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RESUMO 

 

Documentos questionados são aqueles enviados para análise forense, 

principalmente quando há questionamento judicial. Os resultados dessas análises 

devem ser objetivos e confiáveis para evitar a punição de inocentes. Por isso é de 

fundamental importância o estudo da autenticação do papel. A composição do papel 

é bastante complexa, pois é composto por uma mistura de substâncias e sua 

degradação pode ser influenciada por diversos fatores. Este trabalho tem como 

objetivo desenvolver uma metodologia não destrutiva, utilizando a espectroscopia de 

infravermelho associadas a técnicas quimiométricas, para avaliar o envelhecimento 

artificial e o envelhecimento natural do papel. Para a realização desse estudo foram 

utilizados dois conjuntos de amostras. O primeiro conjunto, utilizado no 

envelhecimento artificial, constou de 10 diferentes tipos e marcas de papéis, 

submetidas à condição de envelhecimento artificial por aquecimento a 100 °C, por 

períodos de tempo, que variaram de 10 minutos até 4 meses. O segundo conjunto, 

utilizado no envelhecimento natural, foi composto de documentos datados de 1998 a 

2018. Utilizando análise de componentes principais (PCA), foi possível identificar 

diferenças entre as marcas dos papéis, além da oxidação da hidroxila da celulose 

como principal processo de degradação. Foram desenvolvidos modelos de 

regressão por mínimos quadrados parciais (PLS) para as amostras de ambos os 

conjuntos de dados, com o objetivo de datação de documentos. Dentre os pré-

processamentos tratados, a técnica de Mínimos Quadrados Generalizados 

Ponderados (GLSW) mostrou-se a mais adequada para a aplicação. Para ambos os 

tipos de envelhecimentos foi possível diminuir o Bias de Previsão. Foi utilizado o 

GLSW para o envelhecimento artificial e natural com o α = 0,032 e α = 0,112, 

respectivamente. Em seguida, foram comparados ambos os modelos de 

envelhecimento, mostrando que a análise dos resíduos permite evidenciar as 

diferenças entre os processos.   

Palavras-chaves: envelhecimento; forense; infravermelho; papel; PCA; PLS.   



ABSTRACT 

 

Questioned documents are those sent to forensic analysis, especially when it 

involves legal issues. The results of these analyses must be objective and  reliable to 

avoid the conviction of innocents. In this context, it is important to study paper 

authenticity. Paper vomposition is quite complex, as it is composed of a mixture of 

substances and its degradation process can be influenced by several factors. This 

work aims to develop a non-destructive methodology, using infrared spectroscopy 

associated with chemometric techniques, for the study of artificial and natural aging 

of paper over time. To carry out this study, the samples were divided into two 

datasets. The first one, corresponding to artificial aging, was composed by 10 

different types and brands of papers.  Those samples were stored at 100°C and 

analyzed in different time intervals, varying from 10 minutes up to 4 months. The 

second dataset correspond to naturally aged documents, and it was composed by 

documents dating from 1998 and 2018. Using principal component analysis (PCA), it 

was possible to identify differences among paper brands and, additionally, identify 

the oxidation of cellulose’s hydroxyl as the main degradation process. Partial least 

squares (PLS) regression models were built for samples from both data sets, with the 

objective of dating documents. Among the treated pre-processing, the Generalized 

Weighted Least Squares (GLSW) technique proved to be the most suitable for the 

application. For both aging processes it was possible to decrease the prediction Bias. 

GLSW was used for artificial and natural aging with α = 0.032 and α = 0.112, 

respectively. Then both aging models were compared. It was possible to identify 

significant differences between the two processes by assessing the residues.  

 

Keywords: aging; forensic; infrared; paper; PCA; PLS. 
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1 INTRODUÇÃO 

 

O papel é um objeto largamente utilizado no cotidiano, pois toda a vida de um 

indivíduo é documentada. Esses documentos podem ser apresentados na forma de 

cartas, envelopes, certificados, livros, cartão de identificação, contratos, 

testamentos, entre outros. Quando um documento é enviado para análise forense, é 

considerado um documento questionado. Nesse contexto é de fundamental 

importância atestar a legitimidade de determinados documentos, principalmente 

quando há questionamento Judicial. Os resultados das análises devem ser objetivos 

e confiáveis, para atestar a infração e evitar a punições de inocentes. Essas 

falsificações, manipulações e adulterações de documentos são estudadas pela 

documentoscopia (SIEGEL, 2016; BRUNELLE, 2003). 

Na documentoscopia uma das grandes dificuldades encontradas é o estudo do 

envelhecimento do papel, pois ele é composto por uma mistura complexa de 

componentes que podem sofrer degradação devido a diversos fatores. Nesse 

contexto, a maioria dos trabalhos encontrado na literatura está relacionada com a 

análise de tinta de caneta e/ou impressões e apenas 7 % dos trabalhos utilizam o 

papel como amostra. Dentre esses trabalhos, é possível encontrar duas abordagens 

diferentes. A primeira, mais comum, tem o objetivo de caracterizar e discriminar 

documentos ou lotes de papéis, enquanto o segundo estuda a degradação natural 

ou artificial do papel ao longo do tempo (CALCERRADA e GARCÍA-RUIZ, 2015). 

Diversas técnicas vêm sendo utilizadas para a discriminação e caracterização 

dos papéis, entre elas, tem-se: espectrometria de massa acoplada a plasma indutivo 

(ICP-MS: Inductively coupled plasma mass spectrometry), Fluorescência de raios X 

(XRF: X-ray fluorescence), ablação a laser acoplado ao ICP-MS  (LA – ICP – MS: 

Laser ablation inductively coupled mass spectrometry) e espectrometria de massa 

de razão isotópica (IRMS: Isotope ratio mass spectrometers), difração de Raios-X e 

espectroscopia na região do infravermelho (IR: Infrared) (SPENCE et al, 2000; VAN 

ES et al, 2009; CAUSIN et al, 2010). 

Com o passar do tempo e com o desenvolvimento tecnológico foi aumentando o 

interesse na utilização das técnicas espectroscópicas, como o infravermelho, para a 
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caracterização e discriminação de diferentes marcas de papéis. Isso ocorreu porque 

a técnica em questão é não destrutiva e para casos de contestação na justiça, onde 

as amostras são evidências, é importante a preservação dos documentos. As 

técnicas espectroscópicas, geralmente fornecem como resultados espectros de 

natureza multivariada, e consequentemente a obtenção de informações relevantes 

para o estudo não é uma tarefa trivial. Nesse contexto, é necessário o uso de 

determinadas estratégias, para extrair informações relevantes ao estudo, como o 

uso da quimiometria. A quimiometria é uma área que envolve técnicas que utilizam a 

matemática e a estatística para a obtenção de informações químicas relevantes a 

partir dos dados multivariados (FERREIRA, 2015).  

Dentre os vários grupos da análise multivariada, temos as técnicas da análise 

exploratória, de calibração e de classificação. O primeiro é análise exploratória, cuja 

ferramenta mais utilizada é a análise dos componentes principais (PCA: Principal 

Component Analysis). O segundo grupo compreende as técnicas de calibração, que 

têm o objetivo de determinar quantitativamente uma propriedade de interesse. E por 

fim, têm-se as técnicas de classificação, na qual um modelo é construído com o 

objetivo de atribuir uma amostra desconhecida a uma classe previamente modelada 

(BRERETON, R., 2003; BEEBE e KOWALSKI, 1987). 

A quimiometria vem sendo aplicada a dados de natureza multivariada, como os 

espectros de infravermelho próximo e médio com transformada de Fourier (FTIR: 

Fourier transform infrared). Esses espectros podem ser obtidos utilizando diversos 

acessórios, como o de refletância total atenuada (ATR: Attenuated Total 

Reflectance), refletância difusa (DRIFTS: Diffuse reflectance infrared Fourier 

transform spectroscopy), entre outros. Em estudos cujos objetivos são abordar a 

discriminação e a caracterização dos papéis, podem ser construídos modelos de 

classificação como a análise discriminante linear (PCA-LDA: principal component 

analysis-linear discriminant analysis), análise discriminante por mínimos quadrados 

parciais (PLS-DA: partial least squares discriminant analysis), SIMCA (SIMCA: soft 

independent modeling of class analogies), máquina de vetores de suporte por 

mínimos quadrados (LS-SVM: least squares-support vector machine) e a análise 

discriminante linear por mínimos quadrados parciais (PLS-LDA: partial least squares-

linear discriminant analysis) para discriminar diferentes tipos e marcas de papéis 

(KHER et al, 2001; XIA et al, 2019). 
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Embora o estudo da discriminação de diferentes tipos de papéis seja bastante 

importante para a determinação de fraudes, um dos grandes desafios da 

documentoscopia ainda consiste na datação de documentos. Determinar a 

autenticidade de um documento de acordo com a suposta data de preparação ainda 

é um dos grandes desafios para os peritos da documentoscopia. Principalmente 

para obter resultados objetivos, confiáveis e que não dependa de cada da 

interpretação de cada perito. Na literatura é possível encontrar trabalhos que 

estudam o envelhecimento natural ou artificial do papel ao longo do tempo, essa é a 

segunda área de estudo do papel, como já mencionado.  

Risoluti e colaboradores no ano de 2018 estudaram o envelhecimento natural do 

papel. As amostras utilizadas foram livros e folhas datadas do século XVI ao XXI e 

as análises foram realizadas em um equipamento portátil no infravermelho próximo. 

Os espectros obtidos foram submetidos a uma análise quimiométrica, 

especificamente a PCA, na qual foi possível distinguir corretamente os papéis com 

base no século ao qual pertencem. Os resultados mostraram que a utilização do 

equipamento MicroNIR para distinguir papéis de acordo com o período de fabricação 

é promissora e é possível analisar documentos de origem desconhecida, além de 

ser uma técnica totalmente portátil e não destrutiva. Nesse contexto, é necessário 

salientar a importância da representatividade das amostras, pois durante a 

fabricação dos papéis a sua composição muda ao longo dos anos, de modo que 

essa diferença, encontrada na PCA, pode estar relacionada a composição do papel 

e não ao processo de degradação (                                                                                                            

RISOLUTI et al, 2018).   

Zieba-Palus e colaboradores (2020) estudaram o envelhecimento artificial do 

papel. Para esse estudo foram utilizadas como amostras 5 diferentes marcas de 

papéis, submetidas a um envelhecimento artificial em uma câmara, com umidade 

relativa abaixo de 65% e temperatura de 90 °C. Essas amostras foram avaliadas 

durante um período de tempo de 38 dias. As análises foram realizadas por 

espectroscopia FTIR na região do infravermelho médio e UV/VIS. As amostras de 

papéis envelhecidas foram diferenciadas analisando determinadas regiões dos 

espectros, associadas à correlação 2D e a PCA. A mudança espectral relacionada à 

mudança do papel ao longo do tempo foi observada nas faixas de 1000 - 1120 cm-1, 

2860 - 2950 cm-1 e 1300 - 1380 cm-1 no infravermelho. Para os espectros UV / VIS 
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foi possível observar mudanças na intensidade das bandas 280 e 350 nm durante o 

envelhecimento. Ambas as técnicas oferecem informações complementares úteis na 

análise do papel para fins forenses, possibilitando a identificação de um papel ou 

documento específico. Esse grupo de pesquisa utilizou a correlação 2D e a PCA 

para determinar a faixa espectral relacionada a informação da mudança do papel ao 

longo do tempo, mas não foram construídos modelos de calibração voltados para a 

datação (ZIEBA-PALUS et al, 2020). 

Nos últimos anos, nosso grupo de pesquisa tem se voltado para o estudo de 

datação de documentos. Silva e colaboradores realizaram um estudo preliminar 

sobre o envelhecimento natural de amostras de papéis, datados de 1986 a 2012 e 

espectroscopia do infravermelho médio. Com o objetivo de contornar o problema da 

variabilidade das amostras foi utilizada uma diversidade de amostras para cada ano 

e foi realizada uma calibração multivariada voltada para datação (SILVA et al, 2018). 

A autora desta dissertação, em estudo prévio, avaliaou o envelhecimento artificial 

de diferentes tipos de papéis submetidos a diferentes condições de envelhecimento 

utilizando a espectroscopia na região do infravermelho e quimiometria. As amostras 

utilizadas consistiram em papéis sulfites, couchês e reciclados, e foram submetidas 

a 4 condições de envelhecimento, alta temperatura, radiação UV, radiação solar e 

ao abrigo de luz. Os espectros foram analisados utilizando a PCA. Os resultados 

obtidos mostraram que a utilização da espectroscopia IR é promissora para o estudo 

da degradação do papel. A partir desses estudos observou-se que um dos desafios 

desta análise está relacionado à grande variabilidade da composição nas folhas de 

papéis e como essas diferenças influenciam o processo de degradação. Além disso, 

relacionar o envelhecimento artificial e o natural também se mostra bastante 

complexo. Nesse contexto, o objetivo desse trabalho é o estudo de datação de 

documentos, para detectar falsificações. Para isso, foram avaliadas e comparadas 

as amostras de papel envelhecidas de forma natural e artificial (utilizando o 

tratamento térmico). 

  



23 
 

2 HIPÓTESE E OBJETIVOS 

 

As mudanças do papel ao longo do tempo, após exposição a diferentes 

condições de armazenamento, são causadas por modificações, na molécula de 

celulose, dentre outras. Essas modificações podem não ser facilmente identificadas 

por inspeção visual do espectro, sendo necessário o uso de técnicas mais 

avançadas para extrair a informações úteis. Nesse contexto, esse trabalho tem 

como hipóteses: (1) o processo de degradação do papel causa mudanças na 

molécula de celulose que podem ser detectadas por IR e modeladas com técnicas 

de reconhecimento de padrões supervisionadas; (2) O envelhecimento artificial dos 

papéis pode simular o processo de envelhecimento natural e, portanto, forjar a 

autenticidade de um documento. 

O objetivo deste trabalho é desenvolver uma metodologia não destrutiva, 

utilizando a espectroscopia de infravermelho médio associada a técnicas 

quimiométricas, para o estudo  do envelhecimento artificial e natural do papel, com o 

intuito de determinar a datação de documentos e o potencial dessa metodologia 

para determinar falsificações de documentos. 

 

2.1  OBJETIVOS ESPECÍFICOS 

 

• Utilizar a espectroscopia de infravermelho médio para adquirir os espectros 

das amostras envelhecidas artificialmente e naturalmente. 

