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ABSTRACT

The usage of machine learning (ML) techniques in different academic and professional

fields confirms its theoretical and practical utility. The communications field is no exception.

In fact, models that learn from data were already in use prior to the recent advancement

in the ML field. This research investigates different kinds of usage that can be done with

ML models in three different problems, seeking to show their high flexibility and to present

alternative ways of obtaining classical results which employ well established algorithms,

or even outperform them in some scenarios. The first problem discusses the so-called

Markov-Gaussian channels and compares an ML model with the already common hidden

Markov models approach. The second problem deals with non-orthogonal multiple access

transmissions and compares an ML model with the usually employed decoding algorithm.

The third presents a chaos-based communication system and compares the maximum

likelihood decoding to a neural network-based one.

Keywords: machine learning; deep learning; chaos communication; error correcting

codes; non-orthogonal multiple access.



RESUMO

O uso de técnicas de aprendizagem de máquina em diferentes campos acadêmicos

e profissionais confirma sua utilidade teórica e prática. O campo de comunicações não é

exceção, possuindo diversas aplicações em problemas estabelecidos. Este trabalho faz

uma investigação de diferentes formas de utilizar modelos baseados em aprendizagem

de máquina em três problemas distintos envolvendo decodificação em sistemas de co-

municação, buscando demonstrar sua flexibilidade e apresentar formas alternativas de

obter resultados clássicos que empregam algoritmos estabelecidos, ou até mesmo obter

desempenhos melhores em situações específicas. O primeiro problema trata de canais

Markov-Gauss e compara um modelo de aprendizagem de máquina com o modelo oculto

de Markov usualmente empregado, o segundo trata de sistemas de comunicação baseados

em acesso múltiplo não-ortogonal e compara um modelo de aprendizagem com o algoritmo

de decodificação usualmente empregado e o terceiro trata de um sistema de comunica-

ção baseado em teoria do caos em que uma rede neural é utilizada na decodificação em

comparação com a decodificação por máxima verossimilhança.

Palavras-chave: aprendizagem de máquina; aprendizagem profunda; comunicação

caótica; códigos corretores de erro; acesso múltiplo não-ortogonal.
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1 INTRODUCTION

Although an old subject, the machine learning (ML) field has been revitalized by the

recent deep learning (DL) improvements. Newly developed methods have brought significant

advances to a wide range of fields and tasks, such as, computer vision and natural language

processing (LECUN; BENGIO; HINTON, 2015), mastering games of go and chess (SILVER

et al., 2016; SILVER et al., 2018), predicting diseases (SIDEY-GIBBONS; SIDEY-GIBBONS,

2019). In the communications field, important tasks have already been tackled by recent

works (HE et al., 2018; NEUMANN; WIESE; UTSCHICK, 2018; SOLTANI et al., 2019; JIANG;

STRUFE; SCHOTTEN, 2020; NACHMANI et al., 2017; BE’ERY et al., 2020; BENNATAN;

CHOUKROUN; KISILEV, 2018; KIM et al., 2018; HUANG et al., 2020).

ML applications in the communication field include channel estimation (HE et al.,

2018; NEUMANN; WIESE; UTSCHICK, 2018; SOLTANI et al., 2019; JIANG; STRUFE;

SCHOTTEN, 2020), channel decoding (NACHMANI et al., 2017; BE’ERY et al., 2020; BEN-

NATAN; CHOUKROUN; KISILEV, 2018; KIM et al., 2018), fifth generation (5G) applications

on the physical layer (HUANG et al., 2020), discovery of new error correcting codes and

decoding algorithms (JIANG et al., 2019b). In (KIM et al., 2018), ML is used seeking to

automate the discovery of decoding algorithms for error correcting codes, for such, recurrent

neural network (RNN) architecture is used to decode convolutional and turbo codes. Similar

works focusing on channel decoding are done in (LIANG; SHEN; WU, 2018; BALATSOUKAS-

STIMMING; STUDER, 2019). In (WU et al., 2019), ML is used as an end-to-end autoencoder

architecture capable of jointly performing the tasks of encoding, modulation, demodula-

tion and decoding under various system conditions. The results suggests that the model

can match classical modulations and encoding designs for additive white Gaussian noise

(AWGN) channels, while outperforming existing schemes for non-standard bursty channels.

Similar works on autoencoder are done in (JIANG et al., 2019c; DÖRNER et al., 2018;

O’SHEA; KARRA; CLANCY, 2016; JIANG et al., 2019a; LETIZIA; TONELLO, 2020).

ML techniques can also be employed in specialized problems. In (CHU et al., 2021;

WU; JIANG; ZHAO, 2018; LUGOSCH; GROSS, 2017), low-density parity-check (LDPC)

decoding is optimized for certain scenarios aided by learning techniques. In (DOAN et al.,

2019), a neural belief propagation algorithm is proposed for polar concatenated codes.

In (CHIEN; BJORNSON; LARSSON, 2019), benefits from ML are investigated in the task of

spectral efficiency maximization in MIMO systems.

The variety of applications shows that the data learning approach is highly flexible,

even within the communication domain, and that different techniques can be used for each

setting. In this work, three different scenarios are presented, each employing some sort of

learning approach to tackle its problems. Therefore, the following chapters can be viewed as

a grouping of three unrelated problems, bounded by the presence of ML techniques in the

communication field. This choice of presentation seeks to evaluate different possibilities of
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application of the ML toolset on different scenarios.

The first presented scenario deals with LDPC decoding under a channel with memory,

the Markov-Gauss channel. In this setting, a bursty noise channel is modelled by a Markov

process in which the noise variance is determined by the state of a Markov chain. Being a

variant of the Gilbert-Elliot channel (GILBERT, 1960; ELLIOTT, 1963) in the literature, this

scenario traditionally employs a hidden Markov model (HMM) approach in its decoding (FER-

TONANI; COLAVOLPE, 2009). In this work, we also investigate the usage of a more modern

approach with neural networks (NN) aiming to replicate and analyze the impact of this choice

in this problem setting.

The second presented scenario deals with an important technique for future com-

munications technologies, the non-orthogonal multiple access (NOMA) transmissions, in

which multiple users share the same channel resources, accepting controlled inter-user

interference while seeking to obtain higher data rates and acceptable error performance.

In this work, we analyze a possible modification to the traditionally employed successive

interference cancellation decoding, which can be obtained by the usage of decision tree

models, and also compare it to the NN-based decoding present in the literature.

The third presented scenario presents a chaos-based communication system. In

this setting a chaotic attractor is used to define a communication system in which chaotic

waveforms are employed in transmission, additionally the attractor possesses dynamics

restrictions which are employed to devise a transmitter encoder. Due to its chaotic nature,

traditional decoding strategies might be difficult or inadequate in this setting, which motivates

the use of ML techniques aimed at jointly adapting to attractor waveforms and dynamics.

For all presented results in this research, we employ Python 3.8, Tensorflow 2.1 and

Google Colab as computational tools.

1.1 ORGANIZATION

The remaining of the dissertation is organized in the following chapters. The chapters

are organized as self-contained works which do not necessarily share connections with

each other. Therefore each one starts with an introduction of its own topics and ends with a

discussion of its contents.

• Chapter 2 discusses the Markov-Gaussian channel, a type of channel in which the

noise process can be modelled by a Markov chain and its well-suited to ML models

assisted decoding, such as HMM and NN. In this scenario, the noise process memory

is captured by the ML models and aids the decoding by combining the memory

information with error correcting code capabilities. In practice, the NN model performs

at least as well as the traditionally employed HMM for presented tasks.
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• Chapter 3 discusses NOMA, a transmission scheme that has gained attention for use

in the next generation of communication systems. In this scheme multiple users share

the same resources without the need to maintain an orthogonality condition between

them. A decoding algorithm is proposed for high interference use cases. We provide a

theoretical analysis and compare the results to the standard employed decoding and

ML methods.

• Chapter 4 presents a chaos-based space-time trellis code (CB-STTC) scheme based

on chaotic attractors. This code is defined by a finite state encoder that maps infor-

mation sequences to restricted sequences satisfying the dynamics of the attactor. We

also propose a NN architecture capable of learning how to decode the CB-STTC.

1.2 PUBLISHED RESEARCH

Some results obtained during the course of this research were published in co-

authorship:

• Journal

– SOUZA, CARLOS E. C.; CAMPELLO, RAFAEL; PIMENTEL, CECILIO; CHAVES,

DANIEL P. B., Chaos-based space-time trellis codes with deep learning decoding.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, v.

68, p. 1472-1476, apr. 2021. DOI: 10.1109/TCSII.2020.3038481.

– CAMPELLO, RAFAEL; CARLINI, GABRIEL; SOUZA, CARLOS E. C.; PIMENTEL,

CECILIO; CHAVES, DANIEL P. B., Successive interference cancellation decoding
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2 MARKOV-GAUSSIAN CHANNEL

The Markov-Gaussian channel has been used to model impulsive interfence channels

with memory (FERTONANI; COLAVOLPE, 2009; MITRA; LAMPE, 2009; MITRA; LAMPE,

2010; AHMED et al., 2020). The noise process is described by a mixture-Gaussian process

where the conditional probability density function (PDF) of each noise sample is Gaussian

with variance that depends on the states of a two-state Markov chain. In this chapter, we

analyze the decoding of LDPC codes over variations of this channel.

Temporal correlated noise behavior is a common consideration in wireless com-

munications (BLACKARD; RAPPAPORT; BOSTIAN, 1993; FERTONANI; COLAVOLPE,

2009). While this characteristic has been studied in classical models such as the Gilbert-

Elliot model (ELLIOTT, 1963; GILBERT, 1960; MUSHKIN; BAR-DAVID, 1989; ECKFORD;

KSCHISCHANG; PASUPATHY, 2005), the most common approach is the channel model-

ing as a two-state Markov model where channel parameters or topology are assumed to

be partially or fully known at the decoder (FERTONANI; COLAVOLPE, 2009; MOREIRA;

PIMENTEL, 2017; MITRA; LAMPE, 2010).

Previous works in this setting mainly include an estimation module that provides

log-likelihood ratio (LLR) updates to the conventional LDPC decoder (that implements the

standard belief propagation algorithm). This module is based on the forward-backward

algorithm (FBA) (FERTONANI; COLAVOLPE, 2009; MOREIRA; PIMENTEL, 2017; MITRA;

LAMPE, 2010) where the channel parameters are assumed to be known or estimated using

the Baum-Welch algorithm (BWA) (BAUM, 1972), or evenly jointly estimated in the decoding

process (MITRA; LAMPE, 2009). These works consider different assumptions of what is

considered to be known at the receiver, such as channel parameters or signal to noise

ratio (SNR), which implies multiple scenarios in the receiver implementation. It is commonly

considered that at least the channel model topology is known, such as the presence of a

Markovian channel with a fixed number of states, which is of central importance in the FBA

and BWA derivation, which has as a predefined input the number of states to be estimated.

The problem of estimating a Gaussian source corrupted by a Markov-Gaussian channel is

addressed in (ALAM; KADDOUM; AGBA, 2018; AHMED et al., 2020), where a Bayesian

estimator is derived.

We consider a more general approach to the LLR updates. The proposed scheme

employs a NN architecture for time series prediction based on gate recurrent units (GRUs)

which aims to estimate the real-time channel variances without explicitly considering the

channel assumptions or topology. For such, the NN must learn exclusively from the training

data which reflects the considered channel characteristics.

By considering a real-time channel estimation in the form of an instantaneous vari-

ance prediction, the scenario is decoupled from the traditional Markovian state classification

and can be used in an LLR update step. The presence of NN in multiple tasks in the com-
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munication field (DÖRNER et al., 2018; SHLEZINGER et al., 2020; JIANG; SCHOTTEN,

2020) indicates that this toolset can provide new capabilities which improves performance or

flexibility of existing schemes.

It is also considered a generalization of the Markov-Gaussian channel, in which the

channel parameters are assumed to vary according to a Gaussian PDF, or by assuming the

number of states as a random variable, which could reflect different mismatches between the

modeled scenario and the deployed one in a practical setting. It is shown that the proposed

scheme can be better suited to exploit noise correlations on generalized settings as its lack

of direct assumptions is beneficial while the traditional methods are not well-suited when

their assumptions are violated.

The rest of this chapter is organized as follows. In Section 2.1 we give an overview of

the considered communication system. In Section 2.2 we present the classical HMM based

approach to tackle the problem. Section 2.3 presents the LLR update schemes based on

FBA/BWA. In Section 2.4 we introduce the NN-based model for the same task. Section 2.5

presents simulation results and performance comparisons. Final remarks are presented

in Section 2.6.

2.1 COMMUNICATION SYSTEM

The components of the coded communication system considered in this chapter

are shown in Figure 1. Each block is briefly described in the sequel. It is composed of an

LDPC encoder and decoder, an interleaver and deinterleaver, a BPSK modulator, a Markov-

Gaussian channel M realizing the noise n, and a channel memory estimation module (CEM)

that provides the LLR of each coded bit to the LDPC decoder.

We consider a binary protograph-based LDPC code from the 5G celular system

standard (BAE et al., 2019) with parameters (nc, kc, zc), where nc is the codeword length, kc
is the number of information bits, and zc is an expansion factor. A codeword is denoted as

c = (c1, . . . , cnc).

