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ABSTRACT

Cosmic strings are line-like topological defects expected to have formed during cosmological

phase transitions in the early universe when the Higgs field acquired a non-vanishing expectation

value. Because of being thin, on a cosmological scale, their gravitational effects are usually studied

using the wire approximation, in which the string has a negligible width. Although the wire approx-

imation seems reasonable in the cosmological context, local gravitational interaction with matter

fields can be significant when considering a non-vanishing radius. Generally, the spacetime of a

gravitating vortex is flat at the center, has a localized curvature at some finite distance from the

core, and is flat and conical far from the center. The conical structure is characterized by an angular

variable ranging from 0 to less than 2𝜋, i.e., the space has an angular deficit. This work shows that

when considering a scalar field scattering in a gravitating cosmic string spacetime, the standard

partial-wave approach’s scattering amplitude is singular. In order to avoid the divergence caused by

the spacetime asymptotically conical structure, we propose a modification of the asymptotic ansatz

in the partial-wave formalism and find the corrections in the phase-shift and total scattering cross-

section. We also developed a toy model for the spacetime metric of a cosmic string and showed how

local interaction with the vortex gauge field affects the scalar field total cross-section. Then we apply

this formalism to a Dirac field and show the explicit formula for the fermionic total cross-section.

Finally, we study the scattering of bosonic and fermionic fields in the spacetime of an abelian and

a nonabelian gravitating cosmic strings and show that the cross-sections have damped oscillations.

In order to understand the origin of this behavior, we used the aforementioned toy model to show

that the spacetime particular asymptotical structure causes the observed oscillations.

Keywords: boson; fermion; cosmic string; gravitation; topological defect; phase transition.



RESUMO

Cordas cósmicas são defeitos topológicos cilindricamente simétricos que espera-se que tenham

se formado durante algumas transições de fase no universo primordial quando o campo de Higgs

adquiriu um valor não-nulo. Por serem estreitas, numa escala cosmológica, elas são comumente

estudadas utilizando a aproximação de fio na qual considera-se que o raio da corda é nulo. Embora

essa aproximação faça sentido num contexto cosmológico, a interação gravitacional local desses

objetos com campos de matéria pode ser muito relevante quando consideramos um raio não-nulo. De

forma geral, o espaço-tempo ao redor de um vórtice é plano no centro, possui curvatura localizada a

uma distância finita da origem, e é plano e cônico longe do centro. A estrutura cônica é caracterizada

por uma coordenada angular variando de 0 a menos que 2𝜋, isto é, o espaço-tempo possui um

déficit angular. Nosso trabalho mostra que quando consideramos o espalhamento de um campo

escalar no espaço-tempo de uma corda cósmica, a amplitude de espalhamento encontrada a partir

da abordagem usual de ondas parciais é divergente. Para evitar a singularidade causada pela estrutura

assintoticamente cônica do espaço-tempo, nós propomos uma modificação do ansatz assintótico no

formalismo de ondas parciais e encontramos correções no desvio de fase e na seção de choque total.

Também desenvolvemos um modelo simplificado para a métrica de uma corda cósmica e mostramos

como a interação com o campo de calibre do vórtice afeta a seção de choque do campo escalar.

Após isso aplicamos o formalismo para um campo de Dirac e explicitamente mostramos a fórmula da

seção de choque para o caso fermiônico. Por fim, estudamos o espalhamento de campos bosônicos

e fermiônicos no espaço-tempo de uma corda cósmica abeliana e não-abeliana e vimos que a seção

de choque apresenta oscilações amortecidas. Para entender a origem desse comportamento usamos

nosso modelo simplificado para mostrar que a estrutura assintótica do espaço-tempo causa essas

oscilações.

Palavras-chave: boson; fermion; corda cósmica; gravitação; defeito topologico; transições de fase.
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1 INTRODUCTION

In 1976, Thomas Kibble showed that cosmological phase transitions during the early universe

should lead to the formation of topological defects, namely cosmic strings, domain walls and

monopoles (KIBBLE, 1976). Among these, cosmic strings have been showed to be the most promis-

ing ones (PRESKILL, 1979; VILENKIN, 1981). Along the years many attempts have been made

in order to develop reasonable observational constraints on the parameters of real cosmic strings

(ADE et al., 2014; GOTT III, 1985). Some works suggested cosmic strings as possible sources for

gravitational lensing phenomena (SCHILD et al., 2004); and although some of these claims have

been debunked (AGOL; HOGAN; PLOTKIN, 2006), recent data from 12 years of observation of the

NANOGrav collaboration (ARZOUMANIAN et al., 2020) suggests that cosmic strings gravitational

interaction might be affecting the detection of pulsar blinking (BLASI; BRDAR; SCHMITZ, 2021;

ELLIS; LEWICKI, 2021). It appears the subject of cosmic strings is about to be revived. However,

the attention toward cosmic strings is not exclusively by cosmological reasons. These objects have

strong condensed matter counterparts. The U(1) string solution, for instance, is also present in the

theory of superconductors (ABRIKOSOV, A. A., 1957; ABRIKOSOV, Aleksej A, 2004; FEYNMAN,

1955). Furthermore, even the gravitational interaction of cosmic strings, in the wire approximation,

have condensed matter analogues called wedge disclinations and edge dislocations. Therefore the

interest in cosmic strings/vortex solutions, are not exclusive for the high-energy physicists.

Many cosmic string solutions have been found in many diverse models, specially during the 20th

century, such as the Nielsen-Olesen vortex in 1973 (NIELSEN; OLESEN, 1973), Semilocal strings in

1991 (VACHASPATI; ACHÚCARRO, 1991) and Eletroweak strings in 1993 (VACHASPATI, 1993).

Nonetheless their gravitational interaction with nearby matter have been most studied using the

wire approximation. This is possibly because it is too hard to study the gravity-coupled system,

since one usually has to solve 5 (or more) coupled partial differential equations. Hence one has to

resort to numerical methods to have even a basic understanding of the field and metric solutions.

Even the flat-spacetime cosmic string solutions have not been analytically solved completely. With

a symmetry-breaking model in hands one frequently resorts to proving the existence of such a line-

like object without actually finding the solution analytically. Only in some restricted situations the

equations of motion are analytically solvable, such that it is of no surprise that the gravity-coupled

system is only possible to be studied using numerical methods.

Although Garfinkle (GARFINKLE, 1985) made significant advances in understanding the asymp-
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totical conical limit of an abelian string spacetime, there was still plenty of aspects to be understood.

For instance, how do the vortex internal parameters affect the asymptotical metric limit or the curva-

ture profile? Is the conical limit a general property of any cosmic string solution? Do the gravitational

description changes significantly when we consider the vortex size to be non-negligible? These are

all legitimate questions, but one needs to build a comprehensive understanding of gravitating cosmic

string solutions to answer them. The works of Christensen, Larsen, and Verbin (1999) and Bri-

haye and Lubo (2000) on the abelian-Higgs model appeared as a light in this long cosmic journey.

(CHRISTENSEN; LARSEN; VERBIN, 1999) established the default notation in studying gravita-

tionally extended vortex solutions of the abelian-Higgs model and following them Brihaye and Lubo

(2000) showed that the metric of the U(1) vortex is asymptotically conical and how the conical

parameters depend on the internal ones. Subsequently many gravitating vortex solutions have been

found to also be asymptotically conical. This feature, which seems to be general to all gravitating

cosmic string solutions, is a key point to the work presented in chapters 4 and 5 of this thesis.

This thesis is organized as follows. In Chapter 2 we present the essential theory of cosmic strings

without taking into account their gravitational interaction. We study the Nielsen-Olesen vortex with a

reasonable amount of details and present the numerical solution to the scalar and gauge fields as well

as the energy density with two different winding numbers. In Chapter 3, we study the gravitational

aspects of cosmic strings. We present the wire approximation and two of the local physical effects

of a conical spacetime. In the second part of Chapter 3 we dive into the world of gravitationally

extended vortices. We present the results from (CHRISTENSEN; LARSEN; VERBIN, 1999) and

(BRIHAYE; LUBO, 2000) on the gravitating U(1) string, and the results of Pádua Santos and Mello

(2015) on a non-abelian-Higgs model developed recently. We see that both of these models present

conical structure far from the core. In Chapter 4 we study the scattering of scalar and fermionic

fields in the spacetime of a gravitating cosmic string. We show that the partial-wave formalism

presents inconsistencies when applied to the scalar field scattering in this class of spacetimes and

propose a modification to solve them. We explicitly show the corrections in the phase-shift, scattering

amplitude and total cross-section. In order to apply the formalism we develop a toy-model for the

spacetime of a cosmic string and study the scattering of a scalar field in this toy-model. We also

take into account the interaction with the gauge field that generates the vortex and compare the

cross-section with and without the local gauge-field interaction. In the last part of 4 we apply the

same formalism to the fermionic field and find the expression of the total scattering cross-section.

In Chapter 5 we apply the formalism to the spacetime found by (PÁDUA SANTOS; MELLO,
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2015). In the first part we study the scattering of the scalar field and show how the mass of the field

affects the total cross-section. We then turn our attention to analyze the reason behind the observed

oscillations in the total cross-section. In order to do that we use the aforementioned toy-model to

conclude that the oscillations are caused by the spacetime asymptotical conical structure. In the

second part of Chapter 5 we study the fermionic scattering in the same spacetime. We show the

dependence of the cross-section with the fermion mass and also observe oscillations in the total

cross-section. Finally we present a crude estimation of why the cross-section is larger when the

deficit angle of the asymptotical spacetime is bigger.

Throughout the text we use natural units where ℏ = 𝑐 = 1. Hence mass is measured in Planck

mass, 𝑚𝑝, and length in Planck length, 𝑙𝑝. For future reference, these values are approximately

𝑚𝑝 = 2.1 × 10−8 kg and 𝑙𝑝 = 1.6 × 10−35 m.
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2 DOWN THE COSMIC HOLE: TOPOLOGICAL DEFECTS AND STRING FORMA-

TION

2.1 TOPOLOGICAL DEFECTS

Start with something that

everyone knows and understands,

people like to hear what they

know. Then say something that

only the experts understand, lest

you be accused of talking trivia.

Conclude with something no one,

not even you, can understand,

just to keep the proper respect

for physics.

Vicki Weisskopf (FREUND,

2007)

In field theory, a topological defect is a field configuration that only depends on the value of the

field at the boundaries. Since, for a localized configuration, the boundary field values are also the

vacuum ones we can also define topological defects by the non-trivial structure of the vacuum of the

theory, which is commonly expressed as a disconnectedness in the vacuum manifold. This motivates

a more general definition of topological defects which is also valid outside the field theory context:

a topological defect is a discontinuity (defect) in the order parameter1 that cannot be removed

(topological).

Furthermore, if the field configuration cannot be continuously transformed to the vacuum keep-

ing the energy finite then it is considered topologically stable since, as we shall see, it is possible to

define a conserved charge that depends only on the field values at the boundaries.

The non-trivial topology of the vacuum is commonly connected to a form of symmetry breaking,

which can be related to phase transitions in a variety of systems, ranging from condensed matter

ones, as in liquid crystals, liquid helium, and superconductors, to the formation of structures in the
1 In field theory the order parameter is the value of field at the vacuum.
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early universe, such as domain walls and cosmic strings.

In this chapter, we will see the basic topological defects from a field-theoretical point of view. In

the last section, however, we encounter some interesting connections between condensed matter

systems and the universe’s structure.

2.1.1 The simplest model: 𝜑4

When confronted with a new subject, it is often illuminating to start with a straightforward

problem. A simple model that admits a topological defect solution is the 1+1-dimensional 𝜑4 model,

i.e. we are searching for static solutions in 1 spatial dimension.

ℒ = 1
2𝜕𝜇𝜑 𝜕

𝜇𝜑− 𝑉 (𝜑), with 𝑉 (𝜑) = 𝜆

4
(︁
𝜑2 − 𝜂2

)︁2
. (2.1)

The 𝜑4 Lagrangian describes a real scalar field with a quartic self-interaction potential. The quadratic

term in the field, 𝜆𝜂2𝜑2/2, means the mass of the field is
√
𝜆𝜂. Also, the minimum of the potential,

𝑉 (𝜑) = 0, is achieved when 𝜑 = ±𝜂, hence we say 𝜑 = ±𝜂 are the vacuum states.

The Euler-Lagrange equation yields the solutions

𝜑(𝑥) = ±𝜂 tanh
⎛⎝√︃𝜆

2 𝜂𝑥
⎞⎠ , (2.2)

which are called kink (positive sign) and anti-kink (negative sign). The kink is a one-dimensional,

localized, time-independent, stable solution. We shall see it is also topologically stable, i.e. the

boundary conditions enforce stability under field perturbations.

Figure 1 – Profiles of the field, potential and energy density of the kink solution.
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Source: The author (2021).
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In Figure 1 we see that the kink interpolates between both vacuum states, ±𝜂, which are at

±∞. Also, the order parameter is the vacuum expectation value (VEV), ⟨𝜑⟩, the field’s value at the

minimum of the potential as it labels the different equilibrium field configurations.

The 𝜑4 model has many applications. For example, it can represent domains walls (ZEL’DOVICH;

KOBZAREV; OKUN, 1974), 2-dimensional structures expected to have formed during the early

universe, but also non-linear excitations in polyacetylene (RICE, 1979). For a historical overview of

the 𝜑4 model we suggest (CAMPBELL, 2019).

Now, if we look at the vacuum manifold (the space of vacuum states), we see that it is discon-

nected. It is impossible to go from one vacuum to the other passing only through vacuum states.

This means that the order parameter, ⟨𝜑⟩, has a discontinuity between the vacua; thus, the vacuum

manifold is disconnected.

It was mentioned earlier that topological defects are usually connected with symmetry breaking,

but which symmetry is broken by the quartic potential? The answer is 𝑍2 parity, which is equivalent

to 𝜑 → −𝜑. If we make 𝜂 → 0 we see that both vacua coalesce to the same value, namely ⟨𝜑⟩ = 0,

and the configuration becomes 𝑍2 invariant. The degenerate minima and the disconnected vacuum

manifold only appear because 𝜂 ̸= 0.

Figure 2 – Representation of vacuum states interpolated by the kink solution.

−η η
Source: The author (2021).

Topological defects are topologically stable. In order to destroy the kink, one would have to take

every point of the solution and move to zero, which would require an infinite amount of energy

since the solution extends to infinity. This guarantees the stability of the kink. This argument can be

tracked down to the disconnectedness of the vacuum, where the vacuum structure ensures stability.

We can see topological stability more clearly defining the current

𝑗𝜇 = 𝜖𝜇𝜈 𝜕𝜈𝜑 (2.3)
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where 𝜖𝜇𝜈 is the two-dimensional Levi-Civita antisymmetric tensor. One can easily see that the

current (2.3) is conserved, 𝜕𝜇𝑗𝜇 = 0, which gives rise to a conserved charge

𝑄 =
∫︁ ∞

−∞
𝑑𝑥 𝑗0 = 𝜑(∞) − 𝜑(−∞) = 2𝜂. (2.4)

The conserved charge derived from current (2.3) only depends on the VEV. Naturally (2.3) is

called topological current, and (2.4) the topological charge. One can see that (2.3) is not derived

from Noether’s theorem, so this is a purely topological conservation law. Once again, the boundary

conditions (topology) guarantees stability!

2.1.2 Derrick sends in a little bill: Derrick’s theorem

Naturally, one might want to explore solutions of the 𝜑4 model in more spatial dimensions.

However, it is not possible to find such stable static solutions. Derrick’s theorem (DERRICK, 1964)

states that

there are no non-linear scalar field models with stable, time-independent, and localized

solutions in more than one dimension

which imposes a big restriction on higher-dimensional solutions to (2.1). Essentially, if one has a

non-linear scalar model in more than one spatial dimension it is guaranteed no static and localized2

solution is stable under field perturbations.

Derrick’s argument is based on the fact that any D-dimensional pure scalar field theory, with static

solution is 𝜑(𝑥), has total energy given by

𝐸(𝜑(𝑥)) = 𝐸 =
∫︁
𝑑𝐷𝑥

[︁
|∇𝑥 𝜑(𝑥)|2 + 𝑉 (𝜑(𝑥))

]︁
. (2.5)

where ∇𝑥 is the gradient with respect to the 𝑥-coordinates. For further use we define the two

quantities

𝐼1 =
∫︁
𝑑𝐷𝑥 |∇𝑥𝜑(𝑥)|2 > 0 ,

𝐼2 =
∫︁
𝑑𝐷𝑥𝑉 (𝜑(𝑥)) > 0 .

(2.6)

We can make the rescaling 𝑥 → 𝑦 = 𝛼𝑥, 𝛼 ̸= 0, and define the deformed field 𝜑𝛼 = 𝜑(𝛼𝑥).

The energy of the new configuration is given by
2 "Localized" means the energy density vanishes at infinity.
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𝐸(𝜑𝛼) = 𝐸𝛼 =
∫︁
𝑑𝐷𝑥

[︁
|∇𝑥𝜑(𝛼𝑥)|2 + 𝑉 (𝜑(𝛼𝑥))

]︁
(2.7)

= 𝛼−𝐷
∫︁
𝑑𝐷𝑦

[︁
𝛼2 |∇𝑦𝜑(𝑦)|2 + 𝑉 (𝜑(𝑦))

]︁
(2.8)

= 𝛼2−𝐷𝐼1 + 𝛼−𝐷𝐼2. (2.9)

Now we can analyze how the energy behaves with respect to the rescaling parameter 𝛼 and the

spatial dimensions. The main point here is that if the solution 𝜑(𝑥) is stable then 𝛼 = 1 is a minimum

of the energy.

Extremizing the energy we find the condition for the solution to be at the equilibrium point:

𝑑𝐸

𝑑𝛼

⃒⃒⃒⃒
⃒
𝛼=1

= 0 ⇒ 𝐷𝐼2 = (2 −𝐷)𝐼1 (2.10)

Now we need to know if this point is a minimum, 𝛿2𝐸 > 0, or a maximum, 𝛿2𝐸 < 0.

𝑑2𝐸

𝑑𝛼2

⃒⃒⃒⃒
⃒
𝛼=1

= 2(2 −𝐷)𝐼1 < 0for 𝐷 < 2, (2.11)

which is greater than zero only when 𝐷 < 2. This means that for 𝐷 ≥ 2 a deformation of 𝜑(𝑥)

shall decrease the energy of the configuration, hence the solution is not stable.

The alternatives to construct stable non-linear scalar field solutions in higher dimensions are split

into two categories: 1) extending the model by including more fields, like a gauge or spinor field, and

b) relaxing the time-independence or localized condition. Higher-dimensional topological defects can

be obtained following any of these two paths. Before diving into any of these routes, we need to

understand a straightforward generalization of (2.1).

2.2 SPONTANEOUS SYMMETRY BREAKING

Come forth into the light of

things, let nature be your

teacher.

William Wordsworth

Knowing the symmetries of the Lagrangian is often regarded as the first step in getting a

comprehensive description of a system. If a symmetry is continuous, Noether’s theorem assures
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a related conserved quantity, making some calculations a lot easier. Nevertheless, sometimes a

symmetry of the Lagrangian might not be the symmetry of the vacuum. In such cases, we say the

symmetry is spontaneously broken.

2.2.1 A simple model: Goldstone

We can illustrate the main features of spontaneous symmetry breaking using the Goldstone model

ℒ = 𝜕𝜇𝜑
* 𝜕𝜇𝜑− 𝑉 (𝜑), with 𝑉 (𝜑) = 𝜆

4
(︁
|𝜑|2 − 𝜂2

)︁2
, (2.12)

which looks similar to the 𝜑4 one, but now 𝜑 is a complex scalar field instead of a real one. Although,

according to Derrick’s theorem, model (2.12) in more than one dimension is unstable, it is also ped-

agogically useful to illustrate spontaneous symmetry breaking. We see that (2.12) is invariant under

the action of the global 𝑈(1) group, i.e., (2.12) does not change if we multiply 𝜑 by a constant

phase 𝛼, 𝜑 → 𝑒𝑖𝛼𝜑. The vacuum state, 𝜑 = 𝜂𝑒𝑖𝜃, however, is not invariant under 𝑈(1). The global

𝑈(1) symmetry is spontaneously broken.

Figure 3 – Potential of the Goldstone model, also called mexican hat or Higgs potential.

