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ABSTRACT

A Geospatial Data Warehouse (GDW) is an extension of a traditional Data Wa-

rehouse that includes geospatial data in the decision-making processes. Several studies

have proposed the use of document-oriented databases in a GDW as an alternative to

relational databases. This is due to the ability of non-relational databases to scale hori-

zontally, allowing for the storage and processing of large volumes of data. In this context,

modeling the manner in which facts and dimensions are structured is important in order

to understand, maintain, and evolve the Document-oriented GDW (DGDW) through vi-

sual analysis. However, to the best of our knowledge, there are no modeling languages

that support the design of facts and dimensions as referenced or embedded documents,

partitioned into one or more collections. To overcome this lack, we propose Aggregate

Star (AStar), a Domain-Specific Modeling Language for designing DGDW logical sche-

mas. AStar is defined from a concrete syntax (graphical notation), an abstract syntax

(metamodel), and static semantics (well-formedness rules). In order to describe the se-

mantics of the concepts defined in AStar, translational semantics map the graphical nota-

tion to the metamodel and the respective code, to define the schema in MongoDB (using

JSON Schema). We evaluate the graphical notation using Physics of Notations (PoN),

which provides a set of principles for designing cognitively effective visual notations. This

evaluation revealed that AStar is in accordance with eight of the nine PoN Principles,

an adequate level of cognitive effectiveness. As a proof of concept, the metamodel and

well-formedness rules were implemented in a prototype of Computer-Assisted Software

Engineering tool, called AStarCASE. In its current version, AStarCASE can be used to

design DGDW logical schemas and to generate their corresponding code in the form of

JSON Schemas. Furthermore, we present a guideline that shows how to design schemas

that have facts, conventional dimensions, and geospatial dimensions related as referenced

or embedded documents, and partitioned into one or more collections. The guidelines also

present good practices to achieve low data volume and low query runtime in a DGDW.

Keywords: geospatial data warehouse; document-oriented databases; logical schema;

DSML.



RESUMO

Um Data Warehouse Geoespacial (DWG) é uma extensão de um Data Warehouse tradi-

cional que inclui dados geoespaciais nos processos de tomada de decisão. Diversos estudos

propõem o uso de bancos de dados orientados a documentos em um DWG como alter-

nativa aos bancos de dados relacionais. Isso se deve à capacidade dos bancos de dados

não relacionais de escalar horizontalmente, permitindo o armazenamento e o processa-

mento de grandes volumes de dados. Nesse contexto, modelar por meio da análise visual

a maneira como fatos e dimensões estão estruturados é importante para entender, man-

ter e evoluir o DWG Orientado a Documentos (DWGD). No entanto, até onde sabemos,

não há linguagens de modelagem que deem suporte ao design de fatos e dimensões como

documentos referenciados ou embutidos, particionados em uma ou mais coleções. Para

superar essa lacuna, propomos Aggregate Star (AStar), uma linguagem de modelagem

específica de domínio para projetar esquemas lógicos de DWGD. AStar é definida por

uma sintaxe concreta (notação gráfica), uma sintaxe abstrata (metamodelo) e semântica

estática (regras de boa formação). Para descrever a semântica dos conceitos definidos em

AStar, semântica translacional é usada para mapear a notação gráfica para o metamodelo

e o respectivo código que define o esquema no MongoDB (usando JSON Schema). Avali-

amos a notação gráfica usando Physics of Notations (PoN), que fornece um conjunto de

princípios para projetar notações visuais cognitivamente eficazes. Essa avaliação revelou

que AStar está de acordo com oito dos nove Princípios PoN, um nível adequado de eficá-

cia cognitiva. Como prova de conceito, o metamodelo e as regras de boa formação foram

implementados em um protótipo de ferramenta de Engenharia de Software Assistida por

Computador, denominado AStarCASE. Nesta versão atual, AStarCASE pode ser usada

para projetar esquemas lógicos de DWGD e gerar seu código correspondente na forma de

esquemas JSON. Além disso, apresentamos uma guia que mostra como projetar esquemas

que possuem fatos, dimensões convencionais e dimensões geoespaciais relacionadas como

documentos referenciados ou incorporados, particionados em uma ou mais coleções. O

guia também apresenta boas práticas para obter baixo volume de dados e baixo tempo

de execução de consulta em um DWGD.

Palavras-chave: data warehouse geoespacial; bancos de dados orientados a documentos;

esquema lógico; DSML.
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1 INTRODUCTION

This chapter introduces the thesis and highlights its context and motivation, research ob-

jectives, scope, and methodology. At the end of this chapter, the structure of the remaining

chapters is presented.

1.1 CONTEXT AND MOTIVATION

A Geospatial Data Warehouse (GDW) is a database used in decision-making processes

that can store large volumes of historical, non-volatile, and well-structured conventional

and geospatial data (FIDALGO et al., 2004). In other words, a GDW is a Data Warehouse

(DW) (KIMBALL; ROSS, 2013) with additional support to store geospatial data that can

represent localizations, describe trajectories, or delimit areas (LEE; MINSEO, 2015). These

kinds of databases are commonly structured using the Star schema, which is composed

of facts (quantitative data) and dimensions (descriptive data) (O’NEIL; O’NEIL; CHEN,

2007). As an alternative to relational databases, several studies have proposed the use

of document-oriented databases to build DWs and GDWs (YANGUI; NABLI; GARGOURI,

2016; CHEVALIER et al., 2015; CHEVALIER et al., 2016; CHEVALIER et al., 2017; BENSAL-

LOUA; BENAMEUR, 2021; FERRAHI et al., 2017). This is because of the ability of non-

relational databases to scale horizontally using commodity hardware, allowing for cheaper

storage and processing of large volumes of data (HAN et al., 2011; DAVOUDIAN; CHEN; LIU,

2018). However, given the peculiarities of document-oriented databases, the design of a

Document-oriented GDW (DGDW) involves a different manner of structuring data than

the one used by a Relational GDW (RGDW).

Document-oriented databases manipulate aggregated data, which correspond to col-

lections of documents stored in a database with a flexible schema (DAVOUDIAN; CHEN;

LIU, 2018; EVANS, 2004; BUGIOTTI et al., 2014; GESSERT et al., 2017). This flexibility ma-

kes it possible to use document-oriented databases in schema-on-read or schema-on-write

applications (MILOSLAVSKAYA; TOLSTOY, 2016). Schema-on-read applications do not re-

quire a predefined schema, delegating to the users the creation of read techniques to

extract values from large raw data sets (e.g., Data Lake (HAI; GEISLER; QUIX, 2016)).

However, schema-on-write applications have predefined schemas designed to fit a specific
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domain (e.g., GDW), which can be defined using JSON Schemas and database constraint

functions (WRIGHT et al., 2020; DYNAMODB, 2021; MONGODB, 2021b; INDEXES, 2021). In

short, defining schemas in a document-oriented database is useful to validate documents

before inserting them, as well as to allow retrieval of schema metadata from an existing

repository.

Database schema modeling can be divided into three levels (ELMASRI; NAVATHE, 2010):

(i) conceptual, which defines the contents of the database at a high level of abstraction;

(ii) logical, which specifies how to implement the database within a specific data model;

and (iii) physical, which describes how to implement and optimize the database using

a particular technology, addressing its specific aspects and dialects. The logical schema

has more details (e.g., data type and constraints for uniqueness, key, or not null) than

conceptual modeling and is the basis for defining the physical schema. In the context

of a DGDW, a logical schema describes facts and dimensions as either referenced or

embedded documents, which can be partitioned into one or more collections (CHEVALIER

et al., 2016). Furthermore, a collection may be either homogeneous or heterogeneous, with

the former meaning that documents have the same field structure while the latter can

contain documents with different field structures.

Modeling languages are used to define models at a high level of abstraction, enabling

users to focus on semantic issues instead of syntactic ones (CATARCI et al., 1997; DE-

MARCO, 1979; HAREL, 1988). In the database context, they can reduce the complexity

of schema definition by using visual symbols instead of textual code. Modeling languages

can be classified into General-Purpose Modeling Language (GPML) or Domain-Specific

Modeling Language (DSML) (BRAMBILLA; CABOT; WIMMER, 2017). GPMLs are desig-

ned to solve problems in various domains (e.g., Unified Modeling Language (UML)), but

commonly provide poor support for the depiction of specific features or the prevention

of incorrect constructions addressed in a specific domain. In contrast, DSMLs are custo-

mized to define models with expressiveness focused on a particular domain (e.g., mode-

ling DGDW schemas). In addition, DSMLs can be implemented by Computer Assisted

Software Engineering (CASE) tools, which commonly provide mechanisms to generate

(forward engineering) or interpret (reverse engineering) code (SILVA, 2015). A DSML is

composed of a concrete syntax (i.e., graphical notation), an abstract syntax (i.e., grammar

or metamodel), and static semantics (i.e., well-formedness rules) (BRAMBILLA; CABOT;

WIMMER, 2017). It can be designed from a new metamodel or extend an existing one. The
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first approach defines the concepts (and relationships between them) behind its graphical

notation symbols from scratch. The second extends the syntax and semantics from an

existing metamodel, which requires that a set of rules to remove or to adapt the symbols

to the given domain be coded, increasing the complexity of the implementation (e.g., UML

Profile (KELLY; TOLVANEN, 2008)). In other words, defining a DSML with a new meta-

model provides a more custom-tailored syntax and semantics, as well as a more expressive

set of symbols for the domain.

Although there are many modeling languages available for designing RGDW logical

schemas (AGUILA; FIDALGO; MOTA, 2011; CUZZOCREA; FIDALGO, 2012; MALINOWSKI; ZI-

MáNYI, 2004; GLORIO; TRUJILLO, 2008; BOULIL; BIMONTE; PINET, 2015), the definition of

modeling languages for DGDW logical schemas is an area still rarely explored. On the one

hand, the existing proposals for the design of DGDW schemas do not cover some features

of document-oriented databases, such as the definition of relationships using embedded

or referenced documents, or the partitioning of documents into one or more collections.

In addition, these proposals include Spatial On-Line Analytical Processing (SOLAP) con-

cepts in the DGDW schema modeling, though a GDW (relational or document-oriented)

can be used for applications other than SOLAP, such as data mining, reports, and what-if-

analysis (BREAULT; GOODALL; FOS, 2002; SRAI et al., 2017; LI, 2021). On the other hand,

proposals for the design of general-purpose document-oriented databases do not cover

GDW modeling concepts, such as defining facts and dimensions, nor do they prevent the

modeling of constructions that could impair the performance of the DGDW. This means

that there are no proposals that define a concrete syntax, an abstract syntax, and static

semantics that capture and cover the GDW modeling concepts and document-oriented

database features, nor that prevent or alert the user about invalid constructions.

1.2 RESEARCH OBJECTIVES

The main objective of this thesis is to propose a DSML for DGDW logical schemas

with support for the different types of relationships between facts and dimensions, as well

as support for the partitioning of documents among collections. The following specific

objectives are necessary to reach this main objective:

• Define a concrete syntax, which consists of a graphical notation composed of a set
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of symbols that specify logical schemas;

• Establish an abstract syntax, which consists of a metamodel that describes the

concepts of the modeling language and the relationships allowed between them;

• Define the static semantics, which consist of a set of well-formedness rules that

prevent or alert the user when incorrect constructions that the metamodel does not

prohibit are created;

• Present translational semantics, which correlate the syntax and semantics of the

modeling language.

To evaluate the proposal and show how to use it in practice, the following specific

objectives were also defined:

• Evaluate the graphical notation;

• Implement the metamodel and well-formedness rules as a prototype of CASE tool;

• Define guidelines to help design logical schemas.

1.3 SCOPE

The prototype of the CASE tool presented in this thesis is shown as a proof of con-

cept to demonstrate that implementing the proposed modeling language is a viable task.

Therefore, a usability evaluation of the CASE tool prototype is not part of the scope of

this work.

1.4 METHODOLOGY

The first step was to specify a DSML composed of a graphical notation (concrete syn-

tax), a metamodel (abstract syntax), and a set of well-formedness rules (static semantics),

called AStar. Translational semantics, which correlate the syntax and semantics of AStar,

were also presented. To define a cognitively efficient graphical notation, inspiration was

drawn from the UML class diagram notation. The UML graphical symbol representation

was chosen because it is well-known in both industry and academics, and many CASE to-

ols based on their notation exist. In this way, designers can model DGDW logical schemas
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using either an AStar implementation or UML tools, increasing the number of computati-

onal tools that support AStar. It is important to note that AStar symbols do not extend

the concepts of the UML metamodel. AStar’s syntax and semantics are custom-tailored

to the modeling of DGDW logical schemas. Therefore, only CASE tools based on AStar

can prevent or alert users to design errors.

To evaluate the graphical notation of AStar, its cognitive effectiveness was assessed.

This is a concept related to how humans understand a set of graphical symbols. For

this, Physics of Notations (PoN) (MOODY, 2009) was used, which consists of a set of

principles for cognitively designing effective visual notations. Furthermore, as a proof of

concept, AStar was implemented as a prototype of CASE tool called AStarCASE. This

prototype was implemented with Eclipse Epsilon, which has resources to generate code

from a valid metamodel and implement the static well-formedness rules. In the current

version, AStarCASE provides support for the design of DGDW logical schemas and the

generation of their corresponding JSON Schemas (WRIGHT et al., 2020) (Model-to-Text

(M2T) transformation).

To demonstrate the design of DGDW logical schemas with AStar, a guideline that ad-

dresses the depiction of logical schemas with different levels of conventional and geospatial

data redundancy is presented. This guideline defines models that establish relationships

between facts, conventional dimensions, and geospatial dimensions as either referenced

or embedded documents, partitioned into one or more (homogeneous or heterogeneous)

collections. In addition, best practices that can help to achieve low-cost storage and low

query runtime are presented, based on experimental evaluation that compares the data

volume and query performance of 36 DGDWs whose schemas were designed with AStar.

1.5 DOCUMENT ORGANIZATION

The remaining chapters of this thesis are organized as follows:

Chapter 2 - Background: contextualizes the theoretical foundation needed to un-

derstand the proposal.

Chapter 3 - Related Studies: presents studies related to this proposal.

Chapter 4 - AStar: presents the graphical notation, metamodel, well-formedness

rules, and translational semantics of AStar.

Chapter 5 - Evaluation and Implementation of AStar: evaluates the cognitive
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effectiveness of the AStar graphical notation and shows AStarCASE, a prototype of CASE

tool that implements AStar.

Chapter 6 - Guidelines to Design Logical Schemas with AStar: shows how to

design logical schemas with AStar, and points out some best practices for achieving low

data volume and low query runtime.

Chapter 7 - Conclusions: presents final considerations on the main topics covered

in this thesis, highlighting the contributions and publications, also indicating possibilities

for future studies.

Finally, this document has the following appendixes:

Appendix A - JSON Schemas for geospatial data types: presents JSON Sche-

mas for implementing geospatial data types.

Appendix B - Examples of JSON Schemas: shows the JSON Schema for the

examples used to explain the AStar concrete syntax.

Appendix C - Implementation of AStar metamodel: presents the implementa-

tion code for the AStar metamodel.

Appendix D - AStarCASE transformation M2T: shows a JSON Schema code

generated by a DGDW logical schema modeled in AStarCASE.



22

2 BACKGROUND

This chapter presents the theoretical foundation underlying the AStar proposal. Sec-

tion 2.1 presents an overview of document-oriented databases, section 2.2 discusses tech-

niques and concepts related to the logical design of GDW, section 2.3 covers the compo-

nents of a DSML, section 2.4 addresses the graphical design of modeling languages, and

section 2.5 presents the final considerations of this chapter.

2.1 DOCUMENT-ORIENTED DATABASES

Document-oriented databases are the most commonly used non-relational databases in

the industry (DB-ENGINES, 2020). MongoDB, Amazon DynamoDB, Couchbase, Microsoft

Azure Cosmos DB, and CouchDB are some examples of this database type, which store

aggregate data as JSON and GeoJSON documents (BRAY, 2017; BUTLER et al., 2016).

Documents are semi-structured data composed of a set of key-value pairs representing

a field name and its respective value (GESSERT et al., 2017). In a document, a field can store

conventional or geospatial data, and can be defined as regular, identifier, or unique. A field

can also be multivalued, storing values of one or more data types as an array. Documents

are stored in collections, which can be classified as homogeneous or heterogeneous. A

homogenous collection contains documents that have the same field structure, while a

heterogeneous collection contains documents with different field structures.

Relationships can be implemented using referenced or embedded documents (KANADE;

GOPAL; KANADE, 2014; CHEVALIER et al., 2015; CHEVALIER et al., 2016; COPELAND, 2013;

YANGUI; NABLI; GARGOURI, 2016). In the first approach, a document contains a reference

to another document, enabling one-to-one, one-to-many, or many-to-many relationships

between documents that belong to the same or to different collections. In the second

approach, a document embeds another document within it, enabling one-to-one relati-

onships, such that it does not require a join to retrieve related documents. In this type of

relationship, both documents belong to the same collection, and the embedded document

has no identifier field because it is identified by the document in which it is embedded.

For this reason, documents related as embedded documents cannot belong to different

collections. It is important to highlight that a document can be embedded within only
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one document. Although copies of a document can be embedded into other documents,

these copies are independent, meaning that updating an embedded document does not

update its copies. Multivalued fields can store many embedded documents, implemen-

ting one-to-many or many-to-many relationships. However, this practice is discouraged

because it can produce arrays with complex data and documents with a very high data

volume, which can negatively impact database performance (MONGODB, 2022; AZURE,

2020; COACHDB, 2020). Many-to-many relationships can also produce cyclic dependency

because, given two documents named A and B related as embedded documents, A must

contain B and B must contain A.

Figure 1 shows how to insert (a,b) referenced documents and (c) embedded documents

into MongoDB, which is the most popular document-oriented database in the industry

(DB-ENGINES, 2020). Note that Figure 1a shows the JSON documents “customer” and

“order” inserted into distinct collections (CollectionA1 and CollectionA2), producing ho-

mogeneous collections; Figure 1b shows “customer” and “order” inserted into the same

collection (CollectionB), producing a heterogeneous collection; and Figure 1c also shows

“customer” and “order” inserted into the same collection (Collection C), but in this case,

“customer” is embedded within “order”, producing a homogeneous collection.

Figure 1 – Inserting examples of JSON documents “customer” and “order” into MongoDB: (a)
two collections with referenced documents; (b) one collection with referenced docu-
ments; and (c) one collection with one embedded document.

Source: The Author

The schema of a document-oriented database can be flexible or previously defined with

JSON schemas and constraint functions (DYNAMODB, 2021; MONGODB, 2021b; INDEXES,

2021). The JSON schema is the base format that defines the structure of JSON docu-
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ments and is commonly used to validate documents before inserting them into a database

(WRIGHT et al., 2020). A JSON schema defines the required fields and their respective

data types, as well as data enumerations that can be used to specify geospatial data types

(BUTLER et al., 2016) (cf. Appendix A). In other words, a JSON schema defines a data

structure for the documents, which will be called DocumentType. Constraint functions

complement a JSON schema, as they define, for example, which fields in a collection must

be a unique (INDEXES, 2021).

Figure 2 shows how to define a schema in MongoDB, with the JSON schemas and

constraint functions highlighted with a gray background. This example creates collecti-

ons “ColectionA1” and “CollectionA2”, each one with a JSON schema that defining the

field structures titled “customer” and “order”, respectively. In other words, in this exam-

ple, “CollectionA1” and “CollectionA2” have DocumentTypes “customer” and “order”.

As the JSON schema does not have a mechanism to represent referenced documents,

the field “description” is used for this purpose. This approach does not guarantee refe-

rential integrity, but can be used at the application level to validate or identify docu-

ment relationships. Thus, as can be seen in Figure 2, the field “customer_id” of Do-

cumentType “order” stores a reference for a 1:N relationship with “customer” (descrip-

tion:“REF_1N:customer”)1. An example of the insertion of documents for “customer”

and “order” into “CollectionA1” and “CollectionA2” is shown in Figure 1a.

Similar to the previous figure, Figure 3 establishes a relationship between the JSON

schemas (i.e., DocumentTypes) “customer” and “order” using references. However, in this

example, the DocumentTypes are defined into only one collection, named “CollectionB”.

An example of the insertion of documents into this schema is shown in Figure 1b.

Finally, Figure 4 shows a schema with one collection named “CollectionC”, whose

DocumentType “customer” is embedded into “order”. An example showing the insertion

of documents into this schema is shown in Figure 1c.
1 REF_11 mean a 1:1 relationship, REF_1N mean a 1:N relationship, and REF_NM mean a N:M

relationship



25

Figure 2 – Defining a logical schema with JSON schemas and unique constraints, in MongoDB:
two collections with referenced documents.

Source: The Author

Figure 4 – Defining a logical schema with JSON schemas and unique constraints, in MongoDB:
one collection with one embedded document.

Source: The Author
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Figure 3 – Defining a logical schema with JSON schemas and unique constraints, in MongoDB:
one collection with referenced documents.

Source: The Author

2.2 LOGICAL DESIGN OF GEOSPATIAL DATA WAREHOUSE

A Data Warehouse (DW) is a subject-oriented, integrated, non-volatile, and time-

varying database that supports the decision-making process (INMON, 2005). These cha-

racteristics can be summarized as follows: (i) subject-oriented - they store data that

corresponds to facts and not to the transactions that generated the facts; (ii) integrated

- they integrate data from databases located across different computer systems in an or-

ganization, consolidating data from different sources; (iii) non-volatile - the data is rarely

modified, essentially limited to loads and queries; and (iv) time-variant - the data is stored

as it varies along a timeline, maintaining its history. The construction of a DW consists

of transforming transactional data from different sources into consolidated strategic in-

formation to support decision-making processes. From a DW, users can analyze the data

using SQL query tools. Among these tools, On-Line Analytical Processing (OLAP) stands

out, but other tools may also be used, such as reporting, data mining, and what-if-analysis

systems (CHAUDHURI; DAYAL, 1997; BREAULT; GOODALL; FOS, 2002; SRAI et al., 2017; LI,

2021).
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When built in a relational database, a DW schema is structured as tables of facts and

dimensions. Dimension tables store business descriptions, while fact tables contain all of

the foreign keys for the dimensions and store business’s numerical measures. The tables

of a DW are commonly designed according to Star or Snowflake approaches, with the

former being more popular and having better query performance (KIMBALL; ROSS, 2013).

