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ABSTRACT

This dissertation deals with the maintenance optimization problem in a multi-

component system, which should undergo maintenance actions between two consecutive

missions, preparing itself for the next mission. Due to time, budget and resource limitations,

top-level actions cannot be performed on all components and therefore, a subset of

components and actions should be selected for the objective optimization. Most of the

existing models to tackle this kind of problem do not involves complex systems or, when they

do it, they consider only one objective to be optimized. To study the establishment of

problems that consider complex systems, multi-objective approaches and repairperson

assignments, this work proposes a new non-linear binary model that models the bi-Objective

Selective Maintenance and Repairperson Assignment Problem on k-out-of-n systems (bi-

OSMRAP:k-out-of-n). Its modeling is discussed, and three algorithms are proposed for the

problem solving: a full enumeration algorithm, a metaheuristic and a matheuristic, these last

two based on the Adaptive Variable Neighborhood Search. Two instances were tested, one

artificial instance and the other from the literature, and a sensitive analysis was conducted to

understand the problem behavior. Both approximated algorithms were solid, supported by

good values for the metrics used.

Keywords: selective maintenance; k-out-of-n systems; metaheuristic; matheuristic;

combinatorial optimization.



RESUMO

Esta dissertação trata do problema de otimização de manutenção em um sistema multi-

componente, o qual deve passar por ações de manutenção entre duas missões consecutivas,

preparando-o para a próxima missão. Devido aos limites no tempo, orçamento e recursos,

ações de alta qualidade não podem ser feitas em todos componentes e portanto, um sub-

conjunto de componentes e ações devem ser selecionados para a otimização do objetivo. A

maioria dos modelos existentes para resolver este tipo de problema não envolve sistemas

complexos, ou quando tratam com esse tipo de sistema, eles só consideram um objetivo a ser

otimizado. Para estudar o estabelecimento de problemas que consideram sistemas complexos,

abordagens multi-objetivo e designações de mantenedores, este trabalho propõe um novo

modelo não-linear binário que modela o Problema bi-Objetivo de Manutenção Seletiva e

Designação de Mantenedores em sistemas k-out-of-n. Toda a modelagem é discutida e três

algoritmos são propostos para a resolução do problema: um algoritmo de enumeração

completa, uma metaheurística e uma matheuristic, sendo estes dois últimos baseados na

Adaptive Variable Neighborhood Search. Duas instâncias foram testadas, uma artificial e

outra oriunda da literatura, e uma análise de sensibilidade foi conduzida para elucidar o

comportamento do problema. Ambos algoritmos aproximados se mostraram robustos,

suportados por bons valores para as métricas usadas.

Palavras-chave: manutenção seletiva; Sistemas k-out-of-n; metaheurística;

matheuristic; otimização combinatória.
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1 INTRODUCTION

Maintenance is no longer seen as a resource expenditure after asset failures. Nowadays,

it is recognized as an essential business function that provides a better connection with other

functions within the company (DE JONGE and SCARF, 2020). As an example, Pinjala et al.

(2006) presented some links between businesses and maintenance strategies. They analyzed

different businesses characteristics, organizational structures of the maintenance, action

features, technical complexity, teamwork, among others.

In reality, the maintenance function of an organization can be seen as its maintenance

concept. This concept embraces the framework for the maintenance strategy selected by the

organization. In other words, it is the “embodiment” of how the organization thinks about the

role of the maintenance as an operation function (WAEYENBERGH and PINTELON, 2002).

The establishment of the maintenance concept is a significant manner to optimize decisions in

maintenance. For instance, Waeyenbergh and Pintelon (2004) implemented a maintenance

concept on a cigar and cigarette factory, specifically in the bottleneck line of the plant, and the

company’s output increased almost by 100%.

Additionally, maintenance is a significant part of companies’ total costs, representing

from 15% to 70% of the total production costs (BEVILACQUA and BRAGLIA, 2000). In

non-fossil-fuel energy generation plants, the maintenance represents the major portion of the

total production cost (ZIO and COMPARE, 2013). Furthermore, in a opportunistic policy,

Kang and Guedes Soares (2020) achieved good cost savings (41,9%) for offshore turbines. To

summarize, the maintenance has a critical role in competitiveness improvement in

organizations due to its portion on companies’ total costs.

Age and block-based replacement and inspection policies (ZHAO et al., 2017;

BARLOW and HUNTER, 1960; KAIO and OSAKI, 1986; BARLOW et al., 1963) are the

most basic quantitative models for scheduling of programmed maintenance actions. However,

these methods are not devoted to situations when the system is composed of several units and

operates in a scheme of successive missions. Usually, systems have resource constraints, and

therefore, it is not feasible to perform all top-level actions in their components. So, a subset of

units and maintenance actions to be performed during the break between two missions should

be selected to optimize an objective. This Combinatorial Optimization problem is the so-

called Selective Maintenance Problem (SMP). The SMP describes some specific real

problems faced by managers. For example, note that this problem is designed for systems

with redundant components, i. e. although they have different characteristics, these
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components are functionality equals. In addition, SMPs are denoted for systems in which

failures during the mission are unlikely.

SMP has been extensively studied (XU et al., 2015; CAO et al., 2018), since its first

study in 1998 (RICE et al., 1998). However, there are some gaps in SMP literature, as Cao et

al. (2018) indicated. For example, complex systems were not appropriately covered (Cao et al.

(2018) indicate only eight studies). Concerning k-out-of-n systems, to the best of our

knowledge, only one work dealt with this kind of system (DIALLO et al., 2018), despite its

relevance to real-world applications, such as production and service systems.

On the other hand, a few gaps were fulfilled in recent years, e. g. selective maintenance

and repairperson assignment problem. Khatab et al. (2018) proposed this joint problem

considering imperfect actions, and then other works explored different problem features

(KHATAB et al., 2019; CHAABANE et al., 2020). The impact of this joint decision is very

relevant, and it can increase the maximum system reliability, despite the cost increase

(KHATAB et al., 2018).

Usually, maintenance problems faced by companies involve more than one objective.

For example, costs and reliability are two essential objectives considered by managers in this

field (QUDDOOS et al., 2015; DIALLO et al., 2019). Because they are conflicting objectives,

multi-objectives approaches are necessary. According to our literature review, some works

deal with bi-objective modeling on SMP, but the works cited before (DIALLO et al., 2018;

KHATAB et al., 2018) did not. Therefore, there is a lack of joint studies in multi-objective,

repairperson assignment and complex systems.

Accordingly, this new problem tackles the maintenance optimization of systems

composed of k-out-of-n subsystems, subjected to a maintenance crew where the manager

wants to optimize the reliability and cost for the next system mission. This approach is

designed for systems without a continuous operation where several missions need to be

accomplished. Besides that, real situations where the reliability and costs are critical can be

solved with this new problem.

1. 1 JUSTIFICATION

The SMP is an NP-hard problem (RICE, 1999), and there is still no efficient

(polynomial) algorithm capable of solving large instances in a reasonable time. Given this

feature, investigations in approximate algorithms are relevant, especially in metaheuristics.

Cao et al. (2018) pointed out that a few metaheuristics were proposed for SMPs (Genetic
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Algorithms, Simulated Annealings and Differential Evolutions), and this gap remains in this

field. Especially, matheuristics are a new research field for Combinatorial Optimization

problems. These methods are hybridizations between a heuristic approach and a mathematical

programming model, where the mathematical programming model is a tool within the

heuristic (FISCHETTI and FISCHETTI, 2018).

As discