacédo, a hidrélise
acida e a oxidacgdo. Existem diversas aplicacdes para o estudo da degradacdo do
papel, como avaliagdo da cinética, mecanismo de degradacdo, resisténcia,
durabilidade, preservacdo do papel e também a datacdo de documentos. Nesse
contexto, o estudo do papel vem ganhando espaco ao longo dos anos. Na literatura
pode-se encontrar trabalhos que estudam o envelhecimento artificial ou natural do
papel e dificimente encontram-se trabalhos que comparam ambos o0s

envelhecimentos.

3.2 ENVELHECIMENTO ARTIFICIAL DO PAPEL

Existem trés principais objetivos em um estudo de envelhecimento artificial, o
primeiro € determinar a estabilidade quimica e a duracdo fisica dos materiais
analisados, classificacdo e combinacdo dos materiais em um curto periodo de
tempo. O segundo é prever a durabilidade do material de interesse sob condicdo de
uso esperada. E o terceiro objetivo é determinar o(s) mecanismo(s) de degradacéo
do material e consequentemente desenvolver técnicas para monitorar esses

mecanismos e estender a vida util do material (FELLER, 1994).

Zou e colaboradores estudaram o envelhecimento artificial de papéis com o
objetivo de determinar o mecanismo de degradacéo e a sua cinética. Os papéis de
celulose pura com diferentes pH foram submetidas ao envelhecimento controlando a
temperatura e a umidade Durante esse estudo foram realizados diversos testes
fisicos e quimicos, chegando a conclusdo que ha uma perda da resisténcia e a
fragilizacdo do papel durante o envelhecimento. Essa ocorréncia € devido a
despolimerizacdo da celulose causada pela hidrolise catalisada por acido que
acontece de uma maneira aleatoria e segue uma cinética de primeira ordem de

acordo com os autores (ZOU et al, 1994; ZOU et al, 1996; ZOU et al, 1996).

Outro grupo de pesquisa em 2001 estudou o envelhecimento do papel celuldsico
por espectroscopia de infravermelho préximo por transformada de Fourier, com o

objetivo de avaliar a condicdo de isolamento dos papéis utilizados em
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transformadores elétricos. As amostras de papéis foram submetidas a alta
temperatura 120°C, 140°C e 160°C. Os papéis envelhecidos puderam ser
discriminados dos papéis novos devido a uma banda localizada em
aproximadamente 1710 cm que é atribuido a carbonila/carboxil. Analisando essa
mesma banda foi possivel determinar que o envelhecimento segue uma cinética de
primeira ordem e tem energia cinética de 98 KJ/mol. Para esse estudo também
foram utilizadas técnicas quimiométricas como a PCA (ALI et al, 2001). Embora os
dois trabalhos citados acima utilizem metodologias diferentes (o primeiro utiliza
técnicas destrutivas e o segundo faz uso de técnicas espectroscépicas), ambos
possuem a mesma finalidade, o estudo do mecanismo de degradacao e a cinética
dos papéis, mas nenhum deles avalia o envelhecimento artificial voltado a datacao
de documentos.

Pesquisas mostram que o envelhecimento artificial que mais se assemelha ao
envelhecimento natural sdo os que submetem as amostras a elevadas temperaturas,
fluxo de luz e concentracdo de gases e poluentes atmosféricos comuns (FELLER,
1994; MARGUTTI et al, 2001; AREA e CHERADAME, 2011). Um programa no
Instituto de Pesquisa de Padrbes (ISR: Institue for Standards Research ) da
Sociedade Americana para testes e materiais (ASTM: American Society for testing
and materials) tem desenvolvido testes na area do envelhecimento artificial e natural
do papel para que seja possivel desenvolver padrdes de envelhecimento. Os testes
de envelhecimento artificial consistem em concentrar a umidade em torno do papel e
submeter a elevadas temperaturas selando as amostras dentro de tubos de vidro
herméticos. Esses tubos retém os produtos de degradacdo, simulando folhas
envelhecidas em livros. Os papéis envelhecidos em tubos herméticos a 100 °C
durante 5 dias equivale a folhas individuais envelhecidas a 90 °C e 50% de umidade
em forno Umido por 30 dias (PORCK e TEYGELER, 2000).

O interesse no estudo do envelhecimento artificial do papel empregando
tratamento térmico tem aumentado. Kacik e colaboradores em 2009 submeteram
amostras de papel de jornal a 98 °C durante 60 dias. As analises foram realizadas
por viscosimetria, cromatografia de permeacdo em gel (GPC: Gel Permeation
Chromatography) e determinagdo de sacarideos. A partir dos resultados das
andlises foi possivel determinar que no inicio da degradacdo a reacdo de maior

influéncia € a hidrdlise seguida da oxidac&o. Foi possivel encontrar um coeficiente
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de determinagdo R? = 0,88, entre o tempo de envelhecimento e o grau de
despolimerizacdo. Esse grupo de pesquisa utilizou técnicas destrutivas para o
estudo do envelhecimento do papel, com o objetivo de estudar os mecanismos de
degradacdo. A partir desse estudo € possivel observar um interesse em relacionar o
envelhecimento com o tempo de exposicdo das amostras a condicdo de
envelhecimento (KACIK et al, 2009).

Em 2016, Hajji e colaboradores utilizaram espectroscopia no infravermelho médio
com o acessorio ATR, difracdo de raios X (XRD: X-ray diffraction) e fluorescéncia de
raios X por energia dispersiva (EDXRF: Energy Dispersive X-ray Fluorescence) para
monitorar as mudancas em papéis restaurados e expostos a condi¢des extremas de
armazenamento. Para simular essas condicbes foram realizados dois testes de
envelhecimento acelerado; o primeiro por calor seco a 90 °C e o segundo por calor
Uumido a 90 °C e 100% de umidade relativa, durante um periodo de 28 dias. Como
amostras, foram utilizados manuscritos restaurados do Marrocos, datados dos
séculos XVI, XVII, XVIII e XIV e papel japonés usado para restauracdo. Pela anélise
ATR-FTIR foi possivel identificar modificacdes estruturais da celulose, observar a
diminuicdo da &gua residual nas amostras envelhecidas em calor seco e determinar
0 mecanismo degradacao por oxidacdo das amostras envelhecidas submetidas ao
calor umido. A técnica XRD foi usada para observar a diminuicdo da cristalinidade
da celulose. A partir dos resultados do EDXRF foi possivel observar que as duas
condi¢cbes de envelhecimentos artificiais afetaram a composicao elementar do papel,
especialmente na quantidade de Calcio (HAJJI et al, 2016). Também durante o ano
de 2016, outro grupo de pesquisa estudou o envelhecimento artificial do papel em
uma camara climatica a 90 °C e 65% de umidade durante 35 dias. As analises foram
realizadas por espectroscopia no IR e Raman e as amostras utilizadas foram papéis
de escritorios de diferentes fabricantes. Foram analisados os espectros obtidos e a
correlagdo 2D (os espectros sao transformados em mapas 2D e mostram uma
relacdo entre as diferentes regides espectrais) para a espectroscopia de
infravermelho, chegando a conclusdo que os mecanismos de degradacdo que
ocorre no papel séo clivagem da cadeia de celulose e oxidacéo (ZIEBA-PALUS et al,
2016). O primeiro grupo de pesquisa realizou um estudo com o objetivo de avaliar os
dois tipos de envelhecimentos artificiais, sendo possivel observar as principais

mudancas espectrais. O segundo grupo estudou o mecanismo de degradacéo para
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a condicdo de envelhecimento analisada. Mas nenhum deles realizou um estudo

relacionado o envelhecimento com o tempo de exposi¢cdo das amostras.

Sabendo que ndo sO a temperatura interfere no processo de degradacdo, mas
também o tempo, umidade relativa e a presenca de poluentes, Schedl e
colaboradores em 2017 estudaram a detecgdo de um cromoforo responsavel pelo
amarelamento do papel, 2,5 dihidroxiacetofenona (DHAP). Para essa analise foi
utilizado spray de papel (PS) acoplado a espectrometria de massa, sendo possivel
detectar o DHAP em amostras de documentos histéricos. Foi investigado também o
envelhecimento artificial do papel para determinar quais fatores influenciam na
degradacéo. Para esse estudo foi realizado um planejamento fatorial completo, os
fatores analisados foram: temperatura, tempo, umidade relativa e a presenca de ions
de ferro. Os fatores que apresentaram maior influéncia foram a temperatura e
umidade relativa, mas as interacdes entre os fatores também foram significativas
(SCHEDL et al, 2017). O diferencial desse trabalho foi a realizagdo de um
planejamento fatorial para determinar os fatores, e as suas possiveis interacdes, que
mais influenciam no processo de envelhecimento artificial pela presenca do DHAP,

embora sem focar na datacdo de documentos.

3.2.1 Otempo no envelhecimento artificial

O envelhecimento artificial tem como objetivo simular o processo de
envelhecimento por meio de uma degradacao acelerada. Assim, € preciso estimar
uma determinada propriedade em um curto periodo de tempo que esteja associada
com esse processo. O tempo é medido em relacdo ao periodo de exposicado das
amostras a condicdo de envelhecimento, podendo ser medido em segundos,
minutos, horas, dias ou meses. As mudancas na propriedade de interesse sao
normalmente estimadas em uma escala linear, como por exemplo, horas de
exposicdo do papel a alta temperatura. Pode-se também ser utilizada uma escala
logaritmica, para linearizar funcdes. Nos estudos de envelhecimento artificial o

objetivo de utilizar uma escala de tempo é relacionar a uma escala semelhante de
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um envelhecimento natural (FELLER, 1994). No presente trabalho, o tempo de

exposicao das amostras é medido em minutos e € utilizada uma escala logaritmica.

3.2.2 Mecanismo de degradacédo por energia térmica

Ao submeter amostras de papéis a condicdo de envelhecimento por tratamento
térmico, o mecanismo de degradacdo que pode ocorrer é a degradacdo puramente
térmica, chamada de termolise ou degradacdo termolitica, na qual o oxigénio ndo
esta envolvido. No entanto, é necessario levar em consideracdo a presenca do
oxigénio atmosférico, ou seja, deterioracdo termo-oxidativa. Essa degradacao é a
mais provavel de ocorrer quando as amostras sdo expostas a altas temperaturas na
presenca de oxigénio ou ar. O oxigénio da atmosfera, vai atuar como um agente
oxidante que inicia a reacdo a partir dos radicais 0' e 0;. Os radicais podem atacar
as hidroxilas presentes nos carbonos C(2), C(3) e C(6) e sofrem a oxidagcdo nas
unidades do anel de piranose, formando novos grupos de carbonila e carboxilas,
podendo ocorrer ou ndo a abertura do anel. Os novos grupos formados séo
cromoforos, capazes de absorver radiacdo visivel e sdo responsaveis pelo
amarelecimento do papel. A hidroxila do carbono C(6) sofre oxidacdo formando
grupos aldeidos ou carboxilicos; por outro lado, as hidroxilas dos carbonos C(2) e
C(3) podem sofrer oxidacdo formando cetonas, sem a abertura do anel (Figura 2).
Para ocorrer a clivagem do anel, os radicais de oxigénio podem atacar o carbono
C(1), que esta envolvido na ligagdo glicosidica, levando a sua clivagem, ou também
pode ocorrer o ataque aos carbonos C(2) e C(3) formando grupos aldeidos ou
carboxilicos (Figura 3). Outro fator a ser considerado € a presenca de agua no
sistema, que normalmente é monitorada. Quando esse monitoramento é realizado, é
medida a umidade presente no ambiente. Dessa forma, também pode ocorrer a
hidrolise, embora a oxidacdo e a hidrolise estejam relacionadas, pois exercem

efeitos cataliticos um sobre o outro.
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Figura 2 - Oxidacé&o da hidroxila do carbono C(2), C(3) e C(6) sem a abertura do anel de piranose
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Fonte: Adaptado de Margutti et al (2001).

Figura 3 - Oxidacdo da hidroxila do carbono C(2), C(3) e C(1) com a abertura do anel de piranose
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Fonte: Adaptado de Margutti et al (2001).
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3.3 ENVELHECIMENTO NATURAL

A ASTM também possui um projeto para o estudo do envelhecimento natural do
papel, na qual 10 instituicbes norte-americanas em diferentes regibes iram
armazenar durante 100 anos volumes de 50 tipos de papéis. Durante esses anos
folhas de papéis seréo testadas em relacdo a durabilidade 6ptica e fisica (PORCK e
TEYGELER, 2000). Nesse contexto é possivel encontrar diversos trabalhos com o
objetivo do estudo do envelhecimento natural dos papéis.

Em 2007, Trafela e colaboradores estudaram a datacdo de documentos
histéricos (de 1650 a 2005) utilizando o FTIR proximo e médio. As amostras também
foram analisadas quanto ao teor de cinzas, teor de lignina, pH, grau de
polimerizacdo (DP: Degree of Polimerization) e teor de aluminio usando métodos
analiticos de rotina. Utilizando os espectros obtidos foram construidos modelos PLS
satisfatorios para todas as propriedades, exceto o teor de aluminio. Esse grupo de
pesquisa estudou o envelhecimento natural do papel, analisando diversos fatores,
incluindo a datacdo. Durante o estudo da datacdo de documentos € importante
salientar a necessidade da representatividade das amostras, pois as diferencas
observadas nas folhas de papéis ao longo dos anos podem estar associadas a
composicao dos papéis e ndo ao envelhecimento das folhas (TRAFELA et al, 2007).
Em 2017, Martinez e colaboradores (MARTINEZ et al; 2017) estudaram o
envelhecimento natural do papel por fluorescéncia induzida por laser. As amostras
utilizadas foram documentos datados de 1730 a 2009, analisados na regido
espectral de 540 a 750 nm. Foi possivel observar uma mudanca espectral do papel
ao longo do tempo relacionada com a celulose, hemicelulose e lignina. Essas
mudancas apresentaram na forma de deslocamento de bandas e mudancas nas

intensidades dos espectros de emissao.

Em 2018 Silva et al estudaram o envelhecimento natural do papel por
espectroscopia FTIR na regido do infravermelho médio associada a técnicas
quimiométricas para prever a idade de documentos. Foi realizado o estudo do
envelhecimento natural, as amostras utilizadas foram documentos datados de 1986
a 2012. Para esse estudo foram realizados modelos PLS com diferentes pré-
processamentos, entre eles 0 minimo quadrados generalizados ponderados (GLSW:

Generalized Least Squares Weighting) e minimos quadrados ortogonais (OLS:
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Orthogonal Least Squares). Outra abordagem utilizada foi a selecdo de variavel, por
esse motivo foram construidos modelos de espaco PLS (sPLS). Esses modelos
foram construidos com a finalidade de reduzir a variabilidade existente nas folhas de
papéis, principalmente nas amostras de papéis do mesmo ano, para que a
variabilidade do papel em relacdo ao tempo fique evidente. Os modelos construidos
apresentaram valores de RMSECV e RMSEP, de cerca de 4 anos, sendo o melhor
modelo aquele utilizando o pré-processamento OSC (SILVA et al, 2018). Com o
objetivo de contornar o problema da representatividade foi utilizada uma grande
guantidade e diversidade de amostras para cada ano e foi realizada uma calibracao
multivariada voltada a datacdo. A partir desse trabalho surgiu o interesse de
comparar o envelhecimento artificial e natural, com o objetivo de identificar

falsificagbes de documentos.

3.4 ESPECTROSCOPIA DO INFRAVERMELHO

A partir dos trabalhos citados acima é possivel observar o uso crescente da
espectroscopia para o estudo da degradacdo do papel. Nesse contexto, a
espectroscopia de infravermelho é uma técnica de espectroscopia vibracional
baseada em absorcdo molecular. Quando a energia é absorvida, ela provoca
transices na molécula de um estado de energia vibracional ou rotacional para outro
mais energético. A regido do IR pode ser dividida em trés sub-regides. Infravermelho
proximo (NIR: Near Infrared) compreendida entre 12800 a 4000 cm?, infravermelho
médio (MIR: Middle Infrared) regido entre 4000 a 200 cm™ e infravermelho distante
(FIR: Far Infrared) compreendida entre 200 a 10 cmt. Com o avanco tecnoldgico
vem aumentando o interesse na utilizacdo da espectroscopia vibracional que além
de serem técnicas mais rapidas, precisam de nenhuma ou de pouca preparacao de
amostras (SKOOG et al, 2018; SIESLER et al, 2002; BURNS e CIURCZAK, 2007).

Os espectros da regido NIR fornecem majoritariamente bandas de combinacdes
e sobretons, é bastante utilizada para analise de compostos que contém grupos
funcionais de hidrogénio ligado ao carbono, nitrogénio e oxigénio. Os dados obtidos

no MIR fornecem informacdes referentes as transicoes fundamentais dos grupos
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funcionais, apresentando, em geral, absor¢des com maior intensidade que os
espectros NIR. A regido de FIR € bastante utilizada para estudos com ligas
metélicas, pois absorcédo de atomos de metal e dos ligantes organicos e inorganicos
geralmente ocorre nessa regiao (BURNS e CIURCZAK, 2008; SKOOG et al, 2018).

Todas as moléculas possuem vibracdes e rotacdes préprias. Para moléculas
cujas vibragdes resultam em variacdo do momento de dipolo e, consequentemente
variacdo do campo elétrico da molécula, a radiacao infravermelha incidida pode ser
absorvida se a frequéncia da radiacédo coincide com a frequéncia vibracional natural
da molécula, provocando alteracdo na amplitude do movimento. A Figura 4 mostra
um exemplo de vibrac6es e deformacgbes angulares para uma molécula triatbmica e
heteronuclear (WORKMAN e WEYER, 2007; SKOOG et al, 2018).

Figura 4 - Vibra¢des de estiramentos simétrico e assimétrico e deformacgdes angulares para molécula

heteronuclear

a) Vibragoes de estiramento
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a) Vibrag¢des de deformacao angular

Balang¢o no plano Tesoura no plano
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Oscilacao fora do plano Tor¢ao fora do plano
(wagging) (twisting)

Fonte: Adaptado do Skoog et al (2018).
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Para entender as absor¢cdes moleculares foi proposto inicialmente o modelo do
oscilador harménico, na qual a ligacdo entre dois atomos heterogéneos se
assemelha a um sistema com uma mola que ligam duas massas diferentes (m1 e
mz2). Nesse contexto, a for¢a de ligacdo, ou seja, a frequéncia de vibracdo dependera
das massas dos dois atomos e da constante de forca da ligacdo que une as duas
massas. Esse modelo explica apenas as vibragdes fundamentais, pois permite
apenas transicfes entre niveis adjacentes, representado pela Figura 5. De acordo
com a distribuicdo de Boltzman, em condi¢6es do ambiente, a maioria das moléculas
se encontra no estado fundamental localizado no nivel v = 0, logo as transi¢cdes
permitidas sdo para o nivel v = 1. Devido ao fato de, neste modelo, os niveis de
energia serem igualmente espacados seria observado um Unico pico para cada tipo
de vibracdo molecular. Além disso, a maioria das bandas de absorcao das vibracdes
fundamentais de compostos quimicas ocorre na regido de MIR (4000 a 200 cm™),
por isso essa regido é bastante utilizada para determinacdo das estruturas, a partir
da identificacdo das funcfes organicas caracteristicas (BURNS e CIURCZAK, 2007;
SKOOG et al, 2018; PASQUINI, 2013).

Embora o modelo do oscilador harmonico expligue bem as transicOes
fundamentais, ocorrem fendmenos que esse modelo ndo explica. Para contornar
esse problema tem-se 0 modelo do oscilador anarménico, que leva em consideracéo
as forcas repulsivas entre os atomos e a possibilidade de dissociacdo da ligacao.
Nesse contexto foi observado que quando os dois &tomos se aproximam, existem
forcas repulsivas entre as nuvens eletronicas, fazendo com que a energia potencial
aumente mais rapidamente do que prediz o modelo de oscilador harménico. Por
outro lado, existe a possibilidade dissociacdo da ligacdo dos dois atomos. Com o
aumento da distancia entre eles, ocorre uma diminuicdo dessa forca restauradora e
consequentemente uma diminuicdo na energia potencial. De acordo com esse
modelo a energia potencial vibracional ndo varia periodicamente com a variacao da
distancia entre os nucleos, explicando as transicdes entre niveis de energias
adjacentes, com regra de selecao incluindo as transi¢cdes fundamentais (Av = +1), e
também os sobretons e as bandas de combinagbes (Av = +2oulAv = +3),
geralmente observados na regido NIR (BURNS e CIURCZAK, 2007; SKOOG et al,
2018; PASQUINI, 2013).
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Figura 5 - Curva de potencial de um oscilador harmdnico e anarménico
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Fonte: Adaptado de Pasquini (2013).

Em geral, as técnicas utilizadas para obter os espectros de infravermelho
diretamente em sdlidos pode ser refletincia especular, refletancia difusa e
refletancia total atenuada (ATR: Attenuated Total Reflectance). No presente trabalho
foi utilizada a espectroscopia de infravermelho com o acessorio de ATR, que
também pode ser utilizado para amostras de filmes, pastas, pos e liquidas. Nessa
técnica um feixe de radiacao € incidido sobre um cristal, em geral seleneto de zinco,
germanio ou diamante, e essa radiacdo € totalmente refletida na regido interna do
cristal. Durante o processo de reflexdo a radiagcdo penetra na amostra com uma
pequena profundidade, mas é suficiente para fornecer informagfes quimicas sobre a
amostra analisada. Essa profundidade depende do comprimento de onda, indice de
refracdo dos dois materiais e do angulo do feixe em relacdo a interface. Essa
radiacdo penetrante € chamada de onda evanescente. Nos comprimentos de onda
que a amostra absorve a radiacdo, ocorre a atenuacao do feixe, por isso essa
técnica € chamada de ATR. Na Figura 6 tem-se um esquema de funcionamento do
acessorio ATR (SKOOG et al, 2018).
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Figura 6 - Esquema de funcionamento do acessério ATR
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Fonte: Aliske (2010).

3.5 QUIMIOMETRIA

Com o avanco da tecnologia é possivel obter uma grande quantidade de dados
em um periodo curto de tempo, e um dos grandes desafios é a obtencdo de
informacao util. Além disso, os sinais registrados sdo de natureza multivariada, por
isso € de fundamental importancia determinar quais variaveis contém a informacéao
relevante para o estudo em questdo. Para contornar esse problema utiliza-se
métodos matematicos e estatisticos associados a dados quimicos, conhecidas como
técnicas quimiométricas (NETO e MOITE, 1997; BEEBE e KOWALSKI, 1987;
SIEGEL, 2016).

Essas ferramentas permitem acessar informacéo relevante do conjunto de dados
gue podem ndo ser triviais. Considerando dados espectroscopicos, essas
ferramentas sdo, baseadas na lei de Beer, representada na sua forma multivariada
pela Equacdo 1, que parte do pressuposto que had uma relacdo linear entre a
intensidade de absorgcédo e a concentracdo do(s) analito(s). A matriz X, contém 0s
espectros adquiridos, e pode ser decomposta em um produto de matrizes, a matriz
C é a concentracgdo do analito, a matriz ST é a matriz das intensidades de sinal do(s)

composto(s) puro(s) e a matriz residual E.
X=CST+E Equacio 1

As técnicas quimiométricas de reconhecimento de padrbes podem ser

supervisionadas ou nao supervisionadas. Nos métodos supervisionados ¢é
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necessaria uma informacao prévia sobre as amostras (informacdo que se deseja
prever), e o modelo é construido baseado nessas informacges, com o objetivo de
treinar o modelo, e em seguida é aplicado a um conjunto de dados de predi¢cao. Por
outro lado, nos métodos ndo supervisionados ndo € necesséario haver informacéo
inicial de qualquer natureza. Esses métodos identificam similaridades, diferencas,
existéncia de agrupamentos e tendéncias naturais das amostras (FERREIRA, 2015).
Antes de construir qualquer modelo é necesséria a analise dos espectros brutos,
para tomar algumas decisfes, tais como a utilizacdo de técnicas de preé-
processamento com o objetivo de remover variacdes que nao estejam associadas

ao analito.