• Avaliar o envelhecimento artificial por tratamento térmico e natural do papel 

utilizando a técnica de análise por componentes principais. 

•  Construir modelos PLS para as amostras envelhecidas naturalmente e 

artificialmente avaliando técnicas de pré-processamentos e de seleção de 

variáveis. 

• Comparar o envelhecimento natural e artificial a partir dos modelos PLS 

visando identificar falsificações de documentos. 
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3 FUNDAMENTAÇÃO TEÓRICA 

 

3.1  COMPOSIÇÃO DOS PAPÉIS 

 

O papel é composto por uma mistura complexa de componentes, tais como a 

celulose, hemicelulose e lignina, que são os principais constituintes da madeira, mas 

também é possível encontrar alguns compostos inorgânicos, como o carbonato de 

cálcio, CaCO3 e a caulinita, Al2Si2O5(OH)4. Esses compostos são frequentemente 

utilizados para o revestimento do papel no processo de fabricação para ajustar a 

coloração, brilho, opacidade, a suavidade e a receptividade de tintas de impressão 

(CAUSIN et al,2010 e UDRISTIOIU et al, 2012). Dentre esses compostos, a celulose 

é encontrada em maior quantidade. É um polímero não ramificados (Figura 1), 

constituído por moléculas de glicose ligadas por ligação 1,4-β-glucosídica. O número 

de unidades de glicose é variável e depende de dois fatores: da matéria prima e do 

processo de extração. O grau de organização das unidades glicosídica é expresso 

pelo grau de polimerização, o DP (DP: Degree of Polimerization), que sofre 

mudanças devido ao processo de degradação, entre outros fatores. 

 

Figura 1 - Representação da molécula de celulose 

 

Fonte: Adaptado de Margutti et al (2001). 

 

O estudo do papel é bastante complexo, pois o mesmo pode sofrer degradação 

devido a fatores externos, como o ambiente de armazenamento, a temperatura e a 

umidade, mas também devido a fatores internos, tais como, a presença de íons 
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metálicos e a degradação da lignina. A degradação da celulose, pode seguir 

diversos mecanismos tais quais, a biodegradação, a fotodegradação, a hidrólise 

ácida e a oxidação. Existem diversas aplicações para o estudo da degradação do 

papel, como avaliação da cinética, mecanismo de degradação, resistência, 

durabilidade, preservação do papel e também a datação de documentos. Nesse 

contexto, o estudo do papel vem ganhando espaço ao longo dos anos. Na literatura 

pode-se encontrar trabalhos que estudam o envelhecimento artificial ou natural do 

papel e dificilmente encontram-se trabalhos que comparam ambos os 

envelhecimentos. 

 

3.2  ENVELHECIMENTO ARTIFICIAL DO PAPEL 

 

Existem três principais objetivos em um estudo de envelhecimento artificial, o 

primeiro é determinar a estabilidade química e a duração física dos materiais 

analisados, classificação e combinação dos materiais em um curto período de 

tempo. O segundo é prever a durabilidade do material de interesse sob condição de 

uso esperada. E o terceiro objetivo é determinar o(s) mecanismo(s) de degradação 

do material e consequentemente desenvolver técnicas para monitorar esses 

mecanismos e estender a vida útil do material (FELLER, 1994).  

Zou e colaboradores estudaram o envelhecimento artificial de papéis com o 

objetivo de determinar o mecanismo de degradação e a sua cinética. Os papéis de 

celulose pura com diferentes pH foram submetidas ao envelhecimento controlando a 

temperatura e a umidade Durante esse estudo foram realizados diversos testes 

físicos e químicos, chegando à conclusão que há uma perda da resistência e a 

fragilização do papel durante o envelhecimento. Essa ocorrência é devido à 

despolimerização da celulose causada pela hidrólise catalisada por ácido que 

acontece de uma maneira aleatória e segue uma cinética de primeira ordem de 

acordo com os autores (ZOU et al, 1994; ZOU et al, 1996; ZOU et al, 1996).  

Outro grupo de pesquisa em 2001 estudou o envelhecimento do papel celulósico 

por espectroscopia de infravermelho próximo por transformada de Fourier, com o 

objetivo de avaliar a condição de isolamento dos papéis utilizados em 
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transformadores elétricos. As amostras de papéis foram submetidas à alta 

temperatura 120°C, 140°C e 160°C. Os papéis envelhecidos puderam ser 

discriminados dos papéis novos devido a uma banda localizada em 

aproximadamente 1710 cm-1 que é atribuído a carbonila/carboxil. Analisando essa 

mesma banda foi possível determinar que o envelhecimento segue uma cinética de 

primeira ordem e tem energia cinética de 98 KJ/mol. Para esse estudo também 

foram utilizadas técnicas quimiométricas como a PCA (ALI et al, 2001). Embora os 

dois trabalhos citados acima utilizem metodologias diferentes (o primeiro utiliza 

técnicas destrutivas e o segundo faz uso de técnicas espectroscópicas), ambos 

possuem a mesma finalidade, o estudo do mecanismo de degradação e a cinética 

dos papéis, mas nenhum deles avalia o envelhecimento artificial voltado à datação 

de documentos.  

Pesquisas mostram que o envelhecimento artificial que mais se assemelha ao 

envelhecimento natural são os que submetem as amostras a elevadas temperaturas, 

fluxo de luz e concentração de gases e poluentes atmosféricos comuns (FELLER, 

1994; MARGUTTI et al, 2001; AREA e CHERADAME, 2011). Um programa no 

Instituto de Pesquisa de Padrões (ISR: Institue for Standards Research ) da 

Sociedade Americana para testes e materiais (ASTM: American Society for testing 

and materials) tem desenvolvido testes na área do envelhecimento artificial e natural 

do papel para que seja possível desenvolver padrões de envelhecimento. Os testes 

de envelhecimento artificial consistem em concentrar a umidade em torno do papel e 

submeter a elevadas temperaturas selando as amostras dentro de tubos de vidro 

herméticos. Esses tubos retêm os produtos de degradação, simulando folhas 

envelhecidas em livros. Os papéis envelhecidos em tubos herméticos a 100 °C 

durante 5 dias equivale a folhas individuais envelhecidas a 90 °C e 50% de umidade 

em forno úmido por 30 dias (PORCK e TEYGELER, 2000). 

O interesse no estudo do envelhecimento artificial do papel empregando 

tratamento térmico tem aumentado. Kacik e colaboradores em 2009 submeteram 

amostras de papel de jornal a 98 °C durante 60 dias. As análises foram realizadas 

por viscosimetria, cromatografia de permeação em gel (GPC: Gel Permeation 

Chromatography) e determinação de sacarídeos. A partir dos resultados das 

análises foi possível determinar que no início da degradação a reação de maior 

influência é a hidrólise seguida da oxidação. Foi possível encontrar um coeficiente 
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de determinação R2 = 0,88, entre o tempo de envelhecimento e o grau de 

despolimerização. Esse grupo de pesquisa utilizou técnicas destrutivas para o 

estudo do envelhecimento do papel, com o objetivo de estudar os mecanismos de 

degradação. A partir desse estudo é possível observar um interesse em relacionar o 

envelhecimento com o tempo de exposição das amostras à condição de 

envelhecimento (KAČÍK et al, 2009). 

Em 2016, Hajji e colaboradores utilizaram espectroscopia no infravermelho médio 

com o acessório ATR, difração de raios X (XRD: X-ray diffraction) e fluorescência de 

raios X por energia dispersiva (EDXRF: Energy Dispersive X-ray Fluorescence) para 

monitorar as mudanças em papéis restaurados e expostos a condições extremas de 

armazenamento. Para simular essas condições foram realizados dois testes de 

envelhecimento acelerado; o primeiro por calor seco a 90 °C e o segundo por calor 

úmido a 90 °C e 100% de umidade relativa, durante um período de 28 dias. Como 

amostras, foram utilizados manuscritos restaurados do Marrocos, datados dos 

séculos XVI, XVII, XVIII e XIV e papel japonês usado para restauração. Pela análise 

ATR-FTIR foi possível identificar modificações estruturais da celulose, observar a 

diminuição da água residual nas amostras envelhecidas em calor seco e determinar 

o mecanismo degradação por oxidação das amostras envelhecidas submetidas ao 

calor úmido. A técnica XRD foi usada para observar a diminuição da cristalinidade 

da celulose. A partir dos resultados do EDXRF foi possível observar que as duas 

condições de envelhecimentos artificiais afetaram a composição elementar do papel, 

especialmente na quantidade de Cálcio (HAJJI et al, 2016). Também durante o ano 

de 2016, outro grupo de pesquisa estudou o envelhecimento artificial do papel em 

uma câmara climática a 90 °C e 65% de umidade durante 35 dias. As análises foram 

realizadas por espectroscopia no IR e Raman e as amostras utilizadas foram papéis 

de escritórios de diferentes fabricantes.  Foram analisados os espectros obtidos e a 

correlação 2D (os espectros são transformados em mapas 2D e mostram uma 

relação entre as diferentes regiões espectrais) para a espectroscopia de 

infravermelho, chegando à conclusão que os mecanismos de degradação que 

ocorre no papel são clivagem da cadeia de celulose e oxidação (ZIEBA-PALUS et al, 

2016). O primeiro grupo de pesquisa realizou um estudo com o objetivo de avaliar os 

dois tipos de envelhecimentos artificiais, sendo possível observar as principais 

mudanças espectrais. O segundo grupo estudou o mecanismo de degradação para 
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a condição de envelhecimento analisada. Mas nenhum deles realizou um estudo 

relacionado o envelhecimento com o tempo de exposição das amostras. 

Sabendo que não só a temperatura interfere no processo de degradação, mas 

também o tempo, umidade relativa e a presença de poluentes, Schedl e 

colaboradores em 2017 estudaram a detecção de um cromóforo responsável pelo 

amarelamento do papel, 2,5 dihidroxiacetofenona (DHAP). Para essa análise foi 

utilizado spray de papel (PS) acoplado à espectrometria de massa, sendo possível 

detectar o DHAP em amostras de documentos históricos. Foi investigado também o 

envelhecimento artificial do papel para determinar quais fatores influenciam na 

degradação. Para esse estudo foi realizado um planejamento fatorial completo, os 

fatores analisados foram: temperatura, tempo, umidade relativa e a presença de íons 

de ferro. Os fatores que apresentaram maior influência foram a temperatura e 

umidade relativa, mas as interações entre os fatores também foram significativas 

(SCHEDL et al, 2017). O diferencial desse trabalho foi a realização de um 

planejamento fatorial para determinar os fatores, e as suas possíveis interações, que 

mais influenciam no processo de envelhecimento artificial pela presença do DHAP, 

embora sem focar na datação de documentos. 

 

3.2.1 O tempo no envelhecimento artificial 

 

O envelhecimento artificial tem como objetivo simular o processo de 

envelhecimento por meio de uma degradação acelerada. Assim, é preciso estimar 

uma determinada propriedade em um curto período de tempo que esteja associada 

com esse processo. O tempo é medido em relação ao período de exposição das 

amostras à condição de envelhecimento, podendo ser medido em segundos, 

minutos, horas, dias ou meses. As mudanças na propriedade de interesse são 

normalmente estimadas em uma escala linear, como por exemplo, horas de 

exposição do papel a alta temperatura. Pode-se também ser utilizada uma escala 

logarítmica, para linearizar funções. Nos estudos de envelhecimento artificial o 

objetivo de utilizar uma escala de tempo é relacionar a uma escala semelhante de 
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um envelhecimento natural (FELLER, 1994). No presente trabalho, o tempo de 

exposição das amostras é medido em minutos e é utilizada uma escala logarítmica. 

 

3.2.2 Mecanismo de degradação por energia térmica 

 

Ao submeter amostras de papéis à condição de envelhecimento por tratamento 

térmico, o mecanismo de degradação que pode ocorrer é a degradação puramente 

térmica, chamada de termólise ou degradação termolítica, na qual o oxigênio não 

está envolvido. No entanto, é necessário levar em consideração a presença do 

oxigênio atmosférico, ou seja, deterioração termo-oxidativa. Essa degradação é a 

mais provável de ocorrer quando as amostras são expostas à altas temperaturas na 

presença de oxigênio ou ar. O oxigênio da atmosfera, vai atuar como um agente 

oxidante que inicia a reação a partir dos radicais 𝑂. 𝑒 𝑂2
 .. Os radicais podem atacar 

as hidroxilas presentes nos carbonos C(2), C(3) e C(6) e sofrem a oxidação nas 

unidades do anel de piranose, formando novos grupos de carbonila e carbóxilas, 

podendo ocorrer ou não a abertura do anel. Os novos grupos formados são 

cromóforos, capazes de absorver radiação visível e são responsáveis pelo 

amarelecimento do papel. A hidroxila do carbono C(6) sofre oxidação formando 

grupos aldeídos ou carboxílicos; por outro lado, as hidroxilas dos carbonos C(2) e 

C(3) podem sofrer oxidação formando cetonas, sem a abertura do anel (Figura 2). 

Para ocorrer à clivagem do anel, os radicais de oxigênio podem atacar o carbono 

C(1), que está envolvido na ligação glicosídica, levando à sua clivagem, ou também 

pode ocorrer o ataque aos carbonos C(2) e C(3) formando grupos aldeídos ou 

carboxílicos (Figura 3). Outro fator a ser considerado é a presença de água no 

sistema, que normalmente é monitorada. Quando esse monitoramento é realizado, é 

medida a umidade presente no ambiente. Dessa forma, também pode ocorrer a 

hidrólise, embora a oxidação e a hidrólise estejam relacionadas, pois exercem 

efeitos catalíticos um sobre o outro.  
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Figura 2 - Oxidação da hidroxila do carbono C(2), C(3) e C(6) sem a abertura do anel de piranose 

Fonte: Adaptado de Margutti et al (2001). 

 

Figura 3 - Oxidação da hidroxila do carbono C(2), C(3) e C(1) com a abertura do anel de piranose 

 

Fonte: Adaptado de Margutti et al (2001). 
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3.3  ENVELHECIMENTO NATURAL 

 

A ASTM também possui um projeto para o estudo do envelhecimento natural do 

papel, na qual 10 instituições norte-americanas em diferentes regiões iram 

armazenar durante 100 anos volumes de 50 tipos de papéis. Durante esses anos 

folhas de papéis serão testadas em relação a durabilidade óptica e física (PORCK e 

TEYGELER, 2000). Nesse contexto é possível encontrar diversos trabalhos com o 

objetivo do estudo do envelhecimento natural dos papéis.   

