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ABSTRACT 

 

Poor procurement decisions, especially involving perishable or short life-cycled 

products, which will have to be disposed of, can cost companies large portions of their profits. 

The newsvendor problem addresses inventory decisions to assist retailers in deciding just the 

right order quantity while still subject to uncertainty. Efficient time series forecasting 

techniques, including the use of machine learning models, have helped improve financial 

results by offering insight on future outcome-based decisions. In this dissertation, a 

comprehensive study was developed around the situation in which a retailer is faced with the 

problem of stochastic purchase prices and must decide when is the best day to place an order, 

as well as how much to buy to restock his perishable supply. To support the decision-making 

process, the problem was modeled as a variant of the newsvendor problem, subject to two 

decision variables: when to place the order and how much to buy. SARIMA, Prophet, MLP, 

RNN, and LSTM models were used for time series forecasting and were assessed in their 

ability to support the decision-making by forecasting future purchase prices. All forecasting-

based decisions outperformed the zero-information scenario in terms of total costs. Two 

models (MLP and RNN) outperformed the others in terms of supporting the decision of when 

to buy. 

 

Keywords: newsvendor problem; inventory policy; machine learning; time series 

forecasting; optimization. 



 

 

RESUMO 

 

Más decisões de compras, especialmente as que envolvem produtos perecíveis ou de 

ciclo de vida curto que terão de ser descartados, podem custar às empresas uma grande parte 

de seus lucros. O problema do jornaleiro trata de decisões acerca de estoque para ajudar os 

varejistas a decidir a quantidade ideal para cada pedido realizado, embora ainda sujeito à 

incerteza. Técnicas eficientes de previsão de séries temporais, incluindo o uso de modelos de 

aprendizado de máquina, ajudaram a melhorar os resultados financeiros, oferecendo uma 

visão sobre futuras decisões baseadas em resultados. Nesta dissertação, foi desenvolvido um 

estudo abrangente em torno de um cenário em que um varejista está sujeito ao problema de 

preços de compra estocásticos e deve decidir quando é o melhor dia para fazer um pedido, 

assim como quanto comprar para reabastecer seu estoque de perecíveis. Para apoiar o 

processo de tomada de decisão, o problema foi modelado como uma variante do problema do 

jornaleiro, sujeito a duas variáveis de decisão: quando fazer o pedido e quanto comprar. Os 

modelos SARIMA, Prophet, MLP, RNN e LSTM foram utilizados para previsão de séries 

temporais e avaliados em sua capacidade de apoiar a tomada de decisão ao prever futuros 

preços de compra. Todas as decisões baseadas em previsões superaram o cenário sem 

informação em termos de custos totais. Dois modelos (MLP e RNN) superaram os outros em 

termos de apoio à decisão de quando comprar. 

 

Palavras-chave: problema do jornaleiro; política de estoque; machine learning; 

previsão de séries temporais; otimização. 
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1 INTRODUCTION  

Inventory management is an important field of study in management sciences (NEALE 

et al., 2004; MUNYAO et al., 2015). Although keeping high stock levels might lead to 

holding costs and fixed capital, it is also helpful in reducing shortage risks, opportunity costs 

of unsold items, and keeping the overall supply chain flowing. In some industries, however, 

this topic is more critical than in others. Consider a chocolate manufacturer that needs to stock 

up on Easter eggs. It must produce, distribute, and sell all its Easter eggs in time for customers 

to buy them. If it runs out of products, by the time it programs, produces and re-distributes the 

extra items, the holiday has passed, along with all the demand for the item. Therefore, it must 

guarantee enough items the first time around. On the other hand, if it orders too many, it will 

have to deal with enormous amounts of wasted inventory. The problem faced by the chocolate 

company is an example of a newsvendor problem, in which a producer must decide on an 

order size that is just the right amount because ordering either more or less will be harmful to 

the business. 

The first skeleton of the newsvendor problem was originally proposed by 

EDGEWORTH (1888), who investigated the case of banks that need to keep a certain amount 

of money in cash to serve those clients who wish to withdraw money from their accounts, 

subject to the unlikely chance of all clients deciding to empty their accounts at the same time. 

It was first called the newsboy or newsvendor problem by MORSE & KIMBALL (1951), 

who named it after a situation in which a newspaper seller must place a single order with the 

number of papers he intends to sell during the following day. If he orders too many, he will 

lose money because no one will be willing to purchase the leftover product the following day. 

On the other hand, if he orders too few, he will earn less profit that day than he could have, 

not to mention displeasing customers that might choose another newsstand the following day. 

In this context, he is not able to place complementary orders throughout the day. 

This problem is present in many industries such as airlines, supermarkets, 

entertainment, fashion, technology, or perishable food manufacturers (CHOI, 2012). 

Examples of applications of this problem are airline overbooking decisions, replenishing 

stocks of perishable products, and quantifying the production lot of seasonal or short-cycled 

products (PORTEUS, 2008). Specific situations can also be modeled by different variants of 

the classic problem, allowing it to be applied to a diversity of scenarios such as situations 

involving multiple products (SHAO & JI, 2006; ABDEL-MALEK & MONTANARI, 2005), 
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multiple periods (KIM et al., 2015; BEHRET & KAHRAMAN, 2010), interdependent 

demands (LOTFI et al., 2020), quantity discount on selling prices (KHOUJA & MEHREZ, 

1996; ZHANG et al., 2020), and many others (KHOUJA, 1999). 

The main criteria to characterize a newsvendor-type problem are i) the existence of a 

random demand for a given product, ii) a single order being placed for each time period, iii) 

known costs of ordering excessively, called overage, and of ordering short of the demand, 

also referred to as underage (PORTEUS, 2008). The problem is centered around deciding on 

the most profitable order size. It is an optimization problem, tied to a search for the best 

decision-making for a given scenario, and a prediction problem, because the decision will 

always depend on forecasts or assumptions about the customer’s demand behavior. The 

classic solution requires making assumptions about the unknown demand, whether it be a 

single value, such as a measure of central tendency, or a probability distribution (SILVER et 

al., 2017). 

The widespread development of data-based predictions contributed to the emergence of 

new methods to predict this expected demand, which is then used as input to an optimization 

model with total overage and underage costs as the objective function (BERTSIMAS & 

THIELE, 2005). Machine Learning (ML) methods have become increasingly popular in time 

series forecasting (GILLILAND, 2020) for their ability to model nonlinear behavior without 

specific parametrization, unlike usual classic models. RUDIN & VAHN (2013) suggest that 

applying data-based techniques in the newsvendor problem-solving process can significantly 

improve results, reducing total cost. In HUBER et al. (2019), the exploration of data-based 

methods is analyzed as an important source of information that can aid inventory management 

in newsvendor-like problems, including by predicting the order quantity directly after training 

a machine on how to minimize costs, ignoring the mathematical formulation of the 

optimization problem. 

The demand uncertainty, however, is not always the most difficult uncertainty to 

master. In retail, Normal and Gamma distributions have proven to fit well the demand for 

fast-moving items, as long as the mean is significantly larger than the standard error and 

historical data is known (RAMAEKERS & JANSSENS, 2008). Most of the newsvendor 

literature has been directed to modeling the uncertainty in demand but has not yet explored 

the context of supplier uncertainty (ULLAH et al., 2019). Alterations in the supply of 

perishable products can be significant, especially due to situations such as seasonality of 

crops, droughts, amongst other climatic and macroeconomic factors that lead to fluctuating 

market prices (GARGANO & TIMMERMANN, 2014). A retailer that does not wish to see 
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empty shelves and displeased customers will be subject to paying higher prices for its 

products unless it can anticipate these alterations and use them to its advantage. In almost all 

newsvendor literature, overage and underage prices have been considered as constant 

parameters, although they are directly affected by purchase price alterations. There is a need 

to better understand the effect of stochastic purchase prices, especially of perishable items, in 

the newsvendor optimization problem and decision-making.  

In this work, a newsvendor problem subject to purchase price uncertainty is proposed 

and analyzed. To illustrate the case, a retailer that must purchase perishable products on a 

weekly basis is considered. In order to respect newsvendor properties, the purchase decision 

to supply for a certain week must be made the week before. So, although it must make a one-

time purchase decision for the following week and cannot replenish its stock as the week goes 

by, it can decide which is the best day to put in the order. The decision then becomes not only 

how much to order but also which day of the previous week. This allows the decision-maker 

to account for possible situations that affect its purchase price. 

This work aims at evaluating the cost performance of newsvendor decisions that take 

purchase price stochasticity into consideration and comparing it to that of the strategy 

obtained by considering only demand uncertainty. In order to achieve this, the traditional 

newsvendor problem is adapted to account for purchase price-dependent overage and 

underage costs. Future prices are estimated by use of time series forecasting techniques such 

as the seasonal autoregressive integrated moving average (SARIMA) (BOX et al., 2015) and 

Prophet models (TAYLOR & LETHAM, 2018), as well as ML models, such as the Multi-

Layer Perceptron (MLP) (ROSENBLATT, 1958), and Deep Neural Networks (DNN), such as 

Recurrent Neural Networks (RNN) (RUMELHART et al., 1986) and Long Short-Term 

Memory (LSTM) networks (HOCHREITER & SCHMIDHUBER, 1997), which are highly 

sophisticated prediction models that have been successful in time series forecasting (ZHANG, 

2001). Predictions are then used as input to the optimization model that is proposed to jointly 

decide the ideal quantity and timing of the order.  

1.1 JUSTIFICATION 

Grocery and food retail is one of the industries with the lowest profit margins (Figure 

1), usually falling between 1 and 2% (STATISTA, 2020). In this type of commerce, financial 

sustainability is ensured by a high volume of sales. In a highly competitive context such as 

retail, marking up prices will increase profit margins but may have severe effects on volume, 

jeopardizing the business model (MOHAMMED, 2009). Also, this type of strategy burdens 
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the customers with paying for the increased profits, which can be achieved through the 

implementation of intelligent business solutions. The retail market serves all social classes, 

given its role to provide basic supplies such as food and hygiene products. Therefore, it is an 

essential service, and charging high prices for products is a form of exploration of even 

exclusion of low-income individuals from access to basic needs. With respect to that social 

role, retailers should seek alternative strategies to achieve better business performance. 

Figure 1 – Industries with lowest (positive) profit margins in the U.S. in January 2020. 

 

Source: Statista, S. (2020). 