R
e(
φ)

−η

0

η
Im(φ)

−η

0
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Source: the author (2021)

Since the coupling constant 𝜆 is considered to be small, we can use the term vacuum expectation

value referring to the ground state, since when 𝜆 → 0, the classical and quantum values become

the same. For small 𝜂, the potential 𝑉 (𝜑) can be approximated by

𝑉 (𝜑) ≈ |𝜑|4 − 2𝜆𝜂2|𝜑|2, (2.13)



21

which has a maximum 𝑉𝑚𝑎𝑥 = 𝜆𝜂2 at 𝜑 = 0 and a minimum 𝑉𝑚𝑖𝑛 = 0 at |𝜑| = 𝜂. In order to keep

track of field excitations, we expand 𝜑 around the specific ground state 𝜑 = 𝜂,

𝜑 = 𝜂 + 1√
2

(𝜑1 + 𝑖𝜑2), (2.14)

where 𝜑1 and 𝜑2 are treated as two independent real scalar fields. Each term of (2.12) becomes

𝜕𝜇𝜑
*𝜕𝜇𝜑 = 1

2 [𝜕𝜇𝜑1𝜕
𝜇𝜑1 + 𝜕𝜇𝜑2𝜕

𝜇𝜑2] ,

𝑉 (𝜑) = 𝜆

4

[︂1
2(𝜑2

1 − 𝜑2
2) +

√
2𝜂𝜑1

]︂2

= 𝜆

4

[︂1
4(𝜑4

1 + 𝜑4
2 − 2𝜑2

1𝜑
2
2) + 2𝜂2𝜑2

1 +
√

2𝜂𝜑1(𝜑2
1 − 𝜑2

2)
]︂
.

(2.15)

Now plugging (2.15) into (2.12) yields

ℒ𝑒𝑥𝑐 = 1
2(𝜕𝜇𝜑1)2 − 1

2𝜂
2𝜆𝜑2

1 + 1
2(𝜕𝜇𝜑2)2⏟  ⏞  

free part

+ℒ𝑖𝑛𝑡, (2.16)

where ℒ𝑒𝑥𝑐 refers to the excitation of the scalar field and ℒ𝑖𝑛𝑡 includes all the interaction terms.

What is important to notice here is that the free part describes a massive scalar field 𝜑1, with

mass 𝜂
√︁
𝜆/2, and a massless scalar field 𝜑2. This suggests the symmetry breaking, which can be

tracked down to the inclusion of a complex scalar field, generates a massless excitation of the Higgs

field, 𝜑2, called Goldstone boson. In 1961 Jeffrey Goldstone conjectured this to be a general feature

of models with symmetry breaking. The Goldstone conjecture (GOLDSTONE, 1961) states that

“every spontaneous breaking of a continuous symmetry generates a massless scalar particle”. It was

demonstrated, becoming a theorem, in 1962 by Goldstone, Salam and Weinberg (GOLDSTONE;

SALAM; WEINBERG, 1962).

We can give meaning to the Goldstone boson by looking at Figure 3. In order to use the expansion

(2.14) suppose that the system is at the vacuum with 𝜃 = 0, i.e. at Im(𝜑) = 0 and Re(𝜑) = 𝜂. In this

situation, a change in 𝜑1 (the real part of the field) is energetically disfavoured, since the state would

have to climb the potential hill, while a change in 𝜑2 takes the field to an energetically equivalent

state, only changing the representative vacuum (value of 𝜃). The Goldstone boson encodes the

energetic symmetry of the vacua. Naturally, any interpretation to 𝜑1 or 𝜑2, as defined in (2.14),

have to consider them as perturbations around 𝜑 = 𝜂. There is, however, a loophole to the Goldstone

theorem. If we consider a broken local symmetry, we can make the Goldstone boson disappear. One

might take a moment and try to figure out why.
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2.2.2 A hard one: abelian-Higgs

Now we are going to see what happens when we impose a local symmetry in the Goldstone

model. First of all, local symmetry plus Lorentz-invariance forces the existence of a gauge field

communicating the symmetry. Consider the abelian-Higgs model with the following Lagrangian

ℒ𝐴𝐻 = (𝐷𝜇𝜑)*(𝐷𝜇𝜑) − 1
4𝐹𝜇𝜈𝐹

𝜇𝜈 − 𝑉 (𝜑), with 𝑉 (𝜑) = 𝜆

4 (|𝜑|2 − 𝜂2)2, (2.17)

where 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇 is the covariant derivative in field space, 𝑒 is the coupling to the gauge

field (usually referred to as charge), 𝐴𝜇 is the gauge field, and 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 is the Faraday

tensor. Because we are dealing with a gauge field, there is a subtlety. The Lagrangian (2.17) have

𝑈(1) local symmetry, which means invariance under gauge transformations

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜑 → 𝜑′ = 𝑒𝑖𝛼(𝑥)𝜑

𝜑* → 𝜑*′ = 𝑒−𝑖𝛼(𝑥)𝜑*

𝐴𝜇 → 𝐴′
𝜇 = 𝐴𝜇 + 1

𝑒
𝜕𝜇𝛼(𝑥),

(2.18)

for any arbitrary coordinate dependent function 𝛼(𝑥). Transformations (2.18) tell us that for every

choice of the four-vector 𝐴𝜇, the vector 𝐴′
𝜇 is equivalent. This is called gauge freedom. It means

that we have the freedom of choosing a function 𝛼, the gauge, that better suits our intentions. In

this case we can choose a gauge that annihilates the imaginary part of 𝜑, the Goldstone boson.

Expanding the field around vacuum

𝜑 = 𝜂 + 1√
2
𝜑1, (2.19)

results in the Lagrangian

ℒ𝑒𝑥𝑐 = 1
2(𝜕𝜇𝜑1)2 + 𝜆

2𝜂
2𝜑2

1 + 𝑒2𝜂2𝐴𝜇𝐴
𝜇 + 1

4𝐹𝜇𝜈𝐹
𝜇𝜈 + ℒ𝑖𝑛𝑡. (2.20)

One might notice that now we do not have any massless scalar boson in (2.20), the gauge boson

"ate" the Goldstone boson. In addition, the field 𝐴𝜇 has a self-interaction term, 𝑒2𝜂2𝐴𝜇𝐴
𝜇, meaning

that the gauge boson, initially massless, acquires a mass 𝑚𝐴 =
√

2𝑒𝜂. This result can be generalized

to any number of non-abelian gauge fields. It can be shown that the corresponding gauge boson

acquires a mass proportional to the vacuum energy for every broken symmetry.
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2.2.3 Global strings

Now consider the Goldstone potential

𝑉 (𝜑) = 𝜆

4 (|𝜑|2 − 𝜂2)2, (2.21)

and assume the field 𝜑 is near the minima, 𝜑 = 𝜑0𝑒
𝑖𝜃, where 𝜃 is the phase in the field space. We

can map circles, in field space, near the minima of the potential. which we denote by the letter

𝐿, to loops in physical space, which we denote by 𝑆, since both are periodic closed curves. Once

we travel around a loop 𝑆, in physical space, we know the angular coordinate, 𝜙, must change by

2𝜋 while the phase of 𝐿, the image of 𝑆 in field space, 𝜃, must change by an integer multiple of

2𝜋, Δ𝜃 = 2𝜋𝑛. Now imagine one continuously deform the loop 𝑆, in physical space, to a point 𝑝.

Since the field has to be uniquely determined at 𝑝 there are two options: 𝜑0(𝑝) = 0 or 𝜑0(𝑝) ̸= 0.

If 𝜑0(𝑝) = 0 then we know there is an energy excitation inside 𝑆.

If 𝜑0(𝑝) ̸= 0, because 𝜑 is single-valued at 𝑝 then Δ𝜃 = 0 at some intermediate loop 𝐿′, which is

mapped to 𝑆 ′ between 𝑆 and 𝑝 in physical space, but since Δ𝜃 has to be an integer multiple of 2𝜋,

Δ𝜃 has to jump from 2𝜋 to 0 at 𝐿′, which contradicts the hypothesis that 𝜑 is a smooth function

of the coordinates. Hence 𝜑0 = 0 at least at one point of a loop 𝐿′′ located between 𝐿 and 𝐿′. The

excitation confined by the loop 𝑆 ′′, the image of 𝐿′′ in physical space, is called a cosmic string. This

reasoning can be better visualized in Figure 4 and works for any model that possesses a symmetry

breaking potential of the form ((2.21)).
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Figure 4 – |𝜑| has to vanish at some point when contracted from a minimum of the potential 𝑉 (𝜑) to a single point
𝑝.

(a) Loops in physical space.

Im

Re(

(b) Loops in physical space mapped onto field space.

Source: The author (2021).

We can show the phase difference around the loop 𝐿′′, or any other above it, in Figure 4b is

indeed zero. The phase 𝜃 of any point in 𝐿′′ is

𝜃 = tan−1
(︃

Im(𝜑)
Re(𝜑)

)︃
. (2.22)

So, starting at point (Re(𝜑), Im(𝜑)) = (0, 0) and going anticlockwise on the loop 𝐿′′ we see that

𝜃 increases in the first quarter of the circle, and so it does on the second quarter. However, on the

third quarter, when Re(𝜑) < 0, the phase difference is negative, and so it is on the fourth quarter,

yielding Δ𝜃 = 0.

The deformation argument outlined above assures that there must be an excitation of the Higgs

field at some point of the surface bounded by 𝐿, and it is clear that this excitation should have

cylindrical symmetry since 𝐿 is on a bounded 2-surface. Moreover, the fact that Δ𝜃 should be an

integer multiple of 2𝜋 means that we can make the correspondence 𝜃 = 𝑛𝜙, where 𝑛 is called the

winding number. Finally, the vacuum manifold is a circle, which is not simply connected because a
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loop on the circle cannot be continuously shrunk to a point on the circle (NAKAHARA, 2018).

Figure 5 – The vacuum manifold of the Goldstone model is a circle.

Source: the author (2020)

Now we turn our attention to the simplest vortex solution, the global string. This solution

arises from the Goldstone model (2.12), which breaks global 𝑈(1) symmetry. Consider a localized

configuration, 𝑉 (𝜑) 𝑟→∞−−−→ 0, which means that far from the core of the string the scalar field is

approximately 𝜑 = 𝜂𝑒𝑖𝑛𝜙. The energy density is given by3

𝐻 = |∇𝜑|2 + 𝑉 (𝜑), 𝐻(𝑟 → ∞) ≈ |∇𝜑|2, (2.23)

which gives the total energy (excluding the contribution from the core)

𝐸 =
∫︁

|∇𝜑|2𝑑2𝑥 =
∫︁
𝜂2𝑛2 1

𝑟2 𝑟𝑑𝑟𝑑𝜙 = 2𝜋𝑛2𝜂2
∫︁ 𝑅

𝛿

1
𝑟
𝑑𝑟

= 2𝜋𝑛2𝜂2 ln
(︂
𝑅

𝛿

)︂
.

(2.24)

In the above expression, 𝛿 is the width of the string4, 𝑅 is the cutoff radius, and the winding number

𝑛 labels the kinetic energy of the string. We see that (2.24) diverges as 𝑅 → ∞, suggesting the

isolated global string is unstable, which is expected from Derrick’s theorem since this a static solution

of a non-linear pure scalar model. We could anticipate the instability based on Derrick’s theorem.

2.2.4 Local strings

A local string is a vortex solution with local gauge symmetry breaking. Here we consider the

abelian-Higgs model (2.17), which is the Goldstone model coupled with the 𝑈(1) gauge field. Notice

that, because we are coupling the scalar field with a gauge field, Derrick’s theorem no longer predicts

instability. The actual vacuum is the same as in the pure Goldstone case, so the scalar field cannot
3 𝑉 (𝜑) being localized implies that the vacuum value of |𝜑| is a constant, which in turn means that the energy

density 𝐻(𝜑) is localized.
4 We define the width of the string as the point at which the contribution from the potential energy is irrelevant.
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be affected by the gauge field far from the core, i.e., |𝜑| 𝑟→∞−−−→ 𝜂. The effect of the gauge field should

be concentrated on the string core since we are searching for a localized solution.

The Euler-Lagrange equations for the abelian-Higgs model are

𝜕𝜇𝜕
𝜇𝜑− 2𝑖𝑒𝐴𝜇𝜕𝜇𝜑+ [𝜆 (|𝜑|2 − 𝜂2) − 𝑒2𝐴𝜇𝐴

𝜇]𝜑 = 0, (2.25a)

−1
2𝑖𝑒 (𝜑𝜕𝜇𝜑* − 𝜑*𝜕𝜇𝜑) + 1

2𝑒
2𝐴𝜇𝜑*𝜑 ∝ 𝜕𝜈𝐹

𝜈𝜇. (2.25b)

Now plugging the field far from the core 𝜑 = 𝜂𝑒𝑖𝑛𝜙 in (2.25b), we get

𝐴𝜙 = −𝑛

𝑒
, (2.26)

which indicates a magnetic flux, 𝜑𝐵, on the string

𝜑𝐵 =
∫︁
𝑆
𝐵⃗.𝑑𝑆 =

∫︁
𝑆

(∇ × 𝐴⃗) .𝑑𝑆 =
∮︁
𝜕𝑆
𝐴⃗ · 𝑑𝑙 =

∫︁
𝜕𝑆
𝐴𝜙𝑟𝑑𝜙 =

∫︁ 2𝜋

0

𝑛

𝑒𝑟
𝑟𝑑𝜙 = 2𝜋

𝑒
𝑛. (2.27)

The additional minus sign in 𝐴𝜙 appears because the metric has signature -2. We have seen that

the winding number 𝑛 labels the kinetic energy of the string, and now we see that it also labels the

magnetic flux, which is quantized!

Denoting the field covariant derivative as 𝐷𝜇 = 𝜕𝜇 − 𝑖𝑒𝐴𝜇, we know that far from the core

𝐷𝜇𝜑(𝑟 → ∞) ≈ 0,

𝐹𝜇𝜈(𝑟 → ∞) ≈ 0,
(2.28)

which makes the energy depend purely on 𝑉 (𝜑), 𝐻 ≈ 𝑉 (𝜑), which has finite integral. It can be

shown that the mass per unit length 𝜇 of the local 𝑈(1) string is given by (VILENKIN; SHELLARD,

1994)

𝜇 ≈ 2𝜋𝜂2 ln
(︂
𝑚𝜑

𝑚𝐴

)︂
, (2.29)

where 𝑚𝜑 =
√
𝜆𝜂 and 𝑚𝐴 =

√
2𝑒𝜂. We have dodged Derrick’s theorem by employing a gauge-

field coupling.

In 1973 Nielsen and Olesen (NIELSEN; OLESEN, 1973) found explicitly the existence of a static

cylindrically symmetric solution to the field equations (2.25). For this reason, the 𝑈(1) local string,

or abelian-Higgs string, is usually called the Nielsen-Olesen vortex. In the next section, we show the

derivation of the Nielsen-Olesen solution and discuss some of its properties. Also, from now on, we

use the words string and vortex interchangeably.
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2.3 NIELSEN-OLESEN VORTEX

The scientist does not study

nature because it is useful to do

so. He studies it because he

takes pleasure in it, and he takes

pleasure in it because it is

beautiful. If nature were not

beautiful it would not be worth

knowing, and life would not be

worth living. I am not speaking,

of course, of the beauty which

strikes the senses, of the beauty

of qualities and appearances. I

am far from despising this, but it

has nothing to do with science.

What I mean is that more

intimate beauty which comes

from the harmonious order of its

parts, and which a pure

intelligence can grasp.

Henri Poincaré

The equations of motion of the abelian-Higgs model can be expressed in the form

(𝜕𝜇 + 𝑖𝑒𝐴𝜇)(𝜕𝜇 + 𝑖𝑒𝐴𝜇)𝜑+ 𝜆

2 (|𝜑|2 − 𝜂2)𝜑 = 0, (2.30a)

𝜕𝜇𝐹
𝜇𝜈 = 𝑗𝜈 , (2.30b)

𝑗𝜈 = 2𝑒 𝐼𝑚[𝜑*(𝜕𝜈 − 𝑖𝑒𝐴𝜈)𝜑]. (2.30c)

For convenience we rescale the quantities, (𝜑,𝐴𝜇, 𝜕𝜇) → 1
𝜂

(𝜑,𝐴𝜇, 𝜕𝜇), and choose the Lorentz

gauge 𝜕𝜇𝐴𝜇 = 0. Besides that, we take the following ansatz

𝜑(𝑟⃗) = 𝑒𝑖𝑛𝜙𝑓(𝑟),

𝐴𝜙(𝑟⃗) = − 𝑛

𝑒𝑟
𝛼(𝑟),

(2.31)
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where 𝑓(𝑟) and 𝛼(𝑟) are unknown functions that satisfy the boundary conditions

𝑟 → ∞ : 𝑓(𝑟) = 𝛼(𝑟) = 1,

𝑟 → 0 : 𝑓(0) = 𝛼(0) = 0.
(2.32)

Notice that far from the string we recover 𝐴𝜙 = 𝑛
𝑒𝑟

, 𝜑 = 𝜂𝑒𝑖𝑛𝜙. Also, the magnetic flux is in fact

given by 2𝜋𝑛/𝑒 since 𝛼(𝑟 → ∞) = 1. Now we can determine 𝑓(𝑟) and 𝛼(𝑟) by plugging the ansatz

(2.31) in the equations of motion (2.30). One of the terms is

(𝜕𝜇 + 𝑖𝑒𝐴𝜇)(𝜕𝜇 + 𝑖𝑒𝐴𝜇)𝜑 = 𝜕𝜇𝜕
𝜇𝜑− 𝑖𝑒𝐴𝜇𝜕

𝜇𝜑− 𝑖𝑒𝜕𝜇(𝐴𝜇𝜑) − 𝑒2𝐴𝜇𝐴
𝜇𝜑

= −
(︁
∇2𝜑− 𝑖𝑒𝐴⃗ · ∇⃗𝜑− ∇ · (𝐴⃗𝜑) − 𝑒2|𝐴|2𝜑

)︁
= −

⎛⎝∇2𝜑− 2𝑖𝑒𝐴⃗ · ∇⃗𝜑− 𝜑∇ · 𝐴⃗⏟  ⏞  
= 0

−𝑒2|𝐴|2𝜑

⎞⎠
= −𝑒𝑖𝑛𝜙

⎡⎣1
𝑟

𝑑𝑓

𝑑𝑟
+ 𝑑2𝑟

𝑑𝑟2 + 2𝑛2

𝑟2 𝑓𝛼− 𝑛2

𝑟2 𝛼
2 − 𝑛2

𝑟2 𝑓⏟  ⏞  
𝑛2𝑓

𝑟2 (𝛼−1)2

⎤⎦,
(2.33)

giving rise to

𝑓 ′′ + 1
𝑟
𝑓 ′ − 𝑛2

𝑟2 (𝛼− 1)2𝑓 − 𝜆

2 (𝑓 2 − 1)𝑓 = 0 (2.34)

for (2.30a). Moreover, we obtain (2.30c)

𝜕𝜇𝐹
𝜇𝜈 = 𝜕𝜇(𝜕𝜇𝐴𝜈) − 𝜕𝜇(𝜕𝜈𝐴𝜇),

= −∇2𝐴⃗ = −
[︂
∇2(𝐴𝜙) − 𝐴𝜙

𝑟2

]︂
𝜙,

= −
[︃

1
𝑟

𝜕𝐴𝜃

𝜕
+ 𝜕2𝐴𝜃

𝜕𝑟2 − 𝐴𝜙

𝑟2

]︃
𝜙,

= 𝑛

𝑒𝑟

(︂
𝛼′′ − 1

𝑟
𝛼′
)︂
𝜙,

(2.35)

and

𝜑*(𝜕𝜈 + 𝑖𝑒𝐴𝜈)𝜑 = −𝑒−𝑖𝑛𝜙𝑓
[︂
𝑖𝑛

𝑟
𝑓𝑒𝑖𝑛𝜙 − 𝑖𝑛

𝑟
𝛼𝑓𝑒𝑖𝑛𝜙

]︂
,

= −𝑖𝑛
𝑟
𝑓 2(1 − 𝛼)𝜙.

(2.36)

Finally, the equations of motion take the form

𝑓 ′′ + 1
𝑟
𝑓 ′ − 𝑛2

𝑟2 𝑓(𝛼− 1)2 − 𝜆

2𝑓(𝑓 2 − 1) = 0, (2.37a)

𝛼′′ − 1
𝑟
𝛼′ − 2𝑒2𝑓 2(𝛼− 1) = 0. (2.37b)

An analitical solution to (2.37) can only be obtained in some restricted situations.

