
UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

NICOLLE CHAVES CYSNEIROS

Using OLAP Queries for Data Analysis on Graph Databases

Recife

2017

NICOLLE CHAVES CYSNEIROS

Using OLAP Queries for Data Analysis on Graph Databases

Trabalho apresentado ao Programa de Pós-
graduação em Ciência da Computação do Centro
de Informática da Universidade Federal de Per-
nambuco, como requisito parcial para obtenção
do grau de Mestre em Ciência da Computação.

Área de Concentração: Ciência da Com-
putação

Orientador (a): Profª. Drª. Ana Carolina
Brandão Salgado

Recife

2017

 Catalogação na fonte

 Bibliotecária Mônica Uchôa, CRB4-1010

C997u Cysneiros, Nicolle Chaves.

Using OLAP queries for data analysis on graph databases / Nicolle
Chaves Cysneiros. – 2017.

 66 f.: il., fig., tab.

 Orientadora: Ana Carolina Brandão Salgado.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Programa de Pós-graduação em Ciência da Computação. Recife, 2017.
 Inclui referências.

 1. OLAP. 2. Bando de dados em grafo. 3. Grafos. 4. Análise de dados. I.
Salgado, Ana Carolina Brandão (Orientadora). II. Título.

 005.1 CDD (23. ed.) UFPE - CCEN 2022 – 06

Nicolle Chaves Cysneiros

“Using OLAP Queries for Data Analysis on Graph Databases”

Dissertação de Mestrado apresentada ao
Programa de Pós-Graduação em Ciência da
Computação da Universidade Federal de
Pernambuco, como requisito parcial para a
obtenção do título de Mestre em Ciência da
Computação

Aprovado em: 01/09/2017.

BANCA EXAMINADORA

 __
Profa. Dra. Valéria Cesario Times

Centro de Informática / UFPE

 __
Prof. Dr. Carlos Eduardo Santos Pires

Departamento de Sistemas e Computação / UFCG

__
Profa. Dra. Ana Carolina Brandão Salgado

Centro de Informática / UFPE
(Orientadora)

Ao G e E do meu GEN

ACKNOWLEDGEMENTS

Agradeço aos meus pais, por terem me apoiado durante todo o período desse projeto e

por terem batalhado durante toda a minha vida para me proporcionar oportunidades in-

críveis como esse Mestrado. Agradeço à Professora Carol, que atuou como minha mentora

desde minha graduação, me orientando e me ajudando nos caminhos que me trouxeram

até aqui. Agradeço também aos meus amigos Luiz, Tomaz e todo o time Labcodes por

terem me escutado e me dado forças durante os momentos mais difíceis dessa jornada.

ABSTRACT

Graph Databases (GDB) are an alternative to traditional Relational Databases and

allow a better scalability for the system, in addition to representing highly connected data

in a more natural way. GDBs also support different kind of network analysis, such as cen-

trality measures and community detection algorithms. Despite this, there are still no tools

available in the market for multidimensional analysis in graphs, such as existing OLAP

systems that operate on Relational DBs. In the academic field, there are some framework

proposals that aim at the construction of a multidimensional cube composed by aggre-

gate graphs, which are obtained from the combination of vertices and edges of the original

graph, according to the dimensions and measures being analysed. However, most part of

the researches in this area are focused on the OLAP analysis for homogeneous graphs,

while the works dedicated to heterogeneous graphs require an intermediate data model in

order to execute the multidimensional analysis. This project proposes a system to execute

OLAP queries in a Graph Database without the need to generate an intermediate data

model to do multidimensional analysis on heterogeneous graphs. The proposed system is

able to answer OLAP queries using aggregate graphs obtained from the original graph,

as well as execute analysis about the topology of the graph. In this work, we present

experiments showing the effectiveness of the system to answer the analytical queries and

some qualitative comparisons between the proposed system and existing solutions.

Keywords: OLAP; graph databases; graphs; data analysis.

RESUMO

Bancos de Dados (BDs) em Grafo são uma alternativa aos tradicionais BDs Rela-

cionais e permitem uma melhor escalabilidade do sistema, além de uma maneira mais

natural de representar dados altamente conectados. Os BDs em Grafo também permitem

diferentes tipos de análises em grafos, como medidas de centralidade e algoritmos de de-

tecção de comunidades. Apesar disso, ainda não existem ferramentas disponíveis no mer-

cado para fazer análise multidimensional em grafos, como os sistemas OLAP existentes

que operam sobre BDs Relacionais. No meio acadêmico, existem algumas propostas de

frameworks que visam a construção de um cubo multidimensional composto por grafos

agregados, obtidos a partir da combinação de nós e arestas do grafo original de acordo com

as dimensões e medidas analisadas. Contudo, a maior parte das pesquisas são voltadas

para a análise de grafos homogêneos, enquanto os trabalhos que se dedicam a grafos het-

erogêneos realizam a análise multidimensional a partir de um modelo intermediário do

dado original. Esse projeto propõe um sistema para a realização de consultas OLAP em

um Banco de Dados em Grafo sem a necessidade da geração de um modelo intermediário

de dados para realizar análise em grafos heterogêneos. O sistema proposto é capaz de re-

sponder consultas OLAP a partir de grafos agregados extraídos do grafo original, além de

também realizar análises acerca da topologia do grafo. Neste trabalho são apresentados

experimentos mostrando a eficácia do sistema para responder às consultas analíticas e

comparações específicas entre o sistema descrito e as soluções existentes.

Palavras-chaves: OLAP; bando de dados em grafo; grafos; análise de dados.

LIST OF FIGURES

Figure 1 – Elements of a Data Warehouse . 16

Figure 2 – Example of dimensions and measure for a sales application 17

Figure 3 – Example of a Star Schema . 18

Figure 4 – Example of graph . 20

Figure 5 – Example of graph representation of a social network 20

Figure 6 – Example of a multigraph with a loop 21

Figure 7 – Example of a complete graph . 21

Figure 8 – Example of a directed graph . 22

Figure 9 – Example of a subgraph . 22

Figure 10 – Cypher syntax representation of a relationship in the graph 26

Figure 11 – Example of Cypher Query syntax . 27

Figure 12 – Neo4J User Interface . 28

Figure 13 – Multidimensional network . 29

Figure 14 – Aggregate Network by Gender dimension 30

Figure 15 – Graph Cube Lattice . 31

Figure 16 – Example of Informational Aggregate Graph 33

Figure 17 – Example of Topological Aggregate Graph 34

Figure 18 – Example of a heterogeneous multidimensional network 35

Figure 19 – Example of rotate operation . 35

Figure 20 – Example of stretch operation . 36

Figure 21 – Example of attributed graph . 36

Figure 22 – Original movie graph . 38

Figure 23 – Aggregate Graph for inter-class dimensions 39

Figure 24 – Movie graph on GRAD model . 40

Figure 25 – Aggregate Graph for intra-class dimensionl 40

Figure 26 – Schema representation of the DBLP data graph 44

Figure 27 – Running Example with subset of DBLP dataset 44

Figure 28 – OLAP Analysis over Graph Databases Architecture 47

Figure 29 – Aggregate Graph obtained from running example graph 49

Figure 30 – DBLP dataset schema in graph database 54

Figure 31 – Subgraph from the Aggregate Graph generated by the GA 55

Figure 32 – Result of experiment with a content-based measure query 56

Figure 33 – Result of experiment with a query for the dimensions year and month

of publication . 56

Figure 34 – Result of performing a roll-up operation on the content-based measure 57

Figure 35 – Result of experiment with the degree centrality measure for Authors . . 57

Figure 36 – Result of experiment with the betweenness centrality measure for Authors 58

Figure 37 – Result of experiment with the graph as a measure 59

Figure 38 – Result of experiment with content-based measure query submitted to

the original graph . 60

CONTENTS

1 INTRODUCTION . 12

1.1 MOTIVATION . 12

1.2 PROBLEM DEFINITION . 13

1.3 OBJECTIVES . 13

1.4 EXPECTED CONTRIBUTIONS . 14

1.5 DOCUMENT STRUCTURE . 14

2 OLAP AND GRAPH DATABASES 15

2.1 DATA WAREHOUSE . 15

2.2 MULTIDIMENSIONAL MODEL . 16

2.3 OLAP . 17

2.3.1 Types of OLAP Systems . 18

2.3.2 OLAP Operators . 19

2.4 GRAPH . 20

2.4.1 Graph Theory . 20

2.4.2 Network Analysis . 22

2.5 GRAPH DATABASES . 24

2.5.1 Historical Overview . 25

2.5.2 Neo4J . 26

2.6 FINAL CONSIDERATIONS . 28

3 GRAPH CUBES: STATE OF THE ART 29

3.1 GRAPH CUBE: ON WAREHOUSING AND OLAP MULTIDIMENSIONAL

NETWORKS . 29

3.2 GRAPH OLAP: TOWARDS ONLINE ANALYTICAL PROCESSING ON

GRAPHS . 32

3.3 HMGRAPH . 34

3.4 PAGROL: PARALLEL GRAPH OLAP OVER LARGE-SCALE ATTRIBUTED

GRAPHS . 36

3.5 GRAD GRAPH CUBES . 37

3.6 COMPARATIVE ANALYSIS . 40

3.7 FINAL CONSIDERATIONS . 42

4 OLAP ANALYSIS ON GRAPH DATABASE 43

4.1 CONTEXTUALISATION . 43

4.2 RUNNING EXAMPLE . 43

4.3 DIMENSIONS AND MEASURES . 45

4.4 ARCHITECTURE . 46

4.5 AGGREGATE GRAPH . 47

4.6 GRAPH AGGREGATORS . 49

4.7 ANALYTICAL QUERY PROCESSOR . 50

4.8 FINAL CONSIDERATIONS . 51

5 IMPLEMENTATION AND EXPERIMENTS 52

5.1 USED TECHNOLOGIES . 52

5.2 DATASET . 52

5.3 EXPERIMENTS AND RESULTS . 54

5.3.1 Content-based Measure . 55

5.3.2 Graph-specific Measure . 57

5.3.3 Graph as Measure . 59

5.3.4 Aggregate Graph versus Original Graph 59

5.4 RESULT ANALYSIS AND QUALITATIVE COMPARISON 60

5.5 DIFFICULTIES FOUND . 61

5.6 FINAL CONSIDERATIONS . 62

6 CONCLUSION . 63

6.1 CONTRIBUTIONS . 63

6.2 FUTURE WORK . 64

REFERENCES . 65

12

1 INTRODUCTION

In this chapter, we will present the motivations for the realisation of this work and

give a clear definition of the problem to be addressed. The general and specific objectives

of this research will be listed, as well as the remaining structure of the document.

1.1 MOTIVATION

In recent years, our ability to collect data from different sources has increased sig-

nificantly (FAN; BIFET, 2013). We can retrieve data from different devices, with different

formats and different levels of connection. However, our capability to store, process and

analyse these large collections of connected data has still opportunity for improvement.

For this reason, Graph Databases (GDBs) have been gaining attention in the database

community due to the good performance when dealing with highly connected data. In

comparison to Relational Databases, where the execution performance of a query that re-

quires intensive join operations deteriorates proportionally to data size, Graph Databases

performance remains constant with respect to the size of the graph (ROBINSON; WEBBER;

EIFREM, 2015). GDBs allow a more natural way to represent data as vertices and edges.