In the first approach, the dimension tables are denormalized to optimize the performance

of complex queries, because no joins are required. The second approach normalizes all

data, reducing its volume, but requiring a high number of joins in queries.

A Geospatial DW (GDW) is a combination of features from a DW with the functio-

nality of a geospatial database in order to manage large amounts of historical data that

have a geospatial context (e.g., localization, trajectories, areas) (FIDALGO et al., 2004; LEE;

MINSEO, 2015). In other words, a GDW is an extension of the traditional DW approach,

adding a geospatial component. Basically, this extends the DW schema by inserting ge-

ospatial information into its dimension (geospatial attributes) or fact tables (geospatial

measures). It is important to highlight that some authors include the concepts of hierarchy

and level in the description of a GDW schema (MALINOWSKI; ZIMáNYI, 2004; GLORIO;

TRUJILLO, 2008; BOULIL; BIMONTE; PINET, 2015). However, this can be understood as a

mixing of concepts, because hierarchy and level are concepts specific to data cube mo-

deling used by OLAP or SOLAP tools (BERSON; SMITH, 1997; TSOIS; KARAYANNIDIS;

SELLIS, 2001). If hierarchies and levels were intrinsic GDW concepts, any GDW query

tool would be able to execute multilevel queries (e.g., drill-down and roll-up), but only

SOLAP tools are able to do this. In other words, because a GDW is a database that can be

used by applications other than SOLAP (e.g., data mining, reports, and what-if-analysis),

the GDW schema must be more general, and not contain these SOLAP specific concepts.

Therefore, in this study, only fields, dimensions, and facts are considered as part of the

design of a logical GDW schema.

Fields are properties that can be used to describe, quantify, or reference dimensions or

facts. While dimension fields essentially describe a business process, fact fields quantify

the measures of a business process. Fields can also be used to reference two dimensions,

two facts, or a dimension and a fact (KIMBALL; ROSS, 2013). Furthermore, fields have

a data type that can be conventional (e.g., string or number) or geospatial (e.g., point

and polygon); can have a uniqueness constraint; and can be defined as an identifier (i.e.,

key). Lastly, although a field of a document-oriented database can be null, multivalued,
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or address a complex data type, these properties of fields are discouraged in DW schemas.

Null values have a negative impact on data quality, as they may confuse users with

regard to interpretation of query results (e.g., nonexistent value versus unknown value)

(THORNTHWAITE, 2003), while multivalued and complex data type fields make the schema

unstructured and complex to manage (TING, 2010).

Dimensions arrange information related to the business process, such as what, who,

where, and when. Dimensions are identified by a single key (i.e., surrogate key) that

is typically a meaningless integer (i.e., auto-incremented key). Dimensions usually are

denormalized, however dimensions with geometric data are often normalized because this

reduces the data volume and increases query execution performance (FIDALGO et al., 2004;

MATEUS et al., 2010; MATEUS et al., 2016).

Facts capture the events of a business process and are identified by a set of keys to

their dimensions or to other facts. Facts can contain conventional (e.g., quantity and

amount) or geospatial (e.g., planting area or crime location) measures, as well as des-

criptive information (e.g., flags). In other words, facts are commonly identified by a set

of references to their dimensions or to other facts and can contain measures as well as

descriptive information.

There are many techniques for modeling dimensions and facts (KIMBALL; ROSS, 2013).

These techniques are used to capture business semantics (e.g., factless fact table, degene-

rate dimensions, role-playing dimensions, and heterogeneous dimensions), to reduce data

volume (e.g., mini dimensions, junk dimensions, and outriggers dimensions), or to resolve

limitations of relational databases (e.g., bridge table). It is important to highlight that

a bridge table is commonly used to implement an M:N relationship in relational databa-

ses. However, the document-oriented data model supports M:N relationships using arrays

(COPELAND, 2013), making the use of a bridge table in a DGDW a design decision.

Taking into consideration the peculiarities of documented-oriented databases (cf. sec-

tion 2.1), and that a GDW is essentially a well-structured database (KIMBALL; ROSS,

2013), a DGDW logical schema represents facts and dimensions as documents, which can

be related as referenced or embedded documents (CHEVALIER et al., 2016). Therefore, a

DGDW schema (i) organize documents into homogeneous or heterogeneous collections;

(ii) express the cardinality of the relationship (i.e., 1:1, 1:N, or M:N); (iii) distinguish

whether a field is conventional or geospatial; and (iv) symbolize whether a field is uni-

que (used to support business rules), identifier (used to reference documents), or regular
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(neither unique nor identifier).

2.3 MODEL-DRIVEN DEVELOPMENT AND DOMAIN-SPECIFIC MODELING LANGUA-

GES

Modeling Languages are used in the Model-Driven Development (MDD) paradigm

to define software artifacts (e.g., interpreted or executable code) from models (SILVA,

2015). Modeling languages tend to offer higher-level abstractions than textual langua-

ges because their graphic notations are human-oriented, facilitating communication and

problem-solving (DEMARCO, 1979; HAREL, 1988). In the database area, modeling langua-

ges are commonly employed to assist in creating logical or conceptual schemas (FIDALGO

et al., 2004; FIDALGO et al., 2012; FIDALGO et al., 2013; FERRAHI et al., 2017). Furthermore,

modeling Languages can be implemented in CASE tools, taking advantage of various

features: (i) automatic validation, such as validating a database logical schema; (ii) Text-

to-Model (T2M) transformations, such as reverse engineering; (iii) M2T transformations,

such as forward engineering from diagrams; and (iv) Model-to-Model (M2M) transfor-

mations, such as transforming an Entity–Relationship (ER) diagram into a UML class

diagram.

A Modeling Language created and custom-tailored for a given domain is classified as

a Domain-Specific Modeling Language (DSML), which can be built as an extension of

an existing GPML or be entirely new (BRAMBILLA; CABOT; WIMMER, 2017; LOPES et al.,

2016). The first approach has the advantage of using an existing already and well-known

syntax, such as the UML profiles (FONTOURA; PREE; RUMPE, 2000; MOHAGHEGHI; DEH-

LEN; NEPLE, 2009). However, extending an existing GPML has the following drawbacks:

(i) new symbols may demand changes that compromise the standardization of the appro-

ach, and (ii) rules may be created to remove some symbols or to change the semantics of

others that, besides being labor-intensive, can introduce inconsistencies into the language.

Creating a new DSML has the advantage of defining a smaller and more expressive set of

symbols for the domain, with the drawback of having to build everything from scratch.

A DSML is defined by its concrete syntax, abstract syntax, and static semantics

(BRAMBILLA; CABOT; WIMMER, 2017). The concrete syntax corresponds to the graphical

notation that defines the symbols used by designers when creating diagrams. The abstract

syntax is the grammar of the language, represented by a metamodel that defines the set



30

of concepts within a specific domain, as well as their attributes and relationships. Meta-

models can be defined using the Meta-Object Facility (MOF) and are commonly shown as

UML class diagrams (GROUP, 2020; GUY et al., 2012). Thus, modeling language concepts

can be described as metaclasses that are related through generalizations and associati-

ons. Static semantics consist of a set of well-formedness rules that validate syntactically

correct constructions (i.e., those allowed by the metamodel), but that are semantically

contradictory (e.g., cardinality conflicts). In other words, the rules contain constraints

on the metamodel concepts that determine how their instances must be defined. Static

semantics are commonly implemented in CASE tools using Object Constraint Language

(OCL) (OMG, 2014), Epsilon Validation Language (EVL) (KOLOVOS et al., 2017), or the

programming language of a specific framework.

In order to understand the concrete and abstract syntax better, a semantic description

for defined concepts is commonly addressed in a DSML project. The semantic description

is commonly defined using translational semantics, which map the concepts of the DSML

syntax to an existing formal language (KLEPPE, 2007; BRYANT et al., 2011; FLECK; TROYA;

WIMMER, 2016).

2.4 GRAPHICAL DESIGN OF MODELING LANGUAGES

The graphical design of a modeling language defines its set of symbols, which encode

information as a graphical representation, although it can also have textual elements to

represent any additional information (e.g., in UML, the class name) (MOODY, 2009). The

visual appearance of a symbol uses one or more visual variables, such as shape, size,

color, brightness, texture, or orientation (Figure 5a) (BERTIN, 1983). Out of all of the

visual variables, shape allows for the greatest ability to discriminate between symbols,

as it represents the primary basis that human beings uses to identify objects (MOODY,

2009). In a diagram, symbols can be topologically associated to represent a relationship

between concepts. These associations can be classified as adjoining, linkage, or contain-

ment (NICKERSON, 1994), as shown in Figure 5b. In an adjoining association, the symbols

share a side. This type of relationship has a connectivity limit and, therefore, it is usu-

ally only used in simple diagrams. Attempting to represent many associations (e.g., a

fact related to many dimensions) with this type of relationship could result in complex

diagrams. In a linkage association, the symbols are linked by lines that can convey addi-
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tional information, such as labels, direction, or navigability. Linkages are usually used for

more extensive and complex diagrams (e.g., logical schemas of databases) due to the large

amount of information they can transmit. Finally, in a containment association, a symbol

lies within another symbol. This type of relationship is used to represent structures such

as “A belongs to B” or “A is a subset of B”, but there may be a limit to how they can be

represented. Recursive structures or long chains of subsets (e.g., A embeds B, B embeds

C, and C embeds D) can be difficult to represent using containment (NICKERSON, 1994).

Figure 5 – Characteristics of a graphical notation symbol.

Source: The Author

The design of a modeling language has the challenge of defining a graphical notation

that has cognitive effectiveness, a concept related to the speed, ease, and accuracy with

which its symbols can be understood by the human mind (LARKIN; SIMON, 1987). In order

to validate the cognitive effectiveness of a graphical notation, concepts such as simplicity,

aesthetics, expressiveness, and naturalness are commonly used. However, these concepts

are considered subjective, as they can be easily biased in the modeling language design

process or in user evaluation. To minimize this issue, scientific approaches are commonly

used, such as PoN (LINDEN; HADAR, 2019; TEIXEIRA et al., 2016). PoN is a set of principles

based on a synthesis of theories (e.g., the psychology and cognitive sciences) to analyze

and improve a graphical notation’s ability to be cognitively effective (MOODY, 2009). PoN

defines nine principles that should be addressed by a graphical notation, which are not

necessarily complementary, as they can produce conflict or synergy. The principles follow:

P1 - Semiotic clarity: there should be a 1:1 correspondence between metamodel con-

cepts and graphical notation symbols. Otherwise, there will be an anomaly that can
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be classified as: multiple symbols that represent one concept (redundancy), multi-

ple concepts represented by the same symbol (overload), a symbol that does not

correspond to a concept (excess), or a concept that not is represented by a symbol

(deficit).

P2 - Perceptual discriminability: symbols should be distinguishable from each another.

The number of visual variables (e.g., shape) and their variants (e.g., edge weights)

can be used to measure the differences among symbols. If differences among them

are too subtle, interpretation errors may be made. On the other hand, the greater

the visual distance between symbols, the faster and more accurately they will be

recognized.

P3 - Semantic transparency: the appearance of the symbols should suggest their me-

aning. Appearances can be (i) semantically immediate if a novice user would be

able to infer its meaning alone; (ii) semantically opaque, if the relationship with its

meaning is arbitrary; (iii) semantically perverse, if a novice user would be likely to

infer a different meaning.

P4 - Complexity management: the graphical notation should have mechanisms for de-

aling with the complexity of diagrams with a high number of elements (i.e., symbol

instances). To reduce complexity, techniques such as modularization should be sup-

ported. This technique consists of dividing a diagram into smaller parts, such as

representing UML packages individually.

P5 - Cognitive integration: a graphical notation should include mechanisms to support

information integration, where multiple diagrams are used to represent a system.

P6 - Visual expressiveness: a graphical notation should use the full range and capacities

of visual variables. While perceptual discriminability measures pairwise visual vari-

ation, visual expressiveness measures the visual variation across the entire graphical

notation. It is measured by the number of visual variables.

P7 - Dual coding: text can be used to complement the symbols. Therefore, text such as

labels or annotations can be placed near the symbols to reinforce and clarify their

meaning.
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P8 - Graphic economy: the number of different graphical symbols should be cognitively

manageable, because there are cognitive limits on the number of visual categories

that can be effectively recognized. There are main three strategies for reducing ex-

cessive graphical complexity in a graphical notation: (i) reduce the semantic comple-

xity of symbols or partition it to reduce the diagrammatic complexity; (ii) introduce

symbol deficit by replacing same symbols with text; (iii) increase the visual expressi-

veness, and thereby increase human discriminatory ability, such as by using multiple

visual variables to differentiate between symbols.

P9 - Cognitive fit: use different visual dialects for different tasks and audiences. As a

graphical notation may not be simultaneously effective for both novice and expe-

rienced users, it can be helpful to varying the symbol depending on the audience.

Furthermore, the challenges of hand drawing should be taken into account for a

graphical notation. The hand drawing requirement discourages the use of some vi-

sual variables (e.g., color) or 3D shapes, as the user may have a condition where

colors are misunderstood (e.g., color blindness) or poor artistic ability.

2.5 CHAPTER FINAL CONSIDERATIONS

This chapter presented a brief theoretical foundation that approaches the main con-

cepts necessary to understand the rest of this thesis. This chapter consists of four sub-

jects: document-oriented databases, logical design of GDW, model-driven development

and DSML, and graphical design of modeling languages.
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3 RELATED STUDIES

This chapter presents proposals related to our study. Section 3.1 describes the method

used to select the studies from the literature, section 3.2 discusses them, section 3.3

provides an overall analysis, and section 3.4 presents the final chapter considerations.

3.1 SELECTION OF STUDIES

Figure 6 illustrates the method that was adopted to search through the literature

for studies related to this proposal. The method sought to find proposals of modeling

languages or graphical notations for schemas of DGDW or general-purpose document-

oriented databases. The reason behind searching for graphical notation proposals (even

though a graphical notation is part of a modeling language) is because some of them

adopt a subset of symbols from an existing graphical notation to represent a schema (e.g.,

UML Profile). It is common for these proposals to show their symbols and how they

were adapted for a specific domain. Furthermore, general-purpose proposals (beyond the

DGDW domain) were included in the search to point out resources that can be used to

model DGDW schemas, as well as to highlight the advancement of the state-of-the-art

with regard to modeling document-oriented databases.

As can be seen in Figure 6, the method consists of 5 steps, which are described below:

Step 1 - A search string was defined and used to search papers in research libraries

containing high-quality computer science journals and conferences, as well as in

Google Scholar, which indexes a wide content of scientific papers.

Step 2 - Papers with the same title were removed to avoid duplicated studies.

Step 3 - After analyzing the title, abstract, keywords, and figures (to identify, for exam-

ple, a graphical notation or a metamodel), the papers that did not meet at least one

inclusion criteria or met at least one exclusion criteria (cf. Figure 6) were removed.

Step 4 - After analyzing the full text of the remaining papers, the papers that did not

meet at least one inclusion criteria or met at least one exclusion criteria were also

removed.
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Figure 6 – The method used to search for related studies in the literature.

Source: The Author

Step 5 - The references from the remaining papers were analyzed to identify and include

works of potential interest to this study. This analysis applied steps 2, 3, and 4 to

exclude duplicated studies and those unrelated studies to this proposal.

Table 1 presents the purpose (i.e., general-purpose or DGDW) and title of the selected

papers, ordered by their publishing year (last column). The tag in the first column is to

identify the papers in the next section.
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Table 1 – Selected studies.

# Purpose Title Year
P01 General-purpose Aggregate data modeling style 2013
P02 General-purpose Modeling and querying data in NoSQL databases 2013
P03 General-purpose A Workload-Driven Logical Design Approach for

NoSQL Document Databases
2015

P04 General-purpose Data modeling for NoSQL document-oriented data-
bases

2015

P05 General-purpose Geographic data modeling for NoSQL document-
oriented databases

2015

P06 General-purpose Towards logical level design of Big Data 2015
P07 DGDW Design and Implementation of Falling Star - A

Non-Redudant Spatio-Multidimensional Logical Mo-
del for Document Stores

2017

P08 General-purpose NoSQL database design using UML conceptual data
model based on peter chen’s framework

2017

P09 General-purpose MDA-Based Approach for NoSQL Databases Model-
ling

2017

P10 General-purpose Model driven development of hybrid databases using
lightweight metamodel extensions

2018

P11 General-purpose A Graph Based Knowledge and Reasoning Represen-
tation Approach for Modeling MongoDB Data Struc-
ture and Query

2019

P12 General-purpose Extraction process of conceptual model from a
document-oriented NoSQL database

2019

P13 General-purpose Mortadelo: Automatic generation of NoSQL stores
from platform-independent data models

2020

P14 General-purpose Analysis and evaluation of document-oriented struc-
tures

2021

P15 DGDW Towards NoSQL-based Data Warehouse Solution in-
tegrating ECDIS for Maritime Navigation Decision
Support System

2021

P16 General-purpose A unified metamodel for NoSQL and relational da-
tabases

2022

Source: The Author

3.2 DISCUSSION

This section discusses the papers shown in Table 1. In each paper, evidence of resources

that can be used to model DGDW schemas was sought, taking into account the parti-

cularities of the document-oriented data model and the GDW logical design. Resources



37

referring to modeling language definition and implementation are also checked for each

paper.

Regarding the data model of document-oriented databases (cf. section 2.1), the ability

to support the design of homogeneous or heterogeneous collections; to specify geospa-

tial or conventional data types for fields; to define fields as identifier or unique1; and to

draw relationships using embedded documents or referenced documents was verified. For

embedded documents, it is important to note that relationships with 1:N cardinality are

implemented using arrays of embedded documents, producing documents with a very high

data volume, which can impair the database performance; relationships with M:N cardi-

nality (in addition to the issue regarding 1:N cardinality) can produce cyclic dependence;

they should belong to the same collection and have no identifier field.

For the design of GDW schemas (cf. section 2.2), support for the ability to distinguish

facts from dimensions and to prevent disconnected facts or dimensions was verified.

Concerning the modeling language resources (cf. section 2.3), it was verified if the

proposal is specific to the DGDW domain; proposed a graphical notation; defined a meta-

model or grammar; presented translational semantics; was evaluated; and provided com-

putational support, such as a CASE tool.

In order to systematically search for these resources within the papers, they were

structured as follows:

a) Document-oriented data model:

D1 - Defines homogeneous collections;

D2 - Defines heterogeneous collections;

D3 - Depicts the field structure of documents;

D4 - Specifies the conventional data types;

D5 – Specifies the geospatial data types;

D6 – Represents identifier fields;

D7 – Represents unique fields;

D8 - Establishes relationships using embedded documents;

D9 - Depicts the 1:1 cardinality for embedded documents;
1 Fields not defined as identifiers or unique are assumed to be regular fields. Therefore, support for

specifying regular fields is not addressed.
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D10 - Depicts the 1:N cardinality for embedded documents;

D11 - Depicts the M:N cardinality for embedded documents;

D12 - Specifies documents from different collections as embedded documents;

D13 - Defines identifier field in an embedded document;

D14 - Establishes relationships using referenced documents;

D15 - Depicts the 1:1 cardinality for referenced documents;

D16 - Depicts the 1:N cardinality for referenced documents;

D17 - Depicts the M:N cardinality for referenced documents.

b) Design of GDW schemas

G1 - Distinguishes facts and dimensions;

G2 - Prevents disconnected facts or dimensions.

c) Modeling language

M1 - Proposes a graphical notation;

M2 - Defines a metamodel or grammar;

M3 - Presents translational semantics;

M4 - Evaluates the proposal;

M5 - Provides computational support, such as a CASE tool.

The studies dealing with the design of general-purpose document-oriented schemas

are covered in section 3.2.1, while studies dealing with the design of DGDW schemas are

covered in section 3.2.2.

3.2.1 General-purpose

P01

Reference (JOVANOVIC; BENSON, 2013) proposes a graphical notation based on IDEF1X

(BRUCE, 1992) for the design of general-purpose document-oriented database schemas. In

this graphical notation, an entity represents the field structure of the documents. In an
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entity, fields can be defined as identifiers, unique, or regular, but there is no definition

of data types. Entities can be related using links, whose labels distinguish relationships

using embedded documents (EMBED) from those using referenced documents (REFI).

For both relationship approaches, 1:1 or 1:N cardinality can be set. As there is no mention

of a symbol that represents a collection in this proposal, no evidence that homogeneous or

heterogeneous collections can be defined was found. Furthermore, no evidence was found

with regard to the drawing of embedding documents that are in different collections or

about the definition of identifier fields in embedded documents.

Figure 7 shows an example depicted with P01, in which entities are related using

referenced or embedded documents.

Figure 7 – Schema example of P01.

Source: JOVANOVIC; BENSON (2013)

In short, evidence was found in this proposal for the following resources: D3 - Depicts

the field structure of documents; D6 - Represents identifier fields; D7 - Represents unique

fields; D8 - Establishes relationships using embedded documents; D9 - Depicts the 1:1

cardinality for embedded documents; D10 - Depicts the 1:N cardinality for embedded

documents; D14 - Establishes relationships using referenced documents; D15 - Depicts the

1:1 cardinality for referenced documents; D16 - Depicts the 1:N cardinality for referenced

documents; and M1 - Proposes a graphical notation.
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P02

Reference (KAUR; RANI, 2013) defines a graphical notation based on the UML class dia-

gram to model schemas for relational and NoSQL databases (column-oriented, document-

oriented, key-value, and graph-oriented). For document-oriented database design, a class

represents a field structure for documents. In a class, the attributes represent fields, but

with no indication of their data types, nor any way to define them as identifiers or unique.