 

A viable alternative to increase profit margins is to reduce costs and expenses, which 

can be achieved by designing solid procurement and inventory policies. BIERY (2017) 

discusses the significance of managing inventory subject to such low profit margins. The 

retailer cannot afford to lose a customer who will rapidly resort to the competition if he or she 

doesn’t find the desired products on the shelf. On the other hand, overstocking shelves might 

lead to spoiling material, which will incur high losses that may be difficult to cover by the low 

profit margins. 
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An additional impact of ordering excessively is producing large amounts of trash, 

which not only wastes natural resources, but often returns overly processed, or in plastic 

wraps, and pollutes the environment. Production and transportation of each discarded product 

also count negatively towards the retailer’s carbon footprint. Transport alone accounts for 

24% of CO2 emissions from energy (RITCHIE(a), 2020). Beef, for example, a highly 

perishable product, is one of the strongest contributors to carbon emissions, contributing as 

much as 60kg of CO2-equivalents to the atmosphere, compared to other products such as 

corn, for example, which contributes only 1kg (RITCHIE(b), 2020). Therefore, it is important 

to act responsibly when estimating the truly needed number of products in order to maintain 

an environmentally sustainable activity. Having a procurement and stock policy that provides 

just the right balance can be critical to business sustainability. 

The newsvendor problem describes this exact scenario (EDGEWORTH,1888). It 

focuses especially on the tradeoff between losses incurred from unmet demand and those due 

to spoilage of products. It addresses the decision regarding what order size to place in each 

fixed time-step for products that expire, become obsolete, or lose part of their value in the 

following time-step. As a way of reducing not only spoilage and opportunity costs but also 

product purchase costs, this work proposes a variant of the newsvendor in which purchase 

price variability is considered. The optimization problem is expanded to combine the 

decisions of how much to order and when to place the order. 

Although current state-of-the-art has suggested a high potential of total cost reduction 

from the application of data-based techniques in the newsvendor problem-solving process 

(RUDIN & VAHN, 2013), literature shows that, in the greater part, only more traditional 

methods such as Random Forests (BREIMAN, 2001) and shallow MLPs have been applied to 

this problem (BERTSIMAS & THIELE, 2005; RUDIN & VAHN, 2013; BERTSIMAS & 

KALLUS, 2014). This shows there is still space to explore more advanced methods.     

 According to MCLAUGHLIN et al. (2015), procurement decisions can be especially 

complex in the context of product perishability and supplier-distributor fragmentation, which 

leads to a greater need for produce buyers to make decisions using current, accurate, and fast-

changing information. Sophisticated methods, such as DNNs, have been more recently 

developed involving neural networks that are capable of modeling complex, nonlinear 

patterns (SAMARASINGHE, 2016). Predictions on sequential data can be improved by 

applying such models that were designed specifically for this type of data, such as Long 

Short-Term Memory (LSTM) (HOCHREITER & SCHMIDHUBER, 1997) and Recurrent 

Neural Networks (RNN) (RUMELHART et al., 1986). Advanced Artificial Intelligence tools 
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have been known to contribute to relevant problems in supply chain management contexts 

(GUIMARÃES et al., 2019) and will therefore be explored in this work. 

1.2 OBJECTIVES 

This section lays out the main focus of this work with respect to what it intends to 

achieve.  

1.2.1 General Objectives 

This study’s general goal is to propose a methodology for defining optimal order 

quantity and timing in a newsvendor problem subject to purchase price uncertainty based on 

time series forecasting techniques. The performance of SARIMA, Prophet, ML, and DNN are 

investigated and their impact on cost results are compared to a strategy that does not consider 

the existing purchase price uncertainty. 

 

1.2.2 Specific Objectives 

• To investigate the current state-of-the-art works that model a newsvendor-type situation 

in which the newsvendor is subject to uncertainty regarding its purchase prices, as well as 

lay the fundamental grounds in theory behind the classical formulation of the problem 

and time series forecasting techniques; 

• To state the modified version of the optimization problem and how it differs in theory 

from the classical newsvendor once the purchase price fluctuations are considered; 

• To gather quality historical data including purchase price and demand time series, as well 

as underage and overage parameters or, if necessary, simulate values that are based on 

real-life behavior and can therefore be used to adequately evaluate the performance of the 

compared methods in real scenarios;  

• To choose adequate packages, and implement the algorithms for each of the selected 

forecasting techniques, and objective function performance evaluation; 

• To evaluate and compare the performance of models used to estimate future purchase 

price based on historical data using each technique; 

• To solve the optimization problem using the estimated purchase prices as input; 

• To evaluate the methodology and compare it to currently applied strategies disregarding 

purchase price variations. 
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1.3 METHODOLOGY 

This study proposes a novel approach to the decision-making process in a variant of 

the newsvendor problem that includes stochastic purchase prices practiced by the 

newsvendor’s supplier. This quantitative approach combines time series prediction models 

with a theoretical mathematical background to obtain a methodology that optimizes the 

decision in the proposed variant. Multiple strategies are tested, and their effects on the final 

cost are described. Although the nature of each selected technique may suggest an intuition 

behind which models should work best when applied to this particular type of time series, it is 

not a goal of this study to provide evidence of causal relations. Therefore, it can be classified 

as descriptive research, regarding its goals (FONTELLES et al., 2009). 

In respect to its nature, the research is theoretical, due to the methodology’s 

generalized application to any newsvendor-type problem subject to purchase price 

uncertainty. Regarding its procedures, the research involves modeling to describe a variant of 

the newsvendor problem mathematically and proposing a methodology to solve it. 

This work will be developed in Python, using Jupyter Notebook, and all used packages 

are described in the text. 

The study requires the following steps to achieve the general purpose: 

1. Literature review; 

2. Optimization problem modeling; 

3. Data collection; 

4. Time series forecasting algorithm implementations; 

5. Purchase price estimation; 

6. Model evaluations and comparison; 

7. Optimization model solution; 

8. Methodology evaluation and conclusion. 

1.4 DISSERTATION STRUCTURE 

This dissertation is divided into 5 sections, starting with this introduction, and 

containing all the step-by-step involved in the logical structuring of this research. The content 

of the following sections is briefly described below:  

Section 2: the theoretical background and literature review of essential concepts 

related to the Newsvendor Problem and time series forecasting techniques; 

Section 3: gives a detailed description of the proposed methodology in this work; 
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Section 4: presents the results of the implementation of the proposed method on a 

dataset that represents meat prices; 

Section 5 provides some concluding remarks and comments about future works. 
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2 THEORETICAL BACKGROUND AND LITERATURE REVIEW 

The first part of this section introduces the newsvendor problem in mathematical terms 

and explores the main developments on the research on this problem, especially those that are 

relevant to this work. The second part describes the different time series forecasting methods 

that will be applied in Section 3. 

2.1 THE NEWSVENDOR PROBLEM 

The problem seeks to minimize the expected total cost (C) to which the newsvendor is 

exposed, considering the unit costs (co) of overage and the unit opportunity cost of underage 

(cu) are known. Considering an unknown demand (D), one must seek which value of order 

size (y) allows for this minimum. The objective function is defined in Equation 2.1. 

min
𝑦

𝐶(𝑦) = 𝐸[ 𝑐𝑢 ∗ max{0, 𝐷 − 𝑦} + 𝑐𝑜 ∗ max{0, 𝑦 − 𝐷} ]    (2.1) 

To illustrate this expected value, it is possible to use the case of a Normal probability 

distribution for the random variable that represents the demand, with density function 𝑓𝐷(𝐷) 

(Figure 2). 

Figure 2 – Demand probability density function. 

  

Source: Mathcracker, M. (2020). 

 

The expected value of the amount between brackets is the sum of all possible values of 

the expression, multiplied by the probability of each of these values occurring (Equation 2.2). 

It is simple to observe that, if D ≠ y, only one of the two added factors can be greater than 

𝑓
𝐷

(𝐷) 

𝐷 
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zero as either max{0, 𝐷 − 𝑦} or max{0, 𝑦 − 𝐷} is zero. They are both 0 only for D = y. 

Therefore, we can look separately at the cases when D > y and when D < y. 

𝐶(𝑦) = ∫ 𝑐𝑢(𝐷 − 𝑦)𝑑𝐹(𝐷) + ∫ 𝑐𝑜(𝑦 − 𝐷)𝑑𝐹(𝐷)
𝑦

−∞

∞

𝑦
   (2.2) 

Rearranging Eq. 2.2, it is possible to obtain Eq. 2.3 and, subsequently, Eq. 2.4. 

𝐶(𝑦) = 𝑐𝑢 ∫ 𝐷𝑑𝐹(𝐷)
∞

𝑦
− 𝑐𝑢 ∗ 𝑦 ∫ 𝑑𝐹(𝐷) + 𝑐𝑜 ∗ 𝑦 ∫ 𝑑𝐹(𝐷)

𝑦

−∞
− 𝑐𝑜 ∫ 𝐷𝑑𝐹(𝐷)

𝑦

−∞

∞

𝑦
  (2.3) 

𝐶(𝑦) = 𝑐𝑢 ∫ 𝐷𝑑𝐹(𝐷)
∞

𝑦
− 𝑐𝑢 ∗ 𝑦 ∗ (1 − 𝐹(𝑦)) + 𝑐𝑜 ∗ 𝑦 ∗ 𝐹(𝑦) − 𝑐𝑜 ∫ 𝐷𝑑𝐹(𝐷)

𝑦

−∞
  (2.4) 

The derivative of this expression is equated to zero (Equation 2.5) to obtain its point of 

minimum: 

−𝑐𝑢 ∗ 𝑦 ∗ 𝑓(𝑦) − 𝑐𝑢 ∗ (1 − 𝐹(𝑦)) + 𝑓(𝑦) ∗ 𝑐𝑢 ∗ 𝑦 + 𝑐𝑜 ∗ 𝐹(𝑦) + 𝑓(𝑦) ∗ 𝑐𝑜 ∗ 𝑦              −

     − 𝑐𝑜 ∗ 𝑦 ∗ 𝑓(𝑦) =  0   (2.5) 

Rearranging Equation 2.5, it is possible to find the critical fractile (Equation 2.6), 

explicitly proposed by WHITIN (1953). 

𝐹(𝑦) =  𝑃(𝐷 ≤ 𝑦) =  
𝑐𝑢

𝑐𝑜+𝑐𝑢
         (2.6) 

This demonstration shows that, for a continuous space of solutions, the optimal 

solution to this problem depends solely on a relation between the underage and overage unit 

costs called the critical fractile. The desired order quantity then corresponds to the value for 

which the probability of the actual demand being entirely met by the ordered quantity, with or 

without residual stock, is equal to this critical fractile. 

