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RESUMO 

 

A esquistossomose é uma das doenças de maior prevalência entre aquelas veiculadas às 

coleções hídricas, sendo principalmente um risco nas populações de área rurais e das periferias 

urbanas. No Brasil estima-se que cerca de 1,5 milhões de pessoas vivem em áreas sob o risco 

de contrair a doença. Portanto a determinação da presença e gravidade da fibrose hepática é 

essencial em especial para a população de difícil acesso a exames existentes apenas em grande 

centro. Para contemplar o estadiamento da doença nesta população, estudos estão surgindo na 

tentativa de desenvolver métodos que sejam capazes de identificar e avaliar a fibrose periportal 

por meio de marcadores biológicos presentes no sangue. Por essa razão, este trabalho objetivou 

desenvolver e avaliar modelos metabonômicos para estadiamento de fibrose periportal em 

pacientes com esquistossomose mansônica usando cromatografia à líquido e quimiometría, 

tendo a ultrassonografia como padrão de referência. O estudo foi realizado com 94 amostras de 

soro, sendo 19 de pacientes com o estágio leve da doença, 30 intermediário e 45 avançado. As 

condições de análise das amostras foram previamente otimizadas. No preparo de amostra foram 

testados os métodos DLLME e QuEChERS. Já para a fase móvel da análise cromatográfica, 

foram testados gradientes de acetonitrila e metanol. A otimização revelou que o melhor preparo 

de amostra foi o DLLME e o melhor gradiente da fase móvel foi o metanol. Com as condições 

de trabalho definidas foram analisadas as 94 amostras utilizando um HPLC-DAD. Os dados 

obtidos foram pré-processados, usando o algoritmo Icoshift para correção de deslocamento de 

pico e posteriormente foram submetidos a análise multivariada exploratória e classificatória 

através do software MATLAB R2010a. A análise por ROBPCA não indicou a presença de 

amostras anômalas. Dentre os modelos metabonômicos construídos, o melhor foi o GA-LDA 

que obteve 84% de sensibilidade, 83% de especificidade e 83% de exatidão para discriminação 

de pacientes com FPP leve daqueles com FPP avançada. Outro modelo que apresentou bons 

resultados foi o DD-SIMCA que obteve 92% de sensibilidade, 63% de especificidade e 75% de 

exatidão. Desta forma o presente trabalho desenvolveu modelos que podem ser utilizados para 

auxiliar o diagnóstico e controle dinâmico da doença utilizando amostras de soro. O diagnóstico 

usando marcadores biológicos no sangue possibilita um acompanhamento mais frequente da 

doença e o monitoramento de pacientes com dificuldade de se deslocar para realizar a 

ultrassonografia.  

 

Palavras-chave: fibrose; esquistossomose; metabonômica; HPLC-DAD; quimiometría. 



 
 

 

ABSTRACT 

 

Schistosomiasis is one of the most prevalent diseases among those transmitted to water 

collections, being mainly a risk in populations in rural areas and urban peripheries. In Brazil it 

is estimated that around 1.5 million people live in areas at risk of contracting the disease. 

Therefore, determining the presence and severity of liver fibrosis is essential. Studies are 

emerging in an attempt to develop non-invasive methods that are able to identify and assess 

periportal fibrosis through biological markers present in the blood. For this reason, this study 

aimed to develop and evaluate metabonomic models for staging periportal fibrosis in patients 

with schistosomiasis mansoni using liquid chromatography and chemometry, using ultrasound 

as the reference standard. The study was carried out with 94 serum samples, 19 from patients 

with mild stage of the disease, 30 intermediate and 45 advanced. The analysis conditions of the 

samples were previously optimized. In preparing the sample, the DLLME and QuEChERS 

methods were tested. For the mobile phase of the chromatographic analysis, gradients of 

acetonitrile and methanol were tested. Optimization revealed that the best sample preparation 

was DLLME and the best mobile phase gradient was methanol. With the defined working 

conditions, the 94 samples were analyzed using an HPLC-DAD. The data obtained were pre-

processed, using the Icoshift algorithm for peak displacement correction, and later submitted to 

exploratory and classificatory multivariate analysis using the MATLAB R2010a software. 

ROBPCA analysis did not indicate the presence of anomalous samples. Among the constructed 

metabonomic models, the best was the GA-LDA, which obtained 84% sensitivity, 83% 

specificity and 83% accuracy for discriminating patients with mild PPF from those with 

advanced PPF. Another model that showed good results was the DD-SIMCA, which obtained 

92% sensitivity, 63% specificity and 75% accuracy. Thus, the present work has developed 

models that can be used to aid the diagnosis and dynamic control of the disease using serum 

samples. Diagnosis using biological markers in the blood allows for more frequent follow-up 

of the disease and monitoring of patients who have difficulty traveling for ultrasound. 

 

 

Keywords: fibrosis; schistosomiasis; metabonomics; HPLC-DAD; chemometrics. 
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1 INTRODUÇÃO 

 

O fígado tem um grande número de funções digestivas e excretórias, bem como 

armazenamento de nutrientes e funções metabólicas, síntese de novas moléculas e purificação 

de produtos químicos tóxicos; é capaz de desintoxicar o corpo humano de várias substâncias 

por meio de sua alteração estrutural, tornando-as menos tóxicas ou mais fáceis de excretar 

(GUERRA et al., 2016). Quando é atingido repetidamente por um amplo espectro de lesões 

hepáticas, o fígado produz uma resposta de cicatrização nas feridas conhecida como fibrose. A 

fibrose hepática resulta de um desequilíbrio entre a síntese e a degradação da matriz extracelular 

(CAVIGLIA et al., 2017). 

Quando a fibrose é causada pelo Schistosoma mansoni refere-se a esquistossomose da qual 

a fibrose periportal (FPP) é congênita (BRASIL,2014). A transmissão da esquistossomose foi 

relatada em 78 países. É considerada uma doença negligenciada, conhecida como doença da 

pobreza, e a incidência da infecção concentra-se em comunidades particularmente pobres com 

dependência de águas superficiais, muitas vezes contaminadas com fezes de indivíduos 

infectados e colonizadas por caramujos que agem como hospedeiros intermediários do 

esquistossomo (LAGO et al., 2018). 

Entre as parasitoses que afetam o homem, a esquistossomose é uma das mais disseminadas 

no mundo. De acordo com a Organização Mundial de Saúde – OMS, ocupa o segundo lugar 

depois da malária, pela sua importância e repercussão socioeconômica (BRASIL, 2014).  

No Brasil, a Secretaria de Vigilância em Saúde, do Ministério da Saúde, estimou 1,5 milhão 

de pessoas infectadas pelo Schistosoma mansoni em 2019. O agravo está presente, de forma 

endêmica, em nove estados, persistindo como foco em outras nove Unidades da Federação 

(UFs) onde se observa a manutenção de suas características epidemiológicas (SANTOS, I. G. 

De A. et al., 2021). 

A doença ainda se configura como problema de saúde pública, do total de pessoas afetadas 

no país, 80% delas são da região Nordeste. Acrescentem-se as graves formas clínicas de 

expressão da esquistossomose, o que contribui para sua magnitude e transcendência. 

Pernambuco é um dos estados nordestinos com maior prevalência de esquistossomose (BRITO; 

SILVA, M. B. A.; QUININO, 2020). 

As infecções por esquistossomose são diagnosticadas por uma história clínica de contato 

com uma fonte de água doce, como rios ou riachos de áreas endêmicas, seguida pela detecção 

de ovos nas fezes (GOUVEIA et al., 2017). Já para a presença de fibrose, a biópsia hepática é 
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atualmente considerada o padrão ouro para seu o diagnóstico e avaliação histológica. No 

entanto, devido à sua natureza invasiva, uma biópsia não é adequada para fins de triagem e não 

pode ser implementada no início do diagnóstico de pacientes em potencial. É principalmente 

reservada para pacientes com alto risco de doença hepática e para determinar sua extensão 

(HEYENS et al., 2021). O risco de complicações graves inclui, sangramento, erros de 

amostragem, variabilidade na interpretação histopatológica e custos econômicos 

(TADOKORO, 2021).  

Em virtude das complicações da biopsia, o diagnóstico de FPP é realizado por métodos de 

imagem como ultrassonografia (US), tomografia computadorizada e ressonância magnética. 

Destes, o US é o mais utilizado no Brasil, devido ao seu baixo custo e por ser tão sensível 

quanto a biopsia. Apesar do uso generalizado da US para o diagnóstico e monitoramento das 

alterações causadas pela fibrose, seu uso apresenta algumas limitações, como a baixa 

sensibilidade nas formas iniciais da doença; a necessidade de examinador treinado e o fato de 

não estar disponível em todos os centros, principalmente nos localizados na zona rural 

(BARRETO, 2017). 

Em decorrência dessas limitações da US e da biopsia, estudos estão surgindo na tentativa 

de desenvolver métodos não invasivos capazes de identificar e avaliar a FPP por meio de 

marcadores biológicos. Marcadores séricos, proteínas responsáveis pela fibrogênese, ácido 

hialurônico, plaquetas, laminina e colágeno tipo IV, tem sido estudada na avaliação da fibrose. 

Entretanto estudos sobre a medida de FPP por biomarcadores em pacientes com 

esquistossomose é relativamente pequena (BARRETO, 2017; MARIA SOARES TOJAL DE 

BARROS LIMA et al., 2008; MEDEIROS et al., 2014). 

Dentro deste cenário, é preciso desenvolver ferramentas para o diagnóstico diferencial da 

doença utilizando métodos não invasivos que além de discriminar estágios da doença, possam 

ser empregados para o monitoramento terapêutico.  

Em 2020 Lima Rodrigues, do nosso grupo de pesquisa, apresentou um estudo no qual 

construiu modelos metabonômicos, para diagnostico e classificação de FPP, baseados na 

técnica de RMN de 1H. Nesse contexto e com o objetivo de continuar com a pesquisa na área 

propõe-se aqui um estudo metabonômico utilizando dados de cromatografia liquida de alta 

eficiência. Visto que na cromatografia é possível identificar marcadores biológicos em 

concentração menor que no RMN. Portanto, sendo esta técnica mais sensível , pode render 

resultados mais interessantes ao permitir enxergar metabólitos em maior quantidade (CANUTO 

et al., 2018). Por outro lado, o HPLC-DAD é fácil de obter na maioria dos laboratórios e 
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apresenta menor custo associado, o que o torna uma ferramenta acessível para hospitais e 

clinicas. 

1.1 OBJETIVO GERAL 

 

Desenvolver e avaliar modelos metabonômicos, a partir de dados de cromatografia líquida 

de alta eficiência com detector por arranjo de diodos de amostras de soro, para estadiamento de 

fibrose periportal em pacientes com esquistossomose, tendo a classificação ultrassonográfica 

de Niamey como padrão de referência.  

 

1.1.1 Objetivos Específicos 

 

• Otimizar o preparo e as análises cromatográficas das amostras de soro; 

• Realizar análise exploratória utilizando a PCA Robusta para detecção de amostras 

anômalas; 

• Construir e validar modelos metabonômicos, a partir dos dados obtidos das análises 

cromatográficas, que permitam classificar os padrões de fibrose periportal; 

• Avaliar a eficiência de modelos de classe única para classificação de fibrose periportal; 

• Avaliar a eficiência de modelos discriminantes para classificação de fibrose periportal; 

• Avaliar a eficiência de modelos não lineares para classificação de fibrose periportal; 

• Comparar os resultados de eficiência de todos os modelos e definir o mais adequado 

para o caso em estudo; 
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2 REVISÃO DA LITERATURA  

 

2.1 FIBROSE 

O fígado é o maior órgão do corpo humano, depois da pele, representando 2,5 a 4,5% da 

massa corporal. É um órgão muito complexo que realiza várias funções vitais, essenciais à 

manutenção da homeostasia corporal. Dentre estas funções destacam-se a regulação do 

metabolismo de diversos nutrientes, papel imunológico, síntese proteica e de outras moléculas, 

armazenamento de vitaminas e ferro, degradação hormonal e a inativação e excreção de drogas 

e toxinas (ORIÁ et al., 2016). 

De forma aproximada, o fígado exibe uma forma triangular e uma coloração rosa a marrom. 

É uma estrutura altamente vascular que: apresenta uma consistência macia; está posicionado no 

quadrante superior direito da cavidade abdominal, abaixo do diafragma; é protegido pela caixa 

torácica; mantém sua posição com o apoio de vários ligamentos (ABDEL-MISIH; 

BLOOMSTON, 2010; GUERRA et al., 2016; TAHARA; SHIBATA, 2016). 

Lesões crônicas produzidas por uma variedade de agressões, como doenças metabólicas, 

infeções virais, abuso na ingestão de álcool, drogas e ataque autoimune aos hepatócitos ou 

defeitos congênitos, produzem uma resposta comum no fígado chamada fibrose (CEQUERA; 

GARCÍA LEÓN MÉNDEZ, DE, 2014). 

A fibrose hepática envolve múltiplos eventos celulares e moleculares que induzem a 

deposição excessiva de proteínas da matriz extracelular que distorcem a arquitetura do 

parênquima hepático, cujo estágio final é conhecido como cirrose (SENTÍES-GÓMEZ et al., 

2005). A fibrose hepática é considerada um processo de reparo de tecidos altamente complexo 

que aparece após dano hepatocelular sustentado. Durante esse processo reparador, ocorre uma 

reação inflamatória, juntamente com um depósito extracelular da matriz composto de colágeno 

não fibrilar, que contribui para recompor o lóbulo hepático estragado. No entanto, se a necrose 

hepática for mantida, esse processo reparador continuará. Com o tempo, a capacidade de 

regeneração hepática diminui, enquanto a produção de matriz extracelular, que é depositada de 

maneira desorganizada no lóbulo hepático, aumenta consideravelmente (DOMÍNGUEZ; 

COLMENERO; BATALLER, 2009). 