3.5.1 Técnicas de pré-processamento

Sao chamadas de técnicas de pré-processamento qualquer etapa que antecede
a analise multivariada. Os espectros obtidos em um determinado equipamento
contém, além da informacdo do analito de interesse, informacdes que ndo sao
relevantes para o estudo tais como, erros aleatorios, erros sisteméaticos e variacdes
relacionadas a fenémenos fisicos. Essas informacgdes irrelevantes podem estar
associadas ao equipamento, a técnica de aquisicdo dos espectros e as condi¢coes
experimentais. Nesse contexto, sdo utilizadas ferramentas matematicas para retirar
ou minimizar essas informacgdes que podem interferir na constru¢cdo do modelo. As
técnicas de pré-processamento podem ser aplicadas nas amostras ou nas variaveis.
Os pré-processamentos de amostras sdo aqueles aplicados na direcao das linhas da
matriz de dados, tais como: suavizacdo, derivadas, padronizacdo pelo desvio
padrao, correcdo multiplicativa de sinal. J& as técnicas de pré-processamento das
variaveis sdo aplicadas na direcdo das colunas da matriz de dados, tem-se selecéo
de variaveis, como o algoritmo genético e a centragem na média (FERREIRA, 2015;
BEEBE, 1987).

3.5.1.1 Suavizagédo pelo método de Savitzky-Golay
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Esse método de suavizacdo tem o objetivo de minimizar o ruido presente no
conjunto de dados, reduzindo a variacdo do componente aleatério e aumentando a
razdo sinal/ruido. O funcionamento desse método consiste na determinacdo de uma
janela de pontos adjacentes no espectro e de um polindbmio de grau n, que é
ajustado para os pontos dessa janela. A janela é movel e percorre todo o espectro. A
escolha desses dois parametros (o grau de polindmio e o niumero de pontos da
janela) deve ser feita cuidadosamente. Com o aumento da janela o pré-
processamento filtra mais ruido e ocorre uma maior suavizacdo do espectro. Por
outro lado, pode eliminar bandas importantes (SAVITZKY, 1964; FERREIRA, 2015).

351.2 Derivada

Esse pré-processamento tem o objetivo de corrigir efeitos aditivos e
multiplicativos dos espectros, além disso, podem destacar picos e bandas que nao
estdo evidentes. Os efeitos aditivos ocorrem quando ha um deslocamento constante
positivo ou negativo dos espectros. Para corrigi-los pode-se utilizar a 1° derivada do
espectro. Ja& os efeitos multiplicativos estdo presentes quando 0s espectros
apresentam uma inclinagdo de linha de base que pode ser corrigida tomando a 2°
derivada do espectro. Esse método também pode ser precedido de uma etapa de
suavizacdo com o filtro de Savitzky-Golay. Trés parametros precisam ser ajustados:
o grau de polindbmio, o nimero de pontos da janela e a ordem da derivada. E
necessario estar atento ao uso desses pré-processamentos pois, pode aumentar
significativamente a quantidade de ruidos (SAVITZKY, 1964; FERREIRA, 2015).

3.5.1.3 Padronizacdo Normal do Sinal

Tem o objetivo de corrigir efeitos aditivos e multiplicativos geralmente causados

por interferéncia devido ao espalhamento da radiacdo, bastante comum em espectro
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de refletancia de pds, devido principalmente a diferencas no tamanho de particula.
Matematicamente a Padronizacdo Normal do Sinal (SNV: Standard Normal Variate)
realiza a centragem na média, na qual o valor médio de todas as variaveis em uma
amostra é subtraido de cada variavel individual e em seguida uma normalizacédo
pelo desvio padrdo das amostras, como mostra a Equagéo 2. Onde x;jsyy € 0
elemento da matriz corrigida, X; € a média das intensidades das variaveis na
amostra i e s; € 0 desvio padrédo das intensidades das variaveis na amostra i. Esse
pré-processamento atribui as variaveis que apresentam um maior desvio da média
uma maior ponderacdo (FERREIRA et al., 2009; RINNAN et al.,, 2009; SIEGEL,
2016).

Xjj corr = Equacao 2

3.5.14 Correcao Multiplicativa Sinais

A Correcao Multiplicativa de Sinais (MSC: Multiplicative Scattering Correction)
também tem o objetivo de corrigir efeitos causados pelo espalhamento da radiacao,
removendo os efeitos aditivos e multiplicativos. Esse pré-processamento € obtido
através da regressdo dos espectros medidos por um espectro de referéncia,
geralmente utiliza-se o espectro médio. A partir da regressao sdo determinados os
coeficientes de correcdo que sao a inclinacdo e o intercepto. As Equacdes 3 e 4
representam esse pré-processamento matematicamente, na qual, X € a matriz dos
espectros medidos, Xref € 0 espectro de referéncia, E é a matriz residual, Xcorr €
matriz com o0s espectros corrigidos. Os parametros escalares a e b variam de
amostras para amostras corrigindo o efeito aditivo e multiplicativo, respectivamente.
A Figura 7 mostra um espectro corrigido utilizando o MSC (FERREIRA et al., 2009;
RINNAN et al., 2009).

X=a+ bX e +E Equacdo 3

X—a
Xusc = — Equacdo 4
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Figura 7 - Correcao do espectro utilizando MSC
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Fonte: Adaptado de Wise et al (2016).

3.5.1.5 Centragem na Média

A centragem na média (MC: Mean Center) é aplicado nas varidveis, com 0
objetivo de realizar uma translacdo para que o centro do conjunto de dados esteja
na origem dos eixos, de modo que os desvios sejam computados em relacdo a
média. Matematicamente, cada valor da matriz é subtraido pela média da coluna na
qual se encontra, representado pela equagdo 5. Onde x;;c., € 0 elemento da matriz
corrigida, x;; € o i-ésimo elemento da j-€sima coluna e x; € a media dos elementos

da j-ésima coluna.

XijCor = Xij - i] Equagéo 5

3.5.1.6 Minimos Quadrados Generalizados Ponderados
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O pré-processamento dos Minimos Quadrados Generalizados Ponderados
(GLSW: Generalized Least Squares Weighting) atua como um filtro cujo objetivo é
reduzir diferengas entre determinadas amostras. Essa técnica estima as diferencas
entre amostras de um grupo que deveriam ser similares e utiliza esses dados para
minimizar a atuacdo dos interferentes. Matematicamente, uma matriz contendo a
diferenca dos espectros (Xdif) € calculada e removida dos dados originais. Uma
forma de calcular essa matriz € utilizando os valores de Y nos modelos de
regresséo, pois amostras com o mesmo valor de Y deveriam possuir espectros
semelhantes no conjunto de dado X, logo Xqit deve ser ortogonal a Y (SILVA, 2018;
ZORZETTI et al, 2011).

Para a obtengédo da matriz Xditr, primeiramente a matriz X é organizada a partir da
matriz Y de modo que amostras similares ficassem proximas, ou seja, as linhas das
matrizes X e Y s&o organizadas em ordem crescente de valor de Y, quando tém-se
apenas uma propriedade de interesse utiliza-se o vetor y. Em seguida sao
determinadas as diferencas entre as amostras préoximas utilizando a derivada de
Savitzky-Golay aplicando em cada coluna da matriz X organizada, produzindo a
matriz Xdit. A mesma derivada € aplicada ao vetor y, calculando o yuit. Devido ao fato
das derivadas utilizarem uma janela de pontos que podem ser alteradas, a matriz
Xdit pode conter informagbes que ndo devem ser removidas. Isso ocorre pois,
algumas das diferencas das linhas podem ter sido feitas em grupo de amostras com
valores diferentes de y. Nesse contexto é calculada uma matriz de pesos W
utilizando o vetor ydir € 0 seu desvio padrdo. Essa matriz de pesos é utilizada para
calcular a matriz de covaridancia da matriz Xdait (Equagdo 6). Essa matriz de
covariancia € submetida a decomposicao por valores singulares, representado pela
Equacgédo 7. A matriz de valores singulares S € utilizada para determinar a matriz de

filtro G, como mostra a Equacéo 8 e 9 (SILVA et al, 2018; ZORZETTI et al, 2011).
C = XgirZW2X i Equacio 6

C=VszyT Equagdo 7

Equacao 8

Equacao 9



42

O « € um parametro que mede o efeito do filtro nas matrizes originais. Quando «
€ grande, o efeito filtro diminui, retirando menos diferencas entre os espectros. Por
outro lado, quando o valor de « é pequeno o efeito do filtro aumenta. O valor de «
deve ser escolhido com bastante cuidado para ndo remover variabilidade importante
para o estudo em questdo. A matriz D; € uma matriz diagonal composta apenas de
1 e V séo os autovalores obtidos na decomposicéo (SILVA et al, 2018; ZORZETTI et
al, 2011).

3.5.2 Analise dos Componentes Principais

A analise dos componentes principais (PCA: Principal Component Analysis) é
uma ferramenta de andlise exploratéria ndo supervisionada, com o objetivo de
reduzir a dimensionalidade do conjunto de dados maximizando a variancia. 1Sso
permite encontrar similaridades e diferencas naturais entre as amostras e determinar
quais variaveis mais contribuem para a variabilidade. A PCA gera um novo espaco
de variaveis ortogonais, essas variaveis sdo chamadas de componentes principais
(PC: Principal Component), formadas a partir de combinacdes lineares das variaveis
originais e tem a direcdo de maior variabilidade dos dados. Matematicamente, o
conjunto de dados X é decomposto em uma multiplicacdo de duas matrizes, escores
T e pesos PT, mais a matriz de erro E, representado pela Equacdo 10 (BRO e
SMILDE, 2014; FERREIRA; 2015).

X=TPT +E Equacio 10

A matriz de escores T séo as coordenadas das amostras no novo sistema de
eixo formados e possui dimensédo n x k. A matriz de pesos PT sdo os coeficientes da
combinacdo linear, geometricamente falando sdo os cossenos dos angulos entre as
variaveis originais e as componentes principais e possui dimensao k x A. A matriz de
erro E possui as informac¢des que nédo sdo explicadas pelo modelo, com dimenséao
da matriz X, n x A. Onde n é o numero de amostras, k 0 nUmero de componentes
principais e A o numero de variaveis originais. Todas as PCs sdo ortogonais entre si.
A PC1 explica a maior variabilidade do conjunto de dados; ja a PC2 é ortogonal a
primeira, e explica a maior variabilidade do conjunto de dados que a primeira PC néao
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explica e assim sucessivamente. As primeiras PCs possuem maior variabilidade dos
dados, nesse contexto a variabilidade explicada em uma PC diminui quando o
namero de PC cresce. Definir o nUmero de componentes principais em um modelo é
bastante importante, pois influencia diretamente na matriz de residuo E, e
consequentemente na determinacdo de amostras andmalas (WISE et al, 2006;
FERREIRA; 2015).

Analisando a matriz de residuos € possivel determinar alguns parametros
importantes, tais como, T? de Hotelling e Q residual. O T? de Hotelling é uma
extensdo do teste t podendo ser aplicado também aos escores da PCA, como
mostra a equacao 11 (BRO e SMILDE, 2014).

(TN

T2
i 1—1

Equacao 11

Onde T2 é o parametro T? de Hotelling, T é a matriz de escores de todas as
amostras (I x R), ti € um vetor dos escores da i-ésima amostra (Rx1). A partir dos
resultados do T2 de Hotelling é possivel a construcéo dos limites de confiancas que
sdo bastante importantes para a determinacdo de amostras an6malas. Outro
parametro que também deve ser analisado é o Q residual. Matematicamente, O Q
residual é a soma dos quadrados dos residuos de cada amostra. Esse parametro
tem o objetivo de determinar as amostras que ndao sdo bem representadas pelo
modelo. O gréafico do Q residual versus o T? de Hotelling é chamado de gréafico de
Influéncia (BRO; SMILDE, 2014).

3.5.3 Regresséo por Minimos Quadrados Parciais

A regressdo por minimos quadrados (PLS: Partial least squares) € uma técnica
de calibracdo multivariada, que tem como objetivo a constru¢cdo de um modelo que &
capaz de determinar um parametro de interesse a partir de uma matriz de dados
espectrais. Para realizar essa analise sdo necessarias uma matriz de dados X, e
também um vetor y ou uma matriz Y que contenha a(s) propriedade(s) de interesse,

gue se deseja prever. Quando apenas um parametro é de interesse tem-se o vetor y
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com dimensdo n x 1. Por outro lado, quando se tem m propriedades de interesse

utilizasse, utiliza-se uma matriz Y n x m (FERREIRA; 2015).

O modelo PLS nao leva em consideracdo apenas a variabilidade presente na
matriz X, como ocorre na PCA, mas sim, a correlagdo entre X e Y. Nesse contexto, é
realizada uma decomposi¢éo para a matriz X e para a matriz Y, onde T e U sdo os
escores para X e Y, respectivamente, representada pelas Equacbes 12 e 13. No
entanto, diferentemente da PCA, € determinada uma relacdo entre os escores T e U,

para maximizar a correlacdo entre X e Y, como mostra a Equacéo 14.

X =TPT+E Equagdo 12
Y=ULT+F Equagdo 13
U=TW Equacgdo 14

Em seguida, é utilizada essa correlacdo encontrada na Equacdo 14, para
determinar os coeficientes de regressdo para o modelo B, que ser&o utilizados para
prever a(s) propriedade(s) de interesse a partir dos seus dados espectrais,
representados pela Equacao 15 e 16. As novas variaveis ndo sao mais ortogonais
entre si e sdo chamadas de variaveis latentes (LV: Latent Variables), pois ndo estédo
mais no sentido de maior variabilidade dos dados e sim na direcdo de maior
correlacdo entre as matrizes X e Y (FERREIRA; 2015; WOLD et al; 2001; BEBEE et
al, 1987).

B = P(P'P)"1WL Equacio 15
9y = XB Equacio 16

Para verificar o desempenho dos modelos construidos, tém-se algumas figuras
de mérito tais como o SEP, definido como o desvio padrdo dos residuos previstos,
representada pela Equacéo 17 e 18 (WISE et al, 2006; NAES et al, 2004).

Np
SEP= | > (5 — yi — BIAS)2/(Np — 1) Equagdo 17
I=1
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Np
BIAS = Z(yi — vi)/Np Equacdo 18
I=1

Onde §; é o valor da variavel y estimado pelo modelo para a i-€sima amostra, y; é
o0 valor conhecido para a i-ésima amostra, Np € 0 numero total de amostras para o
conjunto de previsdo. A relacdo entre o0 SEP e o BIAS é chamado de erro médio
quadratico de previsdo (RMSEP: Root Mean Square Error of Prediction)
representado pela Equacgéo 18 (WISE et al, 2006; NAES et al, 2004.

RMSEP? = SEP? + BIAS? Equacio 19

Para entender o significado desses erros € necesséario definir alguns
conceitos como a precisao e exatiddo. A precisdo mede a diferenca entre medicbes
repetidas, enquanto a exatiddo mede a diferenca entre o valor de y medido e o
estimado pelo modelo. Nesse contexto o SEP mede a presenca do erro aleatério e
consequentemente a precisdo, enquanto o BIAS é uma medida do erro sistemético

e, portanto, esta relacionado com a exatiddo (WISE et al, 2006; NAES et al, 2004.

Antes de avaliar a capacidade preditiva dos modelos representados pelas
Equacbes 17, 18 e 19, é necessério avaliar o ajuste do modelo para os dados de
calibracdo e validacdo cruzada. Essa analise incluira um valor de erro médio
quadratico de validacdo cruzada (RMSECV: Root Mean Square Error of Cross-
Validation) junto com o valor de erro médio quadrético de calibracdo (RMSEC: Root
Mean Square Error of Calibration). Esses erros sdo bastante Uteis para determinar o
namero ideal de variaveis latentes em um modelo de calibracdo (WISE et al, 2006;
NAES et al, 2004.

ApoOs a construcdo dos modelos PLS é possivel observar as variaveis que
tiveram maior influéncia para a construcao desses modelos. Essa andlise € realizada
a partir dos escores de importancia da variavel na projecdo (VIP: Variable
Importance in Projection). Os escores VIPs estimam a importancia das variaveis
usadas no modelo PLS e séo calculados a partir dos coeficientes de regresséo. De
uma forma generalizada, pontuacdes proximas ou maiores que 1 podem ser

consideradas importante para o modelo em estudo, enquanto variaveis com
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pontuacdes significativamente menores que 1 sdo menos importantes e podem ser
excluidas do modelo (WISE et al, 2006).

3.5.4 Selecéo de variaveis por algoritmo genético

O algoritmo genético (GA: Genetic Algorithms) poder ser utilizado com o objetivo
de identificar um subconjunto de variaveis que melhor descreve um modelo de
regressdo. Os modelos de regressdo se beneficiam com esse método, pois algumas
variaveis podem ser irrelevantes, conter ruido ou sinal de interferéncia que
prejudicam o modelo. Essa técnica é inspirada na teoria da evolucdo biologica e
selecao natural da “sobrevivéncia do mais apto”, na qual apenas as variaveis dos
modelos com alto desempenho tem maior probabilidade de serem incluidas no
conjunto de variaveis de modelos subsequentes. Além disso, também pode ser
realizada mutacao, na qual variaveis sdo adicionadas ou retiradas em um individuo
sem ser diretamente herdada da geracdo anterior. Nesse contexto, a selecdo
randémica da populacdo e a mutacdo garante o efeito estocastico do algoritmo.
(WISE et al, 2006; MEHMOOD et al, 2012).

No contexto da calibracdo, o algoritmo genético em geral utiliza uma abordagem
iterativa para determinar o subconjunto de variaveis que fornece o menor erro médio
quadratico da validacdo cruzada (RMSECV: root-mean-square error of cross
validation). O primeiro passo € determinar a populacdo, que consiste em um grande
namero de conjuntos de varidveis aleatdrias que sdo usadas para calcular o
RMSECV para um modelo de regressao, como o PLS. Cada conjunto de variavel é
chamado de individuo, e sdo representados por numeros binarios determinando as
variaveis inclusas ou ndo naquela etapa. O segundo passo € descartar o conjunto de
variavel que obtiveram o maior RMSECV, reduzindo a populacédo pela metade, Para
substituir esses individuos, o GA gera novos individuos por dois métodos:
cruzamento Unico ou duplo, representado pela Figura 8. Para o cruzamento Unico,
as variaveis de dois individuos (A e B) sao divididos em um ponto aleatério e uma
parte de A é trocada por uma parte de B gerando os individuos C e D. Por outro

lado, o cruzamento duplo seleciona 2 pontos aleatorios das variaveis e a parte do
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meio de A e B séo trocadas. Além disso, todos os genes podem sofrer mutacdes,
permitindo adicionar ou remover variaveis que podem estar super ou sub-
representadas na populagédo. Depois que o tamanho da populacéo for restaurado o
processo retorna para a avaliagdo dos modelos a partir do RMSECV. Esse método é
iterativo, os critérios de paradas podem ser um numero finito de iteracbées ou uma
determinada porcentagem dos individuos da populagéo estar usando subconjunto de
variaveis idénticos (WISE et al, 2006; MEHMOOD et al, 2012).

Figura 8 - Esquema de cruzamento Unico e duplo

Cruzamento Unico

waivicvo o [T T T T T |

Individuo B

Novo Individuo C

Novo Individuo D

Individuo A

Individuo B

Novo Individuo C

Novo Individuo D

Fonte: Adaptado de Wise et al (2006).
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4 MATERIAIS E METODOS

4.1 AMOSTRAS

Para esse estudo foram utilizados dois conjuntos de amostras. O primeiro,
composto por amostras envelhecidas artificialmente e o segundo com amostras

envelhecidas naturalmente.

4.1.1 Amostras Envelhecidas Artificialmente

Foram comprados, no comércio de Recife/PE, Brasil, 10 diferentes tipos e
marcas de papéis, entre elas 3 marcas de papéis reciclado, 2 de papéis couché e 5
marcas de papéis sulfite, com as especificacbes mostradas na Tabela 1. Para cada
marca foram selecionadas, aleatoriamente, trés folhas, a partir das quais foram
cortados quadrados do centro de cada folha com 4 cm de comprimento e altura.
Foram adquiridos 2 espectros de cada amostra. Em seguida, essas amostras foram
submetidas ao tratamento térmico a 100 °C, para isso foi utilizado uma estufa de
marca Olide fcz. Os espectros foram monitorados nos seguintes periodos de tempo:
10 minutos, 30 minutos, 1 hora, 2 horas, 3 horas, 24 horas, 48 horas, 72 horas, 96
horas, 1 Semana, 2 semanas, 3 semanas, 4 semanas, 5 semanas, 6 semanas, 7
semanas, 8 semanas, 2 meses e 3 meses. Foram também obtidos espectros antes

do tratamento térmico (tempo zero).



Tabela 1 - Especificacdes dos papéis
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Marca Modelo Tipo Gramatura Observactes Sigla
Syspaper Syspaper Couche 180 g/m? Resistente a agua; secagem Cl1
couche Brilho rapida; A4 21 x 29.7 cm
Syspaper Syspaper Couche 180 g/m? Resistente a agua; secagem C2
couche Fosco rapida; A4 21 x 29.7 cm
Chamex Chamex Reciclado 75 g/m? A4 21 x29.7 cm R1
eco

Jandaia Turma do Reciclado 75 g/m? A4 21 x 29.7 cm; para pintar, R2
Jandainha trabalhos em geral, colar,
eco desenhar, etc

Jandaia Eco Reciclado 75 g/m? A4 21 x 29.7 cm; para pintar, R3
millennium trabalhos em geral, colar,
multiuso desenhar, etc

Chamex Chamex Sulfite 90 g/m? A4 21 x 29.7 cm; mais encorpado S1
Super

Chamex Chamex Sulfite 75 g/m? A4 21 x29.7cm; paraodiaadia S2
Multi

Chamex Chamex Sulfite 75 g/m? A4 21 x 29.7 cm; uso profissional ~ S3
office

Suzano Suzano Sulfite 75 g/m2 A4 21 x29.7 cm S4
Report

Jandaia Turma do Sulfite 120 g/m? A4 21 x 29.7 cm,; para pintar, S5
Jandainha trabalhos em geral, colar,

desenhar, etc

4.1.2 Amostras Envelhecidas Naturalmente

Fonte: A autora (2020).

Para construgédo desse conjunto de dados, foram utilizados documentos de 20
anos diferentes (1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 e 2018) que estavam

armazenados no mesmo local, sob as mesmas condi¢cdes. Essas amostras eram

papeéis sulfites, especificamente provas e trabalhos armazenados em envelopes, ao

abrigo de luz, em uma sala na UFPE, a temperatura do ambiente, cujo intervalo

pode ter variado de 22 a 35 °C sem controle de umidade. Para cada ano foram
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selecionados 3 documentos e de cada documento 2 folhas foram utilizadas, obtendo

um espectro por folha.

4.2 AQUISICAO DOS ESPECTROS

Para a aquisicdo dos espectros foi utilizado o espectrometro Spectrum frontier da
Perkin Elmer, com o acessorio de Refletancia Total Atenuada (ATR: Attenuated
Total Reflectance). A regido espectral utilizada foi a regido do MIR, os parametros
utilizados foram: faixa espectral entre 4000 e 650 cm™, resolucdo de 4 cm, intervalo
de dados de 1cm? e 16 varreduras. As andlises foram realizadas diretamente no

papel, sem danificar as amostras e sem necessitar de nenhum preparo.

4.3 TRATAMENTO DE DADOS

Para o tratamento dos dados foram utilizadas técnicas quimiométricas, tais como
pré-processamentos, selecdo de variaveis, modelos PCA e PLS. Para esse estudo,
foram utilizados os softwares Matlab e o PLS Toolbox da Eigenvector. Para as
amostras envelhecidas artificialmente foram realizados modelos PCA para avaliar o
processo de degradacdo para cada tipo de papel, e avaliar a variabilidade presente
nas marcas de papéis sulfites. Para a construcdo desses modelos diversos pré-
processamentos foram utilizados, tais como, SNV, MSC, derivada, suavizacdo e
centragem na média. Em seguida foram separados os conjuntos de dados de
calibracéo e previsao. O conjunto de previsdo € composto por todas as amostras de
uma marca e as amostras de outras marcas compuseram o conjunto de calibracao.
Para determinar a marca que iria compor o conjunto de previséao, foi realizado a PCA
apenas com o0s papéis sulfites e foi selecionada a marca cujas amostras estavam
localizadas no centro do modelo. Os modelos PLS foram utilizados com o objetivo
de prever o tempo de exposi¢cao ao envelhecimento artificial. Para isso foi utilizado
0S seguinte pré-processamento e selecdo de variaveis: (i) SNV + MC, (i) SNV + MC
+ GA, (iii) SNV + GLSW + MC.
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Para as amostras envelhecidas naturalmente, a PCA foi utilizada para
determinar semelhancas e diferencas entre as amostras. Em seguida foram
determinados os conjuntos de dados de calibracdo e previsdo. Utilizou-se um
documento de cada ano para compor o conjunto de previséo, que foi selecionado
aleatoriamente, e o restante foi utilizado no conjunto de calibracdo. Os modelos PLS
foram utilizados para a datacdo do documento. Os modelos PLS foram construidos
com o seguinte pré-processamento e selecdo de variaveis: (i) SNV + MC, (ii) SNV +
MC + GA, (iii) SNV + GLSW + MC.
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5 RESULTADOS E DISCUSSAO
5.1 ENVELHECIMENTO ARTIFICIAL
5.1.1 Atribuicdes de bandas dos espectros
ApOs a aquisicdo dos espectros, foi realizada a atribuicdo de bandas para os
espectros obtidos no tempo zero (TO), antes de ser submetido as condicbes de

envelhecimento artificial. Na Figura 9 tem-se a média dos espectros no tempo TO,

onde estao destacadas as principais bandas caracteristicas.

Figura 9 - Média dos diferentes tipos de papéis no tempo zero TO (a) papéis couchés (b) papéis

reciclados e sulfites
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Fonte: A autora (2020).

Analisando a Figura 9 observou-se que 0s espectros dos papéis couchés (C1 e
C2) séo diferentes dos espectros dos papéis reciclados e sulfites. Nos papéis
couchés observou-se a presenca da banda em torno de 1410 cm™ e dois picos em
torno de 871 e 712 cm¥, relacionados com o estiramento assimétrico do C-O,
estiramento simétrico de C-O e deformacéo de flexdo no plano presente em ligacdes
O-C-0O, respectivamente. Essas bandas estdo relacionadas com o carbonato de

célcio, CaCOs. As bandas que se encontram nos intervalos de 3687 a 3620 cm™ e
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entre 1100 a 900 cm™, mais evidentes nos papéis C1, ocorrem devido a presenca da
caulinita, Al2Si205(0OH)4. O CaCOs e a Al2Si2Os(OH)4 sdo compostos inorganicos
frequentemente utilizados para o revestimento do papel (CAUSIN et al,2010 e
UDRISTIOIU et al, 2012).

Para os papéis reciclados e sulfites € possivel perceber a semelhanca entre seus
espectros. A banda que se encontra entre 3600 e 3000 cm™ estd associada a
vibracdo de estiramento de hidrogénio em grupos de O-H da celulose. Ja a absorcéo
em aproximadamente 2890 cmt é devido ao estiramento simétrico de C-H em
ligacbes CH, CH2 e CHs da celulose (CAUSIN et al, 2010). A banda que se encontra
em torno de 1640 cm™ é devido a presenca de agua adsorvida, enquanto que as
bandas entre 1500 e 900 cm! constituem a regido de impressdo digital, e estdo
detalhadas na Tabela 2 (HAJJI et al, 2016; ZIEBA-PALUS et al, 2016). J4 a banda
em torno de 871 cm™ é devido ao estiramento simétrico de C-O, do carbonato de
calcio (CAUSIN et al,2010).

Tabela 2 - Atribui¢cdes de bandas para a regido de impressao digital da celulose

Numero de Onda (cm™) Atribuicdo de banda

1430 Deformacao tesoura de CHa,
Deformacéo de CH e flexdo no plano de

OCH.

1375 Deformacdo de OH e CH:2 e flexdo no
plano de CH.

1315 Deformacéao rocking de CH

1160 Deformacdo de C-OH e C-CHz e
estiramento assimétrico de C-O-C

1105 Estiramento glicosidico C-O-C

1055 Estiramento de alcool secundario C-O

1025 C-C, estiramento de C-OH e anel CH.

Fonte: Adaptado de zieba-Palus et al (2016); Cousin et al (2010).

5.1.2 Analise dos componentes principais
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Para as amostras submetidas a condicdo de envelhecimento por tratamento
térmico, foram adquiridos os espectros em todos os tempos de envelhecimentos,
obteve-se, portanto uma matriz de dados de 1260 espectros e 3351 variaveis.
Entretanto, houve problemas na estufa e as amostras referente ao tempo de 4
meses ficaram comprometidas, fazendo com que seus espectros fossem retirados
da matriz de dados, resultando em 1200 espectros e 3351 variaveis. Antes de
construir os modelos PLS, foi feito um modelo PCA para estudar a variabilidade do
conjunto de dados. Para uma primeira analise, foi utilizado como pré-processamento
a centragem na média. Nas Figura 10a e Figura 10b tem-se 0s espectros brutos e os
espectros pré-processados e na Figura 10c e Figura 10d o modelo PCA com os

SCores e 0S pesos, respectivamente.
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Figura 10 - Grafico da PCA para todos os papéis em todos os tempos de envelhecimento, para as
amostras submetidas ao tratamento térmico (a) espectros brutos, (b) espectros pré-processados com

centragem na média, (c) escores da PC1 vs PC2 e (d) pesos da PC1 e da PC2.
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Fonte: A autora (2020).

O modelo PCA com duas componentes principais explica 99,20 % e, a Figura
10c mostra o gréfico dos escores do modelo. A PC1l esta relacionada com a
diferenca entre os papéis couchés, localizados na regido positiva dos escores, e 0s
papéis reciclados e sulfites, localizados na regido negativa dos escores. Essa
diferenca pode ser observada na Figura 10d, no gréfico dos pesos, é possivel
observar que na regido positiva da PC1 é referente as absor¢cdes que ocorrem nas
seguintes regides espectrais: 1410 cm™, 871 cm?, 712 cm™. Todas essas bandas
sédo referentes a presenca do carbonato de calcio, presentes em concentracdes
significativas em ambos os papéis couchés. Os valores negativos dos pesos da PC1

estdo relacionados a grupos funcionais da celulose (3400 cm™ e 2890 cm™), e a sua
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regido de impressao digital (1500 cm™ a 900 cm), bastante evidentes nos espectros
dos papéis reciclados e sulfites. E possivel observar que, para os papéis couchés,
ndo é possivel obter informagdes da celulose com o0s espectros, provavelmente,
devido a camada de revestimento presente, fazendo com que a penetracdo da
radiacdo nesse tipo de papel ndo seja suficiente para atravessar o revestimento e
fornecer as informacdes sobre a celulose. O escores da PC2 diferencia as marcas
dos papéis couchés. Essa diferenca fica evidente analisando a parte positiva dos
pesos da PC2, em que a banda de maior contribuicdo esta entre 1200 cm™ e 900
cm?l, regido de maior diferenca entre os tipos de papéis couchés, que esta

relacionada com & presenca da caulinita presente apenas nos papéis C1.

Para um estudo mais detalhado do processo de degradacdo de cada tipo de
papéis foram construidos modelo PCAs individualmente, para cada marca e tipo de
papéis. Para a construcdo desses modelos foi obtido a média dos dois espectros de
uma mesma folha, resultando em um espectro por folha. Em seguida foi realizada a
selecéo da regido espectral de trabalho, de modo que a regido espectral utilizada foi
de 2000 cm™ a 650 cm, pois a maior variagdo no perfil espectral foi encontrada
nessa regido, diminuindo significativamente o ruido. Para realizar os modelos PCAs
diversos pré-processamentos foram testados, tais como, SNV, MSC, derivada,
suavizagcdo e centragem na média, os melhores resultados estdo apresentados a
seguir. A Figura 11 mostra 0s espectros brutos e os espectros pré-processados com
suavizacgao pelo filtro de Savitzky-Golay (com polinbmio de 2 ordem e janela de 33
pontos), SNV e centragem na média para os papéis Couchés C1, respectivamente.
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Figura 11 - Grafico do efeito do pré-processamento para os papéis couchés C1 (a) espectros brutos e
(b) espectros pré-processados com suavizacao pelo filtro de Savitzky-Golay (com polindmio de 2

ordem e janela de 33 pontos), SNV e centragem na média.
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Fonte: A autora (2020).

Na Figura 11, as amostras com a coloracdo azul s&o as com menos tempo de
exposicdo em uma dada condicdo de envelhecimento. Por outro lado, as amostras
com a coloracdo amarela sdo as mais envelhecidas. O tempo de exposicao estd em
minutos e € utilizado uma escala logaritmica. Na Figura 11a é possivel observar que,
de forma geral, a intensidade das bandas esta diminuindo com o aumento do tempo
de exposicdo a condicdo de envelhecimento. Esse comportamento fica mais
evidente na Figura 11b, em torno de 1460 cm™, 874 cm™ e 712 cmt. Em seguida, foi
construido o modelo PCA para esses dados, com o objetivo de determinar a
componente principal que melhor representa a informacado da mudanca do papel ao
longo do tempo. Foram observadas as 5 primeiras PCs versus o log do tempo, para
cada tipo e marca de papel individualmente. Esse estudo foi realizado
detalhadamente no meu trabalho de conclusédo de curso (SILVA, 2018). O resultado
da PC que contém a informacdo da mudanca do papel ao longo do tempo para o

papel couché C1 foi a PC1, representado na Figura 12.
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Figura 12 - Gréafico da PCA para os papéis couchés C1 (a) Variancia explicada acumulativa para o
modelo (b) escores da PC1 versus o log do tempo (F1: Folha 1, F2: Folha 2 e F3: Folha 3) (c) pesos
da PC1.
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Analisando o grafico da variancia explicada acumulada (Figura 12a) para o
modelo PCA dos papéis couchés C1, as trés primeiras componentes principais
explicam 97,93 % da variabilidade dos dados. Nesse contexto, a PC que contém a
informacédo da mudanca do papel ao longo do tempo € a PCL1. Isso é observado na
Figura 12b, que mostra os escores da PC1 versus o logaritmo do tempo (em
minutos). Analisando esse grafico é possivel observar que, na regido negativa, tém-
se as amostras com menos tempo de exposicao a condi¢cdo de envelhecimento e as
amostras com escores positivos sdo as mais envelhecidas. Essas diferengas podem

ser observadas no grafico dos pesos da PC1, Figura 12c, na regido negativa
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(relacionada as amostras com menos tempo exposta a condicdo de envelhecimento)
tem-se se uma banda em torno de 1400 cm, que é do carbonato de calcio. Na
regido positiva dos pesos, a banda em torno de 1430 cm™ pode ser atribuida a
flexdo de CH2 presentes na celulose. Também é possivel encontrar bandas em torno
de 874 cm™ e 712 cm™! séo referentes ao carbonato de célcio que também estdo
presentes nas amostras envelhecidas (CAUSIN et al, 2010; ALI et al, 2001). Nesse
contexto, é provavel que esteja ocorrendo a degradacdo da camada de revestimento
ao longo do tempo, pois para as amostras mais envelhecidas a informacdo da
celulose comeca a ser relevante. Analogamente a C1, as amostras do papel C2
também evidenciam o mesmo comportamento (Figura 33 e Figura 34, localizado no
Apéndice A). Na Figura 13 tém-se os espectros brutos e pré-processados com
suavizacgao pelo filtro de Savitzky-Golay (com polinbmio de 2 ordem e janela de 33

pontos), SNV e centragem na média para os papéis reciclados R1.