The interleaver is known to be an important component to disperse noise bursts

between different codewords. It is assumed here a regular block interleaver, as in (MI-

TRA; LAMPE, 2010), with I rows and nc columns such that the interleaved codeword

cπ = (cπ1 , . . . , c
π
nc
) is found as

cπ(jI+i) = c(inc+j), 0 ≤ i < I, 0 ≤ j < nc. (1)

The interleaver depth I should be selected according to the channel memory. The modulator

maps the interleaved binary-valued input cπi to BPSK symbols xi according to the relation,

xi = 1 − 2cπi , where xi ∈ {1,−1}, 1 ≤ i ≤ nc. Each entry of the received sequence

y = (y1, . . . , ync) is given by yi = xi + ni, where ni is the i-th sample of the noise pro-
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Figure 1 – Block diagram of the communication system.
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Source: The author (2021).

cess (described in Section 2.1.1). The noise and modulated sequences are statistically

independent.

The received sequence y is the input to the CEM that provides the LLR of each

coded bit to the LDPC decoder in order to exploit the channel memory in the decoding

process (the CEM approaches considered in this chapter are described in Section 2.3). The

deinterleaved LLR sequence is the input to the LDPC decoder. For the LDPC decoding, we

employ the minsum layered belief propagation (HOCEVAR, 2004) with number of iterations

set to 8. This unusually low number is due to the decoder implementation which reduces the

usual number of required iterations (BAE et al., 2019; HOCEVAR, 2004), while preserving

sufficient accuracy in a lower simulation time.

2.1.1 Channel Model

The Markov-Gaussian channel (FERTONANI; COLAVOLPE, 2009; MUSHKIN; BAR-

DAVID, 1989; MITRA; LAMPE, 2010) consists of a stationary two-state Markov chain with

state set S = {G,B}, where the noise sample ni generated from state G (termed good state)

represents the background Gaussian noise (modeled by a zero-mean Gaussian random

variable with variance σ2
G) and from state B (termed bad state) represents the impulsive

interference (zero-mean Gaussian with variance σ2
B), where σ2

G ≤ σ2
B. The parameter

κ = σ2
B/σ

2
G indicates the strength of the impulsive noise compared to the background noise.

Figure 2 presents a two-state noise model diagram. The conditional PDF of ni is:

bp(ni) ≜ pni|si=p(ni) =
1√
2πσ2

p

e
−n2

i
2σ2

p , p ∈ {G,B}. (2)

The (p, q)-th entry of the Markov chain transition probability matrix P is

Ppq = P (si+1 = q | si = p), p, q ∈ S, and the stationary vector is [PG, PB] = [PBG/(PGB +

PBG), PGB/(PGB + PBG)], PB + PG = 1. According to (MUSHKIN; BAR-DAVID, 1989), the

parameter µ ≜ 1− PGB − PBG, 0 ≤ µ ≤ 1 represents the channel memory. Higher values of

µ indicate greater temporal correlation between the channel states. The channel model is

completely specified by the set Γ = {σ2
G, κ, PB, µ}. The SNR per bit, denoted ζ, is defined



22

Figure 2 – Two-state Markov-Gaussian noise model diagram.

Source: The author (2021)

as

ζ =
1

2R σ2
G

, (3)

where R = kc/nc is the code rate.

The natural n-state, n ≥ 3, channel generalization is defined by the state set

S = {G,B,B1, . . . , Bn−2} where the state G defines the base channel configuration in

which the definition of ζ is set, P is the n× n transition probability matrix, the variance of

remaining states {B,B1, . . . , Bn−2} are derived from G. For si ∈ S \ {G}, σsi is obtained

from σG by definition of a second set K = {κB, κB1 , . . . , κBn−2} which provides the relations

σ2
si
= κsiσ

2
G, si ∈ S \ {G}. (4)

Figures 3 and 4 provide two noise realizations for a two-state channel with parameters

PB = 0.1, κ = 100, ζ = 4 dB and different µ values. Figure 3 employs µ = 0.97 and Figure 4,

µ = 0.70. The parameter PB indicates that on average 10% of samples correspond to state

B, and µ controls how these samples are distributed. For high µ values (as in Figure 3) the

noise realization is deeply correlated, meaning that if the current state is si, there is a high

probability that the next sample also belongs to the same state, which translates to few state

transitions. For lower µ values (as in Figure 4), the temporal dependency is weaker, meaning

that two adjacent samples hold less information about its neighbors, that directly translates

to reduced channel capacity (MUSHKIN; BAR-DAVID, 1989). This last channel is closer to a

memoryless one.

2.2 HIDDEN MARKOV MODELS

The task addressed in this section is the retrieval of the transmitted sequence x given

the received sequence y, that is, the computation of the a posteriori probability P (xi|y) for

each timestep i, which can be directly used by the LDPC decoder. For such, it is expected

that any model devised to this task must use the channel memory extracted in some form

from y, aided by usage of the channel model parameters Γ. The closely related task of

estimating P (si|y), the probability that the channel is at state si at timestep i given the
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Figure 3 – Two-state Markov-Gaussian channel noise realization for PB = 0.1, PG = 0.9, κ =
100, µ = 0.97, ζ = 4 dB, PGG = 0.997, PGB = 0.003, PBG = 0.027, PBB =
0.973, R = 1/2, σG ≈ 0.63, σB ≈ 6.31. The solid black line indicates the state
si ∈ S.
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Figure 4 – Two-state Markov-Gaussian channel noise realization for PB = 0.1, PG = 0.9, κ =
100, µ = 0.70, ζ = 4 dB, PGG = 0.97, PGB = 0.03, PBG = 0.27, PBB = 0.73, R =
1/2, σG ≈ 0.63, σB ≈ 6.31. The solid black line indicates the state si ∈ S.
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received sequence y, can be seen as a direct instance of a HMM and FBA algorithm (BAHL

et al., 1974). Adaptations of this method have been discussed in (FERTONANI; COLAVOLPE,

2009; MOREIRA; PIMENTEL, 2017; CHEN; TANNER, 2006; ALAM; KADDOUM; AGBA,

2018) and are compared to the proposed NN approach in following sections.

We consider the HMM task as the estimation of P (si|n), the probability of being in

state si at timestep i given the actual noise realization of the channel. It is clear that we do

not observe the noise directly in a practical setting, nevertheless, it is possible to consider

a training phase scenario where pilot symbols are transmitted aiming at the retrieval of n.

In the deployment scenario, P (si|n) is used in the computation of the LLR (FERTONANI;

COLAVOLPE, 2009; CHEN; TANNER, 2006), defined in Section 2.3.

The training phase scenario is used here instead of the joint channel state estimation

and decoding procedures, such as in (CHEN; TANNER, 2006) (MITRA; LAMPE, 2009) for

fairness comparison with the NN approach, since our proposed NN-based model requires

a training phase. It should be noted that, for the HMM case, the consideration of a training

phase scenario where the pilot symbols are transmitted means in practice that the iterative

joint estimation and decoding provides no performance gain compared to a non-iterative

one, as stated in (FERTONANI; COLAVOLPE, 2009). The performance gain is possible

if no training phase or channel considerations are assumed such as in (MITRA; LAMPE,

2009). Therefore, our HMM benchmark can be viewed as a close to maximum performance

achievable by the FBA approach.

We denote the n-state HMM as the set of parameters Ω = {P, b}, where P is the

n× n transition matrix as before and b is a n-dimensional vector of conditional PDFs, where

bp(ni) indicates the conditional PDF of obtaining ni when in state p at timestep i. Usually,

HMMs are defined in terms of observations in the discrete case, and the parameter b denotes

an output probability matrix. For the considered case, although the set of states S is finite,

the observable values are continuous. Therefore we use PDFs to represent b. This can

be done in multiple ways. Here, bp(ni) is considered as a Gaussian PDF with mean value

µp = 0 and variance σ2
p (JURAFSKY; MARTIN, 2008) (HUANG; REDDY; ACERO, 2001) as

in (2). The definition of b in (2) means in practice that the standard BWA is slightly modified

when compared to the usual discrete implementation.

An important consideration to be done is whether the set Ω is assumed to be known

or must be estimated, and under which assumptions. It is frequently assumed some form

of maximum a posteriori (MAP) based state detection using the BCJR algorithm. For such,

the set of parameters Ω is necessary, which can be assumed or estimated in an interactive

way by different formulations (FERTONANI; COLAVOLPE, 2009; MOREIRA; PIMENTEL,

2017; CHEN; TANNER, 2006; MITRA; LAMPE, 2009; MOON; WONG; SHEA, 2006; ALAM;

KADDOUM; AGBA, 2018). These results presents a suitable approach in a practical setting,

although there are still strong implicit considerations being done about the channel, such
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as the model being trained for each considered ζ, which can be viewed as a practical

consideration since (2) depends on ζ, or is at least considered that the channel is a two-state

Markov-Gaussian channel itself since the definition of the number of states is critical to

the algorithmic implementation. An alternative way of approaching the task with different

formulation and assumptions is discussed in Section 2.4. Results for different models and

considerations are presented in Section 2.5.

In this chapter, if no prior assumption is made about Ω, the first step of the HMM

approach is the estimation of Ω by the BWA algorithm during training phase by pilot symbols,

which can be done by the following brief formulation (FERTONANI; COLAVOLPE, 2009;

JURAFSKY; MARTIN, 2008; RABINER, 1989) of the forward-backward recursion. We define

αi(p), the probability of seeing observations y1, y2, . . . , yi being in state p at timestep i, and

βi(p), the probability of the ending sequence yi+1, . . . , yT given that the channel is in state p

at timestep i, and we initialize (FERTONANI; COLAVOLPE, 2009)

α1(p) = πp, p ∈ S (5)

βT (G) = 1, (6)

βT (p) = 0, p ∈ S \ {G}, (7)

where πp refers to the stationary probability of state p, which can be initialized to plausible

values if assumed to be unknown, or simply πG < πB < . . . < πBn−2 with evenly spaced

values. At each executed step of the algorithm we normalize α and β values to the [0, 1]

range. We recursively compute

αi(q) =
∑
p∈S

αi−1(p)Ppqbq(ni), 1 < i ≤ T (8)

βi(p) =
∑
q∈S

βi+1(q)Ppqbq(ni+1), 1 ≤ i < T. (9)

After each iteration we compute ξi(p, q) ≜ P (si = p, si+1 = q) as

ξi(p, q) =
αi(p)Ppqβi+1(q)bq(ni+1)∑

k∈S
∑

w∈S αi(k)Pkwβi+1(w)bw(ni+1)
, (10)

and γi(p) ≜ P (si = p|n) as

γi(p) =
αi(p)βi(p)∑
s∈S αi(s)βi(s)

, (11)

which, after training, is considered as the final output of the model after the last iteration.

The transition matrix P is updated as
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Ppq =

∑T
i=1 ξi(p, q)∑T
i=1 γi(p)

. (12)

We use the following re-estimation for (2) at each iteration (JURAFSKY; MARTIN, 2008) (HUANG;

REDDY; ACERO, 2001):

σ2
p =

∑T
i=1 γi(p)(ni − µp)

2∑T
i=1 γi(p)

. (13)

Additionally, parameters µp are considered zero since the noise is assumed to have zero

mean.

After the last iteration of the algorithm the set Ω is obtained, and the training phase

is taken as complete. The γi(p) values are employed in decoding process, as described in

Section 2.3.

2.3 CHANNEL ESTIMATION

In this section, we consider different strategies for CEM in computing the LLRs which

accomplish the mapping defined as (CHEN; TANNER, 2006)

L(yi|cπi ) = log

(
pyi|cπi =0(yi)

pyi|cπi =1(yi)

)
(14)

= log


∑
p∈S

pyi|cπi =0,si=p(yi)γi(p)∑
p∈S

pyi|cπi =1,si=p(yi)γi(p)

 (15)

= log


∑
p∈S

γi(p)√
2πσ2

p

e
−(yi−1)2

2σ2
p

∑
p∈S

γi(p)√
2πσ2

p

e
−(yi+1)2

2σ2
p

 , (16)

where γi(p) is the probability that the channel is in state p at timestep i, and σp is the

estimated standard deviation from state p. Note that (14) computes the LLR by conditioning

the transmition hypothesis of cπi and consequently pyi|cπi (yi) = p(ni = yi − xi) (FERTONANI;

COLAVOLPE, 2009), and (15) expands it in terms of the state hypothesis and incorporates

the probabilities γi(p), p ∈ S.

2.3.1 KSMLD (MITRA; LAMPE, 2010)

The best possible considered CEM is the known-state maximum-likelihood decoder

(KSMLD), adapted from (MITRA; LAMPE, 2010), in which the decoder has perfect knowledge
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of the state si and the corresponding variance σ2
si

for each timestep i. In practice, this means

that γi(p) = 1 for some p ∈ S, and (15) simplifies to

L(yi|ci) =
2yi
σ2
si

, (17)

where the state and standard deviation σsi is assumed to be known. This model provides the

maximum possible performance benchmark considered in this chapter, since the proposed

models make use of (15).

2.3.2 HMM FBA (FERTONANI; COLAVOLPE, 2009)

In this model, it is assumed that the channel parameters Ω are known and the model

is used as a soft-input soft-output (SISO) module, employing the FBA. The HMM training

phase and BWA are not done, although the forward-backward recursion in (8), (9) and

(11) are still used in obtaining γi(s). The knowledge assumption of PDFs bp indicates that

σp are known for p ∈ S and, therefore, we use (16) directly. It is argued in (FERTONANI;

COLAVOLPE, 2009) that an iterative decoder that exchanges soft-information between

CEM and LDPC decoder provides incremental performance gains and this strategy is not

considered here.

Figures 5 and 6 present state predictions done by the HMM FBA model over channels

with different µ values. Figure 5 refers to µ = 0.97, in which it can be seen that the long

state persistence results in a high state prediction accuracy. Figure 6 refers to µ = 0.70, in

which the lower temporal correlation results in more frequent state transitions which results

in lower state prediction accuracy.

