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ABSTRACT 
 

As the time goes by, organizations acknowledge more and more the role of 

business support functions for the achievement of competitiveness and a 

sustainable performance. Considering that, it is important to propose novel 

mathematical models that enable the improvement of these functions. In the 

recent years, ML-based models have gained popularity in areas such as robotics, 

natural language processing, manufacturing, logistic and maintenance 

management. They have proven to be efficient in these complex domains in 

which the relation between some variables is sometimes unknown or in which the 

problem dimensionality and the solution space are high. Accordingly, in this 

thesis, we propose a maintenance and a logistic model based upon Machine 

Learning technics (ML) that have the capacity of dealing with the complexity of the 

problems approached when some real-life characteristics are taken into account. 

The first proposed model is based upon Deep Learning and aims to classify e-

commerce orders in dropshipping systems as soon as they are placed on the 

internet. The model fulfils the gap in the literature in which models force e-taler to 

cumulate batches of orders before engaging in any order classification and 

inventory rationing. The second model is a Condition-based maintenance policy 

for multi-component systems based upon Deep Reinforcement Learning and Goal 

Programming. The model fulfills a gap in the literature in which real industrial 

system factors such as multiple degradation states, imperfect maintenance and 

multiple conflicting criteria are not considered. In order to validate the efficacy of 

each model, numerical experiments and sensitivity analyses were conducted 

using simulation. Results showed that the proposed models enable the 

improvement of key indicator performances such as order fulfilment rate, total e-

tailer’s profit, maintenance cost rate and average system’s reliability, in different 

scenarios. 

 

Keywords: deep learning; inventory rationing; dropshipping; reinforcement 

learning; multi- component systems; imperfect maintenance. 

 

 



 

 

RESUMO 
 

Com o passar do tempo, as organizações reconhecem cada vez mais o 

papel das funções de suporte no alcance da competitividade e de um 

desempenho sustentável. Diante disso, é importante propor novos modelos 

matemáticos que possibilitem o aprimoramento dessas funções. Nos últimos 

anos, os modelos baseados em aprendizagem de máquina (ML) têm ganhado 

popularidade em diversas áreas tais como a robótica, o processamento de 

linguagem natural, a manufatura, a logística e o gerenciamento da manutenção. 

Esses modelos têm se mostrado eficientes nesses domínios complexos em que a 

relação entre algumas variáveis é desconhecida ou em que a dimensionalidade 

do problema e o espaço de soluções são grandes. Nesse sentido, esta tese 

propõe um modelo de logística e outro de manutenção baseados em 

aprendizado de máquina. Estes modelos têm a capacidade de lidar com a 

complexidade dos problemas abordados quando algumas características 

realistas são consideradas. O primeiro modelo proposto é baseado em 

aprendizagem profundo e visa classificar os pedidos de e-commerce em 

sistemas de dropshipping imediatamente após o recebimento no sitio web. Este 

modelo preenche uma lacuna da literatura em que os modelos forçam os 

varejistas a acumular lotes de pedidos antes de classificá-los ou de fazer a 

alocação do estoque. O segundo modelo é uma política de manutenção baseada 

na condição para sistemas de múltiplos componentes, baseado no aprendizado 

profundo por reforço e na programação por metas. O modelo preenche uma 

lacuna na literatura em que alguns fatores de sistemas industriais reais, tais 

como múltiplos estados de degradação, manutenção imperfeita, e critérios 

múltiplos e conflitantes, não são considerados. Para validar a eficácia de cada 

modelo, foram conduzidos experimentos numéricos e analises de sensibilidade 

usando simulação. Os resultados mostram que os modelos propostos 

possibilitam a melhoria do desempenho de indicadores-chave, tais como a taxa 

de atendimento de pedidos, o lucro total, a taxa de custo de manutenção e a 

confiabilidade média do sistema, em diferentes cenários.  

 

Palavras-chave: aprendizagem profunda; racionamento de estoque; 

dropshipping; aprendizagem profunda por reforço; sistemas de múltiplos 



 

 

componentes; manutenção imperfeita.  
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1 INTRODUCTION 

As the time goes by, organizations acknowledge more and more the role of 

optimizing business support functions on the achievement of a sustainable 

performance and competitiveness. 

Two key business support functions are maintenance and inventory, which are 

responsible for a large part of the operating cost of an organization. According to 

Bevilacqua, & Braglia (2000) maintenance activities can represent between 10 and 70 

percent of the production cost in a company, while the cost of spare parts consumed 

in maintenance activities accounts for almost 2.5% of its annual budget (Gallagher, 

Mitchke & Rogers, 2005). On the other hand, the stock-outs incurred in the e-

commerce market due to an inadequate inventory management can result in near 

25.4% of incomplete orders and 12% of delayed orders (Enos, 2010; Kim & Lnnon, 

2011). Considering that, it is important to constantly invest in novel strategies and 

solutions that allow the optimization of these functions.  

With the rapid incorporation of new technologies tied to Industry 4.0 and 

electronic services under firms, business support functions are supposed to change 

dramatically (Cagle et al., 2020). Therefore, it is important that the novel models are 

aligned with new challenges and opportunities that can change the way in which 

industrial/services operations are carried out, in which decisions are taken, and the 

way the information is used in light of the adoption of Industry 4.0 and the spread of 

electronic services.   

 According to Franciosi et al. (2020), the adoption of key technology of I4.0 

such as Augmented Reality (AR), Additive Manufacturing (AM), Big Data & Analytics 

(BD&A), Cloud Computing (CC), Industrial internet of Things (IoT), Horizontal/Vertical 

Integration (H/VI), Autonomous/Collaborative Industrial Robots (A/C-IR), Simulation 

(S), and Cyber-Security (CS), can affect both positively and negatively the 

effectiveness of the maintenance functions. The effects can be perceived in areas 

such as the access to maintenance tools, support equipment, and equipment 

performance data, the availability of spare parts, the provision of safety conditions for 

the maintenance environment, maintenance budget, maintenance management, 

capability of foreseeing and preventing potential critical equipment´s states, and the 

quality of maintenance actions. The integration and transparency of the key 
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technology and paradigms of I4.0 can also lead to changes in order fulfilment 

management (Fatorachian & Kazemi, 2021). For example, cloud technologies, 

Artificial intelligence (AI), Big Data Analytics (BDA), and the integration of RFID tags 

with inventory management systems can enhance real-time information access and 

analysis, collaboration, responsiveness, and product and material visibility throughout 

the supply chain. Particularly, having an advanced visibility of inventory levels can 

enable accurate inventory planning and control, which in turn enable a reduction in the 

cost of stock outs and a consequent customer satisfaction improvement (Quesada et 

al., 2008; Tan et al., 2017).  

Considering the aforementioned discussion, this thesis investigated one logistic 

problem and one maintenance problem that are very common in real and complex 

industrial systems. The proposed models take advantage of the increasing in data 

availability and the emergence of Machine learning technics, which allow high data-

driven decision-making, computing power, efficient data pre-processing and the 

representation of high dimensional problems, in order to provide promising solutions.   

The first problem approached in this thesis is the occurrence of frequent stock 

outs in the business-to-consumer market (B2C), which leads e-tailers to loss profit 

and service-level opportunities. Particularly, stock-outs are caused by two main 

factors: the difficulty of forecasting demand boosted by the widely adoption of 

electronic services, and the difficulty of synchronizing inventory replenishment for all 

the SKUs (stock keeping units) offered. The first one is challenging due to factors 

such as high frequency small orders, timely delivery requirements, and rapid habit 

consumer changes. The second one is challenging due the necessity of keeping in 

the inventory an ever-increasing number of types of products, and the difficulty of 

planning orders beforehand caused by the high demand variability in e-commerce. 

Given the aforementioned problems, two of the ways of providing service level and 

productivity to e-tailers are the collaboration between players and the improvement in 

the way the on-hand inventory is managed.  

One of the strategies that e-tailers use to fight stock-outs and improve the 

inventory rationing is called dropshipping. In this strategy, the e-tailer outsource the 

picking, packaging and delivering of orders that it cannot fulfill, sending them to other 

players such as the wholesaler or manufacturer. By doing so, the e-tailer can 
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generate profit opportunities, save storage space and save inventory holding costs, 

while share the revenue with the other players(s) (Khouja & Stylianou, 2009; Chen et 

al., 2018). However, in order to implement a dropshipping strategy/system, it is 

necessary to develop rules to decide how to split the demand between the e-tailer and 

the other player(s). Such a decision is not straightforward, since the way the orders 

are split can influence the revenue of each player, the number of orders that can be 

fulfilled with the available inventory, and the risk of order delays (Jiménez et al., 

2019). Due to that, there are many models in the literature consisting on different 

splitting rules that aim to provide margin and service-oriented opportunities to e-

tailers. They take into account different factors such as the order arrival time, the type 

of client, the contributing margin of SKUs that compose the orders, and the available 

inventory of the demanded SKUs. 

In this thesis, we propose an algorithm for efficiently splitting the demand and 

rationing the e-tailer’s inventory in a dropshipping system. However, our model 

intends to overcome the limitations of other inventory rationing models in the 

literature, in which the e-tailer is forced to cumulate batches of orders for a complete 

period before taking any decision on how to split the demand. On the one hand, e-

tailers can benefit from cumulating demand because they can gather more information 

about the inventory position, which in turns can prioritize orders that increase 

inventory usage and profits, and outsource the other orders (Mahar & Wright, 2009). 

On the other hand, when orders are cumulated, there is a delay in the decision 

making. The consequence of that is that the e-tailer should decide how to allocate the 

on-hand inventory and to split orders between players in the day after the arrival of 

orders. In this sense, the proposed model allows both advancing the inventory 

rationing decision making and the improvement in productivity and service-level 

performance by classifying orders in near real time based on characteristics such as 

the demand for SKUs, the inventory availability of SKUs, and the potential order 

margin.  

The second problem approached in this thesis is the lack of effective 

maintenance policies that are well aligned with the characteristics of complex real 

industrial systems, which are composed of multiple components, which degrade 

visiting multiple states, and that can be recovered to better degraded states through 

imperfect maintenance actions. Besides, maintenance policies lack current concern 
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factors such as plant/worker safety, environmental impact, and social impact that are 

beyond the economic gains or for which economic impacts are difficult to be 

measured.    

The fact that real industrial systems are composed of many components and 

subsystems supposes a challenge for maintenance optimization, since the systems 

develop different kind of dependencies, such as structural, economic, stochastic and 

resource ones, that grow among the many components and subsystems that are 

intertwined to each other (Van Horenbeek and Pintelon, 2013; Kazer et al., 2017). 

These complex dependencies between components add a dynamic character to the 

degradation and the aging of the system which difficult the prioritization of 

components and the selection of effective maintenance action sets for avoiding 

failures (Haugen et al., 2018). Therefore, maximizing the efficiency and profitability of 

assets in the aforementioned systems requires developing effective decision-making 

models capable of coping with the uncertainties on the system degradation 

processes, caused by the component dependence or by any other source of 

uncertainties such as operational conditions and external environment (Wang X et al., 

2014). 

On the other hand, tracking the health of the systems by monitoring 

intermediate degradation states, and allowing imperfect maintenance via condition-

based maintenance on them is important. These practices allow critical states be 

identified in order to avoid failures, and to give place to maintenance opportunities in 

order to increase the efficiency of maintenance policies. The consideration of these 

factors allow managers to cope with the dynamic character of the system degradation 

process allowing the reduction of unnecessary actions and gains in resource usage 

and system availability performance (Marseguerra et al., 2002; Cheng et al., 2018). 

However, it supposes a challenge for maintenance optimization since the 

dimensionality of the problem increases as the number of components, the number of 

intermediate states tracked, and the number of imperfect actions allowed in each 

component increase. As a consequence, classical maintenance policies can become 

inefficient in terms of the solutions provided or in terms of computing effort (Barde et 

al., 2019).  
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Finally, the maintenance policies might consider the optimization of other 

criteria that are difficult to be measured in economic terms, rather than just the 

optimization of the cost criteria composed by parcels such as profit, breakdown cost, 

inventory holding costs and lost sales cost. Factors such as the environmental and 

social impact, the worker/plant safety, and the corporative image damage, can also be 

used to assess the efficiency of maintenance policies (Santos et al., 2021; Jones et 

al., 2009; Okoh, 2015; Marseguerra et al., 2002). In these cases, the maintenance 

optimization has a multi-criteria character, in which maintenance criteria have different 

dimensions and can be conflicting (e.g., maintenance cost and worker safety), and 

thus it is necessary to consider the preference structure of the maintenance manager 

or the maintenance decision board- in order to guide the decision-making. 

Considering the aforementioned context, the second model presented in this 

thesis proposes an inspections CBM model based on Deep reinforcement learning 

and Goal programming. The model suited for maintenance decision-making in multi-

state multi-component systems allows imperfect maintenance and is capable of 

optimizing multiple objectives. The proposed model is able to consider the 

preferences of the decision maker and offers a means of extending the solution to 

systems with a different number of components and/or of degradation states.   

1.1 OBJECTIVES 

1.1.1  Main Objective 

To develop machine learning based algorithms to improve the efficiency of e-

commerce inventory rationing and maintenance policies in multi-component systems.   

1.1.2 Specífic Objectives 

• To determine the factors that affect inventory management in B2C; 

• To determine a suitable indicator for measuring the importance of an 

order for an e-tailer; 

• To develop an algorithm for order classification and inventory rationing 

in dropshipping systems; 

• To study the conditions that affect maintenance policy efficiency in 

multi-state multi-component systems with imperfect maintenance and 

conflicting criteria; 
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• To develop a CBM policy for multi-component systems that can control 

the factors that affect system degradation;   

• To validate proposed models via simulation. 

 

1.2 MOTIVATION 

The motivation of this thesis is the necessity of optimizing logistic and 

maintenance functions in e-commerce inventory rationing and multi-component 

system maintenance, respectively. In order to do that it is necessary to take into 

account some real-life characteristics of these problems that the models of 

literature are lacking, which would allow a better efficiency of the organization's 

strategies. This thesis is also motivated by the capacity of ML algorithms to cope 

with the complexity of these decisions when the aforementioned real life 

characteristics are considered in the problem formulation. Specifically, the relation 

between some variables might be unknown, the state-action space might be too 

large, or the transition state and the effect of solutions might be stochastic making 

the search of optimal solutions difficult. Particularly, the inventory rationing of e-

tailers in partial dropshipping systems can be approached by a machine learning 

algorithm called deep neural networks (DNN). DNNs can benefit from the 

availability of records of fulfilled orders in order to classify the orders between the 

e-tailer and the other (s) player(s). In that way, the DNN would be able to mapping 

the relation between the characteristics of the order and the inventory, such as 

the demand of SKUs, SKUs availability, and SKUs margin to guide the decision 

making, which can also allow making the decision making in near real time. 

The maintenance of multi-state, multi-component systems with imperfect 

actions and the inclusion of non-economic performance criteria can be 

approached by a ML algorithm called double deep reinforcement learning 

(DDQN), which can deal with the high state-action space that can be produced by 

the multiple states that the system components can visit and the multiple actions 

that can be taken in the same component, and in a set of components at the 

same time. An adequate representation of the state-action space and the concept 

of having an agent that can learn over time from experiences have the potential 

not just to deal with large state-action spaces, but can be useful for optimizing the 
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long-term performance of the system dealing with the stochastic character of the 

system degradation process that can be caused by the component dependency 

and the variability of external and operating conditions. Finally, the usage of 

DDQN can be complemented with a reward modeling based on goal 

programming, which can provide the DDQN algorithm with the capacity of 

integrating the preferences of the decision-maker on economic criteria such as 

downtime, inventory holding cost, maintenance cost, and non-economic criteria 

such as environmental and social impact, and worker/plant safety. This feature 

allows the DQN algorithm to assess maintenance policies through multiple 

objectives that are expressed in different dimensions and that can be conflicting.        

1.3 RESEARCH METHOD  

This study can be considered as an applied research, in which the 

modelling process itself is used as the research method. The modelling process is 

particular to each problem that is approached in this study, namely, the inventory 

rationing problem for e-tailer’s stock that adopt dropshipping systems, and the 

maintenance optimization of multi-state multi-component systems under imperfect 

maintenance and conflicting criteria. The modelling process aims to uncover ways 

of including the factors that the body of the literature lacks in the existing studies 

regarding the aforementioned context, providing solutions that are suitable to real 

e-tailer’s operation and industrial system maintenance practices. In order to 

achieve that, simulation is used as the work method, which allows the analysis of 

the data and the assessment of the solutions provided by the models proposed. 

1.4 OUTLINE OF THE THESIS 

This thesis was divided into five chapters: the first chapter, which was 

already introduced is a preface of the importance of solving the maintenance and 

logistics problems approached in this thesis. It also grounds the objectives of the 

study regarding the problems approached and the methodologies used to conduct 

the study. The second chapter corresponds to the theoretical and empirical 

advances, in which key concepts for the understanding of the problems are 

presented. The chapter also presents an up to day literature review on the models 

developed that aimed to cope with the uncertainties in the e-commerce demand 
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and in the degradation of multi-component systems, are presented. At the end of 

the aforementioned section, the gaps in the literature and the necessity of 

providing solutions that are more aligned with the real constraints and behavior of 

the systems approached, remain clear. 

In section 3, a model for inventory rationing in dropshipping systems is 

proposed. In this section, the necessity of advancing the decision making and 

improving the inventory usage in order to provide better profit and service-level 

opportunities to e-tailers, is explained in details. A detailed formalization and 

justification of the use of a deep neural network classifier coupled to an existing 

inventory rationing algorithm is also given. Additionally, a numerical example with 

a sensitivity analysis is used to show how e-tailers with different sizes i.e., with 

different types of SKUs, and with different demands i.e., number of daily arrival 

orders, can benefit from the proposed model. The benefits include an advance in 

the decision-making, a smarter demand splitting between players, and an 

increasing in the revenues and the order fulfilment rate. 

In section 4, a model for the optimization of maintenance of multi-

component systems is proposed. It considers factors such as multi-state 

components, and the possibility of performing imperfect maintenance and 

assessing maintenance policy performance with multiple objectives (economic or 

not), that allow a more realistic modelling and then better solutions. The 

effectiveness of the model and its capacity of dealing with maintenance in 

complex systems is proven through a comparison with benchmark policies. In 

such comparison, the proposed model, which is based on reinforcement learning 

and Goal programming, offers a significant improvement over the long-term 

average system reliability and cost rate.  

