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ABSTRACT 

 

Industrial accidents, such as toxic spills, have caused catastrophic damage to 

ecological environments (animals and plants), so that an effective method to assess ecological 

risks has been demanded. The high number of vessels, including oil tankers that circulate the 

globe, along with extreme events such as storms and tropical besides cyclones due to global 

warming, increase the risk of potential oil spills affect oceanic islands. In Brazil, the Fernando 

de Noronha Archipelago (FNA) has a Conservation Unit‘s status, protecting endemic species 

and maintaining a healthy island ecosystem. Moreover, the consequences of a spill can be 

even aggravated since FNA lacks infrastructure and mitigation plans for such accidents. The 

methodology used to quantify such risks is based on stochastic population modeling and can 

consider extreme and rare events, such as oil spills. It considers both the event‘s frequency of 

occurrence and the magnitude of the adverse ecological effects, capable of quantifying 

ecological risks as a probability of extinction (or decline) of a given species representative of 

the ecosystem. It can also predict populations‘ responses to toxic exposure via population-

level endpoints such as abundance. Other models are integrated into the assessment: (i) oil 

spill simulation to compute the oil concentration reaching FNA, and (ii) the Bayesian 

Population Variability Analysis, to estimate the accidents frequency occurrence from 

databases and expert opinions. Then, we can assess the ecological risks of such accidents and 

summarize these results in risk categories to be easily communicated to the general public. 

Finally, the results obtained would provide relevant information that can aid decision-makers 

in avoiding such a disastrous event and/or mitigating its impacts. 

 

Keywords: quantitative risk assessment; ecological modeling; maritime accidents; fate and 

transport modeling; Bayesian variability analysis. 



 
 

RESUMO 

 

Acidentes industriais, como vazamentos de produtos tóxicos, têm causado danos 

catastróficos aos ambientes ecológicos (animais e plantas), de modo que se faz necessário um 

método eficaz de avaliação dos riscos ecológicos. O elevado número de embarcações, 

incluindo petroleiros que circulam pelo globo, juntamente com eventos extremos como 

tempestades tropicais além de ciclones devido ao aquecimento global, aumentam o risco de 

possíveis vazamentos de óleo afetar as ilhas oceânicas. No Brasil, o Arquipélago de Fernando 

de Noronha (AFN) possui status de Unidade de Conservação, protegendo espécies endêmicas 

e mantendo um ecossistema insular saudável. Além disso, as consequências de um 

derramamento podem ser agravadas, uma vez que o AFN carece de infraestrutura e planos de 

mitigação para tais acidentes. A metodologia utilizada para quantificar esses riscos é baseada 

em modelagem populacional estocástica e pode considerar eventos extremos e raros, como 

vazamentos de óleo. Ela considera tanto a frequência de ocorrência do evento quanto a 

magnitude dos efeitos ecológicos adversos, sendo capaz de quantificar os riscos ecológicos 

como probabilidade de extinção (ou declínio) de uma determinada espécie representativa do 

ecossistema. Além disso, também é possível prever as respostas das populações à exposição 

tóxica por meio de características como a abundância populacional. Outros modelos são 

integrados à avaliação: (i) simulação da trajetória do óleo no oceano para calcular a 

concentração de óleo atingindo o arquipélago, e (ii) análise de variabilidade populacional 

Bayesiana, com o objetivo de estimativar as frequências de ocorrência de acidentes a partir de 

bancos de dados e opiniões de especialistas. Com isso, podem-se avaliar os riscos ecológicos 

causados por tais acidentes e resumir esses resultados em categorias de risco para serem 

facilmente comunicados ao público em geral. Finalmente, os resultados obtidos forneceriam 

informações relevantes que podem auxilar os tomadores de decisão a evitar tais eventos 

desastrosos e/ou mitigar seus impactos. 

 

Palavras-chave: avaliação quantitativa de riscos; modelagem ecológica; acidentes marítimos; 

modelagem de vazamento óleo; análise de variabilidade Bayesiana. 
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1 INTRODUCTION 

1.1 INITIAL REMARKS 

This work is within the field of the Quantitative Ecological Risk Assessment (QERA). 

QERA is a formal process of estimating the probability of adverse effects to an ecosystem, in 

the short and long-term, due to exposure to one or more stressors (e.g., crude oil) (EPA, 

1998). QERA can be based on mathematical models capable of providing quantitative risk 

results. These models simulate a single defined species‘ population dynamics. The species 

usually is a plant or animal (e.g., corals, fishes, turtles) that humans want to protect by 

mitigating the impacts on the ecosystem‘s health. 

QERA results can aid decision-making in many real applications, such as pesticide 

regulatory programs, water discharges, mitigation measures to treat contaminated areas, 

installation of new facilities (AKÇAKAYA et al., 2004; BARTELL et al., 1999; CHEN, 

2005; NAITO et al., 2002; PAUWELS, 2002). In the Brazilian context, the ERA could be 

required when there is an ecological asset to be protected from stressors (e.g., chemical, 

physical or biological), mainly in environmental licensing, introduction of exotic species, and 

the assessment of contaminated areas or existing sources of pollution (CETESB, 2020). These 

applications show QERA is an essential field of study within Production Engineering. It is 

beneficial for industries and governments to provide information necessary to licensing, risk 

management, and environmental management. 

When applying QERA in the context of oil spills, risks are estimated considering an 

exposure assessment and the effects (CETESB, 2020). In the exposure assessment, spatio-

temporal models of dispersion should be used to model the stressor dispersion (i.e., oil). 

When assessing the effects, it is recommended to use laboratory (or field) tests and 

experiments, simulating exposure scenarios. However, this approach is not enough to 

providing useful information when determining risks in QERA. This information only 

indicates if individual effects are expected, i.e., probability of death of a single individual, and 

it lacks the long-term impacts at a population level.  

Thus, to overcome such limitations, the risk assessment focuses on long-term adverse 

effects in the species population. We apply a QERA methodology that integrates different 

models: 1) a frequency assessment method that accounts for the accidents rates that lead to oil 

spills; 2) a computational routine to simulate the oil transport and transformation in the ocean; 

3) ecotoxicological information that addresses for individual-level effects due to the oil 
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exposure; and finally, 4) a probabilistic ecological model that can consider uncertainties and 

variability in parameters and can describe the impacts of the pollution at a population level. 

Figure 1 depicts this integration.  

Figure 1 - Model integration that constitutes the QERA methodology 

 

Source: Adapted from (DUARTE, 2011) (p. 7) 

1.2 RATIONALE AND CONTRIBUTION  

Oceanic islands are considered hotspots of biodiversity and host of a large number of 

endemic species. Additionally, their isolation makes them a repository of threatened species 

as priority regions for legal conservation acts (GILLESPIE, 2001; GOVE et al., 2016; 

WHITTAKER; FERNÁNDEZ-PALACIOS, 2007). Among Brazilian oceanic islands, 

Fernando de Noronha Archipelago (FNA) is the best-studied. FNA is located between 

latitudes         and          and longitudes          and         , in the Western 

Equatorial South Atlantic. It is situated approximately     km away from the northeast coast 
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of Brazil, and it is composed of 21 islands and islets with a total area of        (Figure 2) 

(IBAMA, 2005). 

FNA has the Conservation Unit status, protecting endemic species and maintaining a 

healthy island ecosystem (SERAFINI; FRANÇA, 2010). It has the largest number of marine 

and terrestrial species, attributed to its extension and habitat heterogeneity. Two-thirds of 

FNA consist of the Marine National Park of FN (PARNAMAR-FN), a marine protected area 

(MPA) that reaches the 50-meter isobathic line (ICMBIO, 2013). The fundamental objective 

of creating PARNAMAR-FN is to preserve natural ecosystems with great ecological 

significance and scenic beauty, enabling scientific research, activities of environmental 

education, recreation, and ecotourism (BRASIL, 2000). 

Figure 2 - Location of the Fernando de Noronha Archipelago (latitude x longitude) in the South Atlantic Ocean. 

 Source: The Author (2021) 
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The high number of vessels, including oil tankers that circulate the globe, along with 

extreme events such as storms and tropical cyclones due to global warming, increase the risk 

of oil spills affecting oceanic islands. However, FNA lacks infrastructure and mitigation plans 

when facing an oil spill, which could intensify the accident‘s consequences (QUEIROZ et al., 

2019). Managers need to assess and manage ecological risks (hereafter ecorisks) caused by 

routine (i.e., high frequency/low consequence) human activities within PARNAMAR-FN. 

Then, these assessments should also contemplate improbable, significant events (i.e., low 

frequency/high impact). Although there is little evidence of large spills in recent years, it 

remains a latent threat (IUCN, 2020). In 2019, an oil spill reached more than         of the 

Brazilian northeastern coast and a total of       ton of oil residures were collected (DANIEL, 

2019). More recently, oil fragments have been reported to reach the FNA coast (ICMBIO, 

2021). Still, recent industrial accidents such as toxic spills have caused catastrophic damage to 

the environment and significant economic losses to the responsible company. Table 1 presents 

a summary of recent accidents globally. 

Table 1 - Recent most severe oil spills worldwide. 

Industrial accident Event Year Location Impact 

The Wakashio, a 

Japanese bulk carrier, 

struck a coral reef 

2020 Mauritius‘ coast 

in the Indian 

Ocean 

Thousands of tonnes of crude oil spilled 

into the sea, choking marine life in a 

pristine lagoon. 

Oil spill on the 

northeastern coast of 

Brazil 

2019 Brazil       km of the coast reported oil's 

presence, and       tons of residues from 

the spill were collected. Damages to corals, 

mangroves, and marine ecosystems 

A collision of the 

Suezmax Sanchi tanker 

with a cargo ship. 

2018 Shanghai The ship caught fire and burned for a week. 

32 crew members on board were killed; An 

oil stain of 11 kilometers was formed on 

the sea surface. 

FPSO production ship 

spill SeaRose 

2018 

 

Canada 

 

Approximately 250,000 liters of crude oil 

from the SeaRose FPSO off the 

southeastern coast of Newfoundland. 

Agia Zoni II 2017 Greece Approximately 500 tonnes of heavy fuel oil 

were released at sea, contaminating the 

Salamina and Athens coastlines. 

Leakage of a Chevron 

owned oil well in the 

Campos Basin 

2011 Brazil 32,000 to 52,000 liters of crude oil enter 

the ocean every day. There was a minor 

environmental impact, and no oil reached 
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Industrial accident Event Year Location Impact 

the Rio de Janeiro shores. 

Marine oil spill by a 

stricken container ship 

2011 Coast of New 

Zealand 

About 350 tonnes of oil into the sea. Nearly 

1,300 birds have died in the spill. 

Explosion in the Deep-

Water Horizon platform 

2010 Gulf of Mexico Death of 11 people, more than 600 

endangered species 

Source: The Author (2021) 

As we can see, oil spills originated from transport and handling activities in the ocean 

caused most incidents. According to the International Tanker Owners Pollution Federation 

Limited (ITOPF) database, it is estimated that from 1970 to 2020, about 5.86 million tons of 

oil were discharged into the sea (ITOPF, 2021). The estimate also tells that about 15,000 

tonnes/year of crude oil were dumped into aquatic environments in the last ten years (ITOPF, 

2021). The oil trade plays a vital role in economic development, and then there is a rise in the 

maritime transportation of oil volume. Indeed, the oil tankers are responsible for around 90% 

of the oil transported worldwide (CHEN et al., 2019). Regarding environmental impacts, the 

oil can contaminate beaches and damage coastal tourism areas, resulting in widespread 

oceanic pollution and a fatal effect on marine life (SIMECEK-BEATTY; LEHR, 2017). For 

instance, birds, fish, and other marine life can suffer mass mortality that severely damages 

marine resources (CHEN et al., 2019). 

On average, 75 ships navigate daily on routes near FN (MEDEIROS, 2009), using 

landmarks to determine the ship‘s position at sea more precisely and consistently. Many of 

these ships are oil tankers. The first round of a QERA for oil spills near FNA was conducted 

by (DUARTE; DROGUETT, 2016), focusing on whether the risks of catastrophic oil spills 

are tolerable or need management (i.e., recovery or control measures that may reduce risks). 

However, this study was conservative because it did not assess the fate and transport of the oil 

in the ocean. The ecosystem‘s exposure to the pollutants and the frequency estimates were 

roughly estimated. Thus, this work aims at performing an improved QERA in FNA, including 

the oil‘s fate and transport model and a more reliable frequency assessment. Moreover, we 

constructed a novel stochastic population model to describe the bioindicator dynamics, i.e., 

the coral reef fish Sparisoma axillare. This species was chosen due to its importance to the 

reef health, responsible for its construction and deconstruction (MALLELA; FOX, 2018). 

Thus, this work has two main contributions: a) the FNA application to generate results 

that can contribute to the ecosystem conservation; and b) a new application of the 
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methodology proposed by (DUARTE, 2016; DUARTE et al., 2019), allowing to identify 

limitations and suggest improvements integrating four different models (Figure 1), 

contributing to the QERA state-of-the-art. These contributions are detailed below: 

 The FNA has two Federal Unities of Conservation (UFC): the PARNAMAR-FN 

(BRASIL, 1988) and the Fernando de Noronha MPA – MPA/FN (BRASIL, 1986), 

which shows its ecological relevance and the need for adopting conservation 

measures. Despite the high number of ships that travel near FNA, it does not have 

infrastructure or contingency plans if a spill occurs (QUEIROZ et al., 2019), which 

would amplify its impact. One of the effects is the adverse consequence on coral reefs 

and their marine life. Its loss could have socio-ecological consequences because it 

protects the coast, is essential for eco-tourism in the area, and contributes to the 

fisheries. The impacts would affect the environment and the FNA inhabitants that 

depend on the island‘s natural resources for survival. Thus, this work results would 

help decide on measures to avoid such a catastrophic event and mitigate its impacts. 

 We integrate different models to perform QERA. At first, we opted for an 

unprecedented method in the context of maritime accidents, i.e., the Bayesian 

Population Variability Analysis (BPVA), that can aggregate information from 

databases and expert‘s judgments to estimate better the frequency of accidents that can 

cause oil spills (DROGUETT; GROEN; MOSLEH, 2004; MOURA et al., 2016). 

Regarding the simulation of oil spills trajectories and transformations in the ocean 

near FNA, we use the Lagrangian fate and transport model MEDSLIK-II (DE 

DOMINICIS et al., 2013a, 2013b). Moreover, a stochastic ecological reference model 

(the benchmark) for a bioindicator species is built to quantify the impacts on the FNA 

ecosystem due to oil exposure. This impact is quantified as the risk of decline of the 

bioindicator. In this way, the methodology compares several scenarios to the 

benchmark to quantitatively assess, rank, categorize, and communicate risks in the 

long term due to oil spills. This approach allows us to describe the ecosystem 

dynamics under future scenarios‘ influence. Thus, the work will contribute to science 

advancement by integrating new models into the risk assessment resulting in 

interdisciplinary work. 
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1.3 OBJECTIVES 

1.3.1 General objective 

The primary objective is to improve the QERA methodology proposed by (DUARTE et 

al., 2019) using oil spill simulation, frequency estimates from data and experts‘ opinions, and 

a stochastic model to more accurately quantify ecorisks (i.e., adverse effects to plants and 

animals) to FNA. Furthermore, it can also provide beneficial results to aid decision-making 

regarding the best strategies to cope with an oil spill in FNA.  

1.3.2 Specific objectives 

 To provide a theoretical basis regarding QERA and the models that compose the 

assessment; 

 To use computational routines to simulate the oil trajectory and physicochemical 

transformations in the ocean; 

 To estimate the frequency of accidents using information from maritime accidents 

database and expert opinions; 

 To build a stochastic population model for a coral reef fish that is representative of the 

FNA ecosystem; 

 To quantify the risks that a potential oil spill in the archipelago surroundings can cause 

to the ecosystem; 

 To compare the results of this dissertation with the results of the first-round QERA 

performed by (DUARTE; DROGUETT, 2016). 

It is not the purpose of this work to conduct risk management. However, we will discuss 

the risk assessment results and suggest some management measures. 

1.4 DISSERTATION STRUCTURE 

The remainder of this work is structured as follows. The specific objectives are 

presented in dedicated chapters mainly because Chapters 4 and 5 require sophisticated 

mathematical models with potential for scientific publication. Thus, they were written 

separately to facilitate further publication. Finally, Chapter 6 integrates the four models and 

also has potential for publication. The summary of the chapters that structure the dissertation 

is presented as follows: 
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 Chapter 2 provides a theoretical background to understand this work thoroughly and 

reviews the literature regarding risk assessment for oil spills. It examines the basic 

concepts of ecology, the role of ecological modeling in risk assessments, the modeling 

of oil spills on the ocean surface, and finally, the combined use of databases and 

experts‘ judgments to improve frequency assessments; 

 Chapter 3 details the Quantitative Ecological Risk Assessment (QERA) methodology 

used in this research; 

 Chapter 4 presents the frequency assessment for the occurrence of maritime accidents 

that can lead to oil spills. This chapter content was approved for presentation at the 5
th

 

conference of the Brazilian Association of Risk Analysis, Process Safety, and 

Reliability (ABRISCO). It is also being prepared for submission in a high impact 

journal; 

 Chapter 5 presents the results of the oil spills simulation near FNA. This chapter 

content was also approved for presentation in the 5
th

 conference of the ABRISCO, and 

it is also being prepared for submission in a high impact journal; 

 Chapter 6 consists of applying the QERA methodology for oil spills near FNA. 

Results from Chapter 4 and Chapter 5 will be incorporated into this chapter; 

 Chapter 7 provides concluding remarks, acknowledges limitations, and proposes 

future work directions. 
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2 THEORETICAL BASIS AND PRELIMINARY LITERATURE 

REVIEW 

2.1 BASIC CONCEPTS OF ECOLOGY 

Ecology is the science that studies relations among living beings and the environment in 

which they live and their reciprocal influences, including the human aspects that affect and 

interact with the planet‘s natural systems (ODUM; BARRET, 2005). The environment is the 

sum of all external conditions affecting an organism‘s life, development, and survival (EPA, 

2011). The environment encompasses humans, materials, physical and ecological 

environments (i.e., plants, animals, and microbes).  

The biological world is very complex, divided into biological hierarchy levels, as shown 

in Figure 3. The ecology studies only from individual organism level to higher levels, and 

EPA provides definitions to these (EPA, 2011): 

 Organism refers to any form of animal or plant life. 

 Population refers to a group of interbreeding organisms occupying a particular space. 

Each population has its characteristics: abundance, birth rate (fecundity), deaths rate 

(mortality), age distribution, dispersion, and growth rate.  

 Ecosystem refers to the interacting system of a biological community and its nonliving 

environmental surroundings. 

 Landscapes are the traits, patterns, and structure of a specific geographic area, 

including its biological composition, physical environment, and anthropogenic or 

social patterns. A space where interacting ecosystems are grouped and repeated in a 

similar form. 

Figure 3 - Hierarchy of biological endpoints. 

 

Source: Adapted from Pastorok et al. (2002, p. 4). 
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Habitats used by most species around industrial sites are becoming fragmented by 

human activities. Consequently, several distinct populations of the same species live 

separated, despite interacting at some level (e.g., exchange of individuals). There are 

relatively few cases where the entire population resides within the same area. Hence, most 

species are distributed across space as a large population of connected minor populations. 

This way of living characterizes a metapopulation, a set of populations of the same species in 

the same general geographic area with a potential for migration among them (PASTOROK et 

al., 2002). This way, some ecological models are designed to link the Geographic Information 

System (GIS) with a metapopulation model, combining geographic and demographic data for 

risk assessment. 

The methodology used in this work focuses on population and metapopulation-level 

risks, i.e., the potential for adverse effects on (meta)populations. 

2.1.1 Ecotoxicology 

Ecotoxicology is defined as the branch of toxicology concerned with studying toxic 

effects caused by natural or synthetic pollutants, the constituents of ecosystems, animals 

(including humans), vegetables, and microbial, in an integral context (TRUHAUT, 1977). 

Ecotoxicology plays an essential role in ERA because it provides knowledge about toxic 

effects on individual organisms caused by chemical exposure and the representative species in 

an ecosystem. Knowledge of individual-level effects is essential to predict higher-level effects 

such as population abundance (or density), community species richness, productivity, or 

organisms‘ distributions. Likewise, because the assessment of all species of an ecosystem 

would require huge costs and a long time, knowledge of the representative species is 

necessary to make the evaluation tractable. 

2.1.2 Population dynamics 

Population dynamics is an ecology discipline that studies changes in population 

abundance. These studies are essential to analyze and understand what happens to the 

population in natural conditions (without chemical exposure). Incidentally, population models 

are used to predict and simulate the dynamics of a population. This section will introduce the 

main components in population dynamics, whereas Section 3.5 will present a comprehensive 

overview of population modeling. 

The populations that constitute an ecosystem are open systems, i.e., they exchange 

energy and matter with the external environment. Hence, any attempt to describe and predict a 
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population dynamic requires knowledge about the interactions between system components, 

i.e., organisms that compound the population, the system itself, and the external environment 

(AKÇAKAYA; BURGMAN; GINZBURG, 1999). We need to define the survival, mortality 

and fecundity, migration, foraging behavior, and density-dependence when appropriate, to 

characterize a population‘s dynamics, 

Firstly, survival means the number of individuals in a population alive after a given 

time, and the survival rate indicates the proportion. Age-specific survival rates can be 

estimated by the equation below:  

                              (2.1) 

Where: 

      : the proportion of individuals present in a given year     within a given age class 

    that survives into the next age class       in the following year      ; 

          : number of individuals in age class     at time    ; 

      : number of individuals in age class   at time  ; 

Given that, mortality is the number of individuals of a population that died in a given 

period. The death rate can be expressed as        .  

Concerning fecundity    , by definition, it means ―the number of live offspring per 

individual in a given age class that will survive to be counted in the first age 

class‖(PAUWELS, 2002). However, calculating fecundity depends on the available data. If 

sufficient information is available, fecundity can be estimated by the equation: 

      
            

     
          (2.2) 

Where: 

      : proportion of juveniles (age 0) that were produced by individuals in age class   

at time  ; 

        : number of juveniles at time    ; 

Field data need to be collected to estimate survival and fecundity. Still, if the target 

species‘ data are insufficient, one could extrapolate the related species‘ information to the 

target species (PAUWELS, 2002). 