Many variants of this problem have been explored throughout the years, including 

special cases of demand behavior or the associated costs. In cases where the demand is price-

dependent, for example, it is possible to include an additional decision variable representing 

the price to be charged by the retailer. This is called the price-setting newsvendor problem 

(WHITIN, 1955). YAO et al. (2006) explore how to model price-dependent stochastic 

demand and then achieve the combined pricing and inventory solutions. PETRUZZI & 

DADA (1999) review this extension of the problem and explore the value of information, 

comparing expected costs from situations with perfect demand information and price-setting 

policies subject to imperfect information. A more recent approach investigates the case of 

dynamic pricing: although the newsvendor may not place additional orders throughout the 

week, it may adjust its price according to the demand during the selling season (ULLAH et 
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al., 2019), which has proved to increase total profit. Major current developments on the price-

setting newsvendor problem are investigated by DEYONG (2019). 

Another scenario involves nonlinear purchase costs given by an oracle, that is, when 

unit purchase costs are not defined, and the cost of a certain lot size is given by the supplier, 

with no explanation regarding the function used to calculate it. The classic single-period 

newsvendor optimization model cannot be solved in this scenario, but a polynomial-time 

approximation can be obtained (HALMAN et al., 2012). The present work considers that unit 

purchase costs are not affected by order size. 

Demand in a certain time period might also depend on previous behavior. LOTFI et al. 

(2020) assess a two-period newsvendor problem, considering the possibility of interdependent 

demand and the effects of previously unsatisfied demand or residual products. In other 

formulations of the problem, the retailer does not have to discard unused products the 

following time period, but they somehow make use of them. HUA et al. (2020) discuss the 

case in which a retailer can exchange the remaining products for other items that might be 

serviceable. This exchange must, however, be less interesting than ordering only the needed 

amount of the initial item. Otherwise, there would be no overage cost, mischaracterizing a 

newsvendor situation. In the era of Big Data, available information such as weather 

conditions, monthly seasonality, and store location can be used to improve inventory policies, 

including in the newsvendor situation. The case in which exogenous variables are taken into 

consideration in the prediction and optimization tasks is called the multi-feature newsvendor 

problem (MFNP) (OROOJLOOYJADID et al., 2016). Further variants of the traditional 

problem can be found in QIN et al. (2011). 

Solving the traditional newsvendor problem and many of its variants requires knowing or 

making assumptions about the probability distribution that describes the demand behavior 

(SILVER, 2017). This information in practice is unknown, and wrong assumptions can lead to 

poor predictions and, consequently, bad inventory decisions (BAN & RUDIN, 2019). As an 

alternative, data-based predictions can be used both in estimating the most likely demand and 

its associated uncertainty, which can then be used as input to the optimization model. Besides 

offering an alternative approach to prediction, data-based models can incorporate external 

information into the newsvendor problem. This can be achieved by using ML models, 

especially neural networks related to sequential data, which can also be partnered with 

traditional time series forecasting techniques in order to present improved results. 

Oroojlooyjadid, Snyder, and Takáč (2016) use DNNs in an integrated methodology to 

address both forecasting and optimization steps of the MFNP, as illustrated in Figure 3(b). 
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Several neural networks with two and three hidden layers were generated with randomly 

selected numbers of neurons and were then iteratively trained. After each iteration, the worst-

performing networks were discarded until only the three highest-performing ones remained. 

Using the proposed approach showed better results than traditional Machine Learning 

approaches, such as Random Forests, and previously proposed approaches to the newsvendor 

problem (BERTSIMAS; THIELE, 2005; RUDIN; VAHN, 2013; BERTSIMAS; KALLUS, 

2014). In this case, however, the model works as a black box, hiding the mathematical theory 

behind the inventory management problem and learning how to minimize holding and 

opportunity costs based on historical data, with little space for intuitive comprehension of 

what is motivating the choice of order quantity. ZHANG & GAO (2017) propose an 

improvement to the loss function used by most MFNP integrated solution approaches. 

Furthermore, BAN & RUDIN (2018) tested both integrated and two-step approaches and 

found that the latter outperforms the former.  

Figure 3 – Integrated estimation and optimization solution for the MFNP. 

 

Source: Huber, J. et al. (2019) 

HUBER et al. (2019) further analyze the exploration of data as an important source of 

information that can aid inventory management in newsvendor-like problems. Data has been 

explored in different forms and steps of the available solution methodologies, and the study 

investigates which approach shows the best results for an MFNP. Data can be used for 

demand estimation through ML or more traditional times series forecasting techniques, in 



22 

 

 

which case the optimal solution is reached as a derivation of the traditional critical fractile 

solution (Figure 3 (a)). In this case, the probability that is being compared to the critical 

fractile refers to the prediction error, not the demand value. This can be done by assuming a 

certain type of distribution and estimating parameters such as the standard deviation or 

observing empirical errors. The latter constitutes a second level for which historical data can 

be incorporated into the newsvendor solution. 

A third level in which the use of data is investigated in this study is directly estimating 

the optimal order quantity from the available data (Figure 3(b)). This may be useful to find 

hidden patterns or behaviors that might contribute to better results. In contrast, it says little 

about the intuition behind the values provided by the machine and ignores the mathematical 

insights on inventory optimization in the newsvendor problem. The results show that using 

data-based methods in the first level can significantly contribute to cost reduction, whereas 

adding data information in the second level did not provoke relevant changes. Moreover, 

using a single model to integrate both phases of the problem did not obtain good results 

compared to making estimations and then optimizing as separate tasks. The ML techniques 

applied to this problem, however, were a simple MLP with a single hidden layer and Gradient 

Boosted Decision Trees, which are not state-of-the-art models used for time series prediction. 

This study applies more recent models, which are commonly applied to time series prediction, 

such as RNN and LSTMs, which can also be coupled with more traditional time series 

forecasting techniques that are very effective in modeling patterns such as seasonality and 

trends. 

In the newsvendor context, an additional decision that can be added to the problem is 

the time of the purchase. Although this has been a discussed issue in stock policy literature 

(HU et al., 2012), it is analyzed for long-term contracts and not for frequent short-cycled 

purchases, as in the case of the newsvendor. Due to the primary assumption that the 

newsvendor must place a single order for a given time period, few analyses of this problem 

have considered the possibility of anticipating or postponing said purchase. HU & SU (2018) 

show that in a newsvendor situation subject to price-dependent demand and stochastic 

purchase price, decisions can be improved by combining both pricing and procurement 

decisions. In order to respect newsvendor conditions, purchases are required to be made 

before the selling season starts, in what the authors call the pre-season. The decision regarding 

when to purchase involves product price and transportation costs, as well as holding costs. 

In this context, the present work also seeks to determine the best time to purchase. 

However, it does not consider holding costs for anticipated orders because of the perishable 
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nature of the products. With seasonal products, it is possible to anticipate orders with no effect 

on the selling season by fixing the delivery date irrespective of the moment the order is 

placed. Short shelf life food products, on the other hand, cannot be received and stored in 

advance, or they will expire before the week ends. In the case considered in this work, 

products are always received at the beginning of the week, regardless of the day the order was 

placed. When a product is bought will affect its costs, and consequently, the overage and 

underage costs associated with the newsvendor problem and the order quantity decision. 

 In respect to inventory policies subject to stochastic purchase prices, it has been 

shown that optimal replenishment policies are price-dependent and perform much better than 

strategies that do not consider future price variation (BERLING & MARTÍNEZ-DE-

ALBÉNIZ, 2011). However, these proposed methods do not consider the single-order 

restriction of the newsvendor and product perishability. Also, they use geometric Brownian 

motion and the Ornstein-Uhlenbeck process to model purchase price behavior (SCHWARTZ, 

1997). In HU & SU (2018), the behavior of the purchase price curve was modeled by the 

Black-Scholes equation (BLACK & SCHOLES, 1973). This study investigates the use of 

data-based models in purchase price modeling. 

Therefore, this research is novel given its application of data-based forecasting to 

address the stochastic purchase price issue in newsvendor problems. Few works have included 

purchase prices in the newsvendor decision, and these have not applied data-based techniques 

to model this uncertainty. 

2.2 TIME SERIES FORECASTING 

One of the most consecrated methods for forecasting is the autoregressive integrated 

moving average (ARIMA) model (BOX et al., 2015). It is an aggregation of both the 

autoregressive (AR) and the moving average (MA) models for stationary time series, with an 

additional factor that considers a possible stationary behavior of the series after a certain 

number of differentiations. The seasonal autoregressive integrated moving average 

(SARIMA) model is a modification of the ARIMA, which accounts for the seasonal variation 

of the series in order to make a better prediction. A SARIMA (p, d, q)(P, D, Q)m model is 

described by 7 values that describe the series’ behavior and a time-step value’s dependency 

on previous values of the series: i) p: Trend autoregression order, ii) d: Trend difference order, 

iii) q: Trend moving average order, iv) P: Seasonal autoregressive order, v) D: Seasonal 

difference order, vi) Q: Seasonal moving average order, v) m: The number of time steps for a 

single seasonal period. Special cases of this model, such as the autoregressive moving average 
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(ARMA) and the original simple AR and MA models, can be achieved by setting certain 

parameters to one or zero, as described in Table (1). Other widely used traditional methods 

are variants of the exponential smoothing approach, such as Simple Exponential Smoothing 

and Holt-Winters (BROWN & MEYER, 1961; GARDNER, 2006). In this work, the 

SARIMA will be used as a traditional model to be compared to more recent methods. 

Table 1 - Special Cases of SARIMA 

Model Parameters (p,d,q)(P,D,Q)m 

Autoregressive (AR) (p,0,0)(0,0,0)1 

Moving Average (MA) (0,0,q)(0,0,0)1 

Autoregressive Moving Average (ARMA) (p,0,q)(0,0,0)1 

Source: The author (2021) 

 

The Prophet model (TAYLOR & LETHAM, 2018) is a recent linear model proposed by 

Facebook that offers an innovative approach to time series modeling by combining statistical 

forecast and judgmental forecast. The former is represented by a modular regression model 

with seasonality, trend, and holiday components. After adjusting the parameters to the data, 

specific forecasts are flagged for revision by a specialist. The structure of the proposed model 

admits user-defined parameters and options to allow the analyst to recursively feed the model 

for improvements in what the authors call Analyst-in-the-Loop modeling (Figure 3). The 

analysts can adjust how strongly predictions are influenced by seasonal trends using 

smoothing parameters. It is also possible to define upper and lower bounds for predictions to 

limit the effect of trends, which can be useful if a change of pattern or growth saturation point 

is expected. Finally, the user can aid the model in identifying irregular behavior by inputting 

specific dates to be treated as holidays. It is especially applicable in scenarios subject to 

strong seasonality and holiday-related variations. The authors state that the method has shown 

lower mean absolute percentage error than widely used models such as ARIMA and 

exponential smoothing. 
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Figure 4 - Diagram of Analyst-in-the-loop user-machine collaboration. 

