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To the ones that believe that a better survival reality lies in the path of research.
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ABSTRACT

A variety of works in the literature strive to uncover the factors associated with survival
behaviour. However, the computational tools to provide such information are global models
designed to predict if or when a (survival) event will occur. When addressing the problem
of explaining differences in survival behaviour, those approaches rely on (assumptions of)
predictive features followed by risk stratification. In other words, they lack the ability to discover
local exceptionalities in the data and provide new information on factors related to survival. In
this work, we aim at providing a computational tool to identify the different (unusual) survival
responses that may occur in a population of individuals and provide straightforward information
about the circumstances related to such responses. We approach such a problem from the
perspective of supervised descriptive pattern mining to discover local patterns associated
with different survival behaviours. Hence, we introduce an Exceptional Model Mining (EMM)
framework to provide straightforward characterisations of subgroups presenting unusual survival
models, given by the Kaplan-Meier estimates. In contrast to the greedy search heuristics
prevalent among EMM approaches, we employ stochastic optimisation and introduce the first
approach in the literature to explore the Ant-Colony Optimisation (ACO) meta-heuristics for
the subgroup search. Thus, we tackle the problem of subgroup redundancy to provide a set
of exceptional subgroups that are diverse in their descriptions, coverages and survival models.
We conducted experiments on fourteen real-world data sets to assess the performance of our
approach. In the results, we show that the framework presented is capable of discovering
representative patterns with accurate unusual models and straightforward representations.
Moreover, the discovered subgroups potentially capture survival behaviours existent in the
data. The approach successfully tackles the problem of subgroup redundancy, providing a set
of diverse (unique) exceptional (survival) subgroups. Our framework outperforms the other
existent approaches to provide characterisations over unusual survival behaviours regarding the
descriptive aspect of its results and diversity of its findings.

Keywords: exceptional model mining; subgroup search; supervised descriptive pattern mining;
survival analysis.



RESUMO

Diversos trabalhos na literatura dedicam-se a descobrir fatores associados a comportamentos de
sobrevivência. As ferramentas computacionais utilizadas para tal são modelos globais projetados
para estimar se e quando um dado evento de sobrevivência ocorrerá. Em se tratando do
problema de explicar diferentes respostas de sobrevivência, as abordagens existentes não são
capazes de descobrir excepcionalidades locais nos dados nem prover novos conhecimentos
a respeito de fatores associados à sobrevivência, respaldando-se em suposições e a análises
estratificadas. Este trabalho tem por objetivo apresentar uma nova ferramenta computacional
para identificação e caracterização de diferentes respostas de sobrevivência existentes em
uma população de indivíduos. Neste trabalho, o problema enunciado é abordado através
da perspectiva da mineração supervisionada de padrões descritivos (em inglês, supervised

descriptive pattern mining) com o intuito de descobrir padrões locais associados a diferentes
comportamentos de sobrevivência. Para tal, é empregada a técnica de mineração de modelos
excepcionais (do inglês, Exceptional Model Mining) com o objetivo de descrever – de forma
simples e concisa – subgrupos que apresentem modelos de sobrevivência (Kaplan-Meier) não
usuais. Em contraste às heurísticas ‘gulosas’ prevalentes na literatura de mineração de modelos
excepcionais, a abordagem introduzida neste trabalho explora o uso da meta-heurística de
otimização Ant-Colony Optimisation na busca por subgrupos. O problema de redundância
de padrões também é considerado, objetivando a descoberta de um conjunto de subgrupos
que sejam diversos com relação às suas descrições, coberturas e modelos. O desempenho da
abordagem apresentada é avaliada em quatorze conjuntos de dados reais. Os resultados mostram
que o algoritmo proposto é capaz de descobrir padrões representativos que apresentam modelos
precisos e caracterizações de simples compreensão. Adicionalmente, os subgrupos descobertos
potencialmente capturam comportamentos de sobrevivência existentes nos dados. A redundância
de padrões é abordada de forma bem-sucedida, tal que os resultados retornados apresentam
conjuntos de subgrupos que são diversos (únicos) e excepcionais. Quando comparado a outras
abordagens existentes na literatura que fornecem caracterizações de comportamentos incomuns
de sobrevivência, o algoritmo apresentado se sobressai aos demais tanto em relação ao aspecto
descritivo de seus resultados quanto à diversidade de suas descobertas.

Palavras-chaves: análise de sobrevivência; descoberta de subgrupos; mineração de modelos
excepcionais; mineração supervisionada de padrões descritivos.
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1 INTRODUCTION

A wide range of real-world problems is built around the analysis of an event. In healthcare,
one may want to analyse ICU admission, death, or even disease remission. In maintenance
researches, the event may be a product failure. In churn analysis, clients dropout. For a variety
of problems under different domains, the solution lies in investigating the occurrence of a
specific event of interest. In this work, we focus on the medical domain to address a major
challenge of current medicine that is to delineate the circumstances around patient outcome.

In recent years, the field of biomedical sciences has provided robust methods for characterising
patients (such as the Omics sub-fields, diverse cellular assays, and even mobile health technology)
and large-scale biologic databases, revolutionising the possibilities for characterising single
individuals. Medicine is, then, following the direction of using this available technology to
develop new strategies that better consider individual variability to address the needs of a
patient. Precision Medicine (KOENIG et al., 2017; COUNCIL et al., 2011), as this emergent medical
approach is called, conveys the principle that although therapeutics were rarely developed for

single individuals, subgroups of patients could be defined and targeted in more specific ways

(ASHLEY, 2016). This increasing initiative relies on computational tools capable of generating
knowledge from large sets of data and thus bringing new insights to understanding health and
diseases.

Although the current possibilities for individual characterisation are countless, the medical
community still struggles to identify such subgroups of patients closely related to a prognostic
response and the characteristics that describe them. Thus, many recent medical works seek
for effective computational methods that can provide a better understanding of factors that
interfere in survivability to subdivide populations of patients into more specific and uniform
subgroups regarding their survival behaviour.

To this end, most studies resort to the Survival Analysis (SA) (KLEINBAUM, 1998), a branch
of study dedicated to analysing and modelling data where the outcome is the time until the
occurrence of a given event. In a case where all individuals under study experience the event,
the analysis of the time-to-event could be addressed as a regression problem and many methods
for data analysis would be applicable. However, the time restrictions of medical studies and the
challenges related to patients’ follow-up usually result in (some) patients with no information
regarding the event. Hence, the Survival Analysis arises to approach specifically such cases
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when there exists a subset of the data for which the outcome is not observed.
The SA methods most present in the literature focus on two aspects of an event analysis:

if it will happen (the risk of happening) and when it will happen (the time for happening). In
other words, the existing survival analysis methods aim to create a predictive model for the
data. Therefore, the goal is to turn the data into an accurate prediction machine, i.e. to use
all available data to predict outputs that are as close as possible to the data itself and new
(unseen) data examples. For that, predictive modelling usually trade-offs the model simplicity
(the number of parameters) for the accuracy of a global model – i.e. a model representing the
whole data. Hence, a predictive modelling algorithm aims to find an as accurate as possible
and as complex as necessary global function.

However, such a predictive perspective presents some drawbacks when addressing the
need to provide characterisation (in terms of explanatory variables) over subgroups presenting
distinct diagnostic/prognostic (survival) responses. We highlight two aspects of their design
that interfere in their ability to discover and describe such subgroups:

1. Predictive methods rely on every (input) feature to maximise the accuracy of the learned
model. Thus, when striving to assess the impact of specific factors on (survival) model
responses, most approaches restrict their input domains to a set of predefined features
that are known (or supposed) to be related to survivability. Hence, predictive approaches
usually rely on a priori (expert) knowledge or feature selection techniques to delineate the
domain of analysis. However, this leads to the potential loss of interesting information
(that is left out of the scope of analysis) and often neglects possible interactions between
variables. To address this limitation and encompass broader domains of analysis (i.e. a
larger number of explanatory variables), it is usually necessary to raise the complexity of
the models. However, the resulting (more) complex models usually lose their ability to
provide explicit human-comprehensible insights into the data domain, which is essential
when addressing the need to better define more specific groups of patients regarding their
survival. Some approaches resort to feature importance or explainability techniques to
point out the most prominent factors (regarding the prediction outcome) and improve the
model’s comprehensibility. Anyhow, those predictive approaches assume that all features
considered for the modelling are somehow relevant to the result, failing to identify only
specific features related to the model response or even specific features’ interactions that
result in unexpected outcomes.
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2. Even the methods that provide more interpretable results regarding the characterisation
of survival responses still focus on global modelling. Which means that, while striving
to provide accurate models that fit all individuals, such approaches cannot identify
(accurate) models that fit only a subset of the data space. In other words, because
predictive methods strive to provide general models, they fail to identify local models,
i.e. models that fit only part of the data but vary in their characteristics. Hence, when
striving to subdivide populations of patients into different subgroups presenting similar
survival behaviour, the predictive methods fail to pinpoint the data subsets where a
learned model behave differently from each other or even from the global model observed
in the population.

Although predictive models are important in many contexts, with such shortcomings, they
fail at identifying features that might affect the outcome for a subgroup of patients. That is, as
they attempt to only answer the if and when questions, they fail to answer questions such as

• What features are associated with this exceptional prognostic behaviour?

• Are there groups of patients with unusual survival responses?

This situation is not a problem per se. However, the lack of methods that answer these more
descriptive questions highlights the gap in the literature.

In the existing literature, similar questions are answered using predictive approaches by
stratifying data regarding a variable of interest. For instance, to verify whether a factor (e.g.
new treatment or a genetic marker) affects prognosis, patients may be split into groups –
test/control or feature strata. Then, each group would be individually modelled, and their
differences analysed. Notice, however, that such an approach falls into the two predictive
drawbacks listed above: (i) it assumes that the dependent variables (and the scope of interest)
are known a priori and (ii) that the different prognostic behaviours (groups) existent in the
analysed cohort are encompassed in the (features) stratifications. Those assumptions, however,
are not always true.

In some cases, researchers may want to identify these variables that are related to some
(un)expected behaviour, as shown by WOLFF et al. (2021). In other cases, the existing definitions
of prognostic groups (e.g. a subtype of a specific type of cancer) may not represent precisely
all behaviours observed in such a group, as MILIOLI et al.(2017) evince. In fact, many studies in
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the literature reveal the limitations of the current diseases’ markers and reinforce the need for
a better characterisation of (more specific) diagnostic and prognostic groups.

To enable the restructuring of current clinical medicine into a more precise approach – with
more accurate measures and more effective results, there is a latent need for computational
tools capable of identifying unknown behaviours and describing them in a way to enable actions
that implement real change. However, to identify and characterise different survival behaviours
existing in a population, it is necessary to propose new methods to answer different questions
from those if and when questions that are already being addressed in the literature. Therefore,
we pose the following question:

Research question: Is there an effective approach to identify and characterise multiple and

different subsets of a population for which the observed survival behaviour is exceptional

(unusual) with respect to a (baseline) expected response?

Our motivation for tackling this question is as follows.

1.1 MOTIVATION

As previously introduced, the explosion of data associated with individual humans has
essentially transformed the possibilities and opportunities we have to characterise patients,
understand diseases, and – ultimately – to improve health outcomes. Yet, COUNCIL et al. (2011)
had pointed out the necessity of using these data to effectively implement change in the way
we conduct real medicine:

Biomedical research and the practice of medicine, separately and together,
are reaching an inflection point: the capacity for description and for collecting
data, is expanding dramatically, but the efficiency of compiling, organizing,
manipulating these data – and extracting true understanding of fundamental
biological processes, and insights into human health and disease, from them –
has not kept pace. There are isolated examples of progress: research in certain
diseases using genomics, proteomics, metabolomics, systems analyses, and
other modern tools has begun to yield tangible medical advances, while some
insightful clinical observations have spurred new hypotheses and laboratory
efforts. In general, however, there is a growing shortfall: without better
integration of information both within and between research and medicine,
an increasing wealth of information is left unused (COUNCIL et al., 2011).

There are many challenges associated with the integration of patient data, medical research
and clinical medicine. In this work, we are mainly motivated by the latent need for methods
capable of ‘extracting true understanding of biological processes and insights into human health
and disease’ from data. As introduced, the existing methods addressing such a problem are
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population-based approaches relatively inefficient concerning knowledge extraction and may
yield conclusions that are not relevant to specific (or even broader) populations.

Hence, what we have as standard medical interventions still rely on traditional protocols
that are limited in information content and usability. As the current disease’s classifications are
primarily based on symptoms and simple forms of laboratory or imaging studies (COUNCIL et al.,
2011), such protocols usually consider only limited and over general factors to characterise
and distinguish between different prognostic groups. Not rarely, those protocols fail to be an
effective solution to some sub-populations of patients or comprise an imprecise general course
of treatments.

For instance, patients with Hodgkin Lymphoma are further classified as early-stage favourable

according to size and sites (number and location) of diseased organs, absence of systemic
symptoms and a given laboratory result. Such a group of patients is usually subjected to
considerable amounts of irradiation because protocol says that the combined administration of
chemotherapy and radiotherapy is the overall preferred treatment (NCCN, 2017). However, such
usual clinical decision is conservative and does not consider the fact that the same protocol
also includes (and suggests) chemotherapy alone as a viable treatment option (to such group
of patients) in order to avoid the long-term risks of radiotherapy – which includes an increased
risk for heart disease, pulmonary dysfunction, and the development of secondary cancers, for
example.

Current diseases’ guidelines fail to consider a larger scope of patient’s context – biological,
psychological, socio-environmental, and other potentially relevant factors. Many times, such
shortfall results in conservative measures (despite evidence that those measures may be extreme
or unnecessary), exposing patients to a large number of collateral risks that could be avoided
for the sake of improving overall survival. Thus, such guidelines are not designed to exploit and
incorporate (rapidly) emerging data or (new) factors relevant to diseases. The recent COVID-19
pandemic is drastically evidence of the implications of such shortfall.

Initially reported as a respiratory infection, the disease caused by the Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) turned out to be a systemic condition with very different
(and extreme) prognoses across different societies and groups of people. The lack of scientific
knowledge about the disease’s dynamics aligned to its high spread rate and fast progression
culminated in the collapse of many health systems and over 5 million deaths worldwide. The
scientific community has put extra research effort to shed light on the uncertainties of this
disease and assist in developing effective medicines and governmental decisions. As the pandemic
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impacts are likely to be felt for a while, broader questions arise in the context of patient care
and general health management. Many recent studies seek to discover markers associated
with disease’s prognosis (WOLFF et al., 2021) aiming to improve treatment of the acute and
chronic disease (CROOK et al., 2021), assess the effectiveness of vaccines and medicines (FORNI;

MANTOVANI, 2021), or even handle new variants of the virus. In addition to pre-existing
health conditions, social, economic, and political aspects are likely to interfere in the disease’s
dynamics, and the implications of such aspects on patient care are still being investigated as
they manifest daily (GOULARTE et al., 2021; PAUL; STEPTOE; FANCOURT, 2021).

Anyhow, when assessing the impact of covariates in the survival outcome, most of those
works resort to the predictive approaches of Survival Analysis, falling right into those same
drawbacks that we previously introduced. The existing studies are restricted to a limited scope
of analysis and struggle to provide novel knowledge. The computational tools we have at
our disposal rely on the suppositions of our human insights and experiences. In many cases,
however, such suppositions lead to inefficient tests and vague conclusions. For example, when
addressing the uncertainty regarding the need for radiotherapy for treating early-stage Hodgkin’s
lymphoma, RADFORD et al. (2015) randomly assigned patients to receive irradiation or no further
treatment. The results they analysed suggested a benefit for combined modality (chemotherapy
and radiotherapy) but not necessarily superior to chemotherapy alone. Thus, in the cases
the suppositions we make are faulty or inaccurate, such tools fail in shedding light on new
insights. For instance, MATTOS et al. (2020a) show that the symptoms most frequently observed
in Brazilian COVID-19 patients are associated with better prognoses, contrasting with the
results in (ZHENG et al., 2020). The authors also observe differences in comorbidities distribution
between Brazilian and US patients (RICHARDSON et al., 2020), which may yield different survival
experiences (NEPOMUCENO et al., 2020). Our current methods of investigating survivability
comprise trial-and-error processes that do not address the urgent needs of our medical reality
and cannot keep pace with the data at our disposal. Ultimately, they rely on data to investigate
hypotheses instead of using data to extract the answers we are looking for.

Whether to improve standard medical interventions or to approach new medical challenges
more efficiently, as we advance in characterising patients (generating and collecting data), it is
evident the need for more powerful tools to restructure the medicine as we have into a more
precise approach. To that end, we are in need of computational methods capable of describing
complex interrelationships associating diseases to each other, and to the vast possibilities of
related factors. In other words, to beyond methods capable of predicting disease or a time of
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survival, we need data-intensive methods capable of discovering and characterising different
survival behaviours given all emerging data on human characterisation.

The discovery and understanding of subgroups with distinct responses with relation to
their survival can be an essential tool towards new possibilities in medical and bioinformatics
researches: for instance, the identification of characteristics that differentiate between groups of
patients with different survival rates, the possibility of better prescribing treatment considering
unique attributes of a patient, and the recognition of unknown relationships between covariates
that affect a patient’s prognosis. The following section introduces our proposal to a method
that potentially provides new insights on diseases’ prognosis and survival outcomes.

1.2 OBJECTIVES AND RESEARCH APPROACH

Our ultimate goal with this work is to provide insightful knowledge over the circumstances
related to patient outcome. In other words, we aim at identifying the different prognostic
responses that may occur in a study cohort and provide straightforward information about the
factors related to such responses. In contrast to the existing predictive approaches that induce
survival risk characterisation from predefined features strata, we are concerned with providing
a method capable of discovering subsets of the data that present unusual survival behaviour
and characterising such subsets in a humanly understandable way.

Apart from the introduced predictive (global) modelling, the exploratory data analysis casts
a different perspective over a given data collection, aiming to discover novel insights about
the domain in which the data was measured and, thus, boost human expertise. In this sense,
local modelling and pattern discovery techniques are designed to value the model simplicity
and accuracy over generality (global representation) and thus may selectively focus on parts of
the input space where there is a pattern without the obligation of modelling the remainder of
the data. In other words, while predictive modelling sacrifices simplicity to provide an accurate
model for the whole data collection, a pattern discovery algorithm can report models that are
both accurate and simple but only a partial function of the data space (BOLEY, 2017).

Therefore, in this work, we approach the problem introduced through the perspective of
supervised (descriptive) Local Pattern Mining (LPM) (DUIVESTEIJN, 2013): to find subsets of
the data that somehow deviate from the norm, i.e. where something interesting is going on. As
the name introduces, three aspects of this paradigm make it suitable to approach our research
question. The first one is the inherent descriptive aspect of LPM tasks: they strive to find
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subgroups, i.e. subsets of the data that can be concisely described in terms of the explanatory
data features. Such descriptive aspect gives characterisation (pattern identification) to the
interesting data subsets, i.e., the subsets that stand out to the remaining data. Secondly, each
subgroup is deemed interesting (relevant) by its own merit, without considering its fit to the
remainder of the data and independently from any other finding. This local aspect (in contrast
to global predictive models) allows not only the identification of data subsets presenting a
unique behaviour but also the discovery of overlapping patterns. Lastly, the supervised aspect
defines the interestingness of a subgroup with respect to a property of interest – i.e. a property
of the (data) population that one is interested in – and, thus, provide local patterns which
stand out with relation to a target concept.

Subgroup Discovery (SD) (HERRERA et al., 2011; ATZMUELLER, 2015) is one of the earliest
tasks of supervised LPM that consists of the discovery of subgroups in populations presenting
an unusual distribution of a single target variable (WROBEL, 1997). Understanding that a
deviating distribution of one target attribute does not encompass all forms of interestingness,
the Exceptional Model Mining (EMM) task (LEMAN; FEELDERS; KNOBBE, 2008) is defined
as the multi-target generalisation of SD, allowing the representation of more complex target
concepts by extending the definition of property of interest from a (single) target variable to a
model over several (target) attributes. Hence, given a model (of the data) that best represents
our property of interest – and thus constitutes our target concept, EMM searches for subgroups
of the population where the model fitted to the subgroup substantially differs from a baseline
model.

When addressing our research question, the EMM task makes it possible to use the existing
(predictive) methods of Survival Analysis as the property of the data we are interested in.
Combining such target concept and the local aspect of the task, the EMM potentially values
the discovery of data subsets with an unusual survival response. Furthermore, its descriptive
aspect provides the characterisation of such subsets that (individually) behave unusually. In
contrast to the existing predictive methods, our approach potentially provides more explicit
information and new insights on features’ interactions and associations with survival response.
It also enables a broader scope of analysis by performing multivariate analysis with no need
for feature selection. However, to the best of our knowledge, the use of supervised descriptive
local pattern mining to discover and characterise subgroups with unusual survival behaviour is
still an under-explored area of research.

Finally, the search space can be exponentially large when striving to find subgroups. The
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combinatorial nature of (local) pattern mining tasks poses a significant challenge concerning
the computational cost of the mining algorithms. When focusing on the EMM task, these
challenges can be even more significant once the task usually involves the induction of numerical
models. Once the complete traversal of the search space becomes infeasible with the increase
of data volume and complexity, more sophisticated search strategies are required to make
feasible the discovery of local patterns. Hence, heuristic searches employ different strategies to
favour the search towards regions of the space that are more likely to contain good solutions.
However, by directing the search towards the best solutions, most heuristic approaches to
subgroup mining usually struggle with the problem of redundancy : a variety of patterns that
comprise only slight variations of the same (more general) finding (LEEUWEN; KNOBBE, 2012).
Hence, to provide meaningful results, the heuristic search strategy needs to achieve a good
balance between exploitation and exploration. In other words, the heuristic search should be
able to focus on promising areas while leaving room to extend the search towards several search
directions.

The existing approaches to the EMM task, however, resort to the greedy beam-search as
the heuristic search strategy while striving to tackle the problem of redundancy in their final
findings. Another strong line of research to LPM tasks approaches the subgroup search with
stochastic optimisation and, thus, employ optimisation meta-heuristics as the search strategy.
In this context, evolutionary algorithms have been widely studied in pattern mining applications
(VENTURA; LUNA et al., 2016), especially for Subgroup Discovery. The existent methods present
great results related to computational aspects and the quality of the discovered patterns and
hence pose a competitive approach to supervised descriptive LPM tasks. However, to the best
of our knowledge, there is no work on EMM exploring stochastic optimisation algorithms as
the search strategy to mine subgroups.

In this work, we propose the discovery of (non-redundant) subgroups presenting unusual
survival behaviour. Hence, we present an EMM framework that uses a (predictive) method
of Survival Analysis as the target concept that models survival behaviour. We approach the
subgroup search as an optimisation problem, aiming to maximise the interestingness of the
discovered subgroups – w.r.t. their survival models – while minimising the redundancy of
the (final) findings. Thus, we employ the Ant-Colony Optimisation meta-heuristics as the
heuristic search of our EMM framework. Therefore, instead of using Survival Analysis models
for predictions, we use them as a deviation target in combination with the supervised descriptive
local pattern mining task of EMM to provide a set of (diverse) characterisations of subgroups
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presenting unusual survival behaviours.
We now present this document organisation in the next section.

1.3 DOCUMENT OVERVIEW

This document consists of six chapters, of which this introduction is the first.
Chapter 2 contains a brief theoretical overview of our research area. We introduce the basic

concepts of local pattern mining and define an Exceptional Model Mining instance using a
non-parametric statistical method of Survival Analysis as the target model. Then, we enunciate
the problem of redundancy in sets of subgroups. At last, we present the problem of Optimisation
and introduce the basic concepts of ACO meta-heuristic, our choice for subgroup (heuristic)
search.

Then, in Chapter 3, we present a brief review of the works in literature that strive to
provide knowledge about the factors associated with survival response. We briefly introduce
the traditional statistical methods of Survival Analysis and revise the machine learning and
data mining approaches to time-to-event analysis. As we evince the lack of approaches to
provide descriptive knowledge over local aspects of the data, we also provide a brief review
on the existing algorithms for supervised descriptive pattern mining, specially the approaches
developed for EMM and SD tasks.

We present our first approach to the problem in Chapter 4, the Esmam algorithm: an EMM
framework to find itemset induced subgroups. The work was published in MATTOS et al. (2020b),
and this chapter consists of the method and the results discussed in the paper.

In Chapter 5, we present the EsmamDS algorithm that builds on the work presented in
Chapter 4 to address the problem of redundancy in the final set of discovered subgroups. The
approach was previously presented by MATTOS; NETO; VIMIEIRO (2021), and, in this chapter,
we provide the method and the results discussed in the paper.

Lastly, we present our final remarks in Chapter 6.
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2 THEORETICAL FOUNDATION

As introduced before, Local Pattern Mining tasks strive to pinpoint multiple (potentially
overlapping) subsets of the data that behave differently than expected. However, the main
characteristic of such techniques is that they are not merely looking for data subsets. They
search for subgroups: coherent subsets for which we can formulate a concise description in

terms of conditions on attributes of the data (DUIVESTEIJN, 2013). The author argues that
such descriptions make the subgroups more actionable: in addition to pinpointing the subjects
that behave differently from a norm, we can also pinpoint the factors related to such behaviour.

A different narrative introduces the Exceptional Model Mining through the perspective of
Rule Induction (FÜRNKRANZ; GAMBERGER; LAVRAČ, 2012), a traditional data mining technique
that aims at learning sets of rules from a given data. Predictive rule induction comprises
supervised learning techniques to induce prediction/classification models in the form of rule
sets. Hence, the individual rules constitute a final global model – ordered or unordered rule set
– which is evaluated concerning its accuracy and predictive power. Contrasting to the predictive
perspective, descriptive rule induction, also known as association rule mining (ZHANG; ZHANG,
2002), is a form of exploratory data analysis that typically comprises unsupervised tasks for
discovering association relationships or correlations among a set of items. In such a descriptive
approach, each rule comprises a pattern representation describing regularities in data and is
usually individually evaluated with respect to the uncertainty of the relation it states.

NOVAK; LAVRAČ; WEBB (2009) call supervised descriptive rule discovery the family of
tasks that lie at the intersection of both predictive and descriptive perspectives, comprising
several supervised algorithmic approaches to the discovery of relationships associated with some
property of interest – e.g. Exceptional Model Mining, Contrast Set Mining, Emerging Pattern
Mining, among others (VENTURA; LUNA, 2018). By inducing descriptive rules from labelled
data, such tasks aim to understand the underlying phenomena (according to a target) and not
arbitrarily explain the data or predict outcomes for new instances. Therefore, the final set of
rules comprises independent patterns that describe the property of interest and are usually
evaluated according to a metric of such property.

Rule-based approaches traditionally represent their findings through rules in the form of
𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡→ 𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡. The antecedent is the pattern description, i.e. the set of conditions
over the data attributes that need to be satisfied in order to imply the consequent. The form of
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this latter varies according to the task being executed: it may be a set of items in association
rule mining, a target class or target attribute value on predictive induction, or even a property
of interest in supervised descriptive rule discovery. As will be further introduced in this chapter,
we adopt a rule-based representation with an implicit consequent being a model of the survival
behaviour observed in the population delimited by the antecedent. In other words, we assume
a representation that is restricted to a pattern description (antecedent) that implicitly implies
a model (consequent).

