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ABSTRACT

We adapted the hair-plot, proposed by Genton and Ruiz-Gazen| (2010)), to identify and vi-
sualize influential observations in spatial data. Three graphic tools were created: the bihair-plot,
the principal components hair-plot and functional hair-plot. The first tool depict trajectories of
the values of a spatial semivariance estimator when adding a perturbation to each observation
of a vector of spatial data observed considering two lags. The second describes trajectories
of the principal components of a spatial semivariance estimator values for all lags when each
observation of data is perturbed, making it possible to identify influential observations in spa-
tial data containing as much information as possible from the data set. The third is obtained
from the values of the trace-semivariogram estimator when the data receive a disturbance.
The estimators considered in the study were the sample semivariogram for univariate case,
sample cross-semivariogram for bivariate case and sample trace-semivariogram for functional
data. Another method used to obtain the cross-semivariogram was Minimum Volume Ellipsoid,
which is more sensitive to outliers. Based on this, we observed that it is not possible to detect
influential observations. We defined the quadratic form of the estimators and the influence
function, in order to understand their behavior and properties. Finally, we make an application
with these tools in the pollution data for the univariate case, complementing the results shown
in |Genton and Ruiz-Gazen| (2010)), the meuse data from the sp package for the bivariate case

and average temperatures from the geofd package for the functional case.

Keywords: cross-semivariogram; functional data analysis; influential spatial data; principal

components; semivariogram; trace-semivariogram.



RESUMO

Adaptamos o hair-plot, proposto por (Genton and Ruiz-Gazen| (2010)), para identificar e
visualizar observacdes influentes em dados espaciais. Trés ferramentas graficas foram criadas:
o bihair-plot, os principais componentes do hair-plot e o hair-plot funcional. A primeira ferra-
menta descreve trajetérias dos valores de um estimador de semivariancia espacial ao adicionar
uma perturbacdo a cada observacao de um vetor de dados espaciais observado considerando
dois /ags. O segundo descreve as trajetérias dos componentes principais de um estimador de
semivariancia espacial para todos os lags quando cada observacdo de dados é perturbada,
tornando possivel identificar observacdes influentes em dados espaciais contendo o maximo de
informacGes possivel do conjunto de dados. O terceiro é obtido a partir dos valores do esti-
mador do trace-semivariogram quando os dados recebem uma perturbacdo. Os estimadores
considerados no estudo foram o semivariograma de amostra para caso univariado, semivario-
grama cruzado de amostra para caso bivariado e trace-semivariograma amostral para dados
funcionais. Outro método utilizado para obter o semivariograma cruzado foi o Elipsdide de
Volume Minimo, que é mais sensivel a outliers. Com base nisso, observamos que nao é possi-
vel detectar observacdes influentes. Definimos a forma quadratica dos estimadores e a funcdo
de influéncia, a fim de compreender seu comportamento e propriedades. Finalmente, fazemos
uma aplicacdo com essas ferramentas nos dados de poluicdo para o caso univariado, comple-
mentando os resultados mostrados em |Genton and Ruiz-Gazen (2010)), os dados meuse do
pacote sp para o caso bivariado e dados de temperaturas médias do pacote geofd para o caso

funcional, inicialmente obtidas do Servico Meteorolégico do Canada.

Palavras-chave: analise de dados funcionais; componentes principais; dados espaciais influ-

entes; semivariograma; semivariograma cruzado; trace-semivariograma.
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1 INTRODUCTION

Spatial statistics is an area that studies data considering the space in which it was sampled
in such a way that the observation is associated with its location. Spatial dependence is
detected using spatial statistical techniques that identify patterns based on data distribution
and spatial variability. According to |Cressie| (1993), the closer the data the more similar they
are, that is, the variability increases as the distance between the data increases. Several areas
of knowledge use geostatistics to identify and describe phenomena that behave according to
their location, such as: soil science, geology, forestry, agriculture, epidemiology, etc. To model
the spatial distribution of the Covid-19 infection risk and assuming that the uncertainty of
spatial predictions is rarely studied, |Azevedo et al.| (2020)) proposed to apply a direct block
sequential simulation. They add that the spatial analysis of the phenomenon’s dynamics over
time can be studied from the slope of the linear regression line in the short term, or from the
functional analysis of the data. Therefore, it was possible to identify areas with a higher risk of
infection by providing local estimates of the probabilities such that they exceed the threshold
obtained from the simulated scenarios.

Martin, Arias and Corbi (2006) applied multivariate geostatistical methods to identify
locations with higher concentrations of heavy metals in agricultural topsoils from geostatistical
models and to estimate concentrations on non-sampled locations. They concluded that heavy
metal concentrations are not high enough to be pollutants in spite of anthropic activity, but
they found local anomalies of some heavy metals associated with anthropogenic activities.
Cortés-D, Camacho-Tamayo and Giraldo (2016)) used functional geostatistics models to predict
the resistance of soil penetration, in which non-parametric smoothing functions were fitted to
the data. They noticed that the behavior of the observed and predicted data are similar, and
that the model fit becomes better and more homogeneous as depth increases.

Identifying influential points and outliers in spatial data is one of the important steps
in exploratory spatial analysis and diagnostic analysis, as such observation can change the
results obtained through kriging or coktiging and change the structure that describes spatial
dependence. An observation is influential whenever a change in its value radically changes the
estimate or some property of the fitted model, and a spatial outlier when the observation is
extreme in relation to its neighbors (JONATHAN et al, [2016)). An outlier can be influential,

such that an extreme observation can influence a model’s estimates. On the other hand, an
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influential point may not be an outlier, which can be identified in the diagnostic analysis of the
applied model. It is common to find studies in which data is perturbed excluding observations,
such as in the context of linear regression models diagnostic and methods for generalized least
squares estimators that included Cook’s distance, assuming the known and fixed covariance
matrix for a scalar multiplier (COOK, |1977; MARTIN, 1992). Fox (1972) generalized Cook’s
method for the dependent data in time series, introducing two types of outliers.

In order to assess the sensitivity of the maximum likelihood estimator in elliptical spatial
linear models due to small contamination, De Bastiani et al.| (2015]) used of the local influence
and concluded that outliers strongly influence the spatial dependence structure. With the same
objective of detecting observations that influence the values obtained from the maximum
likelihood estimator of linear spatial Gaussian models, [Borssoi et al. (2011) evaluates the
influence perturbing the matrix of exploratory variables. Baba et al.| (2021) adapted some
classical methods making them more robust for detecting influential points in spatial regression
models and compared them with Cook’s distance, showing the advantage of such methods for
these types of models.

The estimators considered in this master’s thesis were based on the moments-of-methods
semivariogram, proposed by|Matheron| (1963)), methods-of-moments cross-semivariogram (LARK),
2003)), and the moments-of-methods trace-semivariogram (GIRALDO; MATEU; DELICADO, |2012)
for the univariate, bivariate and functional case, respectively. These estimators are more sensi-
tive to outliers, and it is expected that changes in input values due to an additive perturbation
will change the estimate more drastically compared to estimators that are more robust to ou-
tliers. As an example, a highly robust cross-semivariogram estimator proposed by |Lark| (2003)
was used, whose structure contains the covariance matrix obtained by the Minimum Volume

Ellipsoid (MVE]) (see Aelst and Rousseeuw, (2009)).

1.1 MOTIVATION

When the study involves dependent observations, as in the case of spatial data, the influence
function includes the joint distribution of the data, therefore the it was evaluated from a
method involving additive perturbation. |Genton and Ruiz-Gazen| (2010) proposed a tool to
visualize influential observations in the context of dependent data based on the study of the
data perturbation effect on the estimators 0(Z) of a parameter #(Z), and they introduced

the hair-plot in order to detect and analyse influential points. For this tool development,
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they defined an empirical influence based on additive perturbation Z[i,(],i = 1,...,n, in the
context of dependent data, considering a perturbation value ( € R, that allowed to obtain
more information about behavior of estimators G(Z[i,C]). In other words, they describe all
trajectories of the 5() values by adding a perturbation to each observation of the data. They
also proposed two influential measures: local and asymptotic influece of i-th observation, such
that a largest absolute value of first measure indicates the most influential observation and
the second indicates the influence on the estimator value when ( is large.