 

Source: Taylor, S. J. & Letham, B. (2018) 

A special class of demand forecasting models has received much attention recently: 

Machine Learning models (ZHANG, 2001; GILLILAND, 2020). Proposing an alternative to 

many traditional approaches that require assumptions to be made about the probability 

distribution that best describes the demand, these models discharge the analyst of the 

responsibility of building a solution around hypotheses that are unknown and often imprecise. 

Among these models, neural networks stand out for their ability to find hidden patterns in the 

data and provide predictions based on insight learned by the model itself. 

Multi-Layer Perceptrons (MLP) (ROSENBLATT, 1958) are the most fundamental 

neural networks. They are models consisting of connected elements called neurons that 

combine data through a function, called the activation function, and feed other elements of the 

network. A simple neuron, also called a Perceptron, consists of an input, the input’s 

coefficient, an activation function, and an output (Figure 5). The neuron accepts multiple 

inputs by multiplying each value by its own coefficient, also called “weight”, and adding 

them to a constant value. The resulting value is then transformed by the activation function, 

which will produce the output. 

Figure 5 - A Perceptron. 

 

Source: The author (2021) 
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A network is formed when a collection of neurons are connected, and one neuron’s 

output becomes the other one’s input. Networks are organized in layers of neurons. The first 

one is the input layer, which deals directly with inputted data. The final layer is the one that 

produces the model’s outputs. The number of neurons in this layer should correspond to the 

desired size of the output. Any layer in between is called a hidden layer, and they each receive 

as input the outputs from the previous layer and pass on their outputs to the following layer. 

In fully connected layers, also called dense, the input of a neuron is the weighted sum of all 

outputs from the previous layer. Figure 6 illustrates a fully connected MLP. 

Figure 6 - Example of Multi-Layer Perceptron. 

 

Source: The author (2021) 

A network’s architecture is a description of its fundamental traits such as the number of 

layers, the number of neurons in each layer, and which connections between layers are made. 

Defining the architecture is one of the first steps in building an MLP model. The sizes of the 

input and of the output are key to defining the number of neurons in the input and output 

layers. The activation functions should also be determined and will largely depend on the 

desired output and learning task. MLPs can be trained for a regression or classification task. 

In either case, the output, architecture, and activation function should be chosen accordingly. 

Examples of activation functions are described in Table 2. 

The process of training a network means adjusting its weights in order to obtain outputs 

as close as possible to the target values. All training is based on a database containing 

examples of sets of inputs and their corresponding target values. After a random initialization 

of the weights of the network, a Loss Function is calculated, which describes the difference to 

be minimized between the model’s outputs and their corresponding target values from the 

database. Examples of loss functions can be seen in Table 3. 
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Table 2 – Activation functions 

Name Formula Observation 

Sigmoid 
1

1 + 𝑒−𝑥
 

Especially useful in predicting a 

probability because output ranges 

between zero and one. 

Softmax 
𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
 Used in multiclass classification 

Hyperbolic Tangent (tanh) tanh(x) 
Values range between -1 and 1. More 

frequently used in classification tasks 

Rectified Linear Unit 

(ReLU) 
max (0,x) Widely used in regression tasks 

Source: The author (2021) 
 

Table 3 – Loss Functions 

Name Formula Task 

Mean Squared Error 

(MSE) 

1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑁

𝑖=1

 
Regression 

Mean Squared Logarithmic 

Error (MSLE) 

1

𝑁
∑(log(𝑦𝑖 + 1) − log(𝑦̂𝑖 + 1))2

𝑁

𝑖=1

 
Regression 

Cross-Entropy 
− ∑ 𝑦𝑖 log(𝑦̂𝑖)

𝑘

𝑖=1

 
Classification 

 

Source: The author (2021) 
 

Due to the complexity of the problem, a computational method is used in order to 

minimize the loss function. The use of variants of Gradient Descent is very common. These 

methods calculate the current solution’s partial derivatives, and adjust the variables one “step” 

towards the opposite direction of the derivative, usually decreasing the value of the Loss 

function. This process is repeated until reaching a stopping criterion, such as a local minimum 

or a maximum number of iterations. The partial derivatives of the loss function with respect to 

the weights are calculated through a process called Backpropagation. 

N= number of samples 

k= number of classes 
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A widely used optimization method is Stochastic Gradient Descent (SGD) (ROBBINS 

& MONRO, 1951), in which the parameter update is done not after gradients are calculated 

for the entire dataset, but for each point in a randomly chosen order. Other methods propose 

changes to how the size and direction of the “step” are defined. Adaptive Moment Estimation 

(Adam) (KINGMA & BA, 2015), for example, is a method in which the “step” size is a 

function not only of a pre-defined parameter but also of the exponentially decaying averages 

of past gradients and squared gradients. This avoids getting stuck on local minima and 

especially saddle points. 

Quasi-Newton methods are also good optimizing alternatives, as they simplify 

Newton’s method by approximating the Hessian matrix instead of calculating it. A widely 

applied method is the Broyden–Fletcher–Goldfarb–Shanno (BFGS) (BROYDEN, 1970; 

FLETCHER, 1970; GOLDFARB, 1970; SHANNO, 1970). In solving large problems, a 

simplified version of the method, called Limited-memory BFGS (LBFGS) (LIU & 

NOCEDAL, 1989), is often used. 

Once the weights are defined by the optimization method, the model is trained and 

ready to be applied in predicting labels to new inputs. In order to test the ability of the model 

to make new predictions, a portion of the data is set aside from the training set and the 

model’s accuracy is assessed by comparing the test set’s target outputs to the obtained 

predictions. When multiple parameters to a model need to be compared, a validation set is 

also set aside from the training process and is used to compare accuracies from each 

combination of parameters. The final model’s accuracy is then measured on the test set. 

With vast applicability due to their flexibility in design and architecture, MLPs are 

powerful investigators of possible combinations and frequently helpful in recognizing 

complex patterns. In time series forecasting, MLPs are useful not only in making predictions 

but also in combining predictions from different models into hybrid models, making use of 

strengths from different techniques (OLIVEIRA, 2020). 

More recently, some of these models have developed into more powerful ones, capable 

of learning very complex patterns. These are known as Deep Neural Networks (DNN) (LE 

CUN et al., 2015). Two of them stand out, due to their architecture designed especially for 

sequential data, as is the case with time-indexed data: RNN and LSTM. 

Recurrent Neural Networks (RNN) (RUMELHART et al., 1986) are a variant of neural 

networks formed by a sequence of neurons that take as input not only the given variables but 

also a hidden unit passed on by the previous one. It can receive multiple inputs in a given 

sequence and produce multiple outputs or a single one, according to the desired output format. 
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These configurations are called “many-to-many” and “many-to-one”, respectively. It is also 

possible to obtain results from a single input, in which case one can have “one-to-many” or 

“one-to-one”. Figure 7 depicts a cell that makes up an RNN, in which X is the input, h is the 

hidden unit, z is the output and t is the index of the cell in the sequence. Due to their 

configuration, RNNs can identify patterns related to the sequence of the variables. 

 

Figure 7 - Illustration of an RNN cell 

 

Source: Fayyaz, M. et al. (2016) 

 

RNNs only receive hidden unit information from the previous cell, causing it to dismiss 

information from previous time-steps. In order to fill that gap, Long Short-Term Memory 

(LSTM) networks (HOCHREITER & SCHMIDHUBER, 1997) follow the same sequential 

pattern of an RNN but were designed to hold on longer to previous information by adding 

functions, called gates, that interact to decide at each time-step how much of previous 

information is kept in the hidden unit, and how much is updated by the current time-step 

information. Figure 8 describes in further detail the information flow in a single LSTM cell. 

Figure 8 - Illustration of an LSTM cell 

 

Source: Fayyaz, M. et al. (2016) 
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Each method applies different mathematical reasoning to model the series and try to 

predict its future behavior. By adopting all of them as potential candidates for the proposed 

methodology, it is possible to compare performances and observe if any particular method 

was better capable of capturing the specific pattern of the time series. This will be part of the 

methodology described in Section 3. 
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3 PROPOSED METHODOLOGY 

In order to develop a methodology for determining ideal order placement timing and 

quantity in newsvendor situations subject to purchase price fluctuations, the classical 

newsvendor problem is first adapted. The optimization problem uses purchase price 

estimations in order to determine the optimal timing in which to place the purchase, as well as 

the order quantity. Firstly, the price estimations are obtained by autoregressive models. This 

time series forecasting based on historical data is performed using SARIMA, Prophet, MLP, 

RNN, and LSTM. These values are then used as the overage cost in the optimization model to 

obtain the optimal order quantity and timing. Figure 9 illustrates the proposed methodology. 

Figure 9 - Methodology flowchart 

 

   

Source: The author (2021) 
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3.1 NEWSVENDOR SITUATION 

The context of this problem is drawn around retailers that must refresh their perishable 

products every cycle of s fixed time steps. At the beginning of each cycle, they must dispose 

of the previous inventory and begin selling the new one. This respects all three criteria for 

newsvendor-type problems: i) the retailers are subject to an unknown random demand.; ii) a 

single order is placed for each time period, with the additional factor that they must decide at 

which time step of the initiating cycle they will place the order for the following one; iii) 

overage costs are a function of the purchase price and underage costs are a function of the 

selling price. 

The problem is inspired by a Brazilian supermarket chain that makes weekly 

purchases of perishable items. The prices of most of these items are subject to fluctuations 

due to environmental and economic factors such as droughts, pests, international trade deals, 

among others. The retailer seeks to make the best decision regarding when and how much to 

purchase, given this scenario. This work proposes the use of data-based purchase price 

prediction methods as input to the decision-making process. In order to test the quality of the 

replenishment decisions obtained by the proposed methods, real historical prices are used. In 

this case, meat was chosen as the item for analysis due to its adherence to model 

characteristics: stable demand, fluctuating purchase prices based on exogenous factors, and 

high perishability. 