At last, rule-based (or pattern-based) approaches, i.e. approaches whose models comprise
logical inferences over data attributes, present an advantage over more complex mathematical
models in the sense that exists an inherent interpretability on their designs and results. There
is a vast amount of works on the literature that discuss such a term, its definition, applicability
and relevance (CARVALHO; PEREIRA; CARDOSO, 2019). At an abstract level, the aim is the
development of data models that can provide meaning in understandable terms to a human, i.e.
models that enable a human to verify, interpret, and understand the system’s reasoning and
how particular decisions are made. In this work, we refer to interpretability as the extent to
which a model outcome is humanly understandable, in a way that is self-contained and do not
need further processing to be fully comprehended (GUIDOTTI et al., 2018). However, although
(predictive/descriptive) rule-based models are naturally interpretable (allow easy understanding
for human beings) because of the simplicity of their results design, there is still a cognitive
limit on how complex a model can be while still also being understandable (LAKKARAJU; BACH;

LESKOVEC, 2016).
For now, we proceed with the theoretical foundation of this work. However, the reader

should keep in mind this Rule Induction foundation and concepts throughout this document as
we revise rule-based approaches and assess their performances regarding the interpretability of
their findings. In this chapter, we first define the basic concepts used throughout this document.
Then, we introduce the EMM framework to discover subgroups with an unusual survival
response using a predictive method of Survival Analysis as the target concept. Moreover, we
define the problem of redundancy in subgroup sets. At last, we present the subgroup search
strategy we adopt, providing a brief review of the Ant-Colony Optimisation meta-heuristics.
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2.1 BASIC CONCEPTS

In order to define the essential elements of a framework to mine exceptional survival
behaviours, we first need to define a survival data set. The survival data, or time-to-event

data, is mainly characterised by a phenomenon we call censoring : the existence of data subsets
that do not present (labeled) information regarding the time to the event occurrence. There
are different types of censoring, all relating to the moment when the individual was lost to
the study. The right-censoring is the most common type observed in survival data. It happens
when an individual had not yet experienced the event by the time it was last observed in the
study; therefore, its time-to-event is unknown. In other words, the right-censoring happens
when the (unknown) time for an individual actually suffering the event is future to the time
such individual was last observed in the study. For simplicity, from now on, all censoring referred
to in this work should be understood as right-censoring.

To define a survival data set, we first provide the toy example in Table 1. We will consider
a survival study where death is the event, and the survival time 𝑇 is reported in months.
Individuals 𝑜 are rows and are identified by their numbers. The columns are the set of descriptive
attributes 𝐴 = {𝑠𝑖𝑧𝑒, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑡𝑦𝑝𝑒, 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠} (of size |𝐴| = 4) and the model attributes
𝑇 and 𝛿 – over which a survival model can be defined. Table 2 presents the descriptive attributes
𝐴𝑖 of the data set in Table 1 and their domains. An individual 𝑜 is described by a set of |𝐴|
values from the domain of each descriptive attribute, has a survival status 𝛿𝑜 and with time
𝑇𝑜. For instance, we have that the individual #5 = ({𝑙𝑎𝑟𝑔𝑒, 𝐼𝐼, 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡, 𝑦𝑒𝑠}, 6, 1) died
6 months (𝑇#5 = 6, 𝛿#5 = 1) after the time it entered the study. By contrast, the individual

Table 1 – Theoretical foundation – Toy survival data set.

𝑜 𝑆𝑖𝑧𝑒 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑇𝑦𝑝𝑒 𝑀𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 𝑇 𝛿

#0 𝑠𝑚𝑎𝑙𝑙 𝐼 𝑏𝑒𝑛𝑖𝑔𝑛 𝑛𝑜 12 0
#1 𝑠𝑚𝑎𝑙𝑙 𝐼𝐼𝐼 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 𝑛𝑜 8 0
#2 𝑚𝑒𝑑𝑖𝑢𝑚 𝐼𝐼 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 𝑛𝑜 4 1
#3 𝑚𝑒𝑑𝑖𝑢𝑚 𝐼𝐼𝐼 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 𝑦𝑒𝑠 3 1
#4 𝑙𝑎𝑟𝑔𝑒 𝐼 𝑏𝑒𝑛𝑖𝑔𝑛 𝑛𝑜 9 0
#5 𝑙𝑎𝑟𝑔𝑒 𝐼𝐼 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 𝑦𝑒𝑠 6 1
#6 𝑙𝑎𝑟𝑔𝑒 𝐼𝐼 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡 𝑛𝑜 10 0

Font: The author (2021)
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Table 2 – Theoretical foundation – The set of descriptive attributes (and their domains) of the toy survival
data set provided in Table 1.

𝐴𝑖 𝑑𝑜𝑚(𝐴𝑖)
𝐴0 : 𝑠𝑖𝑧𝑒 {𝑠𝑚𝑎𝑙𝑙, 𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑎𝑟𝑔𝑒}
𝐴1 : 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 {𝐼, 𝐼𝐼, 𝐼𝐼𝐼}
𝐴2 : 𝑡𝑦𝑝𝑒 {𝑏𝑒𝑛𝑖𝑔𝑛, 𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡}
𝐴3 : 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 {𝑛𝑜, 𝑦𝑒𝑠}

Font: The author (2021)

#4 = ({𝑙𝑎𝑟𝑔𝑒, 𝐼, 𝑏𝑒𝑛𝑖𝑔𝑛, 𝑛𝑜}, 9, 0) was observed alive for 9 months (𝑇#4 = 9, 𝛿#4 = 0); after
that time, there is no information on whether the individual #4 remained alive or not.

We call items the atomic descriptive elements of the data set. Each value 𝑣𝑗 in a 𝑑𝑜𝑚(𝐴𝑖)

constitute a data set item 𝐼𝑖𝑗 = (𝐴𝑖, 𝑣𝑗). For the set of descriptive attributes defined in Table 2,
𝐼01 = (𝑠𝑖𝑧𝑒, 𝑚𝑒𝑑𝑖𝑢𝑚) and 𝐼20 = (𝑡𝑦𝑝𝑒, 𝑏𝑒𝑛𝑖𝑔𝑛) are two examples of items. By the domains
provided, we also have the toy data set in Table 1 comprising a total of 10 items. Hence, we
formally define a survival data set as follows.

Definition 1 (Survival dataset Ω(𝐴, 𝑇, 𝛿)). We define a (survival) data set Ω(𝐴, 𝑇, 𝛿) as
a collection of |Ω| individuals, where 𝐴 is the set of |𝐴| categorical (descriptive) attributes
and 𝑇 and 𝛿 are the target attributes. The numeric attribute 𝑇 = {𝑇1, 𝑇2, . . . , 𝑇|Ω|} is the set
of survival times of all individuals in the experiment, i.e. the moment in the study timeline
when the individual was last observed. The survival status 𝛿 = {𝛿1, 𝛿2, . . . , 𝛿|Ω|} is a boolean
(censoring) attribute to indicate whether the individual experienced the event (𝛿 = 1) or is
censored (𝛿 = 0). For censored instances, survival time indicates the time of censoring (last
event-free observation in the study). Each individual is therefore a tuple 𝑜 = (𝑉, 𝑇𝑜, 𝛿𝑜), where
𝑉 ∈ 𝑑𝑜𝑚(𝐴1)× 𝑑𝑜𝑚(𝐴2)× · · · × 𝑑𝑜𝑚(𝐴|𝐴|). The value of an attribute 𝐴𝑖 is also denoted by
𝐴𝑖(𝑜) = 𝑣. The domain of a descriptive attribute in a given data set is denoted by 𝑑𝑜𝑚(𝐴𝑖).
At last, we define an item as a tuple 𝐼𝑖𝑗 = (𝐴𝑖, 𝑣𝑗), for 𝑣𝑗 ∈ 𝑑𝑜𝑚(𝐴𝑖). Thus, we denote
I = ⋃︀

𝐴𝑖

{𝐼𝑖𝑗 = (𝐴𝑖, 𝑣𝑗)|𝑣𝑗 ∈ 𝑑𝑜𝑚(𝐴𝑖)} the set of all items of the data set. □

We call description a conjunction of conditions on the descriptive attributes of the data set.
We define that each attribute may be constrained at most once. Thus, a description might have
at most |𝐴| conditions. In this work, we define a condition as a restriction on the values that
the attribute might have. Hence, a description can be seen as an indicator function defining
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whether an individual in the data set satisfies or not the constraints it imposes. A description
𝐷 covers an observation 𝑜 if and only if 𝐷(𝑜) = 1.

Definition 2 (Description). A description 𝐷 : Ω → {0, 1} of length 𝑙 ≤ |𝐴| is a pattern
given as 𝐷(𝑜) = 𝑐𝑜𝑛𝑑1(𝐴𝑖) ∧ 𝑐𝑜𝑛𝑑2(𝐴𝑗) ∧ · · · ∧ 𝑐𝑜𝑛𝑑𝑙(𝐴𝑘). A condition 𝑐𝑜𝑛𝑑(𝐴𝑖) (for an
arbitrary 𝐴𝑖) is a proposition in the form of 𝑐𝑜𝑛𝑑(𝐴𝑖) = 𝐴𝑖(𝑜) ∈ 𝒱𝑖, where 𝒱𝑖 ⊂ 𝑑𝑜𝑚(𝐴𝑖). □

For instance, 𝐷𝑒𝑥(𝑜) = 𝐴1(𝑜) ∈ {𝐼, 𝐼𝐼} ∧ 𝐴2(𝑜) ∈ {𝑏𝑒𝑛𝑖𝑔𝑛} is a description of length 2
(it has 2 conditions), where the values for the attribute 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (𝐴1) are restricted to those
two values in the first set, and the values for 𝑡𝑦𝑝𝑒 (𝐴2) are restricted to that one value in the
second set. Considering Table 1, there are two individuals – #0 and #4 – presenting attribute
values within the restricted values for each condition in 𝐷𝑒𝑥. For those two individuals, 𝐷𝑒𝑥

returns 1, and we say that 𝐷𝑒𝑥 covers #0 and #4. Hence, we define {#0, #4} as the coverage

of 𝐷𝑒𝑥.

Definition 3 (Coverage). The coverage (extent) of a description 𝐷 is the set of individuals
it covers, formally given by 𝑐𝑜𝑣(𝐷) = {𝑜 ∈ Ω | 𝐷(𝑜) = 1}. The size of a coverage is |𝑐𝑜𝑣(𝐷)|.
□

As previously stated, the EMM task searches for subgroups: subsets of the data for which
we have concise descriptions. A subgroup is, therefore, composed of a description and its
coverage.

Definition 4 (Subgroup and Complement). For a given a description 𝐷, 𝐺𝐷 = (𝐷, 𝑐𝑜𝑣(𝐷))

is a subgroup. We call the complement of a subgroup 𝐺𝐷 the set of individuals not covered by
𝐷, formally defined as 𝐺𝐷 = Ω ∖ 𝑐𝑜𝑣(𝐷). □

Hence, 𝐺𝐷𝑒𝑥 comprises the subset {#0, #4} of individuals described as 𝐷𝑒𝑥(𝑜) = 𝐴1(𝑜) ∈

{𝐼, 𝐼𝐼} ∧ 𝐴2(𝑜) ∈ {𝑏𝑒𝑛𝑖𝑔𝑛}. The set of individuals {#1, #3, #4, #5} for which 𝐷𝑒𝑥(𝑜) = 0

is the complement 𝐺𝐷𝑒𝑥 .
We say that a subgroup entails two itemsets. The first one is a function of its description and

is called descriptive itemset. It contains all data set items represented in a subgroup’s description.
For instance, the descriptive itemset of 𝐺𝐷𝑒𝑥 is {(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐼), (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐼𝐼), (𝑡𝑦𝑝𝑒, 𝑏𝑒𝑛𝑖𝑔𝑛)}.
The other itemset a subgroup entails is a function of its coverage and is called extensive itemset.
It contains the set of items 𝐼𝑖𝑗 ∈ I encompassed by the individuals covered in the subgroup. Given
that 𝑐𝑜𝑣(𝐷𝑒𝑥) = {#0, #4}, the extensive itemset of 𝐺𝐷𝑒𝑥 is {(𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐼), (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝐼𝐼),
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(𝑡𝑦𝑝𝑒, 𝑏𝑒𝑛𝑖𝑔𝑛), (𝑠𝑖𝑧𝑒, 𝑠𝑚𝑎𝑙𝑙), (𝑠𝑖𝑧𝑒, 𝑙𝑎𝑟𝑔𝑒), (𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠, 𝑛𝑜)}. Note that this itemset is usually
a superset of the descriptive itemset, containing items related to the attributes not restricted
in the description in addition to the ones in the descriptive itemset.

Definition 5 (Descriptive Itemset and Extensive Itemset). We call descriptive itemset

the set of items ℐ(𝐺𝐷) = ⋃︀{(𝐴𝑖, 𝑣)|∀𝑣 ∈ 𝒱𝑖}, given every arbitrary 𝑐𝑜𝑛𝑑(𝐴𝑖) = 𝐴𝑖(𝑜) ∈ 𝒱𝑖

represented in 𝐷. Therefore, the descriptive itemset is the set of items 𝐼𝑖𝑗 ∈ I strictly listed
in (the conditions of) 𝐷. The extensive itemset is the set of items related to a subgroup’s
coverage, given by the function 𝒞 : 𝒫(Ω)→ I, 𝒞(𝐺𝐷) = ⋃︀

𝐴𝑖

{(𝐴𝑖, 𝐴𝑖(𝑜)) | 𝑜 ∈ 𝑐𝑜𝑣(𝐷)}. Note
that 𝒞(𝐺𝐷) may include even attribute values not listed in the conditions of 𝐷. □

We define an empty subgroup 𝐺∅ comprising an unrestricted description 𝐷∅ for which
𝑐𝑜𝑣(𝐷∅) = Ω; hence, 𝐺∅ = (𝐷∅, Ω). By definition, an arbitrary subgroup 𝐺𝐷 always implies
a description 𝐷 and a coverage 𝑐𝑜𝑣(𝐷). Hence, we may use the expression subgroup to refer
to one or another interchangeably as the context will make clear its meaning. We will omit the
subscript unless necessary. Thus, we assume that a description 𝐷 is always associated with
(and contained by) a subgroup. Hence, we employ 𝐺 to represent 𝐷 when convenient.

At last, we introduce the concept of generality. Since deviations from the norm are easily
achieved in very small subsets of the data, we aim at finding subgroups that encompass as many
individuals as possible. Therefore, we define generality in relation to the subgroup’s coverage.
We say a subgroup 𝐺𝑎 is more general than a subgroup 𝐺𝑏 if and only if 𝑐𝑜𝑣(𝐺𝑎) ⊃ 𝑐𝑜𝑣(𝐺𝑏).
In this case, we may also say that 𝐺𝑏 is more specific than 𝐺𝑎. However, note that although
generality is defined with respect to the subgroup’s coverage, it is dependent on the subgroup’s
description. Each condition 𝑐𝑜𝑛𝑑(𝐴𝑖) = 𝐴𝑖(𝑜) ∈ 𝒱𝑖 imposes a constraint to 𝑑𝑜𝑚(𝐴𝑖), restricting
the extent of individuals covered by the pattern to the extent delimited by the scope of 𝒱𝑖.
Hence, generalisation may be affected by the number of conditions in a description (description
length) and the extent of the constraints such conditions impose.

Having defined the basic concepts that will be applied throughout this work, we introduce
the Exceptional Model Mining framework to discover subgroups with unusual survival behaviour
in the next section.
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2.2 EXCEPTIONAL MODEL MINING FRAMEWORK

Exceptional Model Mining (EMM) is a data mining framework that aims to discover
concisely described subsets of a data set – subgroups – where a model of interest can be
deemed exceptional. In other words, the EMM framework strives to find descriptions 𝐷 for
which a given target model learned from the individuals in 𝑐𝑜𝑣(𝐷) has parameters that deviate
substantially from the parameters of the model learned from a defined baseline group of
individuals (DUIVESTEIJN, 2013). There are two possibilities in this case: (i) to compare the
characteristics of the model fitted to the subgroup to its complement; or (ii) to compare to
the population, i.e. all individuals in the data set. It is, however, crucial to understand that this
choice essentially changes the nature of the task at hand and may lead to different outcomes.
Comparing a subgroup to the population implies searching for deviations from the norm. On
the other hand, comparing to its complement implies searching for two subsets presenting
contrasting behaviour. There is no overall best choice. Sometimes, the real-life problem at
hand or mathematical design and computational requirements may lead to a direction. From
now on, we refer to a general baseline ℬ as a predefined baseline set of individuals to quantify
the exceptionality of a subgroup: the population or the complement.

Hence, an EMM instance is defined by a model class, which comprises the (target) property
of interest, and a quality measure, which quantifies the dissimilarity between two models from
the model class. There are several EMM instances defined in the literature (DUIVESTEIJN;

FEELDERS; KNOBBE, 2016). However, as we will evince in the review provided on Section 3.2,
there is no EMM instance to properly address survival data. In this section, we introduce
the EMM framework by defining a model class to represent survival behaviour and a quality
measure based on the statistical unusualness of the defined (survival) model class.

Survival behaviour is usually modelled by the survival function 𝑆(𝑡) which is a representation
of the probability of an individual 𝑜 surviving up to a time 𝑡, i.e., 𝑆(𝑡) = 𝑃 (𝑇𝑜 > 𝑡). It presents
an initial value 𝑆(0) = 1 to represent that no individual has suffered (yet) the event at the
beginning of the study. Therefore, the probability of surviving past the initial time is one.
Throughout the study timeline, the survival function monotonically decreases with 𝑡 and,
theoretically, no individual would survive if the study period increased without limit; therefore,
𝑆(∞) = 0.

As will be revised in the next chapter, the survival function may be modelled by different
methods. The (statistical) non-parametric Kaplan-Meier (KM) estimator (or product-limit
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method) (KAPLAN; MEIER, 1958) is one of the simplest methods to estimate survival function,
being largely used in survival studies to model survival response. The KM model estimates
the survival function by calculating the cumulative survival probability 𝑆(𝑡) from the observed
survival times 𝑇 and censoring information 𝛿. Considering Ω, we define 𝒯 = {𝑡1, 𝑡2, . . . , 𝑡𝑘|𝑡 ∈

𝑇, 𝑘 ≤ |Ω|} the set of unique ordered survival times in the data set. The estimated probability
𝑆(𝑡𝑗) of surviving past a time 𝑡𝑗 ∈ 𝒯 is given by Equation 2.1:

𝑆(𝑡𝑗) =
⎛⎝𝑗−1∏︁

𝑖=1
𝑃 (𝒯 > 𝑡𝑖|𝒯 ≥ 𝑡𝑖)

⎞⎠ · 𝑃 (𝒯 > 𝑡𝑗|𝒯 ≥ 𝑡𝑗) ≡ 𝑆(𝑡𝑗−1)
(︃

𝑟𝑗 − 𝑑𝑗

𝑟𝑗

)︃
(2.1)

where 𝑆(𝑡𝑗−1) is the (estimated) survival probability at the time 𝑡𝑗−1, 𝑟𝑗 is the number of
individuals at risk (have not suffered the event yet) at time 𝑡𝑗, i.e. 𝑟𝑗 = |{𝑜 ∈ Ω | 𝑇𝑜 ≥ 𝑡𝑗}|,
and 𝑑𝑗 is the number of individuals that experienced the event at time 𝑡𝑗 , that is |{𝑜 ∈ Ω | 𝑇𝑜 =

𝑡𝑗 ∧ 𝛿𝑜 = 1}|. The plot of the KM survival probabilities 𝑆(𝑡) against time is called the survival
curve and provides a visual assessment of the survival response over time.

Therefore, for each subgroup 𝐺 under consideration, the KM (survival) model is induced
on the target attributes 𝑇 and 𝛿 of the data associated solely with the subgroup’s coverage
𝑐𝑜𝑣(𝐺). Then, it is necessary to evaluate the (target) model fitted on 𝐺 to determine whether
the particular subgroup is exceptional. We say 𝐺 is exceptional if its model is statistically
different from the model fitted to the baseline ℬ.

The logrank is a statistical test widely used to verify whether the survival responses of two
groups are equivalent or not. It tests the null hypothesis that there is no difference between the
groups in the probability of an event occurring at any time point (BLAND; ALTMAN, 2004). For
that, the logrank uses the events observed within each group (i.e. the individuals with 𝛿𝑜 = 1)
versus the number of events expected to happen.

Let 𝐺 ⊆ Ω denote a set of individuals. We define 𝑟𝐺
𝑗 the number of individuals in 𝐺 that

are at risk just before 𝑡𝑗 ∈ 𝒯 . The logrank test assumes that the number of events expected
to happen within a group is proportional to the extent of its risk, i.e. to the proportion 𝑟𝐺

𝑗 /𝑟𝑗.
Hence, the number 𝐸𝐺 of expected events suffered by 𝐺 over 𝒯 is given as follows.

𝐸𝐺 =
∑︁

∀𝑡𝑗∈𝒯

𝑟𝐺
𝑗

𝑟𝑗

× 𝑑𝑗

For comparing 𝐺 to another group ℬ, the logrank test 𝑋2 ∼ 𝜒2
1 is given bellow, where 𝑂𝐺(resp.

𝑂ℬ) is the number of observed events in 𝐺(resp. ℬ), which can be given by the sum of 𝛿𝑜 for
every 𝑜 ∈ 𝐺(resp. ℬ).

𝑋2 = (𝑂𝐺 − 𝐸𝐺)2

𝐸𝐺
+ (𝑂ℬ − 𝐸ℬ)2

𝐸ℬ



36

Finally, we define exceptionality in this work by means of the logrank statistic. Hence, being
𝒢 the set of all possible subgroups in a data set, we assess the exceptionality of a subgroup
with a quality measure 𝜑 : 𝒢 → R that quantifies the deviation between the subgroup’s KM
model and the model fitted to ℬ. For this, we test the hypothesis that the KM curves adjusted
for both the subgroup and the baseline are statistically equivalent. Then, we take 1− p-value

of the test as the quality of the subgroup. The stronger the evidence that the null hypothesis
should be rejected, the more exceptional the subgroup is. This quality measure is presented in
(2.2) where 𝑝𝑣𝑎𝑙𝐺,ℬ is the p-value of the logrank test between the KM curves of subgroup 𝐺

and the baseline ℬ.
𝜑(𝐺) = 1− 𝑝𝑣𝑎𝑙𝐺,ℬ (2.2)

Definition 6 (EMM instance: Target model and Quality measure). We define the
Kaplan-Meier (KM) estimates presented in Equation 2.1 as the model class representing
survival behaviour and, thus, the EMM target concept. Then, we define the (statistical) quality
measure given in Equation 2.2 as the function that maps every subgroup 𝐺 ∈ 𝒢 to a real
number reflecting its exceptionality. □

So far, we have defined an EMM instance with a (target) model class representing survival
behaviour and a quality measure to evaluate subgroups concerning the statistical exceptionality
of their survival responses. What is yet to be discussed is how to generate such subgroups and
conduct the search to guarantee the discovery of several exceptional subgroups that are unique
and representative of the study cohort.

The existing EMM frameworks usually generate subgroups by manipulating descriptions
𝐷 to maximise the quality measure computed over 𝑐𝑜𝑣(𝐷) – that is because the set of data
subsets for which exists a feasible description is typically smaller than the set of all data subsets1.
Thus, given a description representation (and its constraints), the computational approaches to
mine subgroups usually traverse a search space defined over the descriptive attributes’ domain
constructing descriptions from atomic elements.

The way of conducting such subgroup search, i.e. the strategy employed to traverse the
search space while constructing solutions, is a well-known challenge of the broader scope of
pattern mining tasks. That is because the increase in data dimensionality and complexity entails
two issues (LEEUWEN; KNOBBE, 2011). The first one is that such data leads to huge hypothesis
1 How much smaller depends on the design of the descriptions. The (descriptive) search space may be

exponentially large when representing more complex data types.
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spaces, making the solution space’s complete traversal infeasible. To tackle such a problem,
heuristic searches employ different strategies to favour the search towards regions of the space
that are more likely to contain good solutions (according to 𝜑). This approach, however, bumps
into the second issue.

The high dimensionality and cardinality of the data (and dependencies between descriptive
attributes) usually produce multiple possible slight variations of a (subgroup’s) description. The
existence of these multiple variations leads to the problem of redundancy in sets of subgroups:
the mining algorithms usually struggle with local minima yielding a large number of slight
variations of a particular finding. In other words, the frameworks to discover subgroups strive
to assure good quality solutions while delivering a variety of different findings.

In the remainder of this chapter, we first define the problem of redundancy and then present
the heuristic search strategy we employ to generate subgroups and tackle such a problem.

2.3 REDUNDACY IN SUBGROUP SETS

To enunciate the problem of redundancy in sets of subgroups, let us consider the following
set of four subgroups based on the toy data set provided in Table 1. In the left column, we
provide the description of each subgroup 𝐺𝑖 and the subgroup’s coverage in the right column.

𝐺𝑖: (subgroup) Description 𝑐𝑜𝑣(𝐺𝑖)
𝐺0 : 𝑡𝑦𝑝𝑒 ∈ {𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡} {#1, #2, #3, #5}
𝐺1 : 𝑡𝑦𝑝𝑒 ∈ {𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡} ∧ 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 ∈ {𝑛𝑜} {#1, #2}
𝐺2 : 𝑡𝑦𝑝𝑒 ∈ {𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡} ∧ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈ {𝐼𝐼} {#2, #5}
𝐺3 : 𝑡𝑦𝑝𝑒 ∈ {𝑚𝑎𝑙𝑖𝑔𝑛𝑎𝑛𝑡} ∧ 𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 ∈ {𝑛𝑜} ∧ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ∈ {𝐼𝐼} {#2, #6}

Font: The author (2021)

Note that the first subgroup 𝐺0 is the most general subgroup. The other ones (namely
𝐺1, 𝐺2, 𝐺3) are actually specialisations of 𝐺0, i.e. they comprise subsets of 𝑐𝑜𝑣(𝐺0). When
observing the subgroups’ descriptions, we can also notice that the more specific subgroups
are variations of the more general pattern, impelling additional constraints to the domain of
descriptive attributes. In other words, they are refinements of 𝐺0 subgroup.

Hence, we define refinement with respect to the subgroups’ descriptions. We say a subgroup
𝐺𝑏 is a refinement of a subgroup 𝐺𝑎 if 𝐷𝑏 imposes all constraints imposed by 𝐷𝑎 plus at least
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one more conjunctive restriction 𝑐𝑜𝑛𝑑(𝐴𝑖)2. For instance, the subgroup 𝐺2 is a refinement of
𝐺0 but not of 𝐺1; the subgroup 𝐺3 is a refinement of all other subgroups.

The drawback of refinements when considering the task of subgroup mining is that they
usually cover almost the same sets of individuals, which usually leads to similar (target)
behaviours. In other words, even though refinements may comprise exceptional subgroups with
relation to a baseline ℬ, they usually delineate several subsets of a more general (subgroup’s)
coverage that do not necessarily present distinct model responses. For instance, if we compare
the survival model of 𝐺0 with the models of 𝐺1, 𝐺2 and 𝐺3, we may discover that they present
(statistically) equal survival models. When considering high-quality (general) subgroups, their
refinements usually also comprise high-quality findings. Thus, once heuristic searches move
towards higher quality regions, the majority of subgroup mining approaches end up stuck
in local minima, returning a high number of refinements in their final findings. This is the
problem of redundancy in sets of subgroups : the presence of ‘many (slightly) different subgroup
descriptions covering many (almost) equal data subsets that present (almost) equal target
distribution’ (LEEUWEN; KNOBBE, 2012).

Inherent to the problem of redundancy is the lack of diversity in the findings. This is
because several redundant subgroups actually refer to a single (more general) pattern. In a
set of redundant subgroups, the similar descriptions (refinements) fail to encompass several
regions of the (descriptive) search space, missing out on potential insightful knowledge. Because
refinements represent similar subsets (coverages) of the data, a large number of individuals
remain unrepresented, and no knowledge is provided about their behaviour. Thus, once such
similar subgroups usually yield similar models, redundant sets of subgroups yield only a few
essential discoveries among a potentially larger number of unusual behaviours existent in the
(unexplored) data. Redundancy, therefore, arises with the presence of similarities. Minimising
redundancy, i.e. the similarities between subgroups, potentially diversify – enlarge the range
of – the knowledge provided, its extent, and the (hidden) target behaviours we strive to find.
Thus, diversity is the opposite of redundancy.

Hence, we follow the discussion first presented by LEEUWEN; KNOBBE (2011) and we
tackle redundancy considering three (subgroup’s) dimensions: descriptions, coverages, and
models. Thus, we understand that achieving diversity may require optimising redundancy in
more than one dimension at a time, and therefore it should be minimised considering all
2 Note that refinements presuppose no change in the 𝒱𝑖 constraints already imposed by the conditions

𝑐𝑜𝑛𝑑(𝐴𝑖) = 𝐴𝑖 ∈ 𝒱𝑖 in the more general subgroup’s description.
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its (three) dimensions simultaneously. For instance, suppose the subgroups 𝐺𝑎 = (‘𝑠𝑖𝑧𝑒 ∈

{𝑠𝑚𝑎𝑙𝑙}’, {#0, #1}) and 𝐺𝑏 = (‘𝑚𝑒𝑡𝑎𝑠𝑡𝑎𝑠𝑖𝑠 ∈ {𝑦𝑒𝑠}’, {#3, #5}) are exceptional (w.r.t. a
baseline) but present similar models compared to each other. In this case, although diversity was
not achieved in the model dimension, one can understand that those two subgroups comprise
different characterisations of two distinct subsets that happen to present similar unusual models.
It is important to keep in mind that some level of redundancy (in any dimension) in the final set
is inevitable – and somehow desired – because the task of searching for subgroups essentially
entails intersections between local patterns.