Social networks, semantic web pages and recommendation systems are some examples of

applications which handle data relationships and could perform better if the data were

stored in a GDB (MILLER, 2013).

GDBs also provide a flexible data model, where the main information stored is the

relationship between entities. This feature allows network processing based analysis to

be done, such as pattern detection, edge path analysis and clustering techniques. These

different analysis techniques allow the development of solutions for challenging problems,

not only those approaches usually applied in traditional relational databases or data

warehousing (LOSHIN, 2013).

Our main motivation comes from the fact that there are no consolidate tools that can

execute both network and multidimensional analysis on a Graph Database. For instance,

a social network implemented using a GDB could take advantage of performing analysis

over the topology of the network formed by the users, but it would fail in performing

multidimensional analysis that would result in Business Intelligence centered reports. In

13

the academic field, there are some framework proposals that aim at the construction of

a multidimensional cube composed by aggregate graphs, which are obtained from the

combination of vertices and edges of the original graph, according to the dimensions and

measures being analysed. However, most part of the researches in this area are focused

on the OLAP analysis for homogeneous graphs (graphs with only one type of vertex),

while the works dedicated to heterogeneous graphs (graphs with more than one type of

vertices) require an intermediate data model in order to execute the multidimensional

analysis. The need of a intermediate data model means that the operational data would

have to be parsed into the new data model in order to be analysed, including one more

step to the analysis process.

1.2 PROBLEM DEFINITION

Given the scenario described in the previous section, we investigate the problem to be

addressed from the question: “How can we execute both network and multidimensional

analysis on heterogeneous graphs data without the need to generate an intermediate data

model?”. Considering the question proposed, the problem can be defined as: given a graph

𝐺 = (𝑉, 𝐸), with a set of vertices 𝑉 and a set of edges 𝐸, what is the architecture and

how is the operation of a system that is able to execute network analysis algorithms and

OLAP queries over the graph 𝐺, without generating an intermediate data model.

1.3 OBJECTIVES

The general objective of this work is to build a system that supports the execution of

network and multidimensional analysis on a Graph Database, without the generation of

an intermediate data model for the graph. In order to achieve the general objective, some

specific objectives were considered:

• Generate multidimensional view of the original data without changing the data

model adopted by the operational part of the system

• Give support for OLAP operations (roll up, drill down, slice and dice) to be executed

over the multidimensional view

• Give support for network analysis algorithms to be executed over the original data

14

• Define the architecture of the complete system

1.4 EXPECTED CONTRIBUTIONS

Once the main problem and the objectives are defined, we expect from this work the

following contributions:

• Architecture definition, specification of an algorithm to generate aggregate graphs

and implementation of a prototype for a Data Analysis System for Graph Databases.

• Implementation of OLAP operators and network analysis algorithms, providing a

comprehensive analysis of the graph data.

• Experiments and qualitative analysis in comparison with existing frameworks.

1.5 DOCUMENT STRUCTURE

The rest of the document is organized as follows:

Chapter 2 Introduces the main concepts related to the theoretical foundation of this

work, such as OLAP systems, Graphs and Graph Databases.

Chapter 3 Gives an overview of the state of the art for OLAP system with Graph

Databases, presenting the main frameworks proposed in this area.

Chapter 4 Presents the specification of the system proposed, detailing the architecture

and the main components of the solution implemented.

Chapter 5 Shows how the system was implemented and describes some experiments and

the obtained results.

Chapter 6 Concludes the document, recapitulating the work presented and giving in-

sights for future work.

15

2 OLAP AND GRAPH DATABASES

This chapter introduces the main concepts that forms the theoretical foundation neces-

sary to better understand the work presented in this dissertation. Initially, we will explore

the definition of Data Warehouse, Multidimensional Model and OLAP tools. Then, we

will dive into concepts related to Graph and Graph Databases.

2.1 DATA WAREHOUSE

According to (INMON, 2005), a data warehouse (DW) is “a subject-oriented, integrated,

nonvolatile, and time-variant collection of data in support of management’s decisions”.

The first important aspect of a data warehouse is that it is subject-oriented, which means

that the information stored in the DW is related to the company’s subject. Consider a

retail company for example: the main subjects can be product, sale, vendor and customer,

therefore the data in the warehouse will be related to these entities.

The second characteristic of a data warehouse is that it is integrated, which means it

contains data coming from multiple different sources. During the process of loading the

warehouse, the data is converted, formatted, normalised and go through any other process

to make the final information stored in the warehouse consistent. Another important

aspect of a data warehouse is that it is nonvolatile, which means that the data in the

warehouse does not get updated as operational environment. The warehouse is loaded

in batches and it stores a snapshot, creating a history of the data. The final important

aspect of a DW is that every record of data contains some sort of a time attribute to

mark the moment in which the record is accurate.

Figure 1 shows the basic elements of a data warehouse (KIMBALL; ROSS, 2011). The

Operational Source Systems capture and store the transactions of the business and they

are considered elements outside of the data warehouse, since there is no control on the

content or the format of the data that they store. The Data Staging Area is where the

process of Extract-Transformation-Load (ETL) is made: the data is extracted from the

operational source system, then they are transformed in order to integrate all the infor-

mation in a consistent format, and finally the data is loaded into the presentation area.

The Data Presentation Area is where the data is organised, stored and accessed by

16

Figure 1 – Elements of a Data Warehouse

Source: KIMBALL; ROSS (2011)

analytical applications. According to (KIMBALL; ROSS, 2011), this area should be com-

posed by a series of integrated data marts, which are repositories that present the data

for a single process of the organisational business. A data mart stores atomic data and

organizes them in a model that is more legible to humans. The most popular technology

used to implement data marts adopted by the industry is On-Line Analytical Processing

(OLAP), that will be covered in more detail along this chapter.

Finally, the Data Access Tools query the data in the presentation area. This element

is formed by a set of different applications, from simple ad hoc queries until complex data

mining application.

2.2 MULTIDIMENSIONAL MODEL

The main functionality of a data warehouse is to facilitate multidimensional analysis

(OLAP COUNCIL, 1997). This type of analysis reduces the number of misinterpretations by

aligning the data with the analyst’s mental model of the business. The multidimensional

analysis provides an easy navigation through the database, showing specific subsets of

data in different orientations and executing analytical calculations.

In order to perform multidimensional analysis, the data must be organised in a multidi-

mensional model, where information is stored in a multidimensional array called hypercube

or cube (VASSILIADIS, 1998). A cube is composed by cells that store measures aggregated

by the data dimensions. A dimension is a cube’s structural attribute formed by a list of

properties that are similar to each other according to the user’s perception of the data.

17

Measures are the values being analysed by the user. Figure 2 shows an example of the

dimensions and measures extracted from a sales application.

As shown in Figure 2 , each dimension (Geography, Time and Item) can be associated

with an hierarchy of data aggregation levels. This feature allows user to view the data

from different levels of details, for example: the measure Sales aggregated by Region can

be detailed by Country or even further detailed by City.

Figure 2 – Example of dimensions and measure for a sales application

Source: VASSILIADIS (1998)

2.3 OLAP

On-Line Analytical Processing (OLAP) is a category of technological tools used by

analysts and managers to extract new knowledge from consolidated enterprise data (OLAP

COUNCIL, 1997). In order to achieve this goal, data are organised in cubes and stored

following multidimensional models. The access to this data should be fast, consistent and

interactive and it should provide various views of information, reflecting the different

dimensions of an enterprise as perceived by the user.

Usually, the data loaded into an OLAP system comes from a data warehouse. Ac-

cording to (INMON, 2005), the relationship between OLAP systems and data warehouse

is complimentary: while OLAP offers control and flexible ways to explore data in differ-

ent dimensions and hierarchy levels, data warehouse provides a robust data source for

the OLAP system, where up-to-date data is available, already extracted and properly

integrated.

18

2.3.1 Types of OLAP Systems

There are two approaches for the physical model of an OLAP system (VASSILIADIS;

SELLIS, 1999): Multidimensional On-Line Analytical Processing (MOLAP) and Relational

On-Line Analytical Processing (ROLAP) Architectures.The MOLAP architecture pro-

vides a direct multidimensional view of the data. This approach stores the data in a

Multidimensional Database Management System (MDBMS), which uses n-dimensional

arrays that contains the measures of the cube. This type of DBMS has a better perfor-

mance than traditional Relational Databases, but it is more difficult to manage updates.

The ROLAP architecture is a multidimensional interface to relational data. This ap-

proach uses a traditional Relational Database Management System (RDBMS) to store

the data organised in a star or snowflake schema. A star schema is formed by one or more

dimension tables and one centralised fact table, which stores the measures of interest for

the OLAP system. Figure 3 shows an example of a star schema, where the tables TIME,

GEOGRAPHY, ACCOUNT and PRODUCT are dimension tables and SALES is the fact

table.

Figure 3 – Example of a Star Schema

Source: VASSILIADIS; SELLIS (1999)

Despite MOLAP architecture has the advantage of relying on a multidimensional

native storage mechanism, the ROLAP approach allows easy integration with existing

19

relational database systems and has the advantage of relational data being more efficiently

stored than multidimensional data.

2.3.2 OLAP Operators

As mentioned earlier in this chapter, an OLAP system should provide a fast and

interactive way for the user to explore the data stored in the cube. These are the main

OLAP operations that can be used to navigate and manipulate different dimensions of

the data (VASSILIADIS, 1998):

Roll-up Aggregates information along one dimension, summarising data on a higher level

in its hierarchy. Consider the dimensions shown in Figure 2 and the measure of total

dollar amount of sales per city, we can perform a roll-up operation to obtain the

total dollar amount of sale per state.

Drill-down Detail information along one dimension, navigating the data from a higher

to a lower hierarchy. Consider the measure of total dollar amount of sales per year,

we can drill-down this query to obtain the total dollar amount of sales per month.

Slice Selects a slice of the cube according to user-specified dimension values. For instance,

the user can select to view the total dollar amount of sales for the year of 2016.

Dice Selects a subcube from the original data according to user-specified conditions re-

ferred to more than one dimension. For instance, the user can select to view the

total dollar amount of sales for the year of 2016 in the city of Recife.

Pivot Changes the orientation of dimensions in the cube, i.e. swap a row dimension to a

column dimension.

There are other operations that can be performed in a OLAP system, but the ones

shown above are considered the basic set of operations to support dynamic multidimen-

sional analysis (INMON, 2005).

20

2.4 GRAPH

Graph is a data structure formed by a set of vertices 𝑉 = {𝑣1, . . . , 𝑣𝑛} and a set of pair

of vertices called edges 𝐸 = {𝑣1𝑣2, . . . , 𝑣𝑛𝑣𝑚}. It can be represented graphically (where

the vertices are shown as circles and edges are shown as lines, as shown in Figure 4) or

mathematically in the form 𝐺 = (𝑉, 𝐸) (WILSON, 1996).