In this present master's thesis, Z(s) is a spatial process and 6(-) is the method-of-moments
semivariogram (MATHERON, [1963)) for univariate spatial data point, the method-of-moments
and MVE cross-semivariogram (LARK| [2003) for bivariate spatial data point and method-of-
moments trace-semivariogram for functional data (GIRALDO; MATEU; DELICADO, 2012). They
measure the degree of spatial dependence evaluated in a vector h of distances or /lags. The
term lag is used when referring to a sequence of the number of breaks in the distance interval,
such that h = 1 indicates the minimum distance between the points that contains 30 pairs,
and the maximum h represents the cutoff of up to 50% of the maximum distance between the
points. The MVE cross-semivariogram is more robust to influential observations, such that its
estimate is not affected by those observations (see |Lark| (2003)).

Our goal is to adapt the visual tool hair-plot to find influential observations taking infor-
mation from 0(Z[i, (]) values estimates through: bihair-plot, considering estimate of two lags
h together; principal components hair-plot, analysing all values of h; and hair-plot functional
perturbed all values in one site. Bihair-plot, based on hair-plot, checks if there is an influential
observation analysing the lags h pairwise. In this way, this graphical tool can be seen as a
function of empirical influence evaluated at two distances. in order to identify an influential
observation considering spatial factor, we analyze 5() values for all values of h together in

hair-plot, through principal components analysis (PCA)).

1.2 CONTRIBUTIONS

The contributions of this master thesis are to adapt the hair-plot to:

= Identify influential points by considering two paired lags from bihair-plot;

» Define a form for the perturbation function based on principal component analysis so

that it is possible to load as much information from the estimates considering all lags
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and identify the most influential point from principal components hair-plot;

= Add perturbation to functional data by identifying a location with an influential function

from functional hair-plot.

1.3 FUNCTIONAL DATA

Ramsay and Dalzell (1991)) introduced the concept of functional data, which consists of
observations represented by functions, that is, the i-th observation of the data set is expressed
by a real function, Z(t),i =1,...,n,t € T, where T' C R, and n corresponds to the number
of observations. A multivariate data analysis is not appropriate when each curve is observed
separately, and the data is smoothed to study its behavior, treating it this way as a continuous
functions defined in a common interval.

Functional data analysis (FDA)) can be applied for the following reasons: functional data
is increasingly common in applied contexts, and smoothing and interpolation methods can
produce functional results from a set of observations; there are some problems that become
easier to interpret when dealing with data in a functional way when, for example, data is
used to estimate a function or its derivatives; when it is necessary to smooth out multivariate
data that results in functional processes, that is, we can describe a set of observation with a
function. Ramsay and Silverman| (2005)) describes several methods and techniques for handling
functional data and reports that the main objectives of the FDA are: identify patterns in the
data; study the dynamics of the data; highlight expressive aspects; represent the data to
facilitate future analysis; explain the behavior of the output variables (dependent variable)
using information from the input variable (independent variable).

The FDA can be divided into three parts: exploratory, confirmatory and predictive. Accor-
ding to |Genton and Sun| (2020)), in exploratory FDA, the following visualization tools can be
used for univariate and multivariate data analysis, respectively: the functional boxplots and sur-
face boxplots; magnitude-shape plots, two-stage functional boxplots and trajectory functional
boxplots.

According to [Ferraty and Vieu| (2006)), a functional variable is defined as a random variable
in an infinite dimensional space, also called a functional space. Let z1, ..., 2z, be observed values
of Z1, ..., Z,, n identically distributed functional variables of Z and let T' = [t,in, timaz] € R.

Functional data are elements of:
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Ly(T)=4{Z:T = R, Where/ Z(t)*dt < oo},
T

such that Ly(7T') can be rewritten as the inner product defined an Euclidian space: (z,y) =
Jp Oyt

Let a functional variable Z,(¢) for all s € D. A functional random process is defined
as {Zs(t) : s € D C R,t € T C R}. When data is generated from a large number of
measurements (over space, for example), each observation can be expressed from a non-
parametric function observed in terms of K basis functions (GIRALDO; MATEU; DELICADO,
2012):

Zs(t) = Zailqbl(t) = a;|—¢(t), (11)

where: i = 1...n,a; = (a;,...,a;x) and @(t) = (P1(1),..., Pk (t)), d(t) represent basis
functions.
The expression represents the truncated versions of Fourier series (periodic data) or

B-splines expansions (non-periodic data).

1.4 SPATIAL DATA

It is often interesting to understand a phenomenon taking into account the space in which
it behaves, such as the spread of a disease in a certain region (AZEVEDO et al., | 2020) or the
concentration of metals that affect a agricultural topsoil (MARTIN; ARIAS; CORBI, 2006). When
data is spatially referenced, it is important to study its behavior in the space for decision
making where the phenomenon behaves atypically. Thus, it is important to apply methods
that identify spatial patterns and carry information from the spatial correlation structure

In geostatistics, a spatial random field {Z(s) : s € Dy C R?} is defined as a stochastic
process, where D is a subset of the d-dimensional Euclidean space. It can be assumed that
the covariance between two random variables depends on the spatial lag distance h between
their locations. It is common to assume stationarity in this type of process, and three types

of processes are defined here, according to distribution, expectation, and variance (CASTRO,

2013):

= Strictly stationary: (Z;,, Z

S29

Zs,,) has the same joint distribution as (Zs, 1h, Zs,+h;
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..y Zs,+n) for locations {si, ..., s;}:
F(Xsl,xsg,...,xsk)(%l,5652, . 7$sk> = F(Xsl+hX32+h,...,Xsk+h)(xsl+h: Tsy+hy - - - ,%Hh);

= Weakly stationary: E(Zs) = p and Cov(Zs, Zs1,) = C(h), where C'(h) can be called

a covariogram,;

= Intrinsically stationary: assume E(Z5,, — Zs) = 0 and get Var(Zs ,— Z5) = E(Zsin—

Zs)? = 27y(h), where v(h) is called a semi-variance function.
Still according to |Castro (2013)), they have the following relationship:

strictly stationary = weakly stationary = stochastic processes

But the return is not necessarily true.
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2 SPATIAL VARIABILITY ESTIMATORS ON SAMPLE POINTS AND FUNC-
TIONAL DATA

2.1 SEMIVARIOGRAM

The semivariogram, measures the level of dependence between two samples separated by
distance vector h € R¢, with sample locations (s) and (s + h), associated with a regionalized
variable Z(s), where {Z(s) : s € D C R¢} is a intrisically stacionary process defined on a

domain D. According to |Cressie| (1989)), the semivariogram can be defined as:

1(h) = VarlZ(s + 1) - 2(5)] = ;E[z@ +h) - Z@)P, Vs,s+heD  (21)

The 2v(h) is referred to as a variogram.

There are several ways to estimate the semivariogram. One of them is the method of
moments, introduced by Matheron| (1963)), commonly used in the literature. However, this
estimator is not robust to outliers. Therefore, other estimators were proposed in order to be
more robust to outliers, such as the one by |Cressie and Hawkins (1980), the variogram fitting
by generalized least squares of |Genton| (1998), and the pairwaise relative variogram described
by Bai and Deutsch| (2020).

In this master's thesis, we applied the method-of-moments semivariogram in order to
identify influential points. Finally, the spatial dependence is analyzed from the graph of semi-

variogram estimates versus distance h.

2.1.1 Method-of-moments semivariogram

The method-of-moments semivariogram, proposed by Matheron| (1963)) is given by:

N(h)
I — V7 N (22)

=1

where
= 7(h) is the value of the semivariogram estimate;
= Z(s;) is the value of the variable Z in position s;;

= Z(s; + h) is the value of the variable Z in position s; + h;
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= N(h) = {(s;,s;) : s; —s; = h} is the number of pairs separated by a given distance h.