2.3.3 HMM BWA

In this model, the BWA training phase is done as in Section 2.2, and (16) is applied

just as before. The values used for Ω are the ones estimated in the training phase employing

the BWA. The training phase dataset simulates a possible ζ mismatch by considering training

sequences n obtained by randomly selecting ζ in an interval [2.5dB, 5dB], chosen as a

plausible use case where the expected bit error rate is not too low or high for the given code.

The training set is considered as 1000 sequences of size nc, where each sequence has ζ

uniformly randomly selected in the given range.

It is empirically seen that this assumption translates to well estimated transition matrix

P and an estimated ζ as the mean of the ζ range considered. In practice, this mismatch is

robust for most scenarios, as indicated in (FERTONANI; COLAVOLPE, 2009).
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Figure 5 – State prediction by HMM FBA over a two-state Markov-Gaussian channel, PB =
0.1, κ = 100, µ = 0.97, ζ = 4.5 dB. The solid black line indicates the state si ∈ S,
and the solid red line indicates the HMM model state prediction (argmaxp γi(p)).
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Figure 6 – State prediction by HMM FBA over a two-state Markov-Gaussian channel, PB =
0.1, κ = 100, µ = 0.75, ζ = 4.5 dB. The solid black line indicates the state si ∈ S,
and the solid red line indicates the HMM model state prediction (argmaxp γi(p)).
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2.4 NEURAL NETWORK BASED DECODING

The NN module is designed to estimate instantaneous values of the noise process

standard deviation σsi for each timestep i given the received sequence y from Figure 1

as input, that is N(y) = σ̂, where N(·) denotes the NN mapping, y is defined in interval

1 ≤ i ≤ T and σ̂ the estimated standard deviation vector, defined in the same interval.

The NN based CEM does not estimate the state probabilities γi(p) as the HMM, since

the NN does not classify between states. Instead, the estimated noise standard deviation

σ̂si is used directly in the LLR computation for each timestep as in (17). This definition is

motivated intuitively by two facts: the consistency between (15) and (17) means that the

direct normalization procedure in (17) can be used if we have high confidence that the

current state is known. This assumption is true for the majority of timesteps since erroneous

state prediction comes almost exclusively when state transitions are occurring which are not

frequent on most relevant settings.

The NN must learn channel characteristics directly from the provided dataset, and

can provide more flexibility if more general assumptions about the channel are used, which

could be inadequate to HMM training. In the canonical fixed two-state Markov-Gaussian

setting traditionally considered in (FERTONANI; COLAVOLPE, 2009) (MITRA; LAMPE,

2010) (GILBERT, 1960) it is expected that the proposed model performs very near to

established methods, even when no explicit channel assumptions are directly designed in

the NN architecture.

We employ a bidirectional RNN structure (GOODFELLOW; BENGIO; COURVILLE,

2016) (SCHUSTER; PALIWAL, 1997) based on architectures presented in (KIM et al.,

2018) (CELIK et al., 2020). The architecture employs GRU units (CHO et al., 2014) as

memory learning structures. The bidirectional RNN formulation permits the training to be

done simultaneously in positive and negative time direction (SCHUSTER; PALIWAL, 1997)

which holds similarity with the forward-backward HMM algorithms and allows the NN to learn

about channel memory from past and future timesteps. Convolutional and fully connected

layers are also present which is typical for NNs, the full architecture is shown in Table 1.

Since we are dealing with a regression task, we employ the mean squared error

(MSE) loss function

J(σ̂,σ) =
1

Λ

Λ∑
k=1

ts∑
i=1

(σ̂si − σsi)
2, (18)

where Λ is the batch size, chosen as 32, and ts is the number of considered timesteps per

input frame, chosen as 736. The choice of ts has a practical importance for the model. It must

be noted that although one may argue that a more convenient choice of ts is the input frame

size itself, the length of y (T = I × Ic = 14720). This choice would result in an unnecessarily
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Table 1 – Employed NN architecture.

Layer Type Nodes/Activation Output Dimension (Λ = 32, ts = 736)
Input Layer - (Λ, ts, 1)

Convolutional 1-Dimensional 32/relu (Λ, ts, 32)
Convolutional 1-Dimensional 32/linear (Λ, ts, 32)

Batch Normalization - (Λ, ts, 32)
Bidirectional GRU 70× 2/tanh (Λ, ts, 140)

Batch Normalization - (Λ, ts, 140)
Bidirectional GRU 40× 2/tanh (Λ, ts, 80)

Batch Normalization - (Λ, ts, 80)
Bidirectional GRU 30× 2/tanh (Λ, ts, 60)

Time Distributed Fully Connected 30/relu (Λ, ts, 30)
Time Distributed Fully Connected 10/relu (Λ, ts, 10)
Time Distributed Fully Connected 1/linear (Λ, ts, 1)

long architecture size since the number of nodes should be chosen accordingly. Therefore,

we make the practical choice of using ts =
T
20

= 736 which is long enough to capture channel

memory while preserving a practical network size. We then employ the model repeatedly for

20 contiguous subsequences yq of y, 1 ≤ q ≤ 20, with

yqi = yi, 1 + (q − 1)ts ≤ i ≤ qts, (19)

and take yq as input to the NN applying

σ̂q = N(yq), (20)

and obtain the final σ̂, of length T , by concatenation of σ̂q, 1 ≤ q ≤ 20.

The training phase is done using Adam optimizer (KINGMA; BA, 2015) with learning

rate lr = 10−3. Two heuristics are used to control training convergence: training iterations

are only stopped when the cost function stagnates for 10 iterations on a hold-out validation

set and the learning rate lr is reduced by a factor of 10 if the cost function stagnates for

4 iterations on the same validation set (RASKUTTI; WAINWRIGHT; YU, 2011). For each

training iteration, a new dataset batch is created by simulating Figure 1 diagram with a

random message m, and we take y to construct the NN input yq as in (19). The target

sequence σ, which holds the actual value of standard deviation realized by the channel

model M at each timestep i, that is σ = σsi , 1 ≤ i ≤ T is obtained by the NN mapping (20).

An important practical issue is the choice of the ζ value for the training set (KIM et

al., 2018) (GRUBER et al., 2017) (GEORGE; HUERTA, 2018) (TANDLER et al., 2019). If

the NN is trained on high ζ, it is not suited to lower ζ as the NN tends to learn suboptimal

representations that are insufficient to make extrapolations (BJORNSON; GISELSSON,

2020), while if it is trained on low ζ, the model might not learn at all because the training

data may be overly corrupted to represent the system in a reliable way.
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Figure 7 – Standard deviation σsi prediction by NN over a two-state Markov-Gaussian chan-
nel, PB = 0.1, κ = 100, µ = 0.97, ζ = 3.5 dB. The solid black line indicates the
noise standard deviation σsi at each timestep, the solid red line indicates the NN
model noise standard deviation prediction σ̂si .
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Source: The author (2021)

The approach in (KIM et al., 2018) chooses the training ζ value as min{ζtest, 0dB}.
A specific metric (normalized validation error) is proposed in (GRUBER et al., 2017) to

measure the accuracy of the training ζ. In (TANDLER et al., 2019), a priori ramp-up scheme

modifies the probability distribution of the input sequence during training.

The chosen heuristic for the choice of training ζ is adapted from (KIM et al., 2018),

where some guidelines are proposed. In this chapter, for each training batch the data ζ is

chosen by sampling a continuous uniform distribution on an interval defined according to the

desired use case scenario, which depends on the considered simulation. A plausible range

was empirically determined as [2.5dB, 5dB]. The validation dataset ζ is made higher than

the training case, which will select models that are able to generalize well for higher ζ values,

tipically it is used [3.75dB, 5dB]. Deviations from these intervals are stated in Section 2.5 if

needed.

Similarly to Figures 5 and 6 in the HMM case, the instantaneous standard deviation

prediction done by the NN are shown in Figures 7 and 8. As before, Figure 7 shows the

µ = 0.97 channel, in which it can be seen a high model prediction accuracy. Figure 8 shows

a similar phenomenon to Figure 6, as lower channel memory directly translates to lower

model accuracy, in particular around state transitions samples.
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Figure 8 – Standard deviation σsi prediction by NN over a two-state Markov-Gaussian chan-
nel, PB = 0.1, κ = 100, µ = 0.70, ζ = 3.5 dB. The solid black line indicates the
noise standard deviation σsi at each timestep, the solid red line indicates the NN
model noise standard deviation prediction σ̂si .
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Source: The author (2021)

The NN is trained under the same considerations as in Section 2.3.3. Although

differently from HMM training, the NN is trained directly with received sequences y, which

aims to decouple the noise state and standard deviation predictions for more general

settings.

2.5 RESULTS

We present simulation results considering three different scenarios, in which we

compare the performance of the CEM presented in the previous sections (KSMLD, FBA,

BWA, NN). The parameters of the LDPC code are (1472, 704, 32). The interleaver depth

is fixed to I = 10 for consistence across the simulated scenarios, which performs well in

various settings. The performance curves are given in terms of the bit error rate (BER) versus

the ζ defined in (3).

It should be noted that under LDPC coding and burst error hyphotesis, it is known that

the error floor phenomenon should occur for some ζ (MITRA; LAMPE, 2010) (NURELLARI;

İNCE, 2012) which affects the BER curve’s slope. Nevertheless, the performance compar-

isons are made relatively to the KSMLD metric since the channel estimation procedure

targets recovery of the channel memory, which is assumed perfect in KSMLD.
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Figure 9 – BER versus ζ for the two-state Markov-Gaussian channel with κ = 100,
PB = 0.1, and two values of channel memory: µ = 0.97 (solid lines) and
µ = 0.6 (dashed lines).
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Figure 9 presents performance comparisons for two values of µ, indicating high

channel memory (µ = 0.97, in continuous line) and low channel memory (µ = 0.6, in dashed

lines), κ = 100, PB = 0.1. The performance at high memory configuration is close to

that of the KSMLD for all analyzed CEM scenarios. For the lower memory scenario, it is

expected that performance is reduced due to lower noise temporal correlation and more

frequent transitions between states. The results indicate that the proposed NN is able to

match traditional CEM strategies even when relaxing the channel model assumptions and

provides an alternative method to the frequently considered FBA and BWA schemes.

The second scenario investigates the effect of channel parameter mismatch, which

represents not only training imperfections, but also a possible deviation from the assumed

channel model. Here we assume that for each interleaver block of size I×nc the parameters

µ and κ of the two-state channel are drawn from a truncated Gaussian PDF centered at 0.9

(with standard deviation 0.1) and 60 (with standard deviation 20), respectively (the actual

values of these parameters are µ ≜ min(0.99, x) and κ ≜ max(10, x), where x is a sample

from the corresponding Gaussian PDF). The training dataset for the BWA and NN considers

the variation of these two channel parameters and the FBA considers fixed parameters, the

average values (µ = 0.9 and κ = 60) as well as an underestimation of channel memory

(µ = 0.6 and κ = 60).

The curves in Figure 10 indicate that considered CEM are robust to small deviations

of the channel parameters. The robustness of the HMM FBA for a variant of this scenario

is discussed in (FERTONANI; COLAVOLPE, 2009). It is empirically seem that the BWA

estimates its channel parameters Ω based on the mean of both µ and κ, which translates
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Figure 10 – BER versus ζ for the two-state Markov-Gaussian channel. The channel parame-
ters µ and κ are drawn from a Gaussian PDF with mean 0.9 and 60, respectively.
PB = 0.1.
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to a minor performance impact, since the FBA with µ = 0.9 performs very similarly to

BWA. A performance degradation is observed for the FBA µ = 0.6, since the low channel

memory hypothesis is unable to fully utilize the actual channel memory, which is higher than

the assumed µ = 0.6. This means that the underestimation of the channel memory can

provoke performance degradation. The NN is able to replicate the performance of other CEM

strategies, as in the previous scenario.

The third scenario is a generalization of the two-state Markov-Gaussian channel

where the number of states is allowed to vary. Three possible channel configurations are

selected with equal probability in each interleaver block of size I × nc. This approach seeks

to evaluate the flexibility of the employed CEM under deviation from the traditional setting.

The channel parameters (with 1 good and (n− 1) bad states) for each configuration are:

P 1 =

[
0.997 0.003

0.027 0.973

]
, κ1 = 100, (21)

P 2 =

0.990 0.008 0.002

0.026 0.960 0.014

0.010 0.030 0.960

 , κ2 = [10, 100], (22)
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P 3 =


0.950 0.040 0.010 0.000

0.300 0.500 0.150 0.050

0.100 0.300 0.500 0.100

0.000 0.100 0.400 0.500

 ,κ3 = [10, 60, 100], (23)

where each entry of the vector κ is the ratio of the variance of the corresponding bad state

to σ2
G.

One difficulty that must be addressed is how to properly train the Markov-Gaussian

channel in this scenario, since the BWA assumes that the number of states is known. We

present BWA training using the assumption that the channel has either 2 or 4 states. The

first case indicates a scenario where an insufficient number of states is assumed, and the

second one represents a better channel configuration guess. Figure 11 shows the BER

for this scenario. Since this scenario has lower expected performance, indicated by the

KSMLD reference curve, it is required higher ζ for similar BER performance compared to

that obtained in previous scenarios. BWA and NN are trained using a different ζ interval [5

dB, 7.5 dB] and validation interval [6.0 dB, 7.0 dB]. The FBA is also taken as a benchmark,

since the channel parameters are assumed to be known in each interleaver block, and

therefore, the randomness of the channel configuration is not relevant for this model. The

results indicates that the NN model is able to learn a suitable channel representation solely

from the provided dataset, while the BWA is susceptible to the number of states mismatches,

although it is still possible to maintain a good performance if some channel knowledge is

assumed, as indicated by the BWA four-state model. The BWA two-state model suffers

severely in performance, as it is unable to represent the channel behavior.

