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ABSTRACT

Every day a large amount of information is stored or represented as data for further
analysis and management. Data analysis plays an indispensable role in understanding different
phenomena. One of the vital means of handling these data is to classify or group them into
a set of categories or clusters. Clustering or cluster analysis aims to divide a collection of
data items into clusters given a measure of similarity. Clustering has been used in various
fields, such as image processing, data mining, pattern recognition, and statistical analysis.
Usually, clustering methods deal with objects described by real-valued variables. Nevertheless,
this representation is too restrictive for representing complex data, such as lists, histograms, or
even intervals. Furthermore, in some problems, many dimensions are irrelevant and can mask
existing clusters, e.g., groups may exist in different subsets of features. This work focuses on the
clustering analysis of data points described by both real-valued and interval-valued variables.
In this regard, new clustering algorithms have been proposed, in which the correlation and
relevance of variables are considered to improve their performance. In the case of interval-
valued data, we assume that the boundaries of the interval-valued variables have the same and
different importance for the clustering process. Since regularization-based methods are robust
for initializations, the proposed approaches introduce a regularization term for controlling the
membership degree of the objects. Such regularizations are popular due to high performance
in large-scale data clustering and low computational complexity. These three-step iterative
algorithms provide a fuzzy partition, a representative for each cluster, and the relevance weight
of the variables or their correlation by minimizing a suitable objective function. Experiments
on synthetic and real datasets corroborate the robustness and usefulness of the proposed
clustering methods.

Keywords: partitioning clustering; adaptive distances; robust clustering; interval-valued data
analysis; regularized-based methods.



RESUMO

Todos os dias, uma grande quantidade de informações é armazenada ou representada
como dados para posterior análise e gerenciamento. A análise de dados desempenha um papel
indispensável na compreensão de diferentes fenômenos. Um dos meios vitais de lidar com esses
dados é classificá-los ou agrupá-los em um conjunto de categorias ou grupos. O agrupamento
ou análise de agrupamento visa dividir uma coleção de itens de dados em grupos, dada uma me-
dida de similaridade. O agrupamento tem sido usado em vários campos, como processamento
de imagens, mineração de dados, reconhecimento de padrões e análise estatística. Geralmente,
os métodos de agrupamento lidam com objetos descritos por variáveis de valor real. No en-
tanto, essa representação é muito restritiva para representar dados complexos, como listas,
histogramas ou mesmo intervalos. Além disso, em alguns problemas, muitas dimensões são
irrelevantes e podem mascarar os grupos existentes, por exemplo, os grupos podem existir em
diferentes subconjuntos das variáveis. Este trabalho enfoca a análise de agrupamento de dados
descritos por variáveis de valor real e de valor de intervalo. Nesse sentido, novos algoritmos de
agrupamento foram propostos, nos quais a correlação e a relevância das variáveis são conside-
radas para melhorar o desempenho. No caso de dados com valor de intervalo, assumimos que
a importância dos limites das variáveis com valor de intervalo pode ser a mesma ou pode ser
diferente para o processo de agrupamento. Como os métodos baseados em regularização são
robustos à inicializações, as abordagens propostas introduzem um termo de regularização para
controlar o grau de pertinência dos objetos aos grupos. Essas regularizações são populares
devido ao alto desempenho no agrupamento de dados em grande escala e baixa complexidade
computacional. Esses algoritmos iterativos de três etapas fornecem uma partição difusa, um
representante para cada grupo, e o peso de relevância das variáveis ou sua correlação, mini-
mizando uma função objetivo adequada. Experimentos com conjuntos de dados sintéticos e
reais corroboram a robustez e utilidade dos métodos de agrupamento propostos.

Palavras-chaves: agrupamento particional; distâncias adaptativas; agrupamento robusto;
análise de dados intervalares; métodos baseados em regularização.
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1 INTRODUCTION

Clustering is one of the most useful unsupervised machine learning approaches. This technique
groups similar objects together while separating dissimilar ones apart based on some similarity
measure (HAVENS et al., 2012; CHEN et al., 2019). The higher the similarity within a group and
the more significant the difference between clusters, the better or more distinct the clustering
will be. Clustering algorithms are an efficient tool for image processing, data mining, pattern
recognition, and statistical analysis (GAN; MA; WU, 2020a; ZHAO; LIU; FAN, 2015; NAMBURU;

SAMAY; EDARA, 2017; TANG; REN; PEDRYCZ, 2020). The most popular clustering algorithms
provide hierarchical and partitioning structures. Hierarchical methods deliver an output repre-
sented by a hierarchical structure of groups known as a dendrogram, i.e., a nested sequence of
partitions of the input data. Partitioning approaches create a partition of the input data into a
fixed number of clusters, typically by optimizing an objective function. An advantage of such
methods is their ability to manipulate large datasets since the construction of the dendrogram
by the hierarchical approach may be computationally impractical in some applications.

Partitioning methods can be divided into hard and fuzzy approaches (also known as crisp
and soft) (GAN; MA; WU, 2020b). The groups provided by hard partitioning clustering are dis-
joint and non-overlapping. However, fuzzy partitioning clustering (BEZDEK, 2013) generates a
fuzzy partition in which an object belongs to all clusters with a specific membership degree.
Therefore, fuzzy methods can be helpful when the boundaries between groups are ambiguous.
Generally, each object is defined by a set of features of a single quantitative or qualitative
value. However, this representation may not be adequate when analyzing a group rather than
an individual. For example, if the variability or uncertainty inherent in the data is considered.
Symbolic Data Analysis (SDA) (DIDAY, 1988) was introduced as a domain associated with
multivariate analysis. It provides suitable methods and extends classical data analysis techni-
ques to symbolic data (BOCK; DIDAY, 2012). In this case, variables can consider the variability
present in the group of observations, individuals, objects. This means that a variable can
assume values such as a set of categories, an ordered list of categories, a histogram, or an
interval from a set of real numbers. The interest in developing methods, particularly for this
last category, has recently increased. Therefore, this work deals with the analysis of objects
described by both real-valued and interval-valued variables.

One of the best known clustering algorithms for real-valued variables are the K-Means
(MACQUEEN et al., 1967) and Fuzzy C-Means (FCM) (BEZDEK, 2013). Based on these appro-
aches, several methods have been proposed. Ref. (CHIU; HSU, 2017) used the FCM clustering
based on an integration of psychological and physiological data for therapeutic music design.
Mahmoudi et al. (MAHMOUDI et al., 2020) compare the spread rate of Covid-19 in high-risk
countries using the fuzzy clustering method. Refs. (NAYAK; NAIK; BEHERA, 2015; RUSPINI;

BEZDEK; KELLER, 2019) include a review of fuzzy clustering and its applications.
On the other hand, to manage symbolic data, Irpino and Verde (IRPINO; VERDE, 2008)
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proposed a Wasserstein-based distance approach and showed its properties in the context of
clustering techniques. For avoiding the disruptive effects of possible outliers, D’Urso et al.
(D’URSO; GIOVANNI; MASSARI, 2015) suggested a fuzzy C-medoids method with a trimming
rule. After discarding a fixed fraction of outlying data, the clustering procedure is applied to the
data. The percentage of data discarded and, thus, not considered in the optimization problem
is determined by combining a validity criterion with the trimming algorithm. Later, Leski et al.
(LESKI et al., 2016) introduced a clustering approach combining the fuzzy C-medoids clustering
with the robust ordered statistics using Huber’s M-estimator. Also, Ref. (D’URSO et al., 2017)
proposed the use of a robust metric based on the exponential distance in a framework of the
fuzzy C-medoids clustering model for interval-valued data.

1.1 MOTIVATION

In fuzzy clustering, most algorithms have imposed a fuzziness coefficient m in the unknown
degree of membership. This has been viewed as an artificial device, lacking a strong theoretical
justification (LI; MUKAIDONO, 1995; COPPI; D’URSO, 2006). Besides, these types of approaches
are sensitive to initial cluster centers, so performance tends to deteriorate in some cases,
especially with incomplete data (TAO et al., 2019; SING; ADHIKARI; BASU, 2015). Consequently,
a new line of research has been started. It is based on adopting regularization terms to be
adjoined to the maximum internal homogeneity criterion (SADAAKI; MASAO, 1997). In this
case, fuzziness is represented by a weighting factor that multiplies the regularization term
added to the clustering criterion. In this framework, the regularization function measures the
overall fuzziness of the obtained clustering pattern.

Another necessary point to consider when proposing new clustering methods is finding a
suitable distance metric in feature space. Such is essential to determine the closeness between
a pair of objects, an object and a cluster representative, or a pair of cluster representatives.
Traditional methods assume that the variables are uncorrelated and equally relevant to the
clustering process. For example, the Euclidean distance as a dissimilarity measure restricts
conventional algorithms to datasets with hyper-spherical clusters and linearly separable cha-
racteristics. However, in real problems, mainly in high-dimensional ones, some variables can
be correlated. Therefore, for any given pair of neighboring items within the same cluster,
the objects may be separated in a few dimensions of the high-dimensional space. Soft Subs-
pace Clustering (SSC) techniques perform clustering in high-dimensional spaces by assigning
a weight to each dimension to measure the contribution of individual dimensions to the for-
mation of a particular cluster (DENG et al., 2016). Then, each dimension contributes differently
to every cluster. In this regard, the subspaces can be identified by the weight values after the
clustering. Such approaches can be divided into two main categories: fuzzy weighting subspace
clustering and entropy weighting subspace clustering. A review can be found in Refs. (SOUZA;

CARVALHO, 2004; CARVALHO; LECHEVALLIER, 2009; DENG et al., 2010; ZHU et al., 2014; PIMEN-
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TEL; SOUZA, 2014; DENG et al., 2016). Most of these prototype-based clustering algorithms
are based on the Euclidean distance for comparing objects and prototypes. However, such
approaches are less robust to cope with outliers in the dataset, and they do not consider the
correlation between variables.

1.2 OBJECTIVES

This work proposes new fuzzy clustering algorithms for real-valued and interval-valued data
based on regularizations. The specific objectives of this research are:

1. Study of the state-of-the-art clustering algorithms for real-valued and interval-valued
data.

2. Study of the state-of-the-art in clustering based on regularizations.

3. Study of the state-of-the-art of SSC methods.

4. Proposal and implementation of new objective functions and constraints, allowing re-
cognizing clusters of different shapes and sizes.

5. Introduction of new robust dissimilarity measures that diminish the effect of the outliers
during clustering.

6. Validation and comparison of the proposals with state-of-the-art algorithms.

1.3 RESEARCH QUESTIONS

This document is guided by some research questions to propose clustering algorithms
capable of overcoming the problems mentioned in Chapter 1:

1. Several clustering algorithms have been proposed for real-valued data with regularizati-
ons. However, they do not consider the covariance of the variables. Multivariate methods
based on the Mahalanobis distance may address this type of challenge. Then, will Maha-
lanobis distance-based approaches really be more appropriate in certain situations than
other clustering methods?

2. Usually, clustering algorithms use the Euclidean distance as a dissimilarity measure. Des-
pite the usefulness of these proposals in several problems, such approaches are sensitive
to outliers in the dataset. So how can the detrimental effect of outliers be avoided? Also,
in many of these algorithms, hyper-parameter settings are often required for cluster and
subspace detection. However, one of the biggest problems is determining feasible va-
lues, especially for complicated datasets or unknown information. How to simplify the
definition of the optimization problem to reduce the number of hyper-parameters?
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3. Soft subspace clustering methods usually assume that the set of relevant variables is
different for each group. However, global approaches are more appropriate for cases
when the internal dispersion of the cluster is almost the same. In this situation, can
approaches with the same set of relevant variables to all groups improve clustering
results?

4. In the literature, interval-valued data clustering assigns the same relevance weight for
lower and upper boundaries. As a result, a boundary that plays a minor role in the
clustering task can still have an important relevance weight. However, some interval
boundaries associated with the variables could be more or less relevant or even irrele-
vant. Based on this, is it possible that considering the relevance of each boundary, the
performance of the algorithms may be improved? How?

5. Clusters are formed so that any two data objects within a group have a minimum distance
value and any two data objects across different clusters have a maximum distance value.
Usually, the dissimilarity measures in the clustering methods are based on the Euclidean
distance because finding an algebraic solution for the minimizers of the objective function
is relatively simple. What would be the advantage of using another type of distance to
group interval-valued data?

6. Regularization is somewhat similar to the penalty method for optimization by treating
the regularization function as a penalty. In general, it implies a modification of a given
problem that is singular in some sense into a regular one. The singular problem is
challenging to solve, but the latter problem is easier to handle. What are the advantages
of proposing clustering methods based on regularizations?

1.4 RESEARCH HYPOTHESES

In order to present possible solutions for each research question in Section 1.3, it is pre-
sented in this section our respective research hypotheses:

1. In some cases, it is hypothesized that clustering algorithms based on Mahalanobis dis-
tance should outperform other approaches for problems with correlated variables. This is
because the definition of the Mahalanobis spaces takes the correlation between random
vectors into account. By standardizing the random vectors with their covariance matrix,
the measures on the individuals are more reasonable and comparable. Also, methods
with Mahalanobis distance are invariant to linear transformations.

2. It is hypothesized that introducing robust dissimilarity measures may decrease the sen-
sitivity to outliers. These measures can be based on the City-Block distance since the-
oretical studies indicate that such approaches are robust to outliers. Furthermore, it is
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hypothesized that introducing some constraints in the optimization problem can reduce
the number of hyper-parameters to configure, facilitating the search to obtain good
clustering results.

3. In contrast to soft subspace clustering, it is hypothesized that introducing new objective
functions and constraints such that the set of relevant variables is the same for all
clusters can be more appropriate when the internal dispersion of the groups is almost
the same. Since this topic was not well explored in the literature, we offer a detailed
background through experiments on synthetic datasets.

4. For cluster analysis of interval-valued data, it is hypothesized that with the introduc-
tion of new objective functions and constraints, taking into account the weights of the
relevance of the lower and upper boundaries altogether, the clustering results may be
improved. As a result, a boundary that plays a significant role compared to the other
will have a higher relevance weight.

5. It is hypothesized that the performance of clustering methods can be improved in a
noisy environment by proposing new dissimilarity measures based on City-Block distance.
Details are shown through experiments with synthetic datasets.

6. By regularizing the clustering process, it is hypothesized that the methods will be less
sensitive to initial clustering centers and show high clustering performance on large-scale
data.

1.5 CONTRIBUTIONS

According to the previous hypotheses, the contributions of this proposal are summarized
below.

1. Proposal of new partitioning clustering algorithms with regularizations for recognizing
clusters of different shapes and sizes. The relevance of each dimension is calculated by
automatically assigning different weights to the dimensions of the clusters embedded in
subspaces. Such approaches allow locating groups in different subspaces of the same
dataset.

2. Introduction of new fuzzy objective functions and constraints for grouping real-valued
data with global and local Mahalanobis distance and entropy regularization. As an ad-
vantage, the correlation between variables is considered, showing a robust behavior to
linear transformations.

3. New optimization problems for interval-valued data clustering are proposed, i.e., new
objective functions and constraints, for interval-valued data clustering, which allows
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recognizing clusters of different shapes and sizes in each boundary. This setup allows us
to minimize the subsequent problem by alternating three steps.

4. New adaptive dissimilarity functions are introduced that consider the joint weights of
the relevance of the lower and upper boundaries of the interval-valued variables. As a
result, a boundary that plays a significant role in the clustering task will have a higher
relevance weight.

5. Introduction of several adaptive distances that change at each algorithm iteration and
may differ from one cluster to another. They are based on the Euclidean distance for
being one of the most used in the literature and on the City-Block distance for its robust
performance in a noisy data environment.

6. Local (a different set of relevant variables per cluster) and global (the same set of relevant
variables for all groups) adaptive distances are considered since local approaches may
not be appropriate to some situations, e.g., when the internal dispersion of the clusters
are almost the same. The relevance weights of the variables are computed by considering
two types of restrictions. In the first, the sum of the importance of the variables must
be equal to one, whereas, in the second, the product of the relevance of the variables
is equal to one. The latter constraint has the advantage of requiring the adjustment of
fewer hyper-parameters, such as controlling the membership degree of objects.

7. The proposals add an entropy term that regularizes the clustering results to satisfy all
the constraint conditions during the optimization process. In this case, the method with
the maximum entropy will be identified as the optimal solution among all the methods
meeting the restrictions. Due to their simple implementation and low computational
complexity, regularization-based methods can be used in large and high-dimension data
clustering. Furthermore, such approaches are less sensitive to initialization and offer a
distinct physical meaning and well-defined mathematical characteristics, making them
easy to understand.

8. Finally, this work provides an algebraic solution to compute the minimizers of the ob-
jective functions and a detailed derivation for all constraints and metrics. Considering
the absence of an algebraic solution to obtain the prototype minimizer in City-Block
distance-based approaches, an algorithmic solution is presented, in addition to analyzing
the convergence properties of the proposed algorithms.

1.6 THESIS STRUCTURE

Besides the Introduction chapter, this work is divided into four additional chapters organized
in the following way:
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• Chapter 2 shows a general description of the problem, where some concepts are presented
to understand the research problem and the proposed methods.

• Real-valued data clustering with entropy regularization.

– Section 3.2 presents some of the main studies in the literature related to this work
and their limitations.

– Section 3.3 introduces proposed fuzzy clustering algorithms based on adaptive
Euclidean, Mahalanobis and City-block distances and entropy regularization.

– Section 3.4 shows a set of experiments performed with both simulated and real
datasets, to demonstrate the usefulness of proposed methods.

– Section 3.5 offers some concluding remarks.

• Interval-valued data clustering

– Section 4.2 reviews interval-valued data clustering works closely related to the
proposed approaches.

– Section 4.3 introduces the proposed approaches and discusses the order of how
they implement the research hypotheses.

– Section 4.4 describes experimental setups to allow future replication of the results.
A set of experiments carried out with both synthetic and real datasets is also
presented to demonstrate the effectiveness of the proposed methods.

– Section 4.5 summarizes the main results for interval-valued data clustering.

• Chapter 5 summarizes the limitations and future work .

To building this work, part of the material published in the following articles was used:

1. Rodríguez, S.I.R.; De Carvalho, F.A.T. Fuzzy clustering algorithms with distance
metric learning and entropy regularization. Applied Soft Computing, 2021.

2. Rodríguez, S.I.R.; De Carvalho, F.A.T. Soft subspace clustering of interval-valued
data with regularizations. Knowledge-Based Systems, v. 227, p. 107191, 2021.

3. Rodríguez, S.I.R.; De Carvalho, F.A.T. Clustering interval-valued data with auto-
matic variables weighting. In: 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019. p. 1-8.

4. Rodríguez, S.I.R.; De Carvalho, F.A.T. A new fuzzy clustering algorithm for
interval-valued data based on City-Block distance. In: 2018 IEEE International Con-
ference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2019. p. 1-6.
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5. Rodríguez, S.I.R.; De Carvalho, F.A.T. Fuzzy clustering algorithm based on Adap-
tive Euclidean distance and Entropy Regularization for interval-valued data. In: 27th
International Conference on Artificial Neural Networks (ICANN). Springer Cham, 2018.
p. 695-705.

6. Rodríguez, S.I.R.; De Carvalho, F.A.T. Fuzzy clustering Algorithm based on Adap-
tive City-block distance and Entropy Regularization. In: 2018 IEEE International Confe-
rence on Fuzzy Systems (FUZZ-IEEE). IEEE, 2018. p. 1-8.

For more information, see Appendix A.
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2 CLUSTER ANALYSIS

People collect and store a significant amount of information every day for further analysis and
management. One of the main ways these data can be treated is by classifying or grouping
them into a collection of categories or clusters. In order to learn a new item or understand a
new phenomenon, people always try to find characteristics that can describe them and compare
them with other known objects. This comparison is based on some similarity or dissimilarity,
generalized as proximity according to specific standards or rules (XU; WUNSCH, 2005).

Clustering is an essential process for pattern recognition and machine learning that groups
similar objects while separating dissimilar ones based on some similarity measure (HAVENS

et al., 2012; WU et al., 2011). The purpose is that objects within a cluster are similar and
different from items in other groups. The higher the similarity within a group and the more
significant the difference between clusters, the better or more distinct the clustering will be.
Intra-connectivity measures the density of connections between instances of a single cluster.
A high value indicates a good clustering arrangement because the samples grouped within the
same cluster are highly dependent. Besides, inter-connectivity is a measure of the connectivity
between distinct clusters. A low degree of inter-connectivity is desirable because it indicates
that individual groups are independent (KOTSIANTIS; PINTELAS, 2004).

Clustering is called unsupervised learning. In contrast to classification (supervised learning),
there is no a priori labeling of some patterns to categorize others and inferring the cluster struc-
ture of all data. Every instance in the dataset is represented using the same set of attributes
or variables. Consider E = {e1, . . . , eN} a set of N input objects. Each one ei (1 ≤ i ≤ N) is
described by the vector xi = (xi1, . . . , xiP ), with 1 ≤ j ≤ P . Let D = {x1, . . . ,xN} be the
dataset.

The clustering algorithms are classified according to the approach used to generate the
clusters and the presented results (JAIN; MURTY; FLYNN, 1999). Hence, the choice of an al-
gorithm depends on both the available data types and the desired application (see Figure 1).
Clustering approaches can usually be divided into two main categories: hierarchical and partiti-
onal (KAUFMAN; ROUSSEEUW, 1987; KAUFMAN; ROUSSEEUW, 2009; GORUNESCU, 2011; CHEN

et al., 2019; TANG et al., 2019). Hierarchical methods deliver an output represented by a hierar-
chical structure of groups known as a dendrogram. Partitioning methods create a partition of
the input data into a fixed number of clusters, typically by optimizing an objective function.
Latter algorithms have been used in several applications due to their simplicity and ease of
implementation relative to other approaches.
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Figure 1 – Clustering results for different numbers of clusters.

(a) Original points
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(b) Two clusters
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(c) Three clusters
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(d) Four clusters
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Source: Author (2022)

2.1 HIERARCHICAL CLUSTERING

Hierarchical clustering organizes the dataset (Figure 2 (a)) into a hierarchical structure
according to a proximity matrix. The binary tree or dendrogram (Figure 2 (b)) usually depicts
the results of Hierarchical Clustering Algorithms (HCA). The root node of the dendrogram
represents the whole dataset, and each leaf node is regarded as a data object. The interme-
diate nodes describe the extent that the objects are proximal to each other. The height of
a dendrogram usually expresses the distance between each pair of objects or clusters or an
object and a group. Once the dendrogram is constructed, one can automatically choose a
given number of clusters by splitting the tree at different levels to obtain different clustering
solutions for the same dataset without rerunning the clustering algorithm (Figure 2 (c)). This
representation provides very informative descriptions and visualization for the potential data
clustering structures, mainly when real hierarchical relations exist in the data.

HCA can be categorized into major subclasses, considering how the final hierarchy is ob-
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tained: agglomerative or divisive ((ANDERBERG, 2014)). In agglomerative clustering methods,
each object is initially in a unique cluster, and the groups merge two at a time until all the
observations belong to a final cluster. Divisive clustering starts with all observations in a single
cluster and successively divides a group at each stage until a stopping criterion is reached.
For a cluster with N objects, there are 2N−1 − 1 possible two-subset divisions. Due to their
high computational cost, divisive hierarchical clustering algorithms are rarely employed in the
literature (XU; WUNSCH, 2008), with a few exceptions, e.g., (CAMPELLO; MOULAVI; SANDER,
2013). Figure 2 shows a HCA results, in which each leaf node of the dendrogram represents
an object. The dissimilarities represented in the ordinate axis indicate the points at which a
cluster is formed (agglomerative HCA) or dissolved (divisive HCA).

Figure 2 – (a) Original data. (b) HCA results represented as a dendrogram. (c) The same dendrogram
with a cut (red dashed line) that produces a partition with three cluster.

(a) Original points
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(b) Dendrogram

0.2

0.4

0.6

0.8

1

1.2

D
is
si
m

ila
rit

y

(c) Partition with three cluster
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Source: Author (2022)

2.2 PARTITIONING CLUSTERING

Partitioning clustering divides the input data into a fixed number of clusters based on
either distance or density criteria computed on the dataset, typically by optimizing an objective
function (XU; WUNSCH, 2005), please see Figure 3. Partitioning methods can manipulate large
datasets, while for hierarchical approaches, building a dendrogram can be computationally
impractical in some applications. Furthermore, since hierarchical methods only consider local
neighbors at each step, they cannot incorporate a priori knowledge about clusters’ global shape
or size (FRIGUI; KRISHNAPURAM, 1999).

In general, partitioning methods differ in how to establish the best partition. They can be
mainly divided in two different ways: hard and fuzzy. The groups provided by hard partitioning
clustering (Figure 3 (b)) are disjoint and non-overlapping. In contrast, fuzzy approaches (Fi-
gure 3 (c)) generate a fuzzy partition such that an object belongs to all clusters with a specific
membership degree (BEZDEK, 2013). This characteristic allows flexibility to express that ob-
jects belong to more than one cluster at the same time. Hence, fuzzy approaches are essential
when the boundaries between groups are ambiguous. Each cluster is represented by a central
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vector, which may not necessarily be a member of the dataset (centroid). The location of a
center is also interpreted as the selection of an object as a representative object (or medoid)
of a cluster. In the end, a representative element for each cluster, called hereafter a prototype,
can be represented as G = (g1, . . . ,gC).

The most popular partitioning methods are K-means (JAIN, 2010) and the FCM (BEZDEK,
2013). The K-means provides a hard partition P = {P1, . . . , PC} of E into C disjoint clusters.
However, the FCM returns a matrix of membership degrees of the objects for each cluster
U = (u1, . . . ,uN) with ui = (ui1, . . . , uiC). These approaches partition the dataset into C

subsets such that all points in a given subset are closest to the same center. If C is not known,
different values of C can be evaluated until the most suitable one is found. The effectiveness
of these approaches and others depends mainly on the function used to measure the distance
between objects. The major difficulty is in finding a distance measure that works well with all
types of data.

Figure 3 – Partitional clustering results. (a) Original dataset. (b) Hard clustering results with the
number of clusters equal to two. (c) Fuzzy clustering results with the number of clusters
equal to two.
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(b) Hard partition
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(c) Fuzzy partition
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Source: Author (2022)

2.3 DISTANCE MEASURES

Distance metrics play a significant role in measuring the similarity or dissimilarity among
the data objects. In most applications, this measure is commonly based on distance functions
such as the Euclidean distance, Manhattan distance, Minkowski distance, among others. Then,
the clusters are formed so that any two objects within a cluster have a minimum distance value
and any two objects across different groups have a maximum distance value. It is useful to
denote the distance between two instances xi and xj as d(xi,xj). A valid distance measure
should be symmetric and obtain its minimum value (usually zero) in identical vectors. The
distance measure is called a metric distance measure if it also satisfies the following properties:

• Triangle inequality d(xi,xk) ≤ d(xi,xj) + d(xj,xk),∀xi,xj,xk ∈ D.
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• d(xi,xj) = 0 ⇐⇒ xi = xj,∀xi,xj ∈ D

Real-world datasets usually contain noise and outliers due to the volume, velocity, and
variety of the current data universe. Most algorithms focus on spherical or Gaussian clusters,
making them sensitive to outliers. They try to optimize the log-likelihood of a Gaussian that is
equivalent to the Euclidean or Mahalanobis distance. For example, in the K-means methods,
each cluster center is represented by the sample mean. The sample mean is extremely sensitive
toward outlying values. Since the mean suffers from a lack of robustness, only a few erroneous
or missing data values may hide the inherent cluster structure of the dataset. However, as
pointed out by Jin et al. (JIN et al., 2006), from a knowledge discovery point of view, outliers
are sometimes more interesting than the rest of the data. They contain underlying information
anomalies in contrast to the frequent cases represented by the rest of the data, i.e., examples of
such applications are fraud and intrusion detection. Hence the importance of studying robust
approaches to outliers.

The simple framework of a K-means algorithm makes it very flexible to modify and build
more efficient algorithms on top of it. Some of the variations proposed to the K-means are
based on:

• Choosing different prototypes for the clusters (K-medoids, K-medians, K-modes).

• Choosing better initial centroid estimates (Intelligent K-means, Genetic K-means).

• Applying some kind of feature transformation technique (Weighted K-means, Kernel
K-means).

K-medoids (FRIEDMAN; HASTIE; TIBSHIRANI, 2001) is a clustering algorithm similar to K-
means. The goal is to find a clustering solution that minimizes a predefined objective function.
However, unlike K-mean, the method chooses the actual data points as the prototypes, making
it more robust to noise and outliers. The technique aims to minimize a sum of pairwise
dissimilarities instead of a sum of squared Euclidean distances. Despite the robustness of such
an approach, it is also computationally more expensive, which is not suitable for large datasets.

K-medians clustering is a variation of K-means clustering that calculates the median for
each cluster as opposed to calculating the mean of the cluster. This has the effect of minimizing
error over all clusters with respect to the 1-norm distance metric, as opposed to the squared
2-norm distance metric. K-medians is more robust to outliers compared with the K-means.
The goal is to determine those subsets of median points that minimize the cost of assignment
of the objects to the nearest medians. More information about the K-means variations can be
found in Refs. (REDDY; VINZAMURI, 2013; CHARU; CHANDAN, 2013).

Since the FCM algorithm is very similar to the K-means algorithm, many authors have
proposed several robust variants. For example, Ahmed (AHMED et al., 2002) has proposed a
modified FCM algorithm based on a modified objective function based on neighbor’s informa-
tion. This algorithm is more robust than FCM and gives good results, for noisy MRI medical
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images. Krishnapuram et al. (KRISHNAPURAM et al., 2001) presented a robust fuzzy-medoids for
fuzzy clustering of relational data. The objective function is based on selecting representative
objects (medoids) from the dataset so that the total fuzzy dissimilarity within each cluster is
minimized. Ref. (D’URSO; GIOVANNI; MASSARI, 2015) introduced a fuzzy C-medoids clustering
model for interval-valued data for avoiding the disruptive effects of possible outliers.

Sometimes distance metrics are not always good enough to capture correlations among
variables. There is a high probability of the existence of similar data patterns among a set
of features, even if they are far apart from each other as measured by the distance metrics
(KULKARNI; TOKEKAR; KULKARNI, 2015). This can happen, for example, when all variables are
used for the clustering process. Irrelevant dimensions can confuse the clustering algorithms by
hiding clusters formed in specific dimensions. In high-dimensional problems, it is common for
all of the objects in a dataset to be nearly equidistant from each other, completely masking
the clusters (PARSONS; HAQUE; LIU, 2004).

2.4 ADAPTIVE PARTITIONING CLUSTERING

Traditional clustering methods assume that the variables are uncorrelated and equally
relevant. The Euclidean distance as a dissimilarity measure restricts conventional algorithms
to datasets with hyper-spherical clusters and linearly separable characteristics. However, in real
problems, mainly in high-dimensional ones, some variables can be correlated. Therefore, for
any given pair of neighboring items within the same cluster, the objects may be separated
from each other in a few dimensions of the high-dimensional space. Please see Figure 4.

Addressing such, several techniques for clustering high dimensional data have included both
feature transformation and feature selection techniques. Feature transformation techniques
summarize the dataset in fewer dimensions by creating combinations of the original attributes,
which help uncover latent structure. However, since they preserve the relative distances between
objects, they are less effective when many irrelevant attributes hide the clusters. Another
observation is that these new features are combinations of the originals, making the new
features challenging to interpret.

Feature selection approaches select only the most relevant dimensions to reveal clusters of
objects similar to only a subset of their attributes. Despite their usefulness in many datasets,
feature selection algorithms have difficulty finding groups in different subspaces. It is this type
of data that motivated the evolution of Subspace clustering (SC) algorithms. The goal of SC
is to locate clusters in different subspaces or a specific subspace of the original data space.
SC is tolerant of missing values in input data. An object belongs to a particular subspace if
the attribute values in this subspace are not missing, irrespective of the values of the rest of
the attributes. This allows records with missing values to be used for clustering with more
accurate results than replacing missing values with values taken from a distribution.

The two main classes of SC algorithms are Hard Subspace Clustering (HSC) and SSC.
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Figure 4 – Visualization of different variables subspace. (a) Subspace of variables 1 and 2. (b) Subs-
pace of variables 1 and 3. (c) Subspace of variables 2 and 3. (d) Subspace of variables 1,
2 and 3.
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(b) Subspace of variables 1 and 3
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(c) Subspace of variables 2 and 3
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(d) Subspace of variables 1, 2 and 3
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While the goal of HSC is to identify exact subspaces, SSC algorithms perform clustering in
high-dimensional spaces by assigning a weight to each dimension to measure the contribution of
individual dimensions to the formation of a particular cluster. A detailed review of hard subspace
clustering algorithms can be found in Ref. (PARSONS; HAQUE; LIU, 2004). In SSC methods,
each dimension contributes to every cluster with different contributions. The subspaces of
different clusters can be identified by the weight values after clustering. In fact, SSC can be
considered an extension of the conventional Feature Weighting Clustering (FWC) (HUANG et

al., 2005; CHEUNG; ZENG, 2007; TSAI; CHIU, 2008; BOUGUILA, 2009), which employs a common
weight vector for the whole dataset in the clustering procedure V = (v1, . . . , vP ). However,
SSC assigns a weight vector to each cluster V = (v1, . . . ,vC), with vk = (vk1, . . . , vkP )

that represents the P -dimensional vectors of relevance weights on the k-th cluster. From this
perspective, SSC may thus be referred to as multiple features weighting clustering, which can
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be divided into two main categories (DENG et al., 2010):

• Fuzzy Weighting Subspace Clustering (FWSC).