There are also features concerning the movement of a population, i.e., migration and 

foraging behavior. The term migration denotes all or part of a population moving from one 

habitat to another (AIDLEY, 1981). Incidentally, it is the primary way of interaction within a 

metapopulation. Foraging behavior consists of an organism‘s methods to acquire and utilize 
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sources of energy and nutrients. These methods encompass location, storage, consumption, 

and retrieval of resources. 

Moreover, the foraging theory tries to predict how an animal would choose to forage 

within its habitat, considering the knowledge of competition, predation risk, and resource 

availability (KAREN-KOY, 2007). The larger the foraging area, the more food will be 

available. In contrast, the organism will spend more energy and take more risks since the 

exposure to predators in areas beyond its natural habitat will be greater. It is important to 

emphasize that the population foraging area should be considered in a QERA when the 

environment‘s spatial structure has crucial effects on the population dynamics. 

Another fundamental process within the population dynamics is its regulation via 

density dependence on survival, mortality, fecundity, and population movement. The 

population growth rate phenomenon depends on the current population density (or abundance) 

(AKÇAKAYA; ROOT, 2013).  As is observed in wildlife populations, they are often 

changing in size, but fluctuating around an equilibrium abundance for long periods, unless a 

disturbance occurs (e.g., pollution, harvest, culling, poaching, catastrophe, etc.). 

Consequently, it is essential to incorporate density dependence to describe a population 

dynamic because it causes the population to reach a stationary state (which may fluctuate due 

to stochasticity). This equilibrium population, known as carrying capacity, is the abundance 

level above which the population tends to decline (PAUWELS, 2002). 

Many possible mechanisms yield density dependence: fecundity may decrease, 

mortality may increase with competition for limited resources, the crowded conditions may 

lead to social strife or cannibalism. Population growth may also be affected negatively as 

population size reaches shallow levels. This phenomenon, arising from Allee effects, draws a 

small population away from the carrying capacity and toward extinction. A brief example can 

clarify the concept of density-dependence: on the one hand, when there are too many 

organisms living in the same space and being part of the same population, food may become 

less available, and competition among the individuals starts. Consequently, negative density 

dependence manifests itself (e.g., more individuals dying and emigrating) so that the 

abundance will decrease to a quantity in which food is sufficient for all individuals again. 

To conclude, another fundamental component of population dynamic is the natural 

variability in all its features. In other words, changes in survival, fecundity, migration, and 

carrying capacity may occur unpredictably. For this reason, any attempt to describe a 

population dynamic should account for stochasticity in those parameters to better represent 

reality.  
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2.2 RISK, HAZARD, THREAT, CONTROL MEASURE, RECOVERY MEASURE, 

CONSEQUENCES AND ACCIDENTAL SCENARIO 

The American Institute of Chemical Engineers (AIChE) defines risk as a measure of 

human injury, ecological damage, or economic loss regarding the accident likelihood and the 

magnitude of the consequences (AICHE, 2000). This definition is sufficient for the 

representation of risk in this work. 

This work focuses on ecological risks, the magnitude of the consequences regards 

environmental damage and is quantified as a measure of time and population probability of 

extinction (or decline). This measure is widely accepted and used by the scientific community 

in ERA and the quantitative measure used by the International Union for Conservation of 

Nature (IUCN) to classify plants and animals at risk (IUCN, 2012). 

It is also essential to differentiate between the terms hazard and risk. The former is a 

potential source of damage, whereas the latter combines the likelihood of damage and its 

severity (in defined circumstances). For example, on the one hand, a significant volume of oil 

under pressure has the potential to cause damage, so it is a hazard. On the other hand, 

overpressure may cause an oil spill with defined circumstances (such as total mass released, 

time of the spill, hydraulic flow) and cause specific damage that can be measured. Combining 

the oil spill‘s likelihood of occurrence with the magnitude of the damage characterizes the 

risk. 

As already mentioned, the hazard is a potential source of damage (usually in energy). 

Threats are the initiator events, which could cause the hazard to be released, although hazard 

and threats are sometimes taken to mean the same. Control measures (e.g., safety management 

systems, alarms, automatic stops) are barriers and preventive actions that can control the 

threats and avoid the accident (top event) occurrence to reduce the risk of the top event‘s 

frequency of occurrence. The top event is the accident. Recovery measures are mitigation 

actions to reduce the magnitude of the consequences and so reduce the risk. They can be, for 

example, re-routing of spills, burning the oil before it reaches an ecosystem, pollution 

remediation, habitat protection, translocation, or reintroducing individuals in the population. 

Consequences are the damage, impacts, or effects. Notably, preventive measures include both 

control and recovery measures. Finally, an accidental scenario, or just scenario (SCN), is 

consolidated by defined circumstances to all these factors. 

Lastly, there are two types of toxic risks: risk to human health and ecological risk. The 

former refers to the potential that adverse effects on human health may occur or occur due to 



27 
 

exposure to a toxic substance. The latter refers to the possibility that adverse ecological 

effects may arise or occur due to exposure to a poisonous substance. 

2.3 Quantitative Ecological Risk Assessment 

A Quantitative Risk Assessment (QRA) quantifies frequent incidents with minor 

impacts to even rare events with significant consequences. The principal motivation of 

carrying out a QRA is that its results demonstrate the risks caused by the establishment or 

industrial activity, prioritize which risks require some action, and decide between different 

measures to reduce those risks. Thus, the QRA is necessary for objective decision-making 

related to the establishment‘s safety, surrounding communities, and ecological environment.  

Specifically, the Ecological Risk Assessments (ERA) transform scientific data into 

meaningful information about human activities‘ environmental risk (EPA, 1998). When the 

information is provided by assigning values (i.e., quantifying) the risks, the ERA can be 

addressed as a Quantitative Ecological Risk Assessment (QERA). So, QERA can be defined 

as the formal process of estimating the probability of adverse ecological effects due to 

exposure to one or more stressors in the short and long term. 

Adverse ecological effects are changes that are considered undesirable because they 

alter valued structural or functional characteristics of ecosystems or their components. They 

are evaluated through assessment endpoints and measurement endpoints. An evaluation of 

adversity may consider the type, intensity, and scale of the effect and recovery potential 

(EPA, 1998). According to Pastorok et al. (2002), we have that: 

 Assessment endpoints: they are environmental characteristics or values that are to be 

protected, e.g., wildlife population abundance, species diversity.  

 Measurement endpoints: quantitative expressions of an observed or measured 

biological response, such as the effects of a toxic chemical on survivorship or 

fecundity, related to the valued environmental characteristic chosen as the assessment 

endpoint. 

Endpoints could be expressed as effects on individual organisms, populations, 

communities, ecosystems, and landscapes. Thus, the definition of QERA allows for risk 

assessment to be conducted at various levels within the biological hierarchy (Figure 3). 

However, many QERAs consider only individual endpoints and fail to view population, 

ecosystem, or landscape endpoints. 

Hence, a QERA that ignores population-level effects and focuses only on individual-

level endpoints may lead to inaccurate risk estimates. This approach will cause errors in 
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environmental and risk management decisions and lead to inefficiency. Overestimation of risk 

can lead to a waste of resources to mitigate apparent problems that are not important. In 

contrast, underestimating risk can lead to inadequate risk management to control and prevent 

adverse effects on the ecological environment. 

Population-level effects or higher-level effects can be obtained with the use of 

ecological models in the QERA. Such ecological models are essentially used to translate 

individual-level endpoints‘ responses into impact on population, ecosystem, or landscapes 

endpoints. Particularly, when they focus on population-level effects, they are called 

population models.  

In a straightforward case, a population model can predict the expected numbers of 

individuals in a population in the future from estimates of survivorship and fecundity for 

individual organisms. Thus, chemical effects can be modeled by perturbing the survivorship 

and fecundity values based on knowledge about changes in these parameters obtained from 

toxicity test results (PASTOROK et al., 2002).  

Risk assessment can evaluate the probability of future population extinction (or decline) 

under several environmental conditions, SCNs, and management actions. QERA approach 

based on ecological models (particularly population models) to obtain population-level 

measures has excellent advantages. The following section introduces a theoretical basis for 

the use of ecological modeling in risk assessment. 

2.4 ECOLOGICAL MODELING IN RISK ASSESSMENT 

An ecological model is a mathematical expression that describes or predicts ecological 

processes or endpoints such as population abundance (or density), community species 

richness, productivity, or distributions of organisms (PASTOROK et al., 2002). Thus, 

population and metapopulation models are a classification of ecological models.  

The mathematical expression is essentially used to translate individual-level effects 

(e.g., increased mortality, reduced fecundity) using measurement endpoints into population-

level impacts (e.g., decreased abundance, increased risk of extinction) using assessment 

endpoints. So that one can estimate the risk of adverse effects on a population via toxicity data 

expressed as negative effects on the individual organism. That is the primary rationale for 

ecological modeling in risk assessment. Moreover, once formulated, the ecological model 

may help assess natural recovery, develop monitoring programs, plan restoration strategies, or 

derive remedial action goals (PASTOROK et al., 2002).  
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It is important to note that there are several other components in population dynamics 

rather than survival and fecundity, as described in Section 2.1.2. They can also be 

incorporated into a population model. Some extensions to a population model are shown 

below. For more details, see the references (AKÇAKAYA; BURGMAN; GINZBURG, 1999; 

PASTOROK et al., 2002): 

 Age or stage structure; 

 Sex structure; 

 Parameters vary with time due to stochasticity 

 Parameters vary with time due to deterministic trends; 

 Parameters vary in space: population-specific models for metapopulations; 

 Parameters vary with abundance: density dependence; 

 Additive effects: introduction, harvest, migration between subpopulations in a 

metapopulation, and catastrophes (e.g., industrial accidents). 

Figure 4 illustrates the idea of a straightforward ecological model at the population level 

(i.e., population model). The left side of the image (green boxes) describes the natural 

dynamics of the population in the future, i.e., without chemical exposure. In contrast, the right 

site (red boxes) considers chemical exposure. In this straightforward illustration, the future 

population abundance (assessment endpoint) is predicted through the survival and fecundity 

rates (measurement endpoints) and the initial population abundance. Once again, several other 

variables can influence future population abundance. On the one hand, including different 

variables makes the model more realistic; on the other, it becomes more complicated and 

requires more data. It depends mainly on the modeler‘s knowledge about the population, the 

available data and resources, and the modeling‘s objectives. 
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Figure 4 - The basic idea of a population model without (left side) and with (right side) chemical exposure. 

 

Source: Adapted from Duarte (2016, p. 38 and 39). 
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Generally, field sampling is used to estimate values to the measurement endpoints and 

the assessment endpoints‘ initial conditions. In contrast, an exposure-response assessment is 

conducted to describe the relationship between the concentration of the chemical and the 

magnitude of the individual-level responses of native species (represented by changes in 

measurement endpoints). This relationship is usually specified by a dose-response function so 

that it is necessary data on the long-term effects of the chemical on the species being 

analyzed. 

The purpose of the methodology used is to conduct a QERA at the population level. The 

reason for choosing (meta)population modeling is that apart from providing ecologically 

relevant endpoints, (meta)population models are much more tractable than higher-level 

models.  Figure 5 illustrates this point of view. Despite that, it is possible to strategically 

choose populations of native species that can effectively represent the ecosystem integrity. 

Besides, any genuine attempt to model population dynamics should account for stochasticity, 

mainly because a fluctuation is a prominent and often predominant feature of ecological 

environments. How to model stochasticity will be discussed in Section 2.4.2. 

Figure 5 - Relevance and tractability of ecological models concerning endpoints. 

 

Source: Pastorok et al. (2002, p. 213). 

2.4.1 Age and stage structure 

The age or stage structure of a population refers to age/stage classes within the 

population. They attempt to consider that individuals of different ages have different 

characteristics reflected in their vital rates (e.g., survival and fecundities rates). In contrast, 
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individuals of the same age have similar characteristics. For instance, juveniles may have 

lower survival rates than adults, or juveniles may not reproduce until they become adults. 

Conversely, in an unstructured (scalar) population model, the population is represented by a 

single age/stage, which denotes the population‘s totality. Thus, unstructured models are 

considered a particular case of structured models, with only one class of organisms 

(PAUWELS, 2002). 

Structured models are helpful if individuals‘ vital rates in different classes are different 

enough to justify their life span‘s discretization. Individual classes mean their ages or stages. 

For example, a fish population model with a life span of nearly 4 years could be structured by 

their ages, e.g., zero-year-old, one year, two years, and three years, or by their stages: 

juveniles (zero-year-old) and adults (one-year-old or more). The criteria to structure a model 

by stages instead of ages are: individuals‘ ages are unknown; vital rates depend on stage or 

size rather than age; growth is plastic; some individuals are developmentally disabled or have 

accelerated vital rates. 

Those individuals of the same age/stage are assumed to have the same survival and 

fecundity rates. However, those rates may differ between classes. This way, a structured 

population model has a survival rate,   , a fecundity rate,   , and an abundance at time  , 

      for each age/stage class  . Each class‘s abundances form a vector of numbers (one for 

each class), whereas the vital rates are combined to form a transition matrix used in most 

population models to account for age or stage structure. It is a transition matrix with a unique 

structure called a Leslie matrix for age-structured models (LESLIE, 1945) and a Lefkovitch 

matrix for stage-structured models (LEFKOVITCH, 1965). Below is an example of a Leslie 

matrix: 

  [

      

    
    

]          (2.1) 

The reason for arranging the survival rates and fecundities in the form of a matrix is to 

provide a convenient way to make projections of the population‘s structure from one 

generation to the next (PAUWELS, 2002). For example, for an age-structured model, the 

distribution of abundances in the next step is given by the matrix multiplication: 
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7       (2.2) 

Where       denotes the number of individuals of age class   at time  . 
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Assessors may then choose which age/stage classes they are interested in assessing. In 

most cases, they will be interested in the total population abundance, the sum of the age 

abundances. In some cases, however, they may be interested in the abundance of a specific 

class only. 

2.4.2 Stochasticity 

The variability and uncertainty in populations and their environment is a fundamental 

component of population dynamics. Population models that assume all parameters to be 

constant (i.e., deterministic models) fail to account for unpredictable natural population 

dynamics fluctuations. Conversely, stochastic models allow us to consider these fluctuations. 

They involve replacing constant parameters, such as survival and fecundity rates and carrying 

capacity, with random variables responding to a probability distribution function (PDF), 

usually a normal or lognormal with a certain mean and variance. 

There are many different kinds of stochasticity to be incorporated into a stochastic 

population model, such as: 

 Environmental temporal fluctuations (i.e., temporal variation in parameters); 

 Spatial variation (e.g., population-specific parameters for metapopulations); 

 Measurement and sampling errors that introduce additional uncertainty in parameter 

estimates of a population; 

 Demographic stochasticity because individuals only occur in whole numbers and most 

parameters may be fractional numbers, there will be additional uncertainty in the 

number of survivors and births in the next time-step; 

 Model uncertainty, i.e., uncertainty concerning the structure of the equations used to 

describe the population; 

 Catastrophes, i.e., extreme environmental events that adversely affect significant 

proportions of a population (e.g., fire, drought, flood). 

Nevertheless, catastrophes will be a particular type of stochasticity in the methodology 

used. It allows SCN to be considered as significant and rare environmental events included in 

a population model with a certain probability of occurrence per step that may be constant or 

vary with time. In other words, at each time step, a catastrophe (or an AS) may happen with a 

certain probability. If it happens, its effects of pollution can be modeled by changes in 

parameters since the present time step; if not, all parameters remain the same. 

The risk can be estimated through multiple simulations of the ecological model via 

Monte Carlo. Since a stochastic model has probabilistic components characterized by random 
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variables responding to a PDF, there will be a different result for every single run. Thus, the 

results will also form a PDF that will characterize the risk estimates (e.g., risk of extinction 

and population decline). Following such a procedure will allow variability to be evaluated as a 

degree of confidence and estimate upper and lower bounds on risk measures to assess 

uncertainty. 

Thus, a population model with random variables, representing reality better, is a 

stochastic model since the input variables and initial conditions respond to a PDF. Hence, the 

model does not provide a single result but a distribution of consequences associated with 

probabilities. The following section presents the ways of expressing the results of a stochastic 

population model. 

2.4.3 How to express risk estimates 

The most traditional measure to summarize the results of a population model is the 

expected population trajectory (i.e., the expected number of individuals in a population in the 

future), which is usually expressed by a mean, a ±1 standard deviation, a minimum, and 

maximum values. However, several ecological-related problems and questions that population 

models address are phrased in terms of probabilities. For instance, a specific population of a 

particular species may have a 50% chance of extinction in the next 10 years (i.e., a ―critically 

endangered‖ population according to IUCN, the International Union for Conservation of 

Nature (IUCN, 2012)).  

The probability is usually derived from multiple runs (Monte Carlo) of a population 

model and may be expressed in many ways as bellow (PASTOROK et al., 2002). The 

selection of a specific expression for the probability depends partly on the assessment‘s 

objectives and partly on available information for the species being modeled (PASTOROK et 

al., 2002). 

 Interval decline probability is the probability of a population declining by as much 

as a given percentage of its initial value at any time during the period of prediction. 

 Interval extinction probability: the probability of a population falling as low as a 

given abundance at any time during the period of prediction. 

 Terminal decline probability: the probability of a population being as much as a 

given percentage lower than its initial value at the end of a simulation. 

 Terminal extinction probability: the probability of a population being as low as a 

given abundance at the end of a simulation. 
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 Interval explosion probability: the probability of a population equaling or exceeding 

a given abundance at any time during the period of simulation. 

 Terminal explosion probability: the probability of a population being as great as or 

greater than a given abundance at the end of a simulation. 

 Time to extinction: the time required by a population to decrease to less than a given 

threshold abundance.  

 Time to explosion: the time required by a population to exceed a given threshold 

abundance. 

There are other practical single measures to summarize the predictions of the risk curves 

(AKÇAKAYA; ROOT, 2013): 

 Expected minimum abundance: the average (overall replications) of the minimum 

population abundance of the trajectory. It estimates the smallest population size that is 

likely to occur within the simulated time.  

 The median time to extinction: is the median value in the PDF of the time to 

extinction, i.e., the probability that the population will go below a given threshold 

before that time is    . 

2.5 LITERATURE REVIEW 

Due to the significant impacts of oil pollution, the development of risk assessment 

models for oil spills is an ongoing research area. Various new methodologies for quantifying 

such risks have been applied in the marine environment (AMIR-HEIDARI et al., 2019; 

AMIR-HEIDARI; RAIE, 2018, 2019; ARZAGHI et al., 2018; GUO, 2017). 

Guo (2017) has developed a statistical model for probabilistic oil spill risk assessment. 

The statistical risk assessment model integrates a wave-current coupled model (coupling 

SELFE (ZHANG; BAPTISTA, 2008) and SWAN (BOOIJ; RIS; HOLTHUIJSEN, 1999)), a 

deterministic oil spill model (GUO et al., 2014), and a probabilistic methodology. In that 

model, multiple hypothetical spill scenarios are modeled. The risk index for each receptor cell 

is calculated as the product of five variables: spill probability, cell area, average oil slick 

thickness, mean exposure duration, and sensitivity index. 

Arzaghi et al. (2018) proposed an ecological risk assessment methodology using 

Bayesian Networks (BN). BN are directed acyclic graphs used for reasoning under 

uncertainty by considering casual relationships (represented by directed arcs) among many 

random variables (defined by chance nodes). The overall risk is estimated considering the risk 
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quotient, i.e., the Predicted Exposure Concentration (PEC) ratio over the Predicted No Effect 

Concentration (PNEC). 

Amir-Heidari and Raie (2018) have developed a structured framework for probabilistic 

risk assessment of oil spills from offshore oil wells. The authors used GNOME (ZELENKE et 

al., 2012) and ADIOS (LEHR et al., 2002) to simulate the spills and obtain oil concentrations. 

The scenarios with different release sources (i.e., production wells), release amounts, and 

frequencies were assessed. The risks were calculated as the product of the frequency of 

occurrence of the spill (estimated by empirical formulations, the concentration that reaches 

each receptor (i.e., a part of the shoreline), and the sensitivity (vulnerability) index. The risks 

for each receptor were calculated, aggregating the risks posed by different sources.  

Amir-Heidari and Raie (2019), in another work, presented a stochastic model for oil 

spill risk assessment as an attempt to cover the limitations of the NOAA‘s Trajectory Analysis 

Planner (TAP II). In this new model, the input variables (e.g., release volume, duration, rate) 

were defined as probability distributions to propagate the uncertainties through the model.  

GNOME and ADIOS were once again used. In research by Amir-Heidari et al. (2019), 

they developed a model for spatial and stochastic oil spill risk assessment, utilizing a 

shipwreck case study. They estimated the probability of an oil spill from the wreck using 

expert elicitation and Bayesian updating in a Fault Tree Analysis (FTA) framework. 

Similarly, the risks were measured by the spill mean probability and the mean impact 

(exposure times the sensitivity index) of the spill for the receptors.  

All those works were instrumental for ecological risk assessment for oil spills in the 

marine environment. However, in the risk quantification, the consequence assessment was 

made based on the concentrations that reach a specific region and are helpful only to estimate 

individual effects, not the actual impact on the environment. Our approach quantifies risks as 

the extinction probability of a representative species due to the exposure to the pollutant 

through a stochastic ecological model. Such a model is a mathematical expression used to 

translate individual-level effects (e.g., increased mortality due to oil exposure) using 

measurement endpoints into population-level impacts (e.g., decreased abundance, increased 

risk of extinction). Thus, we can estimate how the spill will impact the environment 

surrounding the spill. Besides, our work simulates the oil trajectory and transformations in the 

ocean from transportation accidents, using a Bayesian approach to estimate the probability of 

such accidents. 

  



37 
 

3 QUANTITATIVE ECOLOGICAL RISK ASSESSMENT 

METHODOLOGY  

The QRA methodology used is based on population modeling and can consider extreme 

and infrequent events, and it is flexible for microbial and ecological risks (DUARTE et al., 

2019). When assessing microbial risks, the methodology can quantify risks to humans due to 

exposure to one or more pathogens, such as the risks to the public health system due to the 

COVID-19 pandemic (SIQUEIRA et al., 2021). For ecological risks, the methodology 

considers both the event‘s frequency of occurrence and the magnitude of the adverse 

ecological effects, capable of quantifying ecological risks caused by events with a low 

frequency of occurrence and catastrophic consequences. It can also predict populations‘ 

responses to toxic exposure (via population-level endpoints), considering the relationships 

between individuals, the species‘ life history, and ecology. The methodology can assess the 

risk of population extinction (or decline) in the future under the influence of a catastrophic 

accident and human impacts (DUARTE et al., 2013; DUARTE; DROGUETT, 2016; 

DUARTE; DROGUETT; MOURA, 2018). More details on the methodology can be found in 

Duarte et al. (2019) and Duarte (2016). 