In the regime 𝑟 → ∞ we have 𝑓(𝑟 → ∞) = 1, which simplifies (2.37b). By rescaling the radius,
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𝑟 =
√

2𝑒𝑟, and changing the variable, 𝛼(𝑟) − 1 = 𝑟𝜉(𝑟), where 𝜉(𝑟) is to be determined, we arrive

at a new form of (2.37b) in the asymptotic regime,

𝑟2𝜉′′ + 𝑟𝜉′ − (𝑟2 + 1)𝜉 = 0, (2.38)

where prime denotes differentiation with respect to 𝑟. Equation (2.38) is the modified Bessel equa-

tion, and since we want the solution to be finite at large 𝑟, it shall be proportional to the modified

Bessel function of the second kind of order 1, 𝐾1(𝑟). The asymptotic behavior of 𝛼(𝑟) is given by

𝜉(𝑟) = ±𝐾1(𝑟) → 𝛼(𝑟) = 1 ±
√

2𝑒𝑟𝐾1
(︁√

2𝑒𝑟
)︁
, (2.39)

where the integration constant is set to ±1.

If we rescale the coordinates 𝑥 → 𝑥/𝑒 in (2.30) we can see that the solution to the field equations

are only dependent on the parameter 𝛽 = (𝑚𝜑/𝑚𝐴)2, which measures the relative strength between

scalar and gauge fields. In Figure 6 we show the numerical solution of 𝑓(𝑟), 𝛼(𝑟) and their dependence

on 𝛽. We shall see that the parameter 𝛽 measures the ratio between disruptive and confining forces.

Figure 6 – Dependence of the scalar and gauge fields on the parameter 𝛽. Here we used 𝑛 = 2.
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Source: The author (2021).

In Figure 7 we see how the vortex energy density is affected by the winding number. In general,

the string has zero energy density at the axis and is surrounded by a cylindrical energy density that

goes to zero at infinity. This feature will be important when coupling strings with gravity.

Moreover, we notice that the width of the vortex is proportional to the winding number 𝑛.

In fact, if we consider the magnetic flux uniformly distributed over the vortex, the characteristic

width is proportional to
√
𝑛. The reason for this is that the vortex width should increase with

𝑛 to accommodate the increasing magnetic flux. Recently Alexander Penin and Quinten Weller,

in (PENIN, Alexander A; WELLER, 2020) and (PENIN, Alexander A.; WELLER, 2021), used an
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asymptotic expansion of the field functions in inverse powers of 𝑛 to find a piece-wise perturbative

analytical solution of (2.37) in the limit 𝑛 → ∞.

Figure 7 – The width of the Nielsen-Olesen vortex is proportional to the winding number 𝑛.

n = 2 n = 5

Source: The author (2021).

2.3.1 Properties of the Nielsen-Olesen vortex

Equipped with the solution of the Nielsen-Olesen vortex, we can start analyzing some of its

properties.

2.3.1.1 Energy-momentum tensor

Given an action 𝑆 defined in a spacetime with metric 𝑔𝜇𝜈 with signature -2, the energy-momentum

tensor 𝑇𝜇𝜈 is given by

𝑇𝜇𝜈 = 2√
−𝑔

𝛿𝑆

𝛿𝑔𝜇𝜈
, (2.40)

where 𝑔 is the determinant of the metric. For a Lagrangian ℒ, (2.40) yields

𝑇𝜇𝜈 = 2 𝜕ℒ
𝜕𝑔𝜇𝜈

− 𝑔𝜇𝜈ℒ. (2.41)

Now if we apply (2.41) to the Lagrangian (2.17) we get

𝑇𝜇𝜈 = 𝜕𝜇𝜑𝜕𝜈𝜑
* + 𝑖𝑒(𝐴𝜇𝜑𝜕𝜈𝜑* − 𝐴𝜈𝜑

*𝜕𝜇𝜑) + 𝑒2𝐴𝜇𝐴𝜈 |𝜑|2 + 𝐹𝜇𝜎 𝐹
𝜎
𝜈 − 𝑔𝜇𝜈ℒ, (2.42)



31

which for the ansatz (2.31) results in

𝑇𝑟𝑟 = 𝑛2

2𝑒2𝑟2

(︃
𝑑𝛼

𝑑𝑟

)︃2

+ 1
2

(︃
𝑑𝑓

𝑑𝑟

)︃2

− 𝑓 2

2𝑟2𝑛
2(1 + 𝛼)2 + 𝜆𝜂2

2 − 𝜆

4𝑓
4 − 𝜆𝜂4

4 , (2.43a)

𝑇𝜙𝜙 = 𝑛2

2𝑒2

(︃
𝑑𝛼

𝑑𝑟

)︃2

+ 1
2𝑓

2𝑛2(1 + 𝛼)2 + 𝑟2

⎡⎣𝜆𝜂2

2 𝑓 2 − 𝜆

4𝑓
4 − 1

2

(︃
𝑑𝑓

𝑑𝑟

)︃2

− 𝜆𝜂4

4

⎤⎦ , (2.43b)

𝑇𝑡𝑡 = −𝑇𝑧𝑧 = 𝑛2

2𝑒2𝑟2

(︃
𝑑𝛼

𝑑𝑟

)︃2

+ 1
2

⎡⎣(︃𝑑𝑓
𝑑𝑓

)︃2

+ 𝑓 2

𝑟2 𝑛
2(1 + 𝛼)2

⎤⎦− 𝜆𝜂2

2 + 𝜆

4𝑓
4 + 𝜆𝜂4

4 . (2.43c)

Equations (2.43) tell us that besides the energy density, 𝜀 = 𝑇 𝑡𝑡 , and the longitudinal tension,

𝑝𝑧 = 𝑇 𝑧𝑧 , there is also radial flux of momentum, 𝑝𝑟 = 𝑇 𝑟𝑟 , and azimutal momentum 𝑝𝜙 = 𝑇𝜙𝜙 .

Although in some restricted situations we can neglect 𝑝𝑟 and 𝑝𝜙, they are essential to analyze the

vortex internal dynamics which are non-vanishing in general.

2.3.1.2 Stability

One interesting feature of the Nielsen-Olesen solution is that if the winding number 𝑛 is larger

than 1, the vortex can unwind, i.e: the string decays into 𝑛 strings each with magnetic flux equal

to 2𝜋/𝑒. In 1976 Eugene Bogomol’nyi (BOGOMOL’NYI, 1976) showed that Nielsen-Olesen strings

are unstable to such unwinding if 𝛽 =
(︁
𝑚𝜑

𝑚𝐴

)︁2
> 1 and stable if 𝛽 < 1. This can be explained by

the following reasoning. The magnetic lines repel each other while the Higgs field act to confine

the vortex. Since the field strength is inversely proportional to the mass, when 𝑚𝐴 > 𝑚𝜑 (𝛽 < 1)

the Higgs field is stronger than the repulsion of the magnetic lines, while when 𝑚𝐴 < 𝑚𝜑 (𝛽 > 1)

the repulsion overcomes the confinement and the string unwind. Hence we can see 𝛽 as the ratio

between disruptive and confining forces. At this point, we can see the connection between cosmic

strings and vortex lines in superconductors. Type-II superconductors (𝛽 < 1) at certain values of

the applied magnetic field present stable vortex lines with quantized magnetic flux, while in type-

I superconductors (𝛽 > 1), the quantized vortex lines are unstable and immediately unwind due

to Meissner effect. In 1976, Vega and Schaposnik (DE VEGA; SCHAPOSNIK, 1976) showed that

in the critical coupling, 𝛽 = 1, the equations of motion decouple, and it is possible to construct

an analytical power-series solution to the field equations. In this situation 𝑇𝑟𝑟 = 05 suggesting an

equilibrium in the radial direction, i.e: there is no radial net flux.

Here we finish our discussion on the Nielsen-Olesen solution. In the next section, we will see a

simple mechanism for the cosmological creation of cosmic strings.
5 It implies 𝑇𝜙𝜙 = 0, via energy-momentum conservation 𝜕𝜇𝑇 𝜇

𝜈 = 0.
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2.4 KIBBLE AND THE COSMIC TALE

...so many out-of-way things had

happened lately, that Alice begun

to think very few things indeed

were really impossible.

From "Alice’s adventures in

Wonderland", by Lewis Carrol.

The discussion of the Goldstone potential up to now has been simplified for pedagogical purposes.

When the temperature is above 0K, the Goldstone potential has a different form caused by the

interaction of the matter with the environment energy. Furthermore, according to the standard

model of cosmology, the universe, with all its fields, started in a highly dense, hot state and cooled

through a series of epochs, during which matter interaction drastically changed. In what follows,

we will see how the temperature affects the Higgs field and how it is related to the formation of

topological defects in the early universe.

2.4.1 The role of temperature

Before getting to the Kibble mechanism in the next section, we sketch the essential temperature-

dependence of the Goldstone potential. The discussion of this section is summarized and for further

details and calculations we refer the reader to (VILENKIN; SHELLARD, 1994) The Goldstone

potential at non-zero temperature can be approximated by (VILENKIN; SHELLARD, 1994)

𝑉 (𝜑, 𝑇 ) = 𝑚2(𝑇 )|𝜑|2 + 𝜆

4 |𝜑|4 − 2𝜋2

45 𝑇
4, (2.44)

via perturbative corrections, where 𝑚(𝑇 ) is the effective temperature-dependent mass of the field

𝑚2(𝑇 ) = 𝜆

12
(︁
𝑇 2 − 6𝜂2

)︁
. (2.45)

For 𝑇 > 𝑇𝑐 =
√

6𝜂, 𝑚2(𝑇 ) is positive and the VEV is ⟨𝜑⟩ = 0. As the universe evolved, the

temperature dropped and, for 𝑇 < 𝑇𝑐, 𝑚2(𝑇 ) < 0. When 𝑚2(𝑇 ) < 0 the state ⟨𝜑⟩ = 0 is not

stable anymore and the scalar field acquires a non-zero VEV, leading to 𝑈(1) symmetry breaking.

Minimizing 𝑉 (𝜑, 𝑇 ) results in

|𝜑| = 1√
6

√︁
𝑇 2
𝑐 − 𝑇 2, (2.46)
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which reduces to 𝜂 by setting 𝑇 = 0. In summary, decreasing temperature drives symmetry breaking.

Finally, when 𝑇 ≈ 𝑇𝑐 the approximation is not valid anymore because this regime represents a

second-order phase transition and we need to include further corrections to (2.44).

2.4.2 Kibble mechanism

Looking at a piece of iron at high temperatures, we see that the magnetization direction varies

from point to point; magnetization does not have a preferred direction. This is the most symmetric

state of the system since it possesses rotational symmetry, i.e., we can rotate the iron, and mag-

netization will look the same. Now suppose we cool it; the molecules have less kinetic energy and,

if the cooling is uniform throughout the material, the magnetization in each region ends up in a

common direction: the iron becomes a magnet! The magnetized metal is the less symmetric state

of the system since we no longer have rotational symmetry. But if things happen this way, why do

not all pieces of iron we encounter are magnets?

The loophole of the reasoning is the assumption of uniform cooling. In nature, such uniform

cooling never happens. We certainly can achieve uniformity in a laboratory with ever-increasing levels

of precision, but this is not favored spontaneously. In nature or most simple industrial processes, the

non-uniform cooling leads to different regions choosing different magnetization directions, leading

to a non-magnetic material. In the early universe, things were quite similar. As the universe cooled

down, the Higgs field went from a symmetric state, ⟨𝜑⟩ = 0, to an asymmetric one ⟨𝜑⟩ ≠ 0.

Nevertheless, the phase of the field, i.e., the specific representative vacuum it will be in, is not

a priori defined. Random fluctuations of 𝜑 will determine it. As one can anticipate, this settling

process is not uniform through the universe. Causally disconnected regions may choose different

vacuum states, and the way these regions organize themselves must give rise to topological defects.

Consider the 𝜑4 model. Two nearby regions in space might end up in opposite minima of the

potential. Between them, there can emerge a kink interpolating both vacua. The emerging 2-

dimensional (though the dynamics is restricted to 1 dimension) kink-like structure is called domain

wall.

Now consider the Higgs potential. We can imagine a region of space where the field is in the

symmetric state ⟨𝜑⟩ = 0 surrounded by patches where the field is in the asymmetric state |⟨𝜑⟩| ≠ 𝜂.

This gives birth to 1-dimensional defects, called cosmic strings. This mechanism for the cosmological

formation of topological defects is called Kibble mechanism, after Thomas Kibble, who proposed it
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in 1976 (KIBBLE, 1976).

Figure 8 – Casually disconnected regions in space can end up in different vacua, creating topological defects.

(a) (b)

Source: The author (2021).
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3 GRAVITATING VORTICES

3.1 THE IDEAL STRING

When it comes to the world

around us, is there any choice

but to explore?

Lisa Randall, in "Warped

Passages".

In this section, we will see how a zero-thickness cosmic string affects the geometry of spacetime.

To this end, we use the wire approximation, which treats the vortex as a thin pipe with negligible

radius and constant energy density. This is a good starting point since some physical properties

can be worked out analytically, and it gives us some valuable physical intuition when studying more

complicated, non-analytical scenarios. We start with the consequences of the wire approximation on

the energy-momentum tensor and then proceed to its gravitational effects.

3.1.1 Wire approximation

By treating the vortex as a thin wire we can average the energy-momentum (EM) tensor 𝑇 𝜇𝜈
over the string cross-section and consider all the energy to be localized at one point in the x-y plane,

𝑇 𝜇𝜈 = 𝛿(𝑥)𝛿(𝑦)
∫︁
𝑇 𝜇𝜈 𝑑𝑥𝑑𝑦, (3.1)

This is called the wire approximation which is specially important when considering gravitational

effects of cosmic strings. Because the string is supposed to be invariant under boosts along the z-axis

we must have 𝑇 0
0 = 𝑇 3

3 , such that when we apply a Lorentz transformation to (3.1) it does not

mix these components. In addition, we assume the string does not have any internal shear forces,

𝑇 3
𝑖 = 0 for i = 1,2 or energy flux in any direction 𝑇 0

𝑖 = 0 for i = 1, 2, 3. These assumptions

guarantee the string does not have any considerable internal dynamics. In addition, because the

divergence of the EM tensor vanishes, 𝜕𝜇𝑇 𝜇𝜈 = 0, we have

0 =
∫︁
𝑥 (𝜕𝑥𝑇 𝑥𝜈 + 𝜕𝑦𝑇

𝑦
𝜈 ) 𝑑𝑥𝑑𝑦 =

∫︁
(𝑥𝑇 𝑥𝜈 )

⃒⃒⃒⃒𝑥=∞

𝑥=−∞
𝑑𝑦 +

∫︁
(𝑥𝑇 𝑦𝜈 )

⃒⃒⃒⃒𝑦=∞

𝑦=−∞
𝑑𝑥−

∫︁
𝑇 𝑥𝜈 𝑑𝑥𝑑𝑦, (3.2)



36

where we used integration by parts. Assuming that the components of the EM tensor fall exponen-

tially when 𝑟 → ∞, one can say 𝑇 𝑥𝜈 = 0, and, by a similar reasoning, also 𝑇 𝑦𝜈 = 0 for 𝜈 = 1, 2.

Hence 𝑇 𝑖𝑗 = 0 for i, j = 1, 2. The only non-vanishing components of 𝑇 𝜇𝜈 are 𝑇 0
0 and 𝑇 3

3 . Denoting

the mass per unit length by 𝜇 and knowing 𝑇 0
0 = 𝜀(𝑟) is the energy density, we end up with

𝑇 𝜇𝜈 = 𝜇𝛿(𝑥)𝛿(𝑦) 𝑑𝑖𝑎𝑔(1, 0, 0, 1),

𝜇 = 2𝜋
∫︁ ∞

0
𝜀(𝑟)𝑟𝑑𝑟.

(3.3)

Notice that the only conditions we used were that the EM should fall exponentially at 𝑟 → ∞ and

that it is invariant under boosts along the 𝑧-axis, so these results are valid for every localized narrow
1 string configuration. The string solution with these simplifications is an ideal string. Alternatively,

one could use the lorentz-invariance, localizability of the energy, the no-shear and no disruptive force

conditions to show that any static infinite straight string should have an EM tensor proportional to

diag(1, 0, 0, 1).

We have seen that the Nielsen-Olesen vortex does have momentum in 𝑟 and 𝜙 directions, so the

wire approximation could only represent this solution when 𝛽 = 1, which is also called supersymmetric

limit. However, it could be useful when considering large-scale gravitational effects, when the internal

dynamic of the string is not important.

3.1.2 Gravitating ideal string

In this section, we shall see how an infinite straight wire affects spacetime around itself. We will

follow the approach independently done by Richard Gott (GOTT III, 1985) and William Hiscock

(HISCOCK, 1985). The general procedure is straightforward. We consider a cylindrically symmetric

energy density 𝜀(𝑟) with finite radius 𝑟0, find the metric in 𝑟 < 𝑟0, and match it with the exterior,

𝑟 > 𝑟0, vacuum solution of the Einstein field equations (EFEs). In the end, we take the limit 𝑟0 → 0

in the exterior metric, which yields the metric of a zero-thickness infinite straight string.
1 The vortex width should be small compared to the other parameters of the system.
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Figure 9 – The figure approximates a cosmic string as an energy density confined in a tube of radius 𝑟0.

vacuum

Source: The author (2021).

We need to solve EFEs

𝐺𝜇
𝜈 = 𝑅𝜇

𝜈 − 1
2𝑅𝛿

𝜇
𝜈 = 𝑇 𝜇𝜈 , (3.4)

with an energy-momentum tensor inside the tube given by

𝑇 𝑡𝑡 = 𝑇 𝑧𝑧 = 𝜀(𝑟) and 𝑇 𝑟𝑟 = 𝑇𝜙𝜙 = 0, (3.5)

where 𝜀 is considered to be any 𝑟-dependent function. Though Gott and Hiscock used constant

energy density we will stick to a general approach and consider a constant energy density 𝜀(𝑟) = 𝜀0,

only when needed. The ansatz for the line-element proposed by Gott III (1985) and Hiscock (1985)

is

𝑑𝑠2 = 𝑒2𝜒𝑑𝑡2 − 𝑒2𝜓
(︁
𝑑𝑟2 + 𝑑𝑧2

)︁
− 𝑒2𝜔𝑑𝜑2, (3.6)

where 𝜒(𝑟), 𝜓(𝑟), 𝜔(𝑟) are functions of 𝑟 only. We use exponentials just to ensure the metric com-

ponents are positive. Equation (3.6) yields the following non-zero components of the Einstein tensor

𝐺𝜇
𝜈

𝐺𝑡
𝑡 = −

[︁
(𝜔′)2 + 𝜔′′ + 𝜓′′

]︁
𝑒−2𝜓 (3.7a)

𝐺𝑟
𝑟 = − [𝜒′𝜔′ + 𝜒′𝜓′ + 𝜔′𝜓′] 𝑒−2𝜓 (3.7b)

𝐺𝜙
𝜙 = −

[︁
(𝜒′)2 + 𝜒′′ + 𝜓′′

]︁
𝑒−2𝜓 (3.7c)

𝐺𝑧
𝑧 = −

[︁
(𝜒′)2 + 𝜒′𝜔′ − 𝜒′𝜔′ + 𝜒′𝜓′ + 𝜒′′ + (𝜔′)2 − 𝜔′𝜓′ + 𝜔′′

]︁
𝑒−2𝜓, (3.7d)

where prime denotes derivative with respect to 𝑟. Conservation of energy-momentum, ∇𝜇𝑇
𝜇
𝜈 = 0,

where ∇ denotes the covariant derivative, gives one more constraint on the metric functions

∇𝜇𝑇
𝜇
𝑟 = − (𝜒′ + 𝜓′) 𝜀 = 0, (3.8)

which implies

𝜒′ + 𝜓′ = 0 and 𝜒′′ + 𝜓′′ = 0. (3.9)
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Using (3.9) in (3.7c) we get (𝜒′)2𝑒−2𝜓 = 𝑇𝜙𝜙 = 0 which means 𝜒′ = 𝜓′ = 0, hence 𝜒 and 𝜓 are

constants. From now on we denote 𝑒𝜒 = 𝜒0 and 𝑒𝜓 = 𝜓0. With these results we notice that only

the three last terms of (3.7d) do not vanish, resulting in the equation

(𝜔′)2 + 𝜔′′ = −8𝜋𝜀, (3.10)

where 𝜀 = 𝜓2
0𝜀. Equation (3.10) is equivalent to

(𝑒𝜔)′′ = 𝜀𝑒𝜔, (3.11)

from which we can find 𝜔 once 𝜀(𝑟) is given. Now we consider the exterior metric. Taking the ansatz

(3.6) and setting 𝑇 𝜇𝜈 = 0 in (3.4) results in the exterior solution

𝜒 = 𝑚 ln |𝑟 +𝐾| + 𝐶1 (3.12a)

𝜓 = 𝑚(𝑚− 1) ln |𝑟 +𝐾| + 𝐶2 (3.12b)

𝜔 = (1 −𝑚) ln |𝑟 +𝐾| + 𝐶3, (3.12c)

where 𝐾,𝐶𝑖 are constants to be determined. If we make 𝑟 = 𝑟 +𝐾 we get

𝑒𝜒 = 𝑐 𝑟𝑚 (3.13a)

𝑒𝜓 = 𝑏 𝑟𝑚(𝑚−1) (3.13b)

𝑒𝜔 = 𝑎 𝑟1−𝑚, (3.13c)

which results in the following exterior metric

𝑑𝑠2
𝑜𝑢𝑡 = 𝑐2 𝑟2𝑚𝑑𝑡2 − 𝑏2 𝑟2𝑚(𝑚−1) (𝑑𝑟2 + 𝑑𝑧2) − 𝑎2 𝑟2(1−𝑚)𝑑𝜙2. (3.14)

Now we need to determine 𝑎, 𝑏, 𝑐 based on the continuity of the metric functions and their derivatives

on the boundary 𝑟0. Let us start with the continuity of derivatives. Inside the cylinder the functions

𝜒 and 𝜓 are constants hence continuity of derivative yields 𝑚 = 0. Now taking 𝑚 = 0 on the

continuity of the functions 𝑒𝜒 and 𝑒𝜓 we see that 𝑐2 = 𝜒2
0 and 𝑏2 = 𝜓2

0, which means the scaling of

the coordinates 𝑡 and 𝑧 are equal in the interior and exterior of the cylinder. Also invariance under

boosts along the z-axis demands 𝑐 = 𝑏. For these reasons we set 𝑐 = 𝑏 = 1. Therefore, the exterior

metric takes the following form

𝑑𝑠2
𝑜𝑢𝑡 = 𝑑𝑡2 − (𝑑𝑟2 + 𝑑𝑧2) − 𝑎2𝑟2𝑑𝜙2, 𝑟 > 𝑟0. (3.15)

Since we have neither applied any condition on the size of the cylinder nor on the energy function

𝜀(𝑟), we know that the spacetime outside a hard-wall cylindrically symmetric energy density has to
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have the form (3.15). Nevertheless, notice that we still have to determine two constants, namely

𝑎 and 𝐾. When 𝑟0 → 0 we know, by regularity of the metric at the origin, the inside metric is

Minkowskian, and continuity of metric at 𝑟 = 𝑟0 implies 𝐾 = 𝑟0(1 − 𝑎), hence 𝐾 vanishes when

𝑟0 → 0. For this reason from now on we use 𝑟 = 𝑟.

Now we intend to determine 𝑎. Imposing continuity of the derivative of 𝑒𝜔 across the boundary

yields

𝑒𝜔(𝑟0)𝜔′ = 𝑎. (3.16)

Integrating (3.11) gives

𝑒𝜔𝜔′
⃒⃒⃒⃒𝑟0

0
= −8𝜋

∫︁ 𝑟0

0
𝜀(𝑟)𝑒𝜔𝑑𝑟, (3.17)

and employing the condition that the metric at 𝑟 = 0 is Minkowskian, 𝑒𝜔 𝑟→0−−→ 𝑟, we see that

𝑒𝜔𝜔′ 𝑟→0−−→ 1 which means

𝑒𝜔𝜔′(𝑟0) = 𝑎 = 1 − 8𝜋
∫︁ 𝑟0

0
𝜀(𝑟)𝑒𝜔𝑑𝑟, (3.18)

where (3.16) was used. By now we have already determined the exterior metric in terms of the

matter content of the string, but we can go even further. The mass per unit length of the string (or

linear energy density), 𝜇, is given by

𝜇 =
∫︁ 𝑟0

0
𝜀(𝑟)

√
−𝑔 𝑑𝑟𝑑𝜙 = 2𝜋

∫︁ 𝑟0

0
𝜀(𝑟)𝑒𝜔𝑑𝑟. (3.19)

where 𝑔 is the determinant of the interior metric. This yields

𝑑𝑠2
𝑜𝑢𝑡 = 𝑑𝑡2 − (𝑑𝑟2 + 𝑑𝑧2) − (1 − 4𝜇)2 𝑟2𝑑𝜙2. (3.20)

One interesting feature of this metric is that it does not depend on 𝑟0, so it seems there is no

meaning in applying the zero-thickness limit; we will get back to this point shortly. When 𝑟0 → 0

a reasonable approximation is that the energy distribution inside the tube is uniform, 𝜀(𝑟) = 𝜀0.

Consider Equation (3.11) with 𝜀(𝑟) = 𝜀0. Employing regularity of the metric at the origin, the

solution is

𝑒𝜔 = 𝑟* sin(𝑟/𝑟*), (3.21)

where 𝑟* = 1/
√

8𝜋𝜀. With the metric functions in hand, we can calculate the mass per unit length

explicitly

𝜇 =
∫︁
𝜀𝑟* sin(𝑟/𝑟*)𝑑𝑟𝑑𝜙 = 2𝜋𝜀0𝑟

2
*

[︂
1 − cos

(︂
𝑟0

𝑟*

)︂]︂
. (3.22)
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Figure 10 – The space around a cosmic string is conical. It can be seen as Minkowski space without a slice.

Source: The author (2021).

Now we see that when we apply the limit 𝑟0 → 0 we have to do it such that 𝜇, hence 𝑟0/𝑟*, is kept

constant. It implies that we should also have 𝜀0 → ∞, turning the EM tensor into a delta-function.

This procedure justifies that the metric (3.15) is valid for all values of 𝑟, i.e., we extended the validity

of (3.15) to the whole space.

Consider the line-element outside the zero-thickness infinite straight string

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑟2 − (1 − 4𝜇)2𝑟2𝑑𝜙2 − 𝑑𝑧2, 𝑟 > 0. (3.23)

This line-element represents a locally flat spacetime where the angular variable range from 0 to

2𝜋(1 − 4𝜇) or, equivalently, with a deficit angle Δ𝜙 = 8𝜋𝜇. Notice that Δ𝜙 = 2𝜋 is not physical,

hence 𝜇 is constrained, 0 < 𝜇 < 1
4 . Since we are using natural units, 𝜇 = 1

4 means roughly 3.2×1026

kg/m. At this density, a string with the mass of the Jupiter planet, roughly 2 × 1027 kg, would be

approximately 10 meters long. If we consider the mass of the black hole at the center of the Milky

way galaxy, Sagittarius A*, with mass of approximately 4 × 1036 kg, the corresponding string would

have 1.3 × 107 km.

One can think of this geometry as a flat spacetime where one has cut a slice and glued the

edges, resulting in a conical structure. Imagine taking a flat sheet of paper, cutting a slice of it with

a specific angle, and then gluing the edges. It is only possible if one turns the flat sheet into a cone.

Now take another sheet on a table and draw a constant vector field (a set of arrows with the same

size and same direction) all over the paper, cut a slice, and glue the edges again. One can see that

the vector field on the two sides of the glued edge is not in the same direction. The vector field

changes the direction when it is parallel transported around the tip of the cone, meaning that there

is curvature somewhere. However, the curvature can not be extended since we have not folded the

paper, so it must be located on the tip.
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Figure 11 – A vector paralell transported around the string changes its direction, suggesting non-zero curvature.

Source: The author (2021).

We can formally demonstrate this idea. Taking the trace of EFE (3.4)

𝑔𝜇𝜈
(︂
𝑅𝜇𝜈 − 1

2𝑅𝑔𝜇𝜈
)︂

= 𝑅 − 2𝑅 = −𝑅 = 8𝜋𝑇, (3.24)

and using the averaged energy-momentum tensor 𝑇 𝜇𝜈 = 𝜇𝛿(𝑥)𝛿(𝑦)diag(1, 0, 0, 1). It results in

𝑅 = −Δ𝜙 𝛿(𝑥)𝛿(𝑦) = −Δ𝜙 𝛿(2)(𝑟), (3.25)

which means the discontinuity generated by the curvature is located precisely at the string axis. The

spacetime is locally flat, i.e., it is everywhere flat except a small region. Here we will not address the

controversy of using distributions2 as sources in EFE. A distributional formulation of the straight

string can be found in (ANDERSON, 2015, Chapter 7).

The "cut and glue" process described above is one of Volterra processes, which are used to visu-

alize the formation of crystalline defects in materials. By geometrizing a crystalline lattice, we can

describe crystalline defects by geometrical properties such as curvature and/or torsion. For instance,

defects called disclinations cause non-vanishing curvature while dislocations are related to non-zero

torsion (KATANAEV; VOLOVICH, 1992; PUNTIGAM; SOLENG, 1997; KLEINERT, 1989). The

cosmic string metric shown here is equivalent to a line-like crystalline defect called wedge disclina-

tion, which is "created"3 using the process outlined before. However, this is not the only way to

create such a line-like defect. Some works propose that the cosmic string can also be described

by a torsion singularity, instead of a curvature one (HAMMOND, 2016; FUJISHIRO; HAYASHI;

TAKESHITA, 1993; SOUSA GERBERT, 1990). In this case the cosmic string condensed matter

counterpart is called an edge dislocation.

2 Calling it delta-function is an abuse of terminology. Though physicists commonly treat it as a function, mathe-
matically 𝛿(𝑟) is a distribution.

3 Volterra processes are just tools to visualize the creation of such defects.
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Another interesting property of (3.23), is that if we remove the z-axis from the conical line

element (3.23) the resulting line-element describes the spacetime around a point-particle with mass

𝜇 in (2+1)-dimensional gravity (DESER; JACKIW, 1989; JACKIW, 1985).

Finally, a geometrical way of detecting a cosmic string is to enclose the string with a circular

loop and measure its perimeter. In doing this one sees that the perimeter is 2𝜋𝑟(1 − 4𝜇) and not

just 2𝜋𝑟. This is, however, a global measure. In the next section we will see that this global feature

induces some important local physical effects.

3.1.3 Topology induces physics

In this terrifying world, all we

have are the connections we

make.

Bojack Horseman

In the last section, we have seen that the curvature outside a zero-thickness string vanishes

everywhere. Considering only this fact, we could wrongfully conclude that the string is gravitationally

sterile. Nevertheless, we shall see that the conical structure is phenomenologically quite rich.

We start with analyzing the geodesics in conical space. The line element (3.15) can be written

in a Minkowski-form if we make 𝜃 = (1 − 4𝜇)𝜙

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑟2 − 𝑑𝜃2 − 𝑑𝑧2, 0 ≤ 𝜃 ≤ 2𝜋(1 − 4𝜇), (3.26)

which is more convenient since 𝜃 is what we measure outside the string. Besides that, we know the

geodesics in Minkowski coordinates are straight lines. A displacement in the radial direction is given

by



43

Figure 12 – Coordinates of the geodesic in conical flat space.

Source: The author (2021).

𝑟2(𝑡) = 𝑟2(0) + (𝑑𝑟)2 = 𝑟2(0) + 𝑣2𝑡2 = 𝑟2(0) +
(︃
𝑑𝜃

𝑑𝑡
𝑟(0)𝑡

)︃2

. (3.27)

Now the displacement in the angular direction is

𝜙 = 𝜙0 + 𝑑𝜙 = 𝜙0 + 1
1 − 4𝜇𝑑𝜃,

𝑑𝜃 = tan−1
(︃

Δ𝑦
Δ𝑥

)︃
= tan−1

(︃
𝑑𝜃

𝑑𝑡
𝑡

)︃
= tan−1 [(1 − 4𝜇)𝜔𝑡] ,

(3.28)

where 𝜔 = 𝑑𝜙
𝑑𝑡

. The final equations of motion are given by

𝑟(𝑡) = 𝑟(0)
[︁
(1 − 4𝜇)2 𝜔2𝑡2

]︁1/2
,

𝜙(𝑡) = 𝜙(0) + 1
1 − 4𝜇 tan−1 [(1 − 4𝜇)𝜔𝑡] .

(3.29)

Figure 13 – Light rays are bent when passing near a cosmic string.

Source: The author (2021).

Now, suppose two light rays coming from the same star encounter a cosmic string on their paths,

each ray traveling by one side of the string. It is important to find the difference, if there is any, in

the angle between these two light rays when they reach a distant observer, like us here on earth.
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First, we adapt the formula for 𝑑𝜃 shown before because we want it to reflect the fact that the light

rays are coming from opposite sides of the string, so

𝑑𝜃 = 𝜋

2 + tan−1 [(1 − 4𝜇)𝜔𝑡] . (3.30)

We can express the 𝜙-coordinate of both light rays as

𝜙+(𝑡) = 𝜙(0) + 𝜋/2
1 − 4𝜇 + 1

1 − 4𝜇 tan−1 [(1 − 4𝜇)𝜔𝑡] ,

𝜙−(𝑡) = 𝜙(0) − 𝜋/2
1 − 4𝜇 − 1

1 − 4𝜇 tan−1 [(1 − 4𝜇)𝜔𝑡] .
(3.31)

When 𝑡 → ∞, they become

𝜙+(𝑡 → ∞) = 𝜙(0) + 𝜋

1 − 4𝜇,

𝜙−(𝑡 → ∞) = 𝜙(0) − 𝜋

1 − 4𝜇.
(3.32)

The angular difference between the two light rays are

Δ𝜙𝑔 = 2𝜋
1 − 4𝜇 − 2𝜋 = 8𝜋𝜇

1 − 4𝜇 ⇒ Δ𝜃 = 8𝜋𝜇. (3.33)

This is a rather interesting result. The measured angular difference between the two light rays, Δ𝜃,

is precisely the deficit angle of the spacetime! Moreover, this is a purely geometrical effect that

arises from the global conical structure, not from local spacetime curvature. Notice that we have

not used any assumption of the particle’s mass, so this result is also valid for massive particles. A

careful study of the possible detection of cosmic strings via gravitational lensing can be found in

(GOTT III, 1985).

Now imagine we are asked to find the Newtonian gravitational force on a massive point particle

near a cosmic string. At first, it might seem there should be no such force since the space is flat,

though the non-vanishing mass of the string could correctly anticipate that a tidal force does exist.

Suppose the particle has mass 𝑚 and is at rest at (𝑟, 𝜃, 𝑧) = (𝑎, 𝜃0, 0), where 𝜃0 is an arbitrary

angle. The equation for the gravitational field Φ is

∇2Φ ∝ 𝑚

𝑎
𝛿(𝑟 − 𝑎)𝛿(𝜃 − 𝜃0)𝛿(𝑧), (3.34)

which is to be solved under the boundary conditions

Φ(𝑟, 0, 𝑧) = Φ (𝑟, 2𝜋(1 − 4𝜇), 𝑧) ,

𝜕

𝜕𝜃
Φ(𝑟, 𝜃, 𝑧)

⃒⃒⃒⃒
⃒⃒
𝜃=0

= 𝜕

𝜕𝜃
Φ (𝑟, 𝜃, 𝑧)

⃒⃒⃒⃒
⃒⃒
𝜃=2𝜋(1−4𝜇)

.
(3.35)
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These are not the boundary conditions we face in flat Minkowski spacetime; hence the solution

should be different, i.e., the deficit angle changes the solution of Poisson’s equation by altering

the boundary of the problem. In 1990 Dmitry Gal’tsov (GAL’TSOV, 1990) solved this problem and

found that the particle experiences an attractive self-force, 𝐹 , proportional to 𝑚2

𝐹 ∝ −𝑚2𝜇

𝑎2 𝑓(𝜇) 𝑟, (3.36)

where 𝑓(𝜇) is a monotonically increasing function of 𝜇

𝑓(𝜇) = 1
4𝜋𝜇

∫︁ ∞

0

{︃
sinh(𝜂/𝐵)

𝐵[cosh(𝜂/𝐵) − 1] − sinh 𝜂
cosh 𝜂 − 1

}︃
𝑑𝜂

sinh(𝜂/2) , (3.37)

with 𝐵 = (1 − 4𝜇).

Figure 14 – The scaling factor for the force exerted on a particle by a cosmic string of mass per unit length 𝜇.
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Source: The author (2021).

Four years before Gal’tsov, in 1986, Bernard Linet (LINET, 1986) solved the problem of a charged

particle in conical space, which is mathematically equivalent to the gravitational one, but with a sign

change in Poisson equation, and found a repulsive interaction proportional to the charge squared. An

intuitive explanation for arising of an electrostatic (gravitational) force is that the field lines "refract"

on the string, causing the illusion that there is another particle on the opposite side. Also, because

the charged (massive) particle accelerates, it radiates electromagnetic (gravitational) waves. Both

of them can, in principle, be measured.

The appearance of both gravitational and electrostatic forces sheds light on the common cause

of both phenomena: the non-trivial boundary conditions both fields have to satisfy are caused by

the non-vanishing deficit angle. This is commonly mentioned as a topological feature since it comes

from a global property of space.
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3.2 EXTENDED GRAVITATING VORTICES

La nature ne fait jamais des sauts

Nature does not make jumps

Gottfried Leibniz

The zero-thickness cosmic string is a good approximation in a cosmological context, but the

presence of a delta-function in the energy can be seen with distrust, especially when one realizes

that the scalar curvature becomes a distribution in the limit 𝑟0 → ∞. Here we use the expression

"extended vortex" to denote vortex solutions with internal structure, i.e., we take into account all

components of the energy-momentum tensor. In fact, by taking a look at the energy-density profile

of the Nielsen-Olesen vortex, one could anticipate that its effect on spacetime has a finite length

and is highly dependent on the vortex parameters.

However, the cosmic string zoo has many more characters. As we have seen in Chapter 2, any

model with the Goldstone/Higgs potential 𝑉 (𝜑) ∝ (|𝜑|2 − 𝜂2)2 admits a vortex excitation, hence it

is of no surprise that many cosmic string solutions have been found through the years. Abelian-Higgs

strings, described by the Nielsen-Olesen solution, were found in 1973 (NIELSEN; OLESEN, 1973),

then Vachaspati and Achucarro, in 1991, showed the existence of semilocal strings4(VACHASPATI;

ACHÚCARRO, 1991), and in 1993 Vachaspati found Eletroweak strings in the Weinberg-Salam

model (VACHASPATI, 1993), to cite a few. This section aims to see how the coupling of an

extended vortex with gravity affects the spacetime at the location of and far from the string.

Gravitating cosmic strings with non-negligible thickness can be generated by coupling the La-

grangian of the matter with gravity and then solving Euler-Lagrange and Einstein field equations

simultaneously. These equations are usually too hard to be solved in a closed form, and frequently

one resorts to approximations or asymptotical limits in order to get an idea of what happens with

the system before solving the equations numerically.

Given an action 𝑆 defined in Minkowski spacetime, we can minimally couple it with gravity by

doing the following substitutions inside the action

𝜂𝜇𝜈 → 𝑔𝜇𝜈 , 𝜕𝜇 → ∇𝜇, 𝑑4𝑥 →
√

−𝑔𝑑4𝑥, (3.38)

where 𝜂𝜇𝜈 is the metric tensor in Minkowski spacetime, 𝑔𝜇𝜈 is the metric tensor in a curved space-

time, 𝑔 is the determinant of the curved metric and ∇𝜇 is the covariant derivative operator. When
4 They arise from a model that only breaks the local, not global, 𝑈(1) symmetry.
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dealing with fermions we still need to substitute the gamma matrices, 𝛾𝑎 with their curved-spacetime

versions, 𝛾𝜇 = 𝛾𝑎𝑒 𝜇
𝑎 , where 𝑒 𝜇

𝑎 is the a-th tetrad vector field, defined by 𝑒𝑎𝜇𝑒𝑎𝜈 = 𝜂𝜇𝜈 . For example,

consider the action of the free scalar field 𝜑 defined in Minkowski spacetime

𝑆 =
∫︁
𝑑4𝑥

1
2
(︁
𝜂𝜇𝜈𝜕𝜈𝜑𝜕𝜇𝜑−𝑀2|𝜑|2

)︁
. (3.39)

Coupling this action with gravity results in

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔 1

2
(︁
𝑔𝜇𝜈∇𝜈𝜑∇𝜇𝜑−𝑀2|𝜑|2

)︁
, (3.40)

which means the Lagrangian of the free scalar field in curved spacetime is

ℒ𝐾𝐺 = 1
2
(︁
∇𝜇𝜑∇𝜇𝜑−𝑀2|𝜑|2

)︁
. (3.41)

As we are searching for cylindrically symmetric solutions that are invariant under boosts along

the z-axis, the usual metric ansatz is

𝑑𝑠2 = 𝑁2(𝑟)𝑑𝑡2 − 𝑑𝑟2 − 𝐿2(𝑟)𝑑𝜙2 −𝑁2(𝑟)𝑑𝑧2, (3.42)

where 𝑁(𝑟), 𝐿(𝑟) are functions of the radial coordinate only, and shall be determined by the matter

content. Additionally, we impose spacetime boundary conditions

The metric should be regular at the origin, i.e: 𝑁(𝑟 → 0) = 1 and 𝐿(𝑟 → 0) = 𝑟.

Spacetime should be asymptotically flat, 𝑅(𝑟 → ∞) = 0.
(3.43)

This is the basic prescription to find gravitating cosmic string solutions. In 1981 Vilenkin (VILENKIN,

1981) found that, as we have seen in the last section, an infinite string using the wire approximation

creates conical geometry outside it. This approach, however, neglects terms that might be present

in the EM tensor, other than 𝑇𝑧𝑧 and 𝑇𝑡𝑡, which accounts for internal dynamics. In 1985 Garfinkle

tackled this issue by showing that, under some weak conditions, any cosmic string solution of

the gravitating abelian-Higgs model has to be asymptotically conical (GARFINKLE, 1985). Finally,

Christensen, Larsen, and Verbin (1999) showed the existence of at least four different classes of

solutions to the gravitating abelian-Higgs model, including cosmic strings. The other three are

Melvin, where the functions 𝑁(𝑟), 𝐿(𝑟) are asymptotically powers of 𝑥, Kasner, and inverted cone

solutions; the last two being in the category of closed solutions since the metric is terminated at

some finite radial coordinate, suggesting that they do not represent an isolated system. In what

follows, we deal only with cosmic string solutions.
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In (CHRISTENSEN; LARSEN; VERBIN, 1999) the authors used the following standard ansatz

𝜑 = 𝜂𝑓(𝑟)𝑒𝑖𝑛𝜙, 𝐴𝜙 = 𝑛−𝐻(𝑟)
𝑒𝑟

, (3.44)

where 𝑛 is the winding number and 𝑓(𝑟), 𝐻(𝑟) are functions to be determined. Notice that this

notation is different from the one we used in Chapter 2. Considering (3.44), the boundary conditions

are

𝑟 → 0 : 𝑓(𝑟) = 0, 𝐻(𝑟) = 1,

𝑟 → ∞ : 𝑓(𝑟) = 1, 𝐻(𝑟) = 0.
(3.45)

In particular, in (CHRISTENSEN; LARSEN; VERBIN, 1999) the authors used the parameters 𝛼, 𝛾,

given by

𝛼 = 𝑒2

𝜆
= 1

2𝛽 , 𝛾 = 8𝜋𝜂2, (3.46)

to show that every solution in the cosmic string branch is related to a solution in the Melvin branch

with the same position in the 𝛼 − 𝛾 plane. Following the approach of (CHRISTENSEN; LARSEN;

VERBIN, 1999), in 2000 Brihaye and Lubo (BRIHAYE; LUBO, 2000) studied classical gravitating

solutions of the abelian-Higgs model with 𝑛 = 1 and explictly showed that the metric of cosmic

string solutions become conical5 far from the core, i.e.,

𝑁(𝑟 → ∞) = 𝑎

𝐿(𝑟 → ∞) = 𝑏𝑟 + 𝑐.
(3.47)

In particular the authors showed the dependence of the conical parameters 𝑎, 𝑏 and the mass per

unit length 𝑀𝑖𝑛, on 𝛼 and 𝛾. In Figure 15 we can see that while 𝑀𝑖𝑛 does not change much, the

parameter 𝑏 decrease linearly with 𝛾. This means the angular deficit is proportional to the scale of

symmetry breaking of the vortex solution. There is however a critical value of 𝛾, 𝛾𝑐𝑟(𝛼), for which

𝑏 = 0 and the solution becomes non-physical, since the deficit angle becomes 2𝜋. This means there

is a region in the 𝛼− 𝛾 plane where the metric solution stops making sense. Moreover, in Figure 15

we can see that when 𝛼 changes from 1.0 to 3.0, 𝑎 changes from decreasing to increasing, which

suggests that for some 𝛼 = 𝛼0, 1 < 𝛼0 < 3, we have 𝑎(𝛼0) = 1. In fact, another finding of Brihaye

and Lubo (2000) is that when 𝛼 = 2 it is possible to find analytical solutions to 𝑎, 𝑏, and 𝛾𝑐𝑟

𝑎 = 1, 𝑏 = 1 − 𝛾

2 , 𝛾𝑐𝑟(2) = 2. (3.48)
5 Technically the conical strucuture only refers to the function 𝐿(𝑟), while the behavior of 𝑁(𝑟) accounts for

blue/red shift of the time coordinate. Here we abuse the terminology and refer to (3.47) as conical limit.
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Figure 15 – Conical parameters generated by the Nielsen-Olesen vortex with 𝑛 = 1. Notice that for 𝛼 = 1.0, 𝑎
decreases with 𝛾, while it is increasing for 𝛼 = 3.0. The parameter 𝑏 seems to always decrease with 𝛾.

Source: (BRIHAYE; LUBO, 2000)

For other interesting works in gravitating abelian-Higgs cosmic strings, we refer to (LAGUNA;

GARFINKLE, 1989; DYER; MARLEAU, 1995; LINET, 1987). Although Garfinkle (1985) anticipated

the asymptotical conical structure for the gravitating abelian-Higgs model, we shall see that the

conical limit (3.47) is also present in gravitating non-abelian strings (SLAGTER, 1998; PÁDUA

SANTOS; MELLO, 2015).

In (PÁDUA SANTOS; MELLO, 2015) the authors studied the following gravity-coupled non-

abelian-Higgs model

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔

(︂ 1
16𝜋𝐺𝑅 + ℒ𝑚

)︂
,

ℒ𝑚 = 1
2(𝐷𝜇𝜑

𝑎)2 + 1
2(𝐷𝜇𝜒

𝑎)2 − 1
4𝐹

𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 − 𝑉 (𝜑𝑎, 𝜒𝑎), 𝑎 = 1, 2, 3

(3.49)

which describes two bosonic fields, 𝜑 and 𝜒, interacting via a potential 𝑉 (𝜑𝑎, 𝜒𝑎) given by

𝑉 (𝜑𝑎, 𝜒𝑎) = 𝜆1

4
[︁
(𝜑𝑎)2 − 𝜂2

1

]︁2
+ 𝜆2

4
[︁
(𝜒𝑎)2 − 𝜂2

2

]︁2
+ 𝜆3

2
[︁
(𝜑𝑎)2 − 𝜂2

1

]︁ [︁
(𝜒𝑎)2 − 𝜂2

1

]︁
, (3.50)

in the presence of the 𝑆𝑈(2) gauge field 𝐴𝑎𝜇 that generates the field strength

𝐹 𝑎
𝜇𝜈 = 𝜕𝜇𝐴

𝑎
𝜈 − 𝜕𝜈𝐴

𝑎
𝜇 + 𝑒𝜖𝑎𝑏𝑐𝐴𝑏𝜇𝐴

𝑐
𝜈 . (3.51)

In the above expression, 𝑒 is the gauge coupling, and 𝜖𝑎𝑏𝑐 is the antissymetric Levi-Civita symbol.

The gauge-covariant derivatives have the form

𝐷𝜇𝜑
𝑎 = 𝜕𝜇𝜑

𝑎 + 𝑒𝜖𝑎𝑏𝑐𝐴𝑏𝜇𝜑
𝑐,

𝐷𝜇𝜒
𝑎 = 𝜕𝜇𝜒

𝑎 + 𝑒𝜖𝑎𝑏𝑐𝐴𝑏𝜇𝜒
𝑐,

(3.52)
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and just for the sake of clarity (𝐷𝜇𝜑
𝑎)2 = 𝐷𝜇𝜑

𝑎(𝐷𝜇𝜑𝑎)* and (𝜑𝑎)2 = 𝜑𝑎𝜑*
𝑎. Notice that each

bosonic field has three complex components, and there is one vector field for each component of the

scalar field. Although the situation seems much more complicated than the abelian-Higgs scenario,

the prescription is the same, i.e., solve the E-L and EFEs that arise from (3.49) using the boundary

conditions (3.45) and (3.43). The authors considered the following ansatz

𝜑(𝑟) = 𝑓(𝑟)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
cos 𝜃

sin 𝜃

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.53)

𝜒(𝑟) = 𝑔(𝑟)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
cos 𝜃

− sin 𝜃

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.54)

𝐴𝑎(𝑟) = 𝛿𝑎,3
1 −𝐻(𝑟)

𝑒𝑟
𝜙, (3.55)

which means the scalar fields are orthogonal in the field space, 𝜑𝑎𝜒𝑎 = 0, and only the third

gauge field, 𝐴⃗3, is non-vanishing. Notice that this model reduces to the abelian-Higgs one when

𝜆2, 𝜆3, and 𝜒 all vanish.

For numerical analysis it is useful to define the following dimensionless functions

𝑥 =
√︁
𝜆1𝜂1𝑟, 𝐿(𝑥) =

√
𝜆1𝜂1𝐿(𝑟), 𝑓(𝑟) = 𝜂1𝑋(𝑥), 𝑔(𝑟) = 𝜂1𝑌 (𝑥) (3.56)

which makes the Lagrangian depend only on the dimensionless parameters

𝛼 = 𝑒2

𝜂1
, 𝑞 = 𝜂1

𝜂2
, 𝛽𝑖 = 𝜆𝑖

𝜆1
, 𝛾 = 8𝜋𝐺𝜂2

1. (3.57)

Their results for the field and metric functions can be seen in Figures 16 and 17. In Figure 18 one

can compare the metric functions in the abelian and non-abelian scenarios.
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Figure 16 – Results of Pádua Santos and Mello (2015) for abelian strings. Left panel shows the field functions, right
panel shows the metric functions. Parameters used are 𝛼 = 1.0, 𝛾 = 0.6.

Source: (PÁDUA SANTOS; MELLO, 2015)

Figure 17 – Results of Pádua Santos and Mello (2015) for non-abelian strings. Left panel shows the field functions,
right panel shows the metric functions. Parameters used are 𝛼 = 1.0, 𝛾 = 0.6, 𝛽2 = 2.0, 𝛽3 = 1.0 and 𝑞 =
1.0.

Source: (PÁDUA SANTOS; MELLO, 2015)
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Figure 18 – Comparison between metric in both scenarios. The parameters used are the same as in Figures 16 and
17

Source: (PÁDUA SANTOS; MELLO, 2015)

From Figures 16, 17, and 18, one can conclude that non-abelian cosmic strings also generate

asymptotical conical geometry, and this effect is more pronounced compared with the abelian case.

Moreover, the transition from Minkowski to conical is smooth in these spacetimes. They consist of

a region with non-vanishing curvature, where the exact form is dependent on the vortex parameters

(see Figure 19).

Figure 19 – A possible shape for the curvature around a gravitating cosmic string.
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Source: The author (2020).

Here we end our discussion on gravitating extended vortices. It is worth mentioning that we did

not try to exhaust the literature. There have been many studies in this line of research, and we

did not include everything here. Instead, our goal was to give an introduction with some guiding

references. Now we turn our attention to how the asymptotical conical structure of cosmic string
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spacetimes presents a difficulty for studying bosonic and fermionic scattering and our approach to

deal with the problem.
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4 SCATTERING CROSS-SECTION IN GRAVITATING COSMIC STRING SPACE-

TIMES

4.1 BOSONIC CROSS-SECTION

O que é que trazemos de um dia

como este? Nada além de uma

quantidade de esboços. Ainda

assim, trazemos outra coisa mais:

um tranquilo desejo de trabalhar.

Vincent van Gogh

In Chapter 3 we have seen the general structure of the spacetime around a cosmic string. It

consists of three distinct regions: at the center of the vortex, spacetime is flat, with Minkowskian

coordinates, then at a finite distance from the center, it becomes curved and, far from the core, it

approaches the conical limit.

In 1988 Deser and Jackiw (DESER; JACKIW, Roman, 1988) studied the quantum scattering in

a pure conical background and found that the usual partial wave approach produces singularities

in the scattering amplitude; they fixed this problem by changing the usual asymptotical ansatz of

QM. In (SILVA; MOHAMMADI, 2021) we showed that although the spacetime of a cosmic string is

much more complex than pure conical, the usual partial-wave approach also generates a divergent

scattering amplitude. To avoid the singularity, we proposed a modification of the asymptotic ansatz

in the partial-wave formalism and presented the corrections in the phase-shift, scattering amplitude,

and cross-section. The first part of this chapter is devoted to these results.

After that, we apply the same formalism to the scattering of a massive fermionic field in the

same background.

4.1.1 Scalar field scattering

The lagrangian of the free massive scalar field Φ in a curved spacetime is

ℒ𝐾𝐺 = 1
2
(︁
∇𝜇Φ∇𝜇Φ −𝑀2|Φ|2

)︁
, (4.1)
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where 𝑀 is the mass of the field. Using the relations

𝜕ℒ
𝜕(∇𝜇Φ*) = ∇𝜇Φ → ∇𝜇

(︃
𝜕ℒ

𝜕(∇𝜇Φ*)

)︃
= ∇𝜇∇𝜇Φ,

𝜕ℒ
𝜕Φ* = −𝑀2Φ,

(4.2)

we get the following E-L equation

∇𝜇∇𝜇Φ +𝑀2Φ = 0 (4.3)

which is the Klein-Gordon equation minimally coupled with gravity. We can go further and add

non-minimal terms inside (4.3), for example

(□ +𝑀2 + 𝜉𝑅)Φ = 0, (4.4)

where □ = ∇𝜇∇𝜇 is the D’Alembertian operator, 𝑅 is the Ricci scalar and 𝜉 is the non-minimal

coupling. Taking □Φ = 1√
−𝑔𝜕𝜇(√−𝑔𝑔𝜇𝜈𝜕𝜈Φ) (CARROLL, 2019), we obtain⎧⎨⎩ 1

𝑁2𝐿

⎡⎣𝐿𝜕2
𝑡 −

(︂
2𝑁𝑁 ′𝐿+𝑁2𝐿′

)︂
𝜕𝑟 −𝑁2𝐿𝜕2

𝑟 − 𝑁2

𝐿
𝜕2
𝜙 − 𝐿𝜕2

𝑧

⎤⎦+𝑀2 + 𝜉𝑅

⎫⎬⎭Φ = 0, (4.5)

where prime denotes derivative with respect to 𝑟. Imposing conservation of energy, cylindrical sym-

metry and restricting the dynamics to the 𝑟−𝜙 plane (invariance under boosts along the z-axis) we

can take the following ansatz

Φ = 𝑒∓𝑖𝐸𝑡𝑒𝑖𝑘𝑧
∞∑︁

𝑚=−∞
𝑎𝑚𝑅𝑚(𝑟)𝑒𝑖𝑚𝜙, (4.6)

where 𝐸 is the energy of the field, 𝑘 the momentum in z-direction, 𝑚 = ±1,±2,±3, ..., is the mode

of the field, and 𝑎𝑚 is a mode-dependent constant to be defined by the initial condition. Notice 𝑚

has to be integer for the solution to be single-valued in 𝜙. The summation over 𝑚 reflects the fact

that for a linear equation, the sum of solutions is still a solution. Combining (4.6) with (4.5) and

using 𝜆2 ≡ 𝐸2 −𝑀2 − 𝑘2, result in

𝑅′′
𝑚(𝑟) +

(︃
2𝑁 ′(𝑟)
𝑁(𝑟) + 𝐿′(𝑟)

𝐿(𝑟)

)︃
𝑅′
𝑚(𝑟) +

[︃
𝜆2

𝑁2(𝑟) −𝑀2
(︃

1 − 1
𝑁2(𝑟)

)︃
− 𝑚2

𝐿2(𝑟) + 𝜉𝑅

]︃
𝑅𝑚(𝑟) = 0.

(4.7)

Now remember that near the origin we have 𝑁(𝑟) = 1 and 𝐿(𝑟) = 𝑟, hence 𝑅𝑚(𝑟 → 0) ∝ 𝐽𝑚(𝜆𝑟)

where 𝐽𝑚 is the Bessel function of first kind of order 𝑚, and we absorb the proportionality constant

in 𝑎𝑚. Here we set 𝑎𝑚 = 𝑖𝑚 such that in the limit 𝑟 → 0 the field is a plane-wave in the 𝑥̂-direction.

The general solution in the limit 𝑟 → ∞ is

𝑅𝑚(𝑟 → ∞) = 𝑏𝑚𝐽𝑚′(𝜆′𝑤) + 𝑐𝑚𝑌𝑚′(𝜆′𝑤), (4.8)
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where 𝑚′ = 𝑚/𝑏, 𝜆′2 = 𝜆2/𝑎2 − 𝑀2(1 − 1/𝑎2), 𝑤 = 𝑟 + 𝑐/𝑏, 𝑌𝑚′ is the Neumann function of

order 𝑚′, and 𝑏𝑚, 𝑐𝑚 are mode-dependent constants. Notice that the momentum 𝜆 changes to 𝜆′

to account for the new parametrizations of time and distance in the z-direction, which is evident

from 𝜆′2 = (𝐸/𝑎)2 − (𝑘/𝑎)2 −𝑀2. Asymptotically, Bessel and Neumann functions approach

𝐽𝜈(𝑥) 𝑥→∞−−−→
√︃

2
𝜋𝑥

cos
[︂
𝑥− 𝜋

2

(︂
𝜈 + 1

2

)︂]︂
,

𝑌𝜈(𝑥) 𝑥→∞−−−→
√︃

2
𝜋𝑥

sin
[︂
𝑥− 𝜋

2

(︂
𝜈 + 1

2

)︂]︂
,

(4.9)

which together with the relations 𝑏𝑚 = 𝐶𝑚 cos 𝑑𝑚 and 𝑐𝑚 = −𝐶𝑚 sin 𝑑𝑚 leads to

𝑅𝑚(𝑟 → ∞) = 𝐶𝑚

√︃
2

𝜋𝜆′𝑟
cos (𝜆′𝑟 + 𝛽𝑚′) , (4.10)

In the above expression 𝛽𝑚′ = 𝜆′𝑐
𝑏

− 𝛼𝑚′ + 𝑑𝑚(𝜆), 𝛼𝑚 = 𝜋
2 (𝑚 + 1/2) while 𝐶𝑚(𝜆) and 𝑑𝑚(𝜆) are

model-dependent constants to be determined, usually numerically. Also notice that the phase shift

of the m-th mode is given by 𝛿𝑚(𝜆) = 𝛽𝑚′ + 𝛼𝑚 = 𝜆′𝑐
𝑏

+ 𝑚𝜋
2

(︁
1 − 1

𝑏

)︁
+ 𝑑𝑚(𝜆). It is interesting to

take a look at the effect of conical structure in other observables of the scalar field. For instance, a

temporal element 𝑑𝑡 at the center of the vortex becomes 𝑎 𝑑𝑡 far from the core, hence the frequency

of oscillations appears higher for a local observer outside the string than it is measured by someone

at the core. Although the energy of the field does not change, the hamiltonian operator, which is

the local measuring scale, does change. Explicitly we have

𝐻̂𝑖𝑛 = 𝑖
𝜕

𝜕𝑡
, 𝐻̂𝑜𝑢𝑡 = 𝑖

𝜕

𝜕(𝑎𝑡) = 1
𝑎
𝐻̂𝑖𝑛 (4.11)

where 𝐻̂𝑖𝑛 and 𝐻̂𝑜𝑢𝑡 are the hamiltonian near and far from the core, respectively. Equation (4.11)

implies 𝐻̂𝑜𝑢𝑡Φ = 𝐸/𝑎Φ, which makes sense if we compare the expression of 𝜆 and 𝜆′. Because

𝑔𝑡𝑡 = −𝑔𝑧𝑧 the linear momentum in the z direction is perceived as larger far from the core. Finally,

angular momentum is also affected by the conical structure. The angular momentum operator is

given by

(𝐿̂𝑧)𝑖𝑛 = −𝑖 𝜕
𝜕𝜙

, (𝐿̂𝑧)𝑜𝑢𝑡 = −𝑖 𝜕

𝜕(𝑏𝜙) = 1
𝑏
(𝐿̂𝑧)𝑖𝑛. (4.12)

where 𝐿̂𝑖𝑛 and 𝐿̂𝑜𝑢𝑡 are the angular momentum operators near and far from the core, respectively.

Equation (4.12) suggests the angular momentum outside the vortex is measured to be a non-integer

value 𝑚′ = 𝑚/𝑏. Thus, the angular deficit of spacetime affects the measured angular momentum

of the field.

