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ABSTRACT

Taking advantage of the fact that the cardinalities of hidden variables in network scenarios

can be taken to be finite without loss of generality, a numerical tool for finding explicit local

models that reproduce a given statistical behaviour was developed. The numerical procedure

was then applied to get numerical estimates to two interesting problems in the context of

network non-locality: i) for which critical visibility the Greenberger-Horne-Zeilinger (GHZ)

distribution ceases to be local in the triangle scenario with no inputs; ii) what is the boundary

of the local set in a given 2-dimensional slice of the probability space for the bilocal network

with binary inputs and outputs. For the first problem: a critical visibility of 𝑣 ≈ 1/3 was found;

behaviours with 𝑣 ≤ 1/3 were proven to be trilocal; and numerical evidence that behaviours

with 𝑣 > 1/3 are not trilocal was found. For the second problem: a closed set that approximates

the bilocal set was found; behaviours inside this set were proven to be bilocal; and numerical

evidence that behaviours outside this set are not bilocal was found.

Keywords: quantum network nonlocality; n-local models; Bell nonlocality.



RESUMO

Valendo-se do fato de que as cardinalidades de variáveis ocultas em cenários de rede

podem ser assumidas finitas sem perda de generalidade, foi desenvolvida uma ferramenta

numérica para encontrar modelos locais explícitos que reproduzem um comportamento esta-

tístico dado. O procedimento numérico foi então utilizado para obter estimativas numéricas

para dois problemas interessantes no contexto de não-localidade em redes: i) para qual visibi-

lidade crítica a distribuição Greenberger-Horne-Zeilinger (GHZ) deixa de ser local no cenário

triangular sem inputs; ii) qual a fronteira do conjunto local em uma dada secção bidimensional

do espaço de probabilidades para a rede bilocal com inputs e outputs binários. Para o primeiro

problema: encontrou-se uma visibilidade crítica de 𝑣 ≈ 1/3; provou-se que comportamentos

com 𝑣 ≤ 1/3 são trilocais; e encontrou-se evidência numérica de que comportamentos com

𝑣 > 1/3 não são trilocais. Para o segundo problema: encontrou-se um conjunto fechado que

aproxima o conjunto bilocal; provou-se que comportamentos no interior desse conjunto são

bilocais; e encontrou-se evidência numérica de que comportamentos no exterior desse conjunto

não são bilocais.

Palavras-chaves: não-localidade quântica em redes; modelos n-locais; não-localidade de Bell.
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1 INTRODUCTION

Randomness is at the heart of quantum mechanics. It does not take much time in the

study of quantum theory to realize that probabilities play a central role. Take for example a

two level system (such as the spin of an electron) in the state

|𝜓⟩ = 1√
2

(|0⟩ + |1⟩) . (1.1)

Consider also the observable

𝜎𝑧 = |0⟩ ⟨0| − |1⟩ ⟨1| . (1.2)

Every physicist knows that by measuring 𝜎𝑧 in state |𝜓⟩, the result is either +1 or −1 with

equal probabilities of 1/2. Say we get the result +1. Are we then allowed to conclude that

this information was somehow encoded in the system before the measurement and we were

simply ignorant of this? Or is the description of equation 1.1 complete, in the sense that it

encapsulates all that can be known about the system before measurement? In other words, are

there perhaps some hidden variables that, if known, could allow us to predict with certainty

the outcome of the measurement? Or is nature random in a fundamental level?

Questions such as these led to much discussion among the scientists who were trying to

put quantum mechanics together in the 1920s (BAGGOTT, 2004). Two prominent figures of

this period were physicists Albert Einstein and Niels Bohr. They took radically different stances

regarding the interpretation of the newly discovered quantum theory, and their exchanges on

the subject became known as the Einstein-Bohr debates. Einstein had a philosophical conviction

that nature does not “play dice”, as stated by him in a 1926 letter to Max Born1. Bohr, on

the other hand, embraced the intrinsic probabilistic character of the theory.

In 1935, Einstein and colleagues Boris Podolsky and Nathan Rosen wrote a paper ti-

tled “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”,

in which the authors present a thought experiment designed to prove that quantum mecha-

nics was not a complete theory (EINSTEIN; PODOLSKY; ROSEN, 1935). This counterargument

became to be known as the Einstein-Podolsky-Rosen (EPR) paradox, and would eventually

inspire physicist John Stewart Bell to discover quantum non-locality some 30 years later (BELL,

1964). It is rather interesting that such an important feature of quantum mechanics owes its

discovery to an argument designed to expose an alleged imperfection of the theory.
1 Einstein’s famous quote is the epigraph of this dissertation.
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The EPR paradox relies on yet another peculiar characteristic of quantum mechanics:

entanglement. In systems with more than one degree of freedom, it is possible to conceive of

wavefunctions with a correlation between different parts of the system. Take for example a

composite system consisting of a pair of two level systems (such as the spins of two electrons)

in the state

|𝜓⟩ = 1√
2

(|01⟩ − |10⟩) . (1.3)

In such a state, the spins of the two electrons are said to be entangled. As soon as we measure

the spin of one particle in a given orientation, the wavefunction of the whole system collapses

and we can be sure that a measurement of the spin of the other particle in that same orientation

will yield the opposite result. This perfect negative correlation can in principle persist even if

the two particles are spatially separated. EPR then proposed2 the following argument with 3

premises: if i) we can choose to measure different observables (possibly non-commuting) in one

particle, ii) each choice results in the other particle being described by different wavefunctions,

and iii) measurements in one particle cannot bring about any real change in the other since

they are spatially separated; then the wavefunction is an incomplete description of reality.

The most obvious way of fixing this alleged incompleteness in the theory would be to as-

sume the existence of local hidden variables that could explain the correlations in entanglement

experiments. This was done by Bell in his seminal paper (BELL, 1964), where he demonstrated

that, under the tacit assumption that the choice of measurements can be made independently

of the measured system, quantum mechanics makes experimental predictions which are incom-

patible with any local hidden variable theory. This incompatibility result is now known as Bell’s

theorem, and the irreconcilable aspect of quantum mechanics is now known as non-locality.

Bell’s main contribution was to take an issue that was thought to be purely philosophical

up until then and bring it down to the experimental level. In the following years, several experi-

ments were performed to test local hidden variables and the predictions of quantum mechanics

were consistently observed (FREEDMAN; CLAUSER, 1972) (ASPECT; DALIBARD; ROGER, 1982)

(HENSEN et al., 2015) (SHALM et al., 2015) (GIUSTINA et al., 2015). The experiments increased

in complexity along the decades in order to close loopholes that could still allow for some

local hidden variable explanation. There are some loopholes that may never be completely clo-

sed, such as the measurement independence assumption, but given the experimental evidence
2 In the original EPR paper, the authors considered a composite system with continuous degrees of freedom.

The version of the argument presented here is due to (BOHM, 1951) and relies instead on discrete degrees
of freedom, but the essence of the argument remains the same.
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available today, I am of the opinion that it is no longer possible to reject non-locality in a

consistent manner, without subscribing to even stranger hypotheses about nature.

The impact of non-locality is not restricted to the foundations of quantum mechanics

though. The concept has found applications also in quantum information protocols to detect

eavesdropping when sharing cryptographic keys (EKERT, 1991) and more generally for device-

independent certification (ŠUPIĆ; BOWLES, 2020).

One important theoretical development is the notion of non-locality in networks, first

introduced in (BRANCIARD; GISIN; PIRONIO, 2010). In standard Bell non-locality, there is only

one source that distributes quantum states to two or more parties. In network non-locality,

there are multiple independent sources that distribute quantum states to some parties, but

not all of them. The introduction of network scenarios led to new forms of non-locality that

are not yet fully understood. This dissertation aims to present a numerical tool that can be

used to investigate the challenging subject of network non-locality.

In chapter 2, the concepts of standard Bell non-locality as well as network non-locality

are explored in more detail. In chapter 3, the numerical tool is explained and then applied

to two interesting problems regarding network non-locality. Finally, in chapter 4, the conclu-

ding remarks are presented, as well as some perspectives for future work expanding the ideas

discussed in this dissertation.
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2 NON-LOCALITY

First let us a define what is a Bell scenario. The situation closely resembles that of the EPR

thought experiment (EINSTEIN; PODOLSKY; ROSEN, 1935) as formulated by (BOHM, 1951), the

only differences being a more modern notation, following references (BRUNNER et al., 2014)

and (SCARANI, 2019). Consider an experiment with two parties, Alice and Bob (see figure

1). They both perform measurements in subsystems that might have interacted in the past1

(the asterisk sign in the figure). In her laboratory, Alice has a choice of measurements she

can perform. Her chosen measurement setting will be denoted by 𝑥, and the output of her

measurement device will be denoted by 𝑎. In the usual terminology of the field, 𝑥 and 𝑎 are

called Alice’s input and output, respectively. Likewise, on Bob’s side, his input is denoted by

𝑦 and his output is denoted by 𝑏. In the figures of this text, inputs will be represented by blue

squares and outputs will be represented by green circles.

Figure 1 – Bipartite Bell scenario. The outputs of each party 𝑎 and 𝑏 are represented by green circles, while
the inputs 𝑥 and 𝑦 are represented by blue squares (also known as measurement settings). The
asterisk sign represents some system shared between the parties.

𝑎

𝑥

* 𝑏

𝑦

Source: personal archive

The statistical behaviour of the measurements performed by Alice and Bob can be cha-

racterized by the probability distribution 𝑝(𝑎, 𝑏|𝑥, 𝑦). Frequently the words correlation and

behaviour are also used to denote this probability distribution. In order to keep the notation

uncluttered, I will not use subscripts to indicate probability distributions of different random

variables. This will be done with the arguments of the distribution. For example, instead of

writing 𝑝𝐴𝐵(𝑎, 𝑏) or 𝑝𝐴(𝑎), I simply write 𝑝(𝑎, 𝑏) or 𝑝(𝑎).

Additionally, let us restrict ourselves to the case of a finite number of inputs and outputs,

i.e.
1 For now, the details of this composite system are not important. It could be a classical system, such as a

string of correlated bits that is sent to each party, or a quantum one, such as a pair of entangled photons.
As we shall briefly see, the latter system is fundamentally different from the former, due to the non-local
character of quantum theory.
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𝑥 ∈ {1, 2, . . . ,𝑀𝐴} , (2.1)

𝑦 ∈ {1, 2, . . . ,𝑀𝐵} , (2.2)

𝑎 ∈ {1, 2, . . . ,𝑚𝐴} , (2.3)

𝑏 ∈ {1, 2, . . . ,𝑚𝐴} . (2.4)

Hence, Alice has 𝑀𝐴 possible measurement settings and 𝑚𝐴 possible outputs for each

measurement, while Bob has 𝑀𝐵 possible measurement settings and 𝑚𝐵 possible outputs for

each measurement. The number of elements in a set is called cardinality, so we refer to 𝑀𝐴

and 𝑀𝐵 as the input cardinalities e to 𝑚𝐴 and 𝑚𝐵 as the output cardinalities.