Figure 4 – Example of graph

Source: WILSON (1996)

There are several real world applications that can take advantage of a graph model,

specially the ones where the relationship between entities is an important information to

be represented (MILLER, 2013). Consider, for example, a social network application similar

to Twitter, where a user can follow another user. In this scenario, we can represent a user

as a vertex and the relationship between users as an edge, as shown in Figure 5

Figure 5 – Example of graph representation of a social network

Source: MILLER (2013)

2.4.1 Graph Theory

Graph Theory is a branch of Mathematics dedicated to the study of graph structures

(WILSON, 1996). Given the definition of a general graph explained above, there are several

21

classifications and concepts associated with graph structures.

Loop When an edge starts and finishes in the same vertex, as the one shown in Figure

6 starting at vertex 𝑇 and finishing at vertex 𝑇 .

Multigraph When a graph allows multiple edges connecting the same pair of vertices,

as illustrated in Figure 6 with two edges connecting vertices 𝑄 and 𝑅.

Figure 6 – Example of a multigraph with a loop

Source: WILSON (1996)

Simple Graph When a graph does not have loops or multiple edges, as the one depicted

in Figure 4.

Complete Graph When each pair of distinct vertices are connected to each other, as

shown in Figure 7.

Figure 7 – Example of a complete graph

Source: WILSON (1996)

Directed Graph When the edges have directions expliciting the start and end of the

connection, as illustrated in Figure 8.

Homogeneous Graph It is a graph that has only one type of vertex.

Heterogeneous Graph It is a graph that has different types of vertices.

22

Figure 8 – Example of a directed graph

Source: WILSON (1996)

Subgraph It is a graph obtained from another graph 𝐺, where its vertices are a subset

of the vertices of 𝐺 and its edges are a subset of the edges of 𝐺. Figure 9 shows in

9b a subgraph of the graph in 9a.

Path It is a subgraph obtained by a sequence of adjacent and distinct vertices.

Figure 9 – Example of a subgraph

(a) Original graph
(b) Subgraph

Source: WILSON (1996)

There are other types of classifications of a graph and other concepts associated to it

(WILSON, 1996). These are the main definitions for the purposes of understanding the

work presented here.

2.4.2 Network Analysis

There are different kind of analysis that can be done depending on the nature of the

graph data. Due to the work presented here, we will explore the aspects of social network

analysis, which focus on the structure of relationships (edges) between entities (vertices)

in the graph. Several types of analysis can be performed in a graph, but the measure of

a vertex’s centrality is historically one of the most studied cases of analysis (FREEMAN,

1978). A common application for a centrality measure is to find out what are the focal

23

points in a social network, i.e. who are the people that are the most connected to other

people? There are three types of centrality measures (FREEMAN, 1978):

Degree Centrality This measure is given by the number of adjacent vertices. Formally,

the Degree Centrality 𝐶𝐷 of a vertex 𝑣𝑘 can be given by

𝐶𝐷(𝑣𝑘) =
𝑛∑︁

𝑖=1
𝑎(𝑣𝑖, 𝑣𝑘), (2.1)

where 𝑛 is the total number of vertices in the graph and 𝑎(𝑣𝑖, 𝑣𝑘) is 1 if and only if

𝑣𝑖 and 𝑣𝑘 are connected by one edge, or 0 otherwise.

Considering a social network, a person (vertex) that has the greatest number of

connections can be considered one of the focal points of the network, since it can

directly read the most vertices in the graph. Given a graph with n vertices, the

maximum value the degree centrality of a vertex in the graph can be is 𝑛− 1. The

degree centrality of a vertex is related to its potential communication activity.

Betweenness Centrality This measure is given by the frequency in which a vertex

is present in the shortest path between other vertices. Formally, the Betweenness

Centrality 𝐶𝐵 of a vertex 𝑣𝑘 is given by

𝐶𝐵(𝑣𝑘) =
𝑛∑︁

𝑖 ̸=𝑗 ̸=𝑘

𝜎𝑖𝑗(𝑣𝑘)
𝜎𝑖𝑗

, (2.2)

where 𝜎𝑖𝑗 is the total number of shortest paths from vertex 𝑣𝑖 to vertex 𝑣𝑗 and

𝜎𝑖𝑗(𝑣𝑘) is the total number of shortest paths from 𝑣𝑖 to 𝑣𝑗 that passes through 𝑣𝑘.

Considering a social network, a person with high betweenness centrality is capable

of influencing others by intercepting connections between several vertices in the

graph. The betweenness centrality of a vertex is related to its potential control of

communication.

Closeness Centrality This measure is given by the inverse of the sum distance of the

shortest path of a vertex between other vertices in the graph. Formally, the Closeness

Centrality 𝐶𝐶 of a vertex 𝑣𝑘 is given by

𝐶𝐶(𝑣𝑘) = 1∑︀𝑛
𝑖=1 𝑑(𝑣𝑖, 𝑣𝑘) (2.3)

24

where 𝑑(𝑣𝑖, 𝑣𝑘) is the number of edges in the shortest path from 𝑣𝑖 to 𝑣𝑘.

Considering a social network, a person with high closeness centrality do not depend

as much on others to communicate with other people in the network. The closeness

centrality of a vertex is related to its potential independency and efficiency to control

communication.

2.5 GRAPH DATABASES

Graph Databases are an alternative to Relational Database Management Systems

(RDBMS), which are commonly used in the industry since the early 1980’s. Despite the

popularity of RDBMSs, GDBs allow the storage of data in graph model, which is a

more natural way to represent information for some applications, such as social networks,

semantic web pages and recommendation systems (MILLER, 2013).

The most popular form of graph model is the labeled property graph model (ROBIN-

SON; WEBBER; EIFREM, 2015). The main characteristics of a labeled property graph are:

• Vertices and edges can contain properties, i.e. key-value pairs

• Vertices can be labeled with one or more labels

• Edges are labeled and directed, i.e. always have start and end vertices

The formal definition for a labeled property graph is given by 𝐺 = (𝑉, 𝐸, 𝐿𝑉 , 𝐿𝐸, 𝐴𝑉 , 𝐴𝐸),

where:

• 𝑉 is a set of vertices

• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges

• 𝐿𝑉 is a set of vertices labels and 𝐿𝐸 is a set of edge labels

• 𝐴𝑉 = {𝑎1, . . . , 𝑎𝑛} is a set of vertex attributes, where 𝑎𝑖 = (𝑘𝑖, 𝑚𝑖) is a key-value

pair, 𝑘𝑖 is the attribute key and 𝑚𝑖 is the attribute value. Each vertex 𝑣𝑖 ∈ 𝑉 is

associated with a set of attributes. 𝐴𝐸 = {𝑏1, . . . , 𝑏𝑛} is the set of edge attributes

defined in the same way as vertex attributes.

25

An example of a labeled property graph was shown in Figure 5, where the vertices

have the label “User” and the property “name” and the relationships are named “Follows”

and have arrows indicating the direction of the edge.

2.5.1 Historical Overview

Scientific research related to graph data models were continuously published between

1980’s and the first half of 1990’s. Then, the database community attention turned to

semistructured data model, due to the emergence of XML and the growth of hypertext

document applications (ANGLES; GUTIERREZ, 2008). From this period, the main focus

of the graph databases proposed was to establish a better way to represent data and

methods to retrieve and manipulate data modelled as graph.

Recently this area has gained again attention from the community, due to the emer-

gence of trendy projects (chemistry, biology, social network, semantic web, among others)

where the importance of information relies not only in the entities but also in the rela-

tionship between them (ANGLES, 2012). Most recent implementations of graph databases

are concerned with handling increasing amount of data and improving performance in

retrieving and manipulating data.

The most popular graph database system according to DBEngines1 website is Neo4J2.

It is an open source native graph storage database system implemented in Java. Neo4J

has its own query language called Cypher, which can be used to create, update and

retrieve vertices and edges. This graph database system also provides high availability

and scalability for big volume of graph data.

Besides Neo4J, there are other popular graph databases system according to DB En-

gine site. OrientDB3 is a NoSQL Multi-Model database, which means it stores data in the

form of documents, key-value stores, objects, graph and others. Like Neo4J, OrientDB is

also implemented in Java, but it uses an extended version of SQL that includes special

operators to manipulate graph. This database system allows the creation of a pre-defined

data schema and the definition of complex data type, like dates, decimals and binary

objects (BLOB).
1 https://db-engines.com/en/system/Neo4j
2 https://neo4j.com/
3 http://orientdb.com/orientdb/

26

TitanDB4 is a native graph database system implemented in Java. In order to estab-

lish connection with the hard disk, Titan needs to be linked to a data storage system -

Cassandra5, HBase6 or BerkeleyDB7 - that is suitable for the application. The creation of

vertices, edges and the submission of queries can be done through a Java API or through

a Gremlin server.

2.5.2 Neo4J

As mentioned, Neo4J is the most popular graph database in the industry according

to DB Engines website. In comparison with other DBs from the same category, Neo4J

has a good performance considering time to process a query and the amount of memory

consumed by the database.

The queries submitted to Neo4J are written in Cypher (NEO4J,), which is a declarative

query language inspired by SQL and that describes graph patterns using ASCII characters.

Figure 10 shows an example of how Cypher represents a relationship in the query syntax.

This language also allows to create, update and delete vertices and edges. Since Cypher

uses the terms “nodes" and “relationships" to refer to “vertices” and “edges” respectively,

we will interchange these words accordingly throughout the text from now on.

Figure 10 – Cypher syntax representation of a relationship in the graph

Source: NEO4J ()

Neo4J query language also includes a series of clauses and expressions similar to SQL,

such as 𝑊𝐻𝐸𝑅𝐸, 𝑂𝑅𝐷𝐸𝑅𝐵𝑌 , 𝐿𝐼𝑀𝐼𝑇 , 𝐴𝑁𝐷, among others. The Cypher query shown

in Figure 11 is an example of the general syntax of the language and it shows how it is
4 http://titan.thinkaurelius.com/
5 http://cassandra.apache.org/
6 https://hbase.apache.org/
7 http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/overview/index.html

27

possible to restrict the results by a certain threshold using the clause 𝑊𝐻𝐸𝑅𝐸. The

mentioned query will return a subgraph containing the nodes with labels 𝐿𝑎𝑏𝑒𝑙1 and

𝐿𝑎𝑏𝑒𝑙2 that have a relationship of type 𝑇𝑌 𝑃𝐸 with a property value above a certain

threshold.

Figure 11 – Example of Cypher Query syntax

Source: NEO4J ()

The data stored in a Neo4J database can be accessed using a Java API or a REST API

by default. In order to facilitate the access to the data using a Python application we used

an external library called Py2Neo, which wraps REST API requests to execute Cypher

commands on the database. In this way, it was possible to implement the algorithm for

the Graph Aggregators, where it consumes the original data, generate an aggregate graph

and stores it in another instance of a Neo4J database.

Another interesting feature in Neo4J is its web-based user interface. This interface

provides a direct way to submit Cypher queries to the database and a visualisation of the

results. Figure 12 is a screenshot of the interface, showing the result of a simple query sub-

mitted in the text area at the top of the screen. The submitted query returns a subgraph

showing the relationship between the Author Felix Naumann with all his publications

present in the database. The interface shows each node as a circle and relationship as

an arrow, it also shows the properties and labels of nodes and relationships when they

are clicked. The experiments shown in this chapter will be displayed using the graphic

interface provided by Neo4J.