Classes can be related using association or composition links, representing relationships

using referenced or embedded documents, respectively. There is no cardinality definition

in either relationship approach. In a relationship using referenced documents, the fields

that store the references are graphically represented inside a rectangle with rounded cor-

ners. As there is no graphical representation for identifier fields, no evidence was found

regarding the definition of identifier fields in embedded documents. As with P01, there is

no mention of a symbol to represent collections. Therefore, no evidence was found that

this proposal allows for the design of homogeneous or heterogeneous collections, or draws

relationships between documents of different collections as embedded documents.

Figure 8 shows an example depicted with P02, which defines document field structures

named Tag, Post, Comment, and User. These field structures are related using embedded

documents (Post embeds Comment) and referenced documents (Tag to Post, Post to User,

and User to Comment).

In short, evidence was found in this proposal for the following resources: D3 - Depicts

the field structure of documents; D8 - Establishes relationships using embedded docu-

ments; D14 - Establishes relationships using referenced documents; and M1 - Proposes a

graphical notation.

P03

Reference (LIMA; MELLO, 2015) proposes a graphical notation for the design of ag-

gregated database schemas (key-value, document-oriented, and column-oriented). In the

document-oriented context, a rectangle represents a homogeneous collection. A rectangle

is composed of blocks that describe the field structure of documents (named root blocks)

or the field structure of embedded documents (named hierarchical blocks). Both of these

types of blocks describe the names of the fields, which can be single-value or multiva-
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Figure 8 – Schema example depicted with the graphical notation proposed in P02.

Source: KAUR; RANI (2013)

lued, but without a data type indication. An identifier field is represented by displaying

its name in bold and italic font. The hierarchical blocks are shown with their minimum

and maximum occurrences in the documents, which makes it possible to define relati-

onships using embedded documents with 1:1 or 1:N cardinality. As embedded documents

are graphically represented using the containment association (i.e., a block within a col-

lection), this proposal avoids relating documents that belong to different collections using

this relationship approach. No evidence was found regarding the definition of identifier

fields in hierarchical blocks. This proposal also provides support for defining relationships

using referenced documents, but without representing their cardinality. A case study that

models a database in the e-commerce domain is shown as the proposal evaluation.

Figure 9 shows an example of schema depicted with P03. In this example, Person and

Contributor are root blocks that define two collections with the field structure of their

documents. Person has one identifier field in its root block, named ID_code, and two

hierarchical blocks, named Student and Employee. Contributor has one identifier field in

its root block, named ID_register, and one hierarchical block, named Partner. The hierar-

chical blocks (embedded documents) have minimum and maximum occurrences of 0 and



42

1, respectively ([0,1]), which indicates a relationship having 1:1 cardinality. A relationship

using references is established between Employee and the root block of Contributor. In

this relationship, the field contributor_REF of Employee references ID_register, the iden-

tifier field of Contributor. This example also defines a multivalued field, named contacts,

in which the label [1,N] after its name suggests that a contributor can have one or more

contacts.

Figure 9 – Schema example depicted with the graphical notation proposed in P03.

Source: LIMA; MELLO (2015)

In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D3 - Depicts the field structure of documents; D6 – Represents

identifier fields; D8 - Establishes relationships using embedded documents; D9 - Depicts

the 1:1 cardinality for embedded documents; D10 - Depicts the 1:N cardinality for em-

bedded documents; D11 - Depicts the M:N cardinality for embedded documents; D14 -

Establishes relationships using referenced documents; M1 - Proposes a graphical notation;

and M4 - Evaluates the proposal.

P04

Reference (VERA et al., 2015) proposes a graphical notation for the design of document-

oriented database schemas. Rectangles are used to represent homogeneous collections and

the field structure of their documents. The fields are represented by only their names,

as there is no representation for data types nor any way to set them as identifiers or

unique. A rectangle within another rectangle represents a relationship using embedded

documents, which can assume a 1:1, 1:N, or M:N cardinality. As the embedded document

is represented using a containment association (i.e., within a collection), the proposal

avoids relating documents that belong to different collections by using this relationship
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approach. However, this graphical representation can seem ambiguous, as the same symbol

(rectangle) represents a collection with the field structure of its documents or a field

structure of embedded documents. Because there is no representation that defines a field

as an identifier, no evidence was found regarding the definition of identifier fields in

embedded documents. Relationships using referenced documents are represented by a

link that relates two collections, whose cardinality can be 1:1, 1:N, or M:N. This proposal

is evaluated through a case study that models a database containing genomic data.

Figure 10a and Figure 10b show how to represent embedded documents and referenced

documents, respectively. Figure 10c shows an example schema in which documents are

related using referenced documents having different cardinalities.

Figure 10 – On the left, the graphical notation to represent (a) embedded documents and (b)
referenced documents. On the right, (c) a schema example for the proposal of P04.

Source: VERA et al. (2015)

In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D3 - Depicts the field structure of documents; D8 - Establishes

relationships using embedded documents; D9 - Depicts the 1:1 cardinality for embedded

documents; D10 - Depicts the 1:N cardinality for embedded documents; D11 - Depicts the

M:N cardinality for embedded documents; D14 - Establishes relationships using referenced

documents; D15 - Depicts the 1:1 cardinality for referenced documents; D16 - Depicts the
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1:N cardinality for referenced documents; D17 - Depicts the M:N cardinality for referenced

documents; M1 - Proposes a graphical notation; and M4 - Evaluates the proposal.

P05

Reference (FILHO et al., 2015) extends the graphical notation of P04 to support the

modeling of geospatial data. The data types point, line, and polygon are represented

with the pictograms star, line, and square, respectively. These pictograms are drawn in

the top right of the collection, limiting the depiction to only one geospatial field per

document. This proposal also differs from P04 by the relationship cardinality allowed in

the embedded or referenced documents. While P04 allows for the definition of 1:1, 1:N, or

M:N cardinality, P05 permits only 1:1 or 1:N. A case study that models a database with

biomes graphically identified by points (i.e., a latitude and longitude pair) is presented as

the proposal evaluation.

Figure 11a shows how to represent geospatial data using this proposal, while Figure 11b

presents an example of a schema that models a nesting of embedded documents and a

relationship with referenced documents. Note that the document named Location has a

star in the upper right corner, indicating a point-type field in this document, but without

indicating which field has that data type.

Figure 11 – On the right, (a) the geospatial data representation using pictograms in documents.
On the left, (b) an example of a schema modeled with the proposal from P05.

Source: FILHO et al. (2015)

In short, evidence was found in this proposal for the following resources: D1 - Defines
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homogeneous collections; D3 - Depicts the field structure of documents; D5 – Specifies

the geospatial data types; D8 - Establishes relationships using embedded documents; D9 -

Depicts the 1:1 cardinality for embedded documents; D10 - Depicts the 1:N cardinality for

embedded documents; D14 - Establishes relationships using referenced documents; D15 -

Depicts the 1:1 cardinality for referenced documents; D16 - Depicts the 1:N cardinality

for referenced documents; M1 - Proposes a graphical notation; and M4 - Evaluates the

proposal.

P06

Reference (BANERJEE et al., 2015) defines a systematic transformation from the graph-

semantic based conceptual data model (GOOSSDM)(SARKAR; ROY, 2011) to JSON Sche-

mas. Its graphical notation uses the vertices and edges of GOOSSDM to model a document-

oriented database schema. Vertices can assume the shape of a rectangle or circle, in which

the first represents an object (i.e., a field structure of documents) or an array (i.e., a

multivalued field), while the second denotes a field. The fields are graphically represented

with their names below the vertices and can be set as identifiers (using a gray background

within the vertices). However, the graphical notation does not allow for the definition of

the data type of fields nor set them as unique. Edges are graphically represented with

(i) one arrow, (ii) a filled arrow, or (iii) no arrow. The first is used to relate a circle

to a rectangle, indicating that a field belongs to a field structure of documents, or that

a field belongs to a multivalued field. The second is used to relate two rectangles and

represents a relationship using embedded documents, which is implemented using JSON

Schema inheritance, a legacy resource that existed up until Draft 3 of the JSON Schema

(ZYP; COURT, 2010) but that is not used in the current version (WRIGHT et al., 2020). The

third is also used to relate two rectangles, defining a nested array or a relationship using

embedded documents having 1:1, 1:N, or M:N cardinality. Although the paper shows an

edge named Reference, there are no examples or mentions of how this proposal supports

relationships using referenced documents. No evidence was found regarding the definition

of identifier fields in embedded documents. Furthermore, because there is no symbol to

represent a collection, no evidence was found that this proposal can define homogeneous

or heterogeneous collections or draw relationships between documents from different col-

lections as embedded documents. A case study that models and generates JSON Schema
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for a project management database is presented to evaluate the proposal.

Figure 12a shows the graphical notation proposed in P06. Figure 12b illustrates an

example that defines a field structure of documents named Student, composed of an iden-

tifier field named SID and a regular field named City. Student embeds Person (relationship

represented by the edge with a filled arrow), a field structure of documents composed of

two fields called Name and DoB. Note in this example that linkage associations (repre-

sented by edges with one arrow) are used to indicate that fields (circles) belong to Person

or Student (rectangles), which can create a polluted diagram when many fields must be

represented. Figure 12c illustrates an example where Student, Course, and Teacher are

related using edges without arrows. The value 1 after the cardinality (i.e., 1:N, 1) me-

ans that the rectangle represents a multivalued field because, as defined in the graphical

notation (cf. Θ value in Figure 12a), a value of 1 indicates an array, while a value of 0

indicates an object (i.e., a field structure of documents). The association connector indi-

cates how these multivalued fields are nested: one or more Teacher instances are nested

into one Course instance (right to left), and one or more Course instances are nested into

one Student instance (bottom to top). Note in this example that if the Θ value was 0, this

would imply a nesting of embedded documents (i.e., complex data). Finally, Figure 12d

shows the translation of a rectangle (that models a field structure of documents) and a

circle (that models a field) to their respective JSON Schemas.

In short, evidence was found in this proposal for the following resources: D3 - Depicts

the field structure of documents; D6 – Represents identifier fields; D8 - Establishes re-

lationships using embedded documents; D9 - Depicts the 1:1 cardinality for embedded

documents; D10 - Depicts the 1:N cardinality for embedded documents; D11 - Depicts

the M:N cardinality for embedded documents; M1 - Proposes a graphical notation; M3 -

Presents translational semantics; and M4 - Evaluates the proposal;

P08

Reference (SHIN; HWANG; JUNG, 2017) proposes a NoSQL database design method

based on the UML class diagram notation. In the document-oriented database context,

classes represent collections and the field structure of their documents. Fields can be

set as identifier (with the “«PK»” stereotype), unique (with the “«AK»” stereotype), or

regular (with no stereotype). However, their data types are not indicated. Associations
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Figure 12 – The (a) graphical notation, (b, c) example schemas, and (d) mapping of symbols to
JSON Schemas in P06.

Source: BANERJEE et al. (2015)

represent relationships using referenced or embedded documents. An association between

two classes without tail decoration represents referenced documents, whose cardinality

can be 1:1, 1:N, or M:N. The field that stores the reference is marked with “«FK»”. An

association with an arrow (similar to a generalization link) on one tail and the “«embed-

ded»” stereotype between two classes indicates a relationship using embedded documents,

but without representation of its cardinality. In this relationship approach, the class that

represents the embedded document is depicted within another, i.e., using a containment

association. This means that this proposal allows for the definition of homogeneous col-

lections only, as a class cannot have another class within it that does not belong to

an embedded document relationship. However, embedding one collection (a class) into

another seems to be a mistake, as a collection cannot be embedded into another, and

documents from different collections cannot be related as embedded documents. The pro-

posal is evaluated through a case study that models an e-commerce business database in

which a customer orders products through the internet or a smartphone.
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Figure 13 shows a schema modeled with this proposal. Note that the class Product

embeds four classes, named OtherProduct, Automotive, Electronics, and Book, which is a

mistake, because a collection cannot be embedded into another. Furthermore, there are no

mechanisms to prevent the definition of identifier fields in embedded documents because,

as shown in this example, identifier fields are found in the embedded documents.

Figure 13 – Example schema depicted using the proposal from P08.

Source: SHIN; HWANG; JUNG (2017)

In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D3 - Depicts the field structure of documents; D6 – Repre-

sents identifier fields; D7 – Represents unique fields; D8 - Establishes relationships using

embedded documents; D12 - Specifies documents from different collections as embedded

documents; D13 - Defines identifier field in an embedded document; D14 - Establishes

relationships using referenced documents; D15 - Depicts the 1:1 cardinality for referenced

documents; D16 - Depicts the 1:N cardinality for referenced documents; D17 - Depicts

the M:N cardinality for referenced documents; M1 - Proposes a graphical notation; and

M4 - Evaluates the proposal.



49

P09

Reference (ABDELHEDI et al., 2017b) proposes UMLtoNoSQL2, an automated pro-

cess to transform conceptual models to physical models of NoSQL databases (document-

oriented, column-oriented, or graph-oriented). In other words, this proposal consists of a

UML profile that uses class diagram notation to represent a schema, which is then used to

generate documents. In a class diagram, classes represent homogeneous collections, and

attributes represent the field structure of their documents. Fields are defined with con-

ventional data types and can be set as identifiers. The composition and association links

are used to define relationships that use embedded and referenced documents, respecti-

vely. For both approaches, cardinalities of 1:1, 1:N, or M:N are allowed. As classes can

be related with a composite link, it seems that this proposal allows embedded documents

to be drawn from documents belonging to different collections. No evidence was found

regarding the definition of identifier fields in embedded documents. This proposal defines

a set of rules used to transform the concepts of the UML metamodel into concepts from

the document-oriented data model, which are defined in a generic metamodel. However,

this generic metamodel does not capture the particularities of document-oriented databa-

ses, such as the definition of collections and relationships using embedded documents. An

experiment that models a schema using a UML class diagram and analyzes the runtimes

of some queries is used to evaluate the proposal.

Reference (ABDELHEDI et al., 2017b) does not depict a schema example depicted with

its proposal. However, the metamodel for the generic data model is addressed, as shown

in Figure 14. This metamodel defines a Database to be composed of Tables (collecti-

ons) and Relationships between Tables. Tables should have one key (identifier field) and

other attributes (regular fields), defined with a name and data type. Attributes can be

multivalued or atomic.

In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D3 - Depicts the field structure of documents; D4 - Specifies the

conventional data types; D6 – Represents identifier fields; D8 - Establishes relationships

using embedded documents; D9 - Depicts the 1:1 cardinality for embedded documents;

D10 - Depicts the 1:N cardinality for embedded documents; D11 - Depicts the M:N car-
2 This proposal is also addressed in the references (ABDELHEDI et al., 2016) and (ABDELHEDI et al.,

2017a).
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Figure 14 – Metamodel that defines a generic logical model for NoSQL databases in P09.

Source: ABDELHEDI et al. (2017b)

dinality for embedded documents; D12 - Specifies documents from different collections as

embedded documents; D14 - Establishes relationships using referenced documents; D15 -

Depicts the 1:1 cardinality for referenced documents; D16 - Depicts the 1:N cardinality

for referenced documents; D17 - Depicts the M:N cardinality for referenced documents;

M1 - Proposes a graphical notation; M2 - Defines a metamodel or grammar (it was par-

tially found, as the proposed metamodel adapts the UML metamodel for the design of

document-oriented databases); and M4 - Evaluates the proposal.

P10

Reference (ZEčEVIć et al., 2018) proposes a graphical notation to model hybrid data-

bases, which are databases containing both relational and NoSQL characteristics. In the

document-oriented database context, entities represent homogeneous collections, and at-

tributes make up the field structure of the documents. These fields are defined with either

a conventional or geospatial data type, and can be set to be identifiers. Links are used to

represent the relationships that use embedded or referenced documents. For both relati-

onship approaches, cardinality can be 1:1, 1:N, or M:N, which are represented according
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to the IDEF1X notation. Because entities represent collections, it seems to be a mistake

to embed a collection into another, as well as relate documents from different collecti-

ons as embedded documents. No evidence was found regarding the definition of identifier

fields in embedded documents. A metamodel defines the concepts that can be used to

implement a lightweight extension for modeling tools. These lightweight extensions define

UML profiles, adding constraints and new elements without modifying the metamodel

of an existing modeling language (BRUCK; HUSSEY, 2007). This proposal is evaluated by

modeling a hybrid database (relational and document-oriented) that stores data about

crops and farmers.

Figure 15 shows the database schema used in the proposal evaluation. The entities

Sensor Data, Flight, and Raw Images (with corner edges and overlapping rectangles)

represent collections for a document-oriented database, while other entities (with rounded

edges) represent tables for a relational database. Note that the collection Flight embeds

the collection Raw Image, but in a document-oriented database, a collection can not be

embedded into another collection.

Figure 15 – Example of hybrid databases modeled with the proposal from P10.

Source: ZEčEVIć et al. (2018)

In short, evidence was found in this proposal for the following resources: D1 - Defines
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homogeneous collections; D3 - Depicts the field structure of documents; D4 - Specifies

the conventional data types; D5 – Specifies the geospatial data types; D6 – Represents

identifier fields; D8 - Establishes relationships using embedded documents; D9 - Depicts

the 1:1 cardinality for embedded documents; D10 - Depicts the 1:N cardinality for em-

bedded documents; D11 - Depicts the M:N cardinality for embedded documents; D12 -

Specifies documents from different collections as embedded documents; D14 - Establishes

relationships using referenced documents; D15 - Depicts the 1:1 cardinality for referenced

documents; D16 - Depicts the 1:N cardinality for referenced documents; D17 - Depicts

the M:N cardinality for referenced documents; M1 - Proposes a graphical notation; M2 -

Defines a metamodel or grammar; and M4 - Evaluates the proposal.

P11

Reference (ANDOR; VARGA; SăCăREA, 2019) presents a modeling method based on

conceptual graphs for MongoDB. In the graphical notation of this proposal, a schema

is designed using nodes and edges. Nodes can represent more than one concept, as they

are used to depict a homogeneous collection, a field structure for documents, a field, or a

conventional data type. An edge is used to make a relationship between two nodes, and

the description of this relationship uses JSON Schema keywords (e.g., keyField, hasOne,

hasMor, isOptional) within an oval symbol. Two nodes related by an edge can represent,

for example, that a document field structure has an identifier field (keyField), a regular fi-

eld (hasOne), a multivalued field (hasMore), or an optional field (isOptional). Note that a

field can be set as identifier or regular, but not as unique. Edges are also used to establish

relationships using embedded or referenced documents, but without a cardinality defini-

tion. No evidence was found regarding relating documents from different collections as

embedded documents, nor about the definition of identifier fields in embedded documents.

Figure 16 shows an example of a schema represented with this proposal, which models

a database called Blog, containing documents that store users and posts. This schema

models posts with one or more comments (array of embedded documents), where each

comment is related to an author (referenced documents). In other words, although the

relationship cardinality is not depicted, this proposal enables relationships to be defined

as embedded documents with 1:1 or 1:N cardinality. A JSON Schema for this example is

shown in the paper.
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Figure 16 – Example schema depicted as a graph in P11.

Source: ANDOR; VARGA; SăCăREA (2019)

In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D3 - Depicts the field structure of documents; D4 - Specifies the

conventional data types; D6 – Represents identifier fields; D8 - Establishes relationships

using embedded documents; D9 - Depicts the 1:1 cardinality for embedded documents;

D10 - Depicts the 1:N cardinality for embedded documents; D14 - Establishes relationships

using referenced documents; M1 - Proposes a graphical notation; and M3 - Presents

translational semantics.

P12

Reference (BRAHIM; FERHAT; ZURFLUH, 2019) presents a metamodel for document-

oriented databases, which is used in a process that extends the one shown in the paper

P09, in order to extract a conceptual model from a document-oriented database (i.e.,

reverse engineering). The schema retrieval is done using rules that map a metamodel with

document-oriented concepts to the UML metamodel. The proposal is evaluated by a case

study that extracts the conceptual model from a MongoDB database with medical data.

Figure 17 shows the proposed metamodel, which defines a database (PhysicalModel)

composed of one or more collections (Collections), each one with only one document

field structure (Documents), i.e., homogeneous collections. A field (Fields) has a name
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and a data type (Type), which can be integer, string, or boolean (i.e., conventional data

types). There is no support to set a field as identifier or unique. This metamodel also

defines that documents can be related using embedded or referenced documents, but there

is no mention of the relationship cardinality definition. Relationships using embedded

documents are defined by the metaclass Complex, a specialization of Fields. Complex is

composed of instances of the metaclass Structured, indicating that this type of relationship

is established among documents that belong to the same collection. However, because

Complex is composed of one or more instances of Structured, it means that embedded

documents can be stored in arrays, which enables relationships with a cardinality of 1:1

or 1:N. Relationships using referenced documents are defined by the metaclass DBRefs,

a specialization of Structure related to the Collections metaclass. This definition allows

documents that belong to the same or different collections to be related as referenced

documents. However, as there is no support for defining identifier fields in this metamodel,

it is difficult to recognize which field is referenced in a relationship.

Figure 17 – Metamodel for document-oriented databases proposed in P12.

Source: BRAHIM; FERHAT; ZURFLUH (2019)

In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D3 - Depicts the field structure of documents; D4 - Specifies the

conventional data types; D8 - Establishes relationships using embedded documents; D9 -

Depicts the 1:1 cardinality for embedded documents; D10 - Depicts the 1:N cardinality for
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embedded documents; D14 - Establishes relationships using referenced documents; M2 -

Defines a metamodel or grammar; and M4 - Evaluates the proposal.

P13

Reference (DE LA VEGA et al., 2020) proposed a representation of NoSQL (document-

oriented or column-oriented) database schemas using the UML class diagram notation.