Therefore, to achieve diversity, we define that each subgroup in a set of discovered subgroups
should be exceptional concerning the considered baseline and comprise a distinct finding – in all
its aspects. Hence, we define diversity in a set of subgroups in terms of those three dimensions
of redundancy.

Definition 7 (Set of Diverse (non-redundant) Subgroups). In a set G of diverse (non-
redundant) subgroups, all pairs 𝐺𝑖, 𝐺𝑗 ∈ G (for 𝑖 ̸= 𝑗) should substantially differ: in their
descriptions, in their coverages, and in their (survival) models. □

Finally, to assess redundancy, we define measures to quantify the similarity between pairs
of subgroups for each dimension of redundancy.

The description similarity 𝑠𝑖𝑚𝐷 : 𝒫(I)→ [0, 1] (Equation 2.3) is computed over the set ℐ
of descriptive items. The coverage similarity 𝑠𝑖𝑚𝐶 : 𝒫(Ω)→ [0, 1] (Equation 2.4) is computed
over the subgroups’ coverage, i.e. set of individuals comprising the subgroups. Hence, given
two subgroups, 𝐺𝑎 and 𝐺𝑏, we define such measures of similarity as follows.

𝑠𝑖𝑚𝐷(𝐺𝑎, 𝐺𝑏) = |ℐ(𝐺𝑎) ∩ ℐ(𝐺𝑏)|
𝑚𝑖𝑛(|ℐ(𝐺𝑎)|, |ℐ(𝐺𝑏)|)

(2.3)

𝑠𝑖𝑚𝐶(𝐺𝑎, 𝐺𝑏) = |𝑐𝑜𝑣(𝐺𝑎) ∩ 𝑐𝑜𝑣(𝐺𝑏)|
𝑚𝑖𝑛(|𝑐𝑜𝑣(𝐺𝑎)|, |𝑐𝑜𝑣(𝐺𝑏)|)

(2.4)

Both descriptive and coverage similarities are defined as an adaptation of the Jaccard similarity
coefficient more sensible to the overlaps between the compared sets. Such metrics are used to
gauge the similarity and diversity of sample sets and, in their maximum values, indicate that
one set is a subset of the other.

The model similarity 𝑠𝑖𝑚𝑀 is assessed as a boolean function based on the logrank test,
where 𝑝𝑣𝑎𝑙𝐺𝑎,𝐺𝑏

is the 𝑝-value of the test between the (KM) models of the two compared
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subgroups and 𝛼 is a predefined level of significance. The measure is defined in Equation 2.5.

𝑠𝑖𝑚𝑀(𝐺𝑎, 𝐺𝑏) = 𝑝𝑣𝑎𝑙𝐺𝑎,𝐺𝑏
> 𝛼 (2.5)

As already discussed, to tackle scalability issues, heuristic strategies to search subgroups
suffer from high levels of redundancy – since they lean towards the most promising areas of
the search space, which usually comprise many variations of the same finding. To tackle such a
problem, several approaches in the literature strive to provide diverse findings while assuring
their good quality. In other words, they strive for a good balance between exploration and
exploitation, i.e. the ability to find multiple local optimum.

In the next chapter, we will revise the usual heuristic approaches to mine subgroups
(especially for the EMM and SD tasks). For now, we proceed to introduce the heuristic search
strategy proposed in this work. Thus, next, we will briefly review the optimisation problem and
introduce the Ant Colony Optimisation (ACO) meta-heuristic.

2.4 FUNDAMENTALS OF ANT-COLONY OPTIMISATION

From a computational perspective, an optimisation problem can be understood as something
to be optimised, i.e. something to be made as good or effective as possible. Optimisation

algorithms, therefore, are methods designed to find the best solution according to a objective

function among all possible solutions of a given problem (CAVAZZUTI, 2012).
(GENDREAU; POTVIN, 2010) define meta-heuristics (TALBI, 2009) as the solution methods

that orchestrate an interaction between local improvement procedures and higher level strategies

to create a process capable of escaping from local optima and performing a robust search

of a solution space. In other words, meta-heuristics are high-level methodologies designed to
provide an approximate solution to a wide range of optimisation problems without the need
to be deeply adjusted to each specific problem. This kind of algorithm has become popular
in the past decades mostly because of its capability to provide satisfactory solutions to hard
and complex problems (especially combinatorial ones) with reasonable computational resources.
The particular strategy employed to achieve balance between exploration and exploitation poses
the main difference between the existing meta-heuristics.

Nature-inspired (or bio-inspired) (FLOREANO; MATTIUSSI, 2008) is the name given to the
family of optimisation algorithms whose design mimics a natural phenomenon – e.g. biological,
physical – in order to solve optimisation problems (FAUSTO et al., 2020). They comprise robust
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methods for generating solutions regarding an objective function, performing a global search
capable of exploring large search spaces without subdividing it or resorting to pruning techniques.
There are different taxonomies for bio-inspired algorithms in the literature. Among them, there
are two major categories: evolutionary computing (EC) and swarm intelligence (SI). EC is the
subarea of optimisation that draws inspiration from the process of natural evolution, being
mainly based on the principles of Darwinian evolution and genetics. In contrast to imitating
the evolution process of an individual, SI based techniques focus on the interaction of several
individuals and their environment, exploiting social and collective behaviour present in groups
of animals.

Ant-Colony Optimisation (ACO) is a SI meta-heuristics first introduced by (DORIGO;

MANIEZZO; COLORNI, 1991; DORIGO; MANIEZZO; COLORNI, 1996) as an approach to stochastic
combinatorial optimisation, and it has been widely used to solve hard optimisation problems
throughout the years. This approach is based on the foraging behaviour of some ant species
and on the fact that such ants can find the shortest path between their nest and food sources,
despite their limited individual capacity for orientation. For a deeper review on this meta-
heuristic, we refer some works in the literature (DORIGO; STÜTZLE, 2019; DORIGO; CARO, 1999;
DORIGO; STÜTZLE, 2003; DORIGO; BLUM, 2005; DORIGO; BIRATTARI; STUTZLE, 2006).

The main biological inspiration of ACO algorithms comes from the pheromone trail laying-
and-following behaviour of real ants. Some species use pheromone (a chemical substance) as
an indirect form of communication mediated by the environment. While searching for food,
ants deposit pheromone on the ground creating a trail that other ants can follow. Moreover,
those ants are biologically programmed to follow pheromones, and they tend to follow paths
where pheromone concentration is higher. This characteristic of exploiting pheromone trails
gives some ant species the ability to discover the shortest path leading to the food.

Analogously to real ants, ACO algorithms implement artificial ants that build solutions and
exchange information on the quality of these solutions employing a communication based on
pheromone trail. The artificial ant colony constitute an iterative procedure that stochastically
refines solutions. In other words, each artificial ant constructs a complete solution by iteratively
sorting solution components (to be added to a partial solution) considering a probabilistic
distribution that entails: (1) artificial pheromone trails; and (2) heuristic information about the
problem in hand (if available).

The stochasticity in ACO algorithms allows the exploration of a large number of solutions
and hence the diversification of the constructed ones. The use of heuristic information helps to
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guide the search towards more interesting regions of the space, and the pheromone trails allow
the algorithm’s search experience to bias the solution construction in future iterations, in a way
reminiscent of reinforcement learning (SUTTON; BARTO et al., 1998). Moreover, the use of a
colony of ants increases the algorithm robustness. In many cases, this collective interaction of a
population of agents enables the algorithm to efficiently solve the problem. To define the ACO
meta-heuristic, we first define a general model of a combinatorial optimisation problem (COP).

Definition 8 (COP model). A model of a combinatorial optimisation problem consists of:
• a search space I defined by a finite set of decision (descriptive) attributes 𝐴 =

{𝐴1, . . . , 𝐴𝑛};
• a set C of constraints among the variables;
• an objective function 𝜑 : ℘(I)→ R+ to be maximised 3

We define the search space as the set of all items in the data set I and the solution

components as the items 𝐼𝑖𝑗 = (𝐴𝑖, 𝑣𝑗) ∈ I. We say that a set of items that satisfies all
constraints in C is a feasible solution. We constraint solutions to contain at most a single
item 𝐼𝑖𝑗 for each 𝐴𝑖, and to represent at least a minimum number of individuals. Additionally,
constraints regarding the redundancy problem were implicitly considered in the design of
the search and will be further introduced with the method presented in Chapter 5. As an
approximate solution technique, ACO strives to find a good enough solution with reasonable
computational resources.

The pheromone trails 𝜏 are the main element of ACO algorithms, and they provide the
amount of pheromone associated with each solution component of the search space in a given
iteration of the ant colony. Additionally, a problem-based heuristic information function 𝜂 may
be defined to quantify the quality of solution components. Hence, the probabilistic distribution
of the solution space is a function of both the pheromone trails 𝜏 and heuristic information 𝜂

(when provided).
Each ant in a colony constructs a feasible solution by relying on such distribution to

iteratively assemble solution components. Then, at run-time, such ant updates the pheromone
trails (to be used by the next ants) based on the quality of the solution generated. Therefore,
𝜏 is time-dependent, varying according to the colony’s iteration; when necessary, we will use a
subscript 𝜏𝑎𝑛𝑡 to indicate a specific ant-iteration inside the colony execution. Hence, (candidate)
3 From the 𝜑 function first defined as 𝜑 : 𝒢 → R, we have that a subgroup 𝐺 ∈ 𝒢 entails (and thus can also

be expressed by) the descriptive itemset ℐ ⊂ I.
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Algorithm 1: General ACO algorithm framework
1 Initialisation
2 while (termination condition not met) do
3 ConstructSolutions
4 LocalSearch (optional)
5 PheromoneUpdating

solutions are constructed using a parameterised probability distribution over the solution space
at the same time that they are used to modify the pheromone values, biasing the search towards
regions of the search space that are likely to contain high-quality solutions.

A general framework for ACO meta-heuristic is presented in Algorithm 1. At the beginning
of the algorithm (line 1), all pheromone variables are equally initialised with an initial value 𝜏0.
Also, the heuristic variables are defined, and they give the initial probability distribution of the
solution space. Then, the main loop of the algorithm (line 2) iterates over three major steps:
(i) the ants construct several solutions biased by the pheromone and heuristic information; (ii)
the constructed solutions may be improved through an optional local search; and (iii) before
the next iteration, the pheromone trails are updated to reflect the ants’ search experience.

There is a variety of ACO algorithms proposed in the literature to perform predictive
rule induction (FREITAS; PARPINELLI; LOPES, 2009). For instance, the Ant-Miner (ant-colony-
based data miner) (PARPINELLI; LOPES; FREITAS, 2001) algorithm employs ACO as the search
mechanism of the sequential covering strategy to mine a decision list of classification rules.
Since its publication, it has been improved, adapted and extended by many contributions,
proving to be a versatile approach and easily adaptable to a wide range of applications. In most
cases, the proposed contributions employ different pheromone trails and heuristic information
functions to seek balance between exploration and exploitation. The Ant-Miner has proven to be
competitive regarding both state-of-the-art classification and rule learners algorithms, providing
accurate classification models in the form of simple and comprehensible rules (PARPINELLI;

LOPES; FREITAS, 2002). When considering the task of Exceptional Model Mining, it could
potentially benefit from the Ant-Miner’s predictive power – which assures the robustness of
the objective function optimisation – and from the descriptive power of its rule-based models.

Before introducing our proposed methods, we revise the literature related to survival risk
characterisation and the existing approaches to mine subgroups.
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3 LITERATURE REVIEW

In the Chapter 1 of this work, we introduced the problem of identifying groups of patients
closely related regarding their survival experience, our motivations to address this problem, and
the key idea of our proposal. In Chapter 2, we first provided the theoretical foundations of
this work. Thus, we introduced the local pattern mining task of Exceptional Model Mining to
uncover unusual survival models associated with subsets (subgroups) of data individuals. Then,
we defined the problem of redundancy in sets of subgroups and revised the heuristic search
strategy we employ to discover a set of diverse subgroups.

In this chapter, we will provide a review of the related literature. First, we revise the existing
methods and approaches used to provide knowledge over survival behaviour – and how they fail
to identify and characterise unusual behaviours related only to subsets of a population. Then,
we revise the main existing computational approaches to mine subgroups and their strategies
to provide diverse findings – as we make clear the lack of approaches that allow the discovery
of subgroups with exceptional survival behaviour.

3.1 SURVIVAL RISK CHARACTERISATION

As introduced before, when studying time-to-event data, usually, there is a subset of the
population under study for which there is no information (label) regarding if and when the
event took place. This phenomenon, called censoring, is the main characteristic of survival
data and the reason why standard predictive methods cannot be directly applied to analyse
such data.

Survival Analysis (SA) methods have been developed over the years to assess the probability
of an event happening and to model the impact of covariates on the occurrence of such an event.
Such methods aim to provide mechanisms to appropriately handle censored data while providing
accurate predictive models related to the time-to-event – usually time or risk prediction. WANG;

LI; REDDY (2019) classify the SA methods into two broad categories: statistical and machine
learning methods. Figure 1 provides a taxonomy of the main general methods developed for
SA (some methods can be subdivided into more specific approaches; for a more complete
taxonomy, we refer to the provided literature).

The traditional statistical approaches can be subdivided into: (i) non-parametric; (ii) semi-
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Figure 1 – Taxonomy of Survival Analysis methods
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parametric models; and (iii) parametric models. However, such methods rely on distributional
and restrictive (linearity) assumptions that need to be fulfilled to achieve meaningful results.
When these assumptions cannot be satisfied (and they are often not satisfied), these methods
suffer from inconsistencies and sub-optimal (inaccurate) results. In addition, such methods
struggle to model high-dimensional problems (with the need for feature selection), and their
resulting models are often of difficult interpretation. For further explanation about the statistical
methods, we suggest the aforementioned literature and the reading of a series of four papers:
(CLARK et al., 2003a), (BRADBURN et al., 2003b), (BRADBURN et al., 2003a), and (CLARK et al.,
2003b).

In order to overcome those limitations of statistical methods, many recent works have
adapted machine learning methods to address the challenges of survival data analysis. (WANG;

LI; REDDY, 2019) highlight that both statistical and machine learning methods aim at the same
goal: to make predictions of the survival time (time to the event occurrence) and estimate

the survival probability at the estimated survival time. Hence, machine learning approaches
incorporate those traditional statistical methods into different machine learning techniques,
providing more robust predictive survival models. They present the advantage of not imposing
distributional assumptions while modelling non-linear relationships and delivering high-quality
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results. Machine learning methods most commonly used in SA are briefly introduced in the
following. For a more thorough review on machine learning methods for SA, we refer to the
work of WANG; LI; REDDY (2019).

• Survival Trees (GORDON; OLSHEN, 1985; BOU-HAMAD et al., 2011) are an adaptation
of classification and regression trees to handle censored data. The ultimate estimator
comprises a partition of the explanatory feature space and a Kaplan-Meier estimate
for each subset in the partition. Over the years, many tree-based methods have been
proposed to SA with the goal of predicting the distribution of the conditional survival
function for new data examples, e.g. SEGAL (1988), DAVIS; ANDERSON (1989), LEBLANC;

CROWLEY (1992). The idea of survival trees has also been extended to ensemble models,
like bagging (HOTHORN et al., 2004) and random forests (ISHWARAN et al., 2008).

• Bayesian methods have been applied in the context of survival prediction, providing the
probability of the event of interest. Most approaches make use of the Naive Bayesian
classifier (KONONENKO, 1993; KONONENKO, 2001; ZUPAN et al., 2000) and Bayesian
networks (NEAPOLITAN et al., 2004; LUCAS; GAAG; ABU-HANNA, 2004). They are a useful
tool for knowledge representation, capable of inferring predictive models while providing
comprehensible explanations and visual representation of features’ interactions. Bayesian
models are also applied to improve handling censored data (ŠTAJDUHAR; DALBELO-BAŠIĆ;

BOGUNOVIĆ, 2009; ŠTAJDUHAR; DALBELO-BAŠIĆ, 2010) and to improve the efficiency
of other Survival Analysis methods (RAFTERY; MADIGAN; VOLINSKY, 1996; FARD et al.,
2016).

• Artificial Neural Networks (ANN) are usually employed to directly predict a subject’s
survival time or to provide the survival status of a subject (event-occurrence or event-
free). Some works associate ANN with partial logistic regression (BIGANZOLI et al., 1998),
Bayesian models (LISBOA et al., 2003), and statistical methods (FARAGGI; SIMON, 1995).
However, ANN usually lack the transparency of generated knowledge and the ability to
explain the decisions (KONONENKO, 2001), which is highly relevant in a wide range of
applications.

• Support Vector Machine have also been applied to the analysis of survival data to predict
the order in which the event happens for a group of samples (BELLE et al., 2007; EVERS;

MESSOW, 2008) or to predict survival times (SHIVASWAMY; CHU; JANSCHE, 2007). In
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literature, there are also work on Support Vector Regression (KHAN; ZUBEK, 2008; BELLE

et al., 2011) and on Relevance Vector Machine (WIDODO; YANG, 2011).

• Other machine learning approaches adapted to survival analysis that are found in the
literature are active learning (VINZAMURI; LI; REDDY, 2014), transfer learning (LI et al.,
2016b) and multi-task learning (LI et al., 2016a).

Most machine learning methods designed to analyse survival data strive to build more
accurate models to predict the survival time variate while struggling to handle the challenge
of appropriately dealing with censored data. Methods such as ANN and the bayesian ones
deliver time predictions in the form of risk/survival scores or probabilities. Tree-based methods
and classifiers usually deliver partitions of the data set based on covariates’ split criterion and
stratifications, aiming to maximise their predictive models’ accuracy.

Because they trade explainability for accuracy, most of those approaches cannot provide
comprehensible insights over the factors associated with survival outcome. Some approaches
resort to explainability techniques to assign a (quantitative) importance value to features
depending on their contribution to a prediction (MONCADA-TORRES et al., 2021). Note, however,
this means extracting some characterisation from a global model. Hence, once machine learning
methods aim to optimise a given (predictive) metric, they fail to provide information over
more local aspects of the data. When striving to characterise subgroups with respect to their
survival behaviour (e.g. “high-risk” and “low-risk” survival groups), such approaches usually
set thresholds to the survival time variate or rely on features that are (supposedly) related to
the outcome.

When attempting to better explain the factors related to the survival response, some works
in the literature employ rule-based approaches due to their simplicity in representing patterns
and features’ relationships.

BAZAN et al. (2002) propose a rough sets approach to find descriptions of patient groups
with different Kaplan-Meier models by inducing a set of decision rules. The rules are induced
targeting predefined intervals of a prognostic index based on the (semi-parametric) statistical
Cox’s PH model. They also compel the observations to artificial classes to search for deviations
given a predefined stratification feature. (PATTARAINTAKORN; CERCONE, 2008) propose a rough
sets hybrid system to predict the survival time. The approach presents a preprocessing step that
uses the survival data and domain knowledge to select the significant risk factors (essential
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features). For the final rules, the survival time feature is discretised, and the prediction is given
in the form of time intervals.

LIU et al. (2004) use a bump hunting (FRIEDMAN; FISHER, 1999) method to characterise
high-risk patients. The goal is, then, to subdivide the feature space in regions with a high
average value of the target variable. The approach targets the deviance residual (LEBLANC;

CROWLEY, 1992) as a substitute for the (censored) survival time feature.
KRONEK; REDDY (2008) propose the Logical Analysis of Survival Data to construct patterns

to estimate the survival probability distribution of observations. The approach constructs a set
of rules by partitioning the observations regarding their survival status given a specific time.
Then, a greedy bottom-up approach is employed to maximise the separability power of the
patterns according to a metric. The (predicted) survival function of a new observation is given
by averaging the Kaplan-Meier models of all patterns covering such observation (including the
estimates over the entire data set).

WRÓBEL (2012) uses a survival tree to generate an ordered set of rules to predict the
survival behaviour of new examples. The ruleset is constructed by iteratively learning a survival
tree on the uncovered observations and then selecting the rule (the path from a leaf to root)
that maximises the difference between the Kaplan-Meier model of the data observations covered
by the rule and the remaining observations.

SIKORA et al. (2013) employ the sequential covering strategy (FÜRNKRANZ, 1999) to induce
a set of classification rules. The approach generates a partition of the observations into classes
regarding their survival status, and a greedy approach is used to induce classification rules from
non-censored observations. In (SIKORA et al., 2014), the authors apply the covering strategy
together with a weighting scheme for handling censoring.

WRÓBEL; GUDYŚ; SIKORA (2017) present the LR-Rules, a top-down greedy covering algorithm
to induce rules for estimating the survival function of new observations. The rule induction
process maximises the statistical difference between the Kaplan-Meier model of the observations
covered by the rule and the remaining observations. The algorithm iteratively constructs rules by
exhaustively searching for the condition whose addition yields the highest separability between
the KM models. The conditions to be added are taken from the set of observations currently
covered by the rule. The algorithm allows overlapping between rules, and the sequential covering
approach relies on a minimum number of previously uncovered observations that need to be
encompassed by each new rule. The survival function of a new observation is given as the
average survival estimates of all rules it is covered by – or by the population survival model, in
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case the observation is not covered by any rule in the set.
Although rule-based approaches provide the advantage of delivering interpretive results, the

existing approaches still aim at the same goals of machine learning and statistical methods:
to predict survival time (distribution) and estimate/classify risks. Thus, they provide global
models – the set of rules – that maximises the accuracy of a target prediction.

When striving to characterise differences in survival behaviours, most approaches impel
decision classes to the survival data to generate predictive rules. Despite their capability of
providing straightforward explanations, such approaches still rely on features’ stratification
and prior knowledge about feature interactions. From the reviewed literature, only the works
presented by (WRÓBEL, 2012) and (WRÓBEL; GUDYŚ; SIKORA, 2017) employ a direct induction
from survival data maximising the unusualness of a predictive survival model related to a
pattern’s coverage. Still, their final rulesets comprise global models that maximise accuracy.
Once again, by optimising global predictive metrics, such approaches potentially miss the
identification of local patterns. Although we have robust methods to predict survival, the
computational tools at our disposal do not look for local (exceptional) aspects in data.

An alternative approach to such predictive methods was proposed by PARK; PARK; YOO

(2019) aiming to characterise survival behaviour focusing on local exceptionality detection in
contrast to global models. They proposed a Subgroup Discovery (SD) algorithm, RIAS, that
comprises a tree-based rule induction approach in which the target is the average survival time
deviance. The rule induction tree is built in a general-to-specific method with a depth(best)-first
regime, and the subgroup rules are created from the final rule tree. The relevant subgroups are
selected by applying a statistical test to assess the deviation between the average survival time of
a subgroup and its complement on the data set. The authors propose an SD approach to discover
interesting patterns for long-term and short-term survival in breast cancer. To investigate
long-term and short-term survival patterns, the authors consider an increase/decrease of a
minimum mean difference (delta) in the statistical t-test between subgroup and complement.
However, approaching the problem as a standard SD task may lead to the loss of interesting
patterns due to outliers in the subgroups. As pointed out by DUIVESTEIJN; FEELDERS; KNOBBE

(2016), a single variable is an oversimplified target representation, and more complex models
can usually better represent the data. In other words, the deviation of the average survival time
may not capture crucial information of the study cohort’s survival experience. By generalising
the target concept to mathematical models, the EMM task makes it possible to represent
survival behaviour through more robust (predictive) models as the (supervised) property of
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interest.
As discussed in (ATTANASIO, 2019), there is a potential value of supervised LPM (specifically

EMM task) as a valid data-driven solution to many medical goals and a gap in the literature
on providing such solutions. When specifically addressing the problem of mining local patterns
related to a survival response, there are only a few approaches in the literature. Thus, those
approaches present significant restrictions in the representation of survival behaviour, which
potentially leads to sub-optimal results.

Before introducing our proposal on using EMM to discover and identify unusual survival
behaviours, we review the main existing computational approaches to mine subgroups – especially
the SD and EMM tasks.

3.2 SEARCHING FOR LOCAL PATTERNS

As previously introduced, the goal of local pattern mining is to discover subsets of the
data that are interesting somehow. The problem of finding subgroups restricts such a problem
to discovering data subsets that can be concisely described in terms of a finite universe of
attributes, i.e. descriptive attributes. With the data explosion, the space of descriptive attributes
came to entail large amounts of attributes and a variety of complex data types, leading to
exponentially large search spaces. Hence, the strategy used in the search for subgroups is
an essential issue for a good performance of computational methods. Over the years, many
algorithms have been developed to efficiently traverse search spaces and thus deliver interesting
subgroups with satisfactory computational cost.

The earliest approaches to subgroup search resort to the exhaustive search strategy to
explore all combinatorial space and, thus, deliver the best solutions. From the main exhaustive
approaches in literature, we highlight the SD algorithms – most of them comprising adaptations
of traditional association rule learning approaches to the search of subgroups: EXPLORA
(KLöSGEN, 1996), MIDOS (WROBEL, 1997), APRIORI-SD (KAVŠEK; LAVRAČ; JOVANOSKI, 2003;
KAVŠEK; LAVRAČ, 2006), SD-Map (ATZMUELLER; PUPPE, 2006) and SD-Map* (ATZMUELLER;

LEMMERICH, 2009), DPSubgroup (GROSSKREUTZ; RÜPING; WROBEL, 2008), and MergeSD
(GROSSKREUTZ; RÜPING, 2009). Additionally, the GP-Growth (LEMMERICH; BECKER; ATZ-

MUELLER, 2012) was explicitly developed for the EMM task. There are also SD approaches to
big data (e.g. PADILLO; LUNA; VENTURA (2016) and PADILLO; LUNA; VENTURA (2017)) based on
MapReduce, allowing the processing of large databases through automatic parallelisation of the



51

computation over a cluster of machines. In order to tackle scalability problems, those algorithms
typically rely on pruning techniques or, sometimes, resort to anti-monotonicity restrictions to
quality measures to reduce the search space and thus improve efficiency. Still, even with these
tricks, exhaustive approaches become infeasible when applied to high dimensional and complex
data.