28

Figure 12 – Neo4J User Interface

2.6 FINAL CONSIDERATIONS

In this chapter, we discussed the main concepts related to the work presented in

this dissertation. Initially, the definition of Data Warehouse and Multidimensional Model

were introduced, followed by a detailed view on different types and operators an OLAP

system can have. Then, we covered the main components of a graph and how it can be

classified according to different characteristics. Finally, we explained the definition of a

Graph Database and went through a historical overview of such systems, as well as a

more specific description of Neo4J database. In the next chapter, we will review the most

important research published that implements an OLAP system using Graph Databases.

29

3 GRAPH CUBES: STATE OF THE ART

This chapter presents the most important research works published in the area of

OLAP systems implemented using graph databases. The first work presented here dates

back to 2011 and introduces several concepts - such as graph cube, aggregate graphs and

cuboid queries - that serve as basis for other papers published since then.

3.1 GRAPH CUBE: ON WAREHOUSING AND OLAP MULTIDIMENSIONAL NETWORKS

One of the main works in graph analysis using OLAP methods is described in (ZHAO

et al., 2011), and it introduces several concepts that will be used by other authors to

describe their work in this area. Graph Cube is one of those concepts and it is defined

as a multidimensional model that extends multidimensional networks to provide decision

support features. A multidimensional network is a graph 𝑁 = (𝑉, 𝐸, 𝐴), where 𝑉 is a set

of vertices, 𝐸 is a set of edges and 𝐴 is a set of vertex-specific attributes. Each vertex in

the graph is a multidimensional tuple and the attributes of the vertex define the graph

cube dimensions.

A graph cube is formed by all possible aggregate networks calculated from the original

multidimensional network. An aggregate network (often called cuboid) is a summarisation

of the original graph with respect to one or more dimensions, which is calculated by

applying an aggregate function (e.g. COUNT, SUM, AVERAGE, among others) on the

vertices attributes. Consider the multidimensional network illustrated in Figure 13.

Figure 13 – Multidimensional network

Source: ZHAO et al. (2011)

30

Figure 14 – Aggregate Network by Gender dimension

Source: ZHAO et al. (2011)

The vertices of the graph presented in Figure 13 represent individuals and the edges

represent the relationship between these individuals. The table on the right side of Figure

13 describes the attributes of each vertex: an unique ID, Gender, Location, Profession and

Income. Figure 14 shows the cuboid obtained by applying the function COUNT on the

attribute Gender : two vertices represent the possible values for the attribute (Male and

Female) and they contain the number of vertices in the original graph with the respective

Gender value. It is important to notice that the relationship between individuals was

also aggregated in the resulting network, e.g. the aggregate network show that there

are 9 relationships between male and female individuals in the original graph, which is

represented by an edge with weight of 9.

The dimension of a cuboid is given by the set of non-aggregate dimensions of the

cuboid. For instance, the cuboid in Figure 14 has the dimension {𝐺𝑒𝑛𝑑𝑒𝑟}. A cuboid 𝐴′

is an ancestor of another cuboid 𝐴” if 𝑑𝑖𝑚(𝐴′) contains 𝑑𝑖𝑚(𝐴′′). Given these definitions,

all possible cuboids of a graph cube can be organised in a graph cube lattice, ordering the

cuboids according to its ancestors. A multidimensional network 𝑁 with 𝑛 dimensions has

2𝑛 cuboids in the graph cube. Figure 15 shows the graph cube lattice for the multidimen-

sional network introduced in Figure 13, considering only Gender, Location and Profession

as dimensions.

The paper proposes two OLAP query models:

Cuboid Query Aggregate vertices and edges based on the dimension requested in the

query and can work with any aggregate function (SUM, AVG, etc). For instance,

consider a graph with vertices containing the attributes (Gender, Location, Profes-

sion). A cuboid query for this graph can be (𝐺𝑒𝑛𝑑𝑒𝑟, *, *) which will result in an

aggregate graph showing all the vertices with the same Gender value aggregated

and the edges also aggregate by the function COUNT.

31

Figure 15 – Graph Cube Lattice

Source: ZHAO et al. (2011)

Crossboid Query Return the aggregate network between two or more cuboids struc-

tures. An example of a crossboid query can be the aggregate network between an

user with 𝐼𝐷 = 3 and all the locations.

Given that the size of the graph cube lattice is exponential with respect to the number

of dimensions of the original multidimensional network, the paper proposes a partial

materialisation in order to process queries. The partial materialisation is implemented

using a greedy algorithm that selects k cuboids (𝑘 < 2𝑛) to be materialised according to

the benefit of those cuboids to improve the cost for query evaluation.

The graph cube implementation described above is also studied by other works. In

(DENIS; GHRAB; SKHIRI, 2013), a distributive approach is proposed using map reduce

jobs to calculate each step of the aggregation process. In (KHAN et al., 2014), a new

algorithm to compute the Graph Cube (iGraphCubing) is proposed, using a new prunning

method based on the Structural Significance measure.This measure takes into account

three factors:

• The diversity of the attribute value in the neighborhood for each vertex

• The clustering coefficient

• The density around each vertex

The work in (ZHAO et al., 2011) presents experiments evaluating the effectiveness and

the efficiency of the method proposed. The effectiveness was evaluated by analysing OLAP

32

queries submitted to the graph cube. The efficiency was evaluated by analysing the graph

cube performance depending if it was fully or partially materialised in disk. In conclusion,

the paper proposes an implementation of a graph cube obtained from an homogeneous

attributed graph, but it does not consider heterogeneous networks neither attributed

edges.

3.2 GRAPH OLAP: TOWARDS ONLINE ANALYTICAL PROCESSING ON GRAPHS

The Graph OLAP framework proposed in (CHEN et al., 2008) takes as input a set

of network snapshots, where each snapshot contains a graph and a set of informational

attributes that describes the snapshot. In this scenario, the paper defines two dimension

types: informational dimensions (formed by the informational attributes) and topological

dimensions (formed by the attributes of the vertices and edges of the graph). The authors

distinguish different semantics for OLAP operations in graphs, so these operations are

categorised into Informational OLAP (I-OLAP) and Topological OLAP (T-OLAP).

The framework gives as output an aggregate graph with a summarised view of the

snapshots set. The type of the aggregate graph returned by the framework can also be

categorised in Informational Aggregate Graph (I-aggregate graph) and Topological Ag-

gregate Graph (T-aggregate graph).

Informational Aggregate Graph is computed based on a set of network snapshots

that have informational dimensions with same values. Figure 16 shows an example of an

i-aggregate graph composed by snapshots describing the co-author relationship between

individual authors. The co-author relationship is grouped by a certain conference (sigmod,

vldb, icde), by a class of conferences (db-conf), by a specific period of time (2004, 2005)

and by a group of time periods (all-years). It is important to notice that the graph in

Figure 16 shows different levels of aggregations for each co-author relationship.

Classic OLAP operations in an i-aggregate graph can be interpreted as follows:

Roll-up Aggregate multiple snapshots to form a higher level summary of information

Drill-down Return to lower-level snapshots from aggregate graph

Slice / dice Select a subset of snapshots based on informational dimensions

33

Figure 16 – Example of Informational Aggregate Graph

Source: CHEN et al. (2008)

Topological Aggregate Graph is obtained based on a single network, where the vertices

are the result of applying the aggregate function to the vertices of the original network

with the same attribute value. Figure 17 shows an example of a t-aggregate graph where

the information about co-author relationship between individual authors in one snapshot

was aggregated into co-author relationship between the institutions the authors belong

to.

Classic OLAP operations in an t-aggregate graph can be interpreted as follows:

Roll-up Merge topological elements (vertices or edges) and replace them by correspond-

ing higher-level elements

Drill-down Split merged elements into lower-level elements

Slice / dice Select a subgraph of a snapshot based on topological dimensions

The Topological OLAP is further explained in (QU et al., 2011). This work takes into

consideration two properties (T-Distributiveness and T-Monotonicity) used to classify

34

Figure 17 – Example of Topological Aggregate Graph

Source: CHEN et al. (2008)

how different measures can be performed in an OLAP Graph. A measure function is con-

sidered T-Distributive if the result of the function applied to high-level vertices from the

graph can be obtained by the computation of pre-computed results of the same func-

tion applied to lower-level vertices from the same graph. On the other hand, a measure

is considered T-Monotone, if the data search space can be pruned given a user-defined

threshold, by dropping vertices pairs with measures that do not satisfy the threshold. The

paper shows experiments using common constraint function, proven to be T-Distributives

and/or T-Monotones, such as SUM, MIN, MAX, Density, Degree Centrality, Closeness

Centrality, among others.

3.3 HMGRAPH

An Heterogeneous and Multidimensional Graph OLAP framework (HMGraph OLAP)

is proposed in (YIN; WU; ZENG, 2012). This framework uses a graph model similar to Graph

OLAP (CHEN et al., 2008), but it adds the concept of Entity Dimensions due to the hetero-

geneity of the input graphs (Graph OLAP framework only handles homogeneous graphs).

Figure 18 shows an example of a heterogeneous multidimensional network, highlighting

the entity attributes of the graph.

Entity attributes are the attributes that describe the characteristics of an entity. In

the graph illustrated in Figure 18, organ and age are entity attributes of author entity.

Entity Dimension is related to the types of vertices in the graph.

Like Graph OLAP, HMGraph can perform I-OLAP and T-OLAP operations, but it

35

Figure 18 – Example of a heterogeneous multidimensional network

Source: YIN; WU; ZENG (2012)

can also perform rotate and stretch operations. The rotate operation is done by changing

vertices into edges and edges into vertices, as shown in Figure 19. The stretch operation

is done by changing edges into entities and adding edges between the recently created

entity and the vertices previously connected to the transformed edge, as shown in Figure

20.

Figure 19 – Example of rotate operation

Source: YIN; WU; ZENG (2012)

Even though the work presented in (YIN; WU; ZENG, 2012) draws attention to the im-

portance of heterogeneous networks in real world application, the paper does not provide

further implementation detail on how the framework can be used with real data.

36

Figure 20 – Example of stretch operation

Source: YIN; WU; ZENG (2012)

3.4 PAGROL: PARALLEL GRAPH OLAP OVER LARGE-SCALE ATTRIBUTED GRAPHS

The work presented in (WANG et al., 2014) proposes a parallel Graph OLAP system,

adopting the Hyper Graph Cube model that extends attributed graphs to support decision

making services. The model proposed in this paper is similar to the Graph Cube described

in (ZHAO et al., 2011), with the main difference being the presence of attributes also in the

graph edges. In this scenario, there are two types of dimensions: vertex dimensions and

edge dimensions. Figure 21 shows an example of an attributed graph.

Figure 21 – Example of attributed graph

Source: WANG et al. (2014)

Given an attributed graph with n vertex dimensions and m edge dimensions, the Hyper

37

Graph Cube will contain 2𝑛+𝑚 aggregate graphs obtained as described by the work of

(ZHAO et al., 2011). This Hyper Graph Cube can be seen as the cartesian product between

all the vertex-aggregate networks (when one or more vertex dimensions are aggregated)

and the edge-aggregate networks (when one or more edge dimensions are aggregated).