Em 2007, Trafela e colaboradores estudaram a datação de documentos 

históricos (de 1650 a 2005) utilizando o FTIR próximo e médio. As amostras também 

foram analisadas quanto ao teor de cinzas, teor de lignina, pH, grau de 

polimerização (DP: Degree of Polimerization)  e teor de alumínio usando métodos 

analíticos de rotina. Utilizando os espectros obtidos foram construídos modelos PLS 

satisfatórios para todas as propriedades, exceto o teor de alumínio. Esse grupo de 

pesquisa estudou o envelhecimento natural do papel, analisando diversos fatores, 

incluindo a datação. Durante o estudo da datação de documentos é importante 

salientar a necessidade da representatividade das amostras, pois as diferenças 

observadas nas folhas de papéis ao longo dos anos podem estar associadas à 

composição dos papéis e não ao envelhecimento das folhas (TRAFELA et al, 2007).  

Em 2017, Martinez e colaboradores (MARTÍNEZ et al; 2017) estudaram o 

envelhecimento natural do papel por fluorescência induzida por laser. As amostras 

utilizadas foram documentos datados de 1730 a 2009, analisados na região 

espectral de 540 a 750 nm. Foi possível observar uma mudança espectral do papel 

ao longo do tempo relacionada com a celulose, hemicelulose e lignina. Essas 

mudanças apresentaram na forma de deslocamento de bandas e mudanças nas 

intensidades dos espectros de emissão.   

Em 2018 Silva et al estudaram o envelhecimento natural do papel por 

espectroscopia FTIR na região do infravermelho médio associada a técnicas 

quimiométricas para prever a idade de documentos. Foi realizado o estudo do 

envelhecimento natural, as amostras utilizadas foram documentos datados de 1986 

a 2012. Para esse estudo foram realizados modelos PLS com diferentes pré-

processamentos, entre eles o mínimo quadrados generalizados ponderados (GLSW: 

Generalized Least Squares Weighting) e mínimos quadrados ortogonais (OLS: 
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Orthogonal Least Squares). Outra abordagem utilizada foi à seleção de variável, por 

esse motivo foram construídos modelos de espaço PLS (sPLS). Esses modelos 

foram construídos com a finalidade de reduzir a variabilidade existente nas folhas de 

papéis, principalmente nas amostras de papéis do mesmo ano, para que a 

variabilidade do papel em relação ao tempo fique evidente. Os modelos construídos 

apresentaram valores de RMSECV e RMSEP, de cerca de 4 anos, sendo o melhor 

modelo aquele utilizando o pré-processamento OSC (SILVA et al, 2018). Com o 

objetivo de contornar o problema da representatividade foi utilizada uma grande 

quantidade e diversidade de amostras para cada ano e foi realizada uma calibração 

multivariada voltada a datação. A partir desse trabalho surgiu o interesse de 

comparar o envelhecimento artificial e natural, com o objetivo de identificar 

falsificações de documentos. 

 

3.4  ESPECTROSCOPIA DO INFRAVERMELHO 

 

A partir dos trabalhos citados acima é possível observar o uso crescente da 

espectroscopia para o estudo da degradação do papel. Nesse contexto, a 

espectroscopia de infravermelho é uma técnica de espectroscopia vibracional 

baseada em absorção molecular. Quando a energia é absorvida, ela provoca 

transições na molécula de um estado de energia vibracional ou rotacional para outro 

mais energético. A região do IR pode ser dividida em três sub-regiões. Infravermelho 

próximo (NIR: Near Infrared) compreendida entre 12800 a 4000 cm-1, infravermelho 

médio (MIR: Middle Infrared) região entre 4000 a 200 cm-1 e infravermelho distante 

(FIR: Far Infrared) compreendida entre 200 a 10 cm-1. Com o avanço tecnológico 

vem aumentando o interesse na utilização da espectroscopia vibracional que além 

de serem técnicas mais rápidas, precisam de nenhuma ou de pouca preparação de 

amostras (SKOOG et al, 2018; SIESLER et al, 2002; BURNS e CIURCZAK, 2007).  

Os espectros da região NIR fornecem majoritariamente bandas de combinações 

e sobretons, é bastante utilizada para análise de compostos que contém grupos 

funcionais de hidrogênio ligado ao carbono, nitrogênio e oxigênio. Os dados obtidos 

no MIR fornecem informações referentes às transições fundamentais dos grupos 
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funcionais, apresentando, em geral, absorções com maior intensidade que os 

espectros NIR. A região de FIR é bastante utilizada para estudos com ligas 

metálicas, pois absorção de átomos de metal e dos ligantes orgânicos e inorgânicos 

geralmente ocorre nessa região (BURNS e CIURCZAK, 2008; SKOOG et al, 2018).  

Todas as moléculas possuem vibrações e rotações próprias. Para moléculas 

cujas vibrações resultam em variação do momento de dipolo e, consequentemente 

variação do campo elétrico da molécula, a radiação infravermelha incidida pode ser 

absorvida se a frequência da radiação coincide com a frequência vibracional natural 

da molécula, provocando alteração na amplitude do movimento. A Figura 4 mostra 

um exemplo de vibrações e deformações angulares para uma molécula triatômica e 

heteronuclear (WORKMAN e WEYER, 2007; SKOOG et al, 2018). 

 

Figura 4 - Vibrações de estiramentos simétrico e assimétrico e deformações angulares para molécula 

heteronuclear 

 

Fonte: Adaptado do Skoog et al (2018). 
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Para entender as absorções moleculares foi proposto inicialmente o modelo do 

oscilador harmônico, na qual a ligação entre dois átomos heterogêneos se 

assemelha a um sistema com uma mola que ligam duas massas diferentes (m1 e 

m2). Nesse contexto, a força de ligação, ou seja, a frequência de vibração dependerá 

das massas dos dois átomos e da constante de força da ligação que une as duas 

massas. Esse modelo explica apenas as vibrações fundamentais, pois permite 

apenas transições entre níveis adjacentes, representado pela Figura 5. De acordo 

com a distribuição de Boltzman, em condições do ambiente, a maioria das moléculas 

se encontra no estado fundamental localizado no nível 𝑣 =  0, logo as transições 

permitidas são para o nível 𝑣 = 1. Devido ao fato de, neste modelo, os níveis de 

energia serem igualmente espaçados seria observado um único pico para cada tipo 

de vibração molecular. Além disso, a maioria das bandas de absorção das vibrações 

fundamentais de compostos químicas ocorre na região de MIR (4000 a 200 cm-1), 

por isso essa região é bastante utilizada para determinação das estruturas, a partir 

da identificação das funções orgânicas características (BURNS e CIURCZAK, 2007; 

SKOOG et al, 2018; PASQUINI, 2013 ). 

Embora o modelo do oscilador harmônico explique bem as transições 

fundamentais, ocorrem fenômenos que esse modelo não explica. Para contornar 

esse problema tem-se o modelo do oscilador anarmônico, que leva em consideração 

as forças repulsivas entre os átomos e a possibilidade de dissociação da ligação. 

Nesse contexto foi observado que quando os dois átomos se aproximam, existem 

forças repulsivas entre as nuvens eletrônicas, fazendo com que a energia potencial 

aumente mais rapidamente do que prediz o modelo de oscilador harmônico. Por 

outro lado, existe a possibilidade dissociação da ligação dos dois átomos. Com o 

aumento da distância entre eles, ocorre uma diminuição dessa força restauradora e 

consequentemente uma diminuição na energia potencial. De acordo com esse 

modelo a energia potencial vibracional não varia periodicamente com a variação da 

distância entre os núcleos, explicando as transições entre níveis de energias 

adjacentes, com regra de seleção incluindo as transições fundamentais (∆𝑣 =  ±1), e 

também os sobretons e as bandas de combinações (∆𝑣 =  ±2 ou ∆𝑣 =  ±3), 

geralmente observados na região NIR (BURNS e CIURCZAK, 2007; SKOOG et al, 

2018; PASQUINI, 2013). 
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Figura 5 - Curva de potencial de um oscilador harmônico e anarmônico 

 

Fonte: Adaptado de Pasquini (2013). 

 

Em geral, as técnicas utilizadas para obter os espectros de infravermelho 

diretamente em sólidos pode ser refletância especular, refletância difusa e 

refletância total atenuada (ATR: Attenuated Total Reflectance). No presente trabalho 

foi utilizada a espectroscopia de infravermelho com o acessório de ATR, que 

também pode ser utilizado para amostras de filmes, pastas, pós e líquidas. Nessa 

técnica um feixe de radiação é incidido sobre um cristal, em geral seleneto de zinco, 

germânio ou diamante, e essa radiação é totalmente refletida na região interna do 

cristal. Durante o processo de reflexão a radiação penetra na amostra com uma 

pequena profundidade, mas é suficiente para fornecer informações químicas sobre a 

amostra analisada. Essa profundidade depende do comprimento de onda, índice de 

refração dos dois materiais e do ângulo do feixe em relação à interface. Essa 

radiação penetrante é chamada de onda evanescente. Nos comprimentos de onda 

que a amostra absorve a radiação, ocorre a atenuação do feixe, por isso essa 

técnica é chamada de ATR. Na Figura 6 tem-se um esquema de funcionamento do 

acessório ATR (SKOOG et al, 2018). 
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Figura 6 - Esquema de funcionamento do acessório ATR 

 

Fonte: Aliske (2010). 

 

3.5  QUIMIOMETRIA 

 

Com o avanço da tecnologia é possível obter uma grande quantidade de dados 

em um período curto de tempo, e um dos grandes desafios é a obtenção de 

informação útil. Além disso, os sinais registrados são de natureza multivariada, por 

isso é de fundamental importância determinar quais variáveis contém a informação 

relevante para o estudo em questão. Para contornar esse problema utiliza-se 

métodos matemáticos e estatísticos associados a dados químicos, conhecidas como 

técnicas quimiométricas (NETO e MOITE, 1997; BEEBE e KOWALSKI, 1987; 

SIEGEL, 2016). 

Essas ferramentas permitem acessar informação relevante do conjunto de dados 

que podem não ser triviais. Considerando dados espectroscópicos, essas 

ferramentas são, baseadas na lei de Beer, representada na sua forma multivariada 

pela Equação 1, que parte do pressuposto que há uma relação linear entre a 

intensidade de absorção e a concentração do(s) analito(s). A matriz X, contém os 

espectros adquiridos, e pode ser decomposta em um produto de matrizes, a matriz 

C é a concentração do analito, a matriz ST é a matriz das intensidades de sinal do(s) 

composto(s) puro(s) e a matriz residual E. 

𝐗 = 𝐂𝐒𝐓 + 𝐄                                                                 Equação 1 

As técnicas quimiométricas de reconhecimento de padrões podem ser 

supervisionadas ou não supervisionadas. Nos métodos supervisionados é 
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necessária uma informação prévia sobre as amostras (informação que se deseja 

prever), e o modelo é construído baseado nessas informações, com o objetivo de 

treinar o modelo, e em seguida é aplicado a um conjunto de dados de predição. Por 

outro lado, nos métodos não supervisionados não é necessário haver informação 

inicial de qualquer natureza. Esses métodos identificam similaridades, diferenças, 

existência de agrupamentos e tendências naturais das amostras (FERREIRA, 2015). 

Antes de construir qualquer modelo é necessária a análise dos espectros brutos, 

para tomar algumas decisões, tais como a utilização de técnicas de pré-

processamento com o objetivo de remover variações que não estejam associadas 

ao analito. 

 

3.5.1 Técnicas de pré-processamento 

 

São chamadas de técnicas de pré-processamento qualquer etapa que antecede 

a análise multivariada. Os espectros obtidos em um determinado equipamento 

contêm, além da informação do analito de interesse, informações que não são 

relevantes para o estudo tais como, erros aleatórios, erros sistemáticos e variações 

relacionadas a fenômenos físicos. Essas informações irrelevantes podem estar 

associadas ao equipamento, à técnica de aquisição dos espectros e às condições 

experimentais. Nesse contexto, são utilizadas ferramentas matemáticas para retirar 

ou minimizar essas informações que podem interferir na construção do modelo. As 

técnicas de pré-processamento podem ser aplicadas nas amostras ou nas variáveis. 

Os pré-processamentos de amostras são aqueles aplicados na direção das linhas da 

matriz de dados, tais como: suavização, derivadas, padronização pelo desvio 

padrão, correção multiplicativa de sinal. Já as técnicas de pré-processamento das 

variáveis são aplicadas na direção das colunas da matriz de dados, tem-se seleção 

de variáveis, como o algoritmo genético e a centragem na média (FERREIRA, 2015; 

BEEBE, 1987). 

 

3.5.1.1  Suavização pelo método de Savitzky-Golay 
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Esse método de suavização tem o objetivo de minimizar o ruído presente no 

conjunto de dados, reduzindo a variação do componente aleatório e aumentando a 

razão sinal/ruído. O funcionamento desse método consiste na determinação de uma 

janela de pontos adjacentes no espectro e de um polinômio de grau n, que é 

ajustado para os pontos dessa janela. A janela é móvel e percorre todo o espectro. A 

escolha desses dois parâmetros (o grau de polinômio e o número de pontos da 

janela) deve ser feita cuidadosamente. Com o aumento da janela o pré-

processamento filtra mais ruído e ocorre uma maior suavização do espectro. Por 

outro lado, pode eliminar bandas importantes (SAVITZKY, 1964; FERREIRA, 2015). 

 

3.5.1.2  Derivada 

 

Esse pré-processamento tem o objetivo de corrigir efeitos aditivos e 

multiplicativos dos espectros, além disso, podem destacar picos e bandas que não 

estão evidentes. Os efeitos aditivos ocorrem quando há um deslocamento constante 

positivo ou negativo dos espectros. Para corrigi-los pode-se utilizar a 1° derivada do 

espectro. Já os efeitos multiplicativos estão presentes quando os espectros 

apresentam uma inclinação de linha de base que pode ser corrigida tomando a 2° 

derivada do espectro. Esse método também pode ser precedido de uma etapa de 

suavização com o filtro de Savitzky-Golay. Três parâmetros precisam ser ajustados: 

o grau de polinômio, o número de pontos da janela e a ordem da derivada. É 

necessário estar atento ao uso desses pré-processamentos pois, pode aumentar 

significativamente a quantidade de ruídos (SAVITZKY, 1964; FERREIRA, 2015). 

