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ABSTRACT

Initially we conduct a review of superconductivity and examine a variety of topics, includ-
ing the Fermi-Landau theory, the generic Landau theory of phase transition with a focus on
Ginzburg-Landau, the Fhrölich model, Bardeen-Cooper-Schrieffer, and Bogoliubov theories,
as well as their relation to the coherent Glauber states. Next, we establish the connection
between microscopic theories and GL, a result pioneered by Gor’kov, and recent developments
in the Extended Ginzburg-Landau theory by A.Shanenko and A.Vagov et al. - a step beyond
Gor’kov, providing a self-consistent expansion valid further away from the critical temperature.
These results are reproduced by formulating an alternative time-saving method for computing
higher-order Landau theories of superfluid phase transition (in the absence of the induction-
field coupling). This is accomplished through the formulation of a diagrammatic dictionary
and a concise collection of rules. The primary original contribution of this work, though, is
the description of novel semi-analytic solutions to the self-dual superconducting solutions at
the Bogomol’nyi point (𝜅 = 1/

√
2) and their correspondence to the appearance of patterns

similar to those in U.Krägeloh’s (1969) pioneering measurement in "Flux line lattices in the
intermediate state of superconductors near 𝜅 = 1/

√
2". The semi-analytic solutions are coined

stripe, bubble and donut. They exhibit stable thermodynamics beyond 𝜅 = 1/
√

2, in the ‘in-
tertype’ domain, as we predict from the Extended Ginzburg Landau theory. We observe the
results in the time-dependent Ginzburg-Landau model starting from configurations similar to
the semi-analytic solutions as ab initio ansatz. The time-evolved solutions qualitatively co-
incide with Krägeloh’s experimental results. The obtained results allow us to cast doubt on
a widely accepted view of how complexity develops. We present a phenomenology in which
’cooperation’ rather than ’competition’ is the appropriate keyword for justifying the complexity
emergence.

Keywords: superconductivity; complexity emergence; self-duality; extended Ginzburg-Landau;
Bogomol’nyi; Krägeloh.



RESUMO

Inicialmente conduzimos uma revisão da supercondutividade e examinamos uma variedade
de tópicos, incluindo a teoria de Fermi-Landau, a teoria genérica de Landau de transição de fase
com foco em Ginzburg-Landau, o modelo Fhrölich, as teorias de Bardeen-Cooper-Schrieffer e
Bogoliubov e sua relação com os estados coerentes de Glauber. Em seguida, estabelecemos
a conexão entre teorias microscópicas e GL, resultado pioneiro de Gor’kov, e desenvolvimen-
tos recentes na teoria Extended Ginzburg-Landau (EGL) por A.Shanenko e A.Vagov et al. -
um passo além de Gor’kov, fornecendo uma expansão auto-consistente válida mais longe da
temperatura crítica. O resultado é reproduzido pela formulação de um método eficiente para
calcular teorias de Landau de ordem mais alta para transição de fase superfluida (na ausência
do acoplamento de campo de indução). Isso é realizado pela construção de um dicionário di-
agramático e uma coleção concisa de regras. A principal contribuição original deste trabalho,
no entanto, é a descrição de novas soluções semi-analíticas para as soluções supercondutoras
auto-duais no ponto Bogomol’nyi (𝜅 = 1/

√
2) e sua correspondência com o aparecimento de

padrões semelhantes aos da medição pioneira de U.Krägeloh (1967) em "Flux line lattices in
the middle state of superconductors near 𝜅 = 1/

√
2". As soluções semi-analíticas são denomi-

nadas listra, bolha e rosca. Elas exibem termodinâmica estável além de 𝜅 = 1/
√

2, no domínio
’intertype’, como prevemos a partir da teoria Extended Ginzburg Landau. As simulações no
modelo de Ginzburg-Landau dependente do tempo são executadas a partir de configurações
semelhantes às soluções semi-analíticas como ab initio ansatz, a solução evoluída no tempo
coincide qualitativamente com os resultados experimentais de Krägeloh. Os resultados obtidos
permitem questionar uma visão amplamente aceita de como a complexidade se desenvolve.
Apresentamos uma fenomenologia em que ’colaboração’ ao invés de ’competição’ é a palavra-
chave mais adequada para justificar o surgimento da complexidade.

Palavras-chave: superconductividade; emergência de complexidade; auto-dualidade; Ginzburg-
Landau extendido; Bogomol’nyi; Krägeloh.
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1 INTRODUCTION

At the turn of the nineteenth century, there was a rush to develop liquids capable of being
cooled to extremely low temperatures. Karmelingh Onnes and coworkers were the first to
control this technique (ONNES, 1911), lowering the temperature of metals (initially, mercury) to
a point where unexpected behavior, the ‘superconductivity phase’ of matter, could be observed
in 1911 at Leiden University. The disappearance of resistance, or more precisely, a significant
decrease in resistance relative to the preceding phase, was the first feature reported in the
discovery of this novel phase of matter. Prior to the Meissner-Oschsenfeld discovery (MEISSNER;

OCHSENFELD, 1933), the idea of a superconductor as equivalent to an ideal conductor had
not been disproved. An ideal conductor does not expel the magnetic field from within when
the temperature is lowered (after the magnetic field is turned on), which is a direct result of
electromagnetic laws. Contrary to this, Meissner-Oschsenfeld experiments demonstrated that
the magnetic field can be ejected even after the metals have been cooled. These materials with
’super’ conductance were suggested to represent a state of matter, as their thermodynamic
‘history’ along a 𝐻−𝑇 diagram would be irrelevant. The ‘superconductor’ state of matter has
been the subject of a century of scientific investigation. This dissertation aims to present some
of the techniques developed over the years for treating the ‘superconductivity’ phenomenology,
as well as to share contributions that have not been reported previously - to our best knowledge.

When a magnetic field exceeds a certain threshold, it penetrates the superconductor in
the form of vortices. Each vortex is a polar-symmetric configuration that describes the transi-
tion within the superconductor from the normal (vortex center) to the superconducting phase
(vortex outwards). The material is still considered to be in a superconductor state, albeit
with properties distinct from those of the Meissner-Ochsenfeld state. Abrikosov proposed the
existence of the vortex solution and went beyond pioneering the study of its stability and opti-
mal configuration (ABRIKOSOV, 1952; ABRIKOSOV, 1957). He recognized the existence of two
superconducting phases, depending on the ratio of the spatial characteristic lengths govern-
ing scales the induction (𝜆) and condensation (𝜉). The characteristic length of condensation
is the linearly approximate distance for which the coherence of the collective macroscopic
wave-function is kept. The charateristic length of the induced field is the linearly approximate
distance for which the induction is sustained. These quantities are expressed in the Ginzburg-
Landau parameter 𝜅 = 𝜆/𝜉. If 𝜉 >> 𝜆, the condensation rules the sample, and any magnetic
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effects are restricted to the edges of the superconductor. When the Meissner-Ochsenfeld state
- the perfect superconducting state, no magnetic field - is present in the bulk of one of the
phases, the superconductor is designated as of type I. In type I, a domain wall separates the
normal from the superconducting domain in the boundaries of the sample - sufficing 𝜅 < 1/

√
2

in the GL theory. If the 𝜆 >> 𝜉, the induction is better sustained than the condensation; this
regime describes the penetration of currents within the sample. In the second kind of super-
conductivity, or of type II, the current enters in the system in the form of vortices, tending to
form an ‘Abrikosov’ lattice (for a review, (ABRIKOSOV, 2003),(ABRIKOSOV, 2004)) - sufficing
𝜅 > 1/

√
2 in the GL theory. Previously, it was accepted that a superconductor would only

exist in one form or another, leaving little room for experimentation. Experimental techniques
have demonstrated that materials can be doped, the effect of this being the harness of the 𝜅
value (BRANDT; DAS, 2011). The theory of GL appeared to be complete, but there was still an
unjustified phenomenology unnoticed by the time, the appearance of exotic quasi-1d chains
of vortices not classified in either type I or type II, such as those reported in U. Krägeloh
experiment in single-band materials (KRAGELOH, 1969).

The appearance of stable exotic configurations that do not fall into either type I or type
II superconductivity has been somewhat imprecisely justified in what has been dubbed ’type
1.5’ superconductivity. This theory requires the presence of two-band material, in addition to
the pertinent criticism about its uncontrolled accuracy, which results in the theory’s failure
to safeguard its results ((KOGAN; SCHMALIAN, 2011)). The criticism prompted A.Shanenko
and A.Vagov et al. to develop a method for providing a reliable expansion, either for single
or multi-band material, in a material-independent theory, which consists of a self-consistently
expansion of the microscopic theory further away from the critical temperature, (SHANENKO et

al., 2011; VAGOV; SHANENKO A, 2012; VAGOV et al., 2016), in the ’Extended Ginzburg-Landau
Theory’ (EGL). This approach established the stability of exotic patterns in between types I
and II in a region of the phase diagram dubbed ‘intertype’, existent in both single-band and
multi-band materials (VAGOV et al., 2016). The developments of A.Shanenko and A.Vagov et

al. undoubtedly resulted in a paradigm shift in our understanding of superconductivity on a
material-independent level.

Perhaps the manuscript’s most significant technical contribution is the formulation of novel
semi-analytic solutions to the Ginzburg-Landau theory at the Bogomol’nyi point (𝜅 = 1/

√
2,

B-point). These are believed to be the first solutions since A.Abrikosov’s vortex proposal in his
seminal work. We do not assert that the solutions are as fundamental as the vortex solution
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in the sense that they can be constructed by vortices within; however, they are representative
of the patterns emerging in the intertype region. Additionally, the semi-analytic solutions
are demonstrated to be stable (thermodynamically) in the phase diagram; they are more
favorable structures than the Meissner-Ochsenfeld phase, as justified by EGL theory, in a large
region of the phase diagram. The majority of introductory textbooks on superconductivity
focus on the subject’s treatment between types I and II. We suggest the possibility of a
review of this literature to include a description of the intertype domain, which provides a
richer material-independent phenomenology. To accomplish this, we believe it is prudent to
present representative solutions to the variety of complexity found in the intertype domain,
bubble, stripe and donut. When simulations in the time-dependent Ginzburg-Landau model
are run, these ab initio solutions retain their essential properties and justify the appearance of
patterns quite similar to those in the original U.Krägeloh (1967) experiment near the B-point.
Additionally, we observe the cohexistence of at least three phases of matter. In the paragraph
to follow we define complexity and explain how the technical contribution may be connected
to a fundamental shift on the understanding of complexity emergence.

Complexity is a term that refers to the behavior of a system whose components interact in
a variety of ways while adhering to a set of rules without external modification. The concept
of organization within complexity refers to the presence of naturally occurring correlations
between the system’s components, solely as a result of the evolution of the rules, justifying
the alternative term ’self-organization’. Self-duality is a generic term for describing the first-
order derivative relations coupling two variables, as they feed each other recursively. Though
the Ginzburg-Landau is governed by two coupled second-order differential equations, in a very
specific but relevant scenario (𝜅 = 1√

2), the solution can be reduced to self-dual relations,
at the ‘Self-dual’ or ‘Bogomol’nyi’ point. The evidence of the complexity appearance in the
vicinity of the self-dual point is reported in the EGL theory followed by a 𝜅 expansion (VAGOV

et al., 2016), suggesting the stability of solutions not falling in either types I or II, as well
as with accurate numerical treatments (VAGOV et al., 2016; CÓRDOBA-CAMACHO et al., 2016;
CÓRDOBA-CAMACHO et al., 2018; VAGOV et al., 2020).

The emergence of complexity in nature raises a critical question about how spontaneous
self-organized patterns emerge (TURING, 1990; CROSS; HOHENBERG, 1993; SEUL; ANDELMAN,
1995). It is now widely accepted that spontaneous structures form as a result of length-
scale competition (SEUL; ANDELMAN, 1995). We present a qualitatively distinct framework in
which the key word is ’collaboration’. We consider the usual equations for the superconducting
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system, consisting of coupled scalar and gauge fields with a self-dual critical point. The self-
dual state is infinitely degenerate, including patterns with equal scalar and gauge spatial lengths
(TARANTELLO, 2008; VAGOV et al., 2016; VAGOV et al., 2020). Two entities acting in cooperation
generate an array of exotic superstructures composed of bubbles, stripes, and donuts of the
scalar condensate. We, therefore, suggest a shift on the requirements for the emergence of
complexity.

Another original contribution of this work is the formulation of a time-saving route for
computing higher-order phase transition theories - based on the EGL theory. In general, deriving
the representation of higher-order theories would require a significant amount of time for
both computing and identifying the appropriate terms according to the scheme proposed by
the authors of the EGL formalism. In contrast, we significantly reduce the effort by using a
diagrammatic dictionary and a concise collection of rules. We were particularly inspired by
Feynman’s extremely effective dictionary and diagrams, though our diagrammatic approach
bears little resemblance to his diagrams. We emphasize that the strategy we develop has the
significant limitation of not being able to account for the presence of a magnetic field - up to
the time this dissertation was submitted. Thus, the set of rules and dictionary are valid for E(𝑛)L
theory (an acronym introduced to address the n-order Extended-Landau theory) which departs
from microscopic superconductivity theory. That is, such a theory would, in principle, describe
superfluidity in the absence of magnetic induction. We end up conjecturing if the theory is not
representative of other systems that do not have a coupling between the order parameter and
magnetic induction, such as theories of phase transition in pure magnetic systems.

In the first part of this dissertation we review aspects of superconductivity (chap. 2 to 4). In
the second part of this dissertation (chap. 5 and 6), we provide the technical and fundamental
contributions of this writing. As with any written text, we have chosen a few topics. We do
not intend to diminish the importance of many of the pioneering works in the field, which will
not be discussed in detail in the subsequent writings but are already covered in a number of
current textbooks on superconductivity. For example, we owe thanks to the brothers London
(LONDON; LONDON, 1935) seminal work for providing the first explanation for the Meissner-
Ochsenfeld effect while introducing a wave-function description in superconductivity, a brilliant
and successful modeling of the superconducting state; their seminal work was critical for the
field’s development and is still used by modern scientists. However, techniques in supercon-
ductivity have evolved over time, and these advancements have enabled the development of
more sophisticated tools for understanding the physics of superconductors. On one hand, we
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do not wish to reconstruct every detail on the historical evolution of superconductivity; on the
other hand, we do not wish to begin writing at the end of the history, from a very narrow and
technical perspective. This would completely obscure the advancements of critical concepts
that remain central to contemporary science comprehension. Thus, we chose the subjects that
we credit to be the most pertinent in introducing both the concepts and language necessary
for comprehending modern techniques in superconductivity.

The second chapter discusses the Fermi-Landau theory, successfully explaining the superflu-
idity phenomena observed in liquid helium. This is a significant advance in condensate physics,
not only because it models the discrepancy between a system of interacting and non-interacting
particles, but since it provides concepts that pervade every branch of contemporary physics.
In this chapter, we provide an overview of Feynman diagrams, an intuitive language through
which physics is frequently expressed or referred to. Apart from the remarkable success of the
theory and its concepts, this can be viewed as the mathematical foundation for the description
of superconductivity in Bogoliubov’s seminal work developed decades later. This justifies this
manuscript’s starting point to be the Fermi-Landau theory.

The third chapter discusses another Landau theory, which is based on phenomenological
general principles regarding how a theory should behave near the phase transition, regardless of
its particular microscopic features. In this chapter, we introduce the concept of U(1) symmetry
breaking (Bogoliubov), a mechanism that enables the appearance of nonzero anomalous av-
erages and thus the superconducting state, in connection with the results discussed in chap.3.
We establish a link between U(1) symmetry breaking and the emergence of collective coherent
Glauber states, thereby establishing superconductivity as a link between quantum and classi-
cal behavior. Additionally, we present a recurrent criterion for the thermodynamic stability of
solutions.

In the fourth chapter, we consider Fhrölich’s contribution to justifying the lattice’s vibration
as mediating an attractive force between two electrons. At low temperatures, this theory is
shown to approach the Landau-Fermi theory, which is an exemplar of the Bardeen-Pines-like
Hamiltonian, a theory preceding the Bardeen-Cooper-Schriefer (BCS) theory. Cooper used
Fhrölich’s results to analyze the stability of two electrons together, which was calculated to be
stable. The Hamiltonian produced by Bardeen, Cooper, and Schrieffer justified the appearance
of the Cooper pair as the ground state on the basis of the variational principle. However,
using Bogoliubov’s elegant treatment, the BCS result can be recovered in the mean-field
approximation. We demonstrate it for a specific case: the correspondence between BCS’s
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with the Heaviside-cutoff modeling and Bogoliubov theory with an uniform gap. Bogoliubov’s
results are obtained from the Landau-Fermi liquid theory. Additionally, we present an alternative
formulation of superconductivity, incorporating the path integral treatment via the Hubbard-
Stratonovitch transformation. This chapter is primarily concerned with the presentation of the
uniform gap as the simplest way to introduce the techniques applied in the chapter to follow.

In the fifth chapter, we consider the case of a spatially dependent gap, not constrained to
the limitations of chapter 4. Through a simple diagrammatic scheme, we retrieve the authors
of EGL’s results with an alternative representation to the expansion of the theory. This provides
the path to the computation of higher orders in the absence of a magnetic field (E(𝑛)L theory)
with ease in comparison to the usual technique. In the sixth chapter, we present novel semi-
analytic self-dual solutions (𝜅 = 1√

2) representative of the intertype domain, and demonstrate
their stability in the intertype region. In this chapter we compare the simulations to Krägeloh’s
experiment, with simulations at the Time Dependent Ginzburg-Landau TDGL equation (at
the B-point) and the novel solutions as ab initio ansatz. It is in this chapter that we suggest a
fundamental shift in the understanding of complexity emergence. The emergence of complexity
is attributed to the presence of more than one competing length-scale. We, on the other hand,
provide a phenomenology in which infinitely degenerate complex states may appear from the
‘cooperation’ of order-parameters, acting in ’unison‘ as if in a single entity.
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2 LANDAU-FERMI LIQUID THEORY: THE BIRTH OF CONCEPTS

2.1 PROLOGUE

The study of the Landau-Fermi liquid theory is particularly useful since it applies the concept
of ‘adiabaticity’ and introduces others such as ‘quasi-particle’, ‘holes’, ‘renormalization’, which
permeates every branch of contemporary condensate-matter physics. It provides a successful
description of a nontrivial many-body system with interactions included. Due to his contribution
(for a review on his contribution, (HAAR, 1965), to mention a few of the original writings,
(LANDAU, 1936; LANDAU; GINZBURG, 1950; LANDAU, 1959)), Landau has generated a spring
of joy in condensate matter physics in the many years that have followed. From his successful
description of superfluidity, he was awarded with the Nobel prize. The purpose of this chapter
is to provide the content of the aforementioned concepts, most of which Landau has himself
forged 1. The concepts will be applied throughout this manuscript.

The non-interacting Sommerfeld model (SOMMERFELD, 1928) was the only theory available
for a degenerate Fermi liquid. It predicts the ratio between the specific heat per temperature
and the magnetic susceptibility to be

𝑊 = 𝜒𝑠
𝛾

= 3 𝜇𝐹
𝜋𝑘𝐵

(2.1)

also known as the Wilson ratio (COLEMAN, 2006). For a gas of a non-interacting (noble)
particles at large distances, with no forces of repulsion, the Sommerfeld model would be
expected to hold. However, for liquid helium, 3He, the ratio was shown to be about three
times larger. The reason for this is that interactions between molecules occur due to collisions
of the electronic clouds, short-range interactions, which exists even in neutral molecules. To
understand this, it is necessary to go beyond the free theory, to turn on adiabatically small
local interactions exciting the electrons in the uttermost shells. In developing Landau theory,
it becomes clear that the main force contribution is linked to spin exchange. Molecules with
non-null net spin tend to have its Wilson ratio increased.

A quasi-state is the eigenstate of the adiabatically (Appendix A.1) excited system. The
concept of adiabaticity assures the life-time of the excitation (𝜏1/2) to be superior to the time-
scale involved in the interaction switch on (𝜏). Landau has shown, in an heuristic derivation
1 Apart from the adiabaticity concept, whose origin is attributed to Murray-Gell-Man and Francis-Low in

developing their theorem (GELL-MANN; LOW, 1951) (Appendix A.4)
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that 𝜏1/2 ∝ 1/𝜀2. Since 𝜏 ∝ 1/𝜀 (Appendix A.1), he concluded 𝜏1/2/𝜏 ∝ 1/𝜀, with 𝜀 = 𝐸−𝜇𝐹
the grand-canonical energy at zero temperature (ABRIKOSOV; KHALATNIKOV, 1959; LANDAU,
1959). Therefore, there are always excited particles placed near enough the Fermi-surface
that develop a life-time superior to the time of the switch-on of the interaction, whatever the
(adiabatic) switch-on time. The number of particles in the excited state near the Fermi-surface
is kept constant. Hence, following from the Heisenberg equation, the particle-number operator
commutes with the Hamiltonian; any tentative Hamiltonian describing the interaction between
particles in the vicinity of the Fermi-surface is to be considered as a function of the particle-
number operator. The other particles further away from the Fermi-energy level are immaterial,
they do not contribute to the overall interaction, as these rapidly decay to the ground-state.
This fact is also in excellent agreement with the chemistry we know, where the uttermost
shells are the key in the description. One of the many Landau-theory merits is to treat the
vicinity of the Fermi-surface as representative of the entire system configuration.

Before proceeding we will establish the quasi-particle and quasi-hole concepts which are
particular quasi-states of the system. These are the elementary states on which more general
quasi-states of the Landau-Fermi theory are built upon. Preceding the turning on of interac-
tions,

Ψ0 ≡ |{𝑛𝑝𝜎}⟩ such that 𝑛𝑝𝜎 =

⎧
⎪⎪⎨
⎪⎪⎩

1, 𝑝 < 𝑝𝐹

0, otherwise
(2.2)

at zero temperature, where 𝑛𝑝𝜎 denotes the number of particles with momentum 𝑝 and spin
orientation 𝜎; 𝑝𝐹 defines the Fermi-level momentum. We ponder on the state

Ψ𝑝0,𝜎0 ≡ |{𝑛𝑝𝜎}⟩ , such that 𝑛𝑝𝜎 =

⎧
⎪⎪⎨
⎪⎪⎩

1, if 𝑝 < 𝑝𝐹 or 𝑝 = 𝑝0, 𝜎 = 𝜎0 , with 𝑝0 > 𝑝𝐹

0, otherwise
(2.3)

which is the equivalent of adding a particle to the system. Due to Landau observation, if a
particle remains close enough to the Fermi-surface, it tends to form a particle with arbitrary long
life-time. Therefore, these are prototype eigenstates of the adiabatically excited Hamiltonian.

The quasi-particle state consists in adding an electron above the Fermi-shell. Such fact is
stable indeed, as 𝜀𝑝0 = 𝐸𝑝0 − 𝜇 > 0 (𝜇, is the nuclei-electron bounding energy, or chemical
potential, 𝐸𝑝0 defines the electronic energy in the absence of the nuclei bounding; 𝜀𝑝0 defines
the thermodynamic grand-potential at zero temperature). The converse, adding an electron
below the Fermi-shell is not a stable procedure in a free theory. It is often convenient to treat
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the absence of an electron in terms of the ‘hole’ concept. If we remove an electron below the
Fermi-sea we are said to have created a hole. To remove an electron below the Fermi-surface is
a stable procedure, as we are removing a negative energy contribution, contrary to the removal
above the Fermi-surface. With this observation, in a free theory, the locus the hole survive is
below the Fermi-energy, whereas excited particles survive above the Fermi-shell. By allowing
for pair-wise interaction, though, the image of restricted regions for particles and holes above
and below the Fermi surface is blurred. This may be understood more seriously in chap.4,
section 5.

Figure 1 – Particle and hole excitations, and a prototype excitation mixing both - sketch with the Fermi-sphere.

Quasi-particle Quasi-hole Prototype quasi-state

Source: The author

2.2 FREE ENERGY

For the quasi-particle to remain an eigenstate, we consider the deviation of the Hamiltonian
from its free form, which is a function of the conserved quantity. Landau considered small
deviations in the number of particles. (LANDAU, 1957; BAYM; PETHICK, 2008; COLEMAN, 2015)

𝛿𝜀({𝑛(𝜎,𝑝)}) = 𝛿𝜀

𝛿𝑛𝑝𝜎
|𝑝=𝑝𝐹

𝛿𝑛𝑝𝜎 + 1
2

𝛿2𝜀

𝛿𝑛𝑝𝜎𝛿𝑛𝑝′𝜎′
|𝑝=𝑝𝐹 ,𝑝′=𝑝′

𝐹
𝛿𝑛𝑝𝜎𝛿𝑛𝑝′𝜎′ (2.4)

The first term is identified as the contribution due to the isolated excitation of a given quasi-
particle. When one excites the quasi-particle or quasi-hole, the energy modifies approximately
as

𝛿𝜀

𝛿𝑛𝑝𝜎
|𝑝=𝑝𝐹

= 𝐸𝑝𝜎 − 𝜇 (2.5)

where 𝐸𝑝𝜎 accounts for the energy of the excited-particle above the Fermi-surface for a positive
particle-number variation, below the Fermi-surface for a negative variation (or positive hole-
number variation), such that the state are forced to be stable. The second term accounts for
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the interaction between particles in a thin shell around the Fermi-surface. It is this term which
is the cornerstone of the Landau theory, presenting non-null contributions when there is the
variation of two-particle at different states.

The interaction part of the Hamiltonian is

𝐻𝐼 = 1
2

∑︁

𝑝𝜎,𝑝′𝜎′
𝑓𝑝𝜎,𝑝′𝜎′𝛿𝑛𝑝𝜎𝛿𝑛𝑝′𝜎 (2.6)

𝑓𝑝𝜎,𝑝′𝜎′ = 1
2

𝛿2𝜀

𝛿𝑛𝑝𝜎𝛿𝑛𝑝′𝜎′
|𝑝=𝑝𝐹 ,𝑝′=𝑝′

𝐹
(2.7)

To account for the grand-potential at finite temperature, 𝜀→ 𝐹 ≡ 𝜀−𝑇𝑆 (𝑇 defines the
temperature and 𝑆 the entropy)

𝛿𝐹 =
∑︁

𝑝𝜎

(𝐸𝑝𝜎 − 𝜇)𝛿𝑛𝑝𝜎 + 1
2

∑︁

𝑝𝜎𝑝′𝜎′
𝑓𝑝𝜎𝑝′𝜎′𝛿𝑛𝑝𝜎𝛿𝑛𝑝′𝜎′ + 𝑇

𝛿𝑆

𝛿𝑛𝑝𝜎
𝛿𝑛𝑝𝜎 (2.8)

by regarding the chemical potential as independent of the number of excited particles added
or removed and the approximation ,

𝑆 =
Non-interacting Fermi-gas entropy⏞  ⏟  

𝑘𝐵
∑︁

𝑝𝜎

[𝑛𝑝𝜎 ln𝑛𝑝𝜎 + (1− 𝑛𝑝𝜎) ln(1− 𝑛𝑝𝜎)] (2.9)

The entropy can be proved to evolve smoothly as it is proportional to the logarithmic function
of the partition function; which in turn, is the trace of the expression defining the adiabaticity
(appendices A.1 and A.5). Hence it follows the approximate consideration that the entropy
with low-lying interactions equals itself in the absence of interactions. 2

2.3 FEED-BACK EFFECTS AND SELF-ENERGY

To compute the density of states, we consider the Fermi-Dirac distribution to account for
the distribution of particles. This is indeed what is obtained by minimizing the free energy with
respect to 𝛿𝑛𝑝𝜎. The difference is that the energy comprises an interaction part beyond the
kinetic term, as to include the interaction between particles.

𝑛𝑝𝜎 = (1 + exp[𝛽𝜀𝑝𝜎])−1

𝜀𝑝𝜎 =
≡𝜀(0)

𝑝𝜎⏞  ⏟  
𝐸𝑝𝜎 − 𝜇+

≡𝛿𝜀(𝐼)
𝑝𝜎⏞  ⏟  ∑︁

𝑝′𝜎′
𝑓𝑝𝜎,𝑝′𝜎′𝛿𝑛𝑝′𝜎′ (2.10)

2 From appendices A.5 and A.1, 𝑍
𝑍0
∼ exp

[︀
− 𝜀

𝜏

]︀
∼ exp

[︀
−𝜀2]︀

. Hence, 𝑇𝑆 − 𝑇𝑆0 ∝ 𝜀2. But the expression
(2.8) is of the order of 𝜖, such that we may assume 𝑆 ∼ 𝑆0 for producing a reliable equation with terms
of the same accuracy order.
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Hence,

𝑛𝑝𝜎(𝜀𝑝𝜎) = 𝑛𝑝𝜎(𝜀(0)
𝑝𝜎 + 𝛿𝜀(𝐼)

𝑝𝜎 ) = 𝑛𝑝𝜎(𝜀(0)
𝑝𝜎 ) + 𝑛′

𝑝𝜎(𝜀(0)
𝑝𝜎 )𝛿𝜀𝑝𝜎 Therefore, 𝛿𝑛𝑝𝜎 = 𝑛′

𝑝𝜎(𝜀(0)
𝑝𝜎 )𝛿𝜀𝑝𝜎

(2.11)

For which we obtain a recursion rule

𝜀𝑝𝜎 = 𝜀(0)
𝑝𝜎 +

∑︁

𝑝′𝜎′
𝑓𝑝𝜎,𝑝′𝜎′𝑛′

𝑝𝜎(𝜀(0)
𝑝𝜎 )𝛿𝜀𝑝′𝜎′ (2.12)

One may state this in words by saying that a modification in the energy of the system causes
a modification in the interaction, which in converse causes a change in the Fermi-energy, and
hence on. We may produce an arbitrary order of correction. This is often said to be a ‘feedback
effect’ or ‘self-energy’, for the particle changes its energy indirectly. The manifestation of this
process owns its existence to the pair-wise interaction.

In particular, near the zero temperature, the paramagnetic effects can be neglected for
reasonably small magnetic fields, and 𝑛𝑝𝜎 = 𝜃(−𝜀𝑝) for any 𝜎. Hence,

𝛿𝜀𝑝𝜎 = 𝛿𝜀(0)
𝑝𝜎 −

∑︁

𝑝′𝜎′
𝑓𝑝𝜎,𝑝′𝜎′𝛿(𝜀(0)

𝑝′ )𝛿𝜀𝑝′𝜎′ (2.13)

Every particle is accounted for in a thin shell comprising the Fermi-surface,

𝑁 = 2
∑︁

𝑝

𝜃(−𝜀𝑝) = 2𝑉
(2𝜋ℎ̄)3

∫︁
(4𝜋𝑝2

𝐹 )𝑑𝜀|𝑑𝑝
𝑑𝜀
|(𝜀)𝜃(−𝜀) = 𝑉

∫︁
𝑑𝜀

𝑝2
𝐹

𝜋2ℎ̄3 |
𝑑𝑝

𝑑𝜀
|(𝜀)𝜃(−𝜀) (2.14)

Therefore,

𝑁(𝜀) = 𝑝2
𝐹

𝜋2ℎ̄3
1
| 𝑑𝜀
𝑑𝑝
| = 2

∑︁

𝑝

𝛿(𝜀− 𝜀𝑝) (2.15)

The definition for an effective mass is provided
𝑝

𝑚* = ∇𝑝𝜀*
𝑝 with 𝑝 ∈ {F.S} (2.16)

The acronym F.S denoting the Fermi-Surface. In particular, for the exact limit of 𝜀 → 0

(𝑝 ∈ {F.S}), it it follows an effective density of state

𝑁*(0) = 𝑝𝐹𝑚
*

𝜋2ℎ̄3 = 2
∑︁

𝑝

𝛿(𝜀𝑝) (2.17)

Before proceeding we state the identity

2
∑︁

𝑝

𝑤(𝑝)𝛿(𝜀𝑝) = 𝑁*(0)
∫︁ 𝑑Ω𝑝

4𝜋 𝑤(𝑝) (2.18)

which is verified from (2.17). In particular, if it were not for the pair-wise contribution,𝑚* = 𝑚,
since, in the absence of the interaction, the linearization of the kinetic term near the Fermi-
surface yields 𝜀𝑝 = 𝑝(𝑝 − 𝑝𝐹 )/2𝑚 = 𝑝2

𝐹 (1 − cos 𝜃𝑝,𝑝𝐹
), with 𝜃𝑝,𝑝𝐹

the scattering angle, or
angle shift, due to the switch-on of the interaction.
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Landau Parameters

The interaction is, in general, considered in its simpler invariant form under spin rotation,3

𝑓𝑝𝜎,𝑝′𝜎′ = 𝑓 𝑠𝑝,𝑝′ + 𝑓𝑎𝑝,𝑝′𝜎𝜎′ (2.19)

In the Landau theory, we are sitting in a thin shell in the vicinity of the Fermi level, the
magnitude of 𝑝 and 𝑝′ being about the same. The dependence of the interaction is on the
angle between the vectors lying in the Fermi surface, 𝑓 {𝑠,𝑎}

𝑝,𝑝′ = 𝑓 {𝑠,𝑎}(cos 𝜃𝑝,𝑝′). It is usual to
define

𝐹 {𝑠,𝑎}(cos 𝜃𝑝,𝑝′) = 𝑁*(0)𝑓 {𝑠,𝑎}(cos 𝜃𝑝,𝑝′) (2.20)

The Landau parameters are defined as the coefficients 𝐹 {𝑠,𝑎}
𝑙 of the expansion in Legendre

polynomials (or spherical harmonics) (HASSANI, 2013; COLEMAN, 2015),

𝐹 {𝑠,𝑎}(cos 𝜃𝑝,𝑝′) =
∞∑︁

𝑙=0
(2𝑙 + 1)𝐹 {𝑠,𝑎}

𝑙 𝑃𝑙(cos 𝜃𝑝,𝑝′) =
∑︁

𝑙𝑚

4𝜋𝐹 {𝑠,𝑎}
𝑙 𝑌𝑙𝑚(𝜃𝑝, 𝜑𝑝)𝑌 *

𝑙𝑚(𝜃𝑝′ , 𝜑𝑝′)

(2.21)

In which the identities are used, the second being important for future reference

𝑃𝑙(cos 𝜃𝑝,𝑝′) = 1
2𝑙 + 1

𝑚=𝑙∑︁

𝑚=−𝑙
𝑌 *
𝑙𝑚(𝜃′, 𝜑′)𝑌𝑙𝑚(𝜃, 𝜑) (2.22)

1
4𝜋

∫︁
𝑌𝑙𝑚(Ω𝑝)𝑌 *

𝑙′𝑚′(Ω𝑝)𝑑Ω𝑝 = 𝛿𝑙𝑙′𝛿𝑚𝑚′ (2.23)

Symmetry and Strength Responses: the Screening of the Bare Perturbation

We consider a deformation in the ‘bare’ energy - in the absence of feed-back interaction -
to be of the form

𝛿𝜀(0)
𝑝𝜎 = 𝑢𝑙(𝜎)𝑌𝑙𝑚(𝜃𝑝, 𝜑𝑝) (2.24)

The displacement of the ‘bare’ particle relatively to the Fermi-surface must not be of high
momentum transfer, otherwise the life-time would be short; in this way it is practically only
dependent on the vector magnitude at the Fermi-surface. As an example, we recall the linear
3 ↑←→ 𝜎 = 1 and ↓←→ 𝜎 = −1, if we rotate the system by 𝜋, or reflect it, ↑←→↓, and the relation is

manifestly invariant. The next-leading order of the expansion would contain 𝜎 × 𝜎′ × 𝜎′′ × 𝜎′′′, always an
even number of terms. A more general justification consists in observing that the product of 𝜎𝛼𝛽 · 𝜎𝛽𝛾 is
invariant under rotation.
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modification of the kinetic energy near the Fermi-surface, 𝛿𝜀(0)
𝑝𝜎 = 𝑝2

𝐹 (1 − cos 𝜃𝑝) with the
angles measured with respect to the initial reference vector of the initial vector describing the
particle lying in the Fermi-surface, 𝑝𝐹 . This is only a particular where we have just modified the
kinetic term. Since the orthogonality of spherical harmonics hold, each term may be treated
independently, sufficing to consider a single channel 𝑙 at a time, as in the above model.

We suppose the normalized response of the quasi-particle energy preserves the geometrical
symmetry of the perturbation on the bare particle. This is what we expect when particles
surround the bare particle shields or screen part of the interaction. The effect of screening
is similar to effects of shielding in classical electrodynamics. For instance, in the response to
an external electric field, particles in a dielectric material reorganize to reduce the net field
while keeping the symmetry of the perturbation. No explicit long-range Coulomb potential
was evoked here, but the same principle seem to hold to short-range quantum-electrodynamics
interactions in between electronic clouds (it holds for neutral atoms). The quasi-particle is said
to be ’dressed‘ or ‘clothed’ by the existence of surrounding particles creating a layer reducing
the interaction strength between excited particles.(MATTUCK, 1992)

For now, we proceed with our treatment of short-range interactions,

𝛿𝜀𝑝𝜎 = 𝑡𝑙(𝜎)𝑌𝑙𝑚(𝜃𝑝, 𝜑𝑝) (2.25)

From the feedback equation at near-zero temperature,

(𝑡𝑙(𝜎′)− 𝑢𝑙(𝜎))𝑌𝑙𝑚(𝑝) =−
∑︁

𝑝′𝜎′
𝑓

(𝑠)
𝑝𝑝′𝑡𝑙(𝜎′)𝑌𝑙𝑚(𝜃𝑝′ , 𝜑𝑝′)𝛿(𝜀(0)

𝑝′ )

−
∑︁

𝑝′
𝜎𝜎′𝑓 (𝑎)

𝑝𝑝′𝑡𝑙(𝜎′)𝑌𝑙𝑚(𝜃𝑝′ , 𝜑𝑝′)𝛿(𝜀(0)
𝑝′ ) (2.26)

Considering a ‘bare’ energy modification independent of the spin, the values of 𝑢𝑙 depends
only on the channel 𝑙 (also, 𝑡𝑙). The second term in (2.26), dependent on the product of spins,
clearly sums to zero, as one of the spin indexes is not paired - cancelling off the terms with
equal contribution and opposite signs. From the identity (2.18),

(𝑡𝑙 − 𝑢𝑙)𝑌𝑙𝑚(𝜃𝑝, 𝜑𝑝) = −𝑁*(0)𝑡𝑙
∫︀ 𝑑Ω𝑝′

4𝜋 𝑓
(𝑠)(cos 𝜃𝑝,𝑝′)𝑌𝑙𝑚(𝜃𝑝′ , 𝜑𝑝′)

(𝑡𝑙 − 𝑢𝑙)𝑌𝑙𝑚(𝜃𝑝, 𝜑𝑝) = −𝑡𝑙
∑︀
𝑙′𝑚′

∫︀ 𝑑Ω𝑝′
4𝜋 𝑌𝑙′𝑚′(𝜃𝑝, 𝜑𝑝)𝐹 𝑠

𝑙′𝑌
*
𝑙′𝑚′(𝜃𝑝′ , 𝜑𝑝′)𝑌𝑙𝑚(𝜃𝑝′ , 𝜑𝑝′) (2.27)

Therefore, from the orthogonality relation,

𝑡𝑙 = 𝑢𝑙

1 + 𝐹
(𝑠)
𝑙

(2.28)
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In case we choose a bare energy modification dependent on the spin, specifically linear de-
pendence, as that resulting from varying the magnetic field (𝛿𝜀𝑝𝜎 = −𝜎𝜇𝐹𝐵). Hence, the
first term, independent of the spin, is the one vanishing. The second term will contain a non
vanishing sum in 𝜎′2. The conclusion is the same. Due to the linearity, by setting

𝑢𝑙 = 𝑢𝑠𝑙 + 𝜎𝑢𝑎𝑙 (2.29)

𝑡𝑙 = 𝑡𝑠𝑙 + 𝜎𝑡𝑎𝑙 (2.30)

It follows

𝑡
(𝑠)
𝑙 = 𝑢𝑠𝑙

1 + 𝐹
(𝑠)
𝑙

(2.31)

𝑡
(𝑎)
𝑙 = 𝜎𝑢𝑎𝑙

1 + 𝐹
(𝑎)
𝑙

(2.32)

For repulsion forces, if 𝐹 (𝑠)
𝑙 > 0 ( or 𝐹 𝑎

𝑙 > 0), the effect of the perturbation is reduced or
‘screened’. On the contrary, if 𝐹 (𝑠)

𝑙 → −1, we have the Pomeranchuk instability - the Fermi
surface becomes unstable and Landau formalism is no longer applicable (COLEMAN, 2015;
CHUBUKOV; KLEIN; MASLOV, 2018; METZNER; ROHE; ANDERGASSEN, 2003). If 𝐹 (𝑎)

𝑙 → −1

have the Stoner instability resulting in ferromagnetism.

2.4 RENORMALIZED THERMODYNAMICS

Renormalization of Mass

The introduction of an infinitesimal displacement in the magnetic field 𝛿𝐴 = 𝐴 yields the
lowering of the energy of the system, for either the bare particle or the dressed particle

𝛿𝜀(0)
𝑝𝜎 = −𝑝𝐹 ·𝐴

𝑚
(2.33)

𝛿𝜀𝑝𝜎 = −𝑝𝐹 ·𝐴
𝑚* (2.34)

The symmetry of interaction is of dipolar kind (cos 𝜃). The channel 𝑙 = 1 is the one for the
bare excitation and the dressed particle. Therefore, from (2.28),

𝑚* = 𝑚(1 + 𝐹 𝑠
1 ) (2.35)

The effective mass increases due to the presence of the interaction. Since 𝑁(0) ∝ 𝑚 and
𝐶𝑣 = 𝑑𝜀

𝑑𝑇
∝ 𝑁(0), and

𝐶*
𝑣 = (1 + 𝐹

(𝑠)
1 )𝐶𝑣 (2.36)
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Renormalization of Magnetic Susceptibility and the Wilson Ratio

In a magnetic system, besides the displacement in the last section, there is a a displacement
coupled to the spins,

𝛿𝜀(0)
𝑝𝜎 = −𝜎𝜇𝐹𝐵 (2.37)

as 𝛿𝐵 = 𝐵 is the small deviation from 𝐵 = 0. Following that,

𝑢𝑠𝑙 = 0 −→ 𝑡𝑠𝑙 = 0

𝑢𝑎𝑙 = −𝜇𝐹𝐵 −→ 𝑡𝑎𝑙 = 1
1 + 𝐹 𝑎

0
(2.38)

I.e,

𝛿𝜀𝑝𝜎 = − 𝜎𝜇𝐹
1 + 𝐹 𝑎

0
𝐵 (2.39)

The total energy displacement for electrons is

𝛿𝑈

𝑉
= 𝑛↑𝛿𝜀↑ + 𝑛↓𝛿𝜀↓ = (𝑛↑ − 𝑛↓)

𝜇𝐹𝐵

2(1 + 𝐹 𝑎
0 ) (2.40)

But the number (density) of up and down quasi-particles difference in a magnetic field is
𝑛↑ − 𝑛↓ = 𝑁*(0)𝜇𝐹𝐵. Thus,

1
𝑉

𝛿𝑈

𝛿𝐵
= 𝑀

𝑉
= 𝑁*(0)𝜇2

𝐹𝐵

1 + 𝐹 𝑎
0

(2.41)

and since

𝜒*
𝑠 = 𝜕(𝑀/𝑉 )

𝜕𝐵
= 𝑁*(0)𝜇2

𝐹

1 + 𝐹 𝑎
0

(2.42)

But as both 𝑁(0)* and 𝐶*
𝑣 ∝ 𝑁(0)*, the difference between the old and new Wilson ratio is

provided through

𝑊 * = 𝑁*(0)𝜇2
𝐹

(1 + 𝐹
(𝑎)
0 )𝐶*

𝑣

(2.43)

But as 𝐶*
𝑣 ∝ 𝑁*(0),

𝑊 * = 1
1 + 𝐹

(𝑎)
0

, (2.44)

explaining the enhancement of the Pauli susceptibility in liquid helium and different materials,
as 𝐹 𝑎

0 is negative in materials with ferromagnetic exchange interactions. In 𝐻3, 𝐹 (𝑎)
0 ∼ −2/3,

in palladium, 𝐹 (𝑎)
0 ∼ −9/10.
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2.5 THE LANDAU-SILIN THEORY

In Landau theory, the long-range effect of electrodynamics in the level of the Gauss law
has been neglected. These would indeed pose a fundamental problem to the theory. First of
all, the energy scale would dramatically increase, and therefore, the switch-on time scale would
approach zero. We, however, recall there is always arbitrariness in the proximity of the excited
states to the Fermi-surface, such that we may find an eigenstate with life-time superior to the
adiabatic time. This hand-waving argument may justify the applicability of the Landau theory
when incorporating the long-range effect, as proposed by Silin (SILIN, 1957).