This cube arrangement can support the following categories of queries:

Category 1 Queries answered by information stored either in a vertex or in an edge

attributes. For example:“How many relationships appeared in 2012?” or “What is

the percentage of users in each different profession in this network?”

Category 2 Queries answered by integrating the knowledge stored at both vertex and

edges attributes. For example: “What is the trend of the number of relations ap-

pearing between USA and SG (Singapore) in the last 3 years?”

Category 3 Queries answered by an aggregate graph, that provides a summarised view

of the data along some dimensions. For example: “What is the graph structure as

grouped by users’ gender as well as relationship type?”

The Hyper Graph Cube also supports roll-up and drill-down operations, along both

vertex and edge dimensions. For instance, if we have an aggregate graph along Location

dimension according to City value, we can roll up to obtain an aggregate graph according

to State value.

The materialisation for the Hyper Graph Cube is done using Map-Reduce(MR) jobs.

Since vertex and edges are stored in two different tables in the distributed file system

(DFS), the materialisation is done in two steps: first the two tables are joined into one flat

table containing all the dimensions and the second step performs the cube computation.

This process is optimised using self-contained joins and batching techniques.

3.5 GRAD GRAPH CUBES

One of the most recent works in this area is presented in (GHRAB et al., 2015). This

paper proposes a new technique for extracting multidimensional concepts and building

OLAP cubes from heterogeneous property graphs. The authors propose a new classifica-

tion of graph measures based on the aggregation type and computation algorithm:

38

Content-based measure Calculated based on graph’s vertices and edges attributes.

They are similar to traditional OLAP measures.

Graph-based measure Obtained by applying graph algorithms. They capture topolog-

ical properties of the graph.

Graph as measure Different aggregation levels of a graph can be considered measures.

Given a property graph with two distinct classes of vertices, the authors explore candi-

date dimensions, measures and cubes that can be obtained from the graph. The example

used throughout the paper is a movie graph: it has movie vertices linked to vertices rep-

resenting the actors that acted in the movie, as shown in Figure 22. The dimensions

obtained by a subset of vertices and edges attributes are called inter-class dimensions.

Figure 22 – Original movie graph

Source: GHRAB et al. (2015)

Once the dimensions are selected, a graph lattice is defined by all possible OLAP

aggregations obtained by aggregating the intra-class dimensions. The inter-class measures

fall back in one of the aforementioned categories (content-based, graph-specific or graph

as measure).

Figure 23 shows the aggregate graph obtained by grouping movies by their release

date and actors by their birth date and gender. The graph shows the average ranking and

rating of the ACTS relationship between grouped actors and movies.

39

Figure 23 – Aggregate Graph for inter-class dimensions

Source: GHRAB et al. (2015)

This paper also proposes a technique for building OLAP cubes extracted from a graph

modelled according to the analysis-oriented graph database model GRAD. This model

provides advanced graph structures, integrity constraints and graph algebra. According

to the authors, traditional property graphs only support OLAP analysis of inter-class

dimensions, while additional capabilities brought by GRAD allows the analysis of infor-

mation stored within each vertex.

The GRAD model consider heterogeneous, attributed, labelled graphs and supports

complex type attributes on the vertices. This model introduces special analytical struc-

tures called hypernodes, that represent real world entities grouped by classes. Each hyper-

node is a subgraph formed by an entity vertex - which contains the label and the identifier

attributes - attributes vertices - linked to the entity vertex and represent the non-identifier

attribute - and literal vertices - which stores the effective value of its attribute vertex.

Figure 24 shows an example of a movie graph modelled with GRAD.

Based on this model, the paper defines Intra-class Dimensions as a subset of attributes

vertices. The Intra-class Measures are identified by the attribute vertex label and are

calculated in a similar way as the measures in property graph model. Figure 25 shows the

result of applying aggregation function to the original GRAD graph in order to calculate

the revenue measure, aggregating the Location according to the Country Name (CN)

attribute.

This framework’s implementation used Neo4J for the graph storage and HDFS (Hadoop

Distributed File System) for distributed processing. The architecture is also composed by

40

Figure 24 – Movie graph on GRAD model

Source: GHRAB et al. (2015)

Figure 25 – Aggregate Graph for intra-class dimensionl

Source: GHRAB et al. (2015)

a middleware layer that is responsible for computing the aggregate graph and measures,

using GraphX1 library to calculate graph-specific measures.

3.6 COMPARATIVE ANALYSIS

The first works done in OLAP analysis on graph focused on homogeneous graph

datasets and defined ground concept of this area, such as aggregate graphs and graph

lattice. Several operators were proposed and, in general, three types of measures were

taken into consideration:

Informational / Content-based / Attribute-based measure Similar to traditional

OLAP measures, this information is obtained by applying an aggregate function on

the vertex’s attributes.

Topological / Aggregate Graph measure This type of measure gives information
1 https://spark.apache.org/graphx/

41

about the topology of the graph and is obtained by applying aggregate function

on vertices and edges, generating a graph as a measure.

Graph-based / specific measure This type of measure is based on graph analysis the-

ory and can be represented by a number or a subgraph.

One relevant characteristic of the works presented so far is the little explanation given

on how the framework was indeed implemented, which made their understanding rather

difficult. The Table 1 shows a comparison between all the frameworks presented in this

chapter, regarding the type of graph, dimensions and operations supported by each one.

Table 1 – Comparison of studied frameworks

Framework Graph Dimensions Operations
Graph Cube Homogeneous Vertex Attributes Cuboid and

Crossboid Query
Graph OLAP Homogeneous Informational and

Topological
I-OLAP and

T-OLAP
Operations

HMGraph Heterogeneous Informational,
Topological and

Entity

I-OLAP, T-OLAP,
Rotate and Stretch

Operations
Pagrol Homogeneous Vertex and Edge

Attributes
3 Query Category

and
Roll-up/Drill-down

Operations
GRAD Graph

Cubes
Heterogeneous Inter-class and

Intra-class
-

The work proposed here will be focused in heterogeneous graph datasets and will

support the three types of measures described by the work on GRAD Graph Cubes,

since those measures represent a compilation of all the other measures proposed by other

authors. In addition to that, this work will also explore OLAP operations and network

analysis on graph databases without the need to define a new graph model, as suggested

by previous works, eliminating the extra step of parsing operational data to the new

model.

42

3.7 FINAL CONSIDERATIONS

In this chapter, we presented the main research works published related to OLAP

system using Graph Databases. The majority of the works available only supported ho-

mogeneous graph, but they introduced important concepts of the area, such as graph

cubes and aggregate graph. The implementations that actually gave support to hetero-

geneous graph, proposed different graph models in order to answer analytical queries. In

the next chapter, we will specify a simple OLAP system using Graph Database without

the need to define a new graph model.

43

4 OLAP ANALYSIS ON GRAPH DATABASE

In this chapter we will propose a system capable of executing OLAP analysis and

that supports heterogeneous graphs, without the need to define a new graph data model.

Initially, we will contextualise the proposed system and introduce a running example that

will be used to better explain the system operation. Then, the system’s architecture is

presented and its main components are further detailed in the following sections.

4.1 CONTEXTUALISATION

In Chapter 3, we investigated some of the main works in the area of Graph OLAP.

Most of them only give support to homogeneous graphs (ZHAO et al., 2011)(CHEN et al.,

2008)(WANG et al., 2014), while real world graph-like data contains different types of ver-

tices and edges.The frameworks HMGraph (YIN; WU; ZENG, 2012) and GRAD Graph

Cube (GHRAB et al., 2015) support heterogeneous graphs, but they propose a new multi-

dimensional model in order to do OLAP analysis.

The objective of the system proposed here is to support OLAP analysis on heteroge-

neous graph databases without the need to re-model operational data. This will be done

by adding a layer of pre-processed aggregate graphs and an analytical query processor

module on top of the operational graph database.

4.2 RUNNING EXAMPLE

Consider the Database System and Logic Programming (DBLP) dataset as the running

example that will be used throughout this chapter to help explaining the main concepts

of the system proposed. The DBLP1 is an online computer science bibliography that,

up until May 2016, indexes more than 3.3 million publications by more than 1.7 million

authors. For this example, we will consider that the data was extracted and modelled

according to the schema shown in Figure 26 and described as follows:

• Each publication becomes a vertex with label Publication and with the attributes

title, year and venue.
1 http://dblp.uni-trier.de/faq/What+is+dblp.html

44

• Each author becomes a vertex with label Author and with the attribute name

• Edges labeled PUBLISHED connect Author vertices to Publication vertices, repre-

senting the relationship between an author and their published work.

• Edges labeled COAUTHOR connect Author vertices to other Author vertices, rep-

resenting the relationship between authors that have contributed to the same pub-

lished work.

Figure 26 – Schema representation of the DBLP data graph

Figure 27 shows a subset of the original DBLP dataset, modelled according to the

schema representation depicted in Figure 26. The following graph will be used as our

running example throughout this chapter.

Figure 27 – Running Example with subset of DBLP dataset

45

4.3 DIMENSIONS AND MEASURES

As discussed in Chapter 2, an OLAP system is a tool that facilitates multidimensional

analysis of the data. In order to perform such kind of analysis, it is necessary to define the

dimensions and measures that will be considered during the multidimensional analysis:

Dimension Given a labeled property graph 𝐺 = (𝑉, 𝐸, 𝐿𝑉 , 𝐿𝐸, 𝐴𝑉 , 𝐴𝐸), where:

• 𝑉 is a set of vertices

• 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges

• 𝐿𝑉 is a set of vertices labels and 𝐿𝐸 is a set of edge labels

• 𝐴𝑉 = {𝑎1, . . . , 𝑎𝑛} is a set of vertex attributes, where 𝑎𝑖 = (𝑘𝑖, 𝑚𝑖) is a key-

value pair, 𝑘𝑖 is the attribute key and 𝑚𝑖 is the attribute value. Each vertex

𝑣𝑖 ∈ 𝑉 is associated with a set of attributes. 𝐴𝐸 = {𝑏1, . . . , 𝑏𝑛} is the set of

edge attributes defined in the same way as vertex attributes.

A dimension is given by 𝑑 = (𝑎, 𝑙), where 𝑎 ∈ 𝐴𝑉 and 𝑙 ∈ 𝐿𝑉 .

In our running example, we can define 𝑑1 = (𝑗𝑜𝑢𝑟𝑛𝑎𝑙, 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛) and 𝑑2 =

(𝑦𝑒𝑎𝑟, 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛), i.e. the Publication attributes journal and year are dimensions

𝑑1 and 𝑑2 in our OLAP system, respectively.

Measure Given a labeled property graph 𝐺 = (𝑉, 𝐸, 𝐿𝑉 , 𝐿𝐸, 𝐴𝑉 , 𝐴𝐸), a measure 𝑚 is a

calculation computed over the graph 𝐺 using a function 𝐹 (𝑚 = 𝐹 (𝐺)), that can

return the type of measures defined by (GHRAB et al., 2015):

Content-based measure For this kind of measure is calculated based on the ver-

tices and edges attributes and the function 𝐹 ∈ {𝑆𝑈𝑀, 𝐶𝑂𝑈𝑁𝑇, 𝐴𝑉 𝐺, 𝑜𝑟𝑜𝑡ℎ𝑒𝑟𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠}

used in the calculation are similar to the ones used in an OLAP system.