In this context, heuristic strategies arise as an alternative to the exhaustive search once they
restrict the search space to fractions that are more likely to contain interesting patterns. The
usual heuristic approach among SD and EMM algorithms is the greedy beam search strategy
(LOWERRE, 1976). It performs a level-wise search similar to the best-first search. However,
it selects a predefined number of best candidates (given by a beam size parameter) among
all partial solutions to keep for the next level. The new candidates are, then, generated from
the best candidates kept in the previous level. However, a great disadvantage of this strategy
is the lack of diversity in the discovered patterns. By exploring only the (best) parts of the
search space, i.e. only some of the best candidates are considered, this strategy often yields
sets of redundant patterns. Thus, this strategy may eliminate significant candidates and lack
the ability to characterise other potentially interesting subsets of the data. The most popular
SD algorithms that employ beam search are the SubgroupMiner (KLÖSGEN; MAY, 2002), SD
(GAMBERGER; LAVRAC, 2002), CN2-SD (LAVRAČ et al., 2004) and RSD (LAVRAČ; ŽELEZNỲ;

FLACH, 2002; ŽELEZNỲ; LAVRAČ, 2006). Also, the Cortana Subgroup Discovery1 (MEENG;

KNOBBE, 2011) is an open-source Java implementation for both SD and EMM applying a
variety of target concepts. The tool supports both nominal and numeric single target (SD)
and more complex targets such as regression and correlation (EMM). Additionally, it offers
a large variety of quality measures. To tackle the problem of redundancy, some works in the
literature apply weighted covering to increase diversity in the final set of subgroups. In the
Diverse Subgroup Set Discovery (DSSD) (LEEUWEN; KNOBBE, 2012) approach, the authors also
incorporate pattern set selection to the beam search strategy tackling redundancy in subgroups
descriptions, coverage or models. For a specific type of redundancy (only one type can be
approached), the framework implements a different subgroup selection procedure within the
level-wise search – instead of choosing the top-K best subgroups – and in the selection of the
final set. Thus, such an approach evaluates sets of subgroups to minimise redundancy, instead
of evaluating subgroups individually; note, however, that such a global approach differs from
the local aspect of traditional SD/EMM tasks.
1 Cortana website: https://datamining.liacs.nl/cortana.html
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Alternatively, many approaches in the literature employ stochastic optimisation as a subgroup
search heuristic strategy, especially Evolutionary Computing (EC). The design of this family
of algorithms provides a good balance between solution quality and response time, and their
flexibility in the solutions’ representation is a valuable ally to the descriptive aspect of subgroup
mining. Thus, their search operators provide great flexibility in the trade-off between exploration
and exploitation. Algorithms based on evolutionary computation have been widely explored to
the discovery of interesting subgroups. However, the main approaches in literature are designed
to the univariate target of SD task, and they are: the evolutionary algorithms SDIGA (JESUS

et al., 2007), GAR-SD (PACHÓN et al., 2011), and EDER-SD (RODRÍGUEZ et al., 2012); the
evolutionary programming approach CGBA-SD (LUNA et al., 2013; LUNA et al., 2014); and
the multi-objective approaches MESDIF (BERLANGA et al., 2006; JESUS; GONZÁLEZ; HERRERA,
2007) and NMEEF-SD (CARMONA et al., 2009; CARMONA et al., 2010). There are also few
approaches that focus on high dimensional data: the MEFASD-BD (PULGAR-RUBIO et al.,
2017), a multi-objective evolutionary fuzzy SD algorithm for big data enviroments; and the
SSDP (PONTES; VIMIEIRO; LUDERMIR, 2016; LUCAS et al., 2017), a mono-objective evolutionary
approach for searching top-K subgroups. When approaching the redundancy problem, LUCAS;

VIMIEIRO; LUDERMIR (2018) present the SSPD+, an evolutionary approach for SD that aims at
providing diversity in top-k subgroups by storing and aggregating redundant subgroups in order
to provide more informative results. Despite the advantages that optimisation meta-heuristics
provide in searching for subgroups, to the best of our knowledge, no literature explores their
use as the heuristic search strategy of the EMM framework. In fact, all presented evolutionary
approaches assume a single nominal target. Hence, when considering the analysis of survival
data, they would resemble some of the previously revised rule-based approaches, where the
survival status is used as a nominal target while striving to incorporate censoring information.

Apart from those three major search strategies already introduced, there are other heuristic
contributions to the EMM task in literature. LEEUWEN (2010) introduces the Exception
Maximisation and Description Minimisation (EMDM) algorithm. It employs a search strategy
that explores structures in the two data subspaces: the descriptive attribute and model spaces.
The approach iteratively improves candidate subgroups. Each iteration consists of two steps:
Exception Maximisation (EM), which searches for subsets presenting an unusual model, and
Description Minimisation (DM), which aims to find a concise description to define a subgroup
from the found subset. For the (model) exceptionality measures that the authors provide, all
target attributes are assumed to be nominal. MOENS; BOLEY (2014) propose an alternative
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approach to EMM by extending and adapting a randomised technique to pattern discovery
– Controlled Direct Pattern Sampling (CDPS) (BOLEY et al., 2011). The approach defines a
sampling process that yields patterns according to a controlled distribution favouring patterns
with high frequency and significant model deviation. However, all features in the data set
are impelled to be either all numeric or all nominal. KRAK; FEELDERS (2015) present the
TGCA (Tree-Constrained Gradient Ascent), a heuristic search strategy that employs numerical
optimisation based on gradient ascent. It aims to find subgroups extents exploiting information
about the influence of individual records on the quality of a subgroup while assuring that the
subgroups can be concisely described. This approach, however, requires a differentiable quality
measure.

In addition to the discussion of proper search strategies to handle scalability and compu-
tational challenges, another relevant aspect largely discussed in the broad scope of subgroup
mining is the problem of redundancy. Apart from those approaches already introduced, other
approaches in the literature strive to avoid redundancy in the set of discovered subgroups
or, in other words, that strive for diversity in their findings. Early approaches, e.g. (KNOBBE;

HO, 2006; BRINGMANN; ZIMMERMANN, 2007), draw inspiration from the domain of feature
selection to introduce pattern filtering techniques as a post-processing step following the pattern
discovery. The aim is to select smaller (and more comprehensible) sets of informative patterns
but with minimal redundancy. This notion of subgroup set mining (RAEDT; ZIMMERMANN,
2007; GUNS; NIJSSEN; RAEDT, 2011) – where instead of searching for patterns that individually
satisfy local constraints, one should strive to find a small set of patterns that together satisfy
global constraints – is largely present in the literature. LEEUWEN; KNOBBE (2011) introduce
such notion into the beam-search heuristic to the SD/EMM tasks, which is further explored in
the DSSD framework. Other heuristic approaches in SD context relying on the same notion
use Monte Carlo Tree Search (BOSC et al., 2018), greedy optimisation (BELFODIL et al., 2019),
and Minimum Description Length (PROENÇA; BÄCK; LEEUWEN, 2021).

In this work, we follow the path of stochastic optimisation and propose the use of Ant-Colony
Optimisation (ACO) as a heuristic search strategy. In addition to the advantages of the broad
family of stochastic meta-heuristics, the ACO design easily incorporates data information to
the search process. Moreover, it allows exploring aspects of its own experience to iteratively
improve the search. To address the problem of redundancy, we build on the notion of pattern

set mining. We tackle the problem through two different fronts. We exploit the sequential
covering strategy and ACO design mechanisms to iteratively re-weight the space of items and
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data objects. In this way, we implicitly consider diversity in the pattern search by dynamic
weighting the impact of observations and solutions components in future iterations. Moreover,
we build on a two-step approach where a (smaller) set of subgroups is selected subsequent to
the discovery process to iteratively update the (final) set of subgroups minimising redundancy.

We now proceed to introduce our proposed approaches in the following chapters.
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4 ESMAM: EXCEPTIONAL SURVIVAL MODEL ANT-MINER

In this chapter, we address the problem of discovering subgroups of patients with unusual
survival behaviour through the perspective of EMM, in contrast to the majority of existent
predictive approaches. We aim at providing straightforwards characterisations about the local
survival exceptionalities existent in the data.

Therefore, the main goal of this chapter is to present the Exceptional Survival Model
Ant Miner (Esmam) algorithm, an EMM framework designed for discovering subgroups with
statistically unusual survival models. The Esmam relies on a measure of exceptionality between
survival curves (Eq. 2.2) based on the logrank statistical test to guide the subgroup search.
Ultimately, it provides a set of exceptional subgroups: a list of descriptions delineating subsets
of the data presenting unusual survival responses. In contrast to most EMM frameworks that
employ greedy heuristics, we propose the use of Ant-Colony Optimisation (ACO) meta-heuristic
(see Section 2.4) as the subgroup search strategy.

The work presented in this chapter was previously published in (MATTOS et al., 2020b). This
chapter comprises the method description and empirical evaluation presented in the publication.

4.1 FRAMEWORK

The Esmam algorithm is an adaptation of the well-known classification rule induction
algorithm Ant-Miner (PARPINELLI; LOPES; FREITAS, 2002). We adapted the Ant Colony Opti-
mization heuristic to discover subgroups with exceptional KM curves. The Esmam returns a
rule-based model comprising a set of (descriptions of) subgroups that are exceptional w.r.t.
their complement. Its pseudocode is provided in Algorithm 2.

The algorithm is initialised with an empty set of subgroups G and with a set of uncovered
cases U comprising all observations in the data set. Then, it follows a covering-based approach.
In each iteration (lines 4-24), a colony of ants is initialised (line 5) and then constructs several
subgroups 𝐺𝐷 (lines 8-18). Then the best one (𝐺𝑏𝑒𝑠𝑡) – according to 𝜙 (Eq. 2.2) – is selected
to be added to the set of discovered subgroups G, and the examples it covers (𝑐𝑜𝑣(𝐺𝑏𝑒𝑠𝑡))
are removed from U (lines 19-22). A new subgroup 𝐺𝑏𝑒𝑠𝑡 is only added to the final set if
it satisfies a lower quality bound for assuring exceptionality (line 19) and if it comprises a
unique subgroup description (line 20). This process is repeated while the number of remaining
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Algorithm 2: Esmam Framework
Input: 𝑚𝑎𝑥𝑈, 𝑚𝑎𝑥𝐼𝑡, 𝑛𝐴𝑛𝑡𝑠, 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔, 𝑚𝑖𝑛𝐶𝑜𝑣, 𝛼
Output: G – set of exceptional subgroups
Data: Ω – survival data set

1 G← ∅
2 U← Ω
3 𝑖𝑡← 0
4 while |U| > 𝑚𝑎𝑥𝑈 or 𝑖𝑡 < 𝑚𝑎𝑥𝐼𝑡 do
5 searchInitialisation(Ω)
6 𝑎𝑛𝑡← 0; 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 ← 0
7 𝐺− ← 𝐺∅; 𝐺𝑏𝑒𝑠𝑡 ← 𝐺∅
8 while 𝑎𝑛𝑡 ≤ 𝑛𝐴𝑛𝑡𝑠 or 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 ≤ 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔 do
9 𝐷 ← buildDescription(Ω, 𝑚𝑖𝑛𝐶𝑜𝑣)

10 𝐷 ← pruneDescription(𝐷)
11 pheromoneUpdating(ℐ(𝐺𝐷))
12 if 𝜑(𝐺𝐷) > 𝜑(𝐺𝑏𝑒𝑠𝑡) then
13 𝐺𝑏𝑒𝑠𝑡 ← 𝐺𝐷

14 if ℐ(𝐺𝐷) = ℐ(𝐺−) then
15 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 + 1
16 else: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 ← 0
17 𝐺− ← 𝐺𝐷

18 𝑎𝑛𝑡← 𝑎𝑛𝑡 + 1
19 if 𝜑(𝐺𝑏𝑒𝑠𝑡) ≥ (1− 𝛼) then
20 if ∀𝐺 ∈ G(ℐ(𝐺) ̸= ℐ(𝐺𝑏𝑒𝑠𝑡)) then
21 G← G⋃︀{𝐺𝑏𝑒𝑠𝑡}
22 U← U ∖ 𝑐𝑜𝑣(𝐺𝑏𝑒𝑠𝑡)

23 else: break
24 𝑖𝑡← 𝑖𝑡 + 1
25 return: G

uncovered observations do not achieve a maximum threshold 𝑚𝑎𝑥𝑈 or until a maximum
number of iterations is reached (𝑚𝑎𝑥𝐼𝑡). In case the ant colony cannot discover significant
rules, the algorithm is finalised, and the final set of subgroups is returned (line 23).

Having presented the overall (covering) framework, we now describe the main elements of
ACO heuristics, already introduced in Algorithm 1.

The searchInitialisation function is responsible for initialising the pheromone values
𝜏0(𝐼𝑖𝑗) and heuristic values 𝜂(𝐼𝑖𝑗) associated with each item 𝐼𝑖𝑗 ∈ I at the beginning of a
colony (𝑎𝑛𝑡 = 0). As already stated, at the beginning of each colony process, no pheromone
has been deposited in the trails yet, and all solution components receive the same amount of
pheromone given by 𝜏0(𝐼𝑖𝑗) = |I|−1. Following the work in PARPINELLI; LOPES; FREITAS (2002),
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the heuristic information is given based on Shannon’s entropy defined in Equation 4.1.

𝐻(𝑊 |𝐼𝑖𝑗) = −
𝑘∑︁

𝑤=1
𝑃 (𝑤|𝐼𝑖𝑗) · log2 𝑃 (𝑤|𝐼𝑖𝑗) (4.1)

We considered an initial partition of the observations in Ω as those with survival time at least
as long as the data set average survival time and those with shorter survival time. The quality
of an item is then the normalised information gain, obtained by further partitioning observations
based on it. The class entropy was computed inducing a partition on the observations according
to a condition. Hence, the heuristic value 𝜂𝑖𝑗 associated to each 𝐼𝑖𝑗 ∈ I is given according to
Equation 4.2.

𝜂(𝐼𝑖𝑗) = log2 𝑘 −𝐻(𝑊 |𝐼𝑖𝑗)∑︀
𝐼𝑖𝑗∈I

log2 𝑘 −𝐻(𝑊 |𝐼𝑖𝑗)
(4.2)

A new colony is created for each new algorithm iteration (line 4), and the pheromone
and heuristic values are re-initialised. Note, however, that once the heuristic values are always
computed over the entire data set (the same partition of the observations), they are constant
and may be computed just once to spare computational cost. Hence, the colonies perform
an independent (stochastic) search in each iteration, always starting from the same (initial)
probabilistic distribution given by the configuration of 𝜂 values.

The subgroup search is then performed by a colony of ants (lines 8-11). Each 𝑎𝑛𝑡 in a
colony of 𝑛𝐴𝑛𝑡𝑠 ants delivers a description in a two-step process: the stochastic description
construction (line 9); and a local search pruning procedure (line 10). Then, the descriptive
items ℐ(𝐺𝐷) of the constructed solution are used to update the pheromone trail for the next
ant (line 11). This process is repeated for all ants in the colony or until the ants converge to a
single solution, i.e. until the colony achieves a minimum threshold (𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔) for identical
sequential descriptions (lines 14-16).

The descriptions are induced in a general-to-specific approach and, hence, the refinement
function buildDescription (line 9) starts from an empty description 𝐷 = 𝐷∅ and iteratively
generates a more complex one by adding (conjunctive) conditions 𝑐𝑜𝑛𝑑(𝐴𝑖) = 𝐴𝑖(𝑜) ∈ {𝑣𝑗} to
𝐷. It is important to remember that we constrained the solutions to contain at most a single
item 𝐼𝑖𝑗 for each 𝐴𝑖, and hence the final constructed description is a conjunction of conditions
𝑐𝑜𝑛𝑑(𝐴𝑖) over singleton sets of 𝑑𝑜𝑚(𝐴𝑖).

The addition of conditions is a stochastic procedure that chooses an item given a probability
distribution based on both the pheromone and heuristic values. Following the work of PARPINELLI;

LOPES; FREITAS (2002), we define the probability 𝑃𝑖𝑗 of an item 𝐼𝑖𝑗 to be sorted as given in
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Equation 4.3
𝑃 (𝐼𝑖𝑗) = 𝑥𝑖 · 𝜂(𝐼𝑖𝑗) · 𝜏(𝐼𝑖𝑗)∑︀

𝐼𝑖𝑗

𝑥𝑖 · 𝜂(𝐼𝑖𝑗) · 𝜏(𝐼𝑖𝑗)
, for all 𝐼𝑖𝑗 ∈ I (4.3)

where 𝑥𝑖 = 1 if 𝐴𝑖 is not yet represented in the (partial) description 𝐷 being constructed,
and zero otherwise. It is important to notice that this probability is a function of 𝜏𝑎𝑛𝑡 and,
therefore, is time-dependent, assuming different values for each ant in a colony process. This
refinement process of iteratively sorting items stops when all 𝐴𝑖 are represented in 𝐷 or when
a new condition results in a coverage size |𝑐𝑜𝑣(𝐷)| below a minimum threshold 𝑚𝑖𝑛𝐶𝑜𝑣.

When a full description 𝐷 is constructed, the pruneDescription function (line 10) is a
local search responsible for enhancing both the simplicity and the quality of the final solution.
This procedure greedily removes conditions 𝑐𝑜𝑛𝑑(𝐴𝑖) from 𝐷, each time eliminating the
condition that leads to the largest improvement in the quality associated with the (pruned)
description. The pruning stops when no conditions can be removed without decreasing the
quality or when the description already encompasses only a single condition.

At last, the pheromoneUpdating function (line 11) is responsible for computing the ant’s
search experience in each iteration, generating the pheromone values for the next ant iteration.
For the items represented in the final description 𝐷, i.e. for the set of items ℐ(𝐺𝐷), the
pheromone is incremented proportionally to the subgroup’s quality, as given in Equation 4.4.
For the set of items I ∖ ℐ(𝐺𝐷) not represented in 𝐷, an evaporation process is simulated by
the normalisation of all 𝜏 values in the iteration (𝑎𝑛𝑡 + 1).

𝜏𝑎𝑛𝑡+1(𝐼𝑖𝑗) = 𝜏𝑎𝑛𝑡(𝐼𝑖𝑗) · (1 + 𝜑(𝐺𝐷)) , for all 𝐼𝑖𝑗 ∈ ℐ(𝐺𝐷) (4.4)

Finally, we present an analysis of the computational complexity of the Esmam provided
in Algorithm 2. This analysis is divided into three parts: (1) the computational complexity of
preprocessing the heuristic information; (2) the complexity of a single ant iteration; and (3)
the complexity of a single Esmam iteration. Then, we combine the results of these three steps
in order to determine the computational complexity of an entire execution of the algorithm.
Note that the Esmam builds on the Ant-Miner and, thus, its complexity presents only slight
differences from the analysis provided by PARPINELLI; LOPES; FREITAS (2002).

1. Heuristic information preprocessing : As previously analysed, the values of all 𝜂(𝐼𝑖𝑗) given
by Equation 4.2 are constant throughout the whole algorithm execution and thus are
precomputed as a preprocessing step. These values can be computed in a single scan of
the data set. So, the time complexity of this step is 𝒪(|I| · |Ω|).
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2. Ant iteration (lines 8-22): Each ant in a colony will perform the following major steps:
(i) description construction; (ii) evaluation of candidate descriptions; (iii) description
pruning; and (iv) pheromone updating. The computational complexities of these steps
are as follows.

• Build description (line 9): The choice of an item to be added to the current
description requires the consideration of all possible items with 𝜂 and 𝜏 values
already precomputed. Therefore, this step takes 𝒪(|I|). In order to construct a
description, an ant will choose a number of 𝑘 conditions. Note that the value of
𝑘 may vary significantly depending on the data set and previously constructed
descriptions. Since each attribute can occur at most once in a description, we have
that the complexity of building a description is given by 𝒪(𝑘 · |I|), for 𝑘 ≤ |𝐴|,
being 𝐴 the set of descriptive attributes.

• Solution evaluation: This process consists of measuring the quality of a description
(subgroup), as given by Equation 2.2. This requires matching a description with 𝑘

conditions with a data set of |Ω| cases, which takes 𝒪(𝑘 · |Ω|).
• Prune description (line 10): The first pruning iteration requires the evaluation of 𝑘

new candidate descriptions – each one obtained by removing one of the 𝑘 conditions
from the unpruned description. Each of these evaluations takes on the order of
(|Ω| · (𝑘 − 1)) operations (see the topic of solution evaluation). Thus, the first
pruning iteration takes on the order of (|Ω| · (𝑘 − 1) · 𝑘) operations, i.e. 𝒪(𝑛 · 𝑘2).
The second pruning iteration takes (|Ω| · (𝑘−2) · (𝑘−1)) operations and so on. The
entire pruning process is repeated at most 𝑘 times, so description pruning takes at
most |Ω| · (𝑘−1) ·𝑘 + |Ω| · (𝑘−2) · (𝑘−1)+ |Ω| · (𝑘−3) · (𝑘−2)+ · · ·+ |Ω| · (1) · (2)

operations, which is 𝒪(𝑘3 · |Ω|).
• Pheromone updating (line 11): This step consists of increasing the pheromone of

the items used in the pruned description, which takes 𝒪(𝑘), and decreasing the
pheromone of unused items, which takes 𝒪(|I|). Since 𝑘 < |I|, pheromone update
takes 𝒪(|I|).

Adding up the results derived in the four topics above, a single ant iteration takes
𝒪(𝑘 · |I|) +𝒪(𝑘 · |Ω|) +𝒪(𝑘3 · |Ω|) +𝒪(|I|), which collapses to 𝒪(𝑘 · |I|+ 𝑘3 · |Ω|).

3. Algorithm single iteration (lines 4-24): Each iteration of the Esmam can be subdivided
into three parts: (i) the pheromone initialisation; (ii) the entire ant-colony loop; and (iii)
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the selection method to include a new subgroup into the final set G of subgroups.

• Pheromone initialisation (line 5): Each algorithm iteration starts by defining the
values of all 𝜏0(𝐼𝑖𝑗) (note that the values of 𝜂 were already initialised in the
preprocessing step). This step takes 𝒪(|I|).

• Ant-colony loop (lines 8-18): In the topic above, we have defined the complexity
of executing a colony’s single (ant) iteration. Thus, to derive the computational
complexity for the whole colony execution, the result of the topic above has
to be multiplied by the number 𝑛𝐴𝑛𝑡𝑠 of ants (in the worst scenario), taking
𝒪(𝑛𝐴𝑛𝑡𝑠 · [𝑘 · |I|+ 𝑘3 · |Ω|]).

• Subgroup selection (lines 19-22): The method to include a newly discovered subgroup
into the final set requires the comparison of 𝑘 conditions with a number of |G|
subgroups that comprise the final set. Hence, we have a complexity of 𝒪(𝑘 · |G|).

Hence, a single iteration of the algorithm takes 𝒪(|I|) +𝒪(𝑛𝐴𝑛𝑡𝑠 · [𝑘 · |I|+ 𝑘3 · |Ω|]) +

𝒪(𝑘 · |G|), which collapses to 𝒪(𝑛𝐴𝑛𝑡𝑠 · [𝑘 · |I|+ 𝑘3 · |Ω|] + 𝑘 · |G|).

Finally, to derive the computational complexity for the whole algorithm execution, we have
to multiply 𝒪(𝑛𝐴𝑛𝑡𝑠 · [𝑘 · |I|+𝑘3 · |Ω|]+𝑘 · |G|) by 𝑧 – the total number of discovered subgroups
(note that this number is not necessarily equal to the number |G| ≤ 𝑧 of subgroups currently
in G). Then, we add the computational complexity of the preprocessing step. Therefore, the
computational complexity of complete execution of the Esmam algorithm is

𝒪
(︁
𝑧 ·
[︁
𝑛𝐴𝑛𝑡𝑠 · (𝑘 · |I|+ 𝑘3 · |Ω|) + 𝑘 · |G|

]︁
+ |Ω| · |I|

)︁
It should be noted that this complexity depends very much on the values of the number 𝑘 of
conditions per description and the number 𝑧 of discovered subgroups, which are highly variable
for different data sets. Additionally, the size of the descriptive space I (hence the data set
dimensionality and feature’s complexity) and the volume of the data set have also a significant
impact on the algorithm performance.

When considering the worst-case scenario, the value of 𝑘 conditions per description equals
|𝐴|. Thus, since the Esmam copes only with categorical attributes, we can assume that each
attribute 𝐴 takes only a small number of values so that 𝒪(|I|) can be simplified to 𝒪(|𝐴|).
Hence, the formula for worst-case computational complexity is 𝒪(𝑧 · 𝑛𝐴𝑛𝑡𝑠 · |Ω| · |𝐴|3).

However, we emphasise that this worst-case scenario is unlikely to occur mainly for two
reasons. First, in the description pruning step, the factor 𝒪(𝑘3 · |Ω|) was derived considering
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that the pruning process can be repeated 𝑘 times for all descriptions, which – in practice – is
highly unlikely. Second, we considered all descriptions with length 𝑘 = |𝐴| for the worst-case
analysis, which is very unrealistic.

4.2 EXPERIMENTS

We conducted experiments to evaluate our approach based on supervised LPM to discover
and characterise subgroups of a population presenting unusual KM (survival) models. We aim
at providing simple characterisations capable of representing the majority of the individuals in
a population. Thus, we are interested in assessing whether the discovered subgroups represent
survival behaviours existent in the data.

We compare the Esmam algorithm with the LR-Rules (WRÓBEL; GUDYŚ; SIKORA, 2017)
(revised in Section 3.1), which is a greedy sequential covering algorithm for inducing rules by
maximising the difference between the KM models of the rule coverage and its complement.
Although it provides a global predictive model, its authors also suggested its application for
finding descriptions associated with survival response. To the best of our knowledge, this is the
only available computational tool to provide survival behaviour characterisation by inducing
patterns directly from the survival data and based on a survival (model) response.

We assess the performance of our ACO-based approach against the LR-Rules greedy search
regarding the descriptive aspect of the results and the quality of the discovered survival models.
To evaluate the descriptive aspect of our findings, we assess the interpretability of the (sets
of) subgroups’ description and the representativeness of their coverages (CARVALHO; PEREIRA;

CARDOSO, 2019). Table 3 describes all metrics used in the experiments.
To assess interpretability, i.e. how well humans understand the results provided, we employ

two traditional metrics of rule-based approaches: the (average) length of the descriptions
(𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 ); and the number of discovered subgroups (#𝑠𝑔). The rationale is that smaller
descriptions (i.e. less conjunctive conditions) are easier to understand. Thus, a smaller number
of patterns (subgroups) provides information more comprehensible and actionable. To assess
the representativeness of the findings, i.e. the extent of instances covered by the patterns,
we assess the average (percentage) subgroup coverage (𝑠𝑔𝐶𝑜𝑣) and the data set coverage
(𝑑𝑏𝐶𝑜𝑣). As previously introduced, we aim to provide subgroups as large as possible (w.r.t.
their coverages) and, thus, a set of subgroups that encompass as many individuals in the data
set as possible. At last, to evaluate the quality of the discovered (exceptional) survival models,
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Table 3 – Method Esmam – Empirical evaluation metrics

Metrics Description Definition

Interpretability

#sg Number of discovered subgroups |G|

𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 Average subgroup description length ∑︀
𝐺∈G

𝑙𝑒𝑛𝑔𝑡ℎ(𝐺)
|G|

Representativeness

sgCov Average (percentage) subgroup coverage |Ω|−1 · ∑︀
𝐺∈G

|𝑐𝑜𝑣(𝐺)|
|G|

dbCov Data set coverage |Ω|−1 · | ⋃︀
𝐺∈G

𝑐𝑜𝑣(𝐺)|

Model Quality

𝐼𝐵𝑆G IBS over a set of subgroups 𝐼𝐵𝑆G = ∑︀
𝐺∈G

𝐼𝐵𝑆𝐺

Font: The author (2021)

we assess the integrated Brier score (IBS), which is a measure of the error between the KM
estimated survival model 𝑆(𝑡) and the cohort’s real survival experience.

The Brier score (BS) (GRAF et al., 1999) measures the square difference between an
observation’s survival status 𝛿 and its estimated survival probability 𝑆(𝑡), in a given time
𝑇 * ∈ 𝑇 . The BS value for an observation 𝑜 (incorporating censoring) is given by Equation 4.5,
where 𝐶(𝑡) is the KM estimate of the censoring distribution, obtained from estimating the
survival function for 𝛿 = (1 − 𝛿). The IBS, given by Equation 4.6, is the score integrated
over all survival times 𝑇 and for 𝑛 observations. The 𝐼𝐵𝑆𝐺 associated to a subgroup 𝐺 is
calculated considering all 𝑛 = |𝑐𝑜𝑣(𝐺)| individuals comprising the subgroup. Hence, the 𝐼𝐵𝑆G

calculated over a set of subgroups G is the sum of 𝐼𝐵𝑆𝐺 for all 𝐺 ∈ G.

𝐵𝑆𝑜(𝑇 *) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
𝐶(𝑇𝑜) (0− 𝑆(𝑇 *))2 if 𝑇𝑜 ≤ 𝑇 *, 𝛿𝑜 = 1

1
𝐶(𝑇 *) (1− 𝑆(𝑇 *))2 if 𝑇𝑜 > 𝑇 *

0 otherwise

(4.5)

𝐼𝐵𝑆 = 1
𝑚𝑎𝑥(𝑇 )

∫︁ 𝑚𝑎𝑥(𝑇 )

0

(︃
1
𝑛

𝑛∑︁
𝑖=1

𝐵𝑆𝑜(𝑇 *)
)︃

𝑑𝑇 * (4.6)

Next, we describe the process of empirical evaluation and analyse the results. Some contents
– like the algorithm implementation, the data sets used in the experiments, configurations and
results are available on Esmam repository.

https://github.com/jbmattos/ESM-AM_bracis2020 
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4.2.1 Data sets and Experimental setup

We conduct experiments with 14 real-world survival data sets from the medical domain.
These data sets were used as benchmark data in many survival analysis studies. Besides being
frequently used as benchmark data, they are also of particular interest for us since we believe
that one of the most suitable applications for our method is in the medical domain. In this
case, we can also observe the behaviour of our approach in this domain. Table 4 contains the
list of these data sets together with a brief characterisation.