 

3.5.1.3  Padronização Normal do Sinal 

 

Tem o objetivo de corrigir efeitos aditivos e multiplicativos geralmente causados 

por interferência devido ao espalhamento da radiação, bastante comum em espectro 
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de refletância de pós, devido principalmente a diferenças no tamanho de partícula. 

Matematicamente a Padronização Normal do Sinal (SNV: Standard Normal Variate) 

realiza a centragem na média, na qual o valor médio de todas as variáveis em uma 

amostra é subtraído de cada variável individual e em seguida uma normalização 

pelo desvio padrão das amostras, como mostra a Equação 2.  Onde 𝑥𝑖𝑗𝑆𝑁𝑉 é o 

elemento da matriz corrigida, 𝑥̅𝑖 é a média das intensidades das variáveis na 

amostra i e 𝑠𝑖 é o desvio padrão das intensidades das variáveis na amostra i. Esse 

pré-processamento atribui as variáveis que apresentam um maior desvio da média 

uma maior ponderação (FERREIRA et al., 2009; RINNAN et al., 2009; SIEGEL, 

2016). 

xij Corr =  
xij −  x̅i

si
                                            Equação 2 

 

3.5.1.4  Correção Multiplicativa Sinais 

 

A Correção Multiplicativa de Sinais (MSC: Multiplicative Scattering Correction) 

também tem o objetivo de corrigir efeitos causados pelo espalhamento da radiação, 

removendo os efeitos aditivos e multiplicativos. Esse pré-processamento é obtido 

através da regressão dos espectros medidos por um espectro de referência, 

geralmente utiliza-se o espectro médio. A partir da regressão são determinados os 

coeficientes de correção que são a inclinação e o intercepto. As Equações 3 e 4 

representam esse pré-processamento matematicamente, na qual, X é a matriz dos 

espectros medidos, Xref é o espectro de referência, E é a matriz residual, XCorr é 

matriz com os espectros corrigidos. Os parâmetros escalares a e b variam de 

amostras para amostras corrigindo o efeito aditivo e multiplicativo, respectivamente. 

A Figura 7 mostra um espectro corrigido utilizando o MSC (FERREIRA et al., 2009; 

RINNAN et al., 2009). 

𝐗 =  𝐚 +  𝐛𝐗𝐫𝐞𝐟 + 𝐄                                      Equação 3 

𝐗𝐌𝐒𝐂 =  
𝐗 −  𝐚

𝐛
                                             Equação 4 
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Figura 7 - Correção do espectro utilizando MSC 

 

Fonte: Adaptado de Wise et al (2016). 

 

3.5.1.5  Centragem na Média 

 

A centragem na média (MC: Mean Center) é aplicado nas variáveis, com o 

objetivo de realizar uma translação para que o centro do conjunto de dados esteja 

na origem dos eixos, de modo que os desvios sejam computados em relação à 

média. Matematicamente, cada valor da matriz é subtraído pela média da coluna na 

qual se encontra, representado pela equação 5. Onde 𝑥𝑖𝑗𝐶𝑜𝑟𝑟 é o elemento da matriz 

corrigida, 𝑥𝑖𝑗 é o i-ésimo elemento da j-ésima coluna e 𝑥̅𝑗 é a média dos elementos 

da j-ésima coluna. 

xijCor =  xij − x̅j                                                    Equação 5 

 

3.5.1.6  Mínimos Quadrados Generalizados Ponderados 
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O pré-processamento dos Mínimos Quadrados Generalizados Ponderados 

(GLSW: Generalized Least Squares Weighting) atua como um filtro cujo objetivo é 

reduzir diferenças entre determinadas amostras. Essa técnica estima as diferenças 

entre amostras de um grupo que deveriam ser similares e utiliza esses dados para 

minimizar a atuação dos interferentes. Matematicamente, uma matriz contendo a 

diferença dos espectros (Xdif) é calculada e removida dos dados originais. Uma 

forma de calcular essa matriz é utilizando os valores de Y nos modelos de 

regressão, pois amostras com o mesmo valor de Y deveriam possuir espectros 

semelhantes no conjunto de dado X, logo Xdif deve ser ortogonal a Y (SILVA, 2018; 

ZORZETTI et al, 2011). 

Para a obtenção da matriz Xdif, primeiramente a matriz X é organizada a partir da 

matriz Y de modo que amostras similares ficassem próximas, ou seja, as linhas das 

matrizes X e Y são organizadas em ordem crescente de valor de Y, quando têm-se 

apenas uma propriedade de interesse utiliza-se o vetor y. Em seguida são 

determinadas as diferenças entre as amostras próximas utilizando a derivada de 

Savitzky-Golay aplicando em cada coluna da matriz X organizada, produzindo a 

matriz Xdif. A mesma derivada é aplicada ao vetor y, calculando o ydif. Devido ao fato 

das derivadas utilizarem uma janela de pontos que podem ser alteradas, a matriz 

Xdif pode conter informações que não devem ser removidas. Isso ocorre pois, 

algumas das diferenças das linhas podem ter sido feitas em grupo de amostras com 

valores diferentes de y. Nesse contexto é calculada uma matriz de pesos W 

utilizando o vetor ydif e o seu desvio padrão. Essa matriz de pesos é utilizada para 

calcular a matriz de covariância da matriz Xdif (Equação 6). Essa matriz de 

covariância é submetida à decomposição por valores singulares, representado pela 

Equação 7. A matriz de valores singulares S é utilizada para determinar a matriz de 

filtro G, como mostra a Equação 8 e 9 (SILVA et al, 2018; ZORZETTI et al, 2011). 

𝐂 = 𝐗𝐝𝐢𝐟
𝟐𝐖𝟐𝐗𝐝𝐢𝐟                           Equação 6 

𝐂 = 𝐕𝐒𝟐VT                                       Equação 7 

𝐃 =  √
𝐒𝟐

∝
+ 𝐃𝟏                                Equação 8 

𝐆 = 𝐕𝐃−𝟏VT                                    Equação 9 
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O ∝ é um parâmetro que mede o efeito do filtro nas matrizes originais. Quando ∝ 

é grande, o efeito filtro diminui, retirando menos diferenças entre os espectros. Por 

outro lado, quando o valor de ∝ é pequeno o efeito do filtro aumenta. O valor de ∝ 

deve ser escolhido com bastante cuidado para não remover variabilidade importante 

para o estudo em questão. A matriz 𝑫𝟏 é uma matriz diagonal composta apenas de 

1 e V são os autovalores obtidos na decomposição (SILVA et al, 2018; ZORZETTI et 

al, 2011). 

 

3.5.2 Análise dos Componentes Principais 

 

A análise dos componentes principais (PCA: Principal Component Analysis) é 

uma ferramenta de análise exploratória não supervisionada, com o objetivo de 

reduzir a dimensionalidade do conjunto de dados maximizando a variância. Isso 

permite encontrar similaridades e diferenças naturais entre as amostras e determinar 

quais variáveis mais contribuem para a variabilidade. A PCA gera um novo espaço 

de variáveis ortogonais, essas variáveis são chamadas de componentes principais 

(PC: Principal Component), formadas a partir de combinações lineares das variáveis 

originais e tem a direção de maior variabilidade dos dados. Matematicamente, o 

conjunto de dados X é decomposto em uma multiplicação de duas matrizes, escores 

T e pesos PT, mais a matriz de erro E, representado pela Equação 10 (BRO e 

SMILDE, 2014; FERREIRA; 2015). 

𝐗 = 𝐓𝐏𝐓 + 𝐄                                                            Equação 10 

 A matriz de escores T são as coordenadas das amostras no novo sistema de 

eixo formados e possui dimensão n x k. A matriz de pesos PT são os coeficientes da 

combinação linear, geometricamente falando são os cossenos dos ângulos entre as 

variáveis originais e as componentes principais e possui dimensão k x λ. A matriz de 

erro E possui as informações que não são explicadas pelo modelo, com dimensão 

da matriz X, n x λ. Onde n é o número de amostras, k o número de componentes 

principais e λ o número de variáveis originais. Todas as PCs são ortogonais entre si. 

A PC1 explica a maior variabilidade do conjunto de dados; já a PC2 é ortogonal à 

primeira, e explica a maior variabilidade do conjunto de dados que a primeira PC não 
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explica e assim sucessivamente. As primeiras PCs possuem maior variabilidade dos 

dados, nesse contexto a variabilidade explicada em uma PC diminui quando o 

número de PC cresce. Definir o número de componentes principais em um modelo é 

bastante importante, pois influencia diretamente na matriz de resíduo E, e 

consequentemente na determinação de amostras anômalas (WISE et al, 2006; 

FERREIRA; 2015). 

Analisando a matriz de resíduos é possível determinar alguns parâmetros 

importantes, tais como, T2 de Hotelling e Q residual. O T2 de Hotelling é uma 

extensão do teste t podendo ser aplicado também aos escores da PCA, como 

mostra a equação 11 (BRO e SMILDE, 2014). 

𝐓𝐢
𝟐 =  

𝐭𝐢
𝐓(𝐓𝐓𝐓)−𝟏𝐭𝐢

𝐈 − 𝟏
                                  Equação 11 

Onde T2 é o parâmetro T2 de Hotelling, T é a matriz de escores de todas as 

amostras (I x R), ti é um vetor dos escores da i-ésima amostra (Rx1). A partir dos 

resultados do T2 de Hotelling é possível a construção dos limites de confianças que 

são bastante importantes para a determinação de amostras anômalas. Outro 

parâmetro que também deve ser analisado é o Q residual. Matematicamente, O Q 

residual é a soma dos quadrados dos resíduos de cada amostra. Esse parâmetro 

tem o objetivo de determinar as amostras que não são bem representadas pelo 

modelo. O gráfico do Q residual versus o T2 de Hotelling é chamado de gráfico de 

Influência (BRO; SMILDE, 2014).  

 

3.5.3 Regressão por Mínimos Quadrados Parciais 

 

A regressão por mínimos quadrados (PLS: Partial least squares) é uma técnica 

de calibração multivariada, que tem como objetivo a construção de um modelo que é 

capaz de determinar um parâmetro de interesse a partir de uma matriz de dados 

espectrais. Para realizar essa análise são necessárias uma matriz de dados X, e 

também um vetor y ou uma matriz Y que contenha a(s) propriedade(s) de interesse, 

que se deseja prever. Quando apenas um parâmetro é de interesse tem-se o vetor y 



44 
 

com dimensão n x 1. Por outro lado, quando se tem m propriedades de interesse 

utilizasse, utiliza-se uma matriz Y n x m (FERREIRA; 2015).  

O modelo PLS não leva em consideração apenas a variabilidade presente na 

matriz X, como ocorre na PCA, mas sim, a correlação entre X e Y. Nesse contexto, é 

realizada uma decomposição para a matriz X e para a matriz Y, onde T e U são os 

escores para X e Y, respectivamente, representada pelas Equações 12 e 13. No 

entanto, diferentemente da PCA, é determinada uma relação entre os escores T e U, 

para maximizar a correlação entre X e Y, como mostra a Equação 14. 

𝐗 = 𝐓𝐏𝐓 + 𝐄                                                            Equação 12 

𝐘 = 𝐔𝐋𝐓 + 𝐅                                                            Equação 13 

𝐔 = 𝐓𝐖                                                                     Equação 14 

 

Em seguida, é utilizada essa correlação encontrada na Equação 14, para 

determinar os coeficientes de regressão para o modelo 𝐁̂, que serão utilizados para 

prever a(s) propriedade(s) de interesse a partir dos seus dados espectrais, 

representados pela Equação 15 e 16. As novas variáveis não são mais ortogonais 

entre si e são chamadas de variáveis latentes (LV: Latent Variables), pois não estão 

mais no sentido de maior variabilidade dos dados e sim na direção de maior 

correlação entre as matrizes X e Y (FERREIRA; 2015; WOLD et al; 2001; BEBEE et 

al, 1987). 

𝐁̂ = 𝐏(𝐏𝐭𝐏)−𝟏𝐖𝐋                                                                   Equação 15 

𝐲̂ = 𝐗𝐁̂                                                                                       Equação 16 

Para verificar o desempenho dos modelos construídos, têm-se algumas figuras 

de mérito tais como o SEP, definido como o desvio padrão dos resíduos previstos, 

representada pela Equação 17 e 18 (WISE et al, 2006; NAES et al, 2004). 

SEP =  √∑(ŷi −  yi − BIAS)2/(NP − 1)

NP

I=1

                             Equação 17 
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BIAS =  √∑(ŷi −  yi)/NP

NP

I=1

                                                        Equação 18 

Onde ŷi é o valor da variável y estimado pelo modelo para a i-ésima amostra, yi é 

o valor conhecido para a i-ésima amostra, NP é o número total de amostras para o 

conjunto de previsão. A relação entre o SEP e o BIAS é chamado de erro médio 

quadrático de previsão (RMSEP: Root Mean Square Error of Prediction) 

representado pela Equação 18 (WISE et al, 2006; NAES et al, 2004. 

𝑅𝑀𝑆𝐸𝑃2  =  𝑆𝐸𝑃2 +  𝐵𝐼𝐴𝑆2                                                      Equação 19 

 Para entender o significado desses erros é necessário definir alguns 

conceitos como a precisão e exatidão. A precisão mede a diferença entre medições 

repetidas, enquanto a exatidão mede a diferença entre o valor de y medido e o 

estimado pelo modelo. Nesse contexto o SEP mede a presença do erro aleatório e 

consequentemente a precisão, enquanto o BIAS é uma medida do erro sistemático 

e, portanto, está relacionado com a exatidão (WISE et al, 2006; NAES et al, 2004. 

Antes de avaliar a capacidade preditiva dos modelos representados pelas 

Equações 17, 18 e 19, é necessário avaliar o ajuste do modelo para os dados de 

calibração e validação cruzada. Essa análise incluirá um valor de erro médio 

quadrático de validação cruzada (RMSECV: Root Mean Square Error of Cross-

Validation) junto com o valor de erro médio quadrático de calibração (RMSEC: Root 

Mean Square Error of Calibration). Esses erros são bastante úteis para determinar o 

número ideal de variáveis latentes em um modelo de calibração (WISE et al, 2006; 

NAES et al, 2004. 