Finally, in section 5, the conclusions of the thesis are drawn highlighting the 

effectiveness of the machine learning solutions provided. Directions on future 

lines of research are also given. Figure 1 shows how the models proposed in 

chapters 3 and 4 are related. 

 

 

 



 

19 

 

 

 Figure 1 - Link between proposed models 

Source:  The Author (2021). 
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2 THEORETICAL AND EMPIRICAL ADVANCES 

The aim of this chapter is to present a review of basic concepts related to 

the logistics and maintenance’s problems approached and the solutions provided 

during the development of this work, as well as the evolution of the models 

proposed in the literature. To this end, the main factors that affect maintenance 

efficiency in multi-component systems as well as the factors that influence B2C 

inventory rationing are presented. Additionally, works that contributed to the 

development of multi-component system’s maintenance and B2C inventory 

rationing proposed so far were studied in order to position the proposed solution 

in the literature.  

2.1 DEMAND VARIABILITY IN B2C MARKET 

In the recent years, different e-commerce business models have grown 

very sharply as a consequence of the increase in the efficiency and safeness of 

internet shopping. The business models go from manufacturers that buy their 

materials from online wholesalers to individuals that buy their groceries through 

an app on their cell phones and from home.    

One important e-commerce business model is called business-to-consumer 

market. In this model, the final user of the product is the buyer (a person from any 

location), and online retailers (e-tailers) are the sellers. The transactions between 

these parties occurs through the internet, and without intermediaries. The B2C 

market is characterized by the dynamic character of the demand, which is caused 

by a mix of factors that are also characteristic of that specific business model. 

Such factors include, but are not limited to the ever-changing consuming patterns, 

the growing customer exigencies for shorter delivery windows, and frequent 

small-size orders. The demand variability caused by the aforementioned factors 

affect the efficiency of the inventory planning and replenishment operation of e-

tailers, which become infective and tend to worsen with the necessity of having an 

ever-increasing number of SKUs to be offered and kept in the warehouse, and the 

stressed inventory policies adopted with the aim to reduce the holding cost. These 

factors difficult the synchronization of inventory replenishment policies for the 

SKUs kept in the inventory, and then lead e-tailers to face stock outs very often.  
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When the e-tailers face stock outs, the postponement of orders is 

increased, as well as the logistic cost such as the picking, packing and transport 

of orders that have to be delivered in more than one consignment. The 

postponement of orders problems encourages e-tailers to adopt strategies such 

as offering discounts or outsourcing the fulfilment of orders in order to influence 

the tendency of customers buy another player. Finally, with the inefficient usage 

of the inventory, the cost that is incurred, and the amount of orders that cannot be 

delivered on-time or that cannot even be delivered because of lack of inventory, 

e-tailers lose profit and service-level opportunities.   

2.2 DROPSHIPPING SYSTEM 

Dropshipping is a collaborative system used for fighting stock outs in e-

commerce, which consist of an e-tailer that sell products through the internet, and 

that outsource the picking, packing, and delivering of orders that it cannot attend 

due to stock outs or to a given interest on other orders/clients (Khouja & 

Stylianou, 2009; Chen et al.,2018). In this transaction, the outsourced players 

such as wholesalers, manufacturers or other e-tailers, share the revenues of the 

orders with the main e-tailer or seller. When the e-tailer has his own inventory and 

just outsource part of the demand, the system is called partial dropshipping, which 

is the system used in this thesis. On the other hand, when the e-tailer does not 

hold any inventory and does not have an in-house order fulfilment operation, the 

system is called total dropshipping. 

The benefit of using this system, is that the e-tailer can save inventory 

holding space and cost, it can attend a bigger demand and then improve its 

revenues and its service-level oriented performance (Jimenez et al., 2019; 

Jiménez et al., 2020). On the other hand, the drawbacks of using dropshipping 

are that the players that agree to fulfill the outsourced orders, rarely assume the 

risk of order delay, so if order are not delivered or are delayed, clients may cancel 

the orders, leave negative reviews that can affect the e-tailer’s current and future 

business (Kim and Lennon, 2011). Additionally, in dropshipping systems in which 

the contractual relationship between the players is not clear or not trustful, the 

players can use customer information on their own behalf, or even start selling the 

same products on its own (Park, 2016). 
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Finally, the employment of partial dropshipping system implies the 

necessity of having a strategy for splitting the demand between the e-tailer and 

the other(s) player(s), since this decision can affect the revenues and the 

effectiveness of inventory usage of the e-tailers (Cheng 2016). The revenues can 

be affected because outsourcing the order fulfilment of any specific order, implies 

that the order will produce a smaller profit than when fulfilled with the on-hand 

inventory, so order’s profit should be compared carefully. On the other hand, the 

efficiency of usage of the on-hand inventory can be affected since some orders 

can consume a large part of the inventory in relation to orders that can generate a 

higher margin and consume the inventory at the same level (Jimenez et al., 2019; 

Jimenez et al., 2020). Considering that, it is necessary to take into account the 

inventory position and the demand for SKUs of each order. As follows, a 

comprehensive review of the literature on inventory rationing models is given, 

highlighting their contribution to the topic and their gaps. 

2.3 LITERATURE REVIEW ON INVENTORY RATIONING MODELS FOR E-

COMMERCE 

The problem of stock-outs in the supply chain has been addressed in the 

literature by different authors. The proposed models are based on two main types 

of strategies, namely stock control and inventory rationing policies. The earlier 

included tactical level decisions such as lot size, stockpile, and period length 

decisions that allows e-tailers a better planning for acquiring SKUs in bigger 

quantities and quickly according to the needs of the fulfilment process (Shekarabi 

et al., 2018; Gharaei et al., 2019a). Some authors have extended these type of 

models by integrating strategic-level decisions such as warehouse location, 

routing strategy, and warehouse capacity (Rim & Park, 2008; Diabat & 

Deskoores, 2016; Rabbani et al., 2018; Hamdan & Diabat, 2019). The joint 

optimization of these decisions not just enable improving the fulfillment efficiency 

of the supply chain actors but offering shorter lead times to clients with the aim to 

build loyalty and fight in some extent the demand variability. Other authors have 

also integrated other current organizational factors that customers are sensitive to 

such as social responsibility, environmental print, product quality and price. These 

models proposed channel coordination and profit division approaches that not just 
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aim to building loyalty in order to stabilize the demand to some extent, but also 

optimizing revenues of the different players of the supply chain that are involved 

in the aforementioned tactical and strategic-level decisions (Modak et.al, 2014, 

Modak et.al, 2016a, Modak et.al, 2016b, Modak et.al, 2016c, Modak et.al, 2016d, 

Modak et.al, 2018; Gharaei et al., 2019b; Gharaei et al., 2019c; Kazemi et al., 

2018). 

According to Jimenez et al. (2019), the aforementioned type of models is 

very generic for dealing with stock-outs in e-commerce, since although they do 

deal with shortage in a more holistic way including tactical level and strategic-level 

decisions that allow a more efficient design of the multi-echelon supply chain, they 

generally consider shortage in just one or two types of product. In real 

warehouses of e-tailers, hundreds or thousands of types of products should be 

maintained simultaneously. Therefore, the synchronization of continuous stock 

control policies for all the products turns very challenging and need to be 

supported by another strategy that allow a better rationing/splitting of on-hand 

SKUs. This strategy should be capable of supporting the order planning problem, 

answering questions such as which orders to attend with the on-hand inventory 

and in what sequence, and given the case, which orders to outsource (Jimenez et 

al., 2019).   

The second type of strategies mentioned at the beginning of this subsection 

that allow dealing with stock-outs are called inventory rationing-based models. 

These models are based on different allocation rules that enable splitting the on-

hand inventory between as many orders as possible. These rules include: 

sending just a part of the order delaying the missing SKU´s delivery; postponing 

the delivery of the whole order when at least one item is missing (Rim & Park, 

2008); and compensating order delays with dynamic price discounts (Ding et al., 

2006). These strategies are valuable in the sense that they allow extending the 

fulfillment period which allow e-tailers fulfilling more orders despite stock outs. 

Others even allow avoiding the delivery of orders in more than one consignment 

which bring additional shipping cost. However, the postponement of complete 

orders is still a problem that cause customer dissatisfaction, some of who are not 

willing to accept delays even with price discounts. Finally, even if customers 
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accept receiving their order with delay, the credibility of the e-tayler and the loyalty 

of customers get compromised. 

Other strategies have been proposed in order to diminish the order 

postponement when the on-hand inventory is rationed. One strategy that stands 

out by its capacity of creating add value from collaboration is called dropshipping. 

It consists in the e-tailer sharing orders with other players such as e-tailers, 

wholesalers, and manufacturers, when it faces stock-outs or when it wants to 

dedicate his stock to specific clients, segments or orders that it perceives as more 

advantageous (Khouja & Stylianou, 2009; Chen et al., 2018; Jiménez et al., 2019; 

Ayanso et al., 2006). As an example, Jimenez et al. (2019) and Jimenez et al. 

(2020) have developed partial drop-shipping models that allow e-tailer prioritizing 

the on-hand inventory for fulfilling orders with the higher criticality performance, 

i.e., the best relation between margin and inventory consumption. The rest of the 

orders are shared with the supplier which include orders with low criticality and 

orders that have missing SKUs when faced with the on-hand inventory. These 

models have demonstrated to increase profit and service-oriented opportunities 

for e-tailers.   

2.4 MODELLING AND MAINTENANCE IN MULTICOMPONENT SYSTEMS  

The development of adequate maintenance strategies can lead industrial 

systems to high standards of efficiency, increasing the availability and the 

reliability of the equipment, and the productivity and profitability of the operations 

(Ding and Kamaruddin, 2015), (Dekker, 1996). 

On real industrial systems, the degradation and reliability of the whole 

system are dominated by the interaction of the different components that 

compose it. These components can develop different type of dependencies such 

as economic, structural, and/or stochastic ones. Economic dependency can arise 

when the way the system can be maintained depends on how beneficial is in 

economic terms to maintain certain components together. It generally accounts 

for savings in setup activities. The structural dependency can arise when 

components are connected physically composing a structure, so if one 

component is broken the structure may not work and then, they should be 

maintained simultaneously. Finally, stochastic dependency arises when the 
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degradation of one component could affect the degradation of others. The 

dynamic character of the system degradation can also be boosted by the 

increasing in the number of components since the dependencies already 

mentioned strengthen. Therefore, the arrival of unforeseeable failures of the 

system get potentiated. 

Considering the aforementioned discussion, it is vital to develop 

maintenance models that consider the uncertainties of the degradation of multi-

component systems in order to define a suitable maintenance plan that allows the 

optimization of the long-term performance of the system (Nicolai and Dekker, 

2008; (Horenbeek, Van, Buré, et al., 2013). 

One effective way of dealing with the dynamic character of the system 

degradation process is called condition based maintenance (CBM). It consists of 

tracking the health of the system and defining preventive thresholds for its 

components, that is, defining critical degradation states for each component that 

trigger dynamic maintenance actions. This approach allows unnecessary 

maintenance actions to be reduced which in turn allow making savings on 

maintenance resources and improving the system availability. One may 

distinguish between two types of CBM approaches, namely continuous-based 

CBM and inspection-based CBM. In the former, the system health tracking can be 

supported by sensors in order to identify the state of the components 

continuously. In the later, the health of the system/components is checked at 

every fixed time-window via inspections. It is commonly used in systems in which 

sensors are very expensive, in which other functions, such as quality, force 

inspections at fixed windows, or in which operating conditions such as 

temperature or pressure make unfeasible obtaining data via sensors 

(Marseguerra et al., 2002; Cheng et al., 2018). A detailed review on models, 

algorithms and technologies for diagnostics and prognostics using CBM can be 

found in Jardine et al. (2006). 

Among the many models that compose the corpus of the CBM’s literature, 

some authors have recently approached the optimization of CBM for industrial 

systems using cutting-edge machine learning technics. Reinforcement learning for  

example, is an adaptive learning type of algorithms that is very successful at  
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tackling complex problems in dynamic environments such as robotics for 

industrial automation, manufacturing, business planning, natural language 

processing, self-driving transport, and healthcare…Specifically, it has the capacity 

of acquiring experiences through interactions with an environment without any 

specific instruction, and learning the immediate and the future impact of actions 

over the performance of the system in order to define efficient courses of actions 

(Kaelbling et al., 1996). 

RL algorithms stand out over wide used approaches such as dynamic 

programming due to a variety of reasons. For example, RL algorithms have the 

capacity of dealing with incomplete information such as in problems in which the 

one-step transition probabilities of states are unknown. Another reason is their 

capacity of dealing with large state spaces and actions when combined with deep 

learning algorithms which demand higher memory space and computing times 

(Barde et al., 2019). The later seems to be very important in the context of multi-

component systems with high number of components, in which setting thresholds 

for each component is not just impractical but might be suboptimal (Liu et al., 

2020). Therefore, RL can allows more efficient CBM policies in which the search 

of solutions in the state-action space is more efficient. These models can 

establish dynamic maintenance actions that do not follow a specific rule for 

individual components but rather for a combination of them. As follows, a 

comprehensive literature review of RL based models for CBM optimization, as 

well as their contributions and gaps are presented. 

2.5 LITERATURE REVIEW ON RL-BASED CONDITION BASED 

MAINTENANCE 

A plenty of RL models has been developed to solve a variety of realistic 

control and decision-making issues in the presence of uncertainty. Some of these 

authors have developed models for optimizing preventive and grouping 

maintenance policies in multi-component systems. These models are generally 

base on top of RL algorithms such as SARSA(λ), Q-learning and actor-critic 

(Huang et al., 2020; Rochetta et al., 2019). However, despite of their capacity of 

dealing with the uncertainties of the degradation of multicomponent system, 

authors such as Rocchetta et al. (2019) have stablished some disadvantages that 
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should be addressed. The main drawbacks of the aforementioned methods lie in 

usage of a demanding memory intensive representation of states and actions, 

which make it hard to scale them to real high-dimensional problems. In these 

contexts, which are characterized by large state and actions spaces, the 

aforementioned RL algorithms can produce unfeasible computational times for 

finding good solutions. In the context of maintenance, we can suppose the 

difficulty of employing the aforementioned RL methods for optimizing 

maintenance in multi-component systems, in multi-state systems in which 

intermedium degradation states are tracked for exploring maintenance 

opportunities during inspections, or in both.  

A few authors have proposed RL algorithms that overcome the difficulties 

of the aforementioned algorithms (Kuhnle et al. 2019; Wang et al., 2016; Huang et 

al, 2020; Wang X et al., 2014; Andriotis et al., 2019). These have been adapted 

for approaching maintenance systems with multiple degradation states, or for 

guaranteeing certain levels of production that should be satisfied in system with 

productivity degradation. The authors have used a family of algorithms such as 

Deep Reinforcement Learning (DQN) due to its capacity of representing the state 

and actions spaces in a non-tabular way and to speed up the optimization 

process and the q-values convergence using deep neural networks (DNN) as 

function approximators. Some of these authors have also used a variant of DQN 

called Double Deep Reinforcement Learning (DDQN) for bringing a higher 

capacity of dealing with high dimensional problems. The design includes a second 

DNN that provide more stability to the minimization of the loss of the q-value 

function. 

Despite the benefits of using the aforementioned RL algorithms, it is 

important to note that their applications were made approaching the systems 

whether as a simple component, as having independent subsystems, or as 

production lines, in which buffers should be set among them in order to delay the 

propagation of machine stoppage. Therefore, an application and adaptation of 

these algorithms, specially DDQN ones, in real industrial systems composed not just 

by multiple degradation states of single components but by multiple component that 

interact between them boosting the uncertainties of the system degradation, is an 
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important task and a potential opportunity for improving the efficiency of maintenance 

policies in these systems. 

Other papers have used RL-based models for integrating maintenance with 

other decisions such as production control and quality control (Rocchetta et al 

2019; Paraschos et al., 2020; Zhang & Si, 2020). These papers have shown 

exciting results when compared to other existing condition-based and grouping 

models. They yield decreased computing times, can be scaled to high 

dimensional problems in theory, and allow the integration of various decisions 

across the industry offering holistic solutions to industrial problems. Despite that, 

these models present some limitations regarding the representation of 

degradation states and the complexity of the systems, for example: Rocchetta et 

al. (2019) have developed a model based on RL and an ensemble of DNN’s for 

the operation and maintenance optimization of power grids. The authors 

considered both the multi-state and multi-component characteristics of these 

systems. However, the maintenance action set is relatively small and the 

computing time is still an open issue; Paraschos et al. (2020) have developed a 

tabular RL algorithm modelled after the Q-learning algorithm and called R-

learning. The model allows the integration of production, maintenance, and quality 

decisions for systems with multiple degradation states. However, the system to be 

maintained is approached as a single unit and thus, maintenance actions are 

defined over a single component (the system). Therefore, the representation of a 

more realistic system with multiple component that degrade simultaneously is not 

approached. Finally, Zhang & Si (2020) developed a customized DQN algorithm 

for approaching a multi-state multi-component system with dependent stochastic 

and economic competing risks. The algorithm maps directly the system state to 

the action space without the need of setting maintenance thresholds. Despite that, 

the model does not consider imperfect maintenance actions. This type of 

maintenance actions represents an opportunity in multi-component systems that 

can allow managers to exploit the health information regarding the intermedium 

degradation state of the system’s component. Taking this information into account 

for driving maintenance decisions can help managers balancing the maintenance 

cost of the policies and the availability of the system. When these actions are 

performed opportunely, they allow taking advantage of the economic dependency 
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of components and the opportunities for recovering some components to better 

degraded states when others are being maintained. 

Finally, Liu et al. (2020) and Andriotis et al. (2019) developed opportunistic 

maintenance optimization models based upon RL that deals with multistate multi-

component characteristics of complex systems, imperfect maintenance, limited 

maintenance resources, and partially and fully observable multi-component 

engineering systems. The algorithm based upon an actor-critic algorithm works as 

a DQN adapted algorithm which allow scaling solutions to high dimensional 

problems and to provide competent near-optimal solutions to otherwise intractable 

learning problems.   

Although the aforementioned RL-based models have the capacity of coping 

with the uncertainties in the degradation of either multi-state, multi-component 

systems, or both, they present the same drawback; maintenance policies are 

assessed only in economic terms. In these models, the efficiency of maintenance 

policies is measured by factors such as maintenance cost, inventory holding cost, 

defective product cost, downtime cost, and any other criterion that can be 

expressed in monetary terms. Therefore, these models are not suited for multi-

objective optimization.  