Como resultado de todas essas alterações hepáticas, uma cicatriz fibrosa é formada ao redor 

da área lesionada e se mantida pode levar à cirrose (uma consequência do estágio final da 

fibrose)  caraterizada pela presença de nódulos regenerativos circundados por fibrose 

(FRIEDMAN, 2008; TSUKADA; PARSONS; RIPPE, 2006). A cirrose e sua distorção vascular 
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associada, resultam em uma grave perda das funções hepáticas (GUERRA et al., 2016; 

SCHUPPAN; AFDHAL H, 2008). 

 

Figura 1 – Representação da aparência do fígado saudável, com fibrose e com cirrose. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: (BOLBOT, 2021). Modificado pela autora. 

 

2.2 ESQUISTOSSOMOSE 

A esquistossomose mansoni é uma doença infecto parasitária provocada por vermes do 

gênero Schistosoma, que têm como hospedeiros intermediários caramujos de água doce do 

gênero Biomphalaria, e pode progredir de formas assintomáticas até formas clínicas 

extremamente graves (BRASIL, 2014). 

A esquistossomose é uma das doenças de maior prevalência entre aquelas veiculadas as 

coleções hídricas, sendo principalmente um risco nas populações de área rurais e das periferias 

urbanas. De acordo com a Organização Mundial de Saúde – OMS, a doença afeta 200 milhões 

de pessoas, sendo uma ameaça mais elevada para indivíduos residentes em área de risco 

(BRASIL, 2014). No Brasil estima-se que cerca de 1,5 milhões de pessoas vivem em áreas sob 

o risco de contrair a doença. Os estados das regiões Nordeste e Sudeste são os mais afetados 

Figado  

Saudável 

Fibrose 

Cirrose 
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sendo a ocorrência diretamente ligada à presença dos moluscos transmissores. Atualmente, a 

doença é detectada em todas as regiões do país. As áreas endêmicas e focais abrangem os 

Estados de Alagoas, Bahia, Pernambuco, Rio Grande do Norte (faixa litorânea), Paraíba, 

Sergipe, Espírito Santo e Minas Gerais (predominantemente no Norte e Nordeste do Estado) 

(MINISTÉRIO DA SAÚDE, 2017). 

Em Pernambuco, a esquistossomose é considerada endêmica. Regiões onde o 

saneamento básico é precário constituem o cenário perfeito para sua ocorrência e aliado a isso, 

a migração de pessoas parasitadas tem promovido a expansão da esquistossomose para áreas 

indenes, como os centros urbanos de cidades do interior e localidades litorâneas do estado de 

Pernambuco (SOUZA GOMES, DE et al., 2016). 

Três espécies principais de esquistossomos infectam os seres humanos, Schistosoma 

haematobium, Schistosoma japonicum e Schistosoma mansoni. Esta última espécie é a única 

descrita no Brasil, em virtude da inexistência de moluscos suscetíveis aos demais helmintos. O 

verme adulto tem seu habitat nas vênulas tributárias do sistema porta, particularmente das veias 

mesentéricas superiores e inferiores, do plexo hemorroidário e mesmo da porção intra-hepática 

da veia porta. No interior desses vasos, encontram-se geralmente o macho e a fêmea, 

acasalados. Os ovos podem ter três destinos diferentes: podem ser liberados pelas fezes; podem 

permanecer no intestino e causar uma infecção granulomatosa local; ou podem migrar para o 

fígado e se alojar nos vasos pré-sinusoidais, provocando granuloma e fibrose periportal.  

Os ovos que chegam à água doce eclodem, liberando miracídios ciliados de vida livre que 

infectam um caracol hospedeiro adequado. No caracol, o parasita sofre replicação assexuada 

através dos estágios de esporocistos de mãe e filha, eventualmente liberando dezenas de 

milhares de cercárias (a forma infecciosa para os seres humanos) na água. Ao penetrar na pele, 

as cercárias se transformam em esquistossômulos. Estes secretam enzimas proteolíticas que vão 

destruir a matriz conjuntiva e penetrar na circulação periférica. Após penetrar a circulação, o 

verme imaturo vai passar, pelo coração, pelos pulmões e vai migrar para o fígado. Uma vez no 

sistema intra-hepático, alimentam-se e desenvolvem-se, transformando-se em formas 

unissexuadas, machos e fêmeas, 28 a 30 dias após a penetração. A partir deste ponto migram, 

acasalados, via sistema porta, até o território da artéria mesentérica inferior, onde farão a 

oviposição (BRASIL, 2014; COLLEY et al., 2014; KOSMINSKY, 2020; SOUZA, W. et al., 

2011).  

A classificação da esquistossomose compreende a forma aguda na fase inicial, e a forma 

crônica na fase tardia. A forma crônica é dividida e classificada em 3 formas clinicas: 
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esquistossomose hepatointestinal (EHI), esquistossomose hepática (EH) e esquistossomose 

hepatoesplênica (EHE) (BRASIL, 2014). 

Figura 2 – Ciclo de vida e estágios de desenvolvimento do Schistosoma mansoni. (A) Vermes adultos. (B) 

Ovos. (C) Miracídios. (D) Cercárias. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: (BRASIL, 2014); (KOSMINSKY, 2020). Modificado pela autora. 

 

A EHI, é a forma mais encontrada nas regiões endêmicas. Caracteriza-se por sintomas 

digestivos como náuseas, vômitos, flatulências, podendo ocorrer surtos diarreicos ou 

constipação intestinal crônica. Na forma EH, ocorre o estabelecimento da hepatomegalia, 

presença de fibrose, mas sem esplenomegalia e sem hipertensão portal. A forma mais severa da 

doença, a EHE, é caraterizada por ter o fígado e baco aumentados de volume, com presença de 

fibrose hepática moderada a acentuada. Alguns casos de EHE evoluem para hipertensão portal, 

resultando em descompensação, varizes gastroesofágicas, as quais ao romper causam 

hemorragia digestiva alta, podendo evoluir para coma hepático e  morte, representando a causa 

A B C D 
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usual de óbitos pela esquistossomose  (BARRETO, 2018; BRASIL, 2014; KOSMINSKY, 

2020). 

 

2.3 DIAGNOSTICO 

A determinação da presença e gravidade da fibrose hepática é essencial no diagnóstico 

e estadiamento da doença (YU et al., 2015). Biópsia hepática, exame de ultrassom do abdômen, 

marcadores séricos, contagem de plaquetas e, medição de rigidez hepática (elastografia) têm 

sido usados para avaliar a fibrose que se desenvolve na doença hepática crônica (MEDEIROS 

et al., 2014). 

A biópsia hepática é considerada o método padrão ouro para classificar a fibrose, pois 

permite que os médicos obtenham informações de diagnóstico, não apenas sobre fibrose, mas 

também sobre outros processos de dano, como necrose, inflamação, esteatose e depósitos de 

ferro ou cobre, entre outros (CEQUERA; GARCÍA LEÓN MÉNDEZ, DE, 2014).  

No entanto, a biópsia é limitada em sua precisão, pois a fibrose hepática é um processo 

heterogêneo que aumenta as chances de erro de amostragem. Outras desvantagens incluem 

natureza invasiva, a baixa qualidade da amostra e dependência da experiência do patologista 

(erro do observador). Existem riscos associados à obtenção de uma biópsia hepática, variando 

entre dor, hipotensão, sangramento peritoneal, infecção, danos ao sistema biliar e morte. Os 

resultados gerados tendem a ser frequentemente representativos quando se trata de uma doença 

relativamente avançada (CEQUERA; GARCÍA LEÓN MÉNDEZ, DE, 2014; YU et al., 2015). 

Especialmente em áreas onde a esquistossomose é endêmica, a ultrassonografia 

abdominal superior (US) tornou-se a ferramenta diagnóstica mais útil para diagnosticar e 

quantificar FPP. Além disso, é a mais utilizada no Brasil devido a seu baixo custo, natureza não 

invasiva e por ser tão sensível quanto a biopsia (BARRETO, 2017; DOMINGUES; 

MEDEIROS, DE; ALMEIDA LOPES, DE, 2011). 

A avaliação ultrassonográfica para o diagnóstico da FPP é composta por duas análises: 

a quantitativa que mede a espessura da FPP, e a qualitativa que compara o fígado examinado 

com padrões de acometimento pela fibrose através da classificação de Niamey- protocolo 

padronizado da OMS (NIAMEY WORKING GROUP, 2000). A classificação de Niamey 

considera seis padrões de FPP denominados: A (ausência de fibrose); B (duvidosa); C 

(periférica); D (central), E (avançada) e F (muito avançada) (BARRETO, 2018; RICHTER et 

al., 2001). Além disso, existe uma combinação de padrões que refletem anormalidades 

periféricas e centrais, sendo possíveis as combinações Dc e Ec (SCHEICH, EL et al., 2014), 

ver figura 3. 
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Figura 3 – Classificação ultrassonográfica de FPP - Niamey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: (SCHEICH, EL et a.l, 2014) 

 

Apesar da ampla utilização da US para o diagnóstico e monitoramento das alterações 

causadas pela fibrose, seu uso apresenta algumas limitações, como a baixa sensibilidade nas 

formas iniciais da doença, necessidade de equipamento disponível, examinadores qualificados 

e não está disponível em todos os centros, principalmente nos localizados na zona rural 
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(BARRETO, 2017; DOMINGUES; MEDEIROS, DE; ALMEIDA LOPES, DE, 2011; 

MEDEIROS et al., 2014) 

O estudo de novos métodos de diagnóstico e avaliação de FPP é importante, a fim de 

fornecer subsídios para o desenho de estratégias de tratamento e prevenção da evolução da 

doença. Estudos estão surgindo na tentativa de desenvolver métodos não invasivos que sejam 

capazes de identificar e avaliar FPP por meio de marcadores séricos. Diferentes marcadores 

biológicos têm sido associados com o desenvolvimento e regulação da fibrose hepática em 

algumas doenças hepáticas crônicas (BARRETO, 2017). 

Existem vários biomarcadores que se destacam por apresentarem correlação com a 

histologia hepática e pela facilidade do seu uso clínico, como a aspartato aminotransferase 

(AST), alanina amino- transferase (ALT), gama-GT (GGT), fosfatase alcalina (FA), albumina, 

bilirrubina e plaquetas. Quando ocorrem lesões ou destruição das células hepáticas, há liberação 

destas enzimas para a circulação sanguínea, sendo que a sua localização auxilia inferir o 

diagnóstico e prognóstico de patologias hepáticas (JESUS; SOUSA; BARCELOS, 2014; 

MARIA SOARES TOJAL DE BARROS LIMA et al., 2008).  

Diferentes marcadores biológicos têm sido associados ao desenvolvimento e regulação 

da fibrose hepática em algumas doenças hepáticas crônicas, especialmente aquelas induzidas 

pelo vírus da hepatite C. Esses marcadores séricos têm sido usados em combinação, como 

índice para melhorar sua acurácia, como no caso do Fibro Test27, APRI35, índice de Forns13, 

Hepascore1 e FIB-432. Para o caso especifico de esquistossomose o índice de Coutinho é 

utilizado, este consegui distinguir pacientes com esquistossomose sem fibrose avançada 

daqueles com fibrose avançada (BARRETO, 2017). 

 

2.4 METABONÔMICA 

A metabonômica pode ser definida como um conjunto de ferramentas, analíticas e de 

estatística multivariada, utilizadas para identificar mudanças de concentração dos metabólitos 

em um determinado fluido biológico e associar essas mudanças à perturbação sofrida pelo 

organismo (COSTA, DA, 2016). O termo tem origem grega “meta” significando mudança e 

“nomos” regras ou leis e foi criado por Jeremy Nicholson, Elaine Holmes e John Lindon, do 

Imperial College of London, em 1999, para descrever a geração de modelos quimiométricos 

baseado em classificação de mudanças metabólicas (GODOY, 2015). 

A ideia de que vários estados de uma doença podem ser refletidos por mudanças nas 

concentrações de metabólitos é fundamental para a metabonômica. Desse modo, a sua aplicação 
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potencial é o diagnostico aliado à descoberta de biomarcador(es) e compressão biológica 

(MADSEN; LUNDSTEDT; TRYGG, 2010). 

A metabonômica tem sido utilizada com sucesso nos estudos de várias doenças 

infecciosas como em animais infectados por Schistosoma Mansoni (WANG et al., 2004), 

coinfecção por esquistossomose e hepatite viral B ou C (GOUVEIA, 2017) e complicações 

hepáticas virais como a fibrose hepática (BATISTA, A. et al., 2018).  

Por sua vez, a metabonômica, preocupa-se com a análise não direcionada de biofluidos 

para obter informações quantitativas ou semiquantitativas sobre o maior número possível de 

metabólitos. Os biofluidos mais comumente analisados são plasma, soro e urina, embora na 

literatura também haja relatos de análises de líquido cefalorraquidiano, suor, saliva e outros 

(ÅBERG; ALM; TORGRIP, 2009). Especificamente, envolve o uso de técnicas 

espectrométricas com ferramentas estatísticas e matemáticas para elucidar padrões dominantes 

e tendências diretamente correlacionadas com flutuações metabólicas em conjuntos de dados 

espectrais (DAHAB; SMITH, 2012).  

 

2.5 PREPARO DE AMOSTRA 

O preparo da amostra é considerado a etapa mais crítica e demorada em um fluxo de 

trabalho de análise química. Além disso, nesta etapa, é necessário ter muito cuidado para 

garantir o correto isolamento dos analitos de interesse em uma matriz complexa, para 

desenvolver métodos confiáveis e, consequentemente, obter maior sensibilidade, precisão, 

exatidão e recuperação nos resultados (SOARES DA SILVA BURATO et al., 2020).  