Despite the appearance of divergent effects, Silin went further in examining the effects of
these divergences in the relevant thermodynamic quantities. He observed that the inclusion of
the long-range coulombic interaction would lead to a modification only in the 𝑙 = 0 channels of
the symmetric Landau parameters. Neither the latent heat nor many other physical quantities
of interest would modify.

Changing the interacting part of the Landau-Fermi liquid theory to the position represen-
tation, we have,

𝐻𝐼 = 1
2

∑︁

𝜎𝜎′𝑥,𝑥′
𝑓𝑥𝜎,𝑥′𝜎′𝛿𝑛𝜎𝑥𝛿𝑛𝜎′𝑥′ (2.45)

In order to include long-range electrodynamics effects,

𝑓𝑥𝑥′𝜎𝜎′ =
Non-coulombic effects⏞  ⏟  

𝑓0;𝑥,𝑥′𝜎𝜎′ +

≡𝑉𝐶 ,Coulomb effects⏞  ⏟  
𝑒2

4𝜋𝜀0|𝑥− 𝑥′| (2.46)

The Coulomb effect has an isotropic feature of translational invariance. The second term
is also refereed commonly as the ‘polarization term’. We consider 𝛿𝑛𝜎𝑥 = 𝑛𝜎𝑥 = Ψ†

𝜎𝑥Ψ𝜎𝑥

to account for the number of extra particles added or removed above the Fermi-sea, in an
effective Hamiltonian interaction term. In the center of mass (or Wigner) coordinate system,

𝐻𝐼,Coulomb = 1
2

∑︁

𝜎𝜎′

∫︁
𝑑3𝑟𝑑3𝑅

∫︁
𝑉𝐶;𝑟Ψ†

𝜎(𝑟+𝑅/2)Ψ𝜎(𝑟+𝑅/2)Ψ†
𝜎′(𝑟−𝑅/2)Ψ𝜎′(𝑟−𝑅/2) (2.47)

A Fourier transforming yields

𝐻𝐼 = 1
2

∑︁

𝜎𝜎′

[︂∑︁

𝑝,𝑝′
𝑓0𝑝𝜎,𝑝′𝜎′𝑛𝜎𝑝𝑛𝜎′𝑝′ +

∑︁

𝑞

𝑉C𝑞𝑛𝑞𝜎𝑛−𝑞𝜎′

]︂
(2.48)

where the second is an expression of the isotropic form of the coulombic interaction - the fact
that it depends only on 𝑟 the momentum 𝑞 and −𝑞 only. We often consider the translational
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invariant case of the non-coulombic interactions, which yields

𝐻𝐼 = 1
2

∑︁

𝜎𝜎′

[︂∑︁

𝑞

𝑓0𝑞𝑛𝑞𝜎𝑛−𝑞𝜎′ +
∑︁

𝑞

𝑉𝐶𝑞𝑛𝑞𝜎𝑛−𝑞𝜎′

]︂
(2.49)

In producing the perturbation theory, the terms 𝑉𝐶𝑞 = 𝑒2

𝜀0𝑞2 and 𝑓0𝑞 must be small enough for
convergence (although redundant, not to infinity) to hold. But when |𝑞| < Λ, the momentum
transfer is small (planck-scales), the first term is large, while the second plays the whole of the
quantum contribution for the interaction between the electronic clouds. Either we normalize
the interaction in the region of small momentum or large momentum transfer, since it is a
technical difficulty to normalize the entire domain consisting of small and large momentum
transfer. In this way,

𝑓𝑞 =

Isotropic and spin independent⏞  ⏟  
𝑒2

𝜀0𝑞2 +𝑓 𝑠0𝑞 + 𝑓𝑎0𝑞𝜎𝜎
′ (2.50)

The first term is direction-independent, therefore it only produces contributions to the channel
𝑙 = 0 and spin-symmetric perturbations. That is, the inclusion of the Coulomb interaction is
equivalent to

𝐹 𝑠
𝑙𝑞 → 𝐹 𝑠

𝑞𝑙 = 𝑒2𝑁*(0)
𝜀0𝑞2 𝛿𝑙0 + 𝐹 𝑠

𝑙𝑞 (2.51)

Polarization Effects in the Susceptibility of Charge

In the absence of the Coulomb interaction

𝜒𝑐,0 = 1
𝑉

𝜕𝑁

𝜕𝜇
= 𝑁*(0)

1 + 𝐹 𝑠
0

(2.52)

But due to the Coulomb interaction

𝜒𝑐 = 𝜒𝑐,0

1 + 𝜅2

𝑞2

with 𝜅2 = 𝑒2

𝜀0
( 𝑁

*(0)
1 + 𝐹 𝑠

0
) (2.53)

The characteristic length 𝑘−1 defines the Thomas-Fermi length. The bulk modulus is related
to the susceptibility such that

𝑑𝑃

𝑑𝑉
= − 𝜌2

𝑉 𝜒𝑐
, 𝜌 = 𝑁

𝑉
(2.54)

Therefore, the presence of the long-range Coulomb interaction makes the fluid rigid. In the
limit |𝑥− 𝑥′| << 𝑘−1 it behaves as a solid.
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2.6 SELF-ENERGY AND FEYNMAN DIAGRAMS IN A NUTSHELL

This section aims to present the Feynman diagrams and their connection with the concept
of self-energy. We usually denote in the context of the modern Green’s function treatment,
𝜀*
𝑝 = 𝜀𝑝 + Σ*

𝑝 where 𝜀𝑝 is the energy of particles in the absence of feed-back effects. 𝜀*
𝑝

denotes the ‘normalized’ energy. The general scheme for obtaining the self-energy is, as before,
by recursively considering the above relation in higher-orders of accuracy in Σ𝑝, provided
convergence.

An Overview of Green’s Function and Related Quantities

An important quantity is the zero-temperature two-particle Green’s function, defined as
the probability amplitude for the system to receive an additional particle; the average being
on an eigenstate of the system. 𝒯 denotes the time-ordering operator (see Appendix A.2).

𝒢𝑝′𝑝(𝑡− 𝑡′) = −𝑖⟨𝒯 Ψ𝑝(𝑡)Ψ†
𝑝′(𝑡′)⟩ = −𝑖⟨𝒯 exp

[︂
−𝑖

∫︁
𝑑𝑡𝐻𝐼(𝑡)

]︂
Ψ𝑝(𝑡)Ψ†

𝑝′(𝑡′)⟩ ≡

(2.55)

The second equality follows from the Murray-Gell-Man theorem (Appendix A.4) with the
operators evolving as in a non-interacting environment. Alternatively, it is the amplitude that
we add and remove a particle from a given state and end up in the same state. This is null
for 𝑝 ̸= 𝑝′, which agrees with the expectation. Such interpretation is the reason for the term
‘propagator’ and the diagrammatic view of this consisting of source and sink. The reason for
the two-line traces is to differ it from the “free particle propagator’, the green’s function of a
non-interacting system. In the statement before we did not consider the ordering in which we
add or remove a particle. Sometimes this is not needed indeed, but more precisely, we may
divide the above diagram in two representative diagrams,

𝒢𝑝′𝑝(𝑡− 𝑡′) =

⎧
⎪⎪⎨
⎪⎪⎩

𝐺𝑝′𝑝(𝑡− 𝑡′) ≡ if 𝑡 > 𝑡′

𝐺̃𝑝′𝑝(𝑡− 𝑡′) ≡ if 𝑡 < 𝑡′
(2.56)

If 𝑡 > 𝑡′, the particle is first created and just after that it is annihilated. If 𝑡 < 𝑡′, the particle
is removed and then added. But to remove a particle is equivalent to creating and removing
a hole. Explicitly distinguishing particles and holes, we denote the holes as particles moving
backwards. This is in accordance with the Feynman interpretation (Appendix A.6).
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For either a free system (𝐻𝐼 = 0) of fermions or bosons (Appendix A.6), the particle and
hole propagators are defined as

𝐺(0)
𝑝 (𝜔) ≡ 1

𝜔 − 𝜀𝑝
= , 𝐺̃(0)

𝑝 (𝜔) ≡ 1
𝜔 + 𝜀𝑝

= (2.57)

It is frequently convenient to define differently the Green’s function in the temperature-
dependent case, in which the average is on possible states for the system, following the
observation due to Matsubara (MATSUBARA, 1955) (Appendix A.5), that consists of continually
extending the real-time to the imaginary time, 𝜏 = 𝑖𝑡, in order to produce the analogous of
the 𝑆-matrix in the finite-temperature physics, the partition function. In finite-temperature
physics, it is convenient to define

𝒢𝑝′𝑝(𝜏 − 𝜏 ′) = ⟨𝒯 Ψ𝑝(𝜏)Ψ†
𝑝′(𝜏 ′)⟩ = ⟨𝒯 exp

[︃
−

∫︁ 𝛽

0
𝑑𝜏𝐻𝐼(𝜏)𝑑𝜏

]︃
Ψ𝑝(𝜏)Ψ†

𝑝′(𝜏 ′)⟩ (2.58)

The graphical notation to represent both zero-temperature and non-zero-temperature physics
is the same. In general, when dealing with the finite-temperature case we will express the
corresponding green’s function in terms of the finite-temperature Green’s function, 𝐺(0)

𝑝 (𝑖𝜔)

(Appendix A.6)). At the heart of the definition of the finite-temperature Green’s function is
the important partition function, the analytic continuation (Appendix A.3) of the S-matrix
(Appendix A.4)

𝑍 = 𝑍0⟨𝒯 exp
[︃
−

∫︁ 𝛽

0
𝐻𝐼(𝜏)𝑑𝜏

]︃
⟩0 , (2.59)

where the average is over an ensemble of particles evolving in the absence of interaction.

Connection to the Self-Energy Concept

We investigate how the green’s function modifies as we alter the energy driven by the
feed-back effects. In the view of the discussion on the Fermi-liquid self-energy, by turning on
the interaction adiabatically, the green’s function modify such that

𝐺𝑝(𝜔) = 1
𝜔 − 𝜀*

𝑝

= 1
(𝜔 − 𝜀𝑝)(1− Σ*

𝑝

𝜔−𝜀𝑝
)

= 1
𝜔 − 𝜀𝑝

+ 1
𝜔 − 𝜀𝑝

Σ*
𝑝

1
𝜔 − 𝜀𝑝

+

1
𝜔 − 𝜀𝑝

Σ*
𝑝

1
𝜔 − 𝜀𝑝

Σ*
𝑝

1
𝜔 − 𝜀𝑝

+ ... (2.60)

or stated differently,

𝐺𝑝(𝜔) = 1
𝐺−1

0𝑝 − Σ*
𝑝

= 𝐺0𝑝 +𝐺0𝑝Σ*
𝑝𝐺0𝑝 +𝐺0𝑝Σ*

𝑝𝐺0𝑝Σ*
𝑝𝐺0𝑝 + ...

= 𝐺0𝑝(𝜔) +𝐺0𝑝(𝜔)Σ*
𝑝𝐺𝑝(𝜔) (2.61)



31

which is an expression of the Dyson equation (DYSON, 1949). Σ*
𝑝 accounts for the many virtual

process each representing different orders of the pair-wise interaction. Often, in the diagram-
matic notation, Σ*

𝑝 is denoted Σ𝑝, with the same meaning - not restricted to a particular
correction, but a result of all of the virtual pair-wise processes. In the diagrammatic form,

= + Σ (2.62)

Analogously, a similar graphical expression, with the arrows reversed works out just as well for
the hole propagator. As Σ is related to the interaction with other particles, the total propagator
is the sum of different amplitudes with a source and interactions in between. On the other
hand, the Dyson expansion is precisely the consequence of applying consistently the Murray-
Gell-Man Low theorem (Appendix A.4) and identifying the contractions along the way. Each
contraction leads to a particular contribution to the self-energy in the zoo,

Σ =
⏟  ⏞  

Hartree term

+
Fock term⏞  ⏟  +

⏟  ⏞  
Electron-hole pair with finite life-time

+ Higher-order terms

(2.63)
The language of diagrams is useful since it allows for the terms under consideration to be
tracked down to possibly nonphysical but tangible reality; the true physical process being the
sum over (possibly nonphysical) virtual processes. We summarize the assertion by Mattuck
(MATTUCK, 1992) on this topic: a word alone has little or no meaning, these being pretty much
a convention, however, words together may produce a description of the reality surpassing the
arbitrariness of conventions. With the concepts gathered in this chapter, we are in a position to
move to the next chapter, on a systematic study of the microscopic superconductivity theory.
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3 LANDAU THEORY OF PHASE TRANSITION AND THE (U(1)) SPONTA-

NEOUS BREAK-DOWN OF SYMMETRY

3.1 PROLOGUE

L.D. Landau was the first to provide a unified treatment for the phase transition pro-
cess (LANDAU, 1936). When the macroscopic properties of matter change, or to put it in
another way, when the system’s ground state does not evolve adiabatically, a phase transition
occurs. Numerous examples include ferromagnetic material undergoing spin alignment transi-
tion) (NÉEL, 1948), superfluidity/superconductivity caused by the condensation of bosons or
fermionic pairs into a single state – Bose-Einstein condensation (PENROSE; ONSAGER, 1956;
BOGOLIUBOV, 1970). Adding to this list, we may consider the crystallization processes in na-
ture, such as that of water (LIBBRECHT, 2005). Additionally, in the context of spin waves,
the quasi-particles known as magnons or spinons has been the source of increasing attention
(REZENDE, 2020; REZENDE, 2009; MALOMED et al., 2010) and produced what is now recognized
as a phase transition, with all spin-waves having a well-defined wave number and frequency
during a characteristic time period large enough to be considered an equilibrium thermody-
namic state within a controlled window of time. It is self-evident that each process has a unique
microscopic physics. However, these processes have one thing in common: they all involve an
abrupt change in the ground state when an external parameter is changed. N.N Bogoliubov is
responsible for a crucial remark on this notorious fact.

The order parameter refers to a thermodynamic property of the physical system in question
(average over a microscopic field). For example, in the case of ferromagnetism phenomena,
the order parameter is frequently assumed to be magnetization. Indeed, the choice of the order
parameter is arbitrary - any microscopic average capable of developing a non-zero value is a
possible order parameter benefiting from Landau’s phase transition theory.

To understand phase transitions, we must first consider an abrupt change in a thermody-
namic quantity. The simplest way to illustrate this is through Landau’s initial proposal.

|𝜓| =

⎧
⎪⎪⎨
⎪⎪⎩

0 if 𝑇 > 𝑇𝑐

|𝜓0| > 0 if 𝑇 < 𝑇𝑐

(3.1)

where 𝜓 is the relevant order parameter. As is well known, 𝑇𝑐 denotes the critical temperature,
𝑇 > 𝑇𝑐 is referred to as the ’normal’ phase, and 𝑇 < 𝑇𝑐 the ’ordered’ phase.
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The abrupt change in the order parameter is said to be caused by a current breaking the
system’s symmetry. Emmy Noether (NOETHER, 1971) is credited with coining the concept
of symmetries and associated currents in physics. N.N.Bogoliubov proposed a mechanism of
symmetry breaking to account for the abrupt changes in the process of ground-state selec-
tion based on the general microscopic theories (BOGOLIUBOV, 1970). As demonstrated in this
chapter, the mechanism of superconductivity’s symmetry breaking is related to the 𝑈(1) sym-
metry, which is manifested by an instantaneous deformation of the potential energy and is
responsible for the selection of a preferable coherent state. The process of symmetry breaking
justifies both the presence of non-zero anomalous averages (Appendix B.1). We see candidate
choices for an order-parameter of the theory, such as the Cooper-Pairing density. This choice
is precisely understood in chap.5, when the Ginzburg-Landau equation is recovered from the
microscopic theory, naturally providing the gap - proportional to the anomalous average- as
the relevant order-parameter.

The Bogoliubov proposal for the break of the symmetry is the inclusion of a ‘current
term’ (BOGOLIUBOV, 1970). Throughout this chapter, we will consider the Grassman algebra
(GRASSMANN, 1844; HASSANI, 2013), an expression of the anti-commutation properties of
numbers and operators (Appendix B.2). The first to notice the usefulness of this algebra within
the realm of quantum field theory was Julian Schwinger (SCHWINGER, 1954). A reduced list of
contributions using the anti-commutation algebra in field theory, include the subsequent works
of F.A.Berezin and J.L.Martin., between which (MARTIN, 1959; BEREZIN; MARINOV, 1977;
BEREZIN, 1980). We will show that each electron-pair in a superconducting system evolves to
a coherent state, and the entire system is in a ’macroscopic coherent state’ or ’macroscopic
quantum state’ through a mixture of concepts due to both Bogoliubov (BOGOLIUBOV, 1970)
and J.Schwinger (SCHWINGER, 1954). In this way we connect the N.N.Bogoliubov’s formulation
of the symmetry breaking to the R.Glauber formulation (GLAUBER, 1963). As is well known,
the coherent state most closely resembles the classical limit (SAKURAI; NAPOLITANO, 2014),
providing the wave-packet with the least uncertainty. Hence, we begin our journey toward the
study of the 𝑈(1) symmetry breakdown.
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(U(1)) SPONTANEOUS BREAK-DOWN OF THE SYMMETRY AND ANOMALOUS AVER-
AGES

A theory presents 𝑈(1) symmetry if there is no energetic cost in twisting the phase of its
solutions. We will concentrate in the concept of break-down of the 𝑈(1) symmetry, i.e, the
sudden loss of the phase degeneracy, causing the system to be driven to a particular choice
with less energetic cost.

[𝐻 ,𝑁 ] = 0 (3.2)

The eigenstates of the particle number 𝑁 are eigenstates of the Hamiltonian. Therefore, it is
trivial to identify that (𝑦 ≡ (𝑥, 𝜎))

⟨𝑁 | 𝑐†
𝑦(𝑡)𝑐

†
𝑦′(𝑡) |𝑁⟩ = 0 , ⟨𝑁 | 𝑐𝑦(𝑡)𝑐𝑦′(𝑡) |𝑁⟩ = 0 (3.3)

hold at zero-temperature physics. In general, Bogoliubov noticed that if the Hamiltonian of
the system is invariant under the unitary transformation 𝑈 = 𝑒𝑖𝜑𝑁 ,

𝐻 → 𝑈𝐻𝑈 † , (3.4)

then, the finite-temperature average cancels

⟨𝑐†
𝑦𝑐

†
𝑦′⟩ =

Tr
[︁
𝑐†
𝑦𝑐

†
𝑦′ exp[−𝛽𝐻 ]

]︁

Tr[exp[−𝛽𝐻 ]] = 0 (3.5)

It is a known fact that this is true for the Bogoliubov-Hamiltonian formulation of superconduc-
tivity (SHANENKO, 2000). In contrast to the conclusions above, we anticipate the presence of
nonzero averages of the type ⟨𝑐𝑦𝑐𝑦′⟩ and ⟨𝑐†

𝑦𝑐
†
𝑦′⟩ (Appendix B.1). Bogoliubov justified the exis-

tence of non-zero averages in the context of mean-field theory (next chapter) by introducing a
phenomenological inclusion that would violate 𝑈(1) symmetry. Other symmetries may also be
violated in the presence of small fields. For example, in the Heisenberg model, particles can be
aligned in any direction at high temperatures, but tend to align along a preferred ground state
direction at low temperatures. This infinitesimal term is what breaks the rotational symmetry
when a particular direction is chosen. We will concentrate on the 𝑈(1) symmetry breaking
in this section. Bogoliubov proposes that the symmetry may be broken by the inclusion of a
’current term’.
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Mixing the ideas due to Bogoliubov and Schwinger, we consider

𝐻𝐽 = 𝛿𝜏,𝜏0

𝑁𝜏0

∫︁
𝑑𝑦[𝑐(𝑦)𝑐𝑦 + 𝑐†

𝑦𝑐
*(𝑦)] (3.6)

∫︁
𝑑𝑦 ≡

∑︁

𝜎

∫︁
𝑑𝑥 (3.7)

in which we modeled Bogoliubov’s small term 𝛿 as a Dirac-delta in time, as this allows for
interesting conclusions and captures the essence of the Bogoliubov concept in relation to the
emergence of quantum coherence.

We consider the effect of ‘Bogoliubov’s current’ term is to change the number of particles
in the system slightly apart from when 𝑡 = 0 is the dominant term. The dominant term in
the Dirac-delta model for the term 𝛿 is not the interaction, but the current term responsible
for the system’s symmetry breaking. However, infinitesimally after that, other terms become
significant, despite the fact that the system has already chosen its preferred eigenstate, which
is also the Hamiltonian’s eigenstate in the absence of the ‘Bogoliubov current’.

If the Hamiltonian’s dominant term is the current term, the ground state tends to evolve
in this direction around 𝜏 = 𝜏0. After this period, the system’s eigenstate remains a minimally
uncertain eigenstate of the entire Hamiltonian, a localized wave-packet.

𝑆(0, 𝜏 ≥ 𝜏0) = 𝒯 exp
[︂
−

∫︁ 𝜏

0
𝑑𝜏𝐻𝐽(𝜏)

]︂

|0⟩ → |Ψ0⟩ = exp
[︂
− 1
𝑁𝜏0

∫︁
𝑑𝑦[𝑐(𝑦, 𝜏0)𝑐𝑦𝜏0 + 𝑐†

𝑦𝜏0𝑐
*(𝑦, 𝜏0)]

]︂
|0⟩ (3.8)

with |𝜓0⟩ the symmetry broken state. This is written within the Grassman algebra. The con-
jugate wave function with a phase rotation of 𝜋 produces a bosonic-like pair in the Hilbert
space,

Ψ = 1
𝑁𝑠

∫︁
𝑑𝑦𝑐(𝑦)𝑐𝑦 (3.9)

Ψ† = 1
𝑁𝑠

∫︁
𝑑𝑦𝑐†

𝑦𝑐
*(𝑦) (3.10)

By demanding

Ψ†Ψ = 𝑁𝑠 (3.11)

It follows the consistency relation
∫︁
𝑑𝑦 𝑐*(𝑦)𝑐(𝑦)

⏟  ⏞  
𝜌(𝑦)

(3.12)
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- the order of the Grassman numbers is relevant.
It is convenient to define the density operators

𝜓(𝑦) = 𝑐(𝑦)𝑐𝑦 , 𝜓†(𝑦) = 𝑐†
𝑦𝑐

*(𝑦) (3.13)
[︁
𝜓(𝑦),−𝜓†(𝑦)

]︁
= 𝑐*(𝑦)𝑐(𝑦){𝑐𝑦, 𝑐†

𝑦} = 𝜌(𝑦) 𝛿𝑦𝑦′
⏟ ⏞ 

𝛿𝑥𝑥′𝛿𝜎𝜎′

(3.14)

Therefore,

[︁
Ψ,−Ψ†

]︁
= 𝑁𝑠 (3.15)

Thus, the pair (Ψ,−Ψ†) behave as a many-body pair of bosonic operators. Hence, we evaluate

|Ψ0⟩ ≡ exp
[︁
−Ψ†

]︁
|0⟩ (3.16)

Ψ |Ψ0⟩ = [Ψ, exp
[︁
−Ψ†

]︁
] |0⟩ = exp

[︁
−Ψ†

]︁
|0⟩ (3.17)

Since Ψ |0⟩ = 0. Then, due to

[Ψ, exp
[︁
−Ψ†

]︁
] |0⟩ =

∑︁

𝑛

1
𝑛! [Ψ, (−Ψ†)𝑛] |0⟩ =

∞∑︁

𝑛=1

(−Ψ†)𝑛−1

(𝑛− 1)! |0⟩ =

= exp
[︁
−Ψ†

]︁
|0⟩ = |Ψ0⟩ (3.18)

Therefore, |Ψ0⟩ is eigenstate of Ψ with eigenvalue 1. By expanding and applying the anti-
comutation properties of Grassman numbers, the above result is reached, provided

[𝜓(𝑦),−Ψ†] = 𝑐*(𝑦) (3.19)

Now, lets evaluate

𝜓(𝑦) |Ψ0⟩ = [𝜓(𝑦), exp
[︁
−Ψ†

]︁
] |0⟩ = 𝑐*(𝑦) |Ψ0⟩ (3.20)

since 𝜓 |0⟩ = 0. Therefore, the system is threw to a Glauber coherent state eigenstate of 𝜓

|Ψ0⟩ = exp
[︂
−

(︂
Ψ† + Ψ

)︂]︂
|0⟩ (3.21)

due to the instant Hamiltonian

𝐻𝐽 = 𝛿𝜏−𝜏0

𝑁𝜏0

∫︁
𝑑𝑦[𝜓(𝑦) +𝜓†(𝑦)] (3.22)

As [𝜓(𝑦),−Ψ] = 0 (as may be readily checked), the only relevant quantity relative to the
operator 𝜓 action is that related to exp

[︁
−Ψ†

]︁
, and this is also a Glauber eigenstate of the
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Figure 2 – A sketch of Gaussian coherence, the most ‘classical’ quantum state.

x

ψ

∆x∆p=h̄/2

Canonical coherent state

Source: The author

operator 𝜓(𝑦). As |Ψ0⟩ is an eigenstate of the operator 𝜓(𝑦), it is also eigenstate of the
operator 𝑐𝑦 (see (3.13)).

Hence we are speculating on an order-parameter for the theory and look for its meaning.
The average of the operator 𝜓𝑦 over the ground-state yields, even at approximately zero
temperature,

⟨𝜓𝑦⟩ = ⟨0|𝜓𝑦 exp[−𝐻𝐽 ] |0⟩ = 𝑐(𝑦) ⟨0|Ψ0⟩⏟  ⏞  
transition amplitude

(3.23)

Another choice attempting involving pairing could be

⟨𝜓𝑦𝜓𝑦⟩ = ⟨0|𝜓𝑦𝜓𝑦 exp[−𝐻𝐽 ] |0⟩ = 𝑐2(𝑦) ⟨0|Ψ0⟩ = 0 (3.24)

which fails to be a candidate order-parameter, as it is kept null. On the other hand, the choice

⟨𝜓𝑦𝜓𝑦′⟩ = ⟨0|𝜓𝑦𝜓𝑦′ exp[−𝐻𝐽 ] |0⟩ = 𝑐(𝑦)𝑐(𝑦′) ⟨0|Ψ0⟩ (3.25)

does not forcefully vanish due to the Grassman algebra, and the electrons may even occupy
the same position if their spin is contrary - this clearly represents the Cooper-pairing density.
The inclusion of a finite-temperature Hamiltonian term such that |Ψ0⟩ remains an eigenstate
after a non-negligible time has passed, may be understood in any theory (such as the Fermi-
Landau theory) dependent on particle-number density operators 𝑛𝑦 = 𝜓†(𝑦)𝜓(𝑦). With this
choice, the state |Ψ0⟩ diagonalizes the hamiltonian. In summary, it is the ‘Bogoliubov current’
(3.6) that is responsible for throwing the system in a coherent eigenstate, and it remains an
eigenstate of the system long after the symmetry has broken. Coherent states are the closest
quantum representation of classical systems.
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Figure 3 – The break of 𝑍2 symmetry.

ψ

f

h→0+

Source: The author, based on (COLEMAN, 2015)

3.2 LANDAU FREE-ENERGY

Considering the free energy density in the thermodynamic limit

𝑓 [𝜓] = 𝑓𝑛(𝑇,𝑁) + 𝛼0

2 (𝑇 − 𝑇𝑐)𝜓2 + 𝑏

4𝜓
4 − 𝑔(ℎ𝜓) (3.26)

Where 𝑔(ℎ, 𝜓) is a modification of the internal energy to take account for the field’s interaction
with the order parameter. Therefore, it must be such that 𝑔(ℎ → 0, 𝜓) → 0, i.e, an analytic
function in products of powers in its arguments. We readily identify that

|𝜓0| =
√︃
𝛼0(𝑇 − 𝑇𝑐)

𝑏
(3.27)

minimizes functional requirements. This results in a continuous order parameter at the critical
temperature. The case in which 𝜓0 < 0 is understood to be sign-dependent on the external
field. Even though it is infinitesimal, the direction of this external field breaks the system’s
degeneracy, allowing for the selection of a preferred magnetization. Thus, even though we
consider the limit ℎ → 0, the direction in which ℎ → 0 is approached, whether positive or
negative, is relevant in determining the correct solution. Prior to ℎ reaching zero, one of the
possible solutions is preferred; this preference continues once ℎ reaches zero. As ℎ → 0+

increases, the potential is tipped to the right, and the particle must remain between the two
initially symmetric states. Due to the field’s history, stability is reached in the right valley. If
ℎ→ 0−, on the other hand, the tipping occurs on the left side and stability is reached in the
left valley.
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Thermodynamics Near the Critical Point and the 𝑍2 Symmetry- Breaking

The free energy density in the vicinity of phase transition is

𝑓𝐿 =

⎧
⎪⎪⎨
⎪⎪⎩

𝑓𝑛(𝑇𝑐, 𝑁) , if 𝑇 > 𝑇𝑐

𝑓𝑛(𝑇𝑐, 𝑁)− 𝛼2
0

4𝑏 (𝑇 − 𝑇𝑐)2 , if 𝑇 < 𝑇𝑐

(3.28)

It is no surprise the free energy is continuous at the critical temperature. As for the specific
heat 𝑐𝑣 = −𝑇 𝜕2𝐹

𝜕𝑇 2 , we readily identify a jump at the critical temperature.

Δ𝑐𝑣 = 𝛼2
0

2𝑏 𝑇𝑐 (3.29)

We consider the linear coupling regime, 𝑔(ℎ𝜓) = ℎ𝜓, therefore,

𝛿𝑓

𝑑𝜓
|𝜓=𝜓0 = 𝛼0(𝑇 − 𝑇𝑐)𝜓0 + 𝜓3

0𝑏− ℎ = 0 (3.30)

For the susceptibility, a measure of order-disorder variation with respect to varying an external
parameter.

𝜒(𝑇 ) ≡ 𝑑𝜓

𝑑ℎ
|𝜓=𝜓0 = [ 𝑑ℎ

𝑑𝜓
]|−1
𝜓=𝜓0 = 1

𝛼0(𝑇 − 𝑇𝑐) + 3𝑏𝜓2
0

(3.31)

For 𝑇 > 𝑇𝑐, 𝜓0 = 0, and

𝜒(𝑇 > 𝑇𝑐) = 1
𝛼0|𝑇 − 𝑇𝑐|

(3.32)

For 𝑇 < 𝑇𝑐, but in the vicinity of 𝑇𝑐, provided eq. (3),

𝜒(𝑇 < 𝑇𝑐) = 1
2𝜒(𝑇 < 𝑇𝑐) (3.33)

Thus, the smallest ‘stray field’ ℎ produces an enormous change in the order parameter in the
vicinity of the critical temperature from above or below. This is explained by the fact that
the free energy is tipped with the introduction of the coupling - it was initially completely
symmetric for either positive or negative 𝜓 solutions (𝑍2 symmetry), but the system chose a
particular state when a small field is introduced. We will be most receptive to grasping the
concept of 𝑈(1) symmetry breaking. If we promote the order-parameter to a complex number,
the 𝑍2 symmetry is equivalent to an invariant theory under a phase shift of 𝜋 (reflection); the
𝑈(1) symmetry extends it to any continuous phase shift.
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Figure 4 – Sketch of the Mexican-hat potential. If the potential of the Mexican-hat is distorted, the system
chooses a particular phase with less energetic cost.

f

Re[ψ]

Im[ψ]

Source: The author

The Landau Free Energy: the Complex Case

We demonstrated the effect of a real order parameter on an inversion symmetry in space
in the preceding section. The complex case is a natural extension of the Landau free energy.
If we wish to demand 𝑈(1) symmetry, it suffices to demand

𝑓 [𝜓, 𝜓*] = 𝛼0(𝑇 − 𝑇𝑐)|𝜓|2 + 𝑏

2 |𝜓|
4 (3.34)

Then the minimization yields (w.r.t 𝜓 or 𝜓*)

𝛼0(𝑇 − 𝑇𝑐) + 𝑏|𝜓0|2 = 0 (3.35)

Hence, the minimum does not depend on the phase. In particular, the inversion symmetry is
comprised in the 𝑈(1) continuous symmetry. No particular phase is preferable,

𝜓 =
√︃
𝛼0(𝑇 − 𝑇𝑐)

𝑏
𝑒𝑖𝜑 (3.36)

The introduction of an external coupled field in this case breaks the continuous 𝑈(1) symmetry
and forces the system to choose a phase. This is ultimately the source of the most general
aspects of the emergence of superconductivity.
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3.3 SUPERFLUIDITY

In a pioneering work much ahead of its time, Ginzburg and Landau introduced the phe-
nomenological equation

𝑓𝐺𝐿 =
∫︁
𝑑𝑥[ ℎ̄

2

2𝑚 |∇𝜓|2 + 𝛼0(𝑇 − 𝑇𝑐)|𝜓|2 + 𝑏

2 |𝜓|
4] =

∫︁
𝑑𝑥[ ℎ̄

2

2𝑚 |𝜓|
2(∇𝜑)2

⏟  ⏞  
phase rigidity

+

+ ℎ̄2

2𝑚(∇|𝜓|)2 + 𝛼0(𝑇 − 𝑇𝑐)|𝜓|2 + 𝑏

2 |𝜓|
4

⏟  ⏞  
variation of amplitude

] (3.37)

which can now be understood as a macroscopic Schrodinger equation for the Cooper pairs.
This yields the same equations of the real case for both 𝜓 and 𝜓*, symmetrically. This theory
is not 𝑈(1) symmetric, as there is a cost for twisting the phase. The characteristic length for
the variation in the amplitude defines the coherence length

𝜉 = 𝜉0(1− 𝑇/𝑇𝑐)−1/2 , 𝜉0 = ( ℎ̄2

2𝑚𝛼0𝑇𝑐
)1/2 (3.38)

For a spacial scale beyond the coherence length, |𝜓|2 uniform, and the physics is controlled
entirely by the phase,

𝑓𝐺𝐿 =
∫︁
𝑑𝑥
𝜌𝜑
2 (∇𝜑)2 with 𝜌𝜑 = ℎ̄2𝑛𝑠

2𝑚 (3.39)

We may identify a current term by fixing |𝜓| and varying the phase in the boundary, (𝛿𝜓 =

𝑖𝜓𝛿𝜑).

ℎ̄2

2𝑚

∫︁
∇ · [𝛿𝜓∇𝜓* + 𝛿𝜓*∇𝜓]𝑑𝑉 = 𝜌𝜑

∫︁
∇ · [𝛿𝜑∇𝜑] (3.40)

Noether’s theorem deals with the relationship between broken symmetry and a conserved
quantity by means of a current not flowing out of the system. Because the system is not 𝑈(1)

symmetric, one may not infer the appearance of such current. In our problem, as 𝜑 is not
a symmetry, it can not be made arbitrary. In fact, its boundary conditions are fixed by the
boundary value problem. A careless thought could have led to

𝐽𝑠 = 𝜌𝜑∇𝜑 . (3.41)

Though this is strictly incorrect for the theory under consideration, it may be viewed as a
current limiting-case of a 𝑈(1) symmetric theory in which the fluid’s charges interact with
(small) electromagnetic fields. The case of a 𝑈(1) symmetric theory is treated in the following
section.



42

3.4 SUPERCONDUCTIVITY

We seek to develop a theory in which magnetic fields are coupled to the order parameter
and is 𝑈(1) invariant. Without coherence, 𝜓 = 0 and there is no surface current. When this
current attains a non-zero value, the 𝑈(1) symmetry is broken, which is precisely the instability
that results in the appearance of the collective macroscopic quantum state.

The electromagnetic theory (Maxwell equations) is unambiguously invariant under

𝐴→ 𝐴+ ℎ̄

𝑒*∇𝛼 , (3.42)

Φ→ Φ− ℎ

𝑒*𝜕𝑡𝛼 , (3.43)

, for an arbitrary scalar field 𝛼. The measurable quantities are the magnetic induction 𝐵 =

∇×𝐴 and the electric field𝐸 = −∇Φ− 𝜕𝐴
𝜕𝑡

. 1 𝑒 and ℎ are the universal constants denoting the
electron-charge and the Planck constant, respectively; 𝑒* ≡ 2𝑒 is justified as due to the two-
electron condensation described by the Cooper-pairing. It is remarkable that this was indeed a
first-principled consideration due to Landau and Ginzburg (LANDAU; GINZBURG, 1950), much
before the microscopic theory (see chap.4) had been formulated. Considering 𝛼 = 𝜑, the
theory becomes 𝑈(1) invariant with the replacement

∇→ 𝒟 = ∇− 𝑖𝑒*

ℎ̄
𝐴 (3.44)

Therefore,

𝐹 =
∫︁ ℎ̄2

2𝑚* |(∇−
𝑖𝑒*

ℎ̄
𝐴)𝜓|2 + 𝛼0(𝑇 − 𝑇𝑐)|𝜓|2 + 𝑏|𝜓|4 + 𝐵2

2𝜇0
(3.45)

The first GL equation is provided with the variation with respect to 𝜓,

𝛿𝑓

𝛿𝜓* = − ℎ̄2

2𝑚(∇− 𝑖𝑒
*

ℎ̄
𝐴)2𝜓 + 𝛼0(𝑇 − 𝑇𝑐)𝜓 + 𝑏|𝜓|2𝜓 = 0 . (3.46)

In looking for variations with respect to 𝜓 with a varying phase and fixed modulus, 𝛿𝜓 = 𝑖𝜓𝛿𝜑,
an associated Noether’s current appear (it is equivalent to set ∇ → 𝒟 in (3.41)),

𝐽(𝑥) = 𝜌𝜑

[︂
∇𝜑− 𝑒*

ℎ̄
𝐴

]︂
(3.47)

In this case, we can really tell, due to the arbitrariness of 𝛿𝜑, that this is a quantity whose
divergence shall vanish for the equations of motion to hold - Noether’s theorem. Thus,

∫︁
𝐽(𝑥) · 𝑑𝑆 = 0 ,

∮︁
∇× 𝐽(𝑥) · 𝑑𝑥 = 𝜌𝜑

∮︁ [︂
∇𝜑− 𝑒*

ℎ̄
𝐴

]︂
· 𝑑𝑥 = 0 (3.48)

1 We slip the Aharonov effect under the carpet.
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The single-valuedness of the theory relies on the necessity that the phase changes only by a
multiple of 2𝜋 in any circuit path, thus,

∫︁
𝐵 · 𝑑𝑆 = 𝑛Φ0 , Φ0 = ℎ

𝑒* , (3.49)

which is the realization of Osanger on the quantization of the flux. By considering a variation
of the functional w.r.t the vector potential,

𝛿𝐹

𝛿𝐴
= 𝐽(𝑥) + 1

2𝜇0

𝛿(∇×𝐴)2

𝛿𝐴
= 0 (3.50)

A bit of index playing provides

1
2𝜇0

𝛿(∇×𝐴)2 = 1
𝜇0

∇×𝐵 · 𝛿𝐴 (3.51)

and the second GL reads

∇×𝐵 = 𝜇0𝐽 (3.52)

The Meissner-Ochsenfeld Effect

From the rotational on the second GL and the consideration of uniformity for the order
parameter,

∇2𝐵 = 1
𝜆2𝐵 , 𝜆 = ( 𝑚*

𝑒*2𝑛𝑠
)1/2 (3.53)

When 𝑛𝑠 = 0 (absence of condensate) any solution to the Laplace equation holds. When
the condensate is present, 𝑛𝑠 ̸= 0, the decaying behavior 𝑒−𝑧/𝜆 produces the (practical)
elimination of the induction within a finite shell from the material boundary. 𝜆 is coined the
‘London penetration depth’.

The Critical Field and the Stability of Solutions

The normal state is defined by the absence of Bose-Einstein condensation, 𝜓 = 0, for which
follows𝐵 = 𝜇0𝐻 due to the current relation and the boundary condition. In the Meissner state,
𝐵 = 0, and the uniform order-parameter minimizing the free energy is 𝜓 = 𝜓0 =

√︁
𝛼0(𝑇−𝑇𝑐)

𝑏
. It

is convenient to transform the Landau free energy to the Gibbs free energy such that we have
an explicit function on the control parameter 𝐻 . As these solutions are uniform, for either one
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of them

𝑔[𝜓,𝐻 ] ≡ 𝐺[𝜓,𝐻 ]
𝑉

= 𝛼0(𝑇 − 𝑇𝑐)|𝜓|2 + 𝑏

2 |𝜓|
4 + 𝐵2

2𝜇0
−𝐵 ·𝐻 (3.54)

It follows

𝑔𝑛𝑜𝑟𝑚𝑎𝑙[𝜓,𝐻 ] = −𝜇0

2 𝐻
2 , 𝑔𝑠𝑢𝑝𝑒𝑟𝑐.[𝜓,𝐻 ] = −𝛼

2
0(𝑇 − 𝑇𝑐)2

2𝑏 (3.55)

Therefore there is a ‘critical’ field above which the normal state is prevalent relatively to the
Meissner

𝐻 > 𝐻𝑐 =

⎯⎸⎸⎷𝛼2
0(𝑇 − 𝑇𝑐)2

𝜇0𝑏
(3.56)

since it imply 𝑔supercond > 𝑔normal. When 𝐻 = 𝐻𝑐 both the normal and the Meissner states
are degenerate. It suggests the existence of a state of matter in between the normal and
superconducting states. The effect of spatial variation in between these two limiting cases is
to be considered. In general, we may seek the stability of general solution with respect to the
Meissner phase by comparing their energies at the critical temperature. The solutions are stable
relatively to the normal state when at the critical field 𝐻𝑐, Δ𝑔[𝐻𝑐] = 𝑔sol.− 𝑔normal|𝐻=𝐻𝑐 < 0.
The normal state energy at 𝐻𝑐 is 𝑔𝐻𝑐 = −𝜇0

2 𝐻
2
𝑐 (− 1

8𝜋𝐻
2
𝑐 in cgs unities ). In this way,

Δ𝑔[𝐻𝑐] = ℎ̄2

2𝑚 |(∇−
𝑖𝑒*𝐴

ℎ̄
)𝜓|2 + 𝛼0(𝑇 − 𝑇𝑐)|𝜓|2 + 𝑏

2 |𝜓|
4 + 𝐵2

2𝜇0
−𝐵 ·𝐻𝑐 + 𝜇0

2 𝐻
2
𝑐

(3.57)

In fact, each non-uniform solution defines a critical field by setting the last expression equal
to zero. We are concerned, though, about comparing the energy of solutions with respect to
the critical field of the uniform phase.