In our running example, the total number of authors that published a work in

2007 is a content-based measure that is calculated using the function 𝐶𝑂𝑈𝑁𝑇 ,

which will count the number of Author vertices that have a relationship PUB-

LISHED to Publication vertices that have attribute year equals to 2007.

Graph-based measure This type of measure is calculated by applying a network

analysis algorithm over the graph, i.e. a network analysis algorithm is used as

the function 𝐹 .

46

In our running example, the list of authors that most contributed with other

authors is a graph-based measure that is computed by applying the degree

centrality measure to the Author vertices of the graph.

Graph as measure This kind of measure is given by different aggregation levels

of a graph and the function 𝐹 that calculates this measure is the aggregate

function that will generate the aggregate graph.

In our running example, the network of authors and publications aggregated

according to the venue in which the work was published in is a graph that

represents a measure.

4.4 ARCHITECTURE

The Graph OLAP system proposed in this work attempts to provide an efficient way to

answer analytical queries without having to propose a new graph data model, which would

imply changing the original data source model. The Figure 28 depicts the architecture

of the system, illustrating its main components: Graph Aggregators, Aggregated Graphs

and Analytical Query Processor.

The Graph Aggregators are modules that are responsible for processing the original

data and generate Aggregate Graphs, which are stored in Aggregate Graph Databases.

The Analytical Query Processor is in charge of processing the incoming query and the user

will determine whether it should be answered by processing the original or the aggregate

data, based on the type of measure being analysed.

The system’s input is an analytical query submitted by the user (1), that will be

processed by the Analytical Query Processor (AQP) (2). According to the type of measure

required by the user, the AQP will determine which specific processor will handle the

query: graph-based, content-based or graph measures processors. If the user asks for a

graph-based measure, the AQP will consume the original data stored in the graph database

(3) to calculate the measure. On the other hand, if the user requires a content-based or a

graph as measure, the AQP will calculate the measure based on the data from Aggregate

Graphs (4), which are also stored in graph databases.

The Aggregate Graphs are generated by the Graph Aggregators (GAs) (5), which

are defined during the design process of the system by the project designer. The project

47

Figure 28 – OLAP Analysis over Graph Databases Architecture

designer is responsible to define what are the dimensions considered in the OLAP system

and, therefore, create the GAs that will generate all possible aggregate graphs for the

dimensions. More details on Aggregate Graphs and Graph Aggregators are given in the

following sections.

The data source considered for this system is a Graph Database that follows the labeled

property graph model and supports heterogeneous graphs. This means that vertices can

have one or more labels indicating different types of entities. Vertices and edges can have

properties. We assume that the data stored in the GDB is integrated, i.e. the data in the

repository is consistent, well-formatted and normalised.

4.5 AGGREGATE GRAPH

Given a graph 𝐺 = (𝑉, 𝐸, 𝐿𝑉 , 𝐿𝐸, 𝐴𝑉 , 𝐴𝐸) and a set of dimensions 𝐷 = {𝑑1, . . . , 𝑑𝑛},

where 𝑑𝑖 ∈ 𝐴𝑉 ∪𝐴𝐸, an aggregate graph is generated by applying an aggregate function 𝐹

to one or more dimensions. The result is a new graph 𝐺𝐴 = (𝑉𝐴, 𝐸𝐴, 𝐿𝑉 𝐴, 𝐿𝐸𝐴, 𝐴𝑉 𝐴, 𝐴𝐸𝐴),

48

where:

• 𝑉 𝐴 = {𝑣𝐴
1 , . . . , 𝑣𝐴

𝑛 } is a set of aggregate vertices, where each vertex 𝑣𝐴
𝑖 either (i)

corresponds to the result of applying the function 𝐹 to a set of vertices 𝑉 ′ ⊆ 𝑉 that

is associated with a set of attributes {𝑎1, . . . , 𝑎𝑘} containing one or more dimensions

in 𝐷 or (ii) corresponds to a vertex in 𝑉 .

• 𝐸𝐴 ⊆ 𝑉𝐴×𝑉𝐴 is a set of aggregate edges, where each edge 𝑒𝐴
𝑖 either (i) corresponds

to the result of combining a set of edges 𝐸 ′ ⊆ 𝐸 that connects one or more vertices

in 𝑉 that were aggregated in 𝑉𝐴 or (ii) corresponds to an edge in 𝐸.

• 𝐿𝑉 𝐴 is a set of aggregate vertex labels and 𝐿𝐸𝐴 is a set of aggregate edge labels

• 𝐴𝑉 𝐴 = {𝑎1, . . . , 𝑎𝑛} is the set of attributes for the aggregate vertices, where 𝑎𝑖 =

(𝑘𝑖, 𝑚𝑖) is a key-value pair, 𝑘𝑖 is the attribute key and 𝑚𝑖 is the attribute value. Each

aggregate vertex 𝑣𝑖 ∈ 𝑉𝐴 is associated with an attribute vector. 𝐴𝐸𝐴 = {𝑏1, . . . , 𝑏𝑛}

is the set of aggregate edge attributes defined in the same way as aggregate vertices

attributes.

Consider the graph depicted in Figure 27 of our running example. Figure 29 shows

the aggregate graph 𝐺𝐴 obtained by applying the aggregate function COUNT to the di-

mension set 𝐷 = {𝑑}, where 𝑑 = (𝑦𝑒𝑎𝑟, 𝑃𝑢𝑏𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛). Notice that the resulting aggregate

graph ends up with the same Author vertices as the original graph, since these vertices

do not have attributes contained in the dimension set 𝐷. The Publication vertices were

aggregated according to their year attribute, resulting in three vertices representing the

works published in 2017, 2016 and 2015. The aggregate vertices also store the measure

calculated using the function COUNT. The edges with the label PUBLISHED were com-

bined, representing the connection between each author and the group of works published

in a specific year. The combined edges also store the measure obtained by the use of

COUNT function.

49

Figure 29 – Aggregate Graph obtained from running example graph

4.6 GRAPH AGGREGATORS

The Graph Aggregators (GAs) are modules responsible for generating the aggregate

graph that will be used to answer the analytical query submitted by the user. During

the design process of the system, the Project Designer is responsible for building the GAs

based on the dimensions and measures the system should be able to analyse. Each GA will

receive as input the original graph G stored in the Graph Database, the set of dimensions

to be aggregated D, the aggregate function F and should provide as output an aggregate

graph as defined in the previous section. Algorithm 1 describes the process performed by

a GA in order to generate an aggregate graph.

The GA algorithm starts by creating an empty set of aggregate vertices and edges

(lines 3 and 4) that will compose the final aggregate graph that will be returned. Then,

the GA will iterate over all the vertices (nodes) of the original graph G (line 7), checking

for each node if it has the same label as the dimension being aggregated (line 8). If the

node has the same label, the algorithm checks if already exists an aggregate node for the

dimension value of the node (line 10). If the aggregate node exists, we collapse the value

of the node to the value of the aggregate node using the function F and updating the

aggregate node value (line 11). We also aggregate the edges that are connected to the

node accordingly (line 12). If the aggregate node does not exist, we add a new aggregate

node with the initial value equals to node’s dimension value and aggregate its edges

accordingly (lines 14 and 15). If the node does not have the same label as the dimension

50

Algorithm 1 Graph Aggregator Process
1: function 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐴𝑔𝑔𝐺𝑟𝑎𝑝ℎ(𝐺, 𝐹, 𝐷)
2: 𝑑𝑖𝑚𝑉 𝑎𝑙𝑢𝑒 ◁set of values for dimensions being aggregated
3: 𝑎𝑔𝑔𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ◁map from dimensions values to set of vertices with corresponding values
4: 𝑎𝑔𝑔𝐸𝑑𝑔𝑒𝑠 ◁map from dimensions values to set of edges with corresponding values
5: 𝑛𝑜𝑛𝐴𝑔𝑔𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ◁set of vertices that were not aggregated
6: 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠← 𝐺.𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ◁set of vertices from the original graph
7: for each 𝑣𝑒𝑟𝑡𝑒𝑥 in 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠 do
8: if 𝑣𝑒𝑟𝑡𝑒𝑥 in 𝐷 then
9: 𝑑𝑖𝑚𝑉 𝑎𝑙𝑢𝑒← 𝑔𝑒𝑡𝐷𝑖𝑚𝑉 𝑎𝑙𝑢𝑒(𝑣𝑒𝑟𝑡𝑒𝑥, 𝐷)

10: if 𝑑𝑖𝑚𝑉 𝑎𝑙𝑢𝑒 in 𝑎𝑔𝑔𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠 then
11: 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑑𝑖𝑚𝑉 𝑎𝑙𝑢𝑒, 𝑣𝑒𝑟𝑡𝑒𝑥, 𝐹)
12: 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐸𝑑𝑔𝑒𝑠(𝑑𝑖𝑚𝑉 𝑎𝑙𝑢𝑒, 𝑣𝑒𝑟𝑡𝑒𝑥, 𝐹)
13: else
14: 𝑎𝑔𝑔𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠.𝑎𝑑𝑑(𝑑𝑖𝑚𝑉 𝑎𝑙𝑢𝑒, 𝑣𝑒𝑟𝑡𝑒𝑥)
15: 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝐸𝑑𝑔𝑒𝑠(𝑑𝑖𝑚𝑉 𝑎𝑙𝑢𝑒, 𝑣𝑒𝑟𝑡𝑒𝑥, 𝐹)
16: end if
17: else
18: 𝑛𝑜𝑛𝐴𝑔𝑔𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑣𝑒𝑟𝑡𝑒𝑥) ◁vertex does not contain the dimensions being

aggregated
19: end if
20: end for
21: 𝑎𝑔𝑔𝐺𝑟𝑎𝑝ℎ← (𝑎𝑔𝑔𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ∪ 𝑛𝑜𝑛𝐴𝑔𝑔𝑉 𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑎𝑔𝑔𝐸𝑑𝑔𝑒𝑠)
22: return 𝑎𝑔𝑔𝐺𝑟𝑎𝑝ℎ
23: end function

being aggregated, we only add the node as it is to the non aggregate vertices set (line 18).

Finally, we setup the aggregate graph and return it (lines 21 and 22).

Once the aggregate graph is generated, it will be stored in a graph database and it

will be accessed by the Analytical Query Processor.

4.7 ANALYTICAL QUERY PROCESSOR

The Analytical Query Processor (AQP) is responsible for processing the query sub-

mitted by the user. The user is responsible for submitting the correct query based on the

information he/she is trying to retrieve, i.e. the query should be written according to the

type of measure being requested:

Content-based measure To calculate this measure, the AQP consumes the data from

an aggregate graph and uses the aggregate function to give the resulting measure,

which can be a single value, a list or a table of values. This module’s response is

similar to the response given by traditional OLAP systems.

51

From our running example, we can ask for the number of publications by year. In

this case AQP consumes the data from the aggregate graph illustrated in Figure 29

and it would list the nodes with Publication Aggregate label, which already contains

the count measure as attribute.

Graph-based measure To calculate this measure, the AQP consumes the data from

the original graph database and executes network analysis algorithms on the data.

