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This too shall pass:
There was a king who had everything in life, but he was confused. He decided to

consult the wise men of the kingdom and said to them: I don’t know why I feel strange
and I need to have peace of mind. I need something that makes me happy when I’m sad
and that makes me sad when I’m happy. The sages decided to give the king a ring, as long
as the king met certain conditions. Underneath the ring there is a message but the king
should only open the ring when he is in an intolerable moment, when all is lost, nothing
else can be done, so the king should open the ring. The king followed the advice. One day
the country went to war and lost. The kingdom was lost, but it could still be regained. He
fled the kingdom to save himself. The enemy followed him, but the king rode until he lost
his companions and his horse. He followed on foot, alone, and the enemies behind. His feet
were bleeding, but he had to keep running. The enemy approaches and the king, almost
fainting, arrives at the edge of a precipice. There is no way out, but the king thought: ”I
am alive, maybe the enemy will change direction, the condition is not fulfilled“. Look into
the abyss and see lions below, there’s no other way. Enemies are catching up to him, so
the king opens the ring and reads the message: ”This too shall pass.“ Suddenly, the king
relaxes. This too shall pass. And naturally the enemy changed direction. The king returns
and reconquers his country. There was a great party, the people danced in the streets and
the king was very happy, he cried with so much joy and suddenly he remembered the ring,
opened it and read the message “This too shall pass”. Again he relaxed and thus gained
wisdom and peace of mind.

I dedicate this work to my family, and professors who gave me the nec-
essary support to get here. I also dedicate this work to all those who never
stopped dreaming, even if everything else does the opposite. I finish dedicat-
ing this work to the person who wrote this text that helped me a lot.
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ABSTRACT

A test is said to be flaky when it non-deterministically passes or fails in different runs
on the same configuration (e.g., code). Test flakiness negatively affects regression testing
as failure observations are not necessarily an indication of bugs in the program. Static
and dynamic techniques for detecting flaky tests have been proposed in the literature
but they are limited. Prior studies have shown that test flakiness is mostly caused by
concurrent behavior. Based on that observation, we hypothesize that adding noise in the
environment (stress tests consuming machine resources such as CPU and memory) can
interfere in the ordering of program events and, consequently, it can influence the test
outputs. We propose Shaker, a practical technique to detect flaky tests by comparing
the outputs of multiple test runs in noisy environments. Compared with a regular test run,
one test run with Shaker is slower as the environment is loaded, i.e., the process that runs
a given test competes for resources with stressor tasks that Shaker creates. However, we
conjecture that Shaker pays off by detecting flakiness in fewer runs compared with the
alternative of running the test suite multiple times in a regular (non-noisy) environment.
We evaluated Shaker using a public benchmark of flaky tests, obtaining encouraging
results. For example, we found that (1) Shaker is 96% precise; it is almost as precise
as ReRun, which by definition does not report false positives, that (2) Shaker’s recall
is much higher compared to ReRun’s (95% versus 65%), and that (3) Shaker detects
flaky tests much more efficiently than ReRun, despite the execution overhead associated
with noise introduction. To sum up, results indicate that noise is a promising approach
to detect flakiness.

Keywords: software and its engineering; android; software testing; debuggin; software
evolution.



RESUMO

Um teste é dito como “flaky” quando passa ou falha de forma não determinística em
diferentes execuções na mesma configuração (por exemplo, código). o teste flaky afeta neg-
ativamente o teste de regressão, pois as observações de falha não são necessariamente uma
indicação de bugs no programa. Técnicas estáticas e dinâmicas para detecção de testes
flaky têm sido propostas na literatura, mas são limitadas. Estudos anteriores mostraram
que testes flaky são causados principalmente por comportamentos de concorrência. Com
base nessa observação, levantamos a hipótese de que a adição de ruído no ambiente (testes
de estresse consumindo recursos da máquina, como CPU e memória) pode interferir na
ordenação dos eventos do programa e, consequentemente, pode influenciar as saídas do
teste. Propomos Shaker, uma técnica prática para detectar testes flaky comparando as
saídas de várias execuções de teste em ambientes ruidosos. Em comparação com uma
execução de teste normal, uma execução de teste com Shaker é mais lenta à medida
que o ambiente é carregado, ou seja, o processo que executa um determinado teste com-
pete por recursos com taks de estressores que Shaker cria. No entanto, conjecturamos
que Shaker compensa ao detectar falhas em menos execuções em comparação com a
alternativa de executar o conjunto de testes várias vezes em um ambiente normal (sem
ruído). Avaliamos Shaker usando um benchmark público de testes flaky, obtendo resul-
tados encorajadores. Por exemplo, descobrimos que (1) Shaker é 96% preciso; é quase
tão preciso quanto ReRun, que por definição não reporta falsos positivos, (2) O recall de
Shaker é muito maior comparado com ReRun (95% versus .65%), e que (3) Shaker
detecta testes flaky com muito mais eficiência do que ReRun, apesar da sobrecarga de
execução associada à introdução de ruído. Em suma, os resultados indicam que o ruído é
uma abordagem promissora para detectar testes flaky.

Palavras-chaves: software e suas engenharias; android; teste de software; depuração;
evolução de software.
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1 INTRODUCTION

A test is said to be flaky when it non-deterministically passes or fails on the same con-
figuration (e.g., machine, code, etc.) [Micco 2016]. For example, a test case of a mobile
app can non-deterministically fail because of timing constraints. The test fails if a certain
event does not occur within one second after the wait statement is executed. A possible
solution that the developer could do would be to increase the waiting time, but it makes
the test execution slow whereas reducing the waiting time makes the test more fragile (or
flaky).

Test flakiness is a serious problem in industry. Most test failures at Google are due
to flaky tests [Micco 2016, Listfield 2017]. At Microsoft, the presence of flaky tests also
imposes a significant burden on developers. Lam et al. [Lam et al. 2019] reported that
58 Microsoft developers involved in a survey considered flaky tests to be the second
most important reason, out of 10 reasons, for slowing down software deployments. Other
organizations share similar problems [Harman and O’Hearn 2018,Developers 2021].

Three main strategies exist to deal with flaky tests: (i) prevent, (ii) detect (before
running tests), and (iii) rerun (after observing failure). Prevention consists of regulating
software development to prevent flakiness. For example, at Google, developers are encour-
aged to write single-threaded tests to avoid flakiness [Winters, Manshreck and Wright
2020]. Prevention can be challenging, especially when developers need to write tests be-
yond unit tests. Detection consists of analyzing the test cases before they are executed
in regression testing. This strategy has been under active investigation in research. How-
ever, existing detection techniques are limited. Static detectors are imprecise [Herzig and
Nagappan 2015, King et al. 2018, Pinto et al. 2020, Verdecchia et al. 2021] and dynamic
detectors are limited in scope [Bell et al. 2018, Lam et al. 2019, Shi et al. 2019, Dong et
al. 2020]. Finally, ReRun consists of re-executing for multiple times test cases that have
failed during regression testing. A test that failed and then passed —on a fixed version
of the application code— is considered flaky, and vice-versa. The status of a test that
persistently failed is unknown, but developers typically treat this scenario as a problem in
application code as opposed to a bug in test code. Although popular in industry [Micco
2016, Palmer 2019], ReRun is expensive and counter-productive. Rerunning failing tests
consumes a lot of computing power.1 Google, for example, uses 2-16% of its testing budget
just to rerun flaky tests [Micco 2016]. ReRun is also counter-productive. When developers
observe flaky tests during regression testing, they can choose to interrupt their activities
to immediately address test flakiness or to provisionally ignore the test, postponing its
repair. The decision to ignore flaky tests,2 albeit common [Thorve, Sreshtha and Meng
1 Google’s default number of reruns for a failing test is 10 [Micco 2017].
2 For reference, the JUnit annotation @Ignore tells JUnit to ignore the corresponding test.
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2018], is ineffective. That practice can result in observations of even more failures dur-
ing software evolution, as highlighted by Rahman and Rigby [Rahman and Rigby 2018].
Furthermore, that practice can reduce the ability of the test suite to detect bugs as it
is unclear when developers would eventually revise the ignored test case to eradicate its
non-determinism.

1.1 PROPOSAL

Concurrency is a very common source of test flakiness. For example, Luo et al. [Luo et al.
2014] analyzed flaky tests from Apache projects and created a list with the most prevalent
sources of flakiness. The top two sources from the list alone are concurrency-related and
are responsible for ∼50% of the cases of flakiness. As another evidence of the importance
of concurrency on test flakiness, Google encourages developers to avoid multi-threaded
code when writing test cases, with the goal of reducing flakiness observations [Winters,
Manshreck and Wright 2020].

We hypothesize that non-deterministic tests fail more often in “noisy” environments,
i.e., environments where machine resources (e.g., CPU and memory) are under high uti-
lization. The rationale is that noise can interfere in the ordering of observed program
events and influence on the test outputs.

Based on the observation and hypothesis above, this dissertation proposes Shaker,
a black-box technique to detect flaky tests. Shaker adds noise in the execution environ-
ment with the goal of detecting flaky tests due to concurrency. A stressor task is a task
responsible for generating noise in the running environment. Shaker spawns stressor
tasks in the environment that runs the tests to provoke failures and observe discrepan-
cies in the outputs of multiple test runs. These tasks compete with the tests for machine
resources (e.g., CPU or memory).

Stressor tasks can be configured with different parameters (e.g., memory usage, cpu
usage, etc.). We use the term configuration in this dissertation to denote the configuration
of a stressor task. We empirically found that arbitrarily selecting the number of configu-
rations and parameters of each configuration is unsatisfactory as a solution to detecting
flaky tests [Silva, Teixeira and d’Amorim 2020]. In one limit, selecting only one stressor
task would result in many missed flaky tests. In the other limit, randomly selecting lots
of stressor tasks would overload the machine and defeat the purpose of efficiently finding
flaky tests. Shaker searches for a small number of configurations to maximize flakiness
detection. The process of detecting flaky tests consists of two steps. In the first offline
step, Shaker uses a sample of tests known to be flaky to search for configurations of
stressor tasks that maximize the chances of detecting those flaky tests. In the second
online step, Shaker uses those configurations to find flaky tests in the project of inter-
est. To search for noisy configurations in the offline (training) phase, Shaker builds a
matrix relating flaky tests and stress configurations. The matrix encodes the probability
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of a given test to fail on a given configuration. Shaker uses that matrix to search for
sets of configurations that reveal the highest number of flaky tests. The technique can be
configured with different options for selecting configurations from the probability matrix.

1.2 RESEARCH METHODOLOGY

The main purpose of our study is to understand the usage of noise to find flaky tests in
real projects. We evaluated Shaker under three dimensions: Feasibility, Coherence, and
Performance.

Feasibility checks whether the introduction of noise has an impact on the observation
of failures. Coherence checks whether searching for configurations is beneficial compared
with randomly choosing them. Finally, performance evaluates Shaker considering preci-
sion (i.e., ratio of warnings reported by the tool that are in the ground truth), recall (i.e.,
ratio of warnings in the ground truth that are reported by the tool), and efficiency (i.e.,
how quickly the tool detects flakiness). We used existing datasets in our evaluation and
used ReRun as our comparison baseline.

In the following, we present our research questions grouped by dimensions, and we
elaborate how each research question contributes to the dimensions of our study:

FEASIBILITY:

RQ1.1. Do tests fail more often in noisy environments than in regular (non-noisy)
environments?

RQ1.2. How repeatable is the discovery of flaky tests under a given noise configuration?

COHERENCE:

RQ2. Is configuration selection (Greedy or MHS) more effective than Random?

PERFORMANCE:

RQ3.1. How many flakies does Shaker report incorrectly?

RQ3.2. How many flakies does Shaker miss?

RQ3.3. How quickly Shaker finds flakies?

The purpose of RQ1.1 is to evaluate if executing tests in noisy environments has the
effect of making them fail more often. RQ1.2 analyzes the variance of results obtained with
a given configuration of the noise generator. RQ2 evaluates the coherence of Shaker, i.e.,
to evaluate whether or not the proposed approaches to configuration selection perform
better than random selection. RQ3.1 focuses on precision. The goal of this RQ is to
evaluate if tests classified as flaky by Shaker are actually flaky. RQ3.2 focuses on recall.
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This RQ evaluates how often Shaker misses tests that should have been classified as
flaky. Finally, RQ3.3 focuses on efficiency. It investigates how quickly Shaker identifies
flaky tests.

1.3 RESULTS

We observed that noise has an important impact in failure observation. Considering co-
herence, we found that the strategies we proposed for searching configurations of a noise
generator are statistically indistinguishable, but they are both superior to random search.
Considering performance, we observed that (1) Shaker is almost as precise as ReRun,
which by definition does not report false positives, (2) Shaker’s recall is significantly
higher compared to ReRun’s (95% versus 65%), and (3) Shaker detects flaky tests much
more efficiently than ReRun (see Figure 7).