Figura 13 - Gréfico do efeito do pré-processamento para os papéis reciclados R1 (a) espectros brutos
e (b) espectros pré-processados com suavizagdo pelo filtro de Savitzky-Golay (com polinbmio de 2

ordem e janela de 33 pontos), SNV e centragem na média.
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Na Figura 13a € possivel observar um espectro diferente dos demais, essas
diferencas sdo acentuadas quando o pré-processamento é realizado (Figura 13b). O

modelo PCA para os papéis reciclados R1 estdo representados na Figura 14.

Figura 14 - Gréafico da PCA para os papéis reciclados R1 (a) Variancia explicada acumulada para o
modelo, (b) grafico de influencia e residuo das amostras, (c) escores da PC3 versus a PC4 (c) pesos
da PC3 e da PCA4.
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Fonte: A autora (2020).

Analisando o grafico da variancia explicada acumulada (Figura 14a) é possivel
observar que com 5 PCs o0 modelo explica 96,07 % dos dados, sugerindo que 5 PCs
e suficiente para explicar a maior variabilidade dos dados. A Figura 14b mostra o

gréafico de influéncia e de residuo das amostras e é possivel observar que uma das
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amostras possui um T2 Hotelling alto, indicando ser uma possivel amostra anémala.
Investigando essa amostra, foi possivel observar que a mesma possuia o espectro
diferente visto na Figura 13a e Figura 13b e, além disso, a PC3 e a PC4 séo
utilizadas para explicar a diferenca dessa amostra para as demais. Visto que suas
replicatas ndo possuem valores de residuos semelhantes, confirma-se, portanto, a
suspeita de se tratar de uma amostra anémala, justificando a sua remocéo. Esse
comportamento andmalo pode estar relacionado ao momento da aquisicdo do
espectro devido a algum erro do equipamento ou do operador. Em seguida foi

construido um novo modelo PCA sem essa amostra, representado na Figura 15.

Figura 15 - Gréafico para o novo modelo PCA, sem as amostras andmalas, para os papéis reciclados
R1 (a) Variancia explicada acumulativa para o modelo (b) escores da PC1 versus o log do tempo (F1:
Folha 1, F2: Folha 2 e F3: Folha 3) (c) pesos da PC1.
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A Figura 15a sugere que 5 PCs também sao suficientes para explicar a maior
variabilidade dos dados, com 96,15 % de variancia explicada. Analisando a Figura
15b e as outras 4 componentes principais, ndo foi possivel determinar qual PC que
esta relacionada a informacé&o das altera¢des ocorridas no papel ao longo do tempo.
Nesse contexto, acredita-se que a variabilidade relacionada a composicédo do papel
€ maior que a variabilidade ocasionada pelo envelhecimento do papel ao longo do
tempo. Como os papéis reciclados ja passaram por um processo de reciclagem, na
qual ocorre uma mistura de outros tipos de papéis, é possivel que uma folha possua
uma complexa composicdo que é refletida nos perfis espectrais. Outra causa
provavel de ndo ser possivel associar uma PC ao envelhecimento é que a condi¢cao
de envelhecimento estudada nédo seja suficiente para causar mudancas observaveis
com o tempo. Os papéis reciclados R2 também apresentaram 0 mesmo
comportamento e um modelo com 5 PCs com 96,58 % de variabilidade explicada
pode ser observado, nas Figura 35 e Figura 36 (Apéndice B). Para os papéis
reciclados R2 e R3, também ndo foi possivel determinar a PC que contém a
informacé&o relacionada a mudanca do papel ao longo do tempo (Figura 37 e Figura
39, localizados no Apéndice B). Para investigar o processo de degradacdo dos
papéis sulfites também foi realizado modelo PCA individualmente para cada marca.
A Figura 16 mostra os espectros brutos e pré-processados para 0s papéis sulfites
S1.



63

Figura 16 - Grafico do efeito do pré-processamento para os papéis sulfites S1 (a) espectros brutos e

(b) espectros pré-processados com suavizacao pelo filtro de Savitzky-Golay (com polindmio de 2
ordem e janela de 33 pontos), SNV e centragem na média.
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Fonte: A autora (2020).

A Figura 16b mostra os espectros pré-processados para os papéis sulfites S1. O

pré-processamento utilizado foi suavizacdo pelo método de Savitzky-Golay (com
polinbmio de 2 ordem e janela de 33 pontos), SNV e centragem na média. Em

seguida, foi construido o modelo PCA representado pela Figura 17.
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Figura 17 - Gréafico da PCA para os papéis sulfites S1 (a) Variancia explicada acumulativa para o

modelo (b) escores da PC1 versus o log do tempo (F1: Folha 1, F2: Folha 2 e F3: Folha 3) (c) pesos
da PC1.
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Analisando a PCA para os papéis sulfites € possivel observar que 6 PCs

explicam 96,84 % da variabilidade dos dados (Figura 17a). Nesse contexto, foi

possivel determinar a PC que contem a informagéo da mudanca do papel ao longo

do tempo, a PC4 com 5,06 % de variancia explicada. Analisando o gréafico dos

escores, Figura 17b, observou-se que as amostras com menos tempo possuem

escores negativos e as amostras mais envelhecidas estdo localizadas na regiédo

positiva da PC4. No grafico dos pesos (Figura 17c), € possivel observar a regiao

espectral que possui contribuicdo positiva. Com maior intensidade, tem-se a

absorcdo em 1722 cm-%, que pode ser atribuida ao estiramento de C=0, presente

em acidos carboxilicos. Esse resultado indica que pode estar ocorrendo a oxidacao
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da hidroxila da celulose durante o processo de degradacdo do papel. Esse

comportamento foi observado em todas as marcas de papéis sulfites, esses

resultados estdo presentes da Figura 40 a Figura 46, localizadas no Apéndice C
(CAUSIN et al, 2010).

Antes de construir os modelos PLS, foi avaliado o modelo PCA para todas 5

marcas de papéis sulfites. Para esse estudo foi selecionada uma nova regiao de

trabalho, compreendida entre 1800 cm™ a 650 cm™, que contém a maior variagédo no

perfil espectral (Figura 18a).

Figura 18 - Gréficos das andlises dos papéis sulfites, (a) espectros brutos, (b) espectros pré-

processados com SNV e centragem na média (c) escores da PC1 versus PC2 (d) pesos da PC1 e da

PC2.
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Na Figura 18b tem-se os espectros pré-processado com SNV e centragem na
média. E possivel observar que as bandas em torno de 1410 cm, 871 cm'! difere os
papéis S4 dos S5. Em seguida um modelo PCA foi construido com 4 PCs que
explica 98,73 % da variabilidades dos dados. Analisando o grafico dos escores
(Figura 18c), é possivel observar que a maior variabilidade dos dados, PC1, é
devido a diferenca entre os papéis S1 e S4, localizados na regidao negativa dos
escores da PC1, e os papéis S5, com escores positivos. Analisando o gréfico dos
pesos para a PC1 (Figura 18d), a regido positiva esta relacionada as bandas que
estavam em evidéncia no pré-processamento que sao caracteristicas do carbonato
de célcio. Isso indica que a diferenca dos papéis pode estar associada com a
quantidade de revestimento que, no papel S5. Os papéis S1 e S4 possuem uma
tendéncia de separacdo mesmo ambos localizados na regido negativa da PC1. Nao
foi possivel observar diferencas entre os papéis S2 e S3, isso pode ter ocorrido

devido ao fato de serem da mesma marca, mudando apenas a finalidade de uso.

Esses resultados foram obtidos durante o trabalho de iniciacdo cientifica da
autora, onde foi estudado o processo de degradacéo dos diferentes tipos de papéis
submetidos ao tratamento térmico. Concluindo que a utilizacéo da espectroscopia na
regido do infravermelho médio associadas a técnicas quimiométricas se mostrou
promissora para o estudo da degradacdo do papel. Analisando todos os tipos de
papéis foi possivel observar que os papéis couchés sédo bastante diferentes dos
papéis reciclados e sulfites, diferenciando devido a presenca de uma intensa
camada de revestimento para os papéis couchés. Para as amostras submetidas a
condicdo de envelhecimento acelerado a alta temperatura, pode estar ocorrendo a
degradacdo da camada de revestimento para os papéis couchés. Para os papéis
sulfites pode estar ocorrendo a oxidagdo da hidroxila da celulose, pois foi possivel
observar, na PCA, absor¢do em 1722 cm! para as amostras mais envelhecidas, que
pode ser atribuida ao estiramento de C=0 presente em acidos carboxilicos, produto
da oxidac&o. A partir desses resultados surgiu o interesse de utilizar a calibracao

multivariada para prever o tempo de exposicao a condicdo de envelhecimento.

5.1.3 Regressao por Minimos Quadrados Parciais
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Para realizar a construcdo do modelo PLS utilizou-se apenas os papéis sulfites,
uma vez que na analise exploratdria, os papéis reciclados ndo mostram variacdes
com o tempo e as variagbes nos papeis couchés estdo muito relacionadas ao
revestimento. As amostras de papéis sulfites foram separadas em dois conjuntos,
um conjunto de calibracdo e um de previsdo. Para isso, foi selecionada uma marca
para compor o conjunto de previsdo e as outras quatro restantes pra calibracao.
Para realizar essa escolha a Figura 18c foi analisada, é possivel observar as
amostras dos papéis S3 estdo localizadas no centro da PCl, ou seja, sua
variabilidade estd explicada pelo modelo. Assim, os papéis sulfites S3 foram
selecionados para o conjunto de previsdo. Os modelos PLS foram realizados com 4
diferentes pré-processamentos e selecdo de variaveis (i) SNV + MC (Figura 19), (ii)
SNV + MC + GA (Figura 20), (ii) SNV + GLSW (a = 0,202) + MC (Figura 22) e (iv)
SNV + GLSW (a = 0,032) + MC (Figura 23). Um resumo das principais figuras de

méritos pode ser observado na Tabela 3.

Tabela 3 - Resumo das figuras de méritos dos modelos PLS com os diferentes pré-processamentos

Pré-processamento LV REMSEC RMSECV REMSEP Biasca Biascv Biasprea R2cai RZcv  R2pred
SNV + MC 6 1,02 1,08 2,20 0,000 0,005 -2006 088 087 091
SNV + GA + MC 4 1,61 1,70 1,47 0,000 -0,005 -0,743 0,70 0,67 0,82
SNV + GLSW (0,202) + MC 6 0,67 0,79 1,26 0,000 0,000 -1,104 095 093 0,96
SNV + GLSW (0,032) + MC 6 041 0,59 0,55 0,000 0,010 -0,140 098 099 0,97

*SNV, MCS, GLSW e GA sao os pré-processamento usados; entre paréntesis o valor de a (para
GLSW); LV = nimero de variaveis latentes; RMSEC, RMSECV e RMSEP; Biascal, Biascv € Biaspred =
Erro de Bias para a calibragéo, a validagdo cruzada e a previsao, respectivamente; R2ca R%cv € R2pred,

coeficiente de determinacédo para a calibracdo, validacdo cruzada e previsao.

Fonte: A autora (2020).

O modelo PLS utilizando o pré-processamento SNV e centragem na média foi
construido utilizando 6 variaveis latentes, representado pela Figura 19a. Analisando
a Figura 19b e os dados da Tabela 3 o erro de maior influencia é o Bias de previséo,
para tentar minimizar esse erro foi utilizado o pré-processamento SNV, centragem
na média e selecdo de variaveis (GA), representado na Figura 20. A partir da Figura

20a é possivel observar que as variaveis que apareceram com mais frequéncia
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durante a utilizagcdo do GA foram a regido de 1800 cm™? a 1200 cm?, esse
comportamento ja era esperado, pois como analisado na Figura 17, essa regido
contém a informacdo da banda caracteristica da degradacdo. Analisando esses
dados € possivel observar que o uso da selecdo de varidveis diminui a quantidade
de variaveis latentes necessarias para explicar o modelo e também houve uma
diminuicdo do Bias de previsdo. Por outro lado, o modelo de calibracdo apresentou
valores aparentemente mais baixos de R?cv que diminuiu de 0,87 para 0,67,

prejudicando assim o modelo.