In our running example, we could submit a query asking for the Author node with

highest centrality degree. The AQP calculates the centrality degree for each node in

the original graph using an external library. Then, it should return the node with id

A2, since it is the Author node with the highest number of connections with other

nodes.

Graph as measure For this type of measure, the AQP also consumes data from an ag-

gregate graph, but in this case, the measure is the aggregated graph itself. Therefore,

this module does not need to perform other calculations.

For instance, the aggregate graph shown in Figure 29 can be considered a measure

if the user requests a topological view of the original data grouping the publications

by year.

4.8 FINAL CONSIDERATIONS

In this chapter, we showed the main components of the proposed system and what is

the general operation to answer an analytical query. We also specified in details how each

one of the components works and what are their roles in the data analysis process. In the

next chapter, we will report how the proposed system was implemented and show some

experiments and the results obtained.

52

5 IMPLEMENTATION AND EXPERIMENTS

In this chapter, we will show how the system specified in the Chapter 4 was im-

plemented and what were the technologies used. We will also describe the experiments

made and analyse the results obtained in comparison to existing solutions. Finally, we

will discuss the difficulties found in the implementation and experimentation process.

5.1 USED TECHNOLOGIES

The Graph Aggregator (GA) algorithm was implemented using Python programming

language, in version 2.7. The original data and the aggregate graphs were stored in a

Neo4J database. In order to connect the GA to the Neo4J database, it was necessary to

use the Python library Py2Neo, in version 3.1.2. The Analytical Query Processor uses the

compiler built in Neo4J and the query accepted as input to the system is written using

Cypher query language.

5.2 DATASET

The dataset used for the experiments was the Database System and Logic Program-

ming (DBLP) computer science bibliography, available in (http://dblp.uni-trier.de/db/),

which contains more than 3.8 million publications published by more than 1.7 million

authors. The dataset can be downloaded as a XML file accompanied by a DTD file that

describes the schema of the data. The Listing in 5.1 is an excerpt of the DBLP XML file

showing how a publication is structured in the document.

<art ic le mdate="2017−01−03" key=" j o u r n a l s / jacm/GanorKR16">

<author>Anat Ganor</author>

<author>G i l l a t Kol</author>

<author>Ran Raz</author>

<t i t l e >Exponent ia l Separat ion o f In format ion and Communication

f o r Boolean Functions .</ t i t l e >

<pages>46:1−46:31</pages>

<year>2016</year>

53

<volume>63</volume>

<journal>J . ACM</journal>

<number>5</number>

<ee>http :// d l . acm . org / c i t a t i o n . cfm? id =2907939</ee>

<url>db/ j o u r n a l s / jacm/jacm63 . html#GanorKR16</url>

</artic le >

Listing 5.1 – DBLP XML File Excerpt

The excerpt shown in Listing 5.1 refers to an article published in J. ACM journal and it

contains information about the article’s authors, title, pages in journal, year of publication

and other informations about the journal’s volume, number and electronic edition location.

Each publication also has a unique key and the date of the last modification as attributes

and an element with the url of the publication in the DBLP website. Besides journal

articles, the DBLP dataset also contains books, thesis, conferences and workshop papers,

among others.

Once the XML file was downloaded, all the data was parsed and stored into a SQLite

database. In order to have a more controlled environment for the experiments and allow

an eventual manual check of the results obtained from hte experiments, we selected a

subset of the original data, considering only papers and articles published in the following

venues since 2014:

• SIGMOD International Conference on Management of Data (SIGMOD)

• Brazilian Symposium on Databases (SBBD)

• International Conference on Very Large Databases (VLDB)

• IEEE International Conference on Data Engineering (ICDE)

• World Wide Web: Internet and Web Information Systems (WWW)

The selected subset of publications was imported to a Neo4J instance, following the

schema depicted in Figure 30. Each publication became a node in the graph database,

with three attributes: (i) the title; (ii) the year of publication and (iii) the acronym of the

venue. The authors of each publication also became a node, uniquely identified by the

name of the author, and they are connected with the publications node by a relationship

54

of type PUBLISHED. Authors that have contributed in the same publication are also

connected by a relationship of type CO_AUTHORSHIP.

Figure 30 – DBLP dataset schema in graph database

By the end of the DBLP subset loading process to Neo4J, we had 887 Publication

nodes, 2.398 Author nodes, 6.754 PUBLISHED relationships and 25.572 CO_AUTHORSHIP

relationships.

5.3 EXPERIMENTS AND RESULTS

With the Neo4J database loaded with DBLP data, we executed the Graph Aggregator

(GA) algorithm passing as parameters the dimensions year and venue of a Publication

node and the COUNT aggregate function. Figure 31 shows a subgraph of the aggregate

graph generated by the GA, with one aggregate node representing all the publications on

ICDE 2016 and some of the authors that published on that conference, that year. From

the measure attribute of the aggregate node, we know that ICDE had 60 publications in

2016.

Once we generated the aggregate graph, we were able to do an experiment to evaluate

the effectiveness of the proposed system. For that, we submitted queries to calculate the

three types of supported measures: content-based, graph-specific and graph as measure.

55

Figure 31 – Subgraph from the Aggregate Graph generated by the GA

5.3.1 Content-based Measure

For this type of measure, we submitted a query asking for the amount of publications

by venue in the year of 2016. This query was submitted to the aggregate graph generated

by the GA and it returns all the nodes with the label Aggregate_Publication where

the dimension year has the value 2016. The result is then ordered by the number of

publications measure.

Figure 32 depicts the result of the query, listing the venues ordered by the amount

of publications in the year of 2016. The conference SIGMOD appears at the top of the

list with 61 publications for that year. In comparison to a traditional relational OLAP

system, this query is corresponding to a slice operation, in which we slice a part of the

venue dimension based on the value of the dimension year.

The other OLAP operation tested for this type of measure was a roll-up operation.

For this experiment, we had to include a random month of release for each publication in

order to establish a hierarchy between the attributes of a publication, i.e. month and year.

Once the original data was chaged and the fictional month of release of each publication

was added, we generated an aggregate graph for the dimensions year and month using

56

Figure 32 – Result of experiment with a content-based measure query

the COUNT aggregate function. The result of the aggregate graph is show in Figure 33,

where we can see the amount of publications per month per year.

Figure 33 – Result of experiment with a query for the dimensions year and month of publication

In order to execute a roll-up operation on the data and have an overview of the

data only considering the dimension year, we generated another aggregate graph for that

dimension using the COUNT aggregate function. The result of the second aggregate graph

is show in Figure 34, where we can see the amount of publications per year.

57

Figure 34 – Result of performing a roll-up operation on the content-based measure

5.3.2 Graph-specific Measure

In order to test this type of measure, we submitted two centrality measures queries

to the original dataset in the graph database. The first measure calculated was the de-

gree centrality of each Author node considering the CO_AUTHORSHIP relationship. As

mentioned in Chapter 2, the degree centrality is given by the number of adjacent node,

i.e. the number of CO_AUTHORSHIP relationship an Author node has.

Figure 35 shows the result of the centrality measure query, listing the 10 authors with

the highest degree centrality in the original network. For our dataset, Michael J. Franklin

is the author with the highest number of adjacent Author nodes, which means that he is

one of the focal points in the network.

Figure 35 – Result of experiment with the degree centrality measure for Authors

The second measure calculated was the betweenness centrality of the authors. This

58

centrality measure is given by the frequency in which an author node appears in the

shortest path of any other two author nodes in the graph. In Cypher, there is a built-in

function to retrieve all shortest path between two nodes called 𝑎𝑙𝑙𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ𝑠. Since

getting all the shortest path between the combination of any 2 nodes in the graph is such a

complex computation, we considered the paths with maximum 3 degrees of separation and

we avoided inverse relationships by comparing the id of the nodes. Finally, we returned

the 10 authors that most appeared in the list of the shortest paths.

Figure 36 shows the result of author’s betweenness centrality calculation. Reaffirming

his importance in the co-authorship network, Michael J. Franklin appears again in the

first position of the list, meaning that he is an important point of collaboration between

authors. One interesting result is related to the second place for both experiments: the

second author with the highest degree centrality is not the same as the second author with

the highest betweenness centrality. This means that, even so Volker Marki co-authored

publications with more authors than Beng Chin Ooi, the latter is part of more collabora-

tion chains between two other authors in the network.

Figure 36 – Result of experiment with the betweenness centrality measure for Authors

59

5.3.3 Graph as Measure

This type of measure is given by the aggregate graph itself, since it is a representation

of data aggregated by dimensions. For our running example, this measure represents the

topological disposition of the relationship between publications and authors when the

data is aggregated according to the dimensions year and venue.

Figure 37 shows a screenshot of a subgraph retrieved from the aggregate graph. The

subgraph was limited to 400 relationships in order to facilitate the visualisation. From the

screenshot we can notice the topology distribution of author nodes that published works

on ICDE in 2016 and 2015, specially the authors that published in both editions of the

conference.

Figure 37 – Result of experiment with the graph as a measure

5.3.4 Aggregate Graph versus Original Graph

For this experiment, we tried to obtain the same measure shown in Figure 32 from the

original graph, i.e. without using the aggregate graph generated by the GA. The query

was submitted to the original graph of publications and authors and it returns the count

60

of all the publications from 2016 grouped by its venue.

Figure 38 shows the result of the query, listing the venues ordered by the amount of

publications on the year of 2016. Notice that the result is the same as the one obtained

in the experiment depicted in Figure 32, but it is important to highlight that the query

submitted to the original query took longer to be answered (625 ms), while the query

submitted to the aggregate graph only took 14 ms to be processed. This means that, by

using aggregate graph to obtain the measure, we reduce the time to process the query by

97.76%.

Figure 38 – Result of experiment with content-based measure query submitted to the original graph

5.4 RESULT ANALYSIS AND QUALITATIVE COMPARISON

Given the results obtained from the experiments described in the previous section, we

are able to confirm the effectiveness of the proposed system in supporting multidimen-

sional analysis on graph database. The presented solution also supports the execution

of graph-based analysis, such as centrality measures. In this way we are able to extract

three different types of measures from the same origin data aggregated according to user

defined dimensions.

In comparison to other works in this area, the proposed system gives full support for

heterogeneous graphs without the need to change the original data schema. Focusing the

61

comparison with the framework presented in (GHRAB et al., 2013), our system is able to

answer the same types of query without the extra step to change the data model of our

original dataset. Table 3 summarises the comparison between existing frameworks and

our proposed system.

Table 3 – Comparison between existing frameworks and our proposed system

Framework Graph Dimensions Operations
Graph Cube Homogeneous Vertex Attributes Cuboid and

Crossboid Query
Graph OLAP Homogeneous Informational and

Topological
I-OLAP and

T-OLAP
Operations

HMGraph Heterogeneous Informational,
Topological and

Entity

I-OLAP, T-OLAP,
Rotate and Stretch

Operations
Pagrol Homogeneous Vertex and Edge

Attributes
3 Query Category

and
Roll-up/Drill-down

Operations
GRAD Graph

Cubes
Heterogeneous Inter-class and

Intra-class
-

Using OLAP
Queries for Data
Analysis on
Graph Databases

Heterogeneous Vertex and Edge
Attributes

Roll-up,
Drill-down,

Slice, Dice and
Centrality
Measures

Operations

5.5 DIFFICULTIES FOUND

Unfortunately, we are unable to provide a more precise comparison between the frame-

work in (GHRAB et al., 2013) and our proposal due to the lack of experiment description.