The steps of the methodology are as follows: 

1. Characterization of the problem; 

2. Identification of hazards and consolidation of scenarios; 

3. Assess exposure to risks; 

4. Frequency estimates 

5. Population modeling 

6. Risk quantification and categorization 

The methodology is iterative so that revaluation may occur during any part of the risk 

assessment. We illustrate the methodology as a flowchart, with each step‘s main inputs and 

outputs in Figure 6. The general steps are described in the following sections. Specific 

methods used in each step, as presented in the specific objectives, will be presented as 

subsections of the respective step. 
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Figure 6 - Flowchart for the Quantitative Ecological Risk Assessment methodology. 

 

Source: The Author (2021)
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3.1 CHARACTERIZATION OF THE PROBLEM 

The first step is a planning phase on which the entire risk assessment depends. When 

appropriate, it requires engagement between the risk assessor and other experts such as risk 

managers, environmental managers, ecologists, technical managers, operators, and other 

interested parties (e.g., industrial leaders, government, environmental groups, any segment of 

society about ecological risks). They should be able to: 

1. Define the risk assessment issues and objectives: The risk assessor should ensure that 

risk management is aided. This way, they should reach a general agreement on 

characteristics such as the objectives for the QERA (including criteria for success), 

expected outputs of the QERA, data, and information already available.  

2. Characterize the establishment and installations to be included in the QERA: Here, the 

risk assessor should collect technical information that characterizes the establishment 

concerning its physical structure, process conditions, chemicals of potential concern, 

and installations (e.g., storage tanks, transport units, pipelines, loading equipment) that 

deals with those chemicals. 

3. Characteristics of the ecological components: The purpose is to gather information 

about environmental features affected by accidents in the establishment. The 

representative species, or bioindicator, is defined alongside information such as habitat 

and life stages. The bioindicator is more sensitive and serves as an early warning 

indicator of ecological effects.  

3.2 IDENTIFICATION OF HAZARDS AND CONSOLIDATION OF SCENARIOS 

(SCNs) 

It is a qualitative risk assessment step that aims to identify all the initiator events of 

accidents and their possible consequences. We can apply structured techniques to 1) 

systematically consolidate all SCNs; 2) to qualitatively rank the risks related to each SCN 

according to their frequency and severity; 3) to select those AS that should be included for the 

risk assessment.  

The methodology uses the Preliminary Hazard Analysis (PHA) to perform this step 

(ERICSON, 2005). A worksheet is generally used to report the qualitative information that 

consolidates each SCN, such as hazard, initiator event, causes, control measures, possible 

consequences to the ecological environment, frequency, and severity classes.  
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After the identification of all SCNs, one should select the most relevant to a more 

detailed assessment. Therefore, one should establish the criterion considered in the selection 

of the appropriate SCNs. For a conservative approach, one can use a standard based only on 

the severity class. Therefore, in this work, the severity III or IV (Table 2) criterion is adopted 

to trigger SCNs for further analysis in the next step. 

Table 2 - Severity classes. 

Class Description 

I (Minor) No damage or minor system damage, and does not cause ecological 

damage 

II (Major) Irrelevant ecological damage 

III (Critical) Considerable ecological damage caused by the release of chemicals, 

reaching areas beyond the boundaries of the establishment. An accidental 

scenario results in ecological damage with a short recovery time. 

IV 

(Catastrophic) 

Catastrophic ecological damage caused by the release of chemicals, 

reaching areas beyond the boundaries of the establishment. Accidental 

scenario results in ecological damage with prolonged recovery time. 

Source: Adapted from Petrobras (2008). 

Because PHA is often used as an initial risk study in an early stage of a project, this 

step‘s results may already be available. In fact, in a human QRA, accidents with the potential 

to damage humans are identified, which can usually cause ecological damage. In this case, 

most accidents have already been identified, and the risk assessor should review the 

environmental effects (i.e., possible consequences) caused by these accidents. This step also 

systematically identifies the existing accidents and potential ecological damage, leading to 

improved emergency preparation. 

3.3 ASSESS EXPOSURE TO RISKS 

This step should be conducted for all SCNs selected in the previous step to a further and 

more detailed assessment. One must estimate the bioindicator species‘ exposure to impacts 

(e.g., harvest, chemical exposure). For SCNs that deal with exposure to chemicals, we may 

need to apply mathematical models that simulate the occurrence and movement of toxic 

releases in the water, atmosphere, and soil. 
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This application includes describing the chemical dispersion and predicting the 

concentration that reaches bioindicator species over time, i.e., concentrations             in 

location         and at time  , within a defined area (spatial boundaries) for each SCN  . 

Chemical fate and transport models have often been used to describe and predict the 

distribution and concentration of chemicals in the environment. Preliminary guidance on fate 

and transport models is given in Section 3.3.1. We also suggest the references (DE 

DOMINICIS et al., 2013a, 2013b; QUEIROZ et al., 2019; SEBASTIÃO; GUEDES 

SOARES, 1995). 

For some SCNs, meteorological conditions may influence the chemical dispersion and, 

consequently, the estimated exposure concentration. A meteorological scenario is defined by 

parameters that depend on environmental media (e.g., air, soil, water) the chemical moves 

through. Such meteorological parameters could be, e.g., weather stability class; wind direction 

and speed; air, soil/bund, water temperature; ambient pressure; humidity; tides of the sea; 

ocean currents; the season of the year. In such cases, a set of meteorological conditions for 

each SCN   must be generated. Thus, if one has   SCNs selected from the second step and   

meteorological scenarios defined here, one has now    new SCNs, each with a specific 

function of exposure concentrations            . It is helpful to group the data in a limited 

number of representative meteorological parameters, not to yield an excessive number of new 

SCNs for the QERA. 

To avoid wasting resources, for the following steps, one should select only the exposure 

SCNs in which population-level effects are likely to occur so that population-level ecorisks 

should be quantified. The methodology suggests using the hazard quotient (i.e., the estimated 

exposure concentration divided by a no-effect concentration), a commonly applied criterion 

(EURECO, 1997). The hazard quotient is calculated as the Predicted Environmental 

Concentration (PEC) divided by the Predicted No-Effect Concentration (PNEC) to indicate 

acceptable risk when it is lower than 1 (i.e., PEC < PNEC). The former is provided by the 

results of chemical fate and transport models. The latter is by ecotoxicological data on the 

assessed species, usually as a concentration-based endpoint known as No Observed Effect 

Level. 

However, because PEC/PNEC is quite an uncertain measure, we deal with its 

uncertainty in a very conservative way, in the sense that we do not want to discard SCNs due 

to uncertainty in this measure. EurEco (1997) suggested using a 100 times lower criterion, 

i.e., the acceptable risk is only when PEC/PNEC < 0.01. Thus, when PEC/PNEC > 0.01, we 

select a set of SCNs likely to contribute to causing population-level effects for the next step.  
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3.3.1 Modeling the Fate and Transport of Oil in the Ocean 

For this work, we chose the Lagrangian model MEDSLIK-II to perform the oil spill 

simulations (DE DOMINICIS et al., 2013a, 2013b). The simulation of the transport, diffusion, 

and transformation of spilled oil in the ocean can be done using a Lagrangian formalism 

coupled with Eulerian circulation models. The Lagrangian formalism can track mass 

elements, such as the droplets of oil in the water; while in the Eulerian approach, the focus is 

on the flow properties in a specified point in space as a function of time so that one can model 

the ocean currents (FOX et al., 2014).  

Some of the Lagrangian operational models are COZOIL (REED; GUNDLACH; 

KANA, 1989), SINTEF OSCAR (REED; AAMO; DALING, 1995), OILMAP (SPAULDING 

et al., 1994), GULFSPILL (AL-RABEH; LARDNER; GUNAY, 2000), ADIOS (LEHR et al., 

2002), MOTHY (DANIEL et al., 2003), MOHID (CARRACEDO et al., 2006), POSEIDON 

OSM (ANNIKA et al., 2001; NITTIS et al., 2006), OD3D (HACKETT; BREIVIK; 

WETTRE, 2006), the Seatrack Web SMHI model (AMBJORN, 2006), MEDSLIK 

(LARDNER et al., 2006; ZODIATIS et al., 2008), GNOME (ZELENKE et al., 2012), 

OILTRANS (BERRY; DABROWSKI; LYONS, 2012), and MEDSLIK-II (DE DOMINICIS 

et al., 2013a, 2013b).  

The wind – shear and stokes drift as a function of the wind speed – and surface currents 

are the primary forces for oil transport in the aquatic environment (SPAULDING, 2017). 

Beyond transportation, oil spills impact depends mainly on the environmental conditions that 

control the weathering processes at the site of the spill (e.g., currents, climate, waves) and the 

time required to engage mitigation operations (LEE et al., 2015; MARTA-ALMEIDA et al., 

2013; NRC, 2003). Weathering is a general definition for changes in oil properties due to 

physical, chemical, and biological processes when the spill is exposed to environmental 

conditions (e.g., in aquatic systems). The main weathering processes which govern the fate of 

an oil slick at sea are spreading    , evaporation    , dispersion     and emulsification    . 

They are illustrated in Figure 7. The general equation for a tracer concentration            in 

units of mass over volume, mixed in the marine environment is (DE DOMINICIS et al., 

2013a): 

  

  
              ∑                

         (2.1) 

Where 
  

  
 is the local time rate of change of the concentration;   is the sea current 

mean-field with components        ;   is the diffusivity tensor with parameterizes the 
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turbulent effects;                are the   transformation rates that modify the tracer 

concentration through the weathering processes, detailed in the following sections (DE 

DOMINICIS et al., 2013a). 

The surface volume is subdivided into a thin part,    , and a thick part,    . This 

assumption is made to use the Mackay transformation processes algorithms. In this approach, 

the weathering processes are considered separately for the thin and thick slick (DE 

DOMINICIS et al., 2013a). The surface oil volume      is written as: 

             (2.2) 

Where: 

                              (2.3) 

                              (2.4) 

   and     are the areas occupied by the thick and thin surface slick volume, and 

   and     are the thicknesses of the thick and thin surface slicks. 

Figure 7 - Main weathering processes acting on an oil spill. 

 

Adapted from TRB and NRC (2014) 

3.3.1.1 Spreading 

The most dominant process in the first stage of a spill is spreading low pour point (i.e., 

the temperature below which the oil loses its liquid properties) oil on water. The spreading 

strongly influences late processes, such as evaporation and dispersion (SEBASTIÃO; 

GUEDES SOARES, 1995). Spreading consists of two processes: the first is the area lost due 
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to oil converted from the thick to the thin slick, and the second is due to Fay‘s gravity-viscous 

phase of spreading. (AL-RABEH; LARDNER; GUNAY, 2000). 

When the oil comes into contact with water, they rapidly reach water temperature, 

which may be below the waxy oils‘ pour point. Thus, a pre-requisite for spreading a particular 

type of oil or refined product after spillage is that its pour point must be lower than the 

ambient seawater temperature. A high pour point characterizes crude oils with high wax 

content or refined products, and these materials will quickly solidify either immediately or 

shortly after spillage at sea. The formation of wax crystal matrices in oil also reduces the oil‘s 

ability to disperse naturally as tiny droplets into the ocean, hence the shape often of sizable 

floating tarballs (SEBASTIÃO; GUEDES SOARES, 1995). 

Many oils spilled on the surface of calm water will spread in a continuous layer within a 

circular pattern due to gravity and net surface tension (or spreading coefficient). The 

spreading coefficient is the difference between tension and the sum of air/oil surface tension 

and the oil/water interfacial tension. Although viscosity does affect the spread rate, 

particularly shortly after spillage, many oils tend to spread on a water surface at about the 

same rate even though they may possess different viscosities. The dominant physicochemical 

parameters of the crude oil that determine spreading are thus in addition to its pour point, 

density, and spreading coefficient (SEBASTIAO; SOARES, 1995). 

The thin and thick slick volume rates due to spreading are written as (DE DOMINICIS 

et al., 2013a): 

    

  
|
   

  
    

  
|
   

              (2.5) 

    

  
|
   

        

  
|
   

         (2.6) 

FG is Fay‘s gravity spreading, which is defined later. Mackay‘s model (MACKAY et 

al., 1979; MACKAY; PATERSON; TRUDEL, 1980) approximates the thin slick area 

increment by: 

    

  
|
   

   
              

         (
   

   

     
)      (2.7) 

Where   
          is the constant rate of spreading of the thin slick;   

        controls 

the dependence on the thickness of the spreading of the thin slick;   
   is     and   is a 

constant parameter for the thickness offset. For the thick slick, Fay‘s spreading is assumed to 

be: 
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                            (2.8) 

  
   

 is a constant rate of spreading of the thick slick. 

The time rate of change of the area of the thick slick due to spreading is: 
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         (2.9) 

3.3.1.2 Evaporation 

Evaporation is the primary initial process involved in the removal of oil from the sea. 

The evaporation rate is determined by the oil‘s physicochemical properties and is increased by 

spreading, high water temperatures, strong winds, and rough seas. By evaporation, low 

boiling components will rapidly be removed, thus reducing the remaining slick volume. For 

many oils, evaporation from the surface slick is the most important mass loss process during 

the first hours of an oil spill (SEBASTIÃO; GUEDES SOARES, 1995). 

The evaporation rate decreases for larger spill volumes since the slick‘s surface 

area/volume ratio for these larger spills decreases, i.e., the slick thickness increases. As 

expected, the rate of evaporation increases with increasing temperature and wind speed. 

However, this effect is relatively small. Consequently, removing lighter hydrocarbons through 

evaporation, since the volume reduces, the density and viscosity increase. These parameters‘ 

change is essential concerning natural dispersion, emulsification, dissolution, and oil sinking 

(SEBASTIÃO; GUEDES SOARES, 1995). 

The volume of oil lost by evaporation is computed using Mackay‘s algorithm for 

evaporation (MACKAY; PATERSON; TRUDEL, 1980). The evaporation changes the 

volume of the thick and thin parts of the slick. The temporal rate of change of the volume lost 

by evaporation from the thick slick,    , can be expressed as: 
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[               ]                 (2.10) 

Where         and         are the initial thick and thin slick volumes, respectively, 

and 
    

  
|
   

 is the time rate of change of the fraction of oil evaporated. For the thick oil slick, 

the time rate of change of the fraction of oil evaporated is 

    

  
|
   

 
             

    
  

   

   
                         (2.11) 

     
  

    
                     (2.12) 
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Where     (bar) is the oil vapor pressure;    is the initial vapor pressure (depends on the 

oil type used);         is a constant that measures the rate of decrease of vapor pressure with 

the fraction already evaporated;        is the area of the thick part of the slick;           is 

the evaporative exposure to the wind;       is the temperature;                  is the 

gas constant and                is the molar volume of the oil. For    we assume: 

     
   

(   
 

  
)
 

                    (2.13) 

Where 
 

  
 is the non-dimensional 10m wind modulus     is 1     );   is a constant, 

and   
   

        is the evaporation rate.  

For the thin slick oil, the time rate of change of the volume is equal to: 
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[               ]                 (2.14) 

Where 
    

  
|
   

 is the time rate of change of oil fraction evaporated from the thin slick. 

The evaporative component in the thin slick is assumed to disappear immediately. Still, 

through the spreading process, the thin slick is fed by oil from the thick slick that, in general, 

has not yet fully evaporated. Equating the oil content of the thin slick before and after the 

flow, we obtain 
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|
   

          

                     (2.15) 

Where      is the initial fraction of the evaporative component, representing the 

maximum value that the oil fraction evaporated from the thin slick can attain. Besides, 

evaporation leads to an increase in the viscosity of the oil, which is calculated by: 

                                    (2.16) 

Where      
      is the initial viscosity, which depends on the oil type used, and      

is a constant that determines the increase of viscosity of evaporation. 

3.3.1.3 Emulsification 

Emulsification refers to the process by which water becomes mixed with the oil in the 

slick. The emulsification result is a significant increase in volume (3 or 4 times the volume of 

the original stabilized oil), a substantial increase in density, and a substantial increase in 

viscosity (SEBASTIÃO; GUEDES SOARES, 1995).  
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The mousse formation causes an increase in viscosity that the Mooney equation can 

compute (SEBASTIÃO; GUEDES SOARES, 1995): 

        [
     

    
   

  
]                   (2.17) 

Where   is defined by Eq. 3.18,    is the fraction of water in the oil-water mousse, 

  
   

 is a constant controlling the effect of water fraction on mousse viscosity. Emulsification 

is assumed to continue until     reaches a maximum value     , which corresponds to a 

mousse composed of floating tarballs. Mackay‘s models (MACKAY et al., 1979) for the rate 

of change in    is given by 
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(    
   

  )                  (2.18) 

Where      is the non-dimensional wind speed calculated at the slick center;   
   

 is 

a constant which controls the rate of water absorption in the mousse;   
   

 is a constant that 

controls the maximum water fraction in the mousse. 

3.3.1.4 Dispersion 

The wave action on the oil drives it into the water, forming a cloud of droplets beneath 

the spill. The droplets can be classified as large droplets that quickly rise and coalesce again 

with the surface spill or tiny droplets that rise more slowly and can be immersed long enough 

to diffuse into the lower water columns layers. In the latter case, the droplets are lost from the 

surface spill and considered to be permanently dispersed. What characterizes the tiny droplets 

is that their rising velocity under buoyancy forces is comparable to their diffusive velocity. 

For large droplets, it is much higher (DE DOMINICIS et al., 2013a). 

The time rate of change of the thick slick volume due to water column dispersal of tiny 

droplets is given by Mackay‘s formula (MACKAY et al., 1979): 
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                 (2.19) 

Where   
   

 and    are, respectively, the downward diffusive velocity and rising 

velocity of tiny droplets.    is the fraction of tiny droplets, while    is the volume of tiny 

droplets beneath the thick slick, and it is equal to: 

                              (2.20) 
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Where        is the vertical thickness of the droplet cloud. The large droplets are not 

regarded as dispersed since they eventually re-coalesce with the slick. The fraction of tiny 

droplets is calculated using the following expression: 
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                      (2.21) 

Where   
   

 is a constant which controls the rate of dispersion of all droplets by waves, 

and     is the fraction of tiny droplets in the dispersed oil beneath the thick slick, and it is 

given by: 
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Where   
   

 controls the fraction of droplets below a critical size;            is the 

interfacial surface tension between oil, and     is the emulsified oil viscosity. The 

emulsification influences the mousse viscosity that, in turn, affects the dispersion.    and 

     are the interfacial surface tension scale and emulsified oil viscosity scale, respectively. 

For the thin slick dispersion, only tiny droplets are considered. It is assumed that these 

droplets are all lost from the surface spill at the following rate: 
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Where   
   

 is control dispersion from the thin slick and     is the fraction of tiny 

droplets in the dispersed oil beneath the thin slick. 

3.4 FREQUENCY ESTIMATES 

For the selected SCNs in the previous step, the frequency of occurrence should be 

estimated. The output of the QERA is very dependent on this estimate. An under-or sub-

estimate of this value can lead to rough errors in calculating the ecological risk. In some risk 

assessments, an accident‘s occurrence frequency can be estimated from historical records in 

databases or references since they represent the case. 

Due to some facilities‘ complexity, it might be necessary to use expert opinion and 

Reliability Engineering techniques (e.g., event tree, Event Sequence Diagrams, Bayesian 

Belief Networks). By doing so, we can correct the generic frequencies considering the 
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influence of control measures (e.g., safety management systems, alarms, automatic stops) and 

human errors that might contribute to the occurrence of the SCN. For a general view on 

reliability theory, models, methods, and applications, see (O‘CONNOR; PATRICK, 2002; 

RAUSAND; HOYLAND, 2004). For specific information about techniques such as Event 

Sequence Diagrams (ESD), Bayesian Belief Networks (BBN), and Human Reliability 

Analysis (HRA) see (FIRMINO; DROGUETT, 2004; HOLLNAGEL, 1998; KORB; 

NICHOLSON, 2003; STAMATELATOS et al., 2002; SWAIN; GUTTMANN, 1983). 

Besides, historical records and statistical inference are usually sufficient for the 

objectives of most QERAs. If greater confidence in the results is required, the methodology 

suggests using BBNs to integrate historical records with expert opinion or  Bayesian 

Population Variability Analysis (DROGUETT; GROEN; MOSLEH, 2004; ZHANG et al., 

2016). For example, for the maritime accidents that cause an oil spill, we will incorporate ship 

pilots‘ statements with previous statistics to reduce uncertainty in estimates of the frequency 

of oil spills.  

The frequencies concerning meteorological parameters that consolidate each SCN 

(defined in the previous step) should also be considered. Consequently, meteorological 

statistics (deduced, for example, from a nearby and representative meteorological station) 

should be used to define fractional frequencies or the number of observations to each 

meteorological scenario. 

Finally, only SCNs that contribute significantly to the ecological risk should be 

included in the QERA under the conditions that (1) the frequency of occurrence is equal to or 

greater than 10-8 per year and (2) PEC/PNEC is greater than 0.01. The first criterion is taken 

from the ‗Purple Book‘ method (CPR18E, 2005), which also uses this criterion to decide 

whether the identified SCN must undergo a quantitative risk assessment. Therefore, this 

criterion is used to filter SCNs for population modeling in the next step. The fourth step‘s 

output is then a set of SCNs likely to contribute to the ecological/microbial risk, with their 

respective frequency estimates of occurrence and exposure if such an SCN should occur. 

3.4.1 Bayesian Population Variability Analysis 

To estimate the oil tankers accidents frequency, one must consider the inherent 

uncertainty of the assessment. This assumption agrees with Singpurwalla‘s statements when 

considering a Bayesian approach for reliability analysis (SINGPURWALLA, 2006). Thus, 

given the uncertainty about the accident rate of the ships, one can obtain the uncertainty 

variability of the whole population of vessels. This uncertainty can be represented as a 
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probability distribution, denoted by the Population Variability Distribution (PVD). The 

assessment of the PVD is performed through the Population Variability Analysis (PVA). 

Hence, we chose this approach to be used in the frequency estimate step of our assessment. 