• Entropy Weighting Subspace Clustering (EWSC).

In the first type of algorithms, the weights are assigned to the features of different clusters
with a fuzzy index, while the weights in the second type of algorithms are controllable by the
entropy to a certain extent. Compared with traditional non-subspace clustering techniques, SSC
has demonstrated promising performance in data clustering, especially for high-dimensional
data.

Several SSC methods have been proposed (ZHU et al., 2014; WANG et al., 2016; CHEN et al.,
2016). Wang et al. (WANG; WANG; WANG, 2004) introduced a technique applying a weighted
Euclidean distance in the FCM formulation to improve the clustering performance. Later,
Deng et al. (DENG et al., 2011) developed an enhanced entropy-weighting subspace clustering
algorithm for high dimensional gene expression data clustering by simultaneously integrating
the within-cluster and between-cluster information. Ref. (HANMANDLU et al., 2013) shows a
fuzzy co-clustering approach using a multi-dimensional distance function as the dissimilarity
measure and entropy as the regularization term for image segmentation. Rodríguez and de
Carvalho (RODRÍGUEZ; CARVALHO, 2017) also presented a soft subspace clustering algorithm
based on the Euclidean distance and entropy regularization. Aiming to simplify the presentation
and discussion of the experimental results, hereafter, we adopt the notation Entropy Fuzzy
Clustering Method with Local Product restriction and adaptive Euclidean distance (EFCM-
LP2) for the clustering algorithm of Ref. (RODRÍGUEZ; CARVALHO, 2017).

2.5 FUZZY CLUSTERING WITH ENTROPY REGULARIZATION

Regularization is an old technique to solve ill-posed problems of functional equations
(TIKHONOV, 1963) and has been applied to many real problems. Generally, regularization
implies modifying a given problem that is singular in some sense into a regular problem. The
singular problem is challenging to solve, while the other is easier to handle. The latter problem
can be seen as a regularization of the original when the solution of the regularized problem
approximates the original solution.

In hard clustering, the objects belong to one and only one group. However, in many pro-
blems, an item can belong to more than one cluster. For example, a university student can be
both an enrolled student and an employee of the university. Relaxing this rigidity has constitu-
ted a domain of research in the framework of cluster analysis. Many authors have proposed a
fuzzy setting as the appropriate approach to cope with this problem (BEZDEK, 2013). The no-
tion of membership degree has replaced the crisp assignment of the classical techniques, thus
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reflecting the imprecision in defining appropriate groups, especially when classifying complex
objects.

The FCM method is the most known representative in this category. It imposes a fuzziness
coefficient m to control the extent of membership sharing between fuzzy clusters. However,
according to Li and Mukaidono (LI; MUKAIDONO, 1995), this parameter can be seen as an
artificial device, without strong theoretical justification (LI; MUKAIDONO, 1995; COPPI; D’URSO,
2006). Addressing such, a new approach to fuzzy clustering was introduced by proposing the
so-called Maximum Entropy Inference Method (LI; MUKAIDONO, 1995), formalized as follows:

maximize

{
−

N∑
i=1

C∑
k=1

(uik) ln (uik)

}
(2.1)

s.t.
C∑

k=1

uik = 1 ;
N∑
i=1

C∑
k=1

(uik)dik = J (2.2)

where dik is a dissimilarity function and J is a given constraint loss function. According to its
definition, the total fuzzy cluster entropy is a concave function, and therefore its inverse is
a convex function. Therefore, maximizing the entropy is equivalent to minimizing its inverse
function. Hence, according to the idea of the maximum entropy principle, combining the
known constraint conditions with the maximum entropy term, an alternative expression of
optimization objective function of maximum entropy clustering can be obtained by introducing
Lagrange multipliers. The expressions for updating the prototypes and membership degree are
given in Equation (2.3),

uik =
exp −dik

2σ2∑C
h=1 exp

−dih
2σ2

; gkj =

∑N
i=1 uikxij∑N
i=1 uik

(2.3)

where σ is the Lagrange multiplier for the second constraint. Please note that σ2 resembles
the concept of temperature in statistical physics. When applied to fuzzy clustering, such
maximum entropy principle provides a new perspective to facing the problem of fuzzifying the
clusterization of the units while ensuring the maximum compactness of the obtained clusters.

Based on the above idea, several maximum entropy clustering methods have been pro-
posed. For example, Miyamoto and Mukaidono (SADAAKI; MASAO, 1997) offered a trade-off
between fuzziness and compactness by introducing a unique objective function reformulating
the maximum entropy method in terms of regularization of the FCM function. Since real data-
sets can have noise and outliers, Ref. (MIZUTANI; MIYAMOTO, 2005) introduced a kernel-based
possibilistic C-means clustering with entropy regularization to get a robust solution in a noisy
environment. Also, Rodríguez and de Carvalho (RODRÍGUEZ; CARVALHO, 2018a) proposed a
soft subspace clustering algorithm based on adaptive City-Block distances and entropy regu-
larization. Later, Tao et al. (TAO et al., 2019) presented a density-sensitive kernel maximum
entropy clustering algorithm. It performs a mapping to high-dimensional feature space by
adopting an appropriate kernel function to group non-Gaussian-distributed data.
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In general, these methods belong to an optimization problem with conditional constraints,
in which the maximum entropy model is identified as an optimal solution among all models that
meet the restrictions. According to the entropy concentration principle, most possible states
tend to finally concentrate near the one with the maximum entropy. Hence maximum entropy
clustering algorithm is claimed to produce more accurate clustering results than other tradi-
tional clustering techniques (TAO et al., 2019). Since such models share similarities with Ref.
(LI; MUKAIDONO, 1995), they offer a distinct physical meaning and well-defined mathematical
characteristics, making them easy to understand (LI; MUKAIDONO, 1995; SADAAKI; MASAO,
1997; COPPI; D’URSO, 2006). They can produce desirable results that accurately reveal the
known data’s underlying cluster structure and achieve the least estimation for the incomplete
data and the noise data to minimize the deviation. Furthermore, maximum entropy clustering
methods have gained much attention due to their low sensitivity to initialization and high
clustering performance on large-scale data (TAO et al., 2019).

2.6 CLUSTER VALIDITY

Cluster analysis is used for grouping a dataset into clusters of similar individuals. The
partitions generated by a clustering approach define for all data elements to which group they
belong. But clustering is an unsupervised process with no predefined classes and no examples
that can show that the clusters found by the clustering algorithms are valid. Regardless of
whether the structure exists, any clustering algorithm can always provide a division given
a dataset. Besides, different methods typically lead to different clusters; even for the same
algorithm, identifying the parameters or the presentation order of the input patterns may
impact the final results. Therefore, effective evaluation standards and criteria are essential to
provide a degree of confidence for the clustering results. Such evaluations should be objective
and have no preferences for any algorithm. They are also helpful for answering questions like
how many clusters are hidden in the data or why we choose some algorithm instead of another
(XU; WUNSCH, 2005).

Cluster validity indices estimate the quality of partitions produced by clustering algorithms
(XU; WUNSCH, 2008). Generally, there are two types of validation techniques, which are based
on external criteria and internal criteria (HALKIDI; BATISTAKIS; VAZIRGIANNIS, 2002). The first
one is based on external criteria. This implies that we evaluate the results of a clustering algo-
rithm based on a previously specified structure imposed on a dataset and reflects our intuition
about the clustering structure of the dataset. Internal criteria are not dependent on external
information (prior knowledge). On the contrary, they examine the clustering structure directly
from the original data. The indices used in this work to validate the clustering algorithms are
described below.



33

2.6.1 Adjusted Rand Index

The Adjusted Rand Index (ARI) (HUBERT; ARABIE, 1985) is an external validation me-
tric that measures the correspondence between two partitions of the same data. It takes its
values on the interval [−1, 1], in which 1 indicates perfect agreement between partitions. In
contrast, values near 0 or negatives correspond to cluster agreement found by chance. Let
Q = {Q1, . . . , Qm} be the a priori partition into m classes and P = {P1, . . . , PC} be the
partition into C clusters provided by the clustering algorithm. The ARI is defined as:

ARI =

∑m
i=1

∑C
j=1

(
ni,j

2

)
−
(
N
2

)−1∑m
i=1

(
ni

2

)∑C
j=1

(
nj

2

)
1
2

[∑m
i=1

(
ni

2

)
+
∑C

j=1

(
nj

2

)]
−

(
N
2

)−1∑m
i=1

(
ni

2

)∑C
j=1

(
nj

2

)
where ni,j is the number of agreements between class Qi and the cluster Pj, ni (or nj) is the
number of data points in class Qi (or cluster Pj) and N is the size of the whole dataset.

2.6.2 Hullermeier index

The internal validation metric Hullermeier (HUL) (Equation (2.4)) is a fuzzy extension of
the Rand index comparing two fuzzy partitions (HULLERMEIER et al., 2011). It considers its
values on the interval [0,1], in which the value 1 indicates perfect agreement between the
fuzzy partitions. In contrast, values close to 0 correspond to the cluster agreement found by
chance. V and U are two fuzzy partitions, and ∥.∥ is a proper metric on [0, 1]C . This work
uses ∥.∥ as the L1-norm divided by 2, as in Ref. (HULLERMEIER et al., 2011).

HUL = 1−

[∑N−1
i=1

∑N
j=i+1 |∥Vi −Vj∥ − ∥Ui −Uj∥|(

N
2

) ]
(2.4)

2.6.3 Partition Coefficient

The internal validation metric Partition Coefficient (PC) (BEZDEK, 1973) indicates the
average relative amount of shared membership between pairs of fuzzy subsets in U, when
combining into a single number, the average contents of pairs of fuzzy algebraic products.
Please see Equation (2.5). The index values range in [ 1

C
, 1], where C is the number of clusters.

The closer the value of PC to 1
C
, the fuzzier the clustering is. The lower value is obtained

when uik =
1
C
,∀k, i.

VPC =
1

N

N∑
i=1

C∑
k=1

u2
ik (2.5)
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2.6.4 Partition Entropy

The internal validation metric Partition Entropy (PE) (BEZDEK, 1975) measures the amount
of fuzziness in a given fuzzy partition U and is defined as in Equation (2.6). Its values range
in [0, log(C)], such that the closer the value to 0, the crisper the clustering is. The index value
close to the upper bound indicates the absence of any clustering structure or the inability of
the algorithm to extract it.

VPE =
1

N

N∑
i=1

C∑
k=1

(uik) log(uik) (2.6)
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3 REAL-VALUED DATA CLUSTERING WITH ENTROPY REGULARIZATION

3.1 INTRODUCTION

This chapter presents a literature review of the methods most closely related to this work.
New soft subspace clustering algorithms are proposed based on Euclidean, City-block, and
Mahalanobis distances and entropy regularization. These methods are iterative three-step algo-
rithms that provide a fuzzy partition, a representative for each fuzzy cluster, and the relevance
weight of the variables or their correlation by minimizing a suitable objective function. Several
experiments on synthetic and real datasets, including its application to noisy image texture
segmentation, demonstrate the usefulness of these adaptive clustering methods.

3.2 LITERATURE FUZZY CLUSTERING METHODS BASED ON ENTROPY REGULARI-
ZATION

The literature holds several maximum entropy clustering algorithms to search for global
regularity and obtain the smoothest reconstructions from the available data. Ref. (SADAAKI;

MASAO, 1997) proposes a variant of the FCM algorithm considering entropy regularization, he-
reafter named EFCM. In this case, fuzziness is represented by a weighting factor that multiplies
the regularization term added to the clustering criterion. In this framework, the regularization
function measures the overall fuzziness of the obtained clustering pattern. The minimization
of the following objective function is implicated:

JEFCM =
C∑

k=1

N∑
i=1

(uik)d(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.1)

s.t.
C∑

k=1

uik = 1 and uik ∈ [0, 1] (3.2)

where d is a dissimilarity function comparing the object ei and the cluster prototype gk. In
this work, the Euclidean and City-Block distances are used to measure dissimilarity. For a
better comparison, two variants of EFCM were considered in the experimental section, named
EFCM-2 and EFCM-1, with d(xi,gk) =

∑P
j=1(xij − gkj)

2 and d(xi,gk) =
∑P

j=1 |xij − gkj|,
respectively. The first term in the Equation (3.1) denotes the total heterogeneity of the fuzzy
partition as the sum of the heterogeneity of the fuzzy clusters. The second term is related to
the entropy that serves as a regulating factor during the minimization process. The parameter
Tu is a weight factor in the entropy term.

Case 1: If the dissimilarity function between objects and prototypes is based on the Eu-
clidean distance, then, the prototype gk = (gkj, . . . , gkP ) of the cluster k that minimizes the
clustering criterion is calculated as follows:
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gkj =

∑N
i=1 uikxij∑N
i=1 uik

(3.3)

Case 2: If the dissimilarity function is based on the City-Block distance, then the minimiza-
tion of the clustering criterion with respect to gkj leads to the minimization of

∑N
i=1 |yi−azi|,

where yi = uik xij, zi = uik and a = gkj. Since there is no algebraic solution for this problem,
but an algorithmic solution (JAJUGA, 1991) is known, we used Algorithm 1 to solve it.

Algorithm 1 Prototype computation
1: Determine bi =

yi
zi
(i = 1, . . . , N);

2: Rearrange the zi’s according to ascending order of bi’s and get z̃1, . . . , z̃N ;
3: Minimize

∑r
l=1 |z̃l| −

∑N
l=r+1 |z̃l| with respect to r;

4: If the minimum is negative, take a = br. If the minimum is positive, take a = br+1. If the
minimum is equal to zero, take br ≤ a ≤ br+1;

The membership degrees uik are computed according to Equation (3.4). Table 2 specifies
the assignment rules to obtain the fuzzy partition according to the different distance functions.

uik =
exp

{
−d(xi,gk)

Tu

}
∑C

w=1 exp
{
−d(xi,gw)

Tu

} (3.4)

Table 2 – Rules for computing the fuzzy partition according to the distance functions.

Distance function Rules for uik

∑P
j=1(xij − gkj)

2 uik =
exp

{
−

∑P
j=1(xij−gkj)

2

Tu

}
∑C

w=1 exp

{
−

∑P
j=1

(xij−gwj)2

Tu

}

∑P
j=1 |xij − gkj| uik =

exp

{
−

∑P
j=1 |xij−gkj |

Tu

}
∑C

w=1 exp

{
−

∑P
j=1

|xij−gwj |
Tu

}

Source: Author (2022)

Algorithm 2 summarizes the steps of the algorithm EFCM. Note that the minimization of
the objective function is performed iteratively in two steps (representation and assignment).

Despite the usefulness of the previous method, neither the correlation nor relevance of the
variables are considered. The SSC has been proposed to overcome this challenge (DENG et al.,
2010). Addressing such, Ref. (HANMANDLU et al., 2013) proposed an Entropy Fuzzy Clustering
Method with Local Sum restriction and adaptive Euclidean distance (EFCM-LS2) for image
segmentation that minimizes the following objective function:
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Algorithm 2 Algorithm EFCM
Input: The dataset D, the number C of clusters, the parameter Tu > 0, the maximum

number of iterations T and the threshold ε > 0, with ε << 1.
Output: The vector of prototypes G and the matrix of membership degrees U.
1: Initialization:

Set t = 0;

Randomly select C distinct prototypes g
(t)
k ∈ D (k = 1, ..., C) to obtain the

vector of prototypes G(t) = (g
(t)
1 , ...,g

(t)
C );

Compute the membership degrees U(t) = (u
(t)
ik )1≤i≤N

1≤k≤C
by Equation (3.4);

Compute the initial value of JEFCM according to Equation (3.1);

2: repeat

Set t = t+ 1; JOLD = JEFCM ;

3: Step 1: representation:

Compute gkj according to Equation (3.3) if the dissimilarity function is based
on the Euclidean distance, otherwise apply Algorithm 1;

4: Step 3: assignment:

Compute the elements uij of the matrix of membership degrees U = (uij)1≤i≤N
1≤j≤C

according to Equation (3.4);

5: Compute JEFCM according to Equation (3.1) and set JNEW = JEFCM ;
6: until |JNEW − JOLD| < ε or t > T

JEFCM−LS2 =
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vkj)(xij − gkj)
2

+Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

C∑
k=1

P∑
j=1

(vkj) ln(vkj)

(3.5)

where uik ∈ [0, 1],
∑C

k=1 uik = 1 and vkj ∈ [0, 1],
∑P

j=1 vkj = 1. The weighting parameters
Tu and Tv control the degree of fuzziness and the relevance weights of the variables, where
Tu > 0 and Tv > 0. When increasing Tu, the fuzziness of the clusters increases. Additionally,
when increasing Tv, the relevance of the variables tends to be similar.

The method starts with an initial partition and computes the prototypes, the relevance
weights of the variables, and the cluster partition iteratively in three steps until a stopping
criterion is satisfied. The minimum of the prototypes, the relevance of the variables, and fuzzy
partition are obtained when Equations (3.6) to (3.8). The method is executed according to
Algorithm 3.

gkj =

∑N
i=1 uikxij∑N
i=1 uik

(3.6) vkj =
exp{−

∑N
i=1(uik)(xij−gkj)

2

Tv
}∑P

w=1 exp{−
∑N

i=1(uik)(xiw−gkw)2

Tv
}

(3.7)



38

uik =
exp{−

∑P
j=1(vkj)(xij−gkj)

2

Tu
}∑C

w=1 exp{−
∑P

j=1(vwj)(xiw−gkw)2

Tu
}

(3.8)

Algorithm 3 Algorithm EFCM-LS2
Input: The dataset D, the number C of clusters, the parameter Tu > 0, the maximum

number of iterations T and the threshold ε > 0, with ε << 1.
Output: The vector of prototypes G; the matrix of membership degrees U and the relevance

weight vectors V.
1: Initialization:

Set t = 0;
Randomly initialize the matrix of membership degrees U = (uik)1≤i≤N

1≤k≤C
such

that uik ≥ 0 and
∑C

k=1 u
(t)
ik = 1;

Randomly select C distinct prototypes g
(t)
k ∈ D (k = 1, ..., C) to obtain the

vector of prototypes G(t) = (g
(t)
1 , ...,g

(t)
C );

Initialize the matrix of relevance weights V = (vkj)1≤k≤C
1≤j≤P

with vkj =

1/P, ∀k, j;
Compute the initial value of JEFCM−LS2 by Equation (3.5);

2: repeat

Set t = t+ 1; JOLD = JEFCM−LS2;

3: Step 1: representation:

For k = 1, . . . , C; j = 1, . . . , P , compute the component gkj of the prototype
gk = (gk1, ..., gkP ) according to Equation (3.6);

4: Step 2: weighting:

Compute the component vkj of the vector of relevance weights vk =
(vk1, ..., vkP ) according to Equation (3.7);

5: Step 3: assignment:

Compute the elements uij of the matrix of membership degrees U = (uij)1≤i≤N
1≤j≤C

according to Equation (3.8);

6: Compute JEFCM−LS2 by Equation (3.5) and set JNEW = JEFCM−LS2;
7: until |JNEW − JOLD| < ε or t > T

Later, Rodríguez and de Carvalho (RODRÍGUEZ; CARVALHO, 2017) proposed a FWSC with
fuzzy entropy that minimizes the following objective function:

JEFCM−LP2 =
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vkj)(xij − gkj)
2 + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.9)

subject to uik ∈ [0, 1], vkj > 0,
∑C

k=1 uik = 1 and
∏P

j=1 vkj = 1. The first term defines the
shape and size of the clusters and encourages agglomeration, while the second term is the
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negative entropy and is used to control the membership degree. Tu is a weighting parameter
that specifies the fuzziness degree, such that Tu > 0. The advantage of this method is that
it requires less parameter configuration. The method EFCM-LP2 sets an initial fuzzy partition
and alternates three steps until reach a suitable stopping criterion. The minimum of the
prototypes, relevance of the variables and fuzzy partition are obtained from Equations (3.10)
to (3.12). The method is executed according to Algorithm 4.

gkj =

∑N
i=1 uikxij∑N
i=1 uik

(3.10) vkj =

{∏P
w=1

∑N
i=1(uik)(xiw − gkw)

2
} 1

P∑N
i=1(uik)(xij − gkj)2

(3.11)

uik =
exp{−

∑P
j=1(vkj)(xij−gkj)

2

Tu
}∑C

w=1 exp{−
∑P

j=1(vwj)(xij−gwj)2

Tu
}

(3.12)

Algorithm 4 Algorithm EFCM-LP2
Input: The dataset D, the number C of clusters, the parameter Tu > 0, the maximum

number of iterations T and the threshold ε > 0, with ε << 1.
Output: The vector of prototypes G; the matrix of membership degrees U and the relevance

weight vectors V.
1: Initialization:

Set t = 0;
Randomly select C distinct prototypes g

(t)
k ∈ D (k = 1, ..., C) to obtain the

vector of prototypes G(t) = (g
(t)
1 , ...,g

(t)
C );

Randomly initialize the matrix of membership degrees U = (uik)1≤i≤N
1≤k≤C

such

that uik ≥ 0 and
∑C

k=1 u
(t)
ik = 1;

Set the matrix of relevance weights V = (vkj)1≤k≤C
1≤j≤P

with vkj = 1, ∀k, j;

Compute the initial value of JEFCM−LP2 by Equation (3.9);

2: repeat

Set t = t+ 1; JOLD = JEFCM−LP2;

3: Step 1: representation:

For k = 1, . . . , C; j = 1, . . . , P , compute the component gkj of the prototype
gk = (gk1, ..., gkP ) according to Equation (3.10);

4: Step 2: weighting:

Compute the component vkj of the vector of relevance weights vk =
(vk1, ..., vkP ) according to Equation (3.11);

5: Step 3: assignment:

Compute the elements uij of the matrix of membership degrees U = (uij)1≤i≤N
1≤j≤C

according to Equation (3.12);

6: Compute JEFCM−LP2 by Equation (3.9) and set JNEW = JEFCM−LP2;
7: until |JNEW − JOLD| < ε or t > T

Although the method considers the relevance weights of the variables, it assumes that they
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are uncorrelated. However, the variables can be correlated in many problems. Thus, it may be
more appropriate to use a Mahalanobis distance in such circumstances. Furthermore, the use
of global dissimilarity measures can be effective when the internal dispersion of the groups is
almost the same. Lastly, the above methods don’t work well in noisy environments since the
dissimilarity function is based on the Euclidean distance. So, robust measures of dissimilarities
are needed.

3.3 PROPOSED FUZZY REAL-VALUED DATA CLUSTERING WITH AUTOMATIC VARI-
ABLE SELECTION AND ENTROPY REGULARIZATION

This section presents new fuzzy clustering algorithms based on feature-weight learning. The
proposals measure the heterogeneity of the fuzzy partition as the sum of the heterogeneity in
each fuzzy cluster, where the distance-based term defines the shape and size of the groups
and encourages agglomeration. Additionally, it employs an entropy term that serves as a
regulating factor during the minimization process. The algorithms can be divided into three
main categories: fuzzy weighting subspace clustering (FWSC), entropy weighting subspace
clustering (EWSC) and feature weighting clustering (FWC).

Initially, a FWSC algorithms were introduced. The first proposal takes into account the
correlation of the variables in the clustering process. In this case, the method is defined by
a local covariance matrix introduced by Gustafson and Kessel (GUSTAFSON; KESSEL, 1979),
which changes in each iteration of the algorithm and is different from one cluster to another.
In this case, the algorithm is named Entropy Fuzzy Clustering Method with Local Mahalanobis
distance (EFCM-Mk), and minimizes Equation (3.13) such that uik ∈ [0, 1],

∑C
k=1 uik = 1

and det(Mk) = 1.

JEFCM−Mk =
C∑

k=1

N∑
i=1

(uik) dMk
(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.13)

=
C∑

k=1

N∑
i=1

(uik)(xi − gk)
TMk(xi − gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik)

The adaptive distance defined by a global covariance matrix that changes in each algorithm
iteration and is the same for all clusters was also considered. In this case, the proposed Entropy
Fuzzy Clustering Method with Global Mahalanobis distance (EFCM-M) minimizes the following
objective function:

JEFCM−M =
C∑

k=1

N∑
i=1

(uik) dM(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.14)

=
C∑

k=1

N∑
i=1

(uik)(xi − gk)
TM(xi − gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik)
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such that uik ∈ [0, 1],
∑C

k=1 uik = 1 and det(M) = 1. For both cases, in addition to the
membership degree matrix and the prototype vector, the global covariance matrix M and the
local covariance matrix Mk are also computed from EFCM-M and EFCM-Mk, respectively.
Tu is a weighting parameter specifying the fuzziness degree. The higher it is, the fuzzier the
cluster will be in the end.

Another alternative is when the product of the weights of the variables is equal to one.
This dissimilarity function is parameterized by the vector of relevance weights v = (v1, ..., vP ),
in which vj > 0 and

∏P
j=1 vj = 1. This FWC approach is named Entropy Fuzzy Clustering

Method with Global Product restriction (EFCM-GP) and its objective function is defined as
in Equation (3.15), such that uik ∈ [0, 1], vj > 0,

∑C
k=1 uik = 1 and

∏P
j=1 vj = 1. As before,

Tu specifies the fuzziness degree.

JEFCM−GP =
C∑

k=1

N∑
i=1

(uik) dv(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.15)

=
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vj)d(xij, gkj) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik)

The method EFCM-GP is named Entropy Fuzzy Clustering Method with Global Product
restriction and adaptive Euclidean distance (EFCM-GP2) when dv is based on the global
adaptive Euclidean distance. In this case, the objective function becomes:

JEFCM−GP2 =
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vj)(xij − gkj)
2 + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.16)

Furthermore, EFCM-GP is defined as Entropy Fuzzy Clustering Method with Global Pro-
duct restriction and adaptive City-Block distance (EFCM-GP1) when dv is the global adaptive
City-Block distance. In this case, the objective function becomes:

JEFCM−GP1 =
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vj)|xij − gkj|+ Tu

C∑
k=1

N∑
i=1

uik ln(uik) (3.17)

Unlike the previous cases, the weights of the variables can also be controlled by entropy.
In this regard, it is proposed an FWC method in which the set of relevant variables is the
same for all clusters, and the sum of the weights of the variables is equal to one (vj ≥ 0

and
∑P

j=1 vj = 1). This variant is named Entropy Fuzzy Clustering Method with Global
Sum restriction (EFCM-GS), and the corresponding algorithm involves the minimization of
Equation (3.18), with v = (v1, . . . , vP ) and subject to: uik ∈ [0, 1], vj ∈ [0, 1],

∑C
k=1 uik = 1

and
∑P

j=1 vj = 1. Tu and Tv are weighting parameters, the former specify the fuzziness degree
and the latter controls the relevance of the variables. Increasing the value of Tu increases the
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fuzziness of the clusters. Additionally, when Tv is high, the relevance of the variables tends to
be similar.

JEFCM−GS =
C∑

k=1

N∑
i=1

(uik) dv(xi,gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vj) ln(vj) (3.18)

=
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vj)d(xij, gkj) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vj) ln(vj)

EFCM-GS is named Entropy Fuzzy Clustering Method with Global Sum restriction and
adaptive Euclidean distance (EFCM-GS2) when dv is based on the global adaptive Euclidean
distance, such that dv(xi,gk) =

∑P
j=1(vj) d(xij, gkj), with d(xij, gkj) = (xij − gkj)

2. In this
case, the objective function becomes:

JEFCM−GS2 =
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vj)(xij − gkj)
2 + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vj) ln(vj)

(3.19)

Furthermore, EFCM-GS is named Entropy Fuzzy Clustering Method with Global Sum
restriction and adaptive City-Block distance (EFCM-GS1) when dv is the global adaptive
City-Block distance such that dv(xi,gk) =

∑P
j=1(vj) d(xij, gkj), with d(xij, gkj) = |xij−gkj|.

In this case, the objective function becomes:

JEFCM−GS1 =
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vj)|xij − gkj|+ Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + Tv

P∑
j=1

(vj) ln(vj)

(3.20)

The algorithms EFCM-GS2, EFCM-GS1, EFCM-GP2 and EFCM-GP1 return the matrix of
membership degrees, the prototype vector for each fuzzy cluster, and the vector of relevance
weights v = (v1, ..., vP ), where vj is the relevance weight of the j-th variable estimated
globally.

Additionally, a robust variable-wise dissimilarity with relevance weight of the variables lo-
cally estimated is also considered. In this case, the product of the weights is equal to one
(HUANG et al., 2005), and the City-Block distance compares objects and prototypes. The dis-
similarity function is parameterized by the vector of relevance weights vk = (vk1, ..., vkP ), in
which vkj > 0 and

∏P
j=1 vkj = 1, and it is associated with the k-th fuzzy cluster (k = 1, ..., C).

This FWSC approach is named Entropy Fuzzy Clustering Method with Local Product restric-
tion and adaptive City-Block distance (EFCM-LP1) and defines the objective function Equa-
tion (3.21), such that uik ∈ [0, 1], vkj > 0,

∑C
k=1 uik = 1 and

∏P
j=1 vkj = 1. The weighting

parameter Tu controls the degree of fuzziness of the clusters. In addition to the matrix of
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membership degrees and the vector of prototypes, the method returns the matrix of relevance
weights V = (v1, . . . ,vC) = (vkj)1≤k≤C

1≤j≤P
, where vkj is the relevance weight of the j-th variable

in the fuzzy cluster k and vk = (vk1, . . . , vkP ).

JEFCM−LP1 =
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vkj)|xij − gkj|+ Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.21)

The sum of the weights equal to one (HUANG et al., 2005) is also considered. The dissimila-
rity function is parameterized by the vector of relevance weights vk = (vk1, ..., vkP ), in which
vkj ≥ 0 and

∑P
j=1 vkj = 1, and it is associated with the k-th fuzzy cluster (k = 1, ..., C).

This EWSC approach is named Entropy Fuzzy Clustering Method with Local Sum restriction
and adaptive City-Block distance (EFCM-LS1) and defines the objective function Equation
(3.22), such that uik ∈ [0, 1], vkj ∈ [0, 1],

∑C
k=1 uik = 1 and

∑P
j=1 vkj = 1. The weighting

parameters Tu and Tv control, respectively, the degree of fuzziness of the clusters and the
relevance of the variables in the clusters.

JEFCM−LS1 =
C∑

k=1

N∑
i=1

(uik)
P∑

j=1

(vkj)|xij − gkj|+ Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.22)

+Tv

C∑
k=1

P∑
j=1

(vkj) ln(vkj)

Note that the proposed fuzzy clustering algorithms with the product constraint for the
variables require less parameter setting than the other approaches.

3.3.1 Optimization steps

This section provides the optimization steps of the algorithms aiming to compute the pro-
totypes, the fuzzy partition, the covariance matrix, or the relevance weights of the variables.
The minimization of the objective functions is performed iteratively in three steps (represen-
tation, weighting, and assignment).

3.3.1.1 Representation step

During the representation step, the matrix of membership degree U, the global matrix
M for EFCM-M or the local matrices Mk for EFCM-Mk and the relevance weights of the
variables for the other approaches are maintained fixed. This step provides the optimal solution
of the prototype vector associated with each fuzzy cluster. Then, the adequacy criterion for
the algorithms is minimized concerning the prototypes. The dissimilarity function plays an
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essential role in computing the prototypes. This work provides an exact solution for each of
the three possible choices of the dissimilarity functions.

Case 1 : If the dissimilarity function is based on the Mahalanobis distance (xi−gk)
TM(xi−

gk), we take the partial derivative of JEFCM−M (see Equation (3.14)) concerning gk and obtain
Equation (3.23). Then, by solving Equation (3.23), gk is defined as Equation (3.24).

∂JEFCM−M

∂gk

= −2
N∑
i=1

M(xi − gk) = 0 (3.23) gk =

∑N
i=1 uikxi∑N
i=1 uik

(3.24)

Similarly, if the dissimilarity function is (xi − gk)
TMk(xi − gk) (Equation (3.13)), gk is

computed as in Equation (3.24).
Case 2 : If the dissimilarity function is based on the global adaptive Euclidean distance,

the partial derivative of JEFCM−GS2 (see Equation (3.19)) is taken concerning gkj and Equa-
tion (3.25) is obtained. Then, Equation (3.26) is obtained by solving Equation (3.25).

∂JEFCM−GS2

∂gkj
= −2

N∑
i=1

(uik)(xij − gkj) = 0 (3.25) gkj =

∑N
i=1 uikxij∑N
i=1 uik

(3.26)

Following a similar reasoning, the prototype gkj of the k-th cluster that minimizes the
clustering criterion JEFCM−GP2 (see Equation (3.16)) is computed as in Equation (3.26).

Case 3 : If the dissimilarity function is the global adaptive City-Block distance, then the
minimization problem of Equations (3.17) and (3.20) to (3.22) with respect to gkj leads to
the minimization of

∑N
i=1 |yi − azi|, where yi = uik xij, zi = uik and a = gkj. Since there is

no algebraic solution for this problem, but an algorithmic solution (JAJUGA, 1991) is known,
we used Algorithm 1 to solve it.

3.3.1.2 Weighting step

This step provides an optimal solution for computing the covariance matrix for the algo-
rithms EFCM-M and EFCM-Mk, or the relevance weight of the variables for the other proposed
approaches, globally for all clusters or locally for each group. During the weighting step, the
prototype vector G and the matrix of membership degrees U remain fixed.

Proposition 1. The covariance matrix or the weights of the variables minimizing the proposed
objective functions are calculated according to the adaptive distance function used.