The artifacts we produced as result of this study, including supporting scripts and the
full list of projects, are publicly available in our website:

<https://star-rg.github.io/shaker>

1.4 OUTLINE

The remainder of this document is organized as follows:
Chapter 2 describes some basic concepts about tests, Android, Android testing, noise

generation tool and motivating examples. Chapter 3 explains how Shaker works and how
to use it. Chapter 4 presents our methodology to find subjects and datasets to conduct
the study and describes our data set. . In Chapter 5 we explain our research questions and
their answers that we found through the experiments. Chapter 6 we evaluate Shaker on
different data sets of Java projects. Chapter 7 presents the threats to validity of this work
and chapter 8 discusses related works. Finally, Chapter 9 concludes this dissertation and
elaborates on future work.

https://star-rg.github.io/shaker
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2 BACKGROUND

In this chapter, we explain the main concepts used in our work.. Initially, in Section
2.1 we provide an overview of CI, test and test flaky. In Section 2.2 and Section 2.3,
respectively, we explain about Android Concepts and Noise Generation Tools. In Section
2.4, we provide two motivating examples of our approach.

2.1 OVERVIEW

Continuous Integration(CI) is a software development practice where members of a team
frequently integrate their work. Usually, each person integrates at least daily, leading to
multiple integrations per day. In each integration, the CI system automates the compi-
lation, building, and testing of software (running regression tests) to detect integration
errors (bugs) as quickly as possible. Many teams find that this approach leads to signifi-
cantly reduced integration problems and allows a team to develop cohesive software more
rapidly [Meyer 2014,Luo et al. 2014].

Regression testing is a crucial part of software development. It verifies that software
changes do not break existing functionality. The result of running a regression test suite
is a set of test results for the tests in the suite. The results are important for developers
to take action.

If all tests pass, developers typically no longer inspect test runs. But if any test fails,
developers will have to find the cause of the failure to understand if recent changes have
introduced a failure in the code. An important assumption of regression testing is that
test results are deterministic: an unmodified test is expected to always pass or always fail
for the same code under test.

When changes cause existing tests to fail, developers should inspect the failures. There
are two possible outcomes. First, if failures are caused by regressions tests, the developer
must revise the application code to make the test pass.

Second, tests are broken if they fail because they no longer reflect the expected be-
havior of the software. Developers must fix broken tests or remove them from the test
suite. In some cases, developers need to change both the application code and the test
code [Daniel et al. 2009]. Repairing broken tests is time-consuming but often preferable
to removing tests, since removing tests reduces a test suite’s ability to detect regressions
that appear in later versions of the software.

Ideally, each new test failure is due to the latest changes made by the developer, who
can focus on debugging these failures. Unfortunately, some failures are not due to the
latest changes, but due to unstable tests. We use the following definition by [Bell et al.
2018] for what a flaky test is: a test that can non-deterministically pass or fail when run
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on the same version of the code.

2.2 ANDROID CONCEPTS

This section introduces Android OS concepts that are important for understanding the
examples. The execution of an Android app creates a separate process including an ex-
ecution thread, typically called the main or UI thread. This thread is responsible for
handling events such as callbacks from UI interactions, callbacks associated with the life-
cycle of components, etc. Any costly operation, such as network operations, should be
offloaded to separate threads to avoid blocking the main thread, and consequently freez-
ing the UI. Blocking the main thread for more than 5 seconds results in an Application
Not Responding (ANR) error, resulting in a crash of the app.1 For those reasons, asyn-
chronous operations are common in Android apps. Worker threads, which are responsible
for handling these operations, are not allowed to manipulate the UI directly; that is the
responsibility of the main (UI) thread. Consequently, there must be coordination among
worker threads and the main thread.

For illustration, developers often use helper methods such as Activity.runOnUiThread()

to avoid blocking and ANR errors. This method expects a task on input and executes the
task immediately if the invocation was made under the UI thread. If not, the task is posted
to the event queue of the UI thread. Testing frameworks, such as Espresso [Google 2020],
can create asynchronous operations by means of registering them as idling resources—
operations that can have an effect on later operations in a UI test.2

2.3 NOISE GENERATION TOOLS

A noise generator is a tool to create artificial load in a machine. A noise generator spawn
“stressor” tasks on assigned machine resources. Existing tools (e.g., sysbench [Kopy-
tov 2020], stressant [Beaupré 2020], hardinfo [Pereira 2020], GTKStressTesting [Leinardi
2020], S-tui [Manuskin 2020], Linpack Xtreme [Badit 2020]) provide different choices for
noise generation. For developing our approach (Chapter 3) we selected, among the avail-
able tools, stress-ng [King and Waterland 2020], mainly because of its popularity. The
following options of stress-ng were considered:

• –cpu 𝑛. Starts 𝑛 stressor tasks to exercise the CPU by working sequentially through
different CPU stress methods, like Ackermann function and Fibonacci sequence.

• –cpu-load 𝑝. Sets the load percentage 𝑝 for the –cpu command.

• –vm 𝑛. Starts 𝑛 stressor tasks to allocate and de-allocate continuously in memory.
1 <https://developer.android.com/training/articles/perf-anr>
2 <https://developer.android.com/training/testing/espresso/idling-resource>

https://developer.android.com/training/articles/perf-anr
https://developer.android.com/training/testing/espresso/idling-resource


19

• –vm-bytes 𝑝. Sets the percentage 𝑝 of the total memory available to use by the tasks
created with option –vm.

For example, the command stress-ng –cpu 2 –cpu-load 50% –vm 1 –vm-bytes 30% con-
figures stress-ng to run two CPU stressors with 50% load each and one virtual memory
stressor using 30% of the available memory. The documentation of stress-ng can be found
elsewhere.3

2.4 MOTIVATING EXAMPLES

In this section we present two motivational examples of our approach in real and open
source projects: AntennaPod4 and Paintroid5.

2.4.1 AntennaPod Example

AntennaPod [AntennaPod app website 2020] is an open source podcast manager for
Android supporting episode download and streaming. The AntennaPod app is imple-
mented in Java in ∼50KLOC and contains 250 GUI tests6 written in Espresso [Google
2020] and UIAutomator [Google 2020]. Listing 2.1 shows a simplified version of a test
that checks whether a podcast episode can be played twice. The test uses the Awaitility
library [Awaitility Library 2020] to handle asynchronous events, such as I/O events related
to notifications of media playback. Executing the statement at line 3 turns off the contin-
uous playback option. This command stops the app from automatically playing the next
episode in the episode queue after the app finishes the playback of the current episode.
3 project page: <https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html>
4 project page: <https://github.com/AntennaPod/AntennaPod>
5 project page: <https://github.com/Catrobat/Paintroid/>
6 Revision SHA used dd5234c

Listing 2.1 – AntennaPodTest
1 @Test

public void testReplayEpisodeContinuousPlaybackOff () throws Exception {
3 setContinuousPlaybackPreference(false);

uiTestUtils.addLocalFeedData(true);
5 activityTestRule.launchActivity(new Intent ());

// Navigate to the first episode in the list of episodes and click
7 openNavDrawer ();

onDrawerItem(withText(R.string.episodes_label)).perform(click());
9 onView(isRoot ()).perform(waitForView(withText(R.string.all_episodes_short_label),

1000));
onView(withText(R.string.all_episodes_short_label)).perform(click());

11 final List <FeedItem > episodes = DBReader.getRecentlyPublishedEpisodes (0, 10);
Matcher <View > allEpisodesMatcher = allOf(withId(android.R.id.list),isDisplayed (),

hasMinimumChildCount (2));
13 onView(isRoot ()).perform(waitForView(allEpisodesMatcher , 1000));

onView(allEpisodesMatcher).perform(actionOnItemAtPosition (0, clickChildViewWithId(R.
id.secondaryActionButton)));

15 FeedMedia media = episodes.get(0).getMedia ();
Awaitility.await ().atMost(1, TimeUnit.SECONDS).until( () -> media.getId() ==

PlaybackPreferences.getCurrentlyPlayingFeedMediaId ()); ... }

https://manpages.ubuntu.com/manpages/artful/man1/stress-ng.1.html
https://github.com/AntennaPod/AntennaPod
https://github.com/Catrobat/Paintroid/
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Listing 2.2 – Paintroid Test
@Test

2 public void testFullscreenPortraitOrientationChangeWithShape () {
onToolBarView ().performSelectTool(ToolType.SHAPE);

4 setOrientation(SCREEN_ORIENTATION_PORTRAIT);
onTopBarView ().performOpenMoreOptions ();

6 onView(withText(R.string.menu_hide_menu)).perform(click());
setOrientation(SCREEN_ORIENTATION_LANDSCAPE); pressBack ();

8 onToolBarView ().performOpenToolOptionsView ().performCloseToolOptionsView (); }

The statement at line 4 adds local data (e.g., podcast feeds, images, and episodes) to
the app whereas the execution of the statements at lines 7–14 navigate through the GUI
objects with the effect of playing the first episode in the queue. Line 16 shows an assertion
based on the Awaitility library. The assertion makes the test execution to wait for at most
one second until a flag is in a state indicating that the episode is being played (line 16).
When the play button is pressed (line 14), the app runs a custom service in the back-
ground7—to load the media file from the file system and, subsequently, play the media to
the user. These are typically expensive IO operations. If the machine running the test is
heavy-loaded at the moment of the execution, the one-second budget may be insufficient.
Consequently, the execution of the test can fail with a ConditionTimeoutException exception
raised by the Awaitility library.

2.4.2 Paintroid Example
Paintdroid is a graphical paint editor application for Android implemented in Java in

∼25KLOC containing 250 tests. One of such tests checks whether some buttons can be
clicked after changing the screen orientation. Listing 2.2 shows the test. It first selects the
Shape drawing option (line 3), and then sets the screen orientation to portrait (line 4).
Then, it opens a menu with a list of options (line 5), e.g., the option to save an image,
the option to export an image to a file, etc. The test selects the full screen option (line 6).
Then, it changes orientation to landscape (line 7), exits full screen mode (line 7), clicks on
the tool options to open a menu again, and then closes it (line 8). Note that there are no
assertions in the test. The goal of the test is to validate that the options remain clickable
as the orientation changes from portrait to landscape. Like the previous example, this
test can produce different results depending on the load of the machine. More precisely,
the click on the menu item (line 6) can be performed before or after the menu is rendered
on the screen (line 5). As expected, the test fails if the click is performed before the menu
is rendered on the screen, throwing the exception PerformException.8 Changing the screen
orientation corresponds to a change in the Android configuration.9 When a configuration
change happens, Android destroys and recreates the current screen, represented by an
7 Look for “Thread” in the PlaybackService.java file [AntennaPod PlaybackService.java 2020].
8 <https://developer.android.com/reference/androidx/test/espresso/PerformException>
9 <https://developer.android.com/guide/topics/resources/runtime-changes>

https://developer.android.com/reference/androidx/test/espresso/PerformException
https://developer.android.com/guide/topics/resources/runtime-changes
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Activity object. This happens because changing orientation might result in a different
screen layout.
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3 SHAKER: A TOOL TO DETECT FLAKY TESTS USING NOISE

This chapter describes our approach, how Shaker works, the assumptions behind its
implementation, and how it is used.

Section 2.4 showed examples of flaky tests due to Async Wait. Other causes (i.e.,
sources) of test flakiness exist. Table 1 shows the ten different sources of flakiness cata-
logued by Luo et al. [Luo et al. 2014] in a study involving the analysis of 124 bug reports1

from various projects maintained by the Apache Software Foundation. According to Luo et
al., 52.2% of flaky tests are caused by the first two sources of test flakiness: Async Wait
and Concurrency. These two sources are intimately related to concurrent behavior. It is
worth contrasting Concurrency with Async Wait. Concurrency problems occur when the
non-determinism is intrinsic in the application being tested; not the test. In test flaki-
ness due to concurrency, the application spawns different threads, which are improperly
synchronized to access the shared memory, leading to data races, atomicity violations,
etc.

Figure 1 – Shaker’s workflow.