The basics that back up the Bayesian Population Variability Analysis (BPVA) are 

provided in this section. As a typical PVA procedure, we assume that a family of parametric 

distributions describes the PVD (DROGUETT; GROEN; MOSLEH, 2004; KAPLAN, 1983; 

MOSLEH; APOSTOLAKIS, 1985; PÖRN, 1996). If there are enough data for each ship, we 

can directly define the accident rate‘s PVD parameters from the dataset. 

Let   denote a random variable that defines the accident rate and                    

be a parametric PVD with   parameters. A probability distribution  ( )             over 

the model parameters can be used to describe the uncertainty over the PVD. Then, the 

estimated population variability density  ̂    can be taken as: 

 ̂    ∫ ∫  (        ) (       )              
                 (2.25) 

Thus,  ̂    consists of a weighted mix of distributions of the chosen model, instead of 

being formed by a single ―best‖ distribution preferably obtained from the set of possible 

distributions, for instance, by using Maximum Likelihood Estimation (MODARRES; 

KAMINSKIY; KRIVTSOV, 1999). In the BPVA, the assessment of   may be based on three 

different types of information: 

●   : prior state knowledge on  , such as the analyst experience with the system or 

component; 

●   : exposure data (run-time) from operating experience with similar systems in similar 

applications (e.g., maritime accidents database); 

●   : estimates about the accident measure   from sources such as expert opinions. 

   is the prior evidence and provides information about  ( ). In other words,   ( )  

 (    ) is the prior probability distribution over the parameters   and  ̂      ̂       

∫         ( )  
 

 is the prior PVD of  . The evidence    includes available data obtained 

from accident datasets. The data consists of the number of occurrences of each accident (i.e., 

collision, fire, and explosion) annually or within a given time window. Additionally,    

includes estimates from expert opinions about the system‘s design, manufacturing, and 

operation in similar applications. This type of information is usually a point estimate, the best 

estimate, or a range of values centered around it. Alternatively, a probability distribution can 

express this range using the best estimate of the distribution‘s mean or median. In the 
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following sections, we also consider assessing the analyst‘s confidence in estimating a given 

expert. 

Therefore, we can develop the distribution of the population variability parameters 

based on types   ,    and    information by applying Bayes‘ theorem: 

  ( )   (          )  
               ( )

∫                 ( )  
 

                 (2.26) 

where               is the likelihood of evidence    and   . Then, the PVD over  , 

conditional on both   ,   , and    i.e., the posterior PVD is given by 

 ̂      ̂             ∫         ( )  
 

. 

Assuming exposure evidence    and source estimates    are independent, the likelihood 

function becomes                                   , where the first and second 

factors of the right side are the likelihood of exposure data and estimates evidence, 

respectively. By writing this expression considering the likelihood of the information for each 

system, we have: 

 (     |    )  ∏  (   |    ) (   |    )
 
                     (2.27) 

where             and             , respectively, are the probability of observing evidence 

    and     for the ith system out of   systems. Note that an accident measure can generate 

the likelihood for the ith system   , which is one of the possible values of the random variable 

  that is distributed according to       . Thus, we calculate the probability of observing 

evidence     and     by allowing the accident measure to assume all possible values, i.e., we 

average  (    ) over the distribution of  : 

 (   |    ) (   |    )  ∫                        ( | )  
 

              (2.28) 

which can be replaced into (2.29) to obtain the likelihood function using all the information 

available. 

When writing the likelihood as (2.30), the estimated and exposure data are coupled, i.e., 

the source‘s estimate of the accident rate is for the system the exposure data have been 

observed. We can deal with exceptional cases when only one type of information is available 

for the ith system. For instance, when there are only exposure data, the likelihood is 

∫             ( | )  
 

; while that if there is just source information, the likelihood is 

∫             ( | )  
 

. 

For risk assessment purposes, the frequency estimates of undesirable events, such as 

industrial accidents, are usually done via historical records from fault or accidents and expert 
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opinion. However, the fault data may not exist, such as the case of new facilities with specific 

operational conditions, new equipment, or rare events (e.g., industrial accidents as oil spills) 

(RAMOS, 2012). The Bayesian approach allows integrating the fault or accident data with 

expert opinion. With this integration, subjective information can be quantified and used on 

objective problems. This approach is beneficial for the risk assessment because most 

information is subjective (RAMOS, 2012). 

Other techniques can also be used to assess the frequency of accidents involving vessels 

on course. For instance, the Fault Tree Analysis can be used to determine the causes of an 

accident (UĞURLU et al., 2020). Moreover, the Bayesian Networks are a Direct Acyclic 

Graph (DAG) whose nodes and edges are created to understand probabilistic influences 

(MARTINS; MATURANA, 2013). The relationship between connected nodes is given 

through the Bayes‘ theorem. With this approach, we can model complex systems and improve 

the representations of the relation between the events (MARTINS; MATURANA, 2013; 

SINGPURWALLA, 2006; TRUCCO et al., 2008). 

3.5 POPULATION MODELING 

This step is an iterative process (see Figure 8). Firstly, a population or metapopulation 

model is formulated to describe the natural population dynamics of key species in the area in 

a no-impact SCN (i.e., without exposure to the chemicals). This SCN is called the benchmark 

scenario (SCN-0). If more than one is analyzed, it is necessary to formulate a population 

model for each representative species (bioindicators). The population dynamics must be 

described via assessment endpoints defined in the first step. Then, the frequency estimates and 

predicted exposure magnitude and timing for each risk SCN are integrated with SCN-0 to 

create a set of sub-models representing each scenario SCN-               
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Figure 8 - The iterative process of population modeling. 

 

Source: Adapted from Duarte (2016, p. 69). 

Input data will be necessary to parameterize the population model. The quality and 

predictiveness of the model depend mainly on the quality and quantity of these data. If data 

for the key species are insufficient, one could extrapolate the information from related ones or 

use expert opinion. 

Typically, a population model requires information on the following input variables 

(PASTOROK et al., 2002; PAUWELS, 2002): age/size structure; specific survival and 

fecundity rates for each age/size; rates of immigration or emigration; initial abundance for 

each age/size; estimates of variability for the vital rates and initial abundances; density-

dependence effects; geographic and habitat distribution of critical species; and foraging 

behavior. The required level of detail for a particular variable depends on the assessment 

objectives. 

Once the population model is formulated, it should be validated to ensure a good 

approximation of reality and reliable predictions. The validation of a model is typically done 

by measuring the conformance of predictions with empirical data. This measure may be used 

to characterize the reliability of other predictions. 

After the model‘s validation, we should conduct an uncertainty analysis of risk 

estimates to determine if the level of uncertainty is acceptable. A simple way to deal with 
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uncertainties is to derive worst and best-case estimates of extinction risks based on parameter 

changes. Such a procedure will let the risk assessor estimate a range (upper and lower bounds) 

to risk measures, such as time to extinction or decline risk. The more remarkable are the 

uncertainties in parameter values, the wider these bounds will be. If these bounds are too 

broad, uncertainty may be unacceptable and not meet risk managers‘ needs. At best, these 

bounds should be narrow enough to make decisions taken by risk managers based on the 

lower bound the same as those found on the upper bound (i.e., the difference between the 

lower and upper bound should be regardless for risk managers). 

If uncertainty is acceptable, then it is the end of this step. Otherwise, if the present 

model provides risk estimates with an unacceptable level of uncertainty, then a sensitivity 

analysis can point out the most important parameters which need better estimates. Then, 

further fieldwork and data gathering on these parameters can improve the model. Finally, one 

has an improved model (with a validated structure and more precise parameters), which must 

be further analyzed until validated and achieve acceptable uncertainties. 

3.6 RISK QUANTIFICATION AND CATEGORIZATION 

The final step simulates SCNs separately (for isolated risks) or together (for evaluating 

cumulated risks). The risk results may be represented as probability-consequence curves 

derived from multiple runs (Monte Carlo) and expressed in many ways (Section 3.5.3). 

Many software programs are available for population model construction and 

probabilistic simulation via Monte Carlo methods (KALOS; WHITLOCK, 2008). The 

methodology suggests the software RAMAS Metapop v. 6.0 (AKÇAKAYA; ROOT, 2013), 

allowing fast stochastic simulation of an SCN. One can simulate hundreds of SCNs by 

varying the most uncertain parameters in one‘s model within a range of coherence, comparing 

them, and picking the most relevant ones (e.g., those that maximize/minimize the risk) to 

present the results. The range of plausibility can be assumed based on a literature review and 

expert opinion.).  

For QERA, the main result is a cumulative density function (CDF) for the time to half 

loss (HL) (i.e., the time required by a population to decrease to less than half of its initial 

size). Although RAMAS software automatically builds the CDF, it is essential to understand 

that the resulting CDF is created using a Monte Carlo simulation. For every Monte Carlo run, 

a single-point estimate for the discretized time to extinction or HL     is calculated. After 

many Monte Carlo runs (e.g., 10,000), one will have a set of single-point estimates for the 

time to HL and their number of occurrences. Thus, one can calculate the probability of 
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occurrence of each ―single-point estimate‖ (e.g.,                                   ). 

Then, for each time  , it is possible to cumulate the probabilities of all   lower than  , which 

results in the CDF for the time to HL, i.e.:            . So,       means the probability 

that HL will occur at or before a time t. This function can be plotted in a graph. A Monte 

Carlo simulation‘s great advantage over deterministic analysis is that results show not only 

what could happen but how likely each outcome is. 

The risk results obtained (e.g., CDF for the time to extinction) can be categorized into 

threat classes according to the International Union for Conservation of Nature (IUCN) (IUCN, 

2012). The only quantitative IUCN criteria are expressed in terms of time and probability of 

total extinction (zero individuals) as follows: 

 CRITICALLY ENDANGERED (CE): the probability extinction within 10 years or 3 

generations, whichever is longer (up to a maximum of 100 years), is     ; 

 ENDANGERED (EN): the probability extinction within 10 years or 3 generations, 

whichever is longer (up to a maximum of 100 years), is     ; 

 VULNERABLE (VU): the probability extinction within 100 years is     ; 

 NEGLIGIBLE (NE): the probability extinction within 100 years is     ; 

Hence, IUCN categories are appropriate for classifying species affected by a range of 

local, regional, and global environmental changes and human disturbance. However, the 

IUCN categories are too optimistic (in the sense of underestimating risk categories) for local 

applications, where the aim is to describe the interaction of local environmental conditions 

and human impacts with a local population, which is the purpose of the QERA methodology. 

Thus, the methodology proposes and uses different and more conservative categories for 

QERA. Communicating risks caused by a single industrial activity is more conservative in 

expressing risk criteria as ―half loss‖ (i.e., 50% population size decline) instead of total 

extinction. Therefore, the methodology categorizes risks as follows: 

 CRITICAL RISK (CR): the probability of HL within 10 years or 3 generations, 

whichever is longer (up to a maximum of 100 years), is     ;  

 HIGH RISK (HI): the probability of HL within 20 years or 5 generations, whichever is 

longer (up to a maximum of 100 years), is      ; 

 CONSIDERABLE RISK (CO): the probability of HL within 100 years is      ; 

 NEGLIGIBLE RISK (NE): the probability of HL within 100 years is      . 
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4 FATE AND TRANSPORT SIMULATION OF POTENTIAL OIL 

SPILLS NEAR FERNANDO DE NORONHA ARCHIPELAGO 

The content of this chapter was accepted for presentation at the 5
th

 conference of the 

Brazilian Association of Risk Analysis, Process Safety, and Reliability (ABRISCO). It is also 

being prepared for further scientific publication. 

 

Oil spills in the ocean are a significant threat that has caused catastrophic impacts on 

coastal countries‘ marine environment and ecosystems. Therefore, it is essential to assess the 

risk of potential oil spills and then provide information to decision-makers regarding the best 

strategies to mitigate impacts. One of the fundamental steps in a risk assessment is to measure 

the exposure of a given location to hazardous substances. This paper focuses on this 

assessment: we simulate potential oil spills from oil tankers that navigate near Fernando de 

Noronha Archipelago (FNA). The simulation considers the oil‘s fate (i.e., the physical and 

chemical transformations) and transport in the ocean. We use the Lagrangian model 

MEDSLIK-II to simulate various scenarios that are characterized by: the amount of oil 

spilled, based on recent spills and the tank capacity of typical oil tankers; the location of the 

hypothetical spillage, placed in ship routes that are near FNA; and the metoceanographic 

conditions that vary throughout the year (e.g., currents and wind velocities). The simulation 

results are the oil concentrations that can reach FNA. This information is to be integrated with 

a risk assessment for oil spills in this region. Thus, we can better estimate the exposure to the 

risks and provide more accurate results. 

4.1 INTRODUCTION 

Oil spills in the ocean are a significant threat that has caused catastrophic impacts on 

coastal countries‘ marine environment and ecosystems (CHEN et al., 2019). The high number 

of vessels, including oil tankers that circulate the globe and extreme events such as storms and 

tropical cyclones due to global warming, increase the risk of potential oil spills affecting 

oceanic islands (QUEIROZ et al., 2019). Despite the immense efforts of international and 

national maritime authorities over the years to enhance ship safety, many shipping accidents 

still occur (ITOPF, 2021; UNG, 2019). For instance, in the 2010s, a total of 63 spills 

occurred, releasing 164,000 tons of oil, which was the least amount spilled in the last decades 

(ITOPF, 2021). Furthermore, the oil trade plays a vital role in economic development. There 
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is a rising in the maritime transportation of the volume of oil. The oil tankers are responsible 

for around 90% of the oil transported worldwide (CHEN et al., 2019). 

The evaluation of oil spill behavior in risk assessment of oil tanker spills is fundamental 

to assess the spatial and temporal extent of the impact and which vulnerable ecosystems will 

suffer the consequences. Oil spill simulation models have been developed for simulating oil 

slick trajectories and fates (fate and transport models) under actual environmental conditions 

from spills created from marine traffic, oil production, or other sources (KERAMEA et al., 

2021; SPAULDING, 2017). Therefore, oil spill risks are determined by the potential hazard 

of oil pollution and the environmental characteristics, e.g., ocean currents, winds, waves, and 

sea surface temperature (SST). 

The simulation of the transport, diffusion, and transformation of spilled oil in the ocean 

can be done using a Lagrangian formalism coupled with Eulerian circulation models. The 

Lagrangian formalism can track mass elements, such as the droplets of oil in the water; while 

in the Eulerian approach, the focus is on the flow properties in a specified point in space as a 

function of time so that one can model the currents and wind fields (FOX et al., 2014). Thus, 

with the Lagrangian approach, the model can compute the oil concentration on the water (DE 

DOMINICIS et al., 2013a). 

In this research, we used a Lagrangian fate and transport model, the MEDSLIK-II (DE 

DOMINICIS et al., 2013a, 2013b), to simulate oil spills trajectories and transformations in the 

ocean environment near the Fernando de Noronha Archipelago (FNA). Input data from 

oceanographic (i.e., currents and sea surface temperature) and atmospheric Eulerian models 

used in the MEDSLIK-II model solve the advection-diffusion and weathering process, as 

illustrated in Figure 1. These results are fundamental to quantify the impacts of potential oil 

spills that may occur due to oil tankers accidents that navigate nearby the FNA when 

integrated into a Quantitative Ecological Risk Assessment (DUARTE et al., 2013, 2019; 

DUARTE; DROGUETT, 2016). 
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Figure 1 - Simplified scheme of the MEDSLIK-II with the inputs (oceanographic and atmospheric Eulerian 

models) and the output (fate and transport of oil spill). 

 

Source: The Author (2021) 

The remainder of this work is structured as follows. First, Section 4.2 describes the 

metoceanographic conditions around the archipelago (i.e., ocean currents, sea surface 

temperature, and wind speed) and the main ship routes. Section 4.3 details the dataset used, 

defines the spillage points on the most critical route and describes the fate and transport model 

used, i.e., the MEDSLIK-II. In section 4.4, we present and discuss the results regarding the oil 

spill simulations. Lastly, we offer closing remarks about the simulations performed. 

4.2 DESCRIPTION OF THE PROBLEM 

The FNA is in a warm tropical region. The air temperature on average is      and a 

well-defined dry season between August and February, and a rainy season between March 

and July, averaging        rainfall (SERAFINI; FRANÇA, 2010). The prevailing winds 

are the southeast trade winds. The greater intensity occurs between July and August 

(TCHAMABI et al., 2017). The highest sea surface temperatures (SST) occur between March 

and June, typically exceeding      due to the occurrence of the southwestern tropical 

Atlantic warm pool (CINTRA et al., 2015) and the lowest between August and November 
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              (HOUNSOU-GBO et al., 2015; SILVA et al., 2009; TCHAMABI et al., 

2017). On the ocean surface, the central branch of the South Equatorial Current (cSEC) flows 

westward until it reaches the North Brazil Current (NBC) near the coast (LUMPKIN; 

GARZOLI, 2005; STRAMMA; SCHOTT, 1999). The cSEC is stronger between March and 

July and weaker between August and February (LUMPKIN; JOHNSON, 2013; TCHAMABI 

et al., 2017). 

The main ship routes nearby FNA are presented in Figure 2. The routes were identified 

by (DUARTE; DROGUETT, 2016) on Pilot Charts, which show the most recommended 

routes for navigation (i.e., those taking best advantage of currents, winds, and possible nearby 

landmarks to help determine the ship‘s position) for each month of the year based on 

metoceanographic data collected by the Brazilian Navy from 1951 to 1972 (BRASIL, 1993) 

The three main routes are:  

1. Ponce and Cólon – Cape of Good Hope (PC-CGH – November – going), minimum 

distance to FNA:      nautical miles (nm) 

2. Recife – Madeira Island (REC – MI – Augusto – going and return), minimum distance 

to FNA:       nm;  

3. Recife – Cape Noaudhibou (REC – CN – March – going and return), minimum 

distance to FNA:       nm; 

4.3 METHODOLOGY 

4.3.1 Data source 

The global bathymetry data is provided from GEBCO, a terrain model for ocean and 

land, giving elevation data (in meters) on a    arc-second interval grid (GEBCO, 2021). The 

coastline data is based on the Global Self-consistent Hierarchical High-resolution Geography 

(GSHHG) from the National Oceanic Atmospheric Administration (NOAA) (NOAA, 2018).  

The global oceanographic inputs are from the Global Ocean       Physics Analysis 

and Forecast provided by CMEMS, which includes temperature (SST), salinity, currents, sea 

level, mixed layer depth, and ice parameters top to bottom over the global ocean (CMEMS, 

2021). For this study, only the SST and current data were retrieved. The atmospheric data 

(i.e., wind velocities) were collected from the ERA-Interim atmospheric fields, provided by 

the ECMWF (BERRISFORD et al., 2011; ECMWF, 2019). 
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Figure 2 - Main routes near FNA: Ponce and Colón – Cape of Good Hope (PC – CGH, going); Recife – Madeira 

Island (Rec – MI, going and return); Recife – Cape Noaudhibou (REC – CN, going and return). Six landmarks 

are represented in the figure: (A) Pico‘s Hill; (B) FN Lighthouse; (C) São Pedro‘s Church; (D) Antenna; (E) 

Ovo‘s Island; (F) Pontinha. Scale       . 

 

Source: Duarte and Droguett (2016) 

4.3.2 Definition of Spillage Scenarios 

The primary forces that act on the oil spill are the currents and winds. We chose the 

monthly averaged currents and winds for March and July. The rationale is that the cSEC starts 

to intensify in March, but with a lower wind speed, reaching its highest intensity in July, 

strengthening the southeast trade winds (LUMPKIN; GARZOLI, 2005; MOLINARI, 1982). 

The route that possesses a significant hazard is the REC – CN, which passes from south 

to east of FNA (DUARTE; DROGUETT, 2016). It is conceptually possible that an oil spill on 

this route would be transported to the archipelago coast due to prevailing winds and currents. 

We defined three initial spill releasing points on this route. These points were determined on 

the eastern side of the FNA, also known as the Windward Side (WS), that faces the open 

ocean and where the sea is more exposed to the action of winds and ocean currents 

(ASSUNÇÃO et al., 2016; IVAR DO SUL; SPENGLER; COSTA, 2009). Moreover, these 

release points were selected based on traffic density on the route from the archipelago of the 
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main vessel tracks registered in the Marine Traffic website (MARINETRAFFIC, 2021; 

QUEIROZ et al., 2019). The points are:                                               

and                           (Figure 3). 

Figure 3 - Location of FNA and coordinates of the release points P1, P2, and P3 for the oil spill simulations 

 

Source: The Author (2021) 

We also assumed an instantaneous volume of oil spilled values       tonnes, based on 

a single typical Suezmax cargo tank (IMO, 2008). The oil used in the simulations is the     

API (intermediate oil type, density approximately            ) which is the most used in 

the Brazilian oil and gas exploratory activities (ANP, 2021). Once the spill starts, we simulate 

the fate and transport of the oil during     and store the main results every half hour. 

Therefore, we simulated the oil spill cases considering the weathering conditions for each 

month at each point of release, resulting in six scenarios. The names of the scenarios result 

from the combination of the releasing point and the month of the spill, summarized in Table 

1. 

Table 1 - Summary of the oil spill simulation scenarios. 

 Release Points 

          

March             

July             

Source: The Author (2021) 
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4.3.3 MEDSLIK-II 

The MEDSLIK-II is a Lagrangian oil model designed to simulate oil slick transport and 

transformation processes for spills on the maritime surface (Figure 1) (DE DOMINICIS et al., 

2013a, 2013b). When an oil spill occurs, the wind and surface currents are the primary forces 

for oil transport in the aquatic environment (SPAULDING, 2017). Therefore, the oil transport 

in the ocean is primarily attributed to advection by the large-scale flow field, and turbulent 

flow components cause the dispersion. Beyond transportation, oil spills impact depends 

mainly on the environmental conditions that control the weathering processes at the site of the 

spill (e.g., currents, climate, waves) and the time required to engage mitigation operations 

(LEE et al., 2015; MARTA-ALMEIDA et al., 2013; NRC, 2003). Weathering is a general 

definition for changes in oil properties due to physical, chemical, and biological processes 

when the spill is exposed to environmental conditions (e.g., in aquatic systems). The main 

weathering processes are illustrated in Figure 7 and detailed in Section 3.3.1 

The general equation for a tracer concentration              with units of mass per 

volume, mixed in the marine environment is given by: 

  

  
              ∑                

          (4.1) 

where 
 

  
 is the local time-rate-of-change operator,   is the three-dimensional distribution of 

the horizontal ocean current components   and  ,   is the turbulent diffusivity tensor, which 

parameterizes the sub-grid scale processes; the position vector         is denoted by  ; and 

               are the   transformation rates that modify the tracer concentration through 

the weathering processes (i.e., physical and chemical transformations).  