(a) If the distance function is the local adaptive Mahalanobis distance dMk
(xi,gk) =

(xi − gk)
TMk(xi − gk), the positive definite symmetric matrices Mk that minimizes the

criterion JEFCM−Mk (Equation (3.13)) under det(Mk) = 1 is updated according to the
following expression:

Mk = [det(Ck)]
1
P C−1

k with Ck =
N∑
i=1

(uik)(xi − gk)(xi − gk)
T (3.27)

(b) If the distance function is the global adaptive Mahalanobis distance dM(xi,gk) =
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(xi − gk)
TM(xi − gk), the positive definite symmetric matrix M that minimizes the criterion

JEFCM−M (Equation (3.14)) under det(M) = 1 is updated according to Equation (3.28).

M = [det(Q)]
1
P Q−1, Q =

C∑
k=1

Ck and Ck =
N∑
i=1

(uik)(xi − gk)(xi − gk)
T (3.28)

(c) If the adaptive distance function is given by dv(xi,gk) =
∑P

j=1(vj)d(xij, gkj), the
components vj(j = 1, ..., P ) of the vector of weights v = (v1, . . . , vP ) minimizing the criterion
JEFCM−GS (Equation (3.18)) under vj ∈ [0, 1] ∀ j, and

∑P
j=1 vj = 1 are computed as follows:

vj =
exp{−

∑C
k=1

∑N
i=1(uik)d(xij ,gkj)

Tv
}∑P

w=1 exp{−
∑C

k=1

∑N
i=1(uik)d(xiw,gkw)

Tv
}

(3.29)

When the dissimilarity function is based on the Euclidean and City-Block distances, vj is
defined as Equations (3.30) and (3.31), respectively.

vj =
exp{−

∑C
k=1

∑N
i=1(uik)(xij−gkj)

2

Tv
}∑P

w=1 exp{−
∑C

k=1

∑N
i=1(uik)(xiw−gkw)2

Tv
}

(3.30)

vj =
exp{−

∑C
k=1

∑N
i=1(uik)|xij−gkj |

Tv
}∑P

w=1 exp{−
∑C

k=1

∑N
i=1(uik)|xiw−gkw|

Tv
}

(3.31)

(d) If the adaptive distance function is given by dv(xi,gk) =
∑P

j=1(vj)d(xij, gkj), the
components vj(j = 1, ..., P ) of the vector of weights v = (v1, . . . , vP ) minimizing the criterion
JEFCM−GP (Equation (3.15)) under vj > 0 ∀ j and

∏P
j=1 vj = 1 are computed according to

Equation (3.32).

vj =

{∏P
w=1

[∑C
k=1

∑N
i=1(uik)d(xiw, gkw)

]} 1
P∑C

k=1

∑N
i=1(uik)d(xij, gkj)

(3.32)

We define Equation (3.32) as Equations (3.33) and (3.34) when the dissimilarity function
is based on the Euclidean and City-Block distances, respectively.

vj =

{∏P
w=1

[∑C
k=1

∑N
i=1(uik)(xiw − gkw)

2
]} 1

P∑C
k=1

∑N
i=1(uik)(xij − gkj)2

(3.33)

vj =

{∏P
w=1

[∑C
k=1

∑N
i=1(uik)|xiw − gkw|

]} 1
P∑C

k=1

∑N
i=1(uik)|xij − gkj|

(3.34)

(e) If the adaptive distance function is given by
∑P

j=1(vkj)|xij − gkj|, the components
vkj(k = 1, ...C, j = 1, ..., P ) of the vector of weights vk = (vk1, . . . , vkP ) minimizing the
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criterion JEFCM−LP1 (Eq. (3.21)) under vkj > 0 ∀ k, j and
∏P

j=1 vkj = 1 ∀ k are computed
as follows:

vkj =

{∏P
w=1

[∑N
i=1(uik)|xiw − gkw|

]} 1
P∑N

i=1(uik)|xij − gkj|
(3.35)

(f) If the adaptive distance function is given by
∑P

j=1(vkj)|xij − gkj|, the components
vkj(k = 1, ...C, j = 1, ..., P ) of the vector of weights vk = (vk1, . . . , vkP ) minimizing the
criterion JEFCM−LS1 (Eq. (3.22)) under vkj ∈ [0, 1] ∀ k, j and

∑P
j=1 vkj = 1 ∀ k are computed

as follows:

vkj =
exp{−

∑N
i=1(uik)|xij−gkj |

Tv
}∑P

w=1 exp{−
∑N

i=1(uik)|xiw−gkw|
Tv

}
(3.36)

Proof. (a) We wish to minimize JEFCM−M regarding M under det(M) = 1. Let the Lagran-
gian function be:

L =
C∑

k=1

N∑
i=1

(uik)(xi − gk)
TM(xi − gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) + β [1− det(M)] (3.37)

Considering the derivative ∂L
∂M

and using the identities ∂(yTMy)
∂M

= yyT , ∂ det(M)
∂M

= det(M)M−1

that hold for a non-singular matrix M and any compatible vector y:

∂L
∂M

=
C∑

k=1

N∑
i=1

(uik)(xi − gk)(xi − gk)
T − β det(M)M−1 = 0 (3.38)

It follows that M−1 = Q
β

where Q =
∑C

k=1 Ck and Ck =
∑N

i=1(uik)(xi − gk)(xi −
gk)

T because det(M) = 1. As det(M−1) = 1
det(M)

= 1, from M−1 = −Q
β

it follows that
det(M−1) = det(Q)

βP = 1, then β = (det(Q))
1
P . Moreover, as M−1 = Q

β
= Q

(det(Q))
1
P

, it follows

that M = (det(Q))
1
P Q−1.

An extremum value of JEFCM−M is reached when M = (det(Q))
1
P Q−1. This extremum

value is JEFCM−M((det(Q))
1
P Q−1) = trace[Q(det(Q))

1
P Q−1] = P det(Q))

1
P . On the other

hand, JEFCM−M(I) = trace[QI] = trace[Q]. As a positive definite symmetric matrix, Q =

PΛPT (according to the singular value decomposition procedure) where: PPT = PTP = I,
Λ = diag(ς1, ..., ςP ), and ςj(j = 1, ..., P ) are the eigenvalues of Q. Thus JEFCM−M(I) =

trace[PΛPT ] = trace[Λ] =
∑P

j=1 ςj. Moreover, det(Q) = det(PΛPT ) = det(Λ) =
∏P

j=1 ςj.
As it is well known that the arithmetic mean is greater than the geometric mean, i.e.,
(1/P )(ς1 + ... + ςP ) > {ς1 × .. × ςP}1/P (the equality holds only if ς1 = ... = ςP , it fol-
lows that JEFCM−M(I) > JEFCM−M(det(Q))

1
P Q−1). Thus, we conclude that this extreme is

a minimum.
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Note that the matrix Ck is related to the fuzzy covariance matrix in the k-th cluster, and
therefore the matrix M is related to the pooled fuzzy covariance matrix.

(b) Following a reasoning similar to that of part (a), we conclude that
Mk = [det(Ck)]

1
P C−1

k with Ck =
∑N

i=1(uik)(xi − gk)(xi − gk)
T .

(c) We want to minimize JEFCM−LS1 with respect to vkj, (k = 1, ...C, j = 1, ..., P ) under
vkj ∈ [0, 1] ∀j and

∑P
j=1 vkj = 1. We use the Lagrangian multiplier to solve the unconstrained

minimization problem in Equation (3.22).

L =
C∑

k=1

N∑
i=1

uik

P∑
j=1

(vkj)|xij − gkj|+ Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.39)

+Tv

C∑
k=1

P∑
j=1

(vkj) ln(vkj)−
C∑

k=1

γk

[
P∑

j=1

vkj − 1

]

Taking the partial derivative of L in Equation (3.39) with respect to vkj and setting the
gradient to zero we have Equation (3.40). Then, from Equation (3.40), is obtained Equa-
tion (3.41).

∂L
∂vkj

=
N∑
i=1

(uik)|xij − gkj|+ Tv(ln(vkj) + 1)− γk = 0 (3.40)

vkj = exp{γk
Tv

− 1} exp{−
∑N

i=1(uik)|xij − gkj|
Tv

} (3.41)

Substituting Equation (3.40) in
∑P

w=1 vkj = 1, we have

P∑
w=1

vkw =
P∑

w=1

exp{γk
Tv

− 1} exp{−
∑N

i=1(uik)|xiw − gkw|
Tv

} = 1 (3.42)

It follows that

exp{γk
Tv

− 1} =
1∑P

w=1 exp{−
∑N

i=1(uik)|xiw−gkw|
Tv

}
(3.43)

Substituting Equation (3.43) in Equation (3.40), we obtain

vkj =
exp{−

∑N
i=1(uik)|xij−gkj |

Tv
}∑P

w=1 exp{−
∑N

i=1(uik)|xiw−gkw|
Tv

}
(3.44)

Also we have that

∂JEFCM−LS1

∂vkj
=

N∑
i=1

(uik)|xij − gkj|+ Tv(ln(vkj) + 1);
∂2JEFCM−LS1

∂vkj
=

Tv

vkj
(3.45)
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The Hessian matrix of JEFCM−LS1 with respect to V is:

∂2JEFCM−LS1(V) =


Tv

v11
. . . 0

. . . . . .

0 . . . Tv

vCP


Since Tv > 0 and vkj ≥ 0, the Hessian matrix ∂2JEFCM−LS1(V) is positive definite, Then

we can conclude that this extremum is a minimum.
(d) Following reasoning similar as in part (c), we conclude that

vj =
exp{−

∑C
k=1

∑N
i=1(uik)d(xij ,gkj)

Tv
}∑P

w=1 exp{−
∑C

k=1

∑N
i=1(uik)d(xiw,gkw)

Tv
}

(e) We want to minimize JEFCM−GP with respect to vj, (k = 1, ..., C), under vj > 0 ∀ j

and
∏P

j=1 vj = 1. We use the Lagrangian multiplier to solve the unconstrained minimization
problem in Equation (3.15).

L =
N∑
i=1

C∑
k=1

P∑
j=1

(uik)(vj)d(xij, gkj) + Tu

N∑
i=1

C∑
k=1

(uik) ln(uik)− γ

[
P∏

j=1

vj − 1

]
(3.46)

Taking the partial derivative of L in Equation (3.46) with respect to vj and setting the
gradient to zero, we have Equation (3.47). Then, from Equation (3.47), Equation (3.48) is
obtained.

∂L
∂vj

=
N∑
i=1

C∑
k=1

(uik)d(xij, gkj)−
γ

vj
= 0 (3.47) vj =

γ∑N
i=1

∑C
k=1(uik)d(xij, gkj)

(3.48)

Substituting Equation (3.48) in
∏P

j=1 vj = 1, we have Equation (3.49). Then after some
algebra, Equation (3.50) is obtained.

P∏
h=1

vh =
P∏

h=1

γ∑N
i=1

∑C
k=1(uik)d(xih, gkh)

= 1

(3.49)

γ = {
P∏

h=1

N∑
i=1

C∑
k=1

(uik)d(xih, gkh)}
1
P

(3.50)
Substituting Equation (3.50) in Equation (3.48) we obtain

vj =
{
∏P

h=1

∑N
i=1

∑C
k=1(uik)d(xih, gkh)}

1
P∑N

i=1

∑C
k=1(uik)d(xij, gkj)

(3.51)

If we rewrite the criterion JEFCM−GP as J(v1, ..., vP ) =
∑P

j=1(vj) Jj where
Jj

∑N
i=1(uik) d(xij, gkj) and Tu

∑N
i=1

∑C
k=1(uik) ln(uik) is seen like a constant. An extreme

value of J is reached when J(v1, ..., vP ) = P{J1, ..., JP}
1
P . As J(1, ..., 1) =

∑P
j=1 Jj =

J1 + ...+ JP , and as it is well known that the arithmetic mean is greater than the geometric
mean, i.e., 1

P
{J1 + ...+ JP} > {J1 × ...× JP}

1
P , (the equality holds only if J1 = . . . = JP ),

we conclude that this extremum is a minimum. Thus, Proposition 1 was proved.
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(f) Following reasoning similar as in part (e), we conclude that

vkj =

{∏P
w=1

[∑N
i=1(uik)|xiw − gkw|

]} 1
P∑N

i=1(uik)|xij − gkj|
(3.52)

3.3.1.3 Assignment step

This step provides the solution to compute the matrix U of membership degree. In the
assignment step, the prototype G and the matrix M for EFCM-M, Mk for EFCM-Mk or the
relevance weights of the variables for the other approaches remain fixed.

Proposition 2. The fuzzy partition U = (u1, . . . ,uN) is updated according to Equation (3.53),
with ui = (uik, . . . , uiC), such that uik(i = 1, . . . , N ; k = 1, . . . , C) represents the mem-
bership degree of object ei in the k-th fuzzy cluster, under uik ∈ [0, 1] and

∑C
k=1 uik = 1.

uik =
exp

{
−∆(xi,gk)

Tu

}
∑C

w=1 exp
{
−∆(xi,gw)

Tu

} (3.53)

The distance function ∆ compares the i-th object and the fuzzy cluster prototype k. Table 3
specifies the assignment rules to obtain the fuzzy partition according to the different adaptive
distance functions.

Proof. We want to minimize the clustering criterion with respect to uik under uik ∈ [0, 1] and∑C
k=1 uik = 1.
(a) If the adaptive distance function is given by (xi − gk)

TM(xi − gk) and we want
to minimize JEFCM−M with respect to uik under uik ∈ [0, 1] and

∑C
k=1 uik = 1. Let the

Lagrangian function be:

L =
C∑

k=1

N∑
i=1

(uik)(xi − gk)
TM(xi − gk) + Tu

C∑
k=1

N∑
i=1

(uik) ln(uik)−
N∑
i=1

λi

[
C∑

k=1

uik − 1

]
(3.54)

Taking the partial derivative of L with respect to uik and setting the gradient to zero, we
have:

∂L
∂uik

= (xi − gk)
TM(xi − gk) + Tu(ln(uik) + 1)− λi = 0 (3.55)

From Equation (3.55) is obtained:

uik = exp{ λi

Tu

− 1} exp{−(xi − gk)
TM(xi − gk)

Tu

} (3.56)

Subject to
∑C

w=1 uiw = 1
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Table 3 – Assignment rules for the fuzzy partition according to the distance functions.

Objective functions Rules for uik

Equation (3.14)
exp

{
− (xi−gk)TM(xi−gk)

Tu

}
∑C

w=1 exp

{
− (xi−gw)TM(xi−gw)

Tu

}

Equation (3.13)
exp

{
− (xi−gk)TMk(xi−gk)

Tu

}
∑C

w=1 exp

{
− (xi−gw)TMw(xi−gw)

Tu

}

Equations (3.19) and (3.16)
exp

{
−

∑P
j=1(vj)(xij−gkj)

2

Tu

}
∑C

w=1 exp

{
−

∑P
j=1

(vj)(xij−gwj)
2

Tu

}

Equations (3.20) and (3.17)
exp

{
−

∑P
j=1(vj)|xij−gkj |

Tu

}
∑C

w=1 exp

{
−

∑P
j=1

(vj)|xij−gwj |
Tu

}

Equations (3.21) and (3.22)
exp

{
−

∑P
j=1(vkj)|xij−gkj |

Tu

}
∑C

w=1 exp

{
−

∑P
j=1

(vwj)|xij−gwj |
Tu

}

Source: Author (2022)

C∑
w=1

exp{ λi

Tu

− 1} exp{−(xi − gw)
TM(xi − gw)

Tu

} = 1 (3.57)

From Equation (3.57) we obtain Equation (3.58). Then, substituting Equation (3.58) in
Equation (3.56) we have Equation (3.59).

exp{ λi

Tu

− 1} =
1∑C

w=1 exp{−
(xi−gw)TM(xi−gw)

Tu
}

(3.58)

uik =
exp{− (xi−gk)

TM(xi−gk)
Tu

}
1∑C

w=1 exp{−
(xi−gw)TM(xi−gw)

Tu
}

(3.59)
Additionally, we know that:

∂JEFCM−M

∂uik

= (xi−gk)
TM(xi−gk)+Tu(ln(uik)+1) and

∂2JEFCM−M

∂uik

=
Tu

uik

(3.60)

The Hessian matrix of JEFCM−M according to U is:



51

∂2JEFCM−M(U) =


Tu

u11
. . . 0

. . . . . .

0 . . . Tu

uNC


Since Tu > 0 and uik ≥ 0, the Hessian matrix ∂2JEFCM−M(U) is positive definite, it is
possible to conclude that such extremum is a minimum. The matrix of membership degree of
the objects into the fuzzy clusters for the other proposed approaches is obtained similarly as
in part (a). Thus, Proposition 2 was proved.

Note that the proposed maximum entropy clustering algorithms share some similarities
with the Gaussian method proposed by Rui-Ping Li et al. (LI; MUKAIDONO, 1995) regarding
the membership degree computing. Please see Section 2.5. Therefore, we can state that the
proposals in this work have a distinct physical meaning and well-defined mathematical charac-
teristics (TAO et al., 2019; LI; MUKAIDONO, 1995).

3.3.2 Proposed fuzzy clustering algorithms

Algorithm 5 summarizes the proposed clustering algorithms.

3.3.3 Convergence properties

The algorithms EFCM-M and EFCM-Mk provide a global covariance matrix M∗ with
det(M∗) = 1, and a local covariance matrix M∗

k estimated locally such that det(M∗
k) = 1

for each cluster, a fuzzy partition U∗ = (u∗
1, . . . ,u

∗
N) and a vector of prototypes G∗ =

(g∗
1, . . . ,g

∗
C) where:

• JEFCM−M(G∗,M∗,U∗) = min{JEFCM−M(G,M,U),G ∈ LC ,M ∈ M,U ∈ UN}

• JEFCM−Mk(G
∗,M∗

k,U
∗) = min{JEFCM−Mk(G,Mk,U),G ∈ LC ,Mk ∈ MC ,U ∈

UN}

− L is the representation space of the prototypes such that gk ∈ L (k = 1, . . . , C) and
G ∈ LC = L × · · · × L. In this paper L = RP .

− U is the space of the fuzzy partition membership degrees such that ui ∈ U (i =

1, . . . , N). In this paper U = {u = (u1, . . . ,uC) ∈ [0, 1] × · · · × [0, 1] = [0, 1]C :∑C
k=1 uik = 1 and uik ≥ 0} and U ∈ UN = U × · · · × U.

− M defines the space of positive definite symmetric matrix with determinant equal to 1,
such that M ∈ M and Mk ∈ MC = M × · · · × M.
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Algorithm 5 The proposed algorithms.
Input: The dataset D, the number C of clusters, the parameters Tu > 0 and Tv > 0, the

maximum number of iterations T and the threshold ε > 0, with ε << 1.
Output: The vector of prototypes G, the matrix of membership degrees U, the matrix M

and the matrix Mk or the relevance weights globally for all clusters or locally for each
group.

1: Initialization:

Set t = 0;

Randomly initializing the matrix of membership degrees U = (uik)1≤i≤N
1≤k≤C

, such

that uik ≥ 0 and
∑C

k=1 u
(t)
ik = 1;

2: repeat
3: Set t = t+ 1;
4: Step 1: representation:

Computing the component gkj of the prototype gk = (gk1, ..., gkP ) according
to Section 3.3.1.1;

5: Step 2: weighting:

Computing the weights of the variables as shown in Section 3.3.1.2;

6: Step 3: assignment:

Computing the elements uij of the matrix of membership degrees U =
(uij)1≤i≤N

1≤j≤C
according to Equation (3.53).

7: until max(|u(t)
ij − u

(t−1)
ij |) < ε or t ≥ T

Moreover, the algorithms EFCM-GS (EFCM-GS2 and EFCM-GS1) and EFCM-GP (EFCM-
GP1 and EFCM-GP2) provide a fuzzy partition U∗ = (u∗

1, . . . ,u
∗
N), a vector of prototypes

G∗ = (g∗
1, . . . ,g

∗
C) and a relevance weight vector v∗ such that:

• JEFCM−GS(G
∗,v∗,U∗) = min{JEFCM−GS(G,v,U),G ∈ LC ,v ∈ Ξ,U ∈ UN}

• JEFCM−GP (G
∗,v∗,U∗) = min{JEFCM−GP (G,v,U),G ∈ LC ,v ∈ Ξ,U ∈ UN}

− Ξ is the space of vectors of weights such that v ∈ Ξ. In this paper, Ξ = {v =

(v1, . . . , vP ) ∈ RP : vj > 0 and
∏P

j=1 vj = 1} or Ξ = {v = (v1, . . . , vP ) ∈ RP : vj ∈
[0, 1] and

∑P
j=1 vj = 1}.

Additionally, EFCM-LP1 EFCM-LS1 provides a fuzzy partition U∗ = (u∗
1, . . . ,u

∗
N), a vector

of prototypes G∗ = (g∗
1, . . . ,g

∗
C) and a vector of relevance weight vectors V∗ = (v∗

1, . . . ,v
∗
C)

such that:

• JEFCM−LS1(G
∗,V∗,U∗) = min{JEFCM−LS1(G,V,U),G ∈ LC ,V ∈ ΞC ,U ∈ UN}

− Ξ is the space of vectors of weights such that vk ∈ Ξ, (k = 1, . . . , C). In this paper,
Ξ = {v = (v1, . . . , vP ) ∈ RP : vkj > 0 and

∏P
j=1 vkj = 1} or Ξ = {v = (v1, . . . , vP ) ∈

RP : vkj ∈ [0, 1] and
∑P

j=1 vkj = 1}, and V ∈ ΞC = Ξ× · · · × Ξ.
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Similarly to Ref. (DIDAY; SIMON, 1976), the convergence properties of the proposed algo-
rithms can be studied from the series:

• v
(t)
EFCM−M(G(t),M(t),U(t)) ∈ LC×M×UN and u

(t)
EFCM−M = JEFCM−M(v

(t)
EFCM−M) =

JEFCM−M(G(t),M(t),U(t)), where t = 0, 1, . . . is the iteration number;

• v
(t)
EFCM−Mk(G

(t),M
(t)
k ,U(t)) ∈ LC×MC×UN and u

(t)
EFCM−Mk = JEFCM−Mk(v

(t)
EFCM−Mk) =

JEFCM−Mk(G
(t),M

(t)
k ,U(t)), where t = 0, 1, . . . is the iteration number;

• v
(t)
EFCM−GS(G

(t),v(t),U(t)) ∈ LC×Ξ×UN and u
(t)
EFCM−GS = JEFCM−GS(v

(t)
EFCM−GS) =

JEFCM−GS(G
(t),v(t),U(t)), where t = 0, 1, . . . is the iteration number;

• v
(t)
EFCM−GP (G

(t),v(t),U(t)) ∈ LC×Ξ×UN and u
(t)
EFCM−GP = JEFCM−GP (v

(t)
EFCM−GP ) =

JEFCM−GP (G
(t),v(t),U(t)), where t = 0, 1, . . . is the iteration number;

• v
(t)
EFCM−LP1(G

(t),V(t),U(t)) ∈ LC×ΞC×UN and u
(t)
EFCM−LP1 = JEFCM−LP1(v

(t)
EFCM−LP1) =

JEFCM−LP1(G
(t),V(t),U(t)), where t = 0, 1, . . . is the iteration number;

• v
(t)
EFCM−LS1(G

(t),V(t),U(t)) ∈ LC×ΞC×UN and u
(t)
EFCM−LS1 = JEFCM−LS1(v

(t)
EFCM−LS1) =

JEFCM−LS1(G
(t),V(t),U(t)), where t = 0, 1, . . . is the iteration number;

From the initial terms: v(0)EFCM−M(G(0),M(0),U(0)), v(0)EFCM−Mk(G
(0),M

(0)
k ,U(0)),

v
(0)
EFCM−GS(G

(0),v(0),U(0)),v(0)EFCM−GP (G
(0),v(0),U(0)), v(0)EFCM−LP1(G

(0),V(0),U(0)) and
v
(0)
EFCM−LS1(G

(0),V(0),U(0)), the algorithms EFCM-M, EFCM-Mk, EFCM-GS, EFCM-GP,
EFCM-LP1 and EFCM-LS1 compute the different terms of the series, v(t)EFCM−M , v(t)EFCM−Mk,
v
(t)
EFCM−GS, v(t)EFCM−GP , v(t)EFCM−LP1, and v

(t)
EFCM−LS1, until the respective convergence (to be

demonstrated) when the objective functions JEFCM−M , JEFCM−Mk, JEFCM−GS, JEFCM−GP ,
JEFCM−LP1 and JEFCM−LS1 reach stationary values.

Proposition 3.

i The series u(t)
EFCM−M = JEFCM−M(v

(t)
EFCM−M) = JEFCM−M(G(t),M(t),U(t)),

t = 0, 1, . . . , decreases at each iteration and converges;

ii The series u(t)
EFCM−Mk = JEFCM−Mk(v

(t)
EFCM−Mk) = JEFCM−Mk(G

(t),M
(t)
k ,U(t)),

t = 0, 1, . . . , decreases at each iteration and converges;

iii The series u(t)
EFCM−GS = JEFCM−GS(v

(t)
EFCM−GS) = JEFCM−GS(G

(t),v(t),U(t)),

t = 0, 1, . . . , decreases at each iteration and converges;

iv The series u(t)
EFCM−GP = JEFCM−GP (v

(t)
EFCM−GP ) = JEFCM−GP (G

(t),v(t),U(t)),

t = 0, 1, . . . , decreases at each iteration and converges;

v The series u(t)
EFCM−LP1 = JEFCM−LP1(v

(t)
EFCM−LP1) = JEFCM−LP1(G

(t),V(t),U(t)),

t = 0, 1, . . . , decreases at each iteration and converges;
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vi The series u(t)
EFCM−LS1 = JEFCM−LS1(v

(t)
EFCM−LS1) = JEFCM−LS1(G

(t),V(t),U(t)),

t = 0, 1, . . . , decreases at each iteration and converges;

Proof. i. The series u(t)
EFCM−M = JEFCM−M(v

(t)
EFCM−M) = JEFCM−M(G(t),M(t),U(t)), t =

0, 1, . . . , decreases at each iteration and converges;
The objective function JEFCM−M measures the heterogeneity of the partition as the sum

of the heterogeneity in each cluster. We will first show that the inequalities (I), (II) and (III)
below hold (i.e., the series decreases at each iteration).

JEFCM−M(G(t),M(t),U(t))︸ ︷︷ ︸
u
(t)
EFCM−M

(I)︷︸︸︷
≥ JEFCM−M(G(t+1),M(t),U(t))

(II)︷︸︸︷
≥ JEFCM−M(G(t+1),M(t+1),U(t))

(III)︷︸︸︷
≥ JEFCM−M(G(t+1),M(t+1),U(t+1))︸ ︷︷ ︸

u
(t+1)
EFCM−M

The inequality (I) holds because JEFCM−M(G(t),M(t),U(t)) =∑C
k=1

∑N
i=1(u

(t)
ik ) dM(t)(xi,g

(t)
k ) + Tu

∑C
k=1

∑N
i=1(u

(t)
ik ) ln(u

(t)
ik ) and

JEFCM−M(G(t+1),M(t),U(t)) =
∑C

k=1

∑N
i=1(u

(t)
ik ) dM(t)(xi,g

(t+1)
k ) +

Tu

∑C
k=1

∑N
i=1(u

(t)
ik ) ln(u

(t)
ik ), and according to Section 3.3.1.1,

G(t+1)=(g
(t+1)
1 ,...,g

(t+1)
C ) = arg min︸ ︷︷ ︸

G=(g1,...,gC)∈LC

C∑
k=1

N∑
i=1

(u
(t)
ik ) dM(t)(xi,gk) + Tu

C∑
k=1

N∑
i=1

(u
(t)
ik ) ln(u

(t)
ik )

Moreover, inequality (II) holds because JEFCM−M(G(t+1),M(t+1),U(t)) =∑C
k=1

∑N
i=1(u

(t)
ik ) dM(t+1)(xi,g

(t+1)
k ) + Tu

∑C
k=1

∑N
i=1(u

(t)
ik ) ln(u

(t)
ik ) and according to Proposi-

tion 1,

M(t+1) = arg min︸ ︷︷ ︸
M∈M

C∑
k=1

N∑
i=1

(u
(t)
ik ) dM(xi,g

(t+1)
k ) + Tu

C∑
k=1

N∑
i=1

(u
(t)
ik ) ln(u

(t)
ik )

The inequality (III) also holds because JEFCM−M(G(t+1),M(t+1),U(t+1)) =
∑C

k=1

∑N
i=1

(u
(t+1)
ik ) dM(t+1)(xi,g

(t+1)
k ) + Tu

∑C
k=1

∑N
i=1(u

(t+1)
ik ) ln(u

(t+1)
ik ) and according to Proposition 2,

U(t+1) = (u
(t+1)
1 , . . . ,u

(t+1)
N ) = arg min︸ ︷︷ ︸

U=(u1,...,uN )∈UN

C∑
k=1

N∑
i=1

(uik) dM(t+1)(xi,g
(t+1)
k )+

Tu

C∑
k=1

N∑
i=1

(uik) ln(uik) (3.61)

Finally, since the series u
(t)
EFCM−M decreases and it is bounded (J(v

(t)
EFCM−M) ≥ 0), it

converges.
The proof of the convergence of the series u

(t)
EFCM−Mk, t = 0, 1, . . . , u

(t)
EFCM−GS, t =

0, 1, . . . , u(t)
EFCM−GP , t = 0, 1, . . . , u(t)

EFCM−LP1, t = 0, 1, . . . and u
(t)
EFCM−LS1, t = 0, 1, . . .
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proceeds similarly to the proof of the convergence of the series u
(t)
EFCM−M , t = 0, 1, . . . that

has been just presented.

Proposition 4.

i. The series v(t)EFCM−M = (G(t),M(t),U(t)), t = 0, 1, . . . , converges;

ii. The series v(t)EFCM−Mk = (G(t),M
(t)
k ,U(t)), t = 0, 1, . . . , converges;

iii. The series v(t)EFCM−GS = (G(t),v(t),U(t)), t = 0, 1, . . . , converges;

iv. The series v(t)EFCM−GP = (G(t),v(t),U(t)), t = 0, 1, . . . , converges;

v. The series v(t)EFCM−LP1 = (G(t),V(t),U(t)), t = 0, 1, . . . , converges.

vi. The series v(t)EFCM−LS1 = (G(t),V(t),U(t)), t = 0, 1, . . . , converges.

Proof. i. The series v(t)EFCM−M = (G(t),M(t),U(t)), t = 0, 1, . . . , converges;
Assuming that the stationarity of the series u

(t)
EFCM−M is achieved in the iteration t = T ,

then, we have u
(T )
EFCM−M = u

(T+1)
EFCM−M and then JEFCM−M(v

(T )
EFCM−M) =

JEFCM−M(v
(T+1)
EFCM−M).

From JEFCM−M(v
(T )
EFCM−M) = JEFCM−M(v

(T+1)
EFCM−M) we arrive at

JEFCM−M(G(T ),M(T ),U(T )) = JEFCM−M(G(T+1),M(T+1),U(T+1)). This equality, accor-
ding to Proposition 4 , can be rewritten as the equalities (I)-(III):

JEFCM−M(G(T ),M(T ),U(T ))︸ ︷︷ ︸
u
(T )
EFCM−M

(I)︷︸︸︷
= JEFCM−M(G(T+1),M(T ),U(T ))

(II)︷︸︸︷
= JEFCM−M(G(T+1),M(T+1),U(T ))

(III)︷︸︸︷
= JEFCM−M(G(T+1),M(T+1),U(T+1))

From the first equality (I), the result is G(T ) = G(T+1), since G is unique, minimizing
JEFCM−M when the fuzzy partition represented by U(T ) and the matrix M(T ) are maintained
fixed. From the second equality (II), the result is M(T ) = M(T+1) because M is unique,
minimizing JEFCM−M , when the fuzzy partition represented by U(T ) and and the matrix of
prototypes G(T+1) are maintained fixed. Furthermore, from the third equality (III), the result
is U(T ) = U(T+1) since U is unique minimizing JEFCM−M when the prototypes G(T+1) and
the matrix M(T+1) are maintained fixed.

Therefore, it can be concluded that v
(T )
EFCM−M = v

(T+1)
EFCM−M , which stands for all t ≥ T

and v
(t)
EFCM−M = v

(T )
EFCM−M ,∀t ≥ T and follows that the series v(t)EFCM−M converges.

The proof of the convergence of the series v
(t)
EFCM−Mk, t = 0, 1, . . . , v

(t)
EFCM−GS, t =

0, 1, . . . , v(t)EFCM−GP , t = 0, 1, . . . , v(t)EFCM−LP1, t = 0, 1, . . . and v
(t)
EFCM−LS1, t = 0, 1, . . .

proceeds similarly to the proof of the convergence of the series v(t)EFCM−M presented above.
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3.3.4 Complexity analysis

To obtain prototypes for methods based on the Euclidean and Mahalanobis distances, the
computational complexity is O(N × C × P ), while O(N × C × P × log(N)) is applied for
approaches based on the City-Block distance. The number of objects, clusters, and variables is
represented by N , C, and P , respectively. In the weighting step, the complexity to obtain M

and Mk for EFCM-M and EFCM-Mk, respectively, depends on the matrix inversion method
used to implement the clustering algorithm. In this paper, the complexity for obtaining M for
EFCM-M is O(max{N×C×P 2, P 3}), and O(C×max{N×P 2, P 3}) to compute Mk for the
EFCM-Mk algorithm. For the other methods, the complexity time to compute the relevance
weights is O(N×C×P ). Finally, for computing the matrix of membership degree for EFCM-M
and EFCM-Mk, the complexity time is O(N × C × P 2). However, for other approaches, it is
O(N × C × P ). Therefore, globally, assuming that the iterative function needs T iterations
to converge, we would have:

• Complexity time of O(T ×max{N × C × P 2, P 3}) for EFCM-M.