For an irregular sampled data grid, N (h) can be write as {(s;,s;) : s;—s; € T'(h)}, where
T'(h) C R? surrounded h (CRESSIE, [1989).

2.1.2 Method-of-moments semivariogram on quadratic form

For a better understanding of the structure and properties of the estimators, |Genton| (1998)
restructured the Equation and proposed the following theorem in order to define the
expected value, the variance, the covariance and the correlation of the semivariogram. Let
Z=(Z(s1),...,Z(s,))" aspatial data vector and A(h) a spatial design matrix, the quadratic

form of semivariogram estimator by method-of-moments (Equation [2.2)) is:

i(h)g = 527 A(m)Z (2.3)

Let z a random vector, [E(z) = ul,, and Var(z) = 2. Then:
(a) E(y(h)) = 5tr[A(h)X];
if Z is also Gaussian, then:

(b) Var(5(h)) = tr[A(h)ZA(h)X];

(c) Cov(7(hy),5(hy)) = tr[A(hy) X A(hy)X];

~ ~ B tr[A(hy)EA(hy)Z]
(d) Corr(3(hy),7(h2)) = 2/tr[A(h1) S A(hy)Z)tr[A(h2) SA(hz) =]

where A(h) can be composed by superposing identity matrices I,,_j, as below:

In—h “In—h
A(h) =1/(n —h)

—dn—h Infh

The Proof of Theorem is described in detail by (Genton| (1998).

2.2 CROSS-SEMIVARIOGRAM

The Cross-semivariogram represents an association between two regionalized variables 7,

and Z,, which {Z,(s), Z,(s) : s € D C R%} are a intrisically stacionary process defined on a
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domain D, and it measures the association between them. The cross-semivariogram is defined

as:

1(0) =SB Zuls + 1) — Zu(s)][Zu(s + ) — Z,(9)] (24)

where (s) and (s + h) are sample locations and & represents the distance between the

sample locations (see Lark (2003)).

2.2.1 Method-of-moments cross-semivariogram

A cross-semivariogram estimated from spatial data vectors, Z, = (Z,(s1), ..., Zu(s,)) "

and Z, = (Z,(s1),...,Z,(s,))", by the method-of-moments can be defined as |Lark| (2003):

LY
2N (h) [

1=

Fuw(h) =y u(h) = Zu(si +h) = Z,(s)][Zy(si + h) — Z,(si)] (2.5)

—_

= J.0(h) is the value of the cross-semivariogram estimate;
= Z,(si) and Z,(s;) are the values of the variable Z, and Z,, respectively, in position s;;

» Z,(si+h) and Z,(s;+h) is the value of the variable Z, and Z,,, respectively, in position
S; + h;

= N(h) = {(si,s;) : s; —s; = h} is the number of pairs separated by a given distance
h. For an irregular sampled data grid, N(h) = {(s;,s;) : s; —s; € T'(h)}, where
T'(h) C R¢ surrounded h (CRESSIE, [1989).

In this case, when the reach and threshold are evaluated, we are interested in studying the
maximum distance of spatial dependence and the approximation of the covariance between
the two variables, respectively.

The Cauchy-Schwartz relation, given by: |V,.| = v/Yu7e; all distances h considered in a

co-kriging process must be guaranteed.

2.2.2 Method-of-moments cross-semivariogram on quadratic form

Let A(h) a spatial design matrix, from the expression in Equation [2.5] we can obtain the

cross-semivariogram estimated by method-of-moments quadratic form is:
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Aw(h)o = ;ZIA(h)ZV (2.6)

So, from the Theorem [2.1.2] we can obtain the first and second moments as follows:
Let Z, and Z, random vectors, E(Z,) = u,1, and E(Z,) = u,1,, and Cov(Z,,Z,) =
Y- Then:

(a) E(3() = § tr[A()Z,.];
if z is also Gaussian, then:

(b) Var(3(h) = tr{A(h)Z,, A(h) S,
(0) Cov(3(h)) = tr[A(h) 2, A(hy) S,

~ ~ . tr[A(hl)Zm,A(hz)Euv]
(d) Corr(v(hl)”y(hQ)) - 2\/tr[A(hl)EA(hl)Euu]t’f[A(hQ)zA(l‘Q)Euv]

2.2.3 Minimum Volume Ellipsoid cross-semivariogram

When the data set contains outliers, the semivariogram and cross-semivariogram obtained
by method-of-moments can result in overestimation of error variance by cokriging. Lark| (2003)
proposed the MVE, a cross-variogram estimator as a function of the robust p-variate variance-
covariance matrix C introduced by Rousseeuw| (1984), and given by:

~MVE 1~ T
' (h)= §CMVE [yl,yg, . ,yN(h)} : (2.7)

= y'(h) = {yi(h),y5(h), ...y, (h)}
» vy (h) = Z,(s;) — Z,(s; + h) is a paired difference.

A cross-variogram estimate 5MV¥(h) corresponds to the element {u,v} of the matrix

" (n).

2.3 METHOD-OF-MOMENTS TRACE-SEMIVARIOGRAM

Assuming that m(t) over D the mean function of Z(t), it is follow that (GIRALDO; MATEU;

DELICADO, 2012):
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1

(h) = ~E [/ (Zo,(t) — Z,,(t))2dt] , where : 5,5, € D, and h = |ls; — ;]|
T

2

(2.8)

Therefore, following the expression of the classic Mantheron semivariogram, the semivari-

ogram estimator for the functional data is given by:

where:

= 7(h) is the value of the trace-semivariogram estimate;
= Zs,(t) is the value of the functional variable Z(t) in position s;;

= Zs,+n(t) is the value of the functional variable Z(t), in position s; + h;

(2.9)

= N(h) = {(si,s;) : s; —s; = h} is the number of pairs separated by a given distance

h. For an irregular sampled data grid, N(h) = {(s;,s;) : s; —s; € T'(h)}, where

T'(h) C R? surrounded h (CRESSIE, [1989).
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3 PRINCIPAL COMPONENTS ANALYSIS

Increasingly, multivariate data sets are more present, and concomitantly difficulties arise
to interpret and graph them. How to get around this problem? Principal Component Analysis
(PCA) appears with the goal of facilitating the interpretation of any data, reducing its dimensi-
onality through the principal component , which are linear combinations of the correlated
variables of the data set. The PCs are not correlated with each other, and are ordered in
such a way that the former contains most of the data variation. They are found through the
decomposition of the centralized data matrix, reducing to a linear optimization problem, in
such a way that minimizes the size of the data, maximizing the variability subject to certain
restrictions. These can represent the original data, As the use of PCA is descriptive in nature,
the observed data can be used regardless of their distribution. The assumption of normality

can be assumed for inferential purposes (JOLLIFFE; CADIMA, [2016; EVERITT; HOTHORN, |2011).

3.1 PRINCIPAL COMPONENTS

The PCA has as main objective to explain the maximum variation present in a data set with
n observations and correlated numerical variables x, . . ., x,, through a new set of uncorrelated
variables yi,...,y,, such that each y;, i = 1,...,p, is a linear combination of ¢ variables
(¢ < p). This new variable is called the principal component (PC) and ordered in such a way
that the first component contains the maximum variance of the X, ., data matrix.

Thus, the first component (y;), or PC1, has the following expression:

y1 = Buxy + fiaxe + ... + Bipx, = XBy,

where 8] B, = 1, Var(y1) = B]Sp, is the sample variance of yi, S is the p x p sample
covariance matrix of X.

Similarly, we have the expression for the second component y,, or PC2, given by:

Y2 = a21X1 + aooXg + ...+ QopXp = X,BQ,
52Tﬁ2 =1
ﬂQTBl =0

And in the same way, the j-th PC is defined as y; = X3, subject to constraints:

subject to constraints:
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B]TBJ =1
B/B=0 (j<I)l=1,...p

where Var(y;) = ,B;FS,Bj.