Na metabonômica, o preparo de amostra é uma parte fundamental porque afeta tanto o 

conteúdo do metabolito quanto a interpretação biológica dos dados. Um método de preparo de 

amostra ideal para análise metabonômica de amostras biológicas por cromatografia liquida deve 

ser não seletivo, simples e rápido com um número mínimo de etapas e reprodutível 

(VUCKOVIC, 2012).  

Biofluidos, como soro e plasma, representam um meio ideal para o diagnóstico de 

doenças devido à facilidade de coleta, que pode ser realizada em todo o mundo, e ao seu 

envolvimento fundamental na função humana (LOVERGNE et al., 2015). No entanto, trabalhar 

com soro representa um desafio, por um lado, as amostras são bem diluídas, com quantidade 

baixa de metabólitos. Na cromatografia é possível identificar marcadores biológicos em 

concentração menor que no RMN. Portanto, sendo esta técnica mais sensível, pode render 

resultados mais interessantes ao permitir enxergar metabólitos em maior proporção (CANUTO 

et al., 2018). E, por outro lado, a quantidade de amostra biológica disponível normalmente é 
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bem reduzida. O uso de técnicas miniaturizadas oferece uma solução, pois minimizam tanto o 

volume da amostra quanto o consumo de solventes orgânicos, além de reduzir estágios e tempo 

de análise resultando em métodos mais simples e rápidos (SOARES DA SILVA BURATO et 

al., 2020). Neste cenário, 2 métodos de preparo de amostra miniaturizado foram avaliados:  

1- QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe), método de 

preparo de amostra, que tem como vantagem ser rápido, fácil, econômico, efetivo, robusto e 

seguro, explorando as possibilidades oferecidas pela instrumentação analítica moderna. Foi  

proposto por Anastassiades et al em 2003 para extração de resíduos de pesticidas em frutas e 

vegetais, desde então o método vem sofrendo modificações e além deste campo de aplicação, 

tem sido usado na extração de outros tipos de analitos e em diferentes matrizes, como 

antibióticos em amostras de mel, multirresiduos de fármacos em amostras de sangue, 

antibióticos β-lactâmicos em rim de bovinos, entre outras (ANASTASSIADES et al., 2003; 

PRESTES, Osmar D. et al., 2009). 

Esta técnica de preparo de amostra está baseada em 3 etapas principais: (1) extração 

com acetonitrila, a qual possibilita a extração de uma quantidade menor de interferentes e uma 

ampla faixa de analitos com diferentes polaridades. (2) partição promovida pela adição de sais, 

por exemplo sulfato de magnésio (MgSO4) e cloreto de sódio (NaCl) e (3) limpeza do extrato 

empregando a técnica Extração em Fase Solida Dispersiva (dispersive solid phase extraction, 

d-SPE) (ZANELLA; PRESTES, Osmar D.; et al., 2015). 

Considerando as vantagens potenciais deste método, como redução dos efeitos da 

matriz, simplicidade operacional, alta eficiência de extração para muitos analitos diferentes, 

necessidade de baixos volumes de solvente e baixo custo; a abordagem de extração QuEChERS 

tem sido avaliada em análises toxicológicas no contexto forense e clínico e aplicada a espécimes 

biológicos humanos, como urina, soro, sangue e fígado (CAMPÊLO et al., 2021; SILVA, C. P. 

DA et al., 2021). 
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Figura 4 – Principais etapas do método QuEChERS. 

 

 

 

 

 

 

 

 

 

 

 Fonte: (ZANELLA et al, 2015)  

 

2- DLLME (Dispersive Liquid–Liquid Micro Extraction), em 2006, Assadi et al 

desenvolveram a microextração líquido-líquido dispersiva (DLLME), um método muito 

simples e rápido para extração e pré-concentração de compostos orgânicos. Este método é 

baseado em um sistema de solvente de componente ternário no qual os solventes de extração e 

dispersão são rapidamente injetados na amostra aquosa por seringa. A mistura é então agitada 

suavemente e uma solução turva (água / solvente dispersor / solvente de extração) é formada. 

Devido à grande área de superfície de contato das duas fases imiscíveis no DLLME, uma alta 

eficiência de extração é alcançada em um tempo relativamente curto (MONZÓN et al., 2016; 

REZAEE et al., 2006). 

A DLLME é uma alternativa interessante para o preparo de amostra visando a 

determinação de compostos orgânicos em diferentes matrizes. O método utiliza a partição dos 

analitos de interesse empregando pequenos volumes de uma mistura formada por solvente 

dispersor e solvente extrator para extrair e concentrar os analitos. O solvente dispersor deve ser 

miscível na amostra (fase aquosa) e no solvente extrator (fase orgânica). Assim irá a promover 

a concentração dos analitos no solvente extrator, que geralmente com o uso da centrifuga, será 

separado e recolhido para ser analisado (ZANELLA; ADAIME; et al., 2015). 
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Figura 5 – Etapas envolvidas no método DLLME. 

Fonte: (CALDAS et al, 2011) 

 

A principal vantagem da técnica DLLME em relação à extração líquido / líquido usual 

ou extração em fase sólida (SPE), geralmente usada para a purificação da amostra, é o uso de 

quantidades muito baixas de solventes orgânicos, o que torna a técnica muito barata e sem a 

necessidade de cartuchos comerciais (MERCIECA et al., 2018). 

 

2.6 CROMATOGRAFIA A LÍQUIDO 

A cromatografia é um método físico-químico de separação dos componentes de uma 

mistura, realizada através da distribuição desses componentes em 2 fases, que estão em contato 

íntimo. Uma das fases permanece estacionaria, enquanto a outra se move através dela. Durante 

a passagem da fase móvel sobre a fase estacionaria, os componentes da mistura são distribuídos 

pelas 2 fases de tal forma que cada uma delas é seletivamente retido pela fase estacionaria, o 

que resulta em migrações diferencias desses componentes (COLLINS; BRAGA; BONATO, 

2006). A tabela 1 mostra as classificações da cromatografia, segundo as formas físicas mais 

encontradas das fases moveis e estacionarias. 
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Tabela 1 – Classificação da Cromatografia pelas formas físicas das fases moveis e estacionarias. 

Fonte: Adaptado de (COLLINS; BRAGA; BONATO, 2006). 

 

As técnicas cromatográficas estão entre as principais técnicas de separação, 

especialmente na análise de substâncias presentes em matrizes complexas, tais como fluidos 

biológicos, produtos naturais, sedimentos de rio e outras. Isto se deve, principalmente, à sua 

capacidade de separação dos componentes presentes nas misturas em função da eficiência e do 

poder de resolução das colunas modernas (LANÇAS, 2009).   

As fases estacionarias quimicamente ligadas (CLFL, na tabela 1) são as formas mais 

representativas da cromatografia liquida em coluna. Essas fases são preparadas reagindo-se 

alguns grupos hidroxílicos que se encontram na superfície do solido, normalmente a sílica, com 

grupos alquilas ou alquilas substituídos. Na maioria dessas fases estacionarias, os grupos 

disponíveis para interação com os componentes da amostra são cadeias longas de alquila, que 

funcionam como liquido apolar, e regiões da superfície como pontos ativos interfaciais. Desta 

maneira, o mecanismo de separação nessas fases é uma mistura de partição e adsorção 

(COLLINS; BRAGA; BONATO, 2006). 

A cromatografia à líquido de alta eficiência (CLAE ou HPLC, do inglês High 

Performance Liquid Chromatography) além de ser uma das principais técnicas utilizadas na 

análise de compostos não voláteis e/ou termicamente instáveis, tornou-se uma ferramenta 

indispensável para a determinação de pequenas moléculas em uma ampla gama de aplicações. 

No campo da medicina, a metabonômica encontra aplicação na busca de biomarcadores 

precoces de doenças (marcadores diagnósticos) (GIKA et al., 2014; LANÇAS, 2009). 

Pesquisas atuais estudaram o perfil metabólico em ratos infectados por  Schistosoma Japonicum  

usando cromatografia líquida (HUANG et al., 2020) e ratos infectados por Schistosoma 

Mansoni usando cromatografia gasosa (LOYO et al., 2021).  

Os detectores de cromatografia líquida mais comuns usados para pesquisas em 

metabolômica são a espectrometria de massa (MS) e o detector de arranjo de diodos (DAD). O 

MS pode fornecer grande informação fragmentada sobre metabólitos, cujas estruturas requerem 

confirmação de compostos padrão. Devido à limitação da base de dados padrão para HPLC-

Critério de 

Classificação 

Técnica

Fase móvel

Fase estacionária Líquido Sólido Fase ligada Líquido Sólido Fase ligada Sólido Fase ligada Líquido Sólido Fase ligada

CLFL

CLQ

CTI

CB

CGFL

CGQ

CGSCGL
Tipo de 

cromatografia
CP CCD CCD

CLS

CE

CLLCSFLCSS

Gás Fluido supercrítico Líquido

Cromatografia 
Planar Em Coluna

Líquido
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MS, a identificação de metabolitos é muitas vezes difícil, especialmente para os desconhecidos. 

O DAD permite o monitoramento de diferentes comprimentos de onda de absorção 

simultaneamente em um único experimento. Comparativamente, o HPLC-DAD é fácil de obter 

na maioria dos laboratórios e apresenta menor custo associado, o que o torna adequado para 

analisar metabólitos globais e buscar biomarcadores de doenças (LIU, Y. et al., 2011). Desta 

maneira, o HPLC-DAD apresenta-se como uma ferramenta acessível para hospitais e clinicas. 

A tecnologia de HPLC-DAD gera um conjunto de dados que contém os picos 

cromatográficos e espectros de todos os compostos, tal como se apresenta na figura 6 a 

continuação: 

 

Figura 6 - O princípio do conjunto de dados HPLC-DAD 

 

Fonte: (CUI et al, 2014) 

 

Quando a amostra é injetada, a bomba de alta pressão aciona o solvente para transportá-

la pela coluna. Diferentes compostos receberão diferentes resistências quando passarem pela 

coluna. Dado um detector ultravioleta na parte inferior da coluna, um pico de cromatograma 

representado por Si será observado quando um composto sair. A posição e a área do pico podem 

indicar o nome e a quantidade do composto. Se o detector for um DAD, que possui mais de mil 

canais para detectar o comprimento de várias ondas simultaneamente, o espectro para o mesmo 

composto representado por ai também será gravado (CUI et al., 2014). 
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2.7 QUIMIOMETRIA 

No sentido estrito da palavra, a quimiometria começou formalmente na primeira metade 

da década de 70, mas só se firmou definitivamente quando o computador se popularizou e se 

tornou mais presente no laboratório químico; os trabalhos em quimiometria no Brasil podem 

ser agrupados em três áreas principais: planejamento e otimização de experimentos, 

reconhecimento de padrões (métodos de análise exploratória e classificação) e calibração 

multivariada (BARROS NETO; SCARMINIO; BRUNS, 2006).  

Em 1974, a quimiometria foi definida por Svante Wold como "A arte de extrair 

informações quimicamente relevantes a partir de dados produzidos em experimentos químicos” 

(WOLD, 1995). O conteúdo de informações geradas, neste caso pelo HPLC-DAD, é 

incrivelmente alto e as análises globais apresenta um desafio. Desta forma é necessária a 

utilização de métodos de estatística multivariada, que sejam capazes de extrair informações dos 

dados permitindo que os padrões distintos sejam mais facilmente identificados. Esses métodos 

podem ser classificados como supervisionados e não supervisionados (WORLEY; POWERS, 

2013), todos dentre a área de reconhecimento de padrões na quimiometria. 

 

2.7.1 Métodos Não Supervisionados 

Os métodos não supervisionados como Análise de Componentes Principais (PCA, do 

inglês Principal Component Analysis), não requerem nenhum conhecimento prévio a respeito 

da classificação das amostras, elas serão agrupadas naturalmente com base na informação 

contida nos dados experimentais em questão. Foi inicialmente desenvolvida por Karl Pearson 

no início do século 20, e posteriormente estudada por Harold Hotelling por volta de 1930. A 

PCA é um método usado para projetar os dados multidimensionais em um espaço de dimensão 

menor, seu objetivo é reduzir a dimensionalidade dos dados conservando o máximo de 

informações em poucas dimensões, gerando um novo conjunto de variáveis chamado 

componentes principais (PC).  Cada PC resultante da análise é independente entre si e 

constituirão uma combinação linear das variáveis originais e são criados de acordo com sua 

importância em relação à variância total obtida da amostra (ADANIYA HIGA, 2019; 

FERREIRA, Márcia Miguel Castro, 2015). 

Como uma ferramenta de análise exploratória a PCA permite revelar a existência ou não 

de amostras anômalas, de relações entre as variáveis medidas e de relações ou agrupamentos 

entre amostras (LYRA et al., 2010). Matematicamente a matriz de dados experimentais, 

denominada como matriz X, é descomposta em um produto de duas outras matrizes, uma 
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denominada scores  ou escores (T) e outra  denominada loadings ou pesos (P), mais uma matriz 

de erro (E), conforme equação 1 (VALDERRAMA, L. et al., 2016). 