3.5 DOMAIN-WALL: SOLUTION AND STABILITY

If we restrict our attention to the domain wall solutions (1d solutions), the space is isotropic
in two dimensions such that the energy of a domain-wall slice is

𝜎 =
∫︀

Δ𝑔[𝐻𝑐]𝑑3𝑥

𝐴
=

∫︁
𝑑𝑥

{︂
ℎ̄2

2𝑚 |(∇−
𝑖𝑒*

ℎ̄
𝐴)𝜓|2 + 𝛼0(𝑇 − 𝑇𝑐)|𝜓|2 + 𝑏

2 |𝜓|
4 + (𝐵 −𝐵𝑐)2

2𝜇0

}︂

(3.58)

Here we have defined 𝐻𝑐 = 𝐵𝑐/𝜇0. The thermodynamic stability of the solution relies on the
sign of the surface tension. By letting the incidence of the magnetic field to be in the 𝑧 direction
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and the magnetic flux to be homogeneous in the normal phase, inside the superconductor
we expect 𝐵 = (0, 0, 𝐵(𝑥)). It suffices to choose a gauge 𝐴 = (0, 𝐴(𝑥), 0), from which
𝐴′(𝑥) = 𝐵(𝑥). Due to the isotropy along the direction 𝑦 − 𝑧 directions, 𝜓(𝑥) = 𝜓(𝑥),
∇𝜓 ·𝐴 = 0, yielding

𝜎 =
∫︁
𝑑𝑥

{︂
ℎ̄2

2𝑚* (𝜓′2 + 𝑒*2𝐴2

ℎ̄2 𝜓2) + 𝛼0(𝑇 − 𝑇𝑐)𝜓2 + 𝑏

2𝜓
4 + (𝐵 −𝐵𝑐)2

2𝜇0

}︂
(3.59)

It is convenient to use dimensionless variables

𝑥̃ = 𝑥

𝜆
, 𝜓 = 𝜓

𝜓0
, 𝐴 = 𝐴

𝐵𝑐𝜆
, 𝐵̃ = 𝐵

𝐵𝑐

= 𝜇0𝐵

𝐻𝑐

, 𝜎̄ = 𝜇0

𝐵2
𝑐𝜆
𝜎 (3.60)

, such that (omitting the bar)

𝜎 =
∫︁
𝑑𝑥{𝜓

′2

𝜅2 + (1
2𝐴

2 − 1)𝜓2 + 1
2𝜓

4 + 1
2(𝐴′ − 1)2} (3.61)

In this scaled unities, the minimum with respect to 𝜓 and 𝐴 is found to be

− 𝜓′′

𝜅2 + 1
2𝐴

2𝜓 + (𝜓2 − 1)𝜓 = 0 (3.62)

𝐴𝜓2 − 𝐴′′ = 0 (3.63)

As we wish to evaluate the surface tension for solutions of these equations it is convenient to
rewrite the surface tension in terms of the second derivative,

𝜎 = 𝐵2
𝑐𝜆

2𝜇0

∫︁
𝑑𝑥{−2𝜓𝜓

′′

𝜅2 + 𝐴2𝜓2 + (𝜓4 − 2𝜓2) + (𝐴′ − 1)2} (3.64)

Therefore, due to the first GL (3.62),

𝜎 = 𝐵2
𝑐𝜆

2𝜇0

∫︁
𝑑𝑥[(𝐵(𝑥)− 1)2

⏟  ⏞  
Mag. field energy

−
condensate energy⏞  ⏟  

𝜓(𝑥)4 ] (3.65)

In this way, we were able to decouple the energy contribution of the magnetic and condensate
field when treating domain walls. The normalized condition Meissner-Ochsenfeld is 𝐵 = 0,
𝜓 = 1. In the normal phase, 𝜓 = 0 and 𝐵 = 1. At the critical temperature, either of these
uniform solutions has the same energy, as we would expect from the prior section. From this,
a much stronger conclusion can be drawn. At 𝜅 = 1/

√
2, known as the Bogomol’nyi point,

the relation 𝐵 = 1 − |𝜓|2 is valid, as we prove (chap. 6). Hence, at the Bogomol’nyi point
(BP), any domain-wall solution is degenerate. In general, any solution is degenerate at the
BP (chap. 6). When 𝜅 is modified from this equilibrium point, the relation between the two
characteristic lengths change, and either the magnetic or the condensate contributes the most,
causing the surface tension to acquire a sign ruling the stability of the solution.
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3.6 FINAL REMARKS

Within this chapter, we have covered the relationship between the symmetry-breaking
proposal due to N.Bogoliubov and the appearance of coherent states by R.Glauber. We have
also considered the physics of a macroscopic wave function in the view of the phenomenological
Ginzburg-Landau theory. Now that we have relied on some of the microscopic results to justify
the phenomenological macroscopic Ginzburg-Landau theory, we will fully enter the realm of
the microscopic theory. Considerations due to the Fhrölich, BCS, and Bogoliubov will be
considered in the chapter to follow.
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4 MICROSCOPIC THEORY OF SUPERCONDUCTIVITY

4.1 PROLOGUE

R. A. Ogg Jr. was the first to propose that electrons could act in pairs as a result of material
lattice vibrations (JR, 1946). The isotope effect observed in superconductors provided evidence
for this. Fröhlich recognized this and proposed his model (FRÖHLICH, 1954), which justified the
appearance of an electron-electron attractive interaction mediated by lattice vibration. This
was a necessary component in the discovery of the pairing stability (Cooper, 1956)(COOPER,
1956). The Fröhlich model is used as the starting point for a Bardeen-Pines-like (BP) Hamil-
tonian electron in this chapter, which is the precursor to the Bardeen-Cooper-Schrieffer model
(BCS) (BARDEEN; COOPER; SCHRIEFFER, 1957). We demonstrate the formal similarities be-
tween the BP and BCS theories. We formulate the Bogoliubov theory (BOGOLIUBOV, 1947)
using Landau-Fermi liquid theory reasoning. Then, we specialize to the case of uniformly
anomalous averages (uniform gap), recovering the mean-field BCS theory with a cutoff for
interaction energy (Heaviside modelling). Additionally, we illustrate (i) the Dyson series for
the uniform-gap theory diagrammatically and (ii) demonstrate the theory’s early success in
describing superconductivity thermodynamics. At the conclusion of the chapter, we present
the Hubbard-Stratonovitch (HUBBARD, 1959) method transformation, which provides an al-
ternative interpretation of the results obtained in the preceding section via path integrals. The
purpose of this chapter is to (i) introduce the initial predictions of superconductivity using
a microscopic theory, and (ii) to introduce the mathematical framework for developing the
Ginzburg-Landau and recently developed Extended Ginzburg-Landau Theory, both of which
have as their object the non-uniform gap in increasing accuracy orders.

4.2 THE FRÖHLICH HYPOTHESIS

Consider how an electron distorts its environment, resulting in the presence of a ’positive’
environment that can be thought of as an induced hole. We will consider the effect of this hole
interacting with the lattice by distorting the Fermi-size sea’s but not sufficiently to remove an
electron from the Fermi-sea.
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Figure 5 – A sketch of the distortion of the Fermi-surface by a hole induced by the passage of a fast electron.

Fermi-sea

Induced hole

Source: The author

In general, the fermi-energy is locally related to the density of electrons 𝜌(𝑥) 1,

𝜀𝐹 (𝑥) = 1
2𝑚(3𝜋2𝜌(𝑥))2/3 (4.1)

Supposing no particle modification occur within the shell, the sole effect being the distortion
of the volume in near-zero temperature

𝛿𝜀𝐹 (𝑥) = −2
3𝜀𝐹

𝛿𝑉

𝑉
(𝑥) (4.2)

The above is the direct-space representation of the reciprocal-space disturbance of the Fermi-
energy (𝑥 lies in the vicinity of each of the atoms uttermost shells). The total change of the
energy in the direct-space is provided by the number of electrons between 𝑥 and 𝑥+𝑑𝑥 times
the energy modification per electron in between this interval,

𝛿𝐸 = −2
3𝜀𝐹

∑︁

𝜎𝑥

𝑐†
𝜎(𝑥)𝑐𝜎(𝑥)𝛿𝑉

𝑉
(𝑥) (4.3)

We define the displacement field Φ as in elasticity theory (Appendix C.8 for details),

𝛿𝑉 (𝑥) ≡ Φ ·Δ𝑆 , ∇ ·Φ = lim
𝑉→0

𝛿𝑉

𝑉
(4.4)

Φ(𝑥) measures the displacement of Φ each point 𝑥 of the material under deformation. From
(4.3) and (4.4),

𝐻𝐼 = −2
3𝜀𝐹

∫︁
𝑑3𝑥𝑐†

𝜎(𝑥)𝑐𝜎(𝑥)∇ ·Φ exp[𝑖𝑞 · 𝑥] (4.5)

In connection, the displacement of longitudinal phonon modes is provided

Φ(𝑥) = −𝑖
∑︁

𝑞

𝑥̂𝑞Φ𝑞 exp[𝑖𝑞 · 𝑥] , (4.6)

Φ𝑞 = Δ𝑥𝜔𝑞

[︂
𝑏𝑞 + 𝑏†

−𝑞

]︂
, Δ𝑥𝜔𝑞 =

⎯⎸⎸⎷ ℎ̄

2𝑀lattice𝜔𝑞
(4.7)

1 𝜌 = 𝑁
𝑉 = 1

𝑉

∑︀
(𝑥,𝑦,𝑧)

Δ𝑘𝑥

(2𝜋/𝐿𝑥)
Δ𝑘𝑦

(2𝜋/𝐿𝑦)
Δ𝑘𝑧

(2𝜋/𝐿𝑧) Θ(𝜀𝐹 − 𝜀𝑘) = 1
𝜋3

∫︀
𝑑𝑘4𝜋𝑘2𝜃(𝜀𝑘𝐹

− 𝜀𝑘) = 𝑘3
𝐹

3𝜋2 .
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a wave-like displacement expression for a set of coupled harmonic oscillators for different crystal
modes. The factor −𝑖 is introduced as to assure the hermiticity of ∇ · Φ, and thus, of the
Hamiltonian (the minus sign selects ∇ ·Φ > 0, 𝛿𝑉 > 0 as standard, due to the tendency of
the hole of pulling the Fermi-surface). In the reciprocal space,

𝑐𝜎(𝑥) = 1√
𝑉

∑︁

𝑘

𝑐𝑘𝜎 exp[𝑖𝑘 · 𝑥] (4.8)

Thus, provided (4.6),

𝐻I =
∑︁

𝑞

𝑔𝑞𝑐
†
𝑘′𝜎𝑐𝑘𝜎[𝑏𝑞 + 𝑏†

−𝑞]
1
𝑉

∫︁
𝑑3𝑥 exp[𝑖(𝑞 + 𝑘 + 𝑘′) · 𝑥] (4.9)

𝐻I =
∑︁

𝑞

𝑔𝑞𝑐𝑘+𝑞𝜎𝑐𝑘𝜎[𝑏𝑞 + 𝑏†
−𝑞] , 𝑔𝑞 = −2

3𝜀𝐹 𝑞Δ𝑥𝜔𝑞 (4.10)

In this way, the Fröhlich model is written

𝐻 =
∑︁

𝑞

𝜔𝑞

[︂
𝑏†
𝑞𝑏𝑞 + 1

2

]︂

⏟  ⏞  
phonon

+
∑︁

𝑘

𝜔𝑞𝑐
†
𝑘𝑐𝑘

⏟  ⏞  
fermion

+
∑︁

𝜎𝑘𝑞

𝑔𝑞𝑐
†
𝑘+𝑞𝜎𝑐𝑘𝜎(𝑏𝑞 + 𝑏†

−𝑞)
⏟  ⏞  

interaction

(4.11)

The above Hamiltonian carries remarkable consequences. The modification of the partition
function modification for the system is

𝑍 = 𝑍0

⟨
𝒯 exp

[︃
−

∫︁ 𝛽

0
𝑉𝐼(𝜏)𝑑𝜏

]︃⟩

0
=

∞∑︁

𝑛=0

(−1)𝑛
𝑛!

∫︁ 𝛽

0
𝑑𝜏1...𝑑𝜏𝑛

⟨
𝒯 𝑉𝐼(𝜏1)𝑉𝐼(𝜏2)...𝑉𝐼(𝜏𝑛)

⟩

(4.12)

with
⟨

(...)
⟩

0
= Tr[exp[−𝛽𝐻0](...)]

Tr[exp[−𝛽𝐻0]]
(4.13)

where (...) refers to any physical measurable. By considering the average on the Fermionic ⊗
Bosonic space, the first term of the expansion cancels (⟨𝑏𝑘⟩ = 0). As for the second, it is the
first non-null term. Non-zero terms mixes an equal number of the creation and annihilation to
phonons,

𝑍

𝑍0
= 1 + 1

2

∫︁ 𝛽

0
𝑑𝜏𝑑𝜏0

∑︁

𝜎𝜎′;𝑞𝑞′𝑘𝑘′
𝑔𝑞′𝑔𝑞

⟨
𝒯 𝑐†

𝑘′+𝑞′𝜎′(𝜏)𝑐𝑘′𝜎′(𝜏)𝑐†
𝑘+𝑞𝜎(𝜏0)𝑐𝑘,𝜎(𝜏0)

[︁
𝑏𝑞′(𝜏)𝑏†

−𝑞(𝜏0) + 𝑏†
−𝑞′(𝜏)𝑏𝑞(𝜏0)

]︁⟩

0
(4.14)

As the bosonic and fermionic operators are in independent Hilbert spaces, the time-ordering
of the product equals the time-ordering over each contraction set. Only 𝑞′ = −𝑞 is selected.
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such that

𝑍

𝑍0
= 1− 1

2
∑︁

𝜎𝜎′𝑞𝑘𝑘′

∫︁ 𝛽

0
𝑑𝜏𝑑𝜏0𝑔

2
𝑞

⟨
𝒯

[︂
𝑏−𝑞(𝜏)𝑏†

−𝑞(𝜏0) + 𝑏†
𝑞(𝜏)𝑏𝑞(𝜏0)

]︂⟩

0
⟨
𝒯 𝑐†

𝑘+𝑞𝜎(𝜏0)𝑐𝑘𝜎(𝜏0)𝑐†
𝑘′−𝑞𝜎′(𝜏)𝑐𝑘′𝜎′(𝜏)

⟩

0
(4.15)

By applying the time-ordering (Appendix A.2) of fermions2

⟨
𝒯 𝑐†

𝑘+𝑞𝜎(𝜏0)𝑐†
𝑘′−𝑞𝜎′(𝜏)𝑐𝑘𝜎(𝜏0)𝑐𝑘′𝜎′(𝜏)

⟩

0
= −

⟨
𝒯 𝑐†

𝑘+𝑞𝜎(𝜏0)𝑐†
𝑘′−𝑞𝜎′(𝜏)𝑐𝑘′𝜎′(𝜏)𝑐𝑘𝜎(𝜏0)

⟩

0
(4.17)

and defining the dimensionless quantity

⟨
𝒯 Φ𝑞′(𝜏)Φ†

𝑞(𝜏0)
Δ2
𝜔𝑞

⟩

0
=

≡𝒟ph.𝑞(𝜏−𝜏0)⏞  ⏟  ⟨
𝒯

[︂
𝑏−𝑞(𝜏)𝑏†

−𝑞(𝜏0) + 𝑏†
𝑞(𝜏)𝑏𝑞(𝜏0)

]︂⟩

0
𝛿𝑞′,−𝑞 (4.18)

with 𝒟ph.𝑞 frequently referred as the dimensionless elastic (or phonon) propagator. Explicitly,
the contraction in the index for the exchange of momenta yields,

𝑍

𝑍0
= 1 + 1

2
∑︁

𝜎𝜎′𝑞𝑘𝑘′

∫︁ 𝛽

0
𝑑𝜏𝑑𝜏0𝑔

2
𝑞𝒟ph.𝑞(𝜏 − 𝜏0)

⟨
𝒯 𝑐†

𝑘+𝑞𝜎(𝜏0)𝑐†
𝑘′−𝑞𝜎′(𝜏)𝑐𝑘′𝜎′(𝜏)𝑐𝑘𝜎(𝜏0)

⟩

0
(4.19)

We have ignored higher-order 2𝑛-legged diagrams with 𝑛 > 2 in favor of the four-legged
diagram, but the same reasoning applies. By contracting the momentum 𝑞, and the four-
operator average through Wick’s theorem for finite temperature (for a reference, section (8.4)
of (COLEMAN, 2015)).

⟨
𝒯 𝑐†

𝑘+𝑞𝜎(𝜏0)𝑐†
𝑘′−𝑞𝜎′(𝜏)𝑐𝑘′𝜎′(𝜏)𝑐𝑘𝜎(𝜏0)

⟩

0
=−𝒢(0)

𝑘 (0)𝒢(0)
𝑘′ (0)𝛿𝑞0⏟  ⏞  

Hartree term

+

𝛿𝜎𝜎′𝛿𝑘,𝑘′−𝑞𝒢(0)
𝑘 (𝜏0 − 𝜏)𝒢(0)

𝑘′ (𝜏 − 𝜏0)⏟  ⏞  
Fock term

(4.20)

It is convenient to consider the variables 𝜏 − 𝜏0 and 𝜏 + 𝜏0
3. Carrying out the sum in the spin

index and shifting the momentum sign due to the arbitrariness of the sum over the momenta,

𝑍

𝑍0
= 1− 𝛽

2

∫︁ 𝛽

0
𝑑𝜏

∑︁

𝑘𝑘′

[︂
(2𝑆 + 1)2𝒢(0)

𝑘 (0)𝑉eff0(𝜏)𝒢(0)
𝑘′ (0)−

(2𝑆 + 1)𝒢(0)
𝑘 (−𝜏)𝑉eff(𝑘′−𝑘)(𝜏)𝒢(0)

𝑘′ (𝜏)
]︂

(4.21)

2

⟨
𝒯 𝑐†

𝑘′−𝑞𝜎′(𝜏)𝑐𝑘′𝜎′(𝜏)𝑐†
𝑘+𝑞𝜎(𝜏0)𝑐𝑘,𝜎(𝜏0)

⟩
= −

⟨
𝒯 𝑐†

𝑘+𝑞𝜎(𝜏0)𝑐𝑘𝜎(𝜏0)𝑐†
𝑘′−𝑞𝜎′(𝜏)𝑐𝑘′𝜎′(𝜏)

⟩
0

=
⟨
𝒯 𝑐†

𝑘+𝑞𝜎(𝜏0)𝑐†
𝑘′−𝑞𝜎′(𝜏)𝑐𝑘𝜎(𝜏0)𝑐𝑘′𝜎′(𝜏)

⟩
0

= −
⟨
𝒯 𝑐†

𝑘+𝑞𝜎(𝜏0)𝑐†
𝑘′−𝑞𝜎′(𝜏)𝑐𝑘′𝜎′(𝜏)𝑐𝑘𝜎(𝜏0)

⟩
0

(4.16)

.
3 The integrand content is a function of 𝜏 − 𝜏0. The integration on the second variable becomes trivial and

equal to 𝛽 - consider, for instance, the case 𝜏 > 𝜏0.
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with

𝑉eff.𝑞(𝜏) ≡ 𝑔2
𝑞𝒟ph.𝑞(𝜏) (4.22)

Its convenient to evaluate directly the phonon propagator

𝒟ph.𝑞(𝜏) = 𝜃(𝜏)(1 + 𝑛𝑞(1)) exp[𝜔𝑞𝜏 ]
⏟  ⏞  

(𝑖𝜈−𝜔𝑞)−1

− 𝜃(−𝜏)(1 + 𝑛𝑞(1)) exp[−𝜔𝑞𝜏 ]
⏟  ⏞  

(𝑖𝜈+𝜔𝑞)−1

, (4.23)

where we identify it is written in terms of the frequencies of forward and backwards propagating
bosons by considering the zero-temperature limit scenario (Appendix A.6). Within the Fhrölich
model, the mechanism responsible for mediating the interaction between the electrons is the
phonon. The phonon acquires a momentum equal to the difference of the momenta between
the involved electrons, 𝑞 = 𝑘 − 𝑘′. From both of these facts, we conclude that it is the
movement of the phonon going backwards and forwards in between electrons which causes
them to exchange momenta and implying the appearance of an effective interaction.

𝒟(0)
ph.𝑞(𝑖𝜈) = 2𝜔𝑞

(𝑖𝜈)2 − 𝜔2
𝑞

(4.24)

We recall the Fourier series in Matsubara frequencies

𝒟ph.𝑞(𝜏) = 1
𝛽

∑︁

𝜈

𝒟ph.𝑞(𝑖𝜈) exp[−𝑖𝜈𝜏 ] , 𝜈 ∈ { even } (4.25)

𝒢(0)
𝑘 (𝜏) = 1

𝛽

∑︁

𝜔

𝒢(0)
𝑘 (𝑖𝜔) exp[−𝑖𝜔𝜏 ] , 𝜔 ∈ { odd } (4.26)

Both the Fock and Hartree terms are present; we examine them separately.

The Fock Interaction

From the Fourier series (4.25,4.26) into (4.21) for the Fock term,

𝑍

𝑍0
= 1 + 1

𝛽2

∑︁

𝑘𝑖𝜔

∫︁ 𝛽

0
𝑑𝜏

∑︁

𝑘′𝑖𝜔′𝑖𝜈

𝒢(0)
𝑘 (𝑖𝜔)[𝑔2

𝑘′−𝑘𝒟ph(𝑘′−𝑘)(𝑖𝜈)]

𝒢(0)
𝑘′ (𝑖𝜔′) exp[−𝑖(𝜔′ − 𝜔 + 𝜈)𝜏 ] (4.27)

The integral selects 𝜔′ = 𝜔 − 𝜈 (the minus sign below is due to the exponential being
odd),

𝑍

𝑍0
= 1− 𝑇

∑︁

𝑘𝑖𝜔

{︂ ∑︁

𝑘′𝑖𝜈

1
𝑖𝜔 − 𝜔𝑘⏟  ⏞  
𝒢(0)

𝑘
(𝑖𝜔)

[︂
𝑔2
𝑘′−𝑘

2𝜔𝑘′−𝑘
(𝑖𝜈)2 − 𝜔2

𝑘′−𝑘⏟  ⏞  
𝑉eff.(𝑘′−𝑘)(𝑖𝜈)

]︂ 1
𝑖𝜔 − 𝑖𝜈 − 𝜔𝑘′⏟  ⏞  

𝒢(0)
𝑘′ (𝑖𝜔−𝑖𝜈)

}︂
(4.28)
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We identify the self energy as a combination of the phonon propagator and the electron
propagator (Appendix C.3), corresponding to the diagrammatic representation in chap. 2.

ΣFock,𝑘(𝑖𝜔) = 𝑇
∑︁

𝑘′,𝑖𝜈

𝑔2
𝑘−𝑘′

2𝜔𝑘−𝑘′

[(𝑖𝜈)2 − 𝜔2
𝑘−𝑘′ ]

1
[𝑖𝜔 − 𝑖𝜈 − 𝜔𝑘′ ] = 𝑘 − 𝑘′

𝑘′

(4.29)

It is convenient to explicitly separate the forward and backward contribution of the phonon
propagator. To carry out the sum we apply the contour integral method to obtain.

−𝑇
∑︁

𝑖𝜈

=
∮︁

C

𝑑𝑧

2𝜋𝑖𝑛𝑧(1)ΣFock,𝑘(𝑧), C is counterclockwise oriented (4.30)

By analytically continuing the result to the complex plane (𝑖𝜔 → 𝑧), while separating the
forward and backwards propagating bosons,

Σ𝑘(𝑧) =
∑︁

𝑘′
𝑔2
𝑘−𝑘′

[︂1 + 𝑛𝑘−𝑘′(1)− 𝑛𝑘′(−1)
𝑧 − (𝜔𝑘′ + 𝜔𝑘−𝑘′) + 𝑛𝑘−𝑘′(1) + 𝑛𝑘′(−1)

𝑧 − (𝜔𝑘′ − 𝜔𝑘′−𝑘)

]︂
(4.31)

In the zero-temperature limit, 𝑛(1)→ 0, 𝑧 → 𝜔 ∈ Re (Appendix A.6). Even though there is
interaction, we may consider the zero-interaction limit, in which quasi-holes can only be found
below the Fermi surface, and quasi-electrons above the Fermi-surface. With this consideration,
the first term designates a quasi-particle contribution, as it only survives 𝑘′ > 𝑘𝐹 ; the second
term designates a quasi-hole contribution - only non-zero to 𝑘′ < 𝑘𝐹 . Therefore, −𝜔𝑘′ > 0 in
the second term and we identify positive and negative contributions modifying the energy of
the propagating electron while it interacts with the forward and back-propagating boson.

Σ𝑘(𝜔) = −
∑︁

|𝑘′|>𝑘𝐹

𝑔2
𝑘−𝑘′

[︂ 1
(𝜔𝑘′ + 𝜔𝑘−𝑘′)− 𝜔

]︂
+

∑︁

|𝑘′|<𝑘𝐹

𝑔2
𝑘−𝑘′

[︂ 1
𝜔 + (|𝜔𝑘′|+ 𝜔𝑘−𝑘′)

]︂
(4.32)

The first term contains the interaction between the forward-propagating boson and the quasi-
particle, contributing for minimizing the energy. On the second, we have the interaction of
the backward-propagating boson with the quasi-hole (or backward-propagating electron), con-
tributing to the increase of the energy. Notice that to find the renormalized energy correction
to a higher-order we may solve for 𝜔* the relation

Σ𝑘(𝜔*) = 𝜔* − 𝜔 (4.33)

As the dependence on 𝜔 is solely on the 𝑘; solving is to obtain the renormalized energy 𝜔*
𝑘.

The Hartree Interaction

From a mathematical standpoint, the Hartree interaction is simpler to analyze. The Fock
contribution to self-energy is both momentum and frequency independent. It is equivalent
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to i) a collision with no exchange of momentum and ii) an instantaneous interaction. One
could think of self-energy as causing a particle with a given momentum to transform into a
particle-hole pair with zero lifetime ’before’ reverting to its particle state. This is similar to the
bubble portion of chapter’s two third diagram, except that nothing emerges from the bubble
at a different time. This behavior is denoted by a diagram displayed in chap. 2, which takes
on the mathematical form in the Fröhlich model.

ΣHartree = =
∑︁

𝑘

𝒢(0)
𝑘 (0)𝑉eff0(0) = (2𝑆 + 1)2 ∑︁

𝑘

1
𝜔𝑘

lim
𝑞→0

[−2𝑔2
𝑞

𝜔𝑞
] (4.34)

It is usual to denote 𝑔 ≡ lim𝑞→0
2𝑔2

𝑞

𝜔𝑞
, and, in most materials, 𝜆 ≡ 𝑁(0)𝑔 < 1, 𝜆 is the ‘coupling

constant’, with 𝑁(0), as before, the density of states at the Fermi-level.

Comments on the Fröhlich Model

From the Fröhlich self-energy, it is clear that the effective interaction is smaller away from
the Fermi-energy. In regions away from the Fermi-surface, the lifetime of excited particles is
much smaller than any adiabatic switch on of interaction, and the theory of Landau would fail;
however, this is the limit where, in the Fröhlich model, the contribution due to the perturbation
is less relevant - in agreement with Landau considerations. When 𝜈 = 0, the effective interac-
tion is negative, and as this is the term contributing the most, the total effective interaction
is negative. We conclude that the phonon mediating the interaction between both electrons
causes them to attract each other. By attracting one another, the question arises as to what
happens next; is the paired state stable? Indeed, the electron pairing is stabilized (COOPER,
1956). Other hypotheses for the mediation of electron-electron pairings have permeated the
literature most recently, such as magnetism, etc. We will not focus on the detailed microscopic
mechanisms of particular systems, but rather on the general consequences of the BCS model.

4.3 FRÖHLICH MODEL, BARDEEN-PINES, BCS AND LANDAU THEORIES

In low-energy physics, it is common to keep only the 𝑖𝜈 = 0 contribution, corresponding
to the largest term contributing to the self-energy.

max{𝑉eff𝑞(𝑖𝜈)} = 𝑉eff𝑞(0) = −2𝑔2
𝑞

𝜔𝑞
< 0 (4.35)
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From the Fhrölich model, in this limit, we have, effectively, to first-order of the expansion, a
theory of the kind

𝐻I,BP =
∑︁

𝜎𝜎′;𝑘𝑘′𝑞

𝑉eff𝑞𝑐
†
𝑘+𝑞,𝜎𝑐

†
𝑘′−𝑞𝜎′𝑐𝑘′𝜎′𝑐𝑘𝜎 with 𝑉eff𝑞 = −2𝑔2

𝑞

𝜔𝑞
, (4.36)

With a displacement of the kind 𝑘′ → 𝑘′ + 𝑞, the above becomes

𝐻I,BP =
∑︁

𝜎𝜎′;𝑘𝑘′𝑞

𝑉eff𝑞𝑐
†
𝑘+𝑞,𝜎𝑐

†
𝑘′𝜎′𝑐𝑘′+𝑞𝜎′𝑐𝑘𝜎 , (4.37)

which is precisely the Bardeen-Pines Hamiltonian (BP). We notice that an average of the BP
hamiltonian over the Fermi-Landau vacuum at zero-temperature yields a theory within the
scope of the Landau model

⟨𝐻BP⟩ =
∑︁

𝑘𝜎

𝜔𝑘𝜎𝑐
†
𝑘𝜎𝑐𝑘𝜎 +

∑︁

𝑘𝑘′
[𝑉0 −

1
2𝑉𝑘−𝑘′𝛿𝜎𝜎′ ]𝑛𝑘′𝜎′(−1)𝑛𝑘𝜎(−1) (4.38)

(see Appendix A.6 for the meaning of 𝑛(𝜁 = −1)). The eq. (4.37) is the interaction part of the
Bardeen-Pines Hamiltonian (ignoring the particular form of the interaction). This Hamiltonian
model is a predecessor of the Bardeen-Cooper-Schrieffer Hamiltonian in considering low-energy
physics. Let us consider the displacement 𝑞 → [𝑞 − (𝑘 + 𝑘′)],

𝐻I,BCS =
∑︁

𝑉𝑞−(𝑘+𝑘′)𝑐
†
−𝑘′𝜎𝑐

†
𝑘′𝜎′𝑐−𝑘𝜎′𝑐𝑘𝜎 (4.39)

But provided the low-energy consideration of momentum conservation, 𝑞 = 𝑘 − 𝑘′, and the
center of mass of the electrons to be fixed, 𝑘 ∼ −𝑘′, the approach 𝑉−2𝑘′ ∼ 𝑉2𝑘 ∼ 𝑉𝑘−𝑘′ and
the BCS modelling,

𝐻BCS =
∑︁

𝑘𝜎

𝜔𝑘𝜎𝑐
†
𝑘𝜎𝑐𝑘𝜎 +

∑︁
𝑉𝑘−𝑘′𝑐†

−𝑘′𝜎𝑐
†
𝑘′𝜎′𝑐−𝑘𝜎′𝑐𝑘𝜎 (4.40)

The average on the Fermi vacuum yields a limiting case of the prior result, as we see

⟨𝐻I,BCS⟩FLV =
∑︁

𝑘,𝜎 ̸=𝜎′
𝑉𝑘𝑛𝑘𝜎(−1)𝑛−𝑘𝜎′(−1) (4.41)

This is a version of the Fermi-Landau theory where the interaction due to which the “exchange”
of identical particles is ignored. It might be also be seen as the result of neglecting the exchange
interaction in the Bardeen-Pines (BP) model, and considering 𝑉0 → 𝑉𝑘−𝑘′ . The first historical
choice for modelling the interaction has been the s-wave interaction

𝑉𝑘 = −𝑔[1−Θ(𝜔𝑘 − 𝜔𝐷)] (4.42)

with Θ denoting the Heaviside function. As we are about to see, the mean-field Heaviside
modelling due to BCS is reproduced by the mean-field Bogoliubov formulation with uniform
anomalous averages. In the next section we begin by providing the fundamental connection
between the Fermi-Landau theory and the Bogoliubov theory of superconductivity.
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4.4 THE BOGOLIUBOV THEORY OF SUPERCONDUCTIVITY

Bogoliubov considered the interaction part of the Hamiltonian to look like the Landau
energy in the position space,

𝐻𝐼 =
∑︁

𝜎

∫︁
𝑑𝑥𝑑𝑥′𝑉𝑥−𝑥′𝑛𝜎(𝑥)𝑛𝜎′(𝑥′) =

∫︁
𝑑𝑥𝑑𝑥′𝑉𝑥−𝑥′

∑︁

𝜎

𝑐†
𝜎(𝑥)𝑐𝜎(𝑥)

∑︁

𝜎′
𝑐†
𝜎′(𝑥′)𝑐𝜎′(𝑥′)

(4.43)

Then, we may normal-order 4 it. If 𝜎 ̸= 𝜎′, we simply commute the operators without residue,
while if 𝜎 = 𝜎′ we have to take into account the energy due to 𝑥 = 𝑥′.

𝐻𝐼 =
∑︁

𝜎

∫︁
𝑑𝑥𝑑𝑥′𝑉𝑥−𝑥′𝑛𝜎(𝑥)𝑛𝜎′(𝑥′) =

=
∫︁
𝑑𝑥𝑑𝑥′ ∑︁

{𝜎,𝜎′},𝜎 ̸=𝜎′
𝑉𝑥−𝑥′𝑐†

𝜎(𝑥)𝑐†
𝜎′(𝑥)𝑐𝜎′(𝑥′)𝑐𝜎(𝑥′) +

∑︁

𝜎

∫︁
𝑑𝑥𝑑𝑥′𝑉0𝑐

†
𝜎(𝑥)𝑐𝜎(𝑥)

Neglecting the last term whose sole effect is to uniformly displace the energy per particle, the
kinetic term,

𝐻𝐼 =
∑︁

𝜎

∫︁
𝑑𝑥𝑑𝑥′𝑛𝜎(𝑥)𝑛𝜎′(𝑥′) =

∫︁
𝑑𝑥𝑑𝑥′𝑉𝑥−𝑥′

∑︁

𝜎

𝑐†
𝜎(𝑥)𝑐𝜎(𝑥)

∑︁

𝜎′
𝑐†
𝜎′(𝑥′)𝑐𝜎′(𝑥′) (4.44)

Denoting 𝑦 = (𝑥, 𝜎) and ∫︀
𝑑𝑦 ≡ ∑︀

𝜎 𝑑𝑥, we apply the mean-field approximation (Appendix
C.4),

𝐻𝐼 =
∫︁
𝑑𝑦𝑑𝑦′𝑉𝑦′,𝑦𝑐

†(𝑦)𝑐†(𝑦′)𝑐(𝑦′)𝑐(𝑦) =
∫︁
𝑑𝑦𝑑𝑦′𝑉𝑦−𝑦′

[︂
⟨𝑐†(𝑦)𝑐†(𝑦′)⟩𝑐(𝑦′)𝑐(𝑦)+

𝑐†(𝑦)𝑐†(𝑦′)⟨𝑐(𝑦′)𝑐(𝑦)⟩ − ⟨𝑐†(𝑦)𝑐†(𝑦′)⟩⟨𝑐(𝑦′)𝑐(𝑦)⟩
]︂

(4.45)

The assumption due to Bogoliubov is

𝑉𝑥−𝑥′ = −𝑔𝛿(𝑥− 𝑥′) (4.46)

which implies in the 𝑘 space that 𝑉𝑘 is uniform, which already provides a brief indication of
the connection to the energy-cutoff modelling in (4.42). The Hamiltonian is rewritten as

𝐻 =
∑︁

𝜎

∫︁
𝑑𝑥𝑐†

𝜎(𝑥)𝑇𝑥𝑐𝜎(𝑥) +
∫︁
𝑑𝑥[𝑐†

↑(𝑥)Δ(𝑥)𝑐†
↓(𝑥) + 𝑐↓(𝑥)Δ*(𝑥)𝑐↑(𝑥)] + |Δ(𝑥)|2

𝑔

(4.47)

𝑇𝑥 ≡ −
ℎ̄2

2𝑚(∇− 𝑖𝐴Φ0
)2 − 𝜀𝐹 , Δ(𝑥) ≡ −𝑔⟨𝑐↓(𝑥)𝑐↑(𝑥)⟩ (4.48)

4 The process of moving the annihilation operators to the right (priority of its application on the vector
space).
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We may rewrite the kinetic term as
∫︁
𝑑𝑥[𝑐†

↑(𝑥)𝑇𝑥𝑐↑(𝑥) + 𝑐†
↓(𝑥)𝑇𝑥𝑐↓(𝑥)] = [𝑐†

↑(𝑥)𝑇𝑥𝑐↑(𝑥)− 𝑐↓(𝑥)𝑇 *
𝑥𝑐

†
↓(𝑥)] , (4.49)

provided an integration by parts on the second term and assuming the vanishing of the surface
term. More will be stated on this condition in the chapter to follow. By defining the ‘Nambu-
spinor’ vector

Ψ(𝑥, 𝜏) ≡

⎛
⎜⎜⎝
𝑐↑(𝑥, 𝜏)

𝑐†
↓(𝑥, 𝜏)

⎞
⎟⎟⎠ , (4.50)

the Hamiltonian may be represented as

𝐻 =
∫︁
𝑑𝑥Ψ†(𝑥)𝜀(𝑥)Ψ(𝑥) = Ψ†𝜀Ψ (4.51)

𝜀(𝑥) =

⎛
⎜⎜⎝
𝑇𝑥 Δ(𝑥)

Δ*(𝑥) −𝑇 *
𝑥 .

⎞
⎟⎟⎠ (4.52)

Ψ is easily checked to obey the fermionic commutation relations in the matrix space,

{Ψ†,Ψ} = 1 (4.53)

The Go’rkov-Nambu equations in the basis-independent form (Appendix C.2) is summarized
in

(𝜕𝜏 + 𝜀)𝒢 = −1 , (4.54)

𝒢 = −⟨𝒯ΨΨ†⟩ , (4.55)

providing each matrix component explicitly and contracting in the position and time basis,

𝒢(𝑥, 𝜏,𝑥′, 𝜏 ′) ≡

⎛
⎜⎜⎝
𝒢(𝑥𝜏 ;𝑥′𝜏 ′) ℱ(𝑥𝜏 ;𝑥′𝜏 ′)

̃︀ℱ(𝑥𝜏 ;𝑥′𝜏 ′) ̃︀𝒢(𝑥, 𝜏 ;𝑥′𝜏 ′)

⎞
⎟⎟⎠ =

= −

⎛
⎜⎜⎝
⟨𝒯 𝑐↑(𝑥, 𝜏)𝑐†

↑(𝑥′𝜏 ′)⟩ ⟨𝒯 𝑐↑(𝑥𝜏)𝑐↓(𝑥′𝜏 ′)⟩

⟨𝒯 𝑐†
↓(𝑥𝜏)𝑐†

↑(𝑥′𝜏 ′)⟩ ⟨𝒯 𝑐†
↓(𝑥𝜏)𝑐↓(𝑥′𝜏 ′)⟩

⎞
⎟⎟⎠ (4.56)

By comparing (4.48) to the above defined correlations ℱ and ℱ̃ , we have the known coupling
properties,

lim
𝜏−𝜏 ′→0+,𝑥′→𝑥

ℱ(𝑥𝜏 ;𝑥′𝜏 ′) = −⟨𝑐↑(𝑥)𝑐↓(𝑥)⟩ = −Δ
𝑔

(4.57)

lim
𝜏−𝜏 ′→0+,𝑥′→𝑥

ℱ̃(𝑥𝜏 ;𝑥′𝜏 ′) = −⟨𝑐†
↓(𝑥)𝑐†

↑(𝑥)⟩ = −Δ*

𝑔
(4.58)
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. The dynamics for the matrix is expressed in the coined Gor’kov-Nambu representation,

(𝜕𝜏 + 𝜀𝑥)𝒢(𝑥, 𝜏 ;𝑥′, 𝜏 ′) = −𝛿(𝑥− 𝑥′)𝛿(𝜏 − 𝜏 ′)1̂

Considering a representation in momentum, equivalent to a Fourier transform, we have

(𝜕𝜏 + 𝜀𝑘)𝒢𝑘,𝑘′(𝜏, 𝜏 ′) = −1𝛿(𝜏 − 𝜏 ′) (4.59)

However the Fourier transform presents the extra-information that 𝒢 is diagonal in its mo-
mentum index provided the system is invariant by translation 𝒢(𝑥, 𝜏 ;𝑥′𝜏 ′) = 𝒢(𝑥−𝑥′; 𝜏, 𝜏 ′).
By transforming to the frequency domain, we identify

𝒢𝑘 ≡ (𝑖𝜔 − 𝜀𝑘)−1 (4.60)

We will proceed to derive the above results to the stricter BCS mean-field theory. This route
will be of use in the chapter to follow.

4.5 MEAN-FIELD BCS THEORY

The Particle-hole View

We consider the BCS hamiltonian with the model consideration

𝑉𝑞 =

⎧
⎪⎪⎨
⎪⎪⎩

−𝑔 if |𝜔𝑘| < 𝜔𝐷

0 otherwise
(4.61)

By applying the mean-field approximation to the BCS Hamiltonian (4.39) with (4.42), it results
in

𝐻Mean
I,BCS =

∑︁

|𝜔𝑘|<𝜔𝐷𝜎

𝜔𝑘𝜎𝑐
†
𝑘𝜎𝑐𝑘𝜎 +

∑︁

|𝜀𝑘|<𝜔𝐷

[︂
𝑐−𝑘↓Δ*𝑐𝑘↑ + 𝑐†

𝑘↑Δ𝑐
†
−𝑘↓

]︂
+ |Δ|

2

𝑔

with Δ* = − 𝑔
𝑉

∑︁

|𝜀𝑘|<𝜔𝐷

⟨𝑐†
−𝑘↓𝑐

†
𝑘↑⟩ (4.62)

(with 𝑉 the volume), in which we consider all of the kinetic contributions such that |𝜔𝑘| >
𝜔𝐷 to be irrelevant in contributing to the dynamics. These might be removed through a
displacement of the energy from the true particle vacuum to the Fermi vacuum. This is a
version of (4.47) in which Δ is uniform as one might notice by expanding it in the momenta
space. The nontrivial part of the proof is to show the equivalence of the Δ* definition in
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both versions. If Δ* is uniform, it must be such that Δ* =
∫︀

Δ*(𝑥)𝑑𝑥
𝑉

. Indeed, this and (4.62)
provides the above gap dependence in the reciprocal space (Appendix C.7(a) for a proof).

To write this expression in the particle-hole picture explicitly, we need to define the hole
operators

ℎ†
𝑘 ≡ 𝑐−𝑘 , ℎ𝑘 ≡ 𝑐†

−𝑘 , (4.63)

since to create or remove a negative particle moving with momentum −𝑘 corresponds, re-
spectively, to add or remove a positive particle with momentum 𝑘. The hole operators obey
the same algebra of the quasi-particle operators.

We, therefore, may rewrite the BCS mean-field hamiltonian in the particle-hole view

𝐻 =
∑︁

|𝜀𝑘|<𝜔𝐷

𝜔𝑘(𝑐†
𝑘↑𝑐𝑘↑ − ℎ†

𝑘↑ℎ𝑘↑) +
∑︁

|𝜔𝑘|<𝜔𝐷

[𝑐†
𝑘↑Δℎ𝑘↓ + ℎ†

𝑘↓Δ*𝑐𝑘↑] + |Δ|
2

𝑔
(4.64)

which is equivalent to the Anderson impurity model for local magnetic moment in dilute alloy
(ANDERSON, 1961), with the s-d mixing replaced for the spin mixing.