• Complexity time of O(T × C ×max{N × P 2, P 3}) for EFCM-Mk.

• Complexity time of O(T ×N × C × P ) for EFCM-GS2 and EFCM-GP2.

• Finally, complexity time of O(T × C ×N × P × log(N)) for EFCM-GS1, EFCM-GP1,
EFCM-LP1 and EFCM-LS1.

Maximum entropy clustering has lower computational complexity than its FCM versions,
which makes this type of method more attractive for large-scale and high-dimensional data
clustering.

3.4 EXPERIMENTAL RESULTS

This section evaluates the performance and usefulness of the proposed algorithms by ap-
plying them to suitable synthetic and real datasets. A summary of proposed methods is shown
in Table 4. Also, research questions 1, 2 and 3 are answered. Proposed methods were compared
with the four previous most related fuzzy clustering models: EFCM-2 and EFCM-1 (SADAAKI;

MASAO, 1997), EFCM-LS2 (HANMANDLU et al., 2013) and EFCM-LP2 (RODRÍGUEZ; CARVA-

LHO, 2017) algorithms.

3.4.1 Experimental setting

Optimal values for Tu and Tv were found using a grid search strategy. Following a proce-
dure similar to Ref. (SCHWÄMMLE; JENSEN, 2010), for each dataset, the value of Tu varied
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Table 4 – Summary of proposed methods.

Algorithms Description
EFCM-M Proposed method based on Global Mahalanobis distance
EFCM-Mk Proposed method based on Local Mahalanobis distance
EFCM-GP2 Proposed entropy fuzzy method with global product restriction and

adaptive Euclidean distance
EFCM-GP1 Proposed entropy fuzzy method with global product restriction and

adaptive City-Block distance
EFCM-LP1 Proposed entropy fuzzy method with local product restriction and

adaptive City-Block distance
EFCM-GS2 Proposed entropy fuzzy method with global sum restriction and

adaptive Euclidean distance
EFCM-GS1 Proposed entropy fuzzy method with global sum restriction and

adaptive City-Block distance
EFCM-LS1 Proposed entropy fuzzy method with local sum restriction and adap-

tive City-Block distance

Source: Author (2022)

from 0.01 to 100 (with step 0.01). Then, an optimal value for the parameter is obtained when
the minimum centroid distance falls under 0.1 for the first time. For the methods with both
Tu and Tv, Tv varied between 10 and 108 (with step 10). Fixing the value of Tv, the procedure
abovementioned to compute Tu was followed. Subsequently, the pair (Tu, Tv) with the maxi-
mum distance was chosen. Note that the optimal values are calculated without supervision.
The maximum number of iterations T and stop condition parameter ε were set to 100 and
10−5, respectively.

Before running the algorithms, each dataset was normalized. The characteristics had a
zero mean and a standard deviation of one. Furthermore, the number of clusters is set equal
to the number of a priori classes for simplicity. Finally, the clustering results obtained by the
algorithms were compared using the measures HUL and ARI.

3.4.2 Synthetic dataset experiments with different configurations

In the first experiment, four synthetic datasets described by two-dimensional vectors ge-
nerated randomly from a normal distribution were created. The synthetic datasets were gene-
rated, having classes of different sizes and shapes as in Ref. (CARVALHO; TENÓRIO; JUNIOR,
2006). Each has 450 points, divided into four classes of unequal sizes. The classes were drawn
according to a bivariate normal distribution with vector µ and covariance matrix Σ. For more
details, see Table 5.

Four different data configurations were considered. Firstly, the class covariance matrices
are diagonal and nearly equal (Figure 5 (a)). In the second configuration, the class covariance
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Table 5 – Description of the synthetic dataset.

Total objects per class Bi-variate normal distribution definition
Class 1 Class 2 Class 3 Class 4 µ Σ

150 150 50 100 µ =

[
µ1

µ2

]
Σ =

[
σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]
Source: Author (2022)

matrices are diagonal but unequal (Figure 5 (b)). The class covariance matrices are not diago-
nal but almost the same for the third configuration (Figure 5 (c)). Finally, we consider that in
addition to not being diagonal, the class covariance matrices are also unequal (Figure 5 (d)).
Table 6 shows a detailed review of each synthetic data configuration.

Table 6 – Synthetic data configurations.

Configuration 1 Configuration 2 Configuration 3 Configuration 4
Classes 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
µ1 45 70 45 42 45 70 50 42 45 70 45 42 45 70 50 42
µ2 30 38 42 20 22 38 42 2 30 38 42 20 22 38 42 2
σ2
1 100 81 100 81 144 81 36 9 100 81 100 81 144 81 36 9

σ2
2 9 16 16 9 9 36 81 144 9 16 16 9 9 36 81 144
ρ 0 0 0 0 0 0 0 0 0.7 0.8 0.7 0.8 0.7 0.8 0.7 0.8

Source: Author (2022)

Fifty replications of each synthetic dataset were carried out in a framework of a Monte Carlo
experiment. For each dataset and algorithm, 50 random initializations were performed. The
best result of these 50 repetitions is selected according to their respective objective function.
The average and standard deviation of the indices were calculated based on the 50 Monte
Carlo iterations. Note that the number of clusters is assumed to be equal to four.

The Friedman test (FRIEDMAN, 1937) is used to explore the statistical significance of
the results obtained. We analyze the algorithms by ranking them on each dataset separately.
The best performing algorithm is ranked as 1. The second best is ranked as 2, and so on.
In the case of ties, average ranks are assigned. Subsequently, we calculate and compare the
average ranks of all algorithms on the datasets. Suppose that the null hypothesis that all the
algorithms perform equivalently is rejected under the Friedman test. In that case, the Nemenyi
post-hoc test (NEMENYI, 1963) is used to determine which algorithms perform statistically
differently. The Nemenyi test compares algorithms in a pairwise manner. According to this
test, the performances of the two algorithms are significantly different if the distance of the
average ranks exceeds the critical distance. The objective is to determine whether at least one
method is significantly better than at least one other method at the α = 0.05 level.
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Figure 5 – Clusters drawn from different data configurations. (a) The class covariance matrices are
diagonal and nearly equal. (b) The class covariance matrices are diagonal but unequal.
(c) The class covariance matrices are not diagonal but almost the same. (d) The class
covariance matrices are neither diagonal nor equal.
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3.4.2.1 Results

Figure 6 shows the values of the mean and the standard deviation for HUL and ARI for all
methods and data configurations. Numeric values can be observed in Table 26 (Appendix B).
Proposed methods are highlighted in bold.

In data configuration 1 (the cluster covariance matrices are diagonal and almost the same),
the best results according to the HUL index were obtained by EFCM-1, EFCM-GP1, and EFCM-
M algorithms with values of 0.7946, 0.7739, and 0.7091, respectively. The best performance for
ARI was presented by the EFCM-1 algorithm. Moreover, EFCM-GP1 and EFCM-2 achieved,
respectively, the second and third best values. The EFCM-LS1, EFCM-GS1, and EFCM-Mk
algorithms produced the worst clustering results for HUL, while for ARI, it was the algorithms
EFCM-Mk, EFCM-LS1, and EFCM-LP2. As expected, in this data configuration, almost all the
methods with global adaptive distance outperformed their respective variants based on local
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Figure 6 – Mean and standard deviation for the data configurations. (a) Dataset 1 results. (b) Dataset
2 results. (c) Dataset 3 results. (d) Dataset 4 results
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adaptive distance, i.e., the methods EFCM-M, EFCM-GP1, EFCM-GP2, EFCM-GS1 outperfor-
med, respectively, the methods EFCM-Mk, EFCM-LP1, EFCM-LP2, EFCM-LS1. EFCM-GS2
outperforms EFCM-LS2 concerning ARI index, but the latter surpasses EFCM-GS2 regarding
HUL index.

Data configuration 2 presents cluster covariance matrices that are diagonal but unequal.
The best result was provided by the algorithms EFCM-GP1, EFCM-LP2, and EFCM-1 for HUL
and by EFCM-LP2, EFCM-LP1, and EFCM-Mk for ARI. The algorithms EFCM-M, EFCM-GP2,
and EFCM-2 obtained the worst performance for the HUL index and EFCM-GS1, EFCM-M
and EFCM-GS2 for the ARI index. For this configuration, almost all the local adaptive dis-
tance methods presented better results than their respective variants based on global adaptive
distance.
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When the cluster covariance matrices are not diagonal but almost the same (data configura-
tion 3), the first, second, and third best performance for HUL were presented by EFCM-GP1,
EFCM-Mk, and EFCM-M, respectively. For the ARI index, the best results were achieved,
respectively, by EFCM-M, EFCM-Mk, and EFCM-GP1. The worst result was presented, res-
pectively, by the algorithms EFCM-LS1 and EFCM-GS1 showed the worst results for HUL, and
EFCM-LP2 and EFCM-LS2 for ARI. Finally, for this data configuration and concerning the
ARI index, the methods with global adaptive distance outperformed their respective variants
based on local adaptive distance. Besides, as expected, the proposal EFCM-M was the best
among all methods.

For the fourth data configuration, where the cluster covariance matrices are not diagonal
and unequal, the algorithm EFCM-Mk outperforms the other approaches for both indices.
EFCM-M presented the worst performance at HUL, and EFCM-GS1 and EFCM-GS2 had the
worst performance for ARI. Finally, for this data configuration and concerning the ARI index,
the methods with local adaptive distance outperformed their respective variants based on
global adaptive distance.

Figures 7 and 8 show the comparison of the algorithms against each other with the Nemenyi
test. For the models joined by the horizontal lines, there is no evidence of statistical significant
differences. The average performance rank is also presented. In this regard, concerning HUL
index, Figure 7 shows that the EFCM-1 reached the best average performance ranking for the
first configuration. However, there is no consistent evidence indicating statistical differences
among EFCM-1, EFCM-GP1, and EFCM-M. In configuration 2, the best results were presen-
ted by EFCM-GP1, EFCM-LP2, EFCM-1, EFCM-LP1, while for configuration 3, EFCM-Mk,
EFCM-M, and EFCM-GP1 showed the highest performance. Finally, for the last configuration,
EFCM-Mk achieved the best results on average. Nonetheless, it did not present consistent
evidence to indicate statistical significant differences regarding EFCM-GP1, EFCM-1.

Analyzing the results according to the index ARI, Figure 8 shows that the global models
EFCM-1, EFCM-GP1, EFCM-2, EFCM-M and EFCM-GP2 presented the best performances.
However, the local methods EFCM-LP2 and EFCM-LP1 are more appropriate to configuration
2. The proposed method with the global covariance matrix EFCM-M was statistically better
than the other clustering algorithms. Finally, for configuration 4, our proposal with the local
covariance matrices showed the highest average performance ranking. However, there are no
statistical significant differences regarding local methods EFCM-LP2 and EFCM-LP1.

3.4.3 Synthetic datasets with different percentages of outliers

An outlier in a dataset is defined informally as an observation that is considerably different
from the remainders as if a distinct mechanism generates it (HE; XU; DENG, 2003). Outliers
occur due to mechanical faults, changes in system behavior, fraudulent behavior, and human
errors. Manage outliers in the clustering process is an important issue in data mining with
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Figure 7 – Comparison of the algorithms against each other through the Nemenyi test for HUL.
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numerous applications, including credit card fraud detection, the discovery of criminal activities
in electronic commerce, weather prediction, marketing, and customer segmentation.

This experiment was developed to verify the behavior of the proposed methods in the
presence of outliers. For this purpose, a synthetic dataset with 80 objects described by two-
dimensional vectors was generated randomly from a normal distribution according to the para-
meters shown in Table 7 (Figure 9 (a)). Two different percentages of outliers (10% and 20%)
have been added to the dataset to assess the robustness of the algorithms. Please see Figure 9
(b) and (c). Table 7 shows the configuration of the parameters for generating the outliers.

Table 7 – Parameter settings for different percentages of outliers.

µ1 µ2 σ2
1 σ2

2

Class 1 0 0 0.05 0.05
Class 2 0.8 0.8 0.05 0.05
Outliers 0.8 1 5 5

Source: Author (2022)
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Figure 8 – Comparison of the algorithms against each other through the Nemenyi test for ARI.
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Figure 9 – Synthetic dataset with different percentage of outliers. (a) Data with 0% of outliers, (b)
data with 10% of outliers and (c) data with 20% of outliers.
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Fifty replications of the synthetic dataset were carried out in a framework of a Monte
Carlo experiment. For each dataset, 50 random initializations of the clustering algorithm were
performed. The average and standard deviation of the indices were calculated based on the
50 Monte Carlo iterations, and the number of clusters was set to two.
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3.4.3.1 Results

Figure 10 shows the results for HUL and ARI with different percentages of outliers accor-
ding to the mean and the standard deviation. Numeric values can be observed in Table 27
(Appendix B).

Figure 10 – Mean and standard deviation for different percentages of outliers according to the indices
(a) HUL and (b) ARI, respectively.
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Figure 10 shows that for 0% of outliers, methods with the Euclidean distance presented
the best results compared with those based on the Mahalanobis and City-Block distances.
However, concerning misclassification measured in HUL and ARI with different percents of
outliers, algorithms based on the City-Block distance outperform the other approaches, being
able to identify the presence of clusters even in a noisy environment, and the performance
clustering degrades very slowly as the percentage of outliers increases.

Figure 11 shows that for HUL, the City-Block distance-based methods achieved the highest
average performance ranking, regardless of the percentage of outliers. Additionally, almost
all algorithms showed similar results when analyzing the values for ARI with 0% percent of
outliers, see Figure 12. However, when the number of outliers increases, the algorithms with
the City-Block distance EFCM-1, EFCM-GS1, EFCM-GP1, and EFCM-LP1 presented the
best performance. Besides, there is no consistent evidence to indicate statistical performance
differences among them.
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Figure 11 – Comparison of the algorithms with each other with the Nemenyi test for HUL with
different percentages of outliers.
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3.4.4 Real datasets

The previous and proposed algorithms were also applied on 15 real datasets available at
the UCI machine learning repository (BACHE; LICHMAN, 2013): Automobile (Auto), Balance
Scale, Haberman’s Survival, Statlog (Heart), Image Segmentation, Ionosphere, Iris Plants,
Mnist, Thyroid Gland, User Knowledge Modeling (UKM), Vehicle, Vertebral Column, Wiscon-
sin Diagnostic Breast Cancer (WDBC), Wall-Following Robot Navigation (WFRN), and Wine.
Table 8 briefly describes the datasets in which N , P , and C represent the number of patterns,
variables, and a priori classes, respectively. As can be seen, several sample sizes, number of
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Figure 12 – Comparison of the algorithms with each other with the Nemenyi test for ARI with different
percentages of outliers.
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EFCM-1 - 3.31

EFCM-M - 6.91

EFCM-Mk - 10.17

EFCM-GP2 - 7.04

EFCM-GP1 - 3.45

EFCM-LP2 - 9.26

EFCM-LP1 - 3.64

EFCM-GS2 - 7.07

EFCM-GS1 - 3.17

EFCM-LS2 - 10.61

EFCM-LS1 - 6.29

Source: Author (2022)

attributes, and number of classes were considered.
The hyper-parameter values were chosen according to the same procedure used in the

experiments with the synthetic datasets. However, Tu varied between 0.01 and 300 (with step
0.01). The algorithms were executed on each dataset 100 times, and the cluster centers were
randomly initialized at each time. The best result for each algorithm was selected according
to its respective objective function. For each dataset, the number of clusters was set equal to
the number of a priori classes, as shown in Table 8. The HUL and ARI indices were considered
to assess the misclassification.
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Table 8 – Summary of the real datasets.

Dataset N P C Dataset N P C Dataset N P C

Automobile 205 25 6 Balance Scale 625 4 3 Haberman 306 3 2
Heart 270 13 2 Image Segmentation 2310 19 7 Ionosphere 351 33 2

Iris plants 150 4 3 Mnist 14 780 784 2 Thyroid gland 215 5 3
UKM 403 5 4 Vehicle 846 18 4 Vertebral column 310 6 3

WDBC 569 30 2 WFRN 5456 4 4 Wine 178 13 3

Source: Author (2022)

3.4.4.1 Results

Table 28 gives the numeric values provided by the algorithms on real datasets and the
performance rank in parenthesis. Besides, Figure 13 presents the cumulative rank according
to both indices computed from Table 28. It is observed that the algorithm EFCM-GP1 offers
the best performance for real datasets, regardless of the index considered. In this regard, the
proposal with the global adaptive City-Block distance showed to be a promising approach for
resolving real clustering problems. Moreover, the algorithms EFCM-1 and EFCM-LP1 achieved
the second and third-best results for the HUL index, while EFCM-LS1 and EFCM-LP2 for ARI.
Finally, the algorithms EFCM-GS2 and EFCM-Mk reached the worst results for HUL and ARI,
respectively.

Figure 13 – Clustering results on real data for HUL and ARI according to Table 28.
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Table 29 gives the results provided by the algorithms on real datasets and the performance
rank of each algorithm (in parenthesis) based on the mean and the standard deviation of the
algorithm executions. Furthermore, Figure 14 shows the cumulative rank according to both
indices computed from Table 29. It can be observed that the proposed algorithm EFCM-GP1
also achieves the best clustering results for both indices. Therefore, the method is robust when
selecting the best result according to the objective function and all other cases. The algorithm
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EFCM-GS2 obtained the worst results for HUL. The lowest values for ARI were presented by
EFCM-M and EFCM-Mk.

Figure 14 – Clustering results on real data for HUL and ARI according to Table 29.
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3.4.5 Analysis of the hyper-parameters setting

The proposed methods introduce the regularization coefficients Tu and Tv for managing the
membership degree and the relevance weights of the variables. Selecting their correct values
significantly influences the subsequent clustering, as shown with the Iris dataset in Figure 15.
As can be seen, upon Tu > 5, the performance of the algorithms reaches a flat area of low
values of HUL. In addition, when Tu increases, the results according to ARI tend to decrease.
The proposed methods present this behavior because Tu controls the extent of membership
shared between fuzzy clusters. The higher Tu, the more diffuse the obtained partition, and
the closer the prototypes of each group, see Figure 16. In contrast, the relevance weights of
the variables in EFCM-GS2, EFCM-GS1, and EFCM-LS1 are controllable by entropy. In this
regard, the weights of the variables are similar with higher Tv. Besides, small values reveal
distinct relevance, see Table 9. Despite the fact that the ability to discriminate the relevance
of the variables deteriorates with high Tv value, the models still manage to determine such
importance, even for high values such as Tv = 1000.

In general, even though selecting the optimal value for the hyper-parameters in an unsu-
pervised manner is a difficult task, it was noted that acceptable solutions could be obtained
by avoiding values that lead to nearby centroids. Addressing such, the optimal values for Tu

and Tv were chosen without supervision, as described in Section 3.4. In this sense, a new
perspective was provided for fuzzifying the clusterization of the units while ensuring maximum
cluster compactness.
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Figure 15 – Effect of the hyper-parameters Tu and Tv on the Iris dataset. (a) Performance of EFCM-
M, EFCM-Mk, EFCM-GP2, EFCM-GP1 and EFCM-LP1 for HUL and ARI with different
values of Tu. Figures (b), (c) and (d) shows the performances of the algorithms EFCM-
GS2, EFCM-GS1 and EFCM-LS1 varying Tu and Tv.
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Figure 16 – Prototypes obtained using the proposed method EFCM-GS2 on the Iris dataset for (a)
Tu = 0.1, (b) Tu = 3 and (c) Tu = 1000.
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(b) Prototypes for Tu = 3
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(c) Prototypes for Tu = 1000
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3.4.6 Brodatz texture images for segmentation

Image segmentation is a challenging but essential task in several imaging analyses or
computer vision applications (PAL; PAL, 1993). Texture image segmentation plays an essential
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Table 9 – Weights of the variables obtained using the proposed method EFCM-GS2 on the
Iris dataset for Tu = 1 and (a) Tv = 0.1, (b) Tv = 3 and (c) Tv = 1000.

Variables Tv = 0.1 Tv = 3 Tv = 1000

1 0 0 0.2485
2 0 0 0.2420
3 1 0.9303 0.2554
4 0 0.0697 0.2541

Source: Author (2022)

role in the human visual system for recognition and interpretation (AKBARIZADEH; RAHMANI,
2017; QIAN et al., 2017; DU et al., 2018). It aims to segment a texture image into several regions
with different texture features, providing surface characteristics for analyzing many types of
images, including natural scenes, remotely sensed data, and biomedical modalities.

This section assesses the performance and robustness of the proposed algorithms in tex-
ture image segmentation with and without noise. The images used were acquired from the
Brodatz texture dataset (RANDEN, ), and are employed to demonstrate the performance of the
algorithms for datasets with high dimensionality. The first and second rows of Figure 17 show
the six texture images with and without Gaussian noise (mean 0, variance 0.3). Moreover,
the last row of Fig. 17 illustrates the corresponding ideal segmentation results used as a refe-
rence to quantitatively determine the segmentation performance. The images are synthesized
with different types of texture images: two-textural images (D4 and D49), five-textural images
(D21, D22, D49, D53, and D55), and seven-textural images (D3, D6, D21, D49, D53, D56,
and D93).

3.4.6.1 Experimental setting

The features of the texture images were extracted using the Gabor filter as in Ref. (KYRKI;

KAMARAINEN; KÄLVIÄINEN, 2004). A filter bank with six orientations (every 30° ) and five
frequencies starting from 0.4 was created by extracting 30-dimensional features for every pixel
of the 100×100 texture images filtered by the filter bank. After extracting the texture features,
we used the algorithms to segment each texture image. The choice of the parameter values
was obtained as in previous sections. However, we vary the values of Tu between 0.1 and 100
(with step 0.1). The algorithms were executed ten times on each dataset. The best results
were selected according to their respective objective function. In the experiments, the number
of clusters is assumed to be equal to 2, 5, and 7 in images with two, five, and seven textures,
respectively.
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Figure 17 – Two, five, and seven-textural images with and without Gaussian noise.
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3.4.6.2 Results

Tables 10 and 11 present the obtained clustering for the algorithms on images without
and with noise, respectively, for the best result according to their objective functions. Besides,
Figures 18 to 20 show the unsupervised segmentation results using each algorithms on 2, 4
and 7 textural images without and with Gaussian noise.

In this application, methods based on the City-Block distance generally degrade their
performance more slowly than those with the Mahalanobis and Euclidean distances in a noisy
environment. Besides, the EFCM-1 algorithm obtained higher values for HUL in the 2-textural
image without noise. However, EFCM-LP1 and EFCM-GP1 achieved the second and third-best
performances, respectively. Regarding ARI values, EFCM-LP1 and EFCM-GP1 outperformed
the other approaches. The EFCM-LS2 algorithm presented the worst results for both indices.
In the case of the 5-textural image, EFCM-LS2 showed a higher value of HUL, but EFCM-GP1
yielded the highest clustering result for ARI and produced better segmentation results. The
worst performances were presented by EFCM-M and EFCM-GS1 for HUL and ARI, respectively.
For 7-textural images, EFCM-M reached the best results regardless of the index considered.
EFCM-GS1 and EFCM-LS1 obtained the worst performances for HUL and ARI, respectively.

Regarding images with Gaussian noise, EFCM-GP1 and EFCM-GP2 obtained the best
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Table 10 – HUL and ARI index for 2, 5 and 7 textural image without noise for the best solution
according to the objective function.

2-Textural Image 5-Textural Image 7-Textural Image
Algorithms HUL ARI HUL ARI HUL ARI
EFCM-2 0.5547 (6) 0.7438 (4) 0.6484(5) 0.7572 (3) 0.7577 (3) 0.4716 (5)
EFCM-1 0.7853 (1) 0.7222 (7) 0.5780 (6) 0.7502 (4) 0.7225 (6) 0.5191 (2)

EFCM-M 0.5398 (10) 0.0079 (10) 0.2990 (12) 0.1906 (10) 0.8765 (1) 0.5231 (1)
EFCM-Mk 0.5365 (11) -0.0236 (11) 0.5558 (8) 0.1792 (11) 0.6561 (10) 0.2157 (10)
EFCM-GP2 0.5710 (5) 0.7438 (4) 0.6873 (3) 0.7740 (2) 0.8063 (2) 0.4981 (4)
EFCM-GP1 0.6980 (3) 0.7571 (2) 0.6487 (4) 0.7826 (1) 0.6939 (7) 0.5051 (3)
EFCM-LP2 0.5506 (7) 0.7266 (6) 0.6964 (2) 0.4811 (8) 0.6581 (9) 0.2632 (9)
EFCM-LP1 0.7005 (2) 0.7740 (1) 0.5580 (7) 0.6054 (6) 0.6862 (8) 0.4319 (8)
EFCM-GS2 0.5399 (9) 0.7438 (4) 0.5160 (10) 0.4860 (7) 0.7403 (5) 0.4666 (6)
EFCM-GS1 0.5925 (4) 0.7114 (8) 0.5053 (11) 0.1230 (12) 0.6003 (12) 0.1081 (11)
EFCM-LS2 0.5359 (12) -0.0430 (12) 0.7629 (1) 0.4379 (9) 0.7404 (4) 0.4353 (7)
EFCM-LS1 0.5420 (8) 0.1129 (9) 0.5368 (9) 0.6319 (5) 0.6267 (11) 0.0743 (12)

Source: Author (2022)

Table 11 – HUL and ARI index for 2, 5 and 7 textural image with Gaussian noise for the best
solution according to the objective function.

2-Textural Image 5-Textural Image 7-Textural Image
Algorithms HUL ARI HUL ARI HUL ARI
EFCM-2 0.5694 (4) 0.5863 (7) 0.4795 (9) 0.4523 (6) 0.6437 (4) 0.2894 (6)
EFCM-1 0.630 (2) 0.6328 (2) 0.6164 (5) 0.5925 (4) 0.5830 (8) 0.3274 (2)

EFCM-M 0.5392 (8) 0.0434 (8) 0.2021 (12) 0.0678 (12) 0.1484 (12) 0.0390 (12)
EFCM-Mk 0.5195 (12) 0.0015 (9) 0.4318 (10) 0.1805 (10) 0.5412 (9) 0.1373 (9)
EFCM-GP2 0.5403 (5) 0.5866 (5.5) 0.7592 (1) 0.6730 (1) 0.6964 (1) 0.3219 (3)
EFCM-GP1 0.6581 (1) 0.6427 (1) 0.6589 (4) 0.6515 (2) 0.6808 (2) 0.4451 (1)
EFCM-LP2 0.5344 (10) -0.0015 (11) 0.6910 (3) 0.3515 (9) 0.6139 (7) 0.2076 (8)
EFCM-LP1 0.5759 (3) 0.5960 (4) 0.7028 (2) 0.6102 (3) 0.6608 (3) 0.3000 (4)
EFCM-GS2 0.5399 (7) 0.5866 (5.5) 0.4844 (8) 0.4692 (5) 0.4767 (10) 0.2912 (5)
EFCM-GS1 0.5403 (6) 0.6045 (3) 0.5269 (7) 0.1018 (11) 0.6418 (5) 0.0814 (10)
EFCM-LS2 0.5361 (9) -0.0375 (12) 0.4309 (11) 0.4246 (8) 0.4745 (11) 0.2873 (7)
EFCM-LS1 0.5215 (11) -0.0001 (10) 0.5923 (6) 0.4499 (7) 0.6264 (6) 0.0592 (11)

Source: Author (2022)

results for 2 and 5-textural images, respectively, for both indexes. For 7-textural images ac-
cording to HUL, EFCM-GP2 presented better clustering results, and EFCM-GP1 has the best
performance according to ARI. EFCM-Mk achieved the worst results for 2-textural images for
HUL and EFCM-LS2 for ARI. The algorithm EFCM-M had the worst performance regarding
both indices for the five and 7-textural images.

Tables 12 and 13 show the mean of the metrics indices for the 10 executions of the
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Figure 18 – Segmentation results for the 2-textural image with and without Gaussian noise. The first,
third, and fifth rows show the segmentation results for the original 2-textural image. The
second, fourth, and sixth rows show the obtained segmentation for the 2-textural image
with noise.

(a) EFCM-2 (b) EFCM-1 (c) EFCM-M (d) EFCM-Mk

(e) EFCM-GP2 (f) EFCM-GP1 (g) EFCM-LP2 (h) EFCM-LP1

(i) EFCM-GS2 (j) EFCM-GS1 (k) EFCM-LS2 (l) EFCM-LS1

Source: Author (2022)

algorithms for HUL and ARI on images with and without and noise. In the case of the 2-textural
image without noise, we can see that EFCM-1 and EFCM-LP1 present the best clustering
results, showing stability when often converging to the same solution. Besides, EFCM-LS2
and EFCM-GP1 as in Table 10 also achieve the best results for 5-textural image. However, for
the 7-textural image, the proposed algorithm EFCM-GP2 obtains the best segmentation on
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Figure 19 – Segmentation results of each algorithm for the 5-textural image with and without Gaussian
noise. The first, third and fifth rows show the segmentation results for the original 5-
textural image. The second, fourth and sixth rows present the obtained segmentation for
the 5-textural image with Gaussian noise.

(a) EFCM-2 (b) EFCM-1 (c) EFCM-M (d) EFCM-Mk

(e) EFCM-GP2 (f) EFCM-GP1 (g) EFCM-LP2 (h) EFCM-LP1

(i) EFCM-GS2 (j) EFCM-GS1 (k) EFCM-LS2 (l) EFCM-LS1

Source: Author (2022)

average.
On the other hand, for images with noise, as in Table 11, methods based on City-Block

distance degrade their performance more slowly. For 2-textural image, EFCM-GP1 obtains the
best segmentation as in Table 11. In images with 5 and 7 textures, on average, algorithms
EFCM-GP2 and EFCM-GP1 present the best clustering results for HUL and ARI, respectively.
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Figure 20 – Segmentation results of each algorithm for the 7-textural image with and without Gaussian
noise. The first, third and fifth rows show the segmentation results for the original 7-
textural image. The second, fourth and sixth rows present the obtained segmentation for
the 7-textural image with Gaussian noise.

(a) EFCM-2 (b) EFCM-1 (c) EFCM-M (d) EFCM-Mk

(e) EFCM-GP2 (f) EFCM-GP1 (g) EFCM-LP2 (h) EFCM-LP1

(i) EFCM-GS2 (j) EFCM-GS1 (k) EFCM-LS2 (l) EFCM-LS1

Source: Author (2022)

3.5 CONCLUSIONS

New fuzzy clustering algorithms for real-valued data based on suitable adaptive Euclidean,
Mahalanobis, and City-Block distances and entropy regularization have been proposed. More-
over, adaptive distances have been introduced that change at each algorithm iteration. They
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Table 12 – Mean of the HUL and ARI index for 2, 5 and 7 textural image without noise.

2-Textural Image 5-Textural Image 7-Textural Image
Algorithms HUL ARI HUL ARI HUL ARI
EFCM-2 0.5464 (6.0) 0.7438 (3.0) 0.6146 (5.0) 0.6680 (4.0) 0.7543 (2.0) 0.4736 (3.0)

(0.0049) (0.0001) (0.0215) (0.0954) (0.0031) (0.0020)
EFCM-1 0.7853 (1.0) 0.7222 (7.0) 0.5733 (6.0) 0.7115 (3.0) 0.6723 (7.0) 0.4538 (6.0)

(0.0000) (0.0000) (0.0050) (0.0577) (0.0465) (0.0642)
EFCM-M 0.5398 (10.0) 0.0151 (10.0) 0.2152 (12.0) 0.1374 (11.0) 0.6026 (12.0) 0.3419 (8.0)

(0.0000) (0.0189) (0.0295) (0.0563) (0.2303) (0.1099)
EFCM-Mk 0.5384 (11.0) -0.0260 (11.0) 0.5419 (8.0) 0.1846 (10.0) 0.6415 (10.0) 0.2728 (10.0)

(0.0012) (0.0013) (0.0100) (0.0033) (0.0082) (0.0224)
EFCM-GP2 0.5733 (4.0) 0.7438 (4.5) 0.6724 (3.0) 0.7465 (2.0) 0.8070 (1.0) 0.4975 (1.0)

(0.0021) (0.0000) (0.0138) (0.0251) (0.0004) (0.0007)
EFCM-GP1 0.6822 (3.0) 0.7515 (2.0) 0.6317 (4.0) 0.7685 (1.0) 0.6930 (5.0) 0.4971 (2.0)

(0.0499) (0.0177) (0.0232) (0.0288) (0.0015) (0.0054)
EFCM-LP2 0.5442 (7.0) 0.7257 (6.0) 0.6917 (2.0) 0.4823 (8.0) 0.6672 (9.0) 0.3035 (9.0)

(0.0037) (0.0020) (0.0098) (0.0063) (0.0100) (0.0337)
EFCM-LP1 0.6844 (2.0) 0.7631 (1.0) 0.5671 (7.0) 0.6238 (5.0) 0.6867 (6.0) 0.4408 (7.0)

(0.0508) (0.0345) (0.0125) (0.0174) (0.0004) (0.0047)
EFCM-GS2 0.5400 (9.0) 0.7438 (4.5) 0.5160 (10.0) 0.4859 (7.0) 0.7410 (3.0) 0.4676 (4.0)

(0.0000) (0.0000) (0.0000) (0.0001) (0.0015) (0.0069)
EFCM-GS1 0.5538 (5.0) 0.6898 (8.0) 0.5041 (11.0) 0.1217 (12.0) 0.6697 (8.0) 0.1584 (11.0)

(0.0213) (0.0148) (0.0039) (0.0031) (0.0733) (0.0534)
EFCM-LS2 0.5359 (12.0) -0.0430 (12.0) 0.7285 (1.0) 0.4122 (9.0) 0.7408 (4.0) 0.4643 (5.0)

(0.0000) (0.0000) (0.0258) (0.0371) (0.0007) (0.0102)
EFCM-LS1 0.5420 (8.0) 0.1129 (9.0) 0.5377 (9.0) 0.5945 (6.0) 0.6371 (11.0) 0.1219 (12.0)

(0.0000) (0.0000) (0.0062) (0.0422) (0.0059) (0.0170)

Source: Author (2022)

can either be the same for all clusters or different from one group to another. These dissi-
milarity measures are suitable for learning the weights of the variables during the clustering
process, improving the performance of the algorithms.