 

𝑿 = 𝑻𝑷𝑻 + 𝑬 

 

Os escores representam as coordenadas das amostras no sistema de eixos formados 

pelos componentes principais. Cada componente principal é constituído pela combinação linear 

das variáveis originais e os coeficientes da combinação são denominados pesos. Levando em 

conta variáveis discretas podemos dizer que, matematicamente, os pesos são os cossenos dos 

ângulos entre as variáveis originais e PC, representando, portanto, o quanto cada variável 

original contribui para uma determinada PC. A primeira componente principal (PC1) é traçada 

no sentido da maior variação no conjunto de dados; a segunda (PC2) é traçada ortogonalmente 

à primeira, com o intuito de descrever a maior porcentagem da variação não explicada pela PC1 

e assim por diante; enquanto os escores representam as relações de similaridade entre as 

amostras. A avaliação dos pesos permite entender quais variáveis mais contribuem para os 

agrupamentos observados no gráfico dos escores. Através da análise conjunta do gráfico de 

escores e pesos, é possível verificar quais variáveis são responsáveis pelas diferenças 

observadas entre as amostras. O número de componentes principais a ser utilizado no modelo 

PCA é determinado pela porcentagem de variância explicada. Assim, seleciona-se um número 

de componentes de tal maneira que a maior porcentagem da variação presente no conjunto de 

dados originais seja capturada (SOUZA, A. M. DE; POPPI, 2012). 

A PCA é muito sensível a observações anômalas. Consequentemente, os primeiros 

componentes são frequentemente atraídos para pontos periféricos e podem não capturar a 

variação das observações regulares. Portanto, a redução de dados com base no PCA clássico 

(CPCA) torna-se não confiável se amostras anômalas ou outliers estiverem presentes nos dados 

(HUBERT; ROUSSEEUW; BRANDEN, VANDEN, 2005). Isso é especialmente notório para 

casos onde a proporção de amostras anômalas no conjunto de dados é elevada. Então em casos 

onde se tem poucas amostras, se uma ou poucas amostras forem anômalas a probabilidade da 

PCA ser afetada por estas amostras é elevada, foi com o objetivo de reduzir a influência das 

amostras anômalas nos resultados de PCA que foi desenvolvido a PCA com critério de análise 

robusto. 

A Análise Robusta da Componente Principal (Robust PCA ou ROBPCA) tem como 

objetivo obter PCs que não são muito influenciadas por amostras anômalas. Existem diferentes 

(1) 
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tipos de amostras anômalas que podem influenciar na rotação do modelo. Para diagnostica-las, 

podemos desenhar um mapa de outliers para PCA. Um exemplo estilizado de tal mapa é 

mostrado no lado direito da Figura 7, que corresponde aos dados tridimensionais no lado 

esquerdo da mesma figura e que é ajustado por dois componentes principais. No eixo vertical 

do mapa de outlier da PCA, encontramos a distância ortogonal de cada ponto. Esta é apenas a 

distância euclidiana do ponto de dados para sua projeção. A distância ortogonal é mais alta para 

os pontos 3, 4 e 5 no exemplo. No eixo horizontal, vemos a distância de escore de cada ponto 

de dados, que é apenas a distância robusta de sua projeção em relação a todos os pontos de 

dados projetados. A distância de escore é bastante alta para os pontos 1, 2, 4 e 5 na figura.  

 

Figura 7 – Ilustração da PCA: (esquerda) tipos de outlier; (direita) mapa de outlier: gráfico de distâncias 

ortogonais versus distâncias de escores. 

Fonte: (ROUSSEEUW; HUBERT, 2018) 

 

Ao combinar as duas medidas de distância, o mapa de outliers permite distinguir entre 

quatro tipos de pontos de dados: (1) O grupo dos pontos que têm uma pequena distância 

ortogonal e uma pequena distância de escore que são as observações regulares. (2) Pontos com 

uma distância de escore alta, mas uma pequena distância ortogonal, como os pontos 1 e 2 na 

Figura 6, são chamados de pontos de boa alavancagem, pois podem melhorar a precisão do 

subespaço PCA ajustado. (3) Outliers ortogonais têm uma grande distância ortogonal, mas uma 

pequena distância de escore, como o ponto 3. Pode indicar que existe informação ortogonal a 

ser explicada com mais uma PC. Caso não seja o caso é uma amostra com indícios de outlier 

(4) Pontos de alavancagem ruins têm uma grande distância ortogonal e uma grande distância 
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de escore, como os pontos 4 e 5. Eles estão longe do espaço abrangido pelas componentes 

principais robustas, e após a projeção naquele espaço, ficam longe da maioria dos outros dados 

projetados. Eles são chamados 'Ruim' porque normalmente têm uma grande influência na PCA 

clássica, já que os principais autovetores estarão inclinados em direção a eles (HAMZENEJAD; 

GHOUSHCHI; BARADARAN, 2021; ROUSSEEUW; HUBERT, 2018). Os limites traçados 

como valores de distância ortogonal e de escore críticos são calculados com base nos resultados 

de projeção das amostras, então amostras que estão próximas a estes limites devem ser 

analisadas com mais cuidado. 

 

2.7.2 Métodos Supervisionados  

A análise exploratória com PCA possibilita investigar tendencias e quais variáveis tem 

mais importância para ressaltar semelhanças e diferenças entre as amostras, porém não pode 

ser usada para predição de alguma característica desejada, neste caso é necessário usar métodos 

supervisionados de análise. Nos métodos supervisionados de análise para reconhecimento de 

padrão, amostras com características conhecidas são usadas para construir modelos de 

classificação, em seguida, o modelo é utilizado para prever a classe de amostras desconhecidas.  

Podem ser destacados modelos discriminantes como o PLS-DA (do inglês, Partial Least 

Squares - Discriminant Analysis) e a LDA (do inglês, Linear Discriminant Analysis) e os de 

modelagem de classe como o DD-SIMCA (do inglês, Data Driven Soft Independent Modeling of 

Class Analogy). 

 O PLS-DA, utiliza a técnica de regressão multivariada por mínimos quadrados parciais 

(PLS). O PLS é um método de calibração inversa, no qual se busca uma relação direta entre a 

resposta instrumental (matriz X) e a propriedade de interesse (matriz Y) onde cada coluna desta 

matriz corresponde a uma classe. O procedimento utilizado para a construção do modelo de 

classificação é o mesmo utilizado pelo PLS, no entanto, a propriedade de interesse em modelos 

de classificação é uma variável categórica que descreve a atribuição de classe da amostra. 

Valores de 1 refere-se as amostras que pertencem aquela classe e valores de 0 refere-se a 

amostras que não pertencente à classe (LOPES, R. E. C., 2015; SANTANA et al., 2020). A 

Figura 8 ilustra a organização dos dados utilizados para a construção do modelo de classificação 

PLS-DA. A matriz X é composta, neste caso, pelos cromatogramas das amostras e a matriz Y 

é construída com informação binaria (1 ou 0) para indicar se a amostra pertence ou não à classe. 

Como o método PLS maximiza a relação entre a variável dependente e os escores, pode-

se afirmar que as variáveis latentes representam as direções que melhor discriminam as classes 

e que definem a máxima separação entre elas (FERREIRA, Márcia Miguel Castro, 2015). 
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Figura 8 – Esquema da organização dos dados para a construção do modelo de classificação usando PLS-DA  

 

 

 

 

 

 

 

 

Fonte: Adaptado de (LOPES, R. E. C, 2015). 

 

Para uma melhor interpretação dos dados, é possível utilizar um filtro de correção de 

sinal ortogonal no modelo PLS-DA, permitindo assim, que OPLS-DA separe a variância 

preditiva da não preditiva (ortogonal). No caso de sobreposição de classes numa direção 

preditiva, a variação ortogonal pode ser empregada para intensificar as taxas de classificação o 

que pode levar a uma maior facilidade na visualização dos loadings usados na discriminação 

(SANTOS, J. C., 2018; SOUZA ALMEIDA, 2021). 

A LDA, é uma das técnicas usadas para redução de dimensionalidade, aprendizado de 

máquina e reconhecimento de padrões. Foi proposto por Ronald A. Fisher, em 1936. Através 

de combinação linear a LDA separa, em duas ou mais classes de interesse, os dados originais. 

Essa separação em classes ou grupos distintos é feita por meio de uma transformação linear que 

maximiza a distância entre as classes e minimiza a dispersão dentro de cada classe. No entanto, 

se o número de amostras for menor ao número de variáveis (situação habitual em dados 

espectrais), a LDA não pode ser usada devido à necessidade de se inverter a matriz ao calcular 

os escores discriminantes de Fisher (LI, Y. et al., 2021). Para solucionar este problema, 

algoritmos de seleção de variáveis podem ser utilizados acoplados à LDA, como por exemplo 

algoritmo genético (GA-LDA) (COSTA FILHO, DA; POPPI, 1999) e o algoritmo de projeções 

sucessivas (SPA-LDA) (ARAÚJO, Mário César Ugulino et al., 2001). 

Com base na teoria evolutiva das espécies, John H. Holland um pesquisador da 

Universidade de Michigan, propôs nos anos 60 a construção de um algoritmo matemático para 

otimização em sistemas complexos, sendo denominado de Algoritmo Genético (GA do inglês, 

Genetic Algorithm). O GA é uma ferramenta de otimização baseado nos processos biológicos 

da evolução das espécies, simulando matematicamente a teoria de Darwin (COSTA FILHO, 

DA; POPPI, 1999); e é usada para seleção de variáveis representativas na construção de 

modelos tanto em calibração como em classificação.  
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Para aprimorar os resultados do algoritmo genético, em razão da natureza estocástica, 

cálculos sucessivos podem ser usados para avaliar o conjunto de variáveis que mais se 

aproximam de um mínimo global. Uma das formas é fazendo uma simulação Monte Carlos que 

se refere a um tipo de simulação que se baseia em amostragem aleatória repetida e análise 

estatística para calcular os resultados. Este método de simulação está intimamente relacionado 

a experimentos aleatórios, experimentos para os quais o resultado específico não é conhecido 

de antemão (RAYCHAUDHURI, 2008). 

O algoritmo de projeções sucessivas (SPA do inglês, Successive Projection Algorithm) 

foi proposto em 2001 por Araújo et al, como um algoritmo de seleção direta para seleção de 

variáveis em calibração multivariada. O SPA emprega operações simples em um espaço 

vetorial para obter subconjuntos de variáveis com pequena colinearidade. A diferença do GA, 

o SPA é de natureza determinístico e exige uma carga de trabalho computacional menor, 

principalmente quando o número total de variáveis é grande (ARAÚJO, Mário César Ugulino 

et al., 2001; SOARES et al., 2013).  

Os métodos descritos até agora levam em consideração todas as informações das classes 

na construção do modelo. No entanto, é importante citar também os métodos quimiométricos 

baseados em uma modelagem de classe ou classificador de uma classe. Classificador de uma 

classe significa que o modelo é construído para uma classe particular de interesse, usando 

apenas amostras da classe alvo. Quando testar uma nova amostra, neste tipo de modelos, o 

resultado via de regra será a indicação de que a nova amostra pertence ou não à classe alvo. O 

método de modelagem de classe mais usado é o SIMCA (do inglês, Soft independent modeling 

of class analogy). O DD-SIMCA (do inglês, data driven SIMCA) é uma extensão ou 

modificação do SIMCA que usa as informações dos dados para atribuir a amostra a classe alvo 

com base em cálculos de distância, proposto em 2017 por Zontov et al (FIDELIS et al., 2017; 

SANTOS, L. O. DOS et al., 2022; ZONTOV et al., 2017). 

O DD-SIMCA tem a capacidade de caracterizar os resultados da classificação de uma 

forma estatisticamente solida, ou seja, calcular teoricamente os erros de classificação incorreta 

(MAZIVILA et al., 2020). O método consiste em duas etapas, na primeira, a PCA é aplicada 

aos dados de treinamento da classe alvo. Na segunda etapa, os resultados da PCA são usados 

para o cálculo de duas distâncias para cada objeto, distancia de escores (SD) e distancia 

ortogonal (OD). SD é a distância de Mahalanobis ao quadrado de um objeto até o centro do 

plano dos escores. Por outro lado, OD é a distância euclidiana quadrada de um objeto ao espaço 

da PCA. Os resultados da classificação são apresentados graficamente por meio do gráfico de 

OD versus SD (chamado gráfico de aceitação), que inclui os limites da classe especificados por 
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um determinado valor alfa. Cada objeto é caracterizado por sua posição neste gráfico de 

aceitação. Aqueles que estão fora da área de aceitação, não são semelhantes o suficiente a outros 

membros da classe e são considerados incompatíveis com a classe (ADENAN et al., 2020; 

MAZIVILA et al., 2020; RODIONOVA, O. Ye et al., 2014; SANTOS, L. O. DOS et al., 2022). 

Um exemplo de aplicação do DD-SIMCA é ilustrado na figura 9, que descreve o estudo de 

Neves e Poppi em 2020 sobre a autenticação e identificação de adulterantes em óleo de coco 

usando FTIR em conjunto com a modelagem de uma classe DD-SIMCA.  

 

Figura 9 – Esquema de aplicação do DD-SIMCA na autenticação e identificação de adulterantes em óleo de coco 

Fonte: (NEVES; POPPI, 2020) 

 

2.7.3 Figuras de Mérito 

Uma vez construídos os modelos de classificação, é preciso que sejam validados. 

Algumas métricas são usadas para avaliar a qualidade de um modelo, todas derivam da matriz 

de contingência, na qual os erros cometidos pelo classificador são organizados na forma de uma 

tabela de contingencia. Nessa tabela, a classe verdadeira (Colunas) é representada versus a 

classe estimada (linhas) pelo classificador ou modelo construído (FERREIRA, Márcia Miguel 

Castro, 2015).  