The patterns we analyse are searched in the space of the domains of attributes 𝐴𝑖 (i.e. the
set of items I). Then, the survival behaviour is analysed through the deviation of the target
concept over the target features 𝑇, 𝛿. As the Esmam algorithm is not adapted to process
high-dimensional data, we selected data sets of low dimensionality. All numerical descriptive
attributes were discretised with K-Means into five interval categories. Pre-processing of the
data was employed to remove observations containing missing values (and features with a high
level of missing data).

In Table 5, we provide the configuration of the algorithms compared. For the choice
of Esmam parameters, we assumed the ACO framework setup defined by the authors in

Table 4 – Data sets – Characteristics of 14 survival data sets used in the experimental study: the number of
observations (|Ω|), the number of descriptive attributes (|𝐴𝑖|), the number of descriptive attributes
𝐴𝑖 that were discretised (|𝐴𝑑

𝑖 |), the number of items in the data set (|I|), the proportion of censored
observations (%𝑐𝑒𝑛𝑠), the Subject of Research, and the survival event description (𝐸𝑣𝑒𝑛𝑡)

data set (Ω) |Ω| |𝐴𝑖| |𝐴𝑑
𝑖 | |I| %cens Subject of research Event

actg320 1151 11 3 39 91.66 HIV-infected patients AIDS death/diagnosis
breast-cancer 196 80 78 269 73.98 Node-Negative breast cancer distant metastasis
cancer 168 7 5 29 27.98 Advanced lung cancer death
carcinoma 193 8 1 28 27.46 Carcinoma of the oropharynx death
gbsg2 686 8 5 31 56.41 Breast cancer recurrence
lung 901 8 0 23 37.40 Early lung cancer death
melanoma 205 5 3 28 72.20 Malignant melanoma death
mgus 176 8 6 30 6.25 Monoclonal gammopathy death
mgus2 1338 7 5 23 29.90 Monoclonal gammopathy death
pbc 276 17 10 61 59.78 Primary biliary cirrhosis death
ptc 309 18 1 71 93.53 Papillary thyroid carcinoma recurrence/progression
uis 575 9 4 33 19.30 Drug addiction treatment return to drug use
veteran 137 6 3 23 6.57 Lung cancer death
whas500 500 14 6 46 57.00 Worcester Heart Attack death

Font: The author (2021)
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Table 5 – Method Esmam – Information on the algorithms compared in the empirical evaluation

Algorithm Search
Strategy

Target
Concept Baseline (ℬ) Source Parameter(Value)

Esmam ACO KM model Complement Esmam
repository

𝑚𝑎𝑥𝑈(0), 𝑚𝑎𝑥𝐼𝑡(3000), 𝑛𝐴𝑛𝑡𝑠(3000),
𝑚𝑖𝑛𝐶𝑜𝑣(10), 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔(10), 𝛼(0.05)

LR-Rules Sequential
covering

KM model Complement LR-Rules
repository

–

Font: The author (2021)

(PARPINELLI; LOPES; FREITAS, 2002) as a robust configuration to provide satisfactory results
regarding the optimisation task and descriptive aspects of the findings. We, however, force
the complete representation of the data set – i.e. we set the number of maximum uncovered
observations allowed to zero – so the results could be comparable with the LR-Rules. For the
LR-Rules algorithm, we adopted the default parameters defined in the available implementation.

The experimental procedure presented in this section is conducted by running both the
Esmam and the LR-Rules once on each of the 14 data sets already introduced. Then, statistical
analysis of the results was performed by the Wilcoxon signed ranks test, using a significance
level of 5%. We employ the test to assess whether or not the two compared approaches present
statistically similar performances (null hypothesis) regarding the proposed metrics. We consider
both the interpretability and the model quality minimisation metrics. For the representativeness
measures, we consider maximisation. Additionally, we also analyse some individual discovered
subgroups to evaluate whether our EMM approach can discover interesting survival patterns
and retrieve essential characteristics from the data. Next, we present and analyse the results
we achieved.

4.2.2 Results analysis

The results for both Esmam and LR-Rules algorithms on each data set are presented in
Table 6. The Esmam algorithm returned sets of subgroups with, on average, 9.43 descriptions
of (average) length 1.52 (condition), compared to the LR-Rules’ average of 8.93 discovered
subgroups of length 1.63. We notice then that Esmam was able of generating compact results
concerning both the size of the subgroup set (number of returned patterns) and the length of
the subgroups’ descriptions. The coverage of Esmam subgroups was, on average, 25% of the
total cases in the data sets, comprising patterns that neither cover the majority of the cases

https://github.com/jbmattos/ESM-AM_bracis2020 
https://github.com/adaa-polsl/LR-Rules/releases
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Table 6 – Method Esmam – Evaluation metrics computed over the results provided by the Esmam and LR-
Rules algorithms: the number of discovered subgroups (#𝑠𝑔), the average subgroup description
length (𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 ), the average (percentage) subgroup coverage (cov±std, 𝑠𝑔𝐶𝑜𝑣), the data set
coverage(𝑑𝑏𝐶𝑜𝑣), and integrated Brier score on the rule set (𝐼𝐵𝑆G). Bold values represent the best
results.

Metrics #𝑠𝑔 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 𝑠𝑔𝐶𝑜𝑣 𝑑𝑏𝐶𝑜𝑣 𝐼𝐵𝑆G

Algorithms Esmam LR-Rules Esmam LR-Rules Esmam LR-Rules Esmam LR-Rules Esmam LR-Rules
actg320 9 15 2.22 3.73 0.26 ± 0.16 0.15 ± 0.16 1.00 1.00 0.43 0.45
breast-cancer 11 19 1.18 1.95 0.24 ± 0.15 0.17 ± 0.10 0.94 0.98 0.01 0.01
cancer 11 9 2.00 1.78 0.17 ± 0.16 0.25 ± 0.16 0.74 1.00 0.08 0.07
carcinoma 10 3 1.80 1.00 0.27 ± 0.20 0.33 ± 0.30 0.99 0.99 0.06 0.02
gbsg2 14 10 1.79 2.30 0.19 ± 0.24 0.22 ± 0.23 1.00 1.00 0.13 0.11
lung 9 7 1.00 1.14 0.35 ± 0.13 0.35 ± 0.14 1.00 1.00 0.12 0.09
melanoma 6 2 1.00 1.00 0.39 ± 0.17 0.50 ± 0.06 1.00 1.00 0.02 0.01
mgus 13 11 1.62 1.73 0.11 ± 0.08 0.18 ± 0.11 0.71 1.00 0.01 0.01
mgus2 6 18 1.17 1.50 0.18 ± 0.09 0.17 ± 0.09 0.70 1.00 0.38 1.25
pbc 11 3 1.36 1.00 0.20 ± 0.28 0.59 ± 0.37 1.00 1.00 0.03 0.02
ptc 4 2 1.50 1.00 0.30 ± 0.36 0.50 ± 0.42 1.00 1.00 0.33 0.08
uis 15 13 2.00 2.08 0.23 ± 0.18 0.22 ± 0.17 0.99 1.00 0.36 0.27
veteran 10 11 1.60 1.55 0.18 ± 0.08 0.18 ± 0.08 0.84 1.00 0.16 0.09
whas500 3 2 1.00 1.00 0.38 ± 0.23 0.50 ± 0.19 1.00 1.00 0.04 0.03

Figure 2 – Method Esmam – Boxplots of the Esmam and LR-Rules algorithms results for: (a) the number of
discovered subgroups; (b) the average description length; and (c) the average (percentage) subgroup
coverage.
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nor very small groups.
Figure 2 shows the boxplots of the performance of both algorithms with relation to the

#𝑠𝑔, 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 and 𝑠𝑔𝐶𝑜𝑣 metrics. We notice that comparing to LR-Rules, Esmam results
presented smaller variability. When evaluating the coverage of the data set (dbCov), Esmam
showed greater variability, presenting in some cases, a higher percentage of observations that
remained not covered by any subgroup. For the 𝐼𝐵𝑆G results, Esmam algorithm presented an
average of 0.15 comparing to 0.18 presented by LR-Rules. One could understand the 𝐼𝐵𝑆G as
a measure of the quadratic error between the survival estimates of the observations covered
by a subgroup and their true survival status. Therefore, we notice that the Esmam algorithm
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was able to discover more homogeneous subgroups concerning survival response. Finally, for a
level of significance of 5%, the Wilcoxon test showed statistically significant difference between
Esmam and LR-Rules performances only in terms of the dbCov criterion (p-value = 0.036).

Besides, to evaluate Esmam final models in terms of the subgroups discovered by our EMM
framework, we assess whether the induced subgroups present statistically significant survival
models. Figure 3 presents the KM curves for the subgroup set discovered for ptc and whas500

data sets. The plots additionally include the cohort’s KM model, given by the Pop. curve. It is
possible to observe the significant difference between the survival curve of the study cohort in
comparison to the curves induced over the subgroups discovered by Esmam, indicating that the
algorithm is able to identify local patterns with significant distinct survival response. In a more
detailed analysis of the individual discovered patterns, we found that the algorithm was able to
retrieve information on attributes that stratify the data into different survival experiences.

In the actg320 data set, the strat2 variable represents the counting of cells with expression
of the CD4 protein, dividing the observations into low/high (𝑠𝑡𝑟𝑎𝑡2 = 0 /𝑠𝑡𝑟𝑎𝑡2 = 1) counting
– where a low counting imply a higher risk for the patient. Among the nine resultant subgroups
induced on this data set, the algorithm recovered such information presenting the following
two subgroup descriptions: G7: {𝑠𝑡𝑟𝑎𝑡2 = 0} and G8: {𝑠𝑡𝑟𝑎𝑡2 = 1}. Figure 4a presents the
KM plot of both subgroups reflecting the expected survival behaviour.

In the lung data set, the 𝑠𝑡𝑎𝑔𝑒1 = {1, 2, 3} variable reflects the overall stage of lung
cancer, for 𝑠𝑡𝑎𝑔𝑒1 = 1 earlier than 𝑠𝑡𝑎𝑔𝑒1 = 3. For the set discovered on this data set,
the Esmam algorithm returned also nine subgroups, two of them: G2 : {𝑠𝑡𝑎𝑔𝑒1 = 3} and
G6 : {𝑠𝑡𝑎𝑔𝑒1 = 1}. Figure 4b presents the KM curves for both rules, showing that the

Figure 3 – Method Esmam – Analysis of the discovered subgroups for (a) ptc, and (b) whas500 data sets. The
Pop. curves represent the KM estimates on the entire cohort.
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Figure 4 – Method Esmam – Analysis of individual subgroups induced for the following data sets: (a) actg320,
(b) lung, and (c) whas500 ; the Pop. curves represent the KM estimates of the study cohort
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survivability is better for early lung cancer stage.
In the whas500 data set, the chf variable stands for congestive heart complications,

dividing the observations into a group of patients that present complications and the ones
that do not. The Esmam algorithm returned a set comprising three subgroups, two of them:
G1 : {𝑐ℎ𝑓 = 𝑇𝑟𝑢𝑒} and G2 : {𝑐ℎ𝑓 = 𝐹𝑎𝑙𝑠𝑒}. Figure 4c present the plot of both rules,
showing that the presence of heart complications decreases the chances of survival.

4.3 DISCUSSIONS AND LIMITATIONS

In this chapter, we introduced our approach to discovering subgroups with unusual sur-
vival behaviour based on supervised descriptive pattern mining, in contrast to the predictive
approaches existent in literature. We presented the Esmam (Exceptional Survival Model Ant
Miner) algorithm, an EMM framework that uses ACO meta-heuristic for the subgroup search
process. The algorithm returns a set of descriptions comprising subgroups presenting statistically
unusual KM (survival) models compared to their complement on the data set. This proposed
algorithm is the first approach for the EMM task to explore a bio-inspired meta-heuristic as
the search strategy.

We evaluated our proposal by assessing its capability to return simple and representative
descriptive findings and discover interesting patterns. Therefore, we tested our ACO-based
approach to the discovery of local survival exceptionalities on 14 data sets. The performance of
Esmam was evaluated in comparison to the LR-Rules algorithm – a greedy covering rule induction
algorithm for survival data analysis. Our approach achieved competitive results concerning the
simplicity of the final set of characterisations and the generality of the discovered patterns,
performing similarly to LR-Rules with relation to the number of discovered subgroups, length
of the induced descriptions, and subgroups’ coverage. The only statistical difference observed
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between the performance of both algorithms was in the data set coverage. While the LR-Rules
induces the full coverage of the data set, the Esmam algorithm presented higher percentages of
data observations unrepresented by any discovered subgroup. When analysing the quality of the
discovered survival patterns, the Esmam algorithm delivered survival models as accurate as the
ones delivered by the LR-Rules predictive approach. The low 𝐼𝐵𝑆G also indicates that the rules
discovered by the Esmam comprise homogeneous subgroups with respect to survival response.
When assessing the algorithm’s capability of discovering unusual local survival behaviour, we
notice that the Esmam was able to discover (statistically) significant subgroups and identify
data characteristics that interfere with survival experience.

This approach, however, presents many limitations. First is the heuristic information that is
constant throughout the algorithm execution. The constant heuristic adopted allocates the
colonies always at the same initial place in the solution space, lacking potential exploration.
Second, the subgroups in the final set are only restricted to the uniqueness of their descriptions
(Algorithm 2, line 20). In other words, the only condition to accept a discovered subgroup as a
final solution is that it has not already been accepted as so. Those two limitations together
contribute to the problem of redundancy. By starting the search (always) with the same
probability distribution, the Esmam algorithm potentially explores the proximity of the same
regions of the search space. Thus, as revised in Section 2.3, pattern refinements comprise close
locations of the search space and present close quality. Hence, the Esmam search is potentially
confined among refinements. In most of the results achieved by the Esmam algorithm, we
observed that it returns a variety of subgroups that are exceptional w.r.t. the defined baseline
but which are, actually, many refinements of a more general subgroup. Consequently, the final
set of discovered subgroups lacks diversity and comprises the characterisation of only a few
interesting behaviours. Lastly (for now), the approach restricts the subgroup’s exceptionality
to the comparison with its complement. As already discussed, this implies searching for a
dichotomy rather than a norm deviation. Although both tasks yield great applicability, they
pose two different analyses with potentially different results. Essentially, the EMM task is
concerned with deviations from a norm, and so are we addressing the discovery of survival
behaviours that are unusual – unexpected with respect to an (expected) known behaviour.

In the next chapter, we address those issues by proposing a new EMM method for finding
diverse subgroups with unusual survival behaviour.
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5 ESMAMDS: A MORE DIVERSE SEARCH

In this chapter, we describe the Exceptional Survival Model Ant-Miner Diverse Search
(EsmamDS). This EMM framework extends the work presented in Chapter 4 to provide a
set of more diverse subgroups. This method tackles redundancy in three different dimensions:
description, coverage, and survival model. Such problem is addressed on two fronts: (i) by
enhancing the exploration power of the search through a new design of the ACO heuristic
information function; and (ii) by minimising the redundancy in the final set of discovered
subgroups with a new subgroup selection method. The EsmamDS also allows the user to
choose between complement or population to compare subgroups with. Thus, we explore the
description language structure to increase the generality and expressivity of the final set of
patterns. The work presented in this chapter was previously introduced in (MATTOS; NETO;

VIMIEIRO, 2021).

5.1 FRAMEWORK

The EsmamDS framework employs the Kaplan-Meier Estimates as the target model and
the quality measure based on the logrank defined in Equation 2.2 to mine subgroups with
exceptional survival model. It provides the choice of the baseline model to compare subgroups
with as a user-defined parameter. The framework’s pseudocode is provided in Algorithm 3.

Analogously to the Esmam framework presented in Chapter 4, the EsmamDS algorithm is
initialised with an empty set of discovered subgroups G, an empty subgroup 𝐺∅ = (𝐷∅, Ω),
and an initial set of uncovered observations U containing all individuals in the data set. Then,
following a covering-based approach (lines 4-12), it iteratively searches for subgroups (given a
baseline ℬ) until all observations in Ω are covered by G at least once, or until the algorithm
achieves a maximum stagnation threshold 𝑚𝑎𝑥𝑆𝑡𝑎𝑔 (a number of consecutive iterations with
no change in U). In each iteration, a new colony of ants is responsible for discovering a single
subgroup.

Thus, the EsmamDS framework consists of three major steps: (i) the initialisation of the
probabilistic elements of the ACO search (line 5); (ii) the subgroup search, which returns the
best subgroup 𝐺 discovered by a complete colony of ants (line 6); and (iii) the update of the
final subgroup set G considering the discovered subgroup 𝐺 (line 7). We now discuss each of
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Algorithm 3: EsmamDS Framework
Input: ℬ – baseline for subgroup comparison,
𝛼 – level of significance, 𝑚𝑎𝑥𝑆𝑡𝑎𝑔 – maximum stagnation of the algorithm,
℘𝑆 = {𝑛𝐴𝑛𝑡𝑠, 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔, 𝑚𝑖𝑛𝐶𝑜𝑣} – hyperparameters of the subgroup search,
℘𝐷𝑆 = {𝐿, 𝑊} – hyperparameters of the diverse search
Output: G – set of exceptional subgroups
Data: Ω – survival data set

1 G← ∅; 𝐺← ∅
2 U← Ω, Δ𝑈 ← 0
3 𝑠𝑡𝑎𝑔 ← 0
4 while U ̸= ∅ and 𝑠𝑡𝑎𝑔 ≤ 𝑚𝑎𝑥𝑆𝑡𝑎𝑔 do
5 searchInitialisation(𝐺,G,U, ℘𝐷𝑆)
6 𝐺← subgroupSearch(℘𝑆)
7 G← subgroupSetUpdating(𝐺,G)
8 Δ𝑈 ← |U| − |⋃︀𝐺𝑘∈G 𝑐𝑜𝑣(𝐺𝑘)|
9 U← ⋃︀

𝑐𝑜𝑣(𝐺𝑘)
10 if Δ𝑈 = 0 then
11 𝑠𝑡𝑎𝑔 ← 𝑠𝑡𝑎𝑔 + 1
12 else: 𝑠𝑡𝑎𝑔 ← 0
13 return: G

these steps in detail.

5.1.1 Search Initialisation

The searchInitialisation function is responsible for the initialisation of the pheromone
values 𝜏 and heuristic values 𝜂 associated with each item 𝐼𝑖𝑗 ∈ I.

By the ACO design, the pheromone trails are initialised with the same amount of pheromone,
i.e. with an equal probability of being chosen. We follow our definition for the Esmam initialisation
in Chapter 4 and define the initial configuration of the pheromone values as 𝜏0(𝐼𝑖𝑗) = |I|−1.
Once the probabilistic choice of solution components is defined by both pheromone and heuristic
values, and given that all pheromone values are equal at the beginning of each colony, we have
that the heuristic information associated with the items define the initial probability distribution
of the search space.

In the method presented in Chapter 4, we proposed an entropy-based heuristic information
computed always over the same partition of the observations (comprising the entire data
set), what results in constant heuristic values. In contrast to such static heuristic information,
here, we initialise each colony with a different (initial) probabilistic distribution by proposing a
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dynamic function that depends on the state of the algorithm.
In other words, 𝜂 is a function of the subgroup 𝐺 discovered in a given algorithm iteration

(𝑖𝑡), the set G of subgroups currently selected in such iteration, and the current set U of
individuals not covered by such G. We use 𝜂𝑖𝑡(𝐼𝑖𝑗) to refer to the heuristic value associated
with the item 𝐼𝑖𝑗 in a given algorithm iteration 𝑖𝑡 (one algorithm iteration is the while loop in
Algorithm 3, lines 4-12). Note that the heuristic function 𝜂 and the pheromone trails 𝜏 follow
different dynamics: the former is constant throughout an iteration 𝑖𝑡 while the latter varies
within each colony (Algorithm 3, line 6).

We define the (dynamic) heuristic information function 𝜂𝑖𝑡 : I→ [0, 1], 𝜂𝑖𝑡(𝐼𝑖𝑗) = 𝜂𝐻(𝐼𝑖𝑗) ·

𝜂𝐿(𝐼𝑖𝑗) · 𝜂𝑊 (𝐼𝑖𝑗) in terms of three components. Analogously to the heuristic presented in
Chapter 4, we use information theory to provide a problem-dependent quantification of the
relevance associated with the items in the search space (𝜂𝐻). In addition, we propose to use
information from both the descriptions (𝜂𝐿) and coverages (𝜂𝑊 ) of the discovered subgroups
to improve search exploration.

The entropy-based component 𝜂𝐻 provides a quantification of the discriminative power of
the items regarding survivability, and it is defined in Equation 5.1 as

𝜂𝐻(𝐼𝑖𝑗) = log2 𝑘 −𝐻(𝑊 |𝐼𝑖𝑗)∑︀
𝐼𝑖𝑗∈I

log2 𝑘 −𝐻(𝑊 |𝐼𝑖𝑗)
(5.1)

where 𝐻(𝑊 |𝐼𝑖𝑗) = −∑︀𝑘
𝑤=1 𝑃 (𝑤|𝐼𝑖𝑗) · log2 𝑃 (𝑤|𝐼𝑖𝑗) is the Shannon’s entropy. Note that this

is the same definition of the Esmam heuristic information provided in Section 4.1 (Eq. 4.2).
However, instead of computing such measure always considering the entire data set, here,
in each new algorithm iteration (for each new colony), we consider only the individuals not
covered by the current G. Hence, each new colony is initialised with a different probabilistic
distribution dependent on the current set of discovered subgroups. This way, we prioritise
the survival experience of individuals that are not yet represented in our findings. Hence, we
consider an initial partition of the individuals in U as those with survival time at least as long
as the average survival time in U, and those with shorter survival time. The more uniformly
distributed an item is across those two survival groups (i.e. if it does not discriminate between
the considered survival partition), the smaller is its heuristic quantification. By contrast, 𝜂𝐻(𝐼𝑖𝑗)

assumes maximum value when the item is entirely associated with a single survival group.
The second component, the descriptive attenuation 𝜂𝐿, uses the descriptive itemset ℐ(𝐺)

of all discovered subgroups 𝐺 to guide the search towards unvisited (or more rarely visited)
items in the search space. The rationale is that more discriminative items may bias the search,
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and, thus, we should penalise them somehow to promote diversity. Such a penalisation is based
on the logistic function as presented in Equation 5.2,

𝜂𝐿(𝐼𝑖𝑗) = 1− 1
1 + 𝑒−(𝑐(𝐼𝑖𝑗)−𝐿) (5.2)

where 𝑐(𝐼𝑖𝑗) is the number of times 𝐼𝑖𝑗 was encompassed by the description of previously
discovered subgroups. The parameter 𝐿 adjusts the penalisation of an item regarding its usage,
defining the value of 𝑐(𝐼𝑖𝑗) for which the heuristic value 𝜂𝑖𝑗 decreases by half. Therefore, we
have that the more an item appears in the descriptions discovered by the subgroup search, the
smaller becomes its (a priori) probability of being explored by future ant colonies.

Lastly, the weighted covering component 𝜂𝑊 uses the subgroups in G to guide the search
towards items describing observations less represented in the final set. For that, we make use
of a score based on multiplicative weighted covering proposed by LEEUWEN; KNOBBE (2012),
and presented in Equation 5.3,

𝜂𝑊 (𝐼𝑖𝑗) = 1
|𝑐𝑜𝑣(𝐺𝐼𝑖𝑗

)|
∑︁

𝑜∈𝑐𝑜𝑣(𝐺𝐼𝑖𝑗
)
𝑊 𝑔(𝑜,G) (5.3)

where 𝐺𝐼𝑖𝑗
is the subgroup for which ℐ(𝐺𝐼𝑖𝑗

) = {𝐼𝑖𝑗}, 𝑔(𝑜,G) = |{𝐺 ∈ G|𝑜 ∈ 𝐺}| is the
number of subgroups in G that contain an observation 𝑜, and 𝑊 ∈ (0, 1] is the weight
parameter. Hence, the less often the observations described by 𝐼𝑖𝑗 are covered by subgroups in
G, the more likely it is for the item to be visited in future iterations of the algorithm.

It is important to notice that 𝜂𝐿 takes into consideration the descriptions of all subgroups
already discovered by the algorithm – whether or not they are included in G. On the other
hand, 𝜂𝑊 only considers the coverage of the subgroups currently in G.

Finally, each new colony (in each new algorithm iteration) is initially allocated in a different
region of the search space (a different a priori probabilistic distribution) given the heuristic
information that considers the search experience (the optimum solution) of the past ant
colonies.

5.1.2 Subgroup Search

In the EsmamDS framework (Algorithm 3), once the pheromone and heuristic values are
initialised (line 5), the subgroupSearch function implements the ACO search and returns a
single subgroup (line 6). It is similar to the search implemented by the Esmam (Algorithm 2,
lines 6-18). The pseudocode of the function is presented in the Algorithm 4.
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Algorithm 4: EsmamDS: Subgroup Search
Input: 𝑛𝐴𝑛𝑡𝑠 – size of the ant colony,
𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔 – number of similar patters for convergence,
𝑚𝑖𝑛𝐶𝑜𝑣 – minimum subgroup coverage
Output: 𝐺𝑏𝑒𝑠𝑡 – discovered subgroup

1 Function subgroupSearch(𝑛𝐴𝑛𝑡𝑠, 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔, 𝑚𝑖𝑛𝐶𝑜𝑣):
2 𝑎𝑛𝑡← 0; 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 ← 0
3 𝐺− ← 𝐺∅; 𝐺𝑏𝑒𝑠𝑡 ← 𝐺∅
4 while 𝑡 ≤ 𝑛𝐴𝑛𝑡𝑠 or 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 ≤ 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔 do
5 𝐷 ← buildDescription(Ω, 𝑚𝑖𝑛𝐶𝑜𝑣)
6 𝐷 ← pruneDescription(𝐷)
7 pheromoneUpdating(ℐ(𝐺𝐷))
8 if 𝜑(𝐺𝐷) > 𝜑(𝐺𝑏𝑒𝑠𝑡) then
9 𝐺𝑏𝑒𝑠𝑡 ← 𝐺𝐷

10 if ℐ(𝐺𝐷) = ℐ(𝐺−) then
11 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 + 1
12 else: 𝑐𝑜𝑛𝑣𝑒𝑟𝑔 ← 0
13 𝐺− ← 𝐺𝐷

14 𝑡← 𝑡 + 1
15 return: 𝐺𝑏𝑒𝑠𝑡

In the subgroup search, each 𝑎𝑛𝑡 in a colony of 𝑛𝐴𝑛𝑡𝑠 ants delivers (builds and prunes) a
complete description 𝐷 (lines 5-6), which is used to update the pheromone trail for the next ant
iteration (line 7). This process is repeated for all ants in the colony or until the ants converge to
a solution (line 4), given a minimum threshold 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔 for identical1 sequential descriptions
(lines 10-12). The best subgroup 𝐺𝑏𝑒𝑠𝑡 (according to the quality measure 𝜑) discovered within
the colony is, then, returned. Having described the overall pipeline of the subgroup search
function, we proceed to detail its main procedures: the (stochastic) description construction,
the description pruning, and the pheromone updating.

The buildDescription (line 5) is a refinement function that starts from an empty
description 𝐷∅ and iteratively assembles conjunctive conditions 𝑐𝑜𝑛𝑑(𝐴𝑖) = 𝐴𝑖(𝑜) ∈ {𝑣𝑗} by
sorting items 𝐼𝑖𝑗 belonging to the observations covered by the current partial 𝐷, given the
probability distribution defined in Equation 5.4,

𝑃 (𝐼𝑖𝑗) = 𝑥𝑖 · 𝜂(𝐼𝑖𝑗) · 𝜏(𝐼𝑖𝑗)∑︀
𝐼𝑖𝑗

𝑥𝑖 · 𝜂(𝐼𝑖𝑗) · 𝜏(𝐼𝑖𝑗)
, for all 𝐼𝑖𝑗 ∈ 𝒞(𝐺𝐷) (5.4)

where 𝑥𝑖 = 1 if 𝐴𝑖 is not yet represented in the (partial) description 𝐷 being constructed,
and zero otherwise. This refinement process of iteratively sorting items stops when all 𝐴𝑖

1 Note that two subgroups 𝐺𝑎 and 𝐺𝑏 are considered identical if their descriptions impose exactly the same
constraints, i.e. if ℐ(𝐺𝑎) = ℐ(𝐺𝑏).
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are represented in 𝐷 or when a new condition results in a coverage size |𝑐𝑜𝑣(𝐷)| below a
minimum threshold 𝑚𝑖𝑛𝐶𝑜𝑣. Note that, similarly to the Esmam algorithm, the final constructed
description 𝐷 is a conjunction of conditions over singleton sets of 𝑑𝑜𝑚(𝐴𝑖).