The optimization of maintenance in multi-component systems using 

multiple objectives is justified by the increasing importance grounded in the 

sustainability of manufacturing processes and the adoption of Industry 4.0 (I4.0). 

Specifically, organizations are getting increasingly concerned about the social and 

environmental impacts of maintenance activities as a way of creating value so 

that products can be processed not just optimizing the cost effectiveness of 

maintenance actions and the system availability, but minimizing environmental 

impacts, usage of energy and natural resources, and safety risks for safe 

employees, community and consumers (Jasiulewicz-Kaczmarek et al., 2021). 

These environmental and social factors are generally measured with subjective 

measurements or are difficult to be measured in economic terms, which demand 

a multi-objective optimization when considered together with economic factors. 

Additionally, these economic and non-economic criteria can be conflicting at 

times. One example is the conflict between the maintenance cost and the safety 
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of workers. Thus, we can try to minimize the cost of maintenance actions by 

performing preventive actions and avoiding costly corrective actions. However, 

after a certain point, if one wants to increase the safety conditions of worker in a 

specific operation context, we might have to sacrifice some cost performance by 

increasing the amount/type of preventive/proactive actions in the system beyond 

its optimum limit or combination. This situation would demand the consideration of 

the preferences of the maintenance board over the criteria. 

Another sign showing the need of multi-objective maintenance optimization 

is related with the progressive adoption of I4.0 paradigm. I4.0 is moving quickly to 

take advantage of innovations in industrial IoT, AI and machine learning (ML), 

edge computing and wireless communications, encouraging the integration of 

information, operation, and decision-making across the different areas of the 

organization. As a consequence, the joint optimization of maintenance and other 

decisions such as quality, production, and inventory control, each of one with its 

own performance criteria, makes itself more necessary and possible than ever 

(Paraschos et al., 2020; Lindström et al., 2017; Cheng et al., 2018; Bahria et al., 

2018). To this complexity, we can also add the integration of key technology of 

I4.0, such as Augmented Reality (AR), Additive Manufacturing (AM), Big Data & 

Analytics (BD&A), Cloud Computing (CC), Industrial internet of Things (IoT), 

Horizontal/Vertical Integration (H/VI), Autonomous/Collaborative Industrial Robots 

(A/C-IR), Simulation (S), and Cyber-Security (CS), to production lines and 

maintenance teams. Despite the fact that this integration aims to facilitate 

maintenance efficiency, it can require the joint optimization of new performance 

criteria to guarantee the efficiency of the key technology and then contribute to 

the efficiency of the whole system. According to Franciosi et al. (2020) the 

integration of the key I4.0 technology with maintenance will deeply affect 

maintenance processes in terms of management, realization, and support 

processes, to make them smarter and more sustainable. Table 1 presents a 

summary of the maintenance process that can be affected by each key I4.0 

technology.  

According to Franciosi et al. (2020), all the key I4.0 technology, that affect 

the maintenance processes presented in Table 1, will have both positive and 

negative impacts over the different dimensions of sustainable manufacturing 
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systems, namely, economic, environmental, and social dimensions. Therefore, 

they claim the necessity of developing multi-criteria/multiobjective assessment 

models to measure the effect of the integration of these technology with 

maintenance.  

Table 1 - Impact of key I4.0 technology in maintenance processes 

 

Maintenance process 

I4.0 technology 

AR AM BD&A CC IoT H/VI A/C-

IR 

S CS 

Maintenance management X  X X X X X X X 

Execution of Preventive and 

corrective actions 

X      X   

Maintenance budget X X X X X X X X X 

Operational documentation 

delivering 

X      X   

Data management X  X X X  X X X 

Health and safety guarantee to 

individuals and maintenance 

environment preservation 

X      X   

Maintenance requirement 

delivering during items design 

and modification 

      X   

Result improving X  X X X  X   

provision of Internal human 

resources  

X   X X  X X X 

Provision of external 

maintenance services 

  X   X    

Spare part delivering  X    X X   

Delivering of tools, support 

equipment & information 

systems 

X  X X X  X   

Source: Adapted from Franciosi et al. (2020). 

2.6 FINAL REMARKS OF THE CHAPTER 

This chapter presented the contributions of inventory rationing models and 

RL-based CBM models presented in the existing literature, as well as the gaps 

that can give place to the design of novel models that fit the characteristics and 

needs of real industrial systems. The review of inventory rationing models makes 

clear the necessity of novel models that allow e-tailers to improve the 
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effectiveness of inventory usage and order splitting in the light of the adoption of 

dropshipping fulfilment as a collaborative way of providing e-tailers with more 

profit and service-oriented opportunities. Novel methodologies can also explore 

ways of overcoming the limitation of existing models that force e-tailer to cumulate 

batches of orders for entire periods in order to better use the on-hand inventory. 

On the other hand, on the literature review on RL-based CBM models, the 

necessity of maintenance policies that consider the characteristics of the 

degradation of real multi-component systems was elucidated. The novel policies 

might deal with the uncertainties resultant of the simultaneous degradation of 

many components, of the variability of operating conditions, and any other source 

of uncertainty that affect the way in which maintenance actions should be 

conducted to guarantee an optimum system availability and maintenance cost. 

These policies might also consider the possibility of performing imperfect 

maintenance in order to take advantage of maintenance opportunities given 

during inspections, in which degraded components can be recovered to better 

degraded states, enabling strategic intermediate system states that can help 

balancing the availability and the cost performance. Finally, the models can 

enable the optimization of policies based on multiple criteria that can be useful for 

assessing the policies considering non-economic current concerns such as 

environmental impact, worker/plant safety, or any other non-economic criteria that 

can be considered in order to integrate the optimization goals of other functions 

such as in production, inventory, and quality control.  

As follows, we present a classification algorithm that allows e-tailers that 

use a dropshipping system to ration their on-hand inventory and to split the 

demand between them and other players in order to better face stock outs.    
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3 AN ONLINE DEEP NEURAL NETWORK-BASED MODEL FOR ORDER 

CLASSIFICATION AND INVENTORY RATIONING IN BUSINESS-TO-

CONSUMER E-TAILERS 

In the business-to-consumer market, e-tailers often have to deal with stock-

outs due to the high variability of the demand and the consequent difficulty of 

synchronizing replenishment policies of SKUs. In this context, an efficient strategy 

for rationing the on-hand inventory is vital for offering more margin and service-

oriented opportunities to e-tailers. This strategy implies an adequate splitting of 

the demand among fulfilment players when the e-tailer adopt a dropshipping 

system. In this chapter, we proposed a dropshipping inventory rationing model 

based upon deep neural networks. The model is able to overcome the limitation of 

existing models of forcing the e-tailers to accumulate orders before engaging in 

any demand splitting, in order to gather more information about the inventory 

positions of SKUs. The proposed model classifies incoming orders in near real 

time supporting the decision of which player should be designated to attend them, 

thus enabling the decision to be anticipated in a complete operating shift. 

Moreover, since the order classification decision is taken in advance, the model 

has the potential of improving the performance of subsequent activities such as 

picking, packing, delivering and inventory replenishment.       

3.1 THE PROBLEM OF SPLITTING THE DEMAND IN A DROPSHIPPING 

SYSTEM   

Suppose that there is an e-tailer that uses a partial dropshipping system as 

a fulfillment system when it has a limited on-hand inventory. In that case, it has to 

decide which orders should be fulfilled by himself using his internal inventory, and 

which ones should be attended by another player such as a manufacturer, a 

wholesaler, or other e-tailer. To make this decision, he cumulates orders that 

have been entered on the internet in a batch during an operational shift. After that 

he/she will be able to priories the cumulated orders according to some rule of 

thumb that will help him/her to split the demand between the players. Particularly 

in this thesis, a dropshipping system consisting of two players: one e-tailer and its 

supplier, is considered. 
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A very simple and widely used rule of rationing the inventory consists of 

meeting orders that arrive first following the first come-first-served rule (FCFS). In 

that case, the e-tailer prioritizes orders according to service-oriented goals, 

allocating orders to himself until all the on-hand inventory is depleted, while 

transferring to other player (s) the remaining orders. However, if the e-tailer want 

to use a more sophisticated strategy that help him to optimize not just his service 

level opportunities, but also his profit opportunities, he needs to develop a rule 

that also considers characteristics of the orders such as how the demand for 

SKUs of the orders deplete the on-hand inventory and the contribution margin of 

the demanded SKUs (Jiménez et al., 2019; Jiménez et al., 2020). The conception 

of such a rule is not that straightforward since on one hand, there are orders 

composed of SKUs that have larger combined contribution margins, which enable 

the e-tailer to increase his revenues. On the other hand, there are orders that 

demand a high quantity of SKUs which happen to have a low inventory 

availability, making it difficult for the e-tailer to manage the inventory to attend 

more orders. Therefore, such a strategy should enable e-tailers to chase order 

whose composition in terms of SKUs, leads to both high profit and low inventory 

consumption. 

As shown in the literature review, there are some rationing policies that 

consider the aforementioned characteristics of the orders when splitting the 

demand between players. Although these models allow e-tailers to increase their 

revenues and to increase the number of orders fulfilled in each operation shift, 

they share a common drawback of other rationing models. Specifically, the e-

tailers are instructed to cumulate batches of orders during complete shifts before 

performing any inventory allocation or demand splitting between players. This rule 

is practiced with the aims of gathering more information about the inventory 

position of the SKUs.  

The consequence of the aforementioned drawback of existing rationing 

models, is that the decision-making over which player should attend each order is 

not made in real time, and then players lose a full shift of operation before starting 

to fulfill orders. Therefore, they lose profit and service-level opportunities that can 

be extended to several subsequent activities such as picking, packing, and 

delivering, which can benefit for obtaining the splitting information in advance to 
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be better planned. Having that information in advance can also favor some 

decisions that influence stock-outs such as inventory replenishment, which can 

also be better panned. Finally, when orders can be quickly picked, packaged and 

delivered, the inventory holding costs, specifically the obsolescence cost, can be 

reduced (Ozer & Wei, 2004; Wang & Toktay, 2008). The earlier is particularly true 

for food which comprises perishable items that have a short shelf life and lose 

quality exponentially according to the storage time. 

Considering the aforementioned evidence, and the fact that in the context 

of the supply chain management, the speed at which transactions and operations 

are carried out is key determinant of efficiency (Morgan, 2004), it would be ideal 

to take the decision over each order in near real time, i,e., as soon as each order 

enters the system. 

3.2 METHODOLOGY 

In order to decide whether the e-tailer or the supplier should fulfill a specific 

order as soon as it is entered on the internet, a classification procedure must be 

drawn up. It should create order profiles and compare them with the orders that 

enter the system in order to classify them. This classification should be done 

based on the order characteristics, the available inventory and e-tailer's 

productivity and service level goals. This procedure must act online, without the 

need to compare orders that are being entered, or to cumulate them in a batch for 

further analysis.  

In this paper, the proposed procedure is based on a deep learning (DL) 

approach coupled with a known inventory rationing policy. It is called “inventory 

rationing based on deep learning” or IR-DNN. Deep learning models are based on 

deep neural networks (DNN) that consist of multiple processing layers. These 

structures can learn representations of large data with multiple levels of 

abstraction and perform functional input/output mappings in multivariate and non-

linear problems (Lecun et al., 2015). This is possible given three main 

characteristics: parallel character, multi-parametric character, and high computing 

speed (Bre et al., 2018; Nguyen & Medjaher, 2019; Basheer & Hajmeer, 2000). 
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DNNs are considered powerful tools when mathematical models are not 

available or when the models are difficult to compute analytically. Therefore, the 

first reason for using DNNs in this study is because they can mimic and replace 

existing inventory rationing models enabling order fulfilment decision-making be 

made in advance. This is necessary, since, although the existing inventory 

rationing models consider the characteristics of the orders in order to prioritize 

them according to their importance, they rely on being able to cumulate orders 

before taking any decision on who should attend each order, which delay the 

decision-making. The second reason for using DNNs is that they can deal with 

high dimensional problems and large datasets, which seems to be inconvenient 

for traditional machine learning algorithms that are commonly used for binary 

classification such as Decision trees, Random forest, Bayesian networks, Support 

vector machines, and Logistic regression. Regarding the dimensionality of the 

problem, in the B2C order classification problem, the number of input variables 

that can be used to decide how to attend the demand increases exponentially as 

the variety of products offered by the e-tailer increases. These variables include 

the demand, the available inventory and the margin of each item. Therefore, 

DNNs have the potential of yielding a good performance irrespective of the size of 

the e-tailer’s business. Regarding the dataset size, the performance of DNNs 

stagnates as a slower pace as the amounts of data increases regarding the 

aforementioned models (Lecun et al., 2015; Ng, 2016), which indicates that DNNs 

can benefit from large datasets that can be obtained when the number of e-

commerce orders placed and SKUs offered increase.  

A third interesting characteristic of DNNs is the size of the model; while in 

DNNs the input nodes, hidden layers, and output nodes are fixed, in other widely 

used algorithms such as SVM, the number of support vector lines could reach the 

number of instances in the worst case. Finally, in contrast to the aforementioned 

models, DNNs may not require extensive human interaction, and then, less work 

on feature engineering is needed (Khan & Yairi, 2018). 

To evaluate the proposed IR-DNN, a simulation experiment was carried 

out. The parameters and conditions related to the demand, the fulfillment 

operation and the software packages used to construct the IR-DNN model are 
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specified in the simulation section. As follows, the way in which DNN and the 

existing inventory rationing model work together is shown. 

3.3 IR-DNN MODEL 

A DNN is used to capture two characteristics of the orders: the demand of 

the SKUs and their available inventory, and to map them to the productivity and 

service-oriented performance of the dropshipping system players. The DNN does 

this input/output mapping by using historical information about orders that were 

fulfilled “appropriately” in the past. The DNN uses this historical information in a 

training step in order to understand what the characteristics are that an order 

should have in order to be fulfilled by one of the players (supervised learning), i.e., 

the e-tailer or the supplier(s). Once the ANN has been trained, it can be used for 

classifying incoming orders into two categories: e-tailer and supplier. This 

classification could be made immediately without the need to cumulate orders for 

further analysis and without using a pairwise comparison approach.  

In this paper, the concept developed by Jimenez et al. (2019) was adopted 

to define the “appropriate” criteria for classifying orders. The authors established 

that the orders that should be fulfilled by the e-tailer are the orders that generate 

the greatest margin and that, at the same time, have the least adverse impact on 

the availability of inventory. The ratio of these two criteria is called "dynamic 

criticality" and was used by the authors to classify batches of orders, 

demonstrating that it is possible to offer more revenue opportunities while using 

the same inventory to attend to more customers.  

The IR-DNN model proposed in this chapter uses the criterion “dynamic 

criticality” algorithm developed by Jimenez et al. (2019) and later extended by 

Jimenez et al. (2020) in order to simulate the allocation of orders for historical 

data of the e-tailer's operation and then complete the dataset that the DNN needs 

in order to be trained. By doing so, the characteristics of the order such as the 

demand for items, inventory availability and margin are captured by the ANN, 

which relates them to the player that was chosen to fulfill them in historical orders 

and creates an order profile for each player. These profiles enable new orders to 

be classified individually as they are placed. In terms of the vocabulary used in 

machine learning, an adaptation of the model of Jimenez et al. (2019) is used as 
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a base model to label the historical data records. Table 2 shows the definitions 

and notations used in the model. 

Table 2— Notations and definitions used in the model 

Source: The Author (2021). 

Notation  Definition 

Ok Placed order  

J Stock Keeping Unit offered 

Ci Criticality of order Ok 

𝐸𝑖 Level of inventory commitment for the order  Ok 

mi Profit on order Ok 

ej Level of inventory commitment for item j 

dij Demand for item j in order Ok 

qj Existing inventory of item j 

OFR  Percentage of orders fulfilled by the e-tailer in a period 

F Number of orders fulfilled by the e-tailer during a period 

N Number of orders that arrive during a period 

𝑀𝑡 Profit obtained from the fulfillment of all the orders 

𝑀𝑖𝑛𝑡 Profit obtained from orders fulfilled using the internal stock 

𝑀𝑑𝑟𝑜𝑝 Profit obtained from orders fulfilled using dropshipping 

𝑚𝑖.𝑖𝑛𝑡 Unit margin of item j when attended to by internal stock 

𝑚𝑖.𝑑𝑟𝑜𝑝 Unit margin of item j when attended to via dropshipping 

FIFO First-in-first-out, or inventory allocation rule where the first order to enter is the first to be 

attended to 

Dynamic 

Criticality 

Inventory allocation rule based on the criticality index that uses perfect information on 

demand and inventory positions.  

Dk Input demand vector of all items in the order Ok 

Qk Input available inventory vector of all items in the order Ok 

Gk Input margin vector of all items in the order Ok when attended to by the e-tailer 

Sk Input margin vector of all items in the order Ok when attended to by the supplier 

Ak Label or suitable fulfillment actor for attending to order 𝑂𝑘 represented by a binary label (0,1) 

MLF-NNs Multilayer feed-forward neural networks 

TP True positive rate 

TN True negative rate 

FP False positive rate 

FN False negative rate 
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3.3.1 Dynamic criticality algorithm  

According to Jimenez et al. (2019; 2020), the e-tailer must prioritize his 

available inventory to fulfill orders that have the least adverse impact on the 

availability of inventory and provide the highest margin. 

Orders with these characteristics must be fulfilled by the e-tailer because 

they contribute in an important way to the total margin, i.e., besides being 

profitable by the nature of their items (more profitable), the dropshipping cost can 

be avoided which consequently improves the margin of the orders. These orders 

also enable e-tailers to optimize the available inventory and serve more 

customers. This is important because when the e-tailer fulfills a higher percentage 

of orders in relation to the total number of customers, the service level is 

increased, he gains more control over the picking, packaging and delivery of 

orders while the risk of the other player being delayed is reduced. This last factor 

is relevant in some e-commerce environments where the contractual relationship 

between players and the e-tailer is not well defined or is not trust-based. In this 

context, it can happen that the e-tailer becomes concerned about the possibility of 

the other player misappropriating information about customers for its exclusive 

benefit (De Gusmão et al., 2018). Consequently, the e-tailer might prefer to serve 

the maximum number of customers possible with the available inventory (Park, 

2016).  

Another feature of the policy developed by Jimenez et al. (2019) is that 

incomplete orders are not allowed. This means that orders cannot be shipped in 

multiple consignments and that all items on the same order are served by the 

same player. This element enables the additional shipping cost to be avoided and 

the order to be postponed. The result of this policy is a more productive and 

service-oriented operation, since the e-tailer can generate more margin and fulfill 

more orders. 