For the document-oriented databases, classes represent homogeneous collections, and at-

tributes represent the document fields. These fields are defined with a conventional data

type, but there is no mention of setting them as identifiers or unique. The association

and composition links are used to represent relationships using referenced and embedded

documents, respectively. The multiplicity of the relationship is represented for both relati-

onship approaches, making it possible to define cardinality as 1:1 or 1:N. However, relating

two classes with a composition seems to be a mistake, as there is no relationship between

collections in a document-oriented database nor relationships among documents of diffe-

rent collections using embedded documents. This proposal also defines a metamodel for

document-oriented databases, which is used to generate the physical schema (i.e., JSON

Schema) from a conceptual model (i.e., a UML class diagram). This metamodel defines

embedded documents as belonging to the same collection, although the graphical notation

indicates that a collection can be embedded into another (i.e., two classes related with a

composition link). This proposal was evaluated in a case study that transforms industrial

data related to a cutting machine so it can be stored in different NoSQL databases, such

as MongoDB. A prototype of this proposal is available for download.

Figure 18a shows a schema represented by this proposal, which deals with a database

that stores e-commerce data. Figure 18b shows the proposed metamodel for document-

oriented databases. This metamodel defines a database (DocumentDataModel) with one

or more collections (Collection), each composed of one document field structure (Docu-

mentType). A field can be single-value or multivalued, as its metaclass (Field) is speciali-

zed as either PrimitiveField or ArrayField. The relationships using embedded documents

are captured by the metaclass Field, as this metaclass is also specialized in DocumentType,

which is composed of one or more Fields. However, the metamodel does not define the

graphical notation symbols that represent relationships, nor how relationships using em-

bedded documents are established.
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Figure 18 – A (a) conceptual model example and the (b) metamodel for document-oriented
documents proposed in P13.

Source: DE LA VEGA et al. (2020)

In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D3 - Depicts the field structure of documents; D4 - Specifies the

conventional data types; D8 - Establishes relationships using embedded documents; D9 -

Depicts the 1:1 cardinality for embedded documents; D10 - Depicts the 1:N cardinality for

embedded documents; D12 - Specifies documents from different collections as embedded

documents; D14 - Establishes relationships using referenced documents; D15 - Depicts the

1:1 cardinality for referenced documents; D16 - Depicts the 1:N cardinality for referenced

documents; M1 - Proposes a graphical notation; M2 - Defines a metamodel or grammar;

M4 - Evaluates the proposal; and M5 - Provides computational support, such as a CASE

tool.

P14

Reference (GóMEZ; RONCANCIO; CASALLAS, 2021) addresses a method of automa-

tically generating a set of document-oriented structuring alternatives (as text) from a

schema modeled with a UML class diagram. In a diagram, a class represents a homoge-
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neous collection, and the attributes compose the document field structure. The fields are

represented by a name and a conventional data type, but there is no representation for

setting them as identifier or unique. An association link is used to represent a relationship

between documents, without distinguishing the relationship type (i.e., referenced or em-

bedded documents). Alternatives for implementing the physical model are generated from

two related classes, which include relating the documents using references or embedding

them. In other words, the proposal has no resources to distinguish referenced or embedded

documents, nor represent the relationship cardinality. The proposal is evaluated with a

case study using MongoDB, where structuring alternatives from a schema are presented

and compared.

Figure 19a shows a diagram in which two collections named Agency and Business are

related. From this diagram, eight different structuring alternatives (S1 to S8) are shown

in Figure 19b. The structuring alternatives are presented using AJSchema, an abstraction

based on JSON code. Each rectangle with dotted edges represents a collection, with its

document field structure. In this example, from two related classes, the proposal generates

alternatives for implementing the relationship using referenced documents (S5, S6, S7, S8),

embedded documents (S4), or arrays of embedded documents (S1, S2, S3).

Figure 19 – An (a) example diagram and its (b) document-oriented structuring alternatives -
P14.

Source: GóMEZ; RONCANCIO; CASALLAS (2021)
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In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D3 - Depicts the field structure of documents; D4 - Specifies

the conventional data types; M1 - Proposes a graphical notation; and M4 - Evaluates the

proposal.

P16

Reference (CANDEL; RUIZ; GARCíA-MOLINA, 2022) proposes a unified metamodel for

database schemas, which is then mapped to metamodels that capture the particularities

of the different NoSQL databases categories (document-oriented, column-oriented, and

graph-oriented). The proposal was evaluated with an experiment that generated databases

of different categories from a data set.

Figure 20 shows the metamodel for the document-oriented databases. In this meta-

model, a database (DocumentSchema) contains one or more collections (EntityType).

The collections can have one or more document field structures (StructuralVariation),

which means that a collection can be homogeneous or heterogeneous. The document field

structure is composed of fields (Property), which can be specialized as conventional fields

(Attribute - PrimitiveType), multivalued fields (Attribute - Array), relationship referen-

ces (Reference), or fields that embed documents (Aggregation). Fields can also be set

as identifiers in the documents (isKey in Attribute). Note that this metamodel provides

support for defining relationships using embedded or referenced documents, but without

a relationship cardinality definition. As the metaclass Aggregation is related to the meta-

class StructuredVariation (which defines a document field structure in a collection), the

metamodel prevents relationships between documents belonging to different collections

from being defined. No evidence was found regarding the definition of identifier fields in

embedded documents.

In short, evidence was found in this proposal for the following resources: D1 - Defines

homogeneous collections; D2 - Defines heterogeneous collections; D3 - Depicts the field

structure of documents; D4 - Specifies the conventional data types; D6 – Represents iden-

tifier fields; D8 - Establishes relationships using embedded documents; D14 - Establishes

relationships using referenced documents; M2 - Defines a metamodel or grammar; and

M4 - Evaluates the proposal.
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Figure 20 – Metamodel for document-oriented databases proposed in P16.

Source: CANDEL; RUIZ; GARCíA-MOLINA (2022)

3.2.2 DGDW schemas

P07

Reference (FERRAHI et al., 2017) proposes a UML Profile for the design of DGDW

schemas. This proposal mixes SOLAP and GDW concepts in a schema, which is repre-

sented using the UML class diagram notation. A class represents a fact or an aggregation

of levels (i.e., dimensions), and corresponds to a document field structure. Attributes re-

present levels or measures, which correspond to fields within the documents. These fields

are defined with a conventional or geospatial data type and can be set as identifiers. Asso-

ciations are used to establish relationships between facts and aggregations of levels using

embedded documents, but without a relationship cardinality definition. Relationships

using referenced documents are not mentioned. This proposal uses stereotypes (defined in

a metamodel) and OCL rules to adapt the symbol semantics to the DGDW domain. In

other words, this proposal defines a metamodel that adapts the UML metamodel to the

DGDW domain. Because no graphical representation for collections is mentioned, there

is no evidence if the proposal allows for the definition of homogeneous or heterogeneous

collections, nor for the establishment of relationships using embedded documents between

documents that belong to different collections. No evidence was found with regard to the

definition of identifier fields in embedded documents or to the avoidance of facts discon-

nected from level aggregations. This proposal was evaluated through an experiment that

modeled and generated a DGDW from an RGDW (SIQUEIRA et al., 2010), analyzing its

data volume and query performance.



60

Figure 21a shows a schema depicted with this proposal, named Falling Star. This

schema models geospatial fields into fact documents (class Lineorder_), while the con-

ventional fields from different dimensions are mixed in embedded documents (class fact).

As can be seen in the implementation of this schema shown in Figure 21b, every fact do-

cument has an array of embedded documents (cf. row 11 in Figure 21b), each containing

a combination of fields belonging to different dimensions. It means that, although it is not

graphically represented, this proposal enables relationship cardinality to be defined as 1:1

(only one embedded document into the array) or 1:N (many embedded documents into

the array). It is important to highlight that there is no graphical notation for represen-

ting dimensions, as these are represented by aggregations of levels. Furthermore, level is

a SOLAP concept, but because DGDW can be used for applications other than SOLAP

(e.g., data mining, reports, and what-if-analysis), SOLAP concepts are dispensable when

modeling a DGDW schema.

Figure 21 – (a) The Falling Star schema, and (b) its implementation in MongoDB - P07.

Source: FERRAHI et al. (2017)
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In short, evidence was found in this proposal for the following resources: D3 - Depicts

the field structure of documents; D4 - Specifies the conventional data types; D5 – Specifies

the geospatial data types; D6 – Represents identifier fields; D8 - Establishes relationships

using embedded documents; D9 - Depicts the 1:1 cardinality for embedded documents;

D10 - Depicts the 1:N cardinality for embedded documents; G1 - Distinguishes facts

and dimensions (it was partially found because there is no graphical representation for

dimensions); M1 - Proposes a graphical notation; M2 - Defines a metamodel or grammar

(it was partially found, as the proposed metamodel adapts the UML metamodel for the

DGDW domain); and M4 - Evaluates the proposal.

P15

Reference (BENSALLOUA; BENAMEUR, 2021) proposed a UML profile for modeling ma-

ritime navigation DGDW schemas. This proposal was refined from that presented by the

authors in (BOULIL; BIMONTE; PINET, 2015), which addressed a UML profile for modeling

RGDW. The graphical notation uses the UML class diagram notation as follows: classes

represent documents containing facts or level aggregations (i.e., dimensions), attributes

represent the fields, and associations with 1:1 or 1:N cardinality represent relationships

that use referenced documents. Fields are specified with a geospatial or conventional data

type, but without any indication to set them as identifiers or unique. Similar to P07,

a metamodel is proposed to define stereotypes that adapt the symbols of UML for the

design of DGDW schemas. In addition, this proposal also mixes concepts from SOLAP

and DGDW, as level aggregations compose a schema. There is no mention of a symbol

to represent a collection (homogeneous or heterogeneous) in a diagram or to establish

relationships using embedded documents. This proposal was evaluated in a case study

that built a DGDW using MongoDB. This DGDW is designed to help decision-makers

choose, for example, the best route a ship should take.

Figure 22 shows a diagram depicted with P15 and its mapping to JSON code. In

this DGDW schema, the class “Incident_Facts” models fact documents, while the other

classes model level aggregations.

In short, evidence was found in this proposal for the following resources: D3 - Depicts

the field structure of documents; D4 - Specifies the conventional data types; D5 – Specifies

the geospatial data types; D14 - Establishes relationships using referenced documents; D15



62

Figure 22 – Mapping the symbols of a DGDW for the document-oriented data model in P15.

Source: BENSALLOUA; BENAMEUR (2021)

- Depicts the 1:1 cardinality for referenced documents; D16 - Depicts the 1:N cardinality

for referenced documents; G1 - Distinguishes facts and dimensions (it was partially found

because there is no graphical representation for dimensions); M1 - Proposes a graphical

notation; M2 - Defines a metamodel or grammar (it was partially found, as the proposed

metamodel adapts the UML metamodel for the DGDW domain); and M4 - Evaluates the

proposal.

3.3 OVERALL ANALYSIS

Table 2 summarizes the evidence found in the studies presented in Table 1 for the

resources addressed in section 3.2. Each row corresponds to a proposal, and the columns

correspond to the resources each one provided. An empty circle indicates that the item

was not found (i.e., cannot be affirmed that it is addressed), a filled circle indicates that

the item was found (i.e., there is evidence that it is addressed), and a half-filled circle

indicates that the item was partially found (i.e., there is evidence that it is addressed,

but with some caveats). A hyphen indicates that the discussion of the feature does not

apply to the proposal, as it is designed to model document-oriented database schemas for

general-purpose.

Regarding the features of the document-oriented data model, all proposals support
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Table 2 – Overview of related studies.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 G1 G2 M1 M2 M3 M4 M5
P01 ○␣ ○␣ ○ ○␣ ○␣ ○ ○ ○ ○ ○ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ - - ○ ○␣ ○␣ ○␣ ○␣

P02 ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ - - ○ ○␣ ○␣ ○␣ ○␣

P03 ○ ○␣ ○ ○␣ ○␣ ○ ○␣ ○ ○ ○ ○ ○␣ ○␣ ○ ○␣ ○␣ ○␣ - - ○ ○␣ ○␣ ○ ○␣

P04 ○ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○ ○␣ ○␣ ○ ○ ○ ○ - - ○ ○␣ ○␣ ○ ○␣

P05 ○ ○␣ ○ ○␣ ○ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ - - ○ ○␣ ○␣ ○ ○␣

P06 ○␣ ○␣ ○ ○␣ ○␣ ○ ○␣ ○ ○ ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ - - ○ ○␣ ○ ○ ○␣

P07 ○␣ ○␣ ○ ○ ○ ○ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ è ○␣ ○ è ○␣ ○ ○␣

P08 ○ ○␣ ○ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ ○ ○ ○ ○ ○ ○ - - ○ ○␣ ○␣ ○ ○␣

P09 ○ ○␣ ○ ○ ○␣ ○ ○␣ ○ ○ ○ ○ ○ ○␣ ○ ○ ○ ○ - - ○ è ○␣ ○ ○␣

P10 ○ ○␣ ○ ○ ○ ○ ○␣ ○ ○ ○ ○ ○ ○␣ ○ ○ ○ ○ - - ○ ○ ○␣ ○ ○␣

P11 ○ ○␣ ○ ○ ○␣ ○ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ - - ○ ○␣ ○ ○␣ ○␣

P12 ○ ○␣ ○ ○ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ - - ○␣ ○ ○␣ ○ ○␣

P13 ○ ○␣ ○ ○ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ ○ ○␣ ○ ○ ○ ○␣ - - ○ ○ ○␣ ○ ○

P14 ○ ○␣ ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ - - ○ ○␣ ○␣ ○ ○␣

P15 ○␣ ○␣ ○ ○ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○ ○ ○␣ è ○␣ ○ è ○␣ ○ ○␣

P16 ○ ○ ○ ○ ○␣ ○ ○␣ ○ ○␣ ○␣ ○␣ ○␣ ○␣ ○ ○␣ ○␣ ○␣ - - ○␣ ○ ○␣ ○ ○␣

○␣ feature not found è feature partially found ○ feature found - not applied
D1 - Defines homogeneous collections; D2 - Defines heterogeneous collections; D3 - Depicts the field structure of documents;
D4 - Specifies the conventional data types; D5 – Specifies the geospatial data types; D6 – Represents identifier fields;
D7 – Represents unique fields; D8 - Establishes relationships using embedded documents;
D9 - Depicts the 1:1 cardinality for embedded documents; D10 - Depicts the 1:N cardinality for embedded documents;
D11 - Depicts the M:N cardinality for embedded documents; D12 - Specifies documents from different collections as embedded documents;
D13 - Defines identifier field in an embedded document; D14 - Establishes relationships using referenced documents;
D15 - Depicts the 1:1 cardinality for referenced documents; D16 - Depicts the 1:N cardinality for referenced documents;
D17 - Depicts the M:N cardinality for referenced documents; G1 - Distinguishes facts and dimensions;
G2 - Prevents disconnected facts or dimensions; M1 - Proposes a graphical notation; M2 - Defines a metamodel or grammar;
M3 - Presents translational semantics; M4 - Evaluates the proposal; M5 - Provides computational support, such as a CASE tool.

Source: The Author

the depiction of the field structure of documents (D3: 100%). More than half provide

support to represent homogeneous collections (D1:68.8%), to specify conventional data

types (D4: 56.3%), to set fields as identifiers (D6: 56.3%), to establish relationships using

embedded documents (D8: 87.5%), to depict embedded documents with 1:1 cardinality

(D9: 68.8%), and to establish relationships using referenced documents (D14: 81.3%).

However, few proposals (half or less) support the representation of heterogeneous collec-

tions (D2: 6.3%), the specification of geospatial data types (D5: 25.0%), the setting of

fields as unique (D7: 12.5%), and the depiction of relationships using referenced docu-

ments with 1:1, 1:N, or M:N cardinality (D15: 50.0%, D16: 50.0%, D17: 25.0%). Note

that some proposals allow for the definition of constructions that can impair DGDW

performance, such as the drawing of embedded documents with 1:N or M:N cardinality

(D10: 68.8%, D11: 31.3%). Furthermore, some proposals allow incorrect constructions to

be drawn, such as relations between documents from different collections using embedded

documents (D12: 25.0%) and the definition of identifier fields in embedded documents

(D13: 6.3%).

Because most proposals are designed to model general-purpose schemas, few cover
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the particularities of a GDW schema. In other words, few proposals distinguish facts and

dimensions (G1: 12.5%), and none prevent the design of disconnected facts or dimensions

(G2: 0.0%). Note, in Table 2, that feature G1 was partially found in the proposals P07 and

P15. The reason for this is that there is no representation for dimensions in the schema

because, in those proposals, facts are related to level aggregations, which is a SOLAP

application concept.

With respect to the characteristics related to the definition of modeling languages,

almost all papers present a graphical notation (M1: 87.5%) and evaluate its proposal (M4:

81.3%). However, few proposals define a metamodel (M2: 43.8%), present translational

semantics (M3: 12.5%), or provide computational support, such as a CASE tool (M5:

6.3%). Note that feature M3 was marked in Table 2 as partially found for P07, P09, and

P15 because the metamodels of these proposals adapted the UML metamodel for the

DGDW domain, which can limit the implementation of the modeling language as only a

UML profile.

3.4 CHAPTER FINAL CONSIDERATIONS

This chapter presented studies related to this thesis. These studies were selected th-

rough a method of searching for proposals that address modeling languages for general-

purpose document-oriented databases or DGDW. For each proposal found, evidence for

their support of modeling features of the document-oriented databases and features of

the GDW logical design were sought. Evidence for features regarding the definition of

modeling languages was also sought. The evidence found was summarized in a table, in

order to highlight the existing gaps regarding the definition of a modeling language for

DGDW.
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4 ASTAR

AStar is a Domain-Specific Modeling Language (DSML) whose graphical notation (con-

crete syntax) is inspired by the UML class diagram notation. AStar therefore uses symbols

that are well known in both industry and academics, although it is not a UML profile,

as its syntax and semantics are defined in a specific and more straightforward metamodel

(abstract syntax) and set of well-formedness rules (static semantics). This chapter details

the specifications for AStar, presenting its concrete syntax in section 4.1, its abstract

syntax in section 4.2, its static semantics in section 4.3, and translational semantics in

section 4.4. The chapter final considerations are presented in section 4.5.

4.1 CONCRETE SYNTAX

Figure 23 shows the AStar concrete syntax, which consists of a graphical notation

whose symbols are classified as nodes, links, and pictograms. Nodes represent facts, di-

mensions, or fields; links model the relationships between facts and dimensions; and picto-

grams are representations for field types (i.e., identifier, unique, or regular) and data types

(i.e., conventional or geospatial). The following paragraphs describe the AStar graphical

notation using some examples1. Figure 24 through Figure 28 cover the main symbols of

AStar, which are exemplified using the geospatial version of the Star Schema Benchmark

(SSB) (SIQUEIRA et al., 2009). Figure 29 addresses a scenario that uses relationships ha-

ving 1:1 and M:N cardinalities, which is based on the International Classification of Crime

for Statistical Purposes (ICCS) (DRUGS; CRIME, 2015). The figures also present example

code for inserting JSON documents into the MongoDB database. The JSON Schemas

corresponding to these examples are available on Appendix B.

As can be seen in Figure 23, the AStar notation has four nodes, each one with a name

(i.e., Nm). The first node (Collection) is graphically depicted using package notation and

models a collection of documents in the database. The second and third nodes are graphi-

cally depicted by classes and correspond to an abstraction called DocumentType, which

specifies the field structure of a fact or dimension. In other words, a DocumentType defines

the field names and their data types, and also indicates which fields are identifier, unique,
1 Colored texts are used in the examples to highlight details that are explored in the example explana-

tion. Different colors do not represent different meanings.
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Figure 23 – AStar graphical notation.

Source: The Author

or regular. DocumentTypes can therefore be used to model a DGDW as a well-structured

database, regardless of the document-oriented databases having flexible schemas. Facts

are distinguished graphically from dimensions using thick edges to represent a Fact Do-

cumentType and thin edges for a Dimension DocumentType. Both Fact and Dimension

DocumentTypes can have a fully-qualified name using the collection name in which the

DocumentType is contained (i.e., [Cl“::”]). When this fully-qualified name is used, it re-

places the use of package notation to represent the collection. Note that the use of the

package graphical representation highlights the collections, while fully-qualified names

provide cleaner schemas and are easier to be defined by hand. The designer is, therefore,

free to decide between modeling collections as packages (first node) or with fully-qualified

names (textual representation). The last node is graphically depicted by a UML visibility

symbol, a name, and a pictogram to model the fact and dimension fields. The #, +, and

- pictograms before a field name define it as an identifier, unique, or regular, respectively.

Furthermore, pictograms indicate the field’s data type.

The nodes of AStar can be related as follows: (i) a Collection can contain one or more

Fact DocumentTypes or Dimension DocumentTypes, (ii) a DocumentType can contain

one or more Fields, and (iii) a DocumentType can be related to another DocumentType

by the Links shown in Figure 23. The first two constructions are based on containment

associations (cf. Figure 5b), because they are used to draw graphical structures that do

not produce multiple nesting of symbols. The third construction, however, is based on

linkage associations (cf. Figure 5b), because it supports the nesting of DocumentTypes
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to represent embedded documents, as well as relationships among facts and dimensions

using references. Therefore, the nesting of embedded DocumentTypes is represented as a

linkage, simplifying the graphical specification of this construction.

Figure 24 – Two ways to model the date dimension: (a) using package or (b) fully-qualified name
in the DocumentType.

Source: The Author

Figure 24 presents two examples that demonstrate the containment association. Both

Figure 24a and Figure 24b model only a small part of the date dimension of SSB, which

covers three field types: identifier (datekey), unique (date), and regular (dayofweek). Note

that Figure 24a models the collection Dates using a package, while Figure 24b uses a

fully-qualified name. Figure 24 also presents a document example whose field structure

corresponds to both graphical representations.

AStar graphical notation uses Embed and Reference links (cf. Figure 23) to specify

relationships between DocumentTypes, either Fact to Fact, Fact to Dimension, or Dimen-

sion to Dimension. The difference between them is that an Embed represents a document

within another document (i.e., embedded documents), while a Reference refers to a do-

cument referencing another document (i.e., referenced documents). We highlight that an

Embed can only create a relationship between DocumentTypes in the same collection,

while a Reference can connect DocumentTypes in the same or in different collections.