After a complete description 𝐷 is constructed, the pruneDescription is a generalisation
function (line 6) that greedily removes conditions 𝑐𝑜𝑛𝑑(𝐴𝑖) from 𝐷, each time eliminating the
condition that leads to the largest improvement in the quality of the resultant subgroup. The
pruning stops when no conditions can be removed without decreasing the quality or when the
description already encompasses only a single condition.

Finally, the pheromoneUpdating function (line 7) computes the pheromone values for the
next ant iteration similarly to presented for the Esmam (Eq. 4.4). For the items represented
in the final description 𝐷, the pheromone is incremented proportionally to the subgroup’s
quality and, for the items not represented in 𝐷, the evaporation process is simulated by the
normalisation of 𝜏𝑎𝑛𝑡+1 values for all 𝐼𝑖𝑗 ∈ I. The rule for pheromone updating is given in
Equation 5.5

𝜏𝑎𝑛𝑡+1(𝐼𝑖𝑗) = 𝜏𝑎𝑛𝑡(𝐼𝑖𝑗) (1 + 𝜑(𝐺𝐷)) , for all 𝐼𝑖𝑗 ∈ ℐ(𝐺𝐷) (5.5)

5.1.3 Subgroup Set Updating

In each iteration of the EsmamDS (Algorithm 3), after a (new) subgroup 𝐺 is discovered
(line 6), the final set of subgroups G is updated considering the inclusion of such subgroup
(line 7). Hence, the subgroupSetUpdating method is a recursive function that adjusts the
subgroup set to (i) minimise both descriptive and model redundancies and (ii) maximise the
coverage of subgroups, i.e. improve their generalisation.

By allowing descriptions to constrain attributes on a set of values, generalisation may be
achieved by extending descriptions to subsume a set of subgroups. In other words, the structure
of our description language allows generalisation operations to take place between subgroups.
Hence, we first introduce two operations to provide a more general subgroup by combining two
subgroups’ descriptions: (i) the root operator, that provides a common generalisation between
two descriptions; and (ii) the merge operator, that unifies two different descriptions into a
more general one. Lets consider the three descriptions as follows:
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𝐷1 : 𝐴𝑖 ∈ {𝑣𝑖1} ∧ 𝐴𝑗 ∈ {𝑣𝑗1, 𝑣𝑗2}
𝐷2 : 𝐴𝑖 ∈ {𝑣𝑖1, 𝑣𝑖2} ∧ 𝐴𝑗 ∈ {𝑣𝑗2, 𝑣𝑗3}
𝐷3 : 𝐴𝑖 ∈ {𝑣𝑖3} ∧ 𝐴𝑘 ∈ {𝑣𝑘1}

Considering the pair (𝐷1, 𝐷2), the root operation yield a new description 𝐷𝑟 : 𝐴𝑖 ∈

{𝑣𝑖1} ∧ 𝐴𝑗 ∈ {𝑣𝑗2}. When employing the merge operation, we have the generalisation 𝐷𝑚 :

𝐴𝑖 ∈ {𝑣𝑖1, 𝑣𝑖2} ∧ 𝐴𝑗 ∈ {𝑣𝑗1, 𝑣𝑗2, 𝑣𝑗3}. Note, however, that the description 𝐷3 does not have
a root with neither 𝐷1 nor 𝐷2 because they do not present a common attribute constrain.
Additionally, it cannot be merged with either 𝐷1 or 𝐷2 because they constrain different
attributes.

Formally, we have that, given two subgroups 𝐺𝑎 and 𝐺𝑏:

• 𝑟𝑜𝑜𝑡(𝐺𝑎, 𝐺𝑏) = ℐ(𝐺𝑎) ∩ ℐ(𝐺𝑏) provided that the intersection exists; and

• 𝑚𝑒𝑟𝑔𝑒(𝐺𝑎, 𝐺𝑏) = ℐ(𝐺𝑎)∪ ℐ(𝐺𝑏) if and only if the attributes 𝐴𝑖 represented in both 𝐺𝑎

and 𝐺𝑏 descriptions are exactly the same.

Note that the root and the merge are generalisation operators that perform over two aspects
of a description: (i) the conjunctive conditions 𝑐𝑜𝑛𝑑(𝐴𝑖) = 𝐴𝑖 ∈ 𝒱𝑖; and (ii) the extent of
𝒱𝑖 constraints. Their difference is, hence, in the aspects they manipulate. The root operator
generalises a description manipulating both those aspects by eliminating conditions and altering
the sets of restricted domains. In contrast, the merge operator provides generalisation by
manipulating only the last aspect by enlarging the extent of the (already) restricted domains.

Additionally, we define that 𝐺𝑏 is-in 𝐺𝑎 if ℐ(𝐺𝑏) ⊆ ℐ(𝐺𝑎) given that the attributes 𝐴𝑖

represented in both their descriptions are exactly the same. For example, we have that a
subgroup described as 𝐷𝑖𝑛 = 𝐴𝑖 ∈ {𝑣𝑖1} ∧ 𝐴𝑗 ∈ {𝑣𝑗3} is-in the subgroup represented by
𝐷2. In case 𝐺𝑏 is-in 𝐺𝑎, we also have that 𝐺𝑏 is a specialisation of 𝐺𝑎. Note that while the
refinements are specialisations concerning the number of constraints 𝑐𝑜𝑛𝑑(𝐴𝑖) = 𝐴𝑖 ∈ 𝒱𝑖

(assuming no change in the domains already constrained in a more general description), the
is-in relation allows the identification of specialisations concerning the extent of the constrained
𝐴𝑖 domains – i.e. the extent of 𝒱𝑖. Hence, we assume that the two descriptions being compared
must constrain the same attributes but to different extents.

The pseudocode of the subgroupSetUpdating function is provided in Algorithm 5. It gives
the rules that determine which subgroups will constitute the current final set (remember that
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Algorithm 5: EsmamDS: Subgroup Set Updating
Input: 𝐺𝑛𝑒𝑤 – subgroup, G – set of subgroups
Output: G – set of exceptional subgroups

1 Function subgroupSetUpdating(𝐺𝑛𝑒𝑤,G, 𝛼):
2 if 𝜑(𝐺𝑛𝑒𝑤,ℬ) < 1− 𝛼: then
3 return: G
4 for 𝐺 ∈ G do
5 if 𝐺𝑛𝑒𝑤, 𝐺 have different models or strictly different attributes then
6 next
7 else
8 if 𝐺𝑛𝑒𝑤 is-in 𝐺: then
9 return: G

10 if 𝐺 is-in 𝐺𝑛𝑒𝑤 then
11 G′ ← subgroupSetUpdating(𝐺𝑛𝑒𝑤,G ∖𝐺, 𝛼)
12 if 𝐺𝑛𝑒𝑤 ∈ G′: return: G′

13 else: return: G
14 if not 𝑟𝑜𝑜𝑡(𝐺𝑛𝑒𝑤, 𝐺) nor 𝑚𝑒𝑟𝑔𝑒(𝐺𝑛𝑒𝑤, 𝐺) then
15 next
16 else
17 𝐺𝑟 ← 𝑟𝑜𝑜𝑡(𝐺𝑛𝑒𝑤, 𝐺)
18 𝐺𝑚 ← 𝑚𝑒𝑟𝑔𝑒(𝐺𝑛𝑒𝑤, 𝐺)
19 G′ ← subgroupSetUpdating(𝐺𝑟,G, 𝛼)
20 G′ ← subgroupSetUpdating(𝐺𝑚,G′, 𝛼)
21 if neither 𝐺𝑟, 𝐺𝑚 ∈ G′: next
22 if only 𝐺𝑟 ∈ G′ then
23 if (𝐺𝑟, 𝐺𝑛𝑒𝑤) models are different: next
24 else: return: G′

25 if only 𝐺𝑚 ∈ G′ then
26 if (𝐺𝑚, 𝐺𝑛𝑒𝑤) models are different: next
27 else: return: G′

28 if both 𝐺𝑟, 𝐺𝑚 ∈ G′ then
29 if 𝐺𝑛𝑒𝑤 model differs from both 𝐺𝑟, 𝐺𝑚: next
30 else: return: G′

31 return: G← G ∪ {𝐺𝑛𝑒𝑤}

this function will update the final set at each iteration of the algorithm, after the discovery of
a new subgroup (see Algorithm 3, line 7).

After a new candidate subgroup 𝐺𝑛𝑒𝑤 is returned by the subgroupSearch procedure, it is
added to the set G if it satisfies a lower quality bound for assuring exceptionality (line 2) and

if (for all subgroups 𝐺 ∈ G) (lines 4-6):
• 𝐺𝑛𝑒𝑤 and 𝐺 have statistically different survival models, i.e. if 𝑠𝑖𝑚𝑀(𝐺𝑛𝑒𝑤, 𝐺) = 0 (see
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Eq. 2.5); or

• 𝐺𝑛𝑒𝑤 represents only attributes 𝐴𝑖 not represented in 𝐺, i.e. their conjunctive conditions
𝑐𝑜𝑛𝑑(𝐴𝑖) restrict completely different attributes.

In other words, we immediately select the exceptional subgroups that present a previously
unobserved behaviour or a completely new characterisation (description).

The contrary case to directly incorporate 𝐺𝑛𝑒𝑤 to G (line 7) happens when a pair (𝐺𝑛𝑒𝑤, 𝐺),
for any 𝐺 ∈ G, present similar models and some resemblance in description. In other words,
such pair of subgroups potentially represent a common subset of the data (because their
descriptions are similar in some level) and, thus, they manifest similar behaviours. Note that
this configures redundancy, which we want to avoid. Hence, we further process those cases
presenting similarities in description and model to minimise redundancy and improve the
generalisation of the final patterns.

Finally, the subgroupSetUpdating function provided in Algorithm 5 implements the fol-
lowing pipeline. For each new subgroup 𝐺𝑛𝑒𝑤 under consideration, if it satisfies a lower quality
bound (lines 2-3), it will be compared to each subgroup 𝐺 ∈ G (line 4) to verify whether
it satisfies the two conditions given above (lines 5-6). For the (contrary) case, when both
description and model similarities exist between the pair (𝐺𝑛𝑒𝑤, 𝐺) (line 7), the following
procedure is implemented:

1. We first assess whether 𝐺𝑛𝑒𝑤 or 𝐺 are a specialisation of one another. For that, we use
the is-in relation to keep in G the more general subgroup among those two (lines 8-13).
Note that the function is recursively applied for replacing a subgroup in the final set for
a new one to guarantee its diversity inside the set.

2. Next, if neither one of the subgroups is a specialisation, we assess whether it is possible
to generalise both 𝐺𝑛𝑒𝑤 and 𝐺 into a more general pattern using the root and merge

generalisation operators (lines 14-15).
3. When a generalisation is possible (lines 16-30), we recursively update G considering the

𝐺𝑟 root generalisation and/or the 𝐺𝑚 merge generalisation. Here, we keep testing 𝐺𝑛𝑒𝑤

against the next 𝐺 ∈ G in two cases: (i) if neither generalisations can be added to G; or
(ii) if the model of 𝐺 is different from the model of the added generalisation(s). In the
first case, although (𝐺𝑛𝑒𝑤, 𝐺) present description and model similarities, they present
some differences that cannot be unified in a single pattern; hence, we choose to keep
such differences. In the second case, although generalisation considering both (𝐺𝑛𝑒𝑤, 𝐺)

is provided, 𝐺𝑛𝑒𝑤 now consists of a specification with a distinct behaviour; hence, we
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choose to keep the diversity of the model responses.
Having presented the EsmamDS algorithm, we describe the experiments we conducted to

evaluate our approach and the results we achieved.

5.1.4 Computational complexity

Having presented the EsmamDS algorithm provided in Algorithm 3, we analyse its computa-
tional complexity. A single iteration of the algorithm (lines 4-12) can be divided into three major
processes that we will analyse individually: (1) the computational complexity of the search
initialisation; (2) the complexity of the subgroup search, i.e. the complexity of the ant-colony
loop; and (3) the complexity of the method for updating the final set G of subgroups. Then,
we combine the results of these three processes to determine the computational complexity of
the algorithm execution. It is important to remember that the EsmamDS builds on the Esmam
algorithm introduced on Chapter 4. Hence, the complexity of similar methods already derived
for the Esmam analysis will only be referred to its complete explanation.

1. Search initialisation (line 5): Each algorithm iteration starts by computing the 𝜏 and 𝜂

values. The step of defining the values of all 𝜏0(𝐼𝑖𝑗) takes 𝒪(|I|). Differently from the
Esmam approach, here, 𝜂(𝐼𝑖𝑗) values are dynamic and need to be recomputed on each
new algorithm’s iteration. The EsmamDS heuristic information is a function of three
components that we analyse in the following:

• The component 𝜂𝐻 (Equation 5.1) can be computed in a single scan of the data
set. So, the time complexity of this step is 𝒪(|I| · |Ω|).

• The component 𝜂𝐿 (Equation 5.2) requires the scanning of 𝑘 conditions of the
latest discovered subgroup (description). Hence, the time complexity of this step is
𝒪(|I| · 𝑘).

• The component 𝜂𝑊 (Equation 5.3) requires scanning the data set and all subgroups
comprising the current set G. Thus, this step takes 𝒪(|I| · |Ω| · |G|).

Adding up the results derived for the three components above and the complexity for
initialising the pheromone values, we have that the computational complexity for the
search initialisation is 𝒪(|I| · [𝑘 + |Ω| · |G|+ |Ω|]).
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2. Subgroup search (Algorithm 3, line 6; Algorithm 4): The subgroup search of EsmamDS is
equivalent to the ant-colony loop introduced in Section 4.1. Each ant in a colony of (at
most) 𝑛𝐴𝑛𝑡𝑠 performs the major processes: (i) description construction; (ii) evaluation of
candidate descriptions; (iii) description pruning; and (iv) pheromone updating. Combining
the complexity of those four steps, we have that the execution of the whole colony loop
takes 𝒪(𝑛𝐴𝑛𝑡𝑠[𝑘 · |I|+ 𝑘3 · |Ω|]).

3. Subgroup set updating (Algorithm 3, line 7; Algorithm 5): The method to include a
newly discovered subgroup into the final set requires the comparison of k conditions with
a number of |G| subgroups. The method, however, is recursive. In the worst case, a new
subgroup 𝐺𝑛𝑒𝑤 is compared to all subgroups in G, yielding two different generalisations –
root and merge. Then, the method updates G testing the inclusion of both generalisations
provided, which may happen at most 2 · |G| times. Hence, the method for updating the
final set of subgroups takes 𝒪(2 · 𝑘 · |G|2).

Finally, to derive the computational complexity of complete algorithm execution, we have
to add the complexities of those three topics above and multiply it by the total number 𝑧 of
discovered subgroups. Therefore, the computational complexity of the EsmamDS algorithm is

𝒪
(︁
𝑧 ·
[︁
|I| · (𝑘 + |Ω| · |G|+ |Ω|) + 𝑛𝐴𝑛𝑡𝑠(𝑘 · |I|+ 𝑘3 · |Ω|) + 2 · 𝑘 · |G|2

]︁)︁
To simplify, we may consider that, in the worst-case scenario, the value of 𝑘 conditions per

description is equal to |𝐴|. Thus, we can replace |I| by |𝐴| if we consider that the categorical
attributes take only a small number of values. Hence, the formula for worst-case computational
complexity is

𝒪
(︁
𝑧 · |𝐴|

[︁
𝑛𝐴𝑛𝑡𝑠 · |Ω| · |𝐴|2 + |G|2

]︁)︁
When comparing to the Esmam approach presented in Chapter4, the diverse search of

EsmamDS adds complexity in the order of |𝐴| · |G|2. Hence, the size of the set of subgroups
has a greater impact on the time complexity of this version. Thus, the EsmamDS performance
depends significantly on the data set volume, dimensionality, and feature complexity.

5.2 EXPERIMENTS

We conducted experiments to evaluate our proposed approach for mining local patterns
associated with exceptional survival behaviours. In addition to provide comprehensible charac-
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terisation of subgroups presenting unusual KM models, we aim at providing a less redundant
and more expressive set of patterns than we achieved with the method proposed in Chapter 4.

We compare the EsmamDS algorithm with state of the art methods in the literature that
provide characterisation over unusual survival behaviour: (i) the Esmam algorithm, the ACO
heuristic approach to mine unusual survival models presented in Chapter 4 (which served as the
base for this approach); (ii) the beam-search heuristic for mining subgroups, considering either
a single target (SD) and a model target (EMM); (iii) the DSSD-CBSS algorithm (LEEUWEN;

KNOBBE, 2012), a beam-search approach to mine a diverse set of subgroups adapted to use a
similar target as ours; and (iv) the LR-Rules (WRÓBEL; GUDYŚ; SIKORA, 2017), a rule-based
covering algorithm for predicting survival response (although the ultimate goal of this method
is to build a predictive model, we decided to include it in our study as its authors also suggested
its application for finding descriptions).

Table 7 presents all metrics used in the results evaluation. We, once again, assess the
results with respect to their descriptive aspects using the metrics of interpretability and
representativeness introduced in Section 4.2. Additionally, we assess the findings concerning
two new aspects: exceptionality and redundancy.

The metric ℰ of exceptionality evaluates the unusualness of the survival models discovered
in a set of subgroups. For that, we assess the similarity between each subgroup to the baseline
model and provide the proportion of exceptional models in the discovered set. This metric
ranges from zero (no exceptional models in a set) to one (all discovered models are exceptional).
Redundancy is assessed – for descriptions (𝜌𝐷), coverage (𝜌𝐶), and survival models (𝜌𝑀) –
as the normalised sum of the similarity measures (𝑠𝑖𝑚𝐷, 𝑠𝑖𝑚𝐶 and 𝑠𝑖𝑚𝑀 , respectively) for
all (unordered) pairs of subgroups in the set. Note that the similarity metrics are comparisons
between pairs of subgroups (the baseline ℬ can be considered a subgroup to compare with).
By contrast, the metrics of exceptionality, interpretability, representativeness and redundancy
are global metrics for a set of subgroups.

Additionally, we also evaluate coverage redundancy using the CR measure (LEEUWEN;

KNOBBE, 2012). Such measure quantifies the extent of the deviation between the coverage of
the subgroups in a set G from a uniform (cover) distribution. Being 𝑔(𝑜,G) the number of
subgroups in G that cover an observation 𝑜, we have that the expected number of times for
a random observation to be covered is 𝑔 = |G|−1∑︀

𝑜∈Ω 𝑔(𝑜,G). Then, the CR is defined as
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Table 7 – Method EsmamDS – Empirical evaluation metrics

Metrics Description Definition
Interpretability
#sg Number of discovered

subgroups
|G|

𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 Average subgroup
description length

∑︀
𝐺∈G

𝑙𝑒𝑛𝑔𝑡ℎ(𝐺)
|G|

Representativeness

sgCov Average (percentage)
subgroup coverage

|Ω|−1 · ∑︀
𝐺∈G

|𝑐𝑜𝑣(𝐺)|
|G|

dbCov Data set coverage |Ω|−1 · | ⋃︀
𝐺∈G

𝑐𝑜𝑣(𝐺)|

Exceptionality

ℰ Proportion of
exceptional subgroups

∑︀
𝐺∈G

𝑠𝑖𝑚𝑀(𝐺,ℬ)
|G|

Similarity

𝑠𝑖𝑚𝐷 Description
similarity

𝑠𝑖𝑚𝐷(𝐺𝑎, 𝐺𝑏) = |ℐ(𝐺𝑎) ∩ ℐ(𝐺𝑏)|
𝑚𝑖𝑛(|ℐ(𝐺𝑎)|, |ℐ(𝐺𝑏)|)

(Eq. 2.3)

𝑠𝑖𝑚𝐶 Coverage
similarity

𝑠𝑖𝑚𝐶(𝐺𝑎, 𝐺𝑏) = |𝑐𝑜𝑣(𝐺𝑎) ∩ 𝑐𝑜𝑣(𝐺𝑏)|
𝑚𝑖𝑛(|𝑐𝑜𝑣(𝐺𝑎)|, |𝑐𝑜𝑣(𝐺𝑏)|)

(Eq. 2.4)

𝑠𝑖𝑚𝑀 Model
similarity

𝑠𝑖𝑚𝑀(𝐺𝑎, 𝐺𝑏) = 𝑝𝑣𝑎𝑙𝐺𝑎,𝐺𝑏
> 𝛼 (Eq. 2.5)

Redundancy

𝜌𝐷 Description
redundancy

𝜌𝐷 =
(︃
G
2

)︃−1 ∑︀
𝐺𝑎,𝐺𝑏∈G,𝐺𝑎 ̸=𝐺𝑏

𝑠𝑖𝑚𝐷(𝐺𝑎, 𝐺𝑏)

𝜌𝐶 Coverage
redundancy

𝜌𝐶 =
(︃
G
2

)︃−1 ∑︀
𝐺𝑎,𝐺𝑏∈G,𝐺𝑎 ̸=𝐺𝑏

𝑠𝑖𝑚𝐶(𝐺𝑎, 𝐺𝑏)

𝜌𝑀 Model
redundancy

𝜌𝑀 =
(︃
G
2

)︃−1 ∑︀
𝐺𝑎,𝐺𝑏∈G,𝐺𝑎 ̸=𝐺𝑏

𝑠𝑖𝑚𝑀(𝐺𝑎, 𝐺𝑏)

𝐶𝑅 Cover Redundancy Equation 5.6
Font: The author (2021)

presented in Equation 5.6.
𝐶𝑅 = 1

|Ω|
∑︁
𝑜∈Ω

|𝑔(𝑜,G)− 𝑔|
𝑔

(5.6)

High values of this measure indicate that the observations contained in the subgroups of G are
covered more than expected. In other words, a large number of subgroups in the set cover the
same observations. Hence, low values of CR indicate more diversity/less redundancy between
subgroups.
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Next, we describe the process of empirical evaluation and analyse the results. Some contents
like EsmamDS implementation, the data sets used in the tests, configurations and results are
available on EsmamDS repository.

5.2.1 Experimental Setup

We conduct experiments with 14 real-world survival data sets from the medical domain.
These data sets were previously presented in Subsection 4.2.1 and are described in Table 4. The
preprocessing of the data was employed to remove observations containing missing values (and
features with a high level of missing data). All numerical descriptive attributes were discretised
using equal-frequency discretisation into five interval categories.

We conducted experiments to assess the performance of the EsmamDS considering both
baselines ℬ for subgroup comparison – population and complement – and evaluated them
separately. In the empirical evaluation, we performed 30 executions for each data set due to its
stochastic nature. Throughout the analysis of the results, we identify an arbitrary experiment
execution 𝑛 with the identification ‘exp. n’ (that stands for experiment number 𝑛). The proper
configuration of the algorithm was defined with a randomised search considering the following
parameters’ values:

• 𝑛𝐴𝑛𝑡𝑠 = {100, 200, 500, 1000, 3000};
• 𝑚𝑖𝑛𝐶𝑜𝑣 = {0.01, 0.02, 0.05, 0.1};
• 𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔 = {5, 10, 30};
• 𝑚𝑎𝑥𝑆𝑡𝑎𝑔 = {20, 30, 40, 50};
• 𝐿 = {1, 3, 5, 10};
• 𝑊 = 0.9 (according to employed by LEEUWEN; KNOBBE (2012) in their cover-based

subgroup selection method);
• 𝛼 = 0.05

We sampled 10% of the total number of combinations and then executed the EsmamDS for
three data sets (namely: actg320, breast-cancer and ptc). The best configuration (for each
baseline) was chosen by ordering all configuration samples from the random search according
to their average performance for the following metrics’ order: 𝜌𝐷, 𝜌𝐶 , 𝐶𝑅, 𝜌𝑀 , 𝑠𝑔𝐶𝑜𝑣, 𝑑𝑏𝐶𝑜𝑣,
𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 and #𝑠𝑔.

For the configuration of the other approaches, for each data set and according to a baseline,
we used the results achieved by the EsmamDS in the empirical evaluation to adjust the following

https://github.com/jbmattos/EsmamDS
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three parameters:
• (𝑚𝑖𝑛𝐶𝑜𝑣) Minimum coverage: defined by the same parameter value chosen for the

EsmamDS;
• (𝑏𝑠) Beam-size (or maximum number of discovered subgroups): given by the average

number of subgroups discovered by the EsmamDS in the 30 experiments;
• (𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ) Rule-depth (or refinement/search depth): given by the average of the

the maximum description length achieved during the EsmamDS execution in the 30
experiments.

Table 8 displays the configuration for each baseline of all the algorithms compared. The
beam-search approaches were executed using the PySubgroup package (LEMMERICH; BECKER,
2018) given two types of targets: the survival time 𝑇 single numeric target and the KM model
target. For the beam-search approaches that consider single target, we employed a quality
measure given as 1−𝑝𝑣𝑎𝑙𝑇𝐺,ℬ

, being 𝑝𝑣𝑎𝑙𝑇𝐺,ℬ
the p-value of the bilateral t-Test for the survival

time for comparing a subgroup 𝐺 to the baseline ℬ. The DSSD-CBSS algorithm was executed
using Cortana with the quality measure defined as the t-Test. The remaining approaches employ

Table 8 – Method EsmamDS – Information on the algorithms compared in the empirical evaluation. The
𝑏𝑠, 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ parameters were configured for each data set as defined in the text. The remaining
user-defined configuration of the frameworks were kept as default. The specifics of all configurations
are provided here.

Algorithm Search
Strategy

Target
Concept Source Parameter(Value)

Po
pu

la
tio

n EsmamDS-pop ACO KM model EsmamDS
repository

𝛼(0.05), 𝑛𝐴𝑛𝑡𝑠(100), 𝑚𝑖𝑛𝐶𝑜𝑣(0.1),
𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔(5), 𝑚𝑎𝑥𝑆𝑡𝑎𝑔(40), 𝑊 (0.9), 𝐿(5)

Esmam-pop ACO KM model Esmam
repository

𝛼(0.05), 𝑛𝐴𝑛𝑡𝑠(100), 𝑚𝑖𝑛𝐶𝑜𝑣(0.1),
𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔(5), 𝑚𝑎𝑥𝑆𝑡𝑎𝑔(40)

BS-EMM-pop Beam
Search

KM model PySubgroup
package

𝑚𝑖𝑛𝐶𝑜𝑣(0.1), 𝑏𝑠, 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

BS-SD-pop Beam
Search

Survival time PySubgroup
package

𝑚𝑖𝑛𝐶𝑜𝑣(0.1), 𝑏𝑠, 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

DSSD-CBSS Beam
Search

Survival time Cortana package search strategy(Cover-based beam selection),
𝑚𝑖𝑛𝐶𝑜𝑣(0.1), 𝑏𝑠, 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ, 𝑡𝑖𝑚𝑒(∞)

C
om

pl
em

en
t

EsmamDS-cpm ACO KM model EsmamDS
repository

𝛼(0.05), 𝑛𝐴𝑛𝑡𝑠 (100), 𝑚𝑖𝑛𝐶𝑜𝑣(0.05),
𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔(5), 𝑚𝑎𝑥𝑆𝑡𝑎𝑔(40), 𝑊 (0.9), 𝐿(10)

Esmam-cpm ACO KM model Esmam
repository

𝛼(0.05), 𝑛𝐴𝑛𝑡𝑠(100), 𝑚𝑖𝑛𝐶𝑜𝑣(0.05),
𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑔(5), 𝑚𝑎𝑥𝑆𝑡𝑎𝑔(40)

BS-EMM-cpm Beam
Search

KM model PySubgroup
package

𝑚𝑖𝑛𝐶𝑜𝑣(0.05), 𝑏𝑠, 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

BS-SD-cpm Beam
Search

Survival time PySubgroup
package

𝑚𝑖𝑛𝐶𝑜𝑣(0.05), 𝑏𝑠, 𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ

LR-Rules Sequential
covering

KM model LR-Rules
repository

–

Font: The author (2021)

https://github.com/jbmattos/EsmamDS/blob/icde2022/experiments/_paramsConfig.csv
https://github.com/jbmattos
https://github.com/jbmattos/ESM-AM_bracis2020
https://github.com/flemmerich/pysubgroup
https://datamining.liacs.nl/cortana.html
https://github.com/adaa-polsl/LR-Rules/releases
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the measure defined in Equation 2.2.
Finally, statistical analysis of the results was performed by a (paired) Friedman test followed

by a Nemenyi posthoc test. We performed the Friedman test to compare whether or not the
compared approaches present statistically similar performances (null hypothesis) regarding the
proposed metrics. When Friedman’s null hypothesis is rejected, we proceed with the Nemenyi
test to validate which approaches stand out in their performances. We executed the tests
using EsmamDS (and Esmam) complete sample of 420 results for each metric (30 experiments
on 14 data sets). For the remaining deterministic algorithms, we paired the results for each
data set by repeating them 30 times. We consider both exceptionality and representativeness
maximisation metrics; for the others, we consider minimisation. Thus, we assessed the tests
using a level of significance of 5%.