Following the Lagrangian approach, the oil slick is constituted of oil particles that move 

like water parcels. However, the weathering processes acting on the entire slick instead of on 

the single-particle properties. Thus, the active tracer equation can be effectively split into two 

component equations: 

   

  
 ∑                 

             (4.2) 

  

  
                 ,         (4.3) 

where    is the oil concentration due to the weathering processes, while the final time rate of 

change of   is given by the advection-diffusion acting on   . The model first solves (4.2) by 

considering the weathering processes acting on the total oil slick volume: thus, oil slick state 



63 
 

variables must be defined. The structural state variables correspond to the oil concentrations: 

on the sea surface, dispersed, sedimented on the bottom, and beached on the coast parcels.  

The slick state variables are used for the transformation processes, and the particle state 

variables are used to solve the advection-diffusion processes. Then, the Lagrangian formalism 

is applied to solve 4.3, the advection-diffusion part of the equation, discretizing the surface oil 

slick in particles with position increments given by: 

                √             (4.4) 

where    is the model time step;   are independent random vectors normally distributed, i.e., 

        ; and   is the turbulent diffusion diagonal tensor. The first part of the right side of 

the equation is the deterministic part of the flow field, while the second is the stochastic term, 

which characterizes random motion. Finally, the oil concentration is computed by assembling 

the particles with their associated properties. 

4.4 RESULTS 

4.4.1 Oceanographic and Atmospheric Results 

The metoceanographic results are fundamental to describing the fate and transport of oil 

on the ocean. The influence of the wind affects the direction of oil transport. In March, the 

winds have a southwest direction with 2.86  /  average speed, while in July, the wind are in 

a northeast direction with 7.52  /  average speed (Figure 4). The mean SST was higher in 

July, averaging 29.3 ° , while for March the temperature averaged 27.01 °  (Figure 5). 

Regarding the surface current, the most intense occurred in July, averaging 0.54  /  

southwestward. In March, the current presents a little deviation to the northeast, with a mean 

intensity equal to 0.17  /  (Figure 5). The oil transport was mainly westward due to the 

surface current direction. Therefore, the northeast direction in July and the greater wind 

intensity contributed to carrying the oil plume to FNA. 
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Figure 4 - Average wind speed distribution (colors, m/s) and direction (arrows) for March (a) and July (b). 

 

Source: The Author (2021) 

Figure 5 - Average sea surface temperature distribution (colors, °C) and surface current direction (arrows) for 

March (a) and July (b). 

 

Source: The Author (2021) 

4.4.2 Oil Spill Simulations 

The primary simulation for each scenario results is the percentages of the original oil 

volume that: evaporated, remained on the surface, dispersed in the water columns, and 

sedimented on the sea bottom and the coast. These results for the final time-step of the 

simulation are summarized in Table 2. In March, it was observed that the maximum 

percentage of evaporation was reached after     hours, while in July, the maximum was 

achieved within   hours. Also, the top rate of evaporated oil was similar in each month: 

approximately        in March and        in July (Table 2). 
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Table 2 - Summary for each scenario of the percentage of oil that evaporated, remained on the sea surface, 

dispersed on the water column, and fixed on the coast and the sea bottom. 

Scenario Evaporated     
On the sea surface 

    

Dispersed on the 

water column     

Fixed on the coast and 

the sea bottom     

                       

                       

                       

                          

                          

                       

From: The Author (2021) 

The density and viscosity increase is due to the emulsification of the water in the oil. 

For the spills simulated March, the density and the viscosity of the water-oil emulsion did not 

stabilize until the end of the simulation. The viscosities started at             and increased 

to              for   ,              for    and              for   . Similarly, for the 

emulsion density, that increased from           to              for the releases that 

originated from points    and    and              for   . None of the spills simulated in 

March reached FNA. 

For the simulations in July, the density stabilized around    hours after the start of the 

simulation, with the final value being              and remained equal until the end of the 

simulation for the releases from all three points. Similar to what happened in March, the 

variation in viscosity reached a stable value simultaneously with the density. The maximum 

emulsion viscosities are             for   ,             , for   , and           for   . 

After the evaporation process ends, around        of the oil remains on the surface. The 

final dispersed percentages can be seen in Table 2.  

The oil reached the shore in two of the spillage scenarios in July:     and    . In 

scenario    , a small amount of oil that spread from the slick reached FNA. The final amount 

of oil on the shore and the sea bottom after 48 hours was equivalent to        of the initial 

volume of the spill            . For scenario    , the oil reached the shore after    hours, 

initially with                  of the total volume spilled. By the end of the     simulation 

time, the entire oil fixed on the coast and at the bottom of the sea is approximately 

                   . This oil portion is a substantial amount that can cause severe 

ecological damage and require cleanup efforts on a large scale. 
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The oil spill trajectory and concentrations on the sea surface for the release point    for 

  ,     and    hours are presented in Figure 6. The illustration is helpful to show how the 

metoceanografic conditions influence the oil slick trajectory.  

4.5 DISCUSSION 

The oil evaporation rate in the MEDSLIK-II depends on the physicochemical properties 

of the oil, spreading rate, SST, and winds intensity (DE DOMINICIS et al., 2013a; 

SEBASTIÃO; GUEDES SOARES, 1995). Our simulation results showed that more than one-

third of the volume spilled evaporates in the first few hours after the spill, i.e.,      for the 

spills occurring in March, and    for the ones in July. The emulsification formation varied 

with the month and happened after the portion evaporated reached its maximum. Since the 

winds are more potent in July, the emulsification occurs faster (within      , as they provide 

energy for emulsification, but not enough to disperse it again (Lee 2015). In March, the wind 

intensity was lower, and the emulsion viscosity was still increasing within the simulation 

time. Still, the oil formed a stable and high viscosity emulsion that prevented the oil from 

spreading.  

For lighter oils          , the evaporation is more significant, and thus the impacts 

of a spill reaching an ecosystem would be reduced. On the other hand, heavier oils      

      rich in asphaltenes and wax, would form more stable mousses with a low evaporative 

rate, thus preventing the spreading. Regarding intermediate oil types as the one simulated, the 

evaporative loss was not significant since a considerable volume of oil reached FNA in 

                . Moreover, the low percentage of oil dispersed and sedimented indicates 

that advective processes are more considerable than buoyancy effects. 
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Figure 6 - Scenario P2M: Oil concentration on the water (ton/km²) after (a) 10 hours, (c) 20 hours, and (3) 30 

hours. Scenario P2J: Oil concentration on the water (ton/km²) after (b) 10 hours, (d) 20 hours, and (f) 30 hours. 

The crosses represent the oil spill releasing points. 

 

Source: The Author (2021) 

The natural dispersion reduces the volume of the slick at the surface and reduces the 

evaporative loss; however, it does not alter the physicochemical properties of the oil 

(SEBASTIÃO; GUEDES SOARES, 1995).  The wind speed and viscosity directly impact the 

percentage dispersed in the water columns, i.e., the higher the wind speed and the oil density, 

the more oil will be incorporated into the water column. The oil density did not vary 

significantly for both months, and the average wind speed in July            is higher than 

in March           ; thus, the oil dispersed in July is also higher,                   in 

July against                  . The amount of oil dispersed into the water have serious 
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consequences to the environment, since toxic components to marine life from the oil are 

mixed on the water, i.e., the polycyclic aromatic hydrocarbon (PAH) (e.g., naphthalene, 

acenaphthene, fluorine, pyrene) (HONDA; SUZUKI, 2020). 

The combination of current and wind direction being westwards is problematic if an oil 

spill occurs on the east side of FNA. The westward current and the predominant northeast 

wind in July intensify the oil transport towards FNA. It is important to note that the wind 

dictated the direction of the plume trajectory while the current dominated the flow. The 

southeast direction of the winds in March prevented the oil from reaching the archipelago. 

Still, the advective process predominates over the degradation effects (e.g., evaporation) in all 

scenarios. Thus, oil spills in July are of concern regarding catastrophic pollution in the 

archipelago.  

The metoceanographic and physicochemical processes brought a high parcel of the oil 

that first reaches FNA within   h. A total amount of around        of oil              is 

on the archipelago shore or sediment on the shallow water depths by the end of the 

simulation. This beaching is illustrated in Figure 6F when little oil is still being transported. 

The advective transport makes the time window for an effective response very narrow, 

potentially intensifying the impacts. Furthermore, mitigation actions such as the use of 

dispersants are very toxic to the environment (SHAFIR; VAN-RIJN; RINKEVICH, 2007). 

Thus, preventive actions should be prioritized instead of mitigating measures.  

A highly uniform oil slick reaches FNA, with little spreading and             of oil 

concentration. The regions affected encompass the Rata islet to the Sueste bay. They are 

susceptible areas with rich ecological hotspots. For instance, the coral reefs of FNA are of 

fundamental importance to the archipelago. They are sessile and sensitive to pollutants; the 

corals serve as food and shelter to many types of animals such as worms, crustaceans, 

sponges, sea urchins, and many fishes (YENDER et al., 2010). The loss of coral will affect 

humans and marine and terrestrial organisms since they protect the shoreline, support tourism, 

and contribute to fisheries.  

Some species are essential to ecological tourism, such as sharks, sea turtles, and the 

spinner dolphin (Stenella longirostris) (QUEIROZ et al., 2019). Moreover, FNA presents 

several threatened fish species. The presence of such endangered species implies more 

conservation efforts. A recent assessment revealed that     of all fish species registered are 

threatened or near-threatened according to the International Union for the Conservation of 

Nature (IUNC) and the Chico Mendes Institute for Biodiversity Conservation (ICMBio) 

conservation status (SCHMID et al., 2020). 
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Even though oil tankers accidents are infrequent, these ships typically navigate nearby 

FNA. The damages suffered from the oil spills by the marine and terrestrial life may impact 

the ecosystem and also socioeconomic aspects of FNA. The ecological tourism and the 

domestic fishery will be reasonably affected, thus placing the FNA inhabitants in a critical 

situation.  

4.6 CONCLUSION 

Simulations of fate and transport of oil spills are critical in a risk assessment for oil 

spills. This work simulated hypothetical oil spills with oil tankers that navigate near the 

Fernando de Noronha Archipelago. The model simulated the oil trajectory and the weathering 

processes (evaporation, spreading, dispersion, emulsification, and coastal adhesion) that act 

on the spill, giving as results the percentages of oil affected by each of the processes 

mentioned above and the portions that remain on the coast and the sea. The simulations 

showed a potential for a high volume of oil reaching FNA, causing considerable damage to 

the environment and affecting the FNA community (e.g., fishing and tourism activities) for 

spills occurring in July, where the winds and currents are more potent. The advective forces 

dominate the weathering process; thus, the oil slick reaches FNA in a short time window. 

Hence, there would be little time to prepare for mitigation actions, and some measures like oil 

dispersants are very lethal to marine life. Thus, the simulation reinforces the need for 

preventive measures when facing potential oil spills.  
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5 FREQUENCY ASSESSMENT OF MARITIME ACCIDENTS USING 

BAYESIAN POPULATION VARIABILITY ANALYSIS 

The content of this chapter was accepted for presentation at the 5
th

 conference of the 

Brazilian Association of Risk Analysis, Process Safety, and Reliability (ABRISCO). It is also 

being prepared for further scientific publication. 

 

Industrial accidents, such as toxic spills, have caused catastrophic environmental 

damage to animals and plants. The high number of vessels, including oil tankers that circulate 

the globe and extreme events such as storms and tropical cyclones due to global warming, 

increases the risk of potential oil spills affecting oceanic islands. The frequency estimate is a 

fundamental step in any risk assessment. However, some types of accidents correspond to 

rare, extreme events, i.e., low frequency-high consequences. In this context, classical 

statistical approaches are ineffective since available data are generally sparse and contain 

censored recordings. Thus, we here propose a Bayesian population variability-based method 

to estimate the distributions of accident rates. We can merge sparse data from accident 

databases and the judgment of experts such as pilots, captains, and chief officers. Finally, this 

assessment is used in the case of oil tankers that navigate nearby Fernando de Noronha 

Archipelago in Brazil. The frequency results will be incorporated into a further quantitative 

ecological risk assessment. 

5.1 INTRODUCTION 

Industrial accidents, such as oil spills, have caused catastrophic environmental damage 

to animals and plants. The high number of vessels, including oil tankers that circulate the 

globe and extreme events such as storms and tropical cyclones due to global warming, 

increases the risk of potential oil spills affecting oceanic islands. Despite the immense efforts 

of international and national maritime authorities to enhance ship safety over the years, many 

shipping accidents may still occur (ITOPF, 2021; UNG, 2019). 

For instance, in the 2010s, a total of 63 spills happened, releasing 164,000 tons of oil, 

which was the minimum amount leaked in the last decades (ITOPF, 2021). In the Brazilian 

context, an oil spill with origin still unknown reached the northeastern coast in 2019 

(IBAMA, 2020). Furthermore, the oil trade plays a vital role in economic development, and 

then there is a rise in the maritime transportation of oil volume. Indeed, the oil tankers are 

responsible for around 90% of the oil transported worldwide (CHEN et al., 2019). 
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Apart from threatening the crew‘s life and resulting in significant economic losses, oil 

spills are among the most hazardous pollutants for marine contamination, with catastrophic 

impacts on coastal countries‘ environments and ecosystems (CHEN et al., 2019). The oil 

spills are mainly caused by collision, contact, grounding, fire, explosion, and non-accidental 

structural failures and are defined as follows (IMO, 2008): 

● Collision: striking or being struck by another ship, whether underway, anchored, or 

moored. This category does not include striking underwater wrecks. 

● Contact: striking any fixed or floating objects other than those included under collision 

or grounding. 

● Grounding: being around or hitting/touching shore or sea bottom or underwater 

objects (e.g., wrecks). 

● Fire: incidents where the fire is the initial event. 

● Explosion: incidents where the explosion is the initial event. 

● Non-accidental structural failure: when the hull presents cracks and fractures, affecting 

the ship‘s seaworthiness. 

However, when considering oil tankers that travel in the open sea near oceanic islands, 

we assume there is no grounding possibility due to water depths. Yet, there are no objects 

around that could characterize a contact. There was a significant drop in spills caused by the 

non-accidental structural failure after the 1990s (ITOPF, 2021). Thus, we did not consider this 

cause in our assessment. Collisions are responsible for about 40% of oil spills, while fire and 

explosion together correspond for more than 10%. The total amount of oil spilled by these 

three types of accidents since 1970 is very similar (ITOPF, 2021). Therefore, we focus our 

assessment on the rate of collision, fire, and explosion. 

In the risk assessment of oil tanker spills, many different models and methods have been 

used to evaluate the frequency of the accidents. For instance, the International Maritime 

Organization (IMO) developed a tool for risk evaluation, the Formal Safety Assessment 

(FSA) for crude oil tankers, and used historical data in the frequency assessment step (IMO, 

2008). (ELIOPOULOU; PAPANIKOLAOU, 2007) and (PAPANIKOLAOU et al., 2007) 

have used classical, statistical methods to evaluate the frequencies of accidents from 1978 to 

2003 quantitatively. Fault Tree Analysis (FTA) is a traditional method to determine the causes 

of a maritime accident. (UĞURLU et al., 2015) analyzed maritime collision and grounding of 

oil tankers with FTA, while (UĞURLU et al., 2020) assessed variable conditions that would 

lead to an accident in a fishing vessel, such as environmental and operational conditions. 
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Regarding Bayesian Networks (BN), (UNG, 2019) evaluates the probability of collision 

integrating FTA with a modified Fuzzy BN based on Cognitive Reliability Error Analysis 

Method (CREAM), developed to assess the human error. (ANTÃO; SOARES, 2019) also 

evaluated human error contribution in different weather conditions, and (JIANG et al., 2020) 

and (ZHANG et al., 2016) proposed a BN-based risk analysis approach to investigate and 

predict marine accidents‘ probabilities. (MARTINS; MATURANA, 2013) applied BN for 

human reliability analysis in oil tanker operations. The contribution of organizational factors 

in accidents was also investigated by (TRUCCO et al., 2008). 

(MARTINS; MATURANA, 2010) have developed a Human Reliability Analysis in 

maritime transportation following IMO‘s FSA guidelines, and (MARTINS; PESTANA; 

DROGUETT, 2020) integrated expert opinion with fuzzy analysis to assess the probability of 

accidents. Furthermore, (JIN et al., 2019) enriched the current literature by using machine 

learning-based methods (e.g., support vector machines) to assess the probability of maritime 

accidents. 

Despite the advances aforementioned, to the best of the authors‘ knowledge, no 

statistics-based approaches have considered the heterogeneity in accidents, i.e., different 

characteristics of the ships (e.g., size, age) and the accident region (e.g., areas with severe 

meteo-oceanographic conditions). Some methods consider various factors (e.g., vessel‘s age 

and size, ship flag, and environmental factors) as variables that influence the likelihood of 

accidents (JIANG et al., 2020; JIN et al., 2019), but the uncertainties of each effect are not 

adequately assessed, since the impact may vary from location to location and from ship to 

ship.  

Thus, we usually deal with a heterogeneous population of vessels subject to different 

environmental and operational conditions and other characteristics that can alter its accident 

rate (e.g., waves, tides, maritime traffic in the route). Hence, it is essential to analyze the 

variability of these rates over the entire population of ships. However, when considering 

accidents in a specific location, we may lack particular information or data. Other sources 

such as data from similar areas (e.g., same weather conditions) and expert judgments could be 

used to estimate these rates better. 

Therefore, this paper proposes a Bayesian method to estimate accident rates in maritime 

transportation that can lead to oil spills. The remainder of this paper is structured as follows. 

Section 5.2 offers an overview of the Bayesian Population Variability Analysis (BPVA). 

Section 5.3 details the elicitation of experts‘ opinions, the maritime databases that we 

adopted, and the mathematical formulations for assessing the prior distribution, the likelihood 
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function, and the posterior variability distribution. Then, Section 5.4 presents and discusses 

the results, including a sensitivity analysis in the experts‘ judgments. Finally, in Section 5.5, 

we conclude remarks. 

5.2 DESCRIPTION OF THE PROBLEM 

We consider each ship has a unique accident rate. The Bayesian Population Variability 

Analysis (BPVA), also known as the first stage in a two-stage Bayesian, or hierarchical Bayes 

(DROGUETT; GROEN; MOSLEH, 2004), will estimate the variability distribution within a 

group of non-homogeneous ships. The proposed method is also an attempt to cover the 

drawbacks of the FSA, such as the inability to quantify risks and the lack of reliability and 

effectiveness when subjective knowledge is used in the absence of historical data (JIANG et 

al., 2020). 

The distribution of the accident rates is not analytically obtainable, and thus we rely on 

a Markov Chain Monte Carlo (MCMC) approach to draw the non-parametric posterior 

distributions. Then, we use these distributions to create different scenarios, i.e., pessimistic, 

optimistic, and most probable, to assess the oil spills risks to oceanic islands. To the best of 

the authors‘ knowledge, no article has performed BPVA to model maritime accidents. The 

procedures implemented for BPVA are based on the mathematical methods developed for risk 

and reliability analyses, such as those in (MOURA et al., 2016) and (GRECO; 

PODOFILLINI; DANG, 2021). In this work, we tailored these methods to analyze maritime 

accidents properly.  

As a case study, we consider oil tankers that travel near the Fernando de Noronha 

Archipelago (FNA), which has the most significant number of marine and terrestrial species, 

attributed to its extension and habitats‘ heterogeneity. FNA has the Conservation Unit status, 

protecting endemic species and maintaining a healthy island ecosystem (SERAFINI; 

FRANÇA, 2010). Two-thirds of FNA consist of the Marine National Park (PARNAMAR-

FN), a Marine Protected Area that reaches the 50-meter isobathic line (ICMBIO, 2013). 

However, FNA lacks infrastructure and mitigation plans if it needs to deal with an oil spill, 

which could intensify the accident‘s impacts (QUEIROZ et al., 2019). Despite there is no 

evidence of large spills in recent years, it remains a latent threat (IUCN, 2020), and recently 

pieces of oil have been reported to reach the FNA coast (ICMBIO, 2021) 
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5.3 METHODOLOGY FOR THE FREQUENCY ASSESSMENT 

5.3.1 Accident Databases 

We use the exposure data (type     to formulate the likelihood function of the Bayesian 

model. As we present in Section 5.3.3.1, the likelihood function uses the run-time data as the 

number of events during the exposure time (here measured as ship-year). We consider the 

number of accidents that happened during the exposure time of all operational ships.  

Historical data can be extracted from IHS Fairplay (former Lloyds Register Fairplay) 

and Lloyds Maritime Intelligent UNIT (LMIU), which are the most prominent and complete‘ 

by current standards (ELIOPOULOU et al., 2012; IMO, 2008). However, these accident 

databases were not designed to be used in risk assessments, and thus their usage is 

problematic. For instance, the information is textual; therefore, they do not offer the accidents 

data on a quantitative basis, making it challenging to be used in FSA procedures.  

The National Technical University of Athens, Ship Design Laboratory (NTUA-SDL) 

purposely designed a new database for risk assessment to overcome such drawbacks, 

including the data from both IHS and LMIU (SAFEDOR, 2009). It enabled further processing 

towards quantifying event categories and direct extraction of conditional probabilities of 

accidental scenarios (ELIOPOULOU et al., 2012; IMO, 2008). Thus, we used two versions of 

the NTUA-SDL available, the first records tanker ships greater than            (i.e., the 

cargo capacity in tonnes) from 1980 to 2007, while the second, from 1990 to 2008, include 

ships greater than            and even ships greater than             (ELIOPOULOU 

et al., 2012; IMO, 2008). 

In the context of both NTUA-SDL databases, the exposure time is given as the 

operational fleet at risk (OPR), which is defined as the number of ships that operate in the 

corresponding period of interest, and it is measured as ship-year. Thus, OPR is the number of 

ships exposed to an accident during the time frame of the data collection. 