A similar issue also applies to other works presented in Chapter 3, i.e. the state of the art

for Graph Cubes and OLAP analysis on graph databases.

The published papers in this area fail in providing enough description on how the

proposed solution was implemented and where the dataset used in the experiments is

available. Furthermore, when experiments are presented in the paper, they only compare

62

different version of the same framework. Until now, it hasn’t been proposed an experiment

that can be replicated amongst different frameworks.

The absence of a benchmark for experiments in this area makes the evaluation of the

proposed system difficult. In order to compare ourselves to others, we can only rely on

qualitative measures, based on the features presented by existing frameworks.

Another difficulty found during the implementation of the system was the size of the

graph supported by Neo4J. The DBLP has more than 3.8 million publications, but we

limited our dataset according to some conferences and journals, as mentioned before. At

first, we wanted to conduct the experiments using at least 5.000 publications, but we were

not able to load all the nodes and relationships to Neo4J. Our script to load the data

kept getting error related to the communication with Neo4J REST API and we couldn’t

figure out how to fix it. In order to be able to finish all the experiments on time, we had

to reduce the number of publications loaded to the database.

5.6 FINAL CONSIDERATIONS

In this chapter, we detailed how the system proposed by this work was implemented,

specifying what were the technologies used in the process. The dataset used in the exper-

iments was presented as well as the results obtained. Finally, we presented a qualitative

comparison with existing solutions and listed the main difficulties found during the sys-

tem’s implementation.

63

6 CONCLUSION

In this dissertation, we addressed the issue of executing multidimensional and network

analysis on a Graph Database. At first, the main concepts related to this issue were pre-

sented. Then, we had an overview of academic works in this area, giving a brief summary

of each paper and comparing the frameworks they presented according to the following

criteria: type of graph supported, OLAP dimensions and operations implemented. After

this initial study, it was possible to notice that only two frameworks supported heteroge-

neous graphs, but they required the generation of an intermediate data model in order to

execute OLAP analysis.

Once the state of the art for the area was covered, we specified the architecture and

the main components of a data analysis system over Graph Databases, which supports

heterogeneous graphs and the execution of OLAP queries and network analysis algorithms

without the need of an intermediate data model. Next, we proceed to describe in details

how the proposed system was implemented and what were the technologies used. Finally,

some experiments were presented, as well as an analysis of the results obtained and a

qualitative comparison between the system built and the existing frameworks.

6.1 CONTRIBUTIONS

As an outcome of the work presented in this document, we have the following contri-

butions:

• Documented the state of the art for OLAP systems with Graph Databases and

established an analytical comparison between existing frameworks, defining the main

characteristics to be taken into consideration for the comparison.

• Specification and implementation of a prototype for a Data Analysis System for

Graph Databases, describing how its main components operate and how to build

such system using open-source tools (e.g. Python and Neo4J).

• Implementation of OLAP operators and network analysis algorithms, providing a

comprehensive analysis of the graph data. The execution of OLAP queries was

64

possible due to a set of aggregate graphs that provided a multidimensional view of

the graph data.

• Definition of experiments and qualitative analysis in comparison with existing frame-

works. All the difficulties found in this area regarding execution of experiments and

quantitative comparison between solutions were described.

6.2 FUTURE WORK

The user interface of the proposed system relies on the interface provided by Neo4J.

An interesting work that could be done is building a specific interface, where the user

could execute OLAP queries and network analysis algorithm in a more friendly way. This

specific interface could also provide different types of data visualisation depending on the

type of measure the user requested.

Regarding the difficulties found during the implementation of the proposed system, an

interesting issue that still needs to be tackled is the standardisation of the experiments.

Amongst academic papers in this area, there is no consensus on how a comparative ex-

periment should be done. Define general experiments and a benchmark dataset would

be a great contribution for this area, since it would allow a more precise quantitative

comparison between existing solutions.

65

REFERENCES

ANGLES, R. A comparison of current graph database models. In: IEEE. Data
Engineering Workshops (ICDEW), 2012 IEEE 28th International Conference on. [S.l.],
2012. p. 171–177.

ANGLES, R.; GUTIERREZ, C. Survey of graph database models. ACM Computing
Surveys, v. 40, n. 1, p. 1–39, 2008. ISSN 03600300. Available at: <http://portal.acm.
org/citation.cfm?doid=1322432.1322433>.

CHEN, C.; YAN, X.; ZHU, F.; HAN, J.; YU, P. S. Graph OLAP: Towards online
analytical processing on graphs. Proceedings - IEEE International Conference on Data
Mining, ICDM, p. 103–112, 2008. ISSN 15504786.

DENIS, B.; GHRAB, A.; SKHIRI, S. A distributed approach for graph-oriented
multidimensional analysis. Proceedings - 2013 IEEE International Conference on Big
Data, Big Data 2013, p. 9–16, 2013.

FAN, W.; BIFET, A. Mining big data: current status, and forecast to the future. ACM
sIGKDD Explorations Newsletter, ACM, v. 14, n. 2, p. 1–5, 2013.

FREEMAN, L. C. Centrality in social networks conceptual clarification. Social Networks,
v. 1, n. 3, p. 215–239, 1978. ISSN 03788733.

GHRAB, A.; ROMERO, O.; SKHIRI, S.; VAISMAN, A.; ZIM, E. Advances in Databases
and Information Systems. East European Conference on Advances in Databases
and Information Systems, v. 8133, p. 92–105, 2013. ISSN 0302-9743. Available at:
<http://link.springer.com/10.1007/978-3-642-40683-6>.

GHRAB, A.; ROMERO, O.; SKHIRI, S.; VAISMAN, A.; ZIMÁNYI, E. A framework for
building olap cubes on graphs. In: SPRINGER. East European Conference on Advances
in Databases and Information Systems. [S.l.], 2015. p. 92–105.

INMON, W. Building the data warehouse. 3rd editio. ed. [S.l.]: Robert Ipsen, 2005.
428 p. ISBN 0471081302.

KHAN, K. U.; NAJEEBULLAH, K.; NAWAZ, W.; LEE, Y.-k. OLAP on Structurally
Significant Data in Graphs. CoRR, abs/1401.6887, p. 2–5, 2014.

KIMBALL, R.; ROSS, M. The Data Warehouse Toolkit: the complete guide to
dimensional modeling. [S.l.]: John Wiley & Sons, 2011.

LOSHIN, D. Big Data Analytics. Waltham: Morgan Kaufmann, 2013. ISBN
9780124173194.

MILLER, J. Graph Database Applications and Concepts with Neo4J. Proceedings of the
Southern Association for Information Systems Conference, p. 141–147, 2013. Available
at: <http://sais.aisnet.org/2013/MillerJ.pdf>.

NEO4J, I. Neo4j’s Graph Query Language: An Introduction to Cypher. <https:
//neo4j.com/developer/cypher-query-language/>. (Accessed on 08/06/2017).

http://portal.acm.org/citation.cfm?doid=1322432.1322433
http://portal.acm.org/citation.cfm?doid=1322432.1322433
http://link.springer.com/10.1007/978-3-642-40683-6
http://sais.aisnet.org/2013/MillerJ.pdf
https://neo4j.com/developer/cypher-query-language/
https://neo4j.com/developer/cypher-query-language/

66

OLAP COUNCIL. OLAP AND OLAP Server Definitions. [S.l.], 1997. Available at:
<http://www.olapcouncil.org/research/glossaryly.htm>.

QU, Q.; ZHU, F.; YAN, X.; HAN, J.; YU, P. S.; LI, H. Efficient Topological OLAP on
Information Networks. In: SPRINGER. International Conference on Database Systems
for Advanced Applications. [S.l.], 2011. p. 389–403.

ROBINSON, I.; WEBBER, J.; EIFREM, E. Graph Databases. 2nd editio. ed. [S.l.]:
O’Reilly Media, Inc., 2015. 238 p. ISBN 9781491930892.

VASSILIADIS, P. Modelling multidimensional database, cube and cube operations.
Scientific and Statistical Database Management, 1998. Proceedings. Tenth International
Conference on, 1998.

VASSILIADIS, P.; SELLIS, T. A survey of logical models for OLAP databases.
ACM SIGMOD Record, v. 28, n. 4, p. 64–69, 1999. ISSN 01635808. Available at:
<http://portal.acm.org/citation.cfm?doid=344816.344869>.

WANG, Z.; FAN, Q.; WANG, H.; TAN, K. L.; AGRAWAL, D.; El Abbadi, A. Pagrol:
Parallel graph olap over large-scale attributed graphs. Proceedings - International
Conference on Data Engineering, v. 1, p. 496–507, 2014. ISSN 10844627.

WILSON, R. J. Introduction to GraphTheory. 4th editio. ed. [S.l.]: Oliver & Boyd, 1996.
ISSN 1098-6596. ISBN 9788578110796.

YIN, M.; WU, B.; ZENG, Z. Hmgraph olap: a novel framework for multi-dimensional
heterogeneous network analysis. Proceedings of the fifteenth international workshop on
Data warehousing and OLAP, p. 137–144, 2012.

ZHAO, P.; LI, X.; XIN, D.; HAN, J. Graph Cube: On Warehousing and OLAP
Multidimensional Networks. Sigmod ’11, p. 853–864, 2011. ISSN 07308078. Available at:
<http://www.cs.uiuc.edu/{~}hanj/pdf/sigmod11{_}pzhao.pdf>.

http://www.olapcouncil.org/research/glossaryly.htm
http://portal.acm.org/citation.cfm?doid=344816.344869
http://www.cs.uiuc.edu/{~}hanj/pdf/sigmod11{_}pzhao.pdf

	Title page
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	Contents
	Introduction
	Motivation
	Problem Definition
	Objectives
	Expected Contributions
	Document Structure

	OLAP and Graph Databases
	Data Warehouse
	Multidimensional Model
	OLAP
	Types of OLAP Systems
	OLAP Operators

	Graph
	Graph Theory
	Network Analysis

	Graph Databases
	Historical Overview
	Neo4J

	Final Considerations

	Graph Cubes: State of the Art
	Graph Cube: On Warehousing and OLAP Multidimensional Networks
	Graph OLAP: Towards Online Analytical Processing on Graphs
	HMGraph
	Pagrol: PArallel GRaph OLap over Large-scale Attributed Graphs
	GRAD Graph Cubes
	Comparative Analysis
	Final Considerations

	OLAP Analysis on Graph Database
	Contextualisation
	Running Example
	Dimensions and Measures
	Architecture
	Aggregate Graph
	Graph Aggregators
	Analytical Query Processor
	Final Considerations

	Implementation and Experiments
	Used Technologies
	Dataset
	Experiments and Results
	Content-based Measure
	Graph-specific Measure
	Graph as Measure
	Aggregate Graph versus Original Graph

	Result Analysis and Qualitative Comparison
	Difficulties Found
	Final Considerations

	Conclusion
	Contributions
	Future Work

	References