A priori, the only conditions that must be required of the probabilities 𝑝(𝑎, 𝑏|𝑥, 𝑦) are the

positivity constraints and the normalization condition:

𝑝(𝑎, 𝑏|𝑥, 𝑦) ≥ 0, ∀𝑎, 𝑏, 𝑥, 𝑦, (2.5)∑︁
𝑎,𝑏

𝑝(𝑎, 𝑏|𝑥, 𝑦) = 1, ∀𝑥, 𝑦. (2.6)

A stronger condition that can be enforced over the behaviour 𝑝(𝑎, 𝑏|𝑥, 𝑦) is that there is

no way for one party to communicate her or his choice of input to the other party2. More

precisely, the marginal distribution of Alice’s output 𝑝(𝑎|𝑥, 𝑦) = ∑︀
𝑏 𝑝(𝑎, 𝑏|𝑥, 𝑦) is independent

of the input chosen by Bob, and vice-versa. Mathematically, this can be expressed as the

no-signalling constraints:

𝑝(𝑎|𝑥, 𝑦) = 𝑝(𝑎|𝑥, 𝑦′), ∀𝑥, 𝑦, 𝑦′, (2.7)

𝑝(𝑏|𝑥, 𝑦) = 𝑝(𝑏|𝑥′, 𝑦), ∀𝑥, 𝑥′, 𝑦. (2.8)

This allows us to speak of marginal distributions 𝑝(𝑎|𝑥) and 𝑝(𝑏|𝑦) by removing the irrelevant

input for the specific marginal. The set of behaviours that satisfy 2.7 and 2.8 is called the

no-signalling set, represented by 𝒩 𝒮.

A further restriction on the correlations shared by Alice and Bob is that the probability

distribution 𝑝(𝑎, 𝑏|𝑥, 𝑦) can be obtained by a quantum experiment. The most general way

of expressing this condition is not with the projective measurements that are first presented

in quantum mechanics textbooks but rather with POVM3 measurements (NIELSEN; CHUANG,
2 If the measurements of Alice and Bob are space-like separated events, this condition prevents faster than

light communication, which would be at odds with special relativity.
3 Postive operator-valued measure.
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2000). This is further justified by the fact that we are only interested in the statistics of Alice

and Bob measurements, characterized by the distribution 𝑝(𝑎, 𝑏|𝑥, 𝑦). In this formalism, the

POVM is a collection of operators {Π𝑖} satisfying the following conditions:

Π𝑖 ≥ 0, ∀𝑖, (2.9)∑︁
𝑖

Π𝑖 = 𝐼. (2.10)

Each POVM element Π𝑖 corresponds to a different measurement outcome. The probability 𝑝𝑖

of the 𝑖-th outcome when measuring a system in a state represented by the density operator

𝜌 is given by

𝑝𝑖 = Tr (𝜌Π𝑖) . (2.11)

Notice that unlike the usual projective measurements, the number of possible outcomes

can be greater than the dimension of the system Hilbert space. Applying the POVM formalism

to the Bell scenario, the behaviour 𝑝(𝑎, 𝑏|𝑥, 𝑦) can be obtained by a quantum experiment if

there are a quantum state 𝜌 and POVMs {Π𝑥
𝑎} and {Π𝑦

𝑏} such that:

Π𝑥
𝑎 ≥ 0, ∀𝑎, 𝑥, (2.12)

Π𝑦
𝑏 ≥ 0, ∀𝑏, 𝑦, (2.13)∑︁

𝑎

Π𝑥
𝑎 = 𝐼𝐴, ∀𝑥, (2.14)

∑︁
𝑏

Π𝑦
𝑏 = 𝐼𝐵, ∀𝑦, (2.15)

𝑝(𝑎, 𝑏|𝑥, 𝑦) = Tr [𝜌 (Π𝑥
𝑎 ⊗ Π𝑦

𝑏)] . (2.16)

The superscript in the POVM elements denotes the measurement settings chosen by Alice

and Bob, while the subscript denotes the measurement outcome. So there are 𝑀𝐴 families

of operators {Π𝑥
𝑎} for Alice, each with 𝑚𝐴 outcomes, and analogously for Bob. The set of

behaviours that could be represented by equation 2.16 is called the quantum set, represented

by 𝒬. Notice that no restriction is placed on the Hilbert space in which the state 𝜌 and the

POVM elements operate. If there is one state 𝜌 and POVMs {Π𝑥
𝑎}, {Π𝑦

𝑏} that reproduce

the probability distribution via equation 2.16, no matter how complicated they may be, the

behaviour belongs to quantum set 𝒬.

Finally, it can be required that the behaviour 𝑝(𝑎, 𝑏|𝑥, 𝑦) could be obtained by a process

in which Alice and Bob share a local hidden variable, represented by 𝜆 (see figure 2). In the

figures of this text, local hidden variables will be represented by red triangles, with arrows
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denoting the parties with access to the hidden variable, which is sometimes referred to as

shared randomness in the literature.

Figure 2 – Local bipartite Bell scenario. The outputs of each party 𝑎 and 𝑏 are represented by green circles,
while the inputs 𝑥 and 𝑦 are represented by blue squares (also known as measurement settings).
The local hidden variable 𝜆 shared between the parties is represented by a red triangle. A local
behaviour 𝑝(𝑎, 𝑏|𝑥, 𝑦) in such a scenario can always be cast into the form of equation 2.17.

𝑎

𝑥

𝜆 𝑏

𝑦

Source: personal archive

In this local Bell scenario, the hidden variable is a random variable distributed as 𝑝(𝜆),

and for a given value of 𝜆 and the inputs 𝑥, 𝑦, Alice and Bob subsystems determine locally

the outputs according to the probability distributions 𝑝(𝑎|𝑥, 𝜆) and 𝑝(𝑏|𝑦, 𝜆), usually called

the response functions of Alice and Bob. Putting all this together, the probability distribution

𝑝(𝑎, 𝑏|𝑥, 𝑦) is given by

𝑝(𝑎, 𝑏|𝑥, 𝑦) =
∫︁
𝑑𝜆 𝑝(𝜆)𝑝(𝑎|𝑥, 𝜆)𝑝(𝑏|𝑦, 𝜆). (2.17)

Notice that there is no requirement that the response functions 𝑝(𝑎|𝑥, 𝜆) and 𝑝(𝑏|𝑦, 𝜆) are

deterministic. The set of behaviours that can be written as equation 2.17 is called the local

set, represented by ℒ.

2.1 COLLINS-GISIN REPRESENTATION

Given a bipartite Bell scenario with input and output cardinalities given by 𝑀𝐴, 𝑀𝐵, 𝑚𝐴,

𝑚𝐵, there are 𝑀𝐴𝑀𝐵𝑚𝐴𝑚𝐵 probabilities 𝑝(𝑎, 𝑏|𝑥, 𝑦). However, because of the normalization

conditions 2.6, only 𝑚𝐴𝑚𝐵 − 1 probabilities must be given for each pair of inputs (𝑥, 𝑦) in

order to specify the behaviour. Hence, the dimension of the full behaviour space is

𝐷 = 𝑀𝐴𝑀𝐵(𝑚𝐴𝑚𝐵 − 1). (2.18)

In the case of no-signalling behaviours, the conditions 2.7 and 2.8 put additional constraints

in the probabilities 𝑝(𝑎, 𝑏|𝑥, 𝑦). Consider for example the simplest non trivial Bell scenario with

𝑀𝐴 = 𝑀𝐵 = 𝑚𝐴 = 𝑚𝐵 = 2. By setting the 4 marginal probabilities 𝑝(𝑎 = 1|𝑥 = 1),
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𝑝(𝑎 = 1|𝑥 = 2), 𝑝(𝑏 = 1|𝑦 = 1) and 𝑝(𝑏 = 1|𝑦 = 2), all the other marginal probabilities can

be determined by the normalization constraints:

𝑝(𝑎 = 1|𝑥 = 1) + 𝑝(𝑎 = 2|𝑥 = 1) = 1, (2.19)

𝑝(𝑎 = 1|𝑥 = 2) + 𝑝(𝑎 = 2|𝑥 = 2) = 1, (2.20)

𝑝(𝑏 = 1|𝑦 = 1) + 𝑝(𝑏 = 2|𝑦 = 1) = 1, (2.21)

𝑝(𝑏 = 1|𝑦 = 1) + 𝑝(𝑏 = 2|𝑦 = 1) = 1. (2.22)

Next, for each input pair (𝑥, 𝑦), only one joint probability, say, 𝑝(𝑎𝑏 = 11|𝑥, 𝑦) needs to

be specified, because all the others can be determined by the following constraints:

𝑝(𝑎𝑏 = 11|𝑥, 𝑦) + 𝑝(𝑎𝑏 = 12|𝑥, 𝑦) = 𝑝(𝑎 = 1|𝑥), (2.23)

𝑝(𝑎𝑏 = 11|𝑥, 𝑦) + 𝑝(𝑎𝑏 = 21|𝑥, 𝑦) = 𝑝(𝑏 = 1|𝑦), (2.24)∑︁
𝑎,𝑏∈{1,2}

𝑝(𝑎, 𝑏|𝑥, 𝑦) = 1. (2.25)

The no signalling behaviour is therefore fully specified by the eight probabilities shown in

the representation below:

𝑝𝒩 𝒮(𝑎, 𝑏|𝑥, 𝑦) ↔

𝑝(𝑎 = 1|𝑥 = 1) 𝑝(𝑎 = 1|𝑥 = 2)

𝑝(𝑏 = 1|𝑦 = 1) 𝑝(𝑎𝑏 = 11|𝑥𝑦 = 11) 𝑝(𝑎𝑏 = 11|𝑥𝑦 = 21)

𝑝(𝑏 = 1|𝑦 = 2) 𝑝(𝑎𝑏 = 11|𝑥𝑦 = 12) 𝑝(𝑎𝑏 = 11|𝑥𝑦 = 22)

. (2.26)

The parametrization 2.26 is called the Collins-Gisin representation (COLLINS; GISIN, 2004)(SCA-

RANI, 2019). By using the Collins-Gisin representation, the dimension of the no-signalling set

𝒩 𝒮 for the general bipartite scenario can be found. First, set 𝑀𝐴(𝑚𝐴 − 1) marginals 𝑝(𝑎|𝑥)

for Alice and 𝑀𝐵(𝑚𝐵 − 1) marginals 𝑝(𝑏|𝑦) for Bob. Now, for a specific pair of inputs (𝑥, 𝑦),

one has to specify (𝑚𝐴 − 1)(𝑚𝐵 − 1) probabilities. Hence the dimension of the no-signalling

set 𝒩 𝒮 is

𝐷𝒩 𝒮 = 𝑀𝐴(𝑚𝐴 − 1) +𝑀𝐵(𝑚𝐵 − 1) +𝑀𝐴𝑀𝐵(𝑚𝐴 − 1)(𝑚𝐵 − 1).

𝐷𝒩 𝒮 = [𝑀𝐴(𝑚𝐴 − 1) + 1] [𝑀𝐵(𝑚𝐵 − 1) + 1] − 1. (2.27)

The same process can be done for the multipartite case. Consider for example the scenario

with 3 parties depicted in figure 3.
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Figure 3 – Tripartite Bell scenario. The outputs of each party 𝑎, 𝑏 and 𝑐 are represented by green circles, while
the inputs 𝑥, 𝑦 and 𝑧 are represented by blue squares (also known as measurement settings). The
asterisk sign represents some system shared between the parties.

𝑎

𝑥
*

𝑏

𝑐

𝑧

𝑦

Source: personal archive

In order to specify a no-signalling distribution 𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧), we first set the marginals

𝑝(𝑎|𝑥), 𝑝(𝑏|𝑦) and 𝑝(𝑐|𝑧) by providing 𝑀𝐴(𝑚𝐴−1)+𝑀𝐵(𝑚𝐵 −1)+𝑀𝐶(𝑚𝐶 −1) probabilities.