From this we see that there are two ways for the hole and electron scattering to the first
order of the Gell-Man expansion - creating a hole and destroying an electron, or the con-
verse, creating an electron and destroying a hole. These virtual processes are coined ‘Andreev
scattering’, hence represented diagrammatically

ℎ†
𝑘↑Δ*𝑐𝑘↑ = 𝑐−𝑘↓Δ*𝑐𝑘↑ ≡

𝑐†
𝑘↑Δℎ𝑘↓ = 𝑐†

𝑘↑Δ𝑐
†
−𝑘↓ ≡

A convenient representation to the particle-hole excitation is the Nambu-spinor in the momenta
space, the reciprocal-space version of (4.50),

Ψ𝑘 =

⎛
⎜⎜⎝
𝑐𝑘↑

ℎ𝑘↓

⎞
⎟⎟⎠ , Ψ†

𝑘 =
(︂
𝑐†
𝑘↑ ℎ†

𝑘↓

)︂
(4.65)

for the Hamiltonian may be rewritten as

𝐻 ′ ≡ 𝐻 − |Δ|
2

𝑔
=

(︂
𝑐†
𝑘↑ ℎ†

𝑘↓

)︂
⎛
⎜⎜⎝
𝜔𝑘 Δ

Δ* −𝜔𝑘

⎞
⎟⎟⎠

⎛
⎜⎜⎝
𝑐↑
𝑘

ℎ𝑘↓

⎞
⎟⎟⎠ = Ψ†

𝑘𝜀𝑘Ψ𝑘 . (4.66)
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The Zeeman-like form of the Anderson model

Following similar footsteps to those of J.R Schrieffer and P.A.Wolf (SCHRIEFFER; WOLFF,
1966), one can prove that the exemplar of the impurity Anderson model (4.64) may be rewritten
in the Zeeman-like form, as in chap. 14 of the introductory ref. (COLEMAN, 2015)

𝐻 ′ = −
∑︁

𝑘

𝐵𝑘 · 𝜎̂𝑘 with 𝜎̂𝑘 = Ψ†
𝑘𝜎Ψ𝑘 (4.67)

The operator 𝜎̂𝑘 is often refereed as isospin. 𝜎 comprises the Pauli matrices as components.

𝜎 = (

⎛
⎜⎜⎝

0 1

1 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 −𝑖

𝑖 0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

1 0

0 −1

⎞
⎟⎟⎠ (4.68)

To prove this interesting result, it is a matter of clever algebraic procedure. By defining

𝐵𝑘 = (−Re[Δ], Im[Δ],−𝜔𝑘)

(4.69)

It is immediate that

−𝐵𝑘 · 𝜎 =

⎛
⎜⎜⎝
𝜔𝑘 Δ

Δ* −𝜔𝑘

⎞
⎟⎟⎠ (4.70)

we might rearrange (4.67) in the form,

𝐻 ′ = −
∑︁

𝑘

Ψ†
𝑘(𝐵𝑘 · 𝜎)Ψ𝑘 (4.71)

A useful vector representation to 𝐵𝑘 is provided in polar and azihmuthal angles

−𝐵𝑘 = |𝐵𝑘|(sin 𝜃𝑘 cos𝜑𝑘, sin 𝜃𝑘 sin𝜑𝑘, cos 𝜃𝑘) (4.72)

𝜃𝑘 = cos−1(𝜔𝑘/
√︁

Δ2 + 𝜔2
𝑘) , 𝜑𝑘 = − tan−1(Im[Δ]/Re[Δ]) (4.73)

Hence, the Hamiltonian is rewritten accordingly

𝐻 ′ =
∑︁

𝑘

|𝐵𝑘|Ψ†
𝑘

⎛
⎜⎜⎝

cos 𝜃𝑘 sin 𝜃𝑘𝑒−𝑖𝜑𝑘

sin 𝜃𝑘𝑒𝑖𝜑𝑘 − cos 𝜃𝑘

⎞
⎟⎟⎠

⏟  ⏞  
≡𝒫𝑘

Ψ†
𝑘 (4.74)

The Hamiltonian mixes particles and holes explicitly. We wish to find the quasi-particles of the
system such that the Hamiltonian becomes effectively non-interacting concerning these. This
is done by computing the eigenstates, as pointed out in chap. 1.
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The eigenvalues of the matrix are ±1, for which it follows the corresponding eigenstates
⎛
⎜⎜⎝

cos 𝜃𝑘

2 𝑒
−𝑖𝜑𝑘

2

sin 𝜃𝑘

2 𝑒
𝑖

𝜑𝑘
2

⎞
⎟⎟⎠ ;

⎛
⎜⎜⎝
− sin 𝜃𝑘

2 𝑒
−𝑖𝜑𝑘

2

cos 𝜃𝑘

2 𝑒
𝑖

𝜑𝑘
2

⎞
⎟⎟⎠ (4.75)

The unitary matrix produces the coordinate transformation to the mixed particle-hole eigen-
state.

𝑈 =

⎛
⎜⎜⎝
𝑢𝑘 −𝑣*

𝑘

𝑣𝑘 𝑢*
𝑘

⎞
⎟⎟⎠ with 𝑢𝑘 = cos 𝜃𝑘2 exp

[︃
−𝑖𝜑𝑘2

]︃
, 𝑣𝑘 = sin 𝜃𝑘2 exp

[︃
𝑖
𝜑𝑘
2

]︃
(4.76)

Hence,

𝐻 ′ =
∑︁

𝑘

|𝐵𝑘|Ψ†
𝑘𝒫𝑘Ψ𝑘 =

∑︁

𝑘

|𝐵𝑘|(Ψ†
𝑘𝑈)(𝑈 †𝒫𝑘𝑈)(𝑈 †Ψ𝑘) , |𝐵𝑘| =

√︁
Δ2 + 𝜔2

𝑘 (4.77)

Therefore, we identify the quasi-particle operator associated with the eigenstates of the Hamil-
tonian.

𝐻 =
∑︁

𝑘

|𝐵𝑘|Ψ†
𝑘quasi𝜎3Ψ𝑘quasi + |Δ|

2

𝑔
, Ψ𝑘quasi = 𝑈 †Ψ𝑘 (4.78)

or explicitly,

𝐻 =
∑︁

𝑘

|𝐵𝑘|
[︂
𝑐†
𝑘↑quasi𝑐𝑘↑quasi − ℎ†

𝑘↓quasiℎ𝑘↓quasi

]︂
+ |Δ|

2

𝑔
(4.79)

The above hamiltonian is explicitly not symmetric in its spin index. A way to write it symmet-
rically is to consider the division of the Brillouin zone in symmetric halves 5,

𝐻 ′ =
∑︁

𝑘,𝑘𝑧>0
|𝐵𝑘|

[︂
𝑐†
𝑘↑quasi𝑐𝑘↑quasi − ℎ†

𝑘↓quasiℎ𝑘↓quasi

]︂
+

∑︁

𝑘,𝑘𝑧>0
|𝐵𝑘|

[︂
𝑐†

−𝑘↑quasi𝑐−𝑘↑quasi − ℎ†
−𝑘↓quasiℎ−𝑘↓quasi

]︂
(4.80)

where we account for the 𝑘𝑧 > 0 in the first term and 𝑘𝑧 < 0 in the second term. The explicit
sum over 𝑘𝑧 < 0 is not present as we have done the next step directly, by reversing the sign
of the mute variable on which the sum is made. Hence, we identify

𝐻 ′ =
∑︁

𝑘,𝑘𝑧>0
|𝐵𝑘|

[︂
𝑐†
𝑘↑quasi𝑐𝑘↑quasi − ℎ†

𝑘↓quasiℎ𝑘↓quasi

]︂

+
∑︁

𝑘,𝑘𝑧>0
|𝐵𝑘|

[︂
ℎ𝑘↑,quasiℎ

†
𝑘↑quasi − 𝑐𝑘↓,quasi𝑐

†
𝑘↓quasi

]︂
(4.81)

5 This procedure in the 𝑘 space (in the reverse order, i.e, the passage from a spin-index symmetric to an
asymmetric representation) is analogous to the passage from (4.45) to (4.47), in the position space.
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Figure 6 – The free-particle (stable above 𝑘𝐹 , unstable below˛𝐹 ), the free-hole spectrum (stable below 𝑘𝐹 ,
unstable above 𝑘𝐹 ) and the gaped particle-hole (stable) spectra. The positive spectrum due to
the quasi-state mixing particle and holes, is predicted due to the inclusion of interaction, in the
microscopic theory.

k

|Bk|

∆

Source: The author, based on (COLEMAN, 2015)

Or equivalently,

𝐻 =
∑︁

𝑘;𝜎𝑘𝑧>0
|𝐵𝑘|[𝑛𝑘𝜎quasi − 𝑛̄𝑘𝜎quasi] + |Δ|

2

𝑔
(4.82)

with the bar present in the hole-occupancy. The Hamiltonian does not mix the quasi-particle
and quasi-hole states. Therefore, we have an explicit one-to-one correspondence between the
problem of the interacting system in which particles and holes are mixed to a non-interacting
problem of quasi-particles and quasi-holes which do not interact. At 𝑘 = 𝑘𝐹 , |𝐵𝑘| = Δ,
featuring the gap of the energy in between the hole and particle energy spectrum. The energy
minimization is favored by the presence of the quasi-particle state. We remember the quasi-
particle is made up of a mixture of holes and particles of the original system.

The mixture is explicitly provided by means of the unitary transformation

𝑐†
𝑘↑quasi = 𝑐†

𝑘↑𝑢𝑘 + ℎ†
𝑘↓𝑣𝑘

ℎ†
𝑘↓quasi = ℎ†

𝑘↓𝑢
*
𝑘 − 𝑐†

𝑘↑𝑣
*
𝑘 (4.83)

If one wishes to apply the symmetric form (4.82) of the Hamiltonian (4.81), the conjugate of
these relations and the proper identification is of use, explicitly,

ℎ𝑘↑quasi = ℎ𝑘↑𝑢
*
𝑘 + 𝑐†

𝑘↓𝑣
*
𝑘

𝑐†
𝑘↓quasi = 𝑐†

𝑘↓𝑢𝑘 − ℎ†
𝑘↑𝑣𝑘 (4.84)

As one can easily verify, the commutation rules continue to apply to quasi-operators. This fact
enables laddering across the spectrum. In superconductivity, the quasi-particle excitations are
dubbed ’Bogolons.’
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BCS Propagator and the Feynman Dictionary in Superconductivity

Now we make a correspondence of the BCS theory with energy cutoff with the derivations in
the Nambu-Gor’kov representation in the momentum space. We know that the quasi-particles
Ψ†
𝑘𝜎 |Fermi vacuum⟩ are eigenstates of the problem, therefore, only the diagonal momentum

survives

𝒢𝛼𝛽𝑘(𝜏, 𝜏 ′) = −𝛿𝑘𝑘′⟨𝒯 Ψ𝑘𝛼(𝜏)Ψ†
𝑘′𝛽(𝜏 ′)⟩ (4.85)

Explicitly the diagonal (momenta) terms of the Greens’s function operator are represented
in the isospin space,

𝒢(𝑘, 𝜏 − 𝜏 ′) = −

⎛
⎜⎜⎝
⟨𝒯 𝑐𝑘↑(𝜏)𝑐†

𝑘↑(𝜏 ′)⟩ ⟨𝒯 𝑐𝑘↑(𝜏)ℎ†
𝑘↓(𝜏 ′)⟩

⟨𝒯 ℎ𝑘↓(𝜏)𝑐†
𝑘↑(𝜏 ′)⟩ ⟨𝒯 ℎ𝑘↓(𝜏)ℎ†

𝑘↓(𝜏 ′)⟩

⎞
⎟⎟⎠ (4.86)

This matrix is precisely the Fourier transform of the position representation (for a detailed
proof, see Appendix C.7(b)). We notice that the coupling relation in the momentum space
becomes lim𝜏→𝜏 ′ ℱ̃𝑘(𝜏 − 𝜏 ′) = −𝑔Δ*. In the frequency domain,

𝒢(𝑘, 𝑖𝜔) =

⎛
⎜⎜⎝
𝒢𝜔(𝑘) ℱ𝜔(𝑘)

ℱ̃𝜔(𝑘) 𝒢𝜔(𝑘)

⎞
⎟⎟⎠ (4.87)

Now we remind the operator result

(𝜕𝜏 + 𝜀𝑘)𝒢𝑘 = −1 (4.88)

in the time-independent index. From which,

𝒢𝑘(𝑘, 𝜏 − 𝜏 ′) = −(𝜕𝜏 −𝐵𝑘 · 𝜎)−1 (4.89)

In the frequency domain, 𝜕𝜏 → −𝑖𝜔, thus,

𝒢𝑘 ≡
1

𝑖𝜔 +𝐵𝑘 · 𝜎
= 𝑖𝜔 −𝐵𝑘 · 𝜎

(𝑖𝜔 +𝐵𝑘 · 𝜎)(𝑖𝜔 −𝐵𝑘 · 𝜎) = 𝑖𝜔 −𝐵𝑘 · 𝜎
(𝑖𝜔)2 − 𝐸2

𝑘1
(4.90)

where, in the denominator, the proof that (𝐵𝑘 · 𝜎)2 = 1|𝐵𝑘|2 is of use. It is trivial since
𝜎 ≡ (𝜎1,𝜎2,𝜎3),𝜎𝑖 · 𝜎𝑗 = 𝛿𝑖𝑗1. Its convenient to define 𝐸𝑘 ≡ |𝐵𝑘| =

√︁
𝜀2
𝑘 + Δ2 (𝜔𝑘 ≡ 𝜀𝑘,

not to be confused with the operator 𝜀𝑘, containing the gap dependence). Therefore,

𝒢(𝑘, 𝑖𝜔) = 1
(𝑖𝜔)2 − |𝐵𝑘|2

⎛
⎜⎜⎝
𝑖𝜔 + 𝜀𝑘 Δ

Δ* 𝑖𝜔 − 𝜀𝑘

⎞
⎟⎟⎠ (4.91)
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The bare propagator 𝒢(0) consists of the absence of the Andreev scattering, i.e, null con-
densation.

𝒢0(𝑘, 𝑖𝜔) =

⎛
⎜⎜⎝

1
𝑖𝜔−𝜀𝑘

0

0 1
𝑖𝜔+𝜀𝑘

⎞
⎟⎟⎠ (4.92)

The scattering matrix is

Δ =

⎛
⎜⎜⎝

0 Δ

Δ* 0

⎞
⎟⎟⎠ (4.93)

We may prove that the dressed propagator is provided algebraically by the Dyson series,

𝒢𝜔(𝑘) = 𝒢0
𝜔(𝑘) + 𝒢0

𝜔(𝑘)Δ𝒢𝜔(𝑘) , (4.94)

by applying successively the matrix operator (4.87),

ℱ̃𝜔 = 𝒢𝜔(0)Δ*𝒢(0)
𝜔 + 𝒢𝜔(0)Δ*𝒢(0)

𝜔 Δ𝒢𝜔(0)Δ*𝒢(0)
𝜔 + 𝒢𝜔(0)Δ*𝒢(0)

𝜔 Δ𝒢𝜔(0)Δ*𝒢(0)
𝜔 Δ𝒢𝜔(0)Δ*𝒢(0)

𝜔 + ....

(4.95)

Therefore,

ℱ̃𝜔 = 𝒢𝜔(0)Δ*𝒢(0)
𝜔

∑︁

𝑛

(Δ𝒢𝜔(0)Δ*𝒢(0)
𝜔 )𝑛 = 𝒢𝜔(0)Δ*𝒢(0)

𝜔

1−Δ𝒢𝜔(0)Δ*𝒢(0)
𝜔

(4.96)

Indeed,

ℱ̃𝜔(𝑘) = Δ*

[(𝑖𝜔)2 − 𝜀2
𝑘]

1[︁
1− |Δ|2

(𝑖𝜔)2−𝜀2
𝑘

]︁ = Δ*

(𝑖𝜔)2 − 𝐸2
𝑘

(4.97)

which agrees with (4.87) and (4.91). The consistency is readily checked for the other compo-
nents. In the elegant and concise language of Feynman diagrams,

𝒢(0)(𝑘) ≡ = 1
𝑖𝜔 − 𝜀𝑘

𝒢(0)(𝑘) ≡ = 1
𝑖𝜔 + 𝜀𝑘

Σ = = Δ 1
𝑖𝜔 + 𝜀

Δ*

𝒢(𝑘) ≡ = + Σ

𝐹 (𝑘) ≡ = + Σ
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4.6 THE HUBBARD-STRATONOVITCH TRANSFORMATION

The objective of this section is to introduce some of the methods in path integrals. Here
we present an alternative way to understand the formulation of the mean-field theory in the
context of BCS.

𝐻 ′ =
∑︁

𝑘𝜎

𝜀𝑘𝑐
†
𝑘𝜎𝑐𝑘𝜎 − 𝑔

∑︁

𝑘,𝑘′
𝑐†
𝑘↑𝑐

†
−𝑘↓𝑐−𝑘′↓𝑐𝑘′↑ (4.98)

Defining

𝐴 =
∑︁

𝑘∈Λ(𝑘𝐹 )
𝑐−𝑘↓𝑐𝑘↑ (4.99)

with the sum carried out in the vicinity Λ(𝑘𝐹 ) of the Fermi-surface. Under the path integral
formalism (appendices C.5 and C.6),

𝑍 = Tr
[︃
exp

[︃
−𝛽

∑︁

𝑘𝜎

𝑐†
𝑘𝜎𝜀𝑘𝑐𝑘𝜎 − 𝐴†𝐴

]︃]︃
(4.100)

=
∫︁
𝒟[𝑐† · 𝑐] exp

[︃
−

∫︁
𝑑𝜏

∑︁

𝑘

𝑐*
𝑘(𝜕𝜏 + 𝜀𝑘)𝑐𝑘 − 𝑔𝐴*(𝑐*

↑, 𝑐
*
↓)𝐴(𝑐↑, 𝑐↓)

]︃

The Hubbard-Stratonovitch approach includes a noise effect to the Hamiltonian by making it
to interact with another system of particles,

𝑍 → 𝑍 ′ = 𝑍 × 𝑍𝛾 (4.101)

with

𝑍𝛾 =
∫︁
𝒟[𝛾*, 𝛾] exp

[︃
−1
𝑔

∫︁ 𝛽

0
𝑑𝜏𝛾*𝛾

]︃
, i.e , 𝐻 ′ → 𝐻 ′ − 1

𝑔
𝛾†𝛾 (4.102)

The correlation function associated to the operator newly introduced operator presents a white
noise

⟨𝛾𝛼(𝜏)𝛾†
𝛽(𝜏 ′)⟩ = 𝑔𝛿𝛼𝛽𝛿(𝜏 ′ − 𝜏) (4.103)

With the introduction of this second set of free particles we have two uncoupled systems

𝑍 ′ = Tr
[︃
exp

[︃
−𝛽

∑︁

𝑘𝜎

𝑐†
𝑘𝜎𝜀𝑘𝑐𝑘𝜎 − 𝑔𝐴†𝐴+ 1

𝑔
𝛾†𝛾

]︃]︃

=
∫︁
𝒟[𝑐† · 𝑐]𝑑𝛾𝑑𝛾* exp

[︃
−

∫︁
𝑑𝜏

∑︁

𝑘

𝑐*
𝑘(𝜕𝜏 + 𝜀𝑘)𝑐𝑘 − 𝑔𝐴*𝐴− 1

𝑔
𝛾*𝛾

]︃
(4.104)
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Defining the variable Δ(𝜏) = 𝛾(𝜏) − 𝑔𝐴(𝜏) coupling both the novel field and the Fermionic
field, we may rewrite the integral

𝑍 ′ =
∫︁
𝒟[Δ*,Δ] exp

[︃
−

∫︁
𝑑𝜏
|Δ|2
𝑔

]︃

⏟  ⏞  
Fluctuating field measuring the coupling

×

∫︁
𝒟[𝑐† · 𝑐] exp

[︃
−

∫︁
𝑑𝜏 [

∑︁

𝑘𝜎

𝑐*
𝑘𝜎𝜕𝜏𝑐𝑘𝜎 + 𝑐*

𝑘𝜎𝜀𝑘𝑐𝑘𝜎 +
∑︁

𝑘

𝑐−𝑘,↓𝑐𝑘↑Δ + 𝑐*
𝑘↑, 𝑐

*
𝑘↓Δ*]

]︃

⏟  ⏞  
Electrons moving in a fixed external field

(4.105)

In the same footsteps of the chapter on the BCS mean-field theory, it is possible to rewrite it
in the bilinear form provided in the Nambu representation,

𝑍 ′ =
∫︁
𝒟[Δ*,Δ] exp

[︃
−

∫︁
𝑑𝜏
|Δ|2
𝑔

]︃ ∫︁
𝒟[Ψ† ·Ψ] exp

[︃
−

∫︁
𝑑𝜏

∑︁

𝑘

Ψ†
𝑘(𝜕𝜏 −𝐵𝑘(Δ,Δ*) · 𝜎)Ψ𝑘

]︃

(4.106)

By incorporating the time as an index (Appendix C.2) in the operators, we simply identify the
second integral as a fermionic Gaussian integral. Hence,

𝑍 ′ =
∫︁
𝒟[Δ*,Δ] exp

[︃
−

∫︁
𝑑𝜏
|Δ|2
𝑔
− ln[

∏︁

𝑘

det(𝜕𝜏 −𝐵𝑘(Δ,Δ*) · 𝜎)]
]︃

(4.107)

We rewrite the above as

𝑍 ′ =
∫︁
𝒟[Δ*,Δ] exp[−𝑆] (4.108)

𝑆[Δ*,Δ] =
∫︁ 𝛽

0
𝑑𝜏
|Δ|2
𝑔

+
∑︁

𝑘

Tr[ln(𝜕𝜏 −𝐵𝑘 · 𝜎)] (4.109)

Since ln det[𝒪] = Tr[ln𝒪] and, thus, ln det[∏︀𝑘𝒪𝑘] = ∑︀
𝑘 ln det[𝒪𝑘] = ∑︀

𝑘 Tr[ln𝒪𝑘] hold. If
the fluctuating field has a peak around a given field, Δ ≡ 𝛿(Δ −Δ0), the above reduces to
the BCS mean-field action for the uniform gap.

The Free Energy for the Uniform-Gap Theory

We consider an expansion of the quasi-state in the frequency domain

Ψ𝑘 = 1√
𝛽

∑︁

𝜔

Ψ𝑘𝜔𝑒
−𝑖𝜔𝜏 (4.110)
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The sum over frequencies makes needless to include the time as an index for the operators.
The matrix elements are only featured by the particle type

𝑆 =
∑︁

𝑘,𝜔

Ψ*
𝑘𝜔(−𝑖𝜔 −𝐵𝑘 · 𝜎)Ψ𝑘𝜔 +

∫︁ 𝛽

0
𝑑𝜏

1
𝑔
|Δ|2 (4.111)

𝑍 =
∫︁
𝒟[Ψ ·Ψ†] exp[−𝑆] (4.112)

Therefore, in the thermodynamic limit,

𝑍BCS =
∏︁

𝑛

det[−𝑖𝜔 −𝐵𝑘 · 𝜎] exp
[︃
−𝛽
𝑔
|Δ|2

]︃
, (4.113)

as

det[−𝑖𝜔 −𝐵𝑘 · 𝜎] = det

⎛
⎜⎜⎝
−𝑖𝜔 + 𝜀𝑘 Δ

Δ* 𝑖𝜔 − 𝜀𝑘

⎞
⎟⎟⎠ = 𝜔2 + 𝜀2

𝑘 + |Δ|2 (4.114)

The free energy is provided

𝐹 = − 1
𝛽

log𝑍 = −𝛽
∑︁

𝑘𝜔

ln[𝜔2 + 𝜀2
𝑘 + |Δ|2] + |Δ|

2

𝑔
(4.115)

This is the free energy for the mean-field ‘Heaviside’ model (uniform gap).

4.7 THE SUCCESS OF THE MICROSCOPIC THEORY

The minimization of the Free energy provides the gap equation (𝑘𝐵 = 1)
1
𝑔

= 𝑇
∑︁

𝑘𝜔

1
𝜔2 + 𝐸2

𝑘

. (4.116)

This can be integrated out through the contour integral technique and the residue theorem in
the complex plane. For 𝑓(𝑧) the Fermi distribution

𝑇
∑︁

𝜔

1
𝜔2 + 𝐸2

𝑘

= −
∮︁ 𝑑𝑧

2𝜋𝑖𝑓(𝑧) 1
𝑧2 − 𝐸2

𝑘

=
tanh

(︁
𝐸𝑘

2𝑇

)︁

2𝐸𝑘
(4.117)

For all of the sums over 𝑘 we have omitted that 𝜀𝑘 < 𝜔𝐷. Therefore, the BCS s-wave gap
equation is rewritten

1
𝑔𝑁(0) =

∫︁ 𝜔𝐷

0
𝑑𝜀

tanh
(︁

1
2𝑇
√
𝜀2 + Δ2

)︁

√
𝜀2 + Δ2

(4.118)

A common technique is to consider 𝜔𝐷 →∞, as the integrand saturates rapidly. The critical
temperature is such that Δ(𝑇𝑐) = 0+, measuring the starting-point of the condensation. It is
convenient to define Δ0 ≡ Δ(𝑇 = 0). The ratio Δ/Δ0 is then, parametrized in the ratio 𝑇/𝑇𝑐
obeying a curve coinciding with reported experimental measurements (CHEN et al., 2008).
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Figure 7 – The uniform gap evolution in deviations from the critical temperature as predicted by the micro-
scopic theory.
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4.8 FINAL REMARKS

The emergence of a space-varying gap results in a continuous change in the optimal isospin
direction 𝜎, analogous to the case of Néel walls in magnetism. In magnetism, the wall is formed
by actual spins that are used to determine the direction of magnetization. In superconductivity,
the analogous isospin is defined by angles that define the ratio of particle-hole presence in the
quasi-state. We will connect the microscopic theory to the Ginzburg-Landau theory and to the
more accurate theories away from the critical point, Extended Ginzburg-Landau Theory, in the
chapter to follow. In this chapter we investigated the existence of a uniform-order parameter.
In the following chapter, we will see the possibility for it to vary. A uniform order-parameter can
not produce complexity. If we are to study complexity phenomena, the introduction of spatial
variations - derivatives - must play a central role in the modelling. And these plays a relevant
role if we are further away from the critical temperature, as we are about to understand.
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5 EXTENDED GINZBURG-LANDAU THEORY

5.1 PROLOGUE

In 1950, Ginzburg-Landau proposed the generalization of the phenomenological second-
order Landau-theory of phase transition to encompass a complex-order and the accountability
of the magnetic field (LANDAU; GINZBURG, 1950). Such description is treated in detail in the
chapter on phase transitions of this dissertation. Seven years later, Bardeen, Cooper, and
Schrieffer (BCS) proposed a theory valid on the microscopic scale for the superconductivity
phenomena. An alternative representation of the same theory is provided by Bogoliubov in his
seminar papers (BOGOLIUBOV, 1958). For such theory, many representations were given, such
as the Gor’kov-Nambu representation, which when carefully treated links the microscopic the-
ory to the phenomenological Ginzburg-Landau theory (GOR’KOV, 1959). The Ginzburg-Landau
theory has its unique and pioneering merits, however, it fails to describe the phenomena of
phase transition further away from the critical temperature. As we pointed out earlier in the
chapter on phase transition, Landau asked himself how should the theory behave in the vicinity
of the critical temperature. An extension of such phenomenological thought is less accurate if
we wish to account for ‘distances’ further away from the locus of phase transition. In the con-
text of superconductivity, many phenomenological expansions with different motivations were
provided over the years (to mention a few (TEWORDT, 1963; WERTHAMER, 1963; TAKANAKA;

KUBOYA, 1995; ICHIOKA et al., 1996; ICHIOKA et al., 1996; ICHIOKA; HASEGAWA; MACHIDA,
1999; ADACHI; IKEDA, 2003; HOUZET; BUZDIN, 2001)). These phenomenological expansions
were based on the expansion of the self-consistent gap equation accounting for the inclusion
of higher powers of the order parameter and its spatial gradients. The question of which terms
should be considered in these expansions is a fundamental problem whose relevance is only
considered with a systematic treatment in the first decade of this century (KOGAN; SCHMALIAN,
2011; SHANENKO et al., 2011).

The truncation criteria problem - what terms to consider for a given theory accuracy -
is present at a fundamental level, in any expansion in physics. A procedure named partial-
summation is performed, in which many of the diagrams are neglected on the basis of phe-
nomenological justifications to favorable ‘physical diagrams’. Plenty of efforts have been driven
in the direction of establishing the correct criteria for summing the diagrams such as in the
RPA approach proposed by D.Bohm and coauthors (BOHM; PINES, 1951; PINES; BOHM, 1952).
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The partial summation approach is not quite the complete theory in treating finite-temperature
physics. This chapter, in a sense, might be viewed as the modification of the partial summation
approach such that it takes into account a different collection of diagrams for each order of
accuracy in deviations from the critical temperature.

The problem of the truncation criteria, in the context of superconductivity, is solved by
identifying the scaling of the physical quantities of interest in the vicinity of the critical tem-
perature. (KOGAN; SCHMALIAN, 2011; SHANENKO et al., 2011; VAGOV; SHANENKO A, 2012).
This creates a set of hierarchical equations for each order of accuracy one is interested in.

By choosing dimensionless quantities to represent the physical variables in the GL theory,
it follows the scaling

Δ = 𝜏 1/2Δ̄ , 𝑟 = 𝜏−1/2𝑟 , ∇ = 𝜏 1/2∇̄ , 𝐴 = 𝜏 1/2𝐴̄ , 𝐵 = 𝜏𝐵̄ (5.1)

with 𝜏 = 1 − 𝑇/𝑇𝑐. An effortless way to confirm the scaling is consistent is by noticing the
GL equation contains a second order derivative of the gap (∼ 𝜏 3/2), the third power of the
gap (∼ 𝜏 3/2), and a liner gap which is multiplied by a coefficient proportional to 𝜏 , yielding
the same order of accuracy. As for the vector potential, the second-GL equation is of use for
immediate verification.

Therefore, if we wish to expand our theory to a higher-order of accuracy in 𝜏 , we perform
an expansion of the BCS theory via the Gor’kov-Nambu representation and keep track of the
𝜏 terms. In order to find a set of self-consistent equation for each order of accuracy in 𝜏 , we
simply apply the usual asymptotic expansion, in the barred quantities

𝑓𝑠 − 𝑓𝑛,𝐵=0 = 𝑓0 + 𝜏𝑓1 + ... (5.2)

Δ̄ = Δ̄0 + 𝜏Δ̄1 + ... (5.3)

𝐴̄ = 𝐴̄0 + 𝜏𝐴̄1 + ... (5.4)

𝐵̄ = 𝐵̄0 + 𝜏𝐵̄1 + ... (5.5)

around the critical point. Often we will not treat the bar coordinates explicitly, but just keep
in mind to which order of tau the unbarred argument corresponds.

Though such a solution is quite simple, one may say, the simplest ideas are quite often
difficult to be found, as more than half a century separates the GL from the EGL despite the
renewed interests in understanding the behavior of material away from the critical point. This
comes with some profound consequences, such as the appearance of the intertype domain
regime in superconductivity (VAGOV et al., 2016).
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In this chapter, we construct both the Ginzburg-Landau (GL) and the Extended Ginzburg-
Landau theory (EGL) departing from the Bogoliubov Hamiltonian. We apply the same trun-
cation and accuracy criterion of the authors and collaborators A.Vagov and A.Shanenko. We
initially center our attention on the case of zero magnetic field, where there is no coupling
of the magnetic field with neat charges, as in ref. (VAGOV; SHANENKO A, 2012). In the zero
magnetic field, we have a superfluidity theory, which we name the Extended Landau theory
(EL). Distinguishing from the advisors and collaborators A.Vagov and A. Shanenko, we inves-
tigate an alternative route which seems to reduce remarkably the calculation efforts towards
EGL and to any intended higher-order theory. In fact, the problem becomes identical to a
connecting-dot-like exercise together with a dictionary. The ingredient we need is the exis-
tence of a smooth varying order parameter (Appendix D.1). In a first reading, one may jump
the section concerning the scheme for developing theories beyond the order of the Extended
Landau theory, as we do not wish the reader to deviate much from the main purpose of this
chapter: to present the EGL theory.

Though the BCS is a complete theory, its implementation in capturing spatial variations
imposes technical difficulties. On the other hand, due to their simplicity, the GL equations
have been studied numerically over the years, since 1996 (GROPP et al., 1996), due to their
importance in describing superconductivity for technological purposes. Many other works have
been carried out around this topic, such as (GEIM et al., 1997; SCHWEIGERT; PEETERS; DEO,
1998; MEL’NIKOV et al., 2002), and the doctorate thesis (DARKO, 2018). As pointed out by
S.Darko (DARKO, 2018), ‘(...) the Ginzburg-Landau theory is only valid in the vicinity of
the critical temperature. Coming up with a new theoretical solution that can overcome this
restriction remains paramount for many technological applications’. In this way, we would like
to produce a theory that is neither unpractical as the BCS full theory, nor restrict to the very
vicinity of the phase transition. This is the idea provoking the formulation of the Extended
Ginzburg-Landau theory.

5.2 ALTERNATIVE ROUTE TO THE EXTENDED LANDAU THEORY

For a generic interaction, the interaction part of the Bogoliubov Hamiltonian reads

𝐻𝐼 =
∫︁
𝑑𝑥𝑑𝑥′Φ(𝑧 − 𝑧′)

[︂
𝑐↓(𝑧′)Δ*(𝑧, 𝑧′)𝑐↑(𝑧) + H.C

]︂
+ |Δ(𝑧, 𝑧′)|2

𝑔
(5.6)
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In general the Bogoliubov centers the discussion over the simplified hard interaction Φ(𝑧 −
𝑧′) = −𝑔𝛿(𝑧 − 𝑧′). It is convenient to write the expression in terms of

𝐻𝐼 =
∫︁
𝑑𝑧

[︂
𝑐↓(𝑧)Δ*(𝑧)𝑐↑(𝑧) + H.C

]︂
+ |Δ(𝑧)|2

𝑔
, Δ*(𝑧) = −𝑔⟨𝑐†

↑(𝑧)𝑐†
↓(𝑧)⟩ (5.7)

We consider the expansion around a point where such expansion is possible (any analytic
region, away from the exact locus of vortices),

Δ*(𝑧) =
∑︁

𝛼

1
𝛼!
𝜕𝑛𝛼Δ*(𝑧)
𝜕𝑧𝑛𝛼

|𝑧=𝑥(𝑧1 − 𝑥1)𝛼1(𝑧2 − 𝑥2)𝛼2(𝑧3 − 𝑥3)𝛼3 (5.8)

with 𝛼! = 𝛼1!𝛼2!𝛼3! , 𝑛𝛼 = ∑︀
𝑗 𝛼𝑗, and 𝜕𝑛𝛼 Δ(𝑧)

𝜕𝑧𝑛𝛼 a short-hand notation for the known derivative
form. We reckon, yet, each derivative produces a contribution of order 𝜏 1/2 in the accuracy -
keeping the same accuracy of it in the lowest-level order of the theory (GL).

𝐻𝐼 =
∑︁

𝛼

1
𝛼

𝜕𝑛Δ*(𝑥)
𝜕𝑥𝑛

∫︁
𝑑𝑧𝑐↓(𝑧)(𝑧1 − 𝑥1)𝛼1(𝑧2 − 𝑥2)𝛼2(𝑧3 − 𝑥3)𝛼3𝑐↑(𝑧) + H.C (5.9)

As the integration is an unbounded domain, we may consider the displacement 𝑧 → 𝑧 + 𝑥

without changing the (unbounded) integration limits,

𝐻𝐼 =
∑︁

𝛼

1
𝛼!
𝜕𝑛𝛼Δ(𝑥)
𝜕𝑥𝑛𝛼

∫︁
𝑑𝑧𝑐↓(𝑧 + 𝑥)𝑧𝛼1

1 𝑧𝛼2
2 𝑧𝛼3

3 𝑐↑(𝑧 + 𝑥) + H.C . (5.10)

In the momenta space,

𝐻𝐼 =
∑︁

𝛼

1
𝛼!

𝜕𝑛𝛼Δ(𝑥)
𝜕𝛼1
𝑥1 𝜕

𝛼2
𝑥2 𝜕

𝛼3
𝑥3

∑︁

𝑘′𝑘

𝑒𝑖(𝑘
′+𝑘)·𝑥𝑐𝑘′↓

[︃
(𝜕𝑘1

𝑖
)𝛼1(𝜕𝑘2

𝑖
)𝛼2(𝜕𝑘3

𝑖
)𝛼3

∫︁ 𝑑𝑧

𝑉
𝑒𝑖(𝑘+𝑘′)·𝑧

]︃
𝑐𝑘↑ + H.C

(5.11)

We may consider the momenta to vary continuously near the boundary, so that we are able to
eliminate the surface term in the next step. By explicitly integrating in the momenta space,
the surface term vanishes once the boundary condition 𝑐↓−𝑘𝑐↑𝑘 = 0 (also, its derivatives) and
hermitian conjugate are met. This accounts for the absence of Cooper pairs in the boundary
of the analytic region of interest. We are safe unless we meet vortices! As we are to see in
the chapter to follow, many of the solutions have large regions where vortices do not appear.
Following these ideas (for a in depth proof, check the Appendix D.5),

𝐻𝐼 =
∑︁

𝑘

ℎ†
𝑘↓

⎧
⎨
⎩

∑︁

𝛼

(−1)𝑛𝛼

𝛼!
𝜕𝑛𝛼Δ*(𝑥)
𝜕𝛼1
𝑥1 𝜕

𝛼2
𝑥2 𝜕

𝛼3
𝑥3

(𝜕𝑘1

𝑖
)𝛼1(𝜕𝑘2

𝑖
)𝛼2(𝜕𝑘3

𝑖
)𝛼3

⎫
⎬
⎭[𝑐𝑘↑] + H.C (5.12)

By including the kinetic term as in the fourth chapter, in the particle-hole view, the full
Hamiltonian reads

𝐻BCS =
∑︁

𝑘

𝜀𝑘(𝑐†
𝑘↑𝑐𝑘↑ − ℎ†

𝑘↑ℎ𝑘↑) +
∑︁

𝑘𝜎

(𝑐†
𝑘↑Δ[ℎ𝑘↓] + ℎ†

𝑘↓Δ†[𝑐𝑘↑]) , (5.13)
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with the difference that Δ and Δ* in the interaction matrix, are now promoted to operators,
Δ and Δ†, respectively. Hence, we infer directly that the action is quite similar to that in
chapter four, following the same footsteps,

𝑆 =
∫︁
𝒟[𝑐*, 𝑐] exp

[︃
−

∫︁
𝑑𝜏

∑︁

𝑘

Ψ†
𝑘(𝜏) · (𝜕𝜏 −𝐵𝑘 · 𝜎) ·Ψ𝑘(𝜏)

]︃
(5.14)

The interaction part of the Hamiltonian, 𝜀𝑘 = −𝐵𝑘 · 𝜎 might be seen as an operator. As in
chap.4, on the microscopic theory, 𝒢𝑘 = −(𝜕𝜏 + 𝜀𝑘)−1,

𝒢𝑘(𝑘, 𝜏 − 𝜏 ′) = −(𝜕𝜏 −𝐵𝑘 · 𝜎)−1 (5.15)

The expansion is exactly as the Dyson series in chap. 4, except that scattering matrix Σ is
replaced for an operator on the 𝑘 space acting on the closest neighbor. The sum over 𝛼 is
omitted by the presence of repeated index. For the bare propagator it is that part of the Green’s
function matrix not converting electron into holes or vice-versa (Δ = 0). Explicitly,

𝒢(0)(𝑘, 𝑖𝜔) =

⎛
⎜⎜⎝

1
𝑖𝜔−𝜀𝑘

0

0 1
𝑖𝜔+𝜀𝑘

⎞
⎟⎟⎠ (5.16)

Thus,

Δ𝑘 =
∑︁

𝛼

(−1)𝑛𝛼

𝛼!

⎛
⎜⎜⎝

0 𝜕𝑛𝛼 Δ(𝑥)
𝜕𝑥𝑛𝛼 (𝜕𝑘2

−𝑖 )𝛼2(𝜕𝑘3
−𝑖 )𝛼3

𝜕𝑛𝛼 Δ*(𝑥)
𝜕𝑥𝑛𝛼 (𝜕𝑘1

𝑖
)𝛼1(𝜕𝑘2

𝑖
)𝛼2(𝜕𝑘3

𝑖
)𝛼3 0

⎞
⎟⎟⎠ (5.17)

We, on purpose, preserved the ordering suitable for the operator substitution in (4.96). We
replace the uniform Δ for an operator acting on its closest neighbor.

ℱ̃𝜔(𝑘) =
∑︁

𝛼

(𝜕𝛼1
1 𝜕𝛼1

2 𝜕𝛼3
3 Δ*)

𝛼!(−1)𝑛𝛼

1
𝑖𝜔 + 𝜀𝑘

[︃
(𝜕𝑘1

−𝑖 )𝛼1(𝜕𝑘2

−𝑖 )𝛼2(𝜕𝑘2

−𝑖 )𝛼3

]︃
1

𝑖𝜔 − 𝜀𝑘
∑︁

𝑛=0
(𝒳 )𝑛 , (5.18)

𝒳 =
∑︁

𝛾

(𝜕𝛾1
1 𝜕

𝛾2
2 𝜕

𝛾3
3 Δ)

𝛾!(−1)𝑛𝛾

[︃
(𝜕𝑘1

𝑖
)𝛾1(𝜕𝑘2

𝑖
)𝛾3(𝜕𝑘2

𝑖
)𝛾3

]︃
1

𝑖𝜔 + 𝜀𝑘
(5.19)

∑︁

𝛽

(𝜕𝛽1
1 𝜕

𝛽2
2 𝜕

𝛽3
3 Δ*)

𝛽!(−1)𝑛𝛽

[︃
(𝜕𝑘1

−𝑖 )𝛽1(𝜕𝑘2

−𝑖 )𝛽2(𝜕𝑘3

−𝑖 )𝛽3

]︃
1

𝑖𝜔 − 𝜀𝑘
, (5.20)

Finally, (Appendix D.4)
Δ*(𝑥)
𝑔

= − 1
𝛽

∑︁

𝜔

∫︁
ℱ̃𝜔(𝑘)𝑑𝑘 = −𝑁(0)

𝛽

∑︁

𝜔

∫︁
ℱ̃𝜔(𝜀)𝑑𝜀 (5.21)

Such that (𝑘𝐵 = 1),
Δ*(𝑥)
𝑔

= −𝑇
∑︁

𝜔

∫︁
𝑑𝑘

∑︁

𝛼

(𝜕𝛼1
1 𝜕𝛼1

2 𝜕𝛼3
3 Δ*)

𝛼!(−1)𝑛𝛼

1
𝑖𝜔 + 𝜀𝑘

[︃
(𝜕𝑘1

−𝑖 )𝛼1(𝜕𝑘2

−𝑖 )𝛼2(𝜕𝑘2

−𝑖 )𝛼3

]︃
1

𝑖𝜔 − 𝜀𝑘
∑︁

𝑛=0
(𝒳 )𝑛

(5.22)
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with

𝒳 =
∑︁

𝛾𝛽

(𝜕𝛾1
1 𝜕

𝛾2
2 𝜕

𝛾3
3 Δ)

𝛾!(−1)𝑛𝛾

(𝜕𝛽1
1 𝜕

𝛽2
2 𝜕

𝛽3
3 Δ*)

𝛽!(−1)𝑛𝛽

[︃
(𝜕𝑘1

𝑖
)𝛾1(𝜕𝑘2

𝑖
)𝛾3(𝜕𝑘2

𝑖
)𝛾3

]︃
1

𝑖𝜔 + 𝜀𝑘
[︃
(𝜕𝑘1

−𝑖 )𝛽1(𝜕𝑘2

−𝑖 )𝛽2(𝜕𝑘3

−𝑖 )𝛽3

]︃
1

𝑖𝜔 − 𝜀𝑘
(5.23)

I.e,
Δ*(𝑥)
𝑔

= −𝑇
∑︁

𝜔

∑︁

𝑛

∑︁

𝛼𝛽𝛾

(𝜕𝛼1
1 𝜕𝛼2

2 𝜕𝛼3
3 )Δ

𝛼!(−1)𝑛𝛼

[︂(𝜕𝛽1
1 𝜕

𝛽2
2 𝜕

𝛽3
3 )Δ*

𝛽!(−1)𝑛𝛽

(𝜕𝛾1
1 𝜕

𝛾2
2 𝜕

𝛾3
3 )Δ

𝛾!(−1)𝑛𝛾

]︂𝑛

∫︁
𝑑𝑘

1
𝑖𝜔 + 𝜀𝑘

[︃
(𝜕𝑘1

−𝑖 )𝛼1(𝜕𝑘2

−𝑖 )𝛼2(𝜕𝑘2

−𝑖 )𝛼3

]︃
1

𝑖𝜔 − 𝜀𝑘

⎧
⎨
⎩

[︃
(𝜕𝑘1

𝑖
)𝛾1(𝜕𝑘2

𝑖
)𝛾3(𝜕𝑘2

𝑖
)𝛾3

]︃
1

𝑖𝜔 + 𝜀𝑘
[︃
(𝜕𝑘1

−𝑖 )𝛽1(𝜕𝑘2

−𝑖 )𝛽2(𝜕𝑘3

−𝑖 )𝛽3

]︃
1

𝑖𝜔 − 𝜀𝑘

⎫
⎬
⎭

𝑛

(5.24)

The overall sign for each set of 𝛼, 𝛽 and 𝛾 (not provenient from the realization of the product
of imaginary terms) is provided through (−1)𝑛𝛼+𝑛(𝑛𝛽+𝑛𝛾)+1.