Configuration 
Discovery

TRaining set of 
flaky tests (TR) Test Suite 

(TS)

List of flaky 
tests in TS

offline online
cs

Flakies 
Discovery

Seed configs

Source: Prepared by the author (2022)

Shaker builds on the observation that test flakiness often manifests because of con-
current behavior, regardless of the source. Our hypothesis is that (re)running tests in
a noisy environment reveals more flaky tests compared to (re)running tests in a regular
(non-noisy) environment. Figure 1 shows the workflow of Shaker. The approach consists
of two steps: an offline step and an online step. In the offline step, Shaker uses a sample
of configurations and a sample of tests known to be flaky (TR) to search for a small set
of configurations (𝑐𝑠) of a noise generator that optimizes the ability of test runs to reveal
flakiness. In the online step, Shaker uses those configurations to find flaky tests in a
user-provided test suite (TS). Shaker executes the test suite TS for a given number of
times (configured) on each configuration in 𝑐𝑠 and reports a list of tests with diverging
outcomes.

The following sections detail Shaker. Section 3.1 describes how we use an off-the-
shelf tool to generate noise in the execution environment. Section 3.2 describes the offline
1 Table 2, Column "Total w. Bug Reports" [Luo et al. 2014].
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Table 1 – Causes of test flakiness reported by Luo et al. [Luo et al. 2014].

Name % Description

Async Wait 36.4 When the test execution makes an asynchronous call and does not
properly wait for the result of the call before using it.

Concurrency 15.8

When the test non-determinism is due to different threads
interacting in a non-desirable manner (but not due to asynchronous
calls from the Async Wait category), e.g., due to data races,
atomicity violations, or deadlocks.

Test Order
Dependency 9.4 When the test outcome depends on the order in which the tests are

run.

Resource
Leak 5.4

When the application does not properly manage (acquire or release)
one or more of its resources, e.g., memory allocations or database
connections, leading to intermittent test failures.

Network 4.8 When the test depends on a network resource, which is hard to
control, causing flakiness.

Randomness 2.5

When the test code or application code depends random number
generators without accounting for all the possible values that may
be generated. For example, a test may fail only when a one-byte
random number that is generated is exactly 0.

IO 2.0 IO causes other than Network listed above.

Time 2.0 When the test depends on the system time, e.g., a test may fail
when the midnight changes in the UTC time zone.

Floating
Point

Operations
1.5 When the test performs complex floating point operations, which can

produce distinct results (modulo error bounds) [Barr et al. 2013].

Unordered
Collection 0.5

When iterating over unordered collections (e.g., sets), the code
should not assume that the elements are returned in a particular
order. If it does, the test outcome can become non-deterministic as
different executions may have different orderings.

Hard to
classify 19.7 -

Source: Luo et al. (2014)

step and Section 3.3 describes the online step.
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3.1 USING STRESS-NG FOR GENERATING NOISE

As anticipated in Section 2.3, for developing our approach we selected the tool stress-
ng [King and Waterland 2020]. We focused on CPU and memory as we empirically found
that they had significant influence on the detection of test flakiness [Silva, Teixeira and
d’Amorim 2020]. In addition to the stress-ng options listed in Section 2.3, Shaker uses
an option that we found important for finding flaky tests in Android apps—the number
of cores available for use by an Android emulator. This option can be used to restrict an
Android emulator to run on a specified number of cores. Note, however, that Shaker
is a generic method. This choice is only used for Android. The term noise configuration
denotes an assignment of values to each of the configuration options from stress-ng.

3.2 STEP 1: DISCOVERING CONFIGURATIONS

The goal of this step is to identify noise configurations that are more likely to reveal
flakiness in a test suite. This step takes as input (1) a set of Seed configurations and (2)
a set of tests known to be flaky, TR. It reports on output a small set of configurations
𝑐𝑠 = {𝑐1, ..., 𝑐𝑛} that are more likely to reveal flakiness. Shaker can be configured to
use one of the following search strategies: Random, Greedy, and MHS. Regardless of
the chosen strategy, Shaker runs the test suite on each given noise configuration and
discards the configuration if execution exceeds twice the original running time of the test
suite. It is worth noting that an excessively costly configuration not only slows down test
execution, but also can provoke test timeouts.2 When provoked by a noise configuration,
a test timeout is an artifact of our infrastructure and it is not counted as a valid failure
observation.

3.2.1 Random

The Random strategy randomly samples 𝑛 configurations from their respective domains,
discarding the configurations that results in long test runs. Recall that a noise generator
is configured from a list of options [𝑜1, ..., 𝑜𝑘], with each option 𝑜1≤𝑖≤𝑘 ranging over the
interval 𝑙𝑜𝑖-ℎ𝑖𝑖 (see Section 3.1). Unlike the other search strategies, Random does not read
from TR to steer the search.

3.2.2 Greedy and MHS

In contrast to Random, Greedy and MHS search for configurations systematically. For
that, Greedy and MHS use tests that are known to be flaky to steer the search. Intuitively,
2 It is not uncommon for developers to define a time limit for the execution of a test or a test suite. This is

specially convenient for performance testing. In JUnit 5, a developer can write the following annotation
in a test case to indicate that it should run in at most on tenth of a second @Timeout(value=100,
unit=TimeUnit.MILLISECONDS).
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Figure 2 – Original probability matrix 𝑀 .

𝑐1 𝑐2 𝑐3 𝑐4

𝑡1 0.1 0.6 0.5 0.2
𝑡2 0.6 0.6 0.1 0.2
𝑡3 0.1 0.1 0.1 0.5

Source: Prepared by the author (2022)

Figure 3 – Abstracted version of matrix 𝑀 with a threshold of 0.5. Original matrix 𝑀 and corresponding
abstracted matrix 𝐴. MHS(𝐴)={𝑐2, 𝑐4}.

𝑐1 𝑐2 𝑐3 𝑐4

𝑡1 0 1 1 0
𝑡2 1 1 0 0
𝑡3 0 0 0 1

Source: Prepared by the author (2022)

we want Shaker to detect all these tests as flaky. We refer to this set of known flaky
tests as TR as Shaker uses it for training. We obtain those tests by running the test
sets of different programs for multiple times, identifying the tests with non-deterministic
outputs (i.e., tests that do not always pass or do not always fail). Chapter 4 explains
how we obtained the training set to evaluate Shaker. Like Random, Greedy and MHS
also rely on a sample set of seed configurations drawn from their respective domains
(see “Seed configs." on Figure 1). Shaker searches for noise configuration in two steps.
First, Shaker generates a matrix encoding the probability of each sampled configuration
finding flakiness in the tests in TR. Second, Shaker uses that matrix to search for sets
of configurations that maximize coverage of flaky tests. Greedy and MHS differ in how
they select configurations from this matrix. The following sections elaborate each of these
steps in detail.
Step 1.1: Generation of probability matrix. This step takes as input a set of flaky
tests TR and reports as output a probability matrix 𝑀 , relating tests in TR and configu-
rations in 𝐾, by their corresponding probabilities. The set 𝐾 denotes noise configurations,
randomly-sampled according to the method described above. The symbol 𝑀 [𝑡][𝑐] denotes
the probability of configuration 𝑐 ∈ 𝐾 detecting flakiness in 𝑡 ∈ TR. To obtain approx-
imate probability measurements, Shaker runs each test for a user-defined number of
times on each sampled configuration. The probability measurement 𝑀 [𝑡, 𝑐] is obtained
by dividing the number of observed failures of 𝑡 by the total number of test runs in an
environment with noise configuration 𝑐. Figure 2 depicts the flakiness probabilities for a
scenario with three tests and four configurations.
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Step 1.2: Search. The Greedy search strategy sorts configurations in the matrix accord-
ing to their fitness value and reports the top-𝑛 configurations in the sorted list. The value
𝑛 is provided by the user. We use the symbol fit(c, TR) to denote the fitness value —a
number in the 0-1 range— of a given configuration 𝑐 with respect to the test set TR.
The fitness value of a configuration 𝑐 is obtained by computing the average probability of
detecting flakiness in TR when 𝑐 is used for noise generation.

Example. Consider that the set TR contains three flaky tests 𝑡0, 𝑡1, and 𝑡2. Additionally,
consider that a configuration 𝑐 detects flakiness in TR with probabilities [0.2, 0.5, 0.0].
The value at index 𝑖 in this list denotes the observed failure ratio of test 𝑡0≤𝑖≤2. The
value 0.0 indicates that a test deterministically fails whereas the value 1.0 indicates that
a test deterministically passes. These ratios are obtained by running the test suite for
multiple times and computing the average number of failures. In this case, one test failed
in 20% of the runs, another test failed in 50% of the runs, and another test did not fail
at all (i.e., it deterministically passed). The fitness of configuration 𝑐 is 0.23 because
fit(𝑐, TR)=(0.2+0.5)/3=0.23.

The Minimum Hitting Set (MHS) strategy, in contrast with the Greedy strategy, at-
tempts to cover every test in the matrix. Recall that every test in the matrix is known
to be flaky. MHS [Alon, Moshkovitz and Safra 2006] is a well-known intractable problem
with efficient polynomial-time approximations [Gainer-Dewar and Vera-Licona 2016]. To
sum up, MHS enables Shaker to identify minimum sets of configurations (columns of
the matrix) that detect the maximum number of flaky tests (rows in the matrix). Vari-
ations of the MHS problem exist considering weights and returning complete or partial
(sub-optimal) solutions [Rebert et al. 2014]. Shaker uses the unweighted and complete
MHS version, which takes a boolean matrix as an input and produces a minimum hitting
set of configurations on output. We abstracted the probability matrix 𝑀 to only encode
low or high likelihood of configurations detecting flaky tests. Intuitively, we are only inter-
ested in a configuration 𝑐 to detect flakiness of a certain test 𝑡 if the observed probability
𝑀 [𝑡][𝑐] is above a certain threshold. More precisely, Shaker computes an abstract matrix
𝐴 defined as 𝐴[𝑡][𝑐]=1 if 𝑀 [𝑡][𝑐] >= threshold, otherwise 0. Shaker runs MHS on the
boolean matrix 𝐴 to find a set of configurations (the columns in the matrix) that covers
likely flaky tests (the rows in the matrix). Note that, although MHS assures that all flaky
tests are covered (i.e., a test is covered by some configuration in the MHS), there are no
guarantees that these tests will be covered in actual execution.



27

Figure 4 – Shaker’s GitHub Actions workflow. At step 1, the developer copies the template of the
Shaker GitHub action (Listing 3.4.1), available on the GitHub Marketplace or from our web
site, to update her .github/workflow/main.yml file. At step 2, the developer makes a push or
pull request (configurable) to her GitHub repository. At step 3, GitHub notifies its CI service
about that event. At step 4, the CI service pulls the changes from the corresponding commit
from GitHub and runs the Shaker action within a Linux container that is prepared with a
tool for stressing the resources of the machine (stress-ng). Finally, at step 5, Shaker notifies
a web service, hosted in Heroku (could be any PaaS host), to store telemetry data about the
execution.

GitHub
Marketplace

Developer
GitHub

CI service

1 2

3

4 5

Source: Prepared by the author (2022)

Example. Figure 3.2.2 illustrates MHS to discover configurations for detecting flakiness.
For space, we used a 3x4 matrix, i.e., the test suite contains three test cases and the
set of configurations includes four configurations. In practice, these matrices are much
bigger. Figure 2 shows the probability matrix 𝑀 , obtained with multiple executions
of each test suite on each configuration. Figure 3.2.2 shows the matrix 𝐴 abstracted
from 𝑀 . The matrix on the left shows the probabilities of each configuration detecting
flakiness on TR={𝑡1, 𝑡2, 𝑡3}. The matrix on the right-hand side is obtained using the
abstraction function as described above with a threshold value of 0.5. There are five hit-
ting sets associated with the abstract matrix, namely {𝑐1, 𝑐2, 𝑐4}, {𝑐1, 𝑐3, 𝑐4}, {𝑐2, 𝑐3, 𝑐4},
{𝑐1, 𝑐2, 𝑐3, 𝑐4}, and {𝑐2, 𝑐4}. The MHS algorithm is able to identify that the set {𝑐2, 𝑐4} is
a minimal set that hits (i.e., covers) the tests in TR. In this case, it is also the minimum.

3.3 STEP 2: DISCOVERING FLAKIES

Finally, Shaker uses the configurations obtained in Step 1 to determine which of the
user-provided tests are flaky. Figure 1 illustrates the inputs and output of this step in
the box named “Flakies Discovery”. Shaker runs the user-provided test suite on each
configuration 𝑐 ∈ cs for a specified number of times and reports a lit of flaky tests on
output when it observes differences in their test outputs. It is worth noting the tension
between cost and effectiveness associated with Shaker. The time required to run a test
suite under a loaded environment should be higher compared to a regular (i.e., noiseless)
execution as different tasks are competing for the machine resources. Our hypothesis is
that Shaker pays off by requiring a small number of reruns to detect flakiness.
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3.4 USING SHAKER

Shaker can be used in two ways: (1) via a GitHub Action [GitHub Actions 2022] for
integration with a GitHub project or (2) via Command Line Interface (CLI). The following
sections elaborate on these user modes and provide implementation details. The tool also
currently supports Maven-based Java projects and pytest-based Python projects. Note
that the tool is available with its online part, in other words it is not necessary for the
developer to run the offline part (discovery of settings) and use the settings found in this
work. Shaker can be accessed at <https://star-rg.github.io/shaker>. A demo video is
available at <https://youtu.be/7-aiQwOb4rA>.