Após a construção dos modelos PLS é possível observar as variáveis que 

tiveram maior influência para a construção desses modelos. Essa análise é realizada 

a partir dos escores de importância da variável na projeção (VIP: Variable 

Importance in Projection). Os escores VIPs estimam a importância das variáveis 

usadas no modelo PLS e são calculados a partir dos coeficientes de regressão. De 

uma forma generalizada, pontuações próximas ou maiores que 1 podem ser 

consideradas importante para o modelo em estudo, enquanto variáveis com 
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pontuações significativamente menores que 1 são menos importantes e podem ser 

excluídas do modelo (WISE et al, 2006). 

 

3.5.4 Seleção de variáveis por algoritmo genético  

 

O algoritmo genético (GA: Genetic Algorithms) poder ser utilizado com o objetivo 

de identificar um subconjunto de variáveis que melhor descreve um modelo de 

regressão. Os modelos de regressão se beneficiam com esse método, pois algumas 

variáveis podem ser irrelevantes, conter ruído ou sinal de interferência que 

prejudicam o modelo. Essa técnica é inspirada na teoria da evolução biológica e 

seleção natural da “sobrevivência do mais apto”, na qual apenas as variáveis dos 

modelos com alto desempenho tem maior probabilidade de serem incluídas no 

conjunto de variáveis de modelos subsequentes. Além disso, também pode ser 

realizada mutação, na qual variáveis são adicionadas ou retiradas em um indivíduo 

sem ser diretamente herdada da geração anterior. Nesse contexto, a seleção 

randômica da população e a mutação garante o efeito estocástico do algoritmo. 

(WISE et al, 2006; MEHMOOD et al, 2012). 

No contexto da calibração, o algoritmo genético em geral utiliza uma abordagem 

iterativa para determinar o subconjunto de variáveis que fornece o menor erro médio 

quadrático da validação cruzada (RMSECV: root-mean-square error of cross 

validation). O primeiro passo é determinar a população, que consiste em um grande 

número de conjuntos de variáveis aleatórias que são usadas para calcular o 

RMSECV para um modelo de regressão, como o PLS. Cada conjunto de variável é 

chamado de indivíduo, e são representados por números binários determinando as 

variáveis inclusas ou não naquela etapa. O segundo passo é descartar o conjunto de 

variável que obtiveram o maior RMSECV, reduzindo a população pela metade, Para 

substituir esses indivíduos, o GA gera novos indivíduos por dois métodos: 

cruzamento único ou duplo, representado pela Figura 8. Para o cruzamento único, 

as variáveis de dois indivíduos (A e B) são divididos em um ponto aleatório e uma 

parte de A é trocada por uma parte de B gerando os indivíduos C e D. Por outro 

lado, o cruzamento duplo seleciona 2 pontos aleatórios das variáveis e a parte do 



47 
 

meio de A e B são trocadas. Além disso, todos os genes podem sofrer mutações, 

permitindo adicionar ou remover variáveis que podem estar super ou sub-

representadas na população. Depois que o tamanho da população for restaurado o 

processo retorna para a avaliação dos modelos a partir do RMSECV. Esse método é 

iterativo, os critérios de paradas podem ser um número finito de iterações ou uma 

determinada porcentagem dos indivíduos da população estar usando subconjunto de 

variáveis idênticos (WISE et al, 2006; MEHMOOD et al, 2012). 

 

Figura 8 - Esquema de cruzamento único e duplo 

Fonte: Adaptado de Wise et al (2006). 
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4 MATERIAIS E MÉTODOS 

 

4.1  AMOSTRAS 

 

Para esse estudo foram utilizados dois conjuntos de amostras. O primeiro, 

composto por amostras envelhecidas artificialmente e o segundo com amostras 

envelhecidas naturalmente.  

 

4.1.1  Amostras Envelhecidas Artificialmente 

Foram comprados, no comércio de Recife/PE, Brasil, 10 diferentes tipos e 

marcas de papéis, entre elas 3 marcas de papéis reciclado, 2 de papéis couchê e 5  

marcas de papéis sulfite, com as especificações mostradas na Tabela 1. Para cada 

marca foram selecionadas, aleatoriamente, três folhas, a partir das quais foram 

cortados quadrados do centro de cada folha com 4 cm de comprimento e altura. 

Foram adquiridos 2 espectros de cada amostra. Em seguida, essas amostras foram 

submetidas ao tratamento térmico a 100 °C, para isso foi utilizado uma estufa de 

marca Olide fcz. Os espectros foram monitorados nos seguintes períodos de tempo: 

10 minutos, 30 minutos, 1 hora, 2 horas, 3 horas, 24 horas, 48 horas, 72 horas, 96 

horas, 1 Semana, 2 semanas, 3 semanas, 4 semanas, 5 semanas, 6 semanas, 7 

semanas, 8 semanas, 2 meses e 3 meses. Foram também obtidos espectros antes 

do tratamento térmico (tempo zero). 
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Tabela 1 - Especificações dos papéis 

Marca Modelo Tipo Gramatura Observações Sigla 

Syspaper Syspaper 

couche 

Couche 

Brilho 

180 g/m2 Resistente a água; secagem 

rápida; A4 21 x 29.7 cm 

C1 

Syspaper Syspaper 

couche 

Couche 

Fosco 

180 g/m2 Resistente a água; secagem 

rápida; A4 21 x 29.7 cm 

C2 

Chamex Chamex 

eco 

Reciclado 75 g/m2 A4 21 x 29.7 cm R1 

Jandaia Turma do 

Jandainha 

eco 

Reciclado 75 g/m2 A4 21 x 29.7 cm; para pintar, 

trabalhos em geral, colar, 

desenhar, etc 

R2 

Jandaia Eco 

millennium 

multiuso 

Reciclado 75 g/m2 A4 21 x 29.7 cm; para pintar, 

trabalhos em geral, colar, 

desenhar, etc 

R3 

Chamex Chamex 

Super 

Sulfite 90 g/m2 A4 21 x 29.7 cm; mais encorpado S1 

Chamex Chamex 

Multi 

Sulfite 75 g/m2 A4 21 x 29.7 cm; para o dia a dia S2 

Chamex Chamex 

office 

Sulfite 75 g/m2 A4 21 x 29.7 cm; uso profissional S3 

Suzano Suzano 

Report 

Sulfite 75 g/m2 A4 21 x 29.7 cm S4 

Jandaia Turma do 

Jandainha 

Sulfite 120 g/m2 A4 21 x 29.7 cm; para pintar, 

trabalhos em geral, colar, 

desenhar, etc 

S5 

Fonte: A autora (2020). 

 

4.1.2  Amostras Envelhecidas Naturalmente 

 

Para construção desse conjunto de dados, foram utilizados documentos de 20 

anos diferentes (1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 

2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017 e 2018) que estavam 

armazenados no mesmo local, sob as mesmas condições. Essas amostras eram 

papéis sulfites, especificamente provas e trabalhos armazenados em envelopes, ao 

abrigo de luz, em uma sala na UFPE, a temperatura do ambiente, cujo intervalo 

pode ter variado de 22 a 35 °C sem controle de umidade. Para cada ano foram 
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selecionados 3 documentos e de cada documento 2 folhas foram utilizadas, obtendo 

um espectro por folha. 

 

4.2  AQUISIÇÃO DOS ESPECTROS 

 

Para a aquisição dos espectros foi utilizado o espectrômetro Spectrum frontier da 

Perkin Elmer, com o acessório de Refletância Total Atenuada (ATR: Attenuated 

Total Reflectance). A região espectral utilizada foi a região do MIR, os parâmetros 

utilizados foram: faixa espectral entre 4000 e 650 cm-1, resolução de 4 cm-1, intervalo 

de dados de 1cm-1 e 16 varreduras. As análises foram realizadas diretamente no 

papel, sem danificar as amostras e sem necessitar de nenhum preparo.  

 

4.3  TRATAMENTO DE DADOS 

 

Para o tratamento dos dados foram utilizadas técnicas quimiométricas, tais como 

pré-processamentos, seleção de variáveis, modelos PCA e PLS. Para esse estudo, 

foram utilizados os softwares Matlab e o PLS Toolbox da Eigenvector. Para as 

amostras envelhecidas artificialmente foram realizados modelos PCA para avaliar o 

processo de degradação para cada tipo de papel, e avaliar a variabilidade presente 

nas marcas de papéis sulfites. Para a construção desses modelos diversos pré-

processamentos foram utilizados, tais como, SNV, MSC, derivada, suavização e 

centragem na média. Em seguida foram separados os conjuntos de dados de 

calibração e previsão. O conjunto de previsão é composto por todas as amostras de 

uma marca e as amostras de outras marcas compuseram o conjunto de calibração. 

Para determinar a marca que iria compor o conjunto de previsão, foi realizado a PCA 

apenas com os papéis sulfites e foi selecionada a marca cujas amostras estavam 

localizadas no centro do modelo. Os modelos PLS foram utilizados com o objetivo 

de prever o tempo de exposição ao envelhecimento artificial. Para isso foi utilizado 

os seguinte pré-processamento e seleção de variáveis: (i) SNV + MC, (ii) SNV + MC 

+ GA, (iii) SNV + GLSW + MC. 
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 Para as amostras envelhecidas naturalmente, a PCA foi utilizada para 

determinar semelhanças e diferenças entre as amostras. Em seguida foram 

determinados os conjuntos de dados de calibração e previsão. Utilizou-se um 

documento de cada ano para compor o conjunto de previsão, que foi selecionado 

aleatoriamente, e o restante foi utilizado no conjunto de calibração. Os modelos PLS 

foram utilizados para a datação do documento. Os modelos PLS foram construídos 

com o seguinte pré-processamento e seleção de variáveis: (i) SNV + MC, (ii) SNV + 

MC + GA, (iii) SNV + GLSW + MC. 
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5 RESULTADOS E DISCUSSÃO 

 

5.1  ENVELHECIMENTO ARTIFICIAL 

 

5.1.1 Atribuições de bandas dos espectros 

 

Após a aquisição dos espectros, foi realizada a atribuição de bandas para os 

espectros obtidos no tempo zero (T0), antes de ser submetido às condições de 

envelhecimento artificial. Na Figura 9 tem-se a média dos espectros no tempo T0, 

onde estão destacadas as principais bandas características. 

 

Figura 9 - Média dos diferentes tipos de papéis no tempo zero T0 (a) papéis couchês (b) papéis 

reciclados e sulfites 

 

Fonte: A autora (2020). 

 

Analisando a Figura 9 observou-se que os espectros dos papéis couchês (C1 e 

C2) são diferentes dos espectros dos papéis reciclados e sulfites. Nos papéis 

couchês observou-se a presença da banda em torno de 1410 cm-1 e dois picos em 

torno de 871 e 712 cm-1, relacionados com o estiramento assimétrico do C-O, 

estiramento simétrico de C-O e deformação de flexão no plano presente em ligações 

O-C-O, respectivamente. Essas bandas estão relacionadas com o carbonato de 

cálcio, CaCO3. As bandas que se encontram nos intervalos de 3687 a 3620 cm-1 e 
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entre 1100 a 900 cm-1, mais evidentes nos papéis C1, ocorrem devido à presença da 

caulinita, Al2Si2O5(OH)4. O CaCO3 e a Al2Si2O5(OH)4 são compostos inorgânicos 

frequentemente utilizados para o revestimento do papel (CAUSIN et al,2010 e 

UDRISTIOIU et al, 2012). 

Para os papéis reciclados e sulfites é possível perceber a semelhança entre seus 

espectros. A banda que se encontra entre 3600 e 3000 cm-1 está associada à 

vibração de estiramento de hidrogênio em grupos de O-H da celulose. Já a absorção 

em aproximadamente 2890 cm-1 é devido ao estiramento simétrico de C-H em 

ligações CH, CH2 e CH3 da celulose (CAUSIN et al, 2010). A banda que se encontra 

em torno de 1640 cm-1 é devido à presença de água adsorvida, enquanto que as 

bandas entre 1500 e 900 cm-1 constituem a região de impressão digital, e estão 

detalhadas na Tabela 2 (HAJJI et al, 2016; ZIEBA-PALUS et al, 2016). Já a banda 

em torno de 871 cm-1 é devido ao estiramento simétrico de C-O, do carbonato de 

cálcio (CAUSIN et al,2010). 

 

Tabela 2 - Atribuições de bandas para a região de impressão digital da celulose 

Número de Onda (cm-1) Atribuição de banda 

1430 Deformação tesoura de CH2, 

Deformação de CH e flexão no plano de 

OCH. 

1375 Deformação de OH e CH2 e flexão no 

plano de CH. 

1315 Deformação rocking de CH 

1160 Deformação de C-OH e C-CH2 e 

estiramento assimétrico de C-O-C 

1105 Estiramento glicosídico C-O-C 

1055 Estiramento de álcool secundário C-O 

1025 C-C, estiramento de C-OH e anel CH. 

Fonte: Adaptado de Zieba-Palus et al (2016); Cousin et al (2010). 

 

5.1.2  Análise dos componentes principais 
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Para as amostras submetidas à condição de envelhecimento por tratamento 

térmico, foram adquiridos os espectros em todos os tempos de envelhecimentos, 

obteve-se, portanto uma matriz de dados de 1260 espectros e 3351 variáveis. 

Entretanto, houve problemas na estufa e as amostras referente ao tempo de 4 

meses ficaram comprometidas, fazendo com que seus espectros fossem retirados 

da matriz de dados, resultando em 1200 espectros e 3351 variáveis. Antes de 

construir os modelos PLS, foi feito um modelo PCA para estudar a variabilidade do 

conjunto de dados. Para uma primeira análise, foi utilizado como pré-processamento 

a centragem na média. Nas Figura 10a e Figura 10b tem-se os espectros brutos e os 

espectros pré-processados e na Figura 10c e Figura 10d o modelo PCA com os 

scores e os pesos, respectivamente. 
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Figura 10 - Gráfico da PCA para todos os papéis em todos os tempos de envelhecimento, para as 

amostras submetidas ao tratamento térmico (a) espectros brutos, (b) espectros pré-processados com 

centragem na média, (c) escores da PC1 vs PC2 e (d) pesos da PC1 e da PC2. 

 

Fonte: A autora (2020). 