Then there is a problem of maximizing a function of multiple variables, subject to at least
one constraint, therefore the method of Lagrange multipliers is used in such a way that 3
is the eigenvector, and S corresponding to this matrix’s largest eigenvalue (see [Everitt and
Hothorn| (2011)). Then, we want to maximizing ,BJ-TSBj - /\(,BjTﬁj — 1), such that \ is a

Langrange multiplier, finding \ from the equation:

SB; = \;B; < SB; — \;B3;, =0, (3.1)

thus, the covariance between X3, and X, is

Nol=
BISB, = \B B, = ’ (32)
0 (147)

The eigenvectors 3; and the linear combinations X3, are called PC loadings and PC
scores, respectively.

From the expression of Equation [4.6] the total variance of the q principal components is
given by: 3°_; \; = tr(S) and is equal the total variance of the original variables. Therefore,

the jth PC is response for a proportion P; of total variation:

A
7 tr(S)’

where the operator tr(-) denotes trace of matrix. So that the m first principal components,

(3.3)

m < ¢, have a cumulative proportion P of the total variation in the original data, where:

plm) _ Zi=1Ai

tr(S)

3.2 COVARIANCE AND CORRELATION MATRIX

Let Z, the standardized matrix of the initial data matrix X, in which the j-th column
corresponds to the vector z; with the n standardized observations of x;, then the covariance
matrix of the set of X standardized is the R correlation matrix. Thus, we have the PCA

correlation matrix method, and the PC y, = Z3, (EVERITT; HOTHORN, [2011).
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If the PCs are extracted of matrix covariance, then the covariance and the correlation

between variable jth and the kth is defined as, respectively:
Cov(x,y;) = \iBijk

i Bjk _ B _ VNP

N \/Var(:nk)Var(yj) B sk\//\ij Sk

If the PCs are extracted of matrix correlation, the correlation coefficient between the

variable j-th and the k-th PC is given by: r = vV A\ ajk

Txkvy]

The percentage of variance is different for each PC, which is why pcs generated from the
correlation matrix are required to represent the percentage of total variance. The trace of an
R correlation matrix is equal to the number of p variables and therefore the total variance
ratio of any PC is the variance of it divided by p. Therefore, when the data is at different
scales or has very different variances, the correlation matrix is better suited to generate the

PCs than the covariance matrix.

3.3 MINIMUM NUMBER OF PRINCIPAL COMPONENTS

Another important step to consider in principal component analysis is the minimum number
of components. This amount should be obtained in a way that takes as much information as
possible from the data, so there are several criteria in the literature that can be used (see
Everitt and Hothorn| (2011)). Here we use only one criterion: choose the components that
present the percentage of the total cumulative variance between 70% and 90%. However, as
the sample size increases, smaller values might be appropriate. In addition to this criterion, they
describes other criteria that can be used to choose the components: those with eigenvalues
greater than 0.7 (proposed by [Jolliffe (1972)); from the analysis of the graph of \; versus
i, introduced by |Cattell| (1966) and called scree diagram, in which the points are connected
forming lines, and the last selected component is the one in which, from it, the line starts to

have a little incline; etc.
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4 INFLUENTIAL ANALYSIS

When the study involves dependent observations, the influence function includes the joint
distribution of the data and it is not ideal that it derives from methods that remove or add
observations. |Genton and Ruiz-Gazen (2010) introduced the hair-plot, a tool to detect and
visualize these observations in the context of dependent data based on the study of the effect
of data perturbation on the estimators. For the development of this tool, they defined additive
perturbations in the context of dependent data, allowing to obtain information about the
behavior of these estimators considering different perturbation values. As an illustration, they
use the pollution data by disturbing each observation and obtaining the method-of-moments
sample variogram 29(h). Genton and Ronchetti| (2003) analyzed the same data and observed
possible outliers in the residual values and observed that the highest residual referred to the
value 40 in the location (2,2). Based on this, (Genton and Ruiz-Gazen| (2010) investigated
the influence of each observation for the lags of distance h = 1,2,3,4 and considering (
a perturbation such that ¢ € [—40,40]. They noted that influential observation changes as

distance increases.

4.1 EMPIRICAL, LOCAL AND ASYMPTOTIC INFLUENCE

Genton and Ruiz-Gazen| (2010) proposed an additive perturbation structure so that it
provides more information about how the estimator behaves by adding low perturbation values.

Let Z = (Zy,Zs,...,Z,)" be a vector data, and an additive perturbation of Z, given by:

where e; = 1 for observation 7 and e; = 0 otherwise, and ( € R is a quantity of perturbation.
For ¢ =0, the value §(Z) is preserved for all observations.

Let 6(-) be the estimator of § and 0(Z[i, (]) the estimator of data perturbation in function
i = 1,...,n and (. Genton and Ruiz-Gazen| (2010) also showed that by plotting each of
these estimators is possible to visualise the effect of influential observations. So the “hair-plot
is a version of the empirical influence function with replacement". Still, they proposed two
influential measures: local and asymptotic influential function. The local influence of the i-th

observation is defined as:
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_ o~
Ti(97 Z) - 87CG<Z[Z,<]) 4:07 (42)

in such a manner that the largest absolute value of 7;(-) depicts the most influential observation.
On the other hand, the asymptotic influence of the i-th observation implies the influence
of §(Z) estimate when there is a high perturbation value for the i-th observation, and it is

given by:
vi(0,Z) = lime_,o0(Z]i, (]), (4.3)

4.2 INFLUENCE ON QUADRATIC FORM

In order to understand the effect of influence on data and to understand the structure
and properties of the influence effect, (Genton and Ruiz-Gazen (2010) defined the quadratic
form of empirical, local and asymptotic influence as follows. Under a Z[i, (] contamination

and considering the Equation 2.3} an influence quatratic form of semivariogram is given by:

75 (h)g = ZTA(R)Z + (ZT A(h)e; + e] A(R)Z)¢ + (e] A(h)e;)(?,

and from that they obtained the expressions on quadratic form for the local and asymptotic

influences from the functions [4.2] and [4.3] respectively, such as:

7:(7(h)g,Z) = Z"A(h)e; +e] A(h)Z

vi(3(h)q, Z) = oo.

In the same way, an influence quatratic form of cross-semivariogram (Equation [2.6)) is given

by:

7 (h)g = ZI A(h)Z, + (Z] A(R)e; +e] A(R)Z,)C + (e] A(h)e;)C?,

u

and the quadratic form for the local and asymptotic influences, respectively, such as:

7w (h) g, Zu, Zy) = ZI A(h)e; +e] A(h)Z,
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V’L(?uv(}wQ; Zm Zv) = OQ.

4.3 GRAPHICAL TOOLS TO VISUALIZE INFLUENTIAL SPATIAL DATA

In this section, we describe the methodology for obtaining three of graphical tools developed
in this master's thesis and we introduce them in order to identify influential observations
in spatial data considering the semivariogram, cross-semivariogram and trace-semivariogram
estimators denoted by §(h) (defined in section . First we generate a graph for the lag
of distance h pair by pair using bihair-plot, then a graph is created for all lags of distance
h considered using hair-plot introduced by (GENTON; RUIZ-GAZEN, [2010)), but applying the

principal component analysis (PCA) and finally we generated a hair-plot for functional data.

4.3.1 Bihair-plot

In order to analyze the influence two pairs of lags, we developed a graph called bihair-plot.
Initially, a vector data Z[i, (] is obtained for i-th perturbed observation, and then a 4(h)
value for each value of h. In the bihair-plot, a point (y(hy),V(h)),l # k, L,k = 1,...,p,
is plotted for each ( considered in the analysis, and it is connected so that it belong to the
same observation and follow the order of the ('s, forming a curve. Observation is considered
influential if the curve related to it is closer to the diagonal and varies more in relation to the

others.