Moreover, we used the Annual Overview of Marine Casualties and Incidents 2020 

provided by the European Maritime Safety Agency (EMSA) and the Statistics of Marine 

Accidents of the Japan Transport Safety Board (JTSB) (EMSA, 2020; JTSB, 2021). The 

EMSA‘s purpose is to ensure a high, uniform, and adequate level of maritime safety and 

security, prevention of, and response to marine pollution caused by ships and oil and gas 

installations (EMSA, 2020). JTSB contributes to preventing accidents, mitigating their 

consequences, improving transport safety and raising public awareness, and protecting the 

people‘s lives by performing appropriate incident investigations and implementing policies 
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and measures through the issuance of safety recommendations, opinions, and information 

(JTSB, 2021). 

EMSA database contains data from 2014 to 2019, while the JTSB, from 2007 to 2019, 

only provides the number of accidents during the years—however, they lack the OPR. 

Therefore, we researched to find the fleet of each region, i.e., Europe and Japan, and we used 

an educated guess to consider that a ship operates around 80% of the year. With this, we 

expect a reasonable approximation of the OPR. 

5.3.2 Expert opinions 

As a fundamental risk analysis step, the frequency assessment can usually be done using 

classical statistical methods, i.e., a frequentist approach. However, as mentioned above, it may 

not be possible to use such a method because of the lack of historical data. Even though there 

are accident databases available, there are no specific data regarding accidents near FNA. 

More specifically, there are cases for which general information is available, but they are not 

representative of the analyzed system, as in FNA.  

Hence, we cannot use a frequentist approach to estimate the accident rates due to 

different operational conditions (i.e., traffic density, environmental conditions). Therefore, in 

cases like this, a subjective assessment of the frequency of occurrence is a viable option. The 

main advantage of such an approach is to aggregate all information available, apart from the 

historical data, thus delivering more reliable results (MARTINS; PESTANA; DROGUETT, 

2020). 

We have adopted a methodology proposed by Martins et al. (2020) that assesses expert 

judgments in the context of maritime accidents. The experts answer a questionnaire (see 

Appendix), and weights are given based on their category (i.e., profession) and experience 

with navigation. Such a questionnaire is suggested by the Delphi method (LINSTONE; 

TURROF, 2002), where experts give opinions on the problem individually and anonymously. 

Then, the methodology performs expert elicitation and maps the linguistic responses into 

probabilities using Fuzzy Logic (MARTINS; PESTANA; DROGUETT, 2020). Specifically 

to our case, we applied a similar questionnaire to weigh each expert‘s opinions and assign an 

error factor (EF) to each of them. 

Amongst the experts that answered the questionnaire, we have a captain (CA) and a 

chief officer (CO). CA is the first authority in the ship, responsible for ensuring that the crew 

complies with the law, regulations, and duties, while CO is the second authority on board the 

vessel. Should CA be absent or impeded, CO assumes the function to guarantee the continuity 
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of their duties. CO also conducts the ship mainly in the shift changeover that occurs every 6 

hours. In most critical circumstances, CA makes the decisions, communicates accordingly, 

and performs maneuvers. Both are responsible for the navigation. For more information about 

these categories, the definitions are found in NORMAM 13 (BRASIL, 2003), a maritime 

authority standard that defines, among other things, the duties and responsibilities of a ship‘s 

CA and the crew. 

Moreover, the pilots (PL) also answered the questionnaire. PL are unmanned waterway 

professionals who provide pilotage services, which involve advisory to the commander due to 

local peculiarities that make it difficult for the vessel to freely and safely move when 

approaching the port (BRASIL, 2011). Other experts who gave their opinions were academics 

(AC), mainly Ph.D. in Naval and Ocean Engineering, and other waterway professionals (WP).  

We simplified the questionnaire, providing alternatives as degrees of the magnitude of 

the accident rate. We offered options from        to           and lower the frequency of 

accidents per year. We have considered the experience in their category and the navigation 

experiences in both open and restricted waters because, to reach FNA, we have navigation in 

open waters and, since the ships locate themselves by notable points on the archipelago, they 

approach the land (DUARTE; DROGUETT, 2016). We also included the experience of 

navigating the November oceanic area of Brazil. The maritime areas are under the 

responsibility of a given country, divided into coastal and oceanic, with similar 

metoceanographic conditions (e.g., waves, currents). Thus, if an expert had experience 

navigating in the November oceanic area, they were subjected to the same metoceanographic 

conditions as if they were navigating closer to FNA. The experts were grouped into ranges of 

values, as shown in Table 1. 

Table 1 - Qualification and experience of the experts. 

Expert Category Category 

experience (in 

years) 

Experience navigating 

in open or restricted 

waters (in years) 

Experience navigating 

in the November 

oceanic area  

E1 AC         Yes 

E2 WP         Yes 

E3 AC         No 

E4 PL         No 

E5 AC         No 

E6 CO         No 



77 
 

Expert Category Category 

experience (in 

years) 

Experience navigating 

in open or restricted 

waters (in years) 

Experience navigating 

in the November 

oceanic area  

E7 CO         No 

E8 WP          No 

E9 CM         Yes 

Source: The Author (2021) 

The expert‘s score relates to each one‘s characteristics and considers the expert‘s 

expected knowledge to answer the question; they are used to distinguish the most experienced 

experts and provide a level of confidence to them. The opinions will be used as information 

type    and it will be used to construct the likelihood function    . A traditional method was 

applied to determine the experts‘ scores with proper changes to adjust to our context  

(MARTINS; PESTANA; DROGUETT, 2020; SENOL et al., 2015; YUHUA; DATAO, 

2005). We attributed scores as a function of their abilities. For each item evaluated, successive 

points are obtained and accumulated to get the expert‘s total score. Table 2 presents the 

evaluation criteria and scores obtained for each item. We then normalize the scores, 

considering the least possible score (1) and the maximum possible score (25).  

Table 2 - The scores attributed to the experts based on their experience and knowledge. 

Criteria  Score (Points) 

Category   

Commander    

First official    

Pilot    

Academic    

Waterway professional    

Additional score depending on the 

experience in the category (in years) 

      
      
      
      
       
      

Experience navigating in open or 

restricted waters (in years) 

  

Additional score depending on the       
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Criteria  Score (Points) 

experience in the navigation (in years)       
      
      
       
      

   

Experience working in the November 

oceanic area of Brazil 

No   

Yes   

Source: The Author (2021) 

5.3.3 Bayesian Population Variability Analysis 

5.3.3.1 The likelihood function 

To perform PVA for   we need to specify an appropriate probability distribution 

       related to the underlying variability of  , and this decision is guided by the nature of 

the measure. As in (DROGUETT; GROEN; MOSLEH, 2004), we assume that the population 

variability of   is given by a Lognormal distribution: 
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where   and   are the mean and the standard deviation of the natural logarithm of  . 

The likelihood is a data-driven function that depends on the type of available evidence. 

We can formalize the form of    and    as follows: 

● Type    (exposure evidence): the number of failures and exposure time in service. 

Then,    is in the form                  , where    is the number of failures and    

is the time to observe    failures for the ith system. 

● Type    (sources‘ estimates): estimates of possible values of  . We assume that the 

analyst consults   independent sources, and the extent of their confidence in each 

source is represented by the multiplicative error model (MOSLEH, 1992) Thus,    is 

in the form                   , where    is the estimated provided by the ith 

source, and    is the logarithmic standard deviation representing a subjective measure 

of the analyst‘s confidence in the source i. 
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If we know the accident rate of each system    we can use the Poisson distribution to 

estimate the likelihood of observing    events over time   : 

            
      

        

       
          (5.2) 

Following the multiplicative error model proposed by (MOSLEH, 1992), the likelihood 

function for the ith source estimate (type   ) can be written as a Lognormal distribution with 

a median        
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We consider an unbiased expert (for more information on the biased expert, see 

(MOSLEH; APOSTOLAKIS, 1985)). Note that if we apply the transformation           we 

can write (5.3) as: 
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which is a Normal distribution with mean equals to         

Since    is one of the possible values of   given by the population variability 

distribution  ( ), we average the likelihood given by Equation 2.30 over all possible values 

of   to calculate the likelihood of the data unconditional to  : 

                         ∫                                       
 

   (5.5) 

where we have considered run-time data and estimates evidence to be independent. We also 

assume that the ith expert estimate    is for the same ith system for which run-time data 

        have been acquired. Next, replacing Equations 5.1 and 5.4 into Equation 5.5: 
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Thus, the likelihood function (Equation 5.6) can be expressed as: 
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and, after some algebraic manipulation, we have that: 
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Note that the previous equation can also be written as a product of a Gamma and a 

Lognormal distribution, as follows: 
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 Substituting the expressions for   
  and   

  given by (5.7) we have that: 
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The final likelihood is obtained by replacing Equation 5.9 with Equation 2.29.  

5.3.3.2 The prior distribution 

The proposed procedure involves the specification of an informed continuous prior 

distribution over the parameter space  . This prior state of knowledge is the type    evidence 

and the analyst may provide central value estimates and the extent of variability for the 

population variability parameters ( ). 

Following the multiplicative error model proposed by (DROGUETT; MOSLEH, 2013, 

2014), if we specify these estimates in terms of a median (central value estimate) and the error 

factor (extent of variability), they follow a Lognormal distribution. If    
 

 and        are the 

median and the error factor of the jth parameter            , then the probability density 

over    can be given by: 
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 where        is the lognormal density. 

As   and   are in a natural scale, (DROGUETT; GROEN; MOSLEH, 2004) suggested 

that the prior distributions were specified over the median          and the error factor 

(             of  , instead of over the mean   and the standard deviation  . Therefore, if 

we consider that the population variability parameters are independent, the prior density over 

the model‘s parameter space       is found by applying the standard density transformation 

as follows (DROGUETT; GROEN; MOSLEH, 2004): 
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|                                               (5.11) 

where   and   are the median estimates of     and     respectively; while   and   are the 

error factor estimates of     and     respectively. A discussion about other prior 

specifications can be found in Kaplan (KAPLAN, 1983) and Pörn (PÖRN, 1996). 

5.3.3.3 The posterior distribution 

The likelihood function 2;29 and the prior distribution 5.11 have been incorporated in a 

Bayesian inference procedure to compute the posterior distribution of the population 

variability parameters   ( )   (          ). This expression is not analytically 

obtainable; it is estimated using a Markov Chain Monte Carlo-based method (GILKS; 

RICHARDSON; SPIEGELHALTER, 1995). Therefore, an N-sample set 

                    representing the posterior density over the parameters of the variability 

distribution model          is generated from (2). The estimated population variability 

density is computed as an averaged value of the distribution model applied on the sample 

points, i.e.,  ̂    
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 ̂    . These bounds provide the analyst with a basis to assess the uncertainty associated with 

the estimated PVD over  . 

Figure 1 presents a schematic diagram of the BPVA procedure. The dashed line 

indicates that we used the data available as an initial guess to construct the prior distribution. 

The solid lines indicate using the mathematical models described in Equations 5.2 and 5.13, 

aggregating all the available information and delivering more robust results. 

Figure 1 - Schematics of the Bayesian Population Variability Analysis procedure 

 

Source: The Author (2021) 

5.4 RESULTS AND DISCUSSION 

This section applies the BPVA procedure by using real datasets of maritime accidents 

and expert judgments about events near FNA. Both types of data will be used to construct the 

likelihood function (3). Then, the BPVA is applied to assess the PVD of the rates of accidents, 

i.e., collision, fire and explosion, that can occur to oil tankers. We focus on three different 

types of accidents; hence, we will have one population variability distribution of each 

accident. 

5.4.1 Accident Databases 

After collecting the information of accidents from the NTUA-SDL, EMSA and JTSB 

databases, we have summarized the accident‘s occurrence in Table 3. We also include the 

operational feet at risk (OPR) for each database, analogous to the exposure time. This 

information will be adopted as a type    evidence to build the likelihood function (5.3). 
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Table 3 - Maritime accident data used in the analysis 

  Occurrences  

Database Period Collision Fire Explosion OPR 

             

NTUA-SDL                                
NTUA-SDL                            
EMSA                             
JTSB                             

Source: The Author (2021) 

5.4.2 Expert opinions 

As stated previously, the score of the expert relates to each one‘s characteristics and 

knowledge. For instance, the expert E1 accumulated    points:   from the category (AC),   

points from the category experience,   points from navigation experience in open or restricted 

water, and   points from navigating the November oceanic area. The    points were 

normalized, obtaining a normalized score of       . We applied the same procedure to the 

other experts, getting their normalized scores as reported in Table 4. 

Table 4 - Expert‘s scores 

Expert E1 E2 E3 E4 E5 E6 E7 E8 E9 

Score                       

Normalized score                                                           

Source: The Author (2021) 

Then, we attributed the EF depending on the normalized scores, as follows: (i) 

normalized scores ranging from   to       were labeled as a High EF        ; (ii) if they 

range from       to      , labeled as Moderate EF        ; (iii) and scores ranging from 

      to  , labeled as Low EF          . We illustrate how the error factor impacts a 

lognormal distribution that models the expert opinions, with the median      (see     ) in 

Figure 2. Lower EF implies a distribution centered in the median value, while higher EF 

increases the dispersion. Thus, the higher the scores, the more confidence we have in that 

expert and the smaller the error factor. 

The questionnaire results showed some divergence among experts. For instance, E3 

argues that the frequency of accidents is negligible globally, which justifies the opinion of 

           for all the accident rates. The expert reinforces that the actual rates may be even 

lower than the estimates given. Since accident reports are absent, the expert E4 considers that 

the navigation around FNA is safe. Expert E5 points out that accidents involving oil tankers in 
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the open sea are infrequent. As reported by the Brazilian Navy, these accidents are more 

likely to occur during operation (e.g., loading and unloading) in ports (BRASIL, 2021). Table 

5 presents the results obtained from the questionnaires according to experts E1 to E9. The 

Table 5 also includes our level of confidence in the experts based on their scores. This 

information will be used as a type    evidence to build the likelihood function (2.29). 

Figure 2 - Lognormal distributions for different error factor values 

 

Source: The Author (2021) 

Table 5 - Expert‘s opinions about the frequency of maritime accidents near FNA 

 Frequency opinions          Level of confidence 

Expert Collision  Fire  Explosion  Level     

E1                High     

E2                    Moderate   

E3                   Low   

E4               Low   

E5                Moderate   

E6            Low   

E7             Low   

E8             Low   

E9               High     

Source: The Author (2021) 

5.4.3 Bayesian Population Variability Analysis 

We estimated the prior distributions from statistics extracted from both exposure data 

and expert opinions. The prior distributions were selected as (5.15), formulated over the 
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median and the error factor (PVD parameters). We can consider this approach because we 

have all the data available to construct prior knowledge on the system. 

Thus, we can define  ,  ,   and   as the parameters of the prior distribution defined 

over the parameters of the accident rates PVD. The parameter   denotes the median estimates, 

while   is the error factor of the median,   is the central value estimate of the error factor, and 

  is the error factor of the error factor. We can estimate these parameters as follows (MOURA 

et al., 2016): 

● The parameter   can be estimated as the median of the data set formed by the ratio of 

the number of events by the OPR and expert opinions. We have then   

      (,
  

  
-    

          
 ) where   denotes the size of the accidents dataset and   is 

the number of opinions; 

● We can compute the error factor as the ratio between the 95
th

 percentile and the 

median of the distribution; then,   
                ({

  
  

}    
          

 )

      ({
  
  

}    
          

 )
; 

● The extent of variability, i.e., the error factor, can be interpreted as the uncertainty 

measure that characterizes the analyst‘s confidence in the central value estimates. 

Then, we fixed the parameters   and   as  ; 

We first consider BPVA only uses data from maritime accident databases, a non-expert 

(NE) scenario. Figure 3 shows the computed cumulative population variability distribution 

(CPVD) and the 5th and 95th percentile curves, as explained in Section 5.3.3.3. The 

parameters of the prior distributions were estimated for each accident type and are presented 

in Table 6. 

Table 6 - Parameters for constructing the prior distribution for the NE scenario. 

Parameter Definition Collision Fire Explosion 

  Median estimates                             

  Error factor of the median       

  Estimate of the error factor                           

  Error factor of the error factor       

Source: The Author (2021) 

We can compute the uncertainty bounds as the vertical difference between the 5
th

 and 

95
th

 percentile curves for each  . As shown in Figure 3, the uncertainty bounds are more 
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significant for the extreme values of the accidents rates for all three CPVDs. These bounds are 

the widest for the explosion rates because apart from the lack of data in these extremes, the 

variance of the distribution is the highest (see the parameter   in Table 6). Note that the PVD 

of fire rates presents a high slope, thus indicating that even with the second-highest error 

factor (see Figure 3), the estimates deviate little from the central value. This behavior can be 

explained by the fact that there is no data regarding accidents rates in these extremes, and 

thus, a reasonable estimate cannot be obtained 

Figure 3 - Cumulative population variability for the NE scenario. 

 

Source: The Author (2021) 

We now investigate the experts‘ opinions on the CPVDs in an expert (E) scenario. We 

present in Table 7 the parameters of the prior distributions. These opinions are included as the 

parameter    to update the median ( ) and error factor ( ) prior parameters estimates. The 

likelihood is built with this new data source as detailed in Section 5.3.3.1. Note how the 

estimates for error factors increased in orders of magnitude even with minor differences in the 

median estimates compared to the NE scenario. This increase can be justified because some 

opinions could overestimate the accidents‘ rates, leading to higher values in the 95
th

 

percentile.  

Table 7 - Parameters for constructing the prior distribution for the E scenario. 

Parameter Definition Collision Fire Explosion 

  Median estimates                            
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Parameter Definition Collision Fire Explosion 

  Error factor of the median       

  Estimate of the error factor                          

  Error factor of the error factor       

Source: The Author (2021) 

The computed cumulative population variability function, and the 5% and 95% 

uncertainty bounds, with all the data available, can be seen in Figure 4. We can still note 

uncertainty bounds are broader in the extremes of the distributions. However, we have 

reasonable estimates in the central regions of the CPVDs since the uncertainty bounds there 

are tighter. With the inclusion of the opinions, the CPVDs now cover a wider range of values, 

resulting from the higher error factors estimates. For instance, in the NE scenario, the CPVD 

for the fire rates ranges from      to     . Once we include this information, the E 

scenario range increases from        to     . In Table 8, we summarize the maximum, 

minimum, and mean uncertainty bounds for the E and PE scenario and also compute the 

percentage variation of these bounds. These bounds were calculated by obtaining the 

difference between the 5
th

 and the 95
th

 percentile cumulative probabilities for each value of  . 

Figure 4 - Cumulative population variability for the E scenario 

Source: The Author (2021) 

 



88 
 

Table 8 - Comparison of the uncertainty bounds in the PVDs for the NE and E scenarios. The column      

indicates the percentage difference between the bounds. 

 Collision Fire Explosion 

 NE E      NE E      NE E      

Min. 

     
   

     
   

           
   

     
   

           
   

     
   

      

Mean 

     
   

     
   

           
   

     
   

            
   

     
   

       

Max. 

     
   

     
   

            
   

     
   

            
   

     
   

       

Source: The Author (2021) 

Note how, in general, the maximum and mean bounds (highlighted in grey) for all three 

accidents decreased while the minimum bounds increased. Therefore, we can assume we have 

better estimates for the accidents‘ rates by including the experts‘ opinion since the overall 

mean of the uncertainty bounds reduced. 

5.4.4 Sensitivity Analysis 

We here varied the original estimates of the experts by one order of magnitude, i.e., one 

order of magnitude higher and one lower. By doing that, we can assess pessimistic (PE) 

(higher estimates) and optimistic (OP) (lower estimates) views regarding the occurrence of 

accidents. The prior parameters that account for the modified opinions are shown in Table 9 

and Table 10, respectively. 

Estimating the PE scenario‘s error factors indicates that this view deviates considerably 

from the estimates obtained from the databases. Thus we have a higher variance for the 

posterior distribution. Hence, we can see in Figure 5 how the extents of the three accidents‘ 

CPVDs are even more significant. Since the variances are higher, the CPVDs cover a wider 

range of possible values with almost no tendency towards a central value. Note that the 

explosion CPVD ranges from        to    . 

Table 9 - Parameters for constructing the prior distribution for the PE scenario. 

Parameter Definition Collision Fire Explosion 

  Median estimates                             

  Error factor of the median       

  Estimate of the error factor                          

  Error factor of the error factor       

Source: The Author (2021) 
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Figure 5 - Cumulative population variability for the PE scenario 

 

Source: The Author (2021) 

The opposite happens for the OP scenario, i.e., the extents of the PVD are shorter due to 

smaller error factors (see Table 10) since the optimistic opinions are closer to the estimates 

from the databases. Figure 6 shows these smaller extents and how the uncertainty bounds are 

still broader in the extremes and narrower in the middle.  

Table 10 - Parameters for constructing the prior distribution for the OP scenario. 

Parameter Definition Collision Fire Explosion 

  Median estimates                         

  Error factor of the median       

  Estimate of the error factor                           

  Error factor of the error factor       

Source: The Author (2021) 
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Figure 6 - Cumulative population variability for the OP scenario 

 

Source: The Author (2021) 

Furthermore, Figure 7 presents the expected values (i.e., the mean) of the expected 

PVDs for each accident rate. At the same time, in Table 11, we computed the percentage 

variation of the means for each accident in each scenario evaluated. Except in the OP 

scenario, the accidents‘ rates increased as we added opinions to the assessment compared to 

the NE scenario. We have a slight increase for collisions and explosions when we add the 

views (       and        respectively), while for the fire, this increase is more substantial, 

almost doubling         . Although the estimates are higher, they are also improved since 

the uncertainty bounds are narrower in the central regions (see Figure 3 and Figure 4). Note 

the OP scenario lead to a reduction in the accidents‘ rates estimates. The highest decrease 

occurred in collision rates           and explosion           rates, while the fire rate 

estimated had a minor reduction         . 
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Figure 7 - Means of the accidents‘ expected PVDs for the NE, E, PE and OP scenarios. 

 
Source: The Author (2021) 

Table 11 - Modes percentage variation of the accidents‘ expected PVDs for the E, PE, and OP scenarios 

compared to the NE scenario. 