3.4.1 GitHub Action

Figure 4 illustrates the workflow of Shaker’s GitHub Action. To use Shaker’s GitHub
Action in a repository, the developer needs to include the contents of Listing 3.4.1 in a
repository’s workflow file. The effect of that inclusion is to create a new job, shaker, that
is executed when a specified workflow is triggered. The three arguments declared on the
listing are the configurable inputs from the user.3 After finishing the workflow run, results
are displayed in the Actions tab of the GitHub repository. If discrepancies in test outputs
are detected, Shaker reports the flaky tests under that tab and sends an email to the
project owner.

shaker:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v2
- name: Shaker

uses: STAR-RG/shaker@main
with:

tool: maven
runs: 3
no_stress_runs: 1

Listing 3.4.1: Shaker GitHub Action configuration to be included in a YAML configu-
ration file under .github/workflow directory.

The Shaker GitHub Action relies on a Docker image, based on Ubuntu 20.04, con-
taining all of the tools and dependencies required to run Shaker on the cloud, i.e., from
the GitHub CI service.

3.4.2 CLI

To use Shaker through the CLI the user needs to clone the source code via git clone

https://github.com/STAR-RG/shaker. Then, Shaker can be invoked with the following com-
3 Detailed explanation of these parameters can be found on the Shaker’s website.

https://star-rg.github.io/shaker
https://youtu.be/7-aiQwOb4rA
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mand shaker/shaker.py –no-stress-runs 1 –stress-runs 4 {pytest,maven,android} directory,
where <directory> refers to the path of the project to be tested. The number of noisy and
noiseless runs is configurable. After execution is complete, Shaker reports whether flaky
tests were found.
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4 OBJECTS OF ANALYSIS

We used the following disjoint data sets of flaky tests in our evaluation: ICSME2020 [Silva,
Teixeira and d’Amorim 2020] and FlakyAppRepo [Dong et al. 2021]. The first data set is
used for training Shaker whereas the second is used to evaluate Shaker.

4.1 THE ICSME2020 DATASET

In prior work [Silva, Teixeira and d’Amorim 2020], we created a data set of 74 flaky
tests from 11 Android projects mined from GitHub. We used the following search criteria
to select projects:

1. the project must be written in Java or Kotlin;

2. the project must have at least 100 stars;

3. the project must include tests in Espresso or UIAutomator;

4. the project needs to be built without errors.

We sampled a total of 11 projects that satisfied this criteria and used ReRun to
find test flakiness. As usual, we detected these flaky tests by re-executing test suites of
the corresponding projects for 100 times using a generic Android Emulator (AVD) with
Android API version 28 and observing discrepancies on the test outputs.

Table 2 – Projects available in the ICSME2020 data set and used to train Shaker. Projects with names
striked were discarded, whereas projects with names highlighted in gray color also appeared on
the testing set (no overlap in flaky tests observed).

# Name SHA #Stars # Tests #Flak # Name SHA #Stars #Tests #Flak

1 AntennaPod dd5234c 4k 250 12 7 Omni-Notes b7f9396 2.4k 10 0
2 AnyMemo 7e674fb 117 150 0 8 Orgzly d74235e 2.1k 266 38
3 Espresso 043d028 1.1k 14 1 9 Paintroid 1f302a2 101 270 5
4 FirefoxLite 048d605 269 70 15 10 Susi 17a7031 2k 17 0
5 FlexBox-layout 611c755 17.2k 232 1 11 WiFiAnalyzer 80e0b5d 1.5k 3 0
6 Kiss 00011ce 2.1k 16 3

Σ #Tests (#Flak) 1,298 (74)

Source: Prepared by the author (2022)

Table 2 shows the projects on this data set. Column “Name” shows the name of the
project, column “SHA” shows the hash of the project revision, column “#Stars” shows the
number of times the project was starred on GitHub, column “#Tests” shows the number
of tests cases in the project, and column “#Flak” shows the number of flaky tests we
detected. The final row shows the total number of tests analyzed across all projects and

https://github.com/AntennaPod/AntennaPod
https://github.com/federicoiosue/Omni-Notes
https://github.com/helloworld1/AnyMemo
https://github.com/orgzly/orgzly-android
https://github.com/TonnyL/Espresso
https://github.com/Catrobat/Paintroid
https://github.com/mozilla-tw/FirefoxLite
https://github.com/fossasia/susi_android
https://github.com/google/flexbox-layout
https://github.com//VREMSoftwareDevelopment/WiFiAnalyzer
https://github.com/Neamar/KISS
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the number of flaky tests (in parentheses) in this data set. Projects with names striked
were discarded because they also appeared on the testing data set with the same SHA.
Projects with names in gray color also appeared on the testing set (Table 3), but there
was no overlap between the training and testing sets of these projects.

4.2 THE FLAKYAPPREPO DATASET

FlakyAppRepo is a public data set1 of flaky tests from 33 GitHub Android projects. This
data set was made available by Dong et al. [Dong et al. 2021] to evaluate FlakeScanner,
a tool for detecting flaky tests in Android apps (see Chapter 8). It is worth noting that
(1) Shaker is not restricted to Android or UI tests and (2) Chapter 6 reports results of
Shaker on different data sets, including non-Android projects.

Table 3 – Projects available in the FlakyAppRepo data set and used to evaluate Shaker. Projects with
names striked (5 of them) couldn’t be built and were discarded.

# Name SHA #Stars #Tests #Flak # Name SHA #Stars #Tests #Flak

1 Amaze File Manager eaca7050 3,7k 37 0 18 Just Weather f7cb438bb 65 9 1
2 YouTube Extractor 53a52aa9 739 3 - 19 Kaspresso 9731d40 1,3k 72 0
3 AntennaPod aca6e3 4k 247 43 20 KeePassDroid 33ed5c56 1,3k 59 0
4 Backpack Design 26f2441 55 248 - 21 KickMaterial 25181c9 1,6k 10 2
5 Barista c7f16bc 1,5k 306 17 22 Kiss d9ffdc41 2,1k 16 8
6 CameraView 68947cc 4,7k 9 0 23 MedLog 0d99aa54 0 30 4
7 Catroid a0f2bf2 0 1,100 4 24 Minimal To Do 83bf4c6f 2,1k 7 0
8 City Localizer db72caf 0 14 1 25 MoneyManagerEx 1ae6fd85 1l 10 0
9 ConnectBot 2b6c6e0 1,8k 46 2 26 My Expenses d331b8b 372 75 -

10 DuckDuckGo 07d89a9 2,4k 1,234 3 27 NYBus d14198b9 284 19 1
11 Espresso 043d028 1,1k 14 2 28 Omni Notes eaf905c 2,4k 83 -
12 Firefox Focus 90c1e96 1,9k 72 6 29 OpenTasks 6b741e4 852 49 1
13 Firefox Lite dcd2f44a 269 73 24 30 ownCloud b6421e2f 3,2k 133 33
14 FlexBox-layout d6c186b 17,2k 243 4 31 Sunflower 5829c76e1 15,2k 12 0
15 GnuCash 879596c1 1,1k 38 3 32 Surveyor 40f9448 14 46 3
16 IBS FoodAnalyzer fe22728f 1 21 1 33 WordPress 65b5392 2,6k 106 -
17 Google I/O 4054aa3f8 21,1k 12 7

Σ #Tests (#Flak) 3,917 (170)

Source: Prepared by the author (2022)

Table 3 shows the projects on this data set. The structure of this table is as in Table 2.
For the sake of reproducibility, we built each one of the 33 Android projects from this data
set and re-executed its test suite for 100 times2. By using this method, we found a total of
170 flaky tests — this is the set of flaky tests used as ground truth for evaluating the
performance of Shaker (Section 5.4). It is worth noting that we were unable to compile
or run the test suites of 5 projects, namely YouTube Extractor, Backpack Design, My
Expenses, Omni Notes, and WordPress. The names of these projects appear crossed out
1 <https://github.com/AndroidFlakyTest/FlakyAppRepo>
2 We adopted the same number of repetitions (100) used by the authors of FlakyAppRepo for comparing

their approach with ReRun.

https://github.com/TeamAmaze/AmazeFileManager
https://github.com/kidinov/Just-Weather
https://github.com/HaarigerHarald/android-youtubeExtractor/
https://github.com/KasperskyLab/Kaspresso
https://github.com/AntennaPod/AntennaPod
https://github.com/bpellin/keepassdroid
https://github.com/Skyscanner/backpack-android/
https://github.com/byoutline/kickmaterial/
https://github.com/AdevintaSpain/Barista/
https://github.com/Neamar/KISS/
https://github.com/google/cameraview
https://github.com/CMPUT301F18T17/MedLog/
https://github.com/souravmunjal/clonecat
https://github.com/avjinder/Minimal-Todo/
https://github.com/lszymans/CityLocalizer
https://github.com/moneymanagerex/moneymanagerex
https://github.com/connectbot/connectbot
https://github.com/mtotschnig/MyExpenses
https://github.com/duckduckgo/Android/
https://github.com/MindorksOpenSource/NYBus
https://github.com/TonnyL/Espresso
https://github.com/federicoiosue/Omni-Notes
https://github.com/mozilla-mobile/focus-android
https://github.com/dmfs/opentasks/
https://github.com/mozilla-mobile/FirefoxLite
https://github.com/owncloud/android
https://github.com/google/flexbox-layout/
https://github.com/android/sunflower
https://github.com/codinguser/gnucash-android/
https://github.com/rapidpro/surveyor
https://github.com/lundjohan/IBSFoodAnalyzer/
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/google/iosched
https://github.com/AndroidFlakyTest/FlakyAppRepo
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on Table 3.3 Additionally, after running the project’s test suite for 100 times, no flaky
tests were detected in 7 projects, namely Amaze File Manager, Camera View, Kaspresso,
KeePassDroid, Minimal To Do, MoneyManagerEx, and Sunflower. Note that, although
there are no guarantees that 100 repetitions is sufficient to find all flaky tests originally
detected in the FlakyAppRepo data set, these seven cases provide concrete evidence
of the importance of reproducing the experiments of a data set to obtain the ground
truth. In total, we analyzed 3,917 tests (=4,432-3-248-75-83-106) from 28 (=33-5) projects,
detecting 170 flaky tests from 21 (=28-7) projects.

3 We contacted the authors via email seeking for help to build those apps but, as of the time of this
submission, we have not received a response.
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5 EVALUATION

This Chapter presents the evaluation of Shaker. For that, we considered three aspects:
Feasibility, Coherence, and Performance. Feasibility evaluates whether adding noise con-
sistently provokes test failures (Section 5.2). Coherence evaluates if the proposed meth-
ods for configuration selection (e.g., MHS) are more effective than random configuration
selection (Section 5.3). Finally, Performance compares Shaker and ReRun consider-
ing 1) precision, i.e., the ratio of correct reports of flakiness, 2) recall, i.e., the ratio of
known flakies detected, and 3) efficiency, i.e., detection time (Section 5.4).

5.1 SETUP

We performed our experiments on a machine powered by a ninth-generation Intel Core i5-
7200U CPU @ 2.50GHz (base frequency), 4 cores 8 GB RAM, and with an SSD storage of
240 GB. Ubuntu version 18.04 with Linux kernel version 5.4.0-100-generic, and a generic
Android Emulator (AVD) with Android API version 28 with 32 GB of storage.

5.2 FEASIBILITY

We posed the following research questions to assess the feasibility of using noise to detect
flaky tests:

RQ1.1. Do tests fail more often in noisy environments than in regular (non-noisy)
environments?

RQ1.2. How repeatable is the discovery of flaky tests under a given noise configuration?

The purpose of RQ1.1 is to evaluate if executing tests in noisy environments has the
effect of making them fail more often. This question is important because Shaker builds
on that assumption to detect flaky tests. If results are discouraging, Shaker is unlikely
to be useful. RQ1.2 analyzes the variance of results obtained with a given configuration
of the noise generator. Reproducibility of results is important to determine the ability of
the approach to detect flakiness more deterministically.