Next, the bipartite marginals 𝑝(𝑎, 𝑏|𝑥, 𝑦), 𝑝(𝑎, 𝑐|𝑥, 𝑧) and 𝑝(𝑏, 𝑐|𝑦, 𝑧) are specified by setting

𝑀𝐴𝑀𝐵(𝑚𝐴 − 1)(𝑚𝐵 − 1) +𝑀𝐴𝑀𝐶(𝑚𝐴 − 1)(𝑚𝐶 − 1) +𝑀𝐵𝑀𝐶(𝑚𝐵 − 1)(𝑚𝐶 − 1) proba-

bilities. Finally the complete distribution 𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) is specified by setting the remaining

𝑀𝐴𝑀𝐵𝑀𝐶(𝑚𝐴 −1)(𝑚𝐵 −1)(𝑚𝐶 −1) probabilities. Hence, the dimension of the no-signalling

set in the tripartite case is

𝐷𝒩 𝒮 = 𝑀𝐴(𝑚𝐴 − 1) +𝑀𝐵(𝑚𝐵 − 1) +𝑀𝐶(𝑚𝐶 − 1) +𝑀𝐴𝑀𝐵(𝑚𝐴 − 1)(𝑚𝐵 − 1)

+𝑀𝐴𝑀𝐶(𝑚𝐴 − 1)(𝑚𝐶 − 1) +𝑀𝐵𝑀𝐶(𝑚𝐵 − 1)(𝑚𝐶 − 1)

+𝑀𝐴𝑀𝐵𝑀𝐶(𝑚𝐴 − 1)(𝑚𝐵 − 1)(𝑚𝐶 − 1).

𝐷𝒩 𝒮 = [𝑀𝐴(𝑚𝐴 − 1) + 1] [𝑀𝐵(𝑚𝐵 − 1) + 1] [𝑀𝐶(𝑚𝐶 − 1) + 1] − 1. (2.28)

In a general Bell scenario with 𝑁 parties, the dimension of the no-signalling set is given

by

𝐷𝒩 𝒮 =
𝑁∏︁

𝑖=1
[𝑀𝑖 (𝑚𝑖 − 1) + 1] − 1, (2.29)

do where 𝑀𝑖 and 𝑚𝑖 are the input and output cardinalities of the 𝑖-th party (ROSSET; GISIN;

WOLFE, 2017).
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2.2 THE LOCAL POLYTOPE

As previously mentioned, in a local model (equation 2.17) there is no restriction that the

response functions 𝑝(𝑎|𝑥, 𝜆) and 𝑝(𝑏|𝑦, 𝜆) must be deterministic. However, as was shown in

(FINE, 1982), it is the case that any local randomness used locally by Alice and Bob can be

transferred to the hidden variable, so that the distribution 𝑝(𝑎, 𝑏|𝑥, 𝑦) can be written as a

convex combination of deterministic behaviours of the form

𝑝𝑖(𝑎, 𝑏|𝑥, 𝑦) = 𝛿𝑎,𝑓𝑖(𝑥)𝛿𝑏,𝑔𝑖(𝑦). (2.30)

Such behaviours are characterized by the deterministic output functions 𝑎 = 𝑓𝑖(𝑥) and

𝑏 = 𝑔𝑖(𝑦) for Alice and Bob. The following derivation of Fine’s theorem is inspired by the

argument of more modern references such as (BRUNNER et al., 2014) and (SCARANI, 2019),

but with a slight modification that will serve us best in section 3.1.

Theorem 1. (Fine) A local behaviour 𝑝(𝑎, 𝑏|𝑥, 𝑦) can always be expressed as a convex com-

bination of deterministic behaviours, i.e.

𝑝(𝑎, 𝑏|𝑥, 𝑦) =
∑︁

𝑖

𝑞𝑖𝛿𝑎,𝑓𝑖(𝑥)𝛿𝑏,𝑔𝑖(𝑦), (2.31)

with 𝑞𝑖 ∈ [0, 1] and ∑︀𝑖 𝑞𝑖 = 1.

Proof. The behaviour 𝑝(𝑎, 𝑏|𝑥, 𝑦) is local, so by definition (equation 2.17),

𝑝(𝑎, 𝑏|𝑥, 𝑦) =
∫︁
𝑑𝜆 𝑝(𝜆)𝑝(𝑎|𝑥, 𝜆)𝑝(𝑏|𝑦, 𝜆). (2.32)

Let us construct a new local model with an expanded hidden variable 𝜆′ = (𝜆, 𝜇, 𝜈). In

this new model, 𝜇 = (𝜇1, . . . , 𝜇𝑀𝐴
) is a discrete random variable that provides to Alice a

deterministic response function mimicking the statistical behaviour of her original response

function 𝑝(𝑎|𝑥, 𝜆). Likewise 𝜈 = (𝜈1, . . . , 𝜈𝑀𝐵
) is a discrete random variable that provides

to Bob a deterministic response function mimicking the statistical behaviour of his original

response function 𝑝(𝑏|𝑦, 𝜆). In terms of the original local model (distributions represented by
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𝑝(·)), the probability distributions that characterize the new model (represented by 𝑝′(·)) are

𝑝′(𝜆, 𝜇, 𝜈) = 𝑝(𝜆)𝑝(𝜇, 𝜈|𝜆) = 𝑝(𝜆)𝑝′(𝜇|𝜆)𝑝′(𝜈|𝜆), (2.33)

𝑝′(𝜇|𝜆) = 𝑝(𝑎 = 𝜇1|𝑥 = 1, 𝜆) · · · 𝑝(𝑎 = 𝜇𝑀𝐴
|𝑥 = 𝑀𝐴, 𝜆) =

𝑀𝐴∏︁
𝑖=1

𝑝(𝑎 = 𝜇𝑖|𝑥 = 𝑖, 𝜆),

(2.34)

𝑝′(𝜈|𝜆) = 𝑝(𝑏 = 𝜈1|𝑦 = 1, 𝜆) · · · 𝑝(𝑏 = 𝜈𝑀𝐵
|𝑦 = 𝑀𝐵, 𝜆) =

𝑀𝐵∏︁
𝑗=1

𝑝(𝑏 = 𝜈𝑗|𝑦 = 𝑗, 𝜆),

(2.35)

𝑝′(𝑎|𝑥, 𝜆, 𝜇, 𝜈) = 𝛿𝑎,𝜇𝑥 , (2.36)

𝑝′(𝑏|𝑦, 𝜆, 𝜇, 𝜈) = 𝛿𝑏,𝜈𝑦 . (2.37)

This newly constructed model gives rise to the following behaviour:

𝑝′(𝑎, 𝑏|𝑥, 𝑦) =
∫︁
𝑑𝜆
∑︁
𝜇,𝜈

𝑝′(𝜆, 𝜇, 𝜈)𝑝′(𝑎|𝑥, 𝜆, 𝜇, 𝜈)𝑝′(𝑏|𝑦, 𝜆, 𝜇, 𝜈)

=
∫︁
𝑑𝜆
∑︁
𝜇,𝜈

𝑝(𝜆)
𝑀𝐴∏︁
𝑖=1

𝑝(𝑎 = 𝜇𝑖|𝑥 = 𝑖, 𝜆)
𝑀𝐵∏︁
𝑗=1

𝑝(𝑏 = 𝜈𝑗|𝑦 = 𝑗, 𝜆)𝛿𝑎,𝜇𝑥𝛿𝑏,𝜈𝑦

=
∫︁
𝑑𝜆 𝑝(𝜆)𝑝(𝑎|𝑥, 𝜆)𝑝(𝑏|𝑦, 𝜆)

= 𝑝(𝑎, 𝑏|𝑥, 𝑦). (2.38)

Notice this new model reproduces the original one. Also, it can be written as a convex

combination of deterministic behaviours indexed by (𝜇, 𝜈):

𝑝′(𝑎, 𝑏|𝑥, 𝑦) =
∑︁
𝜇,𝜈

⎡⎣∫︁ 𝑑𝜆 𝑝(𝜆)
𝑀𝐴∏︁
𝑖=1

𝑝(𝑎 = 𝜇𝑖|𝑥 = 𝑖, 𝜆)
𝑀𝐵∏︁
𝑗=1

𝑝(𝑏 = 𝜈𝑗|𝑦 = 𝑗, 𝜆)
⎤⎦ 𝛿𝑎,𝜇𝑥𝛿𝑏,𝜈𝑦

=
∑︁
𝜇,𝜈

𝑞𝜇,𝜈𝛿𝑎,𝜇𝑥𝛿𝑏,𝜈𝑦 , (2.39)

with weights 𝑞𝜇,𝜈 given by

𝑞𝜇,𝜈 =
∫︁
𝑑𝜆 𝑝(𝜆)

𝑀𝐴∏︁
𝑖=1

𝑝(𝑎 = 𝜇𝑖|𝑥 = 𝑖, 𝜆)
𝑀𝐵∏︁
𝑗=1

𝑝(𝑏 = 𝜈𝑗|𝑦 = 𝑗, 𝜆). (2.40)

This concludes the proof of Fine’s theorem.

A few remarks are in order. First, since any local behaviour can be written as a convex

combination of the deterministic strategies, it follows that ℒ is a convex set. Second, notice

that the number of deterministic strategies is finite (𝑚𝑀𝐴
𝐴 𝑚𝑀𝐵

𝐵 ), so ℒ is the convex hull of a

finite number of behaviours, therefore it is a polytope. Third and lastly, since ℒ is a polytope,
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it can be represented as the intersection of finitely many closed halfspaces (ZIEGLER, 2012).

Each of these halfspaces is described by a linear inequality in the probabilities 𝑝(𝑎, 𝑏|𝑥, 𝑦), with

coefficients 𝑠𝑖
𝑎,𝑏,𝑥,𝑦 and a number 𝑆𝑖 as the upper bound for the linear combination of the

probabilities: ∑︁
𝑎,𝑏,𝑥,𝑦

𝑠𝑖
𝑎,𝑏,𝑥,𝑦𝑝(𝑎, 𝑏|𝑥, 𝑦) ≤ 𝑆𝑖, (2.41)

where the superscript 𝑖 indexes the number of halfspaces that constitute the local polytope. The

conditions 2.41 represent the facets of the local polytope and are called tight Bell inequalities.

Tightness is used here in the sense that the facet inequalities bound the local set without any

slack, i.e. they form a minimal family of necessary and sufficient conditions for a behaviour to

be local. The violation of any of these expressions by a specific distribution 𝑝(𝑎, 𝑏|𝑥, 𝑦) is said

to witness the non-locality of the behaviour.