Selection Rules and Simplifications

The final expression seems a bit cumbersome and has a lot of indices. The reader less used
to index manipulation might prefer to simply modify the order parameter as follows

Δ→ Δ⏟ ⏞ 
𝑂(𝜏1/2)

−
∑︁

𝑗

𝜕𝑗Δ(
𝜕𝑘𝑗

𝑖
)

⏟  ⏞  
𝑂(𝜏1/2)

+
∑︁

𝑗

1
2𝜕

2
𝑗Δ(

𝜕𝑘𝑗

𝑖
)2

⏟  ⏞  
𝑂(𝜏3/2)

−
∑︁

𝑗 ̸=𝑙

𝜕2
𝑗 𝜕𝑙Δ
2! (

𝜕𝑘𝑗

𝑖
)2(𝜕𝑘𝑙

𝑖
)

⏟  ⏞  
𝑂(𝜏3/2)

−

∑︁

𝑗 ̸=𝑙 ̸=𝑚
𝜕𝑗𝜕𝑙𝜕𝑚Δ(

𝜕𝑘𝑗

𝑖
)(𝜕𝑘𝑙

𝑖
)(𝜕𝑘𝑚

𝑖
)

⏟  ⏞  
𝑂(𝜏4)

+
∑︁

𝑗 ̸=𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ

2!2! (
𝜕𝑘𝑗

𝑖
)2(𝜕𝑘𝑙

𝑖
)2

⏟  ⏞  
𝑂(𝜏5/2)

+Higher order terms (5.25)

Implying, thus,

ℱ̃𝜔 =𝒢(0)
𝜔 {Δ* −

∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑗𝑙

1
2𝜕

2
𝑗Δ*(

𝜕𝑘𝑗

−𝑖 )
2 −

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ*

2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )−

∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ*(
𝜕𝑘𝑗

−𝑖 )(
𝜕𝑘𝑙

−𝑖 )(
𝜕𝑘𝑚

−𝑖 ) +
∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ*

2!2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2}𝒢(0)

𝜔

∑︁

𝑛

⎡
⎣{Δ−

∑︁

𝑗

𝜕𝑗Δ(
𝜕𝑘𝑗

𝑖
)+

∑︁

𝑗

1
2𝜕

2
𝑗Δ(

𝜕𝑘𝑗

𝑖
)2 −

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ
2! (

𝜕𝑘𝑗

𝑖
)2(𝜕𝑘𝑙

𝑖
)−

∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ(
𝜕𝑘𝑗

𝑖
)(𝜕𝑘𝑙

𝑖
)(𝜕𝑘𝑚

𝑖
)+

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ

2!2! (
𝜕𝑘𝑗

𝑖
)2(𝜕𝑘𝑙

𝑖
)2}𝒢(0)

𝜔 {Δ* −
∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑗

1
2𝜕

2
𝑗Δ*(

𝜕𝑘𝑗

−𝑖 )
2−

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ*

2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )−
∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ*(
𝜕𝑘𝑗

−𝑖 )(
𝜕𝑘𝑙

−𝑖 )(
𝜕𝑘𝑚

−𝑖 ) +
∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ*

2!2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2}𝒢(0)

𝜔

⎤
⎦
𝑛

(5.26)
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The self-consistent gap equation is, therefore,

Δ*

𝑔
=− 𝑇

∑︁

𝜔

∫︁
𝑑𝑘

1
𝑖𝜔 + 𝜀

{Δ* −
∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑖

1
2𝜕

2
𝑖 Δ*(𝜕𝑘𝑖

−𝑖 )
2 −

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ*

2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )−

∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ*(
𝜕𝑘𝑗

−𝑖 )(
𝜕𝑘𝑙

−𝑖 )(
𝜕𝑘𝑚

−𝑖 ) +
∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ*

2!2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2} 1
𝑖𝜔 − 𝜀

∑︁

𝑛

⎡
⎣{Δ−

∑︁

𝑗

𝜕𝑗Δ(
𝜕𝑘𝑗

𝑖
)+

∑︁

𝑗

1
2𝜕

2
𝑗Δ(

𝜕𝑘𝑗

𝑖
)2 −

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ
2! (

𝜕𝑘𝑗

𝑖
)2(𝜕𝑘𝑙

𝑖
)−

∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ(
𝜕𝑘𝑗

𝑖
)(𝜕𝑘𝑙

𝑖
)(𝜕𝑘𝑚

𝑖
)+

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ

2!2! (
𝜕𝑘𝑗

𝑖
)2(𝜕𝑘𝑙

𝑖
)2} 1

𝑖𝜔 + 𝜀
{Δ* −

∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑗

1
2𝜕

2
𝑗Δ*(

𝜕𝑘𝑗

−𝑖 )
2−

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ*

2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )−
∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ*(
𝜕𝑘𝑗

−𝑖 )(
𝜕𝑘𝑙

−𝑖 )(
𝜕𝑘𝑚

−𝑖 ) +
∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ*

2!2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2} 1
𝑖𝜔 − 𝜀

⎤
⎦
𝑛

(5.27)

The advantage of such representation might be dubious at first glance, yet, the reader might
be convinced of the contrary by applying two simple rules, the first one being simply the
truncation order in 𝜏 ,

• The order of the product terms is not greater than the maximum order in the expansion
of Δ.

• There are trivial null terms - these are such that the number of times the derivative with
respect to a given coordinate is odd.

We notice that for each spatial derivative of a given coordinate direction there is a derivative
with respect to the respective momentum direction. Next, since odd momentum derivatives of
either the electron or hole greens function are odd, and odd terms do cancel when integrated
in a symmetric interval, the selection rule holds.

𝜕𝛼𝑘{𝒢(0),𝒢(0)} = odd , provided 𝜀𝑘 = ℎ̄2𝑘2

2𝑚 − 𝜇 (5.28)

with 𝑘 measured from the Fermi-Level. This can be checked in practice with any symbolic soft-
ware. By following these rules, many of the terms are trivially disregarded at a first glance. Also,
accounting for the number of terms providing the same contribution becomes a connecting-
dot-like exercise. The following section will show the usefulness of this in practice.
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THE LANDAU-THEORY

The only way to capture terms of order 3/2 is by considering the zeroth-order expansion
𝑛 = 0. The second most relevant term is the subsequent 𝑛 = 1 term, which gives origin to
the Extended Landau theory (𝜏 5/2). It is important to notice that 𝑛 = 1 also contains a single
term of the order 𝜏 3/2- that without derivatives. For 𝑛 = 0, the odd terms in the derivative
are null by applying the selection rule. Therefore,

Δ*

𝑔
=− 𝑇

∫︁
𝑑𝑘

1
𝑖𝜔 + 𝜀𝑘

{Δ* −

odd parity⏞  ⏟  
∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑗

1
2( 𝜕𝑗−𝑖)

2Δ*(𝜕𝑘𝑗
)2 −

∑︁

𝑗

1
2( 𝜕𝑗−𝑖)

2( 𝜕𝑙−𝑖)Δ
*(𝜕𝑘𝑗

)2+

odd parity⏞  ⏟  
∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ*(
𝜕𝑘𝑗

−𝑖 )(
𝜕𝑘𝑙

−𝑖 )(
𝜕𝑘𝑚

−𝑖 ) +

𝑂(𝜏5/2)⏞  ⏟  
∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ*

2!2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2} 1
𝑖𝜔 − 𝜀𝑘

(5.29)

Consider, for instance, the term with the second-order derivative (for 𝑛 = 0). It follows, in the
energy measure,

𝑎2 = −𝑁(0)𝑇
∑︁

𝜔

∫︁ ∞

−∞
𝑑𝜀

1
𝑖𝜔 + 𝜀

(𝜕𝑘𝑖

−𝑖 )
2
[︂ 1
𝑖𝜔 − 𝜀

]︂
| ℎ̄2𝑘2

𝑖
2𝑚

= 𝜀+𝜇𝐹
3

= 𝑁(0)𝑇
∑︁

𝜔

𝜇𝐹𝜋

3|𝜔|3 (5.30)

Provided isotropy, and changing to the energy measure. Provided the Matsubara frequency
𝜔 = (2𝑛+ 1)𝜋𝑇 ,

𝑎2 = 𝒦(1 + 2𝜏 +𝒪(𝜏 2)) , 𝒦 = 𝑁(0) 7𝜁(3)
48𝜋2𝑇 2

𝑐

ℎ̄2𝑣2
𝐹 (5.31)

The calculation of the remaining integrals (𝑛 = 0) leads to the remaining microscopic coeffi-
cients of the GL theory, 𝑏, and 𝑎1 (Appendix D.2).

𝑏 = 𝑁(0) 7𝜁(3)
8𝜋2𝑇 2

𝑐

, 𝑎1 = 1
𝑔
− 𝑎

(︂
𝜏 + 𝜏 2

2 +𝒪(𝜏 3)
)︂

, 𝑎 = −𝑁(0)

(5.32)

THE EXTENDED LANDAU THEORY

For the Extended Landau theory we stop the expansion in the next-to-leading order (of the
GL theory), 𝜏 5/2. We rewrite eq. (5.27) and explicitly exclude terms due to the combination
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of the selection rule and the truncation criterion.

Δ*

𝑔
= −𝑇

∑︁

𝜔

∫︁
𝑑𝑘

1
𝑖𝜔 + 𝜀

{Δ* −

Possible at 𝑛=1⏞  ⏟  
∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑗

1
2𝜕

2
𝑗Δ*(

𝜕𝑘𝑗

−𝑖 )
2 −

������������∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ*

2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )−

������������∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ*(
𝜕𝑘𝑗

−𝑖 )(
𝜕𝑘𝑙

−𝑖 ) +

unless 𝑛=0⏞  ⏟  

�������������∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ*

2!2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2} 1
𝑖𝜔 − 𝜀

∑︁

𝑛

⎡
⎣{Δ−

∑︁

𝑗

𝜕𝑗Δ(
𝜕𝑘𝑗

𝑖
)+

∑︁

𝑖

1
2𝜕

2
𝑗Δ(

𝜕𝑘𝑗

𝑖
)2 −

�����������∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ
2! (

𝜕𝑘𝑗

𝑖
)2(𝜕𝑘𝑙

𝑖
)−

���������������∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ(
𝜕𝑘𝑗

𝑖
)(𝜕𝑘𝑙

𝑖
)(𝜕𝑘𝑚

𝑖
)+

������������∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ

2!2! (
𝜕𝑘𝑗

𝑖
)2(𝜕𝑘𝑙

𝑖
)2} 1

𝑖𝜔 + 𝜀
{Δ* −

∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑗

1
2𝜕

2
𝑗Δ*(

𝜕𝑘𝑗

−𝑖 )
2−

������������∑︁

𝑗𝑙

𝜕2
𝑗 𝜕𝑙Δ*

2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )−
���������������∑︁

𝑗𝑙𝑚

𝜕𝑗𝜕𝑙𝜕𝑚Δ*(
𝜕𝑘𝑗

−𝑖 )(
𝜕𝑘𝑙

−𝑖 )(
𝜕𝑘𝑚

−𝑖 ) +
�������������∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙 Δ*

2!2! (
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2} 1
𝑖𝜔 − 𝜀

⎤
⎦
𝑛

(5.33)

We remark that for 𝑛 = 0 the single derivative term is not present due to the second rule,
however, it might be present for 𝑛 = 1 in combination with other terms if passing the selection
criteria. The exclusion of these terms is justified by a connecting-dot exercise as promised. This
term passes the selection criteria when 𝑛 = 0. When 𝑛 = 1, it is not possible to connect the
terms with 𝜕2

𝑗 𝜕
2
𝑙 Δ or its conjugate to any other term and produce an accuracy smaller or equal

to the order of the theory, as the smallest term it could possibly multiply is of the order 𝜏 1/2.
The other excluded terms are those with 𝜕2

𝑗 𝜕𝑙Δ and 𝜕𝑗𝜕𝑙𝜕𝑚Δ or its conjugate. They could be
present for 𝑛 = 0 if not for the second rule. For 𝑛 = 1 a combination of the first and second
selection rules is required; it survives the application of the first rule only when attached to
Δ, but not the second.

By applying the selection rule and the constraint on the truncation order,

1
𝑔

Δ* = −𝑇
∑︁

𝜔

∫︁
𝑑𝑘

1
𝑖𝜔 + 𝜀𝑘

{Δ* +
∑︁

𝑗

1
2𝜕

2
𝑗Δ*(

𝜕𝑘𝑗

−𝑖 )
2 +

∑︁

𝑗𝑙

𝜕2
𝑗 𝜕

2
𝑙

2!2! Δ*(
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2} 1
𝑖𝜔 − 𝜀𝑘

+

− 𝑇
∑︁

𝜔

∫︁
𝑑𝑘

1
𝑖𝜔 + 𝜀𝑘

{Δ* −
∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑗

1
2𝜕

2
𝑗Δ*(

𝜕𝑘𝑗

−𝑖 )
2} 1
𝑖𝜔 − 𝜀𝑘

{Δ−
∑︁

𝑗

𝜕𝑗Δ(
𝜕𝑘𝑗

𝑖
)+

∑︁

𝑗

1
2𝜕

2
𝑗Δ(

𝜕𝑘𝑗

𝑖
)2} 1

𝑖𝜔 + 𝜀𝑘
{Δ* −

∑︁

𝑗

𝜕𝑗Δ*(
𝜕𝑘𝑗

−𝑖 ) +
∑︁

𝑗

1
2𝜕

2
𝑗Δ*(

𝜕𝑘𝑗

−𝑖 )
2} 1
𝑖𝜔 − 𝜀𝑘

(5.34)

We collect the remaining terms passing the selection rules by looking for every possible multipli-
cation in (5.34) - with the sum on indices made implicit. By connecting dots and applying once
more the selection rule to exclude derivatives present in an odd number, the extra contributing
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terms are easily identified. It follows (𝑘𝐵 = 1): for 𝑛 = 0,

∑︁

𝑗

𝜕4
𝑗

4! Δ*(−𝑇 )
∑︁

𝜔

∫︁
𝑑𝑘

[︂ 1
𝑖𝜔 + 𝜀

(
𝜕𝑘𝑗

−𝑖 )
4 1
𝑖𝜔 − 𝜀

]︂
(5.35)

𝜕2
𝑗 𝜕

2
𝑙

2!2! Δ*(−𝑇 )
∑︁

𝜔

∫︁
𝑑𝑘

[︂ 1
𝑖𝜔 + 𝜀

(
𝜕𝑘𝑗

−𝑖 )
2(𝜕𝑘𝑙

−𝑖 )
2 1
𝑖𝜔 − 𝜀

]︂
, (5.36)

for 𝑛 = 1,

Δ*ΔΔ*(−𝑇 )
∑︁

𝜔

∫︁
𝑑𝑘

⎡
⎣ 1
𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀

1
𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀

⎤
⎦ (5.37)

(𝜕𝑗Δ*)(𝜕𝑗Δ)Δ*[−𝑁(0)𝑇 ]
∑︁

𝜔

∫︁
𝑑𝑘

⎡
⎣ 1
𝑖𝜔 + 𝜀

(
𝜕𝑘𝑗

−𝑖 )(
1

𝑖𝜔 − 𝜀)(
𝜕𝑘𝑗

𝑖
)( 1
𝑖𝜔 + 𝜀

) 1
𝑖𝜔 − 𝜀

⎤
⎦ (5.38)

(𝜕𝑗Δ*)Δ(𝜕𝑗Δ*)(−𝑇 )
∑︁

𝜔

∫︁
𝑑𝑘

⎡
⎣ 1
𝑖𝜔 + 𝜀

(
𝜕𝑘𝑗

−𝑖 )(
1

𝑖𝜔 − 𝜀) 1
𝑖𝜔 + 𝜀

(
𝜕𝑘𝑗

−𝑖 )(
1

𝑖𝜔 − 𝜀)
⎤
⎦ (5.39)

Δ*(𝜕𝑗Δ)(𝜕𝑗Δ*)(−𝑇 )
∑︁

𝜔

∫︁
𝑑𝑘

⎡
⎣ 1
𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀(

𝜕𝑘𝑗

𝑖
)( 1
𝑖𝜔 + 𝜀

)(
𝜕𝑘𝑗

−𝑖 )(
1

𝑖𝜔 − 𝜀)
⎤
⎦ (5.40)

(1
2𝜕

2
𝑗Δ*)ΔΔ*(−𝑇 )

∑︁

𝜔

∫︁
𝑑𝑘

⎡
⎣ 1
𝑖𝜔 + 𝜀

(
𝜕𝑘𝑗

−𝑖 )
2( 1
𝑖𝜔 − 𝜀) 1

𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀

⎤
⎦ (5.41)

Δ*(1
2𝜕

2
𝑗Δ)Δ*(−𝑇 )

∑︁

𝜔

∫︁
𝑑𝑘

⎡
⎣ 1
𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀(

𝜕𝑘𝑗

𝑖
)2( 1
𝑖𝜔 + 𝜀

) 1
𝑖𝜔 − 𝜀

⎤
⎦ (5.42)

Δ*Δ(1
2𝜕

2
𝑗Δ*)(−𝑇 )

∑︁

𝜔

∫︁
𝑑𝑘

⎡
⎣ 1
𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀

1
𝑖𝜔 + 𝜀

(
𝜕𝑘𝑗

−𝑖 )
2( 1
𝑖𝜔 − 𝜀)

⎤
⎦ , (5.43)

for 𝑛 = 2,

Δ*ΔΔ*ΔΔ*(−𝑇 )
∑︁

𝜔

∫︁
𝑑𝑘

[︂ 1
𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀

1
𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀

1
𝑖𝜔 + 𝜀

1
𝑖𝜔 − 𝜀

]︂
. (5.44)

Any other contribution of five (or more) multiplying terms would overcome the order of the
EGL theory.

Dictionary

Below we describe a dictionary. We infer on a set of simple rules producing the integral
factor multiplying the corresponding terms depending on Δ,Δ* and its derivatives. It is, we
‘translate’ the differential terms to the shape of the integral (with respect to 𝑘) yielding the
respective coefficient.

• The first factor in the integrand is always 𝑇 (−1)𝑛𝛼+𝑛(𝑛𝛽+𝑛𝛾)+1 1
𝑖𝜔+𝜀 ;
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• To each Δ* alone we associate 1
𝑖𝜔−𝜀 . To each Δ alone we associate a factor of 1

𝑖𝜔+𝜀 ;

• To 𝜕𝑛𝑗

𝑗 Δ we associate (𝜕𝑘𝑗

𝑖
)𝑛𝑗 ( 1

𝑖𝜔+𝜀); To each 𝜕𝑛𝑗

𝑗 Δ* we associate (𝜕𝑘𝑗

−𝑖 )𝑛𝑗 ( 1
𝑖𝜔−𝜀).

These rules are of general nature to any order 𝑛 of the expansion. If we want rules for the
energy measure, we apply the extra procedures.

• The multiplication for 𝑁(0) on top of the first item in the momenta space;

• If a single quadratic term component of momenta appears, 𝑘2
𝑗

2𝑚 = 𝜀−𝜇
3 (isotropic case)

and the integration is carried out in the energy measure;

• If two quadratic terms appear, one for each component, the spherical components are
to be integrated over, and, provided the radial component, 𝑘2 = 𝑘2

𝑗 + 𝑘2
𝑙 = 2

3(𝜀 + 𝜇)

(𝑗 ̸= 𝑙), the integration is carried out in the energy measure;

• If tree-different momenta appears, the spherical components are to be integrated over,
and, provided the radial component, 𝑘2 = 𝑘2

𝑗 + 𝑘2
𝑙 + 𝑘2

𝑚 = 𝜀 + 𝜇 (𝑗 ̸= 𝑙 ̸= 𝑚), the
integration is carried out in the energy measure.

The case of item two quadratic terms appears only one time in the Extended-theory, while the
case of three quadratic terms does not appear neither in the Extended Landau theory (EL)
nor in the leading order of the Extended Landau theory (EL(2)).

Connecting-Dot Exercise, a Map to the Road

We may map our problem to the following connecting-dot diagram. The cases 𝑛 = 0,
𝑛 = 1 and 𝑛 = 2 contribute separately with a different number of terms, respectively 1, 3 and
5. We omit the sum over indices in the diagram for aesthetic reasons.

The dashed line denotes the ‘stopping point’ (in a sense to be understood) for the account-
ing of terms of the powers of 𝑛. Before the 𝑛 = 0 stopping point, we add a single column,
and after each ’stopping point’ we add a layer of two columns. The terms contributing to
the power 𝑛 are those consisting of the multiplication of column elements -each column con-
tributes with a single term in the multiplication- up to the stopping-point relative to 𝑛. The
multiplications are represented by arrows and an arrow path is a chain of arrows collecting
the multiplications before a stopping point. A path relative to a given 𝑛-power stopping point
finishes its trajectory in the last element before the corresponding dashed line is reached. If
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Figure 8 – Diagram to the Extended Landau Theory (EL), O(≤ 𝜏5/2) .
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Source: The author

the arrow path is relevant, the term it corresponds to must obey the selection rules. We infer,
on these assumptions, that, for 𝑛 = 0, there is no terms to connect. For paths relative to
𝑛 = 1, there should be contributions with a three-term multiplication. For paths relative to
𝑛 = 2, there should be contributions with a five-term multiplication, and, in general, 2𝑛 + 1

terms for each power considered. The diagram portrayed is built such that a first filtering is
made on terms not respecting the truncation criterion. We see how this is done in practice.

Before the 𝑛 = 0 stopping point, we list the terms in Δ and its derivatives which obey the
truncation criterion, but not the selection rule on the parity. Next, O(𝜏Order of the theory−1) is the
maximum order allowed for the element of the columns added in between the stopping points
𝑛 = 0 and 𝑛 = 1. This is since before the final point of a given 𝑛 = 1 path is reached, it will at
least have collected two (2𝑛) terms of the minimum order of 𝜏 1/2 each. The same idea can be
applied to the next added layer. Before the final point of a given 𝑛 = 2 is reached, it has at least
collected four (2𝑛) terms of the minimum order of 𝜏 1/2 each, yielding O(𝜏Order of the theory−2)

as the maximum order allowed for the element of the columns added in between the stopping
points of 𝑛 = 1 and 𝑛 = 2. In general, the maximum order of the added columns in between
the stopping points 𝑛− 1 and 𝑛 is O(𝜏Order of theory−𝑛) for 𝑛 > 0. Indeed, this corresponds to
our diagram arrangement. In between the 𝑛 = 0 and 𝑛 = 1 stopping points in EL (O(𝜏 5/2)),
the maximum order is that due to the second-order derivative on the gap, 𝜏 3/2. In between
the 𝑛 = 1 and 𝑛 = 2 stopping points, the maximum order is 𝜏 1/2, corresponding to Δ, or Δ*.
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We would like to understand some of the drawn arrows - and those not drawn (for the
𝑛 = 0 power) - in the context of EL. In the first stopping point, 𝑛 = 0, we just apply the second
selection rule, filtering terms such as 𝜕2

𝑗 𝜕𝑙Δ*, and 𝜕𝑗𝜕𝑙𝜕𝑚Δ*, which do not contribute to this
power, but could be of importance in connecting to other terms related to the contribution of
higher powers. The first selection rule is attended in connecting 1

2𝜕
2
𝑗Δ* to 𝜕𝑗Δ. But in order

for the second selection rule to hold, we need to connect it to 𝜕𝑗Δ* - however the EGL order is
surpassed. Therefore, this is not a valid arrow path. We may represent the non-validity of this
arrow path by not making this to reach the element of the column before the ‘stopping point’.
There is also no validity for terms starting with 𝜕2

𝑙 𝜕𝑗Δ* from 𝑛 = 0. This path is not drawn
in the diagram, but 𝜕2

𝑙 𝜕𝑗Δ*Δ𝜕𝑗Δ* is the only possibility encompassing the correct parity for
𝑛 = 1. Though it violates the truncation criterion. We did not write this arrow, but if it were
the case we would not make it reach the final column before the 𝑛 = 1 stopping point.

The integrals in the range (5.38) to (5.40) are equal, as well, the integrals from (5.41)
to (5.43) are equal, reducing the number of integrals to be computed to two extra terms for
𝑛 = 0 and six extra terms for 𝑛 = 1. By following the graphics, this is equivalent to accounting
for the number of valid arrow paths.

Integrals Evaluation

By defining the integral coefficients as 𝐼𝑖 with 𝑖 varying from 1 to 8, the first and second
integral coefficient they relate as 𝐼1 = 𝐼2/3, causing

∑︁

𝑗𝑙

1
2!2!𝜕

2
𝑗 𝜕

2
𝑙 Δ*𝐼1 +

∑︁

𝑗

1
4!𝜕

4
𝑗Δ*𝐼2 = 1

8(∇2(∇2Δ*))𝐼2 (5.45)

The first integral is one of the cases where distinct 𝑘 appears, case (ii) as refereed in the
dictionary section on the energy measure. We make a table summarizing the resulting integrals.

𝐼1 = 𝐼2

3 (5.46)

𝐼2 = 𝑁(0)ℎ̄4𝑣4
𝐹

𝑊 4
5

3 (5.47)

𝐼4 = 𝐼6 = −𝑁(0) 5
36 ℎ̄

2𝑣2
𝐹𝑊

4
5 (5.48)

𝐼5 = 3𝐼4 (5.49)

𝐼7 = 𝐼9 = −𝑁(0)5
9 ℎ̄

2𝑣2
𝐹𝑊

4
5 (5.50)

𝐼8 = 𝐼7

2 (5.51)



81

with 𝑊 4
5 = 93𝜁(5)/160𝜋4𝑇 4

𝑐 with 𝜁 the usual Zeta-Riemann function. We remember that,
attached to the integrals 𝐼7 to 𝐼9, there is the multiplication factor of 1

2 . This done, we write
down the complete microscopic theory.

0 = (𝑎1 − 1
𝑔
)𝜏 1/2Δ* + 𝑎2𝜏

3/2∇2Δ* + 𝑎3𝜏
5/2∇2(∇2Δ*)− 𝑏1𝜏

3/2|Δ|2Δ* −

𝑏2𝜏
5/2

[︂
2Δ*|∇Δ|2 + 3Δ(∇Δ*)2 + (Δ*)2∇2Δ + 4|Δ|2∇2Δ*

]︂
+ 𝑐1𝜏

5/2|Δ|4Δ (5.52)

With the microscopic coefficients

𝑎1 = 1
𝑔
− 𝑎

(︂
𝜏 + 𝜏 2

2 +𝒪(𝜏 3)
)︂

, 𝑎 = −𝑁(0) (5.53)

𝑏1 = 𝑏(1 + 2𝜏 +𝒪(𝜏 2)) , 𝑏 = 𝑁(0) 7𝜁(3)
8𝜋2𝑇 2

𝑐

(5.54)

𝑐1 = 𝑐(1 +𝒪(𝜏)) , 𝑐 = 𝑁(0) 93𝜁(5)
128𝜋4𝑇 4

𝑐

(5.55)

𝑎2 = 𝒦(1 + 2𝜏 +𝒪(𝜏 2)) , 𝒦 = 𝑏

6 ℎ̄
2𝑣2
𝐹 (5.56)

𝑎3 = 𝒬(1 +𝒪(𝜏)),𝒬 = 𝑐

30 ℎ̄
4𝑣4
𝐹 (5.57)

𝑏2 = ℒ(1 +𝒪(𝜏)),ℒ = 𝑐

9 ℎ̄
2𝑣2
𝐹 (5.58)

For the computation of integrals in the level of GL equations, one is referred to Appendix D.2.
The same procedure holds for EL/EGL integrals. Computing the integrals becomes a very
straightforward activity employing a symbolic software.

BEYOND THE EXTENDED LANDAU THEORY

The theory of the next-to-leading EL order, which we coin E(2)L theory, for simplicity of
reference, is an expansion in the order of 𝜏 7/2 in terms of 𝜏 . In the first column we start with
the maximum order of derivative for reaching the maximum accuracy of the theory, in case of
E(2)L, six. In between the stopping points 𝑛 = 0 and 𝑛 = 1, the maximum order in the first
layer (of two columns) is 5/2, in between 𝑛 = 1 and 𝑛 = 2, the maximum order in the second
layer is 3/2, and in the last layer 1/2. It follows the diagram.

where we omitted the numerical factors (1/𝛼!) preceding the derivatives for simplicity. As
before, the odd terms cancels out for the power 𝑛 = 0. For the power 𝑛 = 1, the only ‘kind’
1 of odd derivative terms which contribute are the paths in gray, which must be partnered as
1 There are terms deriving from these which appear by exchanging the order of the terms, and conjugating
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Figure 9 – Diagram of the theory of the next-to-next-leading order (E(2)L), O(≤ 𝜏7/2).
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above not to violate the selection rule. The reader may verify that this is indeed the case by
trying to connect them to other terms without violating the selection rules.

We remember that, in connecting the terms, we are actually summing over indices. For
instance, the product 𝜕𝑗Δ*𝜕𝑗ΔΔ* denotes ∑︀

𝑗𝑙 𝜕𝑗Δ*𝜕𝑗Δ𝜕2
𝑙 Δ*

2 × Integral𝑖𝑗, where the integral
is provided in the dictionary, and transformed to an index-independent form in the energy-
measure, for either 𝑙 = 𝑗 or 𝑙 ̸= 𝑗, each of the cases corresponding to the specific rules in
the section ‘dictionary’. Its remarkable that no term of the form 𝜕𝑖𝜕𝑗𝜕𝑙Δ* is connected via a
path contributing to the theory. This is equivalent to say that it does not appear a quadratic
term in the three components (as we claim in the dictionary section, on the rules for the
energy-measure in the EGL theory).

As we are to see in chap. 6, an extension of the Extended theory would provide a better
understanding of the 𝜅 − 𝑇 phase diagram, which up to the EGL order (and a 𝜅 expansion)
describes only linear curves separating the multiple domains. The extension of the EGL theory
could allow for the appearance of boundaries between phases which otherwise would not make
contact (Fig.15, chap.6). Higher-order theories could answer qualitative questions concerning
the superconducting behaviour, their importance being not merely a quantitative sophistica-
tion. Apart from this commentary we will not go into much detail about the higher-order
theory except in providing a diagrammatic straightforward tool to extended theories. It allows
one not to be lost in an infinite amount of calculations; now one has a graphical map and a
dictionary. The integrals can be made via symbolic software such as Mathematica, as the time
consumption for such calculus is virtually null.

Procedure to Any Order of the Superfluid Theory

We propose a simple schedule to expand the theory to any order.

• Draw the diagram scope - now you should be able to write it for any order of the theory.

• Draw the arrows within the diagram scope, connecting the terms obeying the selection
rules.

• Apply the dictionary so that the integral coefficient is known.
it, for instance,Δ*𝜕2

𝑗 𝜕𝑙Δ𝜕𝑗Δ* is another possible arrow of the same ‘kind’. We did not draw these sibling
lines, as we have also not drawn them in the EL diagram.
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• Integrate it with symbolic software such as Mathematica and perform the integral and
discrete sum. They save the time of unnecessary work.

SUPERCONDUCTIVITY: NON-ZERO MAGNETIC-FIELD EFFECTS AND THE EXTENDED
GINZBURG-LANDAU THEORY

Now we turn our attention to charged superfluids, ‘superconductors’. The most direct
approach to provide some of the important contributions departing from the previous results
is by considering the formalism in the position space. We will follow this path even though up
to this point we have worked out mostly in the momenta space. The Gor’kov modification in
the Green’s function provides

𝒢(0)
Gor’kov(𝑟, 𝑟′) = exp

[︃
𝑒𝑖

ℎ̄𝑐

∫︁ 𝑟′

𝑟
𝐴(𝑞)𝑑𝑞

]︃
(5.59)

𝒢(0)
Gor’kov(𝑟, 𝑟′) = exp

[︃
− 𝑒𝑖
ℎ̄𝑐

∫︁ 𝑟′

𝑟
𝐴(𝑞)𝑑𝑞

]︃
𝒢(0)
𝐵=0(𝑥,𝑦) (5.60)

where the path is a straight line. In fact, the only deviation provided by the classical movement
in the field 𝐵

𝑞 = 𝑞̇ ×Ω ; Ω = 2𝑒
ℎ̄𝑐
𝐵 (5.61)

In the theory written for the space, we have convolutions of the kind

ℱ𝜔(𝑟, 𝑟′) =
∫︁
𝑑3𝑦𝒢(0)

𝜔 (𝑟,𝑦)Δ(𝑦)𝒢𝜔(0)(𝑦, 𝑟′)

ℱ𝜔(𝑟, 𝑟′) = 𝒢(0)
𝜔 (𝑟, 𝑟′) +

∫︁
𝑑3𝑦𝒢(0)

𝜔 (𝑟,𝑦)Δ*(𝑦)ℱ𝜔(𝑦, 𝑟′) (5.62)

See, for instance, ref. (VAGOV; SHANENKO A, 2012). Therefore, by applying the equations self-
consistently, each term in the exponent appears with exchanged integration limits on the right
and left-hand sides. As both 𝒢 and 𝒢 appear in pairs, it is convenient to provide the corrections
entirely in the order parameter while keeping the original Green’s function unmodified,

Δ(𝑟)→ Δ(𝑟, 𝑟′) exp
[︃
−2𝑒𝑖
ℎ̄𝑐

∫︁ 𝑟′

𝑟
𝐴(𝑞)𝑑𝑞

]︃
, (5.63)

which defines an auxiliary two-point order-parameter. As the phase factor is present on the left
and on the right of the self-consistent expansion, it follows that taking the limit 𝑟 → 𝑟′ in the
final result is equivalent to cancelling the remaining exponents. Term by term, the extended
theory term-by-term is rewritten with the correct magnetic dependence,
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𝑎1𝜏
1/2 lim

𝑟′→𝑟
Δ(𝑟, 𝑟′) = 𝑎1𝜏

1/2Δ(𝑟)

𝑎2𝜏
3/2 lim

𝑟′→𝑟
∇2Δ(𝑟, 𝑟′) = 𝑎2𝜏

3/2𝒟2Δ(𝑟)

𝑎3𝜏
5/2 lim

𝑟′→𝑟
∇2(∇2Δ(𝑟, 𝑟′)) = 𝑎3𝜏

5/2{𝒟4 − 4𝑒𝑖
3ℎ̄𝑐∇×𝐵 ·𝒟 + 4𝑒2

ℎ̄2𝑐2𝐵
2}Δ

𝑏1𝜏
3/2 lim

𝑟′→𝑟
|Δ(𝑟, 𝑟′)|2Δ(𝑟, 𝑟′) = 𝑏1𝜏

3/2|Δ(𝑟, 𝑟′)|2Δ(𝑟, 𝑟′)

𝑏2𝜏
5/2 lim

𝑟′→𝑟

[︂
2Δ(𝑟, 𝑟′)|∇Δ(𝑟, 𝑟′)|2 + 3Δ*(𝑥,𝑦)(∇Δ(𝑟, 𝑟′))2 + Δ(𝑟, 𝑟′)2∇2(Δ*(𝑥,𝑦))+

+ 4|Δ(𝑟, 𝑟′)|2∇2Δ(𝑟, 𝑟′)
]︂

= 𝑏2𝜏
5/2

[︂
2Δ|𝒟Δ|2 + 3Δ*(𝒟Δ)2 + Δ2(𝒟2Δ)* + 4|Δ|2𝒟2Δ

]︂

𝑐1𝜏
5/2 lim

𝑟′→𝑟
|Δ(𝑟, 𝑟′)|2Δ(𝑟, 𝑟′) = 𝑐1𝜏

5/2|Δ(𝑟)|4Δ(𝑟) , (5.64)

where we have factored out each contribution of the same order in deviations from the critical
temperature. The only contribution different from those provided above with the classical
correction in a 𝜏 5/2 theory is

𝑎4𝜏
5/2𝐵2 lim

𝑟′→𝑟
Δ(𝑟, 𝑟′) = −𝑎4𝜏

5/2𝐵2Δ(𝑟) (5.65)

with 𝑎4 = 𝑏ℎ̄2𝑒2

36𝑚2𝑐2 a new coefficient adding to those derived in the absence of the magnetic
field. If one is concerned to where this comes from, it comes from accounting for considering
the classical evolution of a system and truncating up to the order of the theory. This modifies
the Gor’kov greens function,

𝒢0
𝜔(𝑟, 𝑟′) = 𝒢(0)

Gor’kov(𝑟, 𝑟′)
{︂

1 + 𝑒2𝜏 2𝐵2

24𝑚2𝑐2 [𝜕2
𝜔 + 𝑖

ℎ̄
𝑚(𝑟 − 𝑟′)2𝜕𝜔] +𝑂(𝜏 5/2)

}︂
(5.66)

As this term produces a correction of order 𝜏 2, an inspection shows that it only produces
modifications in the terms accounting for the GL order, the accountability of other terms
trespassing the EGL order, 𝜏 5/2. The reader interested in the Pierls phase correction up to the
proper order is encouraged to read ref. (VAGOV et al., 2016). From the above,

0 = (𝑎1 −
1
𝑔

)𝜏 1/2Δ + 𝑎2𝜏
3/2𝒟2Δ + 𝑎3𝜏

5/2
[︂
𝒟4Δ− 4𝑒𝑖

3ℎ̄𝑐∇×𝐵 ·𝒟Δ + 4𝑒2

ℎ̄2𝑐2𝐵
2Δ

]︂
−

𝑎4𝜏
5/2𝐵2|Δ|2 − 𝑏1𝜏

3/2|Δ|2Δ− 𝑏2𝜏
5/2

[︂
2Δ|𝒟Δ|2 + 3Δ*(𝒟Δ)2 + Δ2𝒟*2Δ* + 4|Δ|2𝒟2Δ

]︂
+

𝑐1𝜏
5/2|Δ|4Δ (5.67)

If one wishes to consider a higher-order theory for superconductors the classical contribution
provides more terms to be aware of. We will not proceed in this fashion for a superconductor,
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in the same manner. It was previously done by setting up rules for the n-order theory of a
chargeless superfluid. We believe there is a set of simple rules holding when the magnetic field
is included, but the exploration of this fact is beyond the scope of this dissertation.

The Energy Functional

We seek a functional such that:

𝛿𝑓

𝛿Δ* = (𝜏−2 · 𝜏 1/2)
⎧
⎨
⎩(𝑎1 −

1
𝑔

)𝜏 1/2Δ + 𝑎2𝜏
3/2𝒟2Δ + 𝑎3𝜏

5/2
[︂
𝒟4Δ− 4𝑒𝑖

3ℎ̄𝑐∇×𝐵 ·𝒟Δ+

4𝑒2

ℎ̄2𝑐2𝐵
2Δ

]︂
− 𝑎4𝜏

5/2𝐵2|Δ|2 − 𝑏1𝜏
3/2|Δ|2Δ− 𝑏2𝜏

5/2
[︂
2Δ|𝒟Δ|2 + 3Δ*(𝒟Δ)2+

Δ2𝒟*2Δ* + 4|Δ|2𝒟2Δ
]︂

+ 𝑐1𝜏
5/2|Δ|4Δ

⎫
⎬
⎭ (5.68)

𝛿𝑓

𝛿Δ = ( 𝛿𝑓
𝛿Δ* )* (5.69)

in a symmetric form with respect to the the order-parameter and its conjugate. The prefactor
multiplication has its origim in: i) 𝑓𝑠 = ℱ/𝐿𝑛, with 𝑛 the dimension of the space. Since 𝐿 ∼ 𝜏 ,
in two dimensions, 𝑓 → 𝑓/𝜏 2, ii) The factor 1/2 appears since in fact the variation is taken
w.r.t to Δ* is in fact w.r.t Δ*𝜏 1/2 in dimensionless unities. Hence, we have the mathematical
problem of finding the functional 𝑓 by knowing its derivatives. The integration of any function
has an arbitrary constant. This constant is set by the magnetic field which shall contribute in
cgs unities with (𝐵2

2
1

4𝜋 ). In scaled unities,

𝑓𝑠 = 𝑓𝑛,𝐵=0 + 𝐵2

8𝜋 + 1
𝜏

(𝑔−1 − 𝑎1)|Δ|2 + 𝑎2|𝒟Δ|2 − 𝜏𝑎3(|𝒟2Δ|2 + 1
3∇× 𝑖G.L + 4𝑒2

ℎ̄2𝑐2𝐵
2|Δ|2)+

+ 𝜏𝑎4𝐵
2|Δ|2 + 𝑏1

2 |Δ|
4 − 𝜏 𝑏2

2

[︂
8|Δ|2|𝒟Δ|2 + Δ*2(𝒟Δ)2 + Δ2(𝒟*Δ*)2

]︂
− 𝜏 𝑐1

3 |Δ|
6

(5.70)

with the current of the Ginzburg-Landau functional

𝑖GL = 2𝑒𝑖
ℎ̄𝑐

(Δ𝒟*Δ* −Δ*𝒟Δ) (5.71)

One may confirm that this indeed produces the result. An exercise of thinking backward also
leads to this functional, though we will not care about this discussion in detail, since it is long
but not very challenging.
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THE EXTENDED-GINZBURG-LANDAU EQUATIONS

With the inclusion of the magnetic field, we seek the modified equations of motion directly
from the functional. For instance, we did not have an equation for the magnetic field, which
would limit further important analysis in superconductivity. To capture each order of correct
accuracy, we seek solutions in powers of the 𝜏 contribution.