Na tabela 2 é apresentado um exemplo de matriz de contingência para duas classes onde 

a classe alvo é a “A”, 4 informações diferentes são geradas. A diagonal verde representa as 

previsões corretas, verdadeiro positivo (VP) e verdadeiro negativo (VN). Os VP são amostras 

que pertencendo a classe alvo e são corretamente classificadas naquela classe (amostras 

positivas). Os VN são amostras que não são da classe alvo e são classificadas corretamente 

como não pertencentes à classe alvo (amostras negativas). Já a diagonal laranja representa as 

previsões incorretas, falso negativo (FN) e falso positivo (FP). Os FN são amostras positivas 

identificadas como negativas, ou erro tipo II. Os FP são amostras negativas identificadas como 

positivas, ou erro tipo I (THARWAT, 2018). 
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Tabela 2 – Exemplo de matriz de contingência 

 
Classe calculada 

 
A                  B 

Classe 

Verdadeira 

 

 

 
 

VP FN 

B FP 

 

VN 

 
 

Fonte: A autora (2022) 

 

Dentre as métricas mais utilizadas para avaliar a eficiência dos modelos de classificação, 

pode-se citar a sensibilidade, especificidade e acurácia. A sensibilidade é a fração das amostras 

positivas que foram classificadas corretamente, matematicamente é representada pela equação 

2. A especificidade representa a proporção das amostras negativas que foram classificadas 

corretamente, pode ser representada matematicamente pela equação 3. Geralmente podemos 

considerar a sensibilidade e especificidade como dois tipos de exatidão, sendo a primeira para 

amostras positivas e a segunda para amostras negativas. A exatidão é definida como uma razão 

entre as amostras classificadas corretamente para o número total de amostras. O complemento 

desta métrica é a taxa de erro ou taxa de classificação incorreta. A exatidão e o erro estão 

apresentadas matematicamente nas equações 4 e 5 respectivamente  (NEVES; POPPI, 2020; 

THARWAT, 2018). 

 

𝑺𝒆𝒏𝒔𝒊𝒃𝒊𝒍𝒊𝒅𝒂𝒅𝒆 =
𝑽𝑷

𝑽𝑷 +  𝑭𝑵
 

 

𝑬𝒔𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒅𝒂𝒅𝒆 =
𝑽𝑵

𝑽𝑵 +  𝑭𝑷
 

 

𝐄𝐱𝐚𝐭𝐢𝐝ã𝐨 =
𝑽𝑷 +  𝑽𝑵

𝑽𝑷 + 𝑽𝑵 +  𝑭𝑷 + 𝑭𝑵
 

 

𝑬𝒓𝒓𝒐 =  𝟏 −  𝐄𝐱𝐚𝐭𝐢𝐝ã𝐨 =
𝑭𝑷 +  𝑭𝑵

𝑽𝑷 + 𝑽𝑵 +  𝑭𝑷 + 𝑭𝑵
 

A 

(2) 

(3) 

(4) 

(5) 
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3 METODOLOGIA  

 

3.1 POPULAÇÃO DE ESTUDO 

A população do estudo está composta por pacientes residentes no estado de Pernambuco 

entre 18 e 80 anos, com esquistossomose e FPP evidente, recrutados durante exame de US no 

ambulatório de Gastroenterologia do Hospital das Clínicas da Universidade Federal de 

Pernambuco (HC/UFPE), no período de março de 2019 a novembro de 2020. 

Os critérios de inclusão no estudo foram pacientes de ambos os sexos com diagnóstico 

de esquistossomose ou dados clínico-laboratoriais (coproparasitologico positivo, US 

evidenciando padrão de fibrose periportal) ou dados epidemiológicos (contato com rios e lagos 

em áreas endêmicas). 

Os critérios de exclusão foram pacientes com diagnóstico clínico, laboratorial ou US 

compatível com doenças hepáticas de outras etiologias (Hepatite B ou C, cirrose hepática ou 

doença hepática gordurosa), coinfecção com HIV, consumo excessivo de álcool, uso de drogas 

hepatotóxicas, transplante de fígado e esplenectomia prévia. 

No total foram coletadas 99 amostras, dessas 2 foram descartadas por estarem com doenças 

hepáticas de outras etiologias e 3 pacientes tiveram coleta de difícil acesso, o que comprometeu 

a qualidade das amostras de soro. As 94 amostras restantes foram catalogadas usando como 

padrão de referência, na avaliação da fibrose hepática, o US segundo a classificação de Niamey. 

Essa classificação é apresentada na tabela 3. 

 

Tabela 3 – Distribuição das amostras segundo classificação de Niamey com US 

Classe Número de Amostras 

C 19 

D 30 

E 34 

F 11 

Fonte: A autora (2022) 

 

Cabe ressaltar que as amostras da classe D foram catalogadas pelo médico de forma 

distintas, como “D”, outras “DC+”, outras “D+C”, outras “DC”, uma “D+” e outra como 

“DC+/E-”. estas categorias não se encontram reportadas na literatura (a exceção de D+C) e para 

fins práticos deste trabalho foram consideradas todas como pertencendo à classe D. 
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Considerações Éticas 

 Previamente a manipulação das amostras, o trabalho foi aprovado pelo comitê de ética em 

pesquisa (CEP) do hospital das clinicas da UFPE/EBSERH, sob o número do parecer 4.844.474 

(ANEXO A) 

 

3.2 OTIMIZAÇÃO  

Para determinar as melhores condições de trabalho, o preparo de amostra e análises 

cromatográfica foram otimizados. A otimização foi realizada com 2 amostras diferentes do 

grupo do estudo, uma amostra controle (C) e uma com hepatite (H). Posteriormente, as 

melhores condições de analise encontradas foram aplicadas a todas as amostras do estudo. 

 

3.2.1 Preparo de amostra 

QuEChERS 

O método QuEChERS foi avaliado em duas variantes Q1 e Q2, alterando os sais. O Q1 foi 

feito usando sulfato de magnésio (MgSO4) e acetato de sódio (CH3COONa). Já o Q2 foi com 

sulfato de sódio (Na2SO4) e cloreto de sódio (NaCl). 

À 800 µL da amostra de soro foi adicionada 80 µL de uma solução de ácido tricloroacético 

(TCA) 1:5. A mistura foi agitada vigorosamente por um minuto e levada à centrifuga (Hettich 

– Mikro 185) por 5 minutos a 3000g (7183 RPM). Seguidamente, foi adicionado ao 

sobrenadante 800 µL de acetonitrila e a mistura dos sais (Q1 ou Q2) até saturar. O conjunto foi 

agitado vigorosamente por um minuto e posteriormente centrifugado nas mesmas condições 

previamente descritas. Finalmente a fase orgânica foi coletada, filtrada em filtro seringa de 0,22 

µm e armazenada em vial. Na figura 10 é apresentado a metodologia anteriormente descrita 

aplicada às amostras da otimização. 

 

Figura 10 – Esquema do QuEChERS nas amostras da otimização. 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

Amostras da otimização 
Amostras + solução 

TCA após centrifugação  

Amostras + solução TCA + Sais 

+ ACN após centrifugação  
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DLLME 

À 200 µL da amostra de soro foi adicionado 200µL de acetonitrila, a mistura foi agitada e 

então levada ao centrifugador nas mesmas condições do método QuEChERS. Posteriormente o 

sobrenadante foi coletado e adicionado rapidamente 1,2 mL de uma solução 1:2 de 

diclorometano/acetona. A solução foi acrescentada usando uma seringa com agulha. Em 

seguida o sistema amostra + solução foi centrifugado e congelado a -40°C. Logo após a fase 

orgânica (diclorometano) foi coletada, filtrada em filtro seringa de 0,22 µm e armazenada em 

vial com insert. A figura 11 apresenta o esquema deste método aplicado nas amostras da 

otimização.  

 

Figura 11 – Esquema do DLLME nas amostras da otimização. 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

3.2.2 Cromatografia 

As analises cromatográficas da otimização foram realizadas no DQF/UFPE em um HPLC-

DAD, da marca Shimadzu, modelo PROEMINENCE LC-20AD com detector DAD SPD-

M20A. O tipo de coluna usada foi C18 (Phenomenex, Luna, 250 x 4,6 mm, 100 Å, 5µm). A 

fase móvel estava composta por uma mistura de água Milli-Q e um solvente orgânico (Metanol 

ou Acetonitrila). Foram avaliados 2 tipos de gradiente de concentração do solvente orgânico 

(ver figura 12) e 4 classes de fase móvel: ACN:água; MeOH:água; ACN: 3,5*10-3 mol L-1 ácido 

trifluoroacético (pH aproximadamente igual a 3) e MeOH: 3,5*10-3 mol L-1 ácido 

trifluoroacético (pH aproximadamente igual a 3). Em todos os casos a vazão foi de 1 mL min-1 

e temperatura do forno fixa em 30°C. Cada amostra foi injetada em duplicata com um branco 

injetado entre amostras diferentes e o volume de injeção foi de 20 µL. O software usado pelo 

instrumento foi o LabSolution e os dados foram exportados em 3D (picos cromatográficos e 

espectros) no formato txt. 

Soro + ACN antes 

de centrifugar 
Soro + ACN depois 

de centrifugar 
Sobrenadante Extração 

Filtração e 

armazenamento 
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Figura 12 – Gradientes de concentração do solvente orgânico, linear (esquerda) e curvo (direita). 

Fonte: A autora (2022) 

 

Devido a problemas com a regulação da temperatura da central analítica no DQF e 

consequentemente dificuldades para manter a temperatura do forno fixa em 30°C, todas as 

análises cromatográficas das amostras do estudo foram realizadas no CENAPESQ da UFRPE 

em um HPLC-DAD modelo PROEMINENCE LC-20AT, da Shimadzu, com o mesmo tipo de 

detector DAD (SPD-M20A). O instrumento é apresentado na figura 13. A coluna e as condições 

usadas foram as mesmas otimizadas anteriormente. 

  

Figura 13 – HPLC-DAD utilizado nas análises das amostras do estudo. 

 

Fonte: A autora (2022) 
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3.3 MODELOS QUIMIOMÉTRICOS 

Todos as análises de estatística multivariada foram realizadas no software MATLAB 

R2010a. Dado que a natureza dos dados está na ordem de um tensor (Amostras x Tempo de 

retenção x Comprimento de onda); para visualização, manipulação e análise dos dados e 

construção dos modelos metabonômicos, foram utilizadas 3 abordagens: (1) comprimento de 

onda fixo em 210 nm, (2) somatório de todos os comprimentos de onda (de 200 a 800 nm) e (3) 

somatório dos comprimentos de onda de 200 a 400 nm. 

Os dados foram pré-processados, usando o algoritmo Icoshift para correção de 

deslocamento de pico e para correção da linha de base no sinal cromatográfico foi subtraído o 

branco em cada amostra. Após o pré-processamento, os dados foram submetidos a análise 

exploratório usando os algoritmos PCA e ROBPCA com o auxílio das interfaces gráficas 

pca_toolbox_1.5 e LIBrary for Robust Analysis (LIBRA) respectivamente. Já para os métodos 

de classificação foram aplicados os métodos de PLS-DA, SPA-LDA, GA-LDA e DD-SIMCA. 

O modelo PLS-DA foi construído usando a interface gráfica classification_toolbox_5.3, o DD-

SIMCA foi construído usando o DD_SIMCA_MASTER (2019) e os modelos LDA com seleção 

de variáveis foram construídos usando rotinas desenvolvidas pelo Laboratório de automação e 

instrumentação em Química Analítica e Quimiometria (LAQA) liderado pelo Prof. Dr. Mário 

Cesar Ugulino de Araújo. Para a seleção de variáveis pelo algoritmo genético, foi usada uma 

população inicial de 100 indivíduos, 50 gerações, probabilidade de mutação 10% e 

probabilidade de cruzamento 60%. Dado que a seleção das variáveis é aleatória, o cálculo foi 

otimizado usando o melhor resultado de 1000 cálculos usando os mesmos parâmetros.  

Anteriormente a construção dos modelos classificatórios, as amostras de cada classe, foram 

pré-processadas e divididas em dois grupos: Treinamento e Teste na proporção 70:30. O 

algoritmo de Kennard-Stone (GALVÃO et al., 2005) foi utilizado para a divisão e seleção das 

amostras. Os modelos foram avaliados quanto a sensibilidade, especificidade e exatidão, 

usando a matriz de contingência. 
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4 RESULTADOS 

 

4.1 OTIMIZAÇÃO  

A otimização foi realizada para avaliar o desempenho dos métodos de preparo de amostra 

e os parâmetros das análises cromatográficas para desta forma encontrar a metodologia mais 

eficiente para análises das amostras do estudo. Entende-se como metodologia mais eficiente 

aquela que fornece o maior número de informações, metabolitos ou picos cromatográficos, pois 

propiciará o desenvolvimento de um modelo mais específico. 

No caso do preparo de amostra pelo método QuEChERS, foi avaliado em duas versões, 

testando 2 pares de sais na fase de partição ou também chamado salting out, 

MgSO4/CH3COONa (Q1) e Na2SO4/NaCl (Q2). Na figura 14 é apresentado os cromatogramas 

das amostras de controle e hepatite preparadas na versão Q1 e Q2. É possível observar que a 

opção de preparo Q1 forneceu o melhor desempenho, apresentando picos mais intensos e em 

maior quantidade, especialmente na amostra de hepatite. 

 

Figura 14 – Cromatograma, com os comprimentos de onda somados, das amostras controle e hepatite nas 

duas versões do método QuEChERS, Q1 vs Q2. Usando como fase móvel, gradiente linear de ACN. 

Fonte: A autora (2022) 

 

Por outro lado, também foi avaliado o gradiente de concentração do solvente orgânico da 

fase móvel, dois tipos foram testados, denominados neste trabalho como linear e curvo, segundo 

foi apresentado na figura 12 da secção 3.2.2 (página 42). O gradiente curvo mostrou ser mais 

eficiente pois forneceu maior número de picos e em menos tempo, quando comparado ao linear, 

tal e como se apresenta na figura 15. 
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 Figura 15 – Gráficos em 3D da amostra controle em dois tipos de gradientes de concentração da fase orgânica 

(ACN) na versão Q1 do método QuEChERS. 