The proposed algorithms are based on the minimization of clustering criteria, performed in
three steps (representation, weighting, and assignment), providing a fuzzy partition, a repre-
sentative for each fuzzy cluster, and a relevance weight for each variable or a matrix of weights.
We consider two types of constraints to compute the relevance weights of the variables. The
first type considers that the sum of the weights of the variables, or the sum of the weights
of the variables per cluster, must be equal to one. In turn, the second type assumes that the
product of the weights of the variables, or the product of the weights of the variables per
cluster, must be equal to one.

The performance and usefulness of the proposed algorithms have been illustrated through
experiments carried out on suitable synthetic and real datasets. Furthermore, the Friedman
test was applied to explore the statistically significant differences in the experimental results.
If the null hypothesis is rejected under the Friedman test, the Nemenyi post-hoc test was
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Table 13 – Mean of HUL and ARI for 2, 5 and 7 textural image with Gaussian noise.

2-Textural Image 5-Textural Image 7-Textural Image
Algorithms HUL ARI HUL ARI HUL ARI
EFCM-2 0.5510 (4.0) 0.5856 (7.0) 0.4972 (9.0) 0.4928 (6.0) 0.6439 (3.0) 0.2933 (5.0)

(0.0088) (0.0031) (0.0216) (0.0519) (0.0001) (0.0019)
EFCM-1 0.6302 (2.0) 0.6328 (2.0) 0.6165 (5.0) 0.6070 (4.0) 0.5822 (8.0) 0.3259 (2.0)

(0.0000) (0.0000) (0.0001) (0.0052) (0.0005) (0.0032)
EFCM-M 0.5386 (8.0) 0.0178 (8.0) 0.2022 (12.0) 0.0993 (12.0) 0.1484 (12.0) 0.0685 (11.0)

(0.0003) (0.0155) (0.0001) (0.0310) (0.0000) (0.0212)
EFCM-Mk 0.5196 (12.0) 0.0001 (9.0) 0.4243 (11.0) 0.1988 (10.0) 0.5362 (9.0) 0.1421 (9.0)

(0.0004) (0.0038) (0.0062) (0.0201) (0.0063) (0.0032)
EFCM-GP2 0.5450 (5.0) 0.5866 (5.5) 0.7563 (1.0) 0.6525 (2.0) 0.6975 (1.0) 0.3239 (3.0)

(0.0025) (0.0000) (0.0063) (0.0417) (0.0020) (0.0067)
EFCM-GP1 0.6581 (1.0) 0.6427 (1.0) 0.6585 (4.0) 0.6586 (1.0) 0.6045 (7.0) 0.3559 (1.0)

(0.0000) (0.0000) (0.0002) (0.0053) (0.0268) (0.0318)
EFCM-LP2 0.5363 (9.0) -0.0100 (11.0) 0.6920 (3.0) 0.3753 (9.0) 0.6153 (6.0) 0.2085 (8.0)

(0.0011) (0.0037) (0.0027) (0.0378) (0.0020) (0.0151)
EFCM-LP1 0.5659 (3.0) 0.5920 (3.0) 0.7030 (2.0) 0.6120 (3.0) 0.6632 (2.0) 0.3200 (4.0)

(0.0105) (0.0062) (0.0003) (0.0027) (0.0027) (0.0236)
EFCM-GS2 0.5399 (7.0) 0.5866 (5.5) 0.5128 (8.0) 0.5254 (5.0) 0.4739 (10.0) 0.2908 (6.0)

(0.0000) (0.0000) (0.0168) (0.0432) (0.0028) (0.0007)
EFCM-GS1 0.5403 (6.0) 0.5920 (4.0) 0.5269 (7.0) 0.1018 (11.0) 0.6417 (4.0) 0.0814 (10.0)

(0.0002) (0.0098) (0.0001) (0.0000) (0.0002) (0.0000)
EFCM-LS2 0.5361 (10.0) -0.0375 (12.0) 0.4297 (10.0) 0.4133 (7.0) 0.4646 (11.0) 0.2907 (7.0)

(0.0000) (0.0000) (0.0044) (0.0091) (0.0129) (0.0029)
EFCM-LS1 0.5215 (11.0) -0.0001 (10.0) 0.5900 (6.0) 0.4124 (8.0) 0.6263 (5.0) 0.0587 (12.0)

(0.0000) (0.0000) (0.0009) (0.0154) (0.0042) (0.0047)

Source: Author (2022)

used to determine which algorithms perform significantly differently. The proposed methods
introduce regularization coefficients to control the membership degree of the objects and the
relevance of the variables in the clustering task. A sensitivity analysis of such hyper-parameters
was performed to measure their influence on the quality of the clustering. Furthermore, an
unsupervised process to compute their optimal value was introduced.

The experimental results on synthetic datasets showed that the proposed methods based
on the Mahalanobis distance outperform other approaches when the variables are correlated.
Furthermore, the proposed method with the global covariance matrix significantly outperfor-
med other approaches in the third configuration for ARI, when the class covariance matrices
are not diagonal but similar. Approaches with global dissimilarity functions had the highest re-
sults for datasets with the diagonal cluster covariance matrices and almost the same. However,
local methods achieved better results for data with the cluster covariance matrices diagonal
but unequal. Regarding datasets with outliers, the City-Block distance-based methods perform
significantly better than other approaches under such conditions, regardless of the number of
outliers.
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Concerning the benchmark datasets, the proposed EFCM-GP1 algorithm presents the best
average performance ranking. Moreover, the EFCM-1 and EFCM-LP1 algorithms achieved the
second and third-best average ranking for HUL and EFCM-LS1 and EFCM-LP2 for ARI. The
EFCM-GS2 algorithm obtained the worst results for HUL and EFCM-Mk for ARI.

Finally, all algorithms were executed on the Brodatz texture image dataset to examine the
clustering performance and robustness for noiseless and noisy texture image segmentation.
For noise-free images, the EFCM-1 algorithm obtained the best performance according to
HUL and EFCM-LP1 for ARI on the 2-textural image. For 5-textural images, EFCM-LS2
showed a higher value of HUL, but EFCM-GP1 yielded the highest clustering result for ARI
and produced better segmentation results. For 7-textural images, EFCM-M reached the best
results regardless of the index considered. Moreover, concerning images with Gaussian noise,
methods based on the City-Block distance generally degrade their performance more slowly
than those with the Mahalanobis or Euclidean distances. Furthermore, the proposed clustering
algorithms with global distances achieved the highest performances for both indices.

With these results, the research questions of this work were answered as follows:

1. Will Mahalanobis distance-based approaches really be more appropriate in certain situ-
ations than other clustering methods?

• The commonly used Euclidean distance metric restricts conventional algorithms to
datasets with hyper-spherical clusters and linearly separable characteristics. Howe-
ver, a distance metric should identify essential features and discriminate relevant
and irrelevant features. The Mahalanobis distance is a measure between two objects
in the space defined by relevant features. Since it accounts for unequal variances
and correlations between features, it will adequately evaluate the distance by as-
signing different weights or important factors to the characteristics of data points.
Only when the features are uncorrelated can the distance under a Mahalanobis
distance metric be identical to that under the Euclidean distance metric. Besides,
geometrically, a Mahalanobis distance metric can adjust the geometrical distribu-
tion of data so that the distance between similar data points is small.

• As expected, the experiments on synthetic and real datasets showed that the Maha-
lanobis distance-based methods outperform other approaches for data with corre-
lated characteristics.

2. How can the detrimental effect of outliers be avoided?

• The City-Block distance is the sum of the absolute differences across dimensi-
ons. Generally, it yields results similar to the Euclidean distance. However, it has
the advantage that the effect of outlier is minimized as the differences are not
squared. Then, using such robust dissimilarity function allowed us to minimize the
detrimental effect of outliers present in the data.
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• Experiments with different amounts of outliers and noise showed that methods
based on the City-Block distance degrade their performance more slowly than those
with the Euclidean and Mahalanobis distances. Furthermore, the clustering results
obtained showed smoothness and lower error variance.

3. How to simplify the definition of the optimization problem to reduce the number of
parameters?

• Fuzzy clustering algorithms with adaptive distances locate groups in different subs-
paces of the same dataset by assigning a weight to each dimension to measure
the contribution of individual features to the formation of the clusters. Despite the
popularity of such a technique, tuning hyper-parameters is difficult in general due
to the lack of ground truth for validation. However, the success of most clustering
methods depends heavily on the correct choice of the involved hyper-parameters.

• New fuzzy clustering algorithms have been proposed where the product of the
relevance of the variables is equal to one. As can be seen in the analysis of the
hyper-parameter configuration section, such restriction allows us to adjust fewer
hyper-parameters in the model and obtain good clustering results faster than other
approaches.

4. Can approaches with the same set of relevant variables to all groups improve clustering
results?

• Feature weighting clustering employs a common weight vector for the whole da-
taset in the clustering procedure. However, soft subspace clustering is distinct in
that different weight vectors are assigned to different clusters. In this work, both
approaches have been considered.

• Experiments show that methods in which the set of relevant variables is the same
for all groups are appropriate when the internal dispersion of the clusters is almost
the same. Furthermore, such methods presented the best results on real datasets
and for texture image segmentation.
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4 INTERVAL-VALUED DATA CLUSTERING WITH AUTOMATIC VARIA-
BLES WEIGHTING

4.1 INTRODUCTION

This chapter starts with a review of interval-valued data clustering. New clustering al-
gorithms for interval-valued data are proposed based on adaptive Euclidean and City-Block
distances. The proposals consider the joint relevance of the variables for lower and upper
boundaries, since in some cases, a boundary may play a minor role compared to the other.
The adaptive distances change at each iteration of the algorithms and can be different from
one cluster to another. The algorithms optimize an objective function alternating three steps
for obtaining the representatives of each group, a fuzzy partition, and the relevance weights
of the variables. Experiments on synthetic and real datasets corroborate the robustness and
usefulness of the proposed methods.

4.2 INTERVAL-VALUED DATA CLUSTERING

There are two common representations of the objects upon which clustering can be based:
relational data and usual or symbolic feature data. When a relationship represents each pair
of objects, we have relational data. Alternatively, when each object is described by a vector of
quantitative or qualitative values, the vectors expressing the items are called a feature dataset.
When each complex object is defined by a vector of sets of categories, intervals, or weight
histograms, the set of vectors representing the objects is called a symbolic feature dataset
mainly studied in SDA. This work focuses on interval-valued data that is a particular type of
symbolic data used in applications such as daily interval stock prices, ranges of fluctuations of
some physical measurements, or monthly temperature in meteorological stations (Table 14).
According to Ref. (D’URSO et al., 2017), there are several real cases where the empirical infor-
mation is imprecise, being described by intervals. In particular, the following situations can be
distinguished:

• Interval-valued data may occur due to a lack of knowledge, i.e., when the true value
of a variable is unknown, and only an interval of values including the true value is
available. Thus, the information available is imprecise and can therefore not be accurately
represented using a single value.

• Interval-valued data may arise as a result of aggregating huge databases, which can not
be analyzed in their original form.

• The data are intrinsically interval-valued, i.e, the phenomena are naturally explained by
using intervals.
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Table 14 – Minimal and maximal monthly temperatures recorded at 60 meteorological stations
in China (1998).

Stations Monthly temperature ([min : max])
January February . . . November December

AnQing [1.8, 7.1] [2.1, 7.2] . . . [7.8, 17.9] [4.3, 11.8]
...

...
...

...
...

...
ZhiJiang [2.7, 8.4] [2.7, 8.7] . . . [8.2, 20] [5.1, 13.3]

Source: Author (2022)

An interval-valued data can be formalized as: ei (1 ≤ i ≤ N) is the i-th object represented
by a vector xi = (xi1, ..., xiP ), where xij = [aij, bij], with aij ≤ bij, which is the interval value
taken by the j-th variable (1 ≤ j ≤ P ). The lower and upper bounds of the interval are denoted
as aij and bij, respectively. Each object is represented geometrically by a hyperrectangle in
RP having 2P vertices. The 2P vertices correspond to all the possible (lower bound, upper
bound) combinations. Alternatively, an interval valued data can be represented in terms of
its midpoint (centers) mij =

aij+bij
2

, i = 1, . . . , N ; j = 1, . . . , P , and of its radius (spreads)
rij =

bij−aij
2

, i = 1, . . . , N ; j = 1, . . . , P . In this way, the lower and upper bounds of the
interval-valued data can be obtained as mij−rij and mij+rij, respectively. Since the examined
variables are interval-valued, each prototype gk = (gk1, ..., gkP ) is a vector of P intervals with
gkj = [αkj, βkj] (1 ≤ j ≤ P ; 1 ≤ k ≤ C).

Several clustering methods are available to manage symbolic data. For example, Irpino and
Verde (IRPINO; VERDE, 2008) proposed a Wasserstein-based distance approach and showed its
properties in the context of clustering techniques. For avoiding the disruptive effects of pos-
sible outliers, D’Urso et al. (D’URSO; GIOVANNI; MASSARI, 2015) suggested a fuzzy C-medoids
method with a trimming rule. The clustering procedure is applied to the data after discarding
a fixed fraction of outlying data. The percentage of data discarded in the clustering process
and, thus, not considered in the optimization problem is determined by combining a validity
criterion with the trimming algorithm. Later, Leski et al. (LESKI et al., 2016) introduced a clus-
tering approach combining the fuzzy C-medoids clustering with the robust ordered statistics
using Huber’s M -estimator. Other clustering approaches proposed in the literature to manage
symbolic data can be found in Refs. (CARVALHO, 2007; IRPINO; VERDE, 2008; CARVALHO;

LECHEVALLIER, 2009; CARVALHO; LECHEVALLIER, 2009; LESKI et al., 2016; CARVALHO; SIMÕES,
2017; CHEN; BILLARD, 2019; SOUZA; SOUZA; AMARAL, 2020).

An interesting work is the one introduced by Ref. (D’URSO et al., 2017). They proposed
the use of a robust metric based on the exponential distance in a framework of the fuzzy
C-medoids clustering model for interval-valued data as follows:

JExpFCMd−ID =
N∑
i=1

C∑
k=1

(uik)
m
[
1− exp{−β

(
∥mi −mk∥2 + ∥ri − rk∥2

)
}
]

(4.1)



82

where uik ∈ [0, 1],
∑C

k=1(uik) = 1 and the objects and prototypes are considered by the
means of their midpoint and radius. The fuzziness of membership for each object is controlled
by m ∈ [1,∞]. Besides, β is a suitable parameter (positive constant) determined according
to the variability of the data. The method starts with an initial partition and computes the
prototypes and the fuzzy partition iteratively in two steps until a stopping criterion is satisfied
as shown in Algorithm 6.

Algorithm 6 Proposed ExpFCMd-ID algorithm.
Input: The dataset D = {x1, . . . ,xN}, the number C of clusters (2 ≤ C ≤ N), the

parameters m(1 < m < ∞), β and T (maximum number of iterations).
Output: The vector of prototypes G; the matrix of membership degrees U;
1: Initialization:

Set t = 0;

Pick initial medoids g
(t)
k ∈ D (k = 1, ..., C) to obtain the vector of prototypes

G(t) = (g
(t)
1 , ...,g

(t)
C ), such that g(t)

k = (m
(t)
k , r

(t)
k );

2: repeat

Store the current medoids G(t)
old = G(t);

3: Step 1: assignment:

Compute the components of U(t) as follows:

uik =
1∑C

h=1

[
1−exp{−β(∥mi−mk∥2+∥ri−rk∥2)}
1−exp{−β(∥mi−mh∥2+∥ri−rh∥2)}

] 1
m−1

;

4: Step 2: representation:

Select the new medoids g(t)
k = (m

(t)
k , r

(t)
k )

for k=1 to C do
q = argmax

1≤i≤N

∑N
j=1(ujk)

m [1− exp{−β (∥mi −mj∥2 + ∥ri − rj∥2)}]

gk = xq

5: Set t=t+1;
6: until G(t)

old = G(t) or t > T

Another method closely related to this work is the one proposed by Ref. (CARVALHO;

SIMÕES, 2017), where a robust fuzzy interval-valued data clustering are introduced as shown
in Equation (4.2).

JAIFCM =
N∑
i=1

C∑
k=1

(uik)
mdV(xi,gk) (4.2)

The parameter m ∈ [1,+∞] controls the fuzziness of membership for each object. The
function dV is a suitable adaptive variable-wise dissimilarity between the vectors of intervals
xi and gk, parameterized by the vectors of relevance weights of the variables V. The weights are
estimated globally for all clusters and locally for each cluster. Ref. (CARVALHO; SIMÕES, 2017)
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considers adaptive dissimilarity measures based on the City-Block and Hausdorff distances as
shown in Table 15.

Table 15 – Suitable variable-wise dissimilarity for the algorithm AIFCM based on the City-
Block and Hausdorff distances.

Global Local∑P
j=1(vj)[|aij − αkj|+ |bij − βkj|]

∑P
j=1(vkj)[|aij − αkj|+ |bij − βkj|]∑P

j=1(vj)max{|aij − vkj|, |bij − βkj|}
∑P

j=1(vkj)max{|aij − αkj|, |bij − βkj|}
Source: Author (2022)

The algorithm returns the matrix of membership degrees, the vector of prototypes for
each fuzzy cluster, and the vector of relevance weights of the variables. The minimization of
the objective function is performed iteratively in three steps (representation, weighting, and
assignment). In the first step, the matrix of prototypes G are computed following the algorithm
proposed in Refs. (KARST, 1958; JAJUGA, 1991). The relevance weights of the variables are
computed as follows.

Case 1 : If the dissimilarity function is based on the City-Block and Hausdorff distances and
globally takes into account the weighting of the variables such that vj > 0 and

∏P
j=1 vj =

1, then the vectors of relevance weights of the variables V = (v1, . . . , vP ) that minimize
the adequacy criterion have their components computed as shown in Equation (4.3) and
Equation (4.4).

vj =
{
∏P

w=1

[∑N
i=1

∑C
k=1(uik)

m(|aiw − αkw|+ |biw − βkw|)
]
} 1

P∑N
i=1

∑C
k=1(uik)m(|aij − αkj|+ |bij − βkj|)

(4.3)

vj =
{
∏P

w=1

[∑N
i=1

∑C
k=1(uik)

m max{|aiw − αkw|, |biw − βkw|}
]
} 1

P∑N
i=1

∑C
k=1(uik)m max{|aij − αkj|, |bij − βkj|}

(4.4)

Case 2 : If the dissimilarity function is based on the City-Block and Hausdorff distances and
locally takes into account the weighting of the variables such that vkj > 0 and

∏P
j=1 vkj = 1,

then the vector of relevance weights for the cluster k, vk = (vk1, . . . , vkP ) that minimize
the adequacy criterion have their components computed as shown in Equation (4.5) and
Equation (4.6).

vkj =
{
∏P

w=1

[∑N
i=1(uik)

m(|aiw − αkw|+ |biw − βkw|)
]
} 1

P∑N
i=1(uik)m(|aij − αkj|+ |bij − βkj|)

(4.5)

vkj =
{
∏P

w=1

[∑N
i=1(uik)

m max{|aiw − αkw|, |biw − βkw|}
]
} 1

P∑N
i=1(uik)m max{|aij − αkj|, |bij − βkj|}

(4.6)

The membership degrees uik are computed according to eq. (4.7). Table 16 specifies the
assignment rules to obtain the fuzzy partition according to the different distance functions.
Algorithm 7 summarizes the steps of the algorithm AIFCM.
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uik =

[
C∑

h=1

(
dV(xi,gk)

dV(xi,gw)

) 1
m−1

]−1

(4.7)

Table 16 – Rules to compute the fuzzy partition for AIFCM according to the distance func-
tions.

Global adaptive distance
City-Block Hausdorff

uik =

[
C∑

h=1

( ∑P
j=1(vj)[|aij−αkj |+|bij−βkj |]∑P
j=1(vj)[|aij−αwj |+|bij−βwj |]

) 1
m−1

]−1

uik =

[
C∑

h=1

( ∑P
j=1(vj)max{|aij−αkj |,|bij−βkj |}∑P
j=1(vj)max{|aij−αwj |,|bij−βwj |}

) 1
m−1

]−1

Local adaptive distance

uik =

[
C∑

h=1

( ∑P
j=1(vkj)[|aij−αkj |+|bij−βkj |]∑P
j=1(vkj)[|aij−αwj |+|bij−βwj |]

) 1
m−1

]−1

uik =

[
C∑

h=1

( ∑P
j=1(vkj)max{|aij−αkj |,|bij−βkj |}∑P
j=1(vkj)max{|aij−αwj |,|bij−βwj |}

) 1
m−1

]−1

Source: Author (2022)

Although the above methods deal with symbolic data and consider the relevance of varia-
bles, they assign the same importance for the lower and upper boundaries of the variables. As
a result, a boundary that plays a minor role in the clustering task can still significantly impact.
Addressing such, Ref. (SOUZA; CARVALHO, 2004) proposed a clustering method considering
the relevance of lower and upper boundaries. However, this approach manages the interval
bounds independently, which can be seen as single-valued data clustering. This is a disadvan-
tage since lower and upper boundaries are intrinsically related and must be treated as such.
In this regard, Ref. (IRPINO; VERDE; CARVALHO, 2017) proposed a fuzzy clustering algorithm
for data described by distributional variables. The method uses the L2 Wasserstein distance
between distributions as a dissimilarity measure. Then, a decomposition of the distance and the
notion of adaptive distance are then introduced for automatically computing relevance weights
associated with variables and their components. We extend such approach for interval-valued
data clustering. On the other hand, such FCM methods are sensitive to initial cluster centers
and noises, so they tend to deteriorate in some cases, especially with incomplete data (TAO et

al., 2019; SING; ADHIKARI; BASU, 2015).

4.3 PROPOSED INTERVAL-VALUED DATA CLUSTERING WITH ENTROPY REGULA-
RIZATION

This section introduces new FWC and FWSC algorithms for interval-valued data. Additi-
onally, an entropy term is added, functioning as a regulating factor during the minimization
process. The proposed approaches are based on adaptive Euclidean and City-Block distances
that consider the joint relevance of the variables for the lower and upper boundaries. As a
result, a boundary that plays a significant role will have a higher relevance weight. Local and
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Algorithm 7 AIFCM
Input: The dataset D = {x1, . . . ,xN}, the number C of clusters (2 ≤ C ≤ N), the

parameter m > 1, the parameter T (maximum number of iterations) and, the threshold
ε > 0 and ε << 1.

Output: The vector of prototypes G and the matrix of membership degrees U.
1: Initialization:

Set t = 0;
Randomly select C distinct prototypes g

(t)
k ∈ D (k = 1, ..., C) to obtain the

vector of prototypes G(t) = (g
(t)
1 , ...,g

(t)
C );

Initialize V = (v
(t)
j )1≤j≤P with v

(t)
j = 1 or V = (v

(t)
kj )1≤k≤C

1≤j≤P
with v

(t)
kj = 1;

Compute the matrix of membership degrees U(t) = (u
(t)
ik )1≤i≤N

1≤k≤C
according to

Equation (4.7);
Compute the initial value of the clustering criterion JAIFCM according to Equa-
tion (4.2);

2: repeat

Set t = t+ 1; JOLD = JAIFCM ;

3: Step 1: representation:

Compute the matrix of prototypes G as proposed in Refs. (KARST, 1958; JA-
JUGA, 1991);

4: Weighting step:

Compute V(t) from Equations (4.3) to (4.6);

5: Step 3: assignment:

Compute the elements uij of the matrix of membership degrees U = (uij)1≤i≤N
1≤j≤C

according to Equation (4.7).

6: Compute JAIFCM according to Equation (4.2) and set JNEW = JAIFCM .
7: until |JNEW − JOLD| < ε or t > T

global adaptive distances were considered, which change with each algorithm iteration and
may differ from one group to another.

Each method provides the best fuzzy partition of E into C fuzzy clusters, represented by
the best matrix of membership degrees of the objects into the clusters U = (u1, . . . ,uN)

with ui = (ui1, . . . , uiC), the best matrix of prototypes G = (g1, . . . ,gC) for the groups
and either the best vectors or matrices of weights of relevance of the variables V or the best
vectors or matrices of weights of relevance of the variables Vl and Vu for the lower and upper
boundaries, respectively.

All proposals consider the joint relevance of the variables, assuming different weights of
importance for the lower and upper boundaries. The adequacy criterion can be defined as
follows:
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JEIFCM =
N∑
i=1

C∑
k=1

(uik)d(Vl,Vu)(xi,gk) + Tu

N∑
i=1

C∑
k=1

(uik) ln (uik) (4.8)

such that
C∑

k=1

uik = 1. The dissimilarity between objects and prototypes is measured by

d(Vl,Vu)(xi,gk), which is parameterized by the vectors or matrices of relevance weights of
the variables Vl and Vu for the lower and upper boundaries, respectively. Moreover, Tu is a
weighting parameter that specifies the degree of fuzziness, such that Tu > 0. By increasing it,
the fuzziness of the clusters increases. Note that this kind of approach, when applied to fuzzy
clustering, provides a new perspective to face the problem of fuzzifying the clusterization of
the objects while ensuring the maximum compactness of the obtained clusters.

Initially, a FWC is introduced. In this case, the method EIFCM is named Entropy Fuzzy
Clustering Method with Global Joint relevance of the interval-valued variables and adaptive
Euclidean distance (EIFCM-GJ2) when the dissimilarity function is based on the Euclidean
distance. The objective function can be rewritten as follows:

JEIFCM−GJ2 =
N∑
i=1

C∑
k=1

(uik)
P∑

j=1

[
(vl,j)(aij − αkj)

2 + (vu,j)(bij − βkj)
2
]

(4.9)

+Tu

N∑
i=1

C∑
k=1

(uik) ln (uik)

However, if the dissimilarity function is based on the City-Block distance, the method
EIFCM is named as Entropy Fuzzy Clustering Method with Global Joint relevance of the
interval-valued variables and adaptive City-Block distance (EIFCM-GJ1). The objective func-
tion for this FWC approach is defined as Equation (4.10).

JEIFCM−GJ1 =
N∑
i=1

C∑
k=1

(uik)
P∑

j=1

[(vl,j)|aij − αkj|+ (vu,j)|bij − βkj|] (4.10)

+Tu

N∑
i=1

C∑
k=1

(uik) ln (uik)

In both cases, the vector of positive weights are estimated globally for all clusters at once.
Then, such vector of positive weights for lower and upper boundaries are denoted as Vl =

(vl,1, . . . , vl,P ) and Vu = (vu,1, . . . , vu,P ), respectively, with vl,j > 0 and vu,j > 0. Besides, the
weights of the lower and upper boundaries are jointly restricted such that

∏P
j=1(vl,j)×(vu,j) =

1.
The alternative FWSC is also considered. In this case, the adaptive distance considers the

local joint weighing of the boundaries, in which the matrices of positive weights for the lower
and upper boundaries are denoted as Vl = (vl,1, . . . ,vl,C) and Vu = (vu,1, . . . ,vu,C), res-
pectively. The adequacy criterion of Equation (4.8) for the Entropy Fuzzy Clustering Method
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with Local Joint relevance of the interval-valued variables and adaptive Euclidean distance
(EIFCM-LJ2) is defined as follows if the dissimilarity function is based on the Euclidean dis-
tance:

JEIFCM−LJ2 =
N∑
i=1

C∑
k=1

(uik)
P∑

j=1

[
(vl,kj)(aij − αkj)

2 + (vu,kj)(bij − βkj)
2
]

(4.11)

+Tu

N∑
i=1

C∑
k=1

(uik) ln (uik)

Nevertheless, when the dissimilarity function is based on the City-Block distance, the
method EIFCM is named as Entropy Fuzzy Clustering Method with Local Joint relevance
of the interval-valued variables and adaptive City-Block distance (EIFCM-LJ1) and defined as
Equation (4.12).

JEIFCM−LJ1 =
N∑
i=1

C∑
k=1

(uik)
P∑

j=1

[(vl,kj)|aij − αkj|+ (vu,kj)|bij − βkj|] (4.12)

+Tu

N∑
i=1

C∑
k=1

(uik) ln (uik)

In this case, the vl,k = (vl,k1, . . . , vl,kP ) and the vu,k = (vu,k1, . . . , vu,kP ) measure the
importance of each interval-valued variable on the k-th cluster, where vl,kj > 0, vu,kj > 0 and∏P

j=1 vl,kj × vu,kj = 1.

4.3.1 Optimization steps

In general, proposed clustering algorithms set an initial fuzzy partition and alternate three
steps until a satisfying stopping criterion. They provide the prototypes for each fuzzy cluster,
either the relevance weight for each variable or the relevance weights of the lower and upper
boundaries of the variables and the fuzzy partition.

4.3.1.1 Representation step

The representation step computes the prototypes associated with each fuzzy cluster. During
this step, the relevance weights of the variables, and the fuzzy partition are kept fixed. Note
that the computation of the prototypes depends on the dissimilarity function used.

Case 1: The dissimilarity functions are based on the Euclidean distance. In this case, the
partial derivative of Equation (4.9) is taken with respect to the boundaries αkj and βkj. This
is done to compute the components gkj = [αkj, βkj] of the prototype gk = (gk1, . . . , gkP ) of
the cluster k, which minimizes the clustering criterion, as follows:
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∂JEIFCM−GJ2

∂αkj

=
N∑
i=1

(uik)(vj)(−2aij + 2αkj) = 0 (4.13)

∂JEIFCM−GJ2

∂βkj

=
N∑
i=1

(uik)(vj)(−2bij + 2βkj) = 0 (4.14)

After setting the partial derivatives to zero and after some algebra we obtain:

αkj =

∑N
i=1 uikaij∑N
i=1 uik

; βkj =

∑N
i=1 uikbij∑N
i=1 uik

(4.15)

Following a similar procedure, the prototype for Equation (4.11) is computed according to
Equation (4.15).

Case 2: If the dissimilarity function is based on the City-Block distance for both global and
local cases, the boundaries of the intervals gkj = [αkj, βkj] yields two minimization problems:

N∑
i=1

(uik)|aij − αkj| −→ Min (a) ;
N∑
i=1

(uik)|bij − βkj| −→ Min (b) (4.16)

These two problems involve the minimization of
∑N

i=1 |yi − azi|, where zi = uik, yi =

uikaij and a = αkj in minimization problem 4.16 (a). However, yi = uikbij and a = βkj in
minimization problem 4.16 (b). Since these problems do not have an algebraic solution, an
algorithmic solution (JAJUGA, 1991) is used to solve them by applying Algorithm 1.

4.3.1.2 Weighting step

The weighting step provides the relevance weights of the variables for lower and upper
boundaries, globally for all clusters or locally for each cluster. During this step, the prototypes
and the fuzzy partition remain fixed.

Proposition 5. The relevance weights of the variables for each boundary are computed
according to the adaptive distance used.