In addition, note that if the flat spacetime for 𝑟 → ∞ is not conical, i.e. 𝑐 = 0 and 𝑏 = 1,

the phase shift becomes equal to 𝑑𝑚(𝜆) determined by the gravitational potential in the region
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0 < 𝑟 < ∞. Moreover, one might realize that any local interaction does not change the general

form of the solution at infinity. The effect of any such interaction shall be felt only by the parameters

𝐶𝑚 and 𝑑𝑚 to be measured at infinity. For example, suppose the scalar field also interacts with the

gauge field creating the vortex. In this situation, the constants 𝐶𝑚 and 𝑑𝑚 are certainly modified

by the local interaction when compared with the situation without the gauge field. This illustrates

the fact that the constants 𝐶𝑚 and 𝑑𝑚 store information about any local interaction in the region

0 < 𝑟 < ∞. Although cosmic string models are usually too hard to solve in closed form, we later

devise a toy model and show the effects of the gauge-field coupling in the total cross-section of a

scalar test field.

Now let us get back to the scattering. In usual partial wave approach we rewrite the cosine in

(4.10) in terms of plane waves, resulting in

Φ𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 1√
2𝜋𝜆′𝑟

[︃
𝑒−𝑖𝜆′𝑟

(︃∑︁
𝑚

𝐶𝑚𝑖
𝑚𝑒𝑖𝑚𝜙𝑒−𝑖𝛽𝑚′

)︃
+ 𝑒𝑖𝜆

′𝑟

(︃∑︁
𝑚

𝐶𝑚𝑖
𝑚𝑒𝑖𝑚𝜙𝑒𝑖𝛽𝑚′

)︃]︃
. (4.13)

The usual QM ansatz is given by

Φ𝑢𝑠𝑢𝑎𝑙 𝑎𝑛𝑠𝑎𝑡𝑧 = 𝑓(𝜙)𝑒
𝑖𝜆𝑟

√
𝑟

+ 𝑒𝑖𝜆𝑟 cos𝜙, (4.14)

where 𝑓(𝜙) is called scattering amplitude. This ansatz says the scattered wave is a cylindrical wave,

regulated by 𝑓(𝜙), plus a plane-wave accounting for the part of the incident wave that does not

interact with the potential.

Usually in QM, the spacetime before and after the potential is the same. Hence the unscattered

wave has momentum 𝜆, the same as the incoming plane wave1. However, this is not possible in the

spacetime of a cosmic string since a change in the metric component 𝑁(𝑟) affects 𝜆. Also, far from

the core, the radial part of the solution to the Klein-Gordon equation, 𝑅𝑚(𝑟), is a Bessel function of

non-integer order, making it impossible to take the pure plane-wave in the second part of the ansatz.

Finally, it is clear that the regions before and after the scattering are not equivalent, which motivates

a change in the canonical approach. Later we show another reason to do such modification. We take

the asymptotic ansatz in the form

Φ𝑎𝑛𝑠𝑎𝑡𝑧 = 𝑓(𝜙)𝑒
𝑖𝜆′𝑤

√
𝑟

+
∞∑︁

𝑚=−∞
𝐴𝑚𝑖

𝑚𝐽𝑚′(𝜆′𝑤)𝑒𝑖𝑚𝜙 = 𝑓(𝜙)𝑒
𝑖𝜆′𝑟

√
𝑟

+ (𝑒𝑖𝜆′𝑟 cos𝜙)𝑚𝑜𝑑. (4.15)

The reason for writing the second term in this form is that when 𝐴𝑚 = 1, 𝑎 = 1, 𝑏 = 1 and 𝑐 = 0

it takes the form of a plane wave with momentum 𝜆 travelling in the x-direction. Here, however, we
1 Considering elastic scattering.
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left 𝐴𝑚 free to be determined by the form of the solution at infinity. Expressing the ansatz in terms

of plane waves, we get

Φ𝑎𝑛𝑠𝑎𝑡𝑧 = 1√
2𝜋𝜆′𝑟

[︃
𝑒−𝑖𝜆′𝑤

(︃ ∞∑︁
𝑚=−∞

𝐴𝑚𝑖
𝑚𝑒𝑖𝛼𝑚′𝑒𝑖𝑚𝜙

)︃
+

+𝑒𝑖𝜆′𝑤

(︃√
2𝜋𝜆′𝑓(𝜙) +

∞∑︁
𝑚=−∞

𝐴𝑚𝑖
𝑚𝑒−𝑖𝛼𝑚′𝑒𝑖𝑚𝜙

)︃]︃
. (4.16)

Now comparing the coefficients of 𝑒−𝑖𝜆′𝑤, we obtain

𝐴𝑚𝑒
−𝑖(𝛽𝑚′ −𝑑𝑚) = 𝐶𝑚𝑒

−𝑖𝛽𝑚′ → 𝐴𝑚 = 𝐶𝑚𝑒
−𝑖𝑑𝑚(𝜆). (4.17)

Comparing the coefficients of 𝑒𝑖𝜆′𝑤 and considering Equation (4.17), results in

𝑓(𝜙) = 1√
2𝜋𝑖𝜆′

∞∑︁
𝑚=−∞

𝐴𝑚
[︁
𝑒2𝑖𝑑𝑚(𝜆) − 1

]︁
𝑒𝑖𝑚(𝜙−𝛿𝜙) =

∞∑︁
𝑚=−∞

𝑓𝑚(𝜙), (4.18)

where 𝛿𝜙 = 𝜋
2

(︁
1
𝑏

− 1
)︁

≥ 0 knowing 𝑏 ≤ 1. The solution (4.18) has the extra factors 𝐴𝑚 and

𝑒−𝑖𝑚𝛿𝜙 when compared with the result in QM. However, if the spacetime at 𝑟 → ∞ is not conical,

i.e. 𝑁(𝑟) → 1 and 𝐿(𝑟) → 𝑟, the extra factors disappear and our result matches the standard

approach.

Now let us justify better the inclusion of the free parameter 𝐴𝑚 in (4.15). Suppose 𝐴𝑚 = 1, as

it is in the standard QM approach. The scattering amplitude reads

𝑓(𝜙) = 1√
2𝜋𝑖𝜆′

(︃∑︁
𝑚

𝑒2𝑖𝑑𝑚𝑒𝑖𝑚(𝜙−𝛿𝜙) −
∑︁
𝑚

𝑒𝑖𝑚(𝜙−𝛿𝜙)
)︃
,

= 1√
2𝜋𝑖𝜆′

(︃∑︁
𝑚

𝑒2𝑖𝑑𝑚𝑒𝑖𝑚(𝜙−𝛿𝜙) − 𝛿(𝜙− 𝛿𝜙)
)︃
,

(4.19)

i.e., the scattering amplitude has a delta-contribution coming from the deficit angle of spacetime. In

our approach, with 𝐴𝑚 free to be determined by the field solution at infinity, the scattering amplitude

becomes

𝑓(𝜙) = 1√
2𝜋𝑖𝜆′

(︃∑︁
𝑚

𝐶𝑚𝑒
𝑖𝑑𝑚 −

∑︁
𝑚

𝐶𝑚𝑒
−𝑖𝑑𝑚𝑒𝑖𝑚(𝜙−𝛿𝜙)

)︃
, (4.20)

which does not have any delta contribution due to the nontrivial mode dependent constants 𝐶𝑚
and 𝑑𝑚. In conclusion, our formalism avoids the singularity of the scattering amplitude.

Let us pause and connect our approach with the one in (DESER; JACKIW, Roman, 1988) for the

particle scattering in a conical geometry. In their scenario, the whole space is conical and analytically

determined. Because of a non-vanishing deficit angle, the scattering amplitude 𝑓(𝜙) is singular,

taking the standard partial wave expansion ansatz in quantum mechanics. They circumvented this

problem by modifying the second term in (4.15) to match the solution determined at 𝑟 → ∞.
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Our reasoning is similar. Due to the conical structure at 𝑟 → ∞, we need to leave an extra free

parameter to be fixed with the asymptotic solution after the scattering. In contrast with the result in

(DESER; JACKIW, Roman, 1988), one needs to find the parameters 𝐶𝑚 and 𝑑𝑚 numerically since

our formalism deals with a class of spacetimes typically too complex to have a metric in a closed-form

due to non-trivial matter-gravity interaction. Similar to (DESER; JACKIW, Roman, 1988), here the

optical theorem is not satisfied, although there is no problem with unitarity. It can be shown that

the probability current 𝐽 is

𝐽 ∝ 𝐼𝑚

(︃∑︁
𝑚,𝑛

𝑎𝑛𝑎
*
𝑚𝑒

𝑖(𝑛−𝑚)𝜙𝑅𝑛
𝑑𝑅𝑚

𝑑𝑟

)︃
𝑒𝑟 − |𝜑|2

(︃
𝑚

𝐿(𝑟)𝑒𝜙 + 𝑘

𝑁(𝑟)𝑒𝑧
)︃
. (4.21)

Restricting the dynamics to the x-y plane, calculating the outgoing flux from a circle of radius 𝑟0

and setting 𝑎𝑚 = 𝑖𝑚, results in
∫︁
𝜕𝑆
𝐽𝑑𝐴⃗ = 𝑟0 𝐿(𝑟)

∫︁
𝐽𝑟𝑑𝜙 = 0, (4.22)

which by Stokes theorem ∫︁
𝑆

∇ · 𝐽 𝑑𝑉 =
∫︁
𝜕𝑆
𝐽𝑑𝐴⃗. (4.23)

It means that the probability current on the plane is divergenceless, hence conserved. We conclude

that in this class of spacetimes the optical theorem is no longer suitable to determine particle or

probability conservation.

Moreover, the appearance of an angular deficit in the scattering amplitude originates from the

spacetime’s deficit angle equal to 𝛿 = 2𝜋(1 − 𝑏) (PÁDUA SANTOS; MELLO, 2015). In fact, we

noticed that the extra factor 𝛿𝜙 is proportional to the angular difference between geodesics in the

ideal cosmic string spacetime (3.33), Δ𝜙 = 8𝜋𝜇
𝑏

with 𝑏 = 1 − 4𝜇,

𝛿𝜙 = 1
4Δ𝜙. (4.24)

Now we turn our attention to the phase shift. The phase shift of the scalar field scattered in this

class of spacetimes is given by

𝛿𝑚(𝜆) = 𝛽𝑚′ + 𝛼𝑚 = 𝜆′ 𝑐

𝑏
+ 𝑚𝜋

2

(︂
1 − 1

𝑏

)︂
+ 𝑑𝑚(𝜆), (4.25)

and notice the first term accounts for the rescaling of the radial coordinate, the second term matches

the result found in (DESER; JACKIW, Roman, 1988) and comes from conical structure, and the

last one is due to any interaction in the midway, e.g. curvature and/or gauge field for example.

In the low-energy regime, the isotropic mode, 𝑚 = 0, holds the largest contribution to scattering
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(LE BELLAC, 2011) since any other mode has some part of the flux in the azimutal direction, as

seen in (4.21). In QM the scattering length is defined as

𝑙𝑠𝑐 = lim
𝜆′→0

⃒⃒⃒⃒
⃒𝛿0(𝜆)
𝜆′

⃒⃒⃒⃒
⃒ , (4.26)

such that, for instance, the potential of a hard sphere of radius 𝑅0 yields 𝑙𝑠𝑐 = 𝑅0. Knowing that

for 𝜆′ = 0 there is no scattering, which means 𝑑0(𝜆′ = 0) = 0, the scattering length of a cosmic

string is given by

𝑙𝑠𝑐 = 𝑐

𝑏
+ 𝑑(𝑑0)

𝑑𝜆′ (𝜆′ = 0). (4.27)

Now we have all the ingredients to calculate the scattering cross-section. Ignoring the z-axis, due

to the dynamics being restricted to the x-y plane, and knowing the incoming and outgoing momenta,

𝜆 and 𝜆′, are not the same in general, the differential cross-section is given by (ZETTILI, 2003)

𝑑𝜎

𝑑𝜙
= 𝜆′

𝜆
|𝑓(𝜙)|2, (4.28)

One can see that if we include the z-direction, the total cross-section diverges. Sustituting eq. (4.18)

into eq. (4.28) and then integrating (4.28) in 𝜙 results in

𝜎 = 4
𝜆

∞∑︁
𝑚=−∞

|𝐶𝑚|2 sin2(𝑑𝑚). (4.29)

This result is very similar to the standard expression from QM, except for the factor |𝐶𝑚|2. However,

the extra factor becomes 1 in the limit where the asymptotical spacetime has the same parametriza-

tion as the origin. Clearly, the convergence of this formula depends on the convergence of the

amplitudes 𝐶𝑚, which, as we shall see, does converge for both a general toy model and a realistic

scenario.

4.1.2 Toy model

To illustrate our formalism in a concrete example, we develop an analytical model similar to a

cosmic string spacetime, although somewhat simplified, in order to calculate the factors 𝐶𝑚 and 𝑑𝑚
analytically. We have seen in Chapter 3 that the metric outside a hard-wall cylindrically symmetric

energy density of radius 𝑟0 is conical. We then use the following metric as a first approximation to

the cosmic string spacetime

𝑟 < 𝑟0 : 𝑁(𝑟) = 1, 𝐿(𝑟) = 𝑟

𝑟 > 𝑟0 : 𝑁(𝑟) = 𝑎, 𝐿(𝑟) = 𝑏𝑟 + 𝑐,
(4.30)
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which has conical geometry outside, as expected. Continuity of 𝐿(𝑟) at 𝑟 = 𝑟0 results in

𝑟0 = 𝑐

1 − 𝑏
, (4.31)

which gives a connection between the conical parameters 𝑏, 𝑐 and the size 𝑟0 of the vortex. In what

follows we consider 𝑎 = 1, to avoid any delta singularities in the field equation2, and 𝑏 to be close

to 1, which means 𝑟0 ≫ 𝑐/𝑏 = 𝒪(1). Later we relax both conditions.

The scalar field solutions are

𝑟 < 𝑟0 : 𝜑 = 𝑒−𝑖𝐸𝑡𝑒𝑖𝑘𝑧
∑︁
𝑚

𝑖𝑚𝐽𝑚(𝜆𝑟)𝑒𝑖𝑚𝜙

𝑟 > 𝑟0 : 𝜑 = 𝑒−𝑖𝐸𝑡𝑒𝑖𝑘𝑧
∑︁
𝑚

𝑖𝑚𝐶𝑚𝐽𝑚′(𝜆𝑤)𝑒𝑖𝑚𝜙.
(4.32)

Taking the asymptotic form of the solution outside (𝑟0 ≫ 𝑐/𝑏) and imposing continuity of 𝜑 at

𝑟 = 𝑟0 yields

𝐶𝑚

√︃
2

𝜋𝜆𝑟0
cos(𝜆′𝑟0 + 𝛽𝑚′) = 𝐽𝑚(𝜆𝑟0). (4.33)

Imposing continuity of the gradient of 𝜑 at 𝑟 = 𝑟0 gives

𝜆

2 Δ𝐽𝑚(𝜆𝑟0) = 𝐶𝑚

√︃
2

𝜋𝜆𝑟𝑜
cos(𝜆𝑟0 + 𝛽𝑚′)

[︂ 1
2𝑟0

+ 𝜆 tan(𝜆𝑟0 + 𝛽𝑚′)
]︂
, (4.34)

where Δ𝐽𝑚(𝑥) = 𝐽𝑚+1(𝑥) − 𝐽𝑚−1(𝑥). Using (4.33) in (4.34) gives

tan(𝜆𝑟0 + 𝛽𝑚′) = 1
2

(︃
Δ𝐽𝑚(𝜆𝑟0)
𝐽𝑚(𝜆𝑟0)

− 1
𝜆𝑟0

)︃
, (4.35)

resulting in

𝑑𝑚(𝜆) = 𝛼𝑚′ − 𝜆
(︂
𝑟0 + 𝑐

𝑏

)︂
+ tan−1

[︃
1
2

(︃
𝜆

𝜆

Δ𝐽𝑚(𝜆𝑟0)
𝐽𝑚(𝜆𝑟0)

− 1
𝜆𝑟0

)︃]︃
. (4.36)

Combining (4.35) and (4.33) yields the amplitude of the scattered field

𝐶𝑚 =
√︃
𝜋𝜆𝑟0

2 𝐽𝑚(𝜆𝑟0)

⎧⎨⎩1 + 1
4

[︃
Δ𝐽𝑚(𝜆𝑟0)
𝐽𝑚(𝜆𝑟0)

− 1
𝜆𝑟0

]︃2
⎫⎬⎭

1/2

. (4.37)

It is worth mentioning, however, that the cross-section that comes from (4.36) and (4.37) converges

too slowly, which may happen because this toy model has serious limitations. The curvature scalar

that comes from (4.30)3 diverges at 𝑟 = 𝑟0, so this is a singular spacetime. To circumvent this

problem, we design a smooth version of (4.30). The metric (4.30) can be expressed using the

Heaviside step function Θ(𝑥)

𝑁(𝑟) = Θ(𝑟0 − 𝑟) + 𝑎Θ(𝑟 − 𝑟0),

𝐿(𝑟) = 𝑟Θ(𝑟0 − 𝑟) + (𝑏𝑟 + 𝑐)Θ(𝑟 − 𝑟0).
(4.38)

2 The derivative of 𝑁(𝑟) is a delta-function. Look at (4.38) later in the text
3 The use of Levi-Civita connection is implicit.



62

One might have noticed that (4.38) presents no transition between the interior and the conical

spacetime, which is precisely the reason why the delta-curvature appears. We avoid this problem by

employing a smooth transition via an analytical approximation of the step function, 𝐻(𝑥), defined

by

𝐻(𝑥) = 1
2 (1 + tanh(𝑝𝑥)) , 𝐻(𝑥) 𝑝→∞−−−→ Θ(𝑥). (4.39)

Now substituting Θ(𝑥) by 𝐻(𝑥) in (4.38) gives

𝑁(𝑟) = 1
2 {(𝑎+ 1) + (𝑎− 1) tanh [𝑝(𝑟 − 𝑟0)]} ,

𝐿(𝑟) = 1
2 {((𝑏+ 1)𝑟 + 𝑐) + ((𝑏− 1)𝑟 + 𝑐) tanh [𝑝(𝑟 − 𝑟0)]} ,

(4.40)

which imitates the spacetime around a vortex, as can be seen in Figure 20. One might realize that

𝑟0 still defines a characteristic radius of the vortex since 𝑟0 is the center of the transition between

Minkowski and conical. In this situation the curvature is no longer divergent and size of the curvature

well is controlled by the parameter 𝑝.

Figure 20 – Metric functions (4.40) using 𝑎 = 0.98, 𝑏 = 0.64, 𝑐 = 0.39 and 𝑝 = 3. Dashed lines show the Minkowski
counterparts.
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Source: The author (2021).
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Figure 21 – Comparison between the curvature generated by (4.40) with two different values of 𝑝. We can see that
𝑝 regulates the depth of the curvature well. Conical parameters 𝑎, 𝑏 and 𝑐 are the same as in Figure 20.
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Source: The author (2021).

With a faithful toy model in hand, all we need to do is to insert (4.40) in (4.7), extract constants

𝐶𝑚, 𝑑𝑚 from the numerical solution of the equation of motion and then use (4.29). Now we consider

the scenario where the scalar test field also interacts with the gauge field of the vortex. To simulate

this situation, we take the gauge field solution of the abelian-Higgs vortex

𝐴𝜙 = 𝑛

𝑒𝑟
𝛼(𝑟)𝜙, (4.41)

where 𝛼(𝑟) is coming from the Nielsen-Olesen solution found in Chapter 2. For the abelian-Higgs

vortex with 𝑛 = 1 and 𝛽 = 0.5, Pádua Santos and Mello (2015) found conical parameters approx-

imately 𝑎 = 0.98, 𝑏 = 0.64, 𝑐 = 0.39. We take the same spacetime and field parameters, together

with 𝑝 = 3.0. In Figure 22, we show the scattering cross-section of the scalar field with and without

the gauge field interaction. It is clear that the gauge field has most influence in large wavelength

(small momentum) particles, while it becomes irrelevant for small wavelength (large momentum)

particles. As the momentum increases, all local interactions tend to become irrelevant and the

cross-section approaches zero.
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Figure 22 – The solid (dashed) line shows the total scattering cross-section of scalar field with 𝑀 = 1.0 in the
absence (presence) of the gauge field.
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Source: The author (2021).

4.2 FERMIONIC CROSS-SECTION

Science, being necessarily

performed with passion of Hope,

is poetical.

Samuel Taylor Coleridge

Now it is fairly straightforward to extend the formalism to analyze scattering of spin-1
2 fields.

Each component of the spinorial field can be considered to be similar to a scalar field with its own

associated differential cross-section. The average value of all 4 cross-sections is the total cross-section

of the fermionic field (BAZEIA; MOHAMMADI, 2018).

