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ABSTRACT

Two important steps in time series analysis are model selection and diagnostic

analysis. We address the issue of performing diagnostic analysis through portmanteau

testing inferences using time series data that assume values in the standard unit interval.

Our focus lies in the class of beta autoregressive moving average (βARMA) models. In

particular, we wish to test the goodness-of-fit of such models. We consider several testing

criteria that have been proposed for Gaussian time series models and two new tests that

were recently introduced in the literature. We derive the asymptotic null distribution of

the two new test statistics in two different scenarios, namely: when the tests are applied

to an observed time series and when they are applied to residuals from a fitted βARMA

model. It is worth noticing that our results imply the asymptotic validity of standard

portmanteau tests in the class of βARMA models that are, under the null hypothesis,

asymptotically equivalent to the two new tests. We use Monte Carlo simulation to assess

the relative merits of the different portmanteau tests when used with fitted βARMA. The

simulation results we present show that the new tests are typically more powerful than a well

known test whose test statistic is also based on residual partial autocorrelations. Overall,

the two new tests perform quite well. We also model the dynamics of the proportion

of stored hydroelectric energy in South of Brazil. The results show that the βARMA

model outperforms three alternative models and an exponential smoothing algorithm. We

also consider the issue of performing model selection with double bounded time series.

We evaluate the effectiveness of βARMA model selection strategies based on different

information criteria. The numerical evidence for autoregressive, moving average, and

mixed autoregressive and moving average models shows that, overall, a bootstrap-based

model selection criterion is the best performer. An empirical application which we present

and discuss shows that the most accurate out-of-sample forecasts are obtained using

bootstrap-based model selection. The βARMA model is tailored for use with fractional

time series, i.e., time series that assume values in (0,1). We introduce a generalization

of the model in which both the conditional mean and the conditional precision evolve

over time. The standard βARMA model, in which precision is constant, is a particular

case of our model. The more general formulation of the model includes a parsimonious

submodel for the precision parameter. We present the model log-likelihood function, the

score function, and Fisher’s information matrix. We use the proposed model to forecast



future levels of stored hydrolectric energy in the South of Brazil. Our results show that

more accurate forecasts are typically obtained by allowing the precision parameter to

evolve over time.

Palavras-chave: βARMA; bootstrap; model selection; monte carlo simulation; port-

manteau test; time series.



RESUMO

Duas etapas importantes na modelagem de séries temporais são seleção de modelos

e análise de diagnóstico. No que diz respeito à análise de diagnóstico, nós abordamos

a realização de inferências via testes portmanteau utilizando séries temporais que assu-

mem valores no intervalo da unitário padrão. Nosso foco reside na classe de modelos

beta autorregressivos e de médias móveis (βARMA). Em particular, desejamos testar

a adequacidade de tais modelos. Nós consideramos diversos testes que foram propostos

para modelos de séries temporais gaussianas e dois novos testes recentemente introduzidos

na literatura. Derivamos a distribuição nula assintótica das duas novas estatísticas de

teste em dois cenários diferentes, a saber: quando os testes são aplicados a uma série

temporal observada e quando são aplicados a resíduos de um modelo βARMA. Vale a

pena notar que nossos resultados implicam a validade assintótica dos testes portmanteau

padrão na classe de modelos βARMA que são, sob hipótese nula, assintoticamente equi-

valente aos dois novos testes. Usamos simulação de Monte Carlo para avaliar os méritos

relativos dos diferentes testes portmanteau quando usados conjuntamente com o modelo

βARMA. Os resultados de simulação que apresentamos mostram que os novos testes

são tipicamente mais poderosos que um teste bem conhecido, cuja estatística de teste

também é baseada em autocorrelações parciais dos resíduos. No geral, os dois novos

testes funcionam muito bem. Adicionalmente, modelamos a dinâmica da proporção de

energia hidrelétrica armazenada no sul do Brasil. Os resultados mostram que o modelo

βARMA supera três modelos alternativos e um algoritmo de suavização exponencial. Num

segundo estudo, avaliamos a eficácia de estratégias de seleção de modelos com base em

diferentes critérios de informação no modelo βARMA. A evidência numérica para modelos

autorregressivos, de médias móveis e mistos (autorregressivos e de médias móveis) mostra

que, em geral, um critério de seleção de modelos baseado em bootstrap apresenta o melhor

desempenho. Nossa aplicação empírica mostra que as previsões mais precisas são obtidas

usando seleção de modelo baseada em bootstrap. O modelo βARMA é adequado para uso

com séries temporais fracionárias, ou seja, séries temporais que assumem valores em (0,1).

Nós propomos uma generalização do modelo em que tanto a média condicional quanto a

precisão condicional evoluem ao longo do tempo. O modelo βARMA padrão, em que a

precisão é constante, é um caso particular do nosso modelo. A formulação mais geral do

modelo inclui um submodelo parcimonioso para o parâmetro de precisão. Apresentamos



a função de log-verossimilhança do modelo, a função escore e a matriz de informação de

Fisher. Utilizamos o modelo proposto para prever níveis futuros de energia hidroelétrica

armazenada no Sul do Brasil. Nossos resultados mostram que previsões mais precisas são

obtidas ao se permitir que o parâmetro de precisão evolua ao longo do tempo.

Palavras-chave: βARMA; bootstrap; seleção de modelos; séries temporais; simulação

de monte carlo; testes portmanteau.
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1 GOODNESS-OF-FIT TESTS FOR βARMA HYDROLOGICAL TIME

SERIES MODELING

1.1 INTRODUCTION

The beta regression model was introduced by Ferrari and Cribari-Neto (2004)

for modeling dependent variables that assume values in the standard unit interval; see

also Cribari-Neto and Zeileis (2010). Based on that model, Rocha and Cribari-Neto (2009)

introduced the beta autoregressive moving average (βARMA) model, which is a dynamic

model tailored for time series that assume values in (0,1), such as rates and proportions.

Doubly bounded random variables are typically asymmetrically distributed and inferences

based on the Gaussian assumption may be quite inaccurate. In the βARMA model, the

variable of interest (y) is assumed to follow the beta law, its mean being impacted by a

set of covariates and also subject to autoregressive and moving average dynamics. Novel

features of the model are that it requires no data transformation and that βARMA fitted

values and out-of-sample forecasts will never fall outside the standard unit interval.

Diagnostic analysis is of paramount importance in time series modeling. It

is performed after the model has been identified and fitted. Different model validation

strategies can be used. Perhaps the most commonly used validation strategy involves

portmanteau testing inference. Such tests are based on statistics that use residual auto-

correlations. They seek to detect any existing serial correlation in the residuals obtained

from the fitted model.

Since the seminal article by Box and Pierce (1970), considerable attention has

been devoted to tests that use residual autocorrelations to assess goodness-of-fit. Ljung

and Box (1978) showed that a simple modification to the test statistic proposed by Box

and Pierce (1970) considerably reduces the distribution location bias and improves the

quality of the asymptotic approximation used in the test. Their statistic is widely used

by practitioners; see, e.g., Chiogna and Gaetan (2005). Monti (1994) proposed to base

portmanteau testing inference on a test statistic that uses residual partial autocorrelations

rather than residual autocorrelations. Dufour and Roy (1986) introduced a non-parametric

portmanteau test based on rank autocorrelations. Their test is particularly useful when the

underlying distribution of the time series is unknown and it tends to deliver accurate infe-
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rences under non-normality. Additional tests based on transformed sample autocorrelations

were proposed by Kwan and Sim (1996a), Kwan and Sim (1996b). Peña and Rodriguez

(2002) introduced a test based on the determinant of the residual autocorrelation matrix.

They approximated the test statistic null distribution using the gamma distribution. Such

an approximation can be poor in some situations. To circumvent such a shortcoming, Lin

and McLeod (2006) proposed using bootstrap resampling to estimate the test statistic

null distribution.

All aforementioned portmanteau tests were developed for standard ARMA

models, i.e., for models used with variables that assume values in the real line. How do

such tests perform when used with βARMA models? To the best of our knowledge, this

question remains unanswered. The contribution of our work to the literature is twofold.

First, we investigate the accuracy of portmanteau testing inference in the class of βARMA

models. We also consider two new portmanteau tests proposed by Scher (2017) which

are based on residual partial autocorrelations. Our numerical evidence shows that all

tests are nearly free of size distortions when coupled with bootstrap resampling. By size

distortion we mean the difference between exact and nominal type I error frequencies.

Second, we derive the asymptotic null distribution of the two new test statistics in two

different scenarios, namely: when the tests are applied to an observed time series and

when they are applied to the residuals from a fitted βARMA model. A novel aspect of our

proofs is that they also hold for the test statistics that were proposed in the Gaussian time

series literature and that can be shown to be asymptotically equivalent to the two new

test statistics under the null hypothesis. Hence, it follows that some portmanteau tests

that were proposed for Gaussian ARMA models can also be used with βARMA models.

The simulation evidence we present shows that the two new tests are particularly

powerful. In some scenarios of our numerical experiments, such tests were more powerful

(i.e., more capable of detecting model misspecification) than all competing tests.

Our motivation in the present chapter lies in a hydrological empirical problem:

we wish to model the time series dynamics of the proportion of stored hydroelectric energy

in the South of Brazil. The data range from January 2001 to October 2016. We produce

out-of-sample forecasts using a fitted βARMA model, another dynamic model tailored for

time series that assume values in the standard unit interval, a Gaussian ARMA model,

a Gaussian AR model, and an exponential smoothing algorithm. It is shown that the
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βARMA yields the most accurate short term forecasts. Indeed, the six period ahead

mean absolute forecasting error obtained with βARMA model is over 16% smaller than

that of the second best performing method. Prior to using the fitted βARMA model for

forecasting we validate it on the basis of portmanteau testing inference. We shall return

to this application in Section 1.5.

The chapter is organized as follows. Section 1.2 presents the βARMA model

and its main properties. In Section 1.3 we review some portmanteau tests for model

adequacy that have been used in the literature. Two new tests are reviewed in Section 1.4.

The asymptotic null distribution of the two new test statistics is derived under two different

settings, namely: when the test statistics are computed using an observed time series and

when they are computed using βARMA residuals. Monte Carlo simulation evidence is

presented in Section 1.5. An empirical hydrological application is presented and discussed

in Section 1.6. Finally, Section 1.7 contains some concluding remarks.

1.2 THE MODEL

The βARMA Rocha and Cribari-Neto (2009) model is a dynamic model based

on the class of beta regression models Ferrari and Cribari-Neto (2004). It is useful for

dealing with time series data that assume values in the standard unit interval, (0,1), such

as rates and proportions. The model includes autoregressive and moving average dynamics

and also a set of regressors. It accommodates distributional asymmetries and non-constant

dispersion. Unlike the standard ARMA model, fitted values and out-of-sample forecasts

produced using βARMA are guaranteed to lie inside the standard unit interval.

Let yyy = (y1, . . . ,yn)> be an n-vector of time series random variables, where

each yt, for t= 1, . . . ,n, given the previous information set Ft−1, follows the beta law, as

parameterized in Ferrari and Cribari-Neto (2004), with conditional mean µt and precision

parameter φ. The conditional density of yt given Ft−1 is

f (yt | Ft−1) = Γ(φ)
Γ(µtφ)Γ((1−µt)φ)y

µtφ−1
t (1−yt)(1−µt)φ−1, 0< yt < 1, (1.1)

where 0 < µt < 1, φ > 0 and Γ(·) is the gamma function. The conditional mean and

the conditional variance of the yt are, respectively, E(yt | Ft−1) = µt and var(yt | Ft−1) =

µt(1−µt)/(1 +φ). Note that µt is the mean of yt and φ is a precision parameter, in the

sense that for a fixed µt the variance of yt decreases as φ increases.
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By assuming that the variable of interest follows the above beta law, Rocha

and Cribari-Neto (2009) proposed the following βARMA(p,q) model:

g(µt) = α+xxx>t βββ+
p∑
i=1

ϕi
{
g(yt−i)−xxx>t−iβββ

}
+

q∑
j=1

θjrt−j , (1.2)

where xxxt ∈Rc is a set of non-random covariates at time t, βββ = (β1, . . . ,βc)> ∈Rc is a vector

of coefficients related to the covariates and g : (0,1)→R is a twice differentiable strictly

monotonic link function. Here, α ∈R is a scalar parameter and p, q ∈N are, respectively,

the autoregressive and moving average orders. Additionally, rt is the error term and

ϕϕϕ= (ϕ1, . . . ,ϕp)> and θθθ = (θ1, . . . , θq)> are the autoregressive and moving average vectors

of parameters, respectively. The covariates are only required to be non-random and to

satisfy (1.2) for the model to be well defined. Typically, the covariates are included in

the model when some deterministic behavior (such as a cyclic or seasonal component) is

present in the data dynamics; see Section 1.4.2 for details.

The formulation of Model (1.2) is similar to that in Benjamin, Rigby and

Stasinopoulos (2003), who introduced the class of generalized autoregressive moving

average (GARMA) models by extending previous results by Li (1994) and Zeger and

Qaqish (1988) on non-Gaussian time series modeling. In both classes of models, the error

term (rt) is defined in residual fashion, that is, the errors do not drive the stochastic process

like innovations in standard ARMA models. The Gaussian ARMA process is driven by the

realization of a white noise error from a normal distribution. There is no white noise error

disturbance in βARMA and GARMA models. The time series realizations come from

a conditional distribution and the moving average error, rt, is defined as the difference

between an observed quantity (yt or g(yt)) and the corresponding model-based quantity

(µt or g(µt), respectively). Notice that only past values of rt are included Model (1.2).

The two standard formulations for rt are: (i) error on the original scale: yt−µt, and

(ii) error on the predictor scale: g(yt)− ηt, where ηt = g(µt). In what follows, we shall

consider the latter. The error term rt is Ft−1-measurable. It is noteworthy that the

error in the original scale (rt = yt−µt) follows a martingale difference which implies

that rt has unconditional mean zero and is unconditionally uncorrelated. Notice that

E(yt|Ft−1) = µt which implies that E(rt|Ft−1) = 0 and, hence, E(rt) = 0. Additionally, for

h≥ 1, cov(rt, rt+h) = E(rtrt+h) = E(E(rtrt+h|Ft+h−1)) = E(rrE(rt+h|Ft+h−1)) = 0. Since

rt assumes values in (−1,1), its unconditional variance is finite. Rocha and Cribari-Neto

(2009) show that the error on the predictor scale has mean approximately equal to zero,
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variance approximately equal to (∂µt/∂ηt)2[µt(1−µt)/(1 +φ)] and that such errors are

approximately orthogonal.

The estimation of the parameters that index the βARMA model is typically

performed by conditional maximum likelihood Andersen (1970). The conditional log-

likelihood function (given the first a observations) is ` = ∑n
t=a+1 logf(yt | Ft−1), where

a= max{p,q} and f(yt | Ft−1) is presented in Equation (1.1).

When the model contains moving average components, it is necessary to take

into account the recursive structure of log-likelihood derivatives Benjamin, Rigby and

Stasinopoulos (1998). Using the predictor scale error, such derivatives are given by Rocha

and Cribari-Neto (2017):

∂ηt
∂α

= 1−
q∑
j=1

θj
∂ηt−j
∂α

,
∂ηt
∂βββ

= xxx>t −
p∑
i=1

ϕixxx
>
t−i−

q∑
j=1

θj
∂ηt−j
∂βββ

,

∂ηt
∂ϕi

= g(yt−i)−xxx>t−iβββ−
q∑
j=1

θj
∂ηt−j
∂ϕi

, i= 1, . . . ,p,

∂ηt
∂θl

= g(yt−l)−ηt−l−
q∑
j=1

θj
∂ηt−j
∂θl

, l = 1, . . . , q.

Starting values for ηt can be obtained by setting ηt = g(yt) and the derivatives of η

with respect to the model parameters equal to zero for t= 1, . . . , q Benjamin, Rigby and

Stasinopoulos (1998).

Bayesian model selection for the βARMA model was developed by Casarin,

Valle and Leisen (2012) and bias-corrected maximum likelihood of the parameters that

index the model was considered by Palm and Bayer (2018). An extension of the model that

incorporates seasonal dynamics, the βSARMA model, was recently proposed by Bayer,

Cintra and Cribari-Neto (2018) and an extension of the model for compositional data, the

DARMA model (‘D’ stands for Dirichlet), was developed by Zheng and Chen (2017). A

dynamic model for doubly bounded random variables based on an alternative law — the

Kumarawasmy law — was introduced by Bayer, Bayer and Pumi (2017). In what follows

we shall focus on the standard, baseline βARMA model.

1.3 STANDARD PORTMANTEAU TESTS

Portmanteau tests are commonly used in time series analysis to assess goodness-

of-fit. The test statistics are based on residual autocorrelations and the fitted model is
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taken as a good representation of the data when such autocorrelations are jointly negligible.

In what follows we shall briefly present some well known portmanteau tests adapted for the

βARMA model. Let wt be a stationary time series of interest and let ρk = cor(wt,wt+k)

be the kth order autocorrelation. For a user selected integer m> 0, we are interested in

testing

H0 : ρ1 = ρ2 = · · ·= ρm = 0

H1 : at least one ρi 6= 0.
(1.3)

That is, the interest lies in testing that the first m autocorrelations are jointly equal to

zero.

Oftentimes, wt is the tth residual from a fitted time series model. In that case,

the null hypothesis under test is that first m autocorrelations of the residuals from a fitted

time series (ARMA or βARMA) are jointly equal to zero and its rejection is evidence of

model misspecification. Let r̂1, . . . , r̂n denote the fitted model’s residuals. The kth residual

(sample) autocorrelation is ρ̂k =∑n
t=k+1 r̂tr̂t−k/

∑n
t=1 r̂

2
t , k = 1, . . . ,m. When the model is

correctly specified, the residuals are expected to be nearly uncorrelated.

In Gaussian ARMA models, under the null hypothesis, the time series is a

sequence of independent random variables whereas in βARMA model such a series is

comprised of non-correlated variables.

Different residuals can be computed in the context of βARMA models. For

instance, one can define residuals based on one the following discrepancies: g(yt)−g(µt)

and yt− µt. Recall that if, say, wt follows an ARMA process, then awt follows an

ARMA process of the same order ∀a 6= 0. It is important to notice, however, that

transformations of ARMA processes are generally not ARMA processes, and in the specific

cases where they are, the order of the process usually changes Linka (1988). In the present

context, we notice that, when yt ∼ βARMA(p,q) without covariates, conditionally on

Ft−1, the sequence {(g(yt), rt)}t satisfies the ARMA(p,q) difference equations. Working

with residuals based on yt−µt may be potentially problematic since {(yt, rt)}t may not

satisfy the difference equations of an ARMA model. However, the asymptotic results we

shall state later (Theorem 1.4.2.1 and 1.4.2.2) may still hold as the following simple, yet

useful case exemplifies. Suppose that yt ∼ βARMA(p,q), consider the logit link function,

i.e., g(x) = log(x)− log(1−x), and consider the residual

r̂t = at(n)(yt− µ̂t) (1.4)
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for a sequence of random variables {at(n)}n such that, conditionally on Ft−1, at(n) p→ at ∈R

as n tends to infinity, for all t. By expanding log(1−x) into its power series around 0, we

can write

g(yt)−g(µt) = yt−µt+ log
(
yt
µt

)
+
∞∑
k=2

ykt −µkt
k! .

Notice that 0 < var(yt) ≤ 1/[4(φ+ 1)] < 1/4, so that, if φ is large, the variance of yt is

very small and yt will be close to µt with high probability. As a result, log(yt/µt)≈ 0 and

the summation, which involves powers of numbers in (0,1), can also be expected to be

negligible. We thus expect that yt−µt ≈ g(yt)−g(µt). If, in addition (as often happens in

applications), the sequence at is nearly constant, we expect that the behavior of at(yt−µt)

should not be far from a constant times g(yt)− g(µ̂t). As a consequence, portmanteau

tests based on g(yt)−g(µ̂t) and on (1.4) should behave similarly.

We shall now present some portmanteau test statistics that were proposed in

the context of Gaussian time series and that can be used with time series that follow

the beta law. Box and Pierce (1970) introduced a test statistic which, under the null

hypothesis, is approximately χ2 distributed in large samples. The associated test, however,

was shown to have poor small sample performance. A variant of Box-Pierce test statistic

was considered by Ljung and Box (1978):

QLB = n(n+ 2)
m∑
k=1

ρ̂2
k

n−k
.

Monti (1994) proposed replacing the sample autocorrelations in the above test statistic by

sample partial autocorrelations. The limiting null distribution of both test statistics is

χ2
m−p−q.

A non-parametric portmanteau test statistic based on rank autocorrelations

was introduced by Dufour and Roy (1986). Let Rt be the rank of r̂t. The kth residual

rank autocorrelation is ρ̃k = ∑n−k
t=1 (Rt− R̄)(Rt+k − R̄)/∑n

t=1(Rt− R̄)2, 1 ≤ k ≤ n− 1,

where R̄ = n−1∑n
t=1Rt = (n+ 1)/2 and ∑n

t=1(Rt− R̄)2 = n(n2− 1)/12 if all ranks are

distinct. Since R1, . . . ,Rn are interchangeable, when r̂1, . . . , r̂n are interchangeable and

continuous, the mean of ρ̃k is µk =−(n−k)/[n(n−1)] for 1≤ k ≤ n−1. The authors also

provide an expression for σ̃2
k, the variance of ρ̃k. The portmanteau test statistic is QDR =

(ρ̃ρρ−µµµ)>D−1
2 (ρ̃ρρ−µµµ), where ρ̃ρρ= (ρ̃1, . . . , ρ̃m)>, µµµ= (µ1, . . . ,µm)> and D2 = diag{σ̃2

1, . . . , σ̃
2
m}.