Figura 19 - Gréficos do modelo PLS para os dados pré-processados com SNV e centragem na média
para os papéis envelhecidos artificialmente, (a) grafico de RMSEC e RMSECV (b) gréficos de
regresséo (c) grafico dos escores VIPs.
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Figura 20 - Gréaficos do modelo PLS para os dados pré-processados com SNV e centragem na média

e selecao de variaveis (GA) para os papéis envelhecidos artificialmente, (a) Variaveis que aparecem

com maior frequéncia quando o GA é aplicado, (b) grafico de RMSEC e RMSECV, (c) graficos de
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O modelo PLS também foi testado com outros pré-processamentos SNV,

GLSW e a centragem na média. Para utilizar o GLSW é necessario a determinagdo

do parametro de regularizagdo responsavel pela ponderagao do filtro (a), quanto

menor o valor de a, mais interferentes o GLSW filtra e, ao aumentar o valor do a, a

acao do filtro é diminuida. Para determinar o valor adequado para a, foi construida

uma superficie mostrando a variacdo do RMEC e RMSECV em funcgéo das variaveis

latentes e do valor de a, como mostra a Figura 21. Os graficos de contorno das

superficies estao representados na Figura 48 (Apéndice D). A partir desses dados
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foram selecionados dois valores de a: 0,202 e 0,032. Esses valores foram
escolhidos por possuirem RMSECYV relativamente baixo e poucas LV para o modelo,

esses resultados estéo representados na Figura 22 e Figura 23.

Figura 21 - Grafico das superficies para o (a) RMCEC e (b) RMSECV.
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Fonte: A autora (2020).

Analisando os modelos utilizando o filtro GLSW, Figura 22 e Figura 23, é possivel
observar uma melhora significativa na medida em que o valor de a diminui. Essa
melhora pode ser observada principalmente para o bias de previsdo, onde com a =
0,202 é -1,10 e para a = 0,032 ¢é -0,14. Essa melhora também é observada para os
outros parametros do modelo de regressdo. Em suma, a variabilidade presentes nas
diferentes marcas influenciam na constru¢cdo dos modelos PLS analisados ao longo
do tempo, para reduzir essa variabilidade foi utilizado o filtro GLSW e o melhor
resultado foi para o menor valor de a que € 0,032. Analisando o Escores VIPs para
todos os quatros modelos PLS construidos (Figura 19d, Figura 20d, Figura 22d e
Figura 23d) é possivel observar que todos os modelos reconheceram a banda em
torno de 1722 cm! como relevantes para o modelo, como visto anteriormente pode
ser atribuida ao estiramento de C=0 presente em acidos carboxilicos, produto do

processo de degradacéo.
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Figura 22 - Graficos do modelo PLS para os dados pré-processados com SNV, GLSW (a = 0,202) e

centragem Ona média para os papéis envelhecidos artificialmente (a) Grafico da superficie para o

RMSECYV (b) grafico de RMSEC e RMSECYV (c) graficos de regresséo, (d) grafico de regressao e (d)
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Figura 23 - Graficos do modelo PLS para os dados pré-processados com SNV, GLSW (a = 0,032) e
centragem na média para os papéis envelhecidos artificialmente, (a) Grafico da superficie para o
RMSECYV (b) grafico de RMSEC e RMSECYV, (c) graficos de regresséo e (d) grafico dos Escores

VIPs.
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5.2 ENVELHECIMENTO NATURAL

5.2.1 Atribuicdo de Bandas

A Figura 24 mostra a média dos espectros brutos por anos para 0s papeéis

envelhecidos naturalmente, de forma que as amostras estdo rotuladas em datas do

periodo de 1998 a 2018.
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Figura 24 - Média dos espectros brutos dos papéis naturalmente envelhecidos por ano.
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Fonte: A autora (2020).

As bandas presentes sdo as mesmas encontradas para os papéis sulfites
descritos anteriormente. Nesse contexto a regido entre 3600 cm™ a 2600 cm™ é
atribuida as fungBes organicas da celulose, também é possivel observar a presenca
de agua adsorvida, enquanto que as bandas entre 1500 e 900 cm! constituem a
regido de impresséo digital da celulose, e estdo detalhadas na Tabela 2 (ZIEBA-
PALUS et al, 2016; COUSIN et al, 2010). A regido espectral utilizada para a
construcdo dos modelos foi de 1800 cm™ a 650 cm?, pois é onde contém a maior

variabilidade espectral.

5.2.2 Analise dos Componentes Principais
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A matriz de dados utilizada para a analise de componentes principais dos papéis
envelhecidos naturalmente, possui 124 espectros e 1135 variaveis. Na Figura 25a
tém-se o0s espectros brutos e na Figura 25b tém-se 0s espectros pré-processados
com SNV e centragem na média.

Figura 25 - Gréficos da PCA para os papéis envelhecidos naturalmente, (a) espectros brutos, (b)

espectros pré-processados (c) escores da PC1 versus PC2 (d) pesos da PC1 e da PC2.
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Analisando o gréafico dos escores € possivel observar que as amostras estéo
bem distribuidas, ndo ha formacéo de agrupamentos naturais. Durante a construcao

dos modelos PLS foi observado que duas amostras (espectro de uma folha de 1998
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e 2002) estavam influenciando negativamente os modelos, mesmo possuindo
espectros bastante parecidos com os demais e que ndo estivesse em evidéncia na
PCA. Essas amostras ficaram evidentes no grafico de y predito para a validacéo vs

y mensurado, prejudicando assim o R2cv, entdo essas amostras foram removidas.

5.2.3 Regressao por Minimos Quadrados Parciais

Para a construcdo dos modelos PLSs foi separado o conjunto de calibracédo e o
de previsdo. Para cada ano tém-se trés documentos e de cada documento duas
folhas foram utilizadas, nesse contexto, o conjunto de previsédo foi formado por um
documento de cada ano, ou seja, duas folhas, esses documentos foram escolhidas
de forma aleatdria para compor o conjunto de previsdo. Os documentos restantes
formaram o conjunto de calibragdo. Os modelos PLS foram realizados com 4
diferentes pré-processamentos, (i) SNV + MC (Figura 26), (i) SNV + MC + GA
(Figura 27), (iii) SNV + GLSW (a = 0,202) + MC (Figura 29) e (iv) SNV + GLSW (a =
0,542) + MC (Figura 30). Um resumo das principais figuras de méritos resultados

obtidos podem ser observados na Tabela 4.

Tabela 4 - Resumo das figuras de méritos dos modelos PLS com os diferentes pré-processamentos

para os papéis envelhecidos naturalmente.

Pré-processamento LV REMSEC RMSECV REMSEP Biasca Biascv  Biasprea RZcai RZcv  RZpred
SNV + MC 6 3,95 4,95 4,16 0,000 0,101 0,733 056 033 0,52
SNV + GA + MC 6 391 4,65 3,88 0,000 0,106 0,374 056 040 0,58
SNV + GLSW (0,112) + MC 6 1,53 3,13 3,00 0,000 0,214 -0,403 093 0,73 0,77
SNV + GLSW (0,542 ) + MC 6 2,45 3,51 3,16 0,000 0,115 -0,744 083 0,66 0,74

*SNV, MCS, GLSW e GA séo os pré-processamento usados; entre paréntesis o valor de a (para
GLSW); LV = ndmero de variaveis latentes; RMSEC, RMSECV e RMSEP; Biasca, Biascv € Biaspred =
Erro de Bias para a calibragédo, a validacdo cruzada e a previsdo, respectivamente; R2ca R%cv € R2pred,

coeficiente de determinacéo para a calibracéo, validacdo cruzada e previséo.

Fonte: A autora (2020).
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Todos os modelos construidos utilizaram 6VL para explicar a maior variabilidade
dos dados. Analisando os dados da Tabela 4, pode-se observar que os modelos
PLS que utilizaram o pré-processamento SNV e centragem na média e SNV, GA e
centragem na média ndo foram eficientes para descrever a datacdo dos
documentos. Esse comportamento pode ser observado nos valores de R2cv, que
foram iguais a 0,33 e 0,40 (Tabela 4, Figura 26 e Figura 27). Nesse contexto, foi
utilizado o filtro GLSW para remover a variancia presente da matriz X que é
ortogonal ao vetor do tempo, y, ou seja, a variabilidade dos documentos de um
mesmo ano. Para a utilizacdo desse pré-processamento foi necessaria a
determinacao do a. Da mesma forma como foi feito para os papéis artificialmente
envelhecidos, foi construida uma superficie para os valores de RMSEC e/ou
RMSECV em fungédo do numero de variaveis latentes e do valor de a, como mostra a
Figura 28. Os gréaficos de contorno das superficies estado representados na Figura 49
(Apéndice D).
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Figura 26 - Graficos do modelo PLS para os dados pré-processados com SNV e centragem na média
para os papéis envelhecidos naturalmente (a) grafico de RMSEC e RMSECV, (b) graficos de

Y Previsto

regressao e (c) grafico dos escores VIPs.
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Figura 27 - Gréaficos do modelo PLS para os dados pré-processados com SNV e centragem na média
e selecao de variaveis (GA) para os papéis envelhecidos naturalmente (a) Variaveis que aparecem
com maior frequéncia quando o GA é aplicado, (b) grafico de RMSEC e RMSECV, (c) graficos de

regressao e (d) grafico dos escores VIPs.
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Figura 28 - Gréfico das superficies de niveis para os papéis envelhecidos naturalmente para o (a)
RMCEC e (b) RMSECV.
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Fonte: A autora (2020).

Analisando a Figura 28 foram selecionados dois alfas 0,112 e 0,542, pois
possuiam RMSECV relativamente baixos e ndo precisavam de muitas LV para
explicar o modelo (Figura 29 e Figura 30). As figuras de méritos desses modelos
estdo apresentadas na Tabela 3. Analisando a eficiéncia do filtro GLSW para reduzir
a variabilidade presente no mesmo ano € possivel observar uma melhora
significativa na medida que o valor de a diminui. Essa melhora pode ser observada
comparando o modelo usando a = 0,112, cujo R?%cv é igual a 0,73, e 0 modelo com a
= 0,542, cujo R%v é 0,66. Essa melhoria também é observada para os outros
parametros do modelo de regressdo (RMSECV, RMSEP, Biaspred € R?pred). O melhor

resultado foi para o menor valor de a que € 0,112.
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Figura 29 - Graficos do modelo PLS para os dados pré-processados com SNV, GLSW (a=0,112) e

Y Previsto

centragem na média para as amostras envelhecidas naturalmente (a) Grafico de superficie para o
RMSECYV, (b) grafico de RMSEC e RMSECYV, (c) graficos de regresséo e (d) grafico dos Escores

VIPs.
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Figura 30 - Graficos do modelo PLS para os dados pré-processados com SNV, GLSW (a = 0,542) e
centragem na média para as amostras envelhecidas naturalmente (a) Grafico da superficie para o
RMSECYV (b) grafico de RMSEC e RMSECYV (c) graficos de regresséo (d) grafico dos Escores VIPs.
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5.3 ENVELHECIMENTO NATURAL VS ARTIFICIAL

Atestar a legitimidade de documentos é bastante importante no contexto forense.
Assim, podem ser utilizados os modelos de datagdo para identificar fraudes
documentais. Deste modo, € importante testar se documentos artificialmente
envelhecidos podem ser apresentados como auténticos (naturalmente
envelhecidos). Esse estudo pode ser realizado por duas abordagens, a primeira

projetando-se amostras de documentos naturalmente envelhecidos no modelo PLS
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construido com amostras envelhecidas artificialmente. A segunda abordagem é a
projecdo de amostras artificialmente envelhecidas em um modelo PLS construido
com amostras naturalmente envelhecidas. Essas duas abordagens podem ser
usadas para verificar se ha compatibilidade entre o tempo de exposicdo a uma
determinada condicdo de envelhecimento artificial com o envelhecimento natural. Ou
seja, se um documento envelhecido artificialmente pode se passar por um

documento auténtico de um determinado periodo de tempo.