It is noticed that the two CEM that estimate the channel configuration (BWA and

NN) suffer performance degradation for high ζ since their BER curves do not follow the

slope of the KSMLD and FBA benchmarks. This effect can be explained by two factors: (i) a

wider range of ζ is used in the training phase, and the ζ mismatch affects the BER for high

ζ values (GRUBER et al., 2017); (ii) since in this scenario the channel estimation task is

harder, the CEM has greater difficulty in accurately estimating the channel characteristics,

resulting in a worse performance for low BER since higher estimation precision is required in

this BER range.

The NN based model can be seen as a more flexible approach to the traditional CEM

for the Markov-Gaussian channel. Nevertheless the best possible HMM usage where some

channel consideration is assumed, such as the knowledge of the ζ or the number of states,

is unbeatable in the presented simulations.
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Figure 11 – BER versus ζ curves for the Markov-Gaussian channel with 2, 3 or 4 states.
One of three presented channel configurations is selected with equal probability
in each interleaver block.
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2.6 FINAL CONSIDERATIONS

This chapter discussed different CEM strategies for LDPC decoding over bursty

channels modeled by the Markov-Gaussian channel. The traditional CEM approaches were

compared to a proposed alternative based on NN. The NN is able to match established

performance results in settings previously considered in literature, which indicates that it

is a suitable alternative to the proposed task, while being entirely data-driven. In the HMM

usage, some channel consideration is assumed, such as the knowledge of the SNR or the

number of states. It is also important to note that the HMM performs its forward-backward

algorithm in O(N2T ) time complexity (N being the number of states and T the number

of observations). While the neural network complexity cannot be calculated in the same

manner, we employ a network architecture which is linear in the number of observations.

In some channel mismatch scenarios, it is possible that the lack of NN assumptions

about the channel model directly translates to a performance gain if the assumptions adopted

by either FBA or BWA are violated. The NN is a flexible model designed to work in a wider

variety of settings while no additional modification in its architecture is required, apart from

the training dataset.
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3 NON-ORTHOGONAL MULTIPLE ACCESS

Channel resource sharing techniques have been gaining importance due to the

necessity of achieving higher spectral efficiency in the next generations of wireless communi-

cations systems (SAAD; BENNIS; CHEN, 2020). Among them, power domain non-orthogonal

multiple access (NOMA) is an important technique in accomplishing this task (DING et al.,

2017), which is also frequently linked to 5G technologies (BUDHIRAJA et al., 2021). In this

scheme, signals from multiple users with different power levels share the same channel

resources, and the successive interference cancellation (SIC) is the usual decoding method,

in which the decoding at each user is performed sequentially according to the ordering of

their power levels.

A pictorial comparison between orthogonal multiple access (OMA) and NOMA is

shown in Figure 12, where OMA is represented by time-division multiple access (TDMA)

and frequency-division multiple access (FDMA), in which the users can be separated by

their time or frequency resources, respectively. On the other hand, in the NOMA scheme the

users share the same frequency resources.

Two subdivisions are typically considered in the NOMA case: uplink and downlink

NOMA, which are illustrated in Figures 13 and 14, respectively. In the uplink scenario, multiple

users, denoted by ui, transmit their data to a base station (BS) using the same channel

resource. In the downlink scenario, the BS transmits samples which holds informations

pertinent to all users in the same channel resource. More precise formulations are shown

along the chapter.

Multiple analytical expressions for NOMA system performance have been derived

under different assumptions and scenarios (WANG; LABEAU; MEI, 2017; WEI et al., 2020;

ASSAF et al., 2020b; LEE; KIM, 2019; HE; HU; SCHMEINK, 2019; ALMOHIMMAH; AL-

RESHEEDI, 2020; KARA; KAYA, 2020b; ASSAF et al., 2019; KARA; KAYA, 2019; GARNIER

et al., 2020; LUO et al., 2021; ALDABABSA et al., 2020; HAN et al., 2021; WANG et al.,

Figure 12 – Comparison OMA vs NOMA. Colors indicate how different users share channel
resources.
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Figure 13 – Uplink NOMA scheme.
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Figure 14 – Downlink NOMA scheme.
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2021; YEOM et al., 2019; KARA; KAYA, 2018; KARA; KAYA, 2020a). A two-user uplink

scheme with QPSK is analyzed in (WANG; LABEAU; MEI, 2017) and with BPSK/QPSK

in (WEI et al., 2020). In (HE; HU; SCHMEINK, 2019; LEE; KIM, 2019; ASSAF et al., 2020b;

ALMOHIMMAH; ALRESHEEDI, 2020), two downlink users with arbitrary modulation order

are considered. In (KARA; KAYA, 2020b), the same scenario is analyzed under imperfect

channel state information assumption. The three-user scenario is considered for downlink

with QPSK (ASSAF et al., 2019), and space-shift keying (KARA; KAYA, 2019). In (GARNIER

et al., 2020), theoretical analysis and experimental validation are done for multi-user down-

link. Arbitrary users analysis is considered in (LUO et al., 2021; ALDABABSA et al., 2020;

EMIR et al., 2021; HAN et al., 2021). Imperfect SIC modeling is done in (ALDABABSA et

al., 2020; CHEN; JIA; NG, 2019; WANG et al., 2021; KARA; KAYA, 2020b) by considering
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different approaches for the error propagation phenomenon. In (ALDABABSA et al., 2020),

the interference caused by SIC decoding is modeled by a zero-mean Gaussian random

variable. A linear model to represent imperfect SIC is employed in (CHEN; JIA; NG, 2019).

In (WANG et al., 2021), a precise analysis of imperfect SIC is considered for the two-user

downlink case.

To the best of our knowledge, sufficient power spacing between users is generally

assumed, to avoid unnecessary interference. In (IRAQI; AL-DWEIK, 2021), power allocation

conditions are presented for QAM-based systems while requiring low interference between

users. Traditionally, the usage of SIC in scenarios where interference is significant results

in error floor (EMIR et al., 2021; ALDABABSA et al., 2020; KARA; KAYA, 2020a), in which

inadequate power allocation between users can increase the error propagation in SIC

decoding (LUO et al., 2021). In particular, results from (EMIR et al., 2021) suggest that the

usage of a NN based decoding scheme is capable of decisively outperforming the traditional

SIC decoding. Therefore, we also consider in this chapter the scenario where arbitrary

interference is present and an SIC modification is employed to handle decoding in high

interference imperfect SIC cases by exploiting channel gain knowledge.

We consider an uplink/downlink scenario where three users using QPSK modulation

communicate with a BS. There is no restriction under the channel gain parameters (apart

from the ordering restriction). The number of users is chosen aiming to generalize the

usual two-user scenario, enabling the presence of more subtle phenomenona, while also

preserving lower complexity than the arbitrary number of users case and allowing better

results visualization.

We propose a decision region modification for the first step in SIC decoding that is

able to justify and replicate the improved performance in DL based methods (EMIR et al.,

2021) in situations where channel gain parameters are assumed to be known at the decoder.

The proposed method enables classical techniques to be used in the analysis of

the system performance and decoder implementation, which contributes to results inter-

pretability and possible extensions to more generalized scenarios. We also present an

analytical expression for the symbol error rate (SER) of the first decoding step where the

modified decision region is used, and approximate formulas for the SER of the other users.

Comparisons between simulated and analytical results are conducted and we employ our

results to justify a power allocation analysis where users are constrained to transmit a limited

amount of power. We also present a joint parameter analysis using heatmaps which enables

a more general overview and intuition about system performance. Although the analysis

is initially done focusing on the uplink scenario, we utilize an theoretical adaptation which

enables the extension of the uplink scenario to the downlink one.

The rest of this chapter is structured as follows. We define the uplink communication

system and present the proposed decoder in Section 3.1. In Section 3.2, we present an
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analytical SER analysis for the proposed decoder. In Section 3.3, we present various SER

results for the considered scenarios. We extend previous results to downlink scenario in

Section 3.4 and also present simulation results. Finally, in Section 3.5 we discuss final

considerations for this chapter.

3.1 COMMUNICATION SYSTEM

We consider a power-domain uplink NOMA system consisting of a single-antenna BS

and three single-antenna users. We consider that the complex channel coefficients between

the user i and the BS, denoted by h′
i, i ∈ {1, 2, 3}, are perfectly known at the BS (ASSAF et

al., 2020a). For coherent detection, given that the phase of h′
i is compensated perfectly, the

received signal y = (yI , yQ) is given by

y =
3∑

i=1

|h′
i|
√

Pixi + n, (24)

where Pi is the transmitted power of the user i, xi is a unit energy QPSK symbol transmitted

by user i, xi ∈ A = {(± B, ±B)}, B =
√
2/2, and n = (nI , nQ) is the AWGN noise

modeled as a zero-mean Gaussian random variable with variance N0/2 per dimension. We

define hi ≜ |h′
i|
√
Pi as the multiplicative term of the symbol xi and consider hi fixed during

transmission. Users are labeled according to h1 > h2 > h3.

The received signal is decoded at the BS using the SIC technique, following the order

indicated by the multiplicative term hi. In the considered scenario, user 1 is decoded first,

followed by user 2 and user 3. The estimated symbols for each user x̂i, i ∈ {1, 2, 3}, are

obtained as follows. The user 1 symbol is directly decoded by treating the symbols of the

remaining users as interference

x̂1 = argmin
j
|y − h1xj|2, (25)

where xj ∈ A, and the argminj notation indicates that we take the corresponding xj which

minimizes the evaluated expression. In the sequel, the interference from user 1 is subtracted

from the received vector yielding y2 ≜ y − h1 x̂1. Thus

x̂2 = argmin
j
|y2 − h2xj|2. (26)

Finally, the estimation of x3 is achieved from y3 ≜ y2 − h2 x̂2 as

x̂3 = argmin
j
|y3 − h3xj|2. (27)

3.1.1 Proposed SIC Decoder

We consider the 64 possible signals y in absence of AWGN noise in (24) for different

configurations of the parameters hi (the combination of three QPSK users creates a 64-

NOMA constellation). In the three-user case, the inequality D : h1 > h2 + h3 determines the



41

Figure 15 – Received constellation for the 64 possible combinations of transmitted symbols,
for a given h1, h2 and h3, for D (Figure 15a) and D cases (Figure 15b). Back-
ground colors indicate the decision regions.
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Source: The author (2021).

distribution of the signals in the I/Q plane. If D is satisfied, all transmitted symbols from user

1 remain in their respective quadrant for any combination of the transmitted symbols from

users 2 and 3. If D is not satisfied, denoted by D, the interference from users 2 and 3 is

able to modify the quadrant of the symbol transmitted from user 1.

Figure 15 shows, for a given h1, h2 and h3, the received constellations (in the

absence of noise) for the cases D (Figure 15a) and D (Figure 15b). For both figures, the

colors of each signal indicate the transmitted symbol from user 1. The background colors

indicate the decision regions for the cases D and D (using the minimum euclidean distance

criterion). Figure 15b provides an intuitive explanation to the error floor phenomenon for the

case D when the traditional SIC is used. In this scenario, 28 out of 64 symbols are moved

outside of their respective quadrants, which results in decoding errors in the traditional

SIC algorithm for user 1 (even in the noiseless scenario), and additionally, causes error

propagation at the decoding of users 2 and 3.

Therefore, the first step of the proposed decoder is the evaluation of the inequality D.

If it is satisfied, we employ the traditional SIC decoding for user 1. Otherwise, we employ the

customized decision regions in the SIC decoding of this user, following Figure 15b, and the

traditional SIC algorithm for the remaining users, since the correct estimation of x1, x̂1, is

sufficient to remove the error floor phenomenon in the decoding of users 2 and 3 (due to

h2 > h3). We do not consider the situation h1 = h2 + h3, since this equality means that

there exist combinations of transmitted symbols that are mapped into the same received

constellation symbol.

It is necessary to determine in Figure 15b the threshold that separates decision
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regions with different background colors. For instance, we consider two symbols indicated by

red circles in Figure 15b, which are associated with different transmitted symbols from user 1.

The in-phase (I) components of these symbols are Bh1−Bh2+Bh3 and−Bh1+Bh2+Bh3,

which indicates that the in-phase threshold L = Bh3 separates the corresponding yellow

and dark cyan regions. Due to the constellation symmetry, analogous thresholds separate

the other regions at ±Bh3 at both in-phase and quadrature (Q) components, beyond the

trivial threshold 0 which separates the quadrants. The thresholds at I = L and Q = L are

shown in black dashed lines in Figure 15b.

The procedure Modified-SIC is given in Algorithm 1. The inputs are the parameters

h1, h2, h3, and y = (yI , yQ), and the outputs are the decoded symbols x̂1, x̂2, x̂3. At the

given pseudocode, line 1 evaluates the inequality D and decides which decision regions are

adopted for user 1. The loop in line 4 seeks to obtain x̂1 by determining in which of the 16

disjoint decision regions in Figure 15b y lies. For such, the If in line 7 performs reflections

in I/Q components enabling the evaluation of boolean variables reg1, reg2, reg3, reg4 in

lines 14, 15, 16 and 17. The variable regk indicates that y belongs to the k-th region of the

same background color in Figure 15b (there are four disjoint regions of the same background

color, which is always true for the D case). The rest of the procedure from line 20 is identical

to the traditional SIC.