Fonte: A autora (2022) 

 

Além do QuEChERS outro tipo de preparo de amostra foi testado, o DLLME. De acordo 

com os resultados apresentados na figura 16, o QuEChERS apresentou poucos picos, o que 

indica que este método não é adequado o suficiente para extrair informações bioquímicas 

presentes na amostra.  Já o DLLME mostrou ser mais eficiente visto que, um maior número de 

picos foi observado, o que equivale a mais informações bioquímicas disponíveis para o estudo 

metabonômico. Extrair o máximo de informações (metabolitos) das amostras é crucial, já que 

estas serão usadas para a construção dos modelos metabonômicos. 

 

Figura 16 – Comparação dos métodos DLLME vs QuEChERS na amostra controle após subtração do branco. Os 

cromatogramas em 2D são com os comprimentos de onda somados. Os cromatogramas em 2D e 3D se 

apresentam inteiros e cortados respectivamente. Fase móvel usada ACN no gradiente curvo. 

Fonte: A autora (2022) 



46 
 

Com respeito ao tipo de solvente orgânico utilizado na fase móvel, foram testados: 

ACN/água; MeOH/água; ACN/água + ácido trifluoroacético e MeOH/água + ácido 

trifluoroacético. No entanto os gradientes acidificados apresentaram problemas de resolução 

em comparação aos gradientes não acidificados. Dentre eles, o metanol apresentou melhor 

desempenho na resolução dos picos e na quantidade de informações extraídas, o que representa 

reprodutibilidade e melhor performance dos modelos metabonômicos aqui reportados. Estes 

resultados são apresentados na figura 17 e no ANEXO B onde estão expostos os cromatogramas 

em 2D e 3D das amostras controle e hepatite nos 4 gradientes avaliados. 

Por conseguinte, a metodologia mais eficiente achada neste trabalho, para a análise das 

amostras de soro, é atingida utilizando o método DLLME para o preparo das amostras e 

gradiente curvo de MeOH para as análises cromatográficas. Estes parâmetros foram aplicados 

para a análise das 94 amostras deste estudo. 

 

Figura 17 – Comparação dos gradientes MeOH vs ACN no método DLLME. 

Fonte: A autora (2022) 

 

4.2 ESTUDO METABONÔMICO 

 

4.2.1 Pré-processamento dos dados cromatográficos  

As 94 amostras tiveram seu sinal subtraído pelo branco para correção de linha de base. 

Posteriormente foram unidas em uma matriz e ao observar os cromatogramas a 210 nm (figura 

18a) e com todos os comprimentos de onda somados (figura 18c), constatou-se problemas de 
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deslocamentos de picos. Por tanto, foi necessário realizar um pré-processamento para alinhar 

os picos antes da construção dos modelos metabonômicos, caso contrário o algoritmo poderia 

interpretar um analito como sendo compostos diferentes. Foi utilizado o algoritmo icoshft modo 

“whole” para alinhar os picos por deslocamento completo do cromatograma, porém nem todos 

os picos foram bem alinhados, sendo necessário dividir o cromatograma em intervalos e realizar 

o alinhamento em cada secção do cromatograma. Deste modo, foi possível realizar os 

alinhamentos dos cromatogramas a 210 nm e somando os comprimentos de onda como se 

mostra na figura 18b e 18d respectivamente.  

 

Figura 18 – Cromatogramas com os dados brutos (a) 210 nm e (c) somando os comprimentos de onda.  E 

cromatogramas após alinhamento (b) a 210 nm e (d) somando os comprimentos de onda. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

 

 

(a) 

Cromatograma dados brutos 210 nm 

(b) 

Cromatograma dados alinhados 210 nm 

Cromatograma dados brutos somados 200-400 

nm 
(c) 

Cromatograma dados alinhados somados 200-400 

nm 
(d) 
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4.2.2 Análise exploratória  

Durante o preparo das 94 amostras do estudo, observou-se que algumas tinham diferenças 

de cor (figura 19a) e essa diferença persistia após etapa de precipitação de proteínas com 

acetonitrila (figura 19b) e até no final do preparo na extração da fase orgânica (figura 19c). Em 

vista disto, o espectro UV visível foi registrado em todas as amostras (200 a 800 nm), com o 

intuito de avaliar se a coloração das amostras apresentava alguma informação relacionada ao 

estágio da doença.  

Figura 19 – Cores apresentadas nas amostras do estudo. (a) amostra original, (b) após precipitação de proteínas e 

(c) extração. 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

Os dados obtidos foram avaliados somando os comprimentos de onda de 200 a 400 nm e de 

200 a 800 nm. No entanto, os cromatogramas obtidos e a análise exploratória realizada foram 

exatamente iguais entre si, tal como é apresentado na figura 20, o que indica que a região do 

visível não apresentou nenhuma informação relacionada ao estadiamento, embora a aparência 

física de algumas amostras exibe diferenças nas cores. Dessa forma, os dados utilizados para 

construção dos modelos metabonômicos foram do intervalo 200 a 400 nm e os cromatogramas 

foram cortados em 30 minutos dado que após este tempo nenhum sinal analítico é observado. 

Uma vez escolhidos os dados somados de 200-400 nm para realizar as modelagens, foram 

pré-processados como foi reportado na seção 4.2.1 e realizado novamente análise de 

componentes principais utilizando também dados registrados apenas a 210 nm, para avaliar 

qual destas abordagens seria mais interessante empegar na análise classificatória. Os escores 

são apresentados na figura 21. Observa-se que pela distribuição ou agrupamento natural dos 

dados, não é possível distinguir os 4 grupos da classificação de Niamey, todas as amostras se 

revelam misturadas e sem apresentar tendência de separação. 

Amostra de soro 

original  

Sobrenadante após 

precipitação de proteínas 

Adição da solução extratora 

Fase orgânica no fundo 

(a) (b) (c) 
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Figura 20 – Cromatogramas e gráficos de escores dos dados brutos somados entre 200-800 nm (a) e (b). E 

entre 200-400 nm (c) e (d) respectivamente. Foram selecionadas 5 PC’s em cada caso com 93,8% de variância 

explicada nos dados de 200-800 nm e 94,9%, nos dados de 200 a 400nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

Figura 21 – Escores dos dados (a) 210 nm e (b) somando os comprimentos de onda. Foram selecionadas 5 PC’s 

com uma variância explicada de 78% para os dados a 210 nm e 96,1% para os dados somados 200-400nm. 

 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 
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Para usar as informações contidas em todos os comprimentos de onda registrado na região 

do ultravioleta, optou-se por trabalhar usando os comprimentos de onda somados de 200-400 

nm uma vez que o cromatograma apresenta mais picos. As análises foram realizadas buscando 

a discriminação entre os estágios leve (Classe C) e avançado (Classe EF), este último foi 

formado pelas amostras da classe E e da classe F inicialmente. Em vista da impossibilidade de 

identificar as 4 classes da classificação de Niamey na análise exploratória foi decidido modelar, 

em primeira instancia, os estágios de extremo da FPP, classes C e EF, removendo assim as 

amostras do estágio intermediário (classe D). 

Na figura 22a é apresentado o cromatograma das amostras das classes C e EF que foram 

usadas na construção dos modelos metabonômicos e reportados na secção 4.2.3 análise 

classificatória. A figura 22b apresenta o gráfico dos escores do mesmo conjunto de dados, onde 

é observada sobreposição das classes. 

 

Figura 22 – Dados contendo amostras da classe C e classe EF, com os comprimentos de onda somados. 

(a) Cromatograma. (b) gráfico de escores. 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

Um aspecto importante a ser avaliado na análise exploratória é a presença de amostras 

anômalas ou outliers que podem influenciar na rotação dos modelos. Para detecta-las foi 

utilizado a PCA robusta (ROBPCA) que é mais sensível que a PCA clássica (CPCA) a este tipo 

de amostras. Os resultados se apresentam na figura 23. Utilizando 5 componentes principais 

com 95,84% de variância explicada, é possível observar que no conjunto de dados não apresenta 

amostras anômalas, pois não há amostras com distancia ortogonal e distancia de escore 

elevadas. 

 

(a) 

(b) 
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Figura 23 – Analise de componentes principais robusto e clássico. 

Fonte: A autora (2022) 

 

4.2.3 Análise classificatória

O PLS-DA foi o primeiro modelo classificatório avaliado, o número ideal de variáveis 

latentes (VL) necessárias para construção do modelo com o menor erro associado foi de 4, com 

92% de variância explicada. Os gráficos de escores e pesos são apresentados na figura 24. Dado 

que é impossível vislumbrar os dados com as 4 VL simultaneamente, foi selecionado o par de 

variáveis latentes que, visualmente, apresentassem a melhor separação das duas classes, neste 

sentido as variáveis 3 e 4 foram selecionadas. 

No gráfico de escores (figura 24a) se observa uma clara tendência de separação entre as duas 

classes, no entanto essa separação não é completa pois há uma zona de confusão ou interposição 

das classes. Ao observar os escores separadamente e em paralelo com os pesos (figura 24b e 

24c), observa-se que a VL 4 apresenta maior distinção entre as classes do que a VL 3. No eixo 

positivo dos escores na VL 4 ficam a maior parte das amostras da classe EF enquanto que no 

eixo negativo no mesmo gráfico, ficam praticamente todas as amostras da classe C (exceto 2 

posicionadas no eixo positivo). Os pesos da VL 4 associados a essa separação estão em torno 

de 3 e 22 minutos.  Por outro lado, é importante ressaltar que, mesmo a VL 4 apresentando 

maior discriminação entre as classes, a melhor separação é alcançada no sentido da diagonal, 

por exemplo, ao traçar uma linha diagonal entre as classes no gráfico de escores da figura 24. 

Desta forma é atingida uma melhor separação entre as duas classes, o que indica que a VL 3 e 

a VL 4 em conjunto fornecem o melhor resultado para distinção da classe C e da classe EF 

obtido pelo modelo. 

Para avaliar a eficiência do modelo é necessário examinar a tabela de contingência e as 

métricas de desempenho como sensibilidade, especificidade e exatidão, as quais são 
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apresentadas na tabela 4. A diagonal verde da tabela 4, representa os acertos do modelo e por 

sua vez a diagonal laranja representa os erros obtidos no modelo. A exatidão obtida no conjunto 

de treinamento e teste são muito diferentes, 80% e 53% respectivamente. O que indica que o 

modelo pode ter problemas de sobre ajuste, porém neste caso essa diferença ocorreu devido ao 

baixo número de amostras usado para testar o modelo e devido a classes desbalanceadas. Porém, 

vale a pena destacar que o número de erros é elevado para utilizar este modelo no estadiamento. 

 

Figura 24 – Gráfico de escores (a) e pesos (b) e (c) no algoritmo PLS-DA 

  

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

Tabela 4 – Matriz de contingência e métricas de desempenho obtido do algoritmo PLS-DA 

Treinamento 

Real/Predito Classe C Classe EF Sensibilidade Especificidade ER Exatidão 

Classe C 10 3 0,77 0,81 9 80% 

Classe EF 6 26 0,81 0,77 

Test 

Classe C 2 4 0,33 0,69 8 58% 

Classe EF 4 9 0,69 0,33 

Fonte: A autora (2022) 

 

A diferença da análise exploratória (figura 22b, página 50), onde é observado que não 

é possível distinguir entre as duas classes da doença, o modelo PLS-DA forneceu resultados 

positivos (figura 24a), pois apresentou tendência de separação ou discriminação entre os 

pacientes com estagio leve (classe C) daqueles pacientes com estágio avançado (classe EF). No 

entanto essa tendência de separação ainda deixa muito a desejar, especialmente na exatidão do 

(c) 

(a) (b) 
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grupo de teste (58%), por tanto o modelo não se apresenta robusto o suficiente para ser 

implementado no diagnostico clinico.  

O modelo DD-SIMCA foi usado por ser possível modelar as informações com base 

apenas no sinal instrumental e por fornecer mais informações que nos modelos discriminantes. 

Além disso, no DD-SIMCA os dados guiam a classificação, assim amostras mal rotuladas não 

afetam a qualidade do modelo. 

 

DD-SIMCA da classe C 

Figura 25 – Gráficos do modelo DD-SIMCA para o grupo de treinamento da classe C (a) e o grupo teste (b). Em 

verde as amostras da classe de treinamento, em vermelho as amostras anômalas preditas pelo modelo. A linha 

verde indica o intervalo de confiança (99%), já a linha vermelha indica o limite a partir do qual encontram-se as 

amostras não pertencentes a classe modelada. As amostras marcadas como “a” correspondem a amostras do grupo 

teste da classe C; as marcadas como “b” corresponde ao grupo teste da classe EF e as marcadas como “B”, ao 

grupo treinamento da classe EF. Foi utilizado ROBPCA com 5 PC´s. 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

Tabela 5 – Matriz de contingência e métricas de desempenho obtido do algoritmo DD-SIMCA na modelagem da 

classe C 

Test 

Real/Predito Classe C Classe EF Sensibilidade Especificidade ER Exatidão 

Classe C 5 1 0,83 0,62 18 64% 

Classe EF 17 28 0,62 0,83 

Fonte: A autora (2022) 

 

 

 

(a) (b) 
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Neste caso o modelo construído baseia-se na modelagem somente da classe C utilizando 

13 amostras no conjunto de treinamento (figura 25a). Posteriormente, para testar o modelo, foi 

utilizado um conjunto de amostras de teste conformado por amostras de teste da classe C e 

amostras de teste e treinamento da classe EF, 51 amostras em total. As amostras posicionadas 

dentro da região delimitada pela linha verde são categorizadas como pertencendo a classe C e 

se apresentam de cor verde. Já as amostras que se encontram por fora da região modelada são 

categorizadas como não pertencendo a classe C e se apresentam em cor vermelha (figura 25b). 

do total de 6 amostras de teste da classe C, apenas 1 foi categorizada como não pertencendo a 

classe e do total de 45 amostras do conjunto EF, 17 foram classificadas como pertencendo a 

classe C, a exatidão obtida do modelo foi de 64% tal e como é apresentado na tabela 5. 