𝑓𝑠 − 𝑓𝑛,𝐵=0 = 𝑓0 + 𝜏𝑓1 + ... (5.72)

Δ = Δ0 + 𝜏Δ1 + ... (5.73)

𝐴 = 𝐴0 + 𝜏𝐴1 + ... (5.74)

𝐵 = 𝐵0 + 𝜏𝐵1 + ... (5.75)

By denoting 𝒟0 ≡ ∇− 2𝑒𝑖
ℎ̄𝑐
𝐴0,

𝑓0 = 𝐵2
0

8𝜋 + 𝑎|Δ0|2 + 𝑏

2 |Δ0|4 +𝒦|𝒟0Δ0|2 (5.76)

Denoting

𝑓1 = 𝑓
(0)
1 + 𝑓

(1)
1 (5.77)

𝑓
(0)
1 = 𝑎

2 |Δ0|2 + 2𝒦|𝒟0Δ0|2 −𝒬
(︂
|𝒟2

0Δ0|2 + 1
3(∇×𝐵0) · 𝑖0 + 4𝑒2

ℎ̄2𝑐2𝐵
2
0 |Δ0|2

)︂
+

𝑏

36
𝑒2ℎ̄2

36𝑚2𝑐2𝐵
2
0 |Δ0|2 + 𝑏|Δ0|4 −

ℒ
2

[︂
8|Δ0|2|𝒟0Δ0|2 + Δ*2

0 (𝒟0Δ0)2 + Δ2
0(𝒟*

0Δ*
0)2

]︂
− 𝑐

3 |Δ|
6

(5.78)

𝑓
(1)
1 = 𝐵0 ·𝐵1

4𝜋 + (𝑎+ 𝑏|Δ0|2)(Δ*
0Δ1 + Δ0Δ*

1) +𝒦
[︂
𝒟0Δ0 · 𝒟*

0Δ*
1 + c.c−𝐴1 · 𝑖0

]︂
(5.79)

with

𝑖0 = 2𝑒𝑖
ℎ̄𝑐

(Δ0𝒟*
0Δ*

0 −Δ*
0𝒟0Δ0) (5.80)

For each order in 𝜏 we have an equation. In the zeroth-order

𝑎Δ0 + 𝑏|Δ0|2Δ0 −𝒦𝒟2
0Δ0 = 0 (5.81)

∇×𝐵0 = (4𝜋
𝑐

)𝒦𝑐𝑖0 (5.82)
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the Ginzburg-Landau equations are presented. We are interested in the higher-order contribu-
tions,

𝑎Δ1 + 𝑏(2|Δ0|2Δ1 + Δ2
0Δ*

1)−𝒦𝒟2
0Δ1 = 𝐹 (5.83)

∇×𝐵1 = 4𝜋
𝑐
𝑗1 (5.84)

with

𝐹 =− 𝑎

2Δ0 + 2𝒦𝒟2
0Δ0 +𝒬

[︂
𝒟2

0(𝒟2
0Δ0)−

4𝑒𝑖
3ℎ̄𝑐∇×𝐵 ·𝐷0Δ0 + 4𝑒2

ℎ̄2𝑐2𝐵
2
0Δ0

]︂

− 𝑏

36
𝑒2ℎ̄2

36𝑚2𝑐2𝐵
2
0Δ0 − 2𝑏|Δ0|2 − ℒ

[︂
2Δ0|𝒟0Δ0|2 + 3Δ*

0(𝒟0Δ0)2 + Δ2
0(𝐷2

0Δ0)*+

4|Δ0|2𝒟2
0Δ0

]︂
+ 𝑐|Δ0|4Δ0 −

2𝑒𝑖
ℎ̄𝑐
𝒦{𝐴1 ·𝐷0}Δ0 (5.85)

Provided

𝑗1 = 𝒦𝑐𝑖1 + 𝐽 (5.86)

𝑖1 = 2𝑒𝑖
ℎ̄𝑐

(Δ0𝒟*
0Δ*

1 + Δ1𝒟*
0Δ*

0 −Δ*
1𝒟0Δ0) (5.87)

𝐽 = 𝑐
{︂

(2𝒦 − 3ℒ|Δ0|2)𝑖0 +𝒬𝒟0𝑖0 + 𝒬3 ∇×∇𝑖0 +𝒬 8𝑒2

ℎ̄2𝑐2

[︂
∇× (𝐵0|Δ0|2)−

1
3 |Δ0|2(∇×𝐵0)−

𝑏

18
𝑒2ℎ̄2

𝑚2𝑐2 ∇× (𝐵0|Δ0|2)
]︂}︂

(5.88)

and,

{𝐴1 ·𝒟0} = 1
2(𝒜1𝒟0 + 𝒟0𝒜1) (5.89)

In the calculus of the above equations of motion we used the generalization of the GL boundary
condition

𝐷⊥Δ|𝜕𝑉 = 0 , (5.90)

since it reduces to GL plus higher order contributions

𝐷0,⊥Δ0|𝜕𝑉 = 0 GL (5.91)

𝐷0,⊥Δ1 −
2𝑒𝑖
ℎ̄𝑐
𝐴1⊥Δ0|𝜕𝑉 = 0 from 𝒪(𝜏) (5.92)

EGL THEORY COMPARED TO GL AND BCS

Concerning the uniform gap of EGL and BCS compared (see Fig. 10) theory, it responds
quite well up to 𝜏 ≤ 0.8. At 𝑇/𝑇𝑐 = 0.2 a qualitative difference appears as the EGL curve tends
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to decrease . About the critical field (see Fig. 11), it responds reasonably to the BCS theory
for 𝜏 ≤ 0.7 (𝑇/𝑇𝑐 ≥ 0.3). In particular, at lower temperatures the curve representing EGL
only differs from BCS for an amount varying from 10% to 20% while the relative difference
to GL is greater than 73%.

Gap Dependence on the Temperature

The uniform solution considering the zero order equation (5.81) and first-order (5.83) of
the self-consistent gap expansion are

Δ0 = −
√︂
𝑎

𝑏
(5.93)

Δ1

Δ0
|bulk = −3

4 −
𝑎𝑐

2𝑏2 = −𝜏 3
4(1− 31𝜁(5)

49𝜁2(3)) (5.94)

Returning to the unscaled representation,
Δ

ΔBCS(0) = 𝑒𝛾
√︃

8
7𝜁(3)𝜏

1/2
[︂
1− 3

4𝜏(1− 31𝜁(5)
49𝜁2(3))

]︂
(5.95)

the zero-temperature gap.

Critical Field

From the definition of the normal-Meissner critical field, and defining the Gibbs free energy
relative to the Meissner state, 𝑔 ≡ Δ𝑔|𝐻=𝐻𝑐 ,

𝑔 = 𝑔0 + 𝜏𝑔1 = −𝐻
2
𝑐

8𝜋 (5.96)

Therefore,

𝐻𝑐 = 𝐻𝑐0 +𝐻𝑐1𝜏 (5.97)

defines the coefficients of zero order and the first-order correction. We identify this terms as

𝐻𝑐0 =
√︃

4𝜋𝑎2

𝑏
, 𝐻𝑐1 = −𝐻𝑐0(1

2 + 𝑎𝑐

3𝑏2 ) (5.98)

𝐻𝑐

𝐻𝑐0
= 1− 𝜏

2

(︂
1− 31𝜁(5)

49𝜁2(3)

)︂
+𝒪(𝜏 2) = 1− 0.273𝜏 +𝒪(𝜏 2) (5.99)

In the unscaled variable,
𝐻𝑐(𝑇 )

𝐻𝑐,BCS(0) = 𝑒𝛾
√︃

8
7𝜁(3)𝜏

[︂
1− 𝜏

2(1− 31𝜁(5)
49𝜁2(3))

]︂
with 𝐻𝑐,BCS(0) = [4𝜋𝑁(0)]1/2𝜋𝑇𝑐

𝑒𝛾
(5.100)
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Figure 10 – Comparison of uniform-gap solution between Ginzburg-Landau,Extended-Ginzburg Landau and
the full microscopic model. A higher-order theory would approach the full microscopic model
further away from the critical temperature.

Source: From the original, (VAGOV; SHANENKO A, 2012)

Figure 11 – Comparison of the critical field between Ginzburg-Landau,Extended-Ginzburg Landau and the full
microscopic model.

Source: From the original, (VAGOV; SHANENKO A, 2012)

5.3 1D BOGOMOL’NYI EQUATION

We consider the scaling,

𝑟 = 𝑟

𝜆
, 𝐴 = 𝐴

𝜆𝐻𝑐0
, 𝐵̄ = 𝐵

𝐻𝑐0

, Δ̄ = Δ
Δ0

, 𝑓 = 4𝜋
𝐻2
𝑐0

𝑓 , 𝜎̄ = 4𝜋
𝜆𝐻2

𝑐0

𝜎 (5.101)

With this scaling, the zero-order expansion of the theory reads

𝑓0 = 𝐵2

2 −Δ2
0 + Δ4

0
2 − 𝜅

2Δ′2
0 , (5.102)
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since 𝜉2 = −𝒦
𝑎
. Defining the energy relative to Meissner as Δ𝑔|𝐻=𝐻𝑐 ≡ 𝑔.

𝑔0 = −Δ0Δ′′
0

𝜅2 + (𝐴
2
0

2 − 1)Δ2
0 + Δ4

0
2 + 1

2(𝐴′
0 − 1)2 (5.103)

From this we may derive the 1d Bogomol’nyi relations. The stationary GL equations reads

− 1
𝜅2 Δ′′

0 −Δ0 + Δ3
0 + 1

2𝐴
2
0Δ0 = 0 (5.104)

𝐴′′
0 = 𝐴0Δ0 (5.105)

but these may be rewritten in a first order system for 𝜅 = 𝜅0 ≡ 1√
2 . This is said to be the

Bogomol’nyi point. In the GL formalism, it is in this point that superconductivity exchanges
type. We rewrite the first GL equation as

(𝜕𝑥 −
𝜅√
2
𝐴0)(𝜕𝑥 + 𝜅√

2
𝐴0)Δ0 + 𝜅2(Δ3

0 −Δ0) + 𝜅√
2
𝐴′

0Δ0 = 0 (5.106)

We consider solutions to above with the Sarma ansatz, i.e, such that

(𝜕𝑥 + 𝜅√
2
𝐴0)Δ0 = 0 (5.107)

𝐴′
0 = (1−Δ2

0)
√

2𝜅 (5.108)

These clearly satisfy the first GL differential equation. But to satisfy the second, the ‘com-
patibility condition’, as often called, imply (

√
2𝜅(1 − Δ0)2)′ = 𝐴0Δ2

0 and from the first
Bogomol’nyi, 𝜅 = 𝜅0 ≡ 1√

2 . Therefore, this is the locus where the first-order system is valid,
and it is named ‘Bogomol’nyi point’ or, saving words ‘B-point’. Summarizing, at 𝜅 = 𝜅0 the
GL equations can be rewritten as a set of first-order differential equations

Δ′
0 + 1

2𝐴0Δ0 = 0 (5.109)

𝐴′
0 = (1−Δ2

0) (5.110)

Further, at the Bogomol’nyi point, it is quite trivial to prove that 𝑔0 = 0. More importantly
than a mathematical generic point, it has the physical importance of being the point where
the solutions change stability. In the subsequent section, we will see that the extended theory
will produce instead a straight line which is temperature-dependent dividing two domains.
And in the next chapter provide that in between the types I and II, other superconductivity
phenomena are appearing in a region of a 𝜅− (𝑇/𝑇𝑐) phase diagram coined intertype domain.
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ON THE STABILITY OF SUPERCONDUCTIVITY IN EGL

As done previously, we wish to find the condition 𝑔(Δ) < 0 for a given solution Δ(𝑥). The
EL(2) theory reads

𝑔1 = 𝑔0 + 𝜏𝑔1 (5.111)

It is convenient to denote 𝑔1 = 𝑔
(0)
1 + 𝑔

(1)
1 such that

𝑔
(0)
1 =− Δ2

0
2 + 2Δ′2

0
𝜅2 + 𝐴2

0Δ2
0 + 𝒬̃

[︂
(Δ′′

0
𝜅2 −

𝐴2
0

2 Δ0)2 + 1
3𝜅2𝐴

′′
0𝐴0Δ2

0 + (𝐴′
0)2

2𝜅2 Δ2
0

]︂
+

+ (𝐴′
0)2Δ2

0
48(𝑘𝐹𝜆)2 + Δ4

0 + ℒ̃
[︂ 5
𝜅2 (Δ′

0)2Δ2
0 + 3

2𝐴
2
0Δ4

0

]︂
+ 𝑐Δ6

0 (5.112)

𝑔
(1)
1 =2

[︂
(Δ2

0 − 1)Δ0Δ1 + 𝐴2
0

2 Δ0Δ1 + 1
𝜅2 Δ′

0Δ′
1

]︂
− 𝐴1𝑖0 + (𝐴′

0 − 1)
(︂
𝐴′

1 + 1
2 + 𝑐

)︂
(5.113)

with the definitions

𝑐 ≡ 𝑎𝑐

3𝑏2 , 𝒬̃ ≡ 𝒬𝑎𝒦2 , ℒ̃ ≡ ℒ𝑎
𝑏𝒦 (5.114)

We point out that the coefficients above are dimensionless and can be computed from the
parameters of the microscopic theory,

𝑐 = −0.227 , 𝒬̃ ≡ −0.454 , ℒ̃ = −0.817 (5.115)

For conventional superconductivity, (𝑘𝐹𝜆) is a very large term and is often neglected. For
this dissertation we do not go beyond this treatment. However, we emphasize that this term is
suggested to be important for the microscopic scale of superconductivity, for which fluctuations
become relevant (VAGOV et al., 2016).

To solve for the entry solution Δ, minimizing the free energy for Δ1 and 𝐴1 yields these
as functions of 𝐴0 and Δ0, as common in a self-consistent theory. For any integration by parts
we may use the following properties for the boundary condition

⎛
⎜⎜⎝

Δ1(−∞) = −3
4(1− 31𝜁(5)

49𝜁2(3))

Δ1(∞) = 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝

𝐴′
1(−∞) = 0

𝐴′
1(∞) = −1

2 − 𝑐

⎞
⎟⎟⎠ (5.116)

and
⎛
⎜⎜⎝

Δ0(−∞) = 1

Δ0(∞) = 0

⎞
⎟⎟⎠ and

⎛
⎜⎜⎝
𝐴′

0(−∞) = 0

𝐴′
0(∞) = 1

⎞
⎟⎟⎠ (5.117)
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plus the bulk condition

Δ′
0,1(±∞) = 0 and 𝐴0,1(±∞) = 0 (5.118)

As a result of minimizing the free-energy of zero-order in 𝜏 (in unscaled variables, of order
𝜏 3/2) we obtain the GL equations

− Δ′′
0

𝜅2 −Δ0 + Δ3
0 + 𝐴2

0
2 Δ0 = 0 (5.119)

𝐴′′
0 = 𝐴0Δ2

0 (5.120)

which may also be used to express the Gibbs energy 𝑔1 in terms of the solutions to the usual
GL equation.

𝑔
(1)
1 = (1

2 + 𝑐)(𝐴′
0 − 1) (5.121)

With these, we wish to find the value of 𝜅 such that the surface energy becomes null. This
sets the thermodynamic criteria for the emergence of superconductivity, as before. The surface
energy is

𝜎(𝜅) =
∫︁
𝑑𝑥𝑔0(Δ0(𝑥, 𝜅), 𝐴0(𝑥, 𝜅), 𝜅)

⏟  ⏞  
≡𝜎0(𝜅)

+𝜏
∫︁
𝑑𝑥𝑔1(Δ0(𝑥, 𝜅), 𝐴0(𝑥, 𝜅), 𝐴′

0(𝑥, 𝜅), 𝜅)
⏟  ⏞  

≡𝜎1(𝜅)

= 0

(5.122)

since from the Gibbs free energy we see that varying 𝜅 the equation of motion for Δ0 and
𝐴0 changes, i.e, Δ0 = Δ0(𝑥, 𝜅) , 𝐴0 = 𝐴0(𝑥, 𝜅). We have seen that when 𝜅 = 𝜅0 ≡ 1√

2 ,
𝑔0(Δ0, 𝐴

′
0, 𝜅0) = 0. The deviations from 𝜅0 are, therefore, analytic in 𝜏 and obey

𝜅 = 𝜅0 + 𝜅1𝜏 (5.123)

in a self-consistent first-order correction. We wish to understand the behavior of the surface
energy in the vicinity of the Bogomol’nyi point (𝜅 = 𝜅0).

𝜎(𝜅) = 𝜎1(𝜅0) +
[︂
𝜕𝜎0(𝜅0)
𝜕𝜅0

+
�

�
�
��𝛿𝜎0(𝜅0)

𝛿Δ0

𝜕Δ0(𝜅0)
𝜕𝜅0

+
�

�
�
��𝛿𝜎0(𝜅0)

𝛿𝐴0

𝜕𝐴0(𝜅0)
𝜕𝜅0

+

�
�

�
��𝛿𝜎0(𝜅0)

𝛿𝐴′
0

𝜕𝐴′
0(𝜅0)
𝜕𝜅0

]︂
(𝜅1𝜏) = 0 (5.124)

neglecting the next-order contribution in 𝜏 . Since 𝜎0(𝜅0) = 0, only the term 𝜎1(𝜅0)𝜏 survives.
In the second term, the only contribution (keeping the accuracy) is due to 𝜎 → 𝜎0. 𝜎0(𝜅0) = 0

clearly does not require the condition of null 𝜅-derivative; changing the argument 𝜅0 while
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keeping the solutions at the Bogomol’nyi point shifts the energy. Any variation with respect
to Δ0, 𝐴0, 𝐴′

0 along a path in which 𝜅 = 𝜅0 will only change the solutions to other solutions
yet at the Bogomol’nyi point, the resulting integral being null. Hence,

𝜅1 = −𝜎1(𝜅0)
(︂
𝜕𝜎0(𝜅0)
𝜕𝜅0

)︂−1
(5.125)

Some strong simplifications are made by the use of the 1d Bogomol’nyi equations. Immediately,
from the second-Bogomol’nyi equation, it is possible to eliminate the 𝐴′

0 dependence in 𝜎1(𝜅0).

𝜎1(𝜅0) =
∫︁
𝑑𝑥𝑔1(Δ0, 𝐴0, 𝜅0) (5.126)

From GL at the B-point plus boundary conditions, it is possible to infer (Appendix D.3)

𝜕𝜎0(𝜅0)
𝜕𝜅0

= −
√

2ℐ

𝜎1 = ℐ
(︂

1− 𝑐+ 2𝒬̃
)︂

+ 𝒥
(︂

2ℒ̃ − 𝑐− 5
3𝒬̃

)︂
(5.127)

with

ℐ =
∫︁
𝑑𝑥Δ2

0(1−Δ2
0) (5.128)

𝒥 =
∫︁
𝑑𝑥Δ4

0(1−Δ2
0) (5.129)

with Δ0 solution of the GL equations at the Bogomol’nyi-point. Therefore,

𝜎(𝜅) = −
√

2ℐ𝛿𝜅+ 𝜏
[︂
(1− 𝑐+ 2𝒬̃)ℐ + (2ℒ̃ − 𝑐− 5

3𝒬̃)𝒥
]︂

+𝒪(𝜏 2) (5.130)

in which we denote 𝛿𝜅 = 𝜅− 𝜅0 = 𝜅1𝜏 .
By numerically solving the GL equation for a flat normal-superconducting domain wall with

the aforementioned boundary condition, we find

𝜅 = 1√
2

(1− 0.027𝜏 +𝒪(𝜏 2)) (5.131)

such that the frontier between type I and type II becomes temperature-dependent. We will
further see the richness of the EL theory in providing results beyond the usual Type I/Type II
dichotomous understanding shortly. We have computed 𝜅1 for a specific domain wall solution.
Other solutions, however, open up an ‘intertype’ region, in between the Types I/Type II, where
a different behavior is found - we will shortly examine it in the next chapter. Though we have
derived this criterion of stability for 1d solutions, the same criteria are kept for 2d solutions
(VAGOV et al., 2016).
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5.4 FINAL REMARKS

The reader was presented to the Extended Landau Theory and its magnetic field-dependent
counter-part, the Extended Ginzburg-Landau theory. These were reached by a self-consistent
asymptotic expansion in deviations from the critical temperature. We have provided means to
evaluate the stability of solutions within the 𝜅 − 𝑇/𝑇𝑐 diagram. Such facts will be explored
with exotic analytic solutions in the next chapter. By accounting for the proper terms in the
expansion, one is expected to foresee that we are adding or removing terms in the diagrammatic
partial summation method. Indeed, this is actually what we are doing for each of the intended
orders of accuracy in deviation from the critical temperature. Therefore, this procedure selects
precisely the correct diagrams for a self-consistent theory without relying on unsystematic or
strong phenomenological assumptions. Finally, we have set the limit of trust for the Extended-
Ginzburg-Landau theory and provided a way to analytically account for the stability of solutions.

Lastly, along the way, we have produced a systematic graphical scheme for the Extended
Landau theory and its next-to-leading order theory through a simple set of graphics and a
dictionary. These are intended tools for computing any generic order of the theory. More is
required, however, if we are to systematically investigate a reasonable way of treating higher-
orders expansions of the Extended-Ginzburg-Landau theory. Systematic and graphic inclusion
of the magnetic field has not yet been proposed by the time this manuscript has been written.
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6 SELF-DUAL SOLUTIONS AND THE EMERGENCE OF COMPLEXITY VIA

COOPERATION

PROLOGUE

It is now widely accepted that spontaneous structures form as a result of length-scale com-
petition, (SEUL; ANDELMAN, 1995). For the second question, while adaptation is frequently
mentioned in biology, frustration caused by competing interactions has also been suggested
as a possible origin of numerous nearly degenerate patterns with a variety of arrangements,
(WOLF; KATSNELSON; KOONIN, 2018). In any case, the critical word in this scenario of emer-
gence is ’competition’. We present a qualitatively distinct framework in which the keyword is
’cooperation’.

In the 2003 Nobel Prize, Alexei Abrikosov received 1/3 of the award for his contribution
to the theory of superconductivity, for which it has been provided the succinct justification

When certain substances are cooled to extremely low temperatures, they become

superconductors, conducting electrical current entirely without resistance. With

one type of superconductivity, the magnetic field is forced away from the conduc-

tor, but with another type of superconductivity, the magnetic field is admitted into

the conductor. The different types of superconductivity cannot be described with

the same theory. At the end of the 1950s, Alexei Abrikosov formulated a theory

for the second type of superconductor. He introduced a mathematical function

that described vortices whereby an external magnetic field can intrude into the

conductor - Nobel Foundation (NobelPrize.org. Nobel Prize Outreach AB 2022, )

This work provides alternative novel solutions (in the place of vortices) which we prove to
be stable in the superconductivity domain. This can be done provided

𝒢 = −
√

2ℐ𝛿𝜅+ 𝜏
[︂
(1− 𝑐+ 2𝒬̃)ℐ + (2ℒ̃ − 𝑐− 5

3𝒬̃)𝒥
]︂

(6.1)

with

ℐ =
∫︁
𝑑𝑥|Ψ|2(1− |Ψ|2) (6.2)

𝒥 =
∫︁
𝑑𝑥|Ψ|4(1− |Ψ|2) (6.3)
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with Ψ solution of GL at the Bogomol’nyi-point (VAGOV et al., 2016). It is the equivalent of
the 1d result (chap.5) generalized to 2d. We spare the effort of reproducing the results for 2d
- which is analogous to the 1d procedure - in the benefit of exploring other topics.

The mathematical functions provided adds to the vortex solution, also describing the super-
conducting behavior in a region coined ‘intertype domain’ emerging in between the standard
types I and II. The functions are obtained by nontrivial semi-analytic solutions for the Bogo-
mol’nyi equation. We have obtained these by employing the methods described in this chapter.
Our solutions were labelled ‘bubble’ (or ‘droplet’), ‘donut’ and ’stripe‘ (or filament‘). The bub-
ble consists of an isolated superconducting domain separated from a normal boundary region.
The donuts, on the other hand, alternates normal-superconducting-normal domains, and it
has as a limiting case, the suppression of the most external domain, presenting the feature of
a vortex (single-quantum or multi-quanta). This suggests the donuts is a combination of the
droplet solution with a vortex placed in the center. Another possible solution is the stripe, which
is the 1d solution presenting subsequently the increase and decrease of the order-parameter.
After displaying the solutions, we indicate their stability in a 𝜅− 𝑇/𝑇𝑐 phase-diagram. Next,
we numerically confirm their presence as a possible superconducting phase by running usual
simulations with the Time-Dependent-Ginzburg-Landau formulation (GROPP et al., 1996) and
applying the solutions as ansatz to the time-dependent GL (TDGL) in the vicinity of the Bogo-
mol’nyi point (B-point, 𝜅 = 1√

2). For the numerical achievements due to the TDGL method,
I am very much indebted to W.Córdoba. As a result of the combination of the semi-analytic
results in this chapter and the numerical TDGL results, we were able to reproduce theoretically
the multitude of phases of matter reported in the experimental results reported more than five
decades ago (1969,U. Krägeloh in single-band materials (KRAGELOH, 1969)). Furthermore,
this is the starting point for casting doubt on the fundamentals for complexity emergence.
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Figure 12 – Flux lines experimentally obtained by U.Krägeloh, in the late sixties.

Source: (KRAGELOH, 1969), permission granted by Elsevier.
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6.1 SELF-DUAL BOGOMOL’NYI SOLUTIONS: BUBBLE, STRIPE AND DONUT

Consider the self-dual Bogomol’nyi equations

(𝜕𝑦 + 𝑖𝜕𝑥)Ψ = (𝐴𝑥 − 𝑖𝐴𝑦)Ψ (6.4)

ℬ = 1− |Ψ|2 (6.5)

and the following ansatz

Ψ𝑁 = (𝑥− 𝑖𝑦)𝑁
𝜌𝑁

Φ𝑁(𝜌) = Φ𝑁(𝜌) exp[−𝑖𝑁𝜃] (6.6)

𝐴⃗ = (0, 𝐴(𝜌), 0) (6.7)

with 𝐴⃗ the vector potential in cylindrical coordinates.
The first ansatz simply states we are looking for topological defects with 𝑁 as winding

number. If existent, these solutions have polar symmetry for a 𝑧 directed magnetic field due to
the second condition (6.7). A further consistent assumption for solutions is the link between
the winding number and the order of the polynomial expansion around the origin,

𝜕𝑁𝜌 Φ𝑁(0) = 𝒞 (6.8)

since it ensures Φ𝑁 ∝ 𝜌𝑁 , Ψ𝑁 ∝ (1
𝑧
)𝑁 as it should be for a 𝑁 -quanta vortex solution.

Writing the curl of the vector potential in cylindrical coordinates,

ℬ = 𝐴′ + 𝐴

𝜌
(6.9)

From (6.6) and (6.7) into the first Bogomol’nyi equation (6.4),

Φ′
𝑁 −𝑁

Φ𝑁

𝜌
= −𝐴Φ𝑁 (6.10)

It is possible to obtain an expression for Φ alone if going to the second-order GL equation. For
𝑁 = 1, this second-order equation is

− Φ′′
1 −

Φ′
1
𝜌

+ Φ′2
1

Φ1
− Φ1 + Φ3

1 = 0 (6.11)

𝜕𝜌Φ1 = 𝒞 (6.12)

which is equivalent to the modified Liouville equation

∇2 ln Φ1 = Φ2
1 − 1 (6.13)
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In general, it is also possible to prove that the same Liouville equation is valid for an arbitrary
winding number choice,

∇2 ln Φ𝑁 = Φ2
𝑁 − 1 (6.14)

with the 𝑁 factor cancelling out.
In general, for practical purposes, it is usual to rewrite the Liouville equation for 𝜑𝑁 = Φ

1
𝑁
𝑁

as

∇2 ln𝜑𝑁 = 1
𝑁

(𝜑2𝑁
𝑁 − 1) (6.15)

𝜕𝜌𝜑𝑁 = 𝒞 (6.16)

which is suitable for numerical purposes as to avoid the 𝑁 -th order derivative as the boundary
condition.

From Bogomol’nyi to the modified Liouville equation

At the Bogomolnyi point, we wish to prove the solutions obey the ‘modified’ Liouville
equation

∇2 ln Ψ = |Ψ|2 − 1 (6.17)

differing by the adding constant −1 from the Liouville equation ((LIOUVILLE, 1853), (CROWDY,
1997)). Though a constant addition is a problem of trivial solution when the linear solution
is known, it poses a major technical difficult in solving the modified non-linear equation, even
when one has knowledge of the original non-linear equation.

For a proof, we operate (𝜕𝑦 − 𝑖𝜕𝑥) onto the first Bogomol’nyi equation, (𝜕2
𝑦 + 𝜕2

𝑥)Ψ =

Ψ(𝜕𝑦 − 𝑖𝜕𝑥)(𝐴𝑥 − 𝑖𝐴𝑦) + (𝐴𝑥 − 𝑖𝐴𝑦)(𝜕𝑦 − 𝑖𝜕𝑥)Ψ and express (𝐴𝑥 − 𝑖𝐴𝑦) as a function of Ψ

alone, according to the Bogomolnyi first relation. Applying the Coulomb gauge condition and
the second Bogomol’nyi equation, the representation

∇2Ψ
Ψ − (∇Ψ)2

Ψ2 = |Ψ|2 − 1 (6.18)

is obtained by excluding Ψ = 0. The above is equivalent to the modified Liouville, proving the
claim (taking care to exclude the Ψ = 0 points).
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We compare this result with that of an isolated solution, for which

∇2 ln |Ψ| = |Ψ|2 − 1 (6.19)

noticing the distinction on the left side.
Another synthetic proof is provided in the characteristic coordinate representation, by

rewriting the first-Bogomol’nyi as

𝜕𝑧 ln Ψ = −(𝑖𝐴𝑥 + 𝐴𝑦) , (6.20)

𝑧 = 𝑥+𝑖𝑦 (excluding Ψ = 0). By applying the conjugate derivative and the second Bogomol’nyi
equation within the Coulomb Gauge retrieves the modified Liouville equation.

Note on Singularities

With this we notice we have missed to include singularities in the first section on isolated
solutions. Notice that by considering Ψ = 𝑧𝑛

|𝑧|2𝑛 |Φ𝑁 | into 6.17, the results of the previous
equations will be the same apart from the singularity at the origin, as ∇2 ln 𝑧 ∝ 𝛿(𝑧). For the
isolated solutions the origin point can be punctured out for the integration purpose.

Bubble, Donut and Vortex Solution

The representation to bubble, donuts and vortex is similar. It is obtained for different
choices of sign and initial condition to

𝜑′
𝑁 = ±1

𝑟
𝜑𝑁𝛾𝑁 (6.21)

𝛾′
𝑁 = ± 𝑟

𝑁
(𝜑2𝑁

𝑁 − 1) (6.22)

for the initial value pŕoblem lim𝑟0→0 𝜑𝑁(𝑟0) = 𝜑𝑁,0 and lim𝑟0→0 𝛾𝑁(𝑟0) = 𝛾𝑁,0 (remember
𝜑𝑁 = Φ1/𝑁

𝑁 is the solution). The first-order Bogomol’nyi system solves the second-order
Liouville equation.

For both donuts and vortex, 𝜑𝑁,0 → 0; for bubbles 𝜑𝑁,0 → 1. In the positive sign choice
(+ in both (6.21) and (6.22)), each value to 𝑁 produces the appropriate asymptotic behavior
to the 𝑁 -th quanta solution, either donuts or vortex. When 𝛾0,𝑁 trespass a critical value, the
vortex solution with vorticity 𝑁 is obtained, below that value, only donuts are present. Bubbles
are obtained with the negative choice for the sign (− in both (6.21) and (6.22)). 𝑁 controls
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the asymptotic profile for bubbles and is not related to a quantized flux - there is no bubble
vorticity (Appendix E.2). The sole contribution of 𝑁 is in modifying the long-range profile of
the condensate decay.

Stripes (or Filaments)

In 1d no phase change is expected, therefore, Ψ = |Ψ|. The stripe solution is represented
in the first-order differential form

Ψ′ = ±Ψ
√︁

Ψ2 − 2 ln[𝑐|Ψ|] (6.23)

by gluing each branch at the locus of maximum amplitude. Both branches of (6.23) are
consistent with the 1d modified Liouville. The critical point is Ψ𝑐 = 𝑊

1
2 [ 1
𝑐2 ] and Ψ𝑐 = 0 (at

infinity), for 𝑊 the Lambert-W function. Expanding the solution at the locus of the critical
point 𝑥𝑐, the approximate parabolic behaviour Ψ(𝑥) = Ψ𝑐 − (1−Ψ2

𝑐)Ψ𝑐(𝑥− 𝑥𝑐)2 is verified.
For stripes, we choose the initial amplitude value of 𝛿1 to be small (for instance, 𝛿1 = 10−2Ψ𝑐)
for integration purposes. The equation (6.23) is autonomous, hence for a set of choices to 𝛿1,
there is a set of translations of the same solution.
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Figure 13 – The order parameter and its respective induction along a 1d cut; the condensate and current
(arrows) in the 2d graphics. In donuts solution, two counter-propagating currents appear, as if it
were a bidimensional realization of the stripe structure. Contrary to stripes where the inner and
outward currents are the same in magnitude, though, the external donuts ‘ring’ carries the greater
current.

0 0.2 0.4 0.6 0.8 1.0

Source: The author
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TDGL NUMERICS

In collaboration with W.Córdoba, by applying the Time-Dependent Ginzburg-Landau equa-
tion to the evolution of novel-like solutions ansatz, a plethora of configurations emerged in
the vicinity of 𝜅 = 1/

√
2. Needless to say the similarities between the above and the su-

perconducting island observed in Krägeloh experiments. Beyond this, the filaments with low
curvature in the first Krägeloh figure are also present, now surrounding the bulk containing a
periodic structure of islands with (donuts) and without (bubble) a vortex inside. The presence
of vortices in some of the islands is not easily detected by following the images of the Krägeloh
experiment.
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Figure 14 – Condensate reproduction via TDGL.

Source: W.Córdoba
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ON THE STABILITY OF THE NOVEL SOLUTIONS IN THE INTERTYPE DOMAIN

The intertype domain consists of the exotic configurations which are opened up in between
the standard superconducting types I and II. EGL produces the first linear corrections for the
dependence of the critical 𝜅 as a function of the temperature. Obtaining the next-leading-order
expansion to EGL would lead to better results in regions with 𝜏 ≥ 0.3 (see chap.5), allowing
the curves to bend in the phase diagram. The criteria for the stability classification of each
region below is the starting point of the stability relative of the Meissner state.

Figure 15 – Superconducting phase diagram of the Extended Ginzburg-Landau theory. The next-to-leading
order theory could allow for the appearance of novel phase boundaries; beyond the one-to-one
boundary contacts within the intertype diagram.

Source: The author

6.2 SELF-DUALITY AS MECHANISM TO THE EMERGENCE OF COMPLEXITY

Away from the Bogomol’nyi point, a competition between the condensate density (|Ψ|2)
and magnetic field (𝐵) length-scales is held. To see this, observe the figures below, either deep
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in type II or type I, respectively. The fields represented in the images are normalized.

Figure 16 – Pictures of Type II (𝜅 > 1/
√

2), Type I (𝜅 < 1/
√

2), and the Bogomol’nyi point (𝜅 = 1/
√

2), in
this order.
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Source: The author

At the Bogomol’nyi point, the competition between the two length-scales dictating the
formation of patterns vanishes, both |Ψ|2 and 𝐵 presents precisely the same scale, as may be
inferred from the second Bogomo’lnyi equation (6.5). In this way, both the magnetic field and
the order-parameter act cooperatively to the formation of patterns, being present in precisely
the same amount. As we proved, in chap.3, at the B-point, the second Bogomol’nyi equation
imply zero free-energy relative to the Meissner-state. Therefore, any solution at the B-point
is degenerate. This is also the case in the EGL theory, since i) the Bogomol’nyi point of the
extended theory becomes the pair (𝛿𝜅 = 0, 𝜏 = 0) ii) (6.1) holds.
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For the point of the phase diagram, at the critical temperature and parameter 𝜅 fixed at
𝜅 = 1√

2 , every solution is degenerate. It implies the possibility of a plethora of solutions, such
as the solutions introduced in this chapter, which yields the emergence of complexity. Despite
the absolutely richness of this mechanism in generating complexity, the literature has always
attributed the formation of complexity to competition among order-parameters. In this mecha-
nism, however, we present a phenomenology infinitely degenerate, able to produce complexity.
Yet, it is based on the two physical quantities, |Ψ|2 and 𝐵 in cooperation, acting as a single
entity. We notice that the first and second Bogomol’nyi relations can be decoupled into the
modified-Liouville (6.17), and it together with the explicit link between the condensate density
and the induction field (6.5) recovers the original Bogomol’nyi equations. Thus, determining
the order-parameter becomes independent from the induction field, and once it is determined,
the induction is a polynomial function of the order-parameter. It is remarkable that it is not
necessary to specify boundary conditions for the induction field, for this is constrained by the
second-Bogomol’nyi. As a consequence, the two order-parameter theory becomes effectively
a theory at a single order-parameter at the Bogomol’nyi point. The phenomenology at the
B-point defies the fundamental and dominant view of complexity emergence as a result of
competition between length-scales.
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7 CONCLUSIONS AND PERSPECTIVES

Though superconductivity has been studied for nearly a century, recent years have demon-
strated that much can be learned from ‘material-independent’ theories of superconductivity.
Recently, several properties beyond the usual type I and II superconductivity have been de-
scribed using the simplest possible microscopic theory and the generic s-wave interaction. The
Extended-Ginzburg-Landau theory contributes to our understanding of superconductivity be-
yond the critical temperature. Previously, only phenomenological theories would germinate in
areas in desperate need of accurate treatment.

As a first technical contribution worth noting, we developed an efficient method for obtain-
ing extended-Landau theories in any order (in the language of this manuscript, E(𝑛)L). This
is accomplished by developing a diagrammatic scheme and a set of simple rules for identify-
ing the pertinent terms. However, we should keep in mind that at the time this manuscript
was written, we were unable to incorporate vector-field coupling in a systematic manner into
the expansion. We have not been able to produce their Ginzburg counterpart (E(𝑛)GL) in the
language presented throughout the text until the date of this manuscript submission. While a
schedule for an extended theory may be of little interest in the absence of magnetic coupling
in superconductivity, we may raise a fundamental question. If we take the Landau’s concept
of universality of phase transitions seriously in describing phase transitions near the critical
temperature, a natural question is whether the universal form of the equations is maintained
further away from the transition temperature. While addressing this question is undoubtedly
beyond the scope of this dissertation, the answer may have profound implications for our
understanding of phase-transition processes in nature.

As a second technical contribution, we established semi-analytic self-dual solutions per-
mitted within the intertype domain’s zoo of solutions. The terms bubble, stripe, and donut
were used to describe these. The thermodynamic stability of these solutions relative to the
Meissner-Ochsenfel state has been established, and the presented intertype diagram has rep-
resented this relative stability. With the assistance of W.Córdoba, we calculated the numerical
time evolution of droplets, stripes, and donuts ansatz at 𝜅 = 1/

√
2. As a result, we were

able to extract numerical results containing at least three phases of matter simultaneously in
a single image. We have not seen these solutions reproduced in the literature, but they appear
to be representative of Krägeloh’s pioneering experiments in single-band materials. This result,
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when compared to other model mechanisms that drive patterns, implies a paradigm shift in our
understanding of complexity emergence. We have provided an explicit example in which the
keyword is the ’cooperation’ between length-scales, in contrast to the numerous predecessor
models that attribute complexity to the ’competition’ between these.

As future research many directions may be devised departing from this writing, among
which we begin to itemize.

i) We have analysed the stability of the solutions along the intertype in terms of the
Meissner-Ochsenfel state, which is frequently used as a ’absolute’ stability criterion. We
may gain a better understanding of how the class of stripes, bubbles, and donuts solutions
shape the intertype in understanding their relative stability. This is not a difficult task
to accomplish, but due to the large number of parameters and the time commitment
required for this writing, it has been postponed.
ii) Improved control of semi-analytic solutions through numerical exploration of the
associated phase. This is not necessary for understanding the associate current in the
intertype domain, nor for its stability, but it would be critical for improving numerical
control in time-dependent evolution;
iii) Investigate the phase diagram of multi-band materials;
iv) Develop an alternative scheme expansion in diagrams/rules for Extended-Ginzburg-
Landau theories (incorporate the induction).
v) Seek a deeper-level understanding of the relation of the self-dual mechanism to other
models leading to complexity;

Although the dissertation’s primary focus has been on fundamental understanding of the super-
conducting state and complexity, numerous practical applications may result from a numerical
program that incorporates geometry and other ingredients, such as magnetism. To my knowl-
edge, the numerical components displayed in the literature have been limited to simulations
near the critical temperature. As a result, some relevant aspects of the phenomenology may
have been overlooked, particularly those further away from the critical temperature.
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A.1 ADIABATICITY

Consider the slow turning on of an interaction as

𝐻(𝑡) = 𝐻0 + 𝑒𝑡/𝑡𝐴𝐻𝐼 (1)

in an otherwise unperturbed system. By slow, we mean 𝑡𝐴 → ∞. At 𝑡 = −∞, 𝐻 = 𝐻0,

and when 𝑡 = 0, the interaction is fully turned on. The order of the energy coupled to

this time scale is 𝜖 = 1/𝜏𝐴 in plank-energy unities.

A.2 TIME-ORDERING

Let {𝑡1, 𝑡2..., 𝑡𝑁} define an unordered set of times. Given the ordered set {𝑡𝑃1 , 𝑡𝑃2 , ..., 𝑡𝑃𝑁
}

such that 𝑡𝑃1 > 𝑡𝑃2 > ...𝑡𝑃𝑁
. We define the time-ordering of the operators 𝒪𝑖 by

𝒯 {
∏︁

𝑖=1
𝒪𝑖(𝑡𝑖)} = 𝜁𝑃

∏︁

𝑖=1
𝒪(𝑡𝑃𝑖

) (2)

in which 𝑃 is the number of permutations necessary to bring the unordered set to the

ordered set.

𝜁 =

⎧
⎪⎪⎨
⎪⎪⎩

1 , for bosonic operators

−1 , for fermionic operators
(3)

As bosonic and fermionic operators acts in distinct spaces, commuting, the time ordering

to the mixture of bosonic and fermionic operators equals the product of the respective

time-orderings.

A.3 INTERACTION PICTURE REMINDER

The interaction picture is the easier representation to a perturbed Hamiltonian of the

form

𝐻 = 𝐻0 + 𝐻𝐼 (4)
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In this representation, we propose a slow evolution of the form by taking back part of the

effect of the unperturbed dynamics

|Ψ𝐼⟩ = 𝑒𝑖𝐻0𝑡 |Ψ𝑆⟩ with |Ψ𝑆⟩ = 𝑒−𝑖𝐻𝑡 |Ψ𝐻⟩ , |Ψ𝐼⟩ = 𝑒𝑖𝐻0𝑡𝑒−𝑖𝐻𝑡 |Ψ𝐻⟩

|Ψ𝐻⟩ = 𝑒𝑖𝐻𝑡𝑒−𝑖𝐻0𝑡 |Ψ𝐼⟩ (5)

Where we have supposed 𝐻𝐼 to be time-independent, such that 𝐻 is time-independent.