We start with the Dirac equation in a curved spacetime

(𝛾𝜇∇𝜇 + 𝑖𝑀)Ψ = 0, (4.42)

where {𝛾𝜇} is the set of gamma matrices in a curved spacetime, 𝑀 is the mass of the fermion field,

and ∇𝜇 is the spinorial covariant derivative. In order to convert the known gamma matrices, defined

in flat spacetime, to their curved counterparts we have to make use of tetrads, which are objects

that parametrize the geometry of spacetime. The tetrad field in 4-dimensional spacetime {(𝑒𝑎)𝜇}

is a set of 4 vector fields labelled by the latin index 𝑎, each one with, in general, four components
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labelled by the index 𝜇. These objects are related to the metric via

𝑔𝜇𝜈 = 𝑒𝑎𝜇𝑒
𝑎
𝜈 = 𝜂𝑎𝑏𝑒

𝑏
𝜇𝑒
𝑎
𝜈 ,

𝜂𝑎𝑏 = 𝑒𝑎𝜈𝑒
𝜈
𝑏 = 𝑔𝜇𝜈𝑒

𝜇
𝑎 𝑒

𝜈
𝑏 ,

(4.43)

where the latin indices4 are raised and lowered by the Minkowski metric 𝜂𝑎𝑏 = diag(1,−1,−1,−1)

and the greek indices by the general curved spacetime metric 𝑔𝜇𝜈 = diag(𝑁2,−1,−𝐿2,−𝑁2). The

sets {(𝑒𝑎)𝜇} and {(𝑒𝑎)𝜇} are the components of vectors 𝑒𝑎, and 1-forms 𝜃𝑎 defined by

𝑒𝑎 = 𝑒 𝜇
𝑎 𝜕𝜇, (4.44a)

𝜃𝑎 = 𝑒𝑎𝜇𝑑𝑥
𝜇. (4.44b)

Inverting (4.44b) and using it in 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 yields

𝑑𝑠2 = (𝜃0)2 − (𝜃1)2 − (𝜃2)2 − (𝜃3)2, (4.45)

which provides a straightforward prescription to construct matrices (𝑒𝑎)𝜇. With a tetrad field in

hands, the curved gamma matrices are calculated using

𝛾𝜇 = (𝑒𝑎)𝜇𝛾𝑎. (4.46)

The covariant derivative is defined as

∇𝜇 = 𝜕𝜇 + Γ𝜇,

Γ𝜇 = 𝑖

2(𝜔𝜇)𝑎𝑏Σ𝑎𝑏,
(4.47)

where Γ𝜇 is called the spin coefficient, (𝜔𝜇)𝑎𝑏 the spin connection and the set Σ𝑎𝑏, here called Σ

matrices, is the set of generators of Lorentz transformations for spinors. Spin connection can be

expressed in terms of the tetrad field and Christofell symbols {Γ𝜆𝜇𝜈}(KLEINERT, 1989; BUCH-

BINDER; ODINTSOV; SHAPIRO, 2017; PARKER; TOMS, 2009; SHAPIRO, 2016) via

𝜔𝜇𝑎𝑏 =1
2 (𝑒 𝜈

𝑏 𝜕𝜇𝑒𝑎𝜈 − 𝑒 𝜈
𝑎 𝜕𝜇𝑒𝑏𝜈)

+1
2Γ𝜆𝜇𝜈 (𝑒𝑏𝜆𝑒 𝜈

𝑎 − 𝑒𝑎𝜆𝑒
𝜈
𝑏 ) ,

(4.48)

while the Lorentz generators Σ𝑎𝑏 are constructed with flat gamma matrices

Σ𝑎𝑏 = 𝑖

4[𝛾𝑎, 𝛾𝑏] = 𝑖

4
(︁
𝛾𝑎𝛾𝑏 − 𝛾𝑏𝛾𝑎

)︁
. (4.49)

4 Here latin indices always denote quantities in flat spacetime, while greek indices represent quantities in curved
spacetime.
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Now all we have to do is to choose a convenient tetrad field, calculate the spin coefficients and find

the equations of motion for the fermionic field.

The simplest choice of the tetrad field is given by

(𝑒𝑎)𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁 0 0 0

0 1 0 0

0 0 𝐿 0

0 0 0 𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (𝑒𝑎)𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁−1 0 0 0

0 1 0 0

0 0 𝐿−1 0

0 0 0 𝑁−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.50)

Such a choice, however, does not reflect the symmetries of spacetime, which yields a set of equations

of motion that are not separable. A more suitable choice of the tetrad field is

𝑑𝑡 = 𝜃0

𝑁
,

𝑑𝑟 = 𝜃1 cos𝜙− 𝜃2 sin𝜙,

𝑑𝜙 = 1
𝐿

(𝜃1 sin𝜙+ 𝜃2 cos𝜙),

𝑑𝑧 = 𝜃3

𝑁
,

(4.51)

which results in

𝑒 𝜇
𝑎 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/𝑁 0 0 0

0 cos𝜙 − sin𝜙 0

0 sin𝜙/𝐿 cos𝜙/𝐿 0

0 0 0 1/𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑒𝑎𝜇 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑁 0 0 0

0 cos𝜙 𝐿 sin𝜙 0

0 − sin𝜙 𝐿 cos𝜙 0

0 0 0 1/𝑁

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.52)

and one can verify that indeed (𝑒𝑎)𝜇(𝑒𝑏)𝜇 = 𝛿𝑎𝑏 . From now on, when writing components explictly,

latin indices are replaced by numbers, 𝑎, 𝑏, 𝑐... → 0, 1, 2, 3, and greek indices by letters representing

the coordinates, 𝜇, 𝜈, 𝜆... → 𝑡, 𝑟, 𝜙, 𝑧. In addition notice that, when reading the tetrad matrices,

lower index runs on the columns while upper index runs on the rows of the matrix, so, for example,

𝑒2
𝜙 = cos𝜙/𝐿 and 𝑒 𝜙

2 = 𝐿 cos𝜙.

The curved gamma matrices read

𝛾𝑡 = 1
𝑁
𝛾0,

𝛾𝑟 = cos𝜙𝛾1 − sin𝜙𝛾2,

𝛾𝜙 = 1
𝐿

(︁
sin𝜙𝛾1 + cos𝜙𝛾2

)︁
,

𝛾𝑧 = 1
𝑁
𝛾3.

(4.54)
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In what follows we use the following representation of the flat gamma matrices

𝛾0 =

⎛⎜⎜⎝1 0

0 −1

⎞⎟⎟⎠ , 𝛾𝑖 =

⎛⎜⎜⎝ 0 𝜎𝑖

−𝜎𝑖 0

⎞⎟⎟⎠ , (4.55)

which gives the Σ matrices

Σ0𝑖 = 𝑖

4

⎛⎜⎜⎝ 0 𝜎𝑖

𝜎𝑖 0

⎞⎟⎟⎠ , Σ𝑖𝑗 = 1
2𝜖𝑖𝑗𝑘

⎛⎜⎜⎝𝜎𝑘 0

0 𝜎𝑘

⎞⎟⎟⎠ . (4.56)

The non-vanishing Christofell symbols are

Γ𝑡𝑡𝑟 = 𝑁 ′

𝑁
, Γ𝑟𝑡𝑡 = 𝑁𝑁 ′, Γ𝜙𝜙𝑟 = 𝐿′

𝐿
,

Γ𝑟𝜙𝜙 = −𝐿𝐿′, Γ𝑧𝑧𝑟 = 𝑁 ′

𝑁
, Γ𝑟𝑧𝑧 = −𝑁𝑁 ′ .

(4.57)

To calculate the spin connection we consider each term separately. So, we split (𝜔𝜇)𝑎𝑏 in part A and

part B

𝜔𝜇𝑎𝑏 = 1
2 (𝑒 𝜈

𝑏 𝜕𝜇𝑒𝑎𝜈 − 𝑒 𝜈
𝑎 𝜕𝜇𝑒𝑏𝜈)⏟  ⏞  

(𝜔𝐴
𝜇 )𝑎𝑏

+ 1
2Γ𝜆𝜇𝜈 (𝑒𝑏𝜆𝑒 𝜈

𝑎 − 𝑒𝑎𝜆𝑒
𝜈
𝑏 )⏟  ⏞  

(𝜔𝐵
𝜇 )𝑎𝑏

.
(4.58)

The only non-vanishing components of the spin connection are

(𝜔𝐴𝜙 )12 = −1,

(𝜔𝐵𝜙 )12 = −𝐿′

(𝜔𝐵𝑡 )01 = −𝑁 ′ cos𝜙, (𝜔𝐵𝑡 )02 = 𝑁 ′ sin𝜙,

(𝜔𝐵𝑧 )13 = −𝑁 ′ cos𝜙, (𝜔𝐵𝑧 )23 = 𝑁 ′ sin𝜙,

(4.59)

which when put together with the Σ matrices inside the spin coefficients yield

Γ𝑡 =1
2𝑁

′(cos𝜙𝜎1 − sin𝜙𝜎2)

⎛⎜⎜⎝0 1

1 0

⎞⎟⎟⎠ ,
Γ𝑟 = 0,

Γ𝜙 = − 𝑖

2(1 + 𝐿′)𝜎3

⎛⎜⎜⎝1 0

0 1

⎞⎟⎟⎠ ,

Γ𝑧 =𝑖𝑁
′

2 (cos𝜎2 + sin𝜙𝜎1)

⎛⎜⎜⎝1 0

0 1

⎞⎟⎟⎠ .

(4.60)
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The covariant derivative contracted with the gamma matrices gives

𝛾𝑡∇𝑡 = 𝛾𝑡𝜕𝑡 + 1
2
𝑁 ′

𝑁
𝛾𝑟

𝛾𝑟∇𝑟 = 𝛾𝑟𝜕𝑟

𝛾𝜙∇𝜙 = 𝛾𝜙𝜕𝜙 + 1 + 𝐿′

2𝐿 𝛾𝑟

𝛾𝑧∇𝑧 = 𝛾𝑧𝜕𝑧 + 1
2
𝑁 ′

𝑁
𝛾𝑟.

(4.61)

Now, in order to make calculations easier we split the spinor Ψ in two parts

Ψ =

⎛⎜⎜⎝𝜑
𝜒

⎞⎟⎟⎠ , (4.62)

which renders the final form of Dirac’s equation (4.42)

(𝛾𝜇∇𝜇 + 𝑖𝑀)Ψ = 1
𝑁

⎛⎜⎜⎝ 𝜕𝑡𝜑+ 𝜎3𝜕𝑧𝜒

−𝜕𝑡𝜒− 𝜎3𝜕𝑧𝜑

⎞⎟⎟⎠

+ cos𝜙

⎛⎜⎜⎝ 𝜎1𝜕𝑟𝜒+ 𝜎2𝜕𝜙𝜒/𝐿

−𝜎1𝜕𝑟𝜑− 𝜎2𝜕𝜙𝜑/𝐿

⎞⎟⎟⎠− sin𝜙

⎛⎜⎜⎝ 𝜎2𝜕𝑟𝜒− 𝜎1𝜕𝜙𝜒/𝐿

−𝜎1𝜕𝑟𝜒+ 𝜎1𝜕𝜙𝜑/𝐿

⎞⎟⎟⎠

+
[︃
𝑁 ′

𝑁
+ (1 + 𝐿′)

2𝐿

]︃ [︁
cos𝜙𝜎1 − sin𝜙𝜎2

]︁⎛⎜⎜⎝ 𝜒

−𝜑

⎞⎟⎟⎠ = 0

. (4.63)

We employ the following ansatz for the spinor field Ψ

Ψ(𝑡, 𝜌, 𝜑, 𝑧) = 𝑒−𝑖𝐸𝑡𝑒𝑖𝑘𝑧
∞∑︁

𝑗=−∞
𝑎𝑗𝜓𝑗(𝜌, 𝜙)𝑒𝑖𝑗𝜙, (4.64)

where 𝑗 = ±1/2,±3/2,±5/2..., and

𝜓𝑗(𝜌, 𝜙) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜓(0)(𝜌)𝑒+𝑖𝜙/2

𝜓(1)(𝜌)𝑒−𝑖𝜙/2

𝜓(2)(𝜌)𝑒+𝑖𝜙/2

𝜓(3)(𝜌)𝑒−𝑖𝜙/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.65)

For clarity, we have dropped the index 𝑗 from the components of the spinor 𝜓𝑗. The angular de-

pendence of (4.65) may seem as an imposition, but one can perform the calculations with general
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angular phases and the separation of variables force them to appear this way. Substituting the ansatz

(4.65) in (4.63) leads to the following equations of motion⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(𝑖/𝑁)
(︁

− 𝐸𝜓(0) + 𝑘𝜓(2)
)︁

+ 𝑖𝑀𝑓𝜓
(0) + [𝜕𝑥 + (𝑗 + 1/2)/𝐿+ 𝜉(𝑥)]𝜓(3)

(𝑖/𝑁)
(︁

− 𝐸𝜓(1) − 𝑘𝜓(3)
)︁

+ 𝑖𝑀𝑓𝜓
(1) + [𝜕𝑥 − (𝑗 − 1/2)/𝐿+ 𝜉(𝑥)]𝜓(2)

(𝑖/𝑁)
(︁

+ 𝐸𝜓(2) − 𝑘𝜓(0)
)︁

+ 𝑖𝑀𝑓𝜓
(2) − [𝜕𝑥 + (𝑗 + 1/2)/𝐿+ 𝜉(𝑥)]𝜓(1)

(𝑖/𝑁)
(︁

+ 𝐸𝜓(3) + 𝑘𝜓(1)
)︁

+ 𝑖𝑀𝑓𝜓
(3) − [𝜕𝑥 − (𝑗 − 1/2)/𝐿+ 𝜉(𝑥)]𝜓(0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0. (4.66)

We have denoted 𝜉(𝑥) ≡
[︁
𝑁 ′/𝑁 + (1/2𝐿)(𝐿′ − 1)

]︁
, that vanishes in Minkowski spacetime, but not

in conical one. All the above 𝜓(𝑖) are complex and only dependent on 𝑟. By cylindrical symmetry,

the solution does not change if we make 𝜙 → −𝜙, and since we are summing over all modes from

−∞ to +∞, we do not have to worry about the sign of 𝑗. Now in order to apply the partial wave

approach, we need to know the solution of (4.66) near and far from the origin. In the limit 𝑟 → 0

we have (MOHAMMADI; MELLO; SAHARIAN, 2015)

Ψ𝑗(𝑡, 𝑟 → 0, 𝜙, 𝑧) = 𝑎𝑗𝑒
−𝑖𝐸𝑡𝑒𝑖𝑘𝑧𝑒𝑖𝑗𝜙

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐽𝛽𝑗
(𝜆𝑥)𝑒−𝑖𝜙/2

𝐽𝛽𝑗+𝜖𝑗 (𝜆𝑥)𝑒𝑖𝜙/2

𝑘−𝑖𝜖𝑗𝜆
𝐸+𝑀 𝐽𝛽𝑗

(𝜆𝑥)𝑒−𝑖𝜙/2

−𝑘−𝑖𝜖𝑗𝜆
𝐸+𝑀 𝐽𝛽𝑗+𝜖𝑗 (𝜆𝑥)𝑒𝑖𝜙/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.67)

where 𝑗 = ±1/2,±3/2, ..., 𝜖𝑗 = 𝑠𝑔𝑛(𝑗), 𝑠 = ±1, 𝛽𝑗 = |𝑗|− 𝜖𝑗/2 and 𝜆2 = 𝐸2 −𝑘2 −𝑀2 as before.

Here there is a sublety. The constant 𝑎𝑗 has to be set the same way for all components, which means

we cannot make all of them plane waves. Here we choose 𝑎𝑗 = 𝑖𝑗−
1
2 such that the component Ψ(0)

is a plane wave in the x-direction near the origin. The field solution in the limit 𝑟 → ∞ is given by

𝜓±
𝑗 (𝑡, 𝑟 → ∞, 𝜙, 𝑧) = 𝐶𝑗𝑒

∓𝑖𝐸𝑡𝑒𝑖𝑘𝑧𝑒𝑖𝑗𝜙
√︃

2
𝜋𝜆′𝑟

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos(𝜆′𝑤 − 𝛼𝛽𝑗′ + 𝑑0
𝑗(𝜆))𝑒−𝑖𝜙/2

𝑠 cos(𝜆′𝑤 − 𝛼𝛽𝑗′ +𝜖𝑗′ + 𝑑1
𝑗(𝜆))𝑒𝑖𝜙/2

±𝑘′−𝑖𝑠𝜖𝑗′𝜆′

𝐸′±𝑀 cos(𝜆′𝑤 − 𝛼𝛽𝑗′ + 𝑑2
𝑗(𝜆))𝑒−𝑖𝜙/2

∓𝑘′−𝑖𝑠𝜖𝑗′𝜆′

𝐸′±𝑀 cos(𝜆′𝑤 − 𝛼𝛽𝑗′ +𝜖𝑗′ + 𝑑3
𝑗(𝜆))𝑒𝑖𝜙/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.68)

where 𝑘′ = 𝑘/𝑎,𝐸 ′ = 𝐸/𝑎, 𝜆′2 = 𝐸 ′2 −𝑘′2 −𝑀2 and 𝐶𝑗(𝜆), 𝑑𝑖𝑗(𝜆) are model-dependent constants.

Notice that here we have four different phase-shifts, 𝑑𝑖𝑗, and only one global amplitude 𝐶𝑗. We
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express the asymptotic ansatz as

𝜓𝑖𝑎𝑛𝑠𝑎𝑡𝑧 = 𝑓 𝑖(𝜙)𝑒
𝑖𝜆′𝑤

√
𝑟

+ (𝑒𝑖𝜆′𝑟 cos𝜙)𝑖𝑚𝑜𝑑 (4.69)

where the index 𝑖 = 0, 1, 2, 3 labels the component of the spinor field. Here we need to define the

second term of (4.69) such that in the limit 𝑟 → ∞ it reduces to a term similar to the solution

near the origin but with the free parameter 𝐴𝑖𝑗 and 𝑗 → 𝑗′, 𝑟 → 𝑤, 𝜆 → 𝜆′. The ansatz for the 0-th

component becomes

Ψ0
𝑎𝑛𝑠𝑎𝑡𝑧 = 𝑓 0(𝜙)𝑒

𝑖𝜆′𝑤

√
𝑟

+
∞∑︁

𝑗=−∞
𝐴0
𝑗 𝑖
𝑗−1/2𝐽𝛽𝑗′ (𝜆′𝑤)𝑒𝑖(𝑗−1/2)𝜙, (4.70)

and notice that

𝛽𝑗 = |𝑗| − sgn(𝑗)
2 =

⎧⎪⎪⎨⎪⎪⎩
𝑗 − 1

2 , if 𝑗 > 0,

−𝑗 + 1
2 = −

(︂
𝑗 − 1

2

)︂
, if 𝑗 < 0.