It is reasonable to assume a Normal distribution as the probabilistic demand model. 

According to RAMAEKERS & JANSSENS (2008), Normal and Gamma distributions have 

proven to fit well the demand for fast-moving items in retail. Also, assuming a Normal 

distribution has been shown to perform at a similar level of neural network demand prediction 

techniques applied to the newsvendor problem, with reduced solution complexity (HUBER et 

al., 2019). 

In order to maximize its profit, the retailer must decide on two decision variables: the 

order size y and purchase time t. Five weekly discrete time steps are considered in each 

decision horizon (s=5), representing the weekdays available for the procurement department 

to place the order for the following week’s material. 
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3.2 OPTIMIZATION MODEL 

The mathematical model was adapted to the proposed newsvendor variant by first 

analyzing the objective function. When subject to fixed purchase prices, the unit purchase 

time (t) is not considered in the objective function (Equation 2.1) because it does not affect 

the parameters involved. In the case of a stochastic purchase price (𝑝𝑝), however, it directly 

impacts the overage costs (𝑐𝑜), and overall cost now becomes a function of time. Underage 

costs are considered to be a function of the selling price (𝑝𝑠), and will be further discussed. 

The time-dependency of the overage costs is described in the revised objective function 

(Equation 3.1). 

min
𝑦,𝑡

𝐶(𝑦, 𝑡) = 𝐸[ 𝑐𝑢(𝑝𝑠) ∗ max{0, 𝐷 − 𝑦} + 𝑐𝑜(𝑝𝑝(t)) ∗ max{0, 𝑦 − 𝐷}]  (3.1) 

This overage cost is traditionally translated as the difference between the unit purchase 

price and the unit salvage value (HILL, 2017). In the context of the supermarket, no salvage 

revenue was considered, due to the health hazard of expired food products. Also, disposal of 

the goods was regarded as a fixed cost, since there is already available infrastructure and 

discarding scrap material takes a negligible portion of the employee’s time. Therefore, the 

unit overage cost is solely described by the unit purchase price.  

The underage cost is often described as the unit profit (SWAMIDASS, 2000). 

Considering a food retail profit margin of 2%, the underage cost would be 2% of the selling 

price (𝑝𝑠). However, PERONA et al. (2001) argue that not only lost profits but also 

opportunity costs should be considered in a lost sale. They show that, although estimated lost 

sale costs for downstream supply chain members are generally regarded as the lost 

contribution margin alone and lie below 2%, actual costs are about 11% of potential revenue 

due to demand absorption by the competition. Plugging this value into (Equation 3.1) for a 

fixed decision horizon, the expected total cost is obtained as follows, in which 𝑝𝑝 is the 

corresponding purchase price on the fixed time-step (Equation 3.2): 

 min
𝑦,𝑡

𝐶(𝑦, 𝑡) = 𝐸[ (0.11 ∗ 𝑝𝑠 ∗ max{0, 𝐷 − 𝑦}) + (𝑝𝑝(t) ∗ max{0, 𝑦 − 𝐷})] (3.2) 

The objective function is monotonically non-decreasing with respect to 𝑝𝑝, since 

max{0, 𝑦 − 𝐷} is strictly non-negative, and the underage term is fixed for a single decision 

horizon. Therefore, the t that minimizes C is the one that minimizes 𝑝𝑝. The behavior of the 

stochastic variable will be analyzed and estimated based on the available historical values, 

and several methods will be compared in order to achieve the minimal 𝑝𝑝. 
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3.3 DATASET DESCRIPTION 

For analyzing and deciding upon the purchase prices of meat, one must hold historical 

data of the variable's daily behavior. Due to sparse data held by the supermarket that inspired 

this research with respect to daily purchase price historical behavior – the only data points 

available are those of dates in which there was, in fact, a purchase – it is necessary to use an 

additional time series with high correlation and daily availability. Meat price fluctuations in 

Brazil are measured by the National Price Index to the Broad Consumer (IPCA, from 

Portuguese: Índice Nacional de Preços ao Consumidor Amplo) (IBGE, 2020). This would be 

an ideal reference for the actual price that is being analyzed but it is only available on a 

monthly basis. A daily-indexed database showing a high correlation with this series would 

then be the desirable basis for this work. 

Multiple daily-indexed series were tested for correlation with the IPCA index, such as 

the Live Cattle Futures prices in dollars, and the Feeder Cattle Futures prices in dollars (FML, 

2020). Other series could not be used for daily forecasting purposes, such as Food Price 

indexes from the United Nation’s Food and Agriculture Organization, for they were only 

available on a monthly basis. A Pearson correlation of 0.896 was found with the monthly 

average of the Live Cattle Bovespa Futures prices (FML, 2020), from the Brazilian stock 

market. Based on this high correlation, the Live Cattle Futures prices variations were used to 

estimate daily meat prices. Publicly available daily values for this index from Jan 4, 2016, to 

Aug 7, 2020, were extracted from an open database and used to model the series and estimate 

prices (FML, 2020). The most recent available data was chosen, dating back to over four 

complete year cycles to allow for enough information on the behavior of the series. The 

resulting time series is shown below in Figure 10.  

Figure 10 - Timeline of Live Cattle BOVESPA stock prices 

 

Source: The author (2021) 
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3.4 PREPROCESSING 

The original dataset consists of a table containing multiple information on the Live 

Cattle Bovespa Futures price series and is read as a data frame in Python’s Pandas library 

(MCKINNEY, 2010) (Table 4). The daily market closing prices were used as the main 

variable of interest. The date column is used as the index for the research’s database. Daily 

highs, lows, and opening prices, as well as traded volume and percentage price variation, are 

also available but are not considered in the context of this work. 

Table 4 – Live Cattle Bovespa Futures price series 

 

Source: The author (2021) 

Brazilian holidays are not seen in the database because the stock market is closed on 

those dates. Therefore, the data frame had missing entries, and accordingly, completion was 

necessary in order to contemplate every weekday in this time frame. Missing days were 

considered to have the same value as the previous day since the market was not open to trade. 

By observing the graph in Figure 10, a significant change in series behavior can be 

seen in November of 2019. According to specialists (GESSULLI AGRIBUSINESS, 2020), 

this increase was due to a high rise in meat demand from China because of the swine fever 

outbreak at that time. After the record high, the series continued to show an unstable pattern 

due to an added effect of COVID-19 in 2020. When compared to the historical series from 

2016 to 2019, all values since November 2019 could be considered outliers according to 

Tukey’s fences (TUKEY, 1977). This means that values are over 1.5 times the inter-quartile 

range above the third quartile of historical data until then. Although the series may eventually 

stabilize at a new level or permanently assume this exceptional pattern, it is still not possible 

to infer future behavior from 2020 values due to such atypical factors such as COVID-19 and 

the swine fever. Also, given the length of the data and general forecasting methodology, 

assessing both patterns together would mean that the first and longer pattern would be used to 

train the data and the altered pattern would approximately correspond to a test set. This would 
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compromise the models’ performance assessment. Therefore, for the sake of extracting insight 

for this study, all data since the November 2019 peak were excluded from the observations. 

The data was kept until the last week that did not contain alterations related to this November 

2019 peak but remained within the Tukey’s fences criterion. The resulting series contains 995 

points, or 199 weeks, and ranges from Jan 4, 2016, to October 25, 2019. The series values are 

shown in Figure 11. 

Figure 11 - Live Cattle BOVESPA stock prices excluding exceptional pattern 

 

Source: The author (2021) 

Before applying the predictive models, the values from the series were scaled using 

Python’s MinMaxScaler from Scikit-Learn library’s preprocessing package 

(“sklearn.preprocessing”) (PEDREGOSA et al., 2011). This scaler takes each value, subtracts 

the minimum value from the database in which it was fit, and divides the result by the range 

of the fitting database, which is the difference between its maximum and minimum values. 

The scaler was fit on the training data and used to transform both training and test data. 

3.5 AUTOCORRELATION AND PARTIAL AUTOCORRELATION FUNCTIONS 

An important aspect of the time series which can be used to provide insight into its 

pattern is its autocorrelation (COWPERTWAIT, 2009). The Autocorrelation Function (ACF) 

describes how each point in the series is related to its predecessors by comparing the series to 

its delayed copy. The size of the delay is called the lag to which the series is compared. A 

commonly used way of representing the correlation is the ACF graph, which provides the 

autocorrelation for each lag. The ACF graph for the Live Cattle time series, up to 20 lags, is 
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provided in Figure 12. Since each week is represented by 5 weekdays, 20 lags would be 4 

weeks, close to a month. 

Figure 12 – Time series autocorrelation 

 

Source: The author (2021) 

The shaded region indicates the significance region, beyond which the autocorrelation 

is considered different from zero. The series shows high autocorrelation values for all lags up 

to 20, with a slight decrease at each lag. However, a function that better describes the 

individual influence of each lag is the Partial Autocorrelation Function (PACF). The PACF 

indicates the correlation of the series with each lag, once removed the linear dependence of 

the series with lower lags. That is to say that redundant information is removed, and the 

PACF indicates which lags still provide information on the pattern of the series once lower 

lags are already known. The PACF graph is shown below (Figure 13) and indicates that only 

lags 1 and 2 are relevant beyond the significance region and using greater lags is unlikely to 

provide more insight into future values of the series. 
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Figure 13 – Time series partial autocorrelation 

 

Source: The author (2021) 

 

The ACF and PACF were obtained through the “plot_acf” and “plot_pacf” functions 

from the statsmodels.graphics.tsaplots package in Python (SEABOLD et al., 2010). 

3.6 FORECASTING MODELS 

This section details how the selected forecasting models were applied including the 

libraries and parameters that were used.  

3.6.1 SARIMA 

The first forecasting model applied to the data was the SARIMA, which was 

implemented using the pmdarima library (SMITH et al., 2018) in Python, created to replicate 

the widely used auto.arima library available in R. Considering that the procurement team must 

decide on what day will be held the purchase before the week begins, the model considered a 

five-step-ahead prediction made at the end of every week. The first seventy-five percent of the 

dataset was used to train the model, and the other twenty-five percent of samples were used as 

a test set. The function takes as input, at first, the complete training set, and uses it to predict 

the first 5 time-steps (one week) of the test set. Then, the first week of the test data is added to 

the training set and is used to retrain the data to predict the second week. This is iteratively 

repeated as each week is added to the training data to predict the following week, until there 

are no more weeks left to be predicted. That is to say, the parameters of the ARIMA were 

recalibrated at the end of every week before each five-step-ahead prediction was made. 
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3.6.2 Prophet 

The second approach used was the Prophet model (TAYLOR & LETHAM, 2018). 