 

DD-SIMCA da classe EF 

Figura 26 – Gráficos do modelo DD-SIMCA para o grupo de treinamento da classe EF (a) e o grupo teste (b). em 

verde as amostras da classe de treinamento, em laranja as amostras classificadas como extremos, em vermelho as 

amostras anômalas preditas pelo modelo. A linha verde indica o intervalo de confiança (99%), já a linha vermelha 

indica o limite a partir do qual encontram-se as amostras não pertencentes a classe modelada. As amostras 

marcadas como “a” correspondem a amostras do grupo teste da classe C; as marcadas como “b” corresponde ao 

grupo teste da classe EF e as marcadas como “A”, ao grupo treinamento da classe C. Foi utilizado ROBPCA com 

9 PC´s 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

No caso da modelagem da classe EF, foram utilizadas 32 amostras na construção do 

modelo (figura 26a) das quais uma foi categorizada como sendo de extremo. O conjunto de 

amostras utilizadas para testar o modelo foi conformado por amostras de teste da classe EF e 

amostras de teste e treinamento da classe C, um total de 32. As amostras posicionadas dentro 

da região delimitada pela linha verde são categorizadas como pertencendo a classe EF e se 

apresentam de cor verde. Já as amostras que se encontram por fora da região modelada são 

(b) (a) 
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categorizadas como não pertencendo a classe EF e se apresentam em cor vermelha (figura 26b). 

Todas as amostras de teste da classe EF foram corretamente classificadas, atingindo o valor 

máximo de sensibilidade (1) e do total de 19 amostras do conjunto C, 8 foram classificadas 

como não pertencendo a classe EF, a exatidão obtida do modelo foi de 65% tal e como é 

apresentado na tabela 6. A amostra 7 é uma amostra de extremo e pode indicar que nessa 

amostras há metabólitos que indicam que esta esteja no limite da fronteira a não pertencer a 

classe EF. 

Tabela 6 – Matriz de contingência e métricas de desempenho obtido do algoritmo DD-SIMCA na modelando a 

classe EF 

Test 

Real/Predito Classe 

EF 

Classe  

C 

Sensibilidade Especificidade ER Exatidão 

Classe EF 13 0 1 0,42 11 65% 

Classe C 11 8 0,42 1 

Fonte: A autora (2022) 

 

Algoritmos como o DD-SIMCA que modelam uma classe, podem ser uma ferramenta 

útil para o diagnostico diferencial da FFP, visto o modelo poderá indicar se uma amostra 

desconhecida ou suspeita pertence ou não a um estágio especifico da doença. Isto se torna mais 

interessante em modelos com valores altos de sensibilidade como os aqui reportados, tanto no 

modelo da classe C quanto no modelo da classe EF foram obtidos valores de sensibilidade de 

83% e 100% respectivamente. E dado que a sensibilidade é um tipo de acurácia para as amostras 

da classe alvo, os modelos da classe C e EF terão a capacidade de classificar corretamente 

amostras futuras como pertencendo a classe modelada com 83% e 100% de exatidão 

respectivamente. Por outro lado, a especificidade também é um tipo de acurácia, mas para as 

amostras que não pertencem a classe modelada, isto é a fração de amostras negativas 

classificadas corretamente. Os valores de especificidade obtidos na modelagem de ambas das 

classes (C e EF) não foram tão altos quanto aos da sensibilidade, desta forma os modelos ao 

serem mais sensíveis que específicos, poderão apresentar mais casos de falsos positivos que de 

falso negativo. Nenhum tipo de erro é aceitável, mas se for o caso seria melhor ter um FP e não 

um FN no diagnostico clinico. Por exemplo em um caso de diagnostico FN, um paciente com 

o estagio avançado da FPP será diagnosticado como não estando nesse nível da doença. 

Provavelmente esta pessoa não terá os cuidados e o tratamento que essa condição final da 

doença exige e o pior pode vir a suceder. Caso oposto de um FP onde a pessoa tomaria as 

previdências necessárias e mais exames seriam feitos para confirmar essa condição.  
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 De forma global, ambas classes modeladas apresentaram exatidão praticamente igual, 

64% na classe C e 65% da classe EF, os resultados obtidos foram melhores do que os fornecidos 

pelo modelo PLS-DA (58%), no entanto ainda continua sendo um valor baixo de exatidão.   

Até agora tem sido usado algoritmos que utilizam o cromatograma inteiro para a 

construção dos modelos quimiométricos com uma exatidão máxima atingida de 65% para a 

predição. À visto disso algoritmos como GA-LDA pode ser uma boa opção para construção de 

modelos utilizando picos que realmente influenciem a separação das classes e assim obter 

melhores resultados de exatidão. Por outro lado, algoritmos com seleção de variáveis como o 

GA-LDA permitem a redução dos dados utilizados na construção de modelos e, portanto, a 

diminuição do esforço computacional. A figura 27 apresenta os gráficos dos escores e variáveis 

selecionadas pelo algoritmo GA-LDA. 

 

Figura 27 – Gráficos do modelo GA-LDA. (a) escores. (b) Cromatograma com as variáveis selecionadas pelo 

modelo. (c) Zoom do cromatograma indicando os tempos de retenção selecionados.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 
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A seleção de variáveis por algoritmo genético foi feita ao selecionar o melhor resultado 

em termos de exatidão e parcimônia após 1000 cálculos. Nesse sentido os resultados da melhor 

opção encontrada são apresentados na figura 27 e na tabela 7.  Foram selecionadas 10 variáveis 

(figura 27b) para realizar a classificação em uma função discriminante das duas classes (figura 

27a). Os tempos de retenção correspondentes as variáveis selecionadas são apresentadas na 

figura 27c. Vale a pena ressaltar que nenhuma das variáveis selecionadas pelo algoritmo 

genético corresponde a região do sinal intenso do cromatograma (entre 5 e 6 minutos), por tanto 

esse sinal mesmo sendo de alta intensidade, não é útil para a discriminação das duas classes. É 

comum em análises metabonômicas alguns constituintes minoritários serem os que melhor 

classificam uma determinada doença, o que torna a abordagem do GA-LDA interessante. Na 

figura 27a observa-se a discriminação dos dois estágios da doença, com a classe EF na região 

superior e a classe C na região inferior. Apesar de apresentar algumas amostras confundidas, 

por exemplo amostras da classe EF na região da classe C e vice-versa, o modelo GA-LDA 

apresentou excelentes resultados, para o grupo de treinamento e grupo teste foi obtido uma 

exatidão de 79% e 83% respectivamente, tal e como se apresenta na tabela 7. 

 

Tabela 7 – Matriz de contingência e métricas de desempenho obtido do algoritmo GA-LDA 

Treinamento 

Real/Predito Classe C Classe EF Sensibilidade Especificidade ER Exatidão 

Classe C 11 2 0,84 0,75 10 79% 

Classe EF 8 24 0,75 0,84 

Test 

Classe C 5 1 0,83 0,84 3 83% 

Classe EF 2 11 0,84 0,83 

Fonte: A autora (2022) 

 

Em vista que os melhores resultados foram obtidos no modelo GA-LDA utilizando 

tempos de retenção diferentes do sinal mais intenso do cromatograma que está localizado 

exatamente entre 5,53 e 6,34 minutos, testou-se remover este sinal do cromatograma e aplicar 

os mesmos algoritmos de classificação, já reportados, neste novo conjunto de dados reduzidos. 

Isso foi feito, pois em algoritmos que usam a informação dos dados inteiro como DD-SIMCA 

e PLS os resultados da modelagem podem ser afetados pela presença de constituintes com 

intensidade de sinal elevada que não são correlacionados ao objetivo da modelagem. O 

cromatograma e os escores da análise de componentes principais é apresentado na figura 28. 
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Figura 28 – Dados contendo amostras da classe C e classe EF, com o sinal entre 5,53 – 6,34 min, 

removido. (a) Cromatograma. (b) gráfico de escores. 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

Observa-se nos escores da análise exploratória (figura 28b) deste conjunto de dados 

reduzidos que apesar de apresentar sobreposição das duas classes, nota-se uma melhor 

tendência de separação do que os escores com os dados completos (figura 22b, página 50). 

Desta forma infere-se que a remoção do sinal intenso do cromatograma pode favorecer a 

separação entre as classes e por tanto os algoritmos de analise classificatória foram aplicados a 

este conjunto de dados.  

 

Figura 29 – Gráfico de escores (a) e pesos (b) e (c) do modelo PLS-DA nos dados reduzidos. 

  

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 
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Tabela 8 – Matriz de contingência e métricas de desempenho do modelo PLS-DA obtidos nos dados com sinal 

removido. 

Treinamento 

Real/Predito Classe C Classe EF Sensibilidade Especificidade ER Exatidão 

Classe C 11 2 0,85 0,75 10 78% 

Classe EF 8 24 0,75 0,85 

Test 

Classe C 3 3 0,50 0,85 5 74% 

Classe EF 2 11 0,85 0,50 

Fonte: A autora (2022) 

 

Os resultados do modelo PLS-DA nos dados reduzidos, se apresentam na figura 29 e na 

tabela 8. O número ideal de variáveis latentes para construção do modelo também foi 4, com 

71% de variância explicada. Foram selecionadas as variáveis latentes 2 e 3 para visualizar os 

resultados. Os escores de variável latente deste modelo com os dados reduzidos, apresentaram 

uma melhor tendência de separação das classes quando comparado aos dados completos, isso 

é demostrado na matriz de contingencia da tabela 8. Ao avaliar a eficiência do modelo com as 

métricas de desempenho, apresentadas na mesma tabela, percebe-se que os resultados obtidos 

foram melhores, com valores de sensibilidade, especificidade e exatidão maiores e menor 

número de erros no grupo teste. Isso indica que este sinal não está correlacionado com o objetivo 

da modelagem e que esta informação atrapalhava o algoritmo na predição do estadiamento da 

doença. A exatidão obtida no modelo PLS-DA com os dados completos foi de 58% (tabela 4), 

já para os dados com o sinal intenso removido, a exatidão obtida foi de 74%, uma melhoria 

significativa. Vale a pena ressaltar também que a diferença entre a exatidão do grupo de 

treinamento e teste no modelo PLS-DA com os dados reduzidos, é pequena (78% e 74% 

respectivamente) o que indica que o modelo não terá problemas de sobre ajuste, caso oposto ao 

modelo com os dados completos onde a diferença da exatidão foi grande (80% treinamento – 

58% teste). 

Visto que foram obtidos resultados melhores com o conjunto de dados reduzidos, procedeu-

se a realizar também a modelagem de cada classe com o algoritmo DD-SIMCA, os resultados 

são reportados a seguir. 
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DD-SIMCA da classe C nos dados reduzidos 

Figura 30 – Gráficos do modelo DD-SIMCA para o grupo de treinamento da classe C (a) e o grupo teste (b). em 

verde as amostras da classe de treinamento, em vermelho as amostras anômalas preditas pelo modelo. A linha 

verde indica o intervalo de confiança (96%), já a linha vermelha indica o limite a partir do qual encontram-se as 

amostras não pertencentes a classe modelada. As amostras marcadas como “a” correspondem a amostras do grupo 

teste da classe C; as marcadas como “b” corresponde ao grupo teste da classe EF e as marcadas como “B”, ao 

grupo treinamento da classe EF. Foi utilizado ROBPCA com 5 PC´s. 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

 

Tabela 9 – Matriz de contingência e métricas de desempenho obtido do algoritmo DD-SIMCA na modelando a 

classe C 

Test 

Real/Predito Classe C Classe EF Sensibilidade Especificidade ER Exatidão 

Classe C 6 0 1 0,64 16 68% 

Classe EF 16 29 0,64 1 

Fonte: A autora (2022) 

 

O modelo da classe C se apresenta na figura 30a e foi construído usando 13 amostras 

no conjunto de treinamento. Para o conjunto de teste foram utilizadas amostras de teste da classe 

C e amostras de teste e treinamento da classe EF, 51 amostras em total. Todas as amostras de 

teste C foram corretamente classificadas, ou seja, foram localizadas dentro da região delimitada 

pela linha verde. Do total de 45 amostras do conjunto EF, 16 foram classificadas como 

pertencendo a classe C (figura 30b). A exatidão obtida do modelo foi de 68% tal e como é 

apresentado na tabela 9. De forma geral a modelagem da classe C com os dados reduzidos 

forneceu resultados melhores uma vez que os valores da sensibilidade, especificidade e exatidão 

foram maiores do que os obtidos com a modelagem dos dados completos.  

(a) 
(b) 
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DD-SIMCA da classe EF nos dados reduzidos 

Figura 31 - Modelo DD-SIMCA para o grupo de treinamento da classe EF (a) e o grupo teste (b). em verde as 

amostras da classe de treinamento, em laranja as amostras classificadas como extremos, em vermelho as amostras 

anômalas preditas pelo modelo. A linha verde indica o intervalo de confiança (95%), já a linha vermelha indica o 

limite a partir do qual encontram-se as amostras não pertencentes a classe modelada. As amostras marcadas como 

“a” correspondem a amostras do grupo teste da classe C; as marcadas como “b” corresponde ao grupo teste da 

classe EF e as marcadas como “A”, ao grupo treinamento da classe C. Foi utilizado ROBPCA com 12 PC´s. 