 NE E PE OP 

 Mode Mode      Mode      Mode      

Colision                                                        

Fire                                                       

Explosion                                                      

Source: The Author (2021) 

5.5 CONCLUSION 

The model presented in this paper is based on the Bayesian Population Variability 

Analysis method, which allows evaluating the population variability distributions of maritime 

accidents (i.e., collision, fire, and explosion) from jointly maritime accident databases and 

experts‘ opinions. The PVA permits uncertainty treatment on the measures of interest. The 

model was fed with available databases of maritime accidents reported. However, some 

locations, such as the case of FNA we assessed, lack data regarding accidents. Thus, we can 

use subjective knowledge from experts to complement our information, leading to a better-

estimating model. Indeed, the results showed that, in general, the uncertainty bounds of the 

cumulative posterior variability distribution reduced when we added the judgments. Such a 

decrease mainly occurred in the central values of the accident rates. Therefore, with narrower 

bounds, we have more confidence in our estimates.  
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6 QUANTITATIVE ECOLOGICAL RISK ASSESSMENT FOR OIL 

SPILLS IN FERNANDO DE NORONHA ARCHIPELAGO  

This chapter presents the QERA results according to the general steps proposed by 

Duarte et al. (2019). The main findings of Chapters 4 and 5 will integrate the exposure 

assessment and the frequency estimates steps, respectively. 

6.1 CHARACTERIZATION OF THE PROBLEM 

This methodology step has already been presented in Chapter 1 (Section 1.2). 

6.2 IDENTIFICATION OF HAZARDS AND CONSOLIDATION OF SCENARIOS 

(SCNs) 

The primary forces that act on the oil spill are the currents and winds. We chose the 

months in which the averaged currents and winds are more intense. The central branch of the 

South Equatorial Current (cSEC) starts to intensify in March, but with a lower wind speed, 

reaching its highest intensity in July, with even stronger southeast trade winds (LUMPKIN; 

GARZOLI, 2005; MOLINARI, 1982). 

The route that possesses a significant hazard is the REC – CN, which passes from south 

to east of FNA. Hence, a potential oil spill on this route is likely to be transported to the 

archipelago coast due to prevailing winds and currents. We defined three initial spill releasing 

points on this route, and that is also supported by the information of a high traffic intensity 

registered by the Marine Traffic (MARINETRAFFIC, 2021). The oil simulation results 

indicate that the only point that leads to a significant amount of oil reaching FNA is the 

                       (Figure 3 in Section 4.3.2). 

Thus, we define the benchmark scenario, the basis for comparing the results of the risk 

assessment, and three accidental scenarios (SCNs), based on the accidents that could occur in 

this route and lead to an oil spill: 

 SCN-0: Benchmark; a scenario of no impact of oil pollution; 

 SCN-1: Collision; striking or being struck by another ship, whether underway, 

anchored, or moored. This category does not include striking underwater wrecks. 

 SCN-2: Fire; incidents where the fire is the initial event. 

 SCN-3: Explosion; incidents where the explosion is the initial event. 
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6.3 ASSESS EXPOSURE TO RISKS 

The crude oils present in their composition (around      to    of the weight), the 

polycyclic aromatic hydrocarbon (PAH) (JOHANSEN et al., 2017). These compounds are 

toxic to marine life: highly carcinogenic, mutagenic and teratogenic (i.e., can cause congenital 

disabilities) for the aquatic biota (JOHANSEN et al., 2017). Much effort has been performed 

to properly document the impacts of oil exposure on marine life, such as a recent study that 

assessed the consequences on the reef community after the Deepwater Horizon oil spill 

(LEWIS et al., 2020). One can model the relationship between mortality due to the 

concentration exposure with a dose-response model. 

Studies for the ecotoxicology of the REP due to exposure to oil were not available. 

Thus, we consider a study performed on other coral reef fishes to estimate the oil impact on 

the REP (JOHANSEN et al., 2017). The paper results indicate that exposure to more than 

seven days to oil can cause a     mortality regardless of the PAH concentrations they 

evaluated, i.e.,          and          of PAH. Another study addressed the PAH impacts 

to the fish reproduction and they found that on polluted locations, only     to     of the 

female underwent gonadal development (JOHNSON et al., 2008). This result means that 

almost half of the females are unable to reproduce. 

The oil spill simulation results provided that an oil concentration of             

reaches FNA. To have the concentration as a mass of oil per volume, we assume a depth of 

3m, based on the minimum depth in which fish assessments were performed in the 

archipelago (BARROS, 2020; SCHMID et al., 2020). Hence, we have an oil concentration of 

            that can be converted to           . Assuming that    of the oil mass is 

composed by PAH, we have a PAH concentration in FNA of approximately           . 

This value is above the minimum concentration reported to cause damage to marine life, i.e., 

            (JOHANSEN et al., 2017). Still, this is a conservative approach since we 

consider that all the oil will dissolve in the water (DUARTE; DROGUETT, 2016).  

The PAH concentration reaching FNA was lower than the concentrations analyzed in 

the study conducted by (JOHANSEN et al., 2017). Hence, we assume conservative 

approaches. We consider the prolonged exposure to oil, i.e., more than seven days, supported 

by the fact that FNA does not have mitigation plans to face oil spills, and the cleaning would 

take longer (QUEIROZ et al., 2019). Still, since the mortality did not vary significantly with 

the PAH concentrations, we assume the same mortality of     for the bioindicator 

individuals due to a prolonged exposure to           of PAH presented in the oil that settle 
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on FNA. We also assume a 50% reduction in the fecundity rates, based on data analyzed by 

(JOHNSON et al., 2008). This step of the assessment has conservative assumptions. Despite 

using data from similar species, the actual ecotoxicology of the REP may be very different. 

justifying the need for a sensitivity analysis in the mortality and fecundity rates, and how they 

impact the risks. 

6.4 FREQUENCY ESTIMATES 

The main findings from the frequency assessment are presented in Chapter 5. After a 

Bayesian Population Variability Analysis, we could obtain not a single estimate for the 

accidents rates but a posterior probability distribution on the accidents‘ rates (Figure 4 in 

Section 5.4.3). Additionally, we have distributions that account for the expected, 5th, and 95th 

percentiles after sampling from the model parameters space. Since the results are given with 

such uncertainty, we can have for each SCN an optimistic (a), expected (b) and pessimistic (c) 

frequency estimate. For instance, when we refer to SCN-1c, we refer to the scenario in which 

collisions occur with a pessimistic rate. To be used in the model, the frequency occurrence 

     of each scenario   is evaluated as the expected value of the respective distribution 

accidents‘ rate, as presented in Table 1. 

Table 1 - Frequency of occurrence of each SCN 

 Frequency 

Scenario Optimistic (a) Expected (b) Pessimistic (c) 

SCN-1                          

SCN-2                            

SCN-2                               

Source: The Author (2021) 

As we can see, the pessimistic frequencies for SCN-2 and SCN-3 are very high, even 

though the expected values are the lowest. The uncertainty in the data leads to an 

overestimation of the frequencies. Thus, we can expect overestimated risks for these 

scenarios. On the other hand, the optimistic frequencies approach zero, and we can expect 

risks close to the benchmark scenario (SCN-0).  
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6.5 POPULATION MODELING 

A fundamental basis for the QERA is stochastic ecological models, i.e., models that 

simulate the population dynamics of the bioindicator species since the best trade-off between 

ecological relevance and tractability relies on models at the population level (PASTOROK et 

al., 2002). Thus, the mathematical expressions describe the population dynamics through 

endpoints (e.g., population abundance). With this endpoint, one can estimate the risk of 

harmful effects (e.g., extinction or quasi extinction) caused by events such as industrial 

accidents. Furthermore, the model is stochastic: the parameters are not deterministic values 

but random variables that account for natural fluctuations and uncertainty. We could have 

measurement errors from the data gathering and insufficient information about some 

parameters regarding the uncertainty. The model can integrate extreme events, such as oil 

spills, that can significantly impact the population dynamics. 

For instance, in the context of oil spills, the ecological risks (hereafter ecorisks) are 

estimated based on the impact of the concentration of oil that reaches a given ecosystem, such 

as coral reefs, mangroves, and beaches. To evaluate the effect in the ecosystem, we assess the 

impact in a defined species representative of that ecosystem, the bioindicator species such as 

fishes. 

Some fish population models have been developed for risk assessment purposes 

(DUARTE et al., 2013; DUARTE; DROGUETT; CARVALHO, 2015; LI et al., 2020). 

Notably, such models attempt to describe the population dynamics of the species given 

various stressful circumstances (e.g., marine pollution and fisheries). The models developed 

regarding parrotfishes are due to the high fishery pressure on the species, and on the species 

absence, the coral reefs health is compromised (BAILLE, 2013; PAVLOWICH; 

KAPUSCINSKI; WEBSTER, 2019; ROOS et al., 2015). However, no one of these models is 

stochastic nor are tailored for risk assessment. 

Therefore, this work aims to develop a stochastic model to evaluate the population 

dynamics of red-eye parrotfish (REP) (Sparisoma axillare) under different oil exposures 

resulting from potential oil spills. This species was chosen as a bioindicator because it is 

highly abundant on FNA; it is labeled as vulnerable (VU) by the International Union for the 

Conservation of Nature (IUCN). Additionally, the species contributes to the health of the 

coral reefs. The proposed model considers only females, for they are most relevant to avoid 

extinction since they produce new individuals. Furthermore, the REP is a protogynous 

hermaphrodite. All individuals are born female, and after reaching a specific size, they change 
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sex to males. Thus, the extinction of the females is ultimately the extinction of the total 

population. Hereafter, when not specified, we refer to the female population as population. 

With the proposed model, we can describe the female abundance for the next 100 years 

under varying scenarios: a) a benchmark scenario that simulates the natural population 

dynamics of the species; b) scenarios with varying exposure to oil, i.e., varying mortality. By 

varying the mortality, we can assess the added or reduced ecorisks caused by the spill. The 

quasi-extinction is defined as a lower threshold for population abundance. 

RAMAS Metapop v.6.0 software (AKÇAKAYA; ROOT, 2013) was adopted for 

running the simulations with 10,000 replications. This software is a computational tool for 

constructing the population model and running probabilistic simulation via the Monte Carlo 

method (KALOS; WHITLOCK, 2008). We can have the following outputs from the 

simulations (AKÇAKAYA; ROOT, 2013): 

 Cumulative distribution functions (CDFs) for the time to extinction or quasi-extinction 

within 100 years; 

 Time to extinction: the time required by a population to decrease below a given 

threshold abundance; 

 The median time to extinction: the most reasonable time a population needs to reduce 

to less than a given threshold abundance. It is the median value in the PDF of the time 

to extinction. 

6.5.1 Species description 

Parrotfishes (Scaridae family) are a dominant group of reef fishes mainly distributed 

globally in tropical oceans; they usually occupy shallow marine habitats (0 to 50 m), primarily 

coral reefs. The Scaridae have fused teeth, beak-shaped jaw, scrape the substrate, and remove 

algae and debris. This characteristic enables the species to have a fundamental role in marine 

bioerosion.  

Healthy coral reefs are composed of topographically complex, three-dimensional 

structures which buffer shorelines from currents, waves, and storms, replenish sand and 

provide shelter for many organisms (MALLELA; FOX, 2018). The parrotfishes contribute to 

the deconstruction of the reef (bioerosion) and construction (sediment production), and thus 

they play an essential role in achieving a healthy coral reef (MALLELA; FOX, 2018). 

Furthermore, they also control the algae population, hindering them from growing over alive 

coral (VÉRAS, 2008). Thus, parrotfishes are a species with significant ecological importance. 
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Hence, we focus on the red-eye parrotfish (REP), Sparisoma axillare, a species restricted to 

the southwest Atlantic, and that occurs on FNA (Figure 1). 

Figure 1 - Sparisoma axillare. 

 

From: (FISHBASE, 2009) 

The REP is a protogynous hermaphrodite with two adult color patterns. The initial 

phase (IP) is predominantly female; they have a grey-brown body white-yellowish flank. In 

the terminal phase (TP), the body is typically reddish on the back and brownish-white on the 

belly (MOURA; FIGUEIREDO; SAZIMA, 2001). After a pelagic larval stage, fish settle on 

the reef about 1cm in length as female juveniles (JU) (GASPAR, 2006). Soon they adopt a 

color pattern similar to the IP fish. The smallest fish to reach sexual maturity was estimated at 

       length fork (LF) (VÉRAS, 2008). Thus, adults can be defined as fish       . The 

estimated age to reach sexual maturity is   years (GASPAR, 2006). Some females may never 

change sex, regardless of how big they can be; this strategy does not affect the reproductive 

potential (GASPAR, 2006). 

6.5.2 Methodology 

6.5.2.1 Materials and data sources 

The information used to construct this model comes from the literature available. 

However, data regarding the REP is very scarce; thus, we relied on data collected for a similar 

species, the S. viridae, in Bonaire, Netherlands Antilles (VAN ROOIJ; VIDELER, 1997). 

Notably, the main parameters used were the juveniles‘ and the adults‘ survival rates and the 

annual rate of changing sex. More specifically, for the REP, the smallest individual registered 

to have reached sexual maturity measure         of fork length (FL). The FL is measured 
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from the tip of the snout to the center of the concave tail (Figure 2). To estimate the age to 

reach sexual maturity, we use the von Bertalanffy model (VON BERTALANFFY, 1957), 

which estimates the expected size given the age: 

                              (7.1) 

where    is the total length of individuals at age  ;    is the maximum asymptotic length;   is 

the annual growth rate; and    is the theoretical age in which the individual length equals zero. 

We use the parameterization made by (GASPAR, 2006), where            ,   

         and     . Solving for the time in Equation 7.1 we have that the age to reach 

       is approximately     years, and we round to   years. 

Figure 2 - Fork length measured in a Sparisoma axillare specimen. 

 
Adapted from: Véras (2008) 

The REP has external fecundity, i.e., the female releases oocysts in the water and then 

fertilizes them by the male sperm. The spawning happens throughout the year (VÉRAS, 

2008). After the fertilization, the fish remains in a pelagic larval stage (i.e., an early stage of 

development in the open ocean) until settling on the reef as juveniles. However, this rate that 

includes both fecundity and survival rate is a parameter very challenging to estimate 

(GASPAR, 2006; VAN ROOIJ; VIDELER, 1997). Thus, we calibrated this parameter       

as to attempt to maintain the population stable over time.  

In matrix ecological models, the dominant eigenvalue       , i.e., the one with the 

highest absolute values, dictates the population growth (AKÇAKAYA; BURGMAN; 

GINZBURG, 1999). If       , then the population is decaying, if       , the 

population is growing and, if       , the population do not vary over time. We chose     

to result in           , representing a quasi-stationary state. This assumption is supported 
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by the fact that there is no fishing pressure or human impacts (e.g., tourism) that significantly 

alter the population dynamics in FNA (DOMINGUEZ et al., 2016; MEDEIROS; 

MEDEIROS, 2017). 

Although a fauna fish assessment performed in FNA revealed a total abundance of    

REP individuals, there is no precise estimate regarding the total population of REP in the 

archipelago (SCHMID et al., 2020). Thus, we assume a hypothetical population of       

individuals following a proportion of juveniles and adults from a sample collected by 

(VÉRAS, 2008), i.e., approximately     of the individuals are juvenile, while     are 

adults.  

The variables and parameters of the model, with the data source or assumptions, can be 

seen in Table 2 and Table 3, respectively. The model parameters are also presented as the 

mean value and the standard deviation (SD). 

Table 2 - Description of the model variables. 

Variables Symbol Description 

Number of juveniles at 

time   (stage 1) 
      The abundance of juveniles. Described as the minimum, 

average and maximum values within a 95% confidence interval 

Number of females, 

initial phase adults at 

time   (stage 2) 

      The abundance initial phase adults that remain as female. 

Described as the minimum, average and maximum values 

within a 95% confidence interval 

Source: The Author (2021) 

Table 3 - Description of the model parameters. 

Parameter Symbol Assumptions Mean     SD     

Permanence 

rate as a 

juvenile (stage 

1) 

    

The mean annual survival rate for the S. viridae 

individuals ranging from 5 to 20cm (1 to 4 years 

old) is      . The maturity age is assumed to be 4 

years (GASPAR, 2006) 

            

Transition rate 

from juvenile 

(stage 1) to IP 

(stage 2) 
    

A rate that considers both fecundity of IP and 

survival of the larvae. Since it is a parameter very 

challenging to estimate, we calibrated its value 

until reaching a stable population, i.e.,      
     . 

            

Transition rate 

from juvenile 

(stage 1) to IP 

(stage 2) 

    

The annual survival rate for juveniles that reach 

sexual maturity after 4 years 
            

The survival 

rate of adults 

(male and 

female) 

   

The mean annual survival rate for S. viridae 

individuals that ranges from 20 to 35cm 
            

The proportion 

of IP that 

changes sex 
  

The mean proportion of S. viridae IP individuals 

that change sex             

Permanence 

rate as adult IP 

(stage 2) 
    

The annual survival rate for S. viridae individuals 

that ranges from 20 to 35cm and does not change 

sex. Thus we assume this rate as the product of 
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the natural survival rate      and the proportion of 

individuals that remains as female       

Source: The Author (2021) 

6.5.2.2 The model structure 

The REP presents two major social categories: territorial fish that live in deeper portions 

of the reef (      deep); and group fish that live in the shallow reef scraping the substrate 

(VAN ROOIJ; VIDELER, 1997; VÉRAS, 2008). The territorial males share their territory 

with one to three females, while the group males do not mate at all. The females can spawn 

daily. 

There is no significant difference in growth rate, condition on spawning frequency 

detected between the group and territorial females (VAN ROOIJ; VIDELER, 1997). Hence, 

they can be treated as one category, the Adult initial phase (IP). We can focus on the female 

since all the juveniles are females to structure our model in two stages: juveniles and initial 

phase adults (IP).  

For the model simplicity, the juvenile stage includes the larvae that result from the 

fertilized oocysts, and the fish that reach     are recruited to the reef. The juveniles who 

survive until the age of sexual maturity, approximately   years, reach sexual maturity and can 

become IP, remaining female, or then changing sex. Since our model focuses on females, the 

survival rate of this stage should consider the mortality and the portion of individuals that 

remain as female.  

We can then project the stage-specific population abundance from a time-step   to a 

time-step     using the Lefkovitch (or Stage) matrix (LEFKOVITCH, 1965): 

[
       
       

]  *
      

      
+ [

     
     

] 

where       denotes the abundance of females in stage  ;    is the survival rate per year of 

females in stage  ;     transition rate per year from stage   (matrix column) to stage   (matrix 

line); note that when     we have the permanence rate in stage   denoted by    ;   is the 

annual proportion of IP individuals that change sex.  

The proposed model is stochastic; thus, it includes uncertainty in the parameters. The 

uncertainty in the parameters can be modeled as describing them as probability distribution 

functions, typically a Normal or Lognormal. One can make good use of a Gaussian approach 

in the vital rates of biological models because there is a reasonable reason for random values 

not to be too far away from average, i.e., physical limitations are preventing considerable 
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deviations and natural forces from equilibrium that bring vital rates back to their average 

values (TALEB, 2007). RAMAS converts the normal distribution parameters into the 

corresponding Lognormal counterpart for probabilistic simulation, avoiding bias resulting 

from truncation because all parameters are greater than zero. A schematic of the model with 

the stochastic transition rates (represented as lognormal distributions) can be seen in Figure 3. 

Figure 3 - Schematic of the female REP life cycle. The values above the arrows are the lognormal distributions 

that model the annual transition and permanence rates. 

 

Source: The Author (2021) 

6.5.3 Results and Discussion 

The initial conditions of the model are based on the rationale presented in Section 

6.5.2.1 and are as follows: 

 The initial number of juveniles:           

 The initial number of IPs:           

Then, we simulate the population dynamics of the REP, concerning the juveniles and IP 

individuals, i.e.,            . A projection of the REP abundance over the next     years 

in the FNA can be seen in Figure 4. The solid line is the average value, while the vertical bars 

are the results within     CI        . 

Since most of the parameters are estimated from a similar species (e.g.,     and    ) or 

had to be calibrated to result in a steady population over time      , we evaluated the model‘s 

sensitivity to the parameters in the stage matrix. We considered two different scenarios 

varying the parameters of the stage matrix by    . The expected population abundance of 

these scenarios and the initial results can be seen in Figure 5. 

The results are susceptible to a slight variation in the parameters. Note that with only a 

   increase in the parameters,  we have that              and the expected population 
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reaches     , while in the original simulation, the population reached      individuals, a 

       increase. Note that since there is no limit for the population size, the population 

grows unbounded. With a    decrease,             and the expected population is     

individuals, a       reduction.  

Figure 4 - Female REP abundance (juvenile and IP) in FNA over 100 years. The solid lines are the expected 

values, while the vertical bar, the results within a       CI        . 

 

Source: The Author (2021) 
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Figure 5 - Expected female REP abundance for the original stage matrix parameters (dashed black line), +1% 

variation on the parameters (dotted red line) and -1% variation (solid blue line). 

 

Source: The Author (2021) 

Moreover, the most sensible parameters were obtained, computing the respective 

sensitivities and elasticities. The sensitivities measure the changes in the dominant eigenvalue 

for small changes in a particular matrix parameter. The elasticities are the proportional 

sensitivities, i.e., the contribution of each element of the matrix in changing the dominant 

eigenvalue. The elasticities of the model‘s parameters are presented in Table 4.  

As can be seen, the permanence rate as IP       contributes more to the population 

dynamics. This result is expected: the more individuals survive in this stage, in which they are 

sexually mature, the more pups will be generated each time step. Thus, further data gathering 

for the REP in FNA tailored to construct a population model should estimate this parameter. 

Then, the most impactful parameter will have reliable estimates with an economy of resources 

(e.g., time and financial resources), and the model will also be more reliable. 

This strategy should cover one of the main limitations of the model: the 

parameterization was performed using data for a similar species, S. viridae, and there is a lack 

of data regarding REP population dynamics in FNA. 

Table 4 - Ecological model parameters elasticities. 

Parameter Description Elasticity 

    Permanence rate as a juvenile (stage 1)        
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Parameter Description Elasticity 

    Transition rate from IP (stage 2) to juvenile (stage 1)        

    Transition rate from juvenile (stage 1) to IP (stage 2)        

    Permanence rate as IP (stage 2)        

Source: The Author (2021) 

6.6 Risk Quantification and Categorization 

The inputs for the final step are the outputs of the previous steps as follows: 

 The oil concentration        that reaches the FNA from the numerical simulations of 

the oil fate and transport, as the third step of the methodology (Chapter 4); 

 The dose-response of the REP, i.e., the mortality and fecundity reduction due to the 

toxic compounds present in the oil. It is also part of the third step of the methodology, 

that accounts for the consequence assessment (Section 6.3); 

 The frequency estimate of each accident, from the Bayesian Population Variability 

analysis, as the fourth step of the methodology, (Chapter 5); 

 The population model for a hypothetical Sparisoma axillare population located in the 

Buraco da Raquel, a important touristic spot in FNA (Figure 6). This location is the 

most severe spot where the spill would hit. The model was proposed in the fifth step of 

the methodology (Section 6.5). 