Case 1: If the dissimilarity function is based on the Euclidean distance and globally considers
the joint weighting of the boundaries such that vl,j > 0, vu,j > 0 and

∏P
j=1 vl,j × vu,j = 1,

then the vectors of relevance weights of the lower and upper boundaries of the variables
Vl = (vl,1, . . . , vl,P ) and Vu = (vu,1, . . . , vu,P ) that minimize the adequacy criterion of Equa-
tion (4.9), have their components computed, respectively, as follows:

vl,j =

{∏P
w=1

[∑N
i=1

∑C
k=1(uik)(aiw − αkw)

2
] [∑N

i=1

∑C
k=1(uik)(biw − βkw)

2
]} 1

2P∑N
i=1

∑C
k=1(uik)(aij − αkj)2

(4.17)
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vu,j =

{∏P
w=1

[∑N
i=1

∑C
k=1(uik)(aiw − αkw)

2
] [∑N

i=1

∑C
k=1(uik)(biw − βkw)

2
]} 1

2P∑N
i=1

∑C
k=1(uik)(bij − βkj)2

(4.18)

Case 2: If the dissimilarity function is based on the City-Block distance and globally consi-
ders the joint weighting of the boundaries such that vl,j > 0, vu,j > 0 and

∏P
j=1 vl,j×vu,j = 1,

then the vectors of relevance weights of the lower and upper boundaries of the variables
Vl = (vl,1, . . . , vl,P ) and Vu = (vu,1, . . . , vu,P ) that minimize the adequacy criterion of Equa-
tion (4.10), have their components computed, respectively, as follows:

vl,j =

{∏P
w=1

[∑N
i=1

∑C
k=1(uik)|aiw − αkw|

] [∑N
i=1

∑C
k=1(uik)|biw − βkw|

]} 1
2P∑N

i=1

∑C
k=1(uik)|aij − αkj|

(4.19)

vu,j =

{∏P
w=1

[∑N
i=1

∑C
k=1(uik)|aiw − αkw|

] [∑N
i=1

∑C
k=1(uik)|biw − βkw|

]} 1
2P∑N

i=1

∑C
k=1(uik)|bij − βkj|

(4.20)

Case 3: If the dissimilarity function is based on the Euclidean distance and locally considers
the joint weighting of the boundaries such that vl,kj > 0, vu,kj > 0 and

∏P
j=1 vl,kj × vu,kj = 1,

then the vectors of relevance weights for the cluster k, vl,k = (vl,k1, . . . , vl,kP ) and vu,k =

(vu,k1, . . . , vu,kP ) that minimize the adequacy criterion of Equation (4.11), have their compo-
nents computed as follows:

vl,kj =

{∏P
w=1

[∑N
i=1(uik)(aiw − αkw)

2
] [∑N

i=1(uik)(biw − βkw)
2
]} 1

2P∑N
i=1(uik)(aij − αkj)2

(4.21)

vu,kj =

{∏P
w=1

[∑N
i=1(uik)(aiw − αkw)

2
] [∑N

i=1(uik)(biw − βkw)
2
]} 1

2P∑N
i=1(uik)(bij − βkj)2

(4.22)

Case 4: If the dissimilarity function is based on the City-Block distance and locally considers
the joint weighting of the boundaries such that vl,kj > 0, vu,kj > 0 and

∏P
j=1 vl,kj × vu,kj = 1,

then the vectors of relevance weights for the cluster k, vl,k = (vl,k1, . . . , vl,kP ) and vu,k =

(vu,k1, . . . , vu,kP ) that minimize the adequacy criterion of Equation (4.12), have their compo-
nents computed as follows:

vl,kj =

{∏P
w=1

[∑N
i=1(uik)|aiw − αkw|

] [∑N
i=1(uik)|biw − βkw|

]} 1
2P∑N

i=1(uik)|aij − αkj|
(4.23)

vu,kj =

{∏P
w=1

[∑N
i=1(uik)|aiw − αkw|

] [∑N
i=1(uik)|biw − βkw|

]} 1
2P∑N

i=1(uik)|bij − βkj|
(4.24)
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Proof. In case the dissimilarity function takes into account the globally joint weighting of the
variables for lower and upper boundaries by minimizing Equation (4.9), the relevance of the
variables can be computed according to Equations (4.17) and (4.18).

To obtain the weight of the variables for each boundary, the Lagrange multiplier δ is applied
under constraint

∏P
j=1 vl,j × vu,j = 1 as follows:

L = JEIFCM−GJ2 − δ(
P∏

j=1

vl,j × vu,j − 1) (4.25)

If we take the partial derivative of L with respect to vl,j and set it to zero:

∂L
∂vl,j

=
N∑
i=1

C∑
k=1

(uik)(aij − αkj)
2 − δ

vl,j
= 0 (4.26)

Then, solving Equation (4.26) concerning vl,j, Equation (4.27) is obtained. Following a
similar reasoning, Equation (4.28) is computed.

vl,j =
δ∑N

i=1

∑C
k=1(uik)(aij − αkj)2

(4.27)

vu,j =
δ∑N

i=1

∑C
k=1(uik)(bij − βkj)2

(4.28)

If
∏P

w=1 vl,j × vu,j = 1 then:

P∏
w=1

[
δ∑N

i=1

∑C
k=1(uik)(aiw − αkw)2

][
δ∑N

i=1

∑C
k=1(uik)(biw − βkw)2

]
= 1 (4.29)

Solving Equation (4.29) we obtain that:

δ =

{
P∏

h=1

[
N∑
i=1

C∑
k=1

(uik)(aiw − αkw)
2

][
N∑
i=1

C∑
k=1

(uik)(biw − βkw)
2

]} 1
2P

(4.30)

Substituting Equation (4.30) in Equations (4.27) and (4.28) we obtain the expressions
Equations (4.17) and (4.18).

We can rewrite Equation (4.9) as JEIFCM−GJ2 =
∑P

j=1 vl,jJl,j +
∑P

i=1 vu,jJu,j, where
Jl,j =

∑N
i=1

∑C
k=1(uik)(aij − αkj)

2, Ju,j =
∑N

i=1

∑C
k=1(uik)(bij − βkj)

2 and
Tu

∑P
i=1

∑C
k=1(uik) ln(uik) is seen like a constant. An extremum value of JEIFCM−GJ2 is

reached when vl,j and vu,j are computed according to Equations (4.17) and (4.18). So the
extremum can be expressed as:

JEIFCM−GJ2 =
∑P

j=1 vl,jJl,j +
∑P

i=1 vu,jJu,j = 2P
{∏P

j=1 Jl,jJu,j

} 1
2P

= 2

√
P
{∏P

j=1 Jl,j

} 1
P

√
P
{∏P

j=1 Ju,j

} 1
P (4.31)
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Because the arithmetic mean is greater than the geometric mean, 1
P

∑P
j=1 Jl,j > {

∏P
j=1 Jl,j}

1
P

and 1
P

∑P
j=1 Ju,j > {

∏P
j=1 Ju,j}

1
P . Also, if a, b ∈ R+ then (

√
a −

√
b)2 ≥ 0, and therefore

a + b ≥ 2
√
a
√
b. Thus, as JEIFCM−GJ2(1, . . . , 1; 1, . . . , 1) =

∑P
j=1 Jl,j +

∑P
i=1 Ju,j, the

following inequality holds:

P∑
j=1

Jl,j +
P∑
i=1

Ju,j ≥ 2

√√√√ P∑
j=1

Jl,j

√√√√ P∑
i=1

Ju,j ≥ 2

√√√√√P

{
P∏

j=1

Jl,j

} 1
P

√√√√√P

{
P∏

j=1

Ju,j

} 1
P

(4.32)

In conclusion, we can say that this extreme is a minimum. The other cases follow a similar
reasoning.

In local adaptive distances and for a fixed variable, the closer objects are to the prototype of
a given cluster concerning a given boundary, the higher is the relevance weight of this boundary
on the cluster. Moreover, for the global adaptive distances and for a fixed variable, the closer
objects are to the set of cluster prototypes concerning a given boundary, the higher is the
relevance weight of this boundary. Note that proposed constraints provide high weights only
for the most relevant boundaries. This characteristic represents an advantage over previous
works, which can produce bounds with high relevance weights even if they are not.

4.3.1.3 Assignment step

This step computes the matrix of membership degrees that represents the fuzzy partition,
in which the prototypes and the weights of the variables for lower and upper boundaries are
kept fixed.

Proposition 6. The component of the matrix U = (u1, . . . ,uN), where ui = (ui1, . . . , uiC)

that minimizes the adequacy criterion of Equation (4.8) is computed according to the following
expression:

uik =
exp

{
−d(Vl,Vu)(xi,gk)

Tu

}
∑C

w=1 exp
{
−d(Vl,Vu)(xi,gw)

Tu

} (4.33)

where d(Vl,Vu)(xi,gk) is the distance function that compares the i-th object and the prototype
of the cluster k. Table 17 specifies the assignment rules for obtaining the fuzzy partition
according to the different dissimilarity functions.

Proof. We want to minimize the clustering criterion Equation (4.8) with respect to uik under
uik ∈ [0, 1] and

∑C
k=1 uik = 1. Let the Lagrangian function be:

L = JEIFCM −
N∑
i=1

λi

[
C∑

k=1

uik − 1

]
(4.34)
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Table 17 – Expressions to obtain the fuzzy partition according to the Euclidean and City-Block
distances.

Objective functions Assignment rule

Equation (4.9) uik =
exp

{
−

∑P
j=1[(vl,j)(aij−αkj)

2+(vu,j)(bij−βkj)
2]

Tu

}
∑C

h=1 exp

{
−

∑P
j=1[(vl,j)(aij−αhj)

2+(vu,j)(bij−βhj)
2]

Tu

}

Equation (4.10) uik =
exp

{
−

∑P
j=1[(vl,j)|aij−αkj |+(vu,j)|bij−βkj |]

Tu

}
∑C

h=1 exp

{
−

∑P
j=1[(vl,j)|aij−αhj |+(vu,j)|bij−βhj |]

Tu

}

Equation (4.11) uik =
exp

{
−

∑P
j=1[(vl,kj)(aij−αkj)

2+(vu,kj)(bij−βkj)
2]

Tu

}
∑C

h=1 exp

{
−

∑P
j=1[(vl,hj)(aij−αhj)

2+(vu,hj)(bij−βhj)
2]

Tu

}

Equation (4.12) uik =
exp

{
−

∑P
j=1[(vl,kj)|aij−αkj |+(vu,kj)|bij−βkj |]

Tu

}
∑C

h=1 exp

{
−

∑P
j=1[(vl,hj)|aij−αhj |+(vu,hj)|bij−βhj |]

Tu

}

Source: Author (2022)

Taking the partial derivative of L with respect to uik and setting the gradient to zero we
have:

∂L
∂uik

= d(Vl,Vu)(xi,gk) + Tu(ln(uik) + 1)− λi = 0 (4.35)

From Equation (4.35), Equation (4.36) is obtained.

uik = exp{ λi

Tu

− 1} exp{−
d(Vl,Vu)(xi,gk)

Tu

} (4.36)

If
∑C

w=1 uih = 1 then:

C∑
w=1

exp{ λi

Tu

− 1} exp{−
d(Vl,Vu)(xi,gw)

Tu

} = 1 (4.37)

From Equation (4.37) we have that:

exp{ λi

Tu

− 1} =
1∑C

w=1 exp{−
d(Vl,Vu )(xi,gw)

Tu
}

(4.38)

Substituting Equation (4.38) in Equation (4.36) we have Equation (4.33).
Additionally, we know that:

∂JEIFCM

∂uik

= d(Vl,Vu(xi,gk) + Tu(ln(uik) + 1) (4.39)
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Therefore, ∂2JEIFCM

∂uik
= Tu

uik
. Then, the Hessian matrix of JEIFCM according to U is:

∂2JEIFCM(U) =


Tu

u11
. . . 0

. . . . . .

0 . . . Tu

uNC


Since Tu > 0 and uik > 0, the Hessian matrix ∂2JEIFCM(U) is positive definite, so that

we can conclude that this extremum is a minimum.

The proposed maximum entropy clustering algorithms share some similarities with the
Gaussian method proposed by Rui-Ping Li et al. (LI; MUKAIDONO, 1995) regarding the mem-
bership degree computing. Please see Section 2.5. Then, we can say that the proposals in this
work have a distinct physical meaning and well-defined mathematical characteristics, making
them easy to understand (TAO et al., 2019; LI; MUKAIDONO, 1995).

4.3.2 Proposed algorithms

Algorithm 8 summarizes the proposed fuzzy clustering approaches. To simplify the pre-
sentation and discussion of the experimental results, hereafter, it is adopted the following
notations for the proposed methods.

– EIFCM-GJ2 when the dissimilarity function is based on the Euclidean distance and glo-
bally takes into account the joint weighting of the lower and the upper boundaries of
the variables Equation (4.9).

– EIFCM-GJ1 when the dissimilarity function is based on the City-Block distance and
globally takes into account the joint weighting of the lower and the upper boundaries of
the variables Equation (4.10).

– EIFCM-LJ2 when the dissimilarity function is based on the Euclidean distance and locally
takes into account the joint weighting of the lower and the upper boundaries of the
variables Equation (4.11).

– EIFCM-LJ1 when the dissimilarity function is based on the City-Block distance and
locally takes into account the joint weighting of the lower and the upper boundaries of
the variables Equation (4.12).
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Algorithm 8 Proposed algorithms.
Input: The dataset D = {x1, . . . ,xN}, the number C of groups, Tu > 0, T and ε > 0.
Output: The vector of prototypes G; the matrix of membership degrees U; the vector or

the matrix of relevance weights Vl and Vu.
1: Initialization:

Set t = 0;

Randomly select C distinct prototypes g(t)
k ∈ D (k = 1, ..., C);

Initialize Vl = (v
(t)
l,j )1≤j≤P with v

(t)
l,j = 1 and Vu = (v

(t)
u,j)1≤j≤P with v

(t)
u,j = 1 or

Vl = (v
(t)
l,kj)1≤k≤C

1≤j≤P
with v

(t)
l,kj = 1 and Vu = (v

(t)
u,kj)1≤k≤C

1≤j≤P
with v

(t)
u,kj = 1, ∀k, j;

Compute the membership degrees U(t) = (u
(t)
ik )1≤i≤N

1≤k≤C
by Equation (4.33);

Compute J according to the choice of adequacy criterion (Equations (4.9)
to (4.12));

2: repeat

Set t = t+ 1; JOLD = J ;

3: Step 1: representation:

Compute gkj as shown in Section 4.3.1.1;

4: Step 2: weighting:

Compute V
(t)
l and V

(t)
u from as shown in Section 4.3.1.2;

5: Step 3: assignment:

Compute the components of U(t) according to Equation (4.33);

6: Compute J according to the choice of adequacy criterion (acc. to Equations (4.9)
to (4.12)) and set JNEW = J .

7: until |JNEW − JOLD| < ε or t > T

4.3.3 Convergence properties

The proposals provide a matrix of prototypes for each fuzzy cluster G, a fuzzy partition
U = {u1, . . . ,uN} of E, and the best weights of the variables Vl and Vu for the lower and
upper boundaries, respectively, such that:

JEIFCM−GJ2(G
(∗),V

(∗)
l ,V

(∗)
u ,U(∗)) = min{JEIFCM−GJ2(G,Vl,Vu,U)} : G ∈ LC , (Vl,Vu) ∈ Ξ,U ∈ UN

JEIFCM−GJ1(G
(∗),V

(∗)
l ,V

(∗)
u ,U(∗)) = min{JEIFCM−GJ1(G,Vl,Vu,U)} : G ∈ LC , (Vl,Vu) ∈ Ξ,U ∈ UN

JEIFCM−LJ2(G
(∗),V

(∗)
l ,V

(∗)
u ,U(∗)) = min{JEIFCM−LJ2(G,Vl,Vu,U)} : G ∈ LC , (Vl,Vu) ∈ ΞC ,U ∈ UN
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JEIFCM−LJ1(G
(∗),V

(∗)
l ,V

(∗)
u ,U(∗)) = min{JEIFCM−LJ1(G,Vl,Vu,U)} : G ∈ LC , (Vl,Vu) ∈ ΞC ,U ∈ UN

where

– L is the representation space of the prototypes such that gk ∈ L(k = 1, . . . , C) and
G ∈ LC = L × · · · × L. In this work, L = ℑP = ℑ × · · · × ℑ and G ∈ (ℑP )C =

ℑP × · · · × ℑP , where ℑ defines an interval;

– For global methods, Ξ is the space of vectors of weights, such that (Vl,Vu) ∈ Ξ with
Ξ = {(Vl,Vu) : Vl = (vl,1, . . . , vl,P ) ∈ RP , vl,j > 0, Vu = (vl,u, . . . , vu,P ) ∈ RP , vu,j >

0 and
∏P

j=1(vl,j)× (vu,j) = 1};

– For local approaches, Ξ is the space of vectors of weights, such that (vl,k,vu,k) ∈
Ξ(k = 1, . . . , C) with Ξ = {(vl,k,vu,k) : vl,k = (vl,k1, . . . , vl,kP ) ∈ RP ,vu,k =

(vu,k1, . . . , vu,kP ) ∈ RP , vl,kj > 0, vu,kj > 0 and
∏P

j=1(vl,kj) × (vu,kj) = 1} and
(Vl,Vu) ∈ ΞC = Ξ× · · · × Ξ;

– U is the space of fuzzy partition membership such that ui ∈ U(i = 1, . . . , N), and

U = {u = (u1, . . . , uC) ∈ [0, 1] × · · · × [0, 1] = [0, 1]C :
C∑

k=1

uk = 1} and U ∈ UN =

U × · · · × U.

Similarly to Ref. (DIDAY; SIMON, 1976), the convergence properties of the proposed algo-
rithms can be studied from the series:

• ν
(t)
EIFCM−GJ2 = (G(t),V

(t)
l ,V

(t)
u ,U(t)) ∈ LC × Ξ× UN and u

(t)
EIFCM−GJ2 =

JEIFCM−GJ2(ν
(t)
EIFCM−GJ2) = JEIFCM−GJ2(G

(t),V
(t)
l ,V

(t)
u ,U(t)), where t = 0, 1, . . .

is the iteration number;

• ν
(t)
EIFCM−GJ1 = (G(t),V

(t)
l ,V

(t)
u ,U(t)) ∈ LC × Ξ× UN and u

(t)
EIFCM−GJ1 =

JEIFCM−GJ1(ν
(t)
EIFCM−GJ1) = JEIFCM−GJ1(G

(t),V
(t)
l ,V

(t)
u ,U(t)), where t = 0, 1, . . .

is the iteration number;

• ν
(t)
EIFCM−LJ2 = (G(t),V

(t)
l ,V

(t)
u ,U(t)) ∈ LC × ΞC × UN and u

(t)
EIFCM−LJ2 =

JEIFCM−LJ2(ν
(t)
EIFCM−LJ2) = JEIFCM−LJ2(G

(t),V
(t)
l ,V

(t)
u ,U(t)), where t = 0, 1, . . . is

the iteration number;

• ν
(t)
EIFCM−LJ1 = (G(t),V

(t)
l ,V

(t)
u ,U(t)) ∈ LC × ΞC × UN and u

(t)
EIFCM−LJ1 =

JEIFCM−LJ1(ν
(t)
EIFCM−LJ1) = JEIFCM−LJ1(G

(t),V
(t)
l ,V

(t)
u ,U(t)), where t = 0, 1, . . . is

the iteration number;

From an initial term

• ν
(0)
EIFCM−GJ2 = (G(0),V

(0)
l ,V

(0)
u ,U(0));
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• ν
(0)
EIFCM−GJ1 = (G(0),V

(0)
l ,V

(0)
u ,U(0));

• ν
(0)
EIFCM−LJ2 = (G(0),V

(0)
l ,V

(0)
u ,U(0));

• ν
(0)
EIFCM−LJ1 = (G(0),V

(0)
l ,V

(0)
u ,U(0))

the algorithms EIFCM-GJ2, EIFCM-GJ1, EIFCM-LJ2 and EIFCM-LJ1 compute the different
terms of the series ν

(t)
EIFCM−GJ2, ν

(t)
EIFCM−GJ1, ν

(t)
EIFCM−LJ2 and ν

(t)
EIFCM−LJ1, until the res-

pective convergence, when the objective functions JEIFCM−GJ2, JEIFCM−GJ1, JEIFCM−LJ2

and JEIFCM−LJ1 reach stationary values.

Proposition 7.

i. The series u(t)
EIFCM−GJ2 = JEIFCM−GJ2(ν

(t)
EIFCM−GJ2) = JEIFCM−GJ2(G

(t),V
(t)
l ,V

(t)
u ,U(t))

decreases at each iteration and converges;

ii. The series u(t)
EIFCM−GJ1 = JEIFCM−GJ1(ν

(t)
EIFCM−GJ1) = JEIFCM−GJ1(G

(t),V
(t)
l ,V

(t)
u ,U(t))

decreases at each iteration and converges;

iii. The series u(t)
EIFCM−LJ2 = JEIFCM−LJ2(ν

(t)
EIFCM−LJ2) = JEIFCM−LJ2(G

(t),V
(t)
l ,V

(t)
u ,U(t))

decreases at each iteration and converges;

iv. The series u(t)
EIFCM−LJ1 = JEIFCM−LJ1(ν

(t)
EIFCM−LJ1) = JEIFCM−LJ1(G

(t),V
(t)
l ,V

(t)
u ,U(t))

decreases at each iteration and converges;

Proof. The proof follows a similar reasoning as presented in Section 3.3.3.

Proposition 8.

i. The series ν(t)
EIFCM−GJ2 = (G(t),V

(t)
l ,V

(t)
u ,U(t)) converges;

ii. The series ν(t)
EIFCM−GJ1 = (G(t),V

(t)
l ,V

(t)
u ,U(t)) converges;

iii. The series ν(t)
EIFCM−LJ2 = (G(t),V

(t)
l ,V

(t)
u ,U(t)) converges;

iv. The series ν(t)
EIFCM−LJ1 = (G(t),V

(t)
l ,V

(t)
u ,U(t)) converges;

Proof. The convergence proof is similar to the one presented in Section 3.3.3.

4.3.4 Complexity analysis

The computational complexity of the proposed approaches depends on the dissimilarity
measure used.

– If the algorithms are based on the Euclidean distance and entropy regularization, the
computational complexity is O(N × P × C × T ).
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– If the algorithms are based on the City-Block distance and entropy regularization, the
computational complexity is O(N × P × C × T × log(N)).

An advantage of the proposed approaches with entropy regularization is that they have a
simple implementation and less computational complexity compared to FCM methods, which
makes them more applicable for large and high-dimensional data clustering.

4.4 EXPERIMENTAL RESULTS

This section presents the properties and usefulness of proposed algorithms through different
experiments on synthetic and real interval-valued datasets. A summary of proposed methods is
shown in Table 18. The performance of the proposed approaches was compared with six clus-
tering algorithms: TrFCMdd-ID (D’URSO; GIOVANNI; MASSARI, 2015), ExpFCMd-ID (D’URSO

et al., 2017), AIFCM-G2 (CARVALHO; LECHEVALLIER, 2009), AIFCM-G1 (CARVALHO; SIMÕES,
2017), AIFCM-L2 (CARVALHO; LECHEVALLIER, 2009), and AIFCM-L1 (CARVALHO; SIMÕES,
2017). Furthermore, the quality of the fuzzy and hard partitions was measured by HUL and
ARI. Also, research questions 4, 5 and 6 are answered.

Table 18 – Summary of proposed methods.

Algorithms Description
EIFCM-GJ2 Proposed entropy fuzzy clustering method with global joint rele-

vance of the interval-valued variables and adaptive Euclidean dis-
tance

EIFCM-GJ1 Proposed entropy fuzzy clustering method with global joint rele-
vance of the interval-valued variables and adaptive City-Block dis-
tance

EIFCM-LJ2 Proposed entropy fuzzy clustering method with local joint relevance
of the interval-valued variables and adaptive Euclidean distance

EIFCM-LJ1 Proposed entropy fuzzy clustering method with local joint relevance
of the interval-valued variables and adaptive City-Block distance

Source: Author (2022)

4.4.1 Experimental setting

In all experiments, the parameters ε was set to 10−5, the maximum number of iterations T
to 100, and for each dataset, the number C of clusters was set equal to the number of a priori
classes. The interval-valued datasets were normalized (CARVALHO; BRITO; BOCK, 2006), such
that the resulting transformed midpoints have zero mean and dispersion 1 in each dimension.

The optimal values for m and Tu were found using a grid search strategy. Following a
procedure similar to Ref. (COPPI; D’URSO, 2006), PC and PE were considered for measuring
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the degree of overlap within the clusters. The parameter m was varied between 1.1 to 300 with
step 0.1, and Tu between 0.1 to 1000 with step 0.1. Then, an optimal value for the parameter
is obtained when PC ≈ PE. This approach allows us to maximize both the separation of
clusters measured by PC and the flexibility of classification given by PE. Note that optimal
values are computed in an unsupervised manner. As for algorithm ExpFCMd-ID, the parameter
β was estimated following Ref. (D’URSO et al., 2017). Since this method depends on both m

and β, finding the optimal combination of values takes longer than for the other algorithms.

4.4.2 Synthetic interval-valued datasets in which lower and upper boundaries
have different relevance

Some aspects of the proposed approaches are presented in this section through experiments
on the synthetic interval-valued datasets. Initially, a dataset was created such that the lower
and upper boundaries of the variables have different relevance for the clustering task. The
objective is to show how previous and proposed approaches identify the structure of clusters
under these conditions. The dataset has 25 objects for each of the two classes drawn from 2-
dimensional Gaussian distributions with a specific mean vector and covariance matrix, as shown
in Table 19. In this case, only the lower boundary of the variables is relevant for constructing
the clusters. Figure 21 shows the obtained interval-valued dataset.

Table 19 – Parameter setting for lower and upper boundaries.

Lower bound configuration Upper bound configuration
µ1 µ2 σ2

1 σ2
2 µ1 µ2 σ2

1 σ2
2

Class 1 0 0 0.2 0.2 5 5 7 7
Class 2 1 1 0.2 0.2 6 6 7 7

Source: Author (2022)

Figure 21 – Plots for the interval-valued data lower and upper boundaries (a) and (b), respectively.
(c) The synthetic interval-valued data.
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All algorithms were executed in a Monte Carlo simulation framework with 20 replications.
Then, 20 synthetic datasets were generated according to the settings described above. We run
the algorithms 50 times for each dataset and select the best solution according to the adequacy
criterion. The mean and standard deviation of HUL and ARI were computed based on the 20
Monte Carlo iterations.The robustness of the algorithms was compared according to the mean
and standard deviation of the 50 runs in each dataset. Finally, the Friedman test is utilized
to explore the statistical significance of the results obtained. Besides, the Nemenyi post-hoc
test is used to determine which algorithms perform statistically differently. The objective is to
determine whether at least one method is significantly better than at least one other method
at the α = 0.05 level.

4.4.2.1 Results

Table 20 shows the mean and standard deviation of the performance of each algorithm
when the best solution is selected according to its adequacy criterion. In this case, proposed
methods that consider the joint weights of the relevance of the intervals boundaries outperform
other approaches. This is because the weighting of the variables is calculated according to the
significance of each boundary. For a better understanding, Table 21 shows the importance of the
variables for the proposed algorithms EIFCM-LJ1 and EIFCM-GJ2, which presented the best
results for HUL and ARI, respectively. We can observe that they assign the highest relevance
weights for the lower boundaries of variables 1 and 2. Besides, the upper boundaries of these
variables were less relevant. Subsequently, the dissimilarity between objects and prototypes is
amplified on the lower boundaries of the variables and reduced on the upper ones. Note that
the literature methods showed a worse performance because they implicitly provide the same
importance for both boundaries. Then, they cannot find the cluster structure when it appears
in one of the boundaries. Nevertheless, among them, those based on the City-Block distance
presented higher flexibility and better performance.

Figure 22 shows that, as expected, the proposed methods that consider the relevance of
the variables for each boundary performed better than the other algorithms and the observed
performance differences between these methods were statistically significant. The proposed
method EIFCM-LJ2 don’t show significant difference with the literature methods for HUL and
α = 0.05. Besides, among literature methods, those with City-Block distance achieved higher
values as average. However, there is no consistent evidence to indicate statistical performance
differences between them. In conclusion, separate weighting for the lower and upper boundaries
is the most appropriate approach for problems in which the cluster structure is defined in one
of the subspaces of the bounds of the variables.
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Table 20 – Mean and standard deviation according to HUL and ARI

.

HUL ARI
Algorithms mean (std) mean (std)
TrFCMdd-ID 0.5058 (0.0152) 0.0595 (0.0913)
ExpFCMd-ID 0.4999 (0.0070) 0.0327 (0.0598)
AIFCM-G2 0.5038 (0.0109) 0.0437 (0.0665)
AIFCM-G1 0.5121 (0.0148) 0.0915 (0.1145)
AIFCM-L2 0.5038 (0.0117) 0.0423 (0.0650)
AIFCM-L1 0.5115 (0.0146) 0.0879 (0.1030)
EIFCM-GJ2 0.6133 (0.0145) 0.7100 (0.1034)
EIFCM-GJ1 0.6163 (0.0339) 0.6508 (0.1679)
EIFCM-LJ2 0.6006 (0.0226) 0.6620 (0.1400)
EIFCM-LJ1 0.6218 (0.0268) 0.6919 (0.1562)

Source: Author (2022)

Table 21 – Weights of the variables obtained by the proposed algorithms EIFCM-GJ2 and
EIFCM-LJ1 for the first Monte Carlo replica.

EIFCM-GJ2 EIFCM-LJ1
Vl Vu Vl Vu

Cluster 1 Cluster 2 Cluster 1 Cluster 2
Variable 1 3.7409 0.2295 1.7273 1.7057 0.4806 0.5519
Variable 2 5.1118 0.2279 2.0791 2.1595 0.5794 0.4919

Source: Author (2022)

Figure 22 – Comparison of the algorithms with each other with the Nemenyi test on data where lower
and upper bound variables have different relevance to clustering.

(a) Average performance ranking according
to HUL
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EIFCM-GJ2 - 2.75

EIFCM-GJ1 - 2.15
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(b) Average performance ranking according
to ARI

TrFCMdd-ID - 7.45
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AIFCM-G2 - 7.88

AIFCM-G1 - 6.88

AIFCM-L2 - 8.13

AIFCM-L1 - 6.80

EIFCM-GJ2 - 2.52

EIFCM-GJ1 - 2.70

EIFCM-LJ2 - 2.55

EIFCM-LJ1 - 2.23

Source: Author (2022)

4.4.3 Experiments on synthetic interval-valued datasets with outliers

Since clustering methods can be sensitive to outliers, this experiment was considered to
verify the robustness of the proposed algorithms. Addressing such, two-dimensional datasets
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were generated (Figure 23 (a)) according to the following configuration:

– Class 1: Centers U [0, 1] and Spreads U [0, 1];

– Class 2: Centers U [1, 2] and Spreads U [0, 1];

– Outliers: Centers N(4, 3) and Spreads U [0, 1].

in which, U [a, b] represents the uniform distribution with parameters a and b. Also, the
N(µ, σ2) is the normal distribution with mean µ and variance σ2. Each a priori class has
25 objects, and we add 10% and 20% of outliers as shown in Figure 23.

Figure 23 – Plots of the interval-valued data with (a) 0%, (b) 10% and (c) 20% of outliers.
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(c) Dataset with 20% of outliers
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Source: Author (2022)

All algorithms were executed in a Monte Carlo simulation framework with 20 replications.
Then, 20 synthetic datasets were generated according to the settings described above. We
run the algorithms 50 times for each dataset and select the best solution of the 50 executions
according to their adequacy criterion. The mean and standard deviation for the indices were
computed based on the Monte Carlo replications. In addition, the statistical significance of the
results obtained was explored.

4.4.3.1 Results

Figure 24 shows the mean and standard deviation according to the indices HUL and ARI
computed from the 20 Monte Carlo replications, varying the number of outliers. Numeric
values can be observed in Tables 30 and 31 (see Appendix C). Besides, Figures 25 and 26
presents the comparison of the algorithms according to the Nemenyi test. Models joined by
horizontal lines do not show evidence of statistically significant differences.

When comparing the fuzzy partition U obtained by the algorithms and the a priori par-
tition, we can observe that for 0% of outliers, the algorithms showed comparable results.
However, when the number of outliers increased, the algorithm ExpFCMd-ID and the City-
Block distance-based approaches presented the best results, showing higher robustness. After
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them, the proposed methods with adaptive Euclidean distance and TrFCMdd-ID achieved
the best performance. Additionally, they obtained similar fuzziness degrees for every iteration
within the Monte Carlo framework, which led to low standard deviation.

On the other hand, methods based on the Euclidean distance outperform other approaches
for 0% of outliers when comparing by ARI the hard partition and the a priori partition. Ne-
vertheless, as expected, ExpFCMd-ID and City-Block distance-based methods presented the
best performances when increasing the number of outliers in the datasets. They proved to
be statistically more robust to outliers. Hence, the robustness of the proposed methods based
on the City-Block distance was demonstrated. Besides, proposed methods based on Euclidean
distance showed better clustering results than TrFCMdd-ID, AIFCM-G2, and AIFCM-L2 when
the number of outliers increases. The latter had a higher standard deviation, indicating greater
sensitivity to initial cluster centers and outliers.

Figure 24 – Mean and standard deviation for different percentages of outliers according to the indices
HUL and ARI, respectively.
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4.4.4 Experiments on real interval-valued datasets

The clustering algorithms are compared on eight real interval-valued datasets: Car models
(SILVA; BRITO, 2020), City temperature (GURU; KIRANAGI; NAGABHUSHAN, 2004), Freshwater
fish species (BOUDOU; RIBEYRE, 1997), Fungi (WOOD; STEVENS, 2015), Horse, Ichino (ICHINO;

YAGUCHI, 1994), Iris (LYNNE; EDWIN, 2006) and Wine (KALLITHRAKA et al., 2001). Table 22
briefly describes the datasets, in which the number of objects, interval variables and a priori
clusters are represented by N , P and C, respectively. The algorithms were run 50 times for each
dataset, and it is selected the best result according to the minimum value of their objective
function.
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Figure 25 – Comparison of the algorithms with each other with the Nemenyi test for HUL with
different percentages of outliers.

(a) Average performance ranking
for 0% of outliers
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Source: Author (2022)

Figure 26 – Comparison of the algorithms with each other with the Nemenyi test for ARI with different
percentages of outliers.
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Source: Author (2022)

4.4.4.1 Results

Table 32 presents the clustering results for the best execution according to their objective
function. The performance rank is shown in parenthesis. Figure 27 exhibits the cumulative
rank on each dataset. We can observe that when comparing the obtained fuzzy partition
and the a priori partition according to HUL, the proposed approach EIFCM-LJ2 presented
the highest values for the datasets Car models and City temperature. For Freshwater fish
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Table 22 – Summary of the real interval-valued datasets.