5.2.1 Answering RQ1.1 (Do tests fail more often in noisy environments than in
regular (non-noisy) environments?):

The purpose of this question is to evaluate whether or not introducing noise in the envi-
ronment where tests are executed affects the rate of failures observed in test runs. This
question is important as Shaker assumes that such effect exists. To answer this ques-
tion, we use the ICSME2020 data set and we ran statistical tests to evaluate if there are
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differences in the rate of failures observed in noisy executions versus regular, non-noisy,
executions. As we evaluated the effect of noise on the same data set, we used a statisti-
cal test that takes two paired distributions–one distribution of numbers associated with
regular executions (treatment #1) and one distribution of numbers associated with noisy
executions (treatment #2). For simplicity, we fixed the noise configuration used in this
experiment. We used the configuration stress-ng –cpu 2 –cpu-load 50% –vm 2 –vm-bytes 50%.
The rationale was to maximize the load in the 4-core machine we ran this experiment.
Each number in the distribution corresponds to the rate of failures in one complete exe-
cution of the test suites, i.e., the fraction of the 74 tests from our data set that manifests
failures. We ran each test suite on each treatment 30 times. Consequently, each distribu-
tion contains 30 observations. We proceeded as follows to identify if there were differences
in the measurements. First, we ran a Shapiro-Wilk test to check if the data were normally
distributed. As we could not assume that our data were normally distributed (𝑊 = 0.85,
p − value < 0.05 for the non-noisy distribution), we adopted a non-parametric statistical
hypothesis test, the Kruskal-Wallis H-test. We assessed the null hypothesis (𝐻0) that the
differences in the rate of failures are not statistically significant, i.e., introducing noise
does not impact the rate of failure. The observed result indicated that we could reject 𝐻0

at the 95% confidence level (statistic = 34.55, p − value < 4.14𝑒 − 09), i.e., the failure
rate for noisy runs is different (higher) from that of regular runs. Since the distributions
were different, we proceeded to evaluate effect size, i.e., the magnitude of the difference
in the measurements. For that, we used the Vargha and Delaney 𝐴12 measure [Vargha
and Delaney 2000], which tells us how often, on average, one technique outperforms the
other. The 𝐴12 measure ranges from 0 to 1, and when the measure is exactly 0.5 the
two techniques have equal performance. For interpreting the results, Vargha and Delaney
suggest that the effect size is small if the value is over 0.56, medium if the value is above
0.64, and large if the value is over 0.71. For our data, 𝐴12 was 0.94, which indicates that
the effect of introducing noise is large.

Figure 5 shows histograms of failure rates associated with noisy and noiseless test
runs. Note that most executions with noisy configurations raise more failures in tests.
The average rate of failures in a noisy execution is 0.33 whereas the average rate of
failures in regular noiseless executions is 0.22. To sum up:

Summary RQ1.1: Introducing noise in the environment
increases the failure rate of test cases.

5.2.2 Answering RQ1.2 (How repeatable is the discovery of flaky tests under a
given noise configuration?):

This question evaluates how repeatable are the results obtained with a given noise config-
uration. If results obtained with runs of the test suite with the same configuration are very
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Figure 5 – Histograms of ratio of failures (X-axis) for execution with and without noise. The Y-axis shows
the number of tests that manifested a rate of failures in a given interval. The vertical dotted
lines indicate the average failure rate for noise (0.33) and non-noise (0.22) executions.
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Source: Prepared by the author (2022)

different, then choosing configurations randomly would be no worse than searching for a
set of configurations to optimize flakiness detection, as described in Section 3.2. To answer
this question, we randomly selected 30 configurations and ran the test suite on each one
of them for 10 times, measuring the percentage of failures detected on each execution. As
a result, we obtained a different distribution of failure rates —with 10 measurements—
for each one of the 30 configurations. Figure 6 shows a boxplot for the distribution of
standard deviations associated with each of these 30 distributions. The average and me-
dian standard deviation was ∼.04, indicating that the average difference in measurements
is small. To sum up:

Figure 6 – Distribution of standard deviations of failure rates showing low variance in results when re-
executing a test suite on a given noise configuration. A data point in the distribution represents
the standard deviation of one distribution of failure rates obtained with the execution of a
given test suite for multiple times on a fixed configuration.

Source: Prepared by the author (2022)

Summary RQ1.2: The failure rates associated with the
execution of a test suite –for multiple times on a fixed noise

configuration– are similar.
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5.3 COHERENCE

We posed the following question to assess the coherence of Shaker, i.e., to evaluate
whether or not the proposed approaches to configuration selection perform better than
random selection:

RQ2. Is configuration selection (Greedy or MHS) more effective than Random?

Setup. Shaker’s configuration discovery (Step 1) requires a set of seed configurations
on input. These configurations appear as columns of the concrete and abstract matrices
on Figure 3.2.2. We sampled those configurations from a set of configurations uniformly
distributed across the domains of the five parameters we analyzed (see Section 3.1): four
parameters from stress-ng and one parameter from the AVD. We sampled a total of 30
configurations. To obtain the probabilities of the concrete matrix 𝑀 , we ran each test in
the training dataset (ICSME2020 ) on each of these configurations for 10 times. The result
of this execution is a probability matrix with failure probability in the 0-1 range (steps
of 0.1). To construct the abstract matrix 𝐴, we used a probability threshold of 0.5, i.e.,
values equal or above that level are set to 1 (true) and values below that level are set to
0 (false). Recall that failures provoked by timeouts are not considered (See Section 3.2).

5.3.1 Answering RQ2 (Is configuration selection (Greedy or MHS) more effective
than Random?):

Recall that Shaker selects configurations in two steps (see Section 3.2). First, it gen-
erates a probability matrix and then it selects configurations from that matrix. This
research question evaluates the effectiveness of the configuration selection strategies that
Shaker uses. We evaluated three strategies for selecting configurations, namely, (i) MHS,
(ii) Greedy, and (iii) Random. MHS is the technique that finds the smallest set of con-
figurations whose execution of the test suite is capable of detecting all flaky tests from
the training set (as per their associated probabilities in the abstract matrix). Greedy is
the technique that selects configurations with maximum individual fitness scores (see Sec-
tion 3.2). Random is the technique that randomly selects configurations regardless of their
scores. It serves as our control in this experiment. For fairness, both Greedy and Random
select the same number of configurations as MHS. The metric we used to compare tech-
niques is the ratio of flaky tests detected from the testing set when re-running the test
suite against the configurations produced by the technique. For illustration, we obtain
the ratio of flaky tests for MHS as follows. Consider that we obtained four configurations
with MHS. We execute the test suite four times, once for each configuration. If the test
suite contains, say, 100 flaky tests and discrepancy –across these four runs– is observed
in the outputs of 75 of the 100 flaky tests, the ratio will be 0.75 (=75/100).
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We ran statistical tests to evaluate if there are differences in the measurements ob-
tained by MHS, Greedy, and Random. The metric we used was the fitness score, as
described above, i.e., we measured the percentage of flaky tests detected when using each
selection strategy. We ran each technique for 10 times, so each distribution of measure-
ments contains 10 samples. We ran a Shapiro-Wilk test to check if the data are normally
distributed and found that the p-values are above 𝛼 = 0.05, therefore we concluded that
the data are normally distributed. We then used Bartlett’s test to check the homogeneity
of variances, which reveals that the samples originate from populations with the same
variance (statistic = 3.52, p − value = 1.7𝑒 − 01). For that, we used the one-way ANOVA
(ANalysis Of VAriance) parametric test to check statistical significance of the sample
means by examining the variance of the samples. The null hypothesis (𝐻0) is that there is
no variation in the means of measurements, which would indicate that there is no impact
on changing selection strategies. The test reveals that there are statistically significant
differences among treatments (statistic = 44.05, p − value = 9.3𝑒 − 09). Table 4 shows
the detailed results from ANOVA. Based on that observation, we performed a post-hoc
paired comparison to evaluate which of the techniques differ. For that, we used Tukey’s
HSD test to execute multiple pairwise comparisons, one for each pair of techniques.

Table 4 – Detailed results from ANOVA for RQ2

sum_sq df F PR(>F)

C(treatments) 0.122022 2.0 44.045455 9.283040e-09
Residual 0.033244 24.0 - -

Source: Prepared by the author (2022)

Table 5 – Post-hoc analysis for RQ2 — Multiple Comparison of Means using Tukey HSD.

Group 1 Group 2 Mean Diff. p adj. Lower Upper Reject

Greedy MHS 0.0189 0.5368 -0.0249 0.0627 False
Greedy Random -0.1322 0.001 -0.176 -0.0884 True
MHS Random -0.1511 0.001 -0.1949 -0.1073 True

Source: Prepared by the author (2022)

Table 5 shows the difference in means, the adjusted p-values, and confidence levels for
all possible pairs. We observe that between-group differences are significant only when
comparing Random with MHS and Random with Greedy. However, statistically, results
reject the hypothesis that Greedy and MHS are significantly different. To sum up:
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Summary RQ2: Results indicate that there is advantage in
selecting noise configurations based on their fitness scores as

opposed to randomly picking them. However, there is no
statistical support to claim significant differences between MHS

and Greedy.

5.4 PERFORMANCE

We posed the following research questions to assess Shaker’s performance:

RQ3.1. How many flakies does Shaker report incorrectly?

RQ3.2. How many flakies does Shaker miss?

RQ3.3. How quickly Shaker finds flakies?

RQ3.1 focuses on precision. The goal of this RQ is to evaluate if tests classified as flaky
by Shaker are actually flaky. RQ3.2 focuses on recall. This RQ evaluates how often
Shaker misses tests that should have been classified as flaky. Finally, RQ3.3 focuses on
efficiency. It investigates how quickly Shaker identifies flaky tests.
Techniques. We compared Shaker against ReRun, a technique that re-executes a test
multiple times in a noiseless environment to find discrepancies in the test outputs.1

Setup. To answer the questions related to performance, we use the ICSME2020 dataset
(Table 2) as the training set and the FlakyAppRepo dataset (Table 3) as the testing set.
We configure Shaker to use the 8 configurations obtained by MHS when answering RQ2.
For comparing the performance of Shaker against ReRun we proceed as follows: i) For
each subject in the training set, we run the subject’s test suite with noise (Shaker) and
without noise (ReRun) in a series of iterations; ii) At each iteration, Shaker runs the
subject’s test suite 8 times, one for each noisy configuration. For fairness, ReRun also
runs the subject test suite 8 times. This way, the number of test runs for each technique is
always the same at the end of each iteration; iii) We stop when Shaker and ReRun are
unable to identify new flaky tests after a sequence of 5 iterations. To illustrate this process,
Table 6 shows the actual results observed for one of the projects in our testing dataset
(Kiss). Note that both techniques are able to find the same amount of flaky tests at the
end of iteration #1. (We sorted the test names to facilitate illustration.) At iterations #2
and #3, Shaker revealed new flaky tests; ReRun did not reveal any. Note that ReRun
misses the flaky test testBatterySettingAppears (highlighted in bold face in the table), which
1 The term ReRun is often used to refer to the mechanism using during regression testing to detect test

flakiness reactively, upon observation of test failures. Here, we use the term to refer to a technique
that performs as Shaker, but re-executes tests in noiseless environments.
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Table 6 – Illustration of Shaker and ReRun’s progress for the Kiss project. Each row displays the list
of distinct flaky tests identified at a given iteration. In this experimental setup, Shaker runs
the test suite eight times on every iteration; once for each configuration that MHS reports (see
Section 5.3.1). ReRun executes the test suite for the same number of times. Execution stops at
iteration 15, after five consecutive iterations without new flaky tests identified by Shaker or
ReRun. The test highlighted in bold was identified by Shaker at iteration 3, but missed by
ReRun in the 15 iterations.

Iteration # Shaker ReRun

1
testExternalBarHiddenWhenViewingAllApps
testInternalBarDisplayedWhenViewingAllApps
testKissBarHidden
testSearchResultAppears

testExternalBarHiddenWhenViewingAllApps
testInternalBarDisplayedWhenViewingAllApps
testKissBarHidden
testKissBarEmptiesSearch

2 testCanTypeTextIntoSearchBox
testKissBarEmptiesSearch

3 testBatterySettingAppears
4 testInternalBar...AllAppsWithExternalModeOn
5 testInternalBar...AllAppsWithExternalModeOn testSearchResultAppears
6
7
8
9

10 testCanTypeTextIntoSearchBox
11
12
13
14
15

Source: Prepared by the author (2022)

is reported by Shaker at iteration #3. Shaker saturates at iteration #5, i.e., no new
flaky tests were reported by Shaker after that iteration. ReRun did not reveal anything
for the next four iterations, and then, at iteration #10, it revealed again a new flaky test (a
test that was reported as flaky by Shaker at iteration #2). After iteration #10, no new
flaky tests were reported for the next five iterations. Execution of the experiments stops
at iteration #15, when it reaches our stopping criterion. As highlighted on Table 7, it is
worth noting that Shaker detects all flaky tests in the ground truth (Section 4.2) on this
example. Recall that we do not consider failures provoked by timeouts (See Section 3.2).
Metrics. We use 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃

𝑇 𝑃 +𝐹 𝑃
and 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃

𝑇 𝑃 +𝐹 𝑁
as metrics to answer RQ3.1

and RQ3.2, respectively. 𝑇𝑃 denotes the number of true positives, i.e., it indicates the
number of correct classifications of flaky tests. 𝐹𝑃 denotes the number of false positives,
i.e., it indicates the number of incorrect classifications of non-flaky tests as flaky. 𝐹𝑁

denotes the number of false negatives (“misses”), i.e., it shows the number of incorrect
classifications of flaky tests as non-flaky. Precision is a proxy for the technique’s correctness
whereas recall is a proxy for the technique’s completeness. To answer RQ3.3, we use the
Area Under the Curve (AUC) denoting the cumulative number of flaky tests detected by
a technique over time.