The open-source library made available in Python by its authors was used (“fbprophet” 

package). As input, it uses the date-indexed time series, as it uses pre-coded date information 

such as day of the week or holiday in its predictions. In order to obtain the prediction for the 

following week, it must make a 7-step-ahead prediction, since the data always ends on a 

Friday, and must predict up to the following Friday. Therefore, the frequency is set to ‘D’, 

which stands for daily, and the period input is set to 7. However, only Monday through Friday 

predictions are saved. And the model is iteratively fit and called on to predict each week. 

Similarly to the previous model, a 75-25 train-test split was used for this model, with the 

earliest 145 consecutive weeks in the training set and the latest 50 weeks in the test set. 

3.6.3 Multi-Layer Perceptron 

The third model that was applied was an MLP that took as input the previous values 

for the time series. In order to choose which previous values should influence the time-steps 

that need to be predicted, an autocorrelation analysis was conducted. As shown in the PACF 

graph, only lags 1 and 2 offer relevant information on the values of the series and should 

therefore be used in the prediction. However, in order to compare results and test possibilities, 

three different MLP inputs were tested: with lags up to 2, up to 5, and up to 20. That is, the 

lags suggested by the PACF, the entire previous week, and the 4 previous weeks (nearly a 

month of information), respectively. An interesting observation is that, since the context of 

the problem involves a 5-step-ahead prediction, not all lags are yet known for all the points 

that are to be predicted (Figure 14). For example, if the prediction is made at the end of the 

week, lags 1 through 4 are unknown for the following Friday. However, the ACF and PACF 

graphs show there is redundant information between the first two lags and all the others, up to 

lag 20. Since all lags showed high ACF values, but not PACF values, higher lags should be 

able to offer the same autocorrelation information that would be offered by lower lags, if they 

were known. 
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 Figure 14 – Some lags for future time-steps are yet unknown 

 

Source: The author (2021) 

 

Two approaches were considered in order to obtain the 5-step-ahead model (Figure 

15). The first one was considering the output to be a one-dimensional vector with the size of 

the test set, that is, representing each day. And the input associated with each output would be 

the corresponding lags from the time series. The shape of the input, in this case, is the size of 

the test set as the number of rows and the selected number of lags as the number of columns. 

Since the decision is always made at the end of each week for the following one, all 

lags are known for Monday (𝑌𝑡), which is the first day of the week, and therefore there is 

available information on all days that precede it. However, for Tuesday’s prediction (𝑌𝑡+1), 

lag 1 would be Monday, whose value is still unknown. Therefore, the closest known lags are 

used, that is, the last days of the previous week. This will correspond to the same values used 

for Monday’s prediction. Because there is no updated information throughout the week – the 

forecast is made for an entire week ahead – all days of the week will be predicted based on the 

same closest available lags. When predicting based on lags 1 and 2, all days of the week will 

use the past Friday and Thursday as input. The same logic is repeated for all desired numbers 

of lags. The most recent 2, 5, or 20 points available to be used as input are the same for each 

Monday through Friday. Using the exact same input for all 5 days of the week resulted in the 

same prediction for every day of a single week. That is, in the context of aiding the 

optimization problem in deciding which day of the week to make the purchase, this model 

was not useful. 

A second approach was then considered by obtaining a single output as an array of 

length 5 for each week, representing its 5 days. Although a single set of lags was used to 

predict the entire array, the trained model would know that prices vary throughout the week 

and offered different values for each day. Therefore, the output is now a matrix with 5 
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columns and the number of weeks in the test set as the number of lines. The input is also a 

matrix that still has the number of lags as the number of columns, but now the number of 

rows represents the number of weeks in the test set. 

Figure 15 – Some lags for future time-steps are yet unknown 

 

Source: The author (2021) 

 

An MLP with a single hidden layer was created using the MLPRegressor from Scikit-

Learn’s “neural_network” package. Multiple combinations of parameters were tested on the 

validation set, with variations in the number of neurons, activation function of the hidden 

layer, and optimizer. Table 5 contains the different values that were tested for each of these 

parameters. All possible combinations were tested. 

Table 5 – MLP Parameters 

Parameter Tested values 

Number of neurons in the 

hidden layer 

{1, 10, 20, 50, 100} 

Activation function {tanh, relu} 

Optimization method {Adam, SGD, LBFGS} 

Source: The author (2021) 
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The model was validated to choose the best parameters. The validation model was 

taken from what would be the training set. Instead of the 75/25 split applied to previous 

models, a 50/25/25 split was made. The training set consisted of 99 weeks, the validation set 

in 50 weeks, and the test set in the remaining 50 weeks. 

Each model was trained 100 times on the training set for 1000 epochs and tested on 

the validation set. For each input shape (number of lags), the model with the best average 

Mean Squared Error was selected. Training and validation sets were then concatenated in 

order to retrain the model with the best performing parameters. The model was then tested on 

the test set, from which the performance metrics were obtained.   

3.6.4 Recurrent Neural Networks 

The fourth and fifth models are two kinds of recurrent neural networks: RNNs and 

LSTMs. Using the same logic as the second approach to the MLP, the inputs are up to 2, 5, or 

20 lags for each week, and the output is the prediction for each day of the week. The networks 

are implemented using the Keras library in Python (CHOLLET, 2015). A sequential model is 

created using Keras and an RNN or LSTM layer is added, followed by a dense layer with 5 

cells, in order to produce the 5-steps-ahead prediction. Varying sizes for the RNN or LSTM 

layers were tested. The values are listed in Table 6. Mean squared error (MSE) is used as the 

loss function to compile the Sequential Model, and three optimization methods are tested, as 

seen in Table 6. Models with each possible combination of parameters were trained 30 times 

on the training set for 1000 epochs and tested on the validation set. For each input shape 

(number of lags), the model with the best average Mean Squared Error was selected. Once the 

best choices of parameters were determined, the champion model was retrained on training 

and validation sets combined. The performance of the models was measured on the test set. 

Table 6 – RNN and LSTM Parameters 

Parameter Tested values 

Number of neurons in the 

RNN or LSTM layers 

{1, 10, 20, 50, 100} 

Optimization method {Adam, SGD, LBFGS} 

Source: The author (2021) 
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3.6.5 Performance metrics 

In order to compare the forecasting models, two metrics were used. The first one was 

the Mean Squared Error of the test set predictions versus target values. In the case of 

stochastic models, such as the neural networks that are subject to random weight initialization, 

the average Mean Squared Error of 100 training cycles was used. 

The second performance metric is related to the retailer context. In reality, the best 

prediction model, in this case, is the one that supports the best decision policy, generating the 

least overall costs. Therefore, the suggested metric describes the average weekly cost 

dispensed by the retailer if every week they purchase on the day in which is predicted to have 

the lowest value of the week, according to the model used. One of the baselines for this metric 

is when the retailer knows the best day to purchase before the week starts, which we call the 

Oracle strategy. It is an ideal and non-realistic scenario, but it describes the lower bound for 

the cost and best-case scenario. The second baseline used is the zero-information scenario in 

which the retailer selects a random day every week to purchase. Since each day of the week 

has an equal chance of being selected, the estimated cost of that policy a given week is the 

average of its days. The average weekly cost of that policy is the average cost of all days in 

the test set. 

These two metrics are used to compare the forecasting models in their ability to 

provide insight into the best day to make the purchase, that is, the best time t. However, the 

joint (y,t) decision is also evaluated after the forecasts are inputted into the optimization 

problem. 

3.7 DECISION-MAKING 

Once the lowest purchase price has been identified for a certain week, t (the variable 

representing the decision of when to place the order) is set to the day it is predicted to occur, 

which will implicate in the lowest expected value for 𝑐𝑜(t), offering the greatest chance to 

make the choice that will contribute less to the objective function that should be minimized. 

The classic newsvendor solution can then determine the order amount (y), that is, 

choosing the value of y so that the probability of the demand being fully served by the 

purchased amount be equal to the critical fractile (Equation 2.6). In this context, the critical 

fractile can be rewritten as Equation 3.3, with F-1 as the inverse of the cumulative distribution 

function that governs the stochastic demand. 

. 
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𝑦∗ = 𝐹−1 (
0.11 ∗ 𝑝𝑠

𝑝𝑝 + 0.11 ∗ 𝑝𝑠
)                                                                                                (3.3) 

In order to evaluate the quality of the joint decision, random demands will be 

generated 10,000 times for the test set time horizon of 50 weeks. The demands will follow a 

Normal probability distribution with a mean of 1,000, and three levels of standard deviation 

will be tested (50, 150, and 300). These standard deviation values were defined as a grid to 

evaluate performance when the problem is subject to multiple levels of uncertainty. The value 

of 1,000 was chosen as a reference value. 

Real historical data from the Live Cattle times series will be used for the purchase 

prices. The selling price (𝑝𝑠) parameter is determined by market strategy, taking into account 

the average prices practiced by the competition. Its value will be adjusted every 4 weeks 

based on the IPCA. 

Total overage and underage costs for the 50 weeks (as an average of the 10,000 

replications) is the performance metric used to compare the proposed joint-decision strategies 

obtained from each prediction model and Equation 3.3. The baseline against which to decide 

if the strategy is useful is the zero-information situation. In this scenario, the retailer randomly 

chooses a day in which to place the order and consistently uses the mean demand (1,000 

units) as the order quantity. 

The 10,000 total cost values from each strategy are compared using the Kruskal-

Wallis non-parametric statistic test (KRUSKAL & WALLIS, 1952). The test is performed 

using the “kruskal” function from the Scipy library’s “stats” package (VIRTANEN, 2020). 

The test indicates whether the different groups of values originate from the same distribution, 

without making any assumption about the probability distribution from which they originate. 

In this context, it tells if results from the different strategies are significantly different or if 

they can be considered to follow roughly the same pattern. For a significance value of α=0.05, 

the null hypothesis that the groups share the same population median will be rejected if the 

test’s resulting p-value is greater than 0.05. 
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4 RESULTS 

This section presents the results obtained from the application of the forecasting 

models as well as from the simulation of their usage in the optimization process. 