As a final note in this section, I would like to point out that in the proof of Fine’s theorem

presented above, the original hidden variable 𝜆 was extended to (𝜆, 𝜇, 𝜈) but the response

function of Alice (respectively Bob) only takes 𝜇 (respectively 𝜈) into account. So instead of

distributing (𝜆, 𝜇, 𝜈) to both parties, we could just as well have distributed only (𝜇, 𝜈). There-

fore, when talking about local behaviours, not only can we assume without loss of generality

that the response functions of Alice and Bob are deterministic, we can also assume that the

hidden variable can take on a finite number of values, namely the number of deterministic

strategies, 𝑚𝑀𝐴
𝐴 𝑚𝑀𝐵

𝐵 . If we wanted only Alice’s response function to be deterministic, we

could have proposed the alternative model:

𝑝′(𝜇) =
∫︁
𝑑𝜆 𝑝′(𝜆)𝑝(𝜇|𝜆) =

∫︁
𝑑𝜆 𝑝(𝜆)

𝑀𝐴∏︁
𝑖=1

𝑝(𝑎 = 𝜇𝑖|𝑥 = 𝑖, 𝜆), (2.42)

𝑝′(𝑎|𝑥, 𝜇) = 𝛿𝑎,𝜇𝑥 , (2.43)

𝑝′(𝑏|𝑦, 𝜇) =

∫︁
𝑑𝜆 𝑝(𝜆)

𝑀𝐴∏︁
𝑖=1

𝑝(𝑎 = 𝜇𝑖|𝑥 = 𝑖, 𝜆)𝑝(𝑏|𝑦, 𝜆)

∫︁
𝑑𝜆 𝑝(𝜆)

𝑀𝐴∏︁
𝑖=1

𝑝(𝑎 = 𝜇𝑖|𝑥 = 𝑖, 𝜆)
. (2.44)

It readily follows that the new local model

𝑝′(𝑎, 𝑏|𝑥, 𝑦) =
∑︁

𝜇

𝑝′(𝜇)𝑝′(𝑎|𝑥, 𝜇)𝑝′(𝑏|𝑦, 𝜇) (2.45)

reproduces the original behaviour 𝑝(𝑎, 𝑏|𝑥, 𝑦). In this new local model, only Alice’s response

function is deterministic, and the hidden variable 𝜇 takes on 𝑚𝑀𝐴
𝐴 possible values (the number

of deterministic strategies available to Alice). The fact that this can be done without loss of

generality will be important in section 3.1.
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2.3 THE CHSH INEQUALITY AND QUANTUM NON-LOCALITY

The simplest non trivial Bell scenario is the one with binary inputs and outputs, i.e. 𝑀𝐴 =

𝑀𝐵 = 𝑚𝐴 = 𝑚𝐵 = 2. For this case, utilizing a symmetric encoding of the outputs 𝑎, 𝑏 ∈

{−1, 1}, all local behaviours satisfy the following inequality:

𝑆 = ⟨𝑎0𝑏0⟩ + ⟨𝑎0𝑏1⟩ + ⟨𝑎1𝑏0⟩ − ⟨𝑎1𝑏1⟩ ≤ 2, (2.46)

where ⟨𝑎𝑥𝑏𝑦⟩ =
∑︁

𝑎,𝑏∈{−1,1}
𝑎𝑏𝑝(𝑎, 𝑏|𝑥, 𝑦). This is known as the CHSH inequality, after its dis-

coverers, Clauser, Horne, Shimony and Holt (CLAUSER et al., 1969). This inequality (along

with all its possible permutations of inputs and outputs) and the positivity constraints on the

probabilities completely characterize the local polytope in the binary scenario (FINE, 1982).

Naturally, it is also valid in scenarios with more inputs and outputs, but in general it is no

longer the only non trivial facet inequality.

So far, it is by no means obvious that quantum behaviours (equation 2.16) are potentially

incompatible with a local model description (equation 2.17), which is exactly the statement

of Bell’s theorem (BELL, 1964). However, the quantum scenario characterized by:

𝜌 = |𝜓−⟩ ⟨𝜓−| , (2.47){︁
Π𝑥=0

𝑎

}︁
= Proj (𝜎𝑥) , (2.48){︁

Π𝑥=1
𝑎

}︁
= Proj (𝜎𝑧) , (2.49){︁

Π𝑦=0
𝑏

}︁
= Proj

(︃
−𝜎𝑥 − 𝜎𝑧√

2

)︃
, (2.50)

{︁
Π𝑦=1

𝑏

}︁
= Proj

(︃
𝜎𝑧 − 𝜎𝑥√

2

)︃
, (2.51)

violates the CHSH inequality 2.46 with 𝑆 = 2
√

2 (NIELSEN; CHUANG, 2000). In fact, 𝑆 = 2
√

2

is the largest possible quantum violation of the CHSH inequality (CIREL’SON, 1980). In these

equations, |𝜓−⟩ = |01⟩ − |10⟩√
2

denotes the singlet state (|0⟩ and |1⟩ are eigenstates of 𝜎𝑧),

𝜎𝑥 and 𝜎𝑧 are the usual Pauli operators, and Proj(𝐿) denotes the set of projector operators

in the eigensubspaces of 𝐿.

This proves that some quantum behaviours are incompatible with an explanation in terms

of local hidden variable, a fact known as Bell’s theorem.
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2.4 NETWORK NON-LOCALITY

In (BRANCIARD; GISIN; PIRONIO, 2010), the authors took inspiration in entanglement swap-

ping protocols and considered a scenario with 3 parties and 2 independent local hidden variables

as shown in figure 4 below.

Figure 4 – Bilocal scenario. The outputs of each party 𝑎, 𝑏 and 𝑐 are represented by green circles, while the
inputs 𝑥, 𝑦 and 𝑧 are represented by blue squares (also known as measurement settings). The local
hidden variables 𝜆 and 𝜇 are represented by red triangles. In contrast to standard Bell scenarios,
the multiple hidden variables are not distributed to all parties and are assumed to be statistically
independent.

𝑎

𝑥

𝜆 𝑏 𝑐

𝑧

𝜇

𝑦

Source: personal archive

In this so called bilocal scenario, there is a feature that was not present in the standard Bell

scenario we have been exploring so far, namely the presence of more than 1 hidden variable,

along with the assumption of statistical independence between the hidden variables. This leads

to a natural generalization from Bell scenarios to network scenarios. In a network scenario,

there are multiple local hidden variables (or quantum states in the case of quantum networks)

and not all parties have access to all hidden variables, which are assumed to be statistically

independent. In order to define local and quantum behaviours in the case of networks, it is

perhaps best to work with an example. Consider the network depicted in figure 5.

As was the case with standard Bell scenarios, we are interested in the probability distribution

𝑝(outputs|inputs), which is 𝑝(𝑎, 𝑏, 𝑐, 𝑑|𝑥, 𝑦, 𝑧, 𝑤) for the network of figure 5. The behaviour

is called network-local if there exists probability distributions 𝑝(𝜆) and 𝑝(𝜇) and response

functions 𝑝(𝑎|𝑥, 𝜆), 𝑝(𝑏|𝑦, 𝜆, 𝜇), 𝑝(𝑐|𝑧, 𝜆) and 𝑝(𝑑|𝑤, 𝜇) such that

𝑝(𝑎, 𝑏, 𝑐, 𝑑|𝑥, 𝑦, 𝑧, 𝑤) =
∫︁
𝑑𝜆 𝑑𝜇 𝑝(𝜆)𝑝(𝜇)𝑝(𝑎|𝑥, 𝜆)𝑝(𝑏|𝑦, 𝜆, 𝜇)𝑝(𝑐|𝑧, 𝜆)𝑝(𝑑|𝑤, 𝜇). (2.52)

Notice the independence of the hidden variables 𝑝(𝜆, 𝜇) = 𝑝(𝜆)𝑝(𝜇). In the case of a

quantum network, the local hidden variables 𝜆 and 𝜇 are substituted by quantum states 𝜌 and

𝜎, as shown in figure 6 below.
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Figure 5 – Example of a generic local network. The outputs of each party 𝑎, 𝑏, 𝑐 and 𝑑 are represented by green
circles, while the inputs 𝑥, 𝑦, 𝑧 and 𝑤 are represented by blue squares (also known as measurement
settings). The local hidden variables 𝜆 and 𝜇 are represented by red triangles. A network local
behaviour 𝑝(𝑎, 𝑏, 𝑐, 𝑑|𝑥, 𝑦, 𝑧, 𝑤) in such a scenario can always be cast into the form of equation
2.52 (notice the statistical independence between 𝜆 and 𝜇).

𝑎

𝑥

𝜆

𝑏

𝑐

𝑧

𝜇 𝑑

𝑦 𝑤

Source: personal archive

Figure 6 – Example of a generic quantum network. The outputs of each party 𝑎, 𝑏, 𝑐 and 𝑑 are represented
by green circles, while the inputs 𝑥, 𝑦, 𝑧 and 𝑤 are represented by blue squares (also known as
measurement settings). The quantum states 𝜌 and 𝜎 are represented by the bare symbols in no
geometric form. A network quantum behaviour 𝑝(𝑎, 𝑏, 𝑐, 𝑑|𝑥, 𝑦, 𝑧, 𝑤) in such a scenario can always
be cast into the form of equation 2.61 (notice that the global state is a product state 𝜌 ⊗ 𝜎, which
reflects the source independence condition).

𝑎

𝑥
𝜌

𝑏

𝑐

𝑧

𝜎 𝑑

𝑦 𝑤

Source: personal archive

The behaviour 𝑝(𝑎, 𝑏, 𝑐, 𝑑|𝑥, 𝑦, 𝑧, 𝑤) is said to be network-quantum if there exists quantum
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states 𝜌 and 𝜎 and POVMs {Π𝑥
𝑎}, {Π𝑦

𝑏}, {Π𝑧
𝑐} and {Π𝑤

𝑑 } such that

Π𝑥
𝑎 ≥ 0, ∀𝑎, 𝑥, (2.53)

Π𝑦
𝑏 ≥ 0, ∀𝑏, 𝑦, (2.54)

Π𝑧
𝑐 ≥ 0, ∀𝑐, 𝑧, (2.55)

Π𝑤
𝑑 ≥ 0, ∀𝑑, 𝑤, (2.56)∑︁

𝑎

Π𝑥
𝑎 = 𝐼𝐴, ∀𝑥, (2.57)

∑︁
𝑏

Π𝑦
𝑏 = 𝐼𝐵, ∀𝑦, (2.58)

∑︁
𝑐

Π𝑧
𝑐 = 𝐼𝐶 , ∀𝑧, (2.59)

∑︁
𝑑

Π𝑤
𝑑 = 𝐼𝐷, ∀𝑤, (2.60)

𝑝(𝑎, 𝑏, 𝑐, 𝑑|𝑥, 𝑦, 𝑧, 𝑤) = Tr [(𝜌⊗ 𝜎) (Π𝑥
𝑎 ⊗ Π𝑦

𝑏 ⊗ Π𝑧
𝑐 ⊗ Π𝑤

𝑑 )] . (2.61)

In the case of a quantum network, the condition of statistical independence between local

hidden variables turns into the requirement that the full quantum state can be written as a

product state 𝜌 ⊗ 𝜎, which implies that 𝜌 and 𝜎 are independently prepared, thereby sharing

neither classical nor quantum correlations.

The problem of fully characterizing the local set in network scenarios turns out to be a

challenging one, mainly because the network local set is no longer convex. So much so that

the study of network-local correlations has become an active area of research, with many open

problems. One of the few general facts known to be true for network scenarios is that they

are characterised by a finite number of polynomial inequalities (FRITZ, 2012) (ROSSET; GISIN;

WOLFE, 2017). A good review of the progress made so far regarding network non-locality can

be found in (TAVAKOLI et al., 2021).

In chapter 3, a numerical procedure for finding an explicit network-local model that repro-

duces a given behaviour will be presented. Then, this tool will be applied to solve interesting

problems in two network scenarios: the bilocal one already shown in figure 4 and also the

triangle scenario with no inputs. So it is important to review some important results obtained

for these two network topologies.