To formalize the aforementioned concepts, Jimenez et al. (2019) brought 

together two elements: the level Ei in which each order depletes the inventory, 

and the margin pi of the order. These elements form a criterion called criticality Ci 

given by Equation 1, which lets the orders be ranked according to their 
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importance for the e-tailer and this serves as a criterion for splitting the demand 

between the e-tailer and suppliers. 

/i i iC E p=                                                                                                      (1) 

The inventory commitment Ei for a particular order indicates how negative, 

it could be attending to this order given its size and given the inventory availability. 

Ei is defined by Equation 2: 
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As the orders consist of different SKUs, the inventory commitment ej must 

be calculated for each SKU individually according to its availability and the 

demand for it during an operational shift. While Ei refers to the impact of a specific 

order on the inventory, ej refers to the inventory sensitivity of a specific SKU that 

is offered by the e-tailer. ej is presented in Equation 3: 
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The procedure of splitting orders between the fulfillment actors considering 

the aforementioned criticality concept is presented as follows: 

1. Organize the orders in ascending order according to the criticality index; 

2. Allocate the on-hand inventory to the first order in the sequence; 

3. Update the inventory availability of SKUs and the list of remaining 

orders/demand; 

4. Recalculate the criticality for the remaining orders;  

5. Repeat from step 1; 

6. If the quantity ordered for a specific SKU within a specific order is 

greater than the available inventory, allocate the whole order to a 

supplier; 

7. If step 6 is done, recalculate the criticality for the remaining orders;  



 

41 

 

 

8. When all orders are assigned to one of the fulfillment actors, organize 

orders in each group (fulfillment actors) according to the initial order in 

which they were entered into the system;  

9. Close the process. 

Step 8 aims to increase the service-oriented performance of the fulfillment 

operation and ensure that if there is some delay in successive operations such as 

picking, packing and delivery for any of the fulfillment actors, it occurs in orders 

that arrive last. For more details about the criticality policy, please read Jimenez 

et al. (2019; 2020). 

3.3.2 Input data  

The aforementioned procedure was used to generate the instances that the 

DNN needs in order to be trained and validated. Each instance has data that 

contain the characteristics of the order such as the demand for SKUs, the 

inventory available in SKUs, the potential order margin when attended to each 

fulfillment actor, and a label that identifies the suitable fulfillment player. 

The dataset was obtained by planning the orders of the warehouse e-tailer 

for several days based on the historical records of orders. In each period, the 

inventory initially available is checked and allocated to a batch of accumulated 

orders from the previous day using the model of Jimenez et al. (2019). Since this 

model is dynamic and the available inventory of items changes whenever an 

order is allocated to a fulfillment actor from a batch, the partial inventory positions 

were recorded during each step of the algorithm. The inventory position 

represents the remaining inventory after an order is allocated, but it also 

represents the available inventory of each item for the next order to be dealt with, 

which is checked by the warehouse management system (WMS) whenever an 

order is placed on the internet. Saving the partial inventory positions, thus enables 

the available inventory for each order to be tracked whichever the period, and this 

is used by the DNN as another feature for mapping the suitable fulfillment player. 

In the case of new orders, this information is retrieved from the WMS and the e-

commerce website that makes the sale.  
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In summary, the dataset comprises a massive amount of orders from 

different periods, from which the demand, the available inventory, the potential 

margin of each SKU for both players, and the suitable fulfillment actor for each 

order, can be easily retrieved. The DNN should be able to use this information in 

order to understand what characteristics the orders are supposed to have in order 

to be classified as e-tailer or supplier without having to cumulate orders in a batch 

for further analysis.    

Before feeding the DNN with historical information and training it, the 

dataset must be adjusted and completed. This is necessary since DNNs work with 

fixed inputs (features) and outputs (labels) and cannot deal with the unexpected 

and variable demand of SKUs in each order. Therefore, the first layer of the DNN 

consists of one node per each characteristic of the SKU, for each SKU offered by 

the e-tailer. In the case of the neurons that represent the demand for SKUs, the 

ones that are most in demand receive the amount demanded, while the ones that 

are not demanded receive a value of zero in the dataset also representing inputs 

for the ANN. In the case of the inventory, the availability of SKUs for the items that 

were not demanded is also informed in the dataset representing inputs. This 

configuration sets the inputs and outputs of the ANN to be fixed. 

Formally, it is assumed  a dataset (𝐷𝑘, 𝑄𝑘, 𝐺𝑘, 𝑆𝑘, 𝐴𝑘) with 𝑘 = 1,2,…𝑚 

instances. The inputs of the DNN are presented as follows: 

• 𝐷𝑘 = (𝑑1(𝑂𝑘), 𝑑2(𝑂𝑘),… , 𝑑𝑛(𝑂𝑘)) is the array of demand for all the 

SKUs that comprise the order 𝑂𝑘, zeros being allocated to non-

demanded SKUs; 

• 𝐼𝑘 = (𝑖1(𝑂𝑘), 𝑖2(𝑂𝑘),… , 𝑖𝑛(𝑂𝑘)) is the array of inventory for all the 

SKUs that comprise the order 𝑂𝑘, the remaining inventory being 

allocated to non-demanded SKUs.  

• 𝐸𝑘 is the contribution margin of order 𝑂𝑘 when it is fulfilled by the e-

tailer; 

• 𝑆𝑘 is the contribution margin of order 𝑂𝑘 when it is fulfilled by the 

supplier. 
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For n SKUs offered by the e-tailer the ANN has a number of inputs of  (𝑛 ∗ 2) + 2. 

Output or labels of the neural network are presented as follows: 

• 𝐴𝑘 is binary and is defined as follows: 

𝐴𝑘(𝑂𝑘) = {
 0 𝑖𝑓 𝑂𝑘 is fulfilled by the supplier
1 𝑖𝑓 𝑂𝑘 is fulfilled by the e − tailer

 

It is important to consider that m depends on the quantity of historical data 

that is available and on the preference of the modeler. This parameter is defined 

in the simulation section.  

3.3.3 Architecture of the neural network 

In this study feed-forward deep neural networks were used. They are 

multilayer perceptrons in which the information flows in a sequential way. They 

consist of three types of layers; the first one is an input layer, in which the nodes, 

also called neurons, represent the input variables of the problem; The second 

type is a group of hidden layers in which the neurons act, thus capturing the 

nonlinearity in the data; the third and last type is an output layer, in which the 

neurons represent the variables that it is wished to predict (Svozil et al., 1997). 

Each neuron of the aforementioned layers is connected to all neurons in the next 

layer by a weight coefficient, which reflects the importance of the particular 

feature/signal.   

Formally, the feed-forward deep neural network with Ni inputs, Nh hidden 

neurons and No outputs can compute No nonlinear functions to obtain the 

activation value of each neuron, which consist of Ni inputs that are processed by 

the hidden neurons (Marini et al., 2008).  

The architecture of the network is determined by a procedure called 

“training” in which the parameters of the model are estimated and a function is 

approximated. In this study it was considered that the relationship between 

dependent and independent variables is not known analytically, thus the training 

is done via supervised learning, where a regression function is approximated 

based on examples. This approximation implies finding the best values of the 

weights that minimize the loss function that represents the distance between the 

predicted and the measured values. The most widely used method to perform this 
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minimization and the used in this study is called back-propagation. This is used to 

perform an iterative weight update by examining a number of epochs in which a 

search of the error surface is made by using gradient descent for minimum error 

points. In each epoch, a solution is produced and then the error is propagated 

backwards to update the weights (Marini et al., 2008). During this process, the 

weights of the network are updated in accordance with equation 4: 

∆𝑤𝑗𝑖(𝑡) = −η
∂E

∂𝑤𝑖𝑗
+ 𝜇∆𝑤𝑗𝑖(𝑡 − 1) (4) 

In equation 4, η represents the learning rate and μ a constant, called 

momentum. The former governs the step size as the algorithm updates the 

weights. This happens because, if the steps are too small, the algorithm 

converges slowly, but if the steps are too large, the algorithm is unstable, and 

therefore tends to oscillate and may not converge. The latter helps the algorithm 

to avoid becoming stuck in flat spots and is only determined by experiments.  

After the training procedure, a validating set of examples is used to test if 

the network is able to be effective on the data that has not been used in the 

previous process. Since the model is built for a classification task, a particular 

pattern recognition process called class-modelling is performed, in which each 

class is analysed. In this process, it is verified whether the input vector measured 

on a new sample is compatible with the model of that specific class (Marini et al., 

2008). Besides the regular architecture of feed-forward deep neural network, the 

algorithm proposed in this study includes a constraint that ensures the network 

avoids classifying an order as “e-tailer” when this player does not have enough 

inventory to meet all the SKUs demanded. 

3.4 ASSESSMENT OF IR-DNN 

The criteria of Accuracy and F1-score were used as measures to assess 

the performance of the IR-DNN. Other measures such as Total Margin and order 

fulfillment rate (OFR) were used as productivity and service-oriented goals, 

respectively. They offer managers useful and factual information about the 

performance of the warehouse, rather than just leaving managers to make 

intuitive assessments of the results. Besides, they make it feasible to compare the 
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IR-DNN with other rationing policies that cumulate the demand for a certain period 

of time, which can be evaluated using the same criteria. 

3.4.1  Accuracy 

In order to verify if the DNN performs well regarding the order classification 

task, the accuracy of the model must be measured. This is defined as the fraction 

of predictions that the model classified correctly. Equation 5 defines the 

mathematical expression for binary classification: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (5) 

If the class called “e-tailer” is established as negative and the class called 

“supplier” is established as positive in the output of the DNN, then the orders 

correctly classified as “supplier” are true positives (TP), the ones wrongly 

classified as “supplier” are false positives (FP), the orders correctly classified as 

“e-tailer” are true negatives (TN), and the ones wrongly classified as “e-tailer” are 

false negatives (FN).   

3.4.2 F1-Score 

In cases where there is a data imbalance (i.e., more instances of one class 

than of the other), using only accuracy as a reference can give the naive 

impression that the predictive power of the model is high for both classes, when in 

fact it may be very poor for one of them. It happens because the algorithm tends 

to sample and weight the classes according to the amount of data in both classes 

and then, it ends up classifying the majority class accurately and the minority one 

very poorly.  

In the B2C context, the class distribution depends on the demand 

distribution. Therefore, splitting demand in a dropshipping system is generally 

considered as an unbalanced problem, since the e-tailer should fulfill most of the 

orders, while the supplier is asked to fulfill orders when the e-tailer faces stock-out 

or decides not to meet some demand. The distribution parameters of the two 

classes are presented in the simulation section.   

In the case of this study, it is possible to evaluate the classification task by 

using the F1-Score. It tracks how the model deals with the class imbalance by 
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assessing the tradeoff between the Precision and Recall in the minority class. The 

first one is related to the proportion of orders that the model assigns correctly to a 

given class among all the orders that the model assigns to that class. On the 

other hand, the recall refers to the proportion of orders that the model assigns 

correctly to a given class among all the orders that actually belong to that class. 

Equations (6) to (8) present the mathematical expression for precision, Recall, 

and the F1-score, respectively. These equations show how to calculate the F1-

score for the class “supplier” which is the minority class. However, it is also 

possible to recreate the equations in order to calculate metrics for the class “e-

tailer” in order to check the model performance regarding this class after the 

optimal model has been selected. Equations (9) and (10) present the 

mathematical expression for Precision and Recall for the class “e-tailer”. 

 

𝑃𝑅𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) (6) 

𝑅𝐸𝐶𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) (7) 

𝐹1𝑠𝑐𝑜𝑟𝑒𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 =
2 ∗ (𝑃𝑅𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 ∗ 𝑅𝐸𝐶𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟)

(𝑃𝑅𝐸𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟 + 𝑅𝐸𝐶𝑠𝑢𝑝𝑝𝑙𝑖𝑒𝑟)
 

(8) 

𝑃𝑅𝐸𝑒−𝑡𝑎𝑖𝑙𝑒𝑟 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑁) (9) 

𝑅𝐸𝐶𝑒−𝑡𝑎𝑖𝑙𝑒𝑟 = 𝑇𝑁/(𝑇𝑁 + 𝐹𝑃) (10) 

 

3.4.3 Order fulfillment rate 

The order fulfillment rate (OFR) is a service-oriented indicator that 

expresses the proportion of customers that the e-tailer can serve with the on-hand 

inventory in a particular shift. The OFR is calculated as shown in Equation (11). 

𝑂𝐹𝑅 = (𝐹/𝑁) 

 

(11) 
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3.4.4 Total Margin  

The total margin Mt aims to measure the productivity performance of the 

fulfillment operation. It is defined as the sum of the margin Mint obtained by 

fulfilling orders from the e-tailer's inventory and the margin Mdrop obtained from the 

drop-shipped orders. At the same time, the margin obtained from each fulfillment 

player depends on the unit margin of each SKU ordered. Equations (12) to (14) 

show their respective mathematical expressions: 

𝑀𝑡 = 𝑀𝑖𝑛𝑡 ∗ +𝑀𝑑𝑟𝑜𝑝 (12) 

𝑀𝑖𝑛𝑡 =∑∑𝑚𝑖.𝑖𝑛𝑡 ∗ 𝑑𝑖𝑗

𝑚

𝑖

𝑛

𝑗

 (13) 

𝑀𝑑𝑟𝑜𝑝 =∑∑𝑚𝑖.𝑑𝑟𝑜𝑝 ∗ 𝑑𝑖𝑗

𝑚

𝑖

𝑛

𝑗

 (14) 

3.5 SIMULATION AND OPTIMIZATION   

The performance of the IR-DNN was investigated in a numerical example. 

First the model was compared with a benchmark policy considering the case in 

which the e-tailer offers 350 different SKUs and receives a daily demand of 210 

orders. Secondly, a sensitivity analysis is conducted varying the number of SKUs 

offered (e-tailer size) and the number of daily orders (demand). Some 

assumptions regarding the fulfillment operation are presented in Table 3. 

Table 3—Assumptions of the numerical application 

Assumption 1 The dropshipping strategy is composed of two players: one e-tailer 

and one supplier.  The usage of more players should be investigated 

in other studies.  

Assumption 2 The e-tailer offers first necessity items such as pharmacy, food and 

cleaning products which have delivery windows up to 24 h. 

Assumption 3 The e-tailer’s items are divided into 3 classes (A, B and C) 

representing the frequency of demand. The probabilities pi are: pA = 

0.1, pB = 0.3, pC = 0.6 (Jiménez et al., 2019). The rising probabilities 

represent the long-tail phenomenon of the business-to-consumer 

market in which approximately 80-90% of the SKUs (B+C) are highly 

demanded in very low quantities and account for approximately 80% 

of the revenues (Hompel & Schmidt, 2006; Anderson, 2016). This 
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concept is represented altogether by the parameters set in 

Assumptions 1 and 2. However, more product classes and different 

probabilities can be set.   

Assumption 4 The possible demand of items for each SKU follows a triangular 

distribution. According to Jimenez et al. (2020), it is adequate when 

the distribution of random variables is inaccurately known. 

Accordingly, the pessimistic demand for SKUs is 1, the most likely 

demand is 2, and the maximum demand is for 6 items.  

Assumption 5 The initial inventory level of each SKU for a particular shift follows a 

normal distribution, with 15 items as the mean and 2 as the deviation 

(Jiménez et al., 2019). 

Assumption 6 Each operating shift starts without back orders, since these orders 

have been fulfilled either by the e-tailer or by dropshipping. This last 

operation is performed by a supplier with a high fulfillment capacity 

considered here as infinite for practical reasons. This high capacity is 

the consequence of the supplier´s additional investment in picking 

and packing capacity (Ayanso et al., 2006). 

Assumption 7 When orders are drop-shipped, a decrease of 30% in the margin is 

inferred, which represents the cost of the dropshipping service 

(Jiménez et al., 2019).  

Assumption 8 We consider that the delivery windows of the players are short 

enough to not consider delivery time as an important criterion for 

splitting demand between players.  

Source: The Author (2021). 

 

The IR-DNN model was built, trained and validated in the Python environment 

3.6 version, using TensorFlow and Keras APIs. The data pre-processing, as well as 

the training and validation processes are presented as follows.  

3.5.1 Data pre-processing 

The data pre-processing included data scaling and correcting imbalances 

between the two classes. Data input such as demand per item, available 

inventory and margin where standardized i.e., scaled between 0 and 1, in order to 

improve the power of the optimization process, namely the gradient descent, in 

the training process. On the other hand, the class imbalance was corrected in 

order to balance the sampling in the training process. This is necessary because, 

as the class “e-tailer” fulfills more orders naturally than the class “supplier” in each 

batch, the “supplier” class presents less instances in the dataset and thus is under 

sampled. In order to fix data imbalances, a class weight method was applied. This 

method is intended to assign a higher weight to errors committed in the minority 
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class in order to guide the training process to a more fear error minimization for 

the classes (Huang et al., 2013). 

3.5.2 Training and validation of IR-DNN  

The model was trained on a dataset that represents the players operating 

during a 50-day period, receiving 200 orders per day and offering 350 different 

SKUs, for a total of m=10000 instances. 90 % of the dataset was used for the 

training and testing process while the remaining 10% was used for validation. The 

training process used an optimizer called “Adam” which minimized the loss 

function and performed the DNN weight update. Adam optimizer is commonly 

used in deep learning applications due to four main characteristics: capacity for 

dealing with large data and parameters, high predictive power, high computational 

efficiency, and low memory usage (Kingma & Ba, 2014). It is important to note 

that the training was conducted after the datasets were labelled by means of the 

model of Jimenez et al. (2019), which take daily batches from the dataset and 

separate the order between the supplier and the e-tailer according to the dynamic 

critically index.   

During the training process, the hyperparameters were tuned: the number 

of layers and the number of neurons were optimized using a cross-validation 

technic with 7 folds, which means that 90% of the dataset was split in 7 parts. 

Thus, one part was used as the test set and the remaining six parts were used as 

the training set. In that way, the model was trained setting the test set as each 

one of the possible 7 folds in order to assess the generalization capacity of the 

model. The number of epochs was optimized using the early stopping method, 

which allows the training process to stop when the validation error reaches its 

minimum which avoids overfitting the DNN (Prechelt, 1998). 