4.1 PURCHASE PRICE ESTIMATION 

Table 7 summarizes MSE and cost performances for each forecasting model and 

compares them to the proposed oracle and zero-information (Random day) baselines, as 

described in Section 3.5.5. The “Additional Cost” column refers to the percent increase in 

average weekly unit costs of meat if compared to the perfect information scenario, that is, the 

Actual best day (Oracle). 

Table 7 - Quality of Purchase Price Predictions 

Purchase day policy 
Average 

Unit Cost 

Additional 

Cost 

Cost 

Performance 
MSE 

MSE 

Performance 

Actual best day 

(Oracle) 
153.730400 0.0000% 1 N/A  N/A  

RNN (up to lag 20) 154.230400 0.3252% 2 0.00160994 3 

MLP (up to lag 20) 154.322000 0.3848% 3 0.00177662 8 

Random day 

(Historical average) 
154.343640 0.3989% 4  N/A N/A  

SARIMA 154.343640 0.3989% 4 0.00134465 1 

RNN (up to lag 5) 154.348600 0.4021% 6 0.00161587 4 

LSTM (up to lag 5) 154.357000 0.4076% 7 0.00200494 10 

Prophet 154.357200 0.4077% 8 0.00515356 11 

LSTM (up to lag 2) 154.394800 0.4322% 9 0.00158377 2 

MLP (up to lag 5) 154.411800 0.4432% 10 0.00172827 7 

MLP (up to lag 2) 154.417400 0.4469% 11 0.00164193 6 

LSTM (up to lag 20) 154.441200 0.4624% 12 0.00196408 9 

RNN (up to lag 2) 154.552800 0.5350% 13 0.00161636 5 

 
Source: The author (2021) 

The SARIMA model (Figure 16) turned out quite simple and could not identify clear 

patterns in the apparently complex time series. It did not capture any trend or seasonality 

factors in the series, and the best fit order was, in fact, an ARIMA (0,1,0). This suggests the 

series is close to a random walk, which means that at each time-step, the random variable 

moves slightly up or down, with no clear pattern, and the best guess of what the next time-

step value will be is the last previously known value. This simple model showed the best 

MSE outcomes out of all that were tested: 0.00134465. Entering the original data into the 

model, without previously scaling the data, was also tested but resulted in a similar MSE. 
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However, since the model resulted in a random walk, a 5-step-ahead prediction outputted 5 

equal values for all days of the week. This was found to be true for all 50 weeks of the test set. 

Therefore, in terms of selecting the best day to place an order, the model was no better than 

the original scenario of not having any information. Therefore, in terms of average weekly 

cost performance, it was considered to have the same value as the random choice baseline. 

Figure 16 - SARIMA purchase price prediction. 

 

Source: The author (2021) 

SARIMA is usually very good at identifying patterns. When the full series, before 

removal of the pandemic pattern, was modeled, it obtained an ARIMA (1, 1, 4), and the 5-

step-ahead forecasting of the test set offered different values for the different days of the week 

(Figure 17). 

Figure 17 - SARIMA purchase price prediction (including new pattern). 

 

Source: The author (2021) 
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On the other hand, the Prophet model offered different values for each day of the week 

and therefore could offer insight into the decision of when to buy. However, its forecasts were 

the least accurate of all. Although the model includes trend and seasonality parameters, such 

as the SARIMA, it was not able to capture a few significant trends around the first semester of 

2019. The model had an MSE of 0.00515356. Figure 18 compares Prophet’s predictions for 

the test set (“Prev Test”) to the target series. 

Figure 18 –Prophet purchase price prediction 

 

Source: The author (2021) 

The first approach considered for the MLP was not an interesting model to support the 

decision-making since a daily prediction with all points belonging to the same week sharing 

the same features resulted in the same predicted value for the entire week, as described in 

Section 3.5.3. Therefore, the second approach was chosen to be investigated in this work. 

Different performances were found for each tested maximum number of lags (2, 5, and 20). 

The three models had similar MSE results, turning out in adjacent places on the MSE ranking 

(6th, 7th, and 8th places, respectively). However, in terms of being used as a basis for the order 

day decision, the MLP using up to 20 lags performed very differently from the others and was 

one of the only two models that outperformed the random day strategy. The MLPs using up to 

2 and 5 lags were amongst the worst performing models in terms of cost. Figure 19 compares 

the test set real data to its predictions (“Prev Test”) by the MLP models that take up to 2 (Fig. 

19a), 5 (Fig. 19b), and 20 lags (Fig. 19c) as input. 
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Figure 19 –MLP purchase price prediction 

a. Input: Lags 1 and 2 

 

b. Input: Lags 1 to 5 

 

c. Input: Lags 1 to 20 

 

Source: The author (2021) 
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The RNNs had a good overall MSE performance, ranking 3rd, 4th, and 5th amongst all 

models. The 5th-ranked was the RNN that took lags 1 and 2 as input, which obtained an MSE 

of 0.00161636. Although it did not perform badly compared to the others in terms of MSE, it 

was the worst model in terms of average weekly unit cost. The RNN that used up to 5 lags of 

information performed slightly better in terms of MSE, obtaining an average of 0.00161587, 

and much better in terms of average unit cost, losing to the random strategy baseline by a 

small margin. Still, it did not manage to outperform it and therefore is not considered useful in 

improving decisions. The better ranked of all three was the RNN that used lags 1 through 20 

in its forecasts, which obtained an MSE of 0.00160994. Its biggest accomplishment, however, 

was being the top-ranked model in terms of improving unit costs by pointing out the best day 

to put in the order. Figure 20 shows all three models’ predictions (“Prev Test”) versus the 

target values. From the graphs, the models that use fewer lags seem to fit the series better at 

the beginning, whereas using 20 lags seemed to fit the series better towards the end, especially 

capturing the growth pattern. The 20 lags memory made it underestimate values at the 

beginning, taking longer to adjust to the new stabilized value after a steep growth. 

Figure 20 –RNN purchase price prediction 

a. Input: Lags 1 and 2 
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b. Input: Lags 1 to 5 

 

c. Input: Lags 1 to 20 

 

Source: The author (2021) 

Although both MLP and RNN using 20 lags were the best-performing and only useful 

models, the long memory of the LSTM (both by definition and by the number of lags 

inputted) did not seem to help it. The 20-lag LSTM was the second-worst performer in terms 

of cost, and 9th out of 11 in the MSE ranking. The 5-lag LSTM was 10th out of 11 in the MSE 

ranking, losing only to the Prophet model, although it was the best-placed LSTM in terms of 

cost performance. However, it still lost to the average strategy baseline, SARIMA, and its 

RNN 5-lag counterpart, showing that it was not a very interesting model in this case. The 

LSTM using only lags 1 and 2 showed a very good MSE result, obtaining 2nd place in the 

ranking. However, in terms of the problem’s need for guidance regarding what day to buy, it 
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ranked 9th and lost to many other strategies, including the zero-information average strategy 

baseline. Figure 20 compares the test set real data to its predictions (“Prev Test”) by the 

LSTM models that take up to 2 (Fig. 21a), 5 (Fig. 21b), and 20 lags (Fig. 21c) as input. 

Figure 21 – LSTM purchase price prediction 

a. Input: Lags 1 and 2 

 

b. Input: Lags 1 to 5 
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c. Input: Lags 1 to 20 

 

Source: The author (2021) 

 Preliminary results from this investigation were submitted, accepted for publication, 

and presented in the 2020 IEEE Symposium Series on Computational Intelligence 

(GUIMARÃES et al., 2020). However, only the purchase price predictions were analyzed 

then. The next step is assessing the joint decision of when and how much to buy by refocusing 

on the optimization model. 

4.2 OPTIMIZATION MODEL COST PERFORMANCE 

Once all purchase prices and consequently predicted overage costs are calculated, 

optimal order quantities are defined using the obtained critical fractile, and the random 

demands are simulated in order to evaluate and compare total cost performances. Three 

separate groups of results were obtained, one for each different value of the demand 

distribution’s standard deviation. 

The 10,000 total cost values, adding each iteration’s overage and underage costs, are 

stored in a Pandas data frame. Using the “describe” function, overall descriptive statistics 

were obtained for each model’s results, as shown in Tables 8, 9, and 10. 
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Table 8 – Total cost descriptive statistics, D ~ N(1000, 502) 

 

 

Source: The author (2021) 

Table 9 – Total cost descriptive statistics, D ~ N(1000, 1502) 

 

 

Source: The author (2021) 

Table 10 – Total cost descriptive statistics, D ~ N(1000, 3002) 

 

 

Source: The author (2021) 

 Although it is possible to extract some insight from the tables, they are more clearly 

visualized through the boxplots (Figure 22). By looking at the three y-axes, it is possible to 

tell that overall underage and overage costs largely increase as the uncertainty in demand 

increases for all assessed strategies. The greater uncertainty appears to affect all of the 

evaluated strategies similarly, as all three graphs look alike, except for their scales. Therefore, 

no strategy seems to stand out in terms of dealing with larger uncertainties. 
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Figure 22 – Total cost boxplot 

a. D ~ N(1000, 502) 

 

b. D ~ N(1000, 1502) 

 

c. D ~ N(1000, 3002) 

 

Source: The author (2021) 

One of the most striking observations is how the random strategy’s mean and median 

values are, in all three scenarios, roughly twice as expensive as each of the others’ measures 

of central tendencies. This suggests that there is a relevant advantage to using any one of them 
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over not having a defined prediction-based strategy. The Kruskal-Wallis non-parametric test 

was applied to costs from all of them to test the hypothesis that the choice of strategy has a 

significant impact on the total cost outcome, that is, they do not all present statistically similar 

results. Different tests were performed for each level of demand uncertainty. All three tests 

obtained a p-value smaller than 10-16, which indicates a strong rejection of the null hypothesis 

that all strategies, including the baseline, obtain values with similar medians and distributions. 

The test neither indicates which nor how many of the compared samples show different 

patterns. That is, further investigation is needed in order to identify if this result is due to the 

notably different behavior of the random strategy alone, or if other strategies have also shown 

significantly different results from the others. 