Since Algorithm 1 fixes the number of users as three, the application of the proposed

technique in scenarios with more users may be achieved by employing auxiliary techniques

such as pairing algorithms (RAUNIYAR; ENGELSTAD; ØSTERBØ, 2020). In a typical

scenario, N users are split into clusters, each one with a subset of users. The proposed

method allows the formation of clusters of three users with high interference.

3.2 SER ANALYSIS

In this section, we present a closed-form SER expression, with respect to the pa-

rameters hi and the SNR, for user 1, and SER approximations for users 2 and 3 (following

some simplifications presented in (KARA; KAYA, 2020b)). As shown in Section 3.3, the

performance of user 1 has high influence on the performance of the other users due to SIC

error propagation. Thus, the SER for user 1 serves as an indicator to the overall performance.

We consider different expressions conditioned to the veracity of the inequality D.

Let P (c1) be the probability of decoding a correct symbol for user 1. We first compute the

probability of a correct decoding for user 1 for the case D, by initially fixing the transmitted

symbol, P (c1 | D,x1 = (B,B)). Then, we divide the 16 symbols of the received constellation

(considering x1 = (B,B)) in ten cases, as indicated in Figure 16. We assume that all

symbols have equal probability of being transmitted. By symmetry, P (c1 | D) = P (c1 |
D,x1 = (B,B)). Then,
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Algorithm 1: Modified-SIC
Input: y, h1, h2, h3

Output: x̂1, x̂2, x̂3

1 if D : h1 > h2 + h3 then
2 x̂1 ← argminj |y − h1xj|2 // xj ∈A

3 else
4 for j = 1 to 4 do
5 y′I ← yI // in-phase component
6 y′Q ← yQ // quadrature component
7 if j = 2 then
8 y′I ← −y′I
9 else if j = 3 then

10 y′Q ← −y′Q
11 else if j = 4 then
12 y′I ← −y′I
13 y′Q ← −y′Q

// regk is a boolean variable which indicates if (y′I , y
′
Q)

belongs to region k.
14 reg1 ← (y′I > L and y′Q > L)
15 reg2 ← (y′I < 0 and y′I > −L and y′Q > L)
16 reg3 ← (y′I > L and y′Q < 0 and y′Q > −L)
17 reg4 ← (y′I < 0 and y′I > −L and y′Q < 0 and y′Q > −L)
18 if reg1 or reg2 or reg3 or reg4 then
19 x̂1 ← xj

20 y2 ← y − h1x̂1

21 x̂2 ← argminj |y2 − h2xj|2
22 y3 ← y2 − h2x̂2

23 x̂3 ← argminj |y3 − h3xj|2

P (c1 | D) =
1

16

∑
xa∈A

∑
xb∈A

P (c1|D,x1 = (B,B),x2 = xa,x3 = xb) (28)

=
1

16
{P (c1|#1) + P (c1|#5) + P (c1|#7) + P (c1|#10)

+2[P (c1|#2) + P (c1|#3) + P (c1|#4) + P (c1|#6)

+ P (c1|#8) + P (c1|#9)]}. (29)

Expressions for each probability in (29) are shown in (30)-(39), at the top of next page,

with respect to h1, h2, h3 and the SNR, defined as SNR ≜ ρ ≜ 1/N0. For each of the ten

cases, we disregard the probability of the AWGN noise moving a symbol between disjoint

regions with the same background color. This is an adequate consideration for practical SNR

situations, as is shown in Section 3.3, in which we compare analytical and simulation results.
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Figure 16 – Resulting constellation by fixing x1 = (B,B), case D. The ten cases considered
in derivation of the SER expression are indicated.
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P (c1|#1) = P (−Bh3 < B(h1 − h2 − h3) + nI < 0)P (−Bh3 < B(h1 − h2 − h3) + nQ < 0) (30)

= (Q(−B
√

2ρ(h1 − h2))−Q(−B
√
2ρ(h1 − h2 − h3)))

2

P (c1|#2) = P (Bh3 < B(h1 − h2 + h3) + nI <∞)P (−Bh3 < B(h1 − h2 − h3) + nQ < 0) (31)

= (Q(−B
√
2ρ(h1 − h2)))(Q(−B

√
2ρ(h1 − h2))−Q(−B

√
2ρ(h1 − h2 − h3)))

P (c1|#3) = P (Bh3 < B(h1 + h2 − h3) + nI <∞)P (−Bh3 < B(h1 − h2 − h3) + nQ < 0) (32)

= (Q(B
√
2ρ(2h3 − h1 − h2))) (Q(−B

√
2ρ(h1 − h2))−Q(−B

√
2ρ(h1 − h2 − h3)))

P (c1|#4) = P (Bh3 < B (h1 + h2 + h3) + nI <∞)P (−Bh3 < B(h1 − h2 − h3) + nQ < 0) (33)

= (Q(−B
√

2ρ(h1 + h2))) (Q(−B
√

2ρ(h1 − h2))−Q(−B
√
2ρ(h1 − h2 − h3)))

P (c1|#5) = P (Bh3 < B(h1 − h2 + h3) + nI <∞)P (Bh3 < B(h1 − h2 + h3) + nQ <∞) (34)

= (Q(−B
√

2ρ(h1 − h2)))
2

P (c1|#6) = P (Bh3 < B(h1 + h2 − h3) + nI <∞)P (Bh3 < B(h1 − h2 + h3) + nQ <∞) (35)

= (Q(B
√
2ρ(2h3 − h1 − h2)))(Q(−B

√
2ρ(h1 − h2)))

P (c1|#7) = P (Bh3 < B(h1 + h2 − h3) + nI <∞)P (Bh3 < B(h1 + h2 − h3) + nQ <∞) (36)

= (Q(B
√
2ρ(2h3 − h1 − h2)))

2

P (c1|#8) = P (Bh3 < B(h1 + h2 + h3) + nI <∞)P (Bh3 < B(h1 − h2 + h3) + nQ <∞) (37)

= (Q(−B
√

2ρ(h1 + h2)))(Q(−B
√
2ρ(h1 − h2)))

P (c1|#9) = P (Bh3 < B(h1 + h2 + h3) + nI <∞)P (Bh3 < B(h1 + h2 − h3) + nQ <∞) (38)

= (Q(−B
√

2ρ(h1 + h2)))(Q(B
√
2ρ(2h3 − h1 − h2)))

P (c1|#10) = P (Bh3 < B(h1 + h2 + h3) + nI <∞)P (Bh3 < B(h1 + h2 + h3) + nQ <∞) (39)

= (Q(−B
√

2ρ(h1 + h2)))
2
.
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Figure 17 – Resulting constellation by fixing x1 = (B,B), case D. The ten cases considered
in derivation of the SER expression are indicated.
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Substituting (30)-(39), into (29) yields

P (c1|D) =
1

16
[2Q(−B

√
2ρ(h1 − h2))

−Q(−B
√
2ρ(h1 − h2 − h3)) (40)

+Q(−B
√

2ρ(h1 + h2 − 2h3))

+Q(−B
√
2ρ(h1 + h2))]

2.

An analogous procedure is applied to obtain P (c1 | D), where the probabilities in (29) are

indicated in Figure 17. This calculation is performed in (HAN et al., 2021, Eq. (58)) yielding

P (c1|D) =
1

16
[Q(−B

√
2ρ(h1 + h2 + h3))

+Q(−B
√
2ρ(h1 − h2 + h3)) (41)

+Q(−B
√

2ρ(h1 + h2 − h3))

+Q(−B
√
2ρ(h1 − h2 − h3))]

2.

Expressions (40) and (41) provide a SER expression which covers all inputs for Algorithm 1.

We now procede to compute approximate analytical expressions for users 2 and 3. Let P (e1)

be the probability of decoding an erroneous symbol for user 1. The conditional SER for user

1 is P (e1 | X) = 1− P (c1 | X), X ∈ {D,D}. To derive an approximate expression for the

conditional probability of a correct decoding for user 2, we consider as a necessary condition
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Figure 18 – Received constellation y2 for all 16 combinations of transmitted symbols from
users 2 and 3. We consider that the transmitted symbols from user 1 are correctly
decoded and subtracted from the received signal.
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the correct decoding for user 1. This consideration is done in (KARA; KAYA, 2020b) in a

two-user scenario in which it is argued that by considering x̂1 ̸= x1, the subtraction of vector

h1x̂1 in line (20) of a procedure analogous to Algorithm 1, the energy of the subtracted

vector is bigger than the energy of the user 2, causing a decoding error. Therefore,

P (c2|X) ≈ P (c2|c1)P (c1|X), X ∈ {D,D}, (42)

where P (c1|X) is given either by (40) or (41), for cases D and D, respectively, and P (c2|c1)
refers to the conditional probability of a correct decoding for user 2, given a correct decoding

for user 1. This probability corresponds to the same uplink NOMA scenario, but considering

only two users, since

y − h1x1 ≜ y2 = h2x2 + h3x3 + n. (43)

The signal constellation from (43) is shown in Figure 18. The calculation of P (c2|c1) is a

simplified version of P (c1|D). This is in (HAN et al., 2021, Eq. (14)):

P (c2 | c1) =
1

4

∑
xa∈A

P (c2 | c1,x2 = (B,B),x3 = xa)

=
1

4
{P (c2|c1,#1) + 2P (c2|c1,#2) + P (c2|c1,#3)} (44)

=
1

4
[Q(−B

√
2ρ(h2 − h3)) +Q(−B

√
2ρ(h2 + h3))]

2.
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Expressions for probabilities indicated in (44) are

P (c2|c1,#1) = P (0 < B(h2 − h3) + nI <∞)P (0 < B(h2 − h3) + nQ <∞) (45)

= (Q(−B
√

2ρ(h2 − h3)))
2

P (c2|c1,#2) = P (0 < B(h2 − h3) + nI <∞)P (0 < B(h2 + h3) + nQ <∞) (46)

= Q(−B
√

2ρ(h2 − h3))Q(−B
√
2ρ(h2 + h3))

P (c2|c1,#3) = P (0 < B(h2 + h3) + nI <∞)P (0 < B(h2 + h3) + nQ <∞) (47)

= Q(−B
√

2ρ(h2 + h3))
2
.

For user 3, we apply again the consideration of correct decoding for users 1 and 2 as a

necessary condition to the correcting decoding of user 3. Therefore

P (c3|X) ≈ P (c3|(c2 ∩ c1))P (c2 ∩ c1|X), X ∈ {D,D}. (48)

This step is not correct in general, although we will empirically verify it for most hi in

Section 3.3. It is possible that decoding of users 1 and 2 are incorrect and user 3 correct.

In some cases, SER of user 3 is much lower than users 1 and 2, as shown in Section 3.3.

Nevertheless, this consideration simplifies greatly the SER computation and is correct for

the majority of cases, thus it is employed here. In the literature, it is commonly considered

different restrictions in the problem formulation which simplify the problem. For example,

in (HAN et al., 2021), a spacing restriction under the values of hi is imposed resulting in the

above argument correct for all valid hi.

We consider that P (c2 ∩ c1|X) = P (c2|X) and P (c3|(c2 ∩ c1)) = Q2(−Bh3

√
2ρ)

is the SER of the QPSK constellation with symbols at (±Bh3,±Bh3), since:

y2 − h2x2 ≜ y3 = h3x3 + n, (49)

and

P (c3|(c2 ∩ c1)) = P (0 < Bh3 + nI <∞)P (0 < Bh3 + nQ <∞) (50)

= (Q(−Bh3

√
2ρ))

2
.

3.3 RESULTS

In the analyses conducted in this section we consider h3 = 1 and vary the parameters

h1, h2, and SNR. Different values for h3 yield similar results. We utilize the convention to

define the parameters hi by the relation h2
i = h2

i+1 + ξi (dB), i = 1, 2, and h2
3 = 0 (dB).
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Figure 19 – Simulated and analytical SER comparison for each user considering ξ1 = ξ2 =
3 dB (case D). The solid lines represent the analytical solution, whereas the
circled markers indicate the simulation results.
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Therefore, we consider the SER system performance with respect to ξ1, ξ2, and SNR, and fix

one or two variables resulting in, respectively, a two-dimensional or a one-dimensional plot.

For all figures presented in this section, we denote by colors blue, green and red the users

1, 2 and 3, respectively. Circle markers indicate simulated results and solid lines indicate

analytical ones presented in Section 3.2, unless otherwise stated.

We consider some scenarios to compare simulated and analytical SER for each

user. In the first one, shown in Figure 19, we fix ξ1 = ξ2 = 3 dB (case D) and vary the

SNR. In another one, the SNR is fixed at 13 dB and 18 dB, and we consider the restriction

ξ = ξ1 = ξ2 and vary ξ, as shown in Figures 20 and 21, respectively. These figures show

a good agreement between analytical and simulation results for users 1 and 2 and some

disagreement for user 3 for some choices of ξ in the high SER/low SNR region. As already

discussed in Section 3.2, the derived analytical SER considers the correct decoding of the

previous users, and therefore, P (e1) ≤ P (e2) ≤ P (e3), which is not correct for all values of

ξ1 and ξ2, as shown by the simulated results in Figures 20 and 21. The analytical curves for

users 2 and 3 are almost identical.