Since the average shall be the same in any representation,

⟨Ψ𝑆| 𝑂𝑆 |Ψ𝑆⟩ = ⟨Ψ𝐻 | 𝑒𝑖𝐻𝑡𝑂𝑆𝑒−𝑖𝐻𝑡 |Ψ𝐻⟩ =

⟨Ψ𝐼 | 𝑒𝑖𝐻0𝑡𝑒−𝑖𝐻𝑡𝑒𝑖𝐻𝑡𝑂𝑆𝑒−𝑖𝐻𝑡𝑒𝑖𝐻𝑡𝑒−𝑖𝐻0𝑡 |Ψ𝐼⟩ ⟨Ψ𝐼 | 𝑒𝑖𝐻0𝑡𝑂𝑆𝑒−𝑖𝐻0𝑡 |Ψ𝐼⟩ (6)

Therefore, in the interaction picture,

|Ψ𝐼(𝑡)⟩ = 𝑈(𝑡) |Ψ𝐼(0)⟩ = 𝑒𝑖𝐻0𝑡𝑒−𝑖𝐻𝑡 |Ψ𝐼(0)⟩ (7)

𝑂𝐼 = 𝑒𝑖𝐻0𝑡𝑂𝑆𝑒−𝑖𝐻0𝑡 (8)

where it is convenient to define the unitary operator providing the wave-function dy-

namics in the interaction picture. It is useful to define the ‘𝑆’ evolution matrix as the

transformation leading to an evolution from the state |Ψ(𝑡′)⟩ to |Ψ(𝑡)⟩ whatever the time

ordering. From

|Ψ𝐼⟩ (𝑡) = 𝑈(𝑡) |Ψ𝐼(0)⟩ ; 𝑈 †(𝑡′) |Ψ𝐼⟩ (𝑡′) = |Ψ𝐼(0)⟩

|Ψ𝐼(𝑡)⟩ ≡ 𝑆(𝑡, 𝑡′) |Ψ𝐼(𝑡′)⟩ = 𝑈(𝑡)𝑈 †(𝑡′) |Ψ𝐼(𝑡′)⟩ (9)

Finally, since

𝑖
𝜕𝑈

𝜕𝑡
= 𝑒𝑖𝐻0𝑡(𝐻 − 𝐻0)𝑒−𝑖𝐻𝑡 = 𝐻𝐼(𝑡)𝑈(𝑡) (10)

Where 𝐻𝐼(𝑡) is the 𝐻𝐼 operator evolution in the interaction picture. At a first view, the

immediate evaluation of 𝑆(𝑡, 𝑡′) is difficult to be made in the representation 𝑆(𝑡, 𝑡′) =

𝑈(𝑡)𝑈 †(𝑡′). However, by studying its dynamics, a very simple result follows

𝑖
𝜕𝑆(𝑡, 𝑡′)

𝜕𝑡
= 𝐻𝐼(𝑡)𝑆(𝑡, 𝑡′) (11)

For which the solution is

𝑆(𝑡, 𝑡′) = 𝒯 [𝑒−𝑖
∫︀ 𝑡

𝑡′ 𝐻𝐼(𝑡*)𝑑𝑡* ] (12)

This is said to be the matrix element ’S’ connecting the states at different times.
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A.4 GELL-MANN-LOW THEOREM

From the idea of adiabaticity introduced by Murray Gell-Man and Francis Low, it fol-

lows a convenient theorem of strong consequences, coined with their names. The theorem

produces a one-to-one correspondence between (i) and (ii) with (i) the correlation/green’s

function of observables of an adiabatically perturbed Hamiltonian in the Heisenberg pic-

ture, (ii) the dynamics of the non-interacting evolution of the same observables (interac-

tion picture). The link is provided via the ‘S’ matrix in the one-to-one relation

⟨Ψ𝐻 | 𝒯
∏︁

𝑖

𝒪(𝑖)
𝐻 (𝑡𝑖) |Ψ𝐻⟩ = ⟨Ψ𝐼(𝑡)| 𝒯 {𝑆(𝑡, −∞)

∏︁

𝑖

𝒪(𝑖)
𝐼 (𝑡𝑖)} |Ψ𝐼(−∞)⟩ (13)

As |Ψ𝐻⟩ = |Ψ𝐼(−∞)⟩ and 𝒪𝐻(𝑡) = 𝑈 †(𝑡)𝒪𝐼(𝑡)𝑈(𝑡),

⟨Ψ𝐻 | 𝒯
∏︁

𝑖

𝒪(𝑖)
𝐻 (𝑡𝑖) |Ψ𝐻⟩ = ⟨Ψ𝐼(−∞)| 𝒯 { 𝑈 †(𝑡1)⏟  ⏞  

𝑆†(𝑡1,−∞)

𝒪𝐼(𝑡1) 𝑈(𝑡1)𝑈 †(𝑡2)⏟  ⏞  
𝑆(𝑡1,𝑡2)

...

𝑈(𝑡𝑛−1)𝑈 †(𝑡𝑛)
⏟  ⏞  

𝑆(𝑡𝑛−1,𝑡𝑛)

𝒪𝐼(𝑡𝑛) 𝑈(𝑡𝑛)
⏟  ⏞  

𝑆(𝑡𝑛,−∞)

} |Ψ𝐼(−∞)⟩ ,

(14)

with no a priori time-ordering for the times 𝑡𝑖. Hence, supposing 𝑡1 > 𝑡𝑖 for every 𝑖,

⟨Ψ𝐻 | 𝒯
∏︁

𝑖

𝒪(𝑖)
𝐻 (𝑡𝑖) |Ψ𝐻⟩ = ⟨Ψ𝐼(−∞)| 𝑈 †(𝑡1)⏟  ⏞  

𝑆†(𝑡1,−∞)

𝒯 {𝒪𝐼(𝑡1) 𝑈 (𝑡1)𝑈 †(𝑡2)⏟  ⏞  
𝑆(𝑡1,𝑡2)

...

𝑈(𝑡𝑛−1)𝑈 †(𝑡𝑛)
⏟  ⏞  

𝑆(𝑡𝑛−1,𝑡𝑛)

𝒪𝐼(𝑡𝑛) 𝑈(𝑡𝑛)
⏟  ⏞  

𝑆(𝑡𝑛,−∞)

} |Ψ𝐼(−∞)⟩

(15)

and since

⟨Ψ𝐼(−∞)| 𝑆†(𝑡1, −∞) = (𝑆(𝑡1, −∞) |Ψ𝐼(−∞)⟩)† = ⟨Ψ𝐼(𝑡1)| = ⟨Ψ𝐼(𝑡)| 𝑆(𝑡, 𝑡1). (16)

Next, we may use the flexibility that the time-ordering operator provides to mix the

arguments at our convenience. It does not matter the mixing, since after the time-

ordering, just a single ordering survives. We also might move back the operator with

higher time dependence inside the time-ordering, without loss,

⟨Ψ𝐼(𝑡)| 𝒯 {𝑆(𝑡, 𝑡1)𝑆(𝑡1, 𝑡2)...𝑆(𝑡𝑛−1, 𝑡𝑛)𝑆(𝑡𝑛, −∞)
∏︁

𝑖

𝒪𝐼(𝑡𝑖)} |Ψ𝐼(−∞)⟩ . (17)

Choosing 𝑡1 > 𝑡𝑖 for every 1 < 𝑖 < 𝑛 is not a limitation, since any other choice produces

invariably the same result by immediate inspection.
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A.5 FINITE-TEMPERATURE PHYSICS

We are indebted to the physicist Matsubara (1955) for the smart observation that the

partition function is related to the time-evolution operator in the imaginary time.

𝑍 = Tr[exp[−𝛽𝐻 ]] = Tr[𝑈(−𝑖ℎ̄𝛽)] , (18)

with 𝑈(𝑡) = exp
[︁
− 𝑖

ℎ̄
𝐻𝑡

]︁
the Schrodinger evolution operator. Also, from statistical me-

chanics,

⟨𝒪⟩ = Tr[exp[−𝛽𝐻 ]𝒪]
Tr[exp[−𝛽𝐻 ]] = Tr[𝑈(−𝑖ℎ̄𝛽)𝒪]

Tr[𝑈(−𝑖ℎ̄𝛽)] . (19)

Such result is the analytic continuation of the Gell-man Low theorem, with the differ-

ence that an average on several eigenstates in the place of a single state. We live on the

surface, exploring the important results needed for carrying out the standard calculations

in many-body physics. This said the physics of finite temperature concerns the transfor-

mation of time such that 𝑖𝑡 → 𝜏 and its consequences. An important identity based on

the reasoning above is

𝑍

𝑍0
=

⟨
𝒯 exp

[︃
−

∫︁ 𝛽

0
𝑑𝜏𝐻𝐼(𝜏)

]︃⟩

0
=

Tr
[︁
exp[−𝛽𝐻0]𝒯 exp

[︁
− ∫︀ 𝛽

0 𝑑𝜏𝐻𝐼(𝜏)
]︁]︁

Tr[exp[−𝛽𝐻0]]
(20)

A.6 IMAGINARY-TIME GREEN’S FUNCTION

The definition of the Green’s function or propagator is

𝒢𝛼𝛼′(𝜏 − 𝜏 ′) = −⟨𝒯 Ψ𝛼(𝜏)Ψ†
𝛼′(𝜏 ′)⟩ = −

Tr
[︁
𝑒−𝛽𝐻𝒯 Ψ𝛼(𝜏)Ψ†

𝛼′(𝜏 ′)
]︁

Tr[𝑒−𝛽𝐻 ] . (21)

We will compute the Green’s function for a free-system of bosons or fermions (propator

for non-interacting fermions or bosons). For a free system of either bosons or fermions,

𝐻 =
∑︁

𝛼

𝜔𝛼 Ψ†
𝛼Ψ𝛼⏟  ⏞  
𝑛𝛼

(22)

with 𝜔𝛼 = 𝜖𝛼 (ℎ̄ = 1). Concerning bosons, 𝛼 ∈ {0, 1, ..., ∞}, for fermions, 𝛼 ∈ {0, 1}.

Thus,

𝑛𝛼 =
Tr

[︁
exp

[︁
− ∑︀

𝛽 𝜔𝛽𝑛𝛽

]︁
𝑛𝛼

]︁

Tr
[︁
exp

[︁
− ∑︀

𝛽 𝜔𝛽𝑛𝛽

]︁]︁ = 𝜕 log 𝑍

𝜕𝜔𝛼

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

[︂
exp[𝛽𝜔𝛼] − 1

]︂−1
boson

[︂
exp[𝛽𝜔𝛼] + 1

]︂−1
fermion

(23)
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The Heisenberg equation of motion leads to a particular time-evolution of the operators

in the Schrodinger picture

Ψ𝛼(𝜏) = 𝑒−𝜔𝛼𝜏 Ψ𝛼(0) (24)

Ψ†
𝛼(𝜏) = 𝑒𝜔𝛼𝜏 Ψ†

𝛼(0) (25)

With the operator in the Schrodinger picture as Ψ𝛼(0) ≡ Ψ𝛼, we write the time-ordering

𝒢(0)
𝛼𝛼′(𝜏 − 𝜏 ′) = − exp[−𝜔𝛼(𝜏 − 𝜏 ′)][𝜃(𝜏 − 𝜏 ′)⟨Ψ𝛼Ψ†

𝛼′⟩ + 𝜁𝜃(𝜏 ′ − 𝜏)⟨Ψ†
𝛼′Ψ𝛼⟩] (26)

with 𝜁 = 1 for boson and 𝜁 = −1 for fermion.

The off-diagonal average on the operator product Ψ†
𝛼′Ψ𝛼 vanishes for ‘good’ quantum

numbers 𝛼 (conserved quantities such as momentum in a translational invariant system).

Hence,

⟨Ψ†
𝛼Ψ𝛼′⟩ = 𝑛𝛼𝛿𝛼𝛼′ (27)

⟨Ψ𝛼Ψ†
𝛼′⟩ = 𝛿𝛼𝛼′ ± ⟨Ψ†

𝛼′Ψ𝛼⟩ = 𝛿𝛼′𝛼(1 + 𝜁𝑛𝛼) (28)

Then

𝒢(0)
𝛼′𝛼(𝜏 − 𝜏 ′) = −𝛿𝛼𝛼′ exp[−𝜔𝛼(𝜏 − 𝜏 ′)][𝜃(𝜏 − 𝜏 ′)(1 + 𝜁𝑛𝛼) + 𝜁𝜃(𝜏 ′ − 𝜏)𝑛𝛼] (29)

Defining the RHS term in 𝒢𝛼𝛼′ = 𝛿𝛼𝛼′𝒢𝛼(𝜏 − 𝜏 ′), we set 𝜏 ′ = 0, to obtain

𝒢(0)
𝛼 (𝜏) = −𝑒−𝜔𝛼𝜏 [𝜃(𝜏)(1 + 𝜁𝑛𝛼) + 𝜁𝜃(−𝜏)𝑛𝛼] (30)

with

𝑛𝛼(𝜁) ≡ 1
𝑒𝛽𝜔𝛼 − 𝜁

(31)

in which 𝑛𝛼(1) designate bosons and 𝑛𝛼(−1) designates fermions. As a mnemonic tool,

the argument relates to the symmetric and anti-symmetric commutation properties of

bosonic and fermionic particles, respectively.

It might be verified the property of the bosonic/fermionic Green’s function,

𝒢𝛼𝛼′(𝜏 + 𝛽) = 𝜁𝒢𝛼𝛼′(𝜏) (32)

such that each negative time is related to a positive time. Such property is valid also for

any non-free propagator, reason why we omitted the superscript index.
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This allows for a even/odd Fourier expansions over the ‘Matsubara frequencies’,

𝒢𝛼𝛼′(𝜏) = 1
𝛽

∑︁

𝑛

𝒢𝛼𝛼′(𝑖𝜔𝑛) exp[−𝑖𝜔𝑛𝜏 ] (33)

𝜔𝑛 = 𝜋𝑛

𝛽
with 𝑛 ∈ {odd - fermion; even - boson} (34)

We may obtain, therefore, the frequency modes of the Green’s function provided via

𝒢𝛼𝛼′(𝑖𝜔𝑛) =
∫︁ 𝛽

−𝛽
𝑑𝜏𝒢𝛼𝛼′(𝜏) exp[𝑖𝜔𝑛𝜏 ] (35)

For a well behave function we get the wrong result by a factor of two. What makes this

representation valid is the presence of the step-function selecting the positive or negative

times.

If 𝜏 > 0,

𝐺
(0)
𝛼𝛼′(𝑖𝜔𝑛) ≡ 𝒢𝛼𝛼′(𝑖𝜔𝑛)|𝜏<0 = −

∫︁ 𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑛𝜏−𝜔𝛼𝜏 𝜃(𝜏)(1 + 𝜁𝑛𝛼) =

= 1
𝑖𝜔𝑛 − 𝜔𝛼

≡ (36)

If 𝜏 < 0,

𝐺̃
(0)
𝛼𝛼′(𝑖𝜔𝑛) ≡ 𝒢𝛼𝛼′(𝑖𝜔𝑛)|𝜏<0 = −

∫︁ 0

−𝛽
𝑑𝜏𝑒𝑖𝜔𝑛𝜏−𝜔𝛼𝜏 𝜃(−𝜏)𝜁𝑛𝛼 =

= 1
𝑖𝜔𝑛 + 𝜔𝛼

≡ (37)

Hence, 𝐺(𝑖𝜔𝑛) denotes the free-particle propagator and 𝐺̃(𝑖𝜔𝑛) denotes the free-hole prop-

agator. Notice how their energy are related by a negative sign one to another, in agreement

with the hole concept.

We may always consider the zero temperature limit. Mathematically this can be

reached by an analytic continuation of the imaginary axis 𝑖𝜔. If we let 𝑖𝜔 → 𝑧 = 𝑖𝜔 + 𝜔0,

the effects of the pure zero temperature are those such that 𝜔 → 0 and 𝜔0 ̸= 0, and for

values of 𝜔 ̸= 0 and 𝜔0 ̸= 0 we approach an intermediate scenario, partly as if at zero

temperature and partly as if at higher temperatures.

In Feynman’s/Stueckelberg interpretation, the first propagator appearing in (30) moves

forwards in time and the second denotes a virtual process for which the particle moves

backwards in time with the same energy of the first propagating particle. The first term

denotes a ‘real’ process, whose contribution is progressively greater up to the point where

the temperature reaches zero. Feynman provided this as an alternative theory to the

particle-hole theory. In the equivalence between the theories, particles moving backwards

in time are equivalent to holes (or positrons, in high-energy physics) moving forward in

time.
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B.1 JUSTIFICATION OF NONZERO ANOMALOUS AVERAGES

To understand the expectation of nonzero ‘anomalous’ averages (⟨𝑐𝑐⟩,⟨𝑐†𝑐†⟩) the ‘weak

correlation principle’ is of use. This principle is known to hold from integrable models,

⟨𝒪1(𝑥1)𝒪2(𝑥2)⟩ → ⟨𝒪1(𝑥1)⟩⟨𝒪2(𝑥2)⟩ when |𝑟1 − 𝑟2| → ∞ (1)

or, most generally,

⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)𝒪′
1′(𝑥′

1)...𝒪′
𝑛′(𝑥′

𝑛)⟩ → ⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩⟨𝒪′
1(𝑥′

1)...𝒪′
𝑛(𝑥′

𝑛)⟩ (2)

when |𝑥1 + ... + 𝑥𝑛| − |𝑥′
1 + ... + 𝑥′

𝑛| → ∞

In particular, for a two-field average,

⟨𝑐†(𝑥1)𝑐†(𝑥2)𝑐(𝑥′
1)𝑐(𝑥′

2)⟩ → ⟨𝑐†(𝑥1)𝑐†(𝑥2)⟩⟨𝑐(𝑥′
2)𝑐(𝑥′

1)⟩ when |𝑅 − 𝑅′| → ∞ (3)

with 𝑅 denoting the center of mass. Hence, the Bogoliubov interaction term would vanish.

However, also the limit 𝑥1 → 𝑥2 and 𝑥′
1 → 𝑥′

2 would yield zero, and as a consequence,

the average of the Fermi-Landau liquid Hamiltonian -from which the Bogoliubov theory

departs- would be null.

B.2 GRASSMAN ALGEBRA

If the numbers 𝑐 and 𝑐* are Grassman numbers, they obey anti-commutation relations

amongst themselves and fermionic operators. The aim of this new algebra is to smoothly

change from all the results derived for the commuting bosonic operators to the anti-

commuting operators. As a consequence, 𝑐2 = 0 and 𝑐*2 = 0, implying that any function

on Grasmman numbers is truncated.

𝑓(𝑐, 𝑐) = 𝑎0 + 𝑐*𝑎1 + 𝑎*
1𝑐 + 𝑎12𝑐

*𝑐 , (4)

𝑎1 and 𝑎12 are the coefficients of the expansion. Also,

|𝑐⟩ = (1 + 𝑐†𝑐) |0⟩ = |0⟩ + |1⟩ 𝑐 . (5)

123

APPENDIX B – FOR THE CHAPTER 3



B.1 JUSTIFICATION OF NONZERO ANOMALOUS AVERAGES

To understand the expectation of nonzero ‘anomalous’ averages (⟨𝑐𝑐⟩,⟨𝑐†𝑐†⟩) the ‘weak
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⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)𝒪′
1′(𝑥′

1)...𝒪′
𝑛′(𝑥′

𝑛)⟩ → ⟨𝒪1(𝑥1)...𝒪𝑛(𝑥𝑛)⟩⟨𝒪′
1(𝑥′

1)...𝒪′
𝑛(𝑥′

𝑛)⟩ (2)

when |𝑥1 + ... + 𝑥𝑛| − |𝑥′
1 + ... + 𝑥′

𝑛| → ∞

In particular, for a two-field average,

⟨𝑐†(𝑥1)𝑐†(𝑥2)𝑐(𝑥′
1)𝑐(𝑥′

2)⟩ → ⟨𝑐†(𝑥1)𝑐†(𝑥2)⟩⟨𝑐(𝑥′
2)𝑐(𝑥′

1)⟩ when |𝑅 − 𝑅′| → ∞ (3)

with 𝑅 denoting the center of mass. Hence, the Bogoliubov interaction term would vanish.

However, also the limit 𝑥1 → 𝑥2 and 𝑥′
1 → 𝑥′

2 would yield zero, and as a consequence,

the average of the Fermi-Landau liquid Hamiltonian -from which the Bogoliubov theory

departs- would be null.

B.2 GRASSMAN ALGEBRA

If the numbers 𝑐 and 𝑐* are Grassman numbers, they obey anti-commutation relations

amongst themselves and fermionic operators. The aim of this new algebra is to smoothly

change from all the results derived for the commuting bosonic operators to the anti-

commuting operators. As a consequence, 𝑐2 = 0 and 𝑐*2 = 0, implying that any function

on Grasmman numbers is truncated.

𝑓(𝑐, 𝑐) = 𝑎0 + 𝑐*𝑎1 + 𝑎*
1𝑐 + 𝑎12𝑐

*𝑐 , (4)

𝑎1 and 𝑎12 are the coefficients of the expansion. Also,

|𝑐⟩ = (1 + 𝑐†𝑐) |0⟩ = |0⟩ + |1⟩ 𝑐 . (5)
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In the Grassman calculus,

𝜕𝑐𝑓 = −𝑎*
1 − 𝑎12𝑐

* , (6)

𝜕𝑐*𝑎 = 𝑎1 + 𝑎12𝑐 (7)

Finally, the integration is equivalent to the differentiation.
∫︁

𝑑𝑐 ≡ 𝜕𝑐 . (8)
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C.1 GREEN’S FUNCTION OF BILINEAR HAMILTONIANS

We consider the evolution of the Green’s function operator for the fermionic bilinear

Hamiltonian

𝐻 = Ψ†𝜀Ψ =
∑︁

𝛼𝛽

Ψ†
𝛼𝜀𝛼𝛽Ψ𝛽, (1)

{Ψ†, Ψ} = 1 or {Ψ𝛼, Ψ𝛽} = 𝛿𝛼𝛽 (2)

where 𝛼 and 𝛽 are each a set of indices and the sum may be continuous or discrete.

𝒢𝛼𝛽(𝜏1 − 𝜏2) = −⟨𝒯 Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩ =− ⟨Ψ𝛼(𝜏1)Ψ†

𝛽(𝜏2)⟩𝜃(𝜏1 − 𝜏2)

+ ⟨Ψ𝛽(𝜏2)†Ψ𝛼(𝜏1)⟩𝜃(𝜏2 − 𝜏1) (3)

Hence,

𝜕𝜏1𝒢𝛼𝛽(𝜏1 − 𝜏2) = −⟨Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩𝛿(𝜏1 − 𝜏2)− ⟨Ψ†

𝛽(𝜏2)Ψ𝛼(𝜏1)⟩𝛿(𝜏2 − 𝜏1) =

= −⟨𝒯 𝜕𝜏1Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩ (4)

We investigate the following term whose non-zero contribution is provided by the limit of

the first term for the Dirac-delta,

⟨Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩𝛿(𝜏1 − 𝜏2) = lim

𝜏1→𝜏2

Tr
[︁
𝑒−𝛽𝐻𝑒𝐻𝜏1Ψ𝛼𝑒−𝐻𝜏1𝑒−𝐻𝜏2Ψ†

𝛽𝑒𝐻𝜏2
]︁

Tr[𝑒−𝛽𝐻 ] 𝛿(𝜏1 − 𝜏2) =

= ⟨Ψ𝛼Ψ†
𝛽⟩𝛿(𝜏1 − 𝜏2) (5)

Hence, the two initial terms are rewritten

−⟨Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩𝛿(𝜏1 − 𝜏2)− ⟨Ψ†

𝛽(𝜏2)Ψ𝛼(𝜏1)⟩𝛿(𝜏1 − 𝜏2) = −⟨{Ψ𝛼, Ψ𝛽}⟩𝛿(𝜏1 − 𝜏2)

= 𝛿𝛼𝛽𝛿(𝜏1 − 𝜏2) (6)

As for the final term,

⟨𝒯 𝜕𝜏1Ψ𝛼(𝜏1)Ψ𝛽(𝜏2)⟩ = −⟨𝒯 [𝐻, Ψ𝛼(𝜏1)]Ψ𝛽(𝜏2)⟩ = 𝜀𝛼𝛾⟨𝒯 Ψ𝛾(𝜏1)Ψ†
𝛽(𝜏2)⟩ = 𝜀𝛼𝛾𝒢𝛾𝛽(𝑡1 − 𝑡2)

(7)
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C.1 GREEN’S FUNCTION OF BILINEAR HAMILTONIANS

We consider the evolution of the Green’s function operator for the fermionic bilinear

Hamiltonian

𝐻 = Ψ†𝜀Ψ =
∑︁

𝛼𝛽

Ψ†
𝛼𝜀𝛼𝛽Ψ𝛽, (1)

{Ψ†, Ψ} = 1 or {Ψ𝛼, Ψ𝛽} = 𝛿𝛼𝛽 (2)

where 𝛼 and 𝛽 are each a set of indices and the sum may be continuous or discrete.

𝒢𝛼𝛽(𝜏1 − 𝜏2) = −⟨𝒯 Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩ =− ⟨Ψ𝛼(𝜏1)Ψ†

𝛽(𝜏2)⟩𝜃(𝜏1 − 𝜏2)

+ ⟨Ψ𝛽(𝜏2)†Ψ𝛼(𝜏1)⟩𝜃(𝜏2 − 𝜏1) (3)

Hence,

𝜕𝜏1𝒢𝛼𝛽(𝜏1 − 𝜏2) = −⟨Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩𝛿(𝜏1 − 𝜏2)− ⟨Ψ†

𝛽(𝜏2)Ψ𝛼(𝜏1)⟩𝛿(𝜏2 − 𝜏1) =

= −⟨𝒯 𝜕𝜏1Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩ (4)

We investigate the following term whose non-zero contribution is provided by the limit of

the first term for the Dirac-delta,

⟨Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩𝛿(𝜏1 − 𝜏2) = lim

𝜏1→𝜏2

Tr
[︁
𝑒−𝛽𝐻𝑒𝐻𝜏1Ψ𝛼𝑒−𝐻𝜏1𝑒−𝐻𝜏2Ψ†

𝛽𝑒𝐻𝜏2
]︁

Tr[𝑒−𝛽𝐻 ] 𝛿(𝜏1 − 𝜏2) =

= ⟨Ψ𝛼Ψ†
𝛽⟩𝛿(𝜏1 − 𝜏2) (5)

Hence, the two initial terms are rewritten

−⟨Ψ𝛼(𝜏1)Ψ†
𝛽(𝜏2)⟩𝛿(𝜏1 − 𝜏2)− ⟨Ψ†

𝛽(𝜏2)Ψ𝛼(𝜏1)⟩𝛿(𝜏1 − 𝜏2) = −⟨{Ψ𝛼, Ψ𝛽}⟩𝛿(𝜏1 − 𝜏2)

= 𝛿𝛼𝛽𝛿(𝜏1 − 𝜏2) (6)

As for the final term,

⟨𝒯 𝜕𝜏1Ψ𝛼(𝜏1)Ψ𝛽(𝜏2)⟩ = −⟨𝒯 [𝐻, Ψ𝛼(𝜏1)]Ψ𝛽(𝜏2)⟩ = 𝜀𝛼𝛾⟨𝒯 Ψ𝛾(𝜏1)Ψ†
𝛽(𝜏2)⟩ = 𝜀𝛼𝛾𝒢𝛾𝛽(𝑡1 − 𝑡2)

(7)
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Therefore,

(𝜕𝜏1 + 𝜀𝛼𝛾)𝒢𝛼𝛽(𝜏1 − 𝜏2) = −𝛿𝛼𝛽𝛿(𝜏1 − 𝜏2) (8)

In matrix form,

(1𝜕𝜏 + 𝜀) · 𝒢(𝜏 − 𝜏 ′) = −1𝛿(𝜏 − 𝜏 ′) (9)

If we consider the time as an index, this is rewritten formally as

(𝜕𝜏 + 𝜀) · 𝒢 = −1 (10)

I.e,

𝒢 = −(𝜕𝜏 + 𝜀)−1 (11)

The proof of the result for bosons follows analogous footsteps, with the final result unal-

tered.

The bold-typing justify the absence of contraction. The bold typing is often only

absent when the contraction is fully carried out with respect to the indices, discrete or

continuous.

⟨𝜏 |𝒢 |𝜏 ′⟩ = 𝒢(𝜏 − 𝜏 ′) (12)

⟨𝜏 |𝜕𝜏 |𝜏 ′⟩ = 1𝛿(𝜏 − 𝜏 ′)𝜕𝜏 (13)

⟨𝛼|𝒢 |𝛽⟩ = 𝒢𝛼𝛽 (14)

⟨𝛼|𝜕𝜏 |𝛽⟩ = 𝛿𝛼𝛽𝜕𝜏 (15)

⟨𝜏, 𝛼|𝒢 |𝜏 ′, 𝛽⟩ = 𝒢𝛼𝛽(𝜏 − 𝜏 ′) (16)

⟨𝜏, 𝛼|𝜕𝜏 |𝜏 ′, 𝛽⟩ = 𝛿(𝜏 − 𝜏 ′)𝛿𝛼𝛽𝜕𝜏 (17)

C.2 PROOF OF RELATION OF SELF-ENERGY AND PARTITION FUNCTION

Since for fermions

𝒢(𝜏 − 𝜏 ′) = −(𝜕𝜏 + 𝜀)−1 (18)

and from the fermionic path integral (the interested reader is refereed to appendix C.5)

log[𝑍] = log det
[︁
(𝜕𝜏 + 𝜀)−1

]︁
= Tr log[−𝒢−1] (19)
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Therefore,

log[ 𝑍

𝑍0
] = Tr

[︃
log

(︂𝒢(0)

𝒢
)︂]︃

= Tr
[︂
log

(︂ 1
1 + Σ𝒢

)︂]︂
(20)

where in the last step we applied the Dyson series

𝒢 = 𝒢(0) + 𝒢(0)Σ𝒢 (21)

If we truncate the result to the first-order of the expansion in the self-energy,

log[ 𝑍

𝑍0
] ∼ Tr

[︂
log

(︂
1−Σ𝒢(0)

)︂]︂
+𝒪(Σ2) = −Tr

[︁
Σ𝒢(0)

]︁
+𝒪(Σ2) (22)

Often Σ is left not contracted with respect to time or frequency - the contraction of the

trace is only on the momenta space. By comparing it with the Hartree-Fock expansion,

log[ 𝑍

𝑍0
] = −𝑇

∑︁

𝑘

{︂∑︁

𝑘′
𝒢𝑘′ [(2𝑆 + 1)2𝑉 (0)− (2𝑆 + 1)𝑉eff(𝑘′ − 𝑘)]

}︂
𝒢(0)

𝑘 (23)

From which we identify

Σ𝑘 = −𝑇
∑︁

𝑘′
𝒢𝑘′ [−(2𝑆 + 1)2𝑉0 + (2𝑆 + 1)𝑉eff𝑘′−𝑘] (24)

By contracting it with respect to the frequency,

Σ𝑘(𝑖𝜔) = −𝑇
∑︁

𝑖𝜈

∑︁

𝑘′
𝒢𝑘′(𝑖𝜔)[−(2𝑆 + 1)2𝑉0(𝑖𝜈)𝛿𝑖𝜔,0𝛿𝑖𝜈,0 + (2𝑆 + 1)𝑉eff(𝑘′−𝑘)(𝑖𝜈)] (25)

C.3 MEAN-FIELD THEORY

The mean-field-theory of concerns the killing of quadratic or higher-order terms in the

deviation from the mean- field. The Fermi-liquid theory is a mean-field of the four-point

interaction. Hence,

𝒪𝑖𝒪𝑗 → 𝒪′
𝑖𝒪′

𝑗 = 𝒪𝑖𝒪𝑗 + Δ𝑖𝑗 + 𝑂(Δ2
𝑖𝑗) , Δ𝑖𝑗 = ⟨𝒪𝑖𝒪𝑗⟩ −𝒪𝑖𝒪𝑗 (26)

It follows

𝒪1𝒪2𝒪3𝒪4 → 𝒪1𝒪2Δ34 + 𝒪3𝒪4Δ12 + ⟨𝒪1𝒪2⟩⟨𝒪3𝒪4⟩ (27)
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C.4 COHERENT STATE AND IDENTITIES

Coherent states are eigenstates of the creation/annihilation operators. The coherent

states are not orthogonal. Despite this, they obey simple properties

⟨𝐶1|𝐶2⟩ = 𝑒𝐶*
1 𝐶2 (28)

⟨𝐶1| : 𝒪[𝐶†, 𝐶] : |𝐶2⟩ = 𝒪[𝐶*
1 , 𝐶2]𝑒𝐶*

1 𝐶2 (29)

The coherent states are an ‘overcomplete’ basis. For either bosonic (denoted |𝑏⟩) or

fermionic (denoted |𝑐⟩) coherent states, adding up to unity obeys different measurements.

1̂ =
∫︁ 𝑑𝑏*𝑑𝑏

2𝜋𝑖
𝑒−𝑏*𝑏 |𝑏⟩ ⟨𝑏*| , bosonic identity (30)

1̂ =
∫︁

𝑑𝑐*𝑑𝑐𝑒−𝑐*𝑐 |𝑐⟩ ⟨𝑐*| , fermionic identity (31)

From this, it is possible to infer the property

Tr[𝒪] =
∫︁ 𝑑𝑏*𝑑𝑏

2𝜋𝑖
𝑒−𝑏*𝑏 ⟨𝑏*| 𝒪 |𝑏⟩ , bosonic identity (32)

Tr[𝒪] =
∫︁

𝑑𝑐*𝑑𝑐𝑒−𝑐*𝑐 ⟨−𝑐*| 𝒪 |𝑐⟩ , fermionic identity (33)

C.5 GAUSSIAN INTEGRALS

Bosonic integral

The bosonic Gaussian integral of interest is of the form

𝑍 ≡
∫︁ ∏︁

𝑗

𝑑𝑏*
𝑗𝑑𝑏𝑗 exp

[︁
−𝑏†𝜖𝑏

]︁
= 1

det 𝜖
(34)

and the generalization to the source case provided via

𝑍𝑠 ≡
∫︁ ∏︁

𝑗

𝑑𝑏*
𝑗𝑑𝑏𝑗 exp

[︁
−𝑏†𝜖𝑏− 𝑗† · 𝑏− 𝑏† · 𝑗

]︁
= 1

det 𝜖
exp

[︁
𝑗†𝜖𝑗

]︁
(35)

Considering 34, the introduction of the current term is obtained through the shift

𝑏→ 𝑏− 𝜖−1𝑗 (36)

Since,
∫︁
𝒟[𝑏*𝑇 , 𝑏] exp

[︁
−𝑏*𝑇 𝜖𝑏 + 𝑏*𝑇 𝑗 + 𝑗*𝑇 𝑏− 𝑗*𝑇 𝜖−1𝑗

]︁
= 1

det 𝜖
(37)
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The measure in the integral is not changed. Therefore,

exp
[︁
−𝑗*𝑇 𝜖−1𝑗

]︁ ∫︁
𝒟[𝑏*𝑇 , 𝑏] exp

[︁
−𝑏*𝑇 𝜖𝑏 + 𝑏*𝑇 𝑗 + 𝑗*𝑇 𝑏

]︁
= 1

det 𝜖
(38)

Finally,

𝑍𝑠 =
∫︁
𝒟[𝑏*𝑇 , 𝑏] exp

[︁
−𝑏*𝑇 𝜖𝑏 + 𝑏*𝑇 𝑗 + 𝑗*𝑇 𝑏

]︁
=

exp
[︁
𝑗*𝑇 𝜖−1𝑗

]︁

det 𝜖
(39)

From 11, it follows the identity

𝑍𝑠 =
∫︁
𝒟[𝑏† · 𝑏] exp

[︃
−
∫︁ 𝛽

0
𝑑𝜏 [𝑏*𝑇 (𝜕𝜏 + 𝜀)𝑏− 𝑗*(𝜏)𝑏(𝜏)− 𝑏*(𝜏)𝑗(𝜏)]

]︃
=

=
exp

[︁
− ∫︀ 𝛽

0 𝑑𝜏𝑑𝜏 ′𝑗*(𝜏)𝐺(𝜏 − 𝜏 ′)𝑗(𝜏 ′)
]︁

det[𝜕𝜏 + 𝜀]

(40)

The usefulness of this expression is that it allows for obtaining all of correlation in arbitrary

order. It is also an effectively easier path to the proof of the Wick’s theorem.

Proof

We wish to prove the relevant Gaussian identity 34.

𝑏 = 𝑈𝑑 (41)

𝑏† = 𝑑†𝑈 † (42)

in which the bilinear form is diagonal,

𝑏†𝜖𝑏 = 𝑑†𝐷𝑑 =
∑︁

𝛼

𝑑*
𝛼𝐷𝛼𝑑𝛼, 𝐷 ≡ 𝑈 †𝜖𝑈 (43)

The change in the integral measure is the identity, due to the Jacobian of the transfor-

mation 41,42,

det

⎛
⎜⎜⎝

𝑈 † 0

0 𝑈

⎞
⎟⎟⎠ = 1 (44)

Therefore, in the novel basis

𝑍 =
∫︁ ∏︁

𝛼

𝑑𝑑*
𝛼𝑑𝑑𝛼

2𝜋𝑖
exp[−𝐷𝛼𝑑*

𝛼𝑑𝛼] (45)
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Changing from the characteristic coordinates (𝑑𝛼, 𝑑*
𝛼) to the canonical geometric coordi-

nates, the Jacobian may be readily checked to be 2𝑖, thus,

𝑍 =
∫︁ ∏︁

𝛼

𝑑𝑑𝛼,𝑥𝑑𝑑𝛼,𝑦

𝜋
exp

[︁
−𝐷𝛼(𝑑2

𝛼,𝑥 + 𝑑2
𝛼,𝑦)

]︁
= 1

𝜋

∫︁ 2𝜋

0
𝑑𝜑
∫︁ ∞

0

∏︁

𝑑𝑟𝛼

𝑑𝑟𝛼 exp
[︁
−𝐷𝛼𝑟2

𝛼

]︁

=
∏︁

𝛼

1
𝐷𝛼

= 1
det[𝐷] (46)

The result is proved due to the determinant invariance by basis modification.

Fermionic Gaussian integral

The relevant fermionic Gaussian integral is of the form

𝑍 ≡
∫︁ ∏︁

𝑗

𝑑𝑐*
𝑗𝑑𝑐𝑗 exp

[︁
−𝑐†𝜖𝑐

]︁
= det 𝜖 (47)

Considering this to hold, the generalization to the source case is provided via

𝑍𝑠 ≡
∫︁ ∏︁

𝑗

𝑑𝑐*
𝑗𝑑𝑐𝑗 exp

[︁
−𝑐†𝜖𝑐− 𝑗† · 𝑐− 𝑐† · 𝑗

]︁
= det 𝜖 exp

[︁
𝑗†𝜖𝑗

]︁
(48)

by a transformation analogue to 36. Assuming 11 to hold,

𝑍𝑠 =
∫︁
𝒟[𝑐† · 𝑐] exp

[︃
−
∫︁ 𝛽

0
𝑑𝜏 [𝑐*𝑇 (𝜕𝜏 + 𝜀)𝑐− 𝑗*(𝜏)𝑐(𝜏)− 𝑐*(𝜏)𝑗(𝜏)]

]︃
=

= exp
[︃
−
∫︁ 𝛽

0
𝑑𝜏𝑑𝜏 ′𝑗*(𝜏)𝐺(𝜏 − 𝜏 ′)𝑗(𝜏 ′)

]︃
det[𝜕𝜏 + 𝜀]

(49)

Proof

We wish to prove the basic Gaussian integral to Fermions 47

𝑍 ≡
∫︁

𝑑𝑐† · 𝑑𝑐 exp
[︁
−𝑐† · 𝜖 · 𝑐

]︁
= det[𝜖] (50)

We diagonalize the matrix with a unitary transformation, as in the derivation of the

bosonic path integral.

𝑑 = 𝑈𝑐 (51)

𝑑† = 𝑐†𝑈 † (52)
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with 𝑈 consisting of bosonic numbers (‘normal’ numbers). There is no change in the

integral measurement, as
∫︁

𝑑𝑐† · 𝑑𝑐 = 𝜕𝑐†𝜕𝑐 = 𝜕𝑑†𝜕𝑑 [𝜕𝑑†

𝜕𝑐
+ 𝜕𝑑†

𝜕𝑐† ] · [𝜕𝑑

𝜕𝑐
+ 𝜕𝑑

𝜕𝑐† ]
⏟  ⏞  

𝑈†𝑈

= 𝜕𝑑′𝜕𝑑 =
∫︁

𝑑𝑑† · 𝑑𝑑 (53)

Therefore,

𝑍 =
∫︁ ∏︁

𝛼

𝑑𝑑*
𝛼𝑑𝑑𝛼 exp[−𝐷𝛼𝑑*

𝛼𝑑𝛼] (54)

Applying the rules of the Grassman algebra (Appendix B.2),

𝑍 =
∏︁

𝛼

𝜕𝑑𝑑*
𝛼
𝜕𝑑𝑑𝛼(1−𝐷𝛼𝑑*

𝛼𝑑𝛼) =
∏︁

𝛼

𝐷𝛼 = det[𝐷] (55)

which proves the claim.

C.6 FUNDAMENTALS OF PATH INTEGRALS IN FINITE-TEMPERATURE

Feynman formulation of operator quantum mechanics states

⟨𝑓 | exp
[︂
−𝑖

𝐻𝑡

ℎ̄

]︂
|𝑖⟩ =

∑︁

paths
exp[𝑖𝑆path,𝑖→𝑗/ℎ̄]

𝑆path =
∫︁ 𝑡

0
𝑑𝑡′(𝑝𝑞′ −𝐻[𝑝, 𝑞]) (56)

The path integral provided by Feynman connects the classical functional with quantum

mechanical amplitudes. In the limit of ℎ̄ → 0, it reduces to the Hamilton principle. By

considering the above at 𝑡′ → 𝜏(𝑡′) = 𝑖𝑡′
ℎ̄

,

⟨𝑓 | exp[−𝐻𝜏(𝑡)] |𝑖⟩ =
∑︁

paths
exp[−𝑆path,𝑖→𝑗]

𝑆path =
∫︁ 𝜏(𝑡)

0
𝑑𝜏(𝑝𝑞′ 𝑑𝑡′

𝑑𝜏
−𝐻[𝑝, 𝑞]) (57)

Since the partition function is provided through

𝑍 = Tr[exp[−𝐻𝛽]] =
∑︁

𝛼

⟨𝛼| exp[−𝐻𝛽] |𝛼⟩ (58)

The Feynman techniques are extended to be applicable to statistical mechanics (identify-

ing 𝜏(𝑡) = 𝛽). The initial and final states are identical, as the time evolution of bosonic

states is periodic (Matsubara bosonic frequency). In this way, |𝛼(0)⟩ = |𝛼(𝛽)⟩, and it

follows

𝑍 = Tr[exp[−𝛽𝐻]] =
∑︁

𝛼

∑︁

per.paths,𝛼→𝛼

exp[−𝑆] =
∑︁

per. paths
exp[−𝑆]

𝑆 =
∫︁ 𝛽

0
𝑑𝜏(− 𝑖

ℎ̄
𝑝𝜕𝜏 𝑞 + 𝐻[𝑝, 𝑞]) (59)
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Bosons

From the identity for the bosonic trace 32,

𝑍 = Tr
[︁
𝑒−𝛽𝐻

]︁
=
∫︁ 𝑑𝑏*

0𝑑𝑏0

2𝜋𝑖
𝑒−𝑏*

0𝑏0 ⟨𝑏*
0| 𝑒−𝛽𝐻 |𝑏0⟩ (60)

By computing the amplitude due to any set of 𝑛 − 1 intermediate coherent states in

between the initial |𝑏0⟩ and final states |𝑏𝑛⟩ = |𝑏0⟩ within 𝑛 time slices Δ𝜏𝑗 = 𝜏𝑗+1 − 𝜏𝑗 (
∑︀𝑛−1

𝑗=0 Δ𝜏𝑗 = 𝛽),

𝑍 = Tr
[︁
𝑒−𝛽𝐻

]︁
=
∫︁ 𝑑𝑏*

0𝑑𝑏0

2𝜋𝑖
𝑒−𝑏*

0𝑏0 ⟨𝑏0| 𝑒−Δ𝜏𝑛−1𝐻 1̂𝑁−1...1̂𝑗𝑒
−Δ𝜏𝑗𝐻 1̂𝑗−1...1̂1𝑒

−Δ𝜏0𝐻 |𝑏0⟩ (61)

With

1̂𝑗 =
∫︁ 𝑑𝑏*

𝑗𝑑𝑏𝑗

2𝜋𝑖
𝑒−𝑏*

𝑗 𝑏𝑗 |𝑏𝑗⟩ ⟨𝑏𝑗| (62)

Therefore,

𝑍 =
∫︁ 𝑁−1∏︁

𝑗=0

𝑑𝑏*
𝑗𝑑𝑏𝑗

2𝜋𝑖
exp

[︁
−𝑏*

𝑗𝑏𝑗

]︁
⟨𝑏𝑗+1| 𝑒−Δ𝜏𝑗𝐻[𝑏̂†,𝑏̂] |𝑏𝑗⟩ (63)

We would like to apply the identity 29, however it does only works if the operator is

normal ordered version. However, at first order in Δ𝜏𝑖, the operator is immediately

normal-ordered. Therefore,

⟨𝑏𝑗+1| 𝑒−Δ𝜏𝑗𝐻[𝑏̂†,𝑏̂] |𝑏𝑗⟩ = exp
[︁
𝑏*

𝑗+1𝑏𝑗 −Δ𝜏𝐻[𝑏*
𝑗+1, 𝑏𝑗]

]︁
(64)

𝑍 =
∫︁ 𝑁−1∏︁

𝑗=0

𝑑𝑏*
𝑗𝑑𝑏𝑗

2𝜋𝑖
exp

[︁
𝑏*

𝑗(𝑏𝑗+1 − 𝑏𝑗) + Δ𝜏𝑗𝐻[𝑏*
𝑗+1, 𝑏𝑗]

]︁
+ 𝑂[𝑛(Δ𝜏)2] (65)

A useful shorthand definition is often employed

𝒟𝑁 [𝑏† · 𝑏] =
𝑁−1∏︁

𝑗=0

𝑑𝑏*
𝑗𝑑𝑏𝑗

2𝜋𝑖
= 𝑑𝑏† · 𝑑𝑏

2𝜋𝑖
(66)

We have defined 𝑏 as a column matrix whose entries are 𝑏 evaluated at distinct discrete

times. We identify

𝑍 =
∫︁
𝒟𝑁 [𝑏† · 𝑏] exp[−𝑆𝑁 ]

𝑆𝑁 =
𝑁−1∑︁

𝑗=0
Δ𝜏(𝑏*

𝑗

(𝑏𝑗+1 − 𝑏𝑗)
Δ𝜏𝑗

+ 𝐻[𝑏*
𝑗+1, 𝑏𝑗]) (67)
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In the continuous limit, when the number of time-slices tends to infinity, defining lim𝑛→∞𝒟𝑛[𝑏†·
𝑏] ≡ 𝒟[𝑏† · 𝑏],

𝑍 =
∫︁
𝒟[𝑏† · 𝑏] exp[−𝑆] (68)

𝑆 =
∫︁ 𝛽

0
𝑑𝜏(𝑏*𝜕𝜏 𝑏 + 𝐻[𝑏*, 𝑏]) (69)

The term 𝑂(𝑛(Δ𝜏)2)→ 0 when 𝑛→∞, since Δ𝜏 ∼ 1
𝑛
.