Since all strategies seem very similar when compared to the baseline, the latter was 

temporarily removed from the observations. A heatmap applied to the descriptive statistics 

helps visualize and compare the methods. For a demand standard deviation of 50 (Table 11), 

the 20 lag LSTM showed the highest mean and median amongst all methods. It also showed 

the highest third quartile. The other neural networks that made predictions based on the 

previous 20 lags were also costly methods: the RNN showed the second-highest median and 

highest minimum and maximum, whereas the MLP showed the highest first quartile, but also 

high minimum, median and maximum. In terms of mean, the most expensive methods, 

besides the 20-lag LSTM, are the 2-lag MLP and the 5-lag LSTM. The lowest mean was 

obtained by SARIMA, which also obtained the lowest third quartile and second-lowest 

maximum. Other low means were obtained by the 5-lag RNN and the 2-lag LSTM. Although 

obtaining only the fourth-best mean, the Prophet model obtained the lowest minimum, 

median, and maximum, showing a very good result compared with the other models. 
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Table 11 – Total cost heatmap, D ~ N(1000, 502) 

 

Source: The author (2021) 

For a demand standard deviation of 150 (Table 12), on the other hand, Prophet 

obtained expensive minimum and maximum costs. The 20-lag LSTM continued to hold the 

highest mean and showed the second-highest median. The bottom-ranked median this turn 

belonged to the 5-lag LSTM. The most expensive first and third quartiles belonged to the 2-

lag MLP, which also showed a high mean and median compared to the others. As a positive 

highlight, SARIMA presented the lowest mean, first quartile, third quartile, and maximum. 

Table 12 – Total cost heatmap, D ~ N(1000, 1502) 

 

Source: The author (2021) 

Following its pattern, the 20-lag LSTM did not perform well for a demand standard 

deviation of 150 (Table 13). It obtained worse mean and first quartile costs, and second worse 

Row min 

Row max 

Row min 

Row max 
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maximum. Prophet presented the highest maximum and 3rd quartile, although also obtaining 

the lowest minimum and second-lowest median. The second and third lowest mean belonged 

to the 5-lag RNN and the 2-lag LSTM, which also ranked well in terms of the median and 

third quartile. The best mean, however, was obtained by SARIMA, which also showed the 

lowest median, third quartile, and maximum, although it had the highest minimum. Once 

again, the model was a positive highlight. 

Table 13 – Total cost heatmap, D ~ N(1000, 3002) 

 

Source: The author (2021) 

In order to determine how statistically significant were the differences between the 

costs obtained from the application of each method, the Kruskal-Wallis test was performed 

once again for each level of demand variance, this time excluding only the random strategy. 

In this case, the p-value were all approximately 1 (0.9999999999822967, 

0.9999999999887775, and 0.9999999999868868, for standard deviations 50, 150, and 300, 

respectively). All three values are much larger than the significance value of 0.05 and indicate 

that the null hypothesis that all remaining strategies follow similar distributions should not be 

rejected for any level of demand uncertainty. These extremely high p-values are a strong 

indicator that, although performing slightly differently from each other, the differences 

between strategies are not statistically significant in any of the evaluated cases, and the 

strategies can be considered to show similar performances. It can also be inferred that the first 

Kruskal-Wallis result indicates that, in fact, the baseline performed significantly worse than 

all the other methods. 

Row max 

Row min 
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4.3 DISCUSSION 

Observing only the decision of when to buy, the 20-lag RNN and the 20-lag MLP 

showed better results than the zero-information scenario and could reduce costs related to the 

unit price at the time of the purchase. These savings on regular, high-volume product 

procurement can save companies millions of dollars. Other proposed models did not 

outperform the random strategy when isolating the decision of when to place the order. It was 

expected that models that used more historical information on the series would show a better 

performance. Curiously, the 20-lag LSTM did not offer good forecasting results. This is 

unexpected because of the similarity between LSTM and RNN models. 

When both order quantity and timing decisions were considered simultaneously, all 

models managed to obtain around 50% lower overall underage and overage costs than the 

baseline, with similar performances among themselves. Because there was no model that 

offered a statistically relevant better underage and overage cost performance, the 

computational time should be taken into account when choosing a model to be applied. This is 

especially true since the problem involves a weekly purchase, that is, running the model every 

week to make a decision. In our experiments, SARIMA showed to be the most efficient 

model, taking shortly over a minute to train. LSTM, on the other hand, was the longest and 

took 13 hours to train. Table 14 shows training and forecasting times for each method. All 

models, except the LSTM, ran in an IntelCore i5-6200U CPU, with 6GB RAM. The LSTM 

did not run on this CPU and had to be run on an Intel i9 9900K, with 32 GB of memory. Once 

again the LSTM showed an unexpectedly different running time from the RNN, although both 

codes are practically identical. Further investigation is needed to understand this behavior. 

Table 14 – Model training and forecasting time 

Model Time (h:m:s) 

SARIMA 00:01:20.176236 

Prophet 00:29:10.871661 

MLP Lag 2 00:01:31.217546 

MLP Lag 5 00:02:04.624071 

MLP Lag 20 00:04:44.148654 

RNN Lag 2 00:39:08.157913 

RNN Lag 5 00:39:32.411578 

RNN Lag 20 00:40:03.740074 

LSTM Lag 2 13:05:27.428923 

LSTM Lag 5 13:08:37.278873 

LSTM Lag 20 13:01:41.578850 

Source: The author (2021) 
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The fact that a slightly better contribution of the 20-lag RNN and the 20-lag MLP in 

deciding on the best day to make the purchase did not show up in the joint-decision results 

suggests that, for this series, the contribution of all the models in aiding in the order quantity 

decision was more significant than these two’s ability to point out the best order timing. This 

most likely happens because the series resembles a random walk and did not show a clear 

pattern upon which the methods could provide better insight. Historical price information 

from other series might show greater differences in prices throughout the week and have 

larger gains from selecting the best day. 

Since the order quantity decision is calculated based on an expected purchase price, 

having a forecast instead of relying on the average demand proved to be useful, even when 

using models with lower forecasting accuracies. Prophet, for instance, showed the highest 

MSE in the time series forecasting but was arguably the best basis for decision-making in the 

low-variance scenario for the demand. SARIMA, which modeled the series as a simple 

random walk, had excellent performance in both standard deviations of 150 and 300 for the 

demand. By analyzing their performance, it is clear that their insight on the future behavior of 

the series was useful decision-guiding information. Only an adequate time series modeling 

will show if price fluctuations might be estimated by a simple random walk, or if more 

complex patterns will be identified. This insight has shown to be effective in estimating 

overage prices and supporting the purchase quantity decision. 
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5 CONCLUSIONS AND FURTHER WORK 

In this dissertation, a comprehensive study was developed around the situation in 

which a retailer is faced with the problem of stochastic purchase prices and must decide when 

is the best day to place an order, as well as how much to buy to restock his perishable supply. 

In order to support the decision-making process, the problem was modeled as a variant of the 

newsvendor problem, subject to two decision variables: when to place the order and how 

much to buy. After adapting the mathematical model, the decision of when to buy was 

centered around the expected purchase price. Therefore, multiple time series forecasting 

techniques were assessed in their ability to support the decision-making. 

All the assessed decision-making strategies outperformed the original zero-

information scenario. Results suggest that the greatest contribution of using a forecasting 

model is having a reasonable overage estimation and using it to support the order quantity 

decision. All models, although forecasting slightly different prices, offered much better order 

sizes than the baseline strategy of buying the mean demand. 

More insight can be obtained by expanding the current investigation to address the 

new behavior the series has shown since November 2019, which was a limitation to the scope 

of this work. Also, a scenario with a fixed lead time after placing the order can be explored in 

how it would impact the decision versus the fixed delivery day that was considered in this 

work.  

Future work involving other successful time series forecasting methods should show 

promising results in improving overage estimation, which impacts both discussed decisions. 

Recent methodologies use a combination of linear and nonlinear methods to extract different 

patterns from the series. Linear models can include ARMA, Holt-Winters, Prophet, among 

others, whereas the nonlinear relations can be modeled using machine learning methods, such 

as neural networks. These methods are then combined by use of linear or nonlinear models 

and are often referred to as “hybrid” models (OLIVEIRA, 2020; BABU; REDDY, 2014; 

MATTOS NETO; CAVALCANTI; MADEIRO, 2017; ZHANG, 2003). Hybrid models have 

also shown competitive results in state-of-the-art global forecasting competitions 

(MAKRIDAKIS et al., 2020). 

The use of more advanced preprocessing techniques can also aid in extracting features 

from the time series, which can help models better identify patterns and improve their 

forecasts. Empirical Mode Decomposition (HUANG et al., 1998), for example, is a 

preprocessing method that decomposes the series into multiple signals, identifying possibly 
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many patterns within a single series. This may help identify different sources of uncertainty, 

and address them separately, investigating the best way to deal with each one. 

Also, procurement of perishable products is highly influenced by meteorological 

conditions, pests, trade deals, and other environmental or macroeconomic phenomena, which 

lead to a greater need for produce buyers to make decisions using current, accurate, and fast-

changing information. Natural Language Processing (NLP) (MANNING & SCHUTZE, 1999) 

can extract recently published relevant information from the internet and use it as a feature to 

accurately anticipate the best timing to place an order. Predictions can then be used as input to 

the optimization model that is proposed to decide the ideal quantity and timing of the order 

jointly. NLP has shown multiple successful applications in supply chain risk management 

(GUIMARÃES et al., 2019). 

The decision of when to buy can also be aided by a classification model, that can decide 

which of the 5 days is best. This may show a better performance than trying to forecast the 

actual value on a certain day. However, this policy would have to be paired with some kind of 

forecasting method to decide on the purchase price parameter to be used in the critical fractile, 

since this is the most relevant difference between the methods assessed in this work and the 

random strategy. 

In terms of improving the order quantity decision, which has shown to have a great 

impact on overall costs, rethinking the overage and underage parameters might lead to a better 

decision. Since underage usually depends on the profit, this is directly impacted by the 

practiced purchase price. Studying the mathematical implications of having the underage be a 

function of the purchase price, as well as the 11% opportunity cost parameter, might improve 

the critical fractile solution. Different parameters for the demand behavior can also be tested, 

as well as other distributions. Gamma distribution is an adequate alternative (RAMAEKERS 

& JANSSENS, 2008). 

 Applying these potential improvements can significantly impact not only purchase 

price predictions, but also optimal order quantity predictions. This can easily be translated 

into the numerous practical applications of newsvendor-type problems, incurring significant 

cost reductions. This joint-decision strategy can be transformed, for example, into a 

technological product to be used by retailers to support their weekly purchase decision. As 

mentioned in the discussion, at this point all strategies showed similar performances, so using 

a faster method such as SARIMA would be more appropriate for a tool that will be handled 

weekly, and most likely extended to work not only for beef but all other perishable products. 
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