As the DNN gives the probabilities of belonging to one class or another 

using a sigmoid activation function in the output layer, the threshold of the 

classifier must best associate each order to each class. In order to define this 

threshold, it was necessary to define which type of error is more important for the 

problem, is it FP or FN? If we commit FP, the orders that are supposed to be 

classified as “e-tailer” are classified as “supplier”, in which case, orders with a 

good size-margin relation are lost to the e-tailer so there are drawbacks both for 
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the margin and the inventory commitment. The same effect is obtained when we 

commit FN, because the e-tailer receives orders that have a poor size/margin 

relation so they take the place of orders that would be better for him. Despite the 

fact that the effect of the two errors is the same for the e-tailer, when an FP is 

committed, the supplier can fulfil the orders without being concerned about 

depleting the inventory because the capacity of the supplier’s inventory is large. 

The same does not hold true for the e-tailer. When an FN occurs in an order for 

which the e-tailer has no inventory (or has less than the demanded amount), the 

e-tailer should postpone the order, which is in fact what the modeld of f Jimenez 

et al. (2019) and the proposed model try to avoid. Considering the latter, FN 

errors are the most undesirable, so the classification threshold was set at 0.8 

meaning that just the orders that have 0.8 of probability of belonging to the class 

“supplier” or more, were scored as “supplier” during the training process.  

After the IR-DNN model was trained and validated in terms of accuracy and 

F1-score, its performance in terms of the OFR and profit was compared with the 

FIFO rule. In this rule, the e-tailer gives priority to orders that arrive first until the 

inventory is exhausted for some item in the order, and then outsources the 

remaining orders. The comparison was made by performing the two strategies 

during a 30-day period with a daily batch of 200 orders that are not part of the 

dataset used for training and validating the IR-DNN. Results are presented as 

follows. 

3.6 RESULTS AND DISCUSSION 

After the IR-DNN had been optimized, it was found that the architecture 

that offers the highest F1-score corresponds to a network with 2 hidden layers, 

with 50 neurons in the first layer and 60 neurons in the second layer. The model 

was trained during 10 epochs with Dropout values of 0.3 for the first layer and 0 

for the second one. Figure 2(a) and 2(b) present the training process with the best 

hyperparameters in terms of the accuracy and the evolution of losses.  
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Figure 2—Training process. a) Accuracy evolution. b) Loss evolution 

 

Source: The Author (2021). 

 

The optimal IR-DNN model has an F1-score of 0.641 and an accuracy of 

0.912% on the test set, indicating that 91.2% of orders are classified correctly in 

relation to what the model of Jimenez et al. (2019) consider as efficient in terms of 

productivity and service-level performance. Although the optimal model achieves 

the best trade-off between precision and recall for the minority class “supplier” by 

optimizing the F1-score, it is possible to assess the model performance in terms 

of the precision and recall for both the classes “supplier” and “e-tailer” in order to 

verify how the model performs in each of them. These metrics are presented in 

Table 4. 

Table 4—Results 

Class Precision Recall 

Supplier 0.615 0.669 

E-tailer 0.955 0.944 

Source: The Author (2021). 

 

From Table 4, it can be seen that the precision of the model regarding the 

class supplier is 0.615 which indicates that the model correctly classifies 61.5% of 

the orders that it considers should be fulfilled by the supplier. In that case, 

precision also represents the ability of not classifying as “supplier” an order that is 

“e-tailer”. Regarding the class e-tailer, the model correctly classifies 95.5% of the 

orders that it considers should be fulfilled by the e-tailer. In that case, precision 

represents the ability of not classifying as “e-tailer” an order that is “supplier”. 

When it comes to analyzing the recall of the model, it can be seen that of all the 

b) a) 
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orders that in fact should be fulfilled by the supplier, the model can classify 66.9% 

of them. In that case, recall represents the ability of the model to find all the 

orders that actually belong to the class “supplier”. In case of the e-tailer this 

percentage is 94.4%, and it represents the ability of the model to find all the 

orders that actually belong to the class “e-tailer”. From these results it is possible 

to claim that the model separates the two classes well. 

In addition to the F1-score and accuracy performance of the IR-DNN, it is 

important to check the performance of the model in terms of the e-tailer's 

productivity and service-oriented goals, which are ultimately measures that can 

bring more useful information to managers. Figures 3(a) and 3(b) show the 

comparison between the IR-DNN model and the FIFO rule, regarding the average 

OFR and the average total margin for a batch of 210 orders during 30 days of 

operation. In the FIFO policy, the order planning was carried out at the end of the 

operating shift when the order batch was cumulated every day. On the other 

hand, in the IR-DNN model, the order planning was carried out simultaneously as 

the orders were entered into the system.    

Figure 3—Performance of IR-DNN model in comparison with 
FIFO policy. a) Margin performance, b) OFR performance 

 

Source: The Author (2021). 

From Figures 3a and 3b it can be inferred that the IR-DNN model 

outperformed the FIFO strategy by 9.49% in relation to the margin and by 90.01% 

in relation to the OFR, thus allowing a more profitable and service-oriented 

fulfillment operation. The IR-DNN presented an OFR of 0.6328 which indicates 

that the e-tailer is capable of fulfilling 63.28% of the total demand. This can be 
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regarded as an outstanding performance, since it also indicates that the e-tailer 

has more control over the fulfilment of the order. It is very interesting in contexts 

where the contractual relation between e-tailer and supplier is not clear, so there 

is a risk that the supplier may steal customers. Another advantage of having more 

control over the fulfilment process is that the risk of the supplier being delayed is 

diminished. It is considered that the performance of the IR-DNN in terms of 

margin and OFR is satisfactory considering that the model has access to the 

information about the order that is being placed at a specific moment in time only, 

and that the decision over who should fulfil the order is taken immediately. 

3.7 SENSITIVITY ANALYSIS 

The efficiency of the IR-DNN model in comparison with the FIFO rule was 

tested in a sensitivity analysis varying the number of SKUs offered (e-tailer size) 

and the number of daily orders. For the first factor, 300, 350, 400, and 450 SKUs 

were tested, and for the second factor, 200, 210, 220, and 230 orders were 

tested. The IR-DNN model was trained for each combination of demand and e-

tailer size using a 50-day period dataset, which constituted datasets of 10000, 

10500, 11000, 11500 instances for cases with 200, 210, 220, and 230 orders, 

respectively. Once the model was trained, the performance in term of the OFR 

and Profit was investigated in new orders during a 30-day period and compared 

with the FIFO policy performance. The OFR and Margin performance of the 

models are presented in Figure 4 and 5, respectively.   

From Figures 4 (a-d) and 5(a-d) it is possible to see that the IR-DNN model 

outperformed the FIFO policy in terms of the OFR and Margin regardless of the 

demand and the e-tailer size. The IR-DNN provides OFR gains from 79.9-102.7% 

and Margin gains from 5-13.1%. If one looks at each graph in Figure 6 it is 

possible to see also that the OFR decreases as the number of orders increases 

for each of the e-tailer sizes. This is an expected behaviour that occurs both for 

the IR-DNN and the FIFO policies because when the number of orders being 

fulfilled increases and the initial available inventory remain the same, then it 

becomes more and more difficult to manage the inventory for fulfilling orders. It 

can be proven by looking at Figure 5, in which even though the OFR decreases 

as the number of orders increases, the margin increases. It occurs because more 
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orders arrive to the warehouse and are fulfilled by the supplier, thus contributing 

for the total margin. 

On the other hand, if we compare all the graphs of Figure 4 sequentially 

from 4(a) to 4(d), it is possible to see that the OFR increases as the e-tailer´s size 

increases. This is also an expected behavior that occurs in both policies because 

as the variety of SKUs offered increases, the variety of SKUs that compose 

orders increases as well and then the stock of each SKUs become less 

committed and it can be used more efficiently to attend more orders. A possible 

way to verify that is to look at Figure 4 and verify how the margin of both policies 

increases as the e-tailer size increases, indicating that more orders are being 

fulfilled with the same inventory.    

Figure 4—OFR performance for FIFO and IR-DNN policies with 
variation in the number of SKUs and orders received. a)300 SKUs, 
b)350 SKUs, c)400 SKUs, d)450 SKUs 

 

Source: The Author  (2021). 
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It is important to consider that the result presented in relation to OFR and 

Margin is only the immediate result of allocating orders with the operating 

parameters (unit margin) with which the system was working at the time of the 

study. However, these results can be improved in the medium term after 

implementing the proposed model, which is a reflect of the improvement in the 

efficiency of operations along the supply chain such as the picking, packing, 

delivery of materials, and inventory replenishment planning. Therefore, they are 

not intended to fully measure the benefits of using the IR-DNN model, which are 

extended to several dimensions presented in the next section. 

The effect of having information in advance about the order fulfillment actor 

is not fully measured in this study, because, besides this being more visible in the 

medium term, it involves more than one echelon in the supply chain and the 

operations linked to each of them, so it deserves a more in-depth study. For this 

reason, researchers in the field of contractual models in supply chains are 

encouraged to estimate what the strategic and financial gain would be in addition 

to the immediate gain already demonstrated in the numerical example of this 

paper. Studies on how to share these gains along the supply chain actors are also 

encouraged.   
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Figure 5— Margin performance of FIFO and IR-DNN policies with 
variation in the number of SKUs and orders received. a)300 SKUs, 
b)350 SKUs, c)400 SKUs, d)450 SKUs 

 

Source: The Author (2021). 

 

3.7.1 Managerial implications  

By implementing the proposed model, the managers should be able to 

advance the decision making over which actor should attend each order. 

Advancing this decision making into one complete shift can be translated into 

greater efficiency not only in the e-tailer's operations as shown in the results, but 

also along the supply chain activities such as picking, packaging and order 

delivering in the medium term. This can lead to reductions in the cost of 

operations, in the final price of the products, or alternatively to an increase in the 

margin of each product/order. Having information in advance about the fulfillment 

of orders, also allows a better coordination of inventory replenishment systems, 

which at the same time enables stock-outs to be diminished and consequently 

more orders to be fulfilled. This last implication is very important because it allows 

the problem of high demand variability in the e-commerce environment to be 

tackled directly.  

*Note: margin expressed in thousands $/day 
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After implementing the model, it is vital to keep training it on new data in 

order to maintain the model’s efficiency. Thus, it is necessary to carry on a 

deployment study in order to determine the best training interval that directly 

depends on the demand variability and the amount of SKUs offered by the e-

tailer, which impact the model complexity and thus the amount of data that is 

needed to re-train the model. As a consequence, human and technological 

resources should be destined to this end.    

3.8 FINAL REMARKS OF THE CHAPTER 

This chapter proposed a DNN-based approach that allows e-tailers to 

optimize the decision about how to split the demand between players in a 

dropshipping system in order to better manage stock-outs. The model consists of 

a DNN that learns how to classify orders between players from a dataset of 

historical orders labeled by the inventory rationing model of Jimenez et al. (2019). 

The integration of the DNN and the aforementioned model allows to allocate the 

orders with the best balance between order margin and the inventory 

consumption level of orders for the e-tailer in order to provide more profit and 

level-service opportunities for it. This integration also enables the advancing of 

the demand splitting decision in near real time, since the classification task is 

done as soon as orders enter on the internet.  

From this chapter it is possible to conclude that it is possible to offer more 

profit and service-oriented opportunities to e-tailers by smartly rationing the 

inventory and collaborating with other players in dropshipping systems. The 

model offers gains of up to 13.1% and 106% regarding the Margin and OFR, 

respectively, for different demands and types of SKUs offered when compared to 

traditional rules such as FIFO. Moreover, by allowing the demand splitting 

decision to be made earlier, the model also offers opportunities for improving the 

efficiency of operations in the supply chain links involved, such as the 

coordination of inventory replenishment systems, and the picking, packaging and 

delivery of products/orders. 

Despite the outstanding gains in the OFR and Margin provided by the 

proposed model, the consequences of making the demand splitting decision in 

advance must be measured in economic terms more carefully. This lets managers 
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establish the advantages of implementing the proposed model in the medium 

term in a more accurate way. This is important to establish contractual models of 

revenue sharing, since the benefits are extended to all the actors of the supply 

chain. They are at the same time responsible for taking advantage of the in-

advance information and making use of it in order to contribute to the overall 

efficiency of the activities of the supply chain. 
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4 DEEP REINFORCEMENT LEARNING MODEL FOR MULTI-CRITERIA 

OPTIMIZATION OF PREVENTIVE MAINTENANCE IN MULTI-STATE MULTI-

COMPONENT SYSTEMS 

Despite the great amount of works for maintenance optimization of 

multicomponent systems, there are few models that approach multi-criteria 

maintenance optimization. In this chapter a Reinforcement Learning-based model for 

multi-objective-maintenance decision-making optimization is proposed. The proposed 

model is able to identify optimal maintenance actions by maximizing the expected 

long-term system performance, which is related to both the expected reliability as a 

measure of worker safety, and the maintenance cost. The proposed model is 

developed by using a jointly Double Deep Q-Learning algorithm (DDQN) and Goal 

Programing optimization (GP). The first one allows considering the uncertainties of 

the system degradation process in multi-component systems and a large space in 

maintenance decision-making, especially under imperfect maintenance actions. The 

second one helps to model the reward function of the DDQN agent with multi-criteria 

optimization. The behavior of the optimal RL agent is analyzed in order to understand 

its rationality regarding prioritized component and actions. Finally, the performance of 

the RL agent is compared with four control limited based maintenance policies.  

4.1 SYSTEM DESCRIPTION AND PROBLEM STATEMENT  

4.1.1 System description 

Consider a system consisting of 𝑁 non-identical components. The components 

are connected in a redundant structure to increase the system’s availability.  

As the components degrade, each component 𝑖  visits 𝑚𝑖 + 1 discrete states 

including as good as new state, failure state, and 𝑚𝑖-1 degraded states. In that way, 

let 𝑠𝑖(𝑡) be the state of component 𝑖 at time 𝑡 , we get: 

 

𝑠𝑖(𝑡) = {

 0           if component 𝑖 𝑖s as goog as new
1 ≤ 𝑗 ≤ 𝑚𝑖 − 1  if component 𝑖 is in a degraded state   

𝑚𝑖                         if component 𝑖 is failed
 

The degradation of components follows a Markov process with the transition 

matrix presented below. 
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𝑃𝑖 =

(

  
 

𝑝00 
𝑖    𝑝01

𝑖  …  𝑝0𝑚𝑖
𝑖

0    𝑝11
𝑖   …   𝑝1𝑚𝑖

𝑖

0  0  𝑝22
𝑖  …   𝑝2𝑚𝑖

𝑖

……
0       0     …  0  1 )

  
 

, 

with 0 ≤ 𝑝𝑢𝑣
𝑖 ≤ 1 and ∑ 𝑝𝑢𝑣

𝑖𝑚𝑖
𝑣=0 = 1 for ∀ 𝑢 ≤ 𝑣 (𝑢, 𝑣 = 1… ,𝑚𝑖). 

It is assumed that the transition matrix is unknown and the states of 

components are monitored at regular discrete times 𝑇𝑘, also any maintenance is 

performed between two successive inspections. Components can be maintained only 

at discrete times  𝑇𝑘, receiving whether a corrective action or a preventive action. The 

maintenance actions are assumed to be deterministic, which means that the 

maintenance operator can perform an action to recover a component of the system 

to a desired state. If a component fails between two consecutive inspection times 

(𝑇𝑘 𝑇𝑘+1], it could be correctively replaced at time 𝑇𝑘, bringing the failed component to 

be as good as new, or to leave it broken. If the failure of component leads to a 

shutdown of the system, a downtime cost Cdown is incurred. If a component is still 

functioning at discrete time 𝑇𝑘, an inspection operation is then carried out to reveal 

the current state of the component. Based on the inspection result, preventive 

maintenance can be performed. It could be a perfect or imperfect preventive action. 

A perfect preventive action brings the maintained component to be as good as new 

while an imperfect preventive one can only restore the maintained component to a 

state between its current state and the new one. In the last two cases, the system 

incurs in some maintenance costs such as the cost of taking one component from 

one state to another Cijk and the setup cost Cs. Finally, it is also considered that when 

maintenance actions are carried out the system is stopped so the components stop 

degrading in this time.  

We considered that the systems being studied are in a remote area or under 

stressful working conditions in which the failure of the system can bring adverse 

effects on the safety of workers. Thus, the maintenance manager is not only 

concerned about the cost of maintenance actions, but about the system reliability 

performance which impact the system availability and also the worker’s safety.   
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4.1.2 Problem statement 

As observed in the literature review, when it comes to optimize maintenance 

policies, generally, the system is assessed by criteria such as maintenance cost, 

inventory holding cost, defective product cost, downtime cost, among others, which 

can be converted into one single criteria, i.e., cost. This single measure enables the 

optimization of one or more of these criteria at the same time. However, it is shown in 

the literature that in systems such as nuclear power plants, offshore facilities, 

aerospace components, and Gas & Oil industry, in which there are stressful or 

remote working conditions, the maintenance policies can be assessed not only by the 

economic performance of the system but by other factors that are difficult to be 

expressed in monetary terms and therefore cannot be grouped into one single 

economic measure (Bend-daya, 2009; Okoh, 2015; Liu et al., 2020). The system 

reliability performance for example, can be optimized for guaranteeing a high system 

availability and not just a minimum cost (Liu et al., 2020), and it can also be used to 

assess other factors such as worker/plant safety in order to measure social and 

environmental impact of policies. Considering the system reliability in its regular 

dimension rather than expressing it in monetary terms might demand a multi-

objective maintenance optimization when optimized jointly with other criteria. In some 

cases, the objectives to be optimized are also conflictive, which means that the 

maximization/minimization of one criterion tends to worse the performance of the 

other, which might be the case of the system reliability or any other criteria in relation 

to some of the economic criteria mentioned so far. In this case the multi-criteria 

optimization model should consider the elements of a decision-making that guide the 

search for a solution that enable achieving a trade-off between the objectives 

(Romero, 2014), i.e., the best compromise between them. Such elements include the 

decision-maker preferences over each objective and a function that enable the joint 

assessment of the system regarding each criterion.  

The multi-criteria optimization model should also consider the stochastic 

character of the system failure mode in multi-state multi-component systems, which 

is a consequence of the combined influence of components in different degradation 

states, the uncertainties in the degradation of components, and in some cases the 

variability in operational conditions. Therefore, the multi-criteria model should be 

capable of recommending maintenance actions dynamically at each scheduled 
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inspection based on the system state in order to contribute to an effective long-term 

system performance.  