4.3.2 Principal components hair-plot

In order to analyze the influence for all lags, the hair-plot was adapted to a version using
principal component analysis (PCA). When we are in a multivariate problem, the PCA allows
the interpretation and representation of the data in a graph, reducing its dimensionality through
the principal component (PC) containing the maximum of data variability, which are linear
combinations of the correlated variables of the data set. The PCs are not correlated with each
other, and are ordered in such a way that the former contains most of the data variation.
They are found through the decomposition of the centralized data matrix, reducing to a

linear optimization problem, in such a way that minimizes the size of the data, maximizing
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the variability subject to certain restrictions. As the use of PCA is descriptive in nature, the
observed data can be used regardless of their distribution. The assumption of normality can
be assumed for inferential purposes (JOLLIFFE; CADIMA, [2016; EVERITT; HOTHORN, 2011)).
Let a sampled data Z = Z(s) = (21, Zs,...,2Z,)", where {Z(s) : s € D C R%}, and a
perturbation of Z defined as: Z[i, (]. As for the perturbed data, we have a vector J(h) with n

values related to Z[i, (] for a given h. In this case, the following operations are performed:

Z1 1 Z1+¢

P 0| | % 10
Zy 0 Zn
Z1 0 Z1
Zy 0 Za

Z[n, (] = +¢| | = — 3" (n)
A 1 Zn+C

Therefore, considering the vector h of size p, we obtain the following n x p matrix:

AL (hy) - 3(1,4)(}%)
[(h) = : 5 (4.4)

A (hy) - ﬁ("@(hp)
In this way, we want explain the maximum variation of 4(hy),...,%(h,) through a new
set of uncorrelated estimates, the PCs, y1,...,y,, such that each y;, k =1,...,p, is a linear

combination of ¢ estimates (¢ < p).
Commonly, the components are found in terms of the centralized matrix (JOLLIFFE; CA-

DIMA), 2016)). Thus, the first component y; (PC1) has the following linear combination:

1 = BuF*(h1) + B2V (he) + ... + B3 (hy) = T*(h) By,
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where 8] B, = 1, Var(y,) = B, SB, is the sample variance of ¥, S is the n x n sample
covariance matrix of I'*(h), given by centred estimates v*(hy) = Y@ (hy) — (hy), k =
1...,p,asS = N"I*(h)TT*(h), and 7(hy) is the estimates mean of k-th column of I'*(h).

Similarly, the expression for the second component y, (PC2) is given by

Y2 = BuA" () + P (he) + ..+ B (hy) = I () B,

where 8, 8, = 1, and B4 B, = 0, and Var(y,) = B, Sf3, is the sample variance of 3,.

Hence, the jth PC is defined as y; = f*(h)ﬁj, where Var(y;) = 8] S, and requiring:
B/B;=1and BB, =0forj<ll=1..0p

Then there is a problem of maximizing a function of multiple variables, subject to at least
one constraint, therefore the method of Lagrange multipliers is used in such a way that 3 is
the eigenvector, and S corresponding to this matrix’s largest eigenvalue (see Section .
Then, we want to maximizing ,B;Sﬂj — )\(BJ-TB]- — 1), such that X is a Langrange multiplier,

finding A from the equation:

SB; =\B; < SB, — \;B,; =0, (4.5)
thus, the covariance between f*(h),Bj and T*(h)3, is
N, j=1
0 (£

v

The eigenvectors 3, and the linear combinations I'(h)3; are called PC loadings and PC

B;SB=X\B; B = (4.6)

scores, respectively.

From the expression [4.6] the total variance of the q principal components is given by:
>20_1A; = tr(S) and is equal the total variance of the original estimates. Therefore, the j-th
PC is response for a proportion P; of total variation:

s

P = ﬁ) (4.7)

where the operator tr(-) means trace. So that the m first principal components, m < g,

account for a proportion P of the total variation in the original estimate, we have:

_ E;'nzl >‘j

pm)
tr(S)
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Another way to to choose 3; so as to find components with variations represented in the

I'(h) estimates by following the steps below, defining the standardized weights that maximize
Var(y;):

1. find the weight vector &, = (£11,...,&1,)" for which values of

5 =370 (hy) = €179 ()
J
have the highest possible quadratic mean: N~! 3" 51”2 subject to ¢2ds = 1;

2. in the m-th step, find &,, with new values ) = £ 7@ (h). Thus, &,, has a maximum

quadratic average subject to ||&,,||?ds = 1 and the m —1 restrictions: & &, = 0,k < m.

It is ideal to use the data correlation matrix R instead of the covariance S, when 7(h;)
are on very different scales or different variances (EVERITT; HOTHORN, 2011)). In this case, the

eigenvalues \ are obtained by finding the root of the following equation:

det(R — A\I) = 0.

Then, the eigenvectors can found solving Equation [4.5] using R instead S.
The next step is to find the minimum number of principal components that can be used
in the analysis. As mentioned earlier (see Chapter , we choose the components that present

at least 70% of the cumulative variance of the estimates.
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5 APPLICATIONS

In order to illustrate the methods and visual tools proposed and presented in the previous
sections, we apply them to pollution data in section [5.I to meuse data from the sp package
in R in section [5.2] and maritimes data from the geofd package in R in section [5.3]

5.1 POLLUTION DATA

The sample of 100 pollution data, comes from a 9 x 9 regular grid, consists of reflectance
values from the pumping of waste material into the English Channel. |Genton and Ruiz-Gazen
(2010) analyzed it in order to model the possible dependence structure of the pollution levels,
so that high pollution levels induce high reflectance values, with the previous removal of
the linear trend producing residuals Z(si, ss), 81,82 = 1,...,9. Then they computed the
empirical method-of-moments variogram 24 (h) estimator assuming isotropy. Considering the
data modified by the additive perturbation ¢ € [—40 : 40], they investigated the empirical
influence of each residual on the sample variogram for the lags h = {1,2,3,4} through the
hair-plot and found observation #17, located in (2,2), as an influential point that corresponds
to the maximum reflectance residual value of the data equal to 40. In addition, in the present
work we studied the empirical influence pairing the sample semivariogram 7<) (h), obtained
by the perturbed data Z[(, ], 4, ..., 100 and illustrated on the bihair-plot. Descriptive statistics
for the estimates are shown in the Table , in which we observed that the data range from
—26.70 to 40, and the observations associated with their maximum values are presented for
h = {1,2,3,4}. It was possible to observe that the influential observations change, in such
a way that as the lag grows, observation #59 becomes influential, initially being observation

#17 considering small distances.
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Tabela 1 — Descriptive statistics values of pollution data.

Statistics reflectance

Minimum -26.70
1st Quartile -9.50
Median -1.30
Mean -1.39
3rd Quartile 5.50
Maximum 40.00

Source: Elaborated by the author (2021).

Figure [7] describes the distribution of the data through quartile intervals. Values above the
third quartile (last interval) correspond to the maximum values of the sample, with 40 being

the highest value, at location (2,2).

Figura 1 — Distribution of reflectance values by quartile interval - pollution data.
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Source: Elaborated by the author (2021).

The 3+ (h) amplitude also was shown in Figurefor each h, wherein the original sample

semivariogram, when ( = 0, was represented by points.

Tabela 2 — Descritive statistics of method-of-moments semivariogram and the observation corresponding to
the maximum value of the estimates for each lag (¢ > 0).

Statistics  4(1)  §(2)  9B3) 44)  A(B)  46) A7) A40)
Minimum 7246 7497 1046 93.04 1022 1119 1176 110.0
Median 107.03 11291 131.1 118.16 1195 135.8 1385 134.6
Mean 109.69 116.31 1344 12151 123.3 139.4 1424 138.1
Maximum 17557 191.85 181.4 177.29 189.7 189.4 207.0 203.5

Observation 17 17 59 59 25 59 59 59

Source: Elaborated by the author (2021).
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Figura 2 — Semivariogram amplitude graph for perturbed data represented by the bars, where the minimum and
the maximum is the less and highest value of 4(h) for ¢ = [—40, 40], respectively, and semivariogram
for original data represented by the points where ( = 0 - pollution data
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Source: Elaborated by the author (2021).