// 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

Tabela 10 – Matriz de contingência e métricas de desempenho obtido do algoritmo DD-SIMCA na modelando a 

classe EF 

Test 

Real/Predito Classe 

EF 

Classe  

C 

Sensibilidade Especificidade ER Exatidão 

Classe EF 12 1 0,92 0,63 8 75% 

Classe C 7 12 0,63 0,92 

Fonte: A autora (2022) 

 

O modelo da classe EF se apresenta na figura 31a e foi construído usando 32 amostras 

no conjunto de treinamento. Para o conjunto de teste foram utilizadas amostras de teste da classe 

EF e amostras de teste e treinamento da classe C, 32 amostras no total. Das 13 amostras de teste 

EF, apenas uma foi classificada como não pertencendo a classe. Do total de 19 amostras do 

conjunto C, 7 foram classificadas como pertencendo a classe EF (figura 31b). A exatidão obtida 

do modelo foi de 75% tal e como é apresentado na tabela 10. A modelagem da classe EF com 

os dados reduzidos também forneceu resultados melhores do que os obtidos com a modelagem 

dos dados completos. Especialmente no valor da exatidão que aumento de 65% para 75%.  

(a

) 
(b

) 
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Dado que os modelos construídos com o PLS-DA e o DD-SIMCA forneceram melhores 

resultados utilizando os dados reduzidos, o algoritmo GA-LDA também foi testado neste 

conjunto de dados. No entanto, resultados significativamente melhores do que os previamente 

reportados para o modelo GA-LDA, não foram obtidos. Isto indica que o desempenho do 

algoritmo de seleção de variáveis é independente da presença do sinal intenso no cromatograma, 

caso oposto dos algoritmos que modelam os dados completos como o PLS-DA e o DD-SIMCA 

que apresentaram resultados diferentes quando utilizado o cromatograma reduzido. 

Dos modelos quimiométricos construídos e avaliados até agora para as classes C e EF, 

o GA-LDA apresentou o melhor desempenho, com 83% de exatidão empregando 10 variáveis. 

Para efeitos comparativos e dado que o numero das amostras nas classes é desbalanceado, a 

tabela 11 apresenta os valores da sensibilidade, especificidade, número de erros e número de 

variáveis latentes, componentes principais ou variáveis, segundo cada caso, do grupo teste dos 

modelos construídos. 

Como pode ser observado da tabela 11, em termos de sensibilidade e especificidade, os 

dados reduzidos apresentaram métricas com valores mais altos, quando comparado com as 

métricas dos dados completos. Ao comparar as métricas entre os modelos PLS-DA e DD-

SIMCA com os dados reduzidos nas duas classes, o DD-SIMCA apresenta melhor desempenho 

e, por sua vez, os modelos construídos para as classes C e EF são mais sensíveis do que 

específicos, ao fornecer valores mais altos na sensibilidade (100% classe C; 92% classe EF) do 

que na especificidade ( 64% classe C; 63 classe EF).  

Já o modelo GA-LDA forneceu valores altos e parelhos de sensibilidade e 

especificidade, tornando-o tanto sensível quanto especifico, e ao mesmo tempo se converte no 

modelo mais simples, visto que para sua construção foi necessárias apenas 10 variáveis que em 

conjunto é muito menor do que a informação contida em uma variável latente ou uma 

componente principal. Desta forma a seleção de picos cromatográficos é a melhor opção para 

modelagem deste tipo de dados. 

Tabela 11 – Comparação de resultados dos modelos construídos para as classes C e EF.   

Fonte: A autora (2022) 

 

Dados completos Dados reduzidos Dados completos Dados reduzidos

Classe C Classe EF Classe C Classe EF Classe C Classe EF

VL/PC/Var 5 5 9 12

# Erros 18 16 11 8

Sensibilidade 33% 69% 50% 85% 83% 100% 100% 92% 83% 84%

Especificidade 69% 33% 85% 50% 62% 64% 42% 63% 84% 83%

10

3

4

8
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Os dados cromatográficos modelados forneceram informações úteis para a distinção de 

pacientes com fibrose periportal leve de aqueles que apresentam fibrose periportal avançada. 

Isso indica que no soro do sangue há metabolitos que evidenciam o status da doença, o que 

poderia facilitar e acelerar o diagnostico especialmente em zonas rurais onde a US não está 

disponível em todos os centros médicos. Além disso, o soro pode ser coletado com maior 

frequência do que uma biopsia, e facilmente transportado o que do ponto de vista prático são 

vantagens enormes quando se compara as análises feitas com a quimiometria com as análises 

tradicionais. Desta forma tanto o estadiamento quanto o monitoramento da doença torna-se 

mais accessível e possível de ser acompanhado com maior frequência.  

Dos 4 grupos da classificação de Niamey, 3 foram usados na construção dos modelos 

previamente reportados, a classe C para o estágio leve da doença e as classes E e F para o 

estágio avançado, 64 amostras em total. As amostras da classe D não foram utilizadas, visto 

que desde a análise exploratória das 94 amostras em conjunto, não apresentaram tendência de 

separação, como reportado na seção 4.2.2 Análise exploratória.  

Uma vez que a modelagem dos dados reduzidos apresentou o melhor desempenho, as 

amostras da classe D foram preditas por este modelo. Sendo que previamente foi removido o 

sinal intenso do cromatograma (figura 32a) e analise de componentes principais foi realizada, 

é possível observar os escores na figura 32b. 

Para a análise exploratória foram utilizadas 6 PC’s com uma variância explicada de 

86,9%. No gráfico dos escores (figura 32b) apresenta-se a sobreposição das 3 classes, no 

entanto, é observado uma certa continuidade em relação da evolução da doença, pois a classe 

D fica localizada no meio das classes de extremo da FPP, leve (classe C) e avançada (classe 

EF).  

Os algoritmos de análise classificatória foram usados neste conjunto de dados, porém não 

foram obtidos resultados aceitáveis, pois a incorporação da classe D acaba gerando 

confundimento das amostras entre as classes, resultando em métricas de desempenho com baixa 

eficiência quando comparado aos modelos feitos com as classes C e EF. Por tanto não foi 

possível construir modelos com 3 classes que forneceram um bom desempenho. Isto era 

esperado dado o índice de classe variável das amostras do grupo D que foram catalogadas pelo 

médico como sendo de vários tipos dentro da mesma classe D, como foi reportado na seção 3.1.  
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Figura 32 – Dados contendo amostras da classe C, classe D e classe EF, com o sinal entre 5,53 – 6,34 

min, removido. (a) Cromatograma. (b) gráfico de escores. 

 

 

 

 

 

 

 

 

 

 

 

Fonte: Autoria própria (2021). 

 

 

 

 

Fonte: A autora (2022) 

Uma vez que a classe D é um estágio intermédio da doença que apresenta variabilidade 

dentro do índice de classe e que foram desenvolvidos modelos capazes de discriminar os 

estágios extremos da doença, testou-se utilizar as amostras do grupo D para serem preditas 

pelos melhores modelos construídos, desta forma avaliar a que classe (C ou EF) as amostras do 

grupo D são mais próximas. O resultado da predição utilizando o modelo GA-LDA é 

apresentado na tabela 12. 

Como é observado na tabela 12, das 30 amostras do grupo D, 12 foram classificadas 

como pertencendo a classe EF e 18 como pertencendo a classe C. Note-se que amostras dentro 

de uma mesma categoria assignada pelo médico foram classificadas em classes diferentes, por 

exemplo, das 11 amostras do tipo “DC” 6 foram classificadas como sendo da classe C e 5 como 

pertencendo a classe EF. No caso das 7 amostras do tipo “D+C” 3 foram classificadas na classe 

C e 4 na classe EF. Evidenciando-se assim a dificuldade na classificação deste estagio 

intermediário da doença.  

 

 

 

 

 

 

(a

) (b

) 

Cromatograma das amostras nas classes C_D_EF 
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Tabela 12 – predição das amostras da classe D no modelo GA-LDA construído para as classes C e EF. Na 

coluna de predição 1 corresponde a classe C e 2 a classe EF.  

#Amostra 

Matriz 
US/Padrão 

Fibrose 
Predição 

1 DC+ 1 

2 DC+ 2 

3 D+C 1 

4 DC+ 2 

5 D+C 1 

6 D+C 2 

7 DC 2 

8 DC+ 1 

9 D+ 1 

10 DC+ 1 

11 DC 2 

12 DC+/E- 1 

13 DC+ 1 

14 DC 1 

15 DC+ 1 

16 DC+ 1 

17 DC 2 

18 DC 2 

19 DC 1 

20 D+C 2 

21 D 2 

22 D+C 2 

23 D+C 1 

24 DC 1 

25 DC 1 

26 D+C 2 

27 D 1 

28 DC 2 

29 DC 1 

30 DC 1 

Fonte: A autora (2022) 

 

O modelo GA-LDA classificou as amostras do grupo D como sendo da classe C ou EF, 

porém se uma amostra da classe D tiver uma característica que seja diferente da classe C e EF 

o modelo não irá identificar pois obrigatoriamente tem que classificar as amostras como 

pertencendo a uma das duas classes. Já no DD-SIMCA essas diferenças podem ser 

identificadas, visto que o modelo pode classificar as amostras como pertencendo ou não a uma 

determinada classe alvo. As amostras da classe D foram preditas utilizando o melhor modelo 

obtido no DD-SIMCA da classe EF. Os resultados são apresentados na figura 33 e na tabela 13.  
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Figura 33 – Predição das amostras da classe D no modelo DD-SIMCA da classe EF 

 

 

 

 

 

 

 

 

 

 

Fonte: A autora (2022) 

Tabela 13 – Predição das amostras da classe D no modelo DD-SIMCA da classe EF. Na coluna de predição 

os critérios pertencem e não pertencem corresponde a classe modelada (EF).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

Fonte: A autora (2022) 

# Amostra 

Matriz 
US/Padrão 

Fibrose 
Predição  

1 DC+ Não pertence 

2 DC+ Não pertence 

3 D+C Não pertence 

4 DC+ Não pertence 

5 D+C Pertence 

6 D+C Não pertence 

7 DC Pertence 

8 DC+ Pertence 

9 D+ Pertence 

10 DC+ Não pertence 

11 DC Não pertence 

12 DC+/E- Não pertence 

13 DC+ Não pertence 

14 DC Não pertence 

15 DC+ Não pertence 

16 DC+ Não pertence 

17 DC Não pertence 

18 DC Pertence 

19 DC Pertence 

20 D+C Pertence 

21 D Não pertence 

22 D+C Pertence 

23 D+C Não pertence 

24 DC Não pertence 

25 DC Não pertence 

26 D+C Não pertence 

27 D Pertence 

28 DC Não pertence 

29 DC Pertence 

30 DC Pertence 
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No gráfico de predição das amostras da classe D da figura 33, é observado que 11 das 

30 amostras foram classificadas como pertencendo a classe modelada (EF), e corresponde as 

amostras de cor verde que se encontram dentro da região delimitada pela linha verde.  Já as 19 

amostras que se encontram por fora da região modelada são categorizadas como não 

pertencendo a classe EF e se apresentam em cor vermelha. Esses resultados estão organizados 

na tabela 13, relacionando a classificação dada pela US e nota-se que das 11 amostras 

categorizadas como “DC” 5 foram classificadas como pertencendo a classe EF. Das 7 amostras 

do tipo “D+C” 3 foram classificadas como pertencendo a classe alvo. Esta mesma situação foi 

evidenciada na predição das amostras com o modelo GA-LDA, as amostras dentro de um 

mesmo tipo ou subclasse da classe D, por exemplo, DC, D+C, DC+; não são classificadas todas 

em uma determinada classe e sim distribuídas praticamente de forma equivalente nas classes 

modeladas, seja classe C, EF, pertencendo a classe EF ou não pertencendo.  

 Desta forma é evidenciada a complexidade para modelagem deste estágio intermediário 

da doença (classe D). Seria necessário utilizar outras abordagens de modelagem para 

desenvolver modelos que sejam mais sensíveis e permitam modelar a classe D. Isto será 

abordado nas perspectivas futuras. 
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5 CONCLUSÕES E PERSPECTIVAS FUTURAS  

 

No presente trabalho foram desenvolvidos modelos metabonômicos capazes de 

discriminar, entre os pacientes esquistossomóticos, os casos extremos de fibrose periportal, isto 

é, os que apresentam FPP leve daqueles com FPP avançada, a partir de dados cromatográficos 

de amostras de soro. O DLLME foi o método de preparo de amostra mais eficiente na extração 

de informações da matriz.  

O melhor modelo que classificou os dados cromatográficos foi o GA-LDA com 84% de 

sensibilidade, 83% de especificidade e 83% de exatidão. Seguido de DD-SIMCA com 92% de 

sensibilidade, 63% de especificidade e 75% de exatidão.  A integração de técnicas analíticas e 

modelos metabonômicos na prática clínica pode fornecer uma ferramenta para o diagnostico 

diferencial de fibrose periportal em pacientes com esquistossomose mansônica, especialmente 

em zonas rurais onde a US não está disponível em todos os centros médicos. Além da 

possibilidade de levar o controle da doença uma vez que o soro pode ser coletado repetidamente. 

Apesar dos bons resultados aqui reportados, não foi possível a modelagem dos casos 

intermediários da doença, isto é a classe D. Para modelar esta classe é proposto como 

perspectiva futura avaliar uma fusão de dados utilizando informações dos sinais registrados 

pela técnica RMN obtido no trabalho de (LIMA RODRIGUES, 2020) em conjunto das 

informações dos picos cromatográficos apresentados neste trabalho, numa única modelagem. 

Desta forma os valores de sensibilidade, especificidade e exatidão para os modelos poderiam 

ser melhorados, uma vez que mais informações estão disponíveis para a modelagem das classes. 
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ANEXO A – PARECER CONSUBSTANCIADO DO CEP 
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ANEXO B – CROMATOGRAMAS 2D E 3D DAS AMOSTRAS CONTROLE E 

HEPATITE NOS 4 GRADIENTES ANALISADOS - DLLME 
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