Under H0, QDR is asymptotically distributed as χ2
m−p−q.
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Kwan and Sim (1996a) considered the situation in which a portmanteau test

is applied to an observed time series, and not to residuals from a fitted model. They

transformed the autocorrelations in order to reduce the dispersion bias of QLB. Fisher

(1921) proposed transforming ρ̂k as z1k = 0.5log((1 + ρ̂k)/(1− ρ̂k)), and Hotelling (1953)

introduced the following two transformations: z2k = z1k− (3z1k + ρ̂k)/[4(n−k)] and z3k =

z2k−23z1k + 33ρ̂k−5ρ̂3
k/96(n−k)2, where zik, for i= 1,2,3,4, is normally distributed with

E(zik)≈ 0, var(z1k)≈ (n−k−3)−1, var(z2k)≈ (n−k−1)−1 and var(z3k)≈ (n−k−1)−1.

Using these approximations, Kwan and Sim (1996a) proposed three modified portmanteau

test statistics: QKWi =∑m
k=1(n−k−τi)z2

ik, i= 1,2,3, where τ1 = 3 and τ2 = τ3 = 1. Under

H0, they are asymptotically distributed as χ2
m. The number of degrees of freedom is m

because the test is, as noted above, applied to an observed time series.

Kwan and Sim (1996b) introduced a fourth test statistic based on a variance-

stabilizing transformation proposed by Jenkins (1954): z4k = sin−1(ρ̂k). Here, E(z4k)≈ 0

and var(z4k)≈ (n−k)−2(n−k−1). The test statistic is QKW4 =∑m
k=1[(n−k)2/(n−k−

1)]z2
4k. Under H0, it is asymptotically distributed as χ2

m.

When the sample size is large relative to m, the means of QKW1, QKW2

and QKW3 are approximately equal to m−m(m+ 4)/n and that the mean of QKW4

is approximately equal to m−m(m+ 1)/n. Kwan and Sim (1996a) noticed that these

results suggest that, for fixed n, the means of the four test statistics are smaller than

m. (Such results were obtained for Gaussian processes. In our simulations, we computed

the means of the four test statistics and noticed that the approximations also hold for

βARMA processes.) The authors then proposed to modify the tests critical values using

E(QKWi) =
m∑
k=1

(n−k− τi)
{
E(ρ̂2

k) + 2
3E(ρ̂4

k)
}
, i= 1,2,3,

E(QKW4) =
m∑
k=1

(n−k)2

(n−k−1)

{
E(ρ̂2

k) + 1
3E(ρ̂4

k)
}
.

Expressions for E(ρ̂2
k) and E(ρ̂4

k) can be found in Davies, Triggs and Newbold (1977) and

in Ljung and Box (1978). The tests can then be performed as follows when applied to an

observed time series: Reject the null hypothesis at the γ×100% significance level (0<γ < 1)

if QKWi ≥ χ2
1−γ,E(QKWi), i= 1, . . . ,4. When the test statistics are computed from ARMA

residuals, the null hypothesis is rejected if QKWi ≥ χ2
1−γ,E(QKWi)−p−q, i= 1,2,3,4.

Peña and Rodriguez (2002) proposed a different portmanteau test statistic which

is based on the determinant of the residual autocorrelation matrix: D̂m = n
(

1−
∣∣∣R̂m∣∣∣1/m),
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where R̂m is the (m+ 1)× (m+ 1) sample autocorrelation matrix. The determinant

of R̂m, |R̂m|, is the estimated generalized variance of the standardized residuals. The

authors proposed approximating the asymptotic null distribution of D̂m by the gamma

distribution. The approximation, however, can be quite poor. A modified test statistic was

also proposed by the authors: Dm = n
(
1−|R̈m|1/m

)
, where R̈m is obtained by replacing

ρ̂2
k with ρ̈2

k = (n+ 2)(n−k)−1ρ̂2
k. McLeod and Jimenez (1984) noted a shortcoming of Dm:

R̈m is not always positive definite.

Lin and McLeod (2006) recommended performing the Peña-Rodriguez test

using bootstrap resampling. The numerical evidence in their paper shows that the test

performs considerably better when one does so.

1.4 TWO NEW PORTMANTEAU TESTS

In this section we present two new test portmanteau statistics proposed by

Scher (2017) that are based on residual partial autocorrelations. We then prove that

their limiting null distribution is χ2
m−p−q in the class of βARMA models. When the

statistics are computed using observed time series their limiting distribution under the

null hypothesis of no serial correlation is χ2
m. A novel aspect of our proofs is that they

also hold for other test statistics that were proposed in the Gaussian time series literature

which are asymptotically equivalent to our test statistics under the null hypothesis.

1.4.1 Two new test statistics

Two new portmanteau tests statistics were proposed by Scher (2017): Q1 and

Q4. They are based on residual partial autocorrelations. The motivation for using partial

autocorrelations in portmanteau test statistics stems from the fact that when the order of

moving average dynamics is underestimated, the sum of squared partial autocorrelations

is likely to be larger that of squared autocorrelations; see, e.g., Monti (1994, pp. 778–779).

As before, π̂k denote the kth residual partial autocorrelation. Scher (2017)

explored the use of the aforementioned variance-stabilizing transformations but now applied

to partial autocorrelations, and then used the transformed partial autocorrelations to

construct portmanteau test statistics. Consider the transformation introduced by Fisher
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(1921):

ẑ1k = 1
2 log

(
1 + π̂k
1− π̂k

)
, k = 1, . . . ,m.

The corresponding modified test statistic can be written as

Q1 =
m∑
k=1

(n−k−3)ẑ2
1k. (1.5)

The second test statistic proposed by Scher (2017) makes use of the transfor-

mation introduced by Jenkins (1954), namely:

ẑ4k = sin−1(π̂k).

Using it, Scher (2017) arrived at the following portmanteau test statistic:

Q4 =
m∑
k=1

(n−k)2

n−k−1 ẑ
2
4k. (1.6)

We shall prove that under appropriate conditions and under the null hypothesis,

when the test is applied to an observed time series, Q1 andQ4 are asymptotically distributed

as χ2
m; when the test statistics are computed using βARMA residuals, they are, under

the null hypothesis, asymptotically distributed as χ2
m−p−q. Such results are proved in

Subsection 1.4.2. We suggest that the tests critical values be corrected using the approach

outlined in the previous section.

The finite sample performances of the two tests presented above can be improved

with the aid of bootstrap resampling. A similar approach can be applied to other

portmanteau tests. In what follows we shall use the bootstrap method to improve the

finite sample performances of the following tests: QLB, QM , QDR, QKW1, QKW2, QKW3,

QKW4, Q1 and Q4. Bootstrap inference is performed as described in Lin and McLeod

(2006).

1.4.2 Asymptotic null distribution of the new portmanteau test statistics

We shall now derive the asymptotic distribution of the statistics Q1 and Q4

given in (1.5) and (1.6), respectively, under the null hypothesis (1.3) of no correlation up to

a predetermined lag m> 0. We separate the discussion into two cases: the test is applied

to an observed time series and the test is applied to the residuals from a fitted βARMA

model. As we have mentioned heuristically before, the asymptotic null distributions are
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different under these two cases. More specifically, when the time series under evaluation

comes from a fitted model, it is obtained from a model with parameters replaced by

estimates which impacts the number of degrees of freedom of the test statistic asymptotic

null distribution. For further details, see Box and Pierce (1970), Ljung and Box (1978),

Ljung (1986) and the references therein.

1.4.2.1 Observed time series

We start by analyzing the case where the time series under scrutiny is an

observed time series, i.e., it is not a set of residuals from a time series model fit. Under the

null hypothesis the series is comprised of uncorrelated and identically distributed random

variables with finite second moment. As before, for k > 0, let ρ̂k and π̂k denote the kth

order sample autocorrelation and the kth sample partial autocorrelation, respectively.

Note that both ρ̂k and π̂k depend on n.

Theorem 1.4.2.1. Under the null hypothesis, for i= 1,4, the statistics Qi and QKWi are

asymptotically equivalent and

Qi
d−→ χ2

m,

as n tends to infinity.

The proof of the above theorem and the proofs of the results that follow are

presented in the Appendix 4.

1.4.2.2 βARMA residuals

In order to obtain the asymptotic null distribution of the two test statistics

proposed by Scher (2017) we need to rely on the asymptotic theory for the conditional

maximum likelihood estimator (CMLE) in the framework of βARMA models. The

asymptotic theory is mentioned in Rocha and Cribari-Neto (2009) and more details are

given in Rocha and Cribari-Neto (2017). The idea behind the asymptotic theory of the

CMLE in the context of βARMA models is to write ηt as a linear combination of the

regressors xxxt and past values of the process itself (in autoregressive fashion), allowing

for possible ancillary terms, in the spirit of Benjamin, Rigby and Stasinopoulos (2003)

(Equation (3)) and Fokianos and Kedem (2004) (Equation (5) in particular).
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In what follows we summarize the conditions required for the consistency

and asymptotic normality of the conditional maximum likelihood estimator (CMLE) in

βARMA models. We start with conditions regarding the model’s systematic component.

A1. The roots of the autoregressive polynomial Φ(z) = 1−ϕ1z−·· ·−ϕpzp lie outside

the unit circle.

A2. In the parametric space, there exists an open neighborhood U around the true

parameters θθθ where the roots of the moving average polynomial Θ(z) = 1 + θ1z+

· · ·+ θqz
q lie outside the unit circle.

A3. The polynomials Θ(·) and Φ(·) have no common roots.

Assumptions A1 to A3 are standard in the context of usual ARMA models and they

provide sufficient smoothness for the CMLE’s asymptotic theory to hold. Now let κκκ =

(φ,α,β1, . . . ,βc,ϕ1, . . . , ϕp, θ1, . . . , θq)> and dddt = (xxx>t , . . . ,xxx>1 , . . . ,yt, . . . ,y1)>, where xxx>t is an

c-dimensional set of non-random covariates. In addition to Conditions A1–A3, we make

the following assumptions:

P1. The inverse link function g−1 is of class C2 and satisfies
∣∣∣∂g−1(x)/∂x

∣∣∣ 6= 0, for all

x ∈R.

P2. The parametric space Ω is an open set in Rc+q+p+2 and the true parameter κκκ0 lies

in Ω.

P3. For each t, dddt almost surely belongs to a compact set Υ and there exists n0 ∈N such

that, for all n > n0,
∑n
t=1 dddtddd

>
t is positive definite with probability 1. Additionally,

g−1(ηt) is almost surely well-defined for all dddt ∈Υ and κκκ ∈ Ω.

P4. There exists a probability measure λ such that
∫
zzzzzz>λ(dzzz) is positive definite and

such that the weak convergence

1
n

n∑
t=1

I(dddt−1 ∈ A) −→
n→∞ λ(A)

holds for all λ-continuity sets A under (1.2) with κκκ= κκκ0.

Under A1–A3 and P1–P4, the CMLE is consistent and asymptotically normal with variance-

covariance matrix equal to the inverse of the information matrix. For further details, as

well as a discussion of the conditions above, we refer readers to Fahrmeir and Kaufmann

(1985), Shao (1992), Fokianos and Kedem (2004), Pumi et al. (2019) and references therein.

To set the notation, let r̂1, . . . , r̂n be the residuals obtained from a correctly

specified βARMA(p,q) model, computed as r̂t = g(yt)− g(µ̂t), where µ̂t is obtained by

evaluating (1.2) at the maximum-likelihood estimates.
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Theorem 1.4.2.2. Let Qi, i= 1,4, be computed using residuals obtained from a correctly

specified βARMA(p,q) model that satisfies Assumptions A1–A3 and P1–P4. Under the

null hypothesis,

Qi
d−→ χ2

m−p−q,

as n tends to infinity.

Using the proof of the above result it is possible to establish the limiting

null distribution of QLB and QM when such test statistics are computed using βARMA

residuals, as indicated in the next result.

Corolário 1.4.2.1. Let QLB and QM be computed using residuals from a correctly speci-

fied βARMA(p,q) model that satisfies Assumptions A1–A3 and P1–P4. Under the null

hypothesis,

QLB
d−→ χ2

m−p−q and QM
d−→ χ2

m−p−q,

as n tends to infinity.

We close this section by noting that one can force b coefficients to equal zero

when fitting a βARMA model (b < p+ q), obtain the residuals and perform portmanteau

testing inferences. In that case, the asymptotic null distribution of Q1 and Q4 is χ2
m−p−q+b.

The proof is essentially the same as the one presented above, in view of McLeod (1978).

1.5 NUMERICAL EVIDENCE

Several simulation experiments were carried out to investigate the finite sample

performances of the different portmanteau tests in the class of βARMA models. All

simulations were performed using the R statistical computing environment Team (2021).

We use the standardized ordinary residual defined by Ferrari and Cribari-Neto (2004),

i.e., r̂t = (yt− µ̂t)/
√

v̂ar(yt), where v̂ar(yt) = µ̂t(1− µ̂t)/(1 + φ̂). Here, µ̂t is obtained by

evaluating µt at the maximum likelihood estimates and φ̂ is the maximum likelihood

estimate of φ. In the simulations that follow, we use φ= 120 so that var(yt)< 1/484≈

0.00207. Under the conditions stated in Subsection 1.4.2, if we take at(n) = v̂ar(yt)−
1
2
p→

var(yt)−
1
2 = at, for all t, as n tends to infinity; recall (1.4). It follows that Theorem 1.4.2.2

holds.
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All tests are performed at 10%, 5% and 1% significance levels. For brevity,

however, we shall only present results for γ = 5%. The sample sizes are n ∈ {50,250,500},

the values of m we used are m ∈ {5,10,15,20,25}, the number of Monte Carlo replications

is 5,000. Separate simulations were performed for each value of m. Log-likelihood

maximization was performed using the BFGS quasi-Newton method with analytic first

derivatives. Starting values for the parameters were selected as follows: (i) all moving

average parameters were set equal to zero, and (ii) the values for the autoregressive

parameters were selected by regressing g(yt) on g(yt−1), . . . ,g(yt−p) using ordinary least

squares. Beta random number generation was performed based on the Mersenne Twister

uniform random generator Matsumoto and Nishimura (1998). All simulations were carried

out using the logit link function.

Our Monte Carlo simulations entailed considerable computational cost. They

were run at the National Supercomputing Center at Federal University of Rio Grande

do Sul (CESUP/UFRGS). The hardware used was a cluster of computers with 64 blades

of processing, 15.97 Tflops and 174TB RAM running the SUSE Enterprise Server Linux

operating system. Our code made use of parallel computing and our simulations ran on

3 nodes with 24 clusters. To achieve reproducibility, we used the doRNG R package in

conjunction with foreach loops. By using parallel computing, we were able to reduce

execution time by approximately 78%.

At the outset, we ran size simulations using asymptotic critical values. We

considered the following data generating mechanisms: βAR(1) (with ϕ ∈ {0.2,0.5,0.8}),

βMA(1) (with θ ∈ {0.2,0.5,0.8}) and βARMA(1,1) (with ϕ= 0.2 and θ ∈ {0.2,0.5,0.8}).

The tests displayed considerable size distortions in some cases when the sample size was

small (n= 50) but performed well with larger sample sizes (n= 250 or n= 500). We shall

not present these results for brevity. Instead, we shall focus on size simulations of tests

that employ bootstrap resampling. We note that small sample size distortions also take

place when the tests are used with Gaussian ARMA models. Lin and McLeod (2006), e.g.,

recommend using bootstrap resampling when performing the portmanteau test proposed

by Peña and Rodriguez (2002) with Gaussian models when n < 1,000.

We shall now investigate the effectiveness of bootstrap resampling when coupled

with portmanteau tests in the class of βARMA models. We shall consider the following

bootstrap tests: QLB, QM , QDR, QKW1, QKW2, QKW3, QKW4, Q1 and Q4. Since QKW1,
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QKW2 and QKW3 behave similarly, we shall only report results for QKW1. All results are

based on 1,000 bootstrap samples and n= 50. We shall not report results for n∈ {250,500}

because in large samples the bootstrap tests behave similarly to the corresponding standard

tests.

Table 1 contains the null rejection rates of the bootstrap portmanteau tests,

including the bootstrap variant of the Peña-Rodriguez’s test Lin and McLeod (2006),

for the βAR(1) model with ϕ ∈ {0.2,0.5,0.8}. Table 2 presents the bootstrap tests null

rejection rates obtained using the βMA(1) model with θ ∈ {0.2,0.5,0.8} for data generation.

In both cases, all tests are now nearly size distortion free.

A second set of Monte Carlo simulations was carried out to evaluate the tests

nonnull behavior, i.e., to evaluate the tests powers. Data generation is now carried out

under the alternative hypothesis and the interest lies in examining the tests ability to detect

that the model specification is in error. The true data generating process is βARMA(1,1),

and the fitted model is βAR(1). The sample sizes are n ∈ {50,250} and the values of m

range from 3 to 25. Since QKW1, QKW2, QKW3 and QKW4 behave similarly, we shall

only report results on QKW4. The Q1 and Q4 tests proposed by Scher (2017) also behave

similarly, and for that reason we shall only consider Q4. Since some of the tests are liberal,

we shall base all tests on exact (estimated from the size simulations) critical values rather

than on asymptotic critical values. By doing so, we force all tests to have correct size.

The plots in the top row of Figure 1 display the empirical powers of QLB, QM ,

QDR, QKW4 and Q4 for ϕ = 0.5 and θ = 0.5. Notice that when n = 50 (left panel) Q4,

the test introduced by Scher (2017) outperforms the remaining tests for all values of m.

When the sample size is large (n= 250, right panel), the Q4 test considerably outperforms

all other tests for all values of m. The QDR test is the worst performer in both cases

(n= 50 and n= 250). The plots in the bottom row of Figure 1 present results obtained

using ϕ= 0.2 and θ = 0.8 in the βARMA data generating process. The conclusions are

similar to those from the previous case with Q4 outperforming the competition regardless

of the samples size. Visual inspection of the graphics in the bottom row of Figure 1 reveals

that the choice of m considerably impacts the powers of the tests. In particular, the tests

ability to detect model misspecification weakens as m grows. The same happens under

Gaussian models Kwan, Sim and Wu (2005).

How does the value of θ impact the tests powers? In order to answer that
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Figure 1 – Powers of the QLB, QM , QDR, QKW4, Q4 tests at the 5% nominal level when
the fitted model is βAR(1) and the true data generating process is βARMA(1,1)

with ϕ= 0.5, θ = 0.5 (top row) and ϕ= 0.2, θ = 0.8 (bottom row).
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(b) n= 250.
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(d) n= 250.

Source: The author (2020).

question we ran simulations using different values of the moving average parameter when

generating the data. The value of m is fixed at 5, the value of the autoregressive parameter

(ϕ) is fixed at 0.2, and two sample sizes are used: n ∈ {50,250}. The tests estimated

powers are displayed in Figure 2 (left panel for n= 50 and right panel for n= 250). The

Q4 and QM tests are the clear winners when the sample size is small, especially when the

value of θ is large; QDR is the test with smallest power. When the sample size is large, Q4

and QM remain the most powerful tests, but not by much, and QKW4 becomes the worst

performing test.

We now move to the situation where the true data generating process is

βARMA(1,1) but the fitted model is βMA(1). In the previous case the fitted model
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Figure 2 – Powers of the QLB, QM , QDR, QKW4, Q4 tests at the 5% nominal level when
the fitted model is βAR(1) and the true model is βARMA(1,1) with ϕ= 0.2 and

different values of θ.
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Source: The author (2020).

was incorrectly specified because it failed to take into account relevant moving average

dynamics. In contrast, model misspecification now stems from failing to account for

important autoregressive dynamics. For brevity, we shall only consider two scenarios. The

tests powers are displayed in plots in the top row of Figure 3 which show the estimated

powers of QLB, QM , QDR, QKW4 and Q4 for ϕ = 0.5 and θ = 0.5. The tests ability to

detect model misspecification increases with the sample size, as expected, and decreases

with m. When the sample size is small (left panel), QKW4 is the most powerful test,

followed by Q4 when m is large. When the sample size is large, QKW4 and Q4 are the

winners, but not by much when m is small.

We shall now investigate whether the previous set of results are sensitive to

the parameter values in the autoregressive and moving average dynamics. The plots in

the middle row of Figure 3 present the tests empirical powers for n= 50: (i) ϕ= 0.5 and

θ = 0.8 (left panel) and (ii) ϕ = 0.8 and θ = 0.5 (right panel). As in the previous case,

QKW4 is the most powerful test, Q4 being the runner-up when m> 10 in the left panel

and when m> 16 in the right panel. Overall, these results are similar to those presented

in the previous figure.

Figure 3 (bottom row, left panel) presents the empirical powers of the QLB,

QM , QDR, QKW4 and Q4 tests for ϕ= 0.8 and θ = 0.2. The results obtained using ϕ= 0.8

and θ = 0.8 are displayed in Figure 3 (bottom row, right panel). In both cases, n= 50 and

QKW4 is the winner. In the right panel Q4 is the runner-up and in the left panel Q4 is
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Figure 3 – Powers of the QLB, QM , QDR, QKW4, Q4 tests at the 5% nominal level when
the fitted model is βMA(1) and the true data generating process is βARMA(1,1)
with ϕ= 0.5, θ = 0.5 (top row), ϕ= 0.5, θ = 0.8 (left panel, middle row), ϕ= 0.8,
θ = 0.5 (right panel, middle row), ϕ= 0.8, θ = 0.2 (left panel, bottom row) and

ϕ= 0.8, θ = 0.8 (right panel, bottom row).
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(b) n= 250.

5 10 15 20 25

40

50

60

70

m

P
o
w

e
r 

(%
)

QLB

QM

QDR

QKW4

Q4

(c) n= 50.
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Source: The author (2020).

the second best performing test when m is large. Interestingly, in both cases QM is the

worst performer. Recall that the QM and Q4 test statistics use residual partial partial

autocorrelations. Even though we do not present results for n= 250, we note that when

ϕ= 0.8 all tests displayed power of 100%.

Previously, we evaluated the tests nonnull behavior for different values of
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the moving average parameter. We shall now evaluate how the tests powers change

with the value of the autoregressive parameter. Here, the data generating process is

βARMA(1,1), the βARMA(0,1) model is estimated, θ = 0.8 and m= 25. The tests powers

for n ∈ {50,250} and different values of ϕ are presented in Figure 4. When n= 50 (left

panel), QKW4 and Q4 are the most powerful tests for all values of ϕ, especially when ϕ is

large, and QM is the worst performer. When n= 250 (right panel), QKW4 and Q4 are the

winners for all values of ϕ, but not by much.