(4.71)

Instead of summing over 𝑗, we can sum over 𝑛 = 𝑗 − 1/2. The ansatz becomes

Ψ0
𝑎𝑛𝑠𝑎𝑡𝑧 = 𝑓 0(𝜙)𝑒

𝑖𝜆′𝑤

√
𝑟

+
∞∑︁

𝑛=−∞
𝐴0
𝑛𝑖
𝑛𝐽𝑛′(𝜆′𝑤)𝑒𝑖𝑛𝜙 (4.72)

where 𝑛′ = 𝑗′ − 1/2, and 𝛽𝑗′ = 𝑛′. The asymptotic form of the 0-th component of the actual

solution is given by

Ψ0
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

∑︁
𝑛

𝐶𝑛𝑖
𝑛

√︃
2

𝜋𝜆′𝑟
cos

(︁
𝜆′𝑤 − 𝛼𝑛′ + 𝑑0

𝑛

)︁
𝑒𝑖𝑛𝜙, (4.73)

which when compared with (4.72) gives

𝐴0
𝑛 = 𝐶𝑛𝑒

−𝑖𝑑0
𝑛 ,

𝑓 0(𝜙) = 1√
2𝜋𝜆′𝑟

∑︁
𝑛

𝐴0
𝑛

(︁
𝑒2𝑖𝑑0

𝑛 − 1
)︁
𝑒𝑖𝑛(𝜙−𝛿𝜙),

(4.74)

with 𝛿𝜙 = 𝜋
2

(︁
𝑛′

𝑛
− 1

)︁
. The cross-section for the 0-th fermionic component is

𝜎0 = 4
𝜆

∞∑︁
𝑛=−∞

|𝐶𝑛|2 sin2(𝑑0
𝑛). (4.75)

Calculating 𝜎2 is completely analogous since the coefficients of the Bessel function and the angu-

lar exponential are the same. We can adapt this result for 𝜎2 by just making the change 𝐶𝑛 →

𝐶𝑛
𝑘′−𝑖𝑠𝜖𝑛𝜆′

𝐸′+𝑀 . Therefore, the cross-section of the second component is as follows

𝜎2 = 4
𝜆

𝑘′2 + 𝜆′2

(𝐸 ′ +𝑀)2

∑︁
𝑛

|𝐶𝑛|2 sin2(𝑑2
𝑛). (4.76)
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The computation of 𝜎1 and 𝜎3 are tedious but straightforward. The ansatz for the first component

is

Ψ1
𝑎𝑛𝑠𝑎𝑡𝑧 = 𝑓 1(𝜙)𝑒

𝑖𝜆′𝑤

√
𝑟

+
∑︁
𝑗

𝐴1
𝑗 𝑖
𝑗−1/2𝐽𝛽𝑗′ +𝜖𝑗′𝑒

𝑖(𝑗+1/2)𝜙. (4.77)

However, notice that

𝛽𝑗 + 𝜖𝑗 = |𝑗| + sgn(𝑗)
2 =

⎧⎪⎪⎨⎪⎪⎩
𝑗 + 1

2 , if 𝑗 > 0

−𝑗 − 1
2 = −

(︂
𝑗 + 1

2

)︂
, if 𝑗 < 0

(4.78)

which suggests that we can sum over 𝑚 = 𝑛 + 1 = 𝑗 + 1/2, instead of 𝑗. The asymptotic ansatz

for Ψ1 becomes

Ψ1
𝑎𝑛𝑠𝑎𝑡𝑧 = 𝑓 1(𝜙)𝑒

𝑖𝜆′𝑤

√
𝑟

+
∑︁
𝑚

𝐴1
𝑚

𝑖
𝑖𝑚𝐽𝑚′(𝜆′𝑤)𝑒𝑖𝑚𝜙, (4.79)

where 𝑚′ = 𝑛′ + 1 = 𝑗′ + 1/2 and 𝛽𝑗′ + 𝜖𝑗′ = 𝑚′. The asymptotic form of the actual solution is

Ψ1
𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

∑︁
𝑚

𝐶𝑚
𝑖

√︃
2

𝜋𝜆′𝑟
cos

(︁
𝜆′𝑤 − 𝛼𝑚′ + 𝑑1

𝑗

)︁
𝑒𝑖𝑚𝜙, (4.80)

which when compared with (4.79) gives

𝐴1
𝑚 = 𝐶𝑚𝑒

−𝑖𝑑1
𝑚 ,

𝑓 1(𝜙) = 1√
2𝜋𝜆′𝑖

∑︁
𝑚

𝐴1
𝑚

𝑖

(︁
𝑒2𝑖𝑑1

𝑚 − 1
)︁
𝑒𝑖𝑚(𝜙−𝛿𝜙),

(4.81)

with 𝛿𝜙 = 𝜋
2

(︁
𝑚′

𝑚
− 1

)︁
. Adapting this result to 𝜎3 gives

𝜎1 = 4
𝜆

∑︁
𝑛

|𝐶𝑛|2 sin2(𝑑1
𝑛),

𝜎3 = 4
𝜆

𝑘′2 + 𝜆′2

(𝐸 ′ +𝑀)2

∑︁
𝑛

|𝐶𝑛|2 sin2(𝑑3
𝑛).

(4.82)

Now it is easy to compute the total cross-section of the fermionic field. The average of all {𝜎𝑖}

is

𝜎 = 1
4
(︁
𝜎0 + 𝜎1 + 𝜎2 + 𝜎3

)︁
= 1
𝜆

⎧⎨⎩
∞∑︁

𝑗=−∞
|𝐶𝑗|2

[︃
sin2(𝑑0

𝑗) + sin2(𝑑1
𝑗) + 𝐸 ′2 −𝑀2

(𝐸 ′ +𝑀)2

(︁
sin2(𝑑2

𝑗) + sin2(𝑑3
𝑗)
)︁]︃⎫⎬⎭ ,

(4.83)

which is analogous to the scalar case (4.29). In the same spirit, we expect the total cross-section to

behave similarly to the scalar case, with damped oscillations caused by the spacetime’s asymptotical

structure. One might notice that as the energy of the field increases, 𝐸 ≫ 𝑀 , the contribution
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from the second and third components becomes just the sinusoidal terms, similar to the 0-th and

first components.

Here we end our discussion on how to calculate the cross-section of fermionic and scalar fields

in the spacetime of a cosmic string. It is worth mentioning that, although in the fermionic case, the

computational work is considerably harder, the whole discussion about local non-minimal interactions

we had in the scalar case is equivalent here, i.e., their effects shall be felt only by the constants

𝐶𝑗, 𝑑
𝑖
𝑗. In the next chapter, we finally apply this formalism to a realistic gravitating cosmic string

and analyze the results.
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5 BOSONIC AND FERMIONIC SCATTERING IN A GRAVITATING COSMIC

STRING SPACETIME

5.1 BOSONIC SCATTERING

Acredito que se pense muito mais

corretamente quando as ideias

surgem do contato direto com as

coisas, do que quando se olham

as coisas com o objetivo de

encontrar esta ou aquela ideia.

Vincent van Gogh (VAN GOGH;

MOLEIRO, 1995)

In the final part of this thesis, we apply the method developed in Chapter 4 to the gravitating

cosmic string found by Pádua Santos and Mello (2015). Our goal is to find the dependence of the

cross-section of the scalar field on the mass 𝑀 and momentum 𝜆 of the field. To do that, we need

to solve the Klein-Gordon equation in this spacetime, find the parameters 𝐶𝑚, 𝑑𝑚, and use formula

(4.29) to compute the total cross-section. Later we apply the same procedure to the fermionic field.

Remember that the model consists of two scalar fields 𝜑 and 𝜒 coupled with a 𝑆𝑈(2) gauge

field. The complete model is given by

𝑆 =
∫︁
𝑑4𝑥

√
−𝑔

(︂ 1
16𝜋𝐺𝑅 + ℒ𝑚

)︂
,

ℒ𝑚 = 1
2(𝐷𝜇𝜑

𝑎)2 + 1
2(𝐷𝜇𝜒

𝑎)2 − 1
4𝐹

𝑎
𝜇𝜈𝐹

𝜇𝜈
𝑎 − 𝑉 (𝜑𝑎, 𝜒𝑎), 𝑎 = 1, 2, 3 ,

with 𝑉 (𝜑𝑎, 𝜒𝑎) = 𝜆1

4
[︁
(𝜑𝑎)2 − 𝜂2

1

]︁2
+ 𝜆2

4
[︁
(𝜒𝑎)2 − 𝜂2

2

]︁2
+ 𝜆3

2
[︁
(𝜑𝑎)2 − 𝜂2

1

]︁ [︁
(𝜒𝑎)2 − 𝜂2

1

]︁
,

(5.1)

which becomes the abelian-Higgs model for 𝜆2 = 𝜆3 = 0 and 𝜒 = 0. The authors used dimensionless

functions

𝑥 =
√︁
𝜆1𝜂1𝑟, 𝐿(𝑥) =

√
𝜆1𝜂1𝐿(𝑟), 𝑓(𝑟) = 𝜂1𝑋(𝑥), 𝑔(𝑟) = 𝜂1𝑌 (𝑥) (5.2)

and the dimensionless parameters

𝛼 = 𝑒2

𝜂1
, 𝑞 = 𝜂1

𝜂2
, 𝛽𝑖 = 𝜆𝑖

𝜆1
, 𝛾 = 8𝜋𝐺𝜂2

1. (5.3)

From now on we set the dimensionless parameters to be 𝛼 = 1.0, 𝛾 = 0.6 for both abelian and

non-abelian scenarios and 𝑞 = 1.0, 𝛽2 = 2.0, and 𝛽3 = 1.0 in the non-abelian case. The associated
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Figure 23 – The metric components in abelian (solid) and non-abelian (dashed) cases. We set 𝛼 = 1.0, 𝛾 = 0.6 for
both abelian and non-abelian cases and 𝑞 = 1.0, 𝛽2 = 2.0, and 𝛽3 = 1.0 for the non-abelian case.
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Source: The author (2021).

metric components for both abelian and non-abelian cases are shown in Figure 23. For solving

the equations of motion (4.7) numerically, we employed the Runge-Kutta method of eighth order.

From each solution with specific mode 𝑚 and momentum 𝜆 we extracted the parameters 𝐶𝑚(𝜆)

and 𝑑𝑚(𝜆), which are needed to construct the cross-section. We also verified that the cross-section

indeed converges for a finite number of modes.

In Figure 24 we present |𝐶𝑚| and sin2(𝑑𝑚) for three different values of 𝑚 for a massive scalar

field with 𝑀 = 1.0. We noticed |𝐶𝑚|, unlike 𝑑𝑚, is symmetric under 𝑚 → −𝑚 and is always larger

in the non-abelian scenario. It originates from the larger deviation of the conical parameters from

the Minkowski counterparts. We also noticed that larger mass delays sin2(𝑑𝑚).

In Figure 25 and 26, we show the total cross-section in the abelian and non-abelian scenarios,

respectively, for three values of mass. We can see that in both cases, the mass dampens the cross-

section in the small-momentum regime, but as 𝜆 increases, the difference between the cross-sections

becomes smaller. Eventually, the mass becomes irrelevant in the regime 𝜆 → ∞.

In Figure 27 we compare the massless cross-section in abelian and non-abelian cases and show,

in the zoomed region, how mass affects the region of large momentum in the non-abelian scenario.

For large momentum, we see that the presence of mass dampens 𝜎 but also delays the signal. This

was expected since sin2(𝑑𝑚) is also delayed.

We can see that the cross-section diverges as the incident momentum approaches zero and

tends to zero as 𝜆 → ∞, which is expected. However, in both scenarios, the total cross-section

presents an unusual oscillatory behavior that becomes more evident as 𝜆 increases. Since we have

not detected any oscillatory pattern in the values of |𝐶𝑚|, we are led to think the oscillation comes
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Figure 24 – |𝐶𝑚| and sin2(𝑑𝑚) with respect to the incident momentum 𝜆 for a scalar field with 𝑀 = 1.0. Solid
(blue) lines represent the abelian case and dashed (orange) the non-abelian one.
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Figure 25 – Total cross-section of the massive scalar field in the abelian case.
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Figure 26 – Total cross-section of the massive scalar field in the non-abelian case.
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Figure 27 – Scattering cross-section in both abelian and non-abelian cases for a massless scalar field. We have also
shown the mass effect in the non-abelian scenario in the zoomed region.
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Source: The author (2021).
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Figure 28 – Curvature for the toy model (4.40) using 𝑎 = 1.
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from an interference between the sinusoidal terms of equation (4.29). As we shall see, this particular

interference pattern seems to be related to the asymptotical form of the spacetime metric.

The high-energy tail oscillation is not entirely new. Burt and Sebhatu (1975) already showed

that non-linear persistent self-interactions lead to damped oscillations in the total cross-section of

baryon-antibaryion scattering. In their case, the non-linear interaction appears as a potential in the

lagrangian density, while in our case, it manifests itself as the asymptotical conical configuration of

spacetime, which affects the lagrangian through the covariant derivative. In fact, we can use the

toy model developed in Chapter 4 to investigate this hypothesis. We start considering the metric

toy model (4.40) with 𝑎 = 1, 𝑟0 = 2.5, 𝑝 = 3.0 and analyze the scalar field total cross-section with

respect to the conical parameter 𝑏. For consistency 𝑐 is always calculated according to 𝑐 = 𝑟0(1−𝑏).

The curvature profile for the three chosen values of 𝑏 is shown in Figure 28. We then calculated the

total cross-section in these spacetimes. In Figure 29 we see that the frequency of oscillations in the

total cross-section is proportional to the deficit angle of the asymptotic spacetime and it tends to

zero as 𝑏 → 1.

However, that is not the end of the story. We set 𝑏 = 0.85, 𝑟0 = 2.5, 𝑝 = 3.0 and analyzed

how the cross-section changes with the parameter 𝑎, which represents a blue-shift of the time

coordinate1. The curvature profile for the three chosen values of 𝑎 is shown in Figure 30. The

corresponding total cross-section is shown in Figure 31. One can see that the parameter 𝑎 also

has a strong influence on the frequency of oscillations and the average amplitude of 𝜎. It is worth

mentioning that the oscillations tend to disappear as the metric coefficients tend to pure Minkowski
1 The frequency of a light beam is perceived as higher outside the string than to an observer at the core.
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Figure 29 – Effect of 𝑏 on the oscillations of the total cross-section.
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Figure 30 – Curvature profile from the metric (4.40) with 𝑏 = 0.85 and 𝑟0 = 2.5.
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ones, namely 𝑎 = 1, 𝑏 = 1, 𝑐 = 0. Therefore, we conclude that the damped oscillations in the

total cross-section are caused by the persistent interaction of the field with the spacetime geometry,

represented by the asymptotical structure of spacetime or, equivalently, by the parameters 𝑎, 𝑏 and

𝑐.
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Figure 31 – Scalar field total cross-section in the spacetime (4.40) with 𝑏 = 0.85 and 𝑟0 = 2.5.
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5.2 FERMIONIC SCATTERING

It should be written on every

school chalkboard, "Life is a

playground- or nothing."

Nemo Nobody

In this section, we analyze the scattering of a fermionic field in the same spacetime. In Chapter 4

We have shown that the total scattering cross-section of the fermionic field is given by the formula

(4.83). Again we need to extract the parameters 𝐶𝑗(𝜆), 𝑑𝑖𝑗(𝜆), and for doing so, we used the Runge-

Kutta method of eighth order to solve the equations (4.66) numerically. The numerical procedure

is similar to the one in the last section for the bosonic case.

In Figure 32 we show the amplitude 𝐶𝑗 and the phase 𝑑1
𝑗 of the component 𝜓1. Unlike the

phase of the scalar field, here sin2(𝑑𝑖𝑗) is symmetric under 𝑗 → −𝑗. We noticed the presence of

some plateaus in sin2(𝑑2
𝑗), which means that for each mode, there are windows, in 𝜆, for which

that mode has no contribution to the total cross-section. Though these windows are seen in both

scenarios, in the abelian case, they are wider and were detected only for large momentum, i.e.,

𝜆 > 15. In addition, the amplitude |𝐶𝑚| behaves similarly to the scalar counterpart. It is symmetric

under 𝑗 → −𝑗 and vanishes after a finite number of modes.
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Figure 32 – Quantities used to compute the cross-section of a fermionic field with 𝑀 = 1.0. The other plots of
sin2(𝑑𝑖

𝑗) do not show any particularly different behavior.
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In Figures 33 and 34, we show the influence of mass on the total cross-section in both abelian

and non-abelian scenarios, respectively. We see that the effect is similar to the scalar case, i.e., larger

mass reduces the average value of 𝜎. Comparing the fermionic and bosonic results, one can conclude

that the mass effect in the fermionic case is larger than the bosonic one.

Figure 33 – Effect of mass on the total cross-section in the abelian case.
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Figure 34 – Effect of mass on the total cross-section in the non-abelian case.
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Finally, it is clear that the fermionic cross-section also presents damped oscillations, which can

be seen as evidence that damped oscillations in the total cross-section are a fundamental property of

scattering in asymptotically conical spacetimes. In Figure 35 we show the cross-section for a massive

fermionic field in both abelian and non-abelian scenarios.

Figure 35 – Total cross-section of the fermionic field with M = 1.0.
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One might have noticed that the cross-section of both scalar and fermionic fields is more sig-

nificant in the non-abelian scenario compared with the abelian one. A crude estimation could have
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anticipated this result. Remember that the cross-section is proportional to the ratio outgoing flux/in-

cident flux

𝜎 = 𝐹𝑜𝑢𝑡
𝐹𝑖𝑛

=
𝑣𝑜𝑢𝑡

𝐴𝑜𝑢𝑡

𝑣𝑖𝑛

𝐴𝑖𝑛

, (5.4)

and that for a slice of a cylinder of height Δ𝑧, the effective area for the outgoing particles is

proportional to 𝑎𝑏Δ𝑧, hence when the deficit angle is larger (b is smaller), the area of the outgoing

particles is smaller, hence the flux is larger. Of course, there is also the contribution from the increase

in momentum/velocity of the particle since 𝜆′ > 𝜆.
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6 CONCLUSION

This thesis has studied the general theory of cosmic strings and their gravitational interaction

with nearby matter fields. In Chapter 2, we developed the basic theory of cosmic strings, discussed

the two general types, global and local strings, and their topological stability. Then we presented the

Nielsen-Olesen vortex, the first local string solution, and discussed some of its properties. We have

seen that for some region of the Bogomolny’i parameter 𝛽 the Nielsen-Olesen vortex is unstable to

unwinding, i.e. every string with winding number 𝑛 > 1 eventually decays to 𝑛 strings each with

𝑛 = 1. At the end of Chapter 2, we outlined how cosmic strings are expected to have formed in the

early universe via the Kibble mechanism.

In Chapter 3 we proceeded to study gravitational properties of cosmic strings in the wire approxi-

mation and have seen that the conical structure presents non-trivial phenomenology. It was observed

that gravitational (eletromagnetic) interaction is changed due to the non-trivial boundary conditions

the conical spacetime imposes on the gravitational (eletromagnetic) potential. Still, in Chapter 3

we investigated the literature on extended cosmic strings, i.e., vortex solutions with non-negligible

internal structure, and have seen that the spacetime generated by a gravitating extended vortex

presents a conical structure far from the core. Garfinkle (1985) showed this feature to be quite

general in the abelian-Higgs model, and we presented a recent non-abelian model that possesses

this feature as well.

In Chapter 4 we showed that the asymptotically conical structure of gravitating cosmic string

spacetimes creates a divergent scattering amplitude if we follow the standard ansatz of the partial-

wave formalism. Deser and Roman Jackiw (1988) had already investigated the simpler case of scalar

field scattering on a cone and found a similar divergence. We avoided the singularity by modifying

the asymptotical ansatz in the partial-wave approach, which leads to corrections in the phase-shift

and total cross-section. The correction on the phase-shift is the addition of two terms induced by

the conical structure, while the correction on the total cross-section is a multiplicative constant on

each term of the cross-section series. This correction accounts for the idea that we need information

about the field at infinity in order to construct the asymptotical ansatz, which is exactly what

removes the singularity on the scattering amplitude. This happens because the spacetime before

and after the scattering are not equivalent and it is impossible to construct the usual plane-wave

solution at infinity. The essential conclusion is that we also need information about the amplitude,

besides the phase, of the scattered field to be able to construct the total cross-section. We then
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developed an analytical toy model for the spacetime metric of an extended vortex, which is based

on an analytical approximation of the Heaviside step function, and showed how the cross-section

changes when considering the interaction with the string gauge field. In the second part of Chapter

4, we applied the same formalism to a Dirac field and found the explicit formula for the fermionic

total cross-section. We have seen that defining the asymptotical ansatz for the fermionic field is

tricky since we cannot make all components plane-waves before the scattering. The cross-section

formula, however, is not dependent on how you define the initial condition, as expected. In addition,

it was shown that in the high-energy limit all components of the fermionic field contribute to the

cross-section in a symmetric way.

In Chapter 5, we applied this formalism to an abelian and a nonabelian gravitating cosmic string

model found by Pádua Santos and Mello (2015) and compared the cross-sections of both fields for

two sets of the vortex parameters. We have seen that the spacetime with an asymptotically larger

deficit angle has a larger cross-section for both fields which is related to a smaller effective area

for the outgoing particles. In addition, all cross-sections present damped oscillations that, with the

aid of our toy model, were shown to be caused by the particular spacetime structure, including the

conicity, far from the core of the string. We also showed how each parameter of the asymptotical

spacetime contributes to the curvature profile and oscillations in the total cross-section. We have

found that both parameters, the conicicty 𝑏 and the blue-shift 𝑎, contribute to the cross-section

oscillations.

The natural next step of our work is to apply this formalism to the scattering of gauge fields and

see if it presents the same damped oscillations seen in the scalar and fermionic cases. We also look

forward to explore our toy model and see if it could reveal new features of this class of spacetimes

without the hard computational work usually required to obtain the metric components. Moreover,

in the near future, we plan to study a cosmic string model from scratch in order to have control

over all parameters and see how the scattering of classical and quantum particles is affected when

we change the string configuration and when we consider interaction with the fields generating the

vortex. Besides that, we plan to study other types of defects, topological and nontopological, and

see if their interaction with nearby matter fields reveals novel or similar features.
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