29

2.5 THE TRIANGLE SCENARIO WITH NO INPUTS

The introduction of network scenarios leads to the possibility of quantum non-locality even

in the case when the parties do not have a choice of measurement, i.e. when there are no

inputs. This is not possible in standard Bell non-locality, where it is essential not only that

the parties have a choice of at least 2 measurement settings, but also that this choice can be

made independently of the system measured by the parties (sometimes referred to as the free

will assumption). In network non-locality, the issue of free will can be entirely removed from

the picture with the introduction of the more explicit assumption of source independence. The

simplest case where non-locality without inputs can manifest is the triangle scenario shown in

figure 7.

Figure 7 – Triangle scenario with no inputs. The outputs of each party 𝑎, 𝑏 and 𝑐 are represented by green
circles. The local hidden variables 𝛼, 𝛽 and 𝛾 are represented by red triangles. Notice the lack of
input choice for the parties. This is the simplest scenario that exhibits non-locality without inputs.

𝑎

𝛽

𝛾 𝑏

𝑐

𝛼

Source: personal archive

In (FRITZ, 2012) it is shown that every quantum correlation that violates the CHSH ine-

quality in the standard Bell scenario can give rise to a behaviour 𝑝(𝑎, 𝑏, 𝑐) that is non-local

in the triangular scenario of figure 7. Although this result proves the existence of quantum

non-locality without inputs in networks, this non-locality stems directly from the standard

bipartite Bell non-locality, which suggests that it is not a genuinely new kind of non-locality

specific to network configurations. However, in (RENOU et al., 2019a), the authors obtain a

non-local quantum correlation for the triangle scenario whose non-locality seems to be genuine

to networks. So it might even possible that the standard Bell non-locality is actually a special

case of the more fundamental phenomenon of non-locality without inputs in networks.

Now consider the problem of ascertaining if a given behaviour 𝑝(𝑎, 𝑏, 𝑐) is compatible

with the network-local model of figure 7. A promising advancement made in the direction of
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solving these kinds of problems (not only for the triangle scenario, but also for general network

topologies) is the inflation technique (WOLFE; SPEKKENS; FRITZ, 2019). With this technique

it is possible to derive Bell-like inequalities that are necessary conditions for network-locality

(in general they are not sufficient though4). When applying inflation to the triangle scenario

with binary outputs (𝑚𝐴 = 𝑚𝐵 = 𝑚𝐶 = 2) and symmetric encoding 𝑎, 𝑏, 𝑐 ∈ {−1, 1}, one

finds the following inequality:

⟨𝑎𝑐⟩ + ⟨𝑏𝑐⟩ − ⟨𝑎⟩ ⟨𝑏⟩ ≤ 1. (2.62)

Although inequality 2.62 is not a sufficient condition for network-locality, its violation is

enough to witness the non-locality of some interesting distributions. Consider for example the

so called Greenberger-Horne-Zeilinger (GHZ) distribution, inspired by the well known GHZ

quantum state (GREENBERGER et al., 1990):

𝑝GHZ(𝑎, 𝑏, 𝑐) =

⎧⎪⎪⎨⎪⎪⎩
1/2, if 𝑎 = 𝑏 = 𝑐

0, otherwise
. (2.63)

Since 𝑎, 𝑏, 𝑐 ∈ {−1, 1}, this distribution satisfies ⟨𝑎𝑐⟩ = ⟨𝑏𝑐⟩ = 1 and ⟨𝑎⟩ = ⟨𝑏⟩ = 0,

therefore it violates 2.62. Thus, it is not network-local. Incidentally, neither can it be generated

by 3 independent sources distributing quantum states, since network-quantum behaviours also

do not violate inequality 2.62 (WOLFE; SPEKKENS; FRITZ, 2019). Consider now the uniformly

random distribution:

𝑝0(𝑎, 𝑏, 𝑐) = 1
8 , ∀𝑎, 𝑏, 𝑐. (2.64)

This one is obviously local, since it can be realized by Alice, Bob and Charles randomly

determining their outputs with equal probability. What about the mixed distribution 𝑝 =

(1−𝑣)𝑝0 +𝑣𝑝GHZ? It is expected that for visibilities greater than some threshold 𝑣* this mixed

distribution ceases to be local. The problem of estimating 𝑣* will be addressed in section 3.3

2.6 THE BILOCAL SCENARIO

The bilocal scenario (figure 4) was already introduced when discussing the concept of

network-nonlocality. It was the first network scenario to be proposed (BRANCIARD; GISIN; PI-

RONIO, 2010). As we did for the triangle scenario, consider the problem of ascertaining if a
4 I should add that the inflation technique can be used to provide asymptotically tight criteria for network-

locality (NAVASCUÉS; WOLFE, 2020), albeit at the cost of exponentially increasing computational cost.
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given behaviour 𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) is compatible with the network-local model of figure 4. The

bilocal scenario was thoroughly studied in (BRANCIARD et al., 2012), where a necessary con-

dition for network-locality was proven. This condition is called the BRGP inequality, after its

discoverers, Branciard, Gisin, Rosset and Pironio. In the case of binary inputs and outputs

(𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧 ∈ {0, 1}), this inequality is expressed in terms of the quantities 𝐼 and 𝐽 , defined

as:

𝐼 = 1
4

∑︁
𝑥,𝑧,𝑎,𝑏,𝑐

(−1)𝑎+𝑏+𝑐𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦 = 0, 𝑧), (2.65)

𝐽 = 1
4

∑︁
𝑥,𝑧,𝑎,𝑏,𝑐

(−1)𝑎+𝑏+𝑐+𝑥+𝑧𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦 = 1, 𝑧), (2.66)

and the BRGP inequality reads: √︁
|𝐼| +

√︁
|𝐽 | ≤ 1. (2.67)

The BRGP inequality 2.67 is a necessary condition for network-locality, but in general it is

not a sufficient one. However, it was shown to be tight in a particular 2-dimensional slice of

the probability space. Consider the distributions 𝑝𝐼 , 𝑝𝐽 and 𝑝0 defined as:

𝑝𝐼(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) = 1
8
[︁
1 + 𝛿𝑦,0(−1)𝑎+𝑏+𝑐

]︁
, (2.68)

𝑝𝐽(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) = 1
8
[︁
1 + 𝛿𝑦,1(−1)𝑥+𝑧+𝑎+𝑏+𝑐

]︁
, (2.69)

𝑝0(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) = 1
8 , ∀𝑎, 𝑏, 𝑐, 𝑥, 𝑦, 𝑧, (2.70)

and the behaviours 𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) given by:

𝑝 = 𝐼𝑝𝐼 + 𝐽𝑝𝐽 + (1 − 𝐼 − 𝐽)𝑝0, (2.71)

where the dependency on 𝑎, 𝑏, 𝑐, 𝑥, 𝑦 and 𝑧 has been omitted to keep the notation clean and

𝐼, 𝐽 ∈ [−1, 1]. The correlations 2.71 define a 2-dimensional slice of the probability space in

which the BRGP inequality 2.67 is tight (BRANCIARD et al., 2012). But what about in other

2-dimensional sections? The problem of estimating the network-local boundary for slices where

the BRGP inequality is not tight will be addressed in section 3.4
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3 DETERMINATION OF LOCAL MODELS

Having introduced the concepts of Bell non-locality and network non-locality in chapter

2, we are almost ready to present the proposed numerical tool for finding explicit network

local models and its applications to the problems introduced in sections 2.5 and 2.6. The

last missing ingredient is a powerful result that provides an upper bound on the cardinality of

hidden variables in network scenarios. This result is explained in section 3.1. The main idea

behind the numerical tool is then shown in section 3.2. Finally, its application to the triangle

and bilocal topologies is presented in sections 3.3 and 3.4, respectively.

3.1 BOUNDS ON HIDDEN VARIABLES CARDINALITY

In (ROSSET; GISIN; WOLFE, 2017) it was proven that the cardinalities of local hidden varia-

bles in networks can always be assumed to be finite. More than that, the following procedure

provides an upper bound for the cardinality of a given hidden variable 𝜆:

1. Identify the parties connected to 𝜆. The outputs and inputs of these parties are collected

in the vectors 𝑎 = (𝑎1, 𝑎2, . . .) and 𝑥 = (𝑥1, 𝑥2, . . .). The outputs and inputs of the

remaining parties are collected in the vectors 𝑏 = (𝑏1, 𝑏2, . . .) and 𝑦 = (𝑦1, 𝑦2, . . .).

2. Using equation 2.29, calculate the no-signalling dimensions of the behaviours 𝑝
(︁
𝑎, 𝑏|𝑥, 𝑦

)︁
and 𝑝

(︁
𝑏|𝑦
)︁
, denoted by 𝐷𝒩 𝒮(𝒫𝐴𝐵) and 𝐷𝒩 𝒮(𝒫𝐵).

3. The cardinality of 𝜆, denoted by 𝑐𝜆, is bounded without loss of generality by the following

expression:

𝑐𝜆 ≤ 𝐷𝒩 𝒮(𝒫𝐴𝐵) −𝐷𝒩 𝒮(𝒫𝐵). (3.1)

As an example, consider the triangle network with binary outputs and no inputs (figure 7).

The hidden variable 𝛼 is distributed to parties 𝐵 and 𝐶, while 𝐴 does not receive information

from 𝛼. Hence, in the notation of (ROSSET; GISIN; WOLFE, 2017), 𝑝
(︁
𝑎, 𝑏|𝑥, 𝑦

)︁
= 𝑝(𝑎, 𝑏, 𝑐) and

𝑝
(︁
𝑏|𝑦
)︁

= 𝑝(𝑎). The no-signalling dimensions of these behaviour spaces are 𝐷𝒩 𝒮(𝒫𝐴𝐵) = 7

and 𝐷𝒩 𝒮(𝒫𝐵) = 1, and the application of equation 3.1 implies that the cardinality 𝑐𝛼 can be

taken to be less than or equal to 6. By symmetry, the same can be said of the cardinalities 𝑐𝛽

and 𝑐𝛾.
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In some cases this bound can be improved by enumerating the deterministic strategies of

one of the parties. Consider for example the bilocal network (figure 4) with binary inputs and

outputs for all parties. The parties connected to 𝜆 are 𝐴 and 𝐵, so the appropriate distributions

for calculating 𝑐𝜆 are 𝑝
(︁
𝑎, 𝑏|𝑥, 𝑦

)︁
= 𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) and 𝑝

(︁
𝑏|𝑦
)︁

= 𝑝(𝑐|𝑧). By using equation

2.29, the dimensions of these behaviour spaces are 𝐷𝒩 𝒮(𝒫𝐴𝐵) = [2(2 − 1) + 1]3 −1 = 26 and

𝐷𝒩 𝒮(𝒫𝐵) = [2(2 − 1) + 1]−1 = 2. Hence, using equation 3.1, the cardinality of 𝜆 is bounded

by 26 − 2 = 24. The same upper bound applies also to the cardinality of 𝜇, by symmetry.

However, there are only 4 possible deterministic strategies for Alice, as well as for Charles.

Therefore, the upper bounds on the cardinalities can be reduced even further to 𝑐𝜆, 𝑐𝜇 ≤ 4

(see the discussion at the end of section 2.2).