Figure 4 – Powers of the QLB, QM , QDR, QKW4, Q4 tests at the 5% nominal level when
the fitted model is βMA(1) and the true model is βARMA(1,1) with θ = 0.8 and

different values of ϕ.
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Source: The author (2020).

We shall now consider a different model specification error, namely: the true

data generating process is βARMA(2,1) but the fitted model is βARMA(1,1), i.e., some

existing autoregressive dynamics is not accounted for. The plots in the top row of Figure 5

display the empirical powers of QLB, QM , QDR, QKW4 and Q4 for ϕϕϕ = (0.2,0.5)> and

θ = 0.2. All the tests become considerably more powerful when n goes from 50 to 250.

Again, the tests powers decrease with m. In both cases, the QKW4 is the clear winner.

The plots in the bottom row of Figure 5 display the empirical powers of

QLB, QM , QDR, QKW4 and Q4 for ϕϕϕ = (0.2,0.8)> and θ = 0.2. The QKW4 test again

outperforms the competition. It is noteworthy that QM (which, like Q4, is based on

residual partial autocorrelations) is the worst performer. We also note that Q4 is the

second best performer when the sample size is small and m is large.

Finally, we shall consider a data generation process of higher order. The data
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Figure 5 – Powers of the QLB, QM , QDR, QKW4, Q4 tests when the fitted model is
βARMA(1,1) and the true model is βARMA(2,1) with ϕϕϕ= (0.2,0.5)>, θ = 0.2 (top

row) and ϕϕϕ= (0.2,0.8)>, θ = 0.2 (bottom row).
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Source: The author (2020).

are generated using the βARMA(4,4) dynamics but the βARMA(2,2) model is estimated.

Here, ϕϕϕ= (0.15,0.2,0.25,0.3)> and θθθ = (0.07,0.13,0.21,0.33)>. The tests powers for n= 50

were lower than in the previous simulations, the best (worst) performing test being Q4

(QDR) whose nonnull rejection rates are approximately equal to 25% (below 20%). In

Figure 6 we present the tests estimated powers for n ∈ {100,250}. When n= 100, QKW4

is the most powerful test for values of m up to 25 and Q4 is the best performer for larger

values of m. When n = 250, QKW4 and Q4 are clearly the most powerful tests for all

values m.
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Figure 6 – Powers of the QLB, QM , QDR, QKW4, Q4 tests at the 5% nominal level when
the fitted model is βMA(1) and the true model is βARMA(1,1) with θ = 0.8 and

different values of ϕ.
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Source: The author (2020).

1.6 EMPIRICAL HYDROLOGICAL APPLICATION

We shall now turn to the empirical application briefly described in Section 1.1.

The variable of interest is the proportion of stored hydroelectric energy ONS (2020) in

South Brazil. The data are monthly averages from January 2001 to October 2016, thus

covering 190 months (n= 190). The following six observations (November 2016 through

April 2017) were used for evaluating forecasting accuracy. The computer code used in this

case study is available at <https://github.com/vscher/barma>.

Table 3 contains some descriptive statistics. Notice the negative skewness and

also the negative excess kurtosis, and recall that the beta density easily accommodates

such features.

Table 3 – Descriptive statistics of the monthly average rates of stored energy in the South
of Brazil.

min max median mean variance asymmetry excess kurtosis
0.2977 0.9862 0.7323 0.7069 0.0403 −0.3270 −1.1644

Source: The author (2020).

Model selection was performed using the Akaike Information Criterion (AIC)

Akaike (1974). We considered all models with autoregressive and moving average dynamics

up to the fourth order and logit link. The selected model was the βARMA(1,1) model,

whose AIC equals to −307.9635. The maximum likelihood estimates of α, ϕ1, θ1 and φ

are (standard errors in parentheses 0.3452 (0.0787), 0.5235 (0.0412), 0.3588 (0.0502) and

https://github.com/vscher/barma
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11.7593 (1.1910), respectively. All parameters are significantly different from zero at the

1% significance level using the z-test.

We shall now consider portmanteau testing inference, i.e., we shall use the

different portmanteau tests to assess whether the fitted model adequately represents the

time series data. We computed the tests p-values for m ∈ {3, . . . ,30}. The only p-values

smaller than 0.05 are those of the QDR test for small values of m (for values of m up to

5). Except for that, the p-values of all tests for all values of m are greater than 0.05. We

take take as evidence that the βARMA(1,1) model is correctly specified.

Next, we shall perform portmanteau testing inference using a different model.

Since the βARMA(1,1) model seems to adequately represent the data dynamics, the

tests are expected to detect model misspecification when applied to a different model.

At the outset, we fitted the βAR(1) model. Table 4 displays the tests p-values for

m ∈ {5,10,15,20,25,30}. Q4 is the only test with all p-values below 0.05, that is, it is

the only test that yields rejection of the null hypothesis of correct model specification

regardless of the value of m. When the βMA(1) is fitted, all tests yield rejection of H0 at

the 5% significance level for all values of m.

Table 4 – QM , QDR, QKW4 and Q4 p-values computed from the fitted βAR(1) model.
m= 5 m= 10 m= 15 m= 20 m= 25 m= 30

QLB 0.006 0.006 0.026 0.058 0.128 0.182
QM < 0.001 0.002 0.008 0.042 0.054 0.065
QDR < 0.001 0.002 0.011 0.022 0.056 0.078
QKW1 0.005 0.005 0.021 0.043 0.087 0.120
QKW4 0.005 0.006 0.021 0.044 0.090 0.125
Q4 < 0.001 0.002 0.006 0.029 0.038 0.045

Source: The author (2020).

The final step in our empirical analysis involves forecasting. Indeed, stored

energy forecasting is quite important for all institutions responsible for energy distribution.

We produced forecasts using three different time series models, namely: the βARMA(1,1),

Gaussian ARMA(1,1), and Gaussian AR(2) models. The latter two models were selected

based on the AIC using the auto.arima function of the forecast package Hyndman and

Khandakar (2008) of the R statistical computing environment Team (2021). We also

used the KARMA(1,1) model Bayer, Bayer and Pumi (2017); again, model selection was

performed using the AIC. Finally, we considered the Holt exponential smoothing algorithm,

as implemented in the holt function of the R forecast package. The observed time series
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and the predicted values from the fitted βARMA(1,1) model are presented in Figure 7. It

is noteworthy that that the βARMA(1,1) model is able to satisfactorily capture the data

dynamics.

Figure 7 – Energy stored rates (solid lines) and predict values (dashed lines) computed
from the fitted βARMA(1,1) model.
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Source: The author (2020).

We now move from in-sample to out-of-sample forecasting. We consider a

horizon of 6 months, i.e., we wish to forecast the time series next six values. Forecasting

accuracy is measured using the mean absolute error (MAE), i.e., the mean value of the

absolute differences between observed and predicted values. The results are presented

in Table 5 for h ∈ {1, . . . ,6}, h denoting the forecasting horizon. We note that the

βARMA(1,1) model yields forecasts that are more accurate than those obtained from

the competing models and smoothing algorithm for all values of h. For instance, when

forecasting the next three observations (h = 3), the βARMA(1,1) MAE equals 0.1364

which is considerably smaller than the MAEs of the three competing models (0.1820,

0.1680 and 0.1783) of the exponential smoothing algorithm (0.2302).

Table 5 – Mean absolute forecasting errors from the βARMA(1,1), ARMA(1,1), AR(2) and
KARMA(1,1) models and from the Holt exponential smoothing algorithm.

h= 1 h= 2 h= 3 h= 4 h= 5 h= 6
βARMA(1,1) 0.1244 0.1444 0.1364 0.1484 0.1694 0.1839
ARMA(1,1) 0.1518 0.1828 0.1820 0.1982 0.2211 0.2364
AR(2) 0.1345 0.1690 0.1680 0.1830 0.2050 0.2198
KARMA(1,1) 0.1474 0.1788 0.1783 0.1950 0.2189 0.2352
Holt 0.1554 0.2110 0.2303 0.2629 0.2996 0.3264

Source: The author (2020).
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1.7 CONCLUDING REMARKS

The βARMA model is particularly useful for modeling and forecasting time

series data that assume values in the standard unit interval. It is thus useful for mode-

ling several hydrological time series. The model naturally accommodates distributional

asymmetry and nonconstant variance. It will always yield fitted values and out-of-sample

forecasts that are positive and smaller than one. Additionally, no data transformation

is needed prior to the analysis. The fitted model must be validated before it is used for

forecasting. This is where our interest lies. Can the standard portmanteau tests be used

with βARMA models? If so, how do they behave in finite samples? What is the impact of

the choice of the truncation lag (m) on the tests null and nonnull behaviors? We reviewed

several portmanteau tests that are available in the literature and two tests that were

recently developed. The two new tests statistics proposed by Scher (2017) use residual

partial autocorrelations instead of residual autocorrelations. We derived the asymptotic

null distribution of the two new test statistics; more specifically, we proved that, under

the null hypothesis, they are asymptotically distributed as χ2
m−p−q. Our proof implies

that some other well known test statistics (QBP , QLM and QM ) are also asymptotically

χ2
m−p−q distributed under the null hypothesis when computed from βARMA residuals.

We presented Monte Carlo simulation results on the finite sample behaviors of

the different portmanteau tests in the class of βARMA models. The tests size distortions

were small when bootstrap resampling was used, especially when m is not very small.

The most interesting evidence from our numerical evaluations, however, relates

to the tests powers. First, the choice of m impacts such powers: they typically decrease

with m. Such an impact is well documented in the Gaussian literature; see, e.g., Kwan,

Sim and Wu (2005). Second, a portmanteau test that proved to be robust under Gaussian

data did not perform well when used with βARMA models. Third, overall, the tests

introduced by Scher (2017) figure among the most powerful ones (the two new tests

displayed similar nonnull behaviors, hence we only presented results for one of them).

In particular, they were the best performers under pure autoregressive dynamics. It is

noteworthy that whenever the two new tests were not the most powerful ones they were

the next best performers as long as the value of m is not small. Fourth, overall, the

tests proposed by Scher (2017) proved to be more powerful than an existing portmanteau

test that also uses residual partial autocorrelations. Of course, the evidence we report is
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restricted to the models considered in our numerical evaluation.

We also presented and discussed an empirical hydrological application. Our

focus was on modeling and forecasting the proportion of stored hydroelectric energy in

the Southern Region of Brazil. Such an empirical application showed the usefulness of

portmanteau testing inference for model validation and also the usefulness of the class

of βARMA time series models. It is noteworthy that the βARMA model used in the

application yielded out-of-sample forecasts that were more accurate than those obtained

using three alternative time series models and also an exponential smoothing algorithm.

In future work, we shall consider the use of the two test statistics proposed by

Scher (2017) in other classes of dynamic models.
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2 BETA AUTOREGRESSIVE MOVING AVERAGE MODEL SELEC-

TION WITH APPLICATION TO MODELING AND FORECASTING

STORED HYDROELECTRIC ENERGY

2.1 INTRODUCTION

The beta regression model was introduced by Ferrari and Cribari-Neto (2004)

and has been extensively used with responses that assume values in the standard unit

interval, (0,1), such as rates, proportions and concentration indices. It is assumed that

the responses are independently distributed, and hence the model is not useful for time

series modeling. An extension of the model for serially dependent random variables

was introduced by Rocha and Cribari-Neto (2009), Rocha and Cribari-Neto (2017). It

incorporates autoregressive and moving average dynamics, allows for the inclusion of fixed

covariates and became known as the beta autoregressive moving average (βARMA) model.

A novel feature of the model is that it accounts for the double bounded nature of the data

and will never yield fitted values or out-of-sample forecasts that lie outside the standard

unit interval. Additionally, the model also accounts for the inherent non-constant variance

pattern of random variables in the standard unit interval, namely: the variance is smaller

when the variable mean is close to zero or one, and is larger otherwise. The model can be

used to produce out-of-sample forecasts of time series that assume values in (0,1).

Even though the dynamic structure of the βARMA model is similar to that of

the Gaussian ARMA model, there are some important differences between the two classes

of models. For instance, unlike the latter, the errors in the former are not innovations

that drive the stochastic process. Instead, the errors are, as we shall see, defined in a

residual fashion as in the class of generalized autoregressive moving average (GARMA)

models proposed by Benjamin, Rigby and Stasinopoulos (2003). Also, as noted earlier,

the βARMA model is inherently heteroskedastic.

βARMA data modeling follows the standard Box-Jenkins approach, which

consists of (i) model identification, (ii) parameter estimation, and (iii) diagnostic analysis;

for details on the so-called Box-Jenkins approach, see Box et al. (2015). Parameter

estimation is carried out by conditional maximum likelihood based on the underlying

assumption that the variable of interest at each point in time follows the beta law; see
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Rocha and Cribari-Neto (2009), Rocha and Cribari-Neto (2017). Diagnostic analysis based

on portmanteau testing inferences for fitted βARMA models was developed by Scher et al.

(2020). It remains to establish whether traditional model selection schemes work well when

applied to βARMA data modeling and which model selection strategy is to be preferred,

especially when the sample size is not large. The information criteria that are commonly

employed for selecting models to be used for producing out-of-sample forecasts were not

developed for dynamic models tailored to double bounded time series and then should

be investigated in that context. As noted above, the βARMA dynamics is not driven by

sequential realizations of white noise innovations as in Gaussian ARMA models. Given

the different dynamic natures of the two processes, it is not clear that model selection

strategies that perform best in traditional ARMA modeling will do so in βARMA modeling.

It is thus important to assess the relative merits of different model selection strategies in

the latter.

Practitioners may be tempted to resort to the most well known model selection

practices when selecting a model for forecasting double bounded time series. This is

the case, for example, of Melchior et al. (2021). The authors used the βARMA model

to forecast mortality rates due to occupational accidents in three Brazilian states after

performing model selection based on the largely well known Akaike information criterion.

A relevant question is: Can more accurate forecasts be obtained in most applications

that deal with double bounded data by performing model selection based on alternative

criteria? Our empirical results indicate that more accurate model selection may translate

into more accurate double bounded out-of-sample forecasts.

We performed simulations to evaluate the finite sample performance of different

information criteria. The numerical evidence we report shows that βARMA model selection

becomes considerably more accurate when it is based on bootstrap resampling. In several

cases, the frequency of correct model identification based on a bootstrap information

criterion greatly exceeds that of the second best performing criterion. We also evaluate

the effectiveness of model selection based on measures of forecasting accuracy. The results

favor a particular strategy based on directional forecasts, but they also indicate that more

reliable model selection is achieved by using information criteria.

We present and discuss an empirical analysis in which the interest lies in

forecasting in forecasting the future levels of stored hydroelectric energy in the South
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of Brazil. Climate change has been adding uncertainty to hydropower generation and

changing rainfall patterns and prolonged droughts have been making it increasingly

difficult to assess future river flows. As a result, the use of stored hydroelectric energy

has become increasingly important for hydropower generation. Interestingly, the most

accurate forecasts were produced by βARMA models selected using bootstrap resampling.

It is worth noticing that the same models were selected on the basis of the best performing

strategies that employ measures of forecasting accuracy. The forecasts obtained from

such models outperformed those computed from fitted models selected by alternative

information criteria, in some cases by wide margins (e.g., over 1/3). There is, thus,

agreement between our empirical and numerical results.

The chapter is organized as follows. Section 2.2 briefly presents the βARMA

model. In Section 2.3 we review some model selection criteria that can be used to determine

the orders of the autoregressive and moving average βARMA dynamics. In Section 2.4 we

report the results of extensive Monte Carlo simulations that were performed to evaluate

the accuracy of different βARMA model selection strategies in small to moderate sample

sizes. An empirical analysis is presented and discussed in Section 2.5. Finally, some

concluding remarks are offered in Section 2.6.

2.2 A DYNAMIC BETA MODEL

The βARMA model introduced by Rocha and Cribari-Neto (2009), Rocha and

Cribari-Neto (2017) is a dynamic model based on the beta regression model proposed by

Ferrari and Cribari-Neto (2004). It is tailored for modeling random variables that assume

values in (0,1) and evolve over time. It can be used, for example, to predict the future

behavior of rates, proportions and concentration indices.

Let yyy = (y1, . . . ,yn)> be an n-vector of time series random variables such that,

given the previous information set Ft−1 (the smallest σ-algebra such that the variables

y1, . . . ,yt−1 are measurable), yt follows the beta law indexed by its conditional mean µt
and a precision parameter, φ, for t= 1, . . . ,n. The conditional density of yt given Ft−1 is

f (yt|Ft−1) = Γ(φ)
Γ(µtφ)Γ((1−µt)φ)y

µtφ−1
t (1−yt)(1−µt)φ−1, 0< yt < 1, (2.1)

0 < µt < 1, φ > 0, where Γ(·) is the gamma function. Here, E(yt|Ft−1) = µt and

var(yt|Ft−1) = µt(1−µt)/(1 +φ) are the conditional mean and conditional variance of yt,
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respectively. For given µt, the latter decreases as φ increases. Notice that the conditional

variance of yt is not constant; instead, it varies with µt. In particular, the conditional

variance approaches zero as the conditional mean approaches zero or one.

The βARMA(p,q) model introduced by Rocha and Cribari-Neto (2009), Rocha

and Cribari-Neto (2017) assumes that yt follows the above law with conditional mean such

that

g(µt) = α+xxx>t βββ+
p∑
i=1

ϕi
[
g(yt−i)−xxx>t−iβββ

]
+

q∑
j=1

θjrt−j , (2.2)

where xxx>t ∈ Rc is a set of non-random covariates at time t, βββ = (β1, . . . ,βc)> ∈ Rc is a

vector of parameters, and g : (0,1) 7→R is a strictly monotonic and twice differentiable

link function. Also, α ∈R is a scalar parameter and p, q ∈N are the autoregressive and

moving average orders associated with the ϕϕϕ= (ϕ1, . . . ,ϕp)> and θθθ = (θ1, . . . , θq)> vectors

of coefficients, respectively. Finally, rt is an error term.

It is noteworthy the βARMA model structure in (2.2) is similar to that of the

class of GARMA models; see Benjamin, Rigby and Stasinopoulos (2003). In both classes

of models and unlike what happens in the Gaussian ARMA model, the error rt is not an

innovation that drives the stochastic process. Instead, rt is defined in a residual fashion as

rt = g(yt)−g(µt). Observe that, for fixed t, (2.2) only includes values of yτ , xxxτ and rτ for

τ < t, hence both µt and rt are Ft−1-measurable.

βARMA parameter estimation can be performed by conditional maximum

likelihood. The conditional log-likelihood function, given the first a= max{p,q} observati-

ons, is `≡ `(νννk,φ|yyy) =∑n
t=a+1 logf(yt|Ft−1), where νννk = (α,βββ>,ϕϕϕ>, θθθ>)> is the vector of

mean parameters and f(yt|Ft−1) is the beta density given in (2.1). For simplicity, we shall

write `(νννk,φ|yyy) as `(νννk|yyy) since φ is a fixed precision scalar. The model’s score function

and information matrix can be found in Rocha and Cribari-Neto (2017). Bias-corrected

conditional maximum likelihood estimation was considered in Palm and Bayer (2018).

An extended version of the βARMA model that accommodates seasonal dyna-

mics was proposed by Bayer, Cintra and Cribari-Neto (2018) and a version of the model

that includes fractional integration was introduced by Pumi et al. (2019). Bayesian dyna-

mic beta modeling was developed by Casarin, Valle and Leisen (2012) and Silva, Migon

and Correia (2011); the former considers Bayesian model selection for beta autoregressive

processes. In what follows, we shall work with the standard, baseline βARMA model in
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the realm of frequentist statistical inference.

2.3 MODEL SELECTION STRATEGIES

Model selection aims at selecting a statistical model from a set of candidate

models on the basis of a given data set. The selected model is typically used for out-

of-sample forecasting provided that it yields a good data fit. The most commonly used

model selection strategy is that based on criteria that penalize increases in the model’s

dimension. Typically, a set of models are fitted to the data, a given criterion is computed

for each fitted model, and the model that displays the minimal criterion value is selected.

Let νννk be the model’s k-dimensional parameter vector, its conditional maximum likelihood

estimator being denoted by ν̂ννk, and the maximized log-likelihood function being written

as logf(yyy|ν̂ννk). In what follows, we shall present model selection strategies based on

(i) information criteria that penalize model augmentation and (ii) forecasting accuracy

measures.

The most commonly used criterion was introduced by Akaike (1974). It was

obtained by minimizing the Kullback-Leibler distance between two densities and became

known as the Akaike Information Criterion (AIC). The author showed that the model

that minimizes minus two times the expected log-likelihood is the closest model to the

true model according to the Kullback–Leibler information. He then used −2logf(yyy|ν̂ννk) as

an estimator of such a quantity, showed that its asymptotic bias is approximately equal to

−2k and arrived at the following information criterion:

AIC =−2logf(yyy|ν̂ννk) + 2k.

We note that 2k, the bias correcting term, can be viewed as a penalization term since it

penalizes the model dimension augmentation when searching for the minimal criterion

value. Based on data sets analyzed by Box and Jenkins, Ozaki (1978) showed that the use

of Akaike’s approach overcomes many difficulties of the identification procedure adopted

in the authors’ book. It was shown by Shibata (1976), however, that the AIC has a fixed

overfitting probability asymptotically. As a consequence, the AIC tends to overestimate

the model dimension. Several alternative criteria were then proposed aiming at achieving

more accurate model selection.

A criterion that incorporates a small sample correction and is asymptotically



48

equivalent to the AIC was proposed by Sugiura (1978) and became known as AICc; see

also Hurvich and Tsai (1989). The corrected AIC is given by

AICc =−2logf(yyy|ν̂ννk) + 2k
(

n

n−k−1

)
. (2.3)

In essence, the new criterion includes an extra penalization term. According to Burnham

and Anderson (2004), it should be preferred over the AIC unless n/k > 40 for the model

with the largest value of k.