The links have a name (i.e., Nm) that defines, in the documents, the field name that

stores the embedded document in an Embed or the reference in a Reference. Link cardi-

nality is represented as follows: the side with an arrow or diamond indicates the “one”

cardinality, while the side with a simple tail indicates the “many” cardinality. The arrow
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indicates the link navigability. Links with no arrow (i.e., Reference M:N) are bidirectional,

while links with an arrow are unidirectional. Note that in Figure 23 Reference 1:1 has a

small “x” indicating the direction that is not navigable.

Figure 25 – Using an Embed to embed a dimension into a fact.

Source: The Author

Figure 25 illustrates how an Embed is used. It models parts of SSB’s lineorder fact

table and customer dimension table, which are related as embedded documents. In other

words, the DocumentType lineorder embeds the DocumentType customer. The Embed

name (“cust”) defines the field name that embeds the document specified by the Embed.

In turn, in the sample code, the fields of the customer document are embedded into the

lineorder document (within “cust”), forming a single and uniform field structure. This

means that, although the diagram presents two different DocumentTypes (i.e., lineorder

and customer), they are embedded and, therefore, form a homogeneous collection.

Figure 26 shows the use of the Reference N:1 to create a relationship between the

DocumentTypes from the previous example. Unlike an Embed, a Reference is mapped

to a field storing a reference to another document. The name of this field is defined

by the Reference name. For example, “cust” (Reference name) defines in the lineorder

documents a field to store the reference for the customer documents. As can be seen in

the sample code, the field “cust” of lineorder contains a field named “custkey”, which

references the customer’s identifier field. This convention distinguishes references when



69

Figure 26 – Using a Reference N:1 to form a relationship between DocumentTypes from the
same collection.

Source: The Author

there are multiple links between two DocumentTypes (this will be addressed in Figure 28).

Observe in Figure 26 that, as the related DocumentTypes belong to the same collection,

this collection has documents with two different field structures. Therefore, this example

models Orders as a heterogeneous collection.

Figure 27 – Using a Reference N:1 to form a relationship between DocumentTypes from different
collections.

Source: The Author

Figure 27 shows the use of a Reference N:1 to relate DocumentTypes that belong to
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different collections. Unlike Figure 26, Orders and Customers are homogeneous collections,

because each has only one DocumentType.

Figure 28 – Modeling a role-play dimension.

Source: The Author

It is possible to have more than one link between two DocumentTypes. This is used to

create role-playing dimensions (KIMBALL; ROSS, 2013). An example is shown in Figure 28,

where the DocumentType lineorder is doubly related to the DocumentType date. Note in

the sample code that the fields “order” and “commit” correspond to the Reference names,

distinguishing the references (“datekey”) for the order date and commit date.

Figure 29 shows part of a DGDW based on the ICCS. In this example, a Reference

1:1 relates the DocumentType homicide (fact) to the DocumentType victim (dimension).

A Reference 1:1 also defines a field to store the reference, whose name uses the same

convention as the Reference N:1. However, unlike a Reference N:1, this field is defined

as unique. To respect navigability, the reference field is created in the documents whose

DocumentType is on the “x” side of the link. Therefore, the field “vi” of a homicide do-

cument contains the reference field (“victimSSN”) for a victim document. This example

also relates the DocumentType homicide to the DocumentType perpetrator (another di-

mension) using a Reference M:N. As this link is bidirectional, the field that stores the

references is defined in both DocumentTypes (i.e., homicide and perpetrator). There-
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fore, the field “hom_perp” in the homicide documents contains the reference field for the

perpetrator documents (“perpetratorSSN”), while “hom_perp” in the perpetrator docu-

ments contains the reference field for the homicide documents (“homicideId”). Note in the

sample code that a Reference 1:1 produces JSON code structures similar to a Reference

N:1. A Reference M:N, however, uses arrays to store the references for the many-to-many

relationship.

Figure 29 – Use of Reference 1:1 and Reference M:N.

Source: The Author

Finally, the AStar notation uses the pictograms defined by (CUZZOCREA; FIDALGO,

2012) to represent both conventional (Integer, String, Date, Real, Boolean) and geospa-

tial (Point, Line, Polygon, MultiPoint, Multiline, MultiPolygon, Collection) fields. These
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pictograms support the conventional and geospatial data types of the JSON and GeoJ-

SON specification (BRAY, 2017; BUTLER et al., 2016). Note that there are no pictograms

for multivalued fields (i.e., arrays). This is because arrays are rarely used in a GDW and

searches for a specific value or group-by operations on these fields are difficult and slow.

For these reasons, arrays are stipulated only for mapping references of Reference M:N.

4.2 ABSTRACT SYNTAX

This section presents the AStar abstract syntax, which consists of a metamodel whose

metaclasses, attributes, relationships, and enumerations give meaning to the AStar graphi-

cal notation symbols. Subsection 4.2.1 details the metamodel definitions, while Subsec-

tion 4.2.2 addresses the associations types (e.g., containment, linkage) between nodes that

are allowed by the metamodel.

4.2.1 Metamodel definition

Figure 30 presents the AStar metamodel. The following paragraphs formalize each

metamodel concept and correlate them to their graphical notation symbols (Figure 23).

The metamodel has four enumerations: Cardinality, DocumentTypeRole, FieldType,

and DataType. These enumerations map the valid values for the attributes cardinality,

role, fieldType, and dataType of the metaclasses Reference, DocumentType, and Field.

Note that the FieldType and DataType items are shown by pictograms in the graphi-

cal notation. The geospatial data types are based on the Simple Feature Access (SFA)

specification from the Open Geospatial Consortium (OGC) (OGC, 1999).

Definition 1 - Enumerations. Let Cardinality, DocumentTypeRole, FieldType, and Da-

taType be enumerations, such that: Cardinality = {ONE_TO_ONE, ONE_TO_MANY,

MANY_TO_MANY}, DocumentTypeRole = {FACT, DIMENSION}, FieldType =

{IDENTIFIER, UNIQUE, REGULAR}, and DataType={INT, STRING, DATE, REAL,

BOOLEAN, POINT, LINE, POLYGON, MULTIPOINT, MULTILINE, MULTIPOLY-

GON, COLLECTION}.

Domains are used to state the primitive and symbolic data types of metaclass attri-

butes. Definition 2 introduces these domains.
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Figure 30 – AStar metamodel.

Source: The Author

Definition 2 - Domain. A domain is a set of values of type T. Primitive types include

EString (the set of all strings) and EBoolean (the set formed by the values True and

False). Symbolic types include the enumeration types Cardinality, DocumentTypeRole,

FieldType, and DataType, as stated in Definition 1.

The metamodel has the abstract metaclasses Node, Box, and Link, which are high-

lighted in Figure 30 with a gray background. Note that Box is a specialization of Node.

Definition 3 addresses them.

Definition 3 - Abstract Metaclasses. Let Node and Link be sets, such that (𝑁𝑜𝑑𝑒 ∩

𝐿𝑖𝑛𝑘 = ∅) ∧ (𝐵𝑜𝑥 ∩ 𝐿𝑖𝑛𝑘 = ∅) ∧ (𝑁𝑜𝑑𝑒 ∩ 𝐵𝑜𝑥 = 𝐵𝑜𝑥) ∧ (𝑁𝑜𝑑𝑒 ∪ 𝐵𝑜𝑥 = 𝑁𝑜𝑑𝑒).
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Schema is the root metaclass of the metamodel that corresponds to the drawing area

of a logical schema. A Schema must have at least one Box and at least one Link. Definition

4 formalizes the metaclass Schema.

Definition 4 - Schema. Let Schema be a set, such that: ∀ 𝑠 : 𝑆𝑐ℎ𝑒𝑚𝑎, 𝑠𝑏 : 𝑆𝑐ℎ𝑒𝑚𝑎 ↛

𝐵𝑜𝑥 and 𝑠𝑙 : 𝑆𝑐ℎ𝑒𝑚𝑎 ↛ 𝐿𝑖𝑛𝑘 ∴ 𝑠𝑏(𝑠) ∩ 𝑠𝑙(𝑠) = ∅ ∧ 𝑑𝑜𝑚(𝑠𝑏) ∪ 𝑑𝑜𝑚(𝑠𝑙) = 𝑆𝑐ℎ𝑒𝑚𝑎.

The abstract metaclasses are specialized in Collection, DocumentType, Field, Refe-

rence, and Embed, which implement the symbols with the same name. Node is specialized

in Box and Field. The first is an abstract metaclass specialized in Collection and Docu-

mentType, while the second is the metaclass that implements the symbol Field. Link

is specialized in Embed and Reference. Note that, as a Schema must have one or more

Box, a Schema can have both Collection and DocumentType. This enables defining into a

Schema a collection with a package (Collection) or without a package, i.e., with a Docu-

mentType whose name has a qualified name that corresponds to the collection name (cf.

Figure 24). All inheritances are disjoint and complete. Note that a Collection must have at

least one DocumentType (fact or dimension), and DocumentType must have at least one

Field. Moreover, DocumentTypes can be created within Collections or Schema, and Fields

within DocumentTypes. Although Embed and Reference represent relationships between

DocumentTypes, they are different concepts and have distinct behavior. Embed and Re-

ference represent an embedded and a referenced relationship, respectively. Definition 5

addresses the specialized metaclasses.

Definition 5 - Specialized Metaclasses. Let Collection, DocumentType, Field, Refe-

rence, and Embed be sets, such that: 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ⊆ 𝐵𝑜𝑥 ∧ 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ⊆ 𝐵𝑜𝑥 ∧

𝐹𝑖𝑒𝑙𝑑 ⊆ 𝑁𝑜𝑑𝑒 ∧ (𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∩ 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ∩ 𝐹𝑖𝑒𝑙𝑑 = ∅) ∧ (𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∩

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 = ∅) ∧ (𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∪ 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ∪ 𝐹𝑖𝑒𝑙𝑑 = 𝑁𝑜𝑑𝑒) ∧

(𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∪ 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 = 𝐵𝑜𝑥); 𝐸𝑚𝑏𝑒𝑑 ⊆ 𝐿𝑖𝑛𝑘 ∧ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 ⊆ 𝐿𝑖𝑛𝑘 ∧ (𝐸𝑚𝑏𝑒𝑑∩

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = ∅) ∧ (𝐸𝑚𝑏𝑒𝑑 ∪ 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐿𝑖𝑛𝑘); ∀𝑐𝑑𝑡 : 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ↛ 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ∴

𝑑𝑜𝑚(𝑐𝑑𝑡) = 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛, and ∀ 𝑑𝑡𝑓 : 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 ↛ 𝐹𝑖𝑒𝑙𝑑 ∴ 𝑑𝑜𝑚(𝑑𝑡𝑓) = 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒.

In order to capture the facts or dimensions in a relationship, the associations named

source and target between Link and DocumentType are defined. Definitions 6 and 7

specify these associations.
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Definition 6 - source. Let 𝑠𝑜𝑢𝑟𝑐𝑒𝐿 be an injective function from Link to DocumentType

(𝑠𝑜𝑢𝑟𝑐𝑒𝐿 : 𝐿𝑖𝑛𝑘 ↣ 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒).

Definition 7 - target. Let 𝑡𝑎𝑟𝑔𝑒𝑡𝐿 be an injective function from Link to DocumentType

(𝑡𝑎𝑟𝑔𝑒𝑡𝐿 : 𝐿𝑖𝑛𝑘 ↣ 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒).

Functions formalize metaclass attributes to their domain. We start by specifying the

attribute name of the metaclasses Schema, Node, and Link, which is used to name the

instances of these metaclasses. Note that, as Node and Link are abstract metaclasses,

their specializations inherit the attribute name. Definition 8 addresses the attribute name

of the metaclass Schema and specializations of Node and Link.

Definition 8 - name. Let 𝑛𝑎𝑚𝑒𝑆 be a function from the metaclass Schema to the

domain EString (𝑛𝑎𝑚𝑒𝑆 : 𝑆𝑐ℎ𝑒𝑚𝑎 → 𝐸𝑆𝑡𝑟𝑖𝑛𝑔); 𝑛𝑎𝑚𝑒𝑁𝐶 be a function from the me-

taclass Collection to the domain EString (𝑛𝑎𝑚𝑒𝑁𝐶 : 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑜𝑛 → 𝐸𝑆𝑡𝑟𝑖𝑛𝑔); 𝑛𝑎𝑚𝑒𝑁𝐷

be a function from the metaclass DocumentType to the domain EString (𝑛𝑎𝑚𝑒𝑁𝐷 :

𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 → 𝐸𝑆𝑡𝑟𝑖𝑛𝑔); 𝑛𝑎𝑚𝑒𝑁𝐹 be a function from the metaclass Field to the do-

main EString (𝑛𝑎𝑚𝑒𝑁𝐹 : 𝐹𝑖𝑒𝑙𝑑 → 𝐸𝑆𝑡𝑟𝑖𝑛𝑔); 𝑛𝑎𝑚𝑒𝐿𝐶 be a function from the metaclass

Embed to the domain EString (𝑛𝑎𝑚𝑒𝐿𝐶 : 𝐸𝑚𝑏𝑒𝑑 → 𝐸𝑆𝑡𝑟𝑖𝑛𝑔); and 𝑛𝑎𝑚𝑒𝐿𝐴 be a function

from the metaclass Reference to the domain EString (𝑛𝑎𝑚𝑒𝐿𝐴 : 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 → 𝐸𝑆𝑡𝑟𝑖𝑛𝑔).

The metaclass DocumentType has an attribute named role that takes on one option

from the enumeration DocumentTypeRole to set a DocumentType as either fact (i.e.,

a Fact DocumentType) or dimension (i.e., a Dimension DocumentType). Definition 9

addresses the attribute role.

Definition 9 - role. Let 𝑟𝑜𝑙𝑒𝐷𝑇 be a function from the metaclass DocumentType to the

domain DocumentTypeRole (𝑟𝑜𝑙𝑒𝐷𝑇 : 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒 → 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑇𝑦𝑝𝑒𝑅𝑜𝑙𝑒).

The metaclass Field has an attribute named fieldType that assumes one option from

the enumeration FieldType to set the field to be identifier, unique, or regular. Definition

10 formalizes the attribute fieldType.

Definition 10 - fieldType. Let 𝑓𝑖𝑒𝑙𝑑𝑇𝑦𝑝𝑒𝐹 be a function from the metaclass Field to

the domain FieldType (𝑓𝑖𝑒𝑙𝑑𝑇𝑦𝑝𝑒𝐹 : 𝐹𝑖𝑒𝑙𝑑 → 𝐹𝑖𝑒𝑙𝑑𝑇𝑦𝑝𝑒).

The metaclass Field has an attribute named dataType that assumes one option from
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the enumeration DataType to set the field data type (conventional or geospatial). Defi-

nition 11 formalizes the attribute dataType.

Definition 11 - dataType. Let 𝑑𝑎𝑡𝑎𝑇𝑦𝑝𝑒𝐹 be a function from the metaclass Field to

the domain DataType (𝑑𝑎𝑡𝑎𝑇𝑦𝑝𝑒𝐹 : 𝐹𝑖𝑒𝑙𝑑 → 𝐷𝑎𝑡𝑎𝑇𝑦𝑝𝑒).

The metaclass Reference has an attribute named cardinality that assumes one op-

tion from the enumeration Cardinality to set the relationship cardinality. Definition 12

addresses the attribute cardinality.

Definition 12 - cardinality. Let 𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝐴 be a function from the metaclass Refe-

rence to the domain Cardinality (𝑐𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦𝐴 : 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 → 𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦).

4.2.2 Nodes Associations

Relationships between the metaclasses of the AStar metamodel define the types of

associations (cf. Figure 5) that can be established between the symbols of the AStar

graphical notation. In short, (i) a composition (diamond association) between two me-

taclasses indicates a containment association, (ii) the double-relationship between Link

and DocumentTypes indicates that two DocumentTypes can be related by a linkage as-

sociation, and (iii) unrelated metaclasses imply that associations between their respective

symbols are prohibited.

Table 3 should be read from left to right and shows the associations that are prohi-

bited or allowed (i.e., Containment or Linkage) between AStar nodes. It is important to

note that, because a collection can be graphically represented by a package or qualified

name within the DocumentType, Table 3 distinguishes DocumentTypes with or without a

qualified name. Note that AStar nodes do not use adjacent associations because they can

limit the connectivity between facts and dimensions. For instance, an adjacent association

would make it complex to associate a fact with many dimensions.
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Table 3 – Associations that are allowed or prohibited between the graphical notation symbols
in a logical schema. The numbers in the columns correspond to the enumerated items
in the rows. C=Containment, L=Linkage, p=Prohibited.

1 2 3 4 5 6 7

1 Logical Schema p C C C C C p
2 Collection p p C C C C p
3 Fact DocumentType with qualified name p p L L L L C
4 Fact DocumentType without qualified name p p L L L L C
5 Dimension DocumentType with qualified name p p L L L L C
6 Dimension DocumentType without qualified name p p L L L L C
7 Field p p p p p p p

Source: The Author

4.3 STATIC SEMANTICS

Although a metamodel defines syntactically valid schemas, some constructions (e.g.,

associations between symbols) should be avoided because they are semantically wrong.

The following paragraphs address these constructions, presenting well-formedness rules

to avoid them. The well-formedness rules are presented in natural language, as the static

semantics of a DSML can be implemented in a CASE tool using different languages (e.g.,

Java - cf. Listing 5.1).

As defined in the AStar metamodel, a logical schema must have at least one Box

(Collection or DocumentType) and at least one Link (Embed or Reference). Although a

Link is used to relate two Fact/Dimension DocumentTypes, this definition is not sufficient

to ensure that a logical schema contains at least one fact and at least one dimension. Rule

1 addresses this.

Rule 1 - A logical schema must contain at least one DocumentType set as Fact and

one DocumentType set as Dimension.

All facts and dimensions of a logical schema must participate in at least one rela-

tionship. However, the AStar metamodel does not prevent the design of disconnected

DocumentTypes. Rule 2 addresses this.

Rule 2 - All DocumentTypes must be the source or target of at least one Reference
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or Embed.

Embedded documents must belong to the same collection, but the AStar metamodel

does not prevent using an Embed to relate two DocumentTypes that belong to different

Collections. Rule 3 addresses this.

Rule 3 - Embed should only establish relationships between Fact DocumentTypes or

Dimension DocumentTypes that belong to the same Collection.

Embedded documents do not have identifier fields, as identifier fields already exist in

the document in which they are embedded. Rule 4 addresses this.

Rule 4 - Embedded DocumentTypes do not have identifier field.

A collection can be graphically represented by a Collection (composed by one or more

DocumentType without a qualified name) or a DocumentType with a qualified name.

Thus, a DocumentType inside a Collection does not have a qualified name because the

Collection in which the DocumentType belongs is already defined. On the other hand,

a DocumentType outside a Collection must have a qualified name to indicate to which

collection it belongs, that can be a new collection or an existing collection. As the me-

tamodel enables to create a DocumentType with a qualified name into a Collection (cf.

rows 3 and 5 of Table 3) and a DocumentType without a qualified name into a logical

schema (cf. rows 4 and 6 of Table 3), the rules 5 and 6 are defined.

Rule 5 - A DocumentType outside a Collection must have a qualified name, which

represents an existing collection or a new collection.

Rule 6 - A DocumentType inside a Collection must not have a qualified name.

4.4 TRANSLATIONAL SEMANTICS

The AStar concrete syntax has a set of human-readable symbols, whose meaning is

defined in the AStar abstract syntax. To describe the semantics of these symbols, trans-

lational semantics is used, which will be addressed in this section. For this, the concrete

syntax is mapped to the abstract syntax and its respective code to implement the schema
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in the MongoDB database. This code consists of JSON Schemas and MongoDB code that

creates collections and defines constraint functions. MongoDB was chosen because it is

the most used document-oriented database in the industry (DB-ENGINES, 2020), and it is

used in other examples of this work.

Figure 31 addresses the nodes of AStar. Because a collection can be graphically re-

presented with a package or a qualified name within a DocumentType, these two repre-

sentations have the same implementation code. The code for these two representations

corresponds to the creation of a new collection in the database (A). Fact DocumentType

and Dimension DocumentType correspond to JSON Schema code that defines the field

structure for fact and dimension documents. In this JSON Schema, the values of the

attributes “title” and “description” (B) are defined by the DocumentType name and Do-

cumentType role (Fact or Dimension), respectively. Finally, a symbol Field corresponds

to a new element in the attribute “required” of the JSON Schema, and its data type

definition (C) in “properties”.

Figure 32 covers the field types. MongoDB uses a field named “_id” to store the do-

cument identifier, which corresponds to a single value or set of embedded fields with their

respective values (MONGODB, 2020). A field defined as an identifier in AStar corresponds

to a field defined within “_id” in the JSON Schema (A). As can be seen in the JSON

Schema for the figure, the field named “Nm” is within “_id” (B). This approach allows

for the definition of more than one identifier field in a DocumentType (cf. Figure 25), as

they correspond to elements in the attribute “required” (B) in “_id”. A field defined as

unique or regular corresponds to the same JSON Schema code (C). However, beyond the

JSON Schema code, a unique field requires that a uniqueness constraint function (D) be

applied to the collection.

Figure 33 covers the conventional and geospatial data types. As some primitive data

types are supported in a JSON Schema, a field defined in AStar as int, string, real,

and boolean will correspond to the JSON Schema data types int, string, number, and

boolean, respectively (A). To implement the other data types of AStar, it is necessary to

mix the native data types with regular expressions or data structures. Therefore, a field

set as “date” in AStar corresponds to a definition in the JSON Schema of a string with

a regular expression to guarantee that the date has a year, month, and day (B). For the
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Figure 31 – AStar nodes and their implementation code in MongoDB.