Dataset N P C Dataset N P C

Car models 33 8 4 City temperature 37 12 4
Freshwater fish species 12 13 4 Fungi 55 5 3

Horse 12 7 4 Ichino 8 4 4
Iris 30 4 3 Wine 33 9 2

Source: Author (2022)

species, Horse and Iris, the proposed method EIFCM-GJ1 achieved the best clustering results.
However, literature methods AIFCM-L2 and AIFCM-G2 show the best performance for Fungi
and Wine, respectively. For Ichino data, the proposed algorithm EIFCM-LJ1 achieved the most
significant values. Finally, Figure 27 (a) shows that the proposed methods outperformed other
approaches, mainly EIFCM-GJ1, which achieved the best performance ranking. TrFCMdd-ID
and ExpFCMd-ID had the worst results.

When comparing the hard partition and the a priori partition according to ARI, in the
Iris dataset, all methods reached comparable clustering results. Please see Table 32. However,
as shown in Figure 27 (b), EIFCM-GJ2, EIFCM-GJ1, and EIFCM-LJ2 presented the highest
values for almost all datasets. AIFCM-L1 and ExpFCMd-ID obtained the worst results.

Figure 27 – Clustering results on real interval-valued data for (a) HUL and (b) ARI according to
Table 32

(a) HUL

Tr
FC
M
dd
-ID

E
xp
FC
M
d-
ID

A
IF
C
M
-G
2

A
IF
C
M
-G
1

A
IF
C
M
-L
2

A
IF
C
M
-L
1

E
IF
C
M
-G
J2

E
IF
C
M
-G
J1

E
IF
C
M
-L
J2

E
IF
C
M
-L
J1

0

10

20

30

40

50

60

70

80
Car
City
Fish
Fungi

Horse
Ichino
Iris
Wine

C
um

ul
at

iv
e

ra
nk

(b) ARI

Tr
FC
M
dd
-ID

E
xp
FC
M
d-
ID

A
IF
C
M
-G
2

A
IF
C
M
-G
1

A
IF
C
M
-L
2

A
IF
C
M
-L
1

E
IF
C
M
-G
J2

E
IF
C
M
-G
J1

E
IF
C
M
-L
J2

E
IF
C
M
-L
J1

0

10

20

30

40

50

60

70
Car
City
Fish
Fungi

Horse
Ichino
Iris
Wine

Source: Author (2022)

The mean and standard deviation of the fifty iterations of the algorithms in the eight
real interval-valued datasets were computed to analyze the sensitivity to initial cluster cen-
ters. Table 33 shows the numeric values for HUL and ARI. The performance rank of the
algorithms is shown in parenthesis and summarized in Figure 28. We can observe that the
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Figure 28 – Clustering results on real interval-valued data for (a) HUL and (b) ARI according to
Table 33
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proposed method IFCM-GJ2 outperformed other approaches on average for most datasets.
Furthermore, it presented low standard deviations, indicating lower sensitivity to random ini-
tializations. This means that by using separate weights for lower and upper boundaries and
entropy regularization, the performance of the algorithms can be improved.

4.4.4.2 Ichino dataset (Fats and Oils)

Ichino (ICHINO; YAGUCHI, 1994) is one of the real interval-valued data used in our experi-
ments. It consists of eight objects described by four interval-valued variables, such as specific
gravity, freezing point, iodine value, and saponification value. It is known that each object par
(1,2), (3,4), (5,6), and (7,8) has similar properties. Then, this information was used to set
the number of clusters equal to 4. In this data , almost all proposed methods presented the
best performance for both indices. For a better understanding, it is analyzed the prototypes,
weights of the variables, and fuzzy partition, provided by the proposed algorithm EIFCM-LJ1,
which achieved the best clustering results.

Table 23 and Figure 29 present the prototypes for each cluster obtained by the proposed
algorithm EIFCM-LJ1. We can see that the prototypes returned by the proposed method
represent the Ichino dataset well. This allows obtaining a partition of the data that is in
correspondence with the a priori classes.

The algorithm EIFCM-LJ1 also provides the relevance weights of the interval-valued varia-
bles for lower and upper boundaries on each cluster as seen in Table 24. The closer the objects
are to the prototype of a given group concerning a boundary of a given interval-valued variable,
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Table 23 – Matrix of prototypes provided by proposed EIFCM-LJ1 for the Ichino dataset.

Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4
Specific gravity [-1.7937,-1.4210] [0.8153,1.0017] [0.2935,0.4053] [0.2935,0.4053]
Freezing point [1.1122,1.6498] [-1.5221,-1.0383] [-0.3931,-0.2856] [-0.3931,-0.2856]
Iodine value [-1.0830,-0.6245] [1.1523,1.8019] [-0.5672,-0.3761] [-0.2042,0.0633]
Saponification value [0.1464,0.8996] [-5.8785,0.6485] [-0.0209,0.6485] [-0.0209,0.6485]

Source: Author (2022)

Figure 29 – Prototypes provided by the proposed algorithm EIFCM-LJ1 on the Ichino dataset.
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the higher is the relevance weight of this boundary on this cluster. Table 24 shows that the
saponification value is the most relevant variable for clusters 1, 3, and 4 in both boundaries.
However, the specific gravity showed greater importance for group 2, mainly at the lower boun-
dary. In every case, the higher-weight boundaries amplify the dissimilarity between objects and
prototypes, while the lower values reduce it.

Finally, the proposed algorithm provides a fuzzy partition U of the objects as shown in
Table 25 and the corresponding hard partition Q. When comparing them with the a priori
partition, HUL=0.7615 and ARI=1. These results show how the proposed method manages
to make a good partition of the input data based on the prototypes obtained and the weights
of the variables, outperforming the literature approaches in both indices.
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Table 24 – Relevance weights of the variables for lower and upper boundaries provided by the
proposed algorithm EIFCM-LJ1 on the Ichino dataset.

Variables Cluster 1 Cluster 2 Cluster 3 Cluster 4
Specific gravity [0.8080,0.6405] [103.1783,2.5947] [1.5052,1.2052] [1.3983,1.0748]
Freezing point [0.4703,0.5179] [0.1635,0.2570] [0.6975,0.6229] [0.8382,0.7221]
Iodine value [0.8820,0.5212] [0.4602,2.5309] [0.6109,0.5233] [0.5716,0.5073]
Saponification value [15.6518,1.1026] [0.0330,2.3114] [2.8426,1.3963] [2.8574,1.3269]

Source: Author (2022)

Table 25 – Fuzzy and hard partitions provided by the proposed algorithm EIFCM-LJ1 on the
Ichino dataset.

Fuzzy Partition U

Objects Cluster 1 Cluster 2 Cluster 3 Cluster 4 Hard partition Q

1 0.0000 0.9995 0.0002 0.0003 2
2 0.0099 0.5622 0.1856 0.2422 2
3 0.0447 0.0000 0.4363 0.5190 4
4 0.0144 0.0000 0.4435 0.5422 4
5 0.0546 0.0000 0.5247 0.4207 3
6 0.0254 0.0000 0.5360 0.4386 3
7 0.9437 0.0000 0.0304 0.0260 1
8 0.9462 0.0000 0.0283 0.0255 1

Source: Author (2022)

4.5 CONCLUSIONS

New fuzzy clustering algorithms for interval-valued data were proposed. These methods are
based on adaptive Euclidean and City-Block distances. These dissimilarity measures change
with each iteration of the algorithms and consider that the boundaries of the variables have
different relevance in the clustering process. The entropy regularization was considered because,
usually, such approach is less sensitive to initial cluster centers and outliers.

The proposed methods are based on minimizing a clustering criterion to provide the best
prototypes of the clusters, relevance weights of the variables, and fuzzy partition matrix.
An expression for the minimizers of the objective function was obtained for each algorithm.
Convergence properties were also studied.

In the experimental section, the properties and usefulness of proposed methods were de-
monstrated through experiments on synthetic and real interval-valued datasets. The results
showed that weighting the variables separately, according to which boundary is more relevant,
can improve the performance of the algorithms, especially when the structure of the clus-
ters appears in one of the boundaries. The City-Block distance-based methods presented the
best results for datasets with outliers. Besides, regularized approaches demonstrated higher
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robustness to random initializations.
With these results, the research questions of this work were answered as follows:

1. Is it possible that considering the relevance of each boundary, the performance of the
algorithms may be improved? How?

• Proposing new objective functions with adaptive dissimilarity that consider the
relevance of the variables for lower and upper boundaries allowed us to recognize
clusters of different shapes and sizes in some subspaces of the variables, even in
specific boundaries of the interval-valued data.

• These approaches maintain the properties of the adaptive methods in the literature,
such that if only a subset of the variables is relevant to define the groups in both
boundaries, the methods assign to these variables a greater contribution to the
clustering.

• However, restricting the joint weights of the variable in both boundaries allowed the
proposed methods to recognize the most relevant variable according to the most
significant boundary, which is an advantage compared to the approaches in the
literature. Therefore, the closer the objects are to a prototype of a given variable
and boundary, the higher the significance of that variable in that boundary.

• Experiments showed that the use of these techniques improves the clustering results
when compared with literature approaches, mainly for datasets in which the upper
and lower boundaries have different relevance.

2. What would be the advantage of using another type of distance to group interval-valued
data?

• Using robust dissimilarity functions allowed clustering methods to minimize the
detrimental effect of outliers present in the data. These dissimilarity functions were
based on the City-Block distance, since several experiments show that this type of
approach is more robust to outliers.

• Experiments on synthetic and real interval-valued data with different amounts of
outliers showed that methods based on the City-Block distance degrade their per-
formance more slowly compared to those based on the Euclidean distance.

3. What are the advantages of proposing clustering methods based on regularizations?

• The maximum entropy clustering has received much attention in recent years due
to its insensitivity to initial values and high clustering performance in large-scale,
as an alternative to FCM approaches. A characteristic of taking this point of view
of regularization is that the degrees of membership are taken linearly, which seems
more natural than elevating them to a fuzziness coefficient. Besides, such methods
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also possess definite mathematical characteristics and distinct physical meanings,
which makes it easy to understand, as shown in Section 4.3.1.3.

• The experimental results show that the proposed methods with entropy regulariza-
tion have a standard deviation lower than the methods in the literature, indicating
a lower sensitivity to initialization and outliers.

• In proposed methods, the burden of representing fuzziness is shifted to the regu-
larization term, in the form of a weighting factor that multiplies the regularization
term added to the clustering criterion. Such approaches regularize the clustering
results during the optimization process to satisfy all the constraint conditions. In
this case, the method with the maximum entropy will be identified as the optimal
solution among all the methods meeting the restrictions. Due to the simplicity of
these approaches, other types of regularizations can be easily added.
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5 FINAL REMARKS

5.1 CHALLENGES

The distance metric is an essential issue in many clustering algorithms. The commonly
used Euclidean distance assumes that each feature is equally relevant and independent from
others. Nevertheless, this assumption may not always be valid, especially when it comes to
high-dimensional data. Besides, since the Euclidean distance-based dissimilarity measure only
characterizes the mean information of a cluster, it is sensitive to noise and outliers. Therefore,
selecting a distance metric with good quality should identify essential features and discriminate
relevant and irrelevant ones, in addition to being robust to noise and outliers.

Partitioning clustering is usually approached by solving an optimization problem. This
procedure involves finding the parameters that minimize (maximize) a given objective function
constrained by some restrictions. Such a process may be simplified from the computational
perspective whenever a differential function is available. Unfortunately, taking the derivative
of the objective function is not always possible, which difficulties obtaining the expression for
the minimizers (maximizers). Besides, in most cases, the objective function depends on hyper-
parameters that control how far to move in the search space. Since any information is given
about the input data, finding feasible values for the hyper-parameters in an unsupervised way
is very challenging.

Continuous numerical data is a classical data type. Many algorithms for clustering this
type of data can be found in the literature. However, this representation of objects may not
represent complex, structured, aggregated, relational, and high-level data well. Symbolic Data
Analysis was introduced as a domain associated with multivariate analysis that extends classical
data analysis techniques to deal with complex data. Several methods have been proposed,
for example, for interval-valued data clustering. Some of them even take into account the
relevance of the variables in the clustering process. Still, the weight of significance of the lower
and upper variables is considered equal. As a result, a non-relevant boundary can still have a
high relevance weight. However, some interval boundaries associated with the variables could
be more or less relevant or even irrelevant. Hence the need to propose methods capable of
considering the information of relevance of both boundaries.

FCM methods are the most popular approaches for clustering data. Despite this, some
points have been raised about the motivation for adding the parameter m to the objective
function and its physical meaning (LI; MUKAIDONO, 1995), in addition to the unnatural appea-
rance of such an exponent from a mathematical perspective. For example, why the membership
degree is powered to it. Another point is that FCM methods are sensitive to initial cluster cen-
ters and noises. Hence the performance tends to deteriorate in some cases, especially with
incomplete data (TAO et al., 2019).



111

5.2 CONTRIBUTIONS

Addressing the above points, new soft subspace clustering algorithms were proposed. These
methods perform clustering in high-dimensional spaces by assigning a weight to each dimension
to measure the contribution of individual features to the formation of the clusters. Mahalanobis-
based methods have been considered. Experimental results show that such an approach is
suitable when variables in the datasets are correlated. Besides, since outliers can be presented,
methods based on the City-Block distance were introduced. Compared with other methods,
they showed a robust performance in datasets with different percent of outliers and noise.

The proposals divide the input data into a fixed number of clusters by minimizing an objec-
tive function. An algebraic solution for obtaining the minimizers of the objective functions and
a detailed derivation for all constraints and metrics were provided. An algorithmic solution was
presented in the absence of an algebraic solution to get the prototype minimizer in City-Block
distance-based approaches. The values of the hyper-parameters of the models significantly
influence the result of the clustering. Hence, a sensitivity analysis was carried out to measure
their influence on the quality of the clustering. Based on this study, an unsupervised process
was introduced to calculate their optimal values.

Methods for interval-valued data clustering were also proposed. They consider the joint
weights of the relevance of the lower and upper boundaries of the interval-valued variables.
In this case, a boundary that plays a significant role in the clustering task will have a higher
relevance weight. The experiments show that this new approach presented a good performance
for synthetic and real datasets, especially when the structure of the clusters appears in one
of the boundaries. In this last scenario, the proposed methods show a significant difference
compared to other methods.

Finally, the proposals introduced an entropy term that regularizes the membership degree.
They show a distinct physical meaning and well-defined mathematical characteristics because
similarities with the method presented in Ref. (LI; MUKAIDONO, 1995) are shared. This approach
offers a simple implementation and less computational complexity than FCM alternatives.
Besides, the experimental results show that they are less sensitive to initial cluster centers and
outliers.

5.3 LIMITATIONS AND FUTURE WORK

In clustering, the choice of dissimilarity functions is one of the main aspects of calculating
the components of the prototypes. Several suitable dissimilarity functions have been proposed
by different authors. However, sometimes an exact solution (algebraic or algorithmic) is not
known to calculate the minimizers of the objective function. Hence the need to correctly
select the dissimilarity measure given a problem and provide a detailed solution for each of the
possible choices.
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In this work, new fuzzy clustering algorithms were proposed that address the problem of
data corrupted by outliers. In addition, methods based on the Mahalanobis distance were also
introduced where the correlation between variables is considered. Such approaches have the
property of being invariant to linear transformations. Despite their usefulness, other approaches
can be proposed, for example, fuzzy kernel clustering methods. They can map the data into
high-dimensional feature space by adopting an appropriate kernel function. Through such
function, the non-hyperspherical-shaped groups in the original input space are likely to be
transformed into hyperspherical-shaped clusters, which are easily identified by the method.

Entropy clustering algorithms have received much attention as they are insensitive to ini-
tial values and have high clustering performance in large-scale data. In addition, they possess
definite mathematical characteristics and distinct physical meanings, which makes them easy
to understand. Due to the simplicity of these approaches, other types of regularizations can
be added. For example, Ref. (RODRÍGUEZ; CARVALHO, 2021b) proposed soft subspace cluste-
ring methods with quadratic regularization. The regularization function measures the overall
fuzziness of the obtained classification pattern.

A follow-up extension for the above methods is to use different types of regularizations in
addition to entropy and quadratic. An alternative may be the introduction of a fuzzification
technique with Kullback-Leibler divergences (K-L information). Additionally, several regulari-
zers can be combined into the same objective function to further constrain the solution space
and find better data partitions. Besides, more straightforward methodologies to obtain free
parameter values can be explored.
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APPENDIX A – RELATED PUBLICATIONS

This appendix contains the information where the articles (RODRÍGUEZ; CARVALHO, 2021a; RO-

DRÍGUEZ; CARVALHO, 2021b; RODRÍGUEZ; CARVALHO, 2019b; RODRÍGUEZ; CARVALHO, 2019a;
RODRÍGUEZ; CARVALHO, 2018a; RODRÍGUEZ; CARVALHO, 2018b) were published.
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APPENDIX B – RESULTS FOR THE EXPERIMENTS ON SINGLE-VALUED
DATASETS.

Table 26 – Mean and standard deviation (in parentheses) for the four datasets in the first
experiment.

Dataset 1 Dataset 2 Dataset 3 Dataset 4
Algorithms HUL ARI HUL ARI HUL ARI HUL ARI

EFCM-2 0.7006 0.5991 0.6735 0.5815 0.6314 0.4162 0.6368 0.4613
(0.0231) (0.0388) (0.0186) (0.0343) (0.0206) (0.0338) (0.0220) (0.0402)

EFCM-1 0.7946 0.6383 0.7926 0.5693 0.7140 0.4393 0.7549 0.4529
(0.0788) (0.0815) (0.0344) (0.0555) (0.0659) (0.0465) (0.0205) (0.0344)

EFCM-M 0.7091 0.5899 0.6190 0.5186 0.7178 0.6631 0.6197 0.4946
(0.0225) (0.0465) (0.0365) (0.0344) (0.0485) (0.1366) (0.0372) (0.0294)

EFCM-Mk 0.6685 0.4127 0.7427 0.5990 0.7295 0.4936 0.7933 0.6499
(0.0887) (0.1111) (0.0821) (0.0681) (0.0901) (0.1581) (0.0660) (0.1128)

EFCM-GP2 0.7063 0.5905 0.6648 0.5621 0.6357 0.4131 0.6347 0.4393
(0.0219) (0.0399) (0.0252) (0.0353) (0.0203) (0.0339) (0.0197) (0.0378)

EFCM-GP1 0.7739 0.6226 0.7995 0.5819 0.7322 0.4506 0.7545 0.4506
(0.0759) (0.0801) (0.0353) (0.0641) (0.0600) (0.0595) (0.0310) (0.0464)

EFCM-LP2 0.7055 0.4393 0.7954 0.6466 0.6424 0.3181 0.6942 0.5651
(0.0169) (0.0529) (0.0342) (0.0409) (0.0130) (0.0241) (0.0443) (0.0390)

EFCM-LP1 0.6904 0.5328 0.7552 0.6452 0.6673 0.3994 0.7176 0.5168
(0.0593) (0.0769) (0.0530) (0.0600) (0.0365) (0.0438) (0.0537) (0.0533)

EFCM-GS2 0.6836 0.4892 0.6890 0.5193 0.6327 0.3814 0.6515 0.4175
(0.0368) (0.1425) (0.0422) (0.0984) (0.0229) (0.0705) (0.0336) (0.0889)

EFCM-GS1 0.6663 0.5142 0.7301 0.4444 0.6267 0.3987 0.7034 0.4175
(0.0537) (0.1054) (0.0509) (0.1298) (0.0523) (0.0775) (0.0344) (0.0876)

EFCM-LS2 0.6936 0.4861 0.6988 0.5556 0.6394 0.3579 0.6483 0.4895
(0.0344) (0.1475) (0.0390) (0.0599) (0.0235) (0.0770) (0.0276) (0.0467)

EFCM-LS1 0.6528 0.4243 0.7443 0.5432 0.6245 0.3611 0.6959 0.4864
(0.0556) (0.1392) (0.0470) (0.0464) (0.0517) (0.0875) (0.0589) (0.0708)

Source: Author (2022)
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Table 27 – Mean and standard deviation (in parentheses) of HUL and ARI on the synthetic
single-valued dataset for different percentages of outliers.

0% Outliers 10% Outliers 20% Outliers
Algorithms HUL ARI HUL ARI HUL ARI

EFCM-2 0.5726 0.9761 0.5120 0.8103 0.5077 0.6524
(0.0226) (0.0350) (0.0087) (0.3117) (0.0097) (0.3847)

EFCM-1 0.7708 0.9683 0.7143 0.9683 0.7383 0.9663
(0.1351) (0.0431) (0.1308) (0.0431) (0.1495) (0.0416)

EFCM-M 0.6319 0.8726 0.5214 0.8285 0.5108 0.7343
(0.1209) (0.2517) (0.0179) (0.2573) (0.0067) (0.2429)

EFCM-Mk 0.6572 0.4467 0.5308 0.1963 0.5335 0.2199
(0.2210) (0.4029) (0.0964) (0.2552) (0.0691) (0.2561)

EFCM-GP2 0.5392 0.9761 0.5117 0.8145 0.5051 0.6548
(0.0646) (0.0350) (0.0094) (0.3042) (0.0070) (0.3847)

EFCM-GP1 0.7716 0.9692 0.7407 0.9732 0.7385 0.9633
(0.1335) (0.0397) (0.1449) (0.0389) (0.1478) (0.0432)

EFCM-LP2 0.5657 0.9761 0.5033 0.3116 0.5051 0.4161
(0.0338) (0.0350) (0.0300) (0.3210) (0.0309) (0.3074)

EFCM-LP1 0.7703 0.9653 0.6903 0.9673 0.6759 0.9586
(0.1351) (0.0436) (0.0996) (0.0440) (0.1029) (0.0504)

EFCM-GS2 0.5062 0.9761 0.5105 0.8128 0.5063 0.6533
(0.0175) (0.0350) (0.0075) (0.3044) (0.0101) (0.3838)

EFCM-GS1 0.7956 0.9702 0.7248 0.9732 0.7287 0.9672
(0.1454) (0.0399) (0.1368) (0.0389) (0.1589) (0.0394)

EFCM-LS2 0.5444 0.8795 0.4997 0.1466 0.4982 0.1971
(0.0271) (0.2741) (0.0233) (0.2276) (0.0103) (0.2515)

EFCM-LS1 0.7495 0.9491 0.6383 0.8515 0.5898 0.7302
(0.1804) (0.0642) (0.1724) (0.2542) (0.1506) (0.3209)

Source: Author (2022)
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Table 28 – Algorithms performance for real datasets.

Automobile Balance Scale Haberman
Algorithms HUL ARI HUL ARI HUL ARI

EFCM-2 0.5692 (8.0) 0.0941 (10.0) 0.4568 (6.0) 0.1420 (2.0) 0.5892 (8.0) -0.0026 (10.0)
EFCM-1 0.7180 (1.0) 0.1474 (4.0) 0.4299 (11.0) 0.0000 (10.0) 0.4990 (11.0) -0.0011 (8.0)

EFCM-M 0.4208 (12.0) 0.1073 (6.0) 0.4535 (7.0) 0.0652 (7.0) 0.5844 (9.0) 0.0035 (6.0)
EFCM-Mk 0.4806 (11.0) 0.0253 (12.0) 0.5741 (1.0) 0.1131 (3.5) 0.6086 (1.0) 0.1596 (3.0)
EFCM-GP2 0.7073 (3.0) 0.1415 (5.0) 0.5121 (2.0) 0.1131 (3.5) 0.6025 (5.0) -0.0027 (11.0)
EFCM-GP1 0.7084 (2.0) 0.2160 (1.0) 0.4299 (11.0) 0.0000 (10.0) 0.4987 (12.0) -0.0011 (8.0)
EFCM-LP2 0.5585 (9.0) 0.1060 (7.0) 0.4640 (5.0) 0.0729 (6.0) 0.6084 (2.0) 0.1456 (4.0)
EFCM-LP1 0.6440 (6.0) 0.0869 (11.0) 0.4977 (4.0) -0.0110 (12.0) 0.6047 (4.0) 0.1725 (2.0)
EFCM-GS2 0.5700 (7.0) 0.0971 (9.0) 0.4474 (8.0) 0.2934 (1.0) 0.5097 (10.0) -0.0040 (12.0)
EFCM-GS1 0.6790 (4.0) 0.1604 (3.0) 0.4299 (11.0) 0.0000 (10.0) 0.6018 (6.0) -0.0011 (8.0)
EFCM-LS2 0.5336 (10.0) 0.0975 (8.0) 0.4992 (3.0) 0.1024 (5.0) 0.6072 (3.0) 0.1001 (5.0)
EFCM-LS1 0.6683 (5.0) 0.2020 (2.0) 0.4299 (9.0) 0.0011 (8.0) 0.6005 (7.0) 0.1789 (1.0)

Heart Image Segmentation Ionosphere
EFCM-2 0.5451 (5.0) 0.3487 (8.0) 0.8027 (6.0) 0.4911 (6.0) 0.5358 (12.0) 0.1588 (4.0)
EFCM-1 0.6910 (1.0) 0.4227 (4.0) 0.8627 (2.0) 0.5257 (1.0) 0.5377 (8.0) 0.0936 (9.0)

EFCM-M 0.5156 (7.0) 0.1338 (10.0) 0.1425 (12.0) 0.0041 (12.0) 0.5407 (5.0) 0.0085 (12.0)
EFCM-Mk 0.5027 (12.0) -0.0036 (11.5) 0.2101 (11.0) 0.0151 (11.0) 0.5713 (1.0) 0.0321 (11.0)
EFCM-GP2 0.5050 (9.0) 0.3576 (7.0) 0.8365 (3.0) 0.4309 (8.0) 0.5384 (7.0) 0.1588 (4.0)
EFCM-GP1 0.5908 (4.0) 0.1807 (9.0) 0.8659 (1.0) 0.5221 (2.0) 0.5418 (4.0) 0.1045 (8.0)
EFCM-LP2 0.5312 (6.0) 0.4131 (5.0) 0.7281 (9.0) 0.3242 (9.0) 0.5360 (11.0) 0.1406 (6.0)
EFCM-LP1 0.5046 (10.0) -0.0036 (11.5) 0.6862 (10.0) 0.2979 (10.0) 0.5362 (10.0) 0.0870 (10.0)
EFCM-GS2 0.5045 (11.0) 0.4325 (3.0) 0.8008 (7.0) 0.5021 (4.0) 0.5384 (6.0) 0.1588 (4.0)
EFCM-GS1 0.6792 (3.0) 0.4423 (1.5) 0.8300 (4.0) 0.5137 (3.0) 0.5558 (2.0) 0.1243 (7.0)
EFCM-LS2 0.5111 (8.0) 0.3757 (6.0) 0.7937 (8.0) 0.4864 (7.0) 0.5365 (9.0) 0.1634 (2.0)
EFCM-LS1 0.6794 (2.0) 0.4423 (1.5) 0.8291 (5.0) 0.4928 (5.0) 0.5508 (3.0) 0.2092 (1.0)

Iris plants Mnist Thyroid
EFCM-2 0.7524 (11.0) 0.6199 (11.0) 0.5072 (6.0) 0.9564 (3.0) 0.5997 (12.0) 0.3623 (8.0)
EFCM-1 0.8538 (6.0) 0.6656 (7.5) 0.5660 (1.0) 0.9503 (8.0) 0.8702 (1.0) 0.7324 (1.0)

EFCM-M 0.9020 (2.0) 0.9037 (1.0) 0.5538 (3.0) 0.9569 (1.5) 0.6106 (11.0) 0.1136 (11.0)
EFCM-Mk 0.5870 (12.0) 0.2824 (12.0) 0.5538 (2.0) 0.9569 (1.5) 0.7184 (4.0) 0.0931 (12.0)
EFCM-GP2 0.8878 (4.0) 0.8510 (3.0) 0.5022 (11.0) 0.9561 (4.5) 0.6547 (8.0) 0.5038 (4.0)
EFCM-GP1 0.9481 (1.0) 0.8857 (2.0) 0.5082 (5.0) 0.9532 (6.0) 0.8586 (2.0) 0.7167 (2.0)
EFCM-LP2 0.7811 (8.0) 0.6882 (5.0) 0.5168 (4.0) 0.0513 (9.0) 0.6892 (5.0) 0.6931 (3.0)
EFCM-LP1 0.8931 (3.0) 0.8019 (4.0) 0.5033 (7.0) 0.0169 (10.0) 0.7287 (3.0) 0.4148 (7.0)
EFCM-GS2 0.7607 (9.0) 0.6303 (9.5) 0.5022 (10.0) 0.9561 (4.5) 0.6611 (7.0) 0.4731 (5.0)
EFCM-GS1 0.8535 (7.0) 0.6656 (7.5) 0.5028 (8.0) 0.9511 (7.0) 0.6830 (6.0) 0.3337 (9.0)
EFCM-LS2 0.7549 (10.0) 0.6303 (9.5) 0.5021 (12.0) 0.0041 (12.0) 0.6215 (9.0) 0.4392 (6.0)
EFCM-LS1 0.8584 (5.0) 0.6757 (6.0) 0.5023 (9.0) 0.0096 (11.0) 0.6208 (10.0) 0.1349 (10.0)

Source: Author (2022)
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Table 28 – Algorithms performance for real datasets.

UKM Vehicle Vertebral column
Algorithms HUL ARI HUL ARI HUL ARI

EFCM-2 0.4900 (10.0) 0.1647 (11.0) 0.5660 (8.0) 0.0736 (11.0) 0.5749 (6.0) 0.2993 (9.0)
EFCM-1 0.6095 (6.0) 0.1935 (9.0) 0.6503 (3.0) 0.1124 (7.0) 0.6016 (5.0) 0.3330 (8.0)

EFCM-M 0.7151 (2.0) 0.3530 (1.0) 0.6653 (2.0) 0.1399 (2.0) 0.3811 (12.0) 0.2479 (10.0)
EFCM-Mk 0.4269 (12.0) 0.0176 (12.0) 0.4362 (12.0) 0.0951 (8.0) 0.4658 (10.0) 0.0045 (12.0)
EFCM-GP2 0.6937 (3.0) 0.3024 (4.0) 0.5535 (9.0) 0.0755 (10.0) 0.5640 (7.0) 0.3344 (7.0)
EFCM-GP1 0.7373 (1.0) 0.3499 (2.0) 0.6435 (4.0) 0.1269 (5.0) 0.6131 (4.0) 0.3416 (4.0)
EFCM-LP2 0.5459 (7.0) 0.2750 (6.0) 0.5730 (7.0) 0.1299 (4.0) 0.5595 (9.0) 0.3526 (3.0)
EFCM-LP1 0.6633 (4.0) 0.3264 (3.0) 0.6695 (1.0) 0.1425 (1.0) 0.6204 (3.0) 0.3398 (5.0)
EFCM-GS2 0.4728 (11.0) 0.1679 (10.0) 0.5416 (10.0) 0.0698 (12.0) 0.5628 (8.0) 0.3368 (6.0)
EFCM-GS1 0.5236 (8.0) 0.2327 (7.0) 0.5043 (11.0) 0.1135 (6.0) 0.6984 (1.0) 0.4365 (1.0)
EFCM-LS2 0.6180 (5.0) 0.2858 (5.0) 0.5865 (6.0) 0.0792 (9.0) 0.4628 (11.0) 0.0269 (11.0)
EFCM-LS1 0.5107 (9.0) 0.2319 (8.0) 0.6047 (5.0) 0.1353 (3.0) 0.6417 (2.0) 0.3558 (2.0)

WDBC WFRN Wine
EFCM-2 0.5677 (5.0) 0.6895 (6.0) 0.4972 (10.0) 0.1581 (10.0) 0.5550 (9.0) 0.5953 (8.0)
EFCM-1 0.8032 (2.0) 0.7551 (4.0) 0.5527 (5.0) 0.1591 (9.0) 0.7601 (4.0) 0.8804 (3.0)

EFCM-M 0.5314 (12.0) 0.0100 (12.0) 0.5893 (1.0) 0.1451 (11.0) 0.9765 (1.0) 0.9651 (1.0)
EFCM-Mk 0.5451 (7.0) 0.1578 (10.0) 0.5381 (6.0) 0.2165 (4.0) 0.5014 (12.0) 0.2619 (12.0)
EFCM-GP2 0.5318 (11.0) 0.6954 (5.0) 0.5297 (8.0) 0.1608 (8.0) 0.6149 (7.0) 0.6316 (7.0)
EFCM-GP1 0.8207 (1.0) 0.7736 (3.0) 0.5252 (9.0) 0.2777 (3.0) 0.7730 (3.0) 0.8804 (3.0)
EFCM-LP2 0.5342 (9.0) 0.4513 (8.0) 0.5548 (3.0) 0.3419 (2.0) 0.6505 (6.0) 0.5114 (10.0)
EFCM-LP1 0.7963 (3.0) 0.7925 (1.0) 0.5530 (4.0) 0.3543 (1.0) 0.7905 (2.0) 0.8804 (3.0)
EFCM-GS2 0.7121 (4.0) 0.7802 (2.0) 0.4847 (12.0) 0.1887 (5.0) 0.5147 (11.0) 0.5083 (11.0)
EFCM-GS1 0.5620 (6.0) 0.5057 (7.0) 0.5613 (2.0) 0.1814 (7.0) 0.5869 (8.0) 0.7185 (6.0)
EFCM-LS2 0.5332 (10.0) 0.1390 (11.0) 0.4850 (11.0) 0.1864 (6.0) 0.5213 (10.0) 0.5188 (9.0)
EFCM-LS1 0.5388 (8.0) 0.4292 (9.0) 0.5369 (7.0) 0.0717 (12.0) 0.6601 (5.0) 0.8185 (5.0)

Source: Author (2022)
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Table 29 – Results on real data for the best solution according to the mean of HUL and ARI.