3.2 REPRESENTATION OF LOCAL MODELS

A local model with discrete hidden variables with known cardinality can be represented by

1-dimensional arrays 𝑝𝜆, 𝑝𝜇, . . . representing the probability distributions of the hidden variables

and multidimensional arrays 𝑝𝐴, 𝑝𝐵, . . . representing the response functions of each party. A

specific hidden variable array 𝑝𝜆 must have 𝑐𝜆 − 1 elements representing the probabilities that

𝜆 assumes different values:

𝑝𝜆[𝑖] = 𝑝(𝜆 = 𝑖), (3.2)

with 𝑖 ∈ {1, 2, . . . , 𝑐𝜆 − 1}. Only 𝑐𝜆 − 1 probabilities need to be specified because of the

normalization condition
𝑐𝜆∑︁

𝑖=1
𝑝(𝜆 = 𝑖) = 1.

Now consider one party 𝐴 that receives hidden variables 𝜆1, . . . , 𝜆𝑛. The response function

𝑝(𝑎|𝑥, 𝜆1, . . . , 𝜆𝑛) can then be represented by a multidimensional array 𝑝𝐴 such that:

𝑝𝐴[𝑖, 𝑗, 𝑘, . . . , 𝑙] = 𝑝(𝑎 = 𝑖|𝑥 = 𝑗, 𝜆1 = 𝑘, . . . , 𝜆𝑛 = 𝑙), (3.3)

with 𝑖 ∈ {1, 2, . . . ,𝑚𝐴 − 1}, 𝑗 ∈ {1, 2, . . . ,𝑀𝐴}, 𝑘 ∈ {1, 2, . . . , 𝑐𝜆1}, . . ., 𝑙 ∈ {1, 2, . . . , 𝑐𝜆𝑛}.

The indexing convention for the response function arrays is always the following: the first index

is the output value; the second input is the input value; and all the other indexes are the values

of the hidden variables available to that party. Notice that the output index 𝑖 only needs to

run from 1 to 𝑚𝐴 − 1 because of the normalization condition
𝑚𝐴∑︁
𝑖=1

𝑝(𝑎 = 𝑖|𝑥, 𝜆1, . . . , 𝜆𝑛) = 1.

Given the hidden variables arrays 𝑝𝜆, 𝑝𝜇, . . . and the parties arrays 𝑝𝐴, 𝑝𝐵, . . ., all the pro-
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babilities 𝑝(𝑎, 𝑏, . . . |𝑥, 𝑦, . . .) can be calculated:

𝑝(𝑎, 𝑏, . . . |𝑥, 𝑦, . . .) =
∑︁
𝑖,𝑗,...

{𝑝𝜆[𝑖]𝑝𝜇[𝑗] . . . 𝑝𝐴[𝑎, 𝑥, . . .]𝑝𝐵[𝑏, 𝑦, . . .] . . .} . (3.4)

Therefore, the problem of finding a local model for a given behaviour 𝑝*(𝑎, 𝑏, . . . |𝑥, 𝑦, . . .)

can be reduced to a constrained optimization problem on the elements of 𝑝𝜆, 𝑝𝜇, . . . and

𝑝𝐴, 𝑝𝐵, . . .:

min
𝑝𝜆,𝑝𝜇,...,𝑝𝐴,𝑝𝐵 ,...

∑︁
𝑎,𝑏,...,𝑥,𝑦,...

[𝑝(𝑎, 𝑏, . . . |𝑥, 𝑦, . . .) − 𝑝*(𝑎, 𝑏, . . . |𝑥, 𝑦, . . .)]2

s.t. 𝑝𝜆, 𝑝𝜇, . . . , 𝑝𝐴, 𝑝𝐵, . . . ≥ 0∑︁
𝑖

𝑝𝜆[𝑖] ≤ 1

∑︁
𝑖

𝑝𝜇[𝑖] ≤ 1

· · ·∑︁
𝑖

𝑝𝐴[𝑖, . . .] ≤ 1

∑︁
𝑖

𝑝𝐵[𝑖, . . .] ≤ 1

· · ·

where 𝑝(𝑎, 𝑏, . . . |𝑥, 𝑦, . . .) =
∑︁
𝑖,𝑗,...

{𝑝𝜆[𝑖]𝑝𝜇[𝑗] . . . 𝑝𝐴[𝑎, 𝑥, . . .]𝑝𝐵[𝑏, 𝑦, . . .] . . .}

. (3.5)

In order to apply this idea to solve interesting problems regarding the bilocal and triangle

topologies (figures 4 and 7), two Python modules named bilocal.py and triangle.py were crea-

ted. The code and documentation are available at github.com/mariofilho281/localmodels. In

these two modules, the optimization problem 3.5 is solved with a trust-region algorithm for

constrained optimization available at the SciPy package (VIRTANEN et al., 2020). This algo-

rithm deals with inequality constraints by employing the barrier method, which reduces the

original problem to a sequence of equality constrained problems. Each of these subproblems is

then solved using a trust-region sequential quadratic programming (SQP) with the projected

conjugate gradient (CG) method (BYRD; HRIBAR; NOCEDAL, 1999).

Finally, one important remark is that in standard Bell non-locality, the problem of finding

a local model for a given behaviour (if one such model exists) is substantially easier. In fact,

it reduces to a feasibility problem in linear programming, for which there are algorithms that

can provide an explicit model in case the behaviour is local, or a Bell inequality violated by the

behaviour in case it is not local (SCARANI, 2019). In network non-locality, such methods are

https://github.com/mariofilho281/localmodels/tree/master


35

not applicable because the problem of finding a network local model is no longer an instance

of convex optimization.

3.3 TRIANGLE NETWORK

As a first application, let us consider the following question: for which visibilities can the

GHZ distribution (equation 2.63) be obtained as a trilocal model in the triangle scenario?

When solving problem 3.5 for a GHZ distribution in triangle network with varying visibilities,

the optimization error as a function of the visibility can be seen in figure 8. In order to have a

meaningful quantity to report, the optimization error of problem 3.5 if first divided by 8 (the

number of entries in the probability distribution 𝑝(𝑎, 𝑏, 𝑐)) and then taken the square root,

before being plotted. The 𝑦-axis of figure 8 can therefore be interpreted as a mean error in

the probabilities, when comparing the target distribution and the numerical solution. Notice

that for visibilities greater than 𝑣* ≈ 1/3, the numerical optimization can no longer find a

local model for the desired behaviour, a strong indication that the distribution ceases to be

network-local for 𝑣 > 1/3.

Numerical procedures such as the one developed here do not serve as a mathematical proof

of non-locality, although they certainly provide evidence in this direction. They can however

be used for proving the locality of a given behaviour. Let us consider the GHZ distribution

with 𝑣 = 1/3.

When solving optimization problem 3.5 for 𝑣 = 0.33, one possible model1 has the following
1 The solution of problem 3.5 is not unique. Since the initial guess is randomized, each instance the numerical

routine is performed, slightly different results might ensue. Also, sometimes the optimization algorithm
sometimes fails to converge to an acceptable solution, specially when near the non-locality threshold. In
such cases, it might take a few trials to get a model to a local distribution.
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Figure 8 – Optimization error as a function of the visibility of the GHZ distribution. For visibilities 𝑣 ≤ 1/3,
the error reaches values very close to zero, indicating that these behaviours are network local. For
visibilities 𝑣 > 1/3, the solver can no longer achieve low optimization errors, indicating that these
behaviours are most likely not network local.

Source: personal archive

distributions in the hidden variables:

𝑝𝛼 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5.515 129 × 10−4

4.988 952 × 10−1

4.462 493 × 10−4

4.775 986 × 10−4

4.685 608 × 10−4

4.991 608 × 10−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑝𝛽 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.680 312 × 10−4

4.798 686 × 10−4

4.717 101 × 10−4

4.768 658 × 10−4

4.988 352 × 10−1

4.989 683 × 10−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑝𝛾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4.717 443 × 10−4

4.626 071 × 10−4

1.678 008 × 10−1

5.408 369 × 10−4

1.675 872 × 10−1

6.631 367 × 10−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3.6)

For this initial discussion, the response functions are not important. I also would like to

add that in order to better communicate the local model obtained, the arrays of equation 3.6

have been appended with the last probability that can be determined from the normalization

condition. So contrary to the generic array 𝑝𝜆 of equation 3.2, the objects of equation 3.6 do

sum up to unity. A striking feature of 𝑝𝛼, 𝑝𝛽 and 𝑝𝛾 in equations 3.6 is that some probabilities

seem to be extremely low: 𝛼 is predominantly restricted to the 2nd and 6th values, 𝛽 to the
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5th and 6th, and finally 𝛾 to the 3rd, 5th and 6th. A natural question then arises: can the

same behaviour with 𝑣 = 0.33 be obtained with reduced cardinalities 𝑐𝛼 = 2, 𝑐𝛽 = 2 and

𝑐𝛾 = 3? Running the optimization again for 𝑣 = 0.33 with these reduced cardinalities usually

takes more attempts to produce an acceptable model (a consequence of the fact that now the

solver has less degrees of freedom to work with), but eventually lead to solutions such as the

one below:

𝑝𝛼 =

⎛⎜⎜⎝0.49947714

0.50052286

⎞⎟⎟⎠ , 𝑝𝛽 =

⎛⎜⎜⎝0.49982998

0.50017002

⎞⎟⎟⎠ , 𝑝𝛾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0.16934519

0.16875225

0.66190257

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.7)

𝑝𝐴 =

⎛⎜⎜⎝0.01142633 0.9971927 0.99765428

0.00331543 0.99337977 0.00221306

⎞⎟⎟⎠ , (3.8)

𝑝𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0.00306624 0.00958604

0.99031315 0.99664584

0.00226471 0.99767491

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.9)

𝑝𝐶 =

⎛⎜⎜⎝0.49971671 0.00113535

0.99882767 0.49961629

⎞⎟⎟⎠ . (3.10)

In the triangle scenario with no inputs and binary outputs, the response functions are simple

enough to be represented by the 2-dimensional arrays of equations 3.8, 3.9 and 3.10. Encoding

the outputs as 𝑎, 𝑏, 𝑐 ∈ {0, 1}, they represent the probability that each party outputs 0 for

different values of their respective hidden variables. Explicitly:

𝑝(𝑎 = 0|𝛽 = 𝑖, 𝛾 = 𝑗) = 𝑝𝐴[𝑖, 𝑗], (3.11)

𝑝(𝑏 = 0|𝛾 = 𝑖, 𝛼 = 𝑗) = 𝑝𝐵[𝑖, 𝑗], (3.12)

𝑝(𝑐 = 0|𝛼 = 𝑖, 𝛽 = 𝑗) = 𝑝𝐶 [𝑖, 𝑗], (3.13)

where 𝑖 indexes the rows and 𝑗 indexes the columns (just like matrices). Obviously, the pro-

bability that the parties output 1 can be readily obtained by normalization.