The Schwarz Information Criterion (SIC) was introduced by Schwarz (1978):

SIC =−2logf(yyy|ν̂ννk) +k log(n). (2.4)

A novel feature of this criterion is that it is consistent, i.e., the probability of selecting the

true model tends to one as n→∞.

Model selection based on the SIC can be quite inaccurate in small samples. A

modified version of the criterion was proposed by McQuarrie (1999). It incorporates a

finite sample correction and can be expressed as

SICc =−2logf(yyy|ν̂ννk) + nk log(n)
n−k−1 .

The new criterion is asymptotically equivalent to the SIC and is expected to deliver

superior model selection when the sample size is not large.

Hannan and Quinn (1979) focused on autoregressive model selection and

proposed the Hannan-Quin Information Criterion (HQIC):

HQIC =−2logf(yyy|ν̂ννk) + 2k log(log(n)).

Like the AIC and the SIC, its small sample behavior may be poor. A modified version of

the criterion was introduced by McQuarrie and Tsai (1998):

HQICc =−2logf(yyy|ν̂ννk) + 2nk log (log(n))
n−k−1 . (2.5)

The Weighted-Average Information Criterion (WIC) was proposed by Wu

and Sepulveda (1998). It is based on the criteria given in (2.3) and (2.4). Let Ac =

2kn/(n−k−1) and B = k logn. The WIC can be expressed as

WIC =−2logf(yyy|ν̂ννk) + A2
c +B2

Ac+B
.
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The above expression can also be obtained by combining (2.3) and (2.5). The authors

showed that the WIC behaves similarly to the AICc when the sample size is small and to

the SIC in large samples. Like the SIC, the WIC is consistent.

Several authors considered the use of bootstrap resampling to estimate the

penalty term used in the AIC criterion. We shall present two bootstrap-based criteria.

They are of the form

EICi=−2logf(yyy|ν̂ννk) + B̂i,

i = 1,2, where B̂i is a bootstrap-based estimate of a penalty term that involves an

expectation with respect to the distribution of the bootstrap sample. That is, the expected

Kullback-Leibler discrepancy between the true and fitted models is estimated by means

of data resampling. These criteria are said to be ‘empirical’ because their penalty terms

are estimated from the data using the bootstrap method. They are usually referred to as

‘Empirical Information Criteria’.

As noted by Shibata (1997, p. 379), a novel feature of bootstrap estimation of

Bi is that it is free from any expansion whereas the AIC and related criteria are based

on an expansion with respect to the model parameters. Hence, the bootstrap approach

has wider applicability than the conventional bias correction. Additionally, we note that

bootstrap bias correction is known to work well in other settings; see, e.g., Cribari-Neto,

Frery and Silva (2002) and Ospina, Cribari-Neto and Vasconcellos (2006).

Let yyy∗= (y∗1, . . . ,y∗n)> denote the bootstrap sample and let N denote the number

of bootstrap replications so that we have N bootstrap samples, each denoted as yyy∗(j),

j ∈ {1, . . . ,N}. The bootstrap estimates of νννk are ν̂νν∗k(j), j ∈ {1, . . . ,N}, where ν̂νν
∗
k(j) is

obtained by maximizing logf (yyy∗(j)|νννk). In what follows, E∗ is used to denote expected

value with respect to the distribution of yyy∗.

Cavanaugh and Shumway (1997), in the context of Gaussian state space model

selection, considered

B1 = 2
{

2logf(yyy|ν̂ννk)−2E∗
[
logf(yyy|ν̂νν∗k)

]}
,

which is estimated using bootstrap resampling. The corresponding model selection criterion

is denoted as EIC1.

Shibata (1997) introduced the EIC2 bootstrap-based criteria. It uses

B2 = 2E∗
{

2logf(yyy∗|ν̂ννk)−2logf(yyy|ν̂νν∗k)
}
.
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As noted above, the bootstrap criteria use estimates of the penalty term

obtained through data resampling. For instance, it can be shown that the EIC1 can be

written as

EIC1 =−2logf(yyy|ν̂ννk) + 2

 1
N

N∑
j=1

[
−2log f(yyy|ν̂νν∗k(j))

f(yyy|ν̂ννk)

] .
EIC model selection for Gaussian autoregressive models was considered by

Billah, Hyndman and Koehler (2005). The authors also considered EIC model selection for

exponential smoothing. It is worth noticing that bootstrap-based model selection can be

carried out in several different ways. For instance, Fenga (2017) uses bootstrap-resampling

for Gaussian ARMA model selection by computing a model selection criterion (e.g., AIC)

for each fitted model in each bootstrap replication, identifying the model that minimizes

the criterion for that bootstrap time series, and then finally selecting the model on the

basis of its relative frequency over the all bootstrap samples.

A second model selection approach involves the use of forecasting accuracy

measures. The underlying idea is to remove a set of observations from the end of the

series, forecast them using different models and select the model with the best forecasting

performance. More specifically, the final sf data points are removed, different models are

fitted using the remaining n− sf observations, forecasts of the removed observations are

produced, and a measure of forecasting accuracy is computed for each candidate model.

The selected model is the one that displays the best forecasting performance. We shall

present numerical evidence on such a strategy. Some forecasting accuracy measures that

can be used for model selection are (i) mean absolute prediction errors (MAPE), (ii) root

mean square error (RMSE), (iii) mean directional forecast (MDF), and (iv) rolling horizon

weighted error (RHWE). The first two measures are well known and are routinely used for

forecasting performance evaluation.

MDF-based model selection can be performed using a rolling window of nr
observations for parameter estimation and prediction. A sequence of n−nr−h out-of-

sample h-step-ahead forecasts are produced and the corresponding forecasting errors are

computed for each window terminating at observation T ∈ {nr, . . . ,n−h}. The commonly

used MDF measures are: (i) mean directional accuracy (MDA) and (ii) mean directional

forecast value (MDV):

MDAh = 1
n−nr−h

n−h∑
t=nr

1(Zt = 1),
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MDVh = 1
n−nr−h

n−h∑
t=nr

(−1)1−Zt|(yt+h−yt)/yt|,

where 1(·) is the indicator function, Zt = 1(Wt = Ŵt) is the directional forecast, Wt =

1(yt+h− yt > 0) is the realized direction and Ŵt = 1(ŷt(h)− yt > 0) is the predicted

direction, ŷt(h) denoting the forecast of yt+h produced at time t. The MDF measure is

computed for each candidate model and the selected model is that with largest MDA or

MDV. For further details, see Blaskowitz and Herwartz (2009), Blaskowitz and Herwartz

(2011) and Blaskowitz and Herwartz (2014).

The h-step ahead RHWE measure of forecasting accuracy was proposed in Poler

and Mula (2011) for performing model selection: RHWEh = ∑
s
∑
t |est |π(δ1)ζh(δ1)λ(δ2),

where δ1 = t−s is the forecast forward, δ2 = n−s is the forecast age, est = yt− ŷs(t−s) is

the error of the forecast of yt produced at time s, π(δ1)≥ 1 is the error power according

to the forecast forward, ζh(δ1) is the multiplicative error factor according to the forecast

forward (∑δ1 ζh(δ1) = 1) and λ(δ2) is the multiplicative error factor according to the

forecast age (∑δ2 λ(δ2) = 1), s ∈ {n− sf , . . . ,n−1} and t ∈ {s+ 1, . . . ,min{s+h,n}}.

Model selection strategies for non-dynamic beta regression models were inves-

tigated by Bayer and Cribari-Neto (2015), Bayer and Cribari-Neto (2017). In the next

section we shall investigate model identification for dynamic beta models.

2.4 SIMULATION STUDY

The finite sample performances of the model selection strategies outlined in the

previous section were already evaluated under different regression and time settings. It is

not clear, however, how such criteria perform when used for βARMA model selection. In

order to fill that gap, we shall report the results from extensive Monte Carlo simulations

that were carried out to assess the accuracy of information criteria based model selection.

We shall first focus on model selection based on information criteria and later consider

model selection based on out-of-sample forecasting accuracy.

We consider pure autoregressive models, pure moving average models, and also

models with both dynamics. The sample sizes are n ∈ {50,150,250} and φ = 120. We

also report results obtained under smaller precision: φ= 12. All simulations were carried

out using the R statistical computing environment (versions 4.0.0 and 4.0.4); see Team

(2021). The reported results were obtained using 5,000 Monte Carlo replications and
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N = 250 bootstrap samples. This number of bootstrap replications is adequate since data

resampling was used to estimate expected values, and not tail quantities as in confidence

intervals and hypothesis tests; see Efron and Tibshirani (1986, Section 9). Bootstrap

resampling was performed parametrically, i.e., we generated N bootstrap time series of

size n from the fitted βARMA model after replacing the unknown parameters with their

conditional maximum likelihood estimates.

Our Monte Carlo simulations are computationally challenging since they entail

a very large number of log-likelihood numerical optimizations. The simulations were run

at the National Center of Supercomputing of Universidade Federal do Rio Grande do Sul

using a cluster of computers with 64 blades of processing, 15.97 TFLOPS, and 174-TB

RAM that runs the SUSE Linux Enterprise Server operating system. We used parallel

computing, and our simulations ran on three nodes with 24 clusters. By using parallel

computing, we were able to reduce execution time by approximately 89%.

Log-likelihood maximization was carried out using the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) quasi-Newton method with analytic first derivatives; see Nocedal

and Wright (2006). Starting values for the parameters were selected as follows: (a) the

starting values of all moving average parameters were zero, (b) the starting values of

the autoregressive parameters were selected by regressing g(yt) on g(yt−1), . . . , g(yt−p)

using ordinary least squares, and (c) the starting value of φ was selected as in the beta

regression model; see Ferrari and Cribari-Neto (2004). Beta random number generation

was performed based on the Mersenne Twister uniform random generator. The logit link

function was used in all data generating processes.

In what follows, we shall report the percentages of correct model selections

achieved by using the following information criteria: AIC, AICc, SIC, SICc, HQIC, HQICc,

WIC and EIC1. We only report results for EIC1 because the results for EIC2 were very

similar. For simplicity, we shall refer to EIC1 as EIC.

At the outset, we focus on autoregressive processes. In particular, we consider

βAR(p) models, p ∈ {1, . . . ,6}. The parameter values are: βAR(1), ϕ = 0.3; βAR(2),

ϕϕϕ= (0.2,0.4)>; βAR(3), ϕϕϕ= (0.2,−0.3,0.4)>; βAR(4), ϕϕϕ= (0.2,−0.5,0.4,−0.4)>; βAR(5),

ϕϕϕ = (0.35,−0.4,0.5,−0.45,0.6)>; and βAR(6), ϕϕϕ = (0.45,−0.52,0.65,−0.35,0.4,−0.5)>.

The percentages of correct model selection are reported in Table 6. For each data generating

process and sample size, the best result is in boldface. When the true model was βAR(1),
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βAR(2) or βAR(3), we fitted autoregressive models up to order six. When data were

generated from the βAR(4), βAR(5) and βAR(6) models, we fitted autoregressive models

up to order 7, 8 and 9, respectively.

The results in Table 6 show that the performances of all criteria improve as

the sample size increases. When the sample size is small (n = 50), the criteria that

incorporate finite sample corrections (AICc, SICc and HQICc) typically do not outperform

the corresponding unmodified criteria. All information criteria perform quite well, even

when the sample size is very small, when the true data generating process is βAR(1); all

correct model selection percentages lie between 94.54% and 98.81%. The best overall

performer is the EIC. In some cases, it outperforms the competition by wide margins. For

instance, when n= 50 and the true model is βAR(3), its rate of correct model selection is

87.12% whereas that of the runner-up is 41.48%. Overall, under autoregressive dynamics,

all model selection criteria perform well when n≥ 150, their success rates exceeding 93%.

When the sample size is small (n= 50), model selection only works very well when p= 1,

i.e., when the true model is βAR(1). The global winner under autoregressive dynamics is

the EIC, the bootstrap-based criterion, and the worst performers are SIC and SICc.

Table 6 – Percentages of correct model selection, autoregressive models.
βAR(1) βAR(2) βAR(3) βAR(4) βAR(5) βAR(6)

n= 50

AIC 94.54 48.88 41.48 55.28 67.10 37.28
AICc 95.32 47.10 38.32 50.98 63.69 27.17
SIC 97.92 37.88 26.34 36.06 51.75 13.21
SICc 98.81 34.02 20.30 30.22 40.31 15.91
HQIC 96.06 44.62 36.12 46.14 61.98 25.95
HQICc 97.02 42.14 31.08 43.38 56.34 16.61
WIC 97.14 41.42 30.76 43.96 55.54 18.20
EIC 98.31 68.01 87.12 63.16 76.14 65.72

n= 150

AIC 94.98 93.46 93.68 94.76 95.49 94.35
AICc 95.24 93.80 94.14 94.78 96.21 95.22
SIC 99.10 94.94 93.74 96.42 98.90 94.22
SICc 99.34 94.64 93.32 96.02 99.12 93.36
HQIC 97.44 95.14 95.00 95.79 97.32 96.30
HQICc 97.78 95.42 95.16 96.47 97.64 96.41
WIC 98.42 95.24 94.58 96.81 97.80 95.65
EIC 98.62 96.35 97.11 97.73 98.53 97.81

n= 250

AIC 95.28 94.44 94.80 94.25 95.62 93.77
AICc 95.56 94.76 95.02 94.32 96.05 94.45
SIC 99.28 98.92 99.12 99.21 99.41 98.72
SICc 99.34 99.08 99.22 99.44 99.55 99.12
HQIC 97.72 97.52 97.68 97.22 97.84 97.10
HQICc 97.76 97.72 97.86 97.84 98.24 97.24
WIC 98.78 98.54 98.66 98.71 98.18 98.11
EIC 97.78 97.61 98.7 98.91 99.45 98.23

Source: The author (2021).
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We shall now move to moving average processes. We consider models with

q ∈ {1, . . . ,6}. The true parameter values are: θ = 0.5 for q = 1, θθθ = (0.2,0.4)> for q = 2,

θθθ = (0.3,0.2,0.6)> for q = 3, θθθ = (0.2,0.3,−0.4,0.6)> for q = 4, θθθ = (0.15,0.2,0.3,0.45,0.5)>

for q = 5, and θθθ = (0.13,0.19,0.25,0.3,0.35,0.5)> for q = 6. When the true model was

βMA(1), βMA(2) or βMA(3), we fitted moving average models up to order six. When

data were generated from the βMA(4), βMA(5) and βMA(6) models, we fitted moving

average models up to order 7, 8 and 9, respectively. The percentages of correct model

identification are presented in Table 7. The different model selection strategies become

more accurate when the sample size is increased. Their performances deteriorate as q

increases when the sample size is small (n= 50). For instance, the AIC and SIC rates of

correct model identification drop from 61.62% and 76.40% to 18.52% and 26.15% as the

order of the moving average dynamics increases from one to six, respectively.

Table 7 – Percentages of correct model selection, moving average models.
βMA(1) βMA(2) βMA(3) βMA(4) βMA(5) βMA(6)

n= 50

AIC 61.62 42.19 39.43 39.11 36.84 18.52
AICc 65.45 43.32 39.72 39.89 31.32 19.41
SIC 76.40 47.62 34.92 32.47 32.91 26.15
SICc 83.65 46.45 39.68 37.29 35.49 23.37
HQIC 66.96 50.18 37.35 38.82 31.74 28.61
HQICc 72.57 49.29 36.13 37.66 32.18 26.88
WIC 71.90 49.12 36.65 36.54 31.93 27.21
EIC 97.20 65.64 62.56 61.70 60.17 61.25

n= 150

AIC 92.39 91.47 87.65 81.61 87.04 87.62
AICc 92.83 92.23 87.18 82.42 87.14 82.10
SIC 97.41 93.37 95.57 91.66 89.51 81.75
SICc 97.93 94.11 96.52 92.91 88.29 86.54
HQIC 95.54 93.34 91.23 86.54 88.13 82.21
HQICc 95.61 93.70 92.45 87.81 89.47 81.10
WIC 96.20 93.72 94.22 88.19 80.80 87.80
EIC 97.50 96.16 95.84 92.97 91.33 88.80

n= 250

AIC 92.32 93.28 90.78 83.78 88.31 89.27
AICc 92.63 93.58 90.92 84.72 89.23 88.11
SIC 97.35 97.49 97.52 95.31 89.99 90.49
SICc 97.35 98.62 97.34 95.85 89.05 91.28
HQIC 96.10 96.31 94.23 89.79 89.81 86.11
HQICc 96.73 96.43 94.97 90.25 89.74 86.23
WIC 97.28 97.29 96.21 93.13 88.33 89.81
EIC 97.50 97.88 97.90 95.95 90.12 93.54

Source: The author (2021).

Overall, the best performer is the EIC, the criterion that uses bootstrap

resampling. In some cases, it outperforms the competing criteria by wide margins. For

example, when n = 50 and q = 1, its rate of success is nearly 97% whereas that of the

runner-up (AIC) is slightly above 61%. The difference becomes even more dramatic when
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q = 6: 61.25% (EIC) vs 18.52% (runner-up, AIC).

We now consider models that include both autoregressive and moving average

dynamics. We use three data generating processes and two scenarios (parameter values)

for each process. The scenarios are indicated by the subscripts a and b next to the

model orders. The parameter values of the three models under the two scenarios are:

(i) βARMA(1,1)a, ϕ = 0.3, θ = 0.4; βARMA(1,1)b, ϕ = 0.3, θ = 0.5; (ii) βARMA(1,2)a,

ϕ = 0.35, θθθ = (0.2,0.5)>; βARMA(1,2)b, ϕ = 0.35, θθθ = (0.2,0.6)>; (iii) βARMA(2,1)a,

ϕϕϕ= (0.1,0.5)>, θ = 0.4; βARMA(2,1)b, ϕϕϕ= (0.1,0.6)>, θ = 0.4. When searching for the

best model, we considered all combinations of p and q with each ranging from 0 to 3,

except for (0,0). It should be noted that this is a more challenging situation since the

search for the best fitting model includes pure AR, pure MA and also models with AR

and MA components. It is thus expected that larger sample sizes are needed in order to

achieve reliable model selection. The rates of correct model identification (expressed as

percentages) for the different criteria are presented in Table 8.

Table 8 – Percentages of correct model selection, autoregressive moving average models;
the subscript next to the model order (a or b) identifies the scenario.

(1,1)a (1,1)b (1,2)a (1,2)b (2,1)a (2,1)b

n= 50

AIC 28.31 21.67 23.39 34.88 26.34 29.18
AICc 28.82 23.59 25.51 35.59 26.99 29.02
SIC 36.19 30.42 26.18 35.82 22.15 31.51
SICc 37.45 32.73 26.45 35.96 22.60 33.29
HQIC 35.24 24.16 23.15 34.18 23.47 32.05
HQICc 36.52 26.14 23.98 34.77 23.89 33.63
WIC 32.29 26.20 23.78 34.19 23.90 34.07
EIC 47.12 51.39 43.12 51.92 42.95 59.85

n= 150

AIC 61.46 60.16 64.92 70.81 52.45 64.06
AICc 61.84 61.04 66.89 72.25 54.50 64.50
SIC 70.42 68.52 71.12 79.67 53.22 65.78
SICc 70.91 69.18 72.06 80.92 54.18 65.89
HQIC 65.69 63.40 63.54 75.42 49.61 65.12
HQICc 66.09 64.21 64.89 75.88 51.19 65.98
WIC 67.58 64.50 70.54 79.05 53.58 64.52
EIC 78.17 78.54 76.41 82.17 80.09 80.16

n= 250

AIC 71.92 67.66 78.23 82.20 64.18 81.10
AICc 73.09 67.89 78.86 83.01 64.89 81.99
SIC 82.64 83.63 84.12 89.45 65.66 84.42
SICc 83.47 85.07 85.19 89.81 66.05 85.06
HQIC 78.52 80.21 83.25 85.42 72.45 83.12
HQICc 79.69 80.35 83.88 86.07 73.09 84.03
WIC 82.55 81.98 84.03 86.58 71.20 85.91
EIC 91.24 90.18 92.37 91.55 89.45 91.68

Source: The author (2021).

As with pure autoregressive or pure moving average models, all model selection
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strategies become more accurate as the sample size increases. Again, the overall winner

was the EIC. Indeed, it was the best performer in all simulations, i.e., for all combinations

of model order and scenario. In some situations, the EIC outperformed the competition

by very wide margins. For instance, when n= 50 and (2,1)b (i.e., βARMA(2,1) process

and Scenario b), its rate of success was 59.85% whereas that of the second best performer

(WIC) was only 34.07%. Even when n= 150 (n= 250) the EIC was far superior in some

cases: success rate of 80.09% vs 54.50% (89.45% vs 73.09%) of the runner-up, which was

the AICc (HQICc) under (2,1)a.

We computed the average percentage of correct model selection for each criterion

and each sample size and also the global figure; the latter was computed using all three

sample sizes. The results are presented in Table 9. It is clear from these figures that

the EIC is the best performed in all cases. When n = 50 it outperforms all alternative

model selection strategies by wide margins; its average rate of correct model identification

exceeds 64% whereas that of the runner-up (AIC) is approximately 42%. The relative

advantage of the EIC over the competing criteria decreases as the sample size increases.

For instance, when n= 250, the rates of success are above 95% for the EIC and over 92%

for the second best performer (SICc). The EIC overall frequency of correct model selection

(nearly 83%) considerably exceeds those of all other criteria, the runner-up being the SICc

(nearly 73%).

Table 9 – Average percentages of correct model selection.
n= 50 n= 150 n= 250 Global

AIC 41.45 81.57 86.17 69.73
AICc 40.62 81.90 86.61 69.71
SIC 38.66 85.29 91.82 71.92
SICc 38.55 85.84 92.21 72.20
HQIC 40.93 83.15 90.02 71.36
HQICc 40.01 83.73 90.45 71.39
WIC 39.71 84.40 91.40 71.83
EIC 64.62 90.23 95.07 83.29

Source: The author (2021).