5.2.2 Results Analysis

In this section, we present and analyse the results achieved by the algorithms. Table 9
contains the average performance for all evaluation metrics (except for the metrics of similarity
between pairs of subgroups, which will be approached later in this section). We performed the
Friedman test for interpretability, representativeness, and redundancy metrics. We rejected the
null hypothesis that the algorithms present similar performances for all tested metrics. Hence,
we employed the Nemenyi posthoc test for each metric to assess the differences between the
performances. The average rank used in the Nemenyi test for each metric is also provided in
the table. Tables presenting the performance of the compared approaches over each data set

Table 9 – Method EsmamDS – Evaluation metrics computed over the results provided by the compared
approaches: the metrics’ average over all data sets (Avg.); and the mean rank of the Nemenyi
post-hoc test computed for each metric (Rank). Bold values represent the best results.

Algorithms ℰ #𝑠𝑔 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 𝑠𝑔𝐶𝑜𝑣 𝑑𝑏𝐶𝑜𝑣 𝜌𝐷 𝜌𝐶 𝐶𝑅 𝜌𝑀

Avg. Avg. Rank Avg. Rank Avg. Rank Avg. Rank Avg. Rank Avg. Rank Avg. Rank Avg. Rank

Po
pu

la
tio

n EsmamDS-pop 1.00 5.05 2.28 1.52 1.93 0.28 1.37 0.87 1.14 0.03 1.23 0.23 1.25 0.31 1.09 0.26 1.22
Esmam-pop 1.00 7.31 3.51 1.46 1.74 0.21 2.33 0.64 2.25 0.17 2.11 0.39 2.39 0.51 2.39 0.56 2.40
BS-EMM-pop 1.00 5.50 3.07 2.22 3.57 0.16 4.12 0.33 4.14 0.54 3.86 0.67 4.07 0.70 4.27 0.84 3.91
BS-SD-pop 0.81 5.50 3.07 2.46 3.33 0.17 3.39 0.39 3.40 0.46 3.34 0.54 3.33 0.62 3.21 0.69 3.10
DSSD-CBSS 0.71 5.50 3.07 2.63 4.43 0.17 3.79 0.27 4.07 0.69 4.46 0.73 3.95 0.74 4.05 1.00 4.36

C
om

pl
em

en
t EsmamDS-cpm 1.00 5.36 2.31 1.22 1.78 0.34 1.57 0.98 2.13 0.02 1.54 0.33 2.33 0.29 1.78 0.24 1.84

Esmam-cpm 1.00 5.70 2.58 1.27 1.84 0.25 2.92 0.71 3.18 0.10 2.23 0.40 2.95 0.46 3.28 0.45 3.20
BS-EMM-cpm 1.00 6.00 3.10 2.16 3.98 0.19 4.08 0.50 4.00 0.51 4.37 0.67 4.30 0.63 4.05 0.66 4.19
BS-SD-cpm 0.82 6.00 3.10 2.56 4.29 0.18 3.93 0.50 4.10 0.41 4.07 0.49 3.50 0.59 3.90 0.52 3.35
LR-Rules 0.94 9.43 3.91 1.86 3.11 0.28 2.50 1.00 1.59 0.15 2.66 0.32 1.84 0.32 1.99 0.30 2.34

EsmamDS and Esmam results were averaged over 30 experiments for each data set.



85

are provided in the Appendix A. We now discuss each of these results in detail.
The ℰ metric of exceptionality reveals the unusualness of the survival behaviour associated

with the discovered subgroups. We inspected each subgroup to verify if its survival model is
exceptional (statistically different) compared to the survival model of the considered baseline.
We observe that the methods that employ the subgroup discovery approach rather than
exceptional model mining, namely BS-SD-pop, DSSD-CBSS and BS-SD-cpm, do not assure
the discovery of exceptional models. In addition, the predictive sequential covering LR-Rules
also delivers some subgroups that are not unusual.

To analyse such a result, confront the two tasks of Subgroup Discovery (SD) and Exceptional
Model Mining (EMM) by comparing two sets of discovered subgroups: one provided by the BS-
SD-pop algorithm performing the SD task, and a set of subgroups delivered by our approach,
the EsmamDS-pop, performing the EMM task. It is important to remember that, in the
SD task, a subgroup is deemed exceptional if its mean survival time is statistically different
(𝑝-𝑣𝑎𝑙𝑢𝑒 ≤ 0.05) from the baseline’s average survival (time). Such unusualness is assessed
with the (bilateral) t-Test comparing both means – subgroup and baseline. For the EMM task,
exceptionality is assessed with the logrank test, and a subgroup is considered exceptional if its
survival model is statistically different from the baseline model.

Hence, we first present the subgroups discovered by the BS-SD-pop in Table 10. There, we
provide the p-value of both statistical tests mentioned above. In that way, for each subgroup
provided, we can identify whether it is exceptional according to each task – EMM and SD.
Analysing the table, we can observe that all subgroups deemed exceptional in the SD task are
not exceptional when considering their survival models. In other words, although SD subgroups
present an unusual distribution of the survival time, their models may not be unusual. In
Figure 5, we show the distribution of the survival time over the baseline and the subgroups

Table 10 – Method EsmamDS – Set of subgroups discovered by the BS-SD-pop algorithm in the actg320 data
set (exp. 0): the subgroups’ description (Subgroups 𝐺𝑖), the 𝑝-value of the logrank test between
the subgroup and baseline (𝑙𝑜𝑔𝑟𝑎𝑛𝑘(𝐺𝑖,ℬ)), and the 𝑝-value of the t-Test for comparing the the
survival times of the subgroup and baseline (𝑡𝑇𝑒𝑠𝑡(𝐺𝑖,ℬ))

Subgroups Gi logrank(Gi,ℬ)
(p-value)

tTest(Gi,ℬ)
(p-value)

𝐺0 :𝑠𝑒𝑥 ∈ {1} ∧ 𝑟𝑎𝑐𝑒𝑡ℎ ∈ {1} ∧ ℎ𝑒𝑚𝑜𝑝ℎ𝑖𝑙 ∈ {0} ∧ 𝑡𝑥𝑔𝑟𝑝 ∈ {2} ∧ 𝑡𝑥 ∈ {1} 0.100 0.005
𝐺1 :𝑠𝑒𝑥 ∈ {1} ∧ 𝑟𝑎𝑐𝑒𝑡ℎ ∈ {1} ∧ ℎ𝑒𝑚𝑜𝑝ℎ𝑖𝑙 ∈ {0} ∧ 𝑡𝑥𝑔𝑟𝑝 ∈ {2} 0.100 0.005
𝐺2 :𝑠𝑒𝑥 ∈ {1} ∧ 𝑟𝑎𝑐𝑒𝑡ℎ ∈ {1} ∧ ℎ𝑒𝑚𝑜𝑝ℎ𝑖𝑙 ∈ {0} ∧ 𝑡𝑥 ∈ {1} 0.100 0.005
𝐺3 :𝑟𝑎𝑐𝑒𝑡ℎ ∈ {2} ∧ ℎ𝑒𝑚𝑜𝑝ℎ𝑖𝑙 ∈ {0} ∧ 𝑖𝑣𝑑𝑟𝑢𝑔 ∈ {1} 0.859 0.006

Font: The author (2021)
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Figure 5 – Method EsmamDS – Analysis of the survival time distribution over the subgroups discovered by the
BS-SD-pop algorithm (provided in Table 10) on the actg320 data set (exp. 0). The left column of
plots provides the distribution over the baseline ℬ-population. The distributions are displayed in
(a) histograms, and (b) boxplots. The distributions’ identification is provided below the plots. Axis
labels are on the left. The green color indicates a distribution with mean survival time statistically
different from the baseline average survival.
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displayed in the table. The green colour indicates the distributions for which the t-Test null
hypothesis was rejected, i.e. the subgroups deemed exceptional by the SD task. Analysing the
figures, we observe that even slight variations in the distribution of the survival time (target)
feature may comprise a statistically unusual distribution. In this sense, the occurrence of outliers
in a subgroup may significantly bias its average survival time while not necessarily yielding a
different survival model, as Table 10 evinces.

Table 11 – Method EsmamDS – Set of subgroups discovered by the EsmamDS-pop algorithm in the ptc data
set (exp. 0): the subgroups’ description (Subgroups 𝐺𝑖), the 𝑝-value of the logrank test between
the subgroup and baseline (𝑙𝑜𝑔𝑟𝑎𝑛𝑘(𝐺𝑖,ℬ)), and the 𝑝-value of the t-Test for comparing the the
survival times of the subgroup and baseline (𝑡𝑇𝑒𝑠𝑡(𝐺𝑖,ℬ))

Subgroups Gi logrank(Gi,ℬ)
(p-value)

tTest(Gi,ℬ)
(p-value)

𝐺0 :𝑟𝑖𝑠𝑘_𝑔𝑟𝑜𝑢𝑝 ∈ {𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒} ∧ 𝑝𝑎𝑡ℎ_𝑛_𝑠𝑡𝑎𝑔𝑒 ∈ {𝑁1𝑏}
∧ 𝑤𝑔𝑠_𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑁𝑜}

0.002 0.041

𝐺1 :𝑚𝑟𝑛𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ {5} ∧𝑚𝑖𝑟𝑛𝑎_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ∈ {6} 0.011 0.430
𝐺2 :𝑝𝑎𝑡ℎ_𝑛_𝑠𝑡𝑎𝑔𝑒 ∈ {𝑁0} ∧ 𝑡𝑢𝑚𝑜𝑟_𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑡𝑢𝑚𝑜𝑟_𝑓𝑟𝑒𝑒} 0.012 0.730
𝐺3 :𝑟𝑖𝑠𝑘_𝑔𝑟𝑜𝑢𝑝 ∈ {𝐼𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒} ∧ 𝑠𝑒𝑥 ∈ {𝑀𝑎𝑙𝑒}

∧ ℎ𝑖𝑠𝑡𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑡𝑦𝑝𝑒 ∈ {𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙} ∧ 𝑤𝑔𝑠_𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑁𝑜}
0.004 0.222

𝐺4 :𝑠𝑒𝑥 ∈ {𝐹𝑒𝑚𝑎𝑙𝑒} ∧ 𝑙𝑜𝑤𝑝𝑎𝑠𝑠 ∈ {𝑁𝑜} ∧ 𝑤𝑔𝑠_𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑁𝑜}
∧ 𝑡𝑢𝑚𝑜𝑟_𝑠𝑡𝑎𝑡𝑢𝑠 ∈ {𝑡𝑢𝑚𝑜𝑟_𝑓𝑟𝑒𝑒}

0.048 0.250

Font: The author (2021)
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Figure 6 – Method EsmamDS – Analysis of the survival time distribution over the subgroups discovered by the
EsmamDS-pop algorithm (provided in Table 11) on the ptc data set (exp. 0). The left column of
plots provides the distribution over the baseline ℬ-population. The distributions are displayed in
(a) histograms, and (b) boxplots. The distributions’ identification is provided below the plots. Axis
labels are on the left. The green color indicates a distribution with mean survival time statistically
different from the baseline average survival, while the red color indicates a distribution with average
survival similar to the baseline.
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Analogously, we provide a set of subgroups discovered by the EsmamDS-pop algorithm
in Table 11, and their survival time distribution in Figure 6. The red colour indicates the
distributions for which the mean survival time can be considered statistically equal to the
baseline’s average survival. We observe that the subgroup 𝐺0 is the only one with unusual
distribution compared to the baseline and, therefore, the only subgroup deemed exceptional by
the SD task. However, when assessing the subgroups’ survival models (with the logrank test
results shown in the table), we have that all subgroups are indeed exceptional. Additionally to
the fact that a deviating mean survival does not necessarily imply an unusual survival behaviour,
we have that the contrary is also true: exceptional survival responses do not necessarily imply
an unusual survival time distribution.

Hence, to assess our ultimate goal of discovering subgroups with unusual survival behaviour,
we present in Figure 7 the survival models of the subgroups comprising the two sets analysed
above. In Figure 7a, we observe the subgroups discovered by the SD approach. We see that
such subgroups which do not present exceptional models present survival responses very similar
to the baseline response (Base.). On the other hand, the subgroups discovered by our EMM
approach (Figure 7b) present a variety of behaviours that are distinct from the baseline – some
subgroups presenting better survivability, some worse.

Ultimately, survival models, or time-to-event models, provide the distribution of the event
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Figure 7 – Method EsmamDS – Survival curves of the set subgroups discovered by: (a) the BS-SD-pop
algorithm on the actg320 data set (provided in Table 10), and (b) the EsmamDS-pop algorithm on
the ptc data set (provided in Table 11).
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over the whole period of study – i.e. over the survival time feature. Hence, to model survival
data and thus analyse survival behaviour, it is necessary to consider not only the survival
times but also the censoring information – which is essential information regarding the event
occurrence. By disregarding the censoring variable, what is being analysed is merely the time
that patients were observed in the study (its distribution) and not the event itself – whether
or not it occurred and its distribution over time. In this sense, a deviating distribution of the
survival times does not imply a deviating distribution of the event (over time).

Since SD algorithms rely solely on the (single target) survival time to assess survival
exceptionality, they ignore crucial information to analyse survival data. Hence, although SD
approaches (and the predictive LR-Rules) provide insights on divergences in survivability, when
aiming to characterise survival behaviours (models), it is crucial to properly represent the
target concept to be optimised. In this sense, the EMM approach plays an important role in
behavioural analysis.

Next, we analyse the results for the remaining metrics presented in Table 9, which were
assessed using the Friedman and Nemenyi statistical tests. First, we assess the descriptive
aspects of the results with the metrics of interpretability and representativeness. Figure 8
provides the Critical Distance (CD) diagrams for the Nemenyi post-hoc test showing the
results of the statistical comparison of all approaches against each other by the mean ranks of
populations. The approaches that are not significantly different are connected by a horizontal
bar.

We notice that the EsmamDS (for both baselines) outperforms all other approaches in the
interpretability of their results, presenting a (statistically) significant reduction of 31% in #𝑠𝑔
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Figure 8 – Method EsmamDS – Critical Distance (CD) diagrams for the Nemenyi post-hoc test of the
interpretability and representativeness metrics.
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when comparing EsmamDS-pop to Esmam-pop, 43% comparing EsmamDS-cpm to the LR-Rules,
and 6% comparing to Esmam-cpm (with no statistical difference)2. Furthermore, no statistical
difference was observed for the 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 metric between EsmamDS and its predecessor
Esmam. The EsmamDS also outperforms the compared approaches in the representativeness

of its patterns (𝑠𝑔𝐶𝑜𝑣), presenting an average coverage from 7 to 16% higher than the
others. Regarding the representativeness of the data set (𝑑𝑏𝐶𝑜𝑣), the EsmamDS(-cpm) is
outperformed only by the covering LR-Rules, with a difference of 2%. It is essential to notice
that the LR-Rules stopping criteria includes covering all the individuals in the data set, which
justifies the difference in coverage. Hence, we have that our approach delivers smaller sets
of patterns (#𝑠𝑔) that comprise more compact characterisations (𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 ) while providing
more generalisation (𝑠𝑔𝐶𝑜𝑣) and characterising the large majority of the data records (𝑑𝑏𝐶𝑜𝑣).

Comparing our Diverse Search approach to its predecessor Esmam, we observe that the
description language constraining attributes on a set of values (instead of a single value) and
the subgroup selection method that prioritises generalisation yield more informative subgroups.
2 The beam-search approaches – BS-EMM, BS-SD and DSSD-CBSS – assume a fixed number of discovered

subgroups, defined as described in Section 5.2
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That is because the EsmamDS yields subgroups with statistically broader coverage but with
similar description lengths. Also, the heuristic function improving search exploration and the
subgroup selection method for minimising redundancy yields fewer patterns that better represent
the data (an increase of over 20% of the data set coverage).

Next, we provide the CD diagram of the redundancy metrics in Figure 9. We observe that
our approach is outperformed only by the covering LR-Rules in the coverage redundancy 𝜌𝐶 (a
difference of 0.01 in the metric average) but similar in the 𝐶𝑅 performance. It is important
to notice that the LR-Rules naturally induces rules for disjoint subsets of individuals. At each
algorithm iteration, a new pattern has to cover a minimum number of previously uncovered
individuals from the complete data set. This characteristic justifies the low redundancy in
coverage. By contrast, the EsmamDS outperforms all other approaches regarding the redundancy
in the final findings, providing a reduction of 80-95% on the levels of descriptive redundancy
(𝜌𝐷) and 20-74% the levels of model redundancy (𝜌𝑀 ). To better analyse the performance of
the compared approaches with respect to the problem of redundancy in sets of subgroups, we
will use the results achieved on the pbc data set (exp. 0).

In Figure 10, we present the plot of the similarity metrics (𝑠𝑖𝑚𝐷, 𝑠𝑖𝑚𝐶 and 𝑠𝑖𝑚𝑀)

Figure 9 – Method EsmamDS – Critical Distance (CD) diagrams for the Nemenyi post-hoc test of the
redundancy metrics.
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Figure 10 – Method EsmamDS – Plot of the similarity metrics between all pairs of subgroups comprising the
final set of discovered subgroups delivered by each compared approach on the pbc data set (exp.
0). Each column of plots provides the results of the approach indicated in the column’s title.
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between all pairs of subgroups comprising the final discoveries of each approach. In that
way, we can provide a visual assessment of the levels of similarity – and, thus, redundancy
– present in the discovered sets of subgroups. It is interesting to notice that the descriptive
(Equation 2.3) and the coverage (Equation 2.4) similarity measures are adaptations of the
Jaccard similarity more sensible to subsets – refinements in the descriptive domain. Hence,
maximum descriptive/coverage similarity may represent set equality or a subset relation.

Let us consider G the set of subgroups 𝐺 discovered by a given approach. We computed
the similarity measures for all (𝐺𝑖, 𝐺𝑗) ∈ G, for 𝑖 ̸= 𝑗, and then we plotted such results in a
triangular heatmap matrix |G|× |G|. Therefore, each index on the matrix represents the level of
similarity between two different subgroups within the same discovered set. From the plots, we
have that the subgroups discovered by the EsmamDS are more diverse, i.e. present low similarity
compared to the others within its set. As a result, we observe that the EsmamDS consistently
provides sets of subgroups that present lower redundancy in description and coverage while
delivering a larger variety of exceptional survival models.

Thus, we observe high levels of redundancy in beam-search approaches, which is an inherent
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problem of this search heuristic. By prioritising a number of best solutions in each search
level, this heuristic leans towards regions of the search space that usually comprise many
variations of the same finding. Hence, its subgroup sets usually comprise many subgroup
refinements, presenting higher levels of descriptive similarity, highly overlapping coverages and
a large number of statistically similar model responses (see Figure 10). Such a high number of
refinements among the final findings is also observed through the presence of larger descriptions
with smaller coverages (see Figure 8), indicating the specialisations of a more general pattern.
The redundancy resultant from refinements also reflects low data representation, which is
less than 50% of the data set cases for this family of algorithms (see Table 9). Additionally,
redundant patterns yield poor diversity (uniqueness) of survival behaviours, with over 50% of
the discovered survival models being similar to each other (𝜌𝑀 metric in Table 9).

Figure 10 also allows an important observation: subgroups with no similarity in their
descriptions, i.e. subgroups that represent entirely different areas of the descriptive space,
sometimes present some inherent redundancy in the population they represent or in the
behaviours observed on such populations. By providing more diversify of subgroups, i.e. less
similarity between the descriptive patterns provided and the data subsets they describe, our
approach eliminates redundant information but preserves the potential information from the
inherent overlaps (or similarities) between different exceptional local patterns. Thus, such
diversification reflects on the variety (diversity) of the survival behaviours we are able to find
and characterise. When assessing the survival models discovered by each approach, the model
redundancy metric 𝜌𝑀 (see Table 9 and Figure 9) shows that the EsmamDS attains higher
diversity by achieving lower proportions of similar (pairs of) models.

The impacts of improving subgroup diversity may be observed directly from the survival
models uncovered by each approach. In Figure 11, we present the KM survival curves associated
to the sets of subgroups discovered on the pbc data set (the same sets analysed in Figure 10).

Throughout the plots, it is possible to observe that the survival models provided by
our approach (left plot) are more distinct from each other and capture a wider range of

Figure 11 – Method EsmamDS – Survival curves of the subgroups discovered by the ℬ-population algorithms
on the pbc data set (exp. 0). The dotted line is the survival curve fitted on the data set.
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survival behaviours – from lower to higher response curves. Compared to the other results, the
EsmamDS is capable of summarising a range of several similar behaviours while providing more
representative patterns (see #𝑠𝑔 metric in Figure 8a and 8b). When assessing the discovered
behaviours, we observe that our approach better generalises the patterns into more distinct
behaviours, providing clearer and more actionable information.

Finally, we are interested in analysing whether the other approaches also identify the
patterns discovered by the EsmamDS and to which extent our approach can identify the
others’ patterns. In other words, we are interested in assessing the similarity between the set
of subgroups delivered by the EsmamDS and those discovered by each compared approach.
For that matter, we compute the similarity measures – 𝑠𝑖𝑚𝐷, 𝑠𝑖𝑚𝐶 and 𝑠𝑖𝑚𝑀 – for all
combinations of subgroups in both sets, and we present such analysis in a heatmap matrix,
where the rows represent the subgroups discovered by the EsmamDS algorithm and the columns
are the unique subgroups discovered by the compared approach.

Figure 12 presents such comparison for the results achieved on the pbc data set and
analysed above (see Figure 10 and 11). It is important to notice the horizontal patterns from
the plots, which show the similarity between a single EsmamDS subgroup and all subgroups
found by the other approach. In other words, horizontal patterns of high similarity indicate that
a single subgroup discovered by our approach may actually typify several subgroups on the
compared set.

To exemplify such analysis, we use the comparison between the EsmamDS-pop and the
DSSD-CBSS (the last column of heatmaps in Figure 12). From the plot, we can observe that
all subgroups in the DSSD-CBSS set (columns) are somehow similar to a single EsmamDS
subgroup (third row). Such subgroups’ descriptions are as follows, where 𝐺2 is the EsmamDS
subgroup and 𝐺* are the DSSD-CBSS subgroups.

𝐺2 : 𝑠𝑏 ∈ {0}
𝐺*

0 : 𝑠𝑏 ∈ {0} ∧ ℎ𝑝 ∈ {0} 𝑎𝑙𝑏𝑢𝑚𝑖𝑛 ∈ {3} 𝑠𝑝𝑖𝑑𝑒𝑟𝑠 ∈ {0}
𝐺*

1 : 𝑠𝑏 ∈ {0} ∧ ℎ𝑝 ∈ {0} 𝑎𝑙𝑏𝑢𝑚𝑖𝑛 ∈ {3} 𝑠𝑝𝑖𝑑𝑒𝑟𝑠 ∈ {0} ∧ 𝑎𝑠𝑐𝑖𝑡𝑒𝑠 ∈ {0}
𝐺*

2 : 𝑠𝑏 ∈ {0} ∧ ℎ𝑝 ∈ {0} 𝑎𝑙𝑏𝑢𝑚𝑖𝑛 ∈ {3} 𝑠𝑝𝑖𝑑𝑒𝑟𝑠 ∈ {0} ∧ 𝑒𝑑𝑒𝑚𝑎 ∈ {0}

From the above descriptions, we can observe that all subgroups discovered by the DSSD-
CBSS algorithm are refinements of a single EsmamDS-pop subgroup 𝐺2. From Figure 12b and
Figure 12c, we observe that the refinements also comprise subsets of 𝐺2 coverage presenting
similar survival behaviour. Most of the time, such horizontal patterns in the heatmaps’ results
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Figure 12 – Method EsmamDS – Similarity measures between the EsmamDS subgroup set and the ℬ-population
approaches on the pbc data set (exp. 0). Each column of plots provides is a comparison with
a different approach identified by the column’s title. The y-axis of the plots are the subgroups
discovered by the EsmamDS-pop, and the x-axis is the subgroups discovered by the compared
approach.
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indicate the presence of subgroup refinements that can be generalised by a single (or few)
subgroup(s) in the EsmamDS set without loss of information. Thus, we observe that the sets
of subgroups delivered by EsmamDS somehow encompass the subgroups returned by the other
algorithms, usually representing the majority of the findings delivered by the other algorithms
in a more compact and general way while providing higher diversity of the discovered patterns
and models.

5.3 DISCUSSIONS

This chapter presents the EsmamDS, an EMM framework based on Ant-Colony Optimisa-
tion (ACO) meta-heuristics for mining subgroups presenting unusual survival behaviour. The
EsmamDS builds on the Esmam algorithm (see Chapter 4) to tackle the problem of pattern
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redundancy. The presented approach explores the ACO design to improve search exploration and
introduces a new subgroup selection method to provide a set of diverse subgroups minimising
redundancy in description, coverage and model. Additionally, EsmamDS explores the description
language to improve the generalisation and comprehensibility of the discovered patterns.

The EsmamDS was confronted with other approaches to mine subgroups with disparities in
survivability on 14 survival data sets. We first assessed the results regarding the exceptionality
of the discovered patterns. We showed that the SD approaches to find subgroups with deviating
mean survival time do not guarantee the exceptionality (unusualness) of their survival models.
Thus, we reinforce the fundamental argumentation of Exceptional Model Mining that states the
need for more complex target designs to represent more complex properties of interest. When
addressing the problem of investigating unexpected survival responses, we should target a proper
survival model instead of simply targeting the time to the event occurrence. Then, we assessed
the EsmamDS performance regarding its final findings’ interpretability, representativeness,
and redundancy. We compared its results with its predecessor Esmam, the usual beam-search
strategy and an approach that tackles redundancy, and a sequential covering search that
maximises the unusualness of KM models. The experiments showed that the EsmamDS yields
smaller sets of subgroups, with more straightforward and informative characterisations, capable
of representing most of the data observations.

When considering the Esmam limitations discussed in Section 4.3 regarding the lack of
diversity among the final findings, the EsmamDS improvements on the description language,
search exploration and redundancy minimisation yielded satisfactory results. By increasing
the generality and expressivity of the patterns, the EsmamDS provides characterisations with
roughly the same length of Esmam ones but representing statistically larger data subsets. As a
result, the final sets of subgroups provided by the EsmamDS have roughly the same size as the
Esmam sets but with significantly larger data representativeness. This significant increase in
the data set coverage also relates to the new ACO design, which improves exploration. The
pattern’s expressivity that yielded more extensive data coverage is achieved by manipulating
discovered subgroups (descriptions). Thus, the diverse search that the EsmamDS introduces is
capable of discovering patterns regarding data subsets not represented in the Esmam findings.
Our proposed method for subgroup selection yielded a considerable decrease in the levels of
descriptive, coverage and model redundancy. The EsmamDS hardly contains refinements on its
final findings, which is observed in very low levels of descriptive redundancy. The reduction in
the number of refinements among the final findings also reflects lower levels of coverage and
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model redundancy compared with the other approaches.
Thus, the set of subgroups discovered by this approach usually encompasses the subgroups

delivered by the others, but with more general and compact representations, while discovering
subgroups that the others do not uncover. The EsmamDS minimises the presence of subgroup
refinements in the final set by allowing their occurrence only if they present distinct (unique)
survival distribution, providing subgroups that are more diverse concerning their description
and coverage while delivering a variety of interesting survival models.