Source: The Author

geospatial data types of AStar, a JSON Schema data structure must be defined to meet

the specifications established by GeoJSON (BUTLER et al., 2016). The data structure for

geospatial fields must ensure that geospatial data has a type (e.g., point, polygon) and

coordinate pairs. Because the setup of the coordinate pairs (C) is different between the

geospatial data types and demands many rows of code, the complete JSON Schema for

each geospatial data type is presented in Appendix A.

Figure 34 shows the correlation between the link Embed and its corresponding JSON

Schema. Because a link means that the DocumentType on the diamond side embeds the

other DocumentType, the corresponding JSON schema has a field (A) for the Embed

name, which contains the specifications for the data structure of the embedded Docu-

mentType (B). It should be noted that, this link can only establish a relationship between
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Figure 32 – Field types and their implementation code in MongoDB.

Source: The Author

DocumentTypes that belong to the same collection, as detailed in section 4.1.

Figure 35 addresses the link Reference 1:1 and its corresponding JSON Schema. Unlike

Embed, Reference (1:1, 1:N, or N:M) can establish relationships between DocumentTypes

of either the same or of different collections. In other words, the JSON Schemas corres-

ponding to the related DocumentTypes in Figure 35 (highlighted as A and B) can be

defined into the same or into different collections. Note that the first JSON Schema (A)

corresponds to the DocumentType which is on the “x” side of the Reference 1:1, which

is the DocumentType that contains the reference for the relationship. The JSON Schema

(A) has the field “Nm” (C), whose name matches the Reference name. This field contains

a description of the cardinality2 of the relationship (D), the referenced DocumentType

(E), and the name and data type of the field that stores the reference for the other Do-
2 “REF_11” for a 1:1 relationship, “REF_1N” for a 1:N relationship, and “REF_NM” for a N:M

relationship.
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Figure 33 – Data Types and their implementation code in MongoDB.

Source: The Author

Figure 34 – An Embed and its implementation code in MongoDB.

Source: The Author

cumentType (F). Note that in the figure, the name of the field that stores the reference

is “bkey”, which is the name of the identifier field of the related DocumentType (B).

As mentioned in section 4.1, in Reference 1:1, the reference is defined as unique, which
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implies the definition of a uniqueness constraint for it (G).

Figure 35 – Reference 1:1 and its implementation code in MongoDB.

Source: The Author

Figure 36 addresses the link Reference 1:N, whose corresponding JSON Schema differs

from Reference 1:1 in the way the reference field is defined, in addition to the descrip-

tion of the relationship. The description indicates a 1:N relationship (A) and there is no

uniqueness constraint on the reference field (i.e., “bkey”).

Finally, Figure 37 shows the corresponding JSON Schema for a Reference N:M. In this

link, both JSON Schemas corresponding to the related DocumentTypes have a field whose
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Figure 36 – Reference N:1 and its implementation code in MongoDB.

Source: The Author

name is the same as the Reference name. This field defines the relationship’s cardinality

in the attribute “description” (A), as well as the field that stores the references as an

array (B and C).
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Figure 37 – Reference N:M and its implementation code in MongoDB.

Source: The Author

4.5 CHAPTER FINAL CONSIDERATIONS

This chapter presented the graphical notation, metamodel, well-formedness rules, and

translational semantics of AStar, a modeling language for the design of DGDW schemas.

The AStar graphical notation is inspired by the UML class diagram notation, although

the semantics of its symbols are defined in the AStar metamodel. The graphical nota-

tion is composed of nodes and links. Nodes consist of symbols that represent collections

(homogeneous or heterogeneous), documents of facts or dimensions (i.e., DocumentType),

and conventional or geospatial fields. Links consist of symbols that represent relationships

using embedded documents that have 1:1 cardinality, or referenced documents that have
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1:1, 1:N, or M:N cardinality. Well-formedness rules complement the metamodel, as they

help avoid incorrect constructions that the metamodel does not prevent. Finally, translati-

onal semantics were presented to describe the meaning of the graphical notation symbols.

The symbols are mapped to their corresponding concept in the metamodel and the res-

pective code that implements the database schema in MongoDB.
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5 EVALUATION AND IMPLEMENTATION OF ASTAR

This chapter presents an evaluation of AStar. Section 5.1 discusses an evaluation of the

AStar graphical notation, while section 5.2 shows AStarCASE, a prototype of CASE

tool that implements the AStar metamodel and AStar well-formedness rules. Section 5.3

addresses the chapter final considerations.

5.1 ASTAR EVALUATION

This section presents an evaluation of AStar based on the principles of PoN. To do

this, we analyzed how the principles were applied to the graphical notation of AStar in

order to provide cognitive effectiveness. It is important to note that we do not evaluate

with users, as the basic syntax of the UML class diagram is well known and accepted by

both industrial and academic communities.

Semiotic clarity - Figure 38 illustrates all the symbols that can be depicted with AStar,

correlating them with the respective concepts (i.e., metaclass of the AStar metamodel).

Figure 38a shows the symbols Collection, DocumentType, Embed, and Reference; Fi-

gure 38b addresses the optional representation for Collection; and Figure 38c presents the

symbol Field, with different field types (identifier, unique, or regular) and data types (con-

ventional or geospatial). When analyzing Figure 38, it is possible to identify that AStar

has two semiotic clarity anomalies. The first anomaly consists of a symbol deficit for the

Schema concept, which does not have a corresponding symbol (Figure 38a). It is a symbol

deficit that exists because a Schema instance represents the set of elements that make up a

DGDW logical schema. In other words, in a CASE tool, a Schema instance is the drawing

area where the designers create, customize, and establish relationships between the visual

symbols. The second anomaly is symbol redundancy, as the concepts of Collection and

DocumentType (Fact or Dimension) can be represented as illustrated in Figure 38a or

Figure 38b. As shown in these figures, the designer can draw a Collection instance using a

package or by inserting a qualified name within the DocumentType representation. This

second anomaly is intentional and is addressed in the cognitive fit principle.
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Figure 38 – Semiotic clarity of AStar.

Source: The Author

Perceptual discriminability - As shown in Figure 23, the symbols are grouped as

nodes and links, and they are inspired by the symbols of the UML class diagram. The

nodes graphically differ between themselves by the shape, as they are depicted as pac-

kages, classes, and class attributes. Furthermore, Fact DocumentType and Dimension

DocumentType (i.e., a Document with role=FACT and role=Dimension, respectively)

are distinguished graphically by the border thickness. The links are depicted by edges

that differ at their ends: Embed has a diamond and an arrow, while Reference can have

arrows and a “x” on one side to distinguish the 1:1, N:1, and M:N cardinalities. In short,

the AStar symbols are distinguished by different visual variables.

Semantic transparency - As shown in Figure 23, the symbols of AStar graphical nota-

tion were arbitrarily defined by its authors. In this figure, it is possible to see that AStar
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graphical notation is inspired by part of the UML class diagram notation. Because the

meaning of AStar symbols was arbitrarily defined, there is an anomaly in their semantic

transparency. In other words, the semantic transparency of AStar graphical notation is

semantically opaque. On the one hand, this project decision contributes to increasing the

number of tools that can be used to diagram DGDW schemas according to AStar, because

of the expressive legacy of UML tools. On the other hand, this may cause confusion for

users who are not familiar with AStar, but who know UML. To avoid this misinterpre-

tation, novice users must have prior knowledge about the semantics of AStar symbols.

Otherwise, the semantic transparency of AStar can be interpreted as semantically per-

verse.

Complexity management - AStar reduces the complexity of diagrams just like the

UML class diagram does. Each collection (package) can be designed into distinct diagrams,

modularizing a DGDW logical schema.

Cognitive integration - In this first version of AStar, there are no mechanisms to

represent a cognitive integration between diagrams.

Visual expressiveness - The symbols use the visual variables of shape and orientation,

as well as text (i.e., spatial-textual signals) to name the symbols. These variables are also

used in the UML class diagram, from which the AStar graphical notation is inspired.

Dual coding - The nodes and links of the AStar graphical notation have dual encoding,

as the text is used to name the symbols and reinforce their meaning.

Graphic economy - There are two strategies to reduce the number of graphical symbols.

(i) Facts and dimensions are depicted as classes, but differ in the border thickness. In other

words, the classes of a diagram represent a main concept (DocumentType), but the class

border distinguishes the facts (DocumentType with role = FACT) from the dimensions

(DocumentType with role = DIMENSION). (ii) As shown in Figure 38, 36 different

configurations for fields can be depicted, but they make use of the same visual variables.

The combination of two pictograms is what distinguishes the field type (identifier, unique,

or regular) and data type (conventional or geospatial data types).

Cognitive fit - As addressed in the semiotic clarity principle, a Collection instance can

be represented as a package or as a qualified name in the classes (DocumentType). For
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a novice user, packages can be more intuitive, as they are easily perceived in a diagram.

However, the use of a qualified name in the class eliminates the need to draw a package,

making the diagram simpler for expert users. It is important to highlight that the symbols

do not use complex, colored, or 3D shapes, reducing the difficulty for users with poor hand-

drawing skills or misunderstood conditions. Furthermore, the AStar graphical notation

symbols can be found in UML tools (e.g., Lucidchart1, VisualParadigm2, EdrawMax3).

Therefore, users can use an implementation of AStar (e.g., AStarCASE) or UML tools to

design DGDW logical schemas.

Table 4 summarizes AStar’s compliance with the PoN principles. Note that the cogni-

tive integration and semantic transparency principles were not complied, as the integration

of different diagrams is not supported, and anomalies in the semantic transparency exist.

It is important to note that AStar has two anomalies with regard to semiotic clarity.

However, as explained earlier, one anomaly (symbol deficit - the concept Schema does

not have a corresponding symbol) does not impair cognitive effectiveness and the other

anomaly (redundancy of symbols - the concept Collection can be represented using a pac-

kage or qualified name) was introduced to comply with the principle of cognitive fit. In

other words, there is a conflict between the principles of semiotic clarity and cognitive fit,

which is common in modeling languages (MOODY, 2009).

Table 4 – AStar compliance with the PoN principles.

Principle name Complies

Semiotic clarity Yes
Perceptual discriminability Yes
Semantic transparency No
Complexity management Yes
Cognitive integration No
Visual expressiveness Yes
Dual coding Yes
Graphic economy Yes
Cognitive fit Yes

Source: The Author

1 www.lucidchart.com/
2 www.visual-paradigm.com
3 www.edrawmax.com
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5.2 ASTARCASE

ASarCASE4 is a prototype of CASE tool that implements AStar. The main features of

this prototype are: (i) notification of syntactical errors (e.g., an unnamed DocumentType),

(ii) prevention of semantic errors (e.g., relating two DocumentTypes that belongs to dif-

ferent Collections with an Embed), (iii) suggestion of actions that contribute to good

DGDW performance (e.g., that the user analyzes the selectivity of the geospatial fields),

and (iv) generation of JSON Schemas from a diagram.

AStarCASE is implemented with Eclipse Modeling Framework (EMF), which provides

mechanisms to build a Graphical Modeling Project (GMP) (BUDINSKY, 2004). For this,

the AStar metamodel is implemented with Emfatic language5 (cf. Appendix C), which

consists of a textual syntax for EMF metamodels. The Eugenia6 framework is used to

simplify development, as it can generate the configuration code required by EMF. The

well-formedness rules are implemented with Java in the GMP, as shown in the Java code

snippet in Listing 5.1. Finally, EVL is used to validate schemas and alert syntactic errors,

as well as advise the user to take certain actions as shown in Listing 5.2.

Listing 5.1 – Java code snippet to prevent the relationship between DocumentTypes that belong

to different collections with an Embed.
1

public class EmbedCreateCommand extends EditElementCommand {

3 ...

5 public boolean canExecute () {

7 // check that the source and target are set

9 if (getSource () == null && getTarget () == null) {

return false;

11 }

if (getSource () instanceof DocumentType == false) {

13 return false;

}

15 if (getTarget () instanceof DocumentType == false) {

return false;

17 }

4 Available under a free license at https://github.com/mrcferro/AStarCase-page.
5 https://www.eclipse.org/emfatic.
6 https://www.eclipse.org/epsilon/doc/eugenia/.
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19 // check that the DocumentType source and DocumentType target

// belong to the same collection

21

if (getTarget ().eContainer () != getSource ().eContainer ()) {

23 return false;

}

25

// can create the Embed ...

27

return SchemaBaseItemSemanticEditPolicy.getLinkConstraints ().

canCreateEmbed_4002(getContainer (), getSource (), getTarget ());

29 }

31 ...

}

Listing 5.2 – EVL code to advise the user to analyze the selectivity of a geospatial field.
context DocumentType {

2 critique SelectivityGeoField {

check {

4 for(f in self.fields) {

if( f.dataType = DataType#POINT or f.dataType = DataType#LINE or f.

dataType = DataType#POLYGON or f.dataType = DataType#MULTIPOINT

6 or f.dataType = DataType#MULTILINE or f.dataType = DataType#

MULTIPOLYGON or f.dataType = DataType#COLLECTION){

return false;

8 }

}

10 return true;

}

12 message: ’(C001) Analyze the selectivity of the geospatial field.\n It is

recommended that geospatial fields with high selectivity be denormalized

, while geospatial fields with low selectivity be referenced.’

}

14 }

Figure 39 shows AStarCASE and highlights some important features. Area A presents

the AStar projects with their DGDW logical schemas. Area B is the drawing area, where

the designer creates, positions, and forms relationships between the symbols of a logical

schema. Area C contains a palette of symbols with nodes and links. Note that this palette

does not make distinctions between the different Fields (identifier, unique, and regular)

or References (1:1, 1:N, and M:N), as these symbols are customized in the properties
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bar, highlighted as area D. To change, for example, the cardinality of a Reference, it is

unnecessary to remove the existing symbol and create another. This can be done simply by

changing the symbol characteristics in the properties bar. Area E contains the problem

bar, which displays error messages or warnings produced during the validation of the

logical schema from the drawing area, performed when the user saves the diagram. Note

in Figure 40 that pictograms are used for the symbols in the drawing area to facilitate

identification of the one that produced the error or warning displayed in the problems

bar.

Figure 39 – AStarCASE overview.

Source: The Author

Figure 41 displays the Model-to-Text (M2T) transformation implemented in AStar-

CASE, which consists of the generation of the JSON Schema from a diagram. To run

this feature, the user should click on the button shown as A, with the code generated

appearing in area B. The JSON Schema of this figure can be seen in Appendix D.
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Figure 40 – Errors and warnings issued by AStarCASE.

Source: The Author

Figure 41 – Generation of JSON Schema using AStarCASE.

Source: The Author
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5.3 CHAPTER FINAL CONSIDERATIONS

This chapter presented the evaluation of the AStar graphical notation based on PoN

principles. This evaluation showed that AStar is in accordance with seven of the nine PoN

principles. Furthermore, this chapter also presented a prototype of CASE tool as a proof

of concept for AStar, which implements AStar’s metamodel and well-formedness rules.

This tool, called AStarCASE, can be used to design DGDW schemas and generate the

corresponding code in order to create the schema in MongoDB.
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6 GUIDELINES TO DESIGN LOGICAL SCHEMAS WITH ASTAR

This chapter presents a guideline to help the design of DGDW logical schemas with AS-

tar. Section 6.1 defines some models to depict facts and dimensions related as referenced

or embedded documents, partitioned into one or more collections. Based on the experi-

mental evaluation addressed in section 6.2, some practices to achieve low data volume

and low query runtime in the DGDW are pointed out in section 6.3. The chapter final

considerations are presented in section 6.4.

6.1 MODELING FACTS AND DIMENSIONS

This section presents some models to depict facts and dimensions in a schema with

AStar. Because these models are design abstractions, they omit the collection name and

fields. Furthermore, these models use a Reference N:1 to represent referenced documents.

Figure 42 introduces four models for partitioning DocumentTypes among collections,

either as referenced or embedded documents. In model M1, there is a single collection

of documents. All dimensions (D1 and D2 represent Dimension DocumentTypes) are

embedded in a Fact DocumentType, producing data redundancy. Model M2 also has

a single collection of documents. However, in this collection, facts and dimensions are

normalized into distinct documents. Model M3 also normalizes facts and dimensions, but

this model partitions these documents into two collections: one to store the facts, and

the other to store the dimensions. Model M4 differs from the M3 only in the number of

collections, because there is one collection for each dimension.

Figure 43 shows three ways to model the relationships between dimensions that contain

conventional or geospatial data, represented as a Conventional Dimension DocumentType

(CD) and a Geospatial Dimension DocumentType (GD), respectively. Model A represents

a GD embedded/denormalized into a CD, that is, if a GD needs to be used by more than

one CD, it must be replicated for each CD. Model B shows a referenced relationship

between CD and GD. In this model, if a GD needs to be used by more than one CD,

there will be no redundancy. Model C is a hybrid representation of the two previous
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Figure 42 – Relationships between facts and dimensions.

Source: The Author

models. In this model, a geospatial field with low selectivity (e.g., ‘nation’:aNation) is

mapped to a GD and normalized/referenced by a CD, whereas a geospatial field with

high selectivity (‘address’:anAddress) is mapped to a GD and denormalized/embedded

into a CD.

Figure 43 – Relationships between CD and GD.

Source: The Author

Figure 44 presents three ways of representing the relationships between GDs and

themselves. In model G1, there is no relationship between GDs, because they are related

only to the CD. In model G2, the GD is embedded/denormalized into another GD, so

that the GD with higher selectivity embeds/contains the GD with lower selectivity (e.g.,

‘city’: aCity ⊃ ‘nation’: aNation ⊃ ‘region’: aRegion). Model G3 normalizes the GD into

separate and referenced documents.

Figure 44 – Relationships between GDs.

Source: The Author
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6.2 EXPERIMENTAL EVALUATION

This experimental evaluation aims to apply the models presented in the previous

section in practice, and analyze the performance impact on the DGDW when modeling

facts and dimensions that are related as embedded or referenced documents, and are

partitioned into one or more collections. To this, the models presented in section 6.1 were

combined to transform one RGDW in 36 DGDWs. The data volume and query runtime

on these DGDWs are compared, in order to highlight the constructions that provide low

storage cost and good query runtime.

Figure 45 illustrates the steps used to generate the 36 DGDW logical schemas. In step

1, the RGDW of Figure 46 (SIQUEIRA et al., 2009) was adopted as a starting point. This

RGDW is composed of one fact table (lineorder), four dimensions tables containing con-

ventional data (part, supplier, date, and customer), and five dimensions tables containing

geospatial data (s_address, c_address, city, nation, and region). In step 2, the fact and

dimension tables were transformed into Fact and Dimension DocumentTypes (i.e., CDs

and GDs). In step 3, collections were created to support the partitioning of documents

as defined in the models shown in Figure 42, and the DocumentTypes were related as

defined in Figure 43 and Figure 44. The combination of the models in step 3 results in 36

DGDW logical schemas, which is the result shown in step 4.

Figure 47 presents the 36 logical schemas, whose names are defined by the concate-

nation of the model names from Figure 42, Figure 43, and Figure 44 (e.g., M1+A+G1

= M1AG1). Due to the large number of schemas, Figure 47 omits the collection names,

fields, and the dimensions part and date. This figure focuses on (i) the partitioning of

DocumentTypes among collections, (ii) the use of referenced or embedded documents to

relate the DocumentTypes, and (iii) the relationships between facts, CDs, and GDs1.

Figure 48 illustrates the process of building the 36 DGDWs. First, the data for the

RGDW in Figure 46 were generated using scale factor 1 (sf=1). The data were stored

on a single machine in a PostgreSQL 10.3 database with PostGIS 2.4.3 extension. Ta-

ble 5 shows the number of records, number of columns, and table size, which corresponds
1 In order to shrink the size of the Figure 47, the dimensions s_address and c_address were called A,

city C, nation N, and region R.
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Figure 45 – Steps performed to generate the DGDW logical schemas.

Source: The Author

Figure 46 – RGDW schema used to generate the DGDW schemas.

Source: The Author

to a total of 1.03 GB. Using Pentaho Data Integration 8.0, the data were transformed

as defined in each DGDW logical schema from Figure 47. They were stored in a clus-

ter composed of a central node (Intel Xeon with 1 TB HD, 8 GB RAM, and a 1Gbit/s

network) and three other nodes (Core i3 processors, each with 500 GB HD, 4 GB RAM,

and a 1Gbit/s network each). The computers used the CentOS 7.1 operating system
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Figure 47 – DGDW logical schemas depicted with AStar. The symbols (!), (+), (-), [+], and [-]
are addressed in the experimental results.

Source: The Author
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and the MongoDB database, version 3.6.4. MongoDB was configured in sharding mode,

which provides better performance for read and write operations, as it distributes the

data between the nodes and increases the overall processing and storing capacity (MON-

GODB, 2021a). In other words, this cluster favors horizontally scalability, the reason why

document-oriented databases have been used as an alternative to relational databases.

It is important to highlight that, due to a storage space limitation in the experimental

environment, it was not possible to use data generated with scale factors greater than 1

(e.g., sf=10 or sf=100). This is because DGDWs containing denormalized geospatial data

would require a larger data volume than the cluster could support. Furthermore, indexes

were created for only the fields used to reference documents, making the performance

comparison between referenced and embedded documents fairer.

Figure 48 – Process to build the 36 DGDWs from one RGDW.

Source: The Author

Given a lack of benchmarks for DGDW performance analysis, used in both industry

and academics, six queries2 (i.e., Q1, Q2, Q3, Q4, Q5, and Q6) were defined to evaluate

the 36 DGDWs. These queries simulate frequently used SOLAP operations (drill down,

roll up, slice, and dice) and aggregate data from a set of customers whose addresses

lie within an area (circle or polygon) determined by geospatial coordinates. Queries Q1

and Q2 evaluate geospatial selection and conventional grouping, with Q2 extending this

evaluation because it includes a conventional selection. Queries Q3, Q4, and Q5 evaluate

two levels of conventional groupings and explore geospatial selection from incrementally

larger areas. Finally, Q6 differs from Q5 because it performs an intersect operation instead
2 As each query must be adapted to the schemas, they would require many pages to be presented in

this document. Therefore, these queries, written in MongoDB Query Language (MQL), are available
at GitHub (https://github.com/mrcferro/gdw).
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Table 5 – RGDW used in numbers.