In Table 6 (7) we presented the percentages of correct model specification

for AR (MA) models obtained by only searching over AR (MA) models. The number

of candidate models considered in the best fitting model search (A) ranged from 6 to 9

depending on the order of the true model. We shall now consider the more challenging

case in which the true data generating process is AR or MA and the model search is

performed over AR, MA and ARMA models. We consider the following true models:
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(i) βAR(2) with ϕϕϕ= (0.2,0.4)> and (ii) βMA(2) with θθθ = (0.2,0.4)>. In each case, A= 21

candidate models are fitted, namely: AR models with p ranging from 1 to 6, MA models

with q ranging from 1 to 6, and ARMA models with p and q ranging from 1 to 3. The

sample size is n = 150. The percentages of correct model specification are presented in

Table 10. We also report the differences between the results obtained under pure AR or

MA model search and wider model search (∆). The following conclusions can be drawn

from the figures in Table 10. First, the success rates of all model selection criteria are now

smaller (∆ < 0). This was expected since more candidate models are considered in the

search for the best fitting model. Second, the EIC is the best performer in both cases,

i.e., under AR and MA data generating mechanisms. Third, under both dynamics, the

EIC is the criterion with the smallest success rate reductions. For instance, under AR

(MA) dynamics, its percentage of correct model determination dropped 17.38% (15.81%)

whereas the corresponding figures for the alternative criteria range from 34.14% to 49.29%

(34.46% to 47.48%). The AIC and the AICc are the criteria most impacted by the increase

in the number of candidate models. Fifth, the performance ranks of the different criteria

are the same as a before.

Table 10 – Percentages of correct model selection under wider model search.
βAR(2) βMA(2)

A= 21 ∆ A= 21 ∆
AIC 44.17 −49.29 43.99 −47.48
AICc 45.42 −48.38 45.99 −46.24
SIC 54.45 −40.49 58.91 −34.46
SICc 53.22 −41.42 59.63 −34.48
HQIC 57.59 −37.55 54.05 −39.29
HQICc 61.23 −34.14 55.04 −38.66
WIC 60.35 −34.92 57.52 −36.20
EIC 78.97 −17.38 80.35 −15.81

Source: The author (2021).

The simulation results presented above were obtained using φ = 120 which

is the same precision value used in Scher et al. (2020). We shall now investigate the

impact of a smaller precision on the rates of correct model specification. To that end, we

consider n= 150 and three data generating processes: βAR(2), βMA(1) and βARMA(1,1)b.

The percentages of correct model identification are presented in Table 11. For ease of

comparison, the table also contains the differences in the figures obtained under the two

scenarios (∆). The results reported in Table 11 lead to several interesting conclusions.

First, all model selection strategies become less accurate under small precision (∆< 0 in
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all cases). Second, βARMA model selection accuracies are more impacted than those of

βAR and βMA processes. Third, the EIC is the best performer under all data generating

processes with φ = 12. Fourth, the EIC went from runner-up to best performer under

moving average dynamics when the precision parameter values was reduced. Fifth, EIC

displays the smallest losses in accuracy.

Table 11 – Percentages of correct model selection in a small precision scenario (φ= 12).
βAR(2) βMA(1) βARMA(1,1)b

φ= 12 ∆ φ= 12 ∆ φ= 12 ∆
AIC 81.92 −11.54 78.04 −14.35 20.42 −39.74
AICc 83.74 −10.06 79.24 −13.59 21.15 −39.89
SIC 93.62 −1.32 86.05 −11.36 24.88 −43.64
SICc 91.14 −3.50 86.78 −11.15 24.91 −44.27
HQIC 91.28 −3.86 79.62 −15.92 22.36 −41.04
HQICc 92.44 −2.98 85.04 −10.57 23.17 −41.04
WIC 93.06 −2.18 86.42 −9.78 23.51 −40.99
EIC 95.32 −1.03 89.86 −7.64 53.52 −25.02

Source: The author (2021).

The numerical evidence presented above shows that all model selection criteria

yield more accurate model identification as the sample size increases. More importantly,

it reveals that there is much to be gained by resorting to bootstrap resampling when

searching for the best model in the wider class of βARMA(p,q) models or when attention is

restricted to βAR(p) or βMA(q) processes. When the EIC, the bootstrap-based criterion,

was not the best performer it was a very close runner-up. In contrast, in several situations,

the EIC was not only the best performer but did so by wide margins.

We shall now move to model selection based on out-of-sample forecasting accu-

racy. We use n= 150 and h∈ {3,6}. Model selection is based on MAPE, RMSE, MDF and

RHWE. Two out-of-sample MDF measures are also considered: MDA and MDV. We use a

rolling window of 100 observations for parameter estimation and prediction. A sequence of

50−h out-of-sample h-step-ahead forecasts are produced and the corresponding forecasting

errors are computed for each window terminating at observation T ∈ {100, . . . ,150−h}.

When computing the RHWE measure, we set π(δ1) = 1 and sf = 10, the correspon-

ding weights being ζ3(δ1) = {0.5,0.33,0.17}, ζ6(δ1) = {0.29,0.24,0.20,0.14,0.09,0.04} and

λ(δ2) = {0.02,0.04,0.05,0.07,0.09,0.11,0.13,0.15,0.16,0.18}.

In what follows, we consider two scenarios when selecting a model based on

an out-of-sample forecasting accuracy measure, namely: (i) the model that displays the

highest overall accuracy is selected (‘scenario 1’), and (ii) the model that displays the
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highest accuracy among the models that pass a diagnostic test is selected (‘scenario 2’).

The motivation for carrying out a diagnostic test prior to forecasting is to only consider

models for which there is no evidence of model misspecification. We use the Q4 test

portmanteau diagnostic test proposed by Scher et al. (2020) which performs well when

used with fitted βARMA models. The lag truncation parameter is m= 13 and all testing

inferences are carried out at the 5% significance level.

Table 12 contains the percentages of correct model selection obtained using

the aforementioned out-of-sample forecasting accuracy criteria. For each criterion, the

top and bottom rows correspond, respectively, to scenarios 1 and 2. The data generating

processes are βAR(2), βMA(2) and βARMA(1,1)b. The true parameter values are as

before, and φ= 120. The results obtained with MDA and MDV were very similar, and

for brevity we shall only present those relative to MDV. The results in Table 12 lead

to interesting conclusions. First, model selection based on MAPE and RMSE are the

least accurate strategies, with rates of correct model selection that range from 17.26%

to 23.30%. Second, RHWE model selection is slightly more successful than that based

on the previous criteria. Third, MDV model selection is considerably more accurate

than all alternative forecasting-based strategies, the corresponding rates of correct model

identification fluctuating between 48.01% and 58% (approximately).

Table 12 – Percentages of correct model selection based on out-of-sample forecasting
model selection criteria; top and bottom rows are for scenarios 1 and 2,

respectively.

Criterion βAR(2) βMA(2) βARMA(1,1)b
h= 1 h= 3 h= 6 h= 1 h= 3 h= 6 h= 1 h= 3 h= 6

MAPE 17.26 17.54 17.46 19.54 22.06 21.88 20.22 20.80 21.50
18.20 19.09 17.56 20.19 21.95 22.90 20.18 22.74 21.95

RMSE 17.26 18.02 16.88 19.54 22.50 23.30 20.22 21.74 22.91
18.20 18.88 17.62 20.19 24.23 24.68 20.18 24.21 24.24

RHWE 25.32 25.20 24.12 28.80 28.16 27.44 29.35 30.04 30.84
27.74 26.33 26.25 29.00 30.00 30.37 31.75 32.16 31.61

MDV 48.01 56.58 55.62 56.18 56.38 56.02 57.14 57.05 58.03
48.10 57.16 56.40 56.65 56.61 56.64 57.89 57.68 59.01

Source: The author (2021).

In some cases, MDV model selection is over twice more accurate than that

based on the runner up criterion. For instance, under βMA(2) dynamics and h= 3, the

MDV rate of correct model selection is 56.38% whereas that of the second best performer

(RHWE) is 28.16%. Fourth, the results obtained with h ∈ {1,3,6} are similar, except for

MDV in the βAR(2) model where the rate of correct model selection is clearly smaller for
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h= 1. Fifth, model selection based on information criteria is considerably more accurate

than that performed on the basis of measures of forecasting accuracy, especially under

pure AR and pure MA dynamics. Interestingly, MDV model selection is slightly less

accurate than that based on the AIC (the worst performing model selection criterion)

under βARMA(1,1) dynamics (58.06% with h= 6 vs 60.16%). In contrast, under βAR(2)

and βMA(2) dynamics, MDV model selection (h= 6) is considerably less accurate than

that based on the AIC: 55.62% vs 93.46% and 56.02% vs 91.47%, respectively. Sixth, the

RHWE and MDV model selection always benefit from a prior screening based on the Q4

diagnostic test, especially the former. The largest increase in the rate of successful model

selection that follows from the diagnostic test screening is 2.93% (RWME, βMA(2), h= 6).

2.5 FORECASTING STORED HYDROELECTRIC ENERGY

We shall, in what follows, present and discuss an empirical analysis. Hydroelec-

tricity is a renewable energy source, and it is widely used in Brazil. There are two types of

reservoirs: accumulation and water line. The former are usually located at the headwaters

of rivers, in places of high waterfalls, since their large sizes allow for the accumulation of

substantial amounts of water which function as stocks to be used in drought periods. They

also allow hydroelectric power plants to rapidly respond to fluctuations in the demand for

electricity. It is also worth noticing that hydroelectric power (hydro) is environmentally

friendly since the hydroelectric life cycle produces very small amounts of greenhouse gases

and hydro plants do not release pollutants into the air. Climate change, nonetheless,

has been adding uncertainty to hydropower generation. Changing rainfall patterns and

prolonged droughts have been making it increasingly difficult to assess future river flows.

As a result, the use of accumulation reservoirs has become increasingly important for

hydropower generation. Stored energy is the energy value of the accumulated water, that

is, how much energy (in Megawatt monthly) can be generated from the stored volume of

water expressed as a proportion of the total capacity. Stored energy forecasting is very

important for companies in charge of energy distribution. Our interest lies in modeling

the proportion of stored hydroelectric energy ONS (2020) in South Brazil and producing

out-of-sample forecasts. We shall also evaluate the impact of model selection on the

accuracy of the out-of-sample forecasts without regressors.

The data are monthly averages from July 2000 to April 2018, thus spanning
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214 months. The final six observations were removed from the data to be used for forecasts

evaluation. Hence, the effective sample size is n= 208 with the time series going up to

October 2018. A shorter range of this time series was recently modeled by Scher et al.

(2020). They used the AIC and focused on diagnostic (portmanteau) testing. In what

follows, we shall use a longer time series and consider subsets of the data, namely: the first

n= 75, n= 150 and n= 208 (complete data) observations. Some descriptive statistics are

presented in Table 13: minimal value, maximal value, median, mean, variance, coefficient

of asymmetry and coefficient of excess kurtosis. There is negative asymmetry and negative

excess kurtosis. The mean level of stored energy is 0.7016 and the maximal level is close

to one (0.9862). The time series data plot (top panel), correlogram (bottom left panel)

and the partial correlogram (bottom right panel) can be found in Figure 8. The sample

autocorrelations do not decay slowly towards zero, and hence there is no indication of long

memory behavior. Also, the sample partial autocorrelations show no evidence of seasonal

fluctuations. We note that the data contain several observations that are close to the

upper standard unit interval limit.

Figure 9 contains the histogram (left panel) and boxplot (right panel) of the

data. The former shows the prevalence of values close to one. Both graphs show that

there is asymmetry in the data.

Table 13 – Descriptive statistics, stored hydroelectric energy in South Brazil, nnn=== 222111444.
min max median mean variance asymmetry kurtosis

0.2977 0.9862 0.7265 0.7016 0.0404 −0.2714 −1.2180
Source: The author (2021).

As noted earlier, a novel feature of βARMA models is that they will never yield

out-of-sample forecasts that lie outside (0,1). Such improper forecasts may be obtained,

however, when using Gaussian ARMA models or an exponential smoothing algorithm. To

illustrate that, we computed the first six out-of-sample forecasts from Gaussian ARMA

models identified using the AIC and from the Holt algorithm for all subsamples of our

time series with at least 24 observations (i.e., n≥ 24). In 12 of such subsamples, there

was at least one forecast that exceeded one.

We shall now search for the best fitting βARMA model using different model

selection criteria. Our main interest lies in selecting a model to be used for out-of-sample

forecasting. In practice, forecasts are only produced based on models that display good
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Figure 8 – Stored hydroelectric energy in South Brazil: time series data (top panel),
correlogram (bottom left panel) and partial correlogram (bottom right panel).
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Figure 9 – Histogram (left panel) and boxplot (right panel) of the data.
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data fit, in particular, based on models that pass diagnostic testing. Hence, the selected

models are submitted to portmanteau diagnostic testing based on the Q4 test statistic

proposed by Scher et al. (2020). The lag truncation parameter value used in the test

statistic was m= d
√
ne, where d·e denotes the ceiling function. That is, m ∈ {9,13,14} for
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n ∈ {75,150,208}. We test the null hypothesis that the first m residual autocorrelations

equal zero. Hence, under the null hypothesis the data dynamics are fully captured by the

fitted model. When the null hypothesis is rejected, in contrast, the residuals are serially

correlated and thus there is evidence of model misspecification. Models for which the

correct model specification is rejected at the 5% significance level by the portmanteau

test are discarded. When that happens, the next best fitting model according to the

model selection criterion is selected. Even though we do not present results for the models

that were discarded by the diagnostic analysis, we note that the out-of-sample forecasts

produced by such models were typically less accurate than those obtained from the models

we shall use in the empirical analysis that follows.

We consider three different data ranges. By Samples I and II we mean that

the time series consists of the first 75 and 150 observations, respectively. Sample III refers

to the complete sample (i.e., all 208 data points). When the time series only includes

the first 75 observations (n= 75, Sample I), the EIC selects the βAR(3) model and the

βARMA(1,1) model is chosen by all other criteria. Sample II includes the first 150 data

points (n = 150). The model selected by the EIC is βAR(3). The βARMA(2,1) model

is chosen by all the other criteria. The final scenario we consider is Sample III in which

all 208 observations are used (n= 208). The EIC identifies the βARMA(2,3) model. A

different model is selected by the remaining criteria, namely: βARMA(1,1).

The point estimates of α and φ for the models selected by the EIC (other

criteria) in Samples I, II and II are, respectively, (i) 0.2380 and 12.0681 (0.4311 and

10.4292), (ii) 0.2366 and 14.0793 (0.3727 and 13.2730), and (iii) 0.1526 and 11.7536 (0.3739

and 11.1327). The point estimates (standard errors in parentheses) of the AR and MA

parameters are presented in Table 14. For each sample, the top model was selected by the

EIC and the bottom model was identified using the alternative criteria.

Our interest lies in forecasting yn+h, for h≥ 1. Forecasting accuracy is assessed

using MAPEs. For h∈ {1, . . . ,6}, MAPE(h) = h−1∑h
j=1 |yn+j− ŷn(j)|, where ŷn(j) denotes

the forecast of yn+j made at time n. The MAPEs obtained using the βARMA models

identified by the different model selection criteria are presented in Table 15. The smallest

MAPE for each value of h in each sample in Table 15 is displayed in boldface. The

figures in this table lead to interesting conclusions. At the outset, consider the smallest

sample size (n = 75, Sample I). The βARMA identified by the EIC outperformed the
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Table 14 – Point estimates (standard errors in parentheses).
Sample Model ϕ̂1 ϕ̂2 ϕ̂3 θ̂1 θ̂2 θ̂3

I
βAR(3) 0.8825 −0.3783 0.1767 – – –

(0.0444) (0.0721) (0.0592) – – –

βARMA(1,1) 0.4040 – – 0.4317 – –
(0.0828) – – (0.0957) – –

II
βAR(3) 0.9490 −0.3385 0.0871 – – –

(0.0326) (0.0511) (0.0421) – – –

βARMA(2,1) 0.2501 0.2250 – 0.6485 – –
(0.1227) (0.1035) – (0.1160) – –

III
βARMA(2,3) 0.2703 −0.4743 – 0.4778 −0.1512 0.1564

(0.0812) (0.0686) – (0.0920) (0.0592) (0.0609)

βARMA(1,1) 0.4944 – – 0.2562 – –
(0.0484) – – (0.0612) – –

Source: The author (2021).

corresponding model chosen by all other criteria in all forecasting horizons, and by wide

margins. For instance, when h ∈ {2,3}, the MAPEs of the forecasts made using the former

were approximately 34% and 38% smaller than those obtained using the latter. When

Sample II was used (n = 150), the dynamic beta model selected by the EIC (βAR(3))

outperformed that identified by all remaining criteria (βARMA(2,1)) for h ∈ {1,2,3,4,6},

i.e., it only fared worse for h= 5 and by a narrow margin (less than 4%). In some cases, the

forecasts obtained from the βAR(3) model were considerably more precise than those from

the competing beta model; e.g., MAPE nearly 20% smaller for h= 1. Next, we consider

the situation in which the models were fitted using all data points (n= 208, Sample III).

Here, the βARMA(2,3) model identified by the EIC yielded the most accurate forecasts

for h ∈ {1,2,3,5,6}.

Table 15 – Mean absolute prediction errors.

Sample Model MAPE
h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

I βAR(3) 0.0990 0.0939 0.0801 0.0621 0.0611 0.0761
βARMA(1,1) 0.1296 0.1339 0.1222 0.0995 0.0853 0.0930

II βAR(3) 0.0254 0.0836 0.0591 0.0542 0.0666 0.0788
βARMA(2,1) 0.0316 0.0841 0.0647 0.0547 0.0642 0.0792

III βARMA(2,3) 0.0064 0.0228 0.0738 0.0734 0.0604 0.0585
βARMA(1,1) 0.0088 0.0369 0.0775 0.0748 0.0621 0.0586

Source: The author (2021).

In this section, we evaluated the forecasting accuracy of βARMA models

identified using different model selection criteria. Overall, the EIC is the winner. In

most cases, this criterion was able to select the best performing βARMA model. Its use

yielded considerable gains in forecasting accuracy in some situations. For instance, when

the smallest sample size was used (Sample I, n= 75), the MAPEs of the βAR(3) model
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selected by the EIC for h ∈ {1, . . . ,6} were approximately 24%, 30%, 34%, 38%, 28% and

18% smaller, respectively, than those obtained with the βARMA(1,1) model that was

selected by all other criteria.

It is worth noticing that in each sample (Samples I, II and III), different

βARMA models were identified by (i) EIC and (ii) all other information criteria. That

is, the EIC identified a model different from that selected by all other criteria. Recall

that all identified models were sequentially submitted to portmanteau diagnostic testing.

The selected model according to each criterion is the first model in the ordered (best to

worst) list of models that passes diagnostic testing. It was only after diagnostic testing

that one βARMA model was selected by the EIC and a different model was selected by

the remaining information criteria.

We have also carried out model selection on the basis of the out-of-sample

model selection criteria described in Section 2.3. The rolling windows of observations in

MDF (nr) are 50, 100 and 150 for Samples I, II and III, respectively, and the forecasting

horizons are h ∈ {1,3,6}. As before, the Q4 portmanteau diagnostic test was performed

prior to forecasting. RHWE is computed using the same parameters as in Section 2.4. For

all three sample sizes, the RHWE and MDF measures selected the same model identified

by the EIC. This result was obtained using both MDA and MDV. The MAPE and RMSE

measures selected models that are different from the ones identified on the basis of the

EIC and all other information criteria. The forecasts from such models were uniformly less

accurate than those obtained from the model selected by the EIC (and RHWE and MDF).

As a final exercise, we investigated the sensitivity of the different model selection

strategies to the presence of outliers in the data. To that end, we introduced outliers into

the complete time series (Sample III, n= 208). At the outset, we introduced a single outlier

into the data as follows: (i) we multiplied y52 = 0.8649 by a ∈ {0.75,0.50,0.25}, (ii) we

multiplied y104 = 0.5407 by a ∈ {1.75,1.50,1.25,0.75,0.50,0.25}, and (iii) we multiplied

y156 = 0.8649 by a ∈ {0.75,0.50,0.25}. We chose to modify the values of cases 52, 104

and 156, transforming them into atypical data points, because they are located at 25%,

50% and 75% of the time series length. Subsequently, we introduced three outliers into

the data by replacing y52 and y156 with 0.25×y52 and 0.25×y156, respectively, and y104

with (i) 1.75×y104 and (ii) 0.25×y104. Model selection was not impacted by such outliers:

in all cases, the EIC selected the βARMA(2,3) model and all other criteria selected the
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βARMA(1,1) model, as with the unperturbed data. In contrast, the presence of outliers

in the data noticeably impacted the short term forecasts (h ∈ {1,2}) and overall had little

impact on the forecasts when h ∈ {3, . . . ,6}. In particular, all one-step ahead forecasts

became less accurate when the time series included one or three outliers. In future research

we shall further investigate the impact of model misspecification and data anomalies on

βARMA model selection and forecasting.

2.6 CONCLUDING REMARKS

The βARMA model is a dynamic model introduced by Rocha and Cribari-Neto

(2009), Rocha and Cribari-Neto (2017). It is tailored for use with time series that assume

values in the standard unit interval such as rates, proportions and concentration indices.

Parameter estimation is performed by conditional maximum likelihood. Diagnostic checking

based on portmanteau tests in βARMA models was developed by Scher et al. (2020).

Thus, it remained to investigate model identification prior to out-of-sample forecasting in

that class of models. That was our chief goal in this chapter.

We considered βARMA model selection based on different information criteria.

Since such criteria were not developed for dynamic models tailored to double bounded

time series, it is important to investigate their usefulness in that context. We performed

extensive and computer intensive simulations to estimate the rates of correct model

identification of several criteria for different sample sizes and also by separately considering

(i) autoregressive, (ii) moving average, and (iii) autoregressive and moving average dynamics.