The Figure |3 shows the largest residual, when ¢ > 0, corresponding to observation #17
and it is identified by the red curve and black curve for h = {1,2,(1,2),(1,3), (1,4), (2,
2),(2,3),(3,4)} and h = {3,4,(3,4)}, respectively, where (-, -) is the pair of lags h related to
estimates represented on bihair-plot. For h = {3,4,(3,4)}, observation #59 (location (7,5))
is the most influential (¢ > 0), since its curve corresponds to the most extreme.

When the data is perturbed, and as the data are spatially dependent, it will have different
scales for each lag h, as seen in the Figure 2] So the ideal is to get the PCs using the sample
correlation matrix of f‘*(h). Therefore, we obtained the PC scores from the correlation matrix
of the sample semivariogram, as defined in equation[4.5| (section[4.3.2)), first for h = {1, 2,3, 4}
and then taking into account all h. The first component y; presented PC loadings equal to
0.5 for all lags h, giving equal importance to the values of the semivariogram independent of
the distance. The PC Joadings were different for the second component y,, so that shortest

distance (h = 1) showed the highest PC loading.

¥1 = 0.505*(1) + 0.505*(2) + 0.509*(3) + 0.509*(4)

72 = 0.589"(1) + 0425 (2) + ~0517(3) + —0.487"(4

where: v*(hy) = v (h) — (), k = 1,2,3,4, where 7(hy,) is the estimates mean of k-th
column of I'*(h).
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Figura 3 — Hair-plots in the principal diagonal and the bihair-plot on top of the sample semivariogram on the
reflectance residual values for spatial lag distance h = 1,2, 3,4. and ¢ € (—40,40), for the pollution
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Source: Elaborated by the author (2021).

Considering all the lags h, the first component also presented similar PC Joadings, whereas

in the second component, they had different values, where the greatest PC loading is for

h=1.

1 = 0.3459%(1)+0.355*(2)+0.369*(3)+0.375* (4)+0.355* (5)+0.379*(6)+-0.355* (7)+-0.349*(8)

¥ = 0.599*(1) + 0.465*(2) + 0.145*(3) — 0.467*(5) — 0.139*(6) — 0.435*(7)

When generating the hair-plot and the bihairplot of the principal components, the most
influential observation was still #17. Figure [4] illustrates the hair-plot for the first PC score,
containing 90.0% of variability of the sample semivariogram, the second PC score, with 4.83%

of variability, and the bihair-plot is generated for the two components and contains 94.92%
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of sample semivariogram cumulative variability, for h = 1,...,4. The hair-plots and the
bihair-plot considering all the values of h, shown in the Figure , have the same behavior,
in which the first component presents 85.34% of variability and the second presents 5.53% of
variability, so that the first two components contained 90.87% of cumulative variability. For
both scenarios, h = 1,...,4 and all h, the first component presented more than 70% of the
sample semivariogram variability, so that only the first component can be used to represent
the estimate of all lags, and is most ideal since PC loadings have similar positive weights for

all lags h, thus giving importance to them regardless of distance.

Figura 4 — From left to right: PC hair-plots for PC1 and PC2 with 90.09% and 4.83% of sample semivariogram
variability, respectively, and PC bihair-plot crossing PC1 and PC2 containing 94.92% of sample
semivariogram cumulative variability, considering spatial lag distance h = 1,2,3,4. and ¢ € (—1,1)
- pollution data

PC1 (90.09% of variability) PC2 (4.83% of variability) PC1 & PC2 (94.92% of variability)

40 40 20 0 20 40 1o s

o
.
S

40 20

Source: Elaborated by the author (2021).

Figura 5 — From left to right: PC hair-plots for PC1 and PC2 with 87.88% and 5.75% of sample semivariogram
variability, respectively, and PC bihair-plot crossing PC1 and PC2 containing 93.63% of sample
semivariogram cumulative variability, considering spatial lag distance h =1,...,8 and ¢ € (—1,1)
- pollution data

PC1 (85.34% of variability) PC2 (5.53% of variability) PC1 & PC2 (90.87% of variability)
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Source: Elaborated by the author (2021).
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Figura 7 — Distribution of reflectance values by quartile interval. The red point on the grid indicates the most
influential point, corresponding to the maximum data value (observation #17) - pollution data.
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5.2 MEUSE DATA

The floodplains of the Meuse River contain large amounts of heavy metals due to the

decomposition of contaminated sediments accumulated on the river bank. The meuse data

set from the sp package is composed of variables referring to concentrations of different types

of heavy metals (in pmm), with 155 observations, and their respective collection sites, which

is the upper layer of the ground of the Meuse floodplain, near the village of Stein (NL). The

sample was collected from an area of approximately 15m x 15m (PEBESMA; BIVAND, 2005;

BIVAND; PEBESMA; GOMEZ-RUBIO, 2013). Here, we studied two metals: zinc (Z,,) and lead (Z,)

concentrations. First, we applied log(-) in order to normalize the data, and then we study the

spatial variability of zinc and lead separately, from the sample semivariogram, and the spatial

variability associating the two metals through the cross-semivariogram. In this case, we expect

that where there is a higher concentration of zinc, there will also be a higher concentration of

lead. In Figure [8] we can see that the highest concentration of metal is found on the banks of

the river, in addition to being the highest values of metals (belonging to the third interval).

Figura 8 — Distribution map of zinc and lead values by quartile interval from left to right, respectively - meuse
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In Figure [9)(a) and (b), we can see that there is spatial dependence, because the semiva-

riogram value increases when h becomes larger. In Figure |§|(c) we identified a positive spatial

association between zinc and lead values trough the original cross-semivariogram 7(h) repre-
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sented by points and we analysed f(h) amplitude of each h, that is, each column 5(h) of the
I'(h) matrix, represented by bars. We observed that the scale of the estimates varies for each

h.

Figura 9 — Estimates of method-of-moments semivariogram for (a) log of zinc and (b) log of lead, (c) original
sample cross-semivariogram for log of zinc and log of lead represented by the points and cross-
semivariogram amplitude graph of for log of zinc and log of lead perturbed, where the minimum
and the maximum is the less and highest value of 4(h) for { = [—1,1], respectively, represented
by the bars - meuse data

— s — III III
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h h h
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Source: Elaborated by the author (2021).

Before obtaining the components, we investigated for h = 1,2, 3,4, just like it was done
in section , but now we consider ¢ € [—1,1]. In Figure , the sample cross-semivariogram
on original data refers to the value in the graph where ( = 0. The diagonal graphs correspond
to the hair-plot generated for each lag h, and those on the top diagonal, being the same as
those on the bottom diagonal, refer to the bihair-plot. The curve of the most influential point
is highlighted in red. Observing the hair-plot for h = 1 and ( > 0, we have that observation
#76 stands out, with values 680 ppm and 241 ppm (zinc and lead, respectively) at location
179095, 330636 in meters on Netherlands topographical, and, from the bihair-plot, we see
that it becomes less influential as h increases. When analyzing for h = {3,4, (3,4)}, we have
that #67 (¢ > 0) becomes more influential. For the pairs of lags h = {(2,3);(2,4);(3,4)}
and ¢ > 0 we can see that #59 is the most influential point. Descriptive statistics for the
estimates are shown in the Table[3| and the observations associated with their maximum values

are presented for h = 1,2, 3,4.
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Figura 10 — Hair-plots in the principal diagonal and the bihair-plot on top diagonal of the sample cross-
semivariogram on the values of zinc and lead, for spatial lag distance h = 1,2,3,4.and ¢ € (—1,1).
Blue values in the bihair-plot indicate the curve for which { < 0. - meuse data
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Tabela 3 — Descritive statistics of method-of-moments cross-semivariogram and the observation corresponding
to the maximum value of the estimates for each lag (¢ > 0) - meuse data.