We focus our analysis on Figures 20 and 21, where it is indicated special values

of ξ with dashed vertical lines. These values are obtained by employing the restriction

ξ = ξ1 = ξ2 in combination with the specified scenario in each case. The threshold for the

inequality D (indicated in the figure by ξD) corresponds to ξD = 20 log10
(
1+

√
5

2

)
≈ 4.18 dB,

which is obtained by combining the inequality D with the ξi definition, under the restriction
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Figure 20 – Simulated and analytical SER comparison for each user under the restriction
ξ = ξ1 = ξ2. SNR = 13 dB. The solid lines represent the analytical solution,
whereas the circled markers indicate the simulation results.
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Figure 21 – Simulated and analytical SER comparison for each user under the restriction
ξ = ξ1 = ξ2. SNR = 18 dB. The solid lines represent the analytical solution,
whereas the circled markers indicate the simulation results.
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ξ = ξ1 = ξ2. The SER for the case D (region to the right of ξD) decreases monotonically

with increasing ξ. For the case D (region to the left of ξD), the SER dependence on ξ is not

monotonic, with an optimal spacing, denoted by ξ⋆, for each user. It is also important to note

that the optimal spacing ξ⋆ for user 1 does not always correspond to optimal ξ⋆ for other

users. A meaningful result obtained by comparing Figures 20 and 21 is the dependence of

the optimal spacing with the SNR. For user 1 and SNR = 13 dB (Figure 20), ξ⋆ = 2.83 dB,

while for SNR = 18 dB (Figure 21), ξ⋆ = 2.75 dB. Both values agree with the simulations and

can be obtained numerically from the provided SER expression and employing the restriction

ξ = ξ1 = ξ2.

We also show in Figures 20 and 21 a special value ξC = 20 log10
(
1+

√
3

2

)
≈ 2.71

dB, which refers to a choice of hi such that the points indicated by #1, #2, #3 and #4

in Figure 17 are symmetrically positioned in their respective regions, under the restriction

ξ = ξ1 = ξ2. In other words, if we choose ξ such that the point indicated by #1 in Figure 17

is at the coordinate (−L
2
, −L

2
), the center of its respective square, we obtain a suboptimal SER.

This can be explained by the fact that the placement of a constellation point must be done by

adjusting some hi, which also displaces other constellation points to unfavorable positions.

The hi adjustment can be done in a practical setting if the channel gains h′
i are assumed

to be known, since it is possible to select the transmitted power for each user and employ

hi ≜ |h′
i|
√
Pi. This result shows that the positioning of the constellation points in Figure 15b

should be done according to the SNR. The disjoint decision regions add complexity to the

optimal constellation design.

It should be noted that under case D, we have a non-monotonic behaviour. This

can be explained by the atypical disjoint decision regions. Figure 22 shows three receiving

constellations at the base station, similar to those shown in Figure 15, for extreme ξi values.

In Figure 22a, ξ = 1 dB, results in different user 1 symbols mapped to overlapping positions

under the specified SNR, at regions near |I| = L or |Q| = L, resulting in poor performance.

In Figure 22b, ξ = 2.7 dB, which is close to the optimal ξ⋆ value, resulting in well-spaced

constellation points and good performance. In Figure 22c, we consider a value of ξ close to

the threshold ξD (ξ = 4.1 dB), resulting in poor performance due to different symbols being

mapped to overlapping positions near I = 0 or Q = 0.

We now consider a scenario in which the SER of user 3 is significantly lower than that

of users 1 and 2, which occurs when h1 ≈ h2 and h2 is sufficiently larger than h3. Figure 23

shows the SER versus SNR of each user for ξ1 = 1.5 dB and ξ2 = 5 dB (case D). A possible

explanation for this phenomenon is that a decoding error at user 1 corresponds to a vector

addition of −h1x̂1, x̂1 ̸= x1, which can provoke an error at user 2, x̂2 ̸= x2, and subsequent

addition of −h2x̂2. It is also important to note that the errors at users 1 and 2 are correlated

due to the nature of the sequential SIC decoding, which can result in a cancellation of the

added error vectors, which in practice means that the symbol of user 3 is corrupted by
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Figure 22 – Received constellation for the 64 possible combinations of transmitted symbols
under constraint ξ = ξ1 = ξ2, and ξ < 4.18 dB, reflecting case D. SNR = 18 dB.
Refer to Figure 21 for SER curves for the same scenario.

Figure 23 – Simulation and analytical SER comparison for ξ1 = 1.5 dB and ξ2 = 5 dB, and
therefore case D. The solid lines represent the analytical solution, whereas the
circled markers indicate the simulation results.
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an error propagation factor proportional to B(h1 − h2), which is not necessarily sufficient

to cause an error at user 3. The exact scenarios where the analytical expression for user

3 is inadequate are discussed later in this section. Recall that the discrepancy between

analytical and simulations results for user 3 is due to the assumption of correct decoding of

the previous users.

We show next the SER comparisons for three decoder strategies: Traditional-SIC,

Modified-SIC, and a NN similar to the presented in (EMIR et al., 2021). Figure 24 shows

the SER versus SNR for cases D and D. For case D, shown in Figure 24a for ξ1 = ξ2 = 5

dB, all decoders have very similar performance. Figure 24b uses ξ1 = ξ2 = 3 dB and shows
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Figure 24 – SER comparison between Traditional-SIC, Modified-SIC, and NN decoders.
Figure 24a shows the scenario for ξ1 = ξ2 = 5 dB, case D. Figure 24b shows
the scenario for ξ1 = ξ2 = 3 dB, case D.
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that the Modified-SIC decisively outperforms the Traditional-SIC for case D, which confirms

that the proposed customized decision regions enable better performance in some cases.

The NN model performs almost identically to the Modified-SIC decoder, which suggests

that the NN boost in performance over the Traditional-SIC reported in (EMIR et al., 2021)

occurs due to the learning of decision regions similar to those shown in Figure 15b.

Since the model in (EMIR et al., 2021) deals with NOMA decoding in scenarios in

which ξi is low (high user interference case), we compare the proposed decoder with the NN

and argue that it is an alternative to the NN approach for low modulation orders M , in the

three-user scenario. According to (EMIR et al., 2021), the NN scheme has a computational

complexity which is empirically determined, given as O(60 × 80), and is essentially fixed

for the scenario investigated therein. The proposed decoder has complexity O(M2), valid

for the three-user scenario, since for user 1 decoding we have to loop over its M possible

transmission hypotheses (line 4 of Algorithm 1) and perform M operations to check if

(y′I , y
′
Q) belongs to each one of the possible M regions (lines 14-17), in the worst case. Our

decoder also provides theoretically guaranteed performance and a better understanding of

the performed decoding steps. As a consequence of the similar performance in the proposed

scenario, it could also be argued that such decoder can be viewed as a theoretical estimate

or reference to the expected performance of the NN model.

The heatmaps for the analytical SER expressions for users 1, 2, and 3 are shown in

Figures 25a, 25b, and 25c, respectively. The heatmaps aim to show the overall performance

behavior by considering joint changes in parameters ξ1 and ξ2, given a fixed SNR = 18 dB.

It is also indicated (in dashed line) the threshold for the inequality D. For all users, these

figures indicate that the performance is poor for hi configurations close to the threshold

(h1 ≈ h2+h3) and it is possible to obtain better results by moving away from the threshold. It

can be seen that low ξ1 values correspond to poor performance, for any ξ2, since if h1 ≈ h2
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Figure 25 – Analytical SER heatmaps for each user. The dashed line indicates the inequality
D. SNR = 18 dB. Black color indicates SER < 10−6.
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the interference in the decoding of user 1 is high, and errors in first step of SIC decoding

affect the remaining users (users 2 and 3). In Figures 25b and 25c, a cut-off value for

performance of users 2 and 3 is seen at around ξ2 ≈ 3 dB for any ξ1 used, which can be

explained by considering that if correct user 1 decoding occurs, the ξ2 parameter controls

the interference between the remaining users. Due to the employed derivation hypothesis

P (e1) ≤ P (e2) ≤ P (e3), the regions where good performance for users 2 and 3 occur

are necessarily a subset of the regions where good performance occurred for user 1. This

behavior can be seen in the theoretical heatmaps.

For validation purposes, we also present simulated heatmaps, which confirm the

accuracy of the SER expressions for users 1 and 2 (Figures 26a and 26b), and outline

where disagreements occur for user 3 (Figure 26c). The simulations are performed for a low

number of bits (105) per cell, on a 50 × 50 grid due to hardware limitations. As discussed

before, it is possible that user 3 has lower SER (for a given SNR) than users 1 and 2, which

is not considered in the analytical expressions. This is shown in the simulated heatmap for

user 3 (Figure 25c) for ξ1 < 2 dB and ξ2 > 3 dB. For these values of ξ1 and ξ2, the proposed

analytical expression for user 3 is invalid. Figures 26a, 26b and 26c confirms the overall

behaviour of the theoretical heatmaps shown in Figures 25a, 25b and 25c. Users 1 and 2

have excellent agreement between simulation and theoretical results.

The average SER heatmaps (1
3

∑3
i=1 P (ei | X), X ∈ {D,D}), are shown in Fig-

ure 27 for SNR = 18 dB. Figure 27a presents the analytical result and Figure 27b the

simulated one. It is seen that both versions agree for all considered ξi. Thus, the average

SER can be expressed with the provided analytical expressions. Similar experiments, not

shown here, were also conducted for different SNRs to confirm the result.

The analytical expressions can be employed by the users to adjust their own trans-

mitted power Pi aiming to minimize the SER, given that the channel gain of each user is

known. This situation is plausible in a scenario where the base station communicates with
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Figure 26 – Simulated SER heatmaps for each user. The dashed line indicates the inequality
D. SNR = 18 dB. Black color indicates SER < 10−6.
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Figure 27 – Average SER heatmap comparison between analytical and simulation. SNR =
18 dB.
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the users informing the current channel gain obtained from pilot symbol transmissions. In the

following, we present an analysis targeting user 1 SER, which is chosen due to the strong

influence on the overall system performance, although any user could have been chosen.

Figure 28 shows the heatmap for user 1 with respect to ξ1 and SNR, in which ξ2 is fixed

at 3 dB. This scenario seeks to reflect the situation where h2, h3 are known by user 1 and

this user seeks to adjust P1 and consequently ξ1 to obtain optimal SER for a given SNR

(under the assumption that h′
1 is known). By inspecting Figure 28 we conclude that different

scenarios may be employed according to the SNR. By considering SNR = 25 dB, increasing

or decreasing P1 (and consequently ξ1) around a reference value, ξ1 ≈ 4.65 dB (dashed line)

reduce the SER. The reduction of P1 under SNR = 9 dB does not provide the same gains.

We now consider a restriction on the total transmitted power by considering
∑3

i=1 h
2
i ≤

K, under fixed SNR assumption. We consider a scenario where we seek to optimize the

SER of user 1 under the constraint that users 2 and 3 must have SER ≤ 10−3 in addition



55

Figure 28 – Analytical SER heatmap for user 1. ξ2 = 3 dB. The dashed line ξ1 ≈ 4.65 dB
indicates inequality D.
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to the transmitted power restriction. The provided theoretical formulas (40, 41, 44, 50) can

be used to quickly find the optimal points under the constraints. We delimit four regions

in the SER heatmap of user 1, for K ∈ {4, 7, 10, 14}, indicated by black dashed lines in

Figure 29, meaning that the power constraint limits the analyzed region to the upper side of

the black dashed lines. The green stars in Figure 29 indicate the optimal values for each

considered restriction. The yellow dashed line indicates the D inequality, in which the right

side represents case D, and the left side, D.

• For K = 14, the optimal values are ξ1 ≈ 7.5 dB and ξ2 ≈ 2.9 dB, which indicates case

D.

• For K = 10, the optimal SER for user 1 is achieved for ξ1 ≈ 2.1 dB and ξ2 ≈ 5.3 dB,

which indicates D. In this case, it is not possible to achieve better performance using

the right side of the yellow line, since the performance for users 2 and 3 does not

satisfy the constraints.

• For K = 7, optimal SER for user 1 is achieved for ξ1 ≈ 2.5 dB and ξ2 ≈ 3.3 dB, which

indicates D.

• For K = 4, it is impossible to satisfy the SER restriction for users 2 and 3 in the

considered scenario.

For illustration purposes, we provide the valid search space for ξ1 and ξ2 in Figure 30,

for the K = 14 case. Recall that the search space for optimal user 1 SER is delimited by both

the energy restriction (indicated by the black dashed lines) and the minimal performance

requirement for users 2 and 3 (SER ≤ 10−3).
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Figure 29 – Analytical SER heatmap for user 1. We fix SNR = 18 dB and employ the
restriction

∑3
i=1 h

2
i ≤ K. Four regions are shown for K ∈ {4, 7, 10, 14}.
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Figure 30 – Valid ξ1 and ξ2 search space for optimal SER of user 1 shown in yellow after
power constraint K = 14 and SER ≤ 10−3 for users 2 and 3.
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3.4 DOWNLINK

We now consider the three-user single-antenna NOMA downlink scenario. The

received signal for user u, u ∈ {1, 2, 3}, is written as (KARA; KAYA, 2020b)

yu =
√

Ps|h′
u|

3∑
i=1

(
√
αixi) + nu, (51)

where Ps is the transmit power of the base station, h′
u is the channel gain for user u, which is

perfectly phase compensated, αi is the power allocation coefficient for the transmitted signal

corresponding to user i, which satisfies
∑3

i=1 αi = 1, xi is the unit energy QPSK symbol

transmitted to user i and nu = (nI , nQ) is the AWGN noise. We assume that α1 > α2 > α3,

and the SIC decoding follows this ordering. We define hu ≜ |h′
u|
√
Ps as the multiplicative

term of user u.

By analogy to the uplink scenario, we interpret (51) as distinct realizations of (24) for

each user u. Therefore, we set

h̃ui ≜ hu

√
αi, (52)

and employ the SER analysis for the uplink scenario shown in Section 3.2 using the resulting

nine h̃ui. In the downlink scenario, we employ for user 1 the uplink result P (e1|X) (40)-(41),

X ∈ {D,D} by setting hi = h̃1i, for i = {1, 2, 3}. For user 2 we employ (42) by setting

hi = h̃2i, and for user 3 we employ (48) by setting hi = h̃3i.