The numerical evidence we reported showed that all criteria yield more accurate model

identification as the sample size increases. More importantly, it showed that model selection

can be made substantially more accurate in samples of small to moderate sizes by using

bootstrap resampling. In some cases, the frequency of correct model identification was

more than double of that achieved by using criteria that are not resampling-based. We

also considered model selection based on measures of forecasting accuracy. Our results

showed that a measure based on directional forecasts leads to model selection that is more

accurate than that obtained using alternative measures. Also, model selection guided by

information criteria is more reliable than that guided by forecasting accuracy measures.

We also presented and discussed an empirical application. Our goal was to

model and forecast the future behavior of the share of stored hydroelectric energy in South
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Brazil. We used different samples that corresponded to different sample sizes (75, 150

and 208 observations). Interestingly, in all cases the bootstrap model selection criterion

identified a model that was different from that selected on the basis of all other criteria.

Model selection based on directional forecasting accuracy agrees with that performed using

bootstrap resampling. In nearly all situations, the forecasts obtained with the models

selected with the aid of the bootstrap-based information criterion were more accurate

than those yielded by the models identified by the competing information criteria, in some

cases by a wide margin (e.g., over 1/3).

Finally, a word of caution is in order. The simulation evidence we present

provides a nice insight on the different model selection strategies’ ability to recover the

true model, and then on their reliability. In our empirical analysis, in contrast, we focus

on out-of-sample forecasting. Here, selecting the true model might be less important than

assessing the quality of the forecasts. Interestingly, in both settings (simulations and real

data analysis) the best results were obtained using the same model selection strategy.
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3 GENERALIZED βARMA MODEL FOR DOUBLE BOUNDED TIME

SERIES FORECASTING

3.1 INTRODUCTION

The βARMA model was introduced by Rocha and Cribari-Neto (2009), Rocha

and Cribari-Neto (2017) as a dynamic extension of the class of beta regression models

proposed by Ferrari and Cribari-Neto (2004); see Cribari-Neto and Zeileis (2010) and

Douma and Weedon (2019). Both models are tailored for use with double bounded random

variables, i.e., random variables that assume values in (a,b), where a and b are known and

finite. Focus is typically placed on random variables that assume values in the standard

unit interval, (0,1), since when a 6= 0 and/or b 6= 1, one can subtract a from the variable

of interest and then divide it by b−a to obtain a random variable with support in the

standard unit interval. The βARMA model is useful for modeling the behavior of double

bounded random variables that evolve over time and for predicting their future levels. It

incorporates autoregressive and moving average dynamics, allows for the inclusion of fixed

covariates, and is heteroskedastic. A novel feature of the model is that it will never yield

improper forecasts, i.e., forecasts that lie outside (0,1). The model was successfully used

by Melchior et al. (2021) to forecast mortality rates due to occupational accidents in three

Brazilian states. Their results showed that the βARMA forecasts were typically more

accurate than those obtained using alternative approaches.

In the βARMA model, it is assumed that the variable of interest follows the

beta law parameterized in the terms of its mean, µ, and a precision parameter, φ; see

beta density in Ferrari and Cribari-Neto (2004), Equation (4). The beta distribution

is quite flexible, since its density can assume many shapes depending on the parameter

values. The uniform distribution is a special case obtained with µ= 0.5 and φ= 2. The

two panels in Figure 10 contain plots of beta densities for different values of (µ,φ). The

density is symmetric when µ= 0 and asymmetric otherwise. It can be J-shaped and also

inverted J-shaped. It can also be skewed to the right or to the left. Thus, the beta law can

easily accommodate distributional asymmetries. Additionally, since the beta variance is

µ(1−µ)/(1+φ) and the mean parameter evolves over time, the βARMA model is naturally

heteroskedastic, as noted above. It follows that the density shape and the distribution

variance change over time, thus making the model quite flexible. It also takes into account

the double bounded nature of the time series and, as a result, it will never yield forecasts
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that lie outside the standard unit interval, as noted earlier.

Figure 10 – Beta densities for different values of (µ,φ).
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βARMA diagnostic analysis was developed by Scher et al. (2020). The authors

proposed a portmanteau test statistic, Q4, that works well when used to test whether a fitted

βARMAmodel is correctly specified. The test statistic uses partial residual autocorrelations

and rejection of the null hypothesis is taken as evidence of model misspecification. The

authors proved that, under the null hypothesis of correct model specification, the limiting

distribution of their test statistic is χ2
m−p−q, where m is the number of lags (number of

partial autocorrelations), and p and q are the autoregressive and moving average orders,

respectively.

Model selection was investigated by Cribari-Neto, Scher and Bayer (2022).

They considered different βARMA model selection strategies and found that the best

results are typically obtained by using an information criterion based on data (bootstrap)

resampling. They also presented an empirical analysis in which the main goal was to

model the proportion of stored hydroelectric energy in South Brazil. Furthermore, the

authors showed that more accurate model selection typically translates into more accurate

forecasts. Bayesian model selection for beta autoregressive processes was developed by

Casarin, Valle and Leisen (2012).
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Our goal in this chapter is to introduce a generalized, more flexible formulation

of the βARMA model. In the standard formulation of the model, the beta law mean

(conditional on previous information) evolves over time and the precision parameter is

assumed to be globally fixed. By contrast, in the generalized formulation of the model we

introduce both the conditional mean and the conditional precision are allowed to evolve

dynamically. The generalized model contains two submodels, one for the mean and another

for the precision. We use a parsimonious formulation for the dynamic structure that drives

the precision over time.

The generalized βARMA model is used to produce out-of-sample forecasts of

the time series modeled by Cribari-Neto, Scher and Bayer (2022) and also of an updated

series that includes more recent data. Out-of-sample forecasts were also produced from

models fitted to subsets of the data that range from 45 to 245 data points in steps of five

observations, totaling 41 sample sizes. We compare such forecasts to those yielded by

standard, fixed precision βARMA models. The results show that the generalized model’s

forecasts were typically more accurate than those from the standard βARMA model,

especially the short-term ones (up to three steps ahead). In some cases, the gains in

forecasting accuracy were sizable. The generalized model contains two submodels that

allow for the two parameters that index the beta law (conditional on previous information)

to evolve over time, whereas in the standard model only one beta law parameters (the

mean) displays time series dynamics. The proposed model thus has an additional layer

of flexibility, since it allows the beta density shape to evolve more freely over time. Our

results show that such an additional layer of flexibility translates into forecasts that are

typically more accurate than those obtained by imposing fixed precision.

The remainder of the chapter is structured as follows. In Section 3.2, we

introduce the generalized βARMAmodel and in Section 3.3 we develop maximum likelihood

inference for the model’s parameters. In particular, we present the log-likelihood function,

the score function, and Fisher’s information matrix. Section 3.4 contains an empirical

analysis in which we model and forecast the future levels of stored hydroelectric energy

using the generalized and standard βARMA models. We consider different sample sizes

and perform model selection using three strategies. The results show that out-of-sample

forecasts obtained by allowing for varying precision are typically more accurate than those

obtained under the assumption of fixed precision. Concluding remarks are offered in
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Section 3.5.

3.2 THE GENERALIZED βARMA MODEL

The βARMA model proposed by Rocha and Cribari-Neto (2009), Rocha and

Cribari-Neto (2017) is a dynamic time series model for use with fractional data, i.e., doubly

bounded data in the interval (0,1), such as rates and proportions. In the following, we will

introduce a generalization of the model with the goal of improving the accuracy of out-of-

sample forecasts, especially short-term ones. The new model comprises two sub-models,

one for the conditional mean of the process and one for the conditional precision.

Let yyy = (y1, . . . ,yn)> be an n-vector of time series random variables such that

each yt, t= 1, . . . ,n, conditionally on the set of previous information Ft−1, follows the beta

law with mean µt and precision φt. Here, Ft−1 is the smallest σ-algebra such that the

variables y1, . . . ,yt−1 are measurable. The conditional density of yt, given Ft−1, is

f (yt|Ft−1) = Γ(φt)
Γ(µtφt)Γ((1−µt)φt)

yµtφt−1
t (1−yt)(1−µt)φt−1, 0< yt < 1,

where Γ(·) is the gamma function, 0 < µt < 1 and φt > 0. The conditional mean and

the conditional variance of yt are, respectively, E(yt|Ft−1) = µt and var(yt|Ft−1) = µt(1−

µt)/(1 +φt).

Let g1 : (0,1) 7→R be a strictly increasing and twice differentiable link function,

such as the logit, probit, cauchit, log-log, and complementary log-log functions. In the

βARMA model,

g1(µt) = α1 +xxx>t βββ+
p∑
i=1

ϕi
[
g1(yt−i)−xxx>t−iβββ

]
+

q∑
j=1

θjrt−j , (3.1)

where α1 ∈ R and p, q ∈ N are the autoregressive and moving average orders. Here,

xxxt ∈Rc is a set of non-random covariates at time t and βββ = (β1, . . . ,βc)> ∈Rc is a vector

of parameters. Also, rt is an error term which can be specified in the original scale, yt−µt,

or in the predictor scale, g1(yt)−g1(µt); in what follows, we will consider the latter.

In the standard formulation of the model, the precision parameter is assumed

to be constant for all observations, i.e., φt = φ ∀t. We generalize the model by allowing

the precision parameter to evolve over time. We use a parsimonious parametric structure

aiming at improving short-term forecasting accuracy. Let g2 : R+ 7→ R be a strictly

increasing and twice-differentiable link function, such as the log and square root functions.
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Following Cribari-Neto and Zeileis (2010), we also consider the identity link function. The

dynamic submodel for the precision parameter is specified as

g2(φt) = α2 + δzt−1, (3.2)

where α2 ∈ R, δ ∈ R and zt = yt(1− yt). The tth precision is φt = exp(α2 + δzt−1),

φt = (α2 + δzt−1)2 and φt = α2 + δzt−1 for the log, square root and identity link functions,

respectively. The standard βARMA model is obtained as a particular case of our model

by letting g2 be the identity link and setting δ = 0.

The rationale for the proposed extension of the βARMA model is as follows.

For a given precision value, the variance of yt increases with µt(1−µt), being maximal

at µt = 0.5 and approaching zero as µt approaches zero or one. The precision submodel

of the generalized βARMA model includes yt−1(1− yt−1) as an explanatory variable.

When its value increases, there is some evidence of a variability increase in the previous

period, and the model responds by decreasing the value of the current precision. It is

expected that α2 > 0 and δ < 0. The intercept (α2) determines the maximal precision level,

which is given by g−1
2 (α2), and δzt−1 determines how the precisions fluctuate below it.

Notice that δ < 0 implies φt < g−1
2 (α2) ∀t. Consider, e.g., yt−1 = 0.5 (0.05 or 0.95). Then,

zt−1 = yt−1(1−yt−1) = 0.1875 (0.0475). As long as δ < 0, the current precision decreases

whenever the previous value of the process moves towards the middle of standard unit

interval, and increases otherwise. The value of δ determines the magnitude of the changes

in the precision levels between consecutive time periods. As an example, suppose α2 = 20,

δ =−39 and the link function is identity. (These values are close to the estimates obtained

in the next section for one of the time series we model.) When yt−1 = 0.6 we get φt = 10.64,

whereas when yt−1 = 0.95 we obtain φt = 18.1475. Finally, we note that in the standard

βARMA model changes to the beta density shape over time are only driven by changes in

µt, whereas in the more general formulation of the model they follow from changes in µt
and φt. There is thus greater flexibility in the generalized βARMA framework since the

beta density shape may evolve more freely over time.

3.3 PARAMETER ESTIMATION

Parameter estimation for the generalized βARMA model given in (3.1) and

(3.2) is performed by conditional maximum likelihood. The model can be expressed more
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concisely as g1(µt) = η1t and g2(φt) = η2t, where η1t and η2t are the mean and precision

linear predictors. Let ννν = (α1,ϕϕϕ>, θθθ
>,βββ>,α2, δ)> be the k-dimensional parameter vector,

where ϕϕϕ= (ϕ1, . . . ,ϕp)>, θθθ = (θ1, . . . , θq)> and βββ = (β1, . . . ,βc)>, with k = p+ q+ c+ 3< n.

The total conditional log-likelihood function for the parameter vector ννν, given the first

a= max{p,q} observations, is

`≡ `(µt,φt) =
n∑

t=a+1
`t(µt,φt),

where logf(yt|Ft−1) = `t(µt,φt) and

`t(µt,φt) =logΓ(φt)− logΓ(µt,φt)− log ((1−µt)φt) + (µtφt−1) log(yt)

+{(1−µt)φt−1} log(1−yt).

The conditional maximum likelihood estimators of the model parameters cannot

be expressed in closed form. Point estimates can be obtained by numerically maximizing `

using, say, a Newton or quasi-Newton optimization algorithm. In what follows we will use

the BFGS quasi-Newton algorithm with analytical first derivatives; for details, see Nocedal

and Wright (2006). When the model has moving average components, it is necessary

account for the recursive structure of the derivatives of `; see Rocha and Cribari-Neto

(2017).

In the following, we will present closed-form expressions for the conditional

score function and for the conditional (expected) information matrix. The latter is useful,

for instance, for obtaining standard errors for the maximum likelihood point estimates,

interval estimation and for hypothesis testing inferences.

3.3.1 Conditional score vector

Let UUU = (Uα1 ,UUU
>
ϕϕϕ ,UUU

>
θθθ ,UUU

>
βββ ,Uα2 ,Uδ)> be the conditional score vector. In order

to obtain a closed-form expression for it, we need to obtain the derivatives of ` with respect

to each parameter. The derivative of ` with respect to α1 is

∂`

∂α1
=

n∑
t=a+1

∂`t(µt,φt)
∂µt

∂µt
∂η1t

∂η1t
∂α1

.

It is important to note that ∂µt/∂η1t = 1/g′1(µt) and

∂`t(µt,φt)
∂µt

= φt

{
log

(
yt

1−yt

)
− [ψ(µtφt)−ψ((1−µt)φt)]

}
,
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where ψ(·) is the digamma function. Let y∗t = log(yt/(1−yt)) and µ∗t = ψ(µtφt)−ψ((1−

µt)φt). Thus,
∂`

∂α1
=

n∑
t=a+1

φt(y∗t −µ∗t )
1

g′1(µt)

1 +
q∑
j=1

θj
∂rt−j
∂α1

 .
Let sss be the (n−a)-dimensional vector with ith element given by

∂η1(i+a)
∂α1

= 1 +
q∑
j=1

θj
∂ri+a−j
∂α1

,

yyy∗ = (y∗a+1, . . . ,y
∗
n)> and µµµ∗ = (µ∗a+1, . . . ,µ

∗
n)>. It thus follows that

Uα1 = sss>ΦT1(yyy∗−µµµ∗),

where Φ = diag{φa+1, . . . ,φn} and T1 = diag{1/g′1(µa+1), . . . ,1/g′1(µn)}.

Additionally, for l ∈ {1, . . . , c},

∂`

∂βl
=

n∑
t=a+1

φt(y∗t −µ∗t )
1

g′1(µt)

xtl− p∑
i=1

ϕix(t−i)l+
q∑
j=1

θj
∂rt−j
∂βl

 .
Let M be the (n−a)× c matrix whose ith row is

∂η1(i+a)
∂βββ

= xxxi+a−
p∑
i=1

ϕixxxi+a+
q∑
j=1

θj
∂ri+a−j
∂βββ

.

We obtain

UUUβββ =M>ΦT1(yyy∗−µµµ∗).

For i ∈ {1, . . . ,p}, we have

∂`

∂ϕi
=

n∑
t=a+1

φt(y∗t −µ∗t )
1

g′1(µt)

g1(yt−i) +
q∑
j=1

θj
∂rt−j
∂ϕi

 .
Let P be the (n−a)×p matrix whose (i, j)th element is

∂η1(i+a)
∂ϕj

= g1(yi+a−j) +
q∑
l=1

θl
∂ri+a−l
∂ϕj

.

Thus,

UUUϕϕϕ = P>ΦT1(yyy∗−µµµ∗).

The derivative of ` with respect to θj , for j ∈ {1, . . . , q}, is given by

∂`

∂θj
=

n∑
t=a+1

φt(y∗t −µ∗t )
1

g′1(µt)

rt−j +
q∑
j=1

θj
∂rt−j
∂θj

 .
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Let R be the (n−a)× q matrix whose (i, j)th element is

∂η1(i+a)
∂θj

= ri+a−j +
q∑
l=1

θl
∂ri+a−l
∂θj

.

Therefore,

UUUθθθ =R>ΦT1(yyy∗−µµµ∗).

The conditional score function for α2 is

∂`

∂α2
=

n∑
t=a+1

∂`t(µt,φt)
∂φt

∂φt
∂η2t

∂η2t
∂α2

.

Here, ∂φt/∂η2t = 1/g′2(φt) and

∂`t(µt,φt)
∂φt

= µt(y∗t −µ∗t ) + log(1−yt)−ψ((1−µt)φt) +ψ(φt).

Note that g′2(φt) = 1 when the identity precision link function is used. Let

H = diag
{
µa+1(y∗a+1−µ∗a+1) + log(1−ya+1)−ψ((1−µa+1)φa+1)

+ψ(φa+1), . . . ,µn(y∗n−µ∗n) + log(1−yn)−ψ((1−µn)φn)

+ψ(φn)}

and T2 = diag{1/g′2(φa+1), . . . ,1/g′2(φn)}. Thus,

Uα2 = 111>nHT2111n,

where 111n is an (n−a)×1 vector of ones. When g2 is the identity link, T2 is the (n−a)-

dimensional identity matrix, and hence Uα2 = 111>nH111n.

Finally,

∂`

∂δ
=

n∑
t=a+1

[µt(y∗t −µ∗t ) + log(1−yt)−ψ((1−µt)φt) +ψ(φt)]
1

g′2(φt)
zt−1.

Let ωωω is the (n−a)-dimensional vector given by ωωω = (za, . . . , zn−1)>. Thus,

Uδ = ωωω>HT2111n.

When the precision link function is identity, Uδ = ωωω>H111n.

The elements of the score vector UUU can then be expressed in matrix form as

Uα1 = sss>ΦT1(yyy∗−µµµ∗), UUUβββ =M>ΦT1(yyy∗−µµµ∗),
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UUUϕϕϕ = P>ΦT1(yyy∗−µµµ∗), UUUθθθ =R>ΦT1(yyy∗−µµµ∗),

Uα2 = 111>nHT2111n and Uδ = ωωω>HT2111n.

The conditional maximum likelihood estimator of ννν is obtained as the solution

to the system of equations for UUU = 000k, where 000k is the k× 1 vector of zeros. As noted

earlier, it cannot be expressed in closed-form and estimates can be obtained by numerically

maximizing the conditional log-likelihood function. Starting values for the parameters

can be selected as follows: (i) all moving average parameters are set equal to zero, (ii)

the values for the autoregressive parameters and α1 are selected by regressing g1(yt) on a

constant and g1(yt−1), . . . , g1(yt−p) using ordinary least squares, (iii) δ is set equal to zero,

and (iv) α2 is set equal to g−1
2 (φ0), where φ0 is computed as described on page 805 of

Ferrari and Cribari-Neto (2004).

3.3.2 Conditional information matrix

In order to obtain the conditional Fisher information matrix, we need to

compute the expected values of the second order log-likelihood derivatives.

Let λλλ= (α1,βββ
>,ϕϕϕ>, θθθ>)> and γγγ = (α2, δ)>. We have

∂2`

∂λi∂λj
=

n∑
t=a+1

∂

∂µt

(
∂`t(µt,φt)

∂µt

∂µt
∂η1t

∂η1t
∂λj

)
∂µt
∂η1t

∂η1t
∂λi

=
n∑

t=a+1

[
∂2`t(µt,φt)

∂µ2
t

∂µt
∂η1t

∂η1t
∂λj

+ ∂`t(µt,φt)
∂µt

∂

∂µt

(
∂µt
∂η1t

∂η1t
∂λj

)]

× ∂µt
∂η1t

∂η1t
∂λi

,

∂2`

∂γi∂γj
=

n∑
t=a+1

∂

∂φt

(
∂`t(µt,φt)

∂φt

∂φt
∂η2t

∂η2t
∂γj

)
∂φt
∂η2t

∂η2t
∂γi

=
n∑

t=a+1

[
∂2`t(µt,φt)

∂φ2
t

∂φt
∂η2t

∂η2t
∂γj

+ ∂`t(µt,φt)
∂φt

∂

∂φt

(
∂φt
∂η2t

∂η2t
∂γj

)]

× ∂φt
∂η2t

∂η2t
∂γi

,

∂2`

∂λi∂γj
=

n∑
t=a+1

∂

∂φt

(
∂`t(µt,φt)

∂µt

∂µt
∂η1t

∂η1t
∂γj

)
∂φt
∂η2t

∂η2t
∂λi

=
n∑

t=a+1

[
∂2`t(µt,φt)
∂φt∂µt

∂µt
∂η1t

∂η1t
∂γj

+ ∂`t(µt,φt)
∂µt

∂

∂φt

(
∂µt
∂η1t

∂η1t
∂γj

)]

× ∂φt
∂η2t

∂η2t
∂λi

.
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Since E(∂`t(µt,φt)/∂µt|Ft−1) = E(∂`t(µt,φt)/∂φt|Ft−1) = 0, we have

E

(
∂2`

∂λi∂λj

∣∣∣∣∣Ft−1

)
=

n∑
t=a+1

E

(
∂2`t(µt,φt)

∂µ2
t

∣∣∣∣∣Ft−1

)(
∂µt
∂η1t

)2
∂η1t
∂λj

∂η1t
∂λi

,

E

(
∂2`

∂γi∂γj

∣∣∣∣∣Ft−1

)
=

n∑
t=a+1

E

(
∂2`t(µt,φt)

∂φ2
t

∣∣∣∣∣Ft−1

)(
∂φt
∂η2t

)2
∂η2t
∂γj

∂η2t
∂γi

,

E

(
∂2`

∂λi∂γj

∣∣∣∣∣Ft−1

)
=

n∑
t=a+1

E

(
∂2`t(µt,φt)
∂φt∂µt

∣∣∣∣∣Ft−1

)(
∂µt
∂η1t

)(
∂φt
∂η2t

)
∂η1t
∂λj

∂η2t
∂γi

.