Automobile Balance Scale Haberman
Algorithms HUL ARI HUL ARI HUL ARI
EFCM-2 0.5653 (9.0) 0.1162 (7.0) 0.4495 (5.0) 0.1321 (3.0) 0.5941 (9.0) -0.0026 (11.0)

(std) (0.0033) (0.0379) (0.0053) (0.0969) (0.0052) (0.0001)
EFCM-1 0.7260 (1.0) 0.1727 (1.0) 0.4299 (10.5) 0.0000 (10.0) 0.5531 (10.0) -0.0006 (9.0)

(std) (0.0070) (0.0348) (0.0000) (0.0000) (0.0555) (0.0006)
EFCM-M 0.6769 (4.0) 0.0796 (11.0) 0.4475 (7.0) 0.1278 (5.0) 0.6009 (7.0) 0.0173 (6.0)

(std) (0.0496) (0.0288) (0.0058) (0.1006) (0.0044) (0.0321)
EFCM-Mk 0.4930 (12.0) 0.0203 (12.0) 0.5820 (1.0) 0.1245 (6.0) 0.6086 (1.0) 0.1596 (3.0)

(std) (0.0229) (0.0168) (0.0207) (0.0438) (0.0000) (0.0000)
EFCM-GP2 0.6931 (3.0) 0.1221 (6.0) 0.5037 (2.0) 0.1138 (7.0) 0.5998 (8.0) -0.0027 (12.0)

(std) (0.0229) (0.0311) (0.0150) (0.0115) (0.0020) (0.0001)
EFCM-GP1 0.7192 (2.0) 0.1652 (2.0) 0.4299 (10.5) 0.0000 (10.0) 0.5530 (11.0) -0.0012 (10.0)

(std) (0.0074) (0.0268) (0.0000) (0.0000) (0.0556) (0.0015)
EFCM-LP2 0.5821 (8.0) 0.0860 (10.0) 0.4474 (8.0) 0.1283 (4.0) 0.6084 (2.0) 0.1456 (4.0)

(std) (0.0127) (0.0238) (0.0061) (0.0844) (0.0000) (0.0000)
EFCM-LP1 0.6108 (7.0) 0.1051 (9.0) 0.4989 (3.0) -0.0093 (12.0) 0.6045 (5.0) 0.1620 (2.0)

(std) (0.0150) (0.0260) (0.0021) (0.0044) (0.0006) (0.0193)
EFCM-GS2 0.5610 (10.0) 0.1111 (8.0) 0.4476 (6.0) 0.1420 (2.0) 0.5290 (12.0) 0.0068 (7.0)

(std) (0.0079) (0.0250) (0.0021) (0.0509) (0.0375) (0.0378)
EFCM-GS1 0.6579 (5.0) 0.1509 (3.0) 0.4299 (10.5) 0.0000 (10.0) 0.6058 (4.0) -0.0005 (8.0)

(std) (0.0226) (0.0427) (0.0000) (0.0000) (0.0038) (0.0006)
EFCM-LS2 0.5385 (11.0) 0.1229 (5.0) 0.4598 (4.0) 0.1469 (1.0) 0.6072 (3.0) 0.1001 (5.0)

(std) (0.0077) (0.0183) (0.0113) (0.0658) (0.0000) (0.0000)
EFCM-LS1 0.6371 (6.0) 0.1346 (4.0) 0.4299 (10.5) 0.0028 (8.0) 0.6016 (6.0) 0.1775 (1.0)

(std) (0.0260) (0.0414) (0.0000) (0.0073) (0.0006) (0.0166)
Heart Image Segmentation Ionosphere

EFCM-2 0.5431 (6.0) 0.3487 (8.0) 0.8013 (6.0) 0.4892 (5.0) 0.5368 (10.0) 0.1573 (5.0)
(std) (0.0046) (0.0000) (0.0022) (0.0054) (0.0008) (0.0162)

EFCM-1 0.6891 (1.0) 0.4261 (1.0) 0.8614 (2.0) 0.5219 (1.0) 0.5377 (7.0) 0.0936 (8.0)
(std) (0.0191) (0.0435) (0.0053) (0.0158) (0.0000) (0.0000)

EFCM-M 0.5055 (11.0) 0.0412 (11.0) 0.1425 (12.0) 0.0024 (12.0) 0.5401 (4.0) 0.0290 (12.0)
(std) (0.0023) (0.0580) (0.0000) (0.0013) (0.0008) (0.0412)

EFCM-Mk 0.5043 (12.0) -0.0024 (12.0) 0.2115 (11.0) 0.0152 (11.0) 0.5675 (1.0) 0.0514 (10.0)
(std) (0.0008) (0.0024) (0.0016) (0.0036) (0.0020) (0.0442)

EFCM-GP2 0.5123 (8.0) 0.3488 (7.0) 0.8523 (3.0) 0.4642 (8.0) 0.5378 (6.0) 0.1588 (3.5)
(std) (0.0024) (0.0009) (0.0226) (0.0504) (0.0002) (0.0000)

EFCM-GP1 0.5587 (5.0) 0.1247 (10.0) 0.8639 (1.0) 0.5159 (4.0) 0.5418 (3.0) 0.1045 (7.0)
(std) (0.0387) (0.0711) (0.0053) (0.0199) (0.0000) (0.0000)

EFCM-LP2 0.5278 (7.0) 0.4065 (3.0) 0.7611 (10.0) 0.3729 (10.0) 0.5363 (11.0) 0.1353 (6.0)
(std) (0.0056) (0.0432) (0.0164) (0.0299) (0.0005) (0.0039)

EFCM-LP1 0.6102 (4.0) 0.3247 (9.0) 0.7647 (9.0) 0.4014 (9.0) 0.5362 (12.0) 0.0894 (9.0)
(std) (0.0553) (0.1654) (0.0291) (0.0540) (0.0003) (0.0172)

EFCM-GS2 0.5122 (9.0) 0.3502 (6.0) 0.7927 (8.0) 0.4796 (7.0) 0.5380 (5.0) 0.1588 (3.5)
(std) (0.0020) (0.0101) (0.0037) (0.0162) (0.0001) (0.0000)

EFCM-GS1 0.6631 (2.0) 0.4094 (2.0) 0.8283 (4.0) 0.5170 (3.0) 0.5376 (8.0) 0.0307 (11.0)
(std) (0.0498) (0.0978) (0.0108) (0.0162) (0.0019) (0.0152)

EFCM-LS2 0.5083 (10.0) 0.3757 (5.0) 0.7938 (7.0) 0.4869 (6.0) 0.5375 (9.0) 0.1634 (2.0)
(std) (0.0024) (0.0000) (0.0004) (0.0008) (0.0005) (0.0000)

EFCM-LS1 0.6615 (3.0) 0.4061 (4.0) 0.8235 (5.0) 0.5196 (2.0) 0.5508 (2.0) 0.2092 (1.0)
(std) (0.0524) (0.1022) (0.0055) (0.0201) (0.0000) (0.0000)

Source: Author (2022)
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Table 29 – Results on real data for the best solution according to the mean of HUL and ARI.

Iris plants Mnist Thyroid
Algorithms HUL ARI HUL ARI HUL ARI
EFCM-2 0.7538 (11.0) 0.6199 (10.5) 0.5037 (7.5) 0.9554 (4.0) 0.5995 (11.0) 0.3389 (7.0)

(std) (0.0005) (0.0000) (0.0013) (0.0069) (0.0010) (0.0180)
EFCM-1 0.8215 (6.0) 0.6199 (10.5) 0.5255 (2.0) 0.9522 (5.0) 0.7497 (2.0) 0.5024 (3.0)

(std) (0.0454) (0.0682) (0.0176) (0.0043) (0.1288) (0.2553)
EFCM-M 0.8044 (7.0) 0.8933 (1.0) 0.5222 (3.5) 0.9557 (2.5) 0.6476 (8.0) 0.2338 (9.0)

(std) (0.0379) (0.0304) (0.0139) (0.0069) (0.0189) (0.1326)
EFCM-Mk 0.5870 (12.0) 0.2824 (12.0) 0.5222 (3.5) 0.9557 (2.5) 0.7113 (4.0) 0.1494 (10.0)

(std) (0.0000) (0.0000) (0.0139) (0.0069) (0.0157) (0.1302)
EFCM-GP2 0.8620 (3.0) 0.7618 (3.0) 0.5037 (7.5) 0.9465 (6.0) 0.6879 (6.0) 0.6246 (1.0)

(std) (0.0504) (0.1737) (0.0010) (0.0956) (0.0274) (0.1881)
EFCM-GP1 0.8796 (1.0) 0.7557 (4.0) 0.5042 (6.0) 0.9159 (7.0) 0.7740 (1.0) 0.5467 (2.0)

(std) (0.0923) (0.1756) (0.0016) (0.1562) (0.1032) (0.2067)
EFCM-LP2 0.7813 (8.0) 0.6882 (5.0) 0.5276 (1.0) 0.1414 (9.0) 0.7074 (5.0) 0.3346 (8.0)

(std) (0.0011) (0.0000) (0.0142) (0.1878) (0.0129) (0.2908)
EFCM-LP1 0.8780 (2.0) 0.7649 (2.0) 0.5045 (5.0) 0.0295 (10.0) 0.7315 (3.0) 0.4173 (5.0)

(std) (0.0375) (0.1006) (0.0012) (0.0822) (0.0069) (0.0414)
EFCM-GS2 0.7613 (9.0) 0.6303 (8.5) 0.5022 (11.5) 0.9561 (1.0) 0.6840 (7.0) 0.3469 (6.0)

(std) (0.0009) (0.0000) (0.0000) (0.0000) (0.0183) (0.0867)
EFCM-GS1 0.8303 (5.0) 0.6337 (7.0) 0.5023 (9.5) 0.8315 (8.0) 0.5818 (12.0) 0.1114 (12.0)

(std) (0.0411) (0.0600) (0.0002) (0.2423) (0.0525) (0.0918)
EFCM-LS2 0.7567 (10.0) 0.6303 (8.5) 0.5022 (11.5) 0.0106 (12.0) 0.6214 (9.0) 0.4365 (4.0)

(std) (0.0006) (0.0000) (0.0000) (0.0423) (0.0002) (0.0134)
EFCM-LS1 0.8322 (4.0) 0.6364 (6.0) 0.5023 (9.5) 0.0270 (11.0) 0.6197 (10.0) 0.1386 (11.0)

(std) (0.0403) (0.0591) (0.0000) (0.0222) (0.0013) (0.0048)
UKM Vehicle Vertebral column

EFCM-2 0.4874 (9.0) 0.1603 (8.0) 0.5669 (7.0) 0.0729 (11.0) 0.5748 (6.0) 0.3000 (9.0)
(std) (0.0072) (0.0115) (0.0004) (0.0003) (0.0001) (0.0024)

EFCM-1 0.6003 (5.0) 0.1806 (7.0) 0.6420 (2.0) 0.0870 (7.0) 0.6005 (5.0) 0.3436 (4.0)
(std) (0.0154) (0.0322) (0.0045) (0.0160) (0.0019) (0.0177)

EFCM-M 0.5854 (6.0) 0.1201 (11.0) 0.3967 (12.0) 0.0738 (10.0) 0.3775 (12.0) 0.2170 (10.0)
(std) (0.0463) (0.0787) (0.1493) (0.0419) (0.0032) (0.0971)

EFCM-Mk 0.4223 (12.0) 0.0161 (12.0) 0.4403 (11.0) 0.0987 (6.0) 0.4630 (10.0) 0.0079 (12.0)
(std) (0.0051) (0.0027) (0.0267) (0.0391) (0.0147) (0.0031)

EFCM-GP2 0.6538 (2.0) 0.2640 (3.0) 0.5530 (8.0) 0.0755 (9.0) 0.5660 (7.0) 0.3320 (8.0)
(std) (0.0656) (0.1032) (0.0033) (0.0004) (0.0055) (0.0019)

EFCM-GP1 0.7036 (1.0) 0.2747 (2.0) 0.6352 (3.0) 0.1186 (4.0) 0.6118 (4.0) 0.3477 (3.0)
(std) (0.0409) (0.0984) (0.0141) (0.0201) (0.0022) (0.0123)

EFCM-LP2 0.4730 (11.0) 0.1420 (10.0) 0.5725 (6.0) 0.1291 (3.0) 0.5650 (8.0) 0.3433 (5.0)
(std) (0.0107) (0.0222) (0.0037) (0.0055) (0.0096) (0.0176)

EFCM-LP1 0.6337 (3.0) 0.2449 (4.0) 0.6685 (1.0) 0.1423 (1.0) 0.6218 (3.0) 0.3396 (6.0)
(std) (0.0235) (0.0524) (0.0046) (0.0109) (0.0018) (0.0319)

EFCM-GS2 0.4780 (10.0) 0.1516 (9.0) 0.5417 (9.0) 0.0694 (12.0) 0.5648 (9.0) 0.3342 (7.0)
(std) (0.0114) (0.0193) (0.0009) (0.0012) (0.0052) (0.0023)

EFCM-GS1 0.5102 (7.0) 0.2096 (5.0) 0.5186 (10.0) 0.1023 (5.0) 0.6634 (1.0) 0.3915 (2.0)
(std) (0.0113) (0.0302) (0.0099) (0.0197) (0.0138) (0.0265)

EFCM-LS2 0.6014 (4.0) 0.3001 (1.0) 0.5824 (5.0) 0.0803 (8.0) 0.4564 (11.0) 0.1055 (11.0)
(std) (0.0131) (0.0447) (0.0053) (0.0051) (0.0131) (0.1145)

EFCM-LS1 0.5005 (8.0) 0.2065 (6.0) 0.5920 (4.0) 0.1382 (2.0) 0.6281 (2.0) 0.4096 (1.0)
(std) (0.0113) (0.0359) (0.0211) (0.0087) (0.0089) (0.0530)

Source: Author (2022)
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Table 29 – Results on real data for the best solution according to the mean of HUL and ARI..

WDBC WFRN Wine
Algorithms HUL ARI HUL ARI HUL ARI
EFCM-2 0.5607 (5.0) 0.6895 (6.0) 0.4958 (10.0) 0.1635 (9.0) 0.5546 (7.0) 0.5978 (7.0)

(std) (0.0082) (0.0000) (0.0016) (0.0097) (0.0018) (0.0083)
EFCM-1 0.8032 (2.0) 0.7551 (3.0) 0.5543 (3.5) 0.1755 (8.0) 0.7589 (3.0) 0.8772 (3.0)

(std) (0.0000) (0.0000) (0.0067) (0.0372) (0.0126) (0.0323)
EFCM-M 0.5312 (12.0) 0.0239 (12.0) 0.5678 (1.0) 0.0987 (11.0) 0.4891 (11.0) 0.2878 (11.0)

(std) (0.0009) (0.0300) (0.0164) (0.0299) (0.2346) (0.3090)
EFCM-Mk 0.5396 (7.0) 0.0944 (11.0) 0.5381 (7.5) 0.2165 (4.0) 0.4298 (12.0) 0.1603 (12.0)

(std) (0.0035) (0.0936) (0.0001) (0.0002) (0.0316) (0.0740)
EFCM-GP2 0.5422 (6.0) 0.6896 (5.0) 0.5381 (7.5) 0.1222 (10.0) 0.6160 (6.0) 0.6291 (5.0)

(std) (0.0028) (0.0006) (0.0137) (0.0431) (0.0017) (0.0081)
EFCM-GP1 0.8207 (1.0) 0.7736 (2.0) 0.5088 (9.0) 0.2267 (3.0) 0.7718 (2.0) 0.8773 (2.0)

(std) (0.0000) (0.0000) (0.0068) (0.0296) (0.0122) (0.0313)
EFCM-LP2 0.5342 (10.0) 0.4513 (7.0) 0.5543 (3.5) 0.3415 (1.0) 0.6510 (4.0) 0.5162 (10.0)

(std) (0.0000) (0.0000) (0.0056) (0.0073) (0.0005) (0.0075)
EFCM-LP1 0.7963 (3.0) 0.7925 (1.0) 0.5513 (5.0) 0.3414 (2.0) 0.7875 (1.0) 0.8804 (1.0)

(std) (0.0000) (0.0000) (0.0051) (0.0271) (0.0005) (0.0000)
EFCM-GS2 0.6381 (4.0) 0.7341 (4.0) 0.4833 (12.0) 0.1888 (6.0) 0.5145 (10.0) 0.5293 (9.0)

(std) (0.0841) (0.0867) (0.0071) (0.0068) (0.0002) (0.0082)
EFCM-GS1 0.5379 (9.0) 0.3923 (9.0) 0.5603 (2.0) 0.1769 (7.0) 0.5499 (8.0) 0.6107 (6.0)

(std) (0.0087) (0.1505) (0.0030) (0.0172) (0.0249) (0.0608)
EFCM-LS2 0.5332 (11.0) 0.1390 (10.0) 0.4846 (11.0) 0.2028 (5.0) 0.5210 (9.0) 0.5328 (8.0)

(std) (0.0000) (0.0000) (0.0004) (0.0106) (0.0007) (0.0158)
EFCM-LS1 0.5388 (8.0) 0.4292 (8.0) 0.5391 (6.0) 0.0817 (12.0) 0.6417 (5.0) 0.7573 (4.0)

(std) (0.0000) (0.0000) (0.0089) (0.0419) (0.0201) (0.0838)

Source: Author (2022)
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APPENDIX C – RESULTS FOR THE EXPERIMENTS ON SYNTHETIC
INTERVAL-VALUED DATASETS.

Table 30 – Mean and standard deviation for HUL varying the number of outliers.

Algorithms 0% 10% 20%

mean (std) mean (std) mean (std)
TrFCMdd-ID 0.6418 (0.0102) 0.6244 (0.0401) 0.5442 (0.0529)
ExpFCMd-ID 0.6218 (0.0167) 0.6335 (0.0160) 0.6403 (0.0158)
AIFCM-G2 0.6706 (0.0050) 0.6250 (0.0544) 0.5241 (0.0531)
AIFCM-G1 0.6643 (0.0060) 0.6703 (0.0074) 0.6763 (0.0116)
AIFCM-L2 0.6703 (0.0057) 0.6218 (0.0539) 0.5237 (0.0532)
AIFCM-L1 0.6647 (0.0061) 0.6699 (0.0078) 0.6770 (0.0111)
EIFCM-GJ2 0.6576 (0.0064) 0.6074 (0.0107) 0.5734 (0.0125)
EIFCM-GJ1 0.6683 (0.0069) 0.6673 (0.0134) 0.6646 (0.0193)
EIFCM-LJ2 0.6538 (0.0065) 0.5775 (0.0304) 0.5403 (0.0243)
EIFCM-LJ1 0.6672 (0.0061) 0.6583 (0.0220) 0.6571 (0.0235)

Source: Author (2022)

Table 31 – Mean and standard deviation for ARI varying the number of outliers.

Algorithms 0% 10% 20%

mean (std) mean (std) mean (std)
TrFCMdd-ID 0.9645 (0.0597) 0.7405 (0.2784) 0.1936 (0.3047)
ExpFCMd-ID 0.9290 (0.0669) 0.9077 (0.1105) 0.9188 (0.0990)
AIFCM-G2 1.0000 (0.0000) 0.6691 (0.3096) 0.1004 (0.2628)
AIFCM-G1 0.9842 (0.0413) 0.9842 (0.0413) 0.9450 (0.0719)
AIFCM-L2 0.9960 (0.0179) 0.6536 (0.3138) 0.0999 (0.2630)
AIFCM-L1 0.9920 (0.0246) 0.9802 (0.0435) 0.9530 (0.0732)
EIFCM-GJ2 1.0000 (0.0000) 0.6796 (0.1397) 0.2157 (0.1690)
EIFCM-GJ1 0.9762 (0.0452) 0.9601 (0.0482) 0.9210 (0.0617)
EIFCM-LJ2 1.0000 (0.0000) 0.5134 (0.1988) 0.2731 (0.1521)
EIFCM-LJ1 0.9802 (0.0435) 0.9525 (0.0594) 0.9248 (0.0596)

Source: Author (2022)
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Table 32 – Clustering results on real interval-valued data.

HUL ARI HUL ARI HUL ARI
Algorithms Car models City Temperature Freshwater fish species
TrFCMdd-ID 0.6937 (10.0) 0.4773 (9.0) 0.6766 (9.0) 0.4786 (5.0) 0.6171 (9.0) 0.2226 (8.0)
ExpFCMd-ID 0.7094 (7.0) 0.2836 (10.0) 0.6433 (10.0) 0.2817 (10.0) 0.6284 (8.0) 0.1852 (9.0)
AIFCM-G2 0.7108 (6.0) 0.4998 (7.5) 0.7025 (6.0) 0.5458 (2.0) 0.6413 (7.0) 0.3473 (5.5)
AIFCM-G1 0.7183 (5.0) 0.5623 (4.0) 0.6820 (8.0) 0.4162 (7.5) 0.6008 (10.0) 0.1417 (10.0)
AIFCM-L2 0.7016 (9.0) 0.5257 (6.0) 0.7126 (5.0) 0.5458 (2.0) 0.6704 (5.0) 0.2276 (7.0)
AIFCM-L1 0.7072 (8.0) 0.4998 (7.5) 0.6854 (7.0) 0.4001 (9.0) 0.6699 (6.0) 0.3473 (5.5)
EIFCM-GJ2 0.7362 (4.0) 0.5589 (5.0) 0.8153 (2.0) 0.4928 (4.0) 0.7218 (2.0) 0.5210 (2.0)
EIFCM-GJ1 0.7457 (3.0) 0.6802 (1.0) 0.7459 (4.0) 0.4162 (7.5) 0.7454 (1.0) 0.5210 (2.0)
EIFCM-LJ2 0.7537 (1.0) 0.5720 (3.0) 0.8275 (1.0) 0.5458 (2.0) 0.7044 (4.0) 0.3663 (4.0)
EIFCM-LJ1 0.7535 (2.0) 0.6142 (2.0) 0.7466 (3.0) 0.4439 (6.0) 0.7136 (3.0) 0.5210 (2.0)

Fungi Horse Ichino
TrFCMdd-ID 0.5886 (9.0) 0.2962 (8.0) 0.6028 (9.0) 0.1842 (6.0) 0.6682 (7.0) 0.4444 (5.0)
ExpFCMd-ID 0.5304 (10.0) 0.1934 (10.0) 0.6078 (8.0) 0.1379 (8.0) 0.6462 (10.0) 0.2222 (9.5)
AIFCM-G2 0.7138 (2.0) 0.8291 (2.0) 0.6269 (7.0) 0.0559 (10.0) 0.6931 (5.0) 0.4444 (5.0)
AIFCM-G1 0.6949 (4.0) 0.7773 (3.0) 0.6297 (6.0) 0.3134 (3.0) 0.6546 (9.0) 0.3396 (7.5)
AIFCM-L2 0.7184 (1.0) 0.8837 (1.0) 0.6309 (5.0) 0.1417 (7.0) 0.7362 (3.0) 0.3396 (7.5)
AIFCM-L1 0.7031 (3.0) 0.7361 (4.0) 0.6719 (2.0) 0.2276 (5.0) 0.6581 (8.0) 0.2222 (9.5)
EIFCM-GJ2 0.6286 (6.0) 0.3711 (6.0) 0.5759 (10.0) 0.3134 (3.0) 0.7447 (2.0) 0.6038 (2.0)
EIFCM-GJ1 0.6146 (8.0) 0.3064 (7.0) 0.7198 (1.0) 0.4558 (1.0) 0.6789 (6.0) 0.4444 (5.0)
EIFCM-LJ2 0.6326 (5.0) 0.3754 (5.0) 0.6580 (4.0) 0.3134 (3.0) 0.7316 (4.0) 0.5882 (3.0)
EIFCM-LJ1 0.6275 (7.0) 0.2735 (9.0) 0.6624 (3.0) 0.1157 (9.0) 0.7615 (1.0) 1.0000 (1.0)

Source: Author (2022)

Table 32 – Clustering results on real interval-valued data.

HUL ARI HUL ARI
Algorithms Iris Wine
TrFCMdd-ID 0.7327 (9.0) 1.0000 (5.5) 0.5045 (7.0) 0.0448 (4.0)
ExpFCMd-ID 0.7078 (10.0) 1.0000 (5.5) 0.4985 (10.0) -0.0065 (7.5)
AIFCM-G2 0.7782 (3.0) 1.0000 (5.5) 0.5169 (1.0) 0.1282 (2.0)
AIFCM-G1 0.7595 (6.0) 1.0000 (5.5) 0.5117 (4.0) 0.1297 (1.0)
AIFCM-L2 0.7716 (4.0) 1.0000 (5.5) 0.5031 (8.0) -0.0292 (9.0)
AIFCM-L1 0.7657 (5.0) 1.0000 (5.5) 0.5093 (6.0) -0.0065 (7.5)
EIFCM-GJ2 0.7389 (7.0) 1.0000 (5.5) 0.5154 (2.0) 0.0836 (3.0)
EIFCM-GJ1 0.7845 (1.0) 1.0000 (5.5) 0.5119 (3.0) 0.0165 (5.5)
EIFCM-LJ2 0.7341 (8.0) 1.0000 (5.5) 0.5096 (5.0) -0.0299 (10.0)
EIFCM-LJ1 0.7824 (2.0) 1.0000 (5.5) 0.5016 (9.0) 0.0165 (5.5)

Source: Author (2022)
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Table 33 – Mean and standard deviation according to the 50 executions of the algorithms.

HUL ARI HUL ARI HUL ARI
Algorithms Car models City Temperature Freshwater fish species

TrFCMdd-ID 0.6483 (9.0) 0.4254 (9.0) 0.6745 (9.0) 0.4588 (4.0) 0.5778 (9.0) 0.1827 (9.0)
(std) (0.0336) (0.1386) (0.0275) (0.1014) (0.0434) (0.1863)

ExpFCMd-ID 0.3780 (10.0) 0.1244 (10.0) 0.6361 (10.0) 0.4268 (5.0) 0.5332 (10.0) 0.1025 (10.0)
(std) (0.1334) (0.1001) (0.0750) (0.1397) (0.0537) (0.1204)

AIFCM-G2 0.7108 (5.0) 0.4998 (7.0) 0.7025 (6.0) 0.5458 (1.5) 0.6473 (7.0) 0.3325 (3.0)
(std) (0.0000) (0.0000) (0.0000) (0.0000) (0.0346) (0.0893)

AIFCM-G1 0.7044 (6.0) 0.5050 (6.0) 0.6750 (8.0) 0.4264 (6.0) 0.5986 (8.0) 0.2542 (7.0)
(std) (0.0305) (0.0950) (0.0139) (0.0697) (0.0359) (0.1678)

AIFCM-L2 0.7000 (7.0) 0.5263 (5.0) 0.7126 (5.0) 0.5458 (1.5) 0.6834 (3.0) 0.1921 (8.0)
(std) (0.0042) (0.0028) (0.0000) (0.0000) (0.0082) (0.0305)

AIFCM-L1 0.6882 (8.0) 0.4990 (8.0) 0.6794 (7.0) 0.4112 (7.0) 0.6711 (5.0) 0.2766 (6.0)
(std) (0.0320) (0.0877) (0.0147) (0.0547) (0.0296) (0.1459)

EIFCM-GJ2 0.7362 (4.0) 0.5589 (4.0) 0.8074 (2.0) 0.4080 (8.0) 0.7210 (1.0) 0.5172 (1.0)
(std) (0.0000) (0.0000) (0.0086) (0.0929) (0.0083) (0.0271)

EIFCM-GJ1 0.7379 (3.0) 0.6425 (1.0) 0.7273 (4.0) 0.3967 (10.0) 0.6592 (6.0) 0.4463 (2.0)
(std) (0.0244) (0.0660) (0.0168) (0.0477) (0.1024) (0.1373)

EIFCM-LJ2 0.7443 (2.0) 0.6131 (2.0) 0.8206 (1.0) 0.4932 (3.0) 0.6829 (4.0) 0.2772 (5.0)
(std) (0.0079) (0.0269) (0.0101) (0.0775) (0.0284) (0.1077)

EIFCM-LJ1 0.7526 (1.0) 0.6073 (3.0) 0.7293 (3.0) 0.4039 (9.0) 0.7032 (2.0) 0.3300 (4.0)
(std) (0.0043) (0.0276) (0.0180) (0.0451) (0.0064) (0.1341)

Fungi Horse Ichino
TrFCMdd-ID 0.5490 (9.0) 0.3343 (8.0) 0.5596 (8.0) 0.1332 (9.0) 0.6435 (6.0) 0.3191 (9.0)

(std) (0.0536) (0.1158) (0.0452) (0.1199) (0.0136) (0.2043)
ExpFCMd-ID 0.4226 (10.0) 0.0885 (10.0) 0.4805 (10.0) -0.0357 (10.0) 0.5836 (10.0) 0.2556 (10.0)

(std) (0.0263) (0.0267) (0.0807) (0.1153) (0.0805) (0.1699)
AIFCM-G2 0.7138 (2.0) 0.8291 (2.0) 0.6231 (3.0) 0.2517 (5.0) 0.6422 (7.0) 0.3764 (7.0)

(std) (0.0000) (0.0000) (0.0039) (0.1589) (0.0383) (0.2213)
AIFCM-G1 0.5955 (5.0) 0.4670 (3.0) 0.5769 (7.0) 0.1972 (7.0) 0.6487 (5.0) 0.3514 (8.0)

(std) (0.0577) (0.1876) (0.0406) (0.1526) (0.0163) (0.2441)
AIFCM-L2 0.7184 (1.0) 0.8837 (1.0) 0.6471 (2.0) 0.3034 (3.0) 0.6985 (3.0) 0.4409 (5.0)

(std) (0.0000) (0.0000) (0.0102) (0.1018) (0.0352) (0.1188)
AIFCM-L1 0.6190 (3.0) 0.4340 (4.0) 0.5877 (6.0) 0.2261 (6.0) 0.6574 (4.0) 0.3906 (6.0)

(std) (0.0516) (0.1810) (0.0439) (0.1480) (0.0173) (0.2893)
EIFCM-GJ2 0.5767 (7.0) 0.4082 (5.0) 0.5984 (5.0) 0.3989 (1.0) 0.7345 (1.0) 0.6025 (1.0)

(std) (0.0106) (0.0077) (0.0134) (0.0512) (0.0284) (0.0043)
EIFCM-GJ1 0.5762 (8.0) 0.3050 (9.0) 0.5460 (9.0) 0.1704 (8.0) 0.6069 (9.0) 0.4780 (4.0)

(std) (0.0536) (0.0982) (0.1441) (0.2336) (0.1049) (0.1196)
EIFCM-LJ2 0.6172 (4.0) 0.3448 (7.0) 0.6615 (1.0) 0.2748 (4.0) 0.7316 (2.0) 0.5882 (2.0)

(std) (0.0167) (0.0487) (0.0220) (0.1075) (0.0005) (0.0000)
EIFCM-LJ1 0.5946 (6.0) 0.3521 (6.0) 0.6024 (4.0) 0.3753 (2.0) 0.6347 (8.0) 0.5783 (3.0)

(std) (0.0373) (0.0605) (0.0784) (0.1190) (0.0867) (0.3014)

Source: Author (2022)
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Table 33 – Mean and standard deviation according to the 50 executions of the algorithms.

HUL ARI HUL ARI
Algorithms Iris Wine
TrFCMdd-ID 0.6212 (9.0) 0.6719 (9.0) 0.5043 (10.0) 0.0013 (7.0)
(std) (0.1098) (0.2611) (0.0041) (0.0370)
ExpFCMd-ID 0.5148 (10.0) 0.4918 (10.0) 0.5141 (5.0) 0.0672 (5.0)
(std) (0.1042) (0.2915) (0.0082) (0.0661)
AIFCM-G2 0.7781 (1.0) 1.0000 (2.5) 0.5169 (2.0) 0.1282 (3.0)
(std) (0.0000) (0.0000) (0.0000) (0.0000)
AIFCM-G1 0.7213 (6.0) 0.8748 (6.0) 0.5142 (4.0) 0.1284 (2.0)
(std) (0.0727) (0.2381) (0.0057) (0.0846)
AIFCM-L2 0.7716 (2.0) 1.0000 (2.5) 0.5050 (9.0) -0.0223 (9.0)
(std) (0.0000) (0.0000) (0.0056) (0.0150)
AIFCM-L1 0.7361 (4.0) 0.9116 (5.0) 0.5128 (6.0) 0.0251 (6.0)
(std) (0.0638) (0.2053) (0.0070) (0.0822)
EIFCM-GJ2 0.7389 (3.0) 1.0000 (2.5) 0.5154 (3.0) 0.0836 (4.0)
(std) (0.0000) (0.0000) (0.0000) (0.0000)
EIFCM-GJ1 0.6979 (8.0) 0.8404 (7.0) 0.5264 (1.0) 0.2100 (1.0)
(std) (0.1477) (0.2494) (0.0039) (0.1377)
EIFCM-LJ2 0.7341 (5.0) 1.0000 (2.5) 0.5082 (8.0) -0.0298 (10.0)
(std) (0.0000) (0.0000) (0.0026) (0.0003)
EIFCM-LJ1 0.6983 (7.0) 0.8169 (8.0) 0.5107 (7.0) -0.0036 (8.0)
(std) (0.1451) (0.2496) (0.0029) (0.0164)

Source: Author (2022)
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