We verify the adequacy of the conversion given in (52) by comparing the analytical

and simulation results under two αi configurations. We utilize the convention to define the

parameters hu by the relation h2
u = h2

u+1 + γu (dB), u = {1, 2}, and h2
3 = 0 (dB). The power

allocation coefficients αi determine if the corresponding scenario corresponds to D or D

according to inequality E :
√
α1 >

√
α2 +

√
α3, which follows immediately from inequality D

and (52). Figure 31 shows the comparison results for two scenarios E and E and confirms

that the analysis from Section 3.2 can be employed by converting downlink-uplink gain

parameters according to (52). We use in this figure γ1 = γ2 = 3 dB.

We next present heatmaps for the downlink scenario. We fix γu and present the result

in terms of αi. We set γ1 = γ2 = 3 dB and consider the previously presented restrictions for

αi:
∑3

i=1 αi = 1 and α1 > α2 > α3. The analytical and simulated heatmaps are presented in

Figures 32 and 33, respectively, where invalid choices of αi are shown in green. It is shown

the inequality E and the corresponding usage of the Modified-SIC decoder. Similar to the

uplink scenario, regions closer to the inequality threshold result in poor performances. These

figures show adequate agreement between analytical expressions and simulated results

for users 1 and 2. User 3 continues to have a significant mismatch between analytical and

simulated results for a restricted region in the Modified-SIC side of the inequality E.
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Figure 31 – SER comparison between Traditional-SIC and Modified-SIC for the downlink
scenario. Figure 31a shows a power allocation coefficient satisfying E and
Figure 31b considers the case E. For both figures, γ1 = γ2 = 3 dB.
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Figure 32 – Analytical downlink SER heatmaps for each user. γ1 = γ2 = 3 dB. The dashed
line indicates the inequality E. SNR = 25 dB.
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Figure 33 – Simulated downlink SER heatmaps for each user. γ1 = γ2 = 3 dB. The dashed
line indicates the inequality E. SNR = 25 dB.
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3.5 FINAL CONSIDERATIONS

In this chapter, we proposed a modified SIC decoding for the three-user NOMA

scenario by assuming channel gain knowledge. We investigated the SER performance for

different decoders under both scenarios D and D (or E and E), in which results holds for

both uplink and downlink scenarios, with a minor necessary adaptation. It was shown that

the proposed decoder can be seen as an alternative way to obtain previously encountered

results in literature using DL techniques (EMIR et al., 2021), while maintaining a quadratic

time complexity with regard to the modulation order. Furthermore, the joint bidimensional

analysis enables a power allocation approach and shows that the proposed decoder can

outperform the traditional one under specific power allocation and channel gain constraints.
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4 CHAOS-BASED COMMUNICATION SYSTEM

Chaotic dynamical systems have been explored in the literature to design wireless

communication systems (KADDOUM, 2016; CHEN et al., 2017; YAO et al., 2019; CAI et

al., 2021). It is shown in (REN; BAPTISTA; GREBOGI, 2013) that the Lyapunov exponent

of modulated chaotic signals generated by three-dimensional chaotic attractors is invariant

under the effect of multipath propagation. This implies that there is no information loss due

to the channel effect (REN; BAPTISTA; GREBOGI, 2013). Moreover, chaotic signals are

topologically invariant under the effect of multipath fading (REN; BAPTISTA; GREBOGI,

2013; YAO et al., 2017), hence the chaotic attractor can be reconstructed in the decoder

using the received chaotic signals. This topological robustness in multipath channels is an

evidence that chaotic signals have peculiar properties to be incorporated in the design of

chaos-based wireless communication schemes. When properly designed, these schemes

can compensate the typical imperfections of wireless channels employing strategies to

benefit from the properties of chaotic signals (YAO et al., 2017).

Space-time trellis codes (STTCs) are proposed in (TAROKH; SESHADRI; CALDER-

BANK, 1998) in order to increase the performance and transmission rate in wireless commu-

nication systems. In this scheme, the utilization of multiple transmit and receive antennas

aggregates diversity to the system (TAROKH; SESHADRI; CALDERBANK, 1998; BLUM,

2002; YUAN et al., 2003). Moreover, there is a joint design of channel coding, modulation,

transmit diversity and receive diversity. STTCs can achieve the best compromise between

diversity gain, data rate, and trellis complexity (TAROKH; SESHADRI; CALDERBANK, 1998).

A trellis-coded modulation system based on three-dimensional chaotic attractors

is proposed in (SOUZA; PIMENTEL; CHAVES, 2020) with a detailed case study for the

Sprott D attractor (SPROTT, 1994). The dynamical evolution of the chaotic trajectories within

the attractor is represented by the symbolic dynamics generated by a labeled partition of

a Poincaré section. A finite-state encoder (FSE) is designed in order to encode informa-

tion sequences into the restricted sequences generated by the symbolic dynamics of the

chaotic trajectories. However, there are particular aspects regarding the implementation

of chaos-based communication systems such as the lack of a matched filter, the irregular

dynamics, and the infinity dimensional signal constellation due to the non-periodic behavior

of the chaotic dynamics. These characteristics require new methodologies to design chaos-

based communication systems and DL decoding can be an approach to deal with these

irregularities.

This chapter analyzes the network capability of capturing the irregular dynamics

generated by the chaotic system and the memory structure that emerges from the dynamical

properties of the chaotic flow by using modulated chaotic waveforms.

The decoding of linear block codes using DL techniques has been considered in the

literature (GRUBER et al., 2017; KIM et al., 2018; BE’ERY et al., 2020; LIANG; SHEN; WU,
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2018). The results presented in (GRUBER et al., 2017) show evidence that NNs are able to

learn some sort of decoding algorithm rather than just being a classifier between possible

codewords. A feed-forward network structure is employed in (GRUBER et al., 2017) to

decode polar and random codes. The approach in (KIM et al., 2018) employs a bidirectional-

GRU recurrent network for the task of decoding convolutional codes. It is shown in (LIANG;

SHEN; WU, 2018) a convolutional based network used in conjunction with traditional belief

propagation decoding of LDPC codes. A bidirectional recurrent structure is employed to

decode turbo codes in (JIANG et al., 2019a). As far as we know, decoding strategies based

on DL have not been considered for chaos-based trellis codes.

The contributions of this chapter are twofold. The first one is the incorporation of

the chaotic dynamics, represented by the symbolic dynamics of the chaotic trajectories, in

chaos-based STTC systems which we denote as CB-STTC (chaos-based space-time trellis

code). In this case, the restrictions derived from the dynamical and topological properties

of the chaotic flow are exploited in the design of a communication system with multiple

antennas. In particular, the methodology proposed in (SOUZA; PIMENTEL; CHAVES, 2020)

is generalized to design a CB-STTC based on the Sprott D chaotic attractor. The second

contribution is the proposition of a DL architecture that combines convolutional and RNNs to

analyze the capability of the network to learn how to decode the proposed CB-STTC. The

objective is to design a framework that captures the irregular dynamics of the chaotic signals

and the memory structure that emerges from the dynamical properties of the modulated

chaotic waveforms. These characteristics are incorporated in the decoder in the learning

process. The training strategy of the network is discussed and its performance is analyzed.

This chapter is divided into five sections. In Section 4.1 the Sprott D attractor is pre-

sented and we discuss its symbolic dynamics and the associated FSE. The communication

system and the proposed CB-STTC are detailed in Section 4.2. The NN architecture is dis-

cussed in Section 4.3. In Section 4.4 the performance of the proposed CB-STTC is presented

with computer simulations. Finally, in Section 4.5 we present the final considerations.

4.1 PRELIMINARIES

The Sprott D system is defined in Table 1 at (SPROTT, 1994)
ẋ(t) = −y(t)
ẏ(t) = x(t) + z(t)

ż(t) = x(t)z(t) + ay2(t),

(53)

where a = 2.3 is the control parameter. The dynamical evolution of the chaotic trajectories

within the attractor is simply described by using a labeled partition of a Poincaré section.

A convenient section is a plane perpendicular to the plane xy, located at y = 0. Figure 34

shows the Sprott D attractor and the considered Poincaré section projected in the plane
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Figure 34 – Sprott D attractor and its Poincaré projection in the plane xy with the considered
binary partition.
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Source: (SOUZA et al., 2021) (2021).

xy. It is also shown a binary labeling over the alphabet A2 = {A,B}. Each symbol in A2

indicates if the crossing is on the left or on the right of the threshold xth, where xth is the

minimum of the Poincaré map (GILMORE; LEFRANC, 2012).

The Poincaré map P : X → X for a three-dimensional chaotic attractor X is defined

by pi+1 = P (pi), where pi = (xi, yi, zi) are the coordinates of the i-th crossing between a

trajectory within X and the Poincaré section. Let p = (p0, p1, p2, . . . , pN−1) be a sequence

of N crossings and let sN = s0s1s2 . . . sN−1, si ∈ A2 be a symbolic sequence, where si

is the label of the region of the Poincaré section in pi. In the following we consider this

representation for the communication system.

4.1.1 Finite-State Encoders

The existence of restrictions in the occurrence of adjacent symbols in sN for the Sprott

D attractor is detailed in (SOUZA; PIMENTEL; CHAVES, 2020). These restrictions are speci-

fied by the set of forbidden sequences F = {BB,BAAB,BAAAAB}. This means that sN
contains no sequences belonging to F in the dynamical evolution of the Sprott system. From

F we design the FSE with rate 1/2 illustrated in Figure 35 (SOUZA; PIMENTEL; CHAVES,

2020). This FSE is a symbolic representation of the dynamical behavior of the Sprott D

system, derived from its topological organization. The sequences generated by paths in the

FSE are equivalent to the symbolic sequences generated by successive crossings between

the chaotic trajectories and the Poincaré section, satisfying the restrictions specified by F.

The FSE maps any binary information sequence into the restricted symbolic sequences
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Figure 35 – Finite-state encoder for the Sprott D attractor to map arbitrary binary information
sequences into the restricted symbolic sequences specified by F.
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Source: (SOUZA et al., 2021) (2021).

over the alphabet A2 generated by the symbolic dynamics of the chaotic trajectories. Each

bit is mapped into the symbolic sequence s1s2. This procedure is equivalent to associate

each bit with two crossings in the Poincaré section illustrated in Figure 35. This encoder

emerges from the dynamical constraints in the symbolic dynamics of the chaotic trajectories

and it forms the basis of the CB-STTC proposed in the next section. In order to transmit

information employing the FSE, it is necessary to define the chaotic waveforms associated

with the state transitions in the FSE.

4.1.2 Chaotic Waveforms

The chaotic waveforms are the segments of trajectories within the attractor connecting

the corresponding regions of the Poincaré section for each possible transition in the FSE. As

depicted in (SOUZA et al., 2021), the time interval between the crossings is not uniform due

to the aperiodicity of the chaotic behavior. Hence, the chaotic waveforms are parameterized

by the angular variable θ such that for successive crossings in the Poincaré section the

variation of θ is 2π. For example, the chaotic waveforms associated with the transition from

state A to state B in the FSE are the segments of the trajectory x(θ), y(θ) or z(θ) connecting

the regions A to A and in the following connecting the regions A to B, which we denote

as wA
AB(θ), w = x, y, z, with angular period 4π. The superscript in wα

βγ(θ) indicates the

current region of Poincaré section and the subscript indicates the subsequent visited regions.

Figure 36 illustrates the chaotic trajectories that encode the information sequence 010111

starting from state A.

The chaotic waveforms associated with each determinate transition are slightly

different for each crossing due to the aperiodicity of the chaotic behavior. Therefore, we

associate an average curve for each possible transition constructed as the mean curve

generated by several initial conditions for (53) in the same region for each region. We

denominate the average curve as typical transition curve and employ this curve in the

demodulator as detailed in Section 4.2.
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Figure 36 – Chaotic trajectories x(θ), z(θ) encoding the information sequence 010111 start-
ing from state A in the FSE, or region A in the Poincaré section.
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4.2 COMMUNICATION SYSTEM

In this section we consider the FSE in Figure 35 to design a communication system

with two states, NT transmit antennas and NR receive antennas. The channel has quasi-

static fading with additive Gaussian white noise. The fading coefficients hij from transmit

antenna i to receive antenna j are complex Gaussian random variables, constant in each

frame of length ℓ and change independently in consecutive frames. In each signaling interval,

the chaotic signal wα
βγ(θ), 0 ≤ θ ≤ 4π, is mapped into the transmitted signal s(t). The

received signal at the j-th receive antenna is the linear superposition

rj(t) =

NT∑
i=1

|hij|si(t) + n(t), j = 1, 2, . . . , NR, (54)

where n(t) is an additive white Gaussian noise with power spectral density N0/2 and |hij|
has Rayleigh PDF with unit second moment. The maximum likelihood decoding (MLD)

is performed by the Viterbi algorithm (MOON, 2005) with a trellis derived from the FSE.