Finally, the model should also be capable of being extended to systems with 

different number of components, multi-state component, and imperfect maintenance 

actions which can increase the dimensionality of the problem representation 

exponentially and therefore the computing time.  

According to Liu et al. (2020) as in the real-life maintenance applications the 

economic value may not be the sole performance criterion, a multi-objective CBM 

optimization based on deep reinforcement learning is an interesting bet. Therefore, to 

face the aforementioned problems, this work proposed a Reinforcement Learning-

based CBM model for the maintenance decision-making and the optimization of 

multi-state multi-component system with imperfect maintenance actions. The detailed 

description of the proposed model is presented in Sections 4 and 5. 

4.2 METHODOLOGY 

As Reinforcement Learning (RL) and Goal Programing (GP) are two main 

items of the proposed model, in this section, as some principles of RL and GP are 

discussed.   

RL algorithms are efficient tools in the field of maintenance decisions due to 

their immanent flexibility and performance in learning strategies for real or simulated 

systems (Kuhnle et al., 2019). In multi-component systems they have the potential of 

enabling the understanding of the complex relation between components, the effect 

of combined maintenance actions, and the uncertainties in the operating conditions. 

Thus, they are able to capture the stochastic behaviour of the system degradation 

and find optimal maintenance actions that optimize the long-term system 

performance.  

Specifically, DDQN allows the scalability of solutions to high dimensional 

problems, i.e., problems with large state and action spaces, and enable a 

considerable decrease in the computational time in relation to other RL algorithms 

such as Sarsa (y), Q-learning and DQN. It also includes classical optimization 

approaches such as gradient methods, dynamic programming, integer programming, 

mixed integer and non-linear programming. Although we do not demonstrate the 

computational efficiency of our model for different system sizes, the capacity of 
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DDQN of extending the solution for high dimensional problems is very useful in the 

multi-component system maintenance context in which the problem representation 

complexity can be increased as the number of component, number of actions 

(perfect and imperfect) and degradation states increase. Specifically, Sarsa (y) and 

Q-learning algorithms can be inefficient for multicomponent systems composed of 

many components, since they use a tabular representation of the action-state 

function which is computationally inefficient for large problems, while the DQN 

algorithms suffers from an overestimation problem for the action values in noisy 

environments, which can be lessened by the DDQN algorithm by the inclusion of a 

second network that bring stability in the training process (Cheng at al., 2012).  

Since we are considering a problem with a multi-criteria character, i.e., total 

maintenance cost and system reliability optimization, it is necessary to frame the 

problem in order to take into consideration the preference of the DM over the 

objectives. In order to do so, the reward function, which is the ultimate goal that will 

guide the RL agent is defined using the notion of goal deviations of the GP 

optimization method. GP is very popular in multi-objective optimization since it 

enables including many elements of the decision process such as weights, 

aspirational levels, deviation of variables, rigid and flexible constraints, which enable 

to find a trade-off between the objectives and represent the preference rationality of 

the decision maker (Romero, 2014). Coupled to the GP approach, we will use a 

Deep Neural Networks (DNN) to represent the cost functions. More details on that 

are given in the numerical section.   

4.2.1 RL background 

In the RL paradigm an agent solves an MDP problem interacting with a 

simulated environment and obtaining experience progressively in order to understand 

the long-term impact of the actions and the benefit of visiting specific states. The 

agent observes the state Stk at time Tk, selects an action ATk and performs the 

selected action to obtain a reward, which is cumulated to the reward of other decision 

points and analyzed by the agent in order to improve its policy π of acting. In order to 

select an action, the agent assesses the effect of each action ATk in the long-term, 

given a specific state STk. Thus, actions are assessed based on the expected return 

GTk, which includes the immediate reward RTt+1 obtained for taken an action ATk, and 
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a fraction (𝛾) of the rewards that could be obtained in future states. GTk also called q-

value can be expressed as follows:  

 

𝐺𝑇𝑘 = 𝑅𝑇𝑘+1 + 𝛾(𝑅𝑇𝑘+2 + 𝛾𝑅𝑇𝑘+3 + 𝛾
2𝑅𝑇𝑘+4 +⋯) 

 

(

(15) 

𝐺𝑇𝑘 = 𝑅𝑇𝑘+1 + 𝛾𝐺𝑇𝑘+1 (

(16) 

As the agent does not know the returns for any state-action pair when it is put 

in the environment, the training process is based on learning the optimal returns for 

each state-action pair, to efficiently evaluate the best course of actions trough a 

decision window. Then, actions are selected over time, according to the expected 

performance, based on the current knowledge of the agent, that is improved 

progressively trough iterations. This training process uses an epsilon-greedy strategy 

that controls the exploration/exploitation tradeoff, in which a rate of exploration 

decays at each decision windows in order to gradually increase the exploitation of the 

environment, until the agent knows the true returns of each state-action pair. At this 

point, it is possible to find the best policy π, i.e., the best course of actions for a 

specific system state when implemented. Specifically, when the agent explores the 

environment, it takes the risk of selecting an action that lead to a worse reward in 

order to find a solution that overcomes the ones already known. On the other hand, 

when the agent exploits the environment, it selects the best action that he/her knows 

so far, i.e., the one that offers the maximum 𝐺𝑇𝑘.  

If a DQN algorithm is developed, then an artificial neural network (ANN) is 

used to represent the state-action value function and perform a function 

approximation. It means that the q-values are predicted at each Tk by an ANN based 

on the current knowledge of the agent, i.e., initial state, actions, final state, and 

immediate reward experienced at each Tk, which serves as a pool for the ANN be re-

trained progressively and to offer to the agent q-value predictions in order to take a 

decision at each Tk. The search for the optimal policy is guided by a reference 

optimality condition called the bellman optimum. It enables the agent to obtain the 

maximum expected return achievable by any policy for each possible state-action 

pair. Thus, the prediction power of the ANN is improved progressively by minimizing 

the loss between the q-values predicted by the ANN and the bellman reference 
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equation, by backpropagation. Equations (17) and (18) present the bellman optimum 

and the loss estimation respectively. 

 

𝑞∗(𝑆𝑇𝑘, 𝐴𝑡𝑘 ) = 𝐸[𝑅𝑡+1 + 𝛾 ∗ 𝑚𝑎𝑥 
𝐴𝑇𝑘

′
𝑞(𝑆𝑇𝑘

′, 𝐴𝑡𝑘
′)] 

 

(

(17) 

𝑀𝑖𝑛 𝑙𝑜𝑠𝑠 = (𝑞∗(𝑆𝑇𝑘, 𝐴𝑡𝑘  ) − 𝑞(𝑆𝑇𝑘, 𝐴𝑡𝑘 ))
2 

 

(

(18) 

In DQN, the more recent state-action pairs and the respected bellman 

optimums are calculated by the same ANN between two successive runs, which 

turns the bellman optimum into a non-fixed target, bringing instability to the learning 

process. In order to overcome this issue, we use a DDQN algorithm, which includes a 

second ANN called “the target network”, which froze the weight’s ANN temporarily. 

For more details, please refer to Hasselt et al. (2015) 

4.2.2 GP background  

Goal Programming (GP) is a method used to solve multi-objective problems 

that deal with conflicting objectives. It minimizes deviations with respect to those 

objectives to find an adequate trade-off between them (Romero, 2014). A typical 

problem modelled by GP is presented in equation (19): 

𝑀𝑖𝑛 𝑍 = ∑𝑊𝑘

𝑟

𝑘=1

(𝑑𝑘
− + 𝑑𝑘

+)/𝑃𝑘 

Subject to: 

𝐶 ∗ 𝑋 + 𝑑− − 𝑑+ = 𝐹 

𝐴 ∗ 𝑋 + 𝑑− − 𝑑+ = 𝐵 

𝑋, 𝑑−, 𝑑+ ≥ 0   

 

 

(

(19) 

 

In equation (19), F and B are soft objectives that the decision maker would like 

to achieve, but that can be violated, e.g., maintenance budget. Therefore, d+ and d- 

are degrees in which objectives are either violated or well performed. On the other 

hand, X are hard constraints that cannot be violated, e.g., maximum number of hours 

per shift. The soft constraints are the core in this approach since they allow the 

designer dealing with the trade-off between objectives.  
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GP is an interesting approach, since it contains many elements that allow the 

designer to model the decision maker preferences and perceptions about the relation 

between the criteria (Romero, 1991). Elements such as the aspiration levels (F, B), 

which are desired performances that the decision maker wants to achieve, but given 

to the conflicting nature of goals, they can be violated. C and A are functions 

representing the real objectives of the problem. They compose the soft constraints 

that try to achieve the aspiration levels as much as possible. It gives the DM the 

possibility of expressing soft goals as unilateral superior goals when constraints can 

be violated getting a value below the aspiration level (e.g., flexible revenue goal), 

unilateral inferior goals when the goal can be violated by getting a value above the 

aspiration level (e.g., flexible cost goal), and bilateral, when deviations are minimized 

around the aspiration level without forcing the value to be exactly equal to the 

aspiration level (e.g., flexible budget goal).  

Since d+ and d- are deviations from the aspiration levels, and generally the 

soft constraints are expressed in different dimensions, then it is necessary to scale 

those deviations. It is made by means of Pk which corrects the scale of the 

deviations, preventing the model of being biased. Pk values are calculated based on 

aspiration levels and coefficients of variables in the soft constraints, so, these 

parameters are fixed and they do not change overtime, i.e., no matter the vector 

state of the system, parameters of the models are fixed. This characteristic is 

important in the context of multi-state multicomponent-systems in which the feasible 

set of actions at a specific time Tk is variable and dependent on the current state.  

Finally, Wk, are the weights that represent the importance of the criteria for the DM 

(the preference structure). They can have a real meaning, such as the cost impact of 

deviations, margin impact, illness, impact on the organization’s image, or any 

consequence that the DM judge as being useful for determining the preference for 

each criterion. These values drive the optimization process, in the sense that they tell 

how beneficial for the system performance is to improve one objective in a value x in 

comparison to improve other objective in the same amount x.   
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4.3 RL-BASED CBM MODEL FOR MAINTENANCE DECISION-MAKING AND 

OPTIMIZATION  

In order to develop a RL-based CBM model for the maintenance optimization 

of multi-state multi-component systems it is first necessary to model the elements of 

the decision problem. They include the state space, the action space, and the effect 

of actions over the system performance, which can be specified through the definition 

of a reward function based on GP modelling. These elements are formalized as 

follows. 

4.3.1 State space 

Considering the problem defined in section 2, the state of the system observed 

at every inspection Tk can be defined as follows: 

STk = [si(Tk)), si+1(Tk), si+2(Tk)……, sn(Tk)] 

where each element of STk represents the degradation state of each 

component of the system. Considering that, the state space of the problem is all the 

possible combinations of n components in all possible degradation states m defined 

by mn possible state sets.  

4.3.2 Actions space 

Since we deal with a multi-component system, the action taken at each 

inspection Tk is a set of actions Atk composed of the actions taken for each 

component as follows: 

ATk = [ai(Tk), ai+1(Tk), ai+2(Tk)……, an(Tk)] 

Considering the last, the action space is all the possible set of actions. 

Since we consider that the maintenance actions are deterministic, i.e., they 

can take the system to a desired state, from now on, when we recall actions we will 

referring to the state of components after performing maintenance, e.g., if one wants 

to take a n-component system from 𝑆𝑇𝑘 = [020. . 𝑛] to 𝑆𝑇𝑘(𝑝𝑜𝑠𝑡) = [010. . 𝑛], then the 

initial state of the component is 2, and the action taken over it is 1. Formally, we have 

𝐴𝑇𝑘=𝑆𝑇𝑘(𝑝𝑜𝑠𝑡) = [010. . 𝑛],. Besides, we consider that induction of defects or 

heterogeneous population of spare parts are not considered. Therefore, actions 

cannot worse the state of the components. For example, if a n-component system is 

in 𝑆𝑇𝑘 = [003. . 𝑛]  at Tk , 𝐴𝑇𝑘 = [002. . 𝑛] would be a feasible action, but if STk would 
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be [001. . 𝑛], then the same action would be unfeasible. This characteristic makes the 

action space variable and dependent on the current state STk of the system. 

Despite the action space being dependent on STk, it is not possible to 

represent it like that. It happens because the output nodes of the neural network that 

represents the state-action value function in DDQN should remain constant which 

correspond to the number of actions. Thus, in order to fix the action space and 

consider that there are unfeasible actions inside the action space that depend on the 

current state STk, we should first define the action space AE for a system with m 

possible states and n components, as being mn possible action sets, and then, this 

action space should be constraint during the training process, allocating a high 

penalty to the reward when an unfeasible set of actions is selected. At the end of the 

training process, the RL agent should be capable of avoiding the unfeasible actions-

those that worse the component state-and select the best set of feasible actions that 

lead to the maximum long-term reward.  

It is important to highlight that as we are dealing with an inspection policy, the 

system passes through two state transitions. The first one is a transition from the 

current state STk of the components to the state after maintenance STk(post) which is 

the same action Atk, while the second one is a transition from STk(post) to the state 

after the natural degradation STk+1, which occurs between two consecutive inspection 

times (𝑇𝑘 𝑇𝑘+1] when the system is not being inspected. Therefore, STk+1 is the post-

degradation state and the final state observed by the RL agent after performing an 

action.  

4.3.3 GP-based Reward 

Reward functions are cost-benefit models, which evaluates how suitable the 

transition from one state to another is, and what is the long-term benefit of performing 

a policy π of acting.  

Since we are dealing with a multi-objective problem, where a trade-off 

between objectives must be achieved, the reward function should take into account 

the preference structure of the decision-maker (DM). The last guides the trade-off 

between the objectives and at the same time is aligned with the organizational goals. 

In our problem, we are dealing with reliability as a measure of worker’s safety, and 

maintenance cost that measure the cost of taking each component from STk to STk+1 

and the downtime cost. The preferences over these two objectives strongly 
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determine the optimal policy of the agent since it will determine which actions the 

agent should take in order to favour one objective over the other. In order to consider 

the preference structure of the DM we have used a Goal programming approach to 

model the reward function.  

Next, we present how the multi-criteria maintenance optimization of multi-state 

multi-component systems can be modelled in terms of GP (see Equation (20)). After 

that we will show how the reward function can be structured in order for it to be 

compatible with the RL paradigm.  

 

𝑀𝑖𝑛 𝑍 = 𝑊1 ∗
(𝑑1
−1)

𝑃1
+𝑊2 ∗

(𝑑2
+)

𝑃2
 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   

𝑟𝑏 + 𝑑1
−1-𝑑1

+1 = 𝑅𝑟 

𝑐𝑚 + 𝑑2
−1-𝑑2

+1 = 𝐶𝑟 

 

(

20) 

 

In equation (6), rb is the reliability at inspection time Tk after performing a 

maintenance action Atk which represents the probability of the system surviving until 

the inspection Tk+1. cm is the maintenance cost of Atk at a specific inspection time Tk 

which includes the cost of taking each component from Stk to Stk+1, the downtime cost 

Cdown, and the setup cost cs. rb and cm are functions that depend on Atk. Rr and Cr 

are the aspiration levels of reliability and cost that the manager wants to achieve as 

reference thresholds. In the objective function, 𝑑1
−1 is the deviation of Rr when rb 

underperforms the desired threshold, which is penalized in the objective function. 

The same logic is used for 𝑑2
+, which is penalized when cm underperforms the desired 

threshold.  

As the maintenance decision in multi-state-multi-component system is solved 

in this paper by means of RL so to consider its stochastic character, it is necessary to 

adapt the aforementioned model to the RL model in order to include the preference 

structure of the DM in the reward function and then guide the agent during the 

learning process for balancing the objectives. Equation (20) is transformed in the 

reward function described by Equations (21), (22) and (23): 

 

𝑅𝑒𝑤𝑎𝑟𝑑𝑇𝑘 = 𝑅𝑏 + 𝐶𝑚 (
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 21) 

𝑅𝑏 = {𝑊1 ∗ (𝑟𝑏 − 𝑅𝑟)/𝑃1 

 

(

22) 

𝐶𝑚 = {−𝑊2 ∗ (𝑐𝑚 − 𝐶𝑟)/𝑃2 

 

(

23) 

At each inspection Tk, the aforementioned reward function is used to calculate 

the immediate reward of Atk, and the same is used to calculate the quality of the 

possible actions, i.e., q-values, given a specific Stk, which in turn drives the decision 

of which action to select at each Ttk when training the RL algorithm. Rb and Cm are 

scaled and weighted deviations of the aspiration levels Rr and Cr. Then, when the 

reliability level rb is below Rr, it is penalized in the reward function, and when rb is 

above Rr, it is awarded. The same thing happens with the cost deviation. When cm is 

above Cr, it is penalized, and when cm is below Cr, it is awarded. 

Finally, deviations d+ and d- were scaled using proportional normalization in 

which deviations are proportional to the aspiration levels. Then we set 𝑅𝑟 = 𝑃1 and 

𝐶𝑟=𝑃2. 

In this paper rb and cm are represented by DNNs and predicted by them at 

each Tk when an Atk is taken. DNNs map the relationship between Stk, Atk, and the 

system performance, and enable predicting the performance of actions between two 

consecutive inspection times (𝑇𝑘, 𝑇𝑘+1]. More details on that are given in the 

numerical section.  

4.3.4 RL training process 

In the general training process, the agent follows the steps shown in Algorithm 

1 presented in Appendix A. In Algorithm 1, all the components are set to AGAN 

(state 𝑆𝑇𝑘 = [0,0,0… ,0]) when each iteration begins (reset MaintenanceEnv). 

Besides, during the training process, unfeasible actions (those that worse the state of 

the components) are highly penalized in terms of cost as a way of constraining the 

action space. Penalties are proportional to the difference between the initial state of a 

given component and its final state, so the more, the action worse the component the 

higher it is penalized. Therefore, during the training process, all the q-values are 

optimized, even the unfeasible actions, but the agent will avoid selecting the 

unfeasible action as it learns what actions offer a better long-term reward.  
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Figure 6 summarizes the integration of all the element of the model described 

in sections 4.2 and 4.3 providing a bird’s eye view of the training process. 

 

Figure 6—RL-based CBM model 

 
 

Source: The Author (2021). 

 

4.4 NUMERICAL EXAMPLE  

The proposed RL-based CBM model is applied to a simulated system 

composed of i=3 components and m=4 states, defined by si(Tk). The reliability block 

diagram is shown in Figure 7.  