Table Records Columns Size in MB
lineorder 6,001,171 17 981.0
customer 30,000 12 27.0
date 2,556 17 0.3
part 200,000 9 27.0
supplier 2,000 11 1.4
c_address 30,000 2 2.8
s_address 2,000 2 0.2
city 250 2 7.7
nation 25 2 5.7
region 5 2 2.3

Source: The Author

of a within operation. Q6, therefore, selects a greater quantity of facts from the DGDW,

being more complex than the previous queries. Although the schemas shown in Figure 47

have two conventional dimensions (i.e., CD sup and CD cust), it was decided to perform all

queries on CD cust, because it contains more documents than CD sup (|cust| = 30, 000 >

|sup| = 2, 000), making the analysis more rigorous. The query statements are as follows:

Q1 How many customers made purchases and have an address within 10 miles of a given

geospatial point3, grouped by year?

Q2 How many customers bought a product from a specific category and have an address

within a 10-mile radius of a given geospatial point, grouped by year?

Q3 What is the sum of revenues from customers whose address lies within a polygon

corresponding to a given city, grouped by year and brand of products?

Q4 What is the sum of revenues from customers whose address lies within a geospatial

polygon corresponding to a given nation, grouped by year and brand of products?

Q5 What is the sum of revenues from customers whose address lies within a polygon

corresponding to a given region, grouped by year and brand of products?
3 Random geospatial data were chosen in the queries. Q1 and Q2 used a point whose coordinates are

[-87.42, 41.24], Q3 used the polygon from the city with primary key 20, Q4 used the polygon from the
nation with primary key 2, Q5 used the polygon from the region with primary key 2, and Q6 used
the polygon from the region with primary key 4.
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Q6 What is the sum of revenues from customers whose address intersects a polygon

corresponding to a given region, grouped by year and brand of products?

The experimental evaluation investigated each schema shown in Figure 47, analyzing

the data volume and the arithmetic mean of five execution times for each query. We

chose to run each query only five times because some schemas required much time (e.g.,

more than two hours) to run some queries. Furthermore, we took special care to control

the experiments. Each computer node was used exclusively for the proposed assessment

and no other background processes were allowed to run while executing the queries. We

rebooted all machines before executing the queries for each schema, cleaning any cached

data used by the previous query.

6.2.1 Experimental Results

During the transformation from the RGDW to the 36 DGDWs, we noted that the

M1AG1 and M1AG2 schemas would each need approximately 16 TB of storage. These

schemas were therefore discarded from the experimental evaluation, because their data

volume was much larger than that supported by the test environment (≈ 2.5 TB). This

high amount of storage was a consequence of considerable data redundancy, which follows

the successive nesting of documents (i.e., 𝐹𝑎𝑐𝑡 ⊃ 𝐶𝐷 ⊃ 𝐺𝐷).

Table 6 presents the results of the experimental evaluation, showing the following

columns: Schema, the name of the schema; Size, the disk space required to store each

schema (in GB); Q1 to Q6, the average of the five execution times for each query in

seconds, followed by its respective standard deviation; 𝐴𝑣𝑔(𝑄1−6), the average of the

execution times for the six queries, also in seconds. The table is sorted in ascending order

on column 𝐴𝑣𝑔(𝑄1−6).

The schemas were evaluated based on data volume (Size column), and the average

runtime of the 6 queries (𝐴𝑣𝑔(𝑄1−6) column). Figure 49 depicts the volume vs. runtime

relationship, showing each schema by its identifier (M1, M2, M3, and M4). Among the 34

schemas in Figure 49, 18 have very similar results, with volume and runtime below 3 GB

and 400 s, respectively. Figure 50 shows these 18 results at a larger scale.
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Table 6 – Results of the experimental evaluation. Size in GB and query execution time in se-
conds. Symbols used to highlight the DGDW schemas: (+) Best results in volume
size; (-) Worst results in volume size; [+] Best results in query performance; [-] Worst
results in query performance; (!) Schemas discarded from experimental evaluation.

Schema Size Q1 Q2 Q3 Q4 Q5 Q6 𝐴𝑣𝑔(𝑄1−6)
M4CG1 0.95(+) 0.59(0.00) 0.59(0.00) 1.33(0.00) 12.87(0.02) 61.12(0.07) 61.00(0.08) 22.92[+]
M4CG3 0.94(+) 0.57(0.00) 0.59(0.00) 1.33(0.00) 12.94(0.03) 61.76(0.08) 61.84(0.12) 23.17[+]
M4BG1 0.95(+) 0.58(0.01) 0.60(0.02) 1.36(0.02) 13.06(0.05) 62.26(0.16) 62.19(0.15) 23.34[+]
M4BG3 0.96(+) 0.59(0.01) 0.60(0.01) 1.36(0.02) 13.18(0.03) 62.49(0.16) 62.64(0.19) 23.48[+]
M3CG1 1.28 0.68(0.00) 0.69(0.00) 1.48(0.00) 13.67(0.03) 64.85(0.20) 65.01(0.14) 24.40[+]
M3CG3 1.15 0.67(0.01) 0.69(0.00) 1.47(0.00) 13.68(0.05) 65.19(0.14) 65.19(0.10) 24.48
M3BG3 1.20 0.69(0.00) 0.71(0.01) 1.51(0.03) 13.87(0.04) 65.28(0.12) 65.50(0.07) 24.59
M3BG1 1.14 0.70(0.00) 0.73(0.03) 1.53(0.02) 14.03(0.01) 65.57(0.21) 65.81(0.13) 24.73
M4AG3 0.94(+) 0.70(0.01) 0.65(0.03) 1.59(0.04) 15.64(0.03) 75.26(0.16) 75.51(0.08) 28.22
M3AG3 1.19 0.77(0.01) 0.72(0.03) 1.66(0.01) 15.71(0.07) 75.34(0.23) 75.77(0.43) 28.33
M2CG1 1.49 5.32(0.11) 5.33(0.21) 6.20(0.10) 18.92(0.09) 71.80(0.29) 71.53(0.13) 29.85
M2CG3 1.74 5.48(0.13) 5.59(0.12) 6.43(0.06) 19.22(0.33) 72.62(0.37) 70.41(0.37) 29.96
M4CG2 1.10 0.59(0.00) 0.61(0.02) 1.38(0.02) 13.72(0.01) 73.76(0.12) 90.78(0.14) 30.14
M3CG2 1.18 0.98(0.01) 0.95(0.04) 1.70(0.07) 13.65(0.04) 73.45(0.20) 90.56(0.11) 30.22
M2BG3 1.32 5.01(0.25) 5.24(0.20) 6.02(0.22) 19.04(0.40) 73.70(0.87) 73.18(1.10) 30.37
M2BG1 1.46 5.30(0.11) 5.44(0.05) 6.20(0.11) 19.14(0.14) 74.10(0.27) 73.95(0.19) 30.69
M2AG3 1.23 5.33(0.08) 5.51(0.22) 6.29(0.19) 20.91(0.35) 82.91(0.22) 83.24(0.25) 34.03
M2CG2 1.38 5.38(0.11) 5.72(0.13) 6.51(0.17) 18.73(0.06) 80.87(0.93) 98.46(0.26) 35.94
M1BG1 4.15 74.63(0.83) 56.99(0.95) 95.72(3.24) 391.71(6.75) 311.12(1.94) 102.51(1.64) 172.11
M1CG1 4.23 60.55(1.03) 59.72(0.93) 59.04(1.63) 417.80(10.98) 356.54(2.66) 119.12(1.52) 178.80
M1AG3 4.00 54.71(0.58) 53.89(0.47) 53.99(1.36) 410.78(11.61) 1978.58(33.86) 2016.48(34.39) 761.40
M1CG3 3.96 54.55(1.37) 56.11(2.42) 56.22(1.42) 413.32(6.86) 2039.98(19.72) 2050.72(18.22) 778.48
M1CG2 3.97 57.24(1.21) 56.03(1.84) 57.25(1.55) 454.27(5.40) 2159.45(17.65) 2188.14(20.80) 828.73
M4AG1 23.95 277.31(1.62) 282.22(2.92) 291.47(3.70) 439.22(8.45) 1654.81(10.47) 3631.29(5.74) 1096.05
M4BG2 23.95 296.27(0.50) 297.90(0.44) 312.31(1.14) 485.87(3.53) 1702.12(8.47) 3652.17(2.71) 1124.44
M1BG3 3.67 66.50(1.99) 52.48(2.34) 92.89(2.83) 565.32(11.80) 3013.13(49.15) 3096.65(56.61) 1147.83
M4AG2 24.34 353.25(0.88) 354.44(0.87) 364.86(3.16) 527.89(2.59) 1725.18(7.17) 3704.93(9.00) 1171.76
M3BG2 24.12 297.31(7.38) 299.04(6.18) 314.91(6.62) 674.98(11.82) 1907.40(58.06) 3814.66(12.06) 1218.05
M2BG2 24.37 360.39(10.07) 373.56(8.05) 397.82(6.87) 589.98(24.62) 1823.89(43.51) 3772.91(24.40) 1219.76
M3AG1 24.47(-) 299.21(7.13) 293.12(2.03) 329.84(7.88) 691.96(31.36) 1847.49(57.95) 4682.02(192.67) 1357.27[-]
M2AG1 25.66(-) 508.84(6.84) 508.41(9.92) 533.87(7.33) 901.93(7.50) 3023.39(40.32) 5061.43(36.19) 1756.31[-]
M3AG2 24.88(-) 309.38(3.61) 306.38(2.68) 347.55(4.29) 832.18(8.78) 3664.03(150.74) 5604.45(43.73) 1843.99[-]
M2AG2 25.72(-) 509.16(1.35) 504.56(4.62) 556.20(3.47) 1177.88(58.13) 4196.18(107.57) 6247.27(127.26) 2198.54[-]
M1BG2 26.48(-) 455.58(1.49) 441.85(3.47) 502.59(3.79) 1325.18(25.19) 5635.84(66.01) 7725.80(105.64) 2681.14[-]
M1AG1 ≈16000(!) - - - - - - -
M1AG2 ≈16000(!) - - - - - - -

Source: The Author

Due to the great number of schemas, we will discuss the features of the top 5 (best)

schemas and the bottom 5 in order to have some insight regarding the two ends of the re-

sults spectrum. Section 6.2.2 discusses the results based on data volume while Section 6.2.3

takes the average query execution time into account.
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Figure 49 – Volume vs. arithmetic mean of query execution times for the 34 evaluated schemas.

Source: The Author

Figure 50 – Volume vs. arithmetic mean of query execution times for the 18 schemas having
similar results.

Source: The Author

6.2.2 Data volume analysis

The top 5 and bottom 5 schemas are indicated in Figure 47 by the symbols (+) and

(-) at the left side of its name, respectively. In Table 6, these symbols are also found in

the Size column.
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The five schemas with the lowest storage cost are M4CG3 (0.94 GB), M4AG3 (0.94

GB), M4BG1 (0.95 GB), M4CG1 (0.95 GB), and M4BG3 (0.96 GB). In Figure 50, these

schemas used a data volume of less than 1 GB.

The schemas with low storage costs tend to normalize their GDs. For example, all

GDs of the M4BG1 and M4BG3 schemas were normalized. Except for the GD address,

all other GDs of M4CG3, M4AG3, and M4CG1 schemas are also normalized. It is easy to

see that the normalization of GDs with low selectivity geospatial fields (i.e., city, nation,

and region) strongly contributes to reducing the DGDW storage cost.

Analyzing the five schemas with regard to document partitioning shows that partiti-

oning documents into specific and homogeneous collections also contributes to reduced

data volume. This happens because the storage volume of the index structure is smaller

in schemas holding the same document type in the collections. Thus, all schemas in the

M4 group (which have a collection for each dimension, i.e., homogeneous collections) have

a lower volume than their corresponding schemas (e.g., 𝑀4𝐶𝐺1 < 𝑀3𝐶𝐺1 < 𝑀2𝐶𝐺1)

(cf. Table 6).

The five schemas with the highest storage costs are M1BG2 (26.48 GB), M2AG2 (25.72

GB), M2AG1 (25.66 GB), M3AG2 (24.88 GB), and M3AG1 (24.47 GB). These schemas

are identified in Figure 49 as having volumes greater than 24 GB.

The results show that geospatial document redundancy increases data volume. The

combination of the model A with G1 and G2, and the model B with G2 (i.e., schemas that

have names ending in AG1, AG2, and BG2) results in high geospatial data redundancy

when GDs that contain geospatial fields of low-selectivity (i.e., city, nation, and region)

are denormalized into CDs. As shown in Table 6, the denormalization of geospatial fields

with low-selectivity contributes strongly to raising the storage cost of the DGDWs.

Furthermore, the M1 group schemas have the highest data volumes. Indeed, the

M1AG1 and M1AG2 schemas were removed from the experiment because they would

have a size of approximately 16 TB. The M1 group also has higher volumes than those of

its corresponding schemas (e.g., 𝑀1𝐵𝐺2 > 𝑀2𝐵𝐺2 > 𝑀3𝐵𝐺2 > 𝑀4𝐵𝐺2). Although

the M1 group has schemas with homogeneous collections (cf. M1AG1 and M1AG2 in Fi-

gure 47) which contribute to reduced data volume, the denormalization of CDs (and their
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GDs) into fact documents strongly increases the data volume of a DGDW, which makes

it impractical and not feasible.

6.2.3 Query runtime analysis

The top 5 and bottom 5 schemas are depicted in Figure 47 by the symbols [+] and

[-], respectively, to the right of their names. In Table 6, these symbols are also found in

the 𝐴𝑣𝑔(𝑄1−6) column.

The five schemas with the lowest average query runtimes are M4CG1 (22.92 s), M4CG3

(23.17 s), M4BG1 (23.34 s), M4BG3 (23.48 s), and M3CG1 (24.40 s). These schemas are

depicted in Figure 50 with query runtimes close to 24 s.

The top 5 schemas have their low-selectivity geospatial fields normalized into GDs

(i.e., city, nation, and region). The computational cost of joins to perform the queries is

less than the cost of high data redundancy in the document-oriented database. However,

the denormalization of the GD that contains a high-selectivity geospatial field (i.e., ad-

dress) into CDs (i.e., M4CG1, M4CG3, and M3CG1 schemas) positively influences the

query runtimes, by reducing the number of query joins (i.e., they do not need to per-

form joins to obtain address). Both the normalization of low-selectivity geospatial fields

and the denormalization of high-selectivity geospatial fields contribute positively to the

performance of the DGDWs.

Regarding schema partitioning, except the M3CG1 schema, the best schemas all have

one collection for each dimension (i.e., these schemas partition the fact documents, CDs,

and GDs into specific and homogeneous collections). The M4 schemas also have better

performance than their corresponding M3 and M2 schemas (e.g., 𝑀4𝐶𝐺3 < 𝑀3𝐶𝐺3

and 𝑀4𝐶𝐺3 < 𝑀2𝐶𝐺3). The partitioning of documents into homogeneous collections

therefore contributes to improved DGDW performance.

The five schemas with the highest average query runtimes are also the schemas with

highest storage cost: M1BG2 (2681.14 s), M2AG2 (2198.54 s), M3AG2 (1843.99 s), M2AG1

(1756.31 s), and M3AG1 (1357.27 s). These schemas are depicted in Figure 49, having

query runtimes greater than 1300 s.
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These schemas have high data redundancy, because their GDs that contain low-

selectivity geospatial fields (i.e., city, nation, and region) are denormalized into CDs.

When performing queries, selection operations and joins among dimensions require more

processing power to manipulate the large volumes of data, greatly increasing the query

runtimes.

Regarding the partitioning of these schemas, we noticed that they have heterogene-

ous collections (i.e., more than one dimension stored in the same collection). There is

a loss of query performance in collections that contain different document types, and

the more heterogeneous the collection, the worse the performance. This finding can be

shown by comparing, in Table 6, the results of corresponding schemas that have different

partitioning models (e.g., M2BG2 vs. M3BG2).

6.3 BEST PRACTICES

Based on the results of the experimental evaluation, we point out some constructions

that contribute to improve performance on the DGDW:

• Model homogeneous collections. This practice reduces the data volume of index

structures and contributes to query performance because the documents of the col-

lection have the same field structure.

• Normalize geospatial fields with low selectivity (e.g., region). This implies the use

of referenced documents and, consequently, perform joins in queries. However, the

computational cost to perform joins in referenced documents is less than the cost

to manipulate embedded documents with high geospatial data volume.

• Denormalize geospatial fields with high selectivity (e.g., address). This practice

avoids performing joins in queries and does not substantially increase the data

redundancy because the geospatial field is not replicated in many embedded do-

cuments.
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6.4 CHAPTER FINAL CONSIDERATIONS

This chapter presented guidelines for the use AStar. Some models are defined to re-

present facts and dimensions that are related as embedded or referenced documents and

partitioned into one or more collections. Using these models, an experimental evaluation

was carried out to analyze the impact produced by the constructions addressed in the

models on the data volume and query performance. Based on the results of this experi-

mental evaluation, some constructions that contribute to improved DGDW performance

were pointed out.
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7 CONCLUSIONS

This chapter presents the conclusions of this study. Section 7.1 summarizes the final

considerations, section 7.2 lists the contributions and articles published or under review,

and section 7.3 presents the limitations and some suggestions for future studies.

7.1 FINAL CONSIDERATIONS

The logical schema of a DGDW establishes relationships between facts and dimensions

as either referenced or embedded documents, which can be partitioned into one or more

collections. However, to the best available knowledge, these features are not covered by

any modeling languages. In order to resolve this shortcoming, AStar, a DSML for the

design of DGDW logical schemas, was defined.

AStar is composed of a graphical notation (concrete syntax), its own and custom-

tailored metamodel (abstract syntax) for the design of DGDW schemas, and well-formedness

rules (static semantics). Translational semantics are used to map the concepts defined in

the syntax to their corresponding semantics. AStar does not mix SOLAP concepts into

its modeling, because a DGDW may need to be used by applications other than SO-

LAP (e.g., reporting and data mining tools). It is important to highlight that the AStar

graphical notation is inspired by the UML class diagram notation, but the syntax and

semantics of its symbols are defined by the AStar metamodel and well-formedness rules.

This reduces the complexity of implementing a CASE tool because, unlike a UML profile,

it does not require stereotypes or constraints (e.g., OCL rules) to adapt its symbols to a

specific context.

AStar addresses the particularities of the document-oriented data model and the lo-

gical design of a GDW. Regarding the document-oriented data model, AStar provides

support for the design of homogeneous or heterogeneous collections; the specification of

the document field structures, which are composed of conventional or geospatial fields

that can be set as identifier, unique, or regular; and the establishment of relationships

using embedded documents with 1:1 cardinality, or referenced documents with 1:1, 1:N,
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or M:N cardinality. It is important to note that AStar does not allow relationships using

embedded documents to be depicted with 1:N or M:N cardinality. These relationship car-

dinalities would be implemented as arrays of embedded documents, producing documents

with a very high volume of data, which can impair DGDW performance. Furthermore,

embedded documents with M:N cardinality can produce cyclic dependence. AStar also has

resources to forbid the design of incorrect constructions, such as documents from different

collections being embedded and the definition of identifier fields in embedded documents.

Concerning the logical design of a GDW, AStar provides support to model facts and di-

mensions, distinguish between them, and prevent the modeling of disconnected facts or

dimensions.

In the evaluation, AStar is shown to be in accordance with seven of the nine PoN

principles, an adequate level of cognitive effectiveness. AStar was then implemented as

a prototype CASE tool called AStarCASE. In its current version, AStarCASE can be

used to design DGDW logical schemas and generate code from the diagrams, consisting of

JSON schemas that define the database schema in MongoDB. Because the AStar concrete

syntax is based on symbols from the UML class diagram, UML tools can be used to

model DGDW logical schemas according to AStar. However, only AStar implementations

(e.g., AStarCASE) can prevent syntactically invalid constructions or flag semantically

contradictory constructions.

A guideline was presented to show how to design logical schemas of DGDW with AS-

tar. This guideline defines some models for the design of logical schemas that use different

types of relationships between facts and dimensions, producing different levels of data

redundancy and different ways to partition documents among collections. An experimen-

tal evaluation was also performed with 36 DGDW logical schemas, depicted with AStar.

The evidence obtained from the experimental analysis showed that the denormalization

of geospatial fields with high selectivity (i.e., using embedded documents), the norma-

lization of geospatial fields with low selectivity (i.e., using referenced documents), and

the partitioning of documents having facts and dimensions into homogeneous collections

(i.e., more than one collection) contribute to achieving low data volume and low query

execution time.
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7.2 CONTRIBUTIONS

This study presents the following contributions:

• A DSML for DGDW logical schemas, composed of:

– a graphical notation (concrete syntax) inspired by the UML class diagram,

which enables any UML tool to model DGDW logical schemas;

– a metamodel (abstract syntax) that defines the concepts of the modeling lan-

guage, addressing features of the document-oriented data model and GDW

logical design;

– a set of well-formedness rules (static semantics) that is used to prohibit invalid

constructions in a logical schema;

– translational semantics, which map the concepts defined in the graphical no-

tation to the concepts defined in the metamodel, and to the JSON schema

definition.

• A guideline showing how to use AStar. This guideline presents some models that

can assist in the design of logical schemas, as well as indications to achieve good

DGDW performance.

• A prototype CASE tool, which can be used to design DGDW logical schemas and

generate JSON schema code.