5.4.1 Answering RQ3.1 (How many flakies does Shaker report incorrectly?):

Table 7 reports precision and recall of Shaker and ReRun. Each row corresponds to
one of the projects from the FlakyAppRepo data set that manifested flakiness (see Sec-
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Table 7 – Precision and Recall achieved by Shaker and ReRun

Shaker ReRun

Project GT TP FP FN Precision Recall TP FP FN Precision Recall

AntennaPod 43 40 2 3 0.95 0.93 30 0 13 1.00 0.70
Barista 17 16 0 1 1.00 0.94 8 0 9 1.00 0.47
Catroid 4 3 0 1 1.00 0.75 1 0 3 1.00 0.25
City Localizer 1 1 0 0 1.00 1.00 1 0 0 1.00 1.00
ConnectBot 2 2 0 0 1.00 1.00 0 0 2 n/a 0.00
DuckDuckGo 3 3 0 0 1.00 1.00 1 0 2 1.00 0.33
Espresso 2 2 0 0 1.00 1.00 1 0 1 1.00 0.50
Firefox Focus 6 5 2 1 0.71 0.83 4 0 2 1.00 0.67
Firefox Lite 24 23 0 1 1.00 0.96 17 0 7 1.00 0.71
FlexBox-layout 4 3 0 1 1.00 0.75 3 0 1 1.00 0.75
GnuCash 3 3 0 0 1.00 1.00 1 0 2 1.00 0.33
IBS FoodAnalyzer 1 1 0 0 1.00 1.00 0 0 1 n/a 0.00
Google I/O 7 7 0 0 1.00 1.00 2 0 5 1.00 0.29
Just Weather 1 1 0 0 1.00 1.00 1 0 0 1.00 1.00
KickMaterial 2 2 0 0 1.00 1.00 0 0 2 n/a 0.00
Kiss 8 8 0 0 1.00 1.00 7 0 1 1.00 0.88
MedLog 4 4 0 0 1.00 1.00 2 0 2 1.00 0.50
NYBus 1 1 0 0 1.00 1.00 0 0 1 n/a 0.00
OpenTasks 1 1 0 0 1.00 1.00 1 0 0 1.00 1.00
ownCloud 33 33 0 0 1.00 1.00 29 0 4 1.00 0.88
Surveyor 3 3 0 0 1.00 1.00 1 0 2 1.00 0.33

Σ 170 162 4 8 0.98 0.95 110 0 60 1.00 0.65

Source: Prepared by the author (2022)

tion 4.2). We use Precision as metric to answer RQ3.1. Precision measures the fraction
of tests reported as flaky that are actually flaky. Column GT (ground truth) contains the
total number of flaky tests for a given subject. Note that, by definition, ReRun is always
correct (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1.00 in all rows from Table 7). Overall, Shaker is very precise and
achieved maximum precision for 19 out of 21 subjects for which flaky tests were detected.
The overall precision of Shaker was 0.98 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 162

162+4). Shaker flagged as flaky
four tests for which we cannot confidently determine if they are flaky. As such, we con-
servatively assumed those tests are non-flaky. Note that, because we obtained our ground
truth by re-executing tests a fixed number of times, it under-approximates the actual set
of flaky tests. To sum up, those four tests can actually be flaky, but observing flakiness
is difficult because of a small failure rate. In an additional experiment, we ran ReRun
10,000 times for these four tests, and we noticed that their failure rate is indeed very low,
so these could be “hard to find” flakies. Table 8 shows the results for these possible false
positives, indicating the total number of failures among the 10,000 executions, the failure
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rate, and the number of executions until first failure.

Table 8 – Detailed failure information for the 4 test cases considered as “False Positives” for Shaker

Project Test #Failures Failure First
(10K runs) Rate Failure

AntennaPod testEventsGeneratedCaseMediaDownloadSuccess_noEnqueue 4 0.04% 2653
AntennaPod testKeepEmptyQueueSorted 5 0.05% 3410
Firefox Focus migrationFrom1To2_containsCorrectData 5 0.05% 1582
Firefox Focus editBookmarkWithClearingLocationContent_saveButtonIsDisabled 8 0.08% 3917

Source: Prepared by the author (2022)

Summary RQ3.1: Shaker is very precise. When applied to the
subjects in the testing set, it achieved an overall precision of
0.98. ReRun, by definition, is always correct and achieved an

overall precision of 1.00.

5.4.2 Answering RQ3.2 (How many flakies does Shaker miss?):

We use recall to answer RQ3.2. Recall measures the fraction of correct flaky classifications
(i.e., reports of the technique) over the total number of flaky tests (i.e., tests that are part
of the ground truth). Table 7 reports recall under columns “Recall”. Shaker achieved a
recall of 0.95 (= 162

162+8); it missed 8 flaky tests. ReRun achieved a recall of 0.65 (= 110
110+60);

it missed 60 flaky tests. Note that the number of times we ran ReRun in this experiment
was limited, if we ran indefinitely it would eventually reveal the 60 tests as well, as these
were discovered earlier through ReRun. Shaker achieved maximum recall for 15 subjects
(out of 21). In those cases, Shaker correctly detected all flaky tests in the ground truth
associated with the project. For ReRun, maximum recall was observed in 3 subjects only.

Summary RQ3.2: Shaker misses far fewer flaky tests from the
GT when compared with ReRun. Shaker misses only 8 flaky

tests whereas ReRun misses 60 flaky tests.

5.4.3 Answering RQ3.3 (How quickly Shaker finds flakies?):

To answer RQ3.3 we analyze the distribution of flaky tests identified by Shaker and
ReRun over time across all projects. Figure 7 displays the area plots for each technique.
The y axis shows the percentage of flaky tests identified and the x axis shows the iteration
number according to the description of our setup. The plots —green for Shaker and
purple for ReRun— represent the cumulative number of flaky tests identified over time,
and the area that is formed between the curve and the coordinate axis, the Area Under the
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Figure 7 – Number of flaky tests detected over time. Numbers highlighted match those highlighted on
Table 7, column Σ.
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Iteration 1 2 3 4 5 6 7 8 9 10 11 12

# flaky tests
Shaker 75 31 22 15 10 2 3 0 2 1 1 0
ReRun 28 15 13 13 13 6 10 4 1 4 1 2

Cumulative
Shaker 75 106 128 143 153 155 158 158 160 161 162 162
ReRun 28 43 56 69 82 88 98 102 103 107 108 110

Cumulative (%)
Shaker 44 62 75 84 90 91 93 93 94 95 95 95
ReRun 16 25 33 41 48 52 58 60 61 63 64 65

Source: Prepared by the author (2022)

Curve (AUC),2 is a proxy for the speed at which flaky tests are detected by a technique.
As these plots show, Shaker detects more flaky tests than ReRun in the first iterations.
In the very first iteration, Shaker identifies 75 flaky tests whereas ReRun identifies 28.
Note that Shaker not only identifies more flaky tests when compared with ReRun (as
per max value in the y axis), but Shaker identifies them faster (AUC of 82% versus AUC
of 47%, respectively). As the dashed red lines show, after 3 iterations, Shaker was able
to detect 75% of all flaky tests available in the ground truth. The table on Figure 7 shows
detailed progress information of techniques, showing numbers of flaky tests detected by
each technique over time.

Summary RQ3.3: Shaker finds more flaky tests than ReRun
and finds them faster. Shaker’s AUC is .82 in contrast to .47

of ReRun.

2 We calculate AUC using the trapezoidal rule, a standard (and old) method to approximate the definite
integral of a function. We reported the normalized AUC, obtained by dividing the AUC of a plot by
the (ideal) AUC of the technique that detects all flaky tests in the first iteration.
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6 EFFECTIVENESS OF SHAKER ON NEW DATA SETS

This Chapter evaluates Shaker on different data sets of Java projects with two goals:

1. to check whether results of Shaker on a different Android dataset are comparable
to the results obtained in the previous section (Section 6.1);

2. to check the influence of using non-Android projects on the results of Shaker
(Section 6.2).

6.1 NEW DATA SET OF ANDROID PROJECTS: “ANDROID HALL OF FAME”

To run this experiment, we selected a sample of Android apps from the Android “Hall
of Fame” data set created by [Cruz, Abreu and Lo 2019] including 1K apps. Intuitively,
projects in this data set follow good testing practices.1 We filtered apps in this data set
according to the following criteria. We selected apps written in Java or Kotlin that use
GUI test cases written in the Espresso framework. This criteria resulted in 43 apps. Of
these, 2 apps were used in the previous experiment, 17 apps could not be built because
of broken dependencies, and 4 apps had the test suite with all tests failing. This left us
with 20 apps (=43-23) to evaluate. Table 9 shows the results we obtained for this ex-
periment under the section “Android Hall of Fame”. The table only includes projects
with flaky tests that Shaker or ReRun detected. In total, Shaker detected 84%
(=(52+16)/(52+13+16)) of the flaky tests detected by one of the techniques whereas
ReRun detected 36% (=(13+16)/(52+13+16)) of the flaky tests detected by one of the
techniques. These results show that the difference in recall between Shaker and the base-
line was even higher in this data set compared to the results reported on Section 5.4.2.

1 <https://luiscruz.github.io/android_test_inspector/>

https://luiscruz.github.io/android_test_inspector/
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Table 9 – Comparison of ReRun and Shaker on other Java data sets.

# Name SHA # Stars # Tests
# Flaky Tests

Only ReRun Only Shaker Both

Android Hall of Fame [Cruz, Abreu and Lo 2019]

1 Anecdote 3bedf1d 33 1 - 1 -
2 andFHEM 00c36ee 55 23 - 7 -
3 calendula 5c86212 166 13 - - 1
4 connectbot 2d1bd0b 1.6k 10 - 6 1
5 Equate f633bc2 54 6 - - 2
6 Kore b9dcbc1 399 123 5 9 2
7 MicroPinner 3095ece 36 23 2 6 -
8 open_flood 7f834ff 119 3 - 2 -
9 otp-authenticator e7a6e4b 125 19 1 7 4

10 poet-assistant 43c667b 45 80 3 3 -
11 shoppinglist 81bc3c2 56 7 - 2 -
12 SuntimesWidget 03e1cdc 124 141 - - 2
13 transportr 7b1866e 650 19 - - 1
14 uhabits d997b13 3.4k 102 2 9 3

Total - - - 622 13 52 16

Non-Android projects mined from GitHub

1 azure-iot-sdk-java a9226a5 143 1,500 2 9 -
2 CorfuDB b99ecff 527 948 4 4 2
3 Chronicle-Queue bec195b 2.2K 693 2 - 2
4 exhibitor d345d2d 1.7K 53 - - 1
5 flow df7a5f8 272 4,459 - - 2
6 hbase d50816f 3.8K 2,083 3 1 2
7 karate 09bc49e 4.3K 404 2 1 -
8 killbill 9a6f3a4 2.2K 984 - 5 3
9 mockserver b1093ef 3K 3,524 - 1 -

10 ozone dfd2aaf 260 1,896 2 1 -
11 ripme 351b58c 884 54 - 1 -
12 RxJava 67c1a36 43.9K 61 - 2 -
13 strimzi-kafka-bridge eaf86fb 2.1K 232 - 1 -

Total - - - 16,891 15 26 12

Source: Prepared by the author (2022)