Figure 7—Reliability diagram block of the system 

 

 

 
Source: The Author (2021). 
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𝑠𝑖(𝑇𝑘) = {

 0           if component 𝑖 𝑖s as goog as new
1 ≤ 𝑗 ≤ 2  if component 𝑖 is in a degraded state   

3                         if component 𝑖 is failed
 

 

We have considered that the cost relation of components is not known, but its 

relation to maintenance states and maintenance actions at each Stk can be estimated 

from records by using Deep Neural Networks (DNN). It is especially useful in multi-

component systems in which it is difficult to estimate the performance of the system 

based on combined degradation states of components and combined actions. 

Therefore, the DNNs can map these relations in a model-free way.  

We have used a feed-forward DNN for predicting the expected system cost 

performance every time the agent performs Atk. These DNNs were optimized using 

Adam optimizer, optimizing aspects such as the number of layers and the number of 

neurons per layers. They were fed with the dataset explained in the next section, 

receiving 𝑆𝑇𝑘 and 𝐴𝑇𝑘 at every inspection as inputs, and the system cost as output. 

Finally, the training set is set at 90% of the dataset instances, while the test set is the 

remaining 10%. 

4.4.1 Data generation  

Although the proposed model can benefit from real data to understand the 

one-step relation between degradation states, actions and the system performance, 

we have generated a simulated dataset in order to overcome the lack of real 

maintenance records and show the value of the model. The dataset is generated with 

the following conditions:  

• maintenance inspections were generated for 5000 sequential discrete time 

points 𝑇𝑘 (with 𝑘 = 1,2, … ,5000), so at each inspection the degraded system 

is recovered by getting their components maintained; 

• all components are new at the beginning 𝑆𝑇𝑘 = [0,0,0]; 

• preventive and corrective maintenance actions were generated for each 

component with the possibility of performing or not performing any 

maintenance action on broken or survival components; 

•  the maintenance cost includes the Cd, which is incurred when the whole 

system fails, the cost of taking each component from state 𝑆𝑇𝑘 to state 𝑆𝑇𝑘+1  

and the setup cost Cs.  
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In order to define whether the system incurs in downtime or not, it is necessary 

to estimate if the system fails based on the reliability diagram shown in figure 2. It is 

defined by equation (24). 

 

𝐹𝑠𝑦𝑠 = 𝐹(1) ∗ [1 − (1 − 𝐹(2)) ∗ (1 − 𝐹(3))], 24) 

 

Where, 

- Fsys represents the system state. If the system fails, FSys = 0 and then the 

system incurs in Cd=$500, otherwise if the system is operational, FSys = 1 and 

then Cd= $0.  

-  F(i) represents the state of the component i at time Tk before performing any 

maintenance action. It is defined as follows: 

  

𝐹(𝑖) = {
0           𝑖𝑓 𝑖 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 (𝑚 + 1), 𝑖. 𝑒. , 𝑓𝑎𝑖𝑙𝑒𝑑

1   𝑖𝑓 𝑖 𝑖𝑠 𝑖𝑛 𝑠𝑡𝑎𝑡𝑒 0 ≤ 𝑗 ≤ (𝑚𝑖 − 1) 𝑖. 𝑒. , 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
 

(

25) 

 

The maintenance costs of taking each component from state 𝑠𝑖(𝑇𝑘) to state 

𝑠𝑖(𝑇𝑘+1) are defined by the following matrix M𝑖 (for 𝑖 =1 to 3). Additionally, the setup 

cost is set as Cs=20.  

 

𝑀1 = (

0 0 0 0
100 0 0 0
100 40 0 0
100 0 0 0

)  𝑀2 = (

0 0 0 0
80 0 0 0
80 30 0 0
90 0 0 0

) 𝑀3 = (

0 0 0 0
70 0 0 0
70 30 0 0
80 0 0 0

) 

The degradation of each component between two successive inspections (Tk, 

Tk+1] is generated according to the following transition matrixes 𝑃𝑖 (for 𝑖 =1 to 3). In 

the case of having a real maintenance record, the matrixes can be estimated from 

the dataset: 

 

𝑝1 = (

0.35 0.35 0.23 0.07
0 0.29 0.42 0.29
0 0 0.5 0.5
0 0 0 1

)   𝑝2 = (

0.12 0.38 0.38 0.12
0 0.14 0.43 0.43
0 0 0.43 0.57
0 0 0 1

) 
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𝑃3 = (

0.28 0.28 0.44 0
0 0.14 0.43 0.43
0 0 0.29 0.71
0 0 0 1

) 

 

The resulting reliability at each discrete Tk is also generated. As it means the 

probability of the system surviving until the next scheduled inspection Tk+1, it is 

necessary to take into consideration the probability of each individual component 

surviving until Tk+1 after performing the maintenance action, as shown in equation 

(26). 

   

𝑅𝑠𝑦𝑠 = 𝑅1 ∗ [1 − (1 − 𝑅2) ∗ (1 − 𝑅3)] 

 

(

26) 

 

In equation (12), 𝑅𝑖 is the probability that the component i survives until the 

next scheduled inspection Tk+1. It can be calculated from the matrix Pi for each 

component as shown in equation (27). 

 

𝑅𝑖 = 1 − 𝑃𝑖(𝑠𝑖(𝑇𝑘), 3) 

 

(

27) 

Where 𝑃𝑖(𝑠𝑖(𝑇𝑘), 3) is the probability of the component i going from 𝑆𝑖(𝑇𝑘) to 

𝑆𝑖(𝑇𝑘) = 3, before the next scheduled inspection Tk+1. A sample of the dataset 

generated from the 3-component system is presented in Table 5.   

Regarding the parameters of the reward function, it is considered that the DM 

preferences are W1=1 and W2=1. The aspirational goals at each Tk are 𝑅𝑟 = 0.5 and 

𝐶𝑟=$500. Since we consider that the goals are scaled using a proportional 

normalization in which deviation are proportional in relation with the aspiration levels, 

we have   𝑅𝑟=𝑃1 =0.5 and 𝐶𝑟=𝑃2=500. The hyperparameters of the RL agent such as 

learning rate, batch size, decay rate, decay function, number of steps to update the 

target network weights were tuned.  

Table 5—Dataset sample 

Tk 𝒔𝟏(𝑻𝒌) 𝒔𝟐(𝑻𝒌) 𝒔𝟑(𝑻𝒌) 𝒂𝟏(𝑻𝒌) 𝒂𝟏(𝑻𝒌) 𝒂𝟏(𝑻𝒌) Cost Fsys 

1 0 0 0 0 0 0 0 0 

2 2 1 2 1 0 2 140 0 

3 2 1 3 1 1 0 140 0 

4 3 3 1 0 0 1 730 1 

5 3 1 3 0 0 0 800 1 
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6 1 0 1 1 0 1 0 0 

7 1 2 1 1 0 0 170 0 

8 1 3 2 0 0 0 280 0 

9 2 2 2 0 1 0 220 0 

. . . . . . . . . 

10000 2 3 2 1 0 2 150 0 

Source: The Author (2021). 

 

The training process is performed iterating over 10000 episodes each one 

composed of a decision window of 2000 inspections. The proposed RL-based CBM 

model and the decision environment were modelled in Python 7.0 using Keras API. 

Experiments were run in an Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz   2.40 GHz 

with 5,86 GB of usable RAM.  

Besides the training process, a simulation of the deployment of the optimal 

policy is carried out. This simulation is performed in order to identify the possible 

scenarios on the decision making i.e., which components are prioritized in each 

system state and which actions are performed on them. This analysis could enable 

understanding which component is more critical for the system reliability and cost 

which can help maintenance managers to take better investment decisions over the 

components and equipment of the system. In order to do that, a numerical example 

is developed in order to simulate the behavior of the agent when it is already trained. 

The example is composed of 3000 inspections that work as a real inspection set in 

which the maintenance operator observes the system’s state Stk and uses the 

optimal RL policy in order to get a maintenance action suggestion Atk. The 

maintenance operator performs Atk, leaves the system, and returns in the next 

scheduled inspection Tk+1 to continue maintaining the system. The propose of this 

example is to obtain knowledge from the system and understand the relation 

between components to gain some strategic insights if possible. The performance of 

the agent is reported in terms of Total cost and Average Reliability as in the training 

process. It is important to notice the complexity of this analysis can increase with the 

complexity of the system, but it is worth it to obtain knowledge from it in order to 

obtain any strategic and managerial insight as explained before.   
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4.5 RESULTS AND DISCUSSION  

4.5.1 Results of the training process 

As follows, we present the “optimal” hyperparameters” of the DNN that 

predicted the maintenance cost at each inspection point, as well as the loss 

achieved. The main hyperparameters for DNN predictor are reported in Table 6. The 

system reliability can be calculated from equations (26) and (27). As it is mentioned 

in the numerical example, the reliability and the predicted maintenance cost  at each 

inspection point are used to calculate the reward of 𝐴𝑇𝑘at each 𝑆𝑇𝑘 by means of the 

based GP reward.  

Table 6— Hyperparameters and performance of the DNN 

Number of layers 2 
Neurons of layer 1 737 
Neurons of layer 2 1456 
Optimizer Adam 
Dropout of layer 1 0.020 
Dropout of layer 2 0.025 
Learning rate 0.1231 
Batch size  444 

RMSE 3.27 
Source: The Author (2021). 

 

Table 7—Hyperparameters of the optimal RL agent 

Hyperparameter Value 

Gamma 0.95 
Decay rate 0.9994*epsilon 
Epsilon minimum 0.005 
Batch size 2000 
Learning rate 0.0001 
Target steps 100 
Hidden layers of 

Target and Policy networks 
3 

Neurons of layer 1 1200 
Neurons of layer 2 300 
Neurons of layer 3 100 
Optimizer Adam 
Dropout of layer 1 0.1 
Dropout of layer 2 0.0 
Dropout of layer 3 0.0 

Source: The Author (2021). 

 

The main hyperparameters of the optimal RL agent are presented in Table 7. 

After tuning the hyperparameters of the RL based CBM model the following results 
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were obtained. Figure 8 presents the long-term reward performance during the 

training process, i.e., the cumulated reward of 2000 inspections. The results were 

averaged at each 25 episodes/iterations.  

 

Figure 8—Average long-term reward 

 

Source: The Author (2021). 

 

From Figure 8 it is possible to see that the average reward has been improved 

overtime as the agent gains more experience and take it as a base for selecting 

actions (diminishing of epsilon), i.e., decrease the exploration process and increase 

the exploitation process.  After 10000 episodes of training it reaches the 

convergence, taking positive values of about 2743.2. From this Figure it is shown that 

the RL-based CBM model is capable of finding the best trade-off between the 

maintenance cost and the reliability performance, balancing these two conflicting 

objectives. It can be verified in Figures 9 and 10 which show how the system 

performs in terms of maintenance cost and reliability criteria during the training 

process. These figures offer another view of how the agent performs during the 

training process. 

From Figure 9, it is possible to see how the system cost composed of 

maintenance, setup and downtime cost is improved over time as the agent gains 

more experience. The maintenance cost is expressed in terms of cost rate, i.e., the 

average cost per inspection. The cost rate took a long-term optimum value of 244.05 

monetary units at the end of 10000 episodes.  
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Figure 10 shows the improvement of the average reliability overtime, reaching 

an average value of 0.93 at the end of the training process. 

 

 Figure 9—Average long-term cost 

 

Source: The Author (2021). 

 

 

Figure 10—Average reliability 

 

Source: The Author (2021). 
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4.5.2 Deployment simulation results 

After simulating the optimal policy of the RL-based CBM model for 3000 

inspections, it was possible to identify eight (8) actions that drive the policy of the 

agent. They are presented in Table 8. In each line, it is possible to see all the 

possible states 𝑠𝑖(𝑇𝑘) for each component i, and the action 𝐴𝑇𝑘 =

[𝑎1(𝑇𝑘), 𝑎2(𝑇𝑘), 𝑎3(𝑇𝑘)] taken for maintaining each component.  

Table 8—Illustration of the policy in specific cases 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Source: The Author (2021). 

 

Case 1 occurs when 𝑆𝑇𝑘 is any combination of 𝑠𝑖(𝑇𝑘) in which C2 is not 

broken. In this case the agent takes the whole system to the state AGAN. This is 

what the agent does most part the time, particularly 41.2 % of the time. This behavior 

suggests that replacing C2 is expensive when it is broken, but it is not to recover it to 

AGAN state through a perfect preventive action. Case 2 occurs when C2 is broken 

and the agent keeps it broken. It can indicate that this component is not critical for 

determining the failure of the whole system or that replacing it is expensive. Once C2 

is degraded, his preventive maintenance is prioritized as seen in case 1, but when it 

is broken his substitution is neglected. This action is performed 40.6 % of the time. 

The behavior of case 1 and 2 might indicate that taking the whole system to 

the state AGAN is not expensive and that it has a good return in terms of average 

reliability. When it is not possible because C2 is broken, a reasonable decision could 

be keeping C2 broken most part of the time, since depending on the case it could not 

Case 𝒔𝟏(𝑻𝒌) 𝒔𝟐(𝑻𝒌) 𝒔𝟑(𝑻𝒌) 𝒂𝟏(𝑻𝒌) 𝒂𝟐(𝑻𝒌) 𝒂𝟑(𝑻𝒌) 

1 0,1,2,3 0,1,2 0,1,2,3 0 0 0 

2 0,1,2,3 3 0,1,2,3 0 3 0 

3 2 3 2 0 0 2 

3bis 3 2 2 0 0 0 

4 2 3 0 1 0 0 

5 2 2 2 1 0 2 

6 1,2 1,2 3 0 1 0 

7 0,1 1,2 3 0 0 3 

8 3 2 3 0 2 0 
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be afforded to get it replaced. Case 1 and case 2 accounts for near 82 % of the 

action of the agent. In our problem, recovering C1 and C2 seems to be enough, since 

the system is a series-parallel one indicating that having C3 or C2 in an operational 

state jointly with C1 is enough to keep the system operational. 

The remaining six actions are very scarce and account for just 18% of the 

cases. Case 3 is an exception of case 2 in which the system seems to be near the 

failure. In this case, the substitution of C2 that early on is neglected now is prioritized 

jointly with C1, which suggest that the degradation of these 2 components at the 

same time is critical for the failure of the system and its performance in terms of cost. 

C3 does not seem to be that critical since it is kept in s(tk)=2 even though it is near 

the failure. The agent behaves like this 4.73 % of the time. It is important to highlight 

that that combination of 𝑠𝑖(𝑇𝑘) is particularly critical, since in the case of other similar 

states such as case 3bis when the system seems to be near the failure, the action 

chosen by the agent is to replace all the components. It is possible to confirm that 

recovering C2 to the AGAN state through a perfect preventive action is cheaper than 

replacing it when it is broken. Case 3 is very scarce and just happens when despite 

of the effort of the agent for maintaining all the components in AGAN state, the 

natural degradation of components between two successive inspections (Tk, Tk+1] 

eventually breaks C2 and degrades C1 to s(tk)= 2.  

In case 4 it is possible to confirm that simultaneous degradation of C1 and C2 

is critical. It is possible to claim that because when C2 is broken and C1 is near the 

failure the agent is obliged to substituting C2 again. In this case, C1 is just taken to 

𝑠𝑖(𝑇𝑘) = 1 instead of being replaced. A possible explanation for that is that C3 is in 

AGAN state indicating that recovering C2 is enough to recover the system health and 

that it can also lower costs.  This action is taken 3.2% of the time and is very similar 

to case 3. 

Case 5 occurs just 2.16% of the time, but the scenario is very useful to see 

how the agent prioritizes components when all of them are near the failure. In this 

case the action could be justified by a mix among the cost of recovering each 

component, the importance of each component in structural terms, and the failure 

rate of each component that could determine how urgent is to recover a specific 

component. The only thing that can be claimed for sure is that C2 has the highest 

priority as it is suggested in other scenarios, while C3 has the lowest priority. It is true 
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when C2 is not broken since it seems like in that case the replacing cost has an 

important role in the decision.  

Case 6 occurs 3.03% of the time. There is not a specific trend in this case, but 

it seems like the agent is just balancing costs. Case 7 occurs 4.6% of the time. In this 

case C1 and C2 are operational, and they are taken to AGAN state no matter its 

degradation state which seems to be not expensive. In the case of C3, it seems to be 

not critical, so it is kept broken. A possible explanation of not doing any maintenance 

in C3 is that it allows the agent to make some savings and use the budget for 

maintaining C1 and C2 that are apparently more critical in structural terms and cost 

performance. Finally, case 8 is evidenced 0.4% of the time. In this case C1 and C3 

are broken and so does the system. Then the agent needs to recover the health of 

the system, giving priority to C1 and C3.  

4.6 COMPARISON WITH CONTROL LIMITED BASED MAINTENANCE 

POLICIES 

A comparison with three control limited based maintenance policies under two 

different scenarios was performed in order to benchmark the RL-based CBM model. 

The first scenario represents the case in which broken components (𝑠𝑖(𝑇𝑘) = 3) 

should be replaced  immediately (𝑎𝑖(𝑇𝑘) = 0) when the system is found operational at 

𝑇𝑘. The second scenario represents the case in which broken components can either 

be replaced immediately 𝑎𝑖(𝑇𝑘) = 0 or not 𝑎𝑖(𝑇𝑘) = 3  when the system is found 

operational at 𝑇𝑘. The comparison of the two aforementioned scenarios has been 

necessary since having one component broken into a system with redundancies 

does not necessarily mean that the system is down and that the broken component 

should be replaced immediately. Thus, we can investigate whether providing the 

policies with more flexibility favor one policy in comparison with the others. For both 

scenarios, we have three control limited based maintenance policies presented as 

follows. 

1) Corrective based line policy: preventive maintenance actions are not 

considered and components are just replaced when they are broken ( 𝑠𝑖(𝑇𝑘) =

3) depending on the scenario (i.e., scenario 1 or 2). Specifically, 𝑎𝑖(𝑇𝑘)  is 

chosen randomly for scenario 2.  
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2) Random based line policy: components are maintained preventively if  

0 < 𝑠𝑖(𝑇𝑘) ≤ 2 and 𝑎𝑖(𝑇𝑘)  is chosen randomly between [0, 𝑠𝑖(𝑇𝑘)) 

The performance of the random based and the corrective based line 

policies for scenarios 1 and 2 was calculated using the multi-objective GP-

adapted reward, in which it is possible to compute the reward, based on the 

maintenance cost performance predicted by the DNN and the reliability 

performance. The decision parameters of GP as well as the cost and reliability 

structure of the problem solved by means of the RL-based CBM model were 

kept the same for the aforementioned policies. Considering the last, the RL-

based CBM model can be benchmarked with the aforementioned policies in 

terms of reward, and its compositional elements; cost and reliability. 