All the nine SCNs (SCN-1a, SCN-1b, …, SCN-3c) were incorporated into the 

metapopulation model, resulting in 10 models with different frequencies of occurrence and 

consequences. For the simulation of each model, the SCN was randomly selected to occur 

every time step according to its frequency of occurrence. If it happens, it will increase 

mortalities by 10% and reduce fecundities by 50%. All the simulations were performed with 

       replication. Figure 7 depicts the simulation process for one out of        replications 

of a given SCN. 
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Figure 6 - Location of the fish population representative of the FNA ecosystem health. 

 

Source: The Author (2021) 

The model‘s results that account for the oil spill were compared to a model without oil 

impacts, i.e., the benchmark scenario (SCN-0) presented in the fifth step of the methodology. 

Figure 8 compares the risks of HL of the benchmark scenario with the scenarios in which the 

oil spills from collision (A), fire (B) and explosion (C). Each point in the curves can be 

interpreted as ―there is a X% probability that the REP abundance will fall below     the 

initial population size (half loss) by time-step T‖. Based on these results, it is possible to 

categorize the risks of HL concerning each scenario: Negligible (NE) for SCN-0, SCN-2a, 

SCN-3a and SCN-3b; Considerable (CO) for SCN-1a, SCN-1b, and SCN-2b; High (HI) for 

SCN-1c; and Critical (CR) for SCN-2c and SCN-3c.  
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Figure 7 - Flowchart that represents one of 10,000 replications for the stochastic simulations of the SCN. Dashed 

boxes indicate specific models. 

 

Source: Adapted from Duarte and Droguett (2016). 

The models‘ main outputs are summarized in the Table 5 columns, while each line 

represents the comparison of each SCN against the benchmark. The   or – symbols can be 

interpreted as the added or reduced risk, respectively, of each SCN compared to SCN-0. A 

zero value means there is no difference to the benchmark. We show the risks of HL and the 

categorization, as proposed by the QERA methodology (DUARTE et al., 2019), and the risks 

of extinction and the categorization, according to the IUCN criteria (IUCN, 2012), as to 

compare both risk communication strategies. 
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Figure 8 - Probability of half loss and risk categorization for the SCNs. (A) Collision, (B) Fire and (C) 

Explosion. 

 

Source: The Author (2021) 

Table 5 - Summary of the risk results for each SCN. 

Scenario Risk of 

HL 

Risk of 

extinction 

Expected 

minimum 

abundance 

IUCN 

category 

HL 

category 

SCN-0                NE NE 

SCN-1a               NE CO 

SCN-1b                  NE CO 

SCN-1c                      NE HI 

SCN-2a                NE NE 

SCN-2b                 NE CO 

SCN-2c                        NE CR 

SCN-3a                NE NE 

SCN-3b                NE NE 

SCN-3c                        NE CR 

Note: CR = Critical Risk, HI = High Risk, CO = Considerable Risk, NE = Negligible Risk. 

Source: The Author (2021) 
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We can consider that the accidents are mutually exclusive, i.e., we can not have two or 

more accidents happening simultaneously. So, we can cumulate the risks caused by potential 

oil spills according to the optimistic, expected and pessimistic estimates. The cumulated risks 

are according to HL categories are illustrated in Figure 9. We also assessed the cumulated 

risks regarding IUCN categorization, as presented in Figure 10. The hatched area describes a 

simple way to measure uncertainties in the results, i.e., the difference between optimistic and 

pessimistic scenarios. Note that these are the uncertainties in the model‘s inputs that are 

propagated to the outputs. The larger the area, the larger are the uncertainty of the inputs.  

Regarding IUCN categories, the optimistic SCNs are labeled as CO, the expected SCNs, 

as HI, while the pessimistic SCNs, labeled as CR. On the other hand, all the cumulated 

extinction risks for all scenarios are within the NE category. 

Figure 9 - Probability of half loss and risk categorization for cumulated scenarios. 

 

Source: The Author (2021) 
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Figure 10 - Probability of extinction and risk categorization for cumulated scenarios 

 

Source: The Author (2021) 

6.6.1 Discussion 

The benchmark scenario (SCN-0) presents a stable population dynamic, with zero risk 

of extinction and HL. Thus, any extinction or HL risk estimated with assessing the other 

scenarios is due to the added risk of potential oil spills. 

The considerable uncertainty in the results leads us to categorize risks with two criteria: 

the IUCN‘s and the QERA‘s methodology. Although the former is widely accepted to classify 

species at risk exposed to several stressors (IUCN, 2012), it can be very optimistic when 

classifying risks due to one exposure, such as potential oil spills. Thus, the latter is more 

conservative since the undesirable consequence is less severe than total extinction. 

Both optimistic and expected collision scenarios (SCN-1a and SCN-1b) raised the risks 

to the CO category, with a        and      increase, respectively. The previous SCNs did 

not impact the extinction risks. Regarding the pessimistic scenario (SCN-1c), the risks 

reached the HI category, increasing risks by        and the extinction risks had a slight 

increase of        (Figure 8A and Table 5). 

At first, it‘s intriguing that the low frequency on the fire optimistic scenario (SCN-2a) 

(Table 1) did not alter the risk category and had a HL risk reduction of        instead of 

increasing it. However, this behavior can be justified because, since the frequency is very low, 

this SCN resembles SCN-0. With the Monte Carlo simulations, one could expect a slight 

deviation in the results on each run. In this case, the results deviated negatively. The SCN-2b 

increased the risks by        to the CO category. Due to uncertainty when estimating the fire 
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rates, as discussed in Chapter 5, the pessimistic scenario (SCN-2c) occurrence frequency is 

very high compared to the pessimistic and optimistic frequencies. Thus, the risks increased 

significantly by       , categorized as CR (Figure 8B and Table 5). 

Regarding explosions, SCN-3 was similar to SCN-2. The frequency of the pessimistic 

and optimistic scenarios (SCN-3a and SCN-3b) were so minor that they resembled SCN-0 

(Table 1). Despite the HL risk variation being negative, the risks were almost untouched 

compared to SCN-0, i.e., a reduction of       in SCN-3a and        in SCN-3b. High 

uncertainties were also present in the explosion frequencies estimates. Thus the frequency of 

occurrence of SCN-3c was also high (Table 1), increasing the risks by        into the CR 

category (Figure 8C and Table 5). 

We summarized all the results by cumulating the risks of the optimistic, expected, and 

pessimistic SCNs. Categorizing the risks according to HL categories, the uncertainty bounds 

are vast, and the actual risks are within Considerable (CO) and Critical (CR) (Figure 9). Even 

with such uncertainty in the results, one thing is sure: the risks of HL due to potential oil spills 

in FNA are not to be neglected. On the other hand, the more severe consequence, i.e., the total 

extinction of the FNA REP population, is within negligible levels for all SCNs (Figure 10). 

6.6.2 Comparison of results 

The QERA performed in this work was not the first to assess risks of possible oil spills 

for the FNA. Duarte and Droguett (2016) conducted a first-round QERA focusing on whether 

the risks of catastrophic oil spills are tolerable or need management (i.e., recovery or control 

measures that may reduce risks). However, this study was conservative and their main 

features are as follows:  

 The authors did not assess the fate and transport of the oil in the ocean;  

 They considered ecosystem‘s exposure to Dispolen dispersant, rather than to crude oil 

itself, overestimating the mortality; 

 The frequency estimates were obtained in a conservative approach; 

 The authors chose as bioindicator an endemic coral species (Siderastrea stellate), with 

different oil tolerability from the REP. 

We can compare their results to ours, in order to evaluate if there is consistency between 

the conservative approach previously applied and our approach that intended to cover the 

shortcomings of the previous QERA. The comparison can be seen in Figure 11. 
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Figure 11 - Comparison of risks of half loss with the results reported by Duarte and Droguett (2016) 

 

Source: The Author (2021), Duarte and Droguett (2016) 

One can note that the cumulated risks of the conservative assessment performed by 

Duarte and Droguett (2016) falls within our risk region. Most importantly, the risks 

overestimated by the Duarte and Droguett (2016) are higherthan the cumulated risks of our 

expected scenario, which is a consistent result, and they are both labeled as HI. Even though 

their results are consistent with ours, it does not undermine the value of our integrated 

assessment with more sophisticated models. We properly estimated the frequency of the 

accidents and simulated the concentration of oil that would reach the FNA, along with the 

expected mortality and reduction in fecundity of the REP due to oil exposure. With our 

results, we can determine the risk region where the real risk lies. We can also see how far are 

their results, mainly in the pessimistic (our most conservative scenario) and expected 

scenarios. 
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7 CONCLUSIONS 

The main objective of this work was to perform a second-round QERA for oil spills 

near FNA. This new application features different models that, once integrated via the QERA 

methodology, can provide better risk results: (i) simulation of the oil spill trajectory and 

physicochemical transformations in the ocean, (ii) frequency assessment of maritime 

accidents using BPVA; (iii) a stochastic model for the red-eye parrotfish (Sparisoma axillare), 

a coral reef fish present in FNA responsible for the coral reef health. 

First, simulations of the fate and transport of oil spills are critical in a risk assessment 

for oil spills. This work simulated hypothetical oil spills with oil tankers that navigate near the 

Fernando de Noronha Archipelago. Six different scenarios were simulated: considering three 

releasing points defined along the routes of ships passing near the archipelago; the months of 

March and July, when the sea surface temperature, wind speed, and current intensity are more 

intense. As a result, we have the oil trajectory and the weathering processes that act on the 

spill, providing the percentages of oil affected by each of the processes and the portions that 

remain on the coast and the sea. The advective forces dominate the weathering process, and 

the oil slick reaches FNA in a short time. Therefore, there would be little time to prepare for 

mitigation actions, and the simulation reinforces the need for preventive measures when 

facing potential oil spills. The cases simulated in this work considered the most common 

Brazilian flag oil tanker that navigates in this region and assumed the volume spilled from 

only one cargo tank. As a proposal for future works, new simulations could be performed 

considering foreign oil tankers that navigate nearby FNA and also endangers the archipelago 

and different volumes of oil spilled. 

Second, the frequency assessment was performed using the Bayesian Population 

Variability Analysis method, which allows evaluating the population variability distributions 

of maritime accidents (i.e., collision, fire, and explosion) from maritime accident databases 

and experts‘ opinions jointly. This method is unprecedented in the context of marine 

accidents. Some locations, such as the case of FNA we assessed, lack historical records of 

accidents. Thus, we can use subjective knowledge from experts to complement our 

information, leading to a better-estimating model. Indeed, the results showed that, in general, 

the uncertainty bounds of the cumulative posterior variability distribution reduced when we 

added the judgments. Therefore, with narrower bounds, we have more confidence in our 

estimates. It is also essential to acknowledge some limitations of the assessment. The model 

considered some exposure data of more than 20 years ago. Since there is a downward trend in 
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accidents, the data collected did not reflect the current circumstances. Thus, there should be 

an effort in collecting data for a new database tailored for risk assessment in different world 

regions. Then, more data in other locations for the current period would be available, 

improving the reliability of maritime risk assessments. 

Third, the stochastic ecological model proposed can describe the long-term adverse 

effects of oil pollution in the marine ecosystem. As a bioindicator of the FNA ecosystem 

health, we chose the red-eye parrotfish (S. axillare). This species is responsible for 

maintaining coral reef health by constructing (sediment production) and deconstruction 

(bioerosion) of the reef environment. The model was parameterized partially with specific 

data of FNA species (i.e., initial abundance). However, most of the data came from the same 

species but in different regions of Brazil (i.e., fertility) and from a similar species with data 

collected in Bonaire, Netherlands Antilles (i.e., survival rates), which is one limitation of our 

model. The other limitation concerns the ecotoxicological data. Although we used data from 

similar species, the real ecotoxicology data for the REP may be different leading to different 

results. To overcome these shortcomings, a data gathering (e.g., vital rates and ecotoxicology) 

focused on this species should be carried out, so we could build a more reliable model. 

The results of the previous steps were integrated to quantify and categorize the risks of 

potential oil spills to FNA. The risk results were given within uncertainty bounds, between 

pessimistic and optimistic SCN frequency of occurrence, to reflect the model‘s inputs‘ 

uncertainty, mainly on the frequency assessment step. According to the IUCN risk categories, 

the extinction risks of all SCNs are negligible (NE). We also consider a more conservative 

approach, categorizing the cumulated risks of half loss, i.e., the sum of risks for the 

pessimistic, expected, and optimistic scenarios. In summary, the actual risks of half loss are 

within Considerable (CO) and Critical (CRO). Even in such an extended interval, it is clear 

the risks of half loss due to potential oil spills in FNA are not negligible. Furthermore, we 

compared our results with a first-round QERA for oil spills performed in the FNA. We can 

conclude that there is consistency between the results, and our assessment provides more 

reliable results within an uncertainty region, as a product of the integration of different 

sophisticated models. 

The outputs of this final step provide helpful information on a probabilistic basis since 

the models used in the previous steps can incorporate uncertainty. The risk results can be 

categorized to make the risk communication more straightforward and to aid decision-making 

regarding the best strategies to prevent or cope with an oil spill in FNA. 
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The assessment performed was an interdisciplinary work involving Production and 

Marine Engineering, Oceanography, and Biological Sciences. Notably, the work benefits 

from probabilistic models, and the results can support the decision-making process, subjects 

of great concern to Production Engineering. At the same time, the risk assessment might 

provide licensing, risk management, and environmental management information to promote 

safer and more reliable industrial activities. 

Although the work does not aim to perform risk management, we could suggest 

mitigation measures based on the results. Since the oil simulation showed that a potential spill 

could reach the archipelago quickly, FNA should propose an emergency plan to account for 

the communication in advance of the spill. With this fast communication, a trained team could 

cope with the spill by positioning containment buoys to prevent the oil from reaching FNA. 

This work results can indicate the most severe spots where such buoys should be placed. In 

the critical circumstance of the oil going to the beaches, the team has to be prepared and 

equipped to clean the oil quickly, for longer exposures to oil are even more harmful to marine 

life. 

Finally, we provide future directions that can improve risk assessments for oil spills: 

 Although the BPVA could aggregate different information sources to estimate the 

frequency of the accidents within uncertainty bounds, the model can not contemplate 

more specific information contributing to the accidents, such as the meteorological 

conditions. Thus, using Bayesian Networks could tackle this limitation since it could 

incorporate all the factors that could influence the accidents with information of FNA 

surroundings. 

 Build risk maps in FNA. First, simulate more releasing points to identify the spots in 

the ocean where the oil would reach FNA should a spill occur. In the ocean around 

FNA, this first map should help redefine routes or improve monitoring of the passage 

of ships to avoid accidents. Second, with a broader set of spillage scenarios, construct 

a risk map for the archipelago to identify the spots that would suffer the most with the 

oil. This second map would help prioritize the FNA locations to clean the oil if 

containment measures such as the buoys fail. 

 Propose a multi-species stochastic model that can simulate the impacts on the 

ecosystem more broadly. For instance, beyond the reduction in the vital rates and 

fecundity of the species, assess the effects in the food chain due to oil pollution.  
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APÊNCIDE A – OPINIÃO SOBRE OCORRÊNCIA DE ACIDENTES 

COM PETROLEIROS QUE PASSAM PRÓXIMOS À FERNANDO 

DE NORONHA 

Neste formulário pretende-se avaliar, por meio de opinião de especialistas, a ocorrência de 

eventos acidentais envolvendo petroleiros que navegam próximos ao arquipélago de 

Fernando de Noronha (3º 51' 13.71'' S, 32º 25' 25.63'' W). Os acidentes de interesse são 

descritos a seguir: 

 Abalroamento: Atingir ou ser atingido por outro navio durante navegação em alto mar. 

Por exemplo, num encontro ou ultrapassagem.  

 Fogo: Incidente no qual o fogo é o evento iniciador. Por exemplo, por conta da 

liberação acidental de substâncias inflamáveis (como gás dos tanques), falha em 

equipamentos elétricos, etc. 

 Explosão: Incidente na qual a explosão é o evento iniciador. Pode ocorrer nos tanques 

de carga ou de combustível, caldeiras, sala de bombas, acomodações, etc., devido à 

presença de uma atmosfera explosiva e fonte de ignição. 

 

Alguns dados importantes sobre a região: 

 Ventos predominantemente de leste e sudeste durante todo o ano, com intensidades 

que variam de 3 a 4 na escala Beaufort (7 a 16 nós), podendo ocasionalmente 

exceder esse valor. 

 Correntes predominantemente para direção oeste durante todo o ano, com 

intensidades que variam de 0,7 a 2 nós, podendo ocasionalmente exceder esse valor. 

 Ondas: No verão, predominantemente de leste, com alturas de 1 a 2m. No inverno, 

predominantemente de sudeste, com alturas de 1 a 3m. 

 Visibilidade: durante todo o ano, entre 0 a 10% de nevoeiro, 0 a 10% de ventos 

fortes e 0 a 10% de visibilidade reduzida (inferior a 2,5 mn). 

 Intensidade de tráfego: Segundo dados de 2019 no Marine Traffic, houve uma 

densidade aproximada de 50 rotas/km² naquele ano. 

 

O questionário consistirá basicamente de perguntas sobre sua ocupação, experiência e 

opinião sobre a ocorrência dos acidentes. As perguntas sobre nome e informações para 
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contato serão utilizadas apenas para organizar os resultados e para contatar sobre possíveis 

dúvidas. Não serão usadas para nenhum fim que não esse. 

 

Referências: 

Cartas piloto: 

https://www.marinha.mil.br/chm/sites/www.marinha.mil.br.chm/files/u1974/cp.pdf- Carta 

sinótica: https://www.marinha.mil.br/chm/dados-do-smm-cartas-sinoticas/cartas-sinoticas 

Roteiro de navegação: 

https://drive.google.com/file/d/1HlrHYxviyKJX1YK6MkLN9s3osbcBCrSN/view?usp=sha

ring 

NORMAM 19: 

https://drive.google.com/file/d/1lmoBP3tSLBiKizy0eWkXIfXb3M0xGe3u/view?usp=shari

ng 

  

Carta Náutica das rotas de navios próximas à Fernando de Noronha 

 
  

https://www.google.com/url?q=https://www.marinha.mil.br/chm/sites/www.marinha.mil.br.chm/files/u1974/cp.pdf&sa=D&source=editors&ust=1634150215868000&usg=AFQjCNG_FIyTkHdcV2K0lAEi7MyemyQ02w
https://www.google.com/url?q=https://www.marinha.mil.br/chm/dados-do-smm-cartas-sinoticas/cartas-sinoticas&sa=D&source=editors&ust=1634150215868000&usg=AFQjCNHQdqGKgaCthDFdMU6NtEzpiEga1w
https://www.google.com/url?q=https://drive.google.com/file/d/1HlrHYxviyKJX1YK6MkLN9s3osbcBCrSN/view?usp%3Dsharing&sa=D&source=editors&ust=1634150215868000&usg=AFQjCNEcEp_GqYbjH7-ERYTWPxGTkcHtjg
https://www.google.com/url?q=https://drive.google.com/file/d/1HlrHYxviyKJX1YK6MkLN9s3osbcBCrSN/view?usp%3Dsharing&sa=D&source=editors&ust=1634150215868000&usg=AFQjCNEcEp_GqYbjH7-ERYTWPxGTkcHtjg
https://www.google.com/url?q=https://drive.google.com/file/d/1lmoBP3tSLBiKizy0eWkXIfXb3M0xGe3u/view?usp%3Dsharing&sa=D&source=editors&ust=1634150215868000&usg=AFQjCNESWLV_HHQsWLJ4H4pjo02IIy7a6A
https://www.google.com/url?q=https://drive.google.com/file/d/1lmoBP3tSLBiKizy0eWkXIfXb3M0xGe3u/view?usp%3Dsharing&sa=D&source=editors&ust=1634150215868000&usg=AFQjCNESWLV_HHQsWLJ4H4pjo02IIy7a6A
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Arranjo geral de um petroleiro 

 
 

Informações pessoais 

Digite seu nome 

 

Sua resposta 

E-email para contato 

 

Sua resposta 

Qual a sua ocupação? * 

☐Comandante 

☐Primeiro oficial 

☐Prático 

☐Acadêmico 

☐Profissional aquaviário (outras funções) 

Qual seu tempo de experiência na sua ocupação? * 

☐0 a 2 anos 

☐3 a 4 anos 

☐5 a 6 anos 

☐7 a 8 anos 

☐9 a 10 anos 

☐mais de 10 anos 

Qual sua experiência com navegação costeira ou oceânica? * 

☐0 a 2 anos 

☐3 a 4 anos 

☐5 a 6 anos 
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☐7 a 8 anos 

☐9 a 10 anos 

☐mais de 10 anos 

Você tem experiência navegando na área November (norte oceânica) do Brasil?  * 

☐Sim 

☐Não 

 

Opinião sobre a ocorrência de acidentes 

Em sua opinião, qual a frequência de abalroamento envolvendo pelo menos um petroleiro 

em rotas próximas a Fernando de Noronha? 

☐1 a cada ano 

☐1 a cada 10 anos 

☐1 a cada 100 anos 

☐1 a cada 1.000 anos 

☐1 a cada 10.000 anos 

☐1 a cada 100.000 anos 

☐1 a cada 1.000.000 anos ou mais 

Em sua opinião, qual a frequência de um evento com fogo em petroleiros em rotas próximas 

a Fernando de Noronha? 

☐1 a cada ano 

☐1 a cada 10 anos 

☐1 a cada 100 anos 

☐1 a cada 1.000 anos 

☐1 a cada 10.000 anos 

☐1 a cada 100.000 anos 

☐1 a cada 1.000.000 anos ou mais 

Em sua opinião, qual a frequência de uma explosão em petroleiros em rotas próximas a 

Fernando de Noronha? 

☐1 a cada ano 

☐1 a cada 10 anos 

☐1 a cada 100 anos 

☐1 a cada 1.000 anos 

☐1 a cada 10.000 anos 
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☐1 a cada 100.000 anos 

☐1 a cada 1.000.000 anos ou mais 

 

Comentários finais 

Se desejar, deixe algum comentário sobre o embasamento de suas opiniões, ou qualquer 

comentário que achar relevante. 

Comentários 

 