Consider the bilinear hamiltonian with bosonic operators

𝐻 = 𝐻[𝑏̂†
𝛼, 𝑏̂𝛽] (70)

with

𝐻 =
∑︁

𝛼𝛽

𝑏̂†
𝛼𝜀𝛼𝛽 𝑏̂𝛽 ≡ 𝑏̂† · 𝜀 · 𝑏̂ (71)

Applying the same procedure with

1̂𝑗 =
∫︁ ∏︁

𝛼

𝑑𝑏*
𝑗𝛼𝑑𝑏𝑗𝛼

2𝜋𝑖
𝑒−𝑏*

𝑗𝛼𝑏𝑗𝛼
∏︁

𝛽

𝑑𝑏*
𝑗𝛽𝑑𝑏𝑗𝛽

2𝜋𝑖
𝑒−𝑏*

𝑗𝛽𝑏𝑗𝛽 |𝑏𝑗𝛼, 𝑏𝑗𝛽⟩ ⟨𝑏𝑗𝛼, 𝑏𝑗𝛽| (72)

We must evaluate

⟨𝑏𝑗+1,𝛼, 𝑏𝑗+1,𝛽| 𝑒−Δ𝜏𝑗𝐻[𝑏̂†
𝛼,𝑏̂𝛽 ] |𝑏𝑗,𝛼, 𝑏𝑗,𝛽⟩ = exp

[︁
𝑏*

𝑗+1,𝛼𝑏𝑗,𝛼 + 𝑏𝑗+1,𝛽𝑏𝑗,𝛽 −Δ𝜏𝑗𝑏
*
𝑗+1,𝛼𝜀𝛼𝛽𝑏𝑗,𝛽

]︁
(73)

Therefore,

𝑍 =
∫︁ 𝑁−1∏︁

𝑗=0

∏︁

𝛼𝛽

𝑑𝑏*
𝑗𝛼𝑑𝑏𝑗𝛼

2𝜋𝑖

𝑑𝑏*
𝑗𝛽𝑑𝑏𝑗𝛽

2𝜋𝑖

exp
[︃
−Δ𝜏𝑗{𝑏*

𝑗

(𝑏𝑗+1,𝛽 − 𝑏𝑗,𝛽)
Δ𝜏𝑗

+ 𝑏*
𝑗,𝛽

(𝑏𝑗+1,𝛽 − 𝑏𝑗,𝛽)
Δ𝜏𝑗

+ 𝑏*
𝑗+1,𝛼𝜀𝛼,𝛽𝑏𝑗,𝛽}

]︃
(74)

Equivalently,

𝑍 =
∫︁
𝒟[𝑏†, 𝑏] exp

⎡
⎣−{

∑︁

𝑗,𝛼

Δ𝜏𝑗𝑏
*
𝑗,𝛼𝜕𝜏𝑗

𝑏𝑗,𝛼 +
∑︁

𝑗,𝛽

Δ𝜏𝑗𝑏
*
𝑗,𝛽𝜕𝜏𝑗

𝑏𝑗,𝛽 +
∑︁

𝑗,𝛼,𝛽

Δ𝜏𝑗𝑏
*
𝛼,𝑗𝜀𝛼𝛽𝑏𝑗,𝛽}

⎤
⎦ (75)

This might be rewritten to include sums in time indices,

𝑍 =
∫︁
𝒟[𝑏*𝑇 , 𝑏] exp

⎡
⎣−

∑︁

𝑗𝑗′,𝛼𝛽

𝛿𝑗𝑗′Δ𝜏𝑗𝑏
*
𝛼,𝑗𝜖𝛼𝛽;𝑗𝑗′𝑏𝛽,𝑗′

⎤
⎦ (76)

In the continuous limit, since 𝛿𝑗𝑗′ = Δ𝜏𝑗′𝛿(𝜏𝑗′ − 𝜏𝑗), assuming the variables as continuous,

𝑍 =
∫︁
𝒟[𝑏† · 𝑏] exp

[︂
−
∫︁

𝑑𝜏 ′
∫︁

𝑑𝜏𝑏𝛼(𝜏)𝜖𝛼𝛽(𝜏 − 𝜏 ′)𝛿(𝜏 ′ − 𝜏)𝑏𝛽(𝜏 ′)
]︂

(77)

𝜖𝛼𝛽(𝜏, 𝜏 ′) = (𝜕𝜏 + 𝜀𝛼𝛽)𝛿(𝜏 − 𝜏 ′) (78)
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We notice that in the general basis consisting of both particle index and time,
∫︁ ∫︁

𝑑𝜏 ′𝑑𝜏𝑏𝛼(𝜏)𝜖(𝜏 − 𝜏 ′)𝛿(𝜏 ′ − 𝜏)𝑏𝛽(𝜏 ′) = 𝑏† · 𝜖 · 𝑏 (79)

In which we identify the identity to hold

𝜖 = (𝜕𝜏 + 𝜀) = −𝒢−1 (80)

the last equality resulting from 11. This justifies the bosonic Gaussian integral of relevance

to be that mentioned in C.6.

Time domain

We consider the multidimensional Gaussian identity
∫︁
𝒟[𝑏† · 𝑏] exp

[︁
−𝑏† · 𝜖 · 𝑏

]︁
= 1

det 𝜖
(81)

with 𝜀 a bilinear form.

Thence, we may rewrite 77,

𝑍 =
∫︁
𝒟[𝑏† · 𝑏] exp

[︁
−𝑏*𝑇 (𝜕𝜏 + 𝜀)𝑏

]︁
= 1

det[𝜕𝜏 + 𝜀] = − det
[︁
𝒢−1

]︁
(82)

Evaluation on the frequency domain

Contracting the discrete and continuous indices in the bilinear form,

𝑍 =
∫︁
𝒟[𝑏† · 𝑏] exp

⎡
⎢⎢⎣−

∫︁
𝑑𝜏
(︂

𝑏*
𝛼 𝑏*

𝛽

)︂⎧⎨
⎩

⎛
⎜⎜⎝

𝜕𝜏 0

0 𝜕𝜏

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

𝜀11 𝜀12

𝜀21 𝜀22

⎞
⎟⎟⎠

⎫
⎬
⎭

⎛
⎜⎜⎝

𝑏𝛼

𝑏𝛽

⎞
⎟⎟⎠

⎤
⎥⎥⎦ (83)

It is often convenient to expand in frequency modes.

𝑏𝛾 = 1
𝛽1/2

∑︁

𝑛

𝑏𝛾(𝑖𝜈𝑛)𝑒−𝑖𝜔𝑛𝜏 with 𝜔𝑛 = 2𝜋𝑛/𝛽 (84)

Then,

𝑆 =
∑︁

𝛾1𝛾2𝑙𝑛

𝑏*
𝛾1(𝑖𝜔𝑙)𝑏𝛾2(𝑖𝜔𝑛) 1

𝛽

∫︁ 𝛽

0
𝑑𝜏𝑒𝑖𝜔𝑙𝜏 (𝜕𝜏 + 𝜀𝛾1𝛾2)𝑒−𝑖𝜔𝑛𝜏 (85)

Since

1
𝛽

∫︁ 𝛽

0
𝑒𝑖(𝜔𝑙−𝜔𝑛)𝜏 = 𝛿𝑛𝑙 (86)
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Then,

𝑆 =
∑︁

𝛾1𝛾2𝑛

𝑏*
𝛾1(𝑖𝜔𝑛)(−𝑖𝜔𝑛𝛿𝛾1𝛾2 + 𝜀𝛾1𝛾2)𝑏𝛾2(𝑖𝜔𝑛) (87)

This might be seen as

𝑆 =
∑︁

𝛾1𝛾2𝑛

𝑏*
𝛾1(𝑖𝜔𝑛)(−𝑖𝜔𝑛𝛿𝛾1𝛾2 + 𝜀𝛾1𝛾2)𝑏𝛾2(𝑖𝜔𝑛) =

∑︁

𝑛

𝑏*
𝑛

𝑇 · 𝜖𝑛 · 𝑏𝑛 (88)

where we define the vector 𝑏 for which the entries are sequenced by the particle index

alone in this case. Then,

𝑍 =
∫︁ ∏︁

𝑛

𝒟[𝑏*
𝑛

𝑇 , 𝑏𝑛] exp
[︁
−𝑏*

𝑛
𝑇 𝜖𝑛𝑏𝑛

]︁
=
∏︁

𝑛

1
det 𝜖𝑛

(89)

Also,

𝑍 =
∏︁

𝑛

1
det[−𝑖𝜔𝑛1 + 𝜀] =

∏︁

𝑛,𝑗

1
det[−𝑖𝜔𝑛 + 𝜀𝑗]

(90)

The free energy is expressed as

𝐹 = −𝛽 ln 𝑍 = 𝛽 ln
(︃∏︁

𝑛

det[−𝑖𝜔𝑛1 + 𝜀]
)︃

= 𝛽
∑︁

𝑛

Tr[ln(𝜀− 𝑖𝜔𝑛)] = 𝛽
∑︁

𝑛𝑗

ln(𝜀𝑗 − 𝑖𝜔𝑛) (91)

since

det[𝒪] = Tr[ln[𝒪]] (92)

From our study of the free bosonic Green’s function in the frequency domain.

𝒢𝛼𝛼′(𝜔𝑛) = 𝛿𝛼𝛼′

𝑖𝜔𝑛 − 𝜀𝛼

(93)

By hiding the contraction in the particle-index basis,

𝒢(𝜔𝑛) = 1
𝑖𝜔𝑛 − 𝜀

(94)

By promoting this to a more general operator on both frequency and particle-index,

𝒢 = 1
𝑖Ω− 𝜀

(95)

⟨𝑛′|Ω |𝑛⟩ = 𝜔𝑛𝛿𝑛𝑛′ (96)

Therefore,

𝐹 = 𝛽 ln
(︁
det

[︁
−𝒢−1

]︁)︁
= 𝛽 Tr ln[−𝒢−1] (97)

By comparing to 80, the correspondence between the time-dependent and the frequency-

dependent operators is provided.

𝑖Ω←→ 𝜕𝜏 (98)
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Fermions

The steps in developing the fermionic path integral are about the same of the bosonic

case. For simplicity, yet as a representative illustration, we consider the Hamiltonian

comprising a single fermion,

𝐻 = 𝜀𝑐†𝑐 (99)

Applying the identity for the trace 33,

𝑍 = Tr[exp[−𝛽𝐻]] = −
∫︁

𝑑𝑐*
𝑁𝑑𝑐0 exp[𝑐*

𝑁𝑐0] ⟨𝑐𝑛| exp[−𝛽𝐻] |𝑐0⟩ (100)

To take a faster route we divide the exponential in 𝑛 identical time-slices,

exp[−𝛽𝐻] = (exp[−Δ𝜏𝐻])𝑁 , 𝛽 = 𝑛Δ𝜏 (101)

As before, in between time-slices we introduce the completeness relation
∫︁

𝑑𝑐*
𝑗𝑑𝑐𝑗

⃒⃒
⃒𝑐𝑗

⟩⟨
𝑐*

𝑗

⃒⃒
⃒ exp

[︁
−𝑐*

𝑗𝑐𝑗

]︁
= 1 (102)

Hence,

𝑍 = −
∫︁

𝑑𝑐*
𝑛𝑑𝑐0 exp[𝑐*

𝑛𝑐0]
𝑛−1∏︁

𝑗=1
𝑑𝑐*

𝑗𝑑𝑐𝑗 exp
[︁
−𝑐*

𝑗𝑐𝑗

]︁ 𝑛∏︁

𝑗=1

⟨
𝑐*

𝑗

⃒⃒
⃒ exp[−𝐻Δ𝜏 ] |𝑐𝑗−1⟩ (103)

By using the antiperiodic boundary condition to fermions,

𝑐(𝜏 + 𝛽) = −𝑐(𝜏) , 𝑐*(𝜏 + 𝛽) = −𝑐(𝜏) , (104)

it follows the identification 𝑐𝑛 = −𝑐0, from which the last may be rewritten as the product

of 𝑛 terms,

𝑍 =
∫︁ 𝑛∏︁

𝑗=1
𝑑𝑐*

𝑗𝑑𝑐𝑗 exp
[︁
−𝑐*

𝑗𝑐𝑗

]︁
⟨𝑐𝑗| exp[−𝐻Δ𝜏 ] |𝑐𝑗−1⟩ (105)

Hence, from 29, at first-order in Δ𝜏 , the operator is identical to its normal-ordered form.
⟨
𝑐*

𝑗

⃒⃒
⃒ exp[−𝐻Δ𝜏 ] |𝑐𝑗−1⟩ = exp

[︁
𝑐*

𝑗𝑐
*
𝑗−1

]︁
exp

[︁
−𝐻[𝑐*

𝑗𝑐𝑗−1]Δ𝜏
]︁

+𝒪(Δ𝜏 2) (106)

Hence,

𝑍𝑛 =
∫︁ 𝑛∏︁

𝑗=1
𝑑𝑐*

𝑗𝑑𝑐𝑗 exp[−𝑆] (107)

𝑆 =
𝑛∑︁

𝑗=1
[𝑐*

𝑗

(𝑐𝑗 − 𝑐𝑗−1)
Δ𝜏

+ 𝜀𝑐*
𝑗𝑐𝑗−1]Δ𝜏 (108)
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The continuous limit is obtained in the limit 𝑛→∞, and considering 𝑐 to be a vector in

which the components correspond each to an specific time,

𝑍 =
∫︁

𝑑𝑐* · 𝑑𝑐 exp[−𝑆] (109)

𝑆 =
∫︁ 𝛽

0
𝑑𝜏 [𝑐*𝜖𝑐] = 𝑐†𝜖𝑐 (110)

𝜖 = −(𝜕𝜏 + 𝜀)−1 = 𝒢−1 (111)

The last equality results from the comparison to the general result (11) in C.2.

C.7 SOME PROOFS INVOLVING FOURIER SERIES

(a)

We consider the Kronecker delta-relation,

𝛿𝑘,𝑘′ ≡ 1
𝑉

∫︁
𝑑𝑥 exp[𝑖(𝑘 + 𝑘′) · 𝑥] (112)

and the the Fourier expansion,

𝑐𝑥 = 1√
𝑉

∑︁

𝑘

𝑐𝑘 exp[𝑖𝑘 · 𝑥] (113)

Proceeding, we want to find uniform Δ, i.e, such that Δ =
∫︀

Δ(𝑥)𝑑𝑥

𝑉
, with 𝑉 the volume,

hold. Considering the expansion in the momenta,

Δ = −𝑔
∑︁

𝑘𝑘′

∫︁
𝑑𝑥⟨𝑐↓𝑘𝑐↑𝑘′⟩ 1

𝑉 2 exp[𝑖(𝑘 + 𝑘′) · 𝑥] (114)

Integrating in 𝑥 and making continuum the space of momenta

Δ = −𝑔
∫︁

𝑉 𝑑𝑘𝑉 𝑑𝑘′
∫︁

𝑑𝑥⟨𝑐↓𝑘𝑐↑𝑘′⟩ 1
𝑉

𝛿𝑘+𝑘′,0 (115)

Finally, since lim𝑉 →∞ 𝑉 𝛿𝑘+𝑘′,0 = 𝛿(𝑘 + 𝑘′), integrating in 𝑘′ and returning to the discrete

space,

Δ = −𝑔
∫︁

𝑑𝑘⟨𝑐↓𝑘𝑐↑−𝑘⟩ = − 𝑔

𝑉

∑︁

𝑘

⟨𝑐↓𝑘𝑐↑−𝑘⟩ (116)
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(b)

Another proof we carry out is to consider

𝒢(𝑥, 𝜏, 𝑥′, 𝜏 ′) = −𝒯 ⟨Ψ𝑥(𝜏)Ψ†
𝑥′(𝜏 ′)⟩ = −

∑︁

𝑘𝑘′

∝𝛿𝑘,𝑘′
⏞  ⏟  
⟨Ψ𝑘(𝜏)Ψ†

𝑘′(𝜏 ′)⟩ exp[𝑖𝑘′𝑥′ − 𝑘𝑥]
𝑉

=

= −
∑︁

𝑘

⟨Ψ𝑘(𝜏)Ψ†
𝑘(𝜏 ′)⟩exp[𝑖𝑘(𝑥− 𝑥′)]

𝑉
= −

∫︁
𝑑𝑘⟨Ψ𝑘(𝜏)Ψ†

𝑘(𝜏 ′)⟩ exp[𝑖𝑘 · (𝑥− 𝑥′)]

where we considered that the operators defining the Green’s function are quasi-operators

(they commute with the Hamiltonian).

C.8 ON THE ELASTIC DEFORMATION THEORY.

Consider

Δ𝑉 (𝑥) = Φ(𝑥) ·Δ𝑆 , (117)

with Δ𝑆 understood as a small oriented area. This defines the elastic displacement Φ.

The only component of the displacement relevant for changing the volume is that carried

out parallel (or anti-parallel) to the vector of the oriented surface. It follows

Φ(𝑥) = lim
ℎ→0

𝑉 (𝑥 + ℎ)− 𝑉 (𝑥)
Δ𝑆

(118)

Next, consider a box with a small volume 𝑉 with the surfaces at 𝑥||1 and 𝑥||2, with

parallel vectors to the displacement, both with areas Δ𝑆. 𝑥⊥1 and 𝑥⊥2 are irrelevant for

the expansion process.

Φ(𝑥1) = lim
ℎ→0

𝑉 (𝑥1 + ℎ)− 𝑉 (𝑥1)
Δ𝑆

(119)

Φ(𝑥2) = − lim
ℎ→0

𝑉 (𝑥2 + ℎ)− 𝑉 (𝑥2)
Δ𝑆

= (120)

The sign difference holds as the normal vector at one of the surfaces points in an opposite

direction with respect to the displacement vector, assumed to change continuously. By

choosing the system of coordinates such that the displacement is carried out along the

𝑥-axis,

∇ ·Φ = 𝜕Φ(𝑥)
𝜕𝑥

= Φ(𝑥 + ℎ𝑥𝑥̂)−Φ(𝑥)
ℎ𝑥

(121)
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Taken special care on the sign,

∇ ·Φ = lim
ℎ𝑥→0

𝜕Φ(𝑥)
𝜕𝑥

= lim
ℎ𝑥→0

1
ℎ𝑥Δ𝑆

[(𝑉 (𝑥 + 2ℎ𝑥𝑥̂)− 𝑉 (𝑥 + ℎ𝑥𝑥̂))− (−1)[𝑉 (𝑥 + ℎ𝑥𝑥̂)− 𝑉 (𝑥)]

∇ ·Φ = lim
ℎ𝑥→0

𝜕Φ(𝑥)
𝜕𝑥

= lim
ℎ𝑥→0

1
ℎ𝑥Δ𝑆

[𝑉 (𝑥 + 2ℎ𝑥𝑥̂)− 𝑉 (𝑥)] = lim
𝑉 →0

1
𝑉

[Δ𝑉 (𝑥) +������
ℎ𝑥𝜕𝑥𝑉 (𝑥)] ,

(122)

where the higher-order term in ℎ𝑥 is neglected.
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D.1 ON THE ANALYTICITY OF THE ORDER PARAMETER

When the magnetic field is turned on, it penetrates the material introducing vortex

solutions containing singularity. As we are about to see in chapter 6, many solutions are

mostly smooth and well behaved, only possibly having its boundary made up of vortices.

This allows for the consideration of an order parameter that can be analytically continued

once it does not trespass a vortex singularity.

D.2 ON THE EVALUATION OF INTEGRALS

Considering the terms linked to ∇2Δ* in the GL level,

𝑎2 = −𝑁(0)𝑇 ℎ̄2

2𝑚
lim

𝜔𝐷→∞

∑︁

𝜔

∫︁ 𝜔𝐷/2

−𝜔𝐷/2

4
3𝜀𝐹 (𝜔4 − 𝜀4)
(𝜔2 + 𝜀2)4

= 𝑁(0)𝑇 ℎ̄2

2𝑚

∑︁

𝜔

𝜋𝜇𝐹

3|𝜔|3 (1)

We may remove the odd parity terms in 𝜔 and 𝜀 in instantly; these vanish in a symmetric

interval. The sum is on the fermionic Matsubara frequencies, 𝜔 = (2𝑛 + 1)𝜋𝑇 ,

𝑎2 = 𝑁(0)𝑇 ℎ̄2

2𝑚

𝜀𝐹

3𝜋2𝑇 3

∑︁

𝑛

1
|2𝑛 + 1|3

⏟  ⏞  
7𝜁(3)

4

= 𝑁(0) ℎ̄2

2𝑚

7𝜀𝐹 𝜁(3)
12𝜋2𝑇 2 = 1

6𝑁(0) 7𝜁(3)
8𝜋2𝑇 2 ( ℎ̄2

𝑚
)2ℎ̄2𝑘2

𝐹 (2)

As

1
𝑇 2 = 1

𝑇 2
𝑐

(𝑇𝑐

𝑇
)2 = 1

𝑇 2
𝑐

( 1
1 − 𝜏

)2 = 1
𝑇 2

𝑐

(1 + 2𝜏 + 𝑂(𝜏≥2)) , 𝑚 = 𝑝𝐹

𝑣𝐹

= ℎ̄𝑘𝐹

𝑣𝐹

, 𝑊 2
3 ≡ 7𝜁(3)

8𝜋2𝑇 2
𝑐

, (3)

it follows

𝑎2 = 1
6𝑁(0)𝑊 2

3 ℎ̄2𝑣2
𝐹 (1 + 2𝜏) (4)

which agrees with the GL theory written in terms of the microscopic parameters in dif-

ferent derivations. As for the terms linked to Δ* on the right-hand-side, it is the only

term which requires some extra care for the convergence. We have to consider a small

parameter for the convergence to hold,

𝑎1 =
∑︁

𝜔

𝑁(0)𝑇
∫︁ 𝜔𝐷/2

−𝜔𝐷/2
𝑑𝜀

1
𝜔2 + 𝜀2 = 𝑁(0)𝑇

∫︁ 1
2𝜀

∑︁

𝜔

exp[𝑖𝜔𝜂]
(︁ 1

𝜀 + 𝑖𝜔
+ 1

𝜀 − 𝑖𝜔

)︁
(5)
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D.1 ON THE ANALYTICITY OF THE ORDER PARAMETER

When the magnetic field is turned on, it penetrates the material introducing vortex

solutions containing singularity. As we are about to see in chapter 6, many solutions are

mostly smooth and well behaved, only possibly having its boundary made up of vortices.

This allows for the consideration of an order parameter that can be analytically continued

once it does not trespass a vortex singularity.

D.2 ON THE EVALUATION OF INTEGRALS

Considering the terms linked to ∇2Δ* in the GL level,

𝑎2 = −𝑁(0)𝑇 ℎ̄2

2𝑚
lim

𝜔𝐷→∞

∑︁

𝜔

∫︁ 𝜔𝐷/2

−𝜔𝐷/2

4
3𝜀𝐹 (𝜔4 − 𝜀4)
(𝜔2 + 𝜀2)4

= 𝑁(0)𝑇 ℎ̄2

2𝑚

∑︁

𝜔

𝜋𝜇𝐹

3|𝜔|3 (1)

We may remove the odd parity terms in 𝜔 and 𝜀 in instantly; these vanish in a symmetric

interval. The sum is on the fermionic Matsubara frequencies, 𝜔 = (2𝑛 + 1)𝜋𝑇 ,

𝑎2 = 𝑁(0)𝑇 ℎ̄2

2𝑚

𝜀𝐹

3𝜋2𝑇 3

∑︁

𝑛

1
|2𝑛 + 1|3

⏟  ⏞  
7𝜁(3)

4

= 𝑁(0) ℎ̄2

2𝑚

7𝜀𝐹 𝜁(3)
12𝜋2𝑇 2 = 1

6𝑁(0) 7𝜁(3)
8𝜋2𝑇 2 ( ℎ̄2

𝑚
)2ℎ̄2𝑘2

𝐹 (2)

As

1
𝑇 2 = 1

𝑇 2
𝑐

(𝑇𝑐

𝑇
)2 = 1

𝑇 2
𝑐

( 1
1 − 𝜏

)2 = 1
𝑇 2

𝑐

(1 + 2𝜏 + 𝑂(𝜏≥2)) , 𝑚 = 𝑝𝐹

𝑣𝐹

= ℎ̄𝑘𝐹

𝑣𝐹

, 𝑊 2
3 ≡ 7𝜁(3)

8𝜋2𝑇 2
𝑐

, (3)

it follows

𝑎2 = 1
6𝑁(0)𝑊 2

3 ℎ̄2𝑣2
𝐹 (1 + 2𝜏) (4)

which agrees with the GL theory written in terms of the microscopic parameters in dif-

ferent derivations. As for the terms linked to Δ* on the right-hand-side, it is the only

term which requires some extra care for the convergence. We have to consider a small

parameter for the convergence to hold,

𝑎1 =
∑︁

𝜔

𝑁(0)𝑇
∫︁ 𝜔𝐷/2

−𝜔𝐷/2
𝑑𝜀

1
𝜔2 + 𝜀2 = 𝑁(0)𝑇

∫︁ 1
2𝜀

∑︁

𝜔

exp[𝑖𝜔𝜂]
(︁ 1

𝜀 + 𝑖𝜔
+ 1

𝜀 − 𝑖𝜔

)︁
(5)
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By applying the contour method established in chapter two we reach

𝑎1 = 𝑁(0)
∫︁ 𝜔𝐷/2

−𝜔𝐷/2

𝑑𝜀

2𝜀
tanh

(︃
𝛽𝜀

2

)︃
= 𝑁(0)

∫︁ 𝜔𝐷/2

0
𝑑𝜀

1
𝜀

tanh
(︃

𝛽𝜀

2

)︃
= 𝑁(0) ln

(︂2𝑒𝛾𝜔𝐷

𝜋𝑇

)︂
, (6)

𝛾 is the Euler number. The linear coefficient in Δ* must go to zero (GL theory),

(𝑎1 − 1
𝑔

)|𝑇 →𝑇𝑐 → 0 . (7)

The product 𝑔𝑁(0) ≡ 𝜆 is dimensionless, thus,

𝑇𝑐 = 𝑒𝛾

𝜋
2𝜔𝐷 exp

[︂
− 1

𝜆

]︂
(8)

With this, the dependence on Δ* for a temperature different than zero may be recast

with the linear term written in terms of an expansion in terms of 𝜏 ,

Δ* = [𝜆 log[1 − 𝜏 ]−1Δ* + 1]Δ* + Other GL terms

∼ [𝜆(𝜏 + 1
2𝜏 2 + ...) + 1]Δ* + Other GL terms (9)

The term with Δ* alone cancels; as a result, there is not a dependence of the form 𝜏 1/2

in the GL equation - it captures only the order 𝜏 3/2. The other integrals/sums follow the

spirit of the 𝑎2 calculation and are solved by employing a symbolic software.

D.3 ON THE STABILITY OF 1D SOLUTIONS

First we prove the way of rewriting 𝑔1 is consistent.

𝑔
(1)
1 = 2

[︂
(Δ2

0 − 1)Δ0Δ1 + 𝐴2
0

2 Δ0Δ1 + 1
𝜅2 Δ′

0Δ′
1

]︂
− 𝐴1𝑖0 + (𝐴′

0 − 1)
(︂

𝐴′
1 + 1

2 + 𝑐
)︂

(10)

Due to an integration by parts and the subsequent use of the first GL equation,

𝜎
(1)
1 = 1

𝜅2

[︂
Δ′

0Δ1

]︂
|∞−∞ +

∫︁ [︂
−𝐴1𝑖0 + (𝐴′

0 − 1)(𝐴′
1 + 1

2 + 𝑐)
]︂

(11)

According to the second GL equation

𝑖0 = −𝐴′′
0 (12)

An integration by parts yields

𝜎
(1)
1 = 1

𝜅2

[︂
Δ′

0Δ1

]︂
|∞−∞ +

[︂
𝐴′

0𝐴1

]︂
|∞−∞ +

∫︁
(𝐴′

0 − 1)(1
2 + 𝑐)
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We identify the derivative of the GL free functional

𝜕𝜎0

𝜕𝜅0
= 2

𝜅3
0

∫︁
𝑑𝑥Δ0Δ′′

0 = 4
√

2
∫︁

𝑑𝑥
[︂
(Δ0Δ′

0)′ − Δ′2
0

]︂
= 4

√
2
[︂
Δ0Δ′

0

]︂
|∞−∞ − 4

√
2
∫︁

Δ′2
0 𝑑𝑥

and apply the first and second Bogomol’nyi equations

∫︁
Δ′2

0 𝑑𝑥 =
∫︁

Δ′
0(−

1
2𝐴0Δ0) = −

∫︁
𝑑𝑥

1
4(Δ2

0)′𝐴0 = −1
4

[︂
Δ2

0𝐴0

]︂∞

−∞
+ 1

4

∫︁
𝑑𝑥Δ2

0(1 − Δ2
0)

Thus,

𝜕𝜎0

𝜕𝜅0
= 4

√
2[Δ0Δ′

0 + 1
4Δ2

0𝐴0]|∞−∞ −
√

2ℐ (13)

As for the contribution

𝜎1(𝜅0) =
∫︁

𝑑𝑥
[︂
𝑔

(0)
1 (𝜅0) + 𝑔

(1)
1 (𝜅0)

]︂
(14)

we divide the relevant integrals as those attached to the dimensionless coefficients (and

its absence)

𝐼 =
∫︁

𝑑𝑥
[︂
−Δ2

0
2 + 2Δ′

0
𝜅2

0
+ 𝐴2

0Δ2
0 + Δ4

0 + 1
2(𝐴′

0 − 1)
]︂

(15)

𝐼𝐼

𝒬̃ =
∫︁

𝑑𝑥
[︂(︂Δ′′

0
𝜅2

0
− 𝐴2

0
2 Δ0

)︂
+ 1

3𝜅2
0
𝐴′′

0𝐴0Δ2
0 + 𝐴′2

0
2𝜅2

0
Δ2

0

]︂
(16)

𝐼𝐼𝐼

𝑐
=
∫︁

𝑑𝑥
[︂
(𝐴′

0 − 1) + Δ6
0

]︂
(17)

𝐼𝑉

ℒ̃ =
∫︁

𝑑𝑥
[︂ 5
𝜅2

0
(Δ′

0)2Δ2
0 + 3

2𝐴2
0Δ4

0

]︂
(18)

For the first, we use the second Bogomol’nyi relation

𝐼 =
∫︁

𝑑𝑥
[︂
−Δ2

0
2 + 2

𝜅2
0
(Δ′

0Δ0)′ − 2
𝜅2

0
Δ′′

0Δ0
⏟  ⏞  

2Δ2
0(1−Δ2

0)−𝐴2
0Δ0

) + 𝐴2
0Δ2

0 + Δ4
0 − Δ2

0
2

]︂
(19)

where the first GL equation has been employed in the underbrace. Hence,

𝐼 =
[︂ 2
𝜅2

0
Δ′

0Δ0

]︂
|∞−∞ +

∫︁
𝑑𝑥Δ2

0(1 − Δ2
0) (20)

As for the second integral, the first term in parenthesis is reduced immediately due to the

second GL equation

𝐼𝐼

𝒬̃ =
∫︁

𝑑𝑥Δ2
0(Δ2

0 − 1)2 + 𝐼𝐼aux

𝒬̃ (21)
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such that the second integral accounts for the remaining terms.
𝐼𝐼aux

𝒬̃ = 2
3

∫︁
Δ2

0[(𝐴′
0𝐴0)′ − 𝐴′2

0 ]𝑑𝑥 +
∫︁

𝑑𝑥Δ2
0(𝐴′

0)2𝑑𝑥 =
∫︁

𝑑𝑥
2
3Δ2

0(𝐴′
0𝐴0)′ + 1

3

∫︁
𝑑𝑥𝐴′2

0 Δ2
0

=
∫︁

𝑑𝑥
2
3Δ2

0((1 − Δ2
0)𝐴0)′ + 1

3

∫︁
𝑑𝑥Δ2

0(1 − Δ2
0)2

=
∫︁

𝑑𝑥Δ2
0(1 − Δ2

0)2 +
∫︁

𝑑𝑥
2
3Δ2

0𝐴0(−2Δ′
0Δ0) (22)

Hence, as a result of identifying
∫︁

𝑑𝑥Δ2
0(Δ2

0 − 1)2 = ℐ − 𝒥 , (23)

it follows
𝐼𝐼

𝒬̃ = 2(ℐ − 𝒥 ) − 1
3

∫︁
𝑑𝑥(Δ4

0)′𝐴0 = 2(ℐ − 𝒥 ) − 1
3

[︂
Δ4

0𝐴0

]︂
|∞−∞ + 1

3𝒥
𝐼𝐼

𝒬̃ = 2ℐ − 5
3𝒥 − 1

3

[︂
Δ4

0𝐴0

]︂
|∞−∞ (24)

The third is quite easy to identify, from the second Bogomol’nyi relation as
𝐼𝐼𝐼

𝑐
=
∫︁

𝑑𝑥Δ2
0(Δ4

0 − 1) = ℐ + 𝒥 (25)

As for the final identity, we use the first-Bogomol’nyi equation read from the left to the

right in the first term and from the right to the right in the second term. In the end, we

also apply the second Bogomol’nyi equation.
𝐼𝑉

ℒ̃ =
∫︁

𝑑𝑥
[︂ 5
𝜅2

0
(Δ′

0)2 + 3
2𝐴2

0Δ2
0

]︂
Δ2

0 =
∫︁

𝑑𝑥
[︂ 5
𝜅2

0
Δ′

0(−
1
2𝐴0Δ0) + 3

2𝐴0Δ0(−2Δ′
0)
]︂
Δ2

0

𝐼𝑉

ℒ̃ = −2
∫︁

𝑑𝑥𝐴0(Δ4
0)′ = −2

[︂
𝐴0Δ4

0

]︂
|∞−∞ + 2

∫︁
𝑑𝑥𝐴′

0Δ4
0

𝐼𝑉

ℒ̃ = −2
[︂
𝐴0Δ4

0

]︂
|∞−∞ + 2𝒥 (26)

Applying the bulk properties, the surface terms vanish.

D4. PROOF OF IDENTITY

We wish to prove that
Δ*(𝑥)

𝑔
= −𝑁(0)

𝛽

∑︁

𝜔

∫︁
ℱ̃𝜔(𝜀)𝑑𝜀 . (27)

For a proof,

ℱ̃(𝑥, 𝜏, 𝑥′, 𝜏 ′) = 1
𝛽

∑︁

𝜔

ℱ̃𝜔(𝑥, 𝑥′)𝑒−𝑖𝜔(𝜏−𝜏 ′) (28)

− Δ*

𝑔
= lim

𝜏−𝜏 ′→0+,𝑥→𝑥′
ℱ̃(𝑥, 𝜏, 𝑥′, 𝜏 ′) = 1

𝛽

∑︁

𝜔

lim
𝑥→𝑥′

∫︁
𝑑𝑘ℱ̃𝜔(𝑘) exp[𝑖𝑘(𝑥 − 𝑥′)] (29)
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Finally, in the vicinity of the Fermi-surface, the density of states is 𝑁(0), therefore,

Δ*

𝑔
= − 1

𝛽

∑︁

𝜔

lim
𝑥→𝑥′

∫︁
𝑑𝑘ℱ̃𝜔(𝑘) = −𝑁(0)

𝛽

∑︁

𝜔

∫︁
𝑑𝜀ℱ̃𝜔(𝜀) (30)

D5. PROOF OF INTERACTION TERM FORM

Applying the Kronecker-delta relation (Appendix C.7),

𝐻𝐼 =
∑︁

𝛼

1
𝛼!𝜕

𝛼1
𝑥1 𝜕𝛼2

𝑥2 𝜕𝛼3
𝑥3 Δ(𝑥)

∫︁
𝑉 𝑑𝑘𝑉 𝑑𝑘′𝑒𝑖(𝑘′+𝑘)·𝑥𝑐𝑘′↓

⎡
⎣

3∏︁

𝑗=1
(
𝜕𝑘𝑗

𝑖
)𝛼𝑗

⎤
⎦𝛿𝑘+𝑘′,0𝑐𝑘↑ + H.C (31)

where the derivative operator acts on the Kronecker-delta alone. Since lim𝑉 →∞ 𝑉 𝛿(𝑘, 𝑘′) =

𝛿(𝑘 − 𝑘′), and that the derivative acts on the terms dependent on 𝑘 alone (the derivative

is partial),

𝐻𝐼 =
∑︁

𝛼

1
𝛼!𝜕

𝛼1
𝑥1 𝜕𝛼2

𝑥2 𝜕𝛼3
𝑥3 Δ(𝑥)

∫︁
𝑉 𝑑𝑘𝑑𝑘′

⎡
⎣

3∏︁

𝑗=1
(
𝜕𝑘𝑗

𝑖
)𝛼𝑗

⎤
⎦[𝑐𝑘′↓𝛿(𝑘 + 𝑘′)]𝑒𝑖(𝑘′+𝑘)·𝑥𝑐𝑘↑ + H.C (32)

By integrating by parts, we eliminate the many surfaces terms appearing, and we are left

with

𝐻𝐼 =
∑︁

𝛼

1
𝛼!𝜕

𝛼1
𝑥1 𝜕𝛼2

𝑥2 𝜕𝛼3
𝑥3 Δ*(𝑥)

∫︁
𝑉 𝑑𝑘𝑑𝑘′𝑐𝑘′↓𝛿(𝑘 + 𝑘′)

⎡
⎣(−1)𝑛𝛼

3∏︁

𝑗=1
(
𝜕𝑘𝑗

𝑖
)𝛼𝑗

⎤
⎦[𝑒𝑖(𝑘′+𝑘)·𝑥𝑐𝑘↑]

+H.C , (33)

where we recall, each integration by parts produces a sign, and there is 𝑛𝛼 = ∑︀
𝑗 𝛼𝑗

integration by parts. The surface terms, contains terms responsible for the destruction

of Cooper-pairs - the complex conjugate contains the terms responsible for the creation.

Once we request these to vanish further away from the bulk, we have a reliable expression.

Integrating in the 𝑘′ variable. We return to the discretized expression, 𝑘′ = −𝑘, the

dependence on 𝑉 being naturally removed.

𝐻𝐼 =
∑︁

𝛼

1
𝛼!𝜕

𝛼1
𝑥1 𝜕𝛼2

𝑥2 𝜕𝛼3
𝑥3 Δ*(𝑥)

∑︁

𝑘

𝑐†
−𝑘↓

⎡
⎣(−1)𝑛𝛼

3∏︁

𝑗=1
(
𝜕𝑘𝑗

𝑖
)𝛼𝑗

⎤
⎦[𝑐𝑘↑] + H.C . (34)
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E.1 EXAMPLE SOLUTIONS
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Source: The author

E.2 CURRENT OF SOLUTIONS

The current behave as

𝑖⃗ = 1
𝒦∇ × 𝐵⃗ = (−𝜕𝑦𝐵, 𝜕𝑥𝐵, 0) (1)

For the bidimensional defects the second Bogomolnyi yields

𝑖⃗ = 2𝒦𝜑𝑁(𝜌)𝜑′
𝑁(𝜌)(− sin 𝜃, cos 𝜃, 0) (2)

In case of vortex, 𝜑′
𝑁(𝜌) > 0, for bubbles, 𝜑′

𝑁(𝜌) < 0, the current running in different

direction. For donuts there is a critical point where 𝜑′
𝑁 changes sign from a positive
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to negative inclination, implying the current to be like vortex in the core, zero at some

distance and change orientation (behave like bubble) from this distance on.

For filament solutions, 𝜕𝑦𝐵 = 0, and due to each of the branches and the second Bogo-

mol’nyi relation,

𝐵⃗ = (0, ±2Ψ2
√︁

Ψ2 − 2 ln[𝑐|Ψ|], 0)

which displays the behaviour of the current to reverse in direction and points along the

stripe orientation. It is interesting to notice that the sense of the current change differently

if we choose either the filament to be on either the 𝑥-axis of 𝑦-axis. For the 𝑦-axis choice,

𝐵⃗ = (∓2Ψ2
√︁

Ψ2 − 2 ln[𝑐|Ψ|], 0, 0)

. One may think of stripes as the superposition of an infinity array of vortex or bubbles

depending on the orientation of the current.

E.2 ABSCENCE OF BUBBLE VORTICITY

We provide a proof by contradiction. We consider the following ansatz

Ψ = ( 𝑧

|𝑧|2 )𝑁 |Ψ| (3)

including the vorticity is valid for bubbles.

The modified Liouville introduces the Dirac deltas. Consider the general Bogomolnyi

equation in the form of the modified Liouville equation,

𝜕2
𝑥 ln |Ψ| + 𝜕2

𝑦 ln |Ψ| = |Ψ|2 − 1 − 2𝜋𝑁𝛿(𝑥)𝛿(𝑦) (4)

As usual it is assumed the continuity of Ψ in both 𝑥 and 𝑦, but the derivative is allowed

to jump. For instance, integrating the modified Liouville equation around 𝑥 = 0,

|Ψ|𝑥(0+, 𝑦) − |Ψ|𝑥(0−, 𝑦)
Ψ(0, 𝑦) = −2𝜋𝑁𝛿(𝑦) (5)

Proceeding to integrate this equation in between a symmetric 𝑦 interval, 𝑦 ∈ (−𝜖, 𝜖),

lim
𝜖→0

∫︁ 𝜖

−𝜖
𝑑𝑦[|Ψ|𝑥(0+, 𝑦) − |Ψ|𝑥(0−, 𝑦)] = −2𝜋𝑁Ψ(0, 0) ̸= 0 for a bubble (6)

However, for a bubble, due to the symmetry of the solution, |Ψ|𝑥(0+, 𝑦) = |Ψ|𝑥(0−, 𝑦),

causing one side of the equation to differ from the other.
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