5.3.1 Projetando as amostras de envelhecimento natural no modelo PLS das

amostras envelhecidas artificialmente

As amostras naturalmente envelhecidas foram projetadas no melhor modelo de
calibracdo do envelhecimento acelerado, ou seja, as que utilizaram como pré-
processamento SNV, GLSW (a = 0,032) e centragem na média. Os resultados dessa
projecdo estdo presentes na Figura 31, que mostra o modelo de calibracédo
construido com as amostras envelhecidas artificialmente e o conjunto de previsao

com as amostras envelhecidas naturalmente.
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Figura 31 - Projecdo das amostras envelhecidas naturalmente nos modelos PLS construido com as
amostras envelhecidas artificialmente (a) Grafico do valor previsto, (b) grafico de influéncia e residuo

das amostras e (c) gréafico de influéncia e residuo das amostras ampliado.
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A variabilidade encontrada nas folhas de papéis ao longo dos anos € muito
grande de modo que o modelo de calibragdo para as amostras envelhecidas
artificialmente em alta temperatura ndo serve para explicar essas amostras
envelhecidas naturalmente. Esse comportamento € observado no gréfico de
influencia e residuo das amostras, pois as amostras naturais apresentaram

Qresidual e T? Hotelling bastante elevados.
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5.3.2 Projetando as amostras de envelhecimento artificial no modelo PLS das

amostras envelhecidas naturalmente.

Para esse estudo amostras envelhecidas artificialmente foram projetada no
melhor modelo de calibracédo do envelhecimento natural, ou seja, 0 modelo com pré-
processamento SNV, GLSW (a = 0,112) e centragem na média. Os resultados dessa
projecao estdo presentes na Figura 32, na qual se observa o modelo de calibragao
com as amostras envelhecidas naturalmente e o conjunto de previsédo foram com as

amostras envelhecidas artificialmente.

Figura 32 - Projecédo das amostras envelhecidas artificialmente nos modelos PLS construido com as
amostras envelhecidas naturalmente (a) Grafico do valor previsto (b) grafico de influéncia e residuo

das amostras.

2025 T T T T T T 9

T T
a) ©  Previséo b) !
¢ D1 o 8l ® :
o D2 ° ® ° I
2020 A D3 ° oo |
g A @ o ® @ o 7 ® Y o 1
n"‘nf‘ © ..‘: ® o® N e :
2015 F a e .'.' o %] ° o | ]
]
. at? teeoe *e | 5 % °%® :
B we® =a ° ° ° 3° °° o.‘. ¢ |
= L © Qg © |
52{)10 Dm:D‘D‘.A‘ ] §47 ....... ® : |
> PN o o |
® L4 (] I
2005 - - g 3t ° o .{ I 1
o * few e I
L] %’ 2+ | -
4 |
o0f A ag .. |
& o e Ao
L] ]
* el Re " . w
1005 ‘ ‘ s s . \ 0 . s ‘ ‘ ‘ ‘
20 40 60 80 100 120 0 02 04 06 08 1 12 14 16
Amostras T2 Hotelling (61.80%)

Fonte: A autora (2020).

Analisando o grafico da Figura 32b, é possivel observar que as amostras
envelhecidas artificialmente possuem um Q residual bastante elevado no gréafico de
influéncias, mostrando que o modelo ndo é eficiente para descrever essas amostras

de previséo. A partir dos graficos da Figura 31 e da Figura 32, pode-se observar que
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o0 método de projecdo de amostras no modelo anteriormente construido ndo se

mostrou eficiente para a comparacéao dos envelhecimentos naturais e artificial.

Isso significa que ndo é possivel prever a data de um documento original
(envelhecidos naturalmente) utilizando um modelo construido com amostras
envelhecidas artificialmente. Como também néo foi obtido sucesso ao se construir o
modelo com amostras envelhecidas naturalmente para prever a datacdo de
amostras envelhecidas artificialmente. No contexto forense, esse estudo mostra que
nao é possivel que uma amostra envelhecida artificialmente seja reconhecida como
uma amostra antiga, envelhecidas naturalmente, pois analisando os modelos é
possivel observar um Q residual elevado para essa amostra. Mostrando ser
promissor a utilizacdo da espectroscopia de IR associadas as técnicas

guimiométricas para identificar a falsificacdo de documentos.
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6 PERSPECTIVA FUTURA

Como relatado, um dos grandes desafios encontrados no estudo desenvolvido foi
a obtencdo de um modelo confiavel para a datacdo dos documentos. Para contornar
esse problema, propde-se a continuidade e o aprofundamento do estudo dos
modelos construidos com amostras envelhecidas naturalmente, otimizando o
parametro a do GLSW, a partir das superficies de respostas construidas no trabalho
atual. Também é proposto o0 estudo de alguns parametros como o RMSEC e
RMSECV, bias, com a finalidade de minimizar os seus valores e maximizar o R2.
Esses fatores devem ser levados em consideragao para escolher o maior valor de a
(que ndo altere os espectros) e o menor numero das variaveis latentes possivel.
Além disso, testes de significancia, como teste F e teste t, poderdo ser aplicados
para realizar a comparac¢do dos modelos e identificar a significancia dos parametros
analisados, de forma que com toda essa informacdo, seja possivel encontrar um

modelo adequado, empregando o GLSW.

Além de otimizar o parametro do GLSW, outros pré-processamentos poderam
ser testados como a Correcao Ortogonal de Sinal (OSC, do inglés Orthogonal Signal
Correction) que também realiza uma espécie de filtragem multivariada para a
construcdo dos modelos de regressdo; bem como outras técnicas de calibracéo
multivariada como a proje¢cdes ortogonais a Minimos Quadrados Parciais (OPLS:
Orthogonal Partial Least Squares) e técnica de regressdo de vetores de suporte
(SVR: Support Vector Regretion). O SVR € uma técnica conhecida de aprendizagem
de maquinas, que é capaz de tratar de modo relativamente rapido problemas de

calibracdo multivariada lineares ou nao lineares.

Outra proposta € ampliar o estudo do envelhecimento artificial em diferentes
condi¢cbes para investigar o processo de degradacédo dos papeéis exposto a radiacao
UV e a radiacdo solar. Podem ser aplicadas diferentes técnicas quimiomeétricas para
identificar as mudancas nos perfis espectrais, além técnicas de selecao de variaveis,
tais como: a Importancia de Variaveis na Projecao (VIP: Variable Importance in the
Projection), Minimos Quadrados Parciais por Intervalos (iPLS: Interval Partial Least

Square) e o Algoritmo genético (GA: Genetic algorithm).
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Outra proposta é estudo do envelhecimento artificial do papel, a partir de um
planejamento fatorial, para analisar a influéncia dos fatores no processo de
degradacdo, tais como, temperatura, radiacdo UV, umidade e suas possiveis
interacbes. Essas condicdes de armazenamento e 0 tempo de exposicado seriam
analisados para identificar quais fatores e a quantidade de tempo necessaria para
produzir uma resposta quimica equivalente ao envelhecimento natural. Além disso,
diferentes técnicas espectroscépicas também podem ser empregadas para a anélise
dos compostos presentes nos papéis, tais como, a espectroscopia de infravermelho

préximo (NIR), médio (MIR) e/ou a espectroscopia Raman.
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7 CONCLUSAO

E possivel concluir que as mudancas do papel ao longo do tempo e submetidas a
condicado de envelhecimento artificial causam modificacées na molécula de celulose,
devido a degradacdo. A utilizacdo da espectroscopia na regido do infravermelho
médio associada a técnicas quimiométricas se mostrou promissora para o estudo da
degradacdo do papel. Com a PCA foi possivel determinar um possivel processo de
degradacdo: para os papéis couchés observou-se a degradacdo da camada de
revestimento e para os papéis sulfites a oxidacdo. Para o envelhecimento artificial os
modelos PLS foram utilizados para prever o tempo de exposi¢cdo a condi¢cdo de
envelhecimento. Os modelos PLS para as amostras envelhecidas naturalmente
foram construidos com o objetivo de datacdo de documentos. Para ambos os casos
a utilizacdo de modelos PLS se mostrou eficiente para descrever o processo de
envelhecimento dos papéis, principalmente devido a utilizacdo do pré-
processamento GLSW que atua como um filtro minimizando a variabilidade das
folhnas de papéis do mesmo ano para as amostras envelhecidas naturalmente, e
minimizando a diferenca entre as marcas de papéis para as amostras envelhecidas
artificialmente. A utilizacdo de selecdo de variaveis como o GA ndo se mostrou

promissora para o estudo de nenhum tipo de envelhecimento.

Os modelos PLS foram eficientes para explicar o envelhecimento
separadamente, mas quando associado um envelhecimento natural com o artificial,
a partir das projecdes de um tipo de envelhecimento em outro, os resultados ndo
foram promissores para a previsado. Por outro lado, a comparacdo dos modelos e os
residuos mostram-se promissores para identificar se um documento artificial foi
fraudado e apresentado como auténtico. Isso porque as diferencas dos processos
de degradacéo sdo claras mesmo usando o filtro GLSW, sendo possivel identificar
gue sao documentos que passaram por processos diferentes. Em suma, realizar um
paralelo entre documentos envelhecidos artificialmente e naturalmente é um
processo bastante complexo, ndo sendo possivel construir um modelo com
amostras envelhecidas artificialmente por exposicdo a temperatura para entdo

estimar a data de um documento desconhecido.
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APENDICE A — ANALISE DOS COMPONENTES PRINCIPAIS PARA OS PAPEIS

COUCHES

Figura 33 - Grafico do efeito do pré-processamento para os papéis couchés C2 (a) espectros brutos e

(b) espectros pré-processados.
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Figura 34 - Grafico da PCA para os papéis couchés C2 (a) Variancia explicada acumulativa para o

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1.
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APENDICE B — ANALISE DOS COMPONENTES PRINCIPAIS PARA OS PAPEIS

RECICLADOS

Figura 35 - Gréfico do efeito do pré-processamento para os papéis reciclados R2 (a) espectros brutos

e (b) espectros pré-processados.
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Figura 36 - Grafico da PCA para os papéis reciclados R2 (a) Variancia explicada acumulada para o

modelo, (b) gréafico de influencia e residuo das amostras, (c) escores da PC3 versus a PC4 (d) pesos

da PC3 e da PCA4.
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Figura 37 - Gréfico para o novo modelo PCA, sem as amostras andmalas, para os papéis reciclados

R2 (a) Variancia explicada acumulativa para o modelo (b) escores da PCL1 versus o log do tempo (c)

pesos da PC1.
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Figura 38 - Gréfico do efeito do pré-processamento para os papéis reciclados R3 (a) espectros brutos

e (b) espectros pré-processados.
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Figura 39 - Gréafico da PCA para os papéis reciclados R3 (a) Variancia explicada acumulativa para o

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1.
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APENDICE C — ANALISE DOS COMPONENTES PRINCIPAIS PARA OS PAPEIS
SULFITES

Figura 40 - Grafico do efeito do pré-processamento para os papéis sulfites S2 (a) espectros brutos e

(b) espectros pré-processados.
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Figura 41 - Gréfico da PCA para os papéis sulfites S2 (a) Variancia explicada acumulativa para o

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1.
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Figura 42 - Gréfico do efeito do pré-processamento para os papéis sulfites S3 (a) espectros brutos e

(b) espectros pré-processados.
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Figura 43 - Gréfico da PCA para os papéis sulfites S3 (a) Variancia explicada acumulativa para o

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1.
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Figura 44 - Gréfico do efeito do pré-processamento para os papéis sulfites S4 (a) espectros brutos e

(b) espectros pré-processados.
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Figura 45 - Gréfico da PCA para os papéis sulfites S4 (a) Variancia explicada acumulativa para o

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1.
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Figura 46 - Grafico do efeito do pré-processamento para os papéis sulfites S5 (a) espectros brutos e

(b) espectros pré-processados.
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Figura 47 - Gréafico da PCA para os papéis sulfites S5 (a) Variancia explicada acumulativa para o
modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1.
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APENDECE D — GRAFICOS DE CONTORNO DAS SUPERFICIES DE RESPOSTA

Figura 48 - Gréfico de contorno das superficies para os papéis envelhecidos artificialmente para o (a)
RMCEC e (b) RMSECV
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Fonte: A autora (2020).
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Figura 49 - Gréfico de contorno das superficies para os papéis envelhecidos naturalmente para o (a)

RMCEC e (b) RMSECV.
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