6.2 DATA SET OF NON-ANDROID PROJECTS

It is worth noting that Android projects include mostly UI tests and there is no inherent
limitation of Shaker that prevent use in other kinds of tests. We found important to
evaluate Shaker in other kinds of projects that do not rely on UI tests, mostly. The data
set used in this experiment includes Java projects selected from GitHub according to the

https://github.com/HugoGresse/Anecdote/
https://github.com/klassm/andFHEM/
https://github.com/citiususc/calendula/
https://github.com/connectbot/connectbot/
https://github.com/EvanRespaut/Equate/
https://github.com/xbmc/Kore/
https://github.com/dotWee/MicroPinner/
https://github.com/GunshipPenguin/open_flood/
https://github.com/0xbb/otp-authenticator/
https://github.com/caarmen/poet-assistant/
https://github.com/openintents/shoppinglist/
https://github.com/forrestguice/SuntimesWidget/
https://github.com/grote/Transportr/
https://github.com/iSoron/uhabits/
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following criteria. We looked for projects whose issues or pull requests contained the string
"flaky" and the string "test". The rationale was that projects that manifested flaky tests
in the past (as per the indication of the issue or pull request) could manifest flaky tests in
the future. Then, we filtered projects that use the Maven build system and that contained
more than 50 test cases. We found 81 Java projects satisfying these conditions. Of these,
we discarded 17 projects manifesting one of the following problems: broken dependencies,
compilation times out on a 30m time budget, and all tests failed. We used the same setup
as before for comparing Shaker against ReRun. Table 9 shows the results we obtained
for this experiment under the section “Non-Android projects mined from GitHub”. Again,
the table only includes projects with flaky tests detected by Shaker or ReRun. Note that
the relative difference of flaky tests that Shaker detects is not as high as in the previous
experiment. In total, Shaker detected 72% (=(26+12)/(15+26+12)) of the flaky tests
detected by one of the techniques whereas ReRun detected 51% (=(15+12)/(15+26+12))
of the flaky tests detected by one of the techniques. This suggests, perhaps as expected,
that flakiness in UI tests are more common compared to non-UI tests. In the experi-
ment with Android apps, we only executed GUI tests, which often invoke asynchronous
–inherently concurrent– operations. To sum up, Shaker is specially beneficial in UI tests.
Based on this, we could evaluate UI tests involving desktop or web applications in the
future.

6.3 DISCUSSION OF THE ROOT CAUSES OF FLAKY TESTS DETECTED BY SHAKER

This section discusses the root causes of flakiness that we observed for the test cases that
Shaker detected, focusing on the data sets discussed in this Chapter. To that end, we
used the categorization proposed by Luo et al. [Luo et al. 2014] to classify the sources
of test flakiness (see Table 1). To perform this classification, we analyzed the stack trace
associated with test failures and the test code. The stack trace was useful to understand
the test failures, and initiate the search for the root cause of flakiness. For instance, many
tests in Android fail due to a NoMatchingViewException that is triggered when the screen
does not (yet) show a particular UI widget that is expected by the test, an indication
of an Async Wait problem. We also considered the application code, when needed, to
understand failures by tracing the calls made by the test and what exactly was triggering
the failure. Each case of flakiness was separately analyzed by two authors of this paper.
For the cases the authors did not agree, all authors were involved in the discussion until
reaching consensus.

Figure 8 shows pie charts with the distributions of root causes for our data sets of
Android projects (Figure 8a) and Non-Android projects (Figure 8b). The undetected
sources were not listed. Tables 8c relates those distributions with the distribution observed
in the study conducted by [Luo et al. 2014]. Results show that –as in the study of [Luo
et al. 2014]– Concurrency and Async Wait are the most common sources of flakiness.
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Considering the Android data set, if we discard the flaky tests considered hard to classify,
Async Wait is the only source of flakiness (92.6% of the total); no other root cause have
been observed. These numbers support our expectations that Shaker induce flakiness
caused by non-deterministic behavior in concurrent programs. Note, however, that it is
still possible to capture flakiness related to other sources. However, detecting flakiness
not caused by concurrent behavior is not the intent of Shaker. The following sections
discuss examples of flakiness observed on these data sets.

Figure 8 – Distribution of root causes and comparison with [Luo et al. 2014].

Source: Prepared by the author (2022)

6.3.1 Examples from “Android Hall of Fame”

Figure 8 breaks down the root causes of flakiness we observed. Note that in this data
set we could only classify confidently flakiness due to async wait. We discuss a sample
of examples in the following. [Async Wait] otp-authenticator is a two-factor authenti-
cation app that performs QR code reading operations using the device camera. One of
its tests, test001InvalidQRCode [Test 001InvalidQRCode 2021], reads a QR code and then
tries to perform an assertion over a UI widget that is absent from the screen at the time
of running the assertion. As result, the test triggers NoMatchingViewException. This pattern
of trying to match some UI widget that was supposed to be visible on the screen was a
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common source of flakiness among Android apps, amounting to 62.9% (39/62) of the cases
for this category. [Romano et al. 2021] also found that accessing UI resources before it is
rendered on the screeen is a frequent reason for async wait flakiness [Dataset of ”An Em-
pirical Analysis of UI-based Flaky Tests“ 2021]. It is worth noting that although Espresso
provides a mechanism called “idling resources”2 to deal with such situations, in our anal-
ysis, we found that the most prevalent repair for flaky tests in this category consisted
of using Thread.sleep. As another example, consider Calendula, a personal medication
management app. The test testCreateMedicine [Test CreateMedicine 2021] exercises the UI
with the goal of saving a medicine with the name “aspirin” into the database. The setup
of the test creates a fresh database. After filling the form and clicking the save buttom,
the test queries the database to confirm that the medicine with the name “aspirin” was
indeed saved. The test asserts that the result set returned by the query contains records.
However, this assertion fails in some test runs. In Android, IO operations, such as ac-
cessing a database, need to be performed outside the main thread as to avoid blocking
the UI. This test spawns a worker thread to add the record to the database and, some-
times, executes the assertion before the record appears on the database, resulting in a
failure. [Concurrency, IO, Network, Time and Resource Leak] As Figure 8 shows,
we found no instances of test flakiness caused by concurrency, IO, network, time and
resource leak(age) in the Android data set, which are other common sources of flakiness
observed by [Luo et al. 2014].

6.3.2 Example from the data set of Non-Android Projects.

We observed flakiness in this data set from a variety of sources (see Figure 8b), support-
ing our claim that various root causes listed by [Luo et al. 2014] are related to concurrency.
[Async Wait] The Vaadin Flow [Vaadin Flow 2021] framework for web development con-
tains another example of async wait flaky tests. The test vaadinServlet_forDifferentRequ-
ests_shouldHaveCorrectResponse [Test vaadinServlet 2021] makes various HTTP requests
and compares the responses with corresponding expectations. In some executions, a
BindException is triggered when preparing the HTTP server for using a particular port.
The exception indicates that the address requested is already in use. The problem occurs
despite the fact that there is a teardown method associated with the tests for releasing the
resource (in this case, a network port). The non-deterministic behavior occurs because
the setup method of the failing test did not wait for the release of the resource by the
previously-executed test before requesting the resource. [Concurrency] azure-iot-sdk-java
[Azure repository 2021] is a Java SDK for connecting devices to Microsoft’s Azure IoT
services. The test authenticateWithProvisioningServiceWithX509Succeeds [Test authenticate-
WithProvisioning 2021] uses the JMockit library [JMockit 2021] to mock objects from an
API for testing message passing through the MQTT protocol for IoT messaging. Investi-
2 <https://developer.android.com/training/testing/espresso/idling-resource>

https://developer.android.com/training/testing/espresso/idling-resource
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gating the issue by analyzing the test code and stack trace, we discovered that the version
of the library that was used introduced a race condition that made tests fail intermit-
tently.3 [Network] The test testImagefapAlbums [Test ImagefapAlbums 2021] downloads
images from a given website. In some executions, the access to the page is slow, triggering
a SocketTimeoutException. We found that this test was indeed tagged as flaky in their code-
base. [IO] Apache HBase [Apache HBase 2021] is a distributed, scalable, big data store.
The test testRetrieveFromFile [Test RetrieveFromFile 2021] performs a series of operations
related to testing the behaviour of caching. It starts by initializing an object that is used
as a block cache (BucketCache). It then adds blocks to this object, persists the cache to the
file, and then checks if it can restore the cache from the file. Later it deletes the bucket
cache file, restarts the object, and asserts that it is unable to restore the cache from the
file. After that, it tries to delete the persistence file, but the assertion that the file exists
and was correctly deleted fails because the file did not exist yet during execution. The
shutdown() method of this object shuts down the cache and persists the information into
a persistence file. [Resource Leak and Time] We found no instances of test flakiness
caused by resource leak(age) and time issues in the Java data set.

3 <https://github.com/jmockit/jmockit1/issues/263>

https://github.com/jmockit/jmockit1/issues/263
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7 THREATS TO VALIDITY

Beyond our best efforts to ensure an accurate design and execution of the evaluation, our
results might still suffer from validity threats. This chapter presents a summary of the
potential threats to validity of our study, including threats to internal, external, construct,
and conclusion validity [Wohlin et al. 2012].

7.1 INTERNAL VALIDITY

Threats to the internal validity compromise our confidence in establishing a relationship
between the independent and dependent variables. To mitigate this threat, we carefully
inspected our implementation and the results we obtained in our evaluation. In addition,
we ran our experiments in different machines and different data sets to confirm the impact
of noise in detecting flakiness. Another possible threat is the number of repetitions used
for building our ground truth, as 100 reruns might not be enough to reveal low-probability
flaky tests, i.e., tests that rarely non-deterministically fail (or pass). Prevention to this
threat can be achieved by increasing the number of repetitions. However, for our exper-
iments reported in Chapter 5, we used Android applications with GUI test suites, and
each repetition is very expensive — the test suite of ownCloud, for example, contains 133
test cases and it takes approximately 6 minutes to run in our experimental environment;
100 repetitions takes 10 hours for this single app. While we find the choice of number
of repetitions to be important to determine the ground truth, we do not consider it as a
critical threat to validity as (1) we use the same ground truth to compare the two tech-
niques (Shaker and ReRun), so we expect the two techniques to be affected in the same
way and (2) the problem of determining the number of repetitions would still exist if we
decide to increase its current value.

7.2 EXTERNAL VALIDITY

Threats to the external validity relate to the ability to generalize our results. We cannot
claim generalization of our results beyond the particular set of projects studied. Our
findings are limited by the projects we studied, as well as their domains. To minimize this
threat, we explore two large data sets of programs. In addition to the data set of Android
applications we analyzed in our previous work [Silva, Teixeira and d’Amorim 2020], we
considered a new data set of Android applications for our study, the FlakyAppRepo [Dong
et al. 2021]. Also, for the results reported in Chapter 6 we considered a data set of Java
programs, and showed that Shaker can detect flakiness in tests that do not interact with
the UI.
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7.3 CONSTRUCT VALIDITY

Threats to the construct validity are related to the appropriateness of the evaluation
metrics we used. We used popular metrics previously used in the testing literature. For
example, to evaluate performance, we used precision (i.e., fraction of reports of flaky tests
which are actually flaky), recall (i.e., fraction of actually flaky tests which are reported),
and detection speed, as measured by the Area Under the Curve (AUC).

7.4 CONCLUSION VALIDITY

Threats to conclusion validity are concerned with the relationship between the treatments
and the outcome of the experiments. One possible threat could be the violation of the
assumptions of the statistical methods used. This threat affects our RQs differently as
different statistical methods were adopted. For the case of RQ1, we consider such a threat
to be low because we used non-parametric tests, which do not rely on assumptions about
the distribution of the underlying data. For the case of RQ2, a parametric test was used
and we controlled this threat by using a classical test that has been shown to be robust
to the violation of (at least some of) their assumptions.

Another possible threat happens when a hypothesis turns out significant by chance,
even when there is no difference between the treatments. Although the significant results
observed in our evaluation are in line with the expectations, further studies using larger
sample sizes should be considered to minimize this threat.
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8 RELATED WORKS

In this chapter, we describe some related works. We organized it in four groups: Empirical
studies about bugs in test code, techniques to detect test smells, techniques to detect flaky
tests and stress testing techniques for detection of concurrency bugs.