 

O modelo PCA com duas componentes principais explica 99,20 % e, a Figura 

10c mostra o gráfico dos escores do modelo. A PC1 está relacionada com a 

diferença entre os papéis couchês, localizados na região positiva dos escores, e os 

papéis reciclados e sulfites, localizados na região negativa dos escores. Essa 

diferença pode ser observada na Figura 10d, no gráfico dos pesos, é possível 

observar que na região positiva da PC1 é referente às absorções que ocorrem nas 

seguintes regiões espectrais: 1410 cm-1, 871 cm-1, 712 cm-1. Todas essas bandas 

são referentes à presença do carbonato de cálcio, presentes em concentrações 

significativas em ambos os papéis couchês. Os valores negativos dos pesos da PC1 

estão relacionados a grupos funcionais da celulose (3400 cm-1 e 2890 cm-1), e a sua 
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região de impressão digital (1500 cm-1 a 900 cm-1), bastante evidentes nos espectros 

dos papéis reciclados e sulfites. É possível observar que, para os papéis couchês, 

não é possível obter informações da celulose com os espectros, provavelmente, 

devido à camada de revestimento presente, fazendo com que a penetração da 

radiação nesse tipo de papel não seja suficiente para atravessar o revestimento e 

fornecer as informações sobre a celulose. O escores da PC2 diferencia as marcas 

dos papéis couchês. Essa diferença fica evidente analisando a parte positiva dos 

pesos da PC2, em que a banda de maior contribuição está entre 1200 cm-1 e 900 

cm-1, região de maior diferença entre os tipos de papéis couchês, que está 

relacionada com á presença da caulinita presente apenas nos papéis C1. 

Para um estudo mais detalhado do processo de degradação de cada tipo de 

papéis foram construídos modelo PCAs individualmente, para cada marca e tipo de 

papéis. Para a construção desses modelos foi obtido a média dos dois espectros de 

uma mesma folha, resultando em um espectro por folha. Em seguida foi realizada a 

seleção da região espectral de trabalho, de modo que a região espectral utilizada foi 

de 2000 cm-1 a 650 cm-1, pois a maior variação no perfil espectral foi encontrada 

nessa região, diminuindo significativamente o ruído. Para realizar os modelos PCAs 

diversos pré-processamentos foram testados, tais como, SNV, MSC, derivada, 

suavização e centragem na média, os melhores resultados estão apresentados a 

seguir. A Figura 11 mostra os espectros brutos e os espectros pré-processados com 

suavização pelo filtro de Savitzky-Golay (com polinômio de 2 ordem e janela de 33 

pontos), SNV e centragem na média para os papéis Couchês C1, respectivamente. 
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Figura 11 - Gráfico do efeito do pré-processamento para os papéis couchês C1 (a) espectros brutos e 

(b) espectros pré-processados com suavização pelo filtro de Savitzky-Golay (com polinômio de 2 

ordem e janela de 33 pontos), SNV e centragem na média. 

 

Fonte: A autora (2020). 

 

Na Figura 11, as amostras com a coloração azul são as com menos tempo de 

exposição em uma dada condição de envelhecimento. Por outro lado, as amostras 

com a coloração amarela são as mais envelhecidas. O tempo de exposição está em 

minutos e é utilizado uma escala logarítmica. Na Figura 11a é possível observar que, 

de forma geral, a intensidade das bandas está diminuindo com o aumento do tempo 

de exposição à condição de envelhecimento. Esse comportamento fica mais 

evidente na Figura 11b, em torno de 1460 cm-1, 874 cm-1 e 712 cm-1. Em seguida, foi 

construído o modelo PCA para esses dados, com o objetivo de determinar a 

componente principal que melhor representa a informação da mudança do papel ao 

longo do tempo. Foram observadas as 5 primeiras PCs versus o log do tempo, para 

cada tipo e marca de papel individualmente. Esse estudo foi realizado 

detalhadamente no meu trabalho de conclusão de curso (SILVA, 2018). O resultado 

da PC que contém a informação da mudança do papel ao longo do tempo para o 

papel couchê C1 foi a PC1, representado na Figura 12. 
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Figura 12 - Gráfico da PCA para os papéis couchês C1 (a) Variância explicada acumulativa para o 

modelo (b) escores da PC1 versus o log do tempo (F1: Folha 1, F2: Folha 2 e F3: Folha 3) (c) pesos 

da PC1. 

 

Fonte: A autora (2020). 

 

Analisando o gráfico da variância explicada acumulada (Figura 12a) para o 

modelo PCA dos papéis couchês C1, as três primeiras componentes principais 

explicam 97,93 % da variabilidade dos dados. Nesse contexto, a PC que contém a 

informação da mudança do papel ao longo do tempo é a PC1. Isso é observado na 

Figura 12b, que mostra os escores da PC1 versus o logaritmo do tempo (em 

minutos). Analisando esse gráfico é possível observar que, na região negativa, têm-

se as amostras com menos tempo de exposição à condição de envelhecimento e as 

amostras com escores positivos são as mais envelhecidas. Essas diferenças podem 

ser observadas no gráfico dos pesos da PC1, Figura 12c, na região negativa 
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(relacionada as amostras com menos tempo exposta a condição de envelhecimento) 

tem-se se uma banda em torno de 1400 cm-1, que é do carbonato de cálcio. Na 

região positiva dos pesos, a banda em torno de 1430 cm-1 pode ser atribuída à 

flexão de CH2 presentes na celulose. Também é possível encontrar bandas em torno 

de 874 cm-1 e 712 cm-1 são referentes ao carbonato de cálcio que também estão 

presentes nas amostras envelhecidas (CAUSIN et al, 2010; ALI et al, 2001). Nesse 

contexto, é provável que esteja ocorrendo à degradação da camada de revestimento 

ao longo do tempo, pois para as amostras mais envelhecidas a informação da 

celulose começa a ser relevante. Analogamente à C1, as amostras do papel C2 

também evidenciam o mesmo comportamento (Figura 33 e Figura 34, localizado no 

Apêndice A). Na Figura 13 têm-se os espectros brutos e pré-processados com 

suavização pelo filtro de Savitzky-Golay (com polinômio de 2 ordem e janela de 33 

pontos), SNV e centragem na média para os papéis reciclados R1.  

 

Figura 13 - Gráfico do efeito do pré-processamento para os papéis reciclados R1 (a) espectros brutos 

e (b) espectros pré-processados com suavização pelo filtro de Savitzky-Golay (com polinômio de 2 

ordem e janela de 33 pontos), SNV e centragem na média. 

 

Fonte: A autora (2020). 
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Na Figura 13a é possível observar um espectro diferente dos demais, essas 

diferenças são acentuadas quando o pré-processamento é realizado (Figura 13b). O 

modelo PCA para os papéis reciclados R1 estão representados na Figura 14. 

 

Figura 14 - Gráfico da PCA para os papéis reciclados R1 (a) Variância explicada acumulada para o 

modelo, (b) gráfico de influencia e resíduo das amostras, (c) escores da PC3 versus a PC4 (c) pesos 

da PC3 e da PC4. 

 

Fonte: A autora (2020). 

 

Analisando o gráfico da variância explicada acumulada (Figura 14a) é possível 

observar que com 5 PCs o modelo explica 96,07 % dos dados, sugerindo que 5 PCs 

é suficiente para explicar a maior variabilidade dos dados. A Figura 14b mostra o 

gráfico de influência e de resíduo das amostras e é possível observar que uma das 
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amostras possui um T2 Hotelling alto, indicando ser uma possível amostra anômala. 

Investigando essa amostra, foi possível observar que a mesma possuía o espectro 

diferente visto na Figura 13a e Figura 13b e, além disso, a PC3 e a PC4 são 

utilizadas para explicar a diferença dessa amostra para as demais. Visto que suas 

replicatas não possuem valores de resíduos semelhantes, confirma-se, portanto, a 

suspeita de se tratar de uma amostra anômala, justificando a sua remoção. Esse 

comportamento anômalo pode estar relacionado ao momento da aquisição do 

espectro devido a algum erro do equipamento ou do operador. Em seguida foi 

construído um novo modelo PCA sem essa amostra, representado na Figura 15. 

 

Figura 15 - Gráfico para o novo modelo PCA, sem as amostras anômalas, para os papéis reciclados 

R1 (a) Variância explicada acumulativa para o modelo (b) escores da PC1 versus o log do tempo (F1: 

Folha 1, F2: Folha 2 e F3: Folha 3) (c) pesos da PC1. 

 

Fonte: A autora (2020). 



62 
 

 

A Figura 15a sugere que 5 PCs também são suficientes para explicar a maior 

variabilidade dos dados, com 96,15 % de variância explicada. Analisando a Figura 

15b e as outras 4 componentes principais, não foi possível determinar qual PC que 

está relacionada a informação das alterações ocorridas no papel ao longo do tempo. 

Nesse contexto, acredita-se que a variabilidade relacionada à composição do papel 

é maior que a variabilidade ocasionada pelo envelhecimento do papel ao longo do 

tempo. Como os papéis reciclados já passaram por um processo de reciclagem, na 

qual ocorre uma mistura de outros tipos de papéis, é possível que uma folha possua 

uma complexa composição que é refletida nos perfis espectrais. Outra causa 

provável de não ser possível associar uma PC ao envelhecimento é que a condição 

de envelhecimento estudada não seja suficiente para causar mudanças observáveis 

com o tempo. Os papéis reciclados R2 também apresentaram o mesmo 

comportamento e um modelo com 5 PCs com 96,58 % de variabilidade explicada 

pode ser observado, nas Figura 35 e Figura 36 (Apêndice B). Para os papéis 

reciclados R2 e R3, também não foi possível determinar a PC que contém a 

informação relacionada a mudança do papel ao longo do tempo (Figura 37 e Figura 

39, localizados no Apêndice B). Para investigar o processo de degradação dos 

papéis sulfites também foi realizado modelo PCA individualmente para cada marca. 

A Figura 16 mostra os espectros brutos e pré-processados para os papéis sulfites 

S1. 
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Figura 16 - Gráfico do efeito do pré-processamento para os papéis sulfites S1 (a) espectros brutos e 

(b) espectros pré-processados com suavização pelo filtro de Savitzky-Golay (com polinômio de 2 

ordem e janela de 33 pontos), SNV e centragem na média. 

 

Fonte: A autora (2020). 

 

 A Figura 16b mostra os espectros pré-processados para os papéis sulfites S1. O 

pré-processamento utilizado foi suavização pelo método de Savitzky-Golay (com 

polinômio de 2 ordem e janela de 33 pontos), SNV e centragem na média. Em 

seguida, foi construído o modelo PCA representado pela Figura 17. 
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Figura 17 - Gráfico da PCA para os papéis sulfites S1 (a) Variância explicada acumulativa para o 

modelo (b) escores da PC1 versus o log do tempo (F1: Folha 1, F2: Folha 2 e F3: Folha 3) (c) pesos 

da PC1. 

 

Fonte: A autora (2020). 

 

Analisando a PCA para os papéis sulfites é possível observar que 6 PCs 

explicam 96,84 % da variabilidade dos dados (Figura 17a). Nesse contexto, foi 

possível determinar a PC que contem a informação da mudança do papel ao longo 

do tempo, a PC4 com 5,06 % de variância explicada. Analisando o gráfico dos 

escores, Figura 17b, observou-se que as amostras com menos tempo possuem 

escores negativos e as amostras mais envelhecidas estão localizadas na região 

positiva da PC4. No gráfico dos pesos (Figura 17c), é possível observar a região 

espectral que possui contribuição positiva. Com maior intensidade, tem-se a 

absorção em 1722 cm-1, que pode ser atribuída ao estiramento de C=O, presente 

em ácidos carboxílicos. Esse resultado indica que pode estar ocorrendo a oxidação 
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da hidroxila da celulose durante o processo de degradação do papel. Esse 

comportamento foi observado em todas as marcas de papéis sulfites, esses 

resultados estão presentes da Figura 40 à Figura 46, localizadas no Apêndice C 

(CAUSIN et al, 2010). 

Antes de construir os modelos PLS, foi avaliado o modelo PCA para todas 5 

marcas de papéis sulfites. Para esse estudo foi selecionada uma nova região de 

trabalho, compreendida entre 1800 cm-1 a 650 cm-1, que contém a maior variação no 

perfil espectral (Figura 18a). 

 

Figura 18 - Gráficos das análises dos papéis sulfites, (a) espectros brutos, (b) espectros pré-

processados com SNV e centragem na média (c) escores da PC1 versus PC2 (d) pesos da PC1 e da 

PC2. 

 

Fonte: A autora (2020). 
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Na Figura 18b tem-se os espectros pré-processado com SNV e centragem na 

média. É possível observar que as bandas em torno de 1410 cm-1, 871 cm-1 difere os 

papéis S4 dos S5. Em seguida um modelo PCA foi construído com 4 PCs que 

explica 98,73 % da variabilidades dos dados. Analisando o gráfico dos escores 

(Figura 18c), é possível observar que a maior variabilidade dos dados, PC1, é 

devido à diferença entre os papéis S1 e S4, localizados na região negativa dos 

escores da PC1, e os papéis S5, com escores positivos. Analisando o gráfico dos 

pesos para a PC1 (Figura 18d), a região positiva está relacionada às bandas que 

estavam em evidência no pré-processamento que são características do carbonato 

de cálcio. Isso indica que a diferença dos papéis pode estar associada com a 

quantidade de revestimento que, no papel S5. Os papéis S1 e S4 possuem uma 

tendência de separação mesmo ambos localizados na região negativa da PC1. Não 

foi possível observar diferenças entre os papéis S2 e S3, isso pode ter ocorrido 

devido ao fato de serem da mesma marca, mudando apenas a finalidade de uso.  

Esses resultados foram obtidos durante o trabalho de iniciação científica da 

autora, onde foi estudado o processo de degradação dos diferentes tipos de papéis 

submetidos ao tratamento térmico. Concluindo que a utilização da espectroscopia na 

região do infravermelho médio associadas a técnicas quimiométricas se mostrou 

promissora para o estudo da degradação do papel. Analisando todos os tipos de 

papéis foi possível observar que os papéis couchês são bastante diferentes dos 

papéis reciclados e sulfites, diferenciando devido à presença de uma intensa 

camada de revestimento para os papéis couchês. Para as amostras submetidas à 

condição de envelhecimento acelerado a alta temperatura, pode estar ocorrendo à 

degradação da camada de revestimento para os papéis couchês. Para os papéis 

sulfites pode estar ocorrendo a oxidação da hidroxila da celulose, pois foi possível 

observar, na PCA, absorção em 1722 cm-1 para as amostras mais envelhecidas, que 

pode ser atribuída ao estiramento de C=O presente em ácidos carboxílicos, produto 

da oxidação. A partir desses resultados surgiu o interesse de utilizar a calibração 

multivariada para prever o tempo de exposição à condição de envelhecimento. 