Statistics (1) 4(2) A(3) A(4)
Minimum  0.11 0.17 0.25 0.35
Median 0.13 0.19 0.26 0.38
Mean 0.13 0.19 0.26 0.37
Maximum 0.21 0.23 0.29 0.41
Observation 76 74 79 59

Source: Elaborated by the author (2021).

In PC hair-plot, the idea is to investigate whether there are any influential points considering
the spatial dependence. By applying PCA for the f‘(h) and considering h = 1,2, 3,4, we have
that the first two components y; and y, (PC1 and PC2, respectively) carry 85.85% of the

variability of the estimates and we obtain the following expressions for them:
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¥1 = 0.345*(1) + 0.545%(2) + 0.579%(3) + 0.529*(4),

¥2 = 0.909%(1) — 0.195%(3) — 0.395"(4).

The first component ¥, presented similar PC loadings, except for h = 1, which presented
the lowest value equal to 0.34 for all lags h, giving similar importance to the values of the
cross-semivariogram. The PC Joadings were different for the second component y,, so that
shortest distance (A = 1) showed the highest PC loading equal 0.9.

Considering all lags h, PC loadings were positive also for y;, where the lower value 0.10
was referring to h = 1. The PC loading for y5 varied for all lags, such that it presented higher
values for h = {1, 2}.

91 = 0.109%(1) 4 0.229*(2) + 0.279%(3) + 0.297*(4) + 0.305* (5) + 0.329*(6) + 0.327* (7)+

0.329%(8) + 0.325%(9) + 0.314*(10) -+ 0.309*(11) + 0.305*(12),

2 = 0.599%(1) + 0.505*(2) + 0.399*(3) + 0.185*(4) — 0.119%(7) — 0.169*(8) — 0.205*(9)—

0.235%(10) — 0.229*(11) — 0.185*(11).

In Figure [12, we can see that PC1 has 67,83% of the data variability, and the most
influential points were #68 (¢ < 0) and #54 (¢ > 0). The observation #54 correspond
to the maximum values of the zinc and lead variables equal to 1839 and 654 at location
(179973, 332255) in meters, respectively. PC2, on the other hand, has 11,21% of the data
variability, and the most influential points were #138 and #76 for ( < 0 and { > 0, in due
order. While PC1 loads information from the estimates of all lags, PC2 loads information from
~(1),4(3),4(4), beeing 4(1) with greater weight.

In Figure [0} it was observed that, from the cross semivariogram MVE, it is not possible to
detect influencing points, that is, the estimator was not affected by the additive perturbations
( such that the values of the estimates fluctuated and did not show an increasing behavior or

decreasing as ( —» 00.
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Figura 11 — From left to right: PC hair-plots for PC1 and PC2 with 65,96% and 20,89% of the sample
cross-semivariogram variability, respectively, and PC bihair-plot crossing PC1 and PC2 containing
85.85% of the sample cross-semivariogram cumulative variability, considering lags distance h =
1,2,3,4. and ¢ € (—1,1) - meuse data

PC1 (65.96% of variability) PC2 (20.89% of variability) PC1 & PC2 (85.85% of variability)

Source: Elaborated by the author (2021).

Figura 12 — From left to right: PC hair-plots for PC1 and PC2 with 67.83% and 11.21% of the sample
cross-semivariogram variability, respectively, and PC bihair-plot crossing PC1 and PC2 containing
79.04% of the sample cross-semivariogram cumulative variability, considering lags distance h =
{1,...,12} and ¢ € (—1,1) - meuse data

PC1 (67.83% of variability) PC2 (11.21% of variability) PC1 & PC2 (79.04% of variability)
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Source: Elaborated by the author (2021).

Figura 13 — Hair-plots of the MVE sample cross-semivariogram for the log of zinc and log of lead for h =
1,2,3,4 - meuse data
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Source: Elaborated by the author (2021).
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Figura 14 — Distribution map of zinc and lead values by quartile interval from left to right, respectively. The
points in red correspond to the most influential observation (#54) and a possible influential point
(#76) (¢ > 0), at locations (179973,332255) and (179095, 330636) given in meters. - meuse

data.
333500 ] ...
».
L L ot
333000 [ ]
o 0°
(Y]
U
332500 ] Py ®
[ ]
. e O o
o ®
[
> 3320001 ° ([ J (XX
2 ° 8. o o [113,198)
.E L J ® e @ [198,326)
o
5 331500 L < o . ©® [326,674.5)
8 '.. o ° [674.5,1839]
LN ]
° ® oo
[ ]
331000 ] oo s
[ ] o°
L]
3305001 o ‘ PO
~ ' °
L]
[ ] °® L
L[]
330000 ] N
. L]
. 0y
178500 179000 179500 180000 180500 181000 181500

coordinate X

coordinate Y

333500 @
00
\
4
3330001 o _
%
%
332500 0o
° - o0
e @
[
332000 [ ] ®
®9 :. ° e [37,725)
. L]
[ ° Qoo ® [725,123)
331500 q‘ = o . ©® [123,207)
... o ° [207,654]
LN ]
' ° ® o0
[ ]
331000 .
...
® o9 o ®
o [
3305001 [ J o«
(Y ®
s ° [ ]
L]
330000 s o . N
e’® 0y
o0
178500 179000 179500 180000 180500 181000 181500

coordinate X

Source: Elaborated by the author (2021).



47

5.3 MARITIMES DATA

Maritimes data are a large number of measurements corresponding to temperature re-
cords in 35 weather stations located in Canadian Maritime Provinces, named as Nova Scotia
(NS), New Brunswisk (NB), and Prince Edward Island (PEIl). |Giraldo, Mateu and Delicado
(2012) analyzed the average temperatures between the 1960s and 1994s for each station,
which were initially obtained by the Meteorological Service of Canada. The data belongs to
the geofd package (maritimes.data), and it also contains the average of values between the
stations (maritimes.average) and their respective coordinates latitude and logitude (mariti-
mes.coord). This information was crossed, and the trace-semivariogram hair estimates were
obtained. Within the function, the data were smoothed from the nonparametric B-spline func-
tion, and trace-semivariogram estimates were generated from a vector of perturbations ranging
from —1 to 1, presented in the Table [4] together with the observations associated with the
maximum estimated value of h = {1,2, 3,4}, where hair-plots and bihair-plots are generated
and illustrated in the Figure [I9] It was observed that two observations are detected for h = 3
(#18 and #19) from the maximum value of the estimates, and that is why it is important to

evaluate the hair-plot.

Tabela 4 — Descritive statistics of method-of-moments trace-semivariogram and the observation corresponding
to the maximum value of the estimates for each lag ({ > 0) - pollution data.

Statistics (1) 4(2) A(3) A(4)
Minimum  217.9 370.9 644.2 830.6
Median 265.9 4235 680.7 905.8
Mean 290.0 449.8 701.9 936.3
Maximum  570.1 745.7 924 .3 1304.0

Observation 16 22 18 and 19 22

Source: Elaborated by the author (2021).

The data was modified by the additive perturbation { € [—1 : 1], we want to identify
which station presented temperature values such that the non-parametric function smoothed
to disturbed data is influential. In this work, it was studied the empirical influence pairing
the sample trace-semivariogram 7(*<)(h), obtained by perturbed data Z[(,i],i,...,35 and
illustrated on the hairplot and bihair-plot. Figure shows the 7% (h) amplitude also for
each h, and the original sample trace-semivariogram, when ¢ = 0, was represented by points.

Figure [17] illustrates the curves obtained using a base B-spline with 65 functions.
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Figura 15 — Averages location of daily temperature curves observed at 35 weather stations of the Canadian
Maritime provinces - maritimes data.

Source: [Giraldo, Mateu and Delicado| (2012)).

Figura 16 — Matplot of daily temperature curves observed at 35 weather stations of the Canadian Maritime
provinces - maritimes data

Temperature (degrees C)

Source: Elaborated by the author (2021).