The arrays in equations 3.7, 3.8, 3.9 and 3.10 look like numerical estimates of the following
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arrays:

𝑝𝛼 =

⎛⎜⎜⎝1/2

1/2

⎞⎟⎟⎠ , 𝑝𝛽 =

⎛⎜⎜⎝1/2

1/2

⎞⎟⎟⎠ , 𝑝𝛾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1/6

1/6

2/3

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.14)

𝑝𝐴 =

⎛⎜⎜⎝0 1 1

0 1 0

⎞⎟⎟⎠ , (3.15)

𝑝𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 0

1 1

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.16)

𝑝𝐶 =

⎛⎜⎜⎝1/2 0

1 1/2

⎞⎟⎟⎠ . (3.17)

This new proposed model has deterministic response functions for Alice and Bob. In order

to express them more compactly one can always permute the labels of 𝛾 so that the arrays

change to:

𝑝𝛼 =

⎛⎜⎜⎝1/2

1/2

⎞⎟⎟⎠ , 𝑝𝛽 =

⎛⎜⎜⎝1/2

1/2

⎞⎟⎟⎠ , 𝑝𝛾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1/6

2/3

1/6

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.18)

𝑝𝐴 =

⎛⎜⎜⎝1 1 0

1 0 0

⎞⎟⎟⎠ , (3.19)

𝑝𝐵 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
1 1

0 1

0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.20)

𝑝𝐶 =

⎛⎜⎜⎝1/2 0

1 1/2

⎞⎟⎟⎠ . (3.21)

This model reproduces the same behaviour as before. We permuted the labels of 𝛾 only

so that we could represent the model in a more compact form. Encoding the hidden variables
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as 𝛼 ∈ {0, 1}, 𝛽 ∈ {0, 1} and 𝛾 ∈ {0, 1, 2} we have:

𝛼 = 1
2[0] + 1

2[1], (3.22)

𝛽 = 1
2[0] + 1

2[1], (3.23)

𝛾 = 1
6[0] + 2

3[1] + 1
6[2], (3.24)

𝑎(𝛽, 𝛾) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝛽 + 𝛾 ≤ 1

1, otherwise
, (3.25)

𝑏(𝛾, 𝛼) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝛾 ≤ 𝛼

1, otherwise
, (3.26)

𝑐(𝛼, 𝛽) =

⎧⎪⎪⎨⎪⎪⎩
1
2 [0] + 1

2 [1], if 𝛼 = 𝛽

𝛽, otherwise
, (3.27)

where the notation 𝑝0[0] + 𝑝1[1] + · · · represents a random variable that assumes value 0 with

probability 𝑝0, 1 with probability 𝑝1, and so on.

It turns out that this model reproduces exactly the GHZ distribution with visibility 𝑣 = 1/3:

𝑝(𝑎, 𝑏, 𝑐) =

⎧⎪⎪⎨⎪⎪⎩
1/4, if 𝑎 = 𝑏 = 𝑐

1/12, otherwise
. (3.28)

I hope this section has successfully illustrated how the optimization problem 3.5 can be

used to explicitly construct local models for a given behaviour. Before moving on to the

next application, let us pursue one final investigation regarding the family of behaviours 𝑝 =

(1 − 𝑣)𝑝0 + 𝑣𝑝GHZ. We have proven that 𝑝 is network-local for 𝑣 = 1/3. For 𝑣 = 0, 𝑝 is

an uniformly random distribution, therefore it is network-local also in this case. Are we then

allowed to draw the conclusion that 𝑝 is network-local for all 𝑣 ∈ [0, 1/3]? At this point no,

because the local set for the triangle scenario is not convex. In fact, as proven in (RENOU et al.,

2019b), it is not even star-convex with respect to the uniform distribution 𝑝0
2. However, figure

8 certainly suggests that 𝑝 is network-local for all 𝑣 ∈ [0, 1/3]. Indeed this is the case, because

a local model for these visibilities can be constructed by augmenting the cardinality 𝑐𝛾 to 4

(so that 𝛾 ∈ {0, 1, 2, 3}) and instructing Alice and Bob to uniformly randomize their outputs

if they receive 𝛾 = 3. The following model reproduces the behaviour 𝑝 = (1 − 𝑣)𝑝0 + 𝑣𝑝GHZ

2 A set 𝒮 is star-convex with respect to the point 𝑝0 if, and only if for every point 𝑝 ∈ 𝒮, all the points in
the line segment joining 𝑝0 and 𝑝 also belong to 𝒮.
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for 𝑣 ∈ [0, 3]:

𝛼 = 1
2[0] + 1

2[1], (3.29)

𝛽 = 1
2[0] + 1

2[1], (3.30)

𝛾 = 𝑣

2[0] + 2𝑣[1] + 𝑣

2[2] + (1 − 3𝑣)[3], (3.31)

𝑎(𝛽, 𝛾) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2 [0] + 1

2 [1], if 𝛾 = 3

0, if 𝛽 + 𝛾 ≤ 1

1, otherwise

, (3.32)

𝑏(𝛾, 𝛼) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2 [0] + 1

2 [1], if 𝛾 = 3

0, if 𝛾 ≤ 𝛼

1, otherwise

, (3.33)

𝑐(𝛼, 𝛽) =

⎧⎪⎪⎨⎪⎪⎩
1
2 [0] + 1

2 [1], if 𝛼 = 𝛽

𝛽, otherwise
. (3.34)

3.4 BILOCAL NETWORK

As a second application for the technique, let us consider the problem of finding an ap-

proximation for the boundary of the bilocal set in affine subspaces of dimension 2 in the

no-signalling space3. The first affine subspace to be considered is one for which the local

boundary is known to be the BRGP inequality (equation 2.67). Given the distributions 𝑝𝐼 , 𝑝𝐽

and 𝑝0 of equations 2.68, 2.69 and 2.70, each ordered pair (𝐼, 𝐽) ∈ [−1, 1] × [−1, 1] define a

behaviour 𝑝 according to equation 2.71. The coefficients 𝐼 and 𝐽 match the parameters that

enter the BRGP expression (equations 2.65 and 2.66) (BRANCIARD et al., 2012).

Solving problem 3.5 for a rectangular grid of pairs (𝐼, 𝐽), the optimization error can be

seen in figure 9. Analogous to what was done in section 3.3, the optimization error of problem

3.5 is first divided by 64 (the number of entries in the probability distribution 𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧))

and then taken the square root, before being plotted. The solid red line is the boundary of the
3 Affine subspaces are generalizations of points, lines, planes and so forth to multiple dimensions. Consider

for example a collection of 𝑛 linearly independent points 𝑃1, . . . , 𝑃𝑛 in the euclidean space R𝑑 The set of
points 𝑃 that be written as

𝑃 =
∑︁

𝑘

𝑐𝑘𝑃𝑘,

with
∑︀

𝑘 𝑐𝑘 = 1 constitutes an (𝑛 − 1)-dimensional affine subspace of R𝑑.
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network-local set in this 2-dimensional slice given by the BRGP inequality 2.67. The first thing

we notice is that the points inside this region exhibit optimization error close to 0, showing that

the solver has found acceptable local models for them, which is expected. Also, behaviours

outside the network-local boundary exhibit higher error, showing that the solver did not find

faithful local models for them, which is also expected.

Figure 9 – Optimization error in the affine subspace spanned by the distributions 2.68-2.70. The solid red line
is the bilocal boundary given by the BRGP inequality 2.67. For behaviours inside the boundary,
the solver can get the optimization error close to zero. As we move away from the boundary to
behaviours that are not bilocal, the error grows, as expected.

Source: personal archive

In order to extract an actual boundary between the local and non-local regions from

the numerical procedure, a threshold for what is an acceptable optimization error must be

established. This task can be done in the affine subspace spanned by the correlations 𝑝𝐼 ,

𝑝𝐽 and 𝑝0, since the exact boundary of the local region is known to be given by the BRGP

inequality in this 2-dimensional slice. Analysing the dataset shown in figure 9, the region with

a mean squared error in the probabilities less than 3.3 × 10−3 yields the highest agreement

with the actual boundary. This region is displayed in figure 10a, for a rather coarse grid (this

result will be refined in what follows).

Notice however that this threshold error leads to both false positives and false negatives,

i.e. there are points with error less than 3.3 × 10−3 which are not bilocal and there are points

with error greater than 3.3 × 10−3 which are bilocal. The error thresholds for regions without

false positives and false negatives seem to be around 8.3×10−3 and 1.0×10−3 respectively. In
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Figure 10 – Region of mean probability error less than a threshold 𝐸 in the affine subspace spanned by the
distributions 2.68-2.70. Results for a grid density of 420 points per unit area and 5 optimization
trials per behaviour. (a) For 𝐸 = 3.3 × 10−3, the closest agreement with the BRGP boundary is
obtained. (b) For 𝐸 = 8.3 × 10−3, all points outside the region are guaranteed not to be bilocal.
(c) For 𝐸 = 1.0 × 10−3, all points inside the region are guaranteed to be bilocal.

(a) 𝐸 = 3.3 × 10−3 (b) 𝐸 = 8.3 × 10−3 (c) 𝐸 = 1.0 × 10−3

Source: personal archive

other words, the region with mean squared error less than 8.3 × 10−3 contains the bilocal set

(see figure 10b), whereas the region with mean squared error less than 1.0×10−3 is contained

in the bilocal set (see figure 10c).

These findings can be summarized in table 1. I should remark though that these thresholds

are not absolute and should rather be taken merely as general guidelines when utilising the

particular implementations of problem 3.5 provided in the modules bilocal.py and triangle.py.

These values are expected to be different if we change the affine subspace under investigation,

the density of points in the probability space, or the number of optimization trials for each

behaviour. The thresholds of table 1 were obtained for the affine subspace spanned by the

distributions of equations 2.68-2.70, a grid of 41 × 41 points in the probability space (density

of 420 points per unit area), and 5 optimization trials for each behaviour.

Table 1 – Thresholds for the mean probability error in the probabilities

Error thresholds Relation to the actual bilocal boundary
𝐸 < 1.0 × 10−3 The bilocal boundary is outside this region.
𝐸 < 3.3 × 10−3 Best approximation for the bilocal set.
𝐸 < 8.3 × 10−3 The bilocal boundary is inside this region.

Source: personal archive

If more precision is needed in the boundary estimation, the density of behaviours subjected

to the optimization procedure can be increased only in regions with probability error sufficiently

close to 3.3 × 10−3, in order to keep the execution time manageable. The result of one such

https://github.com/mariofilho281/localmodels/tree/master
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procedure can be seen in figure 11, where the point density was increased to 10,100 points

per unit area, much greater than the density of 420 points per unit area utilized in figure 10a.

Figure 11 – Numerical estimation of the bilocal boundary in the affine subspace spanned by the distributions
2.68-2.70. The error threshold is 3.3 × 10−3, the same of figure 10a, but the point density was
increased from 420 to 10,100 points per unit area, allowing for better resolution in the boundary
estimation.

Source: personal archive

Now, let us move on to a 2-dimensional slice with no known tight inequality. Consider the

following behaviours:

𝑝𝑋(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) = 1
8

(︂1
2 + 𝛿𝑎,0

)︂ [︁
1 + 𝛿𝑦,0(−1)𝑎+𝑏+𝑐

]︁
, (3.35)

𝑝𝑌 (𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) = 1
8

(︂1
2 + 𝛿𝑎,0

)︂ [︁
1 + 𝛿𝑦,1(−1)𝑧+𝑎+𝑏+𝑐

]︁
, (3.36)

𝑝0(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) = 1
8

(︂1
2 + 𝛿𝑎,0

)︂
. (3.37)

For the remainder of this section, we will concern ourselves with the affine subspace spanned

by the distributions 3.35-3.37, i.e. the set of behaviours 𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) given by

𝑝 = 𝑋𝑝𝑋 + 𝑌 𝑝𝑌 + (1 −𝑋 − 𝑌 )𝑝0, (3.38)

where the dependency on 𝑎, 𝑏, 𝑐, 𝑥, 𝑦 and 𝑧 has been omitted to keep the notation clean.