 

5.1.3 Regressão por Mínimos Quadrados Parciais 
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Para realizar a construção do modelo PLS utilizou-se apenas os papéis sulfites, 

uma vez que na análise exploratória, os papéis reciclados não mostram variações 

com o tempo e as variações nos papéis couchês estão muito relacionadas ao 

revestimento. As amostras de papéis sulfites foram separadas em dois conjuntos, 

um conjunto de calibração e um de previsão. Para isso, foi selecionada uma marca 

para compor o conjunto de previsão e as outras quatro restantes pra calibração. 

Para realizar essa escolha a Figura 18c foi analisada, é possível observar as 

amostras dos papéis S3 estão localizadas no centro da PC1, ou seja, sua 

variabilidade está explicada pelo modelo. Assim, os papéis sulfites S3 foram 

selecionados para o conjunto de previsão. Os modelos PLS foram realizados com 4 

diferentes pré-processamentos e seleção de variáveis (i) SNV + MC (Figura 19), (ii) 

SNV + MC + GA (Figura 20), (iii) SNV + GLSW (α = 0,202) + MC (Figura 22) e (iv) 

SNV + GLSW (α = 0,032) + MC (Figura 23). Um resumo das principais figuras de 

méritos pode ser observado na Tabela 3. 

 

Tabela 3 - Resumo das figuras de méritos dos modelos PLS com os diferentes pré-processamentos 

Pré-processamento LV REMSEC RMSECV REMSEP Biascal BiasCV BiasPred R2Cal R2CV R2Pred 

SNV + MC 6 1,02 1,08 2,20 0,000 0,005 -2,006 0,88 0,87 0,91 

SNV + GA + MC 4 1,61 1,70 1,47 0,000 -0,005 -0,743 0,70 0,67 0,82 

SNV + GLSW (0,202) + MC 6 0,67 0,79 1,26 0,000 0,000 -1,104 0,95 0,93 0,96 

SNV + GLSW (0,032) + MC 6 0,41 0,59 0,55 0,000 0,010 -0,140 0,98 0,99 0,97 

*SNV, MCS, GLSW e GA são os pré-processamento usados; entre parêntesis o valor de α (para 

GLSW); LV = número de variáveis latentes; RMSEC, RMSECV e RMSEP; Biascal, BiasCV e BiasPred = 

Erro de Bias para a calibração, a validação cruzada e a previsão, respectivamente; R2
Cal R2

CV e R2
Pred, 

coeficiente de determinação para a calibração, validação cruzada e previsão. 

Fonte: A autora (2020). 

 

O modelo PLS utilizando o pré-processamento SNV e centragem na média foi 

construído utilizando 6 variáveis latentes, representado pela Figura 19a. Analisando 

a Figura 19b e os dados da Tabela 3 o erro de maior influencia é o Bias de previsão, 

para tentar minimizar esse erro foi utilizado o pré-processamento SNV, centragem 

na média e seleção de variáveis (GA), representado na Figura 20. A partir da Figura 

20a é possível observar que as variáveis que apareceram com mais frequência 
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durante a utilização do GA foram a região de 1800 cm-1 a 1200 cm-1, esse 

comportamento já era esperado, pois como analisado na Figura 17, essa região 

contém a informação da banda característica da degradação. Analisando esses 

dados é possível observar que o uso da seleção de variáveis diminui a quantidade 

de variáveis latentes necessárias para explicar o modelo e também houve uma 

diminuição do Bias de previsão. Por outro lado, o modelo de calibração apresentou 

valores aparentemente mais baixos de R2
CV que diminuiu de 0,87 para 0,67, 

prejudicando assim o modelo. 

 

Figura 19 - Gráficos do modelo PLS para os dados pré-processados com SNV e centragem na média 

para os papéis envelhecidos artificialmente, (a) gráfico de RMSEC e RMSECV (b) gráficos de 

regressão (c) gráfico dos escores VIPs. 

 

Fonte: A autora (2020). 
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Figura 20 - Gráficos do modelo PLS para os dados pré-processados com SNV e centragem na média 

e seleção de variáveis (GA) para os papéis envelhecidos artificialmente, (a) Variáveis que aparecem 

com maior frequência quando o GA é aplicado, (b) gráfico de RMSEC e RMSECV, (c) gráficos de 

repressão e (d) gráfico dos escores VIPs. 

 

Fonte: A autora (2020). 

 

O modelo PLS também foi testado com outros pré-processamentos SNV, 

GLSW e a centragem na média. Para utilizar o GLSW é necessário a determinação 

do parâmetro de regularização responsável pela ponderação do filtro (α), quanto 

menor o valor de α, mais interferentes o GLSW filtra e, ao aumentar o valor do α, a 

ação do filtro é diminuída. Para determinar o valor adequado para α, foi construída 

uma superfície mostrando a variação do RMEC e RMSECV em função das variáveis 

latentes e do valor de α, como mostra a Figura 21. Os gráficos de contorno das 

superfícies estão representados na Figura 48 (Apêndice D). A partir desses dados 
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foram selecionados dois valores de α: 0,202 e 0,032. Esses valores foram 

escolhidos por possuírem RMSECV relativamente baixo e poucas LV para o modelo, 

esses resultados estão representados na Figura 22 e Figura 23. 

 

Figura 21 - Gráfico das superfícies para o (a) RMCEC e (b) RMSECV. 

 

Fonte: A autora (2020). 

 

Analisando os modelos utilizando o filtro GLSW, Figura 22 e Figura 23, é possível 

observar uma melhora significativa na medida em que o valor de α diminui. Essa 

melhora pode ser observada principalmente para o bias de previsão, onde com α  = 

0,202 é -1,10 e para α = 0,032 é -0,14. Essa melhora também é observada para os 

outros parâmetros do modelo de regressão. Em suma, a variabilidade presentes nas 

diferentes marcas influenciam na construção dos modelos PLS analisados ao longo 

do tempo, para reduzir essa variabilidade foi utilizado o filtro GLSW e o melhor 

resultado foi para o menor valor de α que é 0,032. Analisando o Escores VIPs para 

todos os quatros modelos PLS construídos (Figura 19d, Figura 20d, Figura 22d e 

Figura 23d) é possível observar que todos os modelos reconheceram a banda em 

torno de 1722 cm-1 como relevantes para o modelo, como visto anteriormente pode 

ser atribuída ao estiramento de C=O presente em ácidos carboxílicos, produto do 

processo de degradação. 
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Figura 22 - Gráficos do modelo PLS para os dados pré-processados com SNV, GLSW (α = 0,202) e 

centragem 0na média para os papéis envelhecidos artificialmente (a) Gráfico da superfície para o 

RMSECV (b) gráfico de RMSEC e RMSECV (c) gráficos de regressão, (d) gráfico de regressão e (d) 

gráfico dos Escores VIPs. 

 

Fonte: A autora (2020). 
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Figura 23 - Gráficos do modelo PLS para os dados pré-processados com SNV, GLSW (α = 0,032) e 

centragem na média para os papéis envelhecidos artificialmente, (a) Gráfico da superfície para o 

RMSECV (b) gráfico de RMSEC e RMSECV, (c) gráficos de regressão e (d) gráfico dos Escores 

VIPs. 

 

Fonte: A autora (2020). 

 

5.2  ENVELHECIMENTO NATURAL 

 

5.2.1 Atribuição de Bandas 

 

A Figura 24 mostra a média dos espectros brutos por anos para os papéis 

envelhecidos naturalmente, de forma que as amostras estão rotuladas em datas do 

período de 1998 a 2018.  
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Figura 24 - Média dos espectros brutos dos papéis naturalmente envelhecidos por ano. 

 

Fonte: A autora (2020). 

 

As bandas presentes são as mesmas encontradas para os papéis sulfites 

descritos anteriormente. Nesse contexto a região entre 3600 cm-1 a 2600 cm-1 é 

atribuída às funções orgânicas da celulose, também é possível observar a presença 

de água adsorvida, enquanto que as bandas entre 1500 e 900 cm-1 constituem a 

região de impressão digital da celulose, e estão detalhadas na Tabela 2 (ZIEBA-

PALUS et al, 2016; COUSIN et al, 2010). A região espectral utilizada para a 

construção dos modelos foi de 1800 cm-1 a 650 cm-1, pois é onde contém a maior 

variabilidade espectral. 

 

5.2.2 Análise dos Componentes Principais 
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A matriz de dados utilizada para a análise de componentes principais dos papéis 

envelhecidos naturalmente, possui 124 espectros e 1135 variáveis. Na Figura 25a 

têm-se os espectros brutos e na Figura 25b têm-se os espectros pré-processados 

com SNV e centragem na média. 

 

Figura 25 - Gráficos da PCA para os papéis envelhecidos naturalmente, (a) espectros brutos, (b) 

espectros pré-processados (c) escores da PC1 versus PC2 (d) pesos da PC1 e da PC2. 

 

Fonte: A autora (2020). 

 

Analisando o gráfico dos escores é possível observar que as amostras estão 

bem distribuídas, não há formação de agrupamentos naturais. Durante a construção 

dos modelos PLS foi observado que duas amostras (espectro de uma folha de 1998 
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e 2002) estavam influenciando negativamente os modelos, mesmo possuindo 

espectros bastante parecidos com os demais e que não estivesse em evidência na 

PCA.  Essas amostras ficaram evidentes no gráfico de y predito para a validação vs 

y mensurado, prejudicando assim o R2
CV, então essas amostras foram removidas.  

 

5.2.3 Regressão por Mínimos Quadrados Parciais 

 

Para a construção dos modelos PLSs foi separado o conjunto de calibração e o 

de previsão. Para cada ano têm-se três documentos e de cada documento duas 

folhas foram utilizadas, nesse contexto, o conjunto de previsão foi formado por um 

documento de cada ano, ou seja, duas folhas, esses documentos foram escolhidas 

de forma aleatória para compor o conjunto de previsão. Os documentos restantes 

formaram o conjunto de calibração. Os modelos PLS foram realizados com 4 

diferentes pré-processamentos, (i) SNV + MC (Figura 26), (ii) SNV + MC + GA 

(Figura 27), (iii) SNV + GLSW (α = 0,202) + MC (Figura 29) e (iv) SNV + GLSW (α = 

0,542) + MC (Figura 30). Um resumo das principais figuras de méritos resultados 

obtidos podem ser observados na Tabela 4. 

 

Tabela 4 - Resumo das figuras de méritos dos modelos PLS com os diferentes pré-processamentos 

para os papéis envelhecidos naturalmente. 

Pré-processamento LV REMSEC RMSECV REMSEP Biascal BiasCV BiasPred R2Cal R2CV R2Pred 

SNV + MC 6 3,95 4,95 4,16 0,000 0,101 0,733 0,56 0,33 0,52 

SNV + GA + MC 6 3,91 4,65 3,88 0,000 0,106 0,374 0,56 0,40 0,58 

SNV + GLSW (0,112) + MC 6 1,53 3,13 3,00 0,000 0,214 -0,403 0,93 0,73 0,77 

SNV + GLSW (0,542 ) + MC 6 2,45 3,51 3,16 0,000 0,115 -0,744 0,83 0,66 0,74 

*SNV, MCS, GLSW e GA são os pré-processamento usados; entre parêntesis o valor de α (para 

GLSW); LV = número de variáveis latentes; RMSEC, RMSECV e RMSEP; Biascal, BiasCV e BiasPred = 

Erro de Bias para a calibração, a validação cruzada e a previsão, respectivamente; R2
Cal R2

CV e R2
Pred, 

coeficiente de determinação para a calibração, validação cruzada e previsão. 

Fonte: A autora (2020). 
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Todos os modelos construídos utilizaram 6VL para explicar a maior variabilidade 

dos dados. Analisando os dados da Tabela 4, pode-se observar que os modelos 

PLS que utilizaram o pré-processamento SNV e centragem na média e SNV, GA e 

centragem na média não foram eficientes para descrever a datação dos 

documentos. Esse comportamento pode ser observado nos valores de R2
CV, que 

foram iguais a 0,33 e 0,40 (Tabela 4, Figura 26 e Figura 27). Nesse contexto, foi 

utilizado o filtro GLSW para remover a variância presente da matriz X que é 

ortogonal ao vetor do tempo, y, ou seja, a variabilidade dos documentos de um 

mesmo ano. Para a utilização desse pré-processamento foi necessária a 

determinação do α. Da mesma forma como foi feito para os papéis artificialmente 

envelhecidos, foi construída uma superfície para os valores de RMSEC e/ou 

RMSECV em função do número de variáveis latentes e do valor de α, como mostra a 

Figura 28. Os gráficos de contorno das superfícies estão representados na Figura 49 

(Apêndice D).  
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Figura 26 - Gráficos do modelo PLS para os dados pré-processados com SNV e centragem na média 

para os papéis envelhecidos naturalmente (a) gráfico de RMSEC e RMSECV, (b) gráficos de 

regressão e (c) gráfico dos escores VIPs. 

 

Fonte: A autora (2020). 
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Figura 27 - Gráficos do modelo PLS para os dados pré-processados com SNV e centragem na média 

e seleção de variáveis (GA) para os papéis envelhecidos naturalmente (a) Variáveis que aparecem 

com maior frequência quando o GA é aplicado, (b) gráfico de RMSEC e RMSECV, (c) gráficos de 

regressão e (d) gráfico dos escores VIPs. 

 

Fonte: A autora (2020). 

 



79 
 

Figura 28 - Gráfico das superfícies de níveis para os papéis envelhecidos naturalmente para o (a) 

RMCEC e (b) RMSECV. 

 

Fonte: A autora (2020). 