Finally, more thorough experimentation needs to be conducted to assess the impact of the
parameters on the search performance and algorithm convergence and assess the impact of
factors such as dimensionality and data volume on the algorithm’s performance and results. In
the following (and final) chapter, we discuss the limitations of this approach and the ways of
extending it in future works.
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6 CONCLUSIONS AND FINAL REMARKS

We investigated in this work the problem of identifying the factors related to a given event
of interest. For any problem surrounding the analysis of an event, i.e. any Survival Analysis
(SA) problem, we represent survival behaviour through the Kaplan-Meier (KM) non-parametric
statistical method of (predictive) SA. Then, we provide a set of (diverse) characterisations of
unusual behaviours. In this sense, we contributed to the area of Survival Analysis by approaching
it in a descriptive perspective in contrast to the predictive perspective prevalent in the SA
literature. The methods we presented here complement the existing SA approaches and aim
to fulfil the need for computational tools capable of extracting human-comprehensible and
insightful knowledge over subsets of individuals that behave unusually (w.r.t. their survival
responses). Although our proposal is applicable to many domains where the problem relies
on the investigation of an event occurrence, we focus our efforts on the need of investigating
patient outcome.

We resorted to supervised local pattern mining, specifically the Exceptional Model Mining
(EMM) task, to discover subsets of the data concisely described that present a deviating (target)
survival model. The EMM has evolved from the traditional task of Subgroup Discovery (SD) to
represent more complex forms of targets (rather than a single target attribute). Although there
are several instances of EMM in the literature defining different target models and evaluation
metrics, to the best of our knowledge, the methods we presented here are the first (and
only) approaches to explore the use of EMM along with Survival Analysis to model the data.
There are, though, several applications of SD and other supervised (and unsupervised) local
pattern mining approaches to the domain of medical and biomedical research (HERRERA et al.,
2011). Our approach, however, specifically targets survival behaviour in a more complex and
informative format without resorting to class labels or stratification. In this sense, we believe
this work is a valuable contribution to medical research.

Hence, we introduce an EMM framework that uses the KM estimated survival function
as a target model and discovers subgroups presenting statistically unusual survival models.
In contrast to the prevalent greedy heuristic searches employed in the EMM literature, we
approach the problem of pattern search with stochastic optimisation. Such an approach is
already vastly explored for SD tasks but not yet to EMM applications. We, thus, introduce
two approaches. In Chapter 4, we introduced the Esmam algorithm that uses Ant-Colony
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Optimisation (ACO) meta-heuristic in a sequential covering approach to mine subgroups with
exceptional KM models. This approach, however, presents the major drawback of providing
sets of subgroups that are highly redundant. Such limitation motivated the second approach.
In Chapter 5, we built on the Esmam algorithm to tackle the problem of redundancy in
subgroup’s set introducing the EsmamDS algorithm. It (implicitly) considers redundancy in the
search optimisation process and includes a subgroup selection method that minimises coverage,
description and model redundancy. Thus, it explores the description language structure to
enhance the generality and expressivity of the final set of patterns.

With the work first presented in Chapter 4 and further enhanced in Chapter 5, we conclude
that we were successful in answering our research question. The framework we introduce here
was able to provide several characterisations of diverse subgroups that present unusual survival
behaviour. The Esmam results show that our approach can discover representative patterns
with accurate unusual models and straightforwardly represent them. We also observe that the
discovered subgroups potentially capture survival behaviours (known to be) existent in the
data. In the EsmamDS results, we show that our approach successfully tackles the problem of
subgroup redundancy, providing a set of diverse (unique) exceptional survival subgroups. Thus,
the enhanced representation of its patterns yields simpler and more expressive characterisations.
Our ACO-based subgroup search outperformed the traditional beam-search in all evaluated
aspects, including (and mainly) the redundancy of the final findings. We also show that our
EMM approach outperforms the SD task in the exceptionality of the discovered patterns,
comprising a more suitable approach to investigate survival behaviour. When considering the
compared approaches to provide characterisations over unusual survival behaviours, we show
that the EsmamDS results are more straightforward and complete. It is capable of discovering
subgroups that are equivalent to the compared approaches (in a simpler and more general way)
while uncovering patterns not discovered by the compared approaches.

We believe we made a valuable contribution to investigating factors related to survival
response. Rather than using predictive global models to test hypotheses about survival risk,
we provide a solution capable of retrieving unusual survival behaviours existent in the data.
However, despite the promising results provided in this document, the presented work is just
the beginning of investigating a new computational perspective to Survival Analysis problems.
There is still a way to go before this method is mature enough to address large scale real
problems, such as the COVID-19 data or Omics data sets. To fully achieve our goal of providing
insightful knowledge over the circumstances related to patient outcome, some limitations of
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our approach need to be addressed in order to expand this application towards some open
problems. These are the topics of the next sections.

6.1 LIMITATIONS

The first limitation we consider is regarding the descriptive power of our patterns. Since
we limited the scope of our search to a combinatorial (discrete) problem, we impel the
descriptive attributes to be nominal features. As a result, it is necessary to employ pre-
processing discretisation of the data, resulting in considerable loss of information. A variety of
works in the literature address the problem of pattern mining in continuous domains – both
in the scope of the ACO search (SOCHA, 2004; SWAMINATHAN, 2006; SOCHA; DORIGO, 2008;
OTERO; FREITAS; JOHNSON, 2008; OTERO; FREITAS; JOHNSON, 2009) and the subgroup search
(MEENG; KNOBBE, 2021). Additionally, the descriptive patterns introduced in the EsmamDS are
generated by manipulating simple conjunctive representations. Adapting the pattern induction
process to mine disjunctive patterns directly from data may yield interesting results.

Another significant limitation that needs to be tackled is the statistical relevance of the
findings. As subgroups are deemed exceptional based on repeated statistical tests, some findings
will eventually be false statistical discoveries. Some recent works in literature investigate such a
problem and propose solutions to guarantee the statistical robustness of discovered subgroups
(DUIVESTEIJN; KNOBBE, 2011; PROENÇA; BÄCK; LEEUWEN, 2021).

Finally, we point out that the approaches presented here are not adapted to efficiently
search large volumes of data and high-dimensional domains. Given such characteristics, our
approaches struggle to find relevant patterns and, thus, do not converge. (DORIGO; STÜTZLE,
2019) highlight the importance of an appropriate design of the pheromone model and heuristic
information in achieving a good balance between exploration and exploitation and ultimately
assuring a satisfactory performance over time. Thus, the heuristic information may be used
to dynamically bias the probabilistic construction of solutions allowing to consider attribute
interaction in the pattern search. Other additional improvement may be implemented in the
ant-colony dynamic to improve the final results (MARTENS et al., 2007).
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6.2 OPEN PROBLEMS AND FUTURE WORKS

Now that we highlighted the strengths and weaknesses of our methods, we finally present
some open problems and some possible new research lines that may extend this work. Hence,
we return to the context that motivates this work to briefly consider the possibilities ahead.

As we introduced, the technological development and data explosion is revolutionising
modern medicine. The capacity for patient characterisation and for collecting data is expanding
dramatically, which opens new possibilities for computational development. In recent years,
electronic health records have been increasingly implemented worldwide, in addition to advanced
exams and medical machines that collect an enormous amount of patient data. More recently,
the challenges encountered in handling the COVID-19 pandemic revealed the latent need for
proper data collection and better data structuration. In response, governments and research
institutes made a great effort to collect and organise a large amount of data (in the number
of cases, features, and data types). This data still being collected enables the structuring of
longitudinal data sets, essential to survival studies. Clinical, biological and demographic aspects
of a patient that are easily represented in a table (data set) are only a part of all possible
information to characterise patients. We have a large amount of imaging and sound exams,
temporal data, and many other more complex data types, comprising important information on
patients and study cohorts that should be considered while striving for factors associated with
prognosis.

Hence, what we see as the mainline of research to extend this work is considering types
of data other than tabular ones. One way of approaching this is to enrich the ACO subgroup
search procedure (precisely the heuristic information) to consider correlations between features
and incorporate more complex data that cannot be considered in the domain of descriptive
attributes without loss of comprehensibility.

Another direction to expand this work is further developing the algorithm design to
improve performance. It could be addressed by new heuristic information, a new design of
the pheromone updating rule and the rule of probabilistic transition (the rule that defines the
probability distribution of the search space). Thus, the performance of the algorithm could
be improved with auto-adaptative ACO meta-parameters and parallelisation. Additionally, the
ACO meta-heuristic is only one suitable alternative to subgroup heuristic search. Other heuristic
approaches are being investigated in the literature, especially when considering large and
complex data. Moreover, we point out the possibility to improve the representativeness of the
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target concept. In this work, we use the Kaplan-Meier Estimates to represent survival behaviour.
However, as we had revised, it comprises one of the simplest models to represent the probability
of surviving over time, suffering from several limitations arising from its statistical design.
There are other options in the literature to model survival data that could better capture the
(unusual) behaviours we are interested in. Finally, other quality measures can be investigated
using other methods for comparing survival curves apart from the logrank statistical test.
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APPENDIX A – ESMAMDS COMPLEMENTARY RESULTS

In this appendix, we provide complementary results for the EsmamDS empirical evaluation
presented in Section 5.2. We present each evaluated metric individually, with the results specified
by data set. It is important to notice that the EsmamDS and Esmam results were averaged
over 30 experiments.

A.1 EXCEPTIONALITY ASSESSMENT (ℰ)

Table 12 – Appendix: EsmamDS complementary results – Metric ℰ (ℬ-population approaches).

Metric ℰ
Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 1.00 1.00 1.00 0.00 1.00
breast-cancer 1.00 1.00 1.00 1.00 0.80
cancer 1.00 1.00 1.00 1.00 0.00
carcinoma 1.00 1.00 1.00 1.00 1.00
gbsg2 1.00 1.00 1.00 1.00 0.67
lung 1.00 1.00 1.00 1.00 1.00
melanoma 1.00 1.00 1.00 0.33 0.00
mgus2 1.00 1.00 1.00 1.00 1.00
mgus 1.00 1.00 1.00 1.00 1.00
pbc 1.00 1.00 1.00 1.00 1.00
ptc 1.00 1.00 1.00 0.00 0.00
uis 1.00 1.00 1.00 1.00 1.00
veteran 1.00 1.00 1.00 1.00 0.50
whas500 1.00 1.00 1.00 1.00 1.00
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Table 13 – Appendix: EsmamDS complementary results – Metric ℰ (ℬ-complement approaches).

Metric ℰ
Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules

D
at

a
se

ts

actg320 1.00 1.00 1.00 0.00 1.00
breast-cancer 1.00 1.00 1.00 1.00 0.81
cancer 1.00 1.00 1.00 0.83 1.00
carcinoma 1.00 1.00 1.00 1.00 1.00
gbsg2 1.00 1.00 1.00 1.00 1.00
lung 1.00 1.00 1.00 1.00 1.00
melanoma 1.00 1.00 1.00 0.67 1.00
mgus2 1.00 1.00 1.00 1.00 0.79
mgus 1.00 1.00 1.00 1.00 0.73
pbc 1.00 1.00 1.00 1.00 1.00
ptc 1.00 1.00 1.00 0.00 1.00
uis 1.00 1.00 1.00 1.00 1.00
veteran 1.00 1.00 1.00 1.00 0.82
whas500 1.00 1.00 1.00 1.00 1.00

A.2 NUMBER OF DISCOVERED SUBGROUPS (#𝑠𝑔)

Table 14 – Appendix: EsmamDS complementary results – Metric #𝑠𝑔 (ℬ-population approaches).

Metric #𝑠𝑔

Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 8.80 3.27 4.00 4.00 4.00
breast-cancer 24.63 10.00 10.00 10.00 10.00
cancer 6.03 3.53 4.00 4.00 4.00
carcinoma 5.03 5.90 6.00 6.00 6.00
gbsg2 2.60 5.07 6.00 6.00 6.00
lung 4.53 3.90 4.00 4.00 4.00
melanoma 5.07 2.40 3.00 3.00 3.00
mgus2 6.03 5.17 6.00 6.00 6.00
mgus 3.73 3.90 4.00 4.00 4.00
pbc 11.50 6.37 7.00 7.00 7.00
ptc 10.17 5.70 6.00 6.00 6.00
uis 4.23 6.07 7.00 7.00 7.00
veteran 3.90 3.47 4.00 4.00 4.00
whas500 6.03 5.97 6.00 6.00 6.00



115

Table 15 – Appendix: EsmamDS complementary results – Metric #𝑠𝑔 (ℬ-complement approaches).

Metric #𝑠𝑔

Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules
D

at
a

se
ts

actg320 2.60 4.00 3.00 3.00 8.00
breast-cancer 8.30 15.10 9.00 9.00 16.00
cancer 5.07 5.27 6.00 6.00 11.00
carcinoma 4.27 2.93 5.00 5.00 3.00
gbsg2 6.47 1.73 7.00 7.00 18.00
lung 5.23 7.10 6.00 6.00 7.00
melanoma 2.87 4.87 3.00 3.00 3.00
mgus2 6.20 6.87 7.00 7.00 19.00
mgus 6.90 6.50 7.00 7.00 11.00
pbc 7.30 4.73 8.00 8.00 4.00
ptc 3.07 10.43 4.00 4.00 4.00
uis 7.07 3.10 8.00 8.00 14.00
veteran 5.30 4.30 6.00 6.00 11.00
whas500 4.37 2.90 5.00 5.00 3.00

A.3 AVERAGE DESCRIPTION SIZE (𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 )

Table 16 – Appendix: EsmamDS complementary results – Metric 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 (ℬ-population approaches).

Metric 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉

Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 1.47 1.15 4.00 4.00 4.00
breast-cancer 1.94 2.30 3.80 4.60 4.70
cancer 1.70 1.72 1.75 1.50 2.00
carcinoma 1.89 1.84 1.83 1.83 2.00
gbsg2 1.01 1.15 1.67 1.50 1.67
lung 1.00 1.10 1.00 3.00 2.50
melanoma 1.34 1.02 2.00 1.33 2.00
mgus2 1.01 1.13 1.17 1.33 2.00
mgus 1.29 1.15 2.00 1.50 1.75
pbc 1.71 1.64 2.86 2.29 4.71
ptc 2.05 2.62 2.33 5.50 2.67
uis 1.28 1.51 1.86 1.86 2.14
veteran 1.32 1.14 2.00 1.50 2.00
whas500 1.41 1.77 2.83 2.67 2.67
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Table 17 – Appendix: EsmamDS complementary results – Metric 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉 (ℬ-complement approaches).

Metric 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑉

Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules
D

at
a

se
ts

actg320 1.09 1.32 3.33 2.67 2.75
breast-cancer 1.66 1.37 5.67 5.78 4.44
cancer 1.25 1.73 1.83 1.83 1.82
carcinoma 1.14 1.34 1.80 1.60 1.00
gbsg2 1.16 1.00 1.86 1.71 1.50
lung 1.12 1.00 1.00 1.33 1.14
melanoma 1.02 1.17 1.33 1.67 1.33
mgus2 1.10 1.03 1.14 1.29 2.00
mgus 1.32 1.46 3.00 2.00 2.82
pbc 1.20 1.18 1.50 2.12 1.50
ptc 1.47 1.74 1.75 6.75 1.25
uis 1.38 1.02 2.62 2.00 2.07
veteran 1.13 1.37 2.00 2.50 1.36
whas500 1.04 1.00 1.40 2.60 1.00

A.4 SUBGROUP COVERAGE REPRESENTATIVENESS (𝑠𝑔𝐶𝑜𝑣)

Table 18 – Appendix: EsmamDS complementary results – Metric 𝑠𝑔𝐶𝑜𝑣 (ℬ-population approaches).

Metric 𝑠𝑔𝐶𝑜𝑣

Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 0.30 0.41 0.15 0.23 0.19
breast-cancer 0.18 0.20 0.11 0.12 0.10
cancer 0.13 0.15 0.13 0.16 0.21
carcinoma 0.19 0.22 0.15 0.15 0.20
gbsg2 0.19 0.27 0.15 0.17 0.20
lung 0.35 0.42 0.37 0.33 0.33
melanoma 0.28 0.47 0.18 0.19 0.11
mgus2 0.20 0.20 0.18 0.17 0.17
mgus 0.21 0.20 0.17 0.18 0.13
pbc 0.18 0.29 0.12 0.14 0.20
ptc 0.18 0.26 0.11 0.11 0.12
uis 0.19 0.24 0.15 0.15 0.15
veteran 0.19 0.30 0.13 0.17 0.13
whas500 0.20 0.29 0.13 0.15 0.10
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Table 19 – Appendix: EsmamDS complementary results – Metric 𝑠𝑔𝐶𝑜𝑣 (ℬ-complement approaches).

Metric 𝑠𝑔𝐶𝑜𝑣

Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules
D

at
a

se
ts

actg320 0.46 0.40 0.10 0.19 0.21
breast-cancer 0.31 0.33 0.05 0.08 0.13
cancer 0.31 0.15 0.14 0.13 0.20
carcinoma 0.40 0.32 0.27 0.32 0.33
gbsg2 0.29 0.20 0.10 0.13 0.17
lung 0.39 0.33 0.35 0.42 0.35
melanoma 0.46 0.35 0.40 0.20 0.40
mgus2 0.26 0.19 0.17 0.17 0.16
mgus 0.25 0.16 0.11 0.16 0.20
pbc 0.32 0.15 0.20 0.29 0.45
ptc 0.42 0.22 0.06 0.05 0.44
uis 0.30 0.20 0.10 0.14 0.25
veteran 0.26 0.18 0.10 0.08 0.19
whas500 0.37 0.37 0.50 0.17 0.41

A.5 DATA SET REPRESENTATIVENESS (𝑑𝑏𝐶𝑜𝑣)

Table 20 – Appendix: EsmamDS complementary results – Metric 𝑑𝑏𝐶𝑜𝑣 (ℬ-population approaches).

Metric 𝑑𝑏𝐶𝑜𝑣

Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 1.00 0.99 0.19 0.45 0.19
breast-cancer 0.81 0.92 0.22 0.24 0.33
cancer 0.30 0.39 0.27 0.29 0.40
carcinoma 0.52 0.89 0.22 0.43 0.47
gbsg2 0.40 0.93 0.34 0.58 0.56
lung 0.85 0.97 0.90 0.33 0.33
melanoma 0.77 1.00 0.22 0.54 0.22
mgus2 0.87 0.99 0.74 0.71 0.20
mgus 0.47 0.66 0.22 0.39 0.17
pbc 0.69 0.95 0.20 0.22 0.20
ptc 0.65 0.84 0.23 0.17 0.12
uis 0.61 0.89 0.40 0.40 0.20
veteran 0.54 0.82 0.25 0.42 0.26
whas500 0.55 0.96 0.24 0.24 0.11
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Table 21 – Appendix: EsmamDS complementary results – Metric 𝑑𝑏𝐶𝑜𝑣 (ℬ-complement approaches).

Metric 𝑑𝑏𝐶𝑜𝑣

Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules
D

at
a

se
ts

actg320 1.00 1.00 0.10 0.50 1.00
breast-cancer 0.98 0.99 0.06 0.13 1.00
cancer 0.99 0.37 0.30 0.36 1.00
carcinoma 0.98 0.74 0.96 0.96 0.99
gbsg2 0.98 0.31 0.21 0.48 1.00
lung 1.00 0.84 0.94 1.00 1.00
melanoma 1.00 0.91 1.00 0.57 1.00
mgus2 0.97 0.86 0.76 0.74 1.00
mgus 0.97 0.55 0.22 0.39 0.99
pbc 0.99 0.43 1.00 0.94 1.00
ptc 0.96 0.98 0.08 0.07 1.00
uis 0.97 0.61 0.20 0.40 0.99
veteran 0.90 0.55 0.23 0.21 1.00
whas500 1.00 0.85 1.00 0.24 1.00

A.6 SUBGROUP DESCRIPTION REDUNDANCY (𝜌𝐷)

Table 22 – Appendix: EsmamDS complementary results – Metric 𝜌𝐷 (ℬ-population approaches).

Metric 𝜌𝐷

Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 0.17 0.00 0.74 0.63 0.83
breast-cancer 0.10 0.02 0.65 0.51 0.33
cancer 0.31 0.08 0.25 0.33 0.33
carcinoma 0.28 0.07 0.67 0.33 0.60
gbsg2 0.00 0.00 0.40 0.27 0.40
lung 0.00 0.00 0.00 0.94 1.00
melanoma 0.23 0.00 1.00 0.00 0.33
mgus2 0.00 0.00 0.07 0.07 0.87
mgus 0.23 0.00 0.92 0.42 0.83
pbc 0.24 0.02 0.71 0.75 0.96
ptc 0.28 0.11 0.52 0.74 0.91
uis 0.16 0.03 0.43 0.48 0.90
veteran 0.12 0.06 0.42 0.25 0.33
whas500 0.31 0.08 0.78 0.71 1.00
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Table 23 – Appendix: EsmamDS complementary results – Metric 𝜌𝐷 (ℬ-complement approaches).

Metric 𝜌𝐷

Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules
D

at
a

se
ts

actg320 0.01 0.18 0.89 0.44 0.40
breast-cancer 0.00 0.05 0.86 0.70 0.10
cancer 0.11 0.35 0.43 0.30 0.27
carcinoma 0.00 0.08 0.50 0.35 0.00
gbsg2 0.01 0.00 0.64 0.38 0.04
lung 0.00 0.00 0.00 0.10 0.00
melanoma 0.00 0.17 0.33 0.00 0.33
mgus2 0.00 0.01 0.05 0.10 0.07
mgus 0.00 0.17 0.92 0.49 0.39
pbc 0.03 0.04 0.21 0.38 0.17
ptc 0.03 0.20 0.75 0.73 0.00
uis 0.06 0.00 0.83 0.46 0.25
veteran 0.03 0.16 0.53 0.70 0.09
whas500 0.01 0.00 0.25 0.67 0.00

A.7 SUBGROUP COVERAGE REDUNDANCY (𝜌𝐶)

Table 24 – Appendix: EsmamDS complementary results – Metric 𝜌𝐶 (ℬ-population approaches).

Metric 𝜌𝐶

Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 0.39 0.22 0.91 0.50 1.00
breast-cancer 0.38 0.23 0.69 0.62 0.35
cancer 0.58 0.28 0.50 0.67 0.45
carcinoma 0.44 0.25 0.75 0.36 0.46
gbsg2 0.26 0.23 0.52 0.37 0.49
lung 0.55 0.38 0.49 1.00 1.00
melanoma 0.44 0.11 1.00 0.12 0.33
mgus2 0.11 0.01 0.18 0.18 0.98
mgus 0.33 0.11 1.00 0.33 0.90
pbc 0.51 0.31 0.84 0.89 1.00
ptc 0.41 0.30 0.55 0.74 1.00
uis 0.17 0.22 0.47 0.46 0.95
veteran 0.26 0.29 0.53 0.42 0.33
whas500 0.55 0.32 0.95 0.94 1.00
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Table 25 – Appendix: EsmamDS complementary results – Metric 𝜌𝐶 (ℬ-complement approaches).

Metric 𝜌𝐶

Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules
D

at
a

se
ts

actg320 0.16 0.36 1.00 0.33 0.66
breast-cancer 0.37 0.48 0.98 0.79 0.19
cancer 0.41 0.67 0.69 0.48 0.37
carcinoma 0.28 0.36 0.54 0.34 0.00
gbsg2 0.30 0.26 0.66 0.40 0.19
lung 0.43 0.57 0.39 0.45 0.35
melanoma 0.22 0.46 0.33 0.08 0.33
mgus2 0.23 0.15 0.17 0.23 0.15
mgus 0.25 0.39 1.00 0.41 0.33
pbc 0.52 0.61 0.66 0.55 0.48
ptc 0.42 0.51 0.95 0.82 0.41
uis 0.33 0.01 0.94 0.41 0.41
veteran 0.27 0.27 0.56 0.69 0.22
whas500 0.39 0.39 0.48 0.87 0.33

A.8 SUBGROUP COVERAGE REDUNDANCY (𝐶𝑅)

Table 26 – Appendix: EsmamDS complementary results – Metric 𝐶𝑅 (ℬ-population approaches).

Metric 𝐶𝑅

Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 0.41 0.21 0.81 0.55 0.81
breast-cancer 0.62 0.39 0.79 0.76 0.68
cancer 0.70 0.61 0.73 0.71 0.60
carcinoma 0.52 0.37 0.78 0.57 0.53
gbsg2 0.60 0.35 0.66 0.45 0.52
lung 0.45 0.30 0.43 0.67 0.67
melanoma 0.43 0.10 0.78 0.46 0.78
mgus2 0.29 0.05 0.34 0.31 0.80
mgus 0.54 0.34 0.78 0.61 0.83
pbc 0.63 0.34 0.80 0.78 0.80
ptc 0.52 0.38 0.77 0.83 0.88
uis 0.40 0.36 0.61 0.60 0.80
veteran 0.46 0.23 0.75 0.58 0.74
whas500 0.54 0.35 0.76 0.76 0.89
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Table 27 – Appendix: EsmamDS complementary results – Metric 𝐶𝑅 (ℬ-complement approaches).

Metric 𝐶𝑅

Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules
D

at
a

se
ts

actg320 0.13 0.30 0.90 0.50 0.58
breast-cancer 0.33 0.38 0.94 0.87 0.41
cancer 0.39 0.67 0.70 0.64 0.49
carcinoma 0.22 0.41 0.41 0.34 0.01
gbsg2 0.32 0.69 0.79 0.52 0.29
lung 0.32 0.44 0.30 0.33 0.34
melanoma 0.19 0.39 0.25 0.43 0.25
mgus2 0.26 0.34 0.35 0.40 0.32
mgus 0.26 0.48 0.78 0.61 0.39
pbc 0.40 0.64 0.56 0.53 0.25
ptc 0.23 0.50 0.92 0.93 0.21
uis 0.30 0.39 0.80 0.61 0.37
veteran 0.35 0.47 0.77 0.79 0.32
whas500 0.34 0.37 0.31 0.76 0.29

A.9 SUBGROUP MODEL REDUNDANCY (𝜌𝑀)

Table 28 – Appendix: EsmamDS complementary results – Metric 𝜌𝑀 (ℬ-population approaches).

Metric 𝜌𝑀

Algorithms EsmamDS-pop Esmam-pop BS-EMM-pop BS-SD-pop DSSD-CBSS

D
at

a
se

ts

actg320 0.44 0.16 1.00 1.00 1.00
breast-cancer 0.82 0.46 1.00 1.00 1.00
cancer 1.00 0.60 1.00 1.00 1.00
carcinoma 0.97 0.51 1.00 0.47 1.00
gbsg2 0.73 0.34 1.00 0.67 1.00
lung 0.43 0.11 0.33 1.00 1.00
melanoma 0.46 0.11 1.00 0.67 1.00
mgus2 0.01 0.00 0.07 0.07 1.00
mgus 0.27 0.20 1.00 0.33 1.00
pbc 0.67 0.24 1.00 0.90 1.00
ptc 0.71 0.40 1.00 1.00 1.00
uis 0.17 0.17 0.52 0.52 1.00
veteran 0.64 0.16 1.00 0.50 1.00
whas500 0.57 0.24 0.80 0.60 1.00
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Table 29 – Appendix: EsmamDS complementary results – Metric 𝜌𝑀 (ℬ-complement approaches).

Metric 𝜌𝑀

Algorithms EsmamDS-cpm Esmam-cpm BS-EMM-cpm BS-SD-cpm LR-Rules

D
at

a
se

ts

actg320 0.12 0.31 1.00 1.00 0.39
breast-cancer 0.40 0.56 1.00 1.00 0.39
cancer 0.29 0.61 0.67 0.40 0.33
carcinoma 0.24 0.57 0.60 0.40 0.33
gbsg2 0.29 0.73 0.71 0.33 0.35
lung 0.36 0.62 0.27 0.27 0.29
melanoma 0.22 0.42 0.33 0.33 0.33
mgus2 0.02 0.05 0.10 0.05 0.29
mgus 0.26 0.49 0.71 0.43 0.42
pbc 0.23 0.38 0.54 0.36 0.00
ptc 0.22 0.66 1.00 1.00 0.17
uis 0.15 0.02 0.86 0.36 0.30
veteran 0.24 0.55 1.00 1.00 0.35
whas500 0.36 0.52 0.40 0.40 0.33
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