Applying equations 2.65 and 2.66 to the distributions 3.35-3.37, the quantities 𝐼 and 𝐽 for
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each of them are:

𝐼𝑋 = 1, (3.39)

𝐽𝑋 = 0, (3.40)

𝐼𝑌 = 0, (3.41)

𝐽𝑌 = 0, (3.42)

𝐼0 = 0, (3.43)

𝐽0 = 0. (3.44)

The parameters 𝐼 and 𝐽 are linear combinations of the probabilities 𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧). The-

refore, it follows from equation 3.38 that

𝐼𝑝 = 𝑋𝐼𝑋 + 𝑌 𝐼𝑌 + (1 −𝑋 − 𝑌 )𝐼0 = 𝑋, (3.45)

𝐽𝑝 = 𝑋𝐽𝑋 + 𝑌 𝐽𝑌 + (1 −𝑋 − 𝑌 )𝐽0 = 0. (3.46)

Therefore, the only restriction enforced by the BRGP inequality
√︁

|𝐼| +
√︁

|𝐽 | ≤ 1 in this

affine subspace is

|𝑋| ≤ 1. (3.47)

Once again, we will work in the domain (𝑋, 𝑌 ) ∈ [−1, 1] × [−1, 1], but in this case, all

the points of the square satisfy the BRGP inequality, which leaves the whole square region as

potentially bilocal. Let us see if all these behaviours are really bilocal. The numerical procedure

outlined above was performed for this affine subspace, with problem 3.5 being solved 5 times

for each behaviour, initially with a density of 420 points per unit area and then refined to a

density of 10.100 points per unit area. The optimization error of this procedure can be seen

in figure 12 (the red dashed line will be explained shortly).

We see in figure 12 that the solver found acceptable bilocal models only for points in the

darker regions of the square domain, revealing the non tightness of the BRGP inequality in this

affine subspace. A numerical estimate of the actual bilocal boundary can be seen in figure 13

depicting the points with mean probability error less than 3.3×10−3. Since this error threshold

was obtained in another affine subspace, there is no guarantee that it functions properly on the

subspace spanned by distributions 3.35-3.37. In fact, we shall next prove that all behaviours

inside the square bounded the red dashed lines of figures 12 and 13 are bilocal.

The square bounded by the red dashed lines in figures 12 and 13 is characterized by the

following inequality:

|𝑋| + |𝑌 | ≤ 1. (3.48)
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Figure 12 – Optimization error in the affine subspace spanned by the distributions 3.35-3.37. The red dashed
line is the conjectured boundary for the bilocal set in this 2-dimensional slice of the behaviour
space. For behaviours inside the proposed boundary, the solver can get the optimization error close
to zero. As we move away from this region, the error grows, indicating that the behaviours are no
longer bilocal.

Source: personal archive

Figure 13 – Numerical estimation of the bilocal boundary in the affine subspace spanned by the distributions
3.35-3.37. The red dashed line is the conjectured boundary for the bilocal set in this 2-dimensional
slice of the behaviour space. The error threshold is 3.3 × 10−3, the same of figures 10a and 11.
Since this threshold was obtained for another affine subspace (the one spanned by distributions
2.68-2.70), there is no guarantee it will yield the best agreement with the actual projection of the
bilocal set in this affine subspace.

Source: personal archive
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Focusing on the boundary behaviours located in the first quadrant, their probability distri-

bution is given by

𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) = 1
8

(︂1
2 + 𝛿𝑎,0

)︂ [︁
1 +𝑋𝛿𝑦,0(−1)𝑎+𝑏+𝑐 + 𝑌 𝛿𝑦,1(−1)𝑧+𝑎+𝑏+𝑐

]︁
, (3.49)

with 𝑋 + 𝑌 = 1.

Applying the same methods used in the end of section 3.3, it is possible to show that the

following model reproduces these behaviours:

𝜆 = 3
4[0] + 1

4[1], (3.50)

𝜇 = 𝑌

2 [0] + 𝑋

2 [1] + 𝑌

2 [2] + 𝑋

2 [3], (3.51)

𝑎(𝑥, 𝜆) = 𝜆, (3.52)

𝑏(𝑦, 𝜆, 𝜇) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2 [0] + 1

2 [1], if 𝜇− 𝑦 = 0, 2

𝜆, if 𝜇+ 𝑦 = 1

1 − 𝜆, if 𝜇+ 𝑦 = 3

, (3.53)

𝑐(𝑧, 𝜇) =

⎧⎪⎪⎨⎪⎪⎩
0, if 𝜇− 𝑧 = 0, 1

1, otherwise
. (3.54)

Behaviours on the other 3 sides of the square (𝑋−𝑌 = 1, 𝑋+𝑌 = −1 and 𝑋−𝑌 = −1)

can be reproduced by the same model if we perform the following operations:

i) exchange the output labels of Charles for the behaviours on the line 𝑋 − 𝑌 = 1

ii) exchange the input labels of Charles for the behaviours on the line 𝑋 + 𝑌 = −1

iii) exchange both the output and input labels of Charles for the behaviours on the line

𝑋 − 𝑌 = −1

It has therefore been proved that all behaviours on the red dashed lines of figures 12 and

13 are bilocal. Finally, the behaviour at the square center 𝑋 = 𝑌 = 0 is characterized by a

factorized probability distribution

𝑝0(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧) =
(︂1

4 + 1
2𝛿𝑎,0

)︂(︂1
2

)︂(︂1
2

)︂
= 𝑝(𝑎|𝑥)𝑝(𝑏|𝑦)𝑝(𝑐|𝑧). (3.55)

Thus, the projection of the bilocal set onto this affine subspace is star-convex with respect

to the center behaviour 𝑝0, as proven in (BRANCIARD et al., 2012). Therefore, it follows that

all behaviours that satisfy inequality 3.48 are bilocal.
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In order to get stronger numerical evidence that inequality 3.48 is indeed the boundary of

the bilocal set in this affine subspace, the optimization problem 3.5 was solved for 21 points

in each of 3 lines characterized by

𝑋 + 𝑌 = 1 + 𝜖, (3.56)

with 𝜖 ∈ {−0.01, 0, 0.01}. The numerical procedure was run 30 times per behaviour, much

greater than the 5 trials per behaviour used to generate figures 12 and 13. The results of

this can be seen in figure 14. The first and last green points, as well as the last blue point

do not represent valid behaviours, because some probabilities associated with these points are

negative. Taking into account only the points that represent valid probability distributions,

one can readily see that the errors associated with the line 𝑋 + 𝑌 = 1.01 are noticeably

greater than the errors associated with lines 𝑋 + 𝑌 = 1 and 𝑋 + 𝑌 = 0.99. This leads me

to conjecture that inequality 3.48 is tight in the affine subspace spanned by the behaviours

3.35-3.37.

Figure 14 – Optimization error for behaviours satisfying 𝑋 + 𝑌 = 1 + 𝜖. Blue points correspond to behaviours
inside the proposed boundary (𝜖 = −0.01); orange points correspond to behaviours at the proposed
boundary (𝜖 = 0); Green points correspond to behaviours outside the proposed boundary (𝜖 =
+0.01). The first and last green points as well as the last blue point do not correspond to valid
behaviours, because some probabilities are negative. Excluding these points, we see that there is a
noticeable increase in the optimization error when we go from inside or at the proposed boundary
to behaviours outside it. This is numerical evidence that inequality 3.48 is indeed the bilocal
boundary in the affine subspace spanned by distributions 3.35-3.37.

Source: personal archive
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I hope this last example has shown how the solutions of problem 3.5 in 2-dimensional sets

can be a valuable asset in the study of non-locality in network scenarios.
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4 CONCLUSION AND PERSPECTIVES

Numerical solutions of problem 3.5 were used to shed light on the following problems in

network non-locality:

i) determination of explicit local models for given behaviours (section 3.3)

ii) estimation of visibility thresholds for network locality (section 3.3)

iii) estimation of the boundary of the network local set in 2-dimensional slices of the pro-

bability space (section 3.4)

The first area where future work could be done is in trying to improve the execution time

and accuracy of the numerical routine. In the implementation used to generate figures 8, 9

and 12, each time the solver attempts to find a local model, the initial guess is completely

random. So if an acceptable model was found for one point, this achievement is not taken into

account when investigating close points. Doing this could help expedite calculations and also

reduce the probability of failure when trying to find a model for a point which is network local.

In certain affine subspaces, symmetry could also be an important factor. For example, in the

subspace of figure 9, the symmetries 𝐼 → −𝐼 and 𝐽 → −𝐽 correspond to simple relabelings

of outputs and inputs. So there is actually no need to employ computing power in more than

one quadrant.

An interesting issue is the matter of cardinality reduction in the hidden variables. As we

saw in section 3.3, the behaviour obtained by the GHZ distribution mixed with the uniform

distribution with visibility 𝑣 = 1/3 could be obtained with cardinalities 𝑐𝛼 = 2, 𝑐𝛽 = 2 and

𝑐𝛾 = 3, although the upper bound provided by equation 3.1 is 𝑐𝛼 = 𝑐𝛽 = 𝑐𝛾 = 6. This

cardinality reduction is not always possible, however. Consider the so called W distribution,

inspired by the well known W quantum state:

𝑝𝑊 (𝑎, 𝑏, 𝑐) =

⎧⎪⎪⎨⎪⎪⎩
1/3, if 𝑎+ 𝑏+ 𝑐 = 1

0, otherwise
(4.1)

The behaviour obtained by mixing this distribution with the uniform distribution with

visibility 𝑣 = 1/2 seems to be bilocal (mean error less than 2 × 10−6), but for this, the full

alphabet of 6 values for 𝛼, 𝛽 and 𝛾 seems to be necessary. Why is it that some probability
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distributions allow for cardinality reduction, while others do not? An investigation of this

question could provide some insight into network non-locality.

Another possible avenue for further research is to try to prove that inequality 3.48 is

indeed tight in the affine subspace spanned by the probability distributions 3.35-3.37. If this

conjecture turns out to be true, how do the parameters 𝑋 and 𝑌 relate to the probabilities

𝑝(𝑎, 𝑏, 𝑐|𝑥, 𝑦, 𝑧)? Are there network quantum behaviours that violate inequality 3.48? The

answer to these questions could lead to a better understanding of non-locality in the bilocal

network, perhaps even to a new Bell-like inequality applicable to the bilocal scenario.

Concerning the triangle scenario with no inputs, it might be interesting to study 2-

dimensional sets as we did for the bilocal network. Detailed analysis of 3-dimensional affine

subspaces are more computationally demanding, but could provide even more insight since it

is still possible to make visual representations of such sets.

Finally, it is worth developing an analogous numerical tool for quantum behaviours. The

solver would then try to optimize over the density matrix of each source and the POVM

matrices of each party. Unlike the situation of network local behaviours, where the cardinality

of hidden variables is bounded, network quantum sets are more challenging, because there is

no result limiting the dimensions of the Hilbert spaces for the quantum states distributed by

the sources in network scenarios. Therefore, it is not possible to estimate the boundary of the

quantum set in the same way done in section 3.4 for the local set, because the algorithm would

have to assume a dimension for the Hilbert spaces of the sources that might not be enough to

replicate all quantum behaviours. However, the ability to obtain an explicit realization of some

quantum behaviours is certainly desirable when studying network non-locality, even if this is

not possible in all cases.
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