Using

∂2`t(µt,φt)
∂µ2

t
=−φ2

t [ψ′(µtφt) +ψ′((1−µt)φt)],

∂2`t(µt,φt)
∂φ2

t
=−µ2

t (ψ′(µtφt))− (1−µt)2[ψ′((1−µt)φt)] +ψ′(φt),

∂2`t(µt,φt)
∂φt∂µt

= ψ((1−µt)φt)−ψ(µtφt) + (1−µt)φtψ′((1−µt)φt)

−µtφtψ′(µtφt) + log
(

yt
1−yt

)
,

we obtain

E

(
∂2`

∂λi∂λj

∣∣∣∣∣Ft−1

)
=−

n∑
t=a+1

At
g′1(µt)2

∂η1t
∂λj

∂η1t
∂λi

,

E

(
∂2`

∂γi∂γj

∣∣∣∣∣Ft−1

)
=−

n∑
t=a+1

Bt
g′2(φt)2

∂η2t
∂γj

∂η2t
∂γi

,

E

(
∂2`

∂λi∂γj

∣∣∣∣∣Ft−1

)
=−

n∑
t=a+1

Ct
g′1(µt)g′2(φt)

∂η1t
∂λj

∂η2t
∂γi

,

where At = φ2
t [ψ′(µtφt) +ψ′((1−µt)φt)], Bt = µ2

t (ψ′(µtφt)) + (1−µt)2[ψ′((1−µt)φt)]−

ψ′(φt) and Ct =ψ(µtφt)−ψ((1−µt)φt)−(1−µt)φtψ′((1−µt)φt)+µtφtψ′(µtφt)− log (yt/(1−yt)).

Let W1 = diag{w1(a+1), . . . ,w1(n)}, W2 = diag{w2(a+1), . . . ,w2(n)} and W3 =

diag{w3(a+1), . . . ,w3(n)}, with

w1(t) = At
g′1(µt)2 , w2(t) = Bt

g′2(φt)2 and w3(t) = Ct
g′1(µt)g′2(φt)

.

Thus,

E

(
∂2`

∂α2
1

∣∣∣∣∣Ft−1

)
=−sss>W1sss, E

(
∂2`

∂βββ∂α1

∣∣∣∣∣Ft−1

)
=−M>W1sss,

E

(
∂2`

∂ϕϕϕ∂α1

∣∣∣∣∣Ft−1

)
=−P>W1sss, E

(
∂2`

∂θθθ∂α1

∣∣∣∣∣Ft−1

)
=−R>W1sss,
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E

(
∂2`

∂α1∂α2

∣∣∣∣∣Ft−1

)
=−sss>W3111n, E

(
∂2`

∂α1∂δ

∣∣∣∣∣Ft−1

)
=−sss>W3ωωω,

E

(
∂2`

∂βββ∂βββ>

∣∣∣∣∣Ft−1

)
=−M>W1M, E

(
∂2`

∂βββ∂ϕϕϕ>

∣∣∣∣∣Ft−1

)
=−M>W1P,

E

(
∂2`

∂βββ∂θθθ>

∣∣∣∣∣Ft−1

)
=−M>W1R, E

(
∂2`

∂βββ∂α2

∣∣∣∣∣Ft−1

)
=−M>W3111n,

E

(
∂2`

∂βββ∂δ

∣∣∣∣∣Ft−1

)
=−M>W3ωωω, E

(
∂2`

∂ϕϕϕ∂ϕϕϕ>

∣∣∣∣∣Ft−1

)
=−P>W1P,

E

(
∂2`

∂ϕϕϕ∂θθθ>

∣∣∣∣∣Ft−1

)
=−P>W1R, E

(
∂2`

∂ϕϕϕ∂α2

∣∣∣∣∣Ft−1

)
=−P>W3111n,

E

(
∂2`

∂ϕϕϕ∂δ

∣∣∣∣∣Ft−1

)
=−P>W3ωωω, E

(
∂2`

∂θθθ∂θθθ>

∣∣∣∣∣Ft−1

)
=−R>W1R,

E

(
∂2`

∂θθθ∂α2

∣∣∣∣∣Ft−1

)
=−R>W3111n, E

(
∂2`

∂θθθ∂δ

∣∣∣∣∣Ft−1

)
=−R>W3ωωω,

E

(
∂2`

∂δ∂α2

∣∣∣∣∣Ft−1

)
=−ωωω>W2111n, E

(
∂2`

∂δ2

∣∣∣∣∣Ft−1

)
=−ωωω>W2ωωω.

The joint conditional Fisher information matrix can be expressed as

K ≡K(ννν) =



Kα1α1 Kα1βββ Kα1ϕϕϕ Kα1θθθ Kα1α2 Kα1δ

Kβββα1 Kββββββ Kβββϕϕϕ Kβββθθθ Kβββα2 Kβββδ

Kϕϕϕα1 Kϕϕϕβββ Kϕϕϕϕϕϕ Kϕϕϕθθθ Kϕϕϕα2 Kϕϕϕδ

Kθθθα1 Kθθθβββ Kθθθϕϕϕ Kθθθθθθ Kθθθα2 Kθθθδ

Kα2α1 Kα2βββ Kα2ϕϕϕ Kα2θθθ Kα2α2 Kα2δ

Kδα1 Kδβββ Kδϕϕϕ Kδθθθ Kδα2 Kδδ


,

where Kα1α1 = sss>W1sss, Kα1βββ =K>βββα1
=M>W1sss, Kα1ϕϕϕ =K>ϕϕϕα1 = P>W1sss, Kα1θθθ =K>θθθα1

=

R>W1sss, Kα1α2 = K>α2α1 = sss>W3111n, Kα1δ = K>δα1
= sss>W3ωωω, Kββββββ = M>W1M , Kβββϕϕϕ =

K>ϕϕϕβββ =M>W1P ,Kβββθθθ =K>θθθβββ =M>W1R,Kβββα2 =K>α2βββ
=M>W3111n,Kβββδ =K>δβββ =M>W3ωωω,

Kϕϕϕϕϕϕ = P>W1P , Kϕϕϕθθθ =K>θθθϕϕϕ =R>W1P , Kϕϕϕα2 =K>α2ϕϕϕ = P>W3111n, Kϕϕϕδ =K>δϕϕϕ = P>W3ωωω,

Kθθθθθθ =R>W1R, Kθθθα2 =K>α2θθθ
=R>W3111n, Kθθθδ =K>δθθθ =R>W3ωωω, Kα2α2 = 111>nW2111n, Kα2δ =

K>δα2
= ωωω>W2111n and Kδδ = ωωω>W2ωωω.

The parameter vectors λλλ and γγγ are not orthogonal (i.e., Fisher’s information

matrix is not block diagonal). When n is large, ν̂νν, the conditional maximum likelihood

estimator of ννν, is approximately distributed as Nk(ννν,K−1(ννν)).
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3.4 OUT-OF-SAMPLE FORECASTING EVALUATION

The generalized βARMA model adds an additional layer of flexibility to the

standard formulation of the model since it allows the precision parameter to evolve over

time. To what extent such additional flexibility translates into more accurate out-of-

sample short-term forecasts? We will answer this question using the data analyzed by

Cribari-Neto, Scher and Bayer (2022) and also an an updated version of the time series

used by these authors. Their focus was on (fixed precision) βARMA model selection.

Their results indicate that model selection based on an Empirical Information Criterion

(EIC) which makes use of parametric bootstrap resampling typically outperforms those

based on alternative strategies.

Our interest is in modeling and forecasting the proportion of stored hydroelectric

energy in South Brazil. Stored energy is the energy value of the accumulated water, i.e.,

how much energy (in Megawatt monthly) can be generated from the stored volume of

water expressed as a proportion of the total hydroelectric power plant capacity. Our study

is structured in three parts: (i) we use the monthly averages of stored energy from July

2000 to April 2018, totaling 214 observations, with the final six observations reserved for

forecast evaluation; the complete data contain n= 208 observations corresponding to the

July 2000 to October 2017 period; (ii) we use data from July 2000 to May 2021, totaling

251 observations, with the final six data points reserved for forecast evaluation, hence

n= 245; (iii) we use 41 sample sizes in a sequential forecasting analysis; the sample sizes

are n ∈ {45,50, . . . ,245}. The data in the first part of our forecasting exercise are the same

as used by Cribari-Neto, Scher and Bayer (2022). In the second and third parts of the

experiment, we work with an updated version of the time series. In all cases, our goal

is to perform a comparative analysis between standard (fixed precision) and generalized

(variable precision) βARMA forecasts. All estimations, descriptive analyses, and graphical

analyses were carried out using the R statistical computing environment; see Team (2021).

EIC-based model selection was performed using 1,000 bootstrap replications.

In all empirical analyses that follow, model selection was performed using three

information criteria, namely AIC (Akaike), SIC (Schwarz) and EIC. For details on the

former two criteria, see Burnham and Anderson (2004) and Choi (1992); for details on the

EIC, see Cavanaugh and Shumway (1997) and Cribari-Neto, Scher and Bayer (2022). We

search for the best model by considering all combinations of p and q such that p,q = 0, . . . ,4,
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except, of course, for the (0,0) model. The Q4 portmanteau test proposed by Scher et

al. (2020) was performed using the residuals from the fitted selected model. Following

Cribari-Neto, Scher and Bayer (2022), models for which the correct model specification is

rejected by the Q4 test at the 5% significance level are discarded. When that happens,

the next best fitting model according to the model selection criterion is selected. In all

fitted models, g1 is the logit link and in all fitted generalized βARMA models, g2 is the

identity link. We also considered the log and square root precision link functions; these

results will not be shown for brevity. We note that slightly more accurate forecasts were

obtained using the identity precision link.

Table 16 presents descriptive statistics for the two time series (n = 214 and

n = 251). We report the maximal and minimal values and also the means, medians,

variances, coefficients of skewness, and coefficients of excess kurtosis. The longer time

series displays smaller minimal value, mean and median. It also displays less skewness

and excess kurtosis.

Table 16 – Descriptive statistics, stored hydroelectric energy in South Brazil.
n min max median mean variance skewness kurtosis
214 0.2977 0.9862 0.7265 0.7016 0.0404 −0.2714 −1.2180
251 0.1495 0.9862 0.6477 0.6613 0.0461 −0.2169 −1.0072

Source: The author (2022).

In the first part of our study, we follow Cribari-Neto, Scher and Bayer (2022)

and split the series into three subsets of distinct sample sizes, namely n = 75 (Sample

I), n = 150 (Sample II), and n = 208 (Sample III). The Q4 test statistic was computed

using 9, 13, 14 lags for 75, 150 and 208 observations, respectively. We performed model

selection for the generalized βARMA model. When n= 75 (Sample I), the EIC selected

the βAR(3) model, whereas the AIC and SIC selected the βARMA(1,1) model. When

n = 150 (Sample II), the EIC selected the βAR(3) model and the βARMA(1,1) model

was selected by the other information criteria; the latter differs from the βARMA(2,1)

model selected by the same criteria under fixed precision in Cribari-Neto, Scher and Bayer

(2022). Finally, when n= 208, the βARMA(2,3) model was selected by the EIC whereas

the remaining criteria selected the βARMA(1,1) model. Table 17 presents the values of

the AIC, SIC and EIC for the βARMA models with fixed and variable precision (denoted

by φ and φt, respectively) selected by these criteria. The smallest values for each criterion
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are denoted in boldface. It is noteworthy that three model selection criteria favor the

generalized models over the standard models in all three samples.

Table 17 – Model selection criteria values for the selected standard and generalized
models.

Sample Criterion φ φt

I
AIC −113.8075 −−−111111888...444111888666
SIC −104.5375 −−−111000666...888333111111
EIC −123.9971 −−−111222999...888999777111

II
AIC −247.5301 −−−222555555...666111999999
SIC −235.4876 −−−222444000...555666666777
EIC −260.1577 −−−222666777...222777333000

III
AIC −322.4067 −−−333333222...000999111333
SIC −309.0565 −−−333111555...444000333666
EIC −340.0288 −−−333444999...999999444777

Source: The author (2022).

Table 18 contains the conditional maximum likelihood estimates (standard

errors in parentheses) of the parameters that index the selected generalized βARMA

models. For each sample, the models above and below the horizontal line are those selected

by the EIC and AIC/BIC, respectively. As expected, for all models α̂2 > 0 and δ̂ < 0.

Next, we tested the null hypothesis of constant precision versus the alternative

hypothesis of variable precision, i.e., we test H0 : δ = 0 versus H1 : δ 6= 0. The likelihood

ratio test p-values for the selected generalized βARMA models in the three sample sizes

are presented in Table 19. In all cases, fixed precision is rejected at the 5% significance

level and in some cases rejection takes place at 1%. There is thus clear evidence in favor

of variable dispersion.

We will now move to forecasting evaluation. Using each fixed precision and

variable precision selected model for each sample size, we produced forecasts of yn+h,

h ∈ {1, . . . ,6}. That is, we produced forecasts of the next six observations. Table 20

contains the mean absolute prediction errors (MAPEs) of the forecasts which are computed

as MAPE(h) = h−1∑h
j=1 |yn+j − ŷn(j)|, with ŷn(j) denoting the forecast of yn+j made

at time n. The best result for each sample size and forecasting horizon is displayed in

boldface.

The figures in Table 20 convey important information. First, in all sample sizes,

more accurate forecasts were obtained using the generalized βARMA model. Second, in
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Table 19 – p-values of the likelihood ratio test of constant precision (H0 : δ = 0).
Sample Model p-value

I βAR(3) 0.0463
βARMA(1,1) 0.0135

II βAR(3) 0.0226
βARMA(1,1) 0.0024

III βARMA(2,3) 0.0018
βARMA(1,1) < 0.0001

Source: The author (2022).

Table 20 – Mean absolute prediction errors, first empirical analysis.

Sample Model Precision MAPE
h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

I
βAR(3) φt 0.0773 0.0653 0.0492 0.0465 0.0538 0.0737

φ 0.0990 0.0939 0.0801 0.0621 0.0611 0.0761

βARMA(1,1) φt 0.1202 0.1261 0.1197 0.1027 0.0823 0.0848
φ 0.1296 0.1339 0.1222 0.0995 0.0853 0.0930

II
βAR(3) φt 0.0140 0.0669 0.0568 0.0461 0.0559 0.0727

φ 0.0254 0.0836 0.0591 0.0542 0.0666 0.0788
βARMA(1,1) φt 0.0248 0.0823 0.0583 0.0549 0.0680 0.0791
βARMA(2,1) φ 0.0316 0.0841 0.0647 0.0547 0.0642 0.0792

III
βARMA(2,3) φt 0.0027 0.0133 0.0709 0.0713 0.0575 0.0594

φ 0.0064 0.0228 0.0738 0.0734 0.0604 0.0585

βARMA(1,1) φt 0.0051 0.0370 0.0750 0.0701 0.0567 0.0568
φ 0.0088 0.0369 0.0775 0.0748 0.0621 0.0586
Source: The author (2022).

Samples I and II, the models selected by the EIC yielded the best results. In Sample III,

the best results for h ∈ {1,2,3} (short-term forecasting) were obtained using the EIC for

generalized βARMA model selection, whereas the most accurate forecasts for h ∈ {4,5,6}

were yielded by the variable precision model selected by the AIC and BIC. Third, in some

cases, the gains in forecasting accuracy achieved by allowing for variable precision are large.

Consider, e.g., Sample I, h= 2 and βAR(3) (model selected by the EIC). The MAPE of

the forecasts from the generalized model is over 30% smaller than that of the standard

model’s forecasts; in Sample III, h= 1 and βARMA(2,3), the gain in MAPE is of nearly

58%.

We will now move to the second part of our empirical investigation, in which

we use more recent data. Here, the data range from July 2000 to May 2021, totaling 251

observations, and the final six observations are reserved for forecasting evaluation. Thus,

the effective sample size is n = 245. The Q4 portmanteau test statistic used to assess

model misspecification employs 15 lags. The βARMA(1,1) model was selected by all three
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criteria under both variable and fixed precision. The AIC, BIC and EIC values for the

variable (fixed) precision model are, respectively, −381.0816, −374.0319 and −392.3007

(−372.7727, −367.1329 and −380.5489). The three criteria favor the generalized βARMA

model. The p-value of the likelihood ratio test of H0 : δ = 0 is 0.0015. We thus reject the

null hypothesis of fixed precision at the 1% significance level. For brevity, we only report

precision estimates (standard errors in parentheses). For the standard model, φ̂= 10.8825

(0.9674). For the generalized model, α̂2 = 19.6795 (3.6415) and δ̂ =−38.9409 (17.0931);

again, as expected, these estimates are positive and negative, respectively. Figure 11

contains an index plot of φ̂t with a dashed horizontal line at the estimated precision

parameter estimate from the fitted standard model (10.8825). The minimal and maximal

estimated precisions from the generalized model are 9.9385 and 19.1435, respectively,

the average precision being 12.8286. As expected, the largest estimated precisions are

associated with observations that are close to an endpoint of the standard unit interval.

For instance, there are 51 estimated precisions in excess of 16, and they all coincide with

observations that are somewhat close one; the minimum value of these 51 data points is

0.8958.

Figure 11 – Estimated precisions from the fitted generalized βARMA model.
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Source: The author (2022).

As noted earlier, changes in the beta density shape across observations are only

driven by µt in the standard βARMA model; by contrast, in the more general formulation

of the model they are driven by µt and φt. The general model thus has an additional

layer of flexibility since it allows the beta density shape to evolve more freely over time.

In order to exemplify that, we present in Figure 12 the beta density functions evaluated

at the mean and precision estimates obtained from the two models (µ̂t and φ̂t for the
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generalized model and µ̂t and φ̂ for the standard model) for observations 48 (left panel), 49

(middle panel) and 50 (right panel). Note that the shape of the beta density changes more

intensely over the three time periods when we consider the mean and precision estimates

obtained from the generalized model.

Figure 12 – Estimated beta densities for observations 48, 49, 50.
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Again, forecasts of yn+h for h ∈ {1, . . . ,n} were produced using the generalized

and standard βARMA models. The MAPEs are presented in Table 21. The forecasts

obtained under variable precision were more accurate for all forecasting horizons. When

h= 1, the gain in accuracy from using the generalized model exceeded 62%.

Table 21 – Mean absolute prediction errors, second empirical analysis.

Sample Model Precision MAPE
h= 1 h= 2 h= 3 h= 4 h= 5 h= 6

n= 245 βARMA(1,1) φt 0.0062 0.0561 0.0809 0.0720 0.0658 0.0641
φ 0.0167 0.0590 0.0834 0.0756 0.0666 0.0644
Source: The author (2022).

In the third and final part of our empirical analysis, we consider 41 sample sizes

that range from n= 45 to n= 245 in steps of five observations (i.e., n ∈ {45,50, . . . ,245}).

For each sample size, a generalized and a standard βARMA model were selected using the

EIC (the bootstrap-based model selection criterion); as before, the Q4 portmanteau test

of correct model specification was performed on the residuals from both models. For each

sample size, forecasts of the next six observations (h∈ {1, . . . ,6}) were produced using each

model, MAPEs were computed for each set of forecasts, and the ratios between the MAPEs

of the forecasts from the generalized and standard models were computed. That is, we

computed, for each n, MAPEr(h) = MAPEg(h)/MAPEs(h), where the subscripts ‘g’ and
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‘s’ stand for ‘generalized’ and ‘standard’, respectively. Values of MAPEr(h) smaller than

one (greater than one) favor the generalized (standard) model. Overall, the results clearly

favor the generalized model, especially when the interest lies in short-term forecasting.

For instance, for h= 1 (h= 2) [h= 3], the aforementioned ratio was smaller than one in

78.05% (75.61%) [73.17%] of the 41 sample sizes. In Figure 13 we present, in six panels,

plots of MAPEr(h) against the sample size, each panel corresponding to a forecasting

horizon. Points that lie below (above) the horizontal line drawn at 1.0 are indicative

of better (worse) forecasting accuracy of the generalized βARMA model relative to the

standard model. The former clearly outperforms the latter, especially for h ∈ {1,2,3}.

Figure 13 – MAPEr(h) vs n ∈ {45,50, . . . ,245}: h= 1: top left; h= 2: top right; h= 3: middle
left; h= 4: middle right; h= 5: bottom left; h= 6: bottom right.

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sample size

M
A

P
E

 r
at

io

45 70 95 120 145 170 195 220 245

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sample size

M
A

P
E

 r
at

io

45 70 95 120 145 170 195 220 245

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sample size

M
A

P
E

 r
at

io

45 70 95 120 145 170 195 220 245

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sample size

M
A

P
E

 r
at

io

45 70 95 120 145 170 195 220 245

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sample size

M
A

P
E

 r
at

io

45 70 95 120 145 170 195 220 245

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sample size

M
A

P
E

 r
at

io

45 70 95 120 145 170 195 220 245

Source: The author (2022).

We also computed the mean values of MAPEr(h) (i.e., average over the 41

sample sizes) for each h. The figure for h= 1 (h= 2) [h= 3] was 0.8348 (0.8560) [0.8859]. It
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is thus clear that the generalized model yielded forecasts that were, on average, considerably

more accurate than those from the standard model. It also outperformed the standard

model for larger forecasting horizons (h ∈ {4,5,6}), but by smaller margins; e.g., the mean

MAPE ratio for h= 4 (h= 5) [h= 6] was 0.9324 (0.9626) [0.9741]. It is natural for the

gains in forecasting accuracy achieved by the generalized model to be more pronounced

for small forecasting horizons, since the two sets of forecasts (generalized and standard)

converge to ȳ, the average value of yt’s, as h increases.