Assuming that the decoder perfectly knows the fading coefficients hij , the decoding metric is

given by
NR∑
j=1

∫ (
rj(t)−

NT∑
i=1

hij s̄i(t)
)2

dt, (55)

where s̄(t) denotes a typical transition curve. The SNR per receive antenna is defined

as
∑NT

i=1 Ei/N0, where Ei is the average energy of the transmitted signal through the i-th

antenna.
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4.2.1 Design Criterion of the CB-STTC

For the quasi-static fading channel, the design of the CB-STTC follows the criteria pro-

posed in (TAROKH; SESHADRI; CALDERBANK, 1998). Let

c = (s11(t) . . . s
NT
1 (t)s12(t) . . . s

NT
2 (t) . . . s1ℓ(t) . . . s

NT
ℓ (t)) be a codeword in a frame, where

sik(t) is the chaotic signal transmitted in the k-th signaling interval through antenna i. Con-

sider another codeword e = (e11(t) . . . e
NT
1 (t)e12(t) . . . e

NT
2 (t) . . . e1ℓ(t) . . . e

NT
ℓ (t)). The matrix

of distances A(c, e) is an NT ×NT square matrix with the entries apq, 1 ≤ p, q ≤ NT , defined

as (TAROKH; SESHADRI; CALDERBANK, 1998)

apq =
ℓ∑

k=1

∫ (
spk(t)− epk(t)

)(
sqk(t)− eqk(t)

)∗
dt, (56)

where ∗ denote the complex conjugate operation. The criteria to design an STTC as function

of A(c, e) are (TAROKH; SESHADRI; CALDERBANK, 1998):

• Maximize the minimum rank of A(c, e) for all possible pairs of codewords.

• Maximize the minimum determinant of A(c, e) for all possible distinct pairs of code-

words with minimum rank.

The first criterion is associated with the diversity gain and the second criterion with the coding

gain. Let r be the rank of A(c, e), hence the diversity gain of the STTC is rNR (TAROKH;

SESHADRI; CALDERBANK, 1998). Ideally, the STTC should be designed such that A(c, e)

is a full rank matrix. As depicted in (TAROKH; SESHADRI; CALDERBANK, 1998; BLUM,

2002; YUAN et al., 2003), we consider NT = 2 and rate 2 bits/s/Hz, therefore there are

four divergent edges from each state in the FSE. Each edge is labeled with two information

bits. The two-state FSE is designed such that the matrices A(c, e) associated with pairs of

codewords have minimum rank r = NT = 2 for any pair of codewords. Consequently, the

diversity gain of the STTC is 2NR.

The chaotic waveforms transmitted through each antenna follow the scheme shown

in Figure 35. Computer simulations show that transmitting the variables x and z with the

inversion of signals associated with bit 1 increases the minimum determinant of A(e, c).

Hence, antenna 1 transmits the signal ±x(t) and antenna 2 transmits ±z(t). The FSE for

the proposed CB-STTC is detailed in Table 2.

4.3 DEEP LEARNING DECODING

In this section we detail the architecture and training of the NN employed to decode

the CB-STTC.

Let v be a vector of length ℓ composed of a quaternary sequence over the alphabet

{0, 1, 2, 3} where each element of this vector is a class representing a pair of information bits
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Table 2 – Two-state FSE for the proposed CB-STTC.

FSE Transition Transmitted pair Antenna 1 Antenna 2

A→ A 00 xA
AA(t) zAAA(t)

A→ A 11 −xA
AA(t) −zAAA(t)

A→ B 01 xA
AB(t) −zAAB(t)

A→ B 10 −xA
AB(t) zAAB(t)

B → A 01 xB
AA(t) −zBAA(t)

B → A 10 −xB
AA(t) zBAA(t)

B → B 00 xB
AB(t) zBAB(t)

B → B 11 −xB
AB(t) −zBAB(t)

{00, 01, 10, 11}. We generate the codeword c associated with v and calculate rj(t) as in (54)

for a given channel realization. We then calculate the metric defined in (55) for all possible

typical transition curves. There are eight possible pairs of signals transmitted simultaneously

by the two antennas, as detailed in the FSE in Table 2. We construct an (8× ℓ)-dimensional

matrix X with all metrics in each frame. The pair (X, v) represents the communication

system and all information provided to the NN is restricted to this set. It is expected that the

network learns how to map X to v and be capable of generalizing for SNR values not used

in the training step.

The NN is composed of three types of layers: convolutional, recurrent and totally

connected (GOODFELLOW; BENGIO; COURVILLE, 2016). The simultaneous utilization of

these layers allows to extract attributes provided by the convolutional layer while preserving

the sequential dynamics of the data set due to the recurrent layer. The totally connected

layer is employed for the classification of the input sequence.

The initial layers employ one-dimensional causal convolutional filters with dilatation

rate duplicated at each step (OORD et al., 2016). This structure can be employed to obtain

attributes in sequential data. The parameters in this layer are the quadruple (number of

filters, kernel size, stride, dilatation rate). The subsequent layers implement the recurrent

structure of the network by using bidirectional GRU layers with activation function tanh.

This structure is successful employed in the decoding of convolutional codes in AWGN

channels (KIM et al., 2018; TANDLER et al., 2019). The recurrent architecture is employed

for the sequential processing of the received data and it performs estimation of the data

at each time step. Batch Normalization layers are interleaved along the layers to provide

stability to the network (IOFFE; SZEGEDY, 2015). The totally connected layer estimates

the final classification of X according to the possible transmitted symbols using the softmax
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Table 3 – Architecture of the NN. The batch size is Λ = 32.

Layer Type Parameters Output Dimension
Causal Conv1D (32, 3, 1, 1) (Λ, ℓ, 32)
Causal Conv1D (32, 3, 1, 2) (Λ, ℓ, 32)
Causal Conv1D (32, 3, 1, 4) (Λ, ℓ, 32)
Causal Conv1D (32, 3, 1, 8) (Λ, ℓ, 32)

Batch Normalization No Parameters (Λ, ℓ, 32)
GRU Bidirecional 200 nodes, tanh (Λ, ℓ, 400)

Batch Normalization No Parameters (Λ, ℓ, 400)
GRU Bidirecional 80 nodes, tanh (Λ, ℓ, 160)

Batch Normalization No Parameters (Λ, ℓ, 160)
GRU Bidirecional 40 nodes, tanh (Λ, ℓ, 80)

Batch Normalization No Parameters (Λ, ℓ, 80)
Totally Connected 4 nodes, softmax (Λ, ℓ, 1)

layer. This layer normalizes the activation functions of the previous layer in order to obtain

the probability distribution of each class

S(z)i =
ezi∑C
j=1 e

zj
, i = 1, ..., C, (57)

where C = 4 since there are four classes and the entries of the vector z are the values

returned by the activation functions of the previous layer. The output of the network is the

index associated with the greatest argument of S(z). The complete architecture of the

network is detailed in Table 3. It is worth pointing out that a reduction in the number of layers

implies in a degradation of the system performance for the 1 receiving antenna case. On

the other side, when we consider a network with more layers we observe no meaningful

performance gain.

4.3.1 Training

The training step employs two datasets: the training set and the validation set.

The training set is composed by 10000 pairs (X,v). Each element in X is normalized by

subtracting the mean of the elements in X and dividing by the standard deviation. We

consider that the network perfectly knows the fading coefficients hij (a similar assumption is

considered, for example, in (WU et al., 2019)).

As discussed in Section 2.4, the network performance depends on the SNR used for

training (GRUBER et al., 2017). The validation set iteratively evaluates the performance of

the network at each training step. The SNR employed for the validation set must be distinct

of the SNR in the training set because we need to verify the generalization capacity of the

network. We consider that these SNR are fixed and are empirically estimated depending

on the number of receive antennas since the diversity gain affects the system performance.

For a single antenna (resp. two antennas) the training and validation SNR are 9 dB and 16

dB (resp. 4.5 dB and 7.5 dB), respectively. The objective in training is to minimize the cost

function (GOODFELLOW; BENGIO; COURVILLE, 2016)
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J(∆) =
1

Λ

Λ∑
k=1

ℓ∑
i=1

l(v̂
(k)
i , v

(k)
i ), (58)

where ∆ are the training parameters of the network, the batch size Λ is the number of

tuples (X,v) employed in the evaluation of J(∆), v̂(k)i is the estimate of the network for v(k)i

corresponding to the tuple k at time i and l is the cross entropy function per sample (GOOD-

FELLOW; BENGIO; COURVILLE, 2016)

l(v̂
(k)
i , v

(k)
i ) = −

C∑
c=1

1
(v

(k)
i =c)

logP (v̂
(k)
i = c), (59)

where 1
(v

(k)
i =c)

is the binary indicator function that returns 1 if v(k)i = c, or 0 otherwise. We

employ same training heuristics as in Section 2.4.

The set of metrics for each frame X provided to the network in the training step

considers the small variations of the chaotic waveforms in the dynamical evolution of the

chaotic system.

4.4 SIMULATION RESULTS

The performance of the proposed CB-STTC is analyzed by computer simulations.

The MLD is performed by the Viterbi algorithm (MOON, 2005) with the two-state trellis

derived from the FSE in Table 2 with metric increments defined in (55). We consider that hij

coefficients are known by the decoding algorithms.

Figure 37 shows the frame error rate (FER) versus SNR where each frame has

length ℓ = 130 for NT = 2 transmit antennas and NR = 1 and 2 receive antennas. We

observe that the diversity gain of the CB-STTC (this is obtained by the slope of the curve at

a particular SNR) increases with the number of receive antennas since the matrices A(c, e)

have full rank. For comparison purposes, it is also shown the performance of the four-state

STTC proposed in (TAROKH; SESHADRI; CALDERBANK, 1998). Using the variables x

and z we are able to label the CB-STTC trellis (Table 2) in such a way to achieve a coding

gain very close to the conventional STTC. The performance of the two schemes is very

similar. The performance obtained by the NN has the same behavior of the other schemes

and therefore the proposed architecture is capable of learning the decoder structure of the

proposed CB-STTC, however with a gap of approximately 1 dB to the optimal performance.

4.5 FINAL CONSIDERATIONS

In this chapter we proposed a CB-STTC scheme with NT = 2 transmit antennas and

NR receive antennas with maximum diversity gain 2NR. We also proposed a NN architecture

to decode the proposed CB-STTC that is capable of learning the CB-STTC. Hence, the
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Figure 37 – FER versus SNR of the proposed two-state CB-STTC and the four-state STTC
in (TAROKH; SESHADRI; CALDERBANK, 1998) with NT = 2, NR = 1, 2 and
ℓ = 130. Solid lines indicates NR = 1, dashed lines, NR = 2.
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Source: (SOUZA et al., 2021).

proposal is viable to design chaos-based wireless systems. As explained in (SHLEZINGER

et al., 2020), NN models are efficient in scenarios where the channel model is unknown

or cannot be accurately estimated in such a way that the MLD is unfeasible or extremely

complex. The analysis of the CB-STTC in these scenarios are left for future work.
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5 CONCLUSION

The increasing presence of ML on an wide range of applications inspired the study

of these techniques in the communications field. This research proposed to present and

analyze three different problems which can be in some way or form approached by ML

methods. Since each one is fundamentally different in nature, there is no singular approach

to all of them, for each one it was presented a self-contained problem formulation and

problem solving approach, including ML based ones.

In Chapter 2, the Markov-Gaussian channel problem was presented, two different ML

models were discussed representing the traditional approach based on HMM, as well as a

proposed alternative based on a NN. Comparisons were made between both approaches and

it was shown that the two have similar performance, and the NN can potentially outperform

the HMM if more flexible and data driven environments are considered. Future works can

include different scenarios and channel models in which the DL approach can more reliably

outperform conventional methods. Further investigation of training and validation SNRs are

also possible.

In Chapter 3, the NOMA problem was presented, in which a modified version of the

traditionally employed SIC is shown. A NN based decoder was employed to validate that

the obtained performance of the proposed decoder matches the NN one. Therefore, the ML

method can also be used as an auxiliary tool in development of traditional algorithms. Future

work can investigate generalization to a higher number of users and the decision regions

for each user. A possible approach to achieve this generalization is to employ a decision

tree (DT) or a support vector machine (SVM) model as part of the decoding algorithm,

which will correlate the necessary decision region to the set of channel gains. Given the

channel gain parameters, or at least estimated median values, the model can be trained

to learn the constellation mapping for the first step of decoding. For further steps, one

can employ different models trained under the assumption that previous users have been

correctly decoded. Both these learning models have better interpretability than NNs and we

expect that the performance can match NNs in most of the simpler conventionally considered

scenarios such as AWGN or Rayleigh fading channels. This approach should not scale

as well as NNs for increasing number of users, but still can be employed as analysis tool

and modulation and decoding design. DTs could be used alternatively to NNs since the

decision regions obtained after training can be extracted directly from the trees. This model

typically provides a better understanding about the task than NNs since the tree can be

effectively visualized, and any model prediction can be explained using boolean logic. We

also argue that the DT, although less powerful, is enough to tackle the low number of users

scenario while using a white box model, in contrast to the NN’s black box. Investigation of

imperfect knowledge of channel gains can also be considered for a better understanding of

the proposed method’s practical usefulness, since the decision regions depend on these
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variables. Another line of investigation is the analysis of related techniques for N users

generalization, such as the influence of the proposed algorithm in pairing schemes or

beamforming.

In Chapter 4, a chaos-based communication system was presented, in which a NN

based decoder was employed and compared to the MLD performed by the Viterbi algorithm.

The results show that the NN decoder is able to maintain the same diversity gain as the

MLD while a small constant degradation is observed. Future work can include ML decoding

strategies seeking to obtain equal performance to the MLD. Another possibility is to integrate

LDPC codes (FANG et al., 2019) with the proposed CB-STTC in order to improve the system

performance. An NN architecture to decode this combined scheme can also be proposed in

the future.

The discussed problems show the high flexibility of the ML approach in solving

problems, while, in some cases, obtaining maximum or near maximum performances, thus

motivating its use as an alternative to known methods or at least as benchmark.
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