It was investigated whether there are any influential function on maritimes data. By applying
PCA for the f(h) and considering h = 1,2, 3,4, the first two components y; and y, (PC1
and PC2, respectively) carried 96.43% of the variability of the estimates and we obtain the

following expressions for them:

¥1 = 0.399*(1) + 0.545*(2) 4 0.545*(3) + 0.517*(4),

¥ = 0.855*(1) — 0.219*(3) — 0.479*(4).

As seen for the trace-semivariogram estimates, the first component y; presented similar

PC loadings, except for h = 1 (the weight was equal to 0.39) for all lags h, giving similar
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Figura 17 — Smoothed data of daily temperature curves obtained by B-spline with 65 basis functions - mari-
times data.
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Source: Elaborated by the author (2021).

Figura 18 — Trace-semivariogram amplitude graph for perturbed data represented by the bars, where the mi-
nimum and the maximum is the less and highest value of 4(h) for { = [—1,1], respectively -
maritimes data
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Source: Elaborated by the author (2021).



Figura 19 — Hair-plots in the principal diagonal and the bihair-plot on top diagonal of the sample trace-
semivariogram on the values of maritimes data, for spatial lag distance h = 1,2,3,4. and ¢ €

those taking part in the bihairplot - maritimes data
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importance to the values of the trace-semivariogram. The PC Joadings were different for the

second component ¥, so that shortest distance (h = 1) showed the highest PC loading equal

0.85.

y1 = 0.277*

(1) +0.269%(2) + 0.309*(3) + 0.255* (4) + 0.345*(5) + 0.259*(6) + 0.315*(7)+

0.329*(8) + 0.259*(9) + 0.235*(10) + 0.285*(11) + 0.165*(12),

, = —0.359*(2)

—0.215*

(3)

— 0.395"(4

) — 0.145*

(5) + 0.369*(7)—
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0.115*(8) + 0.169%(9) + 0.345*(10) + 0.385*(11) — 0.135*(12) + 0.45%*(13).

In Figure 20, we can see that PC1 had 79,52% of the data variability, and the most
influential function was at site #19 (¢ > 0) and for PC2 had 16.90%, and the most influential
function was #9 (¢ < 0). These observations correspond to the values at location (—60.40,
46.67) and (—66.37, 45.98,), respectively. As seen for semivariogram and cross-semivariogram

estimates, PC1 took information of all lags.

Figura 20 — From left to right: PC hair-plots for PC1 and PC2 with 79.52% and 16.90% of sample trace-
semivariogram variability, respectively, and PC bihair-plot crossing PC1 and PC2 containing
96.43% of sample trace-semivariogram cumulative variability, considering spatial lag distance
h =1{1,2,3,4} and ¢ € [-1,1] - maritimes data

PC1 (79.52% of variability) PC2 (16.90% of variability) PC1 & PC2 (96.43% of variability)
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Source: Elaborated by the author (2021).

Figura 21 — From left to right: PC hair-plots for PC1 and PC2 with 57.88% and 26.72% of sample trace-
semivariogram variability, respectively, and PC bihair-plot crossing PC1 and PC2 containing
84.68% of sample trace-semivariogram cumulative variability, considering spatial lag distance
h=1,...,4and ¢ € (—1,1) - maritimes data

PC1 (57.95% of variability) PC2 (26.72% of variability) PC1 & PC2 (84.68% of variability)
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Source: Elaborated by the author (2021).

In Figure , it can be seen that at the location (—63.50,44.63) of point #22 the tem-
perature becomes the highest at the end of the period, while that of point #29 (at location
(—66.47,45.85) stands out only when temperatures rise (middle of the period) and at #16

(at location (—64.85,44.23) remains at highest for almost the entire period.
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Figura 22 — From left to right: matplot highlighting in red the points corresponding to the observed location
22, 29 and 16, respectively- maritimes data
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Source: Elaborated by the author (2021).

From the results, possible influential points were identified, being discarded the one found

for h = 1: observation #16, and those found relating the estimates of all lags: observation

#22 and #29.

Figura 23 — Averages locations of daily temperature at 35 weather stations. The points in red correspond to
possible influential points (#16,#22 and #29), at locations (—64.85, 44.23), (—63.5,44.63) and
(—66.47,45.85), respectively - maritimes data.
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6 SUPPLEMENTARY MATERIALS

Below is a list of routines and functions implemented in R, which will be made available

after the article is published.

R code for semivariog.hair: R code for the command semivariogram hair (semivariog-hair.R).

(R-code.zip);

R code for crosssemivariog.mm: R code for the command method-of-moments cross-semivariogram

(crossvariogram-mm.R). (R-code.zip);

R code for crosssemivariog.mve: R code for the command minimum volume ellipsoid cross-

semivariogram (crosssemivariog-mve.R). (R-code.zip);

R code for crosssemivariog.hair: R code for the command cross-semivariogram hair (cross-

semivariog-hair.R). (R-code.zip);

R code for tracesemivariog.hair: R code for the command method-of-moments trace-semivariogram

hair (trace-semivariog-hair.R). (R-code.zip);

R code for identify curve on hair-plot/bihair-plot: R code for command ggidentify (ggi-
dentify.R);

Data: The pollution data are in (Genton and Ruiz-Gazen| (2010)), the meuse data are in the R

package sp and the maritimes data are in the R package geofd.
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7 CONCLUSIONS

In this master’s thesis, we adapted the hair-plot function for spatially dependent data. We
built three types of graphs to identify influential observations: bihair-plot, PC hair-plot and PC
bihair-plot. We generate such graphs for the pollution data considering the reflectance residual
values for univariate case and obtain the influence on the semivariogram and perturbed values
in the interval [—40,40]. The most influential observation was #17, which corresponds to
the maximum value 40 at location (2,2) for positive perturbation values. We also identified
influential observations for the meuse data, considering the variables zinc and lead, that is,
for the bivariate case, and obtaining the influence on the cross-semivariogram for perturbation
in [—1,1]. For a positive perturbation, #54 was the most influential observation of the data,
with values equal to 1839 ppm of zinc and 654 ppm of lead, at location (179973, 332255) in
meters, also corresponding to the maximum values of the variables. As for functional data, we
smoothed from the B-spline basis and we adapted the hair-plot for the trace-semivariogram
estimator obtaining the functions of points #22, #29 and #16 as possible influencing functi-
ons, the first being evaluated for a positive perturbation ¢ > 0 and the last two for a negative
perturbation (¢ < 0), at location (—66.37, 45.98), (64.85,44.23) and (63.50,44.63), respec-
tively. Therefore, by applying the principal component analysis to values of spatial dependence

estimators, it is possible to identify an influential observation and its location.
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8 FUTURE WORKS

Considering that in the literature a graphical tool was presented to detect influential points
in dependent data, and in particular, the spatial dependence is evaluated through the behavior
of the estimated semivariance for different lags. The hair-plot presented by Genton and Ruiz-
Gazen| (2010) evaluates the influence through the additive perturbation for each lag, not taking
information from the other lags. The main contribution presented in this master's thesis was to
propose a methodology such that influential points are detected taking information from the
spatial correlation present in the data. For its development, principal component analysis was
used to construct the hair-plot and, in addition, the semi-variance obtained from the disturbed
data was evaluated for paired lags, detecting influential points between two lags. For future

work, the following items can be taken into account:

» Apply the methodology of functional data analysis smoothing non-parametric functions
to these estimates and apply functional principal component analysis to obtain a curve
for each observation and generating the functional hair-plot, since for each observation

an estimation vector obtained from a vector of perturbations is evaluated;

» Evaluate the estimates obtained for only one additive perturbation and apply functional
data analysis, adjusting non-parametric curves and generating the functional boxplot to

detect possible outliers (see Genton and Sun| (2014));

= Study other methods used to detect outliers in functional data to compare with the

proposed tools (see |Genton and Sun| (2014));

» Investigate the local and asymptotic influence of estimators from real applications and

simulations.
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for each observation and generating the functional hair-plot, since for each observation
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