Some of these contributions have already been published or are under review. All of

these publications are listed below:

• Ferro, M.; Fragoso, R.; Fidalgo, R. (2019). Document-oriented geospatial data wa-

rehouse: An experimental evaluation of SOLAP queries. Conference on Business

Informatics (CBI) - This paper presents the design of 9 DGDW logical schemas,

using AStar. These schemas have facts and dimensions related as embedded or re-

ferenced documents, producing different levels of geospatial data redundancy. The

schemas were evaluated, in order to analyze the data volume and query runtime.
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• Ferro, M.; Lima, R.; Fidalgo, R. (2019). Evaluating redundancy and partitioning

of geospatial data in document-oriented data warehouses. In Big Data Analytics

and Knowledge Discovery (DaWaK) - This paper presents the design of 36 DGDW

logical schemas, using AStar. These schemas have facts and dimensions related as

referenced or embedded documents, and have different approaches of partitioning

documents among collections. The schemas were evaluated and their data volume

and query runtimes were determined.

• Ferro, M.; Silva, E.; Fidalgo, R. AStar: A Modeling Language for Document-

Oriented Geospatial Data Warehouses - Submitted to Data & Knowledge Enginee-

ring on December 2021. This paper shows the complete AStar graphical notation,

whereas the previous papers only used part of this notation. Moreover, this paper

defines the metamodel and well-formedness rules of AStar. An AStar evaluation

based on PoN is also shown.

7.3 THREAT TO VALIDITY, LIMITATIONS, AND FUTURE STUDIES

Despite the relevant results, this thesis has some threats to validity and limitations

that can be addressed in future studies.

Although the search for anomalies was carried out carefully in the PoN assessment

presented in section 5.1, it cannot be ignored that the evaluation has only been performed

by the authors. This can be considered a potential threat to validity, as it can affect the

ability to draw proper conclusions about the validation of the PoN’s principles. Therefore,

a user evaluation should be performed as a future study, in order to compare the results

obtained with those presented in this thesis.

Due to hardware limitations, the experimental evaluation presented in section 6.2 used

only one data load, with a scale factor of 1. Furthermore, given the lack of benchmarks

for DGDW performance analysis, used in both the industry and academics, the authors

defined a concise set of queries to be used in this experiment. This can be considered

a potential threat to validity, as the behavior of the query execution when used with

different data loads was not analyzed; and the used queries may have produced results
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that overlooked important aspects in the analysis, such as the performance of different

geospatial functions and data aggregation from many dimensions. Therefore, in order to

present a more in-depth experimental analysis, an evaluation using higher data loads and

a set of systematic queries should be performed as a future study.

AStar is a DSML whose syntax and semantics are custom-tailored to the DGDW

domain. Therefore, features that can be used in a transactional database (e.g., arrays) are

prohibited in AStar. In order to enable AStar to model logical schemas for transactional

databases, an extension will be addressed in a future study.

AStarCASE is a prototype that can be evolved with a set of features to assist de-

signers in modeling and maintaining DGDWs. Therefore, features such as the generation

of physical project metadata for different document-oriented databases (e.g., MongoDB,

CoachDB, and DynamoDB), the generation of document examples from diagrams, and

reverse engineering from an existing DGDW will be covered in future studies.
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APPENDIX A – JSON SCHEMAS FOR GEOSPATIAL DATA TYPES

The following JSON Schemas are adapted from:

Point - https://geojson.org/schema/Point.json

Line - https://geojson.org/schema/LineString.json

Polygon - https://geojson.org/schema/Polygon.json

MultiPoint - https://geojson.org/schema/MultiPoint.json

MultiLine - https://geojson.org/schema/MultiLineString.json

MultiPolygon - https://geojson.org/schema/MultiPolygon.json

Collection - https://geojson.org/schema/GeometryCollection.json

Listing A.1 – Point
{

2 "bsonType": "object",

"required": [

4 "bsonType",

"coordinates"

6 ],

"properties": {

8 "bsonType": {

"bsonType": "string",

10 "enum": [

"Point"

12 ]

},

14 "coordinates": {

"bsonType": "array",

16 "minItems": 2,

"items": {

18 "bsonType": "number"

}

20 }

}

22 }
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Listing A.2 – Line
{

2 "bsonType": "object",

"required": [

4 "bsonType",

"coordinates"

6 ],

"properties": {

8 "bsonType": {

"bsonType": "string",

10 "enum": [

"LineString"

12 ]

},

14 "coordinates": {

"bsonType": "array",

16 "minItems": 2,

"items": {

18 "bsonType": "array",

"minItems": 2,

20 "items": {

"bsonType": "number"

22 }

}

24 }

}

26 }

Listing A.3 – Polygon
{

2 "bsonType": "object",

"required": [

4 "bsonType",

"coordinates"

6 ],

"properties": {

8 "bsonType": {

"bsonType": "string",

10 "enum": [

"Polygon"

12 ]

},

14 "coordinates": {

"bsonType": "array",

16 "items": {

"bsonType": "array",
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18 "minItems": 4,

"items": {

20 "bsonType": "array",

"minItems": 2,

22 "items": {

"bsonType": "number"

24 }

}

26 }

}

28 }

}

Listing A.4 – MultiPoint
1 {

"bsonType": "object",

3 "required": [

"bsonType",

5 "coordinates"

],

7 "properties": {

"bsonType": {

9 "bsonType": "string",

"enum": [

11 "MultiPoint"

]

13 },

"coordinates": {

15 "bsonType": "array",

"items": {

17 "bsonType": "array",

"minItems": 2,

19 "items": {

"bsonType": "number"

21 }

}

23 }

}

25 }

Listing A.5 – MultiLine
1 {

"bsonType": "object",

3 "required": [

"bsonType",

5 "coordinates"
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],

7 "properties": {

"bsonType": {

9 "bsonType": "string",

"enum": [

11 "MultiLineString"

]

13 },

"coordinates": {

15 "bsonType": "array",

"items": {

17 "bsonType": "array",

"minItems": 2,

19 "items": {

"bsonType": "array",

21 "minItems": 2,

"items": {

23 "bsonType": "number"

}

25 }

}

27 }

}

29 }

Listing A.6 – MultiPolygon
1 {

"bsonType": "object",

3 "required": [

"bsonType",

5 "coordinates"

],

7 "properties": {

"bsonType": {

9 "bsonType": "string",

"enum": [

11 "MultiPolygon"

]

13 },

"coordinates": {

15 "bsonType": "array",

"items": {

17 "bsonType": "array",

"items": {

19 "bsonType": "array",

"minItems": 4,
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21 "items": {

"bsonType": "array",

23 "minItems": 2,

"items": {

25 "bsonType": "number"

}

27 }

}

29 }

}

31 }

}

Listing A.7 – Collection
{

2 "bsonType": "object",

"required": [

4 "bsonType",

"geometries"

6 ],

"properties": {

8 "bsonType": {

"bsonType": "string",

10 "enum": [

"GeometryCollection"

12 ]

},

14 "geometries": {

"bsonType": "array",

16 "items": {

"oneOf": [

18 {

"bsonType": "object",

20 "required": [

"bsonType",

22 "coordinates"

],

24 "properties": {

"bsonType": {

26 "bsonType": "string",

"enum": [

28 "Point"

]

30 },

"coordinates": {

32 "bsonType": "array",
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"minItems": 2,

34 "items": {

"bsonType": "number"

36 }

}

38 }

},

40 {

"bsonType": "object",

42 "required": [

"bsonType",

44 "coordinates"

],

46 "properties": {

"bsonType": {

48 "bsonType": "string",

"enum": [

50 "LineString"

]

52 },

"coordinates": {

54 "bsonType": "array",

"minItems": 2,

56 "items": {

"bsonType": "array",

58 "minItems": 2,

"items": {

60 "bsonType": "number"

}

62 }

}

64 }

},

66 {

"bsonType": "object",

68 "required": [

"bsonType",

70 "coordinates"

],

72 "properties": {

"bsonType": {

74 "bsonType": "string",

"enum": [

76 "Polygon"

]

78 },

"coordinates": {
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80 "bsonType": "array",

"items": {

82 "bsonType": "array",

"minItems": 4,

84 "items": {

"bsonType": "array",

86 "minItems": 2,

"items": {

88 "bsonType": "number"

}

90 }

}

92 }

}

94 },

{

96 "bsonType": "object",

"required": [

98 "bsonType",

"coordinates"

100 ],

"properties": {

102 "bsonType": {

"bsonType": "string",

104 "enum": [

"MultiPoint"

106 ]

},

108 "coordinates": {

"bsonType": "array",

110 "items": {

"bsonType": "array",

112 "minItems": 2,

"items": {

114 "bsonType": "number"

}

116 }

}

118 }

},

120 {

"bsonType": "object",

122 "required": [

"bsonType",

124 "coordinates"

],

126 "properties": {
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"bsonType": {

128 "bsonType": "string",

"enum": [

130 "MultiLineString"

]

132 },

"coordinates": {

134 "bsonType": "array",

"items": {

136 "bsonType": "array",

"minItems": 2,

138 "items": {

"bsonType": "array",

140 "minItems": 2,

"items": {

142 "bsonType": "number"

}

144 }

}

146 }

}

148 },

{

150 "bsonType": "object",

"required": [

152 "bsonType",

"coordinates"

154 ],

"properties": {

156 "bsonType": {

"bsonType": "string",

158 "enum": [

"MultiPolygon"

160 ]

},

162 "coordinates": {

"bsonType": "array",

164 "items": {

"bsonType": "array",

166 "items": {

"bsonType": "array",

168 "minItems": 4,

"items": {

170 "bsonType": "array",

"minItems": 2,

172 "items": {

"bsonType": "number"
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174 }

}

176 }

}

178 }

}

180 }

]

182 }

}

184 }

}
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APPENDIX B – EXAMPLES OF JSON SCHEMAS

Listing B.1 – JSON Schema for the example of Figure 24
1 db.createCollection( "Dates", {

validator: { $jsonSchema: {

3 title: "date",

description: "dimension",

5 bsonType: "object",

required: [ "_id", "date", "dayofweek" ],

7 properties: {

_id: {

9 bsonType: "object",

required: [ "datekey" ],

11 properties: {

datekey: {

13 bsonType: "int"

}

15 }

},

17 date: {

bsonType: "string",

19 pattern: "^[1 -9][0 -9][0 -9][0 -9] -[0 -1][0 -9] -[0 -3][0 -9]\$",

},

21 dayofweek: {

bsonType: "int"

23 }

}

25 } },

});

27

db.Dates.createIndex ({"date":1},{ unique :1});

Listing B.2 – JSON Schema for the example of Figure 25
1 db.createCollection( "Orders", {

validator: { $jsonSchema: {

3 title: "lineorder",

description: "fact",

5 bsonType: "object",

required: [ "_id", "revenue", "cust"],

7 properties: {

_id: {

9 bsonType: "object",

required: [ "orderkey", "linenumber"],

11 properties: {

orderkey: {
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13 bsonType: "int"

},

15 linenumber: {

bsonType: "int",

17 }

}

19 },

revenue: {

21 bsonType: "number",

},

23 cust:{

title: "customer",

25 description: "dimension",

bsonType: "object",

27 required: [ "name", "address_geo"],

properties: {

29 name: {

bsonType: "string",

31 },

address_geo: {

33 type: "object",

required: [ "type", "coordinates"],

35 properties: {

type: {

37 type: "string",

enum: ["Point"]

39 },

coordinates: {

41 type: "array",

minItems: 2,

43 items: {

"type": "number"

45 }

}

47 }

}

49 }

}

51 }

} },

53 });

Listing B.3 – JSON Schema for the example of Figure 26
1

db.createCollection( "Orders", {

3 validator: { $jsonSchema: {
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anyOf: [

5 {

title: "lineorder",

7 description: "fact",

bsonType: "object",

9 required: [ "_id", "revenue", "cust"],

properties: {

11 _id: {

bsonType: "object",

13 required: [ "orderkey", "linenumber"],

properties: {

15 orderkey: {

bsonType: "int"

17 },

linenumber: {

19 bsonType: "int",

}

21 }

},

23 revenue: {

bsonType: "number",

25 },

cust: {

27 description: "REF_1N:customer",

bsonType: "object",

29 required: ["custkey"],

properties: {

31 custkey: {

bsonType: "int"

33 }

}

35 }

}

37 }

,

39 {

title: "customer",

41 description: "dimension",

bsonType: "object",

43 required: ["_id", "name", "address_geo"],

properties: {

45 _id: {

bsonType: "object",

47 required: ["custkey"],

properties: {

49 custkey: {

bsonType: "int"
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51 }

}

53 },

name: {

55 bsonType: "string",

},

57 address_geo: {

type: "object",

59 required: [ "type", "coordinates"],

properties: {

61 type: {

type: "string",

63 enum: ["Point"]

},

65 coordinates: {

type: "array",

67 minItems: 2,

items: {

69 "type": "number"

}

71 }

}

73 }

}

75 }

]

77 } },

});

Listing B.4 – JSON Schema for the example of Figure 27
1

db.createCollection( "Orders", {

3 validator: { $jsonSchema: {

title: "lineorder",

5 description: "fact",

bsonType: "object",

7 required: [ "_id", "cust", "revenue"],

properties: {

9 _id: {

bsonType: "object",

11 required: [ "orderkey", "linenumber"],

properties: {

13 orderkey: {

bsonType: "int"

15 },

linenumber: {
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17 bsonType: "int",

}

19 }

},

21 cust: {

description: "REF_1N:customer",

23 bsonType: "object",

required: ["custkey"],

25 properties: {

custkey: {

27 bsonType: "int"

}

29 }

},

31 revenue: {

bsonType: "number",

33 }

}

35 } },

});

37

db.createCollection( "Customers", {

39 validator: { $jsonSchema: {

title: "customer",

41 description: "dimension",

bsonType: "object",

43 required: ["_id", "name", "address_geo"],

properties: {

45 _id: {

bsonType: "object",

47 required: ["custkey"],

properties: {

49 custkey: {

bsonType: "int"

51 }

}

53 },

name: {

55 bsonType: "string",

},

57 address_geo: {

type: "object",

59 required: [ "type", "coordinates"],

properties: {

61 type: {

type: "string",

63 enum: ["Point"]
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},

65 coordinates: {

type: "array",

67 minItems: 2,

items: {

69 "type": "number"

}

71 }

}

73 }

}

75 } },

});

Listing B.5 – JSON Schema for the example of Figure 28
1

db.createCollection( "Orders", {

3 validator: { $jsonSchema: {

anyOf: [

5 {

title: "lineorder",

7 description: "fact",

bsonType: "object",

9 required: [ "_id", "revenue", "order", "commit"],

properties: {

11 _id: {

bsonType: "object",

13 required: [ "orderkey", "linenumber"],

properties: {

15 orderkey: {

bsonType: "int"

17 },

linenumber: {

19 bsonType: "int",

}

21 }

},

23 revenue: {

bsonType: "number",

25 },

order: {

27 description: "REF_1N:date",

bsonType: "object",

29 required: ["datekey"],

properties: {

31 custkey: {
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bsonType: "int"

33 }

}

35 },

commit: {

37 description: "REF_1N:date",

bsonType: "object",

39 required: ["datekey"],

properties: {

41 custkey: {

bsonType: "int"

43 }

}

45 }

}

47 }

,

49 {

title: "date",

51 description: "dimension",

bsonType: "object",

53 required: [ "_id", "date", "dayofweek"],

properties: {

55 _id: {

bsonType: "object",

57 required: ["datekey"],

properties: {

59 datekey: {

bsonType: "int"

61 }

}

63 },

date: {

65 bsonType: "string",

pattern: "^[0 -9][0 -9][0 -9][0 -9] -[0 -1][0 -9] -[0 -3][0 -9]$",

67 },

dayofweek: {

69 bsonType: "int"

}

71 }

}

73 ]

} },

75 });

Listing B.6 – JSON Schema for the example of Figure 29
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1

db.createCollection( "Homicides", {

3 validator: { $jsonSchema: {

anyOf: [

5 {

title: "homicide",

7 description: "fact",

bsonType: "object",

9 required: [ "_id", "vi", "occurrenceNum", "local", "hom_perp"],

properties: {

11 _id: {

bsonType: "object",

13 required: ["homicideId"],

properties :{

15 homicideId: {

bsonType: "int"

17 }

}

19 },

vi: {

21 bsonType: "object",

required: ["victimSSN"],

23 properties: {

victimSSN: {

25 bsonType: "int"

}

27 }

},

29 occurrenceNum: {

bsonType: "int",

31 },

local: {

33 title: "GeoJSON Point",

type: "object",

35 required: [ "type", "coordinates"],

properties: {

37 type: {

type: "string",

39 enum: ["Point"]

},

41 coordinates: {

type: "array",

43 minItems: 2,

items: {

45 type: "number"

}

47 }
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}

49 },

hom_perp: {

51 description: "REF:perpetrator",

type: "object",

53 required: [ "perpetratorSSN"],

properties: {

55 perpetratorSSN: {

type: "array",

57 minItems: 0,

items: {

59 type: "number"

}

61 }

}

63 }

}

65 }

,

67 {

title: "victim",

69 description: "dimension",

bsonType: "object",

71 required: [ "_id", "sex"],

properties: {

73 _id: {

bsonType: "object",

75 required: ["victimSSN"],

properties: {

77 victimSSN: {

bsonType: "int"

79 }

}

81 },

sex: {

83 bsonType: "int"

}

85 }

}

87 ,

{

89 title: "perpetrator",

description: "dimension",

91 bsonType: "object",

required: [ "_id", "sex", "recidivistStatus", "hom_perp"],

93 properties: {

_id: {
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95 bsonType: "object",

required: ["perpetratorSSN"],

97 properties: {

perpetratorSSN: {

99 bsonType: "int"

}

101 }

},

103 sex: {

bsonType: "int"

105 },

recidivistStatus: {

107 bsonType: "int"

},

109 hom_perp: {

type: "object",

111 description: "REF:homicide",

required: ["homicideId"],

113 properties: {

homicideId: {

115 type: "array",

minItems: 0,

117 items: {

type: "number"

119 }

}

121 }

}

123 }

}

125 ]

} },

127 });
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APPENDIX C – IMPLEMENTATION OF ASTAR METAMODEL

Listing C.1 – Emfatic code - metamodel implementation
@namespace(uri=" schema", prefix="astar")

2 @gmf

package schema;

4

@gmf.diagram(onefile ="true", diagram.extension="astar")

6 class Schema {

val Link [+] links;

8 val Box[+] boxes;

attr String name;

10 }

12 @gmf.node(label="name", resizable="false")

abstract class Node {

14 attr String name;

}

16

@gmf.node()

18 abstract class Box extends Node{

}

20

@gmf.node(border.width ="1", border.color="0,0,0", label.icon="false")

22 class Collection extends Box {

@gmf.compartment

24 val DocumentType [+] contains;

}

26

@gmf.node(border.style="solid", border.color="0,0,0", label.icon="false")

28 class DocumentType extends Box {

attr DocumentTypeRole role;

30 @gmf.compartment(layout ="list")

val Field [+] fields;

32 }

34

@gmf.node(label.icon="false",border.color ="255 ,255 ,255")

36 class Field extends Node{

attr DataType dataType;

38 attr FieldType fieldType;

}

40

@gmf.link(source =" source", target="target", incoming="true", style="solid", width="1

", color="0,0,0")
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42 abstract class Link {

attr String name;

44 ref DocumentType [1] source;

ref DocumentType [1] target;

46 }

48 @gmf.link(target.decoration ="arrow", label="name")

class Reference extends Link {

50 attr Cardinality cardinality;

}

52

@gmf.link(source.decoration =" filledrhomb",target.decoration ="arrow", label="name")

54 class Embed extends Link {

56 }

58 enum DataType {

INT = 1;

60 STRING = 2;

DATE = 3;

62 REAL = 4;

BOOLEAN = 5;

64 POINT = 6;

LINE = 7;

66 POLYGON = 8;

MULTIPOINT = 9;

68 MULTILINE = 10;

MULTIPOLYGON = 11;

70 COLLECTION = 12;

}

72

enum Cardinality {

74 ONE_TO_ONE = 1;

ONE_TO_MANY = 2;

76 MANY_TO_MANY = 3;

}

78

enum DocumentTypeRole {

80 FACT = 1;

DIMENSION = 2;

82 }

84 enum FieldType {

IDENTIFIER = 1;

86 UNIQUE = 2;

REGULAR = 3;

88 }
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APPENDIX D – ASTARCASE TRANSFORMATION M2T

Listing D.1 – JSON Schema generated by AStarCASE
1

db.createCollection( "Orders", {

3 validator: { $jsonSchema: {

title: "lineorder",

5 description: "FACT",

bsonType: "object",

7 required: [ "_id", "linenumber", "revenue", "cust" ],

properties: {

9 _id: {

bsonType: "object",

11 required: [ "orderkey"],

properties: {

13 orderkey: {

bsonType: "int"

15 }

}

17 },

cust: {

19 description: "REF:customer",

bsonType: "object",

21 required: [ "custkey"],

properties: {

23 custkey: {

bsonType: "int"

25 }

}

27 },

linenumber: {

29 bsonType: "int"

},

31 revenue: {

bsonType: "number"

33 }

}

35 }},

});

37 db.createCollection( "Customers", {

validator: { $jsonSchema: {

39 title: "customer",

description: "DIMENSION",

41 bsonType: "object",

required: [ "_id", "name", "email", "address" ],
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43 properties: {

_id: {

45 bsonType: "object",

required: [ "custkey"],

47 properties: {

custkey: {

49 bsonType: "int"

}

51 }

},

53 name: {

bsonType: "string"

55 },

email: {

57 bsonType: "string"

}

59 , address: {

title: "address",

61 description: "DIMENSION",

bsonType: "object",

63 required: [ "address_geo" ],

properties: {

65 address_geo: {

title: "GeoJSON Point",

67 type: "object",

required: [ "type", "coordinates"],

69 properties: {

type: {

71 type: "string",

enum: ["Point"]

73 },

coordinates: {

75 type: "array",

minItems: 2,

77 items: {

type: "number"

79 }

},

81 bbox: {

type: "array",

83 minItems: 4,

items: {

85 type: "number"

}

87 }

}

89 }
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} }

91 }

}},

93 });

95 db.Customers.createIndex( "email", { unique: true } );
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