3) Classical policy: in order to select a component to be preventively maintained, 

a preventive threshold mi is introduced. It is necessary since a preventive 

maintenance action can bring a maintained component to be somewhere 

between the state just before maintenance and AGAN, and then different 

types of preventive actions (ai with i=1, 2, ..., n) would be necessary to be 

selected. This may lead to many preventive thresholds. Therefore, to reduce 

the number of preventive thresholds for each component, it is assumed that 

the state after a preventive maintenance of a maintained component can be 

uniformly distributed between the state before maintenance and AGAN. That 

means that only one kind of preventive maintenance action is possible for 

each component. In that way, we need only one preventive threshold mi for 

each component. More precisely, for a surviving component i (with i=1,2,3) at 

time Tk: 

- A preventive maintenance is needed if its state 𝑠𝑖(𝑇𝑘) ≥ 𝑚𝑖, mi being a 

decision variable to be optimized; 

- No preventive maintenance is required if 𝑠𝑖(𝑇𝑘) < 𝑚𝑖. 

 To find the optimal preventive thresholds, a cost model is used. Monte-

Carlo simulation is used to evaluate the average long-term maintenance cost 

rate for each value of preventive threshold, in which the reliability performance 

is a consequence of the cost performance optimization. 

In order to make a comparison between the proposed model and an 

inspection CBM classical policy feasible, it was necessary to adapt the 
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proposed model as follows: a) the action space is constrained and the agent 

can only choose whether to perform a preventive maintenance action over a 

component (𝑎𝑖(𝑇𝑘) = 1) or not (𝑎𝑖(𝑇𝑘) = 0), i.e., a binary action set per 

component; b) as in the classical based line policy the state after a preventive 

maintenance of a maintained component is uniformly distributed between the 

state before maintenance and AGAN [0, 𝑠𝑖(𝑇𝑘)); c) the parameters of the GP-

adapted reward were set as W1=0 ,W2=1,P2=1,Cr=0 in order to emulate the 

cost function used to assess the classical based line policy. Given the 

aforementioned adaptations, the RL-based CBM model can be directly 

benchmarked with the classical policy in terms of cost, which turns out to be 

the negative value of the reward, and with the reliability performance which is 

a consequence of the cost minimization.  

The control limited based line policies and the RL-based CBM model were 

performed over 100 episodes, each one representing the policy performance over 

2000 inspections. The results were averaged and presented in Table 9, 10, and 11. 

Table 9 presents a comparison with the random based line and the corrective based 

line policy in scenario 1, while Table 10 presents a comparison with the same 

policies in scenario 2. On the other hand, the comparison with the classical based 

line policy for scenarios 1 and 2 were condensed in Table 11.   

 

Table 9— Comparison with random based and corrective based line policies for scenario 1 

Policy Reward rate Cost rate Average 

reliability 

Computing time* (s) 

RL-based CBM 1.3579 248.2646 0.9273 9.8134 

Random based line 1.0553 258.8799 0.7866 6.2526 

Corrective based line 0.7100 284.8488 0.6376 6.1109 

* The reported computing time corresponds to the average time for 2000 inspections 

Source: The Author (2021). 
 

Table 10— Comparison with random based and corrective based line policies for scenario 2 

Policy Reward rate Cost rate Average 

reliability 

Computing time* (s) 

RL-based CBM 1.3716 244.0583 0.9300 9.9608 

Random based line 0.9711 269.8184 0.7555 6.4035 

Corrective based line 0.5921 301.8333 0.5980 6.1325 

* The reported computing time corresponds to the average time for 2000 inspections 

Source: The Author (2021). 
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As can be seen in Table 9 and 10, the three policies were compared in terms 

of the reward rate, which represents the average reward at each inspection, the cost 

rate, which represents the average cost incurred at each inspection, the average 

system reliability at each inspection, and the computing time. It can be seen that the 

performance of the RL-based CBM model outperforms the performance of the two 

baseline models in terms of reward rate. Specifically, the random based line model 

and the corrective based line model were outperformed 28.67% and 91.25%, 

respectively, for scenario 1, and 41.23% and 64.01%, respectively for scenario 2. 

The superiority of the RL-based CBM model in terms of reward is achieved with a 

trade-off between cost rate and average reliability for which the RL-based CBM 

model also outperformed the two control baseline policies both in terms of average 

cost and average reliability. The random based line and the corrective based line 

policies were outperformed in terms of cost in 4.09% and 12.84%, respectively, for 

scenario 1, and in 9.54% and 19.16%, respectively for scenario 2. On the other hand, 

the random baseline and the corrective baseline policies were outperformed in terms 

of reliability in 17.88% and 45.43%, respectively, for scenario 1, and at 23.17% and 

55.51%, respectively, for scenario 2. From the aforementioned results it is also 

possible to claim that the RL-based CBM model benefits from having more freedom 

for choosing actions. It is possible to say that because the policy outperforms the 

random and the corrective based line policies to a greater extend in scenario 2, in 

which the RL agent take advantage of the system redundancy for replacing broken 

components dynamically whenever it is most convenient. Specifically, the RL-based 

CBM model promoted a cost improvement rate from scenario 1 to scenario 2 of 

133.25% and 49.22% over the random and the corrective based line policies, 

respectively. In the case of the reliability’s performance, improvement rates of 

29.58% and 22.18% of the random and the corrective based line policies, 

respectively were achieved.  

From Table 9 and 10, it is also possible to claim that the gain in reward, cost, 

and reliability performance comes at the expenses of the computing time, which is 

higher than the random based line and the corrective based line models. It was 

outperformed 56.94% and 60.58%, respectively, for scenario 1, and 55.552% and 

62.426%, respectively for scenario 2. However, we should consider that we are 

proposing an inspection condition-based model, that will take decisions/advice at 
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each Tk based on the system state that is observed/informed by the maintenance 

operator. Then, it is necessary to take into account the resultant average computing 

time per inspection of the RL-based CBM model, which can be computed as just 

0.004498 seconds for scenario 1 and 0.004906 seconds for scenario 2. Therefore, 

we can say that the use of the proposed policy is justified even with the computing 

time drawback. 

  

Table 11—Comparison with the classical based line policy for scenarios 1 and 2 

 

Policy 

Cost rate 

Scenario 1 

Average reliability 

Scenario 1 

Cost Rate 

Scenario 

1 

 Average 

reliability 

Scenario 2 

 

m1
* 

 

m2
* 

 

m3
* 

RL-based CBM** 234.8613 0.8291 229.6096  0.8405 - - - 

Classical based line* 246.1056 0.7682 256.2817  0.7335 2 3 2 

* Thresholds m1*, m2*, and m3* have the same values for both scenarios 1 and 2 **no specific thresholds were found 

Source: The Author (2021). 

 

From Table 11 it is possible to see that the RL-based CBM model 

outperformed the classical based line policy in terms of reliability and cost for both 

scenarios 1 and 2. Specifically, the reliability’s performance was outperformed 7.92% 

and 14.58% for scenario 1 and 2, respectively. On the other hand, the cost 

performance was outperformed 4.56% and 10.40% for scenario 1 and 2, 

respectively. These results confirm the even though inspection CBM classical policies 

have preventive thresholds that make the policies straightforward for decision 

making, they tend to become inefficient and suboptimal as the complexity of the 

problem increases. Another way of confirming that is noticing that when comparing 

the classical policy performance in scenario 1 and 2, it had a performance loss of 

4.13% and 4.51% for cost and reliability, respectively. On the other hand, inspection 

RL-based CBM policies can map the degradation state of the system to the action 

space directly without the need of establishing preventive thresholds. As a 

consequence, the actions on each component can be selected dynamically 

according to the degradation level of the other components in a given moment. This 

flexibility characteristic allows better solutions to be achieved. This claim can be also 

confirmed when comparing the RL-based CBM performance for scenarios 1 and 2, in 

which it is possible to see that the cost and reliability performance were improved by 

2.23% and 1.37%, respectively. 
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4.7 FINAL REMARKS OF THE CHAPTER 

In this chapter a RL-based CBM maintenance model for multi-state-multi-

component systems was purposed. The proposed model was developed using 

Double-Deep-Reinforcement Learning and Goal Programming modelling.  

This chapter shows that the proposed model enables maintenance multi-

objective optimization while consider the stochastic nature of the system degradation 

process in multi-state multi-component systems. It allows imperfect maintenance 

actions to be performed in order to recover the system to better degrades states and 

to balance the system availability and the maintenance cost. The RL-based CBM 

model outperformed four limited based line policies achieving cost and reliability 

gains of up to 19.16% and 55.51%, respectively. From the results it is also possible 

to say that the RL-based CBM model benefits from having a bigger action alternative 

set for achieving a better cost and reliability regarding to the benchmark policies. 

Specifically, the RL-based CBM model achieved an improvement rate over the 

benchmark policies of up to 133.25% and 29.58 % for cost and reliability, 

respectively when the two scenarios provided are compared. It was also possible to 

analyse the optimal policy given by the RL-based CBM model and discover the 

priority of components and actions based on the frequency of scenarios found in a 

deployment simulation, which allows one to claim that it is possible to extract 

knowledge from the agent behaviour (at least for the three-component system) and 

take advantage of this information to potentially improve maintenance managements 

in areas such as component life cycle, spare parts management and maintenance 

investments.   
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5 CONCLUSSION OF THE THESIS 

In this thesis, two machine learning-based models for the optimization of 

support functions were proposed. The models enable the improvement of key 

indicator performances such as order fulfilment rate, total e-tailer’s profit, 

maintenance cost rate and average system’s reliability 

The first model presented in this thesis proposed a DNN classifier that 

splits the demand between the e-tailer and other players in dropshipping systems 

in the B2C market. We expect that the model contributes to the improvement of 

the inventory rationing efficiency of e-tailers, bringing gains in terms of productivity 

and service-oriented performance. It is also expected to boost the improvement of 

subsequent activities such as picking, packing, delivering of items, and the 

inventory replenishment, that benefit from having the demand splitting information 

in advance. The model has the potential of benefiting e-tailers of critical niches 

such as the e-grocery market, in which the majority of products are perishable, 

and cumulating order can be highly inefficient, since the products degrade 

exponentially as they are kept in shelves. The model can also be adapted to other 

contexts such as Oil & Gas extractions and wind energy production, which take 

place in offshore facilities. In this contexts, the on-land inventory is very stressed 

due to geographical and weather conditions, and the size and cost of spare parts. 

Additionally, since maintenance plans should be in phase with the availability of 

components, the way in which the limited on-hand inventory is rationed can affect 

the availability of the system and consequently the production rate. In this sense, 

strategically outsourcing some maintenance activities can be an interesting bet for 

increasing the capacity of response of the in-house maintenance team and the 

access to spare parts.     

The second model presented in this thesis proposed a RL-based CBM 

algorithm that allows the maintenance optimization of multi-component systems. It 

considers the necessity/possibility of performing imperfect maintenance and the 

necessity of assessing the efficiency of maintenance policies regarding conflicting 

criteria such as plant/worker safety, environmental, and social impact, and any 

other criteria that allow the integration of other decisions such as production, 

inventory, and quality control. The model is expected to be applied to a wide 

variety of contexts of complex systems with different number of components, 
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imperfect actions, and maintenance criteria. Particularly, the model can be useful 

in systems such as nuclear power plants, offshore facilities, aerospace 

components, Gas & Oil industry, and hospitals, in which the consequence of 

failures can have serious economic, social and environmental implications. The 

model can also be applied to offshore wind farms, in which the system 

degradation can be very stochastic due to components and subsystems 

dependencies, and to the influence of environmental conditions such as wind 

speed, and wave and storm formation. These environmental conditions also 

determine the access to the platforms for performing maintenance actions, reason 

why, imperfect actions can be at hand to take advantage of maintenance 

opportunities and then balancing the system availability provided by the actions 

and its costs. Considering the complex characteristics of off-shore wind farms, the 

design of dynamic maintenance actions based on the asset’s conditions such as 

the provided by the proposed model seems to be adequate. 

Since the models developed in this thesis were designed to take advantage 

of the potential increasing in data availability promoted by the adoption of industry 

4.0, the applicability of the models in current real problems represents a 

challenge. In the case of the maintenance model, its applicability can be facilitated 

in two ways. The first one is to suppose that the cost relation of components 

between inspections is known. In this sense, it would not be necessary to use a 

DNN for mapping this relation. The problem associated with this assumption is 

that as the complexity of the system increases (number of components, states, 

actions), it turns less realistic and the cost estimation turns less accurate. A 

second way around for dealing with lack of maintenance records is to train the 

model in an on-line fashion. Using this approach, the actions recommended by 

the agent are performed in the real system, and the cost and reliability 

consequences would be real as well. In that way, the agent can learn by 

interacting in near real time with the system. The drawback of this approach is 

that RL algorithms take too much time and interactions with the system for 

learning efficient actions. Therefore, the consequence of bad actions during the 

training process can represent a high cost.  

 

 



 

89 

 

 

 

5.1  FUTURE LINES OF RESEARCH 

The model presented in chapter 3 considers the case in which there are 

only two players; the e-tailer and one supplier. Therefore, we recommend to 

extend the model for more than one supplier/wholesaler in order to assessed its 

performance. Second, the model considers that the delivery window of the 

supplier is not an important factor for splitting the demand between players. 

Future works can include the delivery time or the risk of delivery delay for taking 

that decision, or even integrate inventory rationing models with last mile models. 

Additionally, the performance of the model was confirmed for a reduced range of 

demands and types of SKUs offered by the e-tailers. It is recommended to extend 

this analysis in order to determine if the proposed model can be generalized for 

other scenarios. Finally, researchers involved in the area of contractual models 

are encouraged to develop measures to assess the economic impact as well as 

revenue-sharing models for the strategic and economic gains derived from 

advancing the decision-making over the demand splitting, which provide efficiency 

gains to other actors beside the e-tailers both downstream and upstream the 

supply chain.  

The model presented in chapter 4 has also positive implications for both 

academics and practitioners, however, it also has some limitations. First, we only 

confirmed the performance of the RL-based CBM model for a 3-component 

system so it is recommended to test the proposed model in systems compose of 

a higher number of components in order to verify if the results can be generalized, 

and to verify how difficult can be to understand the rationality of the optimal agent 

in order to extract maintenance management insights. Since the model consider 

multi-state systems tracking intermediate states of components, it can be also 

interesting to extend the aforementioned model to multi-yielding systems. In these 

systems, the intermediate degradation states on the components of the system 

can lead to a decreasing in production rates or quality of products. Therefore, the 

maintenance decision can be integrated with other functions such as production 

planning and quality control.  
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APÊNDICE A – ALGORITHMS 

Algorithm 1 DDQN-GP training 

1: for episode=1 to m do  

2:  initialize action dictionary AE 

3:  initialize dictionary Agent memory 

4:  for inspection 𝑇𝑘 = 1 to n do 

5:   read 𝑆𝑇𝑘 

6:   generate randomNumber 

7:   if randomNumber ≤ epsilon then 

8:    select random 𝐴𝑇𝑘 from AE 

9:   Else 

10:    predict 𝑞(𝑆𝑇𝑘 , 𝐴𝑇𝑘) for AE with PolicyDNN 

11:    select 𝐴𝑇𝑘 with 𝑚𝑎𝑥𝑞(𝑆𝑇𝑘 , 𝐴𝑇𝑘) 

12:   end if 

13:   execute 𝐴𝑇𝑘 in MaintenanceEnv and observe 𝑅𝑇𝑘+1 

14:   receive 𝑆𝑇𝑘+1  

15:   if 𝑇𝑘 = 𝑛 then 

16:    done ← True 

17:   Else 

18:    Continue 

19:   end if 

20:   store 𝐸(𝑆𝑇𝑘 , 𝐴𝑇𝑘 , 𝑅𝑇𝑘+1 , 𝑆𝑇𝑘+1 , 𝑑𝑜𝑛𝑒) in  AgentMemory 

21:  end for 

22:  sample minibatch from AgentMemory 

23:  step←step+1 

24:  if 𝑠𝑡𝑒𝑝 = 𝑇𝑎𝑟𝑔𝑒𝑡𝑆𝑡𝑒𝑝𝑠 then 

25:   𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑁𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ← 𝑃𝑜𝑙𝑖𝑐𝑦𝐷𝑁𝑁𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

26:   𝑠𝑡𝑒𝑝 ← 0 

27:  Else 

28:   Continue 

29:  end if 

30:  for  𝐸(𝑆𝑇𝑘 , 𝐴𝑇𝑘 , 𝑅𝑇𝑘+1 , 𝑆𝑇𝑘+1 , 𝑑𝑜𝑛𝑒) in minibatch do 

31:   𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑅𝑇𝑘+1  

32:   𝑆𝑇𝑘+1 ← 𝑆𝑇𝑘+1  

33:   if not done then  

34:    predict 𝑞(𝑆𝑇𝑘+1 , 𝐴𝑇𝑘+1) using 𝑇𝑎𝑟𝑔𝑒𝑡𝐷𝑁𝑁 

35:    select 𝑚𝑎𝑥𝑞(𝑆𝑇𝑘+1 , 𝐴𝑇𝑘+1) 

36:    compute 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑅𝑇𝑘+1 + 𝛾 ×𝑚𝑎𝑥𝑞(𝑆𝑇𝑘+1 , 𝐴𝑇𝑘+1) 

37:   else  

38:    compute 𝑡𝑎𝑟𝑔𝑒𝑡𝑓 = predict 𝑞(𝑆𝑇𝑘, 𝐴𝑇𝑘) using 𝑃𝑜𝑙𝑖𝑐𝑦𝐷𝑁𝑁 

39:    retrain 𝑃𝑜𝑙𝑖𝑐𝑦𝐷𝑁𝑁 with (𝑆𝑇𝑘 , 𝑡𝑎𝑟𝑔𝑒𝑡𝑓) 

40:   end if   

41:  end for 

42:  if 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 > 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑀𝑖𝑛 then 

43:   Perform 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝐷𝑒𝑐𝑎𝑦  

44:  Else 

45:   𝑒𝑝𝑠𝑖𝑙𝑜𝑛 ← 𝑒𝑝𝑠𝑖𝑙𝑜𝑛𝑀𝑖𝑛 

46:  end if 

47:  reset MaintenanceEnv 

48: end for 

Source: The Author (2021). 

 