 

Analisando a Figura 28 foram selecionados dois alfas 0,112 e 0,542, pois 

possuíam RMSECV relativamente baixos e não precisavam de muitas LV para 

explicar o modelo (Figura 29 e Figura 30).  As figuras de méritos desses modelos 

estão apresentadas na Tabela 3. Analisando a eficiência do filtro GLSW para reduzir 

a variabilidade presente no mesmo ano é possível observar uma melhora 

significativa na medida que o valor de α diminui. Essa melhora pode ser observada 

comparando o modelo usando α  = 0,112, cujo R2
CV é igual a 0,73, e o modelo com α 

= 0,542, cujo R2
CV é 0,66. Essa melhoria também é observada para os outros 

parâmetros do modelo de regressão (RMSECV, RMSEP, BiasPred e R2
Pred). O melhor 

resultado foi para o menor valor de α que é 0,112.  
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Figura 29 - Gráficos do modelo PLS para os dados pré-processados com SNV, GLSW (α = 0,112) e 

centragem na média para as amostras envelhecidas naturalmente (a) Gráfico de superfície para o 

RMSECV, (b) gráfico de RMSEC e RMSECV, (c) gráficos de regressão e (d) gráfico dos Escores 

VIPs. 

 

Fonte: A autora (2020). 
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Figura 30 - Gráficos do modelo PLS para os dados pré-processados com SNV, GLSW (α = 0,542) e 

centragem na média para as amostras envelhecidas naturalmente (a) Gráfico da superfície para o 

RMSECV (b) gráfico de RMSEC e RMSECV (c) gráficos de regressão (d) gráfico dos Escores VIPs. 

 

Fonte: A autora (2020). 

 

5.3  ENVELHECIMENTO NATURAL VS ARTIFICIAL 

 

Atestar a legitimidade de documentos é bastante importante no contexto forense.  

Assim, podem ser utilizados os modelos de datação para identificar fraudes 

documentais. Deste modo, é importante testar se documentos artificialmente 

envelhecidos podem ser apresentados como autênticos (naturalmente 

envelhecidos). Esse estudo pode ser realizado por duas abordagens, a primeira 

projetando-se amostras de documentos naturalmente envelhecidos no modelo PLS 
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construído com amostras envelhecidas artificialmente. A segunda abordagem é a 

projeção de amostras artificialmente envelhecidas em um modelo PLS construído 

com amostras naturalmente envelhecidas. Essas duas abordagens podem ser 

usadas para verificar se há compatibilidade entre o tempo de exposição a uma 

determinada condição de envelhecimento artificial com o envelhecimento natural. Ou 

seja, se um documento envelhecido artificialmente pode se passar por um 

documento autêntico de um determinado período de tempo. 

 

5.3.1 Projetando as amostras de envelhecimento natural no modelo PLS das 

amostras envelhecidas artificialmente 

 

As amostras naturalmente envelhecidas foram projetadas no melhor modelo de 

calibração do envelhecimento acelerado, ou seja, as que utilizaram como pré-

processamento SNV, GLSW (α = 0,032) e centragem na média. Os resultados dessa 

projeção estão presentes na Figura 31, que mostra o modelo de calibração 

construído com as amostras envelhecidas artificialmente e o conjunto de previsão 

com as amostras envelhecidas naturalmente. 
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Figura 31 - Projeção das amostras envelhecidas naturalmente nos modelos PLS construído com as 

amostras envelhecidas artificialmente (a) Gráfico do valor previsto, (b) gráfico de influência e resíduo 

das amostras e (c) gráfico de influência e resíduo das amostras ampliado. 

 

Fonte: A autora (2020). 

 

A variabilidade encontrada nas folhas de papéis ao longo dos anos é muito 

grande de modo que o modelo de calibração para as amostras envelhecidas 

artificialmente em alta temperatura não serve para explicar essas amostras 

envelhecidas naturalmente. Esse comportamento é observado no gráfico de 

influencia e resíduo das amostras, pois as amostras naturais apresentaram 

Qresidual e T2 Hotelling bastante elevados. 
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5.3.2 Projetando as amostras de envelhecimento artificial no modelo PLS das 

amostras envelhecidas naturalmente. 

 

Para esse estudo amostras envelhecidas artificialmente foram projetada no 

melhor modelo de calibração do envelhecimento natural, ou seja, o modelo com pré-

processamento SNV, GLSW (α = 0,112) e centragem na média. Os resultados dessa 

projeção estão presentes na Figura 32, na qual se observa o modelo de calibração 

com as amostras envelhecidas naturalmente e o conjunto de previsão foram com as 

amostras envelhecidas artificialmente. 

 

Figura 32 - Projeção das amostras envelhecidas artificialmente nos modelos PLS construído com as 

amostras envelhecidas naturalmente (a) Gráfico do valor previsto (b) gráfico de influência e resíduo 

das amostras. 

 

Fonte: A autora (2020). 

 

 Analisando o gráfico da Figura 32b, é possível observar que as amostras 

envelhecidas artificialmente possuem um Q residual bastante elevado no gráfico de 

influências, mostrando que o modelo não é eficiente para descrever essas amostras 

de previsão. A partir dos gráficos da Figura 31 e da Figura 32, pode-se observar que 
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o método de projeção de amostras no modelo anteriormente construído não se 

mostrou eficiente para a comparação dos envelhecimentos naturais e artificial. 

 Isso significa que não é possível prever a data de um documento original 

(envelhecidos naturalmente) utilizando um modelo construído com amostras 

envelhecidas artificialmente. Como também não foi obtido sucesso ao se construir o 

modelo com amostras envelhecidas naturalmente para prever a datação de 

amostras envelhecidas artificialmente. No contexto forense, esse estudo mostra que 

não é possível que uma amostra envelhecida artificialmente seja reconhecida como 

uma amostra antiga, envelhecidas naturalmente, pois analisando os modelos é 

possível observar um Q residual elevado para essa amostra. Mostrando ser 

promissor a utilização da espectroscopia de IR associadas as técnicas 

quimiométricas para identificar a falsificação de documentos. 
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6 PERSPECTIVA FUTURA 

 

Como relatado, um dos grandes desafios encontrados no estudo desenvolvido foi 

a obtenção de um modelo confiável para a datação dos documentos. Para contornar 

esse problema, propõe-se a continuidade e o aprofundamento do estudo dos 

modelos construídos com amostras envelhecidas naturalmente, otimizando o 

parâmetro α do GLSW, a partir das superfícies de respostas construídas no trabalho 

atual. Também é proposto  o estudo de alguns parâmetros como o RMSEC e 

RMSECV, bias, com a finalidade de minimizar os seus valores e maximizar o R2. 

Esses fatores devem ser levados em consideração para escolher o maior valor de α 

(que não altere os espectros) e o menor número das variáveis latentes possível. 

Além disso, testes de significância, como teste F e teste t, poderão ser aplicados 

para realizar a comparação dos modelos e identificar a significância dos parâmetros 

analisados, de forma que com toda essa informação, seja possível encontrar um 

modelo adequado, empregando o GLSW.  

Além de otimizar o parâmetro do GLSW, outros pré-processamentos poderam 

ser testados como a Correção Ortogonal de Sinal (OSC, do inglês Orthogonal Signal 

Correction) que também realiza uma espécie de filtragem multivariada para a 

construção dos modelos de regressão; bem como outras técnicas de calibração 

multivariada como a projeções ortogonais a Mínimos Quadrados Parciais (OPLS: 

Orthogonal Partial Least Squares) e técnica de regressão de vetores de suporte 

(SVR: Support Vector Regretion). O SVR é uma técnica conhecida de aprendizagem 

de máquinas, que é capaz de tratar de modo relativamente rápido problemas de 

calibração multivariada lineares ou não lineares. 

Outra proposta é ampliar o estudo do envelhecimento artificial em diferentes 

condições para investigar o processo de degradação dos papéis exposto a radiação 

UV e a radiação solar. Podem ser aplicadas diferentes técnicas quimiométricas para 

identificar as mudanças nos perfis espectrais, além técnicas de seleção de variáveis, 

tais como: a Importância de Variáveis na Projeção (VIP: Variable Importance in the 

Projection), Mínimos Quadrados Parciais por Intervalos (iPLS: Interval Partial Least 

Square) e o Algoritmo genético (GA: Genetic algorithm). 
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Outra proposta é estudo do envelhecimento artificial do papel, a partir de um 

planejamento fatorial, para analisar a influência dos fatores no processo de 

degradação, tais como, temperatura, radiação UV, umidade e suas possíveis 

interações. Essas condições de armazenamento e o tempo de exposição seriam 

analisados para identificar quais fatores e a quantidade de tempo necessária para 

produzir uma resposta química equivalente ao envelhecimento natural. Além disso, 

diferentes técnicas espectroscópicas também podem ser empregadas para a análise 

dos compostos presentes nos papéis, tais como, a espectroscopia de infravermelho 

próximo (NIR), médio (MIR) e/ou a espectroscopia Raman. 
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7 CONCLUSÃO 

 

É possível concluir que as mudanças do papel ao longo do tempo e submetidas à 

condição de envelhecimento artificial causam modificações na molécula de celulose, 

devido à degradação. A utilização da espectroscopia na região do infravermelho 

médio associada a técnicas quimiométricas se mostrou promissora para o estudo da 

degradação do papel. Com a PCA foi possível determinar um possível processo de 

degradação: para os papéis couchês observou-se a degradação da camada de 

revestimento e para os papéis sulfites a oxidação. Para o envelhecimento artificial os 

modelos PLS foram utilizados para prever o tempo de exposição à condição de 

envelhecimento. Os modelos PLS para as amostras envelhecidas naturalmente 

foram construídos com o objetivo de datação de documentos. Para ambos os casos 

a utilização de modelos PLS se mostrou eficiente para descrever o processo de 

envelhecimento dos papéis, principalmente devido à utilização do pré-

processamento GLSW que atua como um filtro minimizando a variabilidade das 

folhas de papéis do mesmo ano para as amostras envelhecidas naturalmente, e 

minimizando a diferença entre as marcas de papéis para as amostras envelhecidas 

artificialmente. A utilização de seleção de variáveis como o GA não se mostrou 

promissora para o estudo de nenhum tipo de envelhecimento. 

Os modelos PLS foram eficientes para explicar o envelhecimento 

separadamente, mas quando associado um envelhecimento natural com o artificial, 

a partir das projeções de um tipo de envelhecimento em outro, os resultados não 

foram promissores para a previsão. Por outro lado, a comparação dos modelos e os 

resíduos mostram-se promissores para identificar se um documento artificial foi 

fraudado e apresentado como autêntico. Isso porque as diferenças dos processos 

de degradação são claras mesmo usando o filtro GLSW, sendo possível identificar 

que são documentos que passaram por processos diferentes. Em suma, realizar um 

paralelo entre documentos envelhecidos artificialmente e naturalmente é um 

processo bastante complexo, não sendo possível construir um modelo com 

amostras envelhecidas artificialmente por exposição à temperatura para então 

estimar a data de um documento desconhecido.  
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APÊNDICE A – ANÁLISE DOS COMPONENTES PRINCIPAIS PARA OS PAPÉIS 

COUCHÊS 

 

Figura 33 - Gráfico do efeito do pré-processamento para os papéis couchês C2 (a) espectros brutos e 

(b) espectros pré-processados. 

 

Fonte: A autora (2020). 
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Figura 34 - Gráfico da PCA para os papéis couchês C2 (a) Variância explicada acumulativa para o 

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1. 

 

Fonte: A autora (2020). 
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APÊNDICE B – ANÁLISE DOS COMPONENTES PRINCIPAIS PARA OS PAPÉIS 

RECICLADOS 

 

Figura 35 - Gráfico do efeito do pré-processamento para os papéis reciclados R2 (a) espectros brutos 

e (b) espectros pré-processados. 

 

Fonte: A autora (2020). 
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Figura 36 - Gráfico da PCA para os papéis reciclados R2 (a) Variância explicada acumulada para o 

modelo, (b) gráfico de influencia e resíduo das amostras, (c) escores da PC3 versus a PC4 (d) pesos 

da PC3 e da PC4. 

 

Fonte: A autora (2020). 
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Figura 37 - Gráfico para o novo modelo PCA, sem as amostras anômalas, para os papéis reciclados 

R2 (a) Variância explicada acumulativa para o modelo (b) escores da PC1 versus o log do tempo (c) 

pesos da PC1. 

 

Fonte: A autora (2020). 
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Figura 38 - Gráfico do efeito do pré-processamento para os papéis reciclados R3 (a) espectros brutos 

e (b) espectros pré-processados. 

 

Fonte: A autora (2020). 
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Figura 39 - Gráfico da PCA para os papéis reciclados R3 (a) Variância explicada acumulativa para o 

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1. 

 

Fonte: A autora (2020). 
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APÊNDICE C – ANÁLISE DOS COMPONENTES PRINCIPAIS PARA OS PAPÉIS 

SULFITES 

 

Figura 40 - Gráfico do efeito do pré-processamento para os papéis sulfites S2 (a) espectros brutos e 

(b) espectros pré-processados. 

 

Fonte: A autora (2020). 

 



102 
 

Figura 41 - Gráfico da PCA para os papéis sulfites S2 (a) Variância explicada acumulativa para o 

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1. 

 

Fonte: A autora (2020). 

 



103 
 

Figura 42 - Gráfico do efeito do pré-processamento para os papéis sulfites S3 (a) espectros brutos e 

(b) espectros pré-processados. 

 

Fonte: A autora (2020). 
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Figura 43 - Gráfico da PCA para os papéis sulfites S3 (a) Variância explicada acumulativa para o 

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1. 

 

Fonte: A autora (2020). 
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Figura 44 - Gráfico do efeito do pré-processamento para os papéis sulfites S4 (a) espectros brutos e 

(b) espectros pré-processados. 

 

Fonte: A autora (2020). 
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Figura 45 - Gráfico da PCA para os papéis sulfites S4 (a) Variância explicada acumulativa para o 

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1. 

 

Fonte: A autora (2020). 
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Figura 46 - Gráfico do efeito do pré-processamento para os papéis sulfites S5 (a) espectros brutos e 

(b) espectros pré-processados. 

 

Fonte: A autora (2020). 
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Figura 47 - Gráfico da PCA para os papéis sulfites S5 (a) Variância explicada acumulativa para o 

modelo (b) escores da PC1 versus o log do tempo (c) pesos da PC1. 

 

Fonte: A autora (2020). 
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APENDÊCE D – GRÁFICOS DE CONTORNO DAS SUPERFÍCIES DE RESPOSTA 

 

Figura 48 - Gráfico de contorno das superfícies para os papéis envelhecidos artificialmente para o (a) 

RMCEC e (b) RMSECV 

 

Fonte: A autora (2020).  
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Figura 49 - Gráfico de contorno das superfícies para os papéis envelhecidos naturalmente para o (a) 

RMCEC e (b) RMSECV. 

 

Fonte: A autora (2020). 
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