3.5 CONCLUDING REMARKS

The βARMA model proposed by Rocha and Cribari-Neto (2009), Rocha and

Cribari-Neto (2017) is useful for modeling random variables that assume values in (0,1)

and evolve over time. The model extends the class of beta regressions so that it can

be used with non-independent, serially correlated random variables. Like its regression

counterpart, it accommodates distributional asymmetries, accounts for heteroskedasticity,

and does not yield improper predictions. Both models are based on the assumption that

the variable of interest is beta-distributed. In the dynamic model, such an assumption is

made for the variable of interest at each time period conditional on the set of previous

information. As is well known, the beta law is very flexible, since its density can assume

many shapes depending on the parameter values. Also, both models are based on the beta

parametrization proposed by Ferrari and Cribari-Neto (2004) according to which the beta

density is indexed by the distribution mean and a precision parameter.

The standard formulation of the βARMA model allows the mean parameter to

evolve over time, but imposes that the precision is globally fixed, i.e., it is assumed that

the precision parameter has same value for all observations. In this chapter, we introduced

a more general formulation of the model which allows the two parameters that index the

beta law (conditional mean and conditional precision) to vary over time. We developed

maximum likelihood inference for the proposed model. In particular, we presented closed-

form expressions for the model’s conditional log-likelihood function, conditional score

function and conditional Fisher’s information matrix.

The proposed model was used to model and forecast future levels of stored

hydroelectric energy in the South of Brazil. Different sample sizes were considered and,

for each sample size, generalized and standard βARMA models were selected using three
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different information criteria. One of the model selection criteria we used is based on

bootstrap resampling. In most configurations, more accurate out-of-samples forecasts were

obtained by using the more general formulation of the model. In some cases, the gains

in forecasting accuracy were large, especially for short-term forecasting. It is noteworthy

that the general formulation of the model is more flexible in the sense that changes in

the beta density shape over time are driven by two parameters (mean and precision),

and not only by a single parameter (mean) like in the standard model formulation. We

encourage practitioners who wish to model and forecast double bounded time series to use

the generalized βARMA model proposed in this chapter.



89

REFERENCES

AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on
Automatic Control, IEEE, v. 19, n. 6, p. 716–723, 1974.

ANDERSEN, E. B. Asymptotic properties of conditional maximum-likelihood estimators.
Journal of the Royal Statistical Society B, JSTOR, v. 32, n. 2, p. 283–301, 1970.

BAYER, F. M.; BAYER, D. M.; PUMI, G. Kumaraswamy autoregressive moving average
models for double bounded environmental data. Journal of Hydrology, v. 555, p.
385–396, 2017.

BAYER, F. M.; CINTRA, R. J.; CRIBARI-NETO, F. Beta seasonal autoregressive moving
average models. Journal of Statistical Computation and Simulation, v. 88, n. 15,
p. 2961–2981, 2018.

BAYER, F. M.; CRIBARI-NETO, F. Bootstrap-based model selection criteria for beta
regressions. TEST, v. 24, n. 4, p. 776–795, 2015.

BAYER, F. M.; CRIBARI-NETO, F. Model selection criteria in beta regression with
varying dispersion. Communications in Statistics - Simulation and Computation,
v. 46, n. 4, p. 729–746, 2017.

BENJAMIN, M. A.; RIGBY, R. A.; STASINOPOULOS, M. Generalized autoregressive
moving average models. Journal of the American Statistical Association, v. 98,
n. 461, p. 214–223, 2003.

BENJAMIN, M. A.; RIGBY, R. A.; STASINOPOULOS, M. D. Fitting non-Gaussian time
series models. In: SPRINGER. COMPSTAT. New York, 1998. p. 191–196.

BILLAH, B.; HYNDMAN, R. J.; KOEHLER, A. B. Empirical information criteria for
time series forecasting. Journal of Statistical Computation and Simulation, v. 75,
n. 10, p. 831–840, 2005.

BLASKOWITZ, O.; HERWARTZ, H. Adaptive forecasting of the euribor swap term
structure. Journal of Forecasting, v. 28, n. 7, p. 575–594, 2009.

BLASKOWITZ, O.; HERWARTZ, H. On economic evaluation of directional forecasts.
International of Journal of Forecasting, v. 27, n. 4, p. 1058–1065, 2011.

BLASKOWITZ, O.; HERWARTZ, H. Testing the value of directional forecasts in the
presence of serial correlation. International of Journal of Forecasting, v. 30, n. 1, p.
30–42, 2014.

BOX, G. E. P.; JENKINS, G. M.; REINSEL, G. C.; LJUNG, G. M. Time Series
Analysis: Forecasting and Control. 5th. ed. Hoboken: Wiley, 2015.

BOX, G. E. P.; PIERCE, D. A. Distribution of residual autocorrelations in autoregressive-
integrated moving average time series models. Journal of the American Statistical
Association, Taylor & Francis Group, v. 65, n. 332, p. 1509–1526, 1970.

BURNHAM, K. P.; ANDERSON, D. R. Multimodel inference: Understanding AIC and
BIC in model selection. Sociological Methods Research, v. 33, n. 2, p. 261–304, 2004.



90

CASARIN, R.; VALLE, L. D.; LEISEN, F. Bayesian model selection for beta autoregressive
processes. Bayesian Analysis, v. 7, n. 2, p. 385–410, 2012.

CAVANAUGH, J. E.; SHUMWAY, R. H. A bootstrap variant of AIC for state-space model
selection. Statistica Sinica, JSTOR, v. 7, n. 2, p. 473–496, 1997.

CHIOGNA, M.; GAETAN, C. Mining epidemiological time series: An approach based on
dynamic regression. Statistical Modelling, v. 5, p. 309–325, 2005.

CHOI, B. S. ARMA Model Identification. New York: Springer-Verlag, 1992. ISBN
3540977953.

CRIBARI-NETO, F.; FRERY, A. C.; SILVA, M. F. Improved estimation of clutter
properties in speckled imagery. Computational Statistics & Data Analysis, v. 40,
n. 4, p. 801–824, 2002.

CRIBARI-NETO, F.; SCHER, V. T.; BAYER, F. M. Beta autoregressive moving average
model selection with application to modeling and forecasting stored hydroelectric energy.
International Journal of Forecasting, 2022. - forthcoming.

CRIBARI-NETO, F.; ZEILEIS, A. Beta regression in R. Journal of Statistical Soft-
ware, v. 34, p. 1–24, 2010.

DAVIES, N.; TRIGGS, C. M.; NEWBOLD, P. Significance levels of the Box-Pierce
portmanteau statistic in finite samples. Biometrika, Biometrika Trust, v. 64, n. 3, p.
517–522, 1977.

DOUMA, J. C.; WEEDON, J. T. Analysing continuous proportions in ecology and
evolution: A practical introduction to beta and Dirichlet regression.Methods in Ecology
and Evolution, v. 10, n. 9, p. 1412–1430, 2019.

DUFOUR, J.-M.; ROY, R. Generalized portmanteau statistics and tests of randomness.
Communications in Statistics - Theory and Methods, Taylor & Francis, v. 15,
n. 10, p. 2953–2972, 1986.

EFRON, B.; TIBSHIRANI, R. J. Bootstrap methods for standard errors, condifence
intrevals and other measures of statistical accuracy. Statistical Science, v. 1, n. 1, p.
54–77, 1986.

FAHRMEIR, L.; KAUFMANN, H. Consistency and asymptotic normality of the maximum
likelihood estimator in generalized linear models. The Annals of Statistics, v. 13, n. 1,
p. 342–368, 1985.

FENGA, L. Bootstrap order determination for ARMA models: A comparison between
different model selection criteria. Journal of Probability and Statistics, v. 2017, p.
Article ID 1235979, 2017.

FERRARI, S. L. P.; CRIBARI-NETO, F. Beta regression for modelling rates and propor-
tions. Journal of Applied Statistics, v. 31, n. 7, p. 799–815, 2004.

FISHER, R. A. On the “probable error” of a coefficient of correlation deduced from a
small sample. Metron, v. 1, p. 3–32, 1921.



91

FOKIANOS, K.; KEDEM, B. Partial likelihood inference for time series following ge-
neralized linear models. Journal of Time Series Analysis, v. 25, n. 2, p. 173–197,
2004.

HANNAN, E. J.; QUINN, B. G. The determination of the order of an autoregression.
Journal of the Royal Statistical Society B, Wiley Online Library, v. 41, n. 2, p.
190–195, 1979.

HOTELLING, H. New light on the correlation coefficient and its transforms. Journal of
the Royal Statistical Society B, JSTOR, v. 15, n. 2, p. 193–232, 1953.

HURVICH, C. M.; TSAI, C. L. Regression and time series model selection in small samples.
Biometrika, v. 76, n. 2, p. 297–307, 1989.

HYNDMAN, R. J.; KHANDAKAR, Y. Automatic time series forecasting: The forecast
package for R. Journal of Statistical Software, v. 26, n. 3, p. 1–22, 2008.

JENKINS, G. M. An angular transformation for the serial correlation coefficient. Biome-
trika, JSTOR, v. 41, n. 1/2, p. 261–265, 1954.

KENDALL, M.; STUART, A. The Advanced Theory of Statistics. 4th. ed. London:
Griffin, 1977. v. 1.

KWAN, A. C. C.; SIM, A.-B. On the finite-sample distribution of modified portmanteau
tests for randomness of a Gaussian time series. Biometrika, Biometrika Trust, v. 83, n. 4,
p. 938–943, 1996.

KWAN, A. C. C.; SIM, A.-B. Portmanteau tests of randomness and Jenkins’ variance-
stabilizing transformation. Economics Letters, Elsevier, v. 50, n. 1, p. 41–49, 1996.

KWAN, A. C. C.; SIM, A.-B.; WU, Y. A comparative study of the finite-sample performance
of some portmanteau tests for randomness of a time series. Computational Statistics
& Data Analysis, Elsevier, v. 48, n. 2, p. 391–413, 2005.

LI, W. K. Time series models based on generalized linear models: Some further results.
Biometrics, v. 50, n. 2, p. 506–511, 1994.

LIN, J.-W.; MCLEOD, A. I. Improved Peña-Rodriguez portmanteau test.Computational
Statistics & Data Analysis, Elsevier, v. 51, n. 3, p. 1731–1738, 2006.

LINKA, A. On transformations of multivariate ARMA processes. Kybernetika, v. 24,
n. 2, p. 122–129, 1988.

LJUNG, G. M. Diagnostic testing of univariate time series models. Journal of the
American Statistical Association, v. 73, n. 3, p. 725–730, 1986.

LJUNG, G. M.; BOX, G. E. P. On a measure of lack of fit in time series models. Biome-
trika, Biometrika Trust, v. 65, n. 2, p. 297–303, 1978.

MATSUMOTO, M.; NISHIMURA, T. Mersenne Twister: A 623-dimensionally equidistri-
buted uniform pseudo-random number generator. ACM Transactions on Modeling
and Computer Simulation (TOMACS), ACM, v. 8, n. 1, p. 3–30, 1998.



92

MCLEOD, A. I. On the distribution of residual autocorrelations in Box-Jenkins models.
Journal of the Royal Statistical Society B, JSTOR, v. 40, n. 3, p. 296–302, 1978.

MCLEOD, A. I.; JIMENEZ, C. Nonnegative definiteness of the sample autocovariance
function. The American Statistician, Taylor & Francis Group, v. 38, n. 4, p. 297–298,
1984.

MCQUARRIE, A. D. A small-sample correction for the Schwarz SIC model selection
criterion. Statistics & Probability Letters, Elsevier, v. 44, n. 1, p. 79–86, 1999.

MCQUARRIE, A. D. R.; TSAI, C.-L. Regression and Time Series Model Selection.
London: World Scientific, 1998.

MELCHIOR, C.; ZANINI, R. R.; GUERRA, R. R.; ROCKENBACH, D. A. Forecasting
Brazilian mortality rates due to occupational accidents using autoregressive moving average
approaches. International Journal of Forecasting, v. 37, n. 2, p. 825–837, 2021.

MONTI, A. C. A proposal for a residual autocorrelation test in linear models. Biometrika,
Biometrika Trust, v. 81, n. 4, p. 776–780, 1994.

NOCEDAL, J.; WRIGHT, S. J. Numerical Optimization. 2nd. ed. New York: Springer,
2006.

ONS. Operador Nacional do Sistema Elétrico – Energia Armazenada. 2020.
<http://www.ons.org.br/historico/energia_armazenada.aspx>.

OSPINA, R.; CRIBARI-NETO, F.; VASCONCELLOS, K. L. P. Improved point and
interval estimation for a beta regression model. Computational Statistics & Data
Analysis, v. 51, n. 2, p. 960–981, 2006. Erratum: 55, 2011, 2445.

OZAKI, T. On the order determination of ARIMA models. Applied Statistics, v. 26,
n. 3, p. 290–301, 1978.

PALM, B.; BAYER, F. M. Bootstrap-based inferential improvements in beta autore-
gressive moving average model. Communications in Statistics - Simulation and
Computation, v. 47, n. 4, p. 977–996, 2018.

PEñA, D.; RODRIGUEZ, J. A powerful portmanteau test of lack of fit for time series.
Journal of the American Statistical Association, American Statistical Association,
v. 97, n. 458, p. 601–610, 2002.

PIERCE, D. A. Residual correlations and diagnostic checking in dynamic-disturbance
time series models. Journal of the American Statistical Association, v. 67, n. 339,
p. 636–640, 1972.

POLER, R.; MULA, J. Forecasting model selection through out-of-sample rolling horizon
weighted error. Expert Systems with Applications, v. 38, n. 12, p. 14778–14785, 2011.

PUMI, G.; VALK, M.; BISOGNIN, C.; BAYER, F. M.; PRASS, T. S. Beta autoregressive
fractionally integrated models. Journal of Statistical Planning and Inference, v. 200,
p. 196–212, 2019.

ROCHA, A. V.; CRIBARI-NETO, F. Beta autoregressive moving average models. TEST,
Springer, v. 18, n. 3, p. 529–545, 2009.

http://www.ons.org.br/historico/energia_armazenada.aspx


93

ROCHA, A. V.; CRIBARI-NETO, F. Erratum to: Beta autoregressive moving average
models. TEST, Springer, v. 26, n. 2, p. 451–459, 2017.

SCHER, V. T. Portmanteau testing inference in beta autoregressive moving
average models. Dissertação (Mestrado) — Universidade Federal de Pernambuco, 2017.

SCHER, V. T.; CRIBARI-NETO, F.; PUMI, G.; BAYER, F. M. Goodness-of-fit tests
for βARMA hydrological time series modeling. Environmetrics, Wiley Online Library,
v. 31, n. 3, p. e2607, 2020.

SCHWARZ, G. Estimating the dimension of a model. Annals of Statistics, Institute of
Mathematical Statistics, v. 6, n. 2, p. 461–464, 1978.

SHAO, J. Asymptotic theory in generalized linear models with nuisance scale parameters.
Probability Theory and Related Fields, v. 91, n. 1, p. 25–41, 1992.

SHIBATA, R. Selection of the order of an autoregressive model by Akaike’s information
criterion. Biometrika, v. 63, n. 1, p. 117–126, 1976.

SHIBATA, R. Bootstrap estimate of Kullback-Leibler information for model selection.
Statistica Sinica, JSTOR, v. 7, n. 2, p. 375–394, 1997.

SILVA, C. Q. da; MIGON, H. S.; CORREIA, L. T. Dynamic Bayesian beta models.
Computational Statistics & Data analysis, v. 55, n. 6, p. 2074–2089, 2011.

SUGIURA, N. Further analysts of the data by Akaike’s information criterion and the
finite corrections. Communications in Statistics - Theory and Methods, Taylor &
Francis, v. 7, n. 1, p. 13–26, 1978.

TEAM, R. C.R: A Language and Environment for Statistical Computing. Vienna,
Austria, 2021. Disponível em: <https://www.R-project.org/>.

WU, T.-J.; SEPULVEDA, A. The weighted average information criterion for order selection
in time series and regression models. Statistics & Probability Letters, Elsevier, v. 39,
n. 1, p. 1–10, 1998.

ZEGER, S. L.; QAQISH, B. Markov regression models for time series: A quasi-likelihood
aapproach. Biometrics, v. 44, n. 4, p. 1019–1032, 1988.

ZHENG, T.; CHEN, R. Dirichlet ARMA models for compositional time series. Journal
of Multivariate Analysis, v. 158, p. 31–46, 2017.

https://www.R-project.org/


94

APPENDIX A - PROOF OF THEOREMS 1.4.2.1 AND 1.4.2.2 AND OF

COROLLARY 1.4.2.2

Demonstração. (Theorem 1.4.2.1). Under the null hypothesis, the same argument applied

in the proof of Lemma 1 in Monti (1994) holds so that

π̂k = ρ̂k +Op(n−1), (3.3)

which implies that π̂k = ρ̂k + op(n−δ) for 1/2 < δ < 1. We start by showing that ẑ1k =
z1k +op(n−1/2). Under H0, there exists n0 > 0 such that, for n > n0, ρ̂k is contained in a
compact subinterval of [−1,1], say U = [−M,M ], for 0<M < 1, with probability tending
to one. For n > n0 and for any a ∈R with a 6= 0,

exp
{√

n

2
[
log(1±aπ̂k

)
− log(1±aρ̂k

)]}
=
(1±aπ̂k

1±aρ̂k

)√n
2

=
(

1 + op(n−δ)
1±aρ̂k

)√n
2

p−→ 1,

as n tends to infinity, since δ > 1/2. Upon applying the logarithm function to the above

expression, the result follows from the Continuous Mapping Theorem, with a= 1. Using

Slutsky’s Theorem we conclude that Kendall and Stuart (1977, p. 419)
√

(n−k−3)ẑ1k =
√

(n−k−3)
(
z1k +op(n−1/2)

)
d−→N (0,1).

Hence, Q1 and QKW1 are asymptotically equivalent and Q1
d−→ χ2

m.
We shall show that ẑ4k = z4k +op(n−δ). By using the integral representation

sin−1(x) =
∫ x
0 (1− z2)− 1

2dz, for any a 6= 0 we obtain

sin−1(aπ̂k) = sin−1 (aρ̂k +op(n−δ)
)

=
∫ aρ̂k

0

1√
1−z2

dz+
∫ aρ̂k+op(n−δ)

aρ̂k

1√
1−z2

dz

= sin−1(aρ̂k) +Rn.

For n sufficiently large, |ρ̂k +op(n−δ)|<M + ε < 1, for some 0< ε < 1−M , so that

0≤Rn =
∫ aρ̂k+op(n−δ)

aρ̂k

1√
1− z2dz ≤

1√
1− (M + ε)2

∣∣∣op(n−δ)∣∣∣= op(n−δ),

and the result follows with a = 1. Using Slutsky’s Theorem, it follows that ẑ4k and z4k

are asymptotic equivalent and so are Q4 and QKW4. Hence, by Kwan and Sim (1996b),

Q4
d−→ χ2

m follows.

Demonstração. (Theorem 1.4.2.2). Let us assume for the moment that no covariates are

present in the model. We start by showing thatQ1
d−→χ2

m−p−q. Let ρρρ(k) = (ρ1, . . . ,ρk)> and
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ρ̂ρρ(k) = (ρ̂1, . . . , ρ̂k)> be the true and sample autocorrelation vector up to lag k, respectively.

Since g(µt) = g(yt)− rt, then

g(yt) = α+
p∑
i=1

ϕig(yt−i) +
q∑
j=0

θjrt−j ⇐⇒ Φ(L)g(yt) = α+ Θ(L)rt, (3.4)

where L is the lag (backshift) operator and θ0 = 1. By A1 and A3, (3.4) is invertible at the

true value of θθθ as well as in U . Hence, for sufficiently large n, (3.4) is invertible at the CMLE

estimate θ̂θθ. In view of this, following McLeod (1978), under Assumptions A1 through A3

there exists an idempotent matrix Q of rank p+q such that ρ̂ρρ(k) = (Ik−Q)ρρρ(k) +Op(n−1),

where Ik is the k-dimensional identity matrix. Under the null hypothesis, (3.3) is still

valid, so that by letting π̂ππ(k) = (π̂1, . . . , π̂k)> and following the same steps as in the proof

of Theorem 1.4.2.1, we establish that

π̂ππ(k) = (Ik−Q)ρ̂ρρ(k) +op(n−δ).

Let ẑzz1(m) = (ẑ11, . . . , ẑ1m)> and zzz1(m) = (z11, . . . , z1m)>. Using the argumentation employed

in the proof of Theorem 1.4.2.1 (with a being the appropriate entry of the matrix Ik−Q),

we conclude that√
(n−k−3)ẑzz1(m) =

√
(n−k−3)

(
zzz1(m) +op(n−1/2)

)
d−→Nm

(
000, Im−Q

)
,

whereNm(000,Σ) denotes them-variate normal distribution with mean vector 000 = (0, . . . ,0)> ∈

Rm and covariance matrix Σ. Finally, since Im−Q is an idempotent matrix of rank p+ q,

it follows that

Q1 = (n−k−3)ẑzz>1(m)ẑzz1(m)
d−→ χ2

m−p−q.

Next, we shall prove that Q4
d−→ χ2

m−p−q. Again, under H0, (3.3) holds and under

Assumptions A1 through A3, the representation in (3.4) is valid. Let ẑzz4(m) = (ẑ41, . . . , ẑ4m)>

and zzz4(m) = (z41, . . . , z4m)>. By making use of the argumentation employed in the proof

of Theorem 1.4.2.1 with the appropriate coordinate a, we conclude that(
n−k

n−k−1

)
ẑzz4(m)

d−→Nm
(
000, Im−Q

)
,

and the result follows. If covariates are present in the model, since rt = g(yt)−g(µt), (1.2)

implies that St = g(yt)−xxx>t βββ satisfies the ARMA(p,q) difference equations:

St = α+
p∑
i=1

ϕiSt−i+
q∑
j=0

θjrt−j , (3.5)

with θ0 = 1. The result follows from the arguments outlined in Section 3 of Pierce (1972),

in light of Box and Pierce (1970) and McLeod (1978).
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Demonstração. (Corollary 1.4.2.2). The asymptotic null distribution of QLB follows from

using the reasoning presented in Section 3 in Ljung and Box (1978). Finally, the asymptotic

null distribution of QM follows from the arguments used in Lemma 1 of Monti (1994).
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