8.1 EMPIRICAL STUDIES ABOUT BUGS IN TEST CODE

Different empirical studies [Luo et al. 2014,Thorve, Sreshtha and Meng 2018,Vahabzadeh,
Fard and Mesbah 2015, Waterloo, Person and Elbaum 2015, Tran et al. 2019, Eck et al.
2019,Lam et al. 2020] attempted to characterize the causes and symptoms of buggy tests,
i.e., tests that fail not because of a problem in the application but because of a problem in
the test itself. This dissertation focuses on test flakiness, which is one important–and very
common–type of test code issue. Considering test flakiness, [Luo et al. 2014] were the first
to characterize the sources of test flakiness and common repairs to mitigate them. They
analyzed the commit history of the Apache Software Foundation central repository looking
for flakiness manifestations. They analyzed 1,129 commits including the keyword “flak”
or “intermit”, and then manually inspected each commit. They proposed 10 categories of
root causes for flakiness and summarized the most common strategies to repair them. The
majority of the problems they reported were related to timing constraints that could, in
principle, be captured by Shaker. [Vahabzadeh, Fard and Mesbah 2015] mined the JIRA
bug repository and the version control system of the Apache Software Foundation and
found that 5,556 unique bug fixes exclusively affected test code. They manually examined
a sample of 499 buggy tests and found that 21% of these false alarms were related to
flaky tests, which they further classified into Asynchronous Wait, Race Condition, and
Concurrency Bugs. Thorve et al. [Thorve, Sreshtha and Meng 2018] conducted a study
about test flakiness focused on Android apps and observed that the causes of flakiness
in Android apps are similar to those found by Luo et al. [Luo et al. 2014]. [Eck et al.
2019] conducted an experiment with 21 Mozilla developers where they asked developers
to classify 200 flaky tests that these developers fixed. Once again, Concurrency and Async
Wait were the most prevalent categories of flaky tests. In principle, Shaker could capture
problems related to all these categories. Although we used Java programs, the technique
and tool are programming-language agnostic.

More recently, [Lam et al. 2020] conducted a longitudinal study of test flakiness involv-
ing 55 Java projects to determine when flaky tests become flaky and what changes cause
them to become flaky. They found that 75% of the cases of flakiness could be detected
when the test is created and another 10% of the cases could be detected when the test is
modified. The findings of this study suggests a method to reduce the cost of flakiness de-
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tector tools, including Shaker. More precisely, it shows a method to aggressively reduce
the number of tests that require attention of flakiness detectors.

8.2 TECHNIQUES TO DETECT TEST SMELLS

Code smells are syntactical symptoms of poor design that could result in a variety of
problems. Test smells manifest in test code as opposed to application code. Van Deursen
et al. [Deursen et al. 2001] described 11 sources of test smells and suggested corresponding
refactorings to circumvent them. More recent studies have been conducted on the same
topic. Bavota et al. [Bavota et al. 2012] and Tufano et al. [Tufano et al. 2016] separately
studied the sources of test smells as defined by Van Deursen et al. [Deursen et al. 2001].
They used simple syntactical patterns to detect these smells in code and then manually
inspected them for validation. Bavota et al. found that up to 82% of the 637 test classes
they analyzed contains at least one test smell. In related work, Tufano et al. studied
the life cycle of test smells and concluded that they are introduced since test creation—
instead of during evolution—and they survive through thousands of commits. Waterloo et
al. [Waterloo, Person and Elbaum 2015] developed a set of (anti-)patterns to pinpoint
problematic test code. They performed a study using 12 open source projects to assess
the validity of those patterns. Garousi et al. [Garousi, Kucuk and Felderer 2018] prepared
a comprehensive catalogue of test smells and a summary of guidelines and tools to deal
with them.

Test flakiness may relate to test smells. For example, the use of sleeps are good pre-
dictors of flakiness according to [Pinto et al. 2020] and [Palomba, Zaidman and Lucia
2018]; they induce time constraints that could be violated in overloaded environments. We
remain to investigate how test smells can help improve the effectiveness of static flakiness
detectors and how detectors can be used in tandem with Shaker.

8.3 TECHNIQUES TO DETECT FLAKY TESTS

Ideally, a test case should produce the same results regardless of the order it is executed in
a test suite [Zhang et al. 2014]. Unfortunately, this is not always the case as the application
code that is reached by the test cases can inadvertently modify the static area and resetting
the static area after the execution of a given test is impractical. Test dependency is one
particular source of test flakiness [Luo et al. 2014]. Gambi et al. [Gambi, Bell and Zeller
2018] proposed a practical approach, based on flow analysis and iterative testing, to detect
flakiness due to broken test dependencies. Shi et al. [Shi et al. 2019] proposed iFixFlakies
to find and fix flaky tests caused by broken test dependencies. Shaker is complementary
to techniques for capturing broken test dependencies. It remains to investigate how a
technique that forcefully modifies the test orderings (e.g., discarding tests from test runs
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and modifying orderings of test execution) compares with the approach proposed by
Gambi et al..

Bell et al. proposed DeFlaker [Bell et al. 2018], a dynamic technique that uses test
coverage to detect flakiness during software evolution. DeFlaker observes the latest code
changes and marks any new failing test that did not execute changed code as flaky tests.
The expectation is that a test that passed in the previous execution and did not execute
changed code should still pass. When that does not happen, DeFlaker assumes that the
changes in the coverage profile must have been caused by non-determinism. Note that
DeFlaker is unable to determine flakiness if the coverage profile was impacted by the
changes and it does not provoke flakiness as Shaker does. DeFlaker focuses on flakiness
that could be detected during evolution, but Shaker was not developed for that purpose,
thus we do not compare Shaker with DeFlaker in our evaluation. Recently, Dong et
al. [Dong et al. 2020] proposed FlakeScanner (previously FlakeShovel), a tool to detect
flakiness in Android apps by monitoring and manipulating thread executions to change
event orderings. It directly interacts with the Android runtime, instead of generating stress
loads as we did. We do not compare Shaker with FlakeScanner in our evaluation because
FlakeScanner focuses on Android apps (there are different requirements and limitations
compared to our approach), whereas Shaker focuses on concurrency-related issues in any
kind of program (in Chapter 6 we reported the results of our evaluation with non-Android
programs).

Purely static approaches have also been proposed to identify flaky tests [Herzig and
Nagappan 2015,King et al. 2018,Verdecchia et al. 2021,Pinto et al. 2020]. An important
benefit of these approaches is scalability. For example, it is possible to build services to
proactively search for suspicious tests in open source repositories. On the downside, they
only offer estimates of flakiness; re-execution is still necessary to confirm the issue. Herzig
and Nagappan [Herzig and Nagappan 2015] developed a machine learning approach that
mines association rules among individual test steps in tens of millions of false test alarms.
Lam et al. [King et al. 2018] used Bayesian networks for flakiness classification. [Pinto et
al. 2020] used binary text classification (e.g., Random Forests) to predict test flakiness.
They used typical NLP techniques to classify flaky test cases—they tokenized the body
of test cases, discarded stop words, converted words in camel case, and built language
models from the words associated with flaky and non-flaky tests. [Alshammari et al. 2021]
recently proposed the use of an additional set of features that improved the performance
of classification models. Shaker is complementary to static techniques. We remain to
evaluate how static classification techniques could be used in tandem with our approach.
For example, by using the output of static detectors to select what tests should be re-
executed in noisy environments.

While several other techniques for detecting flaky tests exist, in contrast to Shaker,
they focus on some particular domain or application context, making the comparison with
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Shaker unrealistic and unfair. Shaker is essentially ReRun running in a noisy environ-
ment. As such, the best comparison baseline — to highlight the impact of introducing
noise –– is really ReRun.

8.4 STRESS TESTING TECHNIQUES FOR DETECTION OF CONCURRENCY BUGS

Various techniques to stress test concurrent applications exist [Edelstein et al. 2003,Farchi,
Nir and Ur 2003,Sen 2007,Bielik, Raychev and Vechev 2015]. Purely random approaches
stress test the application by running multiple concurrent tests simultaneously, suspending
threads, inserting random sleeps, and changing thread policies. For example, RAPOS [Sen
2007] introduces random sleeps at thread synchronization points to find data races. There
are techniques that sample the space of thread interleaving more systematically with
the goal of providing stronger guarantees of finding concurrency bugs [Burckhardt et
al. 2010, Bielik, Raychev and Vechev 2015]. For example, Bielik et al. [Bielik, Raychev
and Vechev 2015] proposes algorithms (i) to efficiently compute a Happens-Before event
graph and (ii) to efficiently query that graph for potential races. Furthermore, it proposes
filtering rules to reduce the number of reports (and improve the precision of the approach).

The solution of [Bielik, Raychev and Vechev 2015] is specific to Android. Their ap-
proach instruments the framework and apks to obtain event traces from which the Happens-
Before graph is obtained. As such, [Bielik, Raychev and Vechev 2015] is more similar to
the work of [Dong et al. 2021] than it is to Shaker. Conceptually, stress testing technique
for detection of concurrency bugs have different assumptions and provide different guaran-
tees compared to Shaker. For example, Shaker requires no instrumentation or system
configuration; it works out-of-the-box as it builds on an off-the-shelf noise generator.
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9 CONCLUSION AND FUTURE WORKS

Flaky tests are a huge problem in industry. Their presence makes it difficult for developers
to unambiguously interpret the results of failing tests during a regression testing cycle.
The standard approach in industry to deal with flaky tests is to re-execute tests upon
failures observed during regression. A test that fails during regression testing is considered
to be flaky when it is possible to observe differences in the test outputs across multiple
re-executions. This practice, however, is considered unproductive as developers need to
either stop their activities to debug the flaky test or to ignore the flaky test that could
be actually useful to reveal failures. Techniques have been proposed to proactively detect
flaky tests, i.e., to detect flakiness before they are observed during regression testing.
However, existing techniques are restricted to specific contexts and application scenarios.
For example, various techniques have been proposed to detect flakiness due to test-order
dependency.

This dissertation proposes Shaker, a lightweight technique to detect flaky tests
caused by concurrency issues (e.g., async wait), which is the most prevalent source of
test flakiness according to prior studies. Shaker adds noise in the environment where
tests will be executed with the goal of observing different test outputs. The assumption
is that noise can induce different thread interleavings in the execution of tests of concur-
rent programs. To that end, Shaker selects different configurations of a noise generator
(e.g., stress-ng) to add stressor tasks that compete for machine resources (e.g., CPU,
memory, etc.).

We evaluated Shaker using public benchmarks of flaky tests for Android applications,
standard performance metrics (e.g., precision and recall), and using ReRun as a compar-
ison baseline. ReRun is a technique that detects flaky tests with repeated executions of a
test suite in noiseless environments. Results are encouraging. For example, we found that
(1) Shaker is 96% precise; it is almost as precise as ReRun, which, by definition, does
not report false positives, that (2) Shaker’s recall is much higher compared to ReRun’s
(95% versus 65%), and that (3) Shaker detects flaky tests much more efficiently than
ReRun, despite the execution overhead associated with noise introduction. Furthermore,
we evaluated Shaker in other benchmarks and observed that Shaker is also highly
effective in non-Android programs whose test suites are not focused on the UI.

In the future, we plan to investigate (1) how to improve Shaker’s efficiency by in-
terrupting stressor tasks during the execution of single-threaded tests based on the work
of [Winters, Manshreck and Wright 2020], (2) how to improve Shaker’s recall by target-
ing it to the tests, e.g., by running short-lived stressors on one specific machine resource
when observing an specific event during the execution of a test and (3) evaluate Shaker
in other scenarios such as applications in other languages or UI tests involving desktop
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or web applications. Shaker is publicly available:

Artifacts: <https://github.com/STAR-RG/shaker-artifacts-tosem>

Tool: <https://star-rg.github.io/shaker>

9.1 PUBLICATIONS

The Table 10 presents the scientific papers produced in scope of this dissertation. The
Table 11 shows others publications produced during the dissertation production.

Table 10 – Scientific papers produced.

# Reference Type Status

1

Silva, D., Teixeira, L., & d’Amorim, M. (2020, September). Shake it! detecting
flaky tests caused by concurrency with shaker. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME) (pp. 301-311).
IEEE.

Conference Published

2

Cordeiro, M., Silva, D., Teixeira, L., Miranda, B., & d’Amorim, M. (2021,
November). Shaker: a Tool for Detecting More Flaky Tests Faster. In 2021
36th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) (pp. 1281-1285). IEEE.

Conference Published

3
Silva, D., Miranda, B., Teixeira, L., & d’Amorim, M. (2022, February). Using
Noise to Detect Test Flakiness. Transactions on Software Engineering and
Methodology (TOSEM). ACM.

Journal Under Review

Source: Prepared by the author (2022)

Table 11 – Other related publications.

# Reference Type Status

1
Mondal, S., Silva, D. & d’Amorim, M. (2021, September). Soundy Automated
Parallelization of Test Execution. In 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME) (pp. 309-319). IEEE..

Conference Published

2

Henkel, J., Silva, D., Teixeira, L., d’Amorim, M., & Reps, T.. (2021, May).
Shipwright: A Human-in-the-Loop System for Dockerfile Repair. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE)
(pp. 1148-1160). IEEE.

Conference Published

Source: Prepared by the author (2022)

https://github.com/STAR-RG/shaker-artifacts-tosem
https://star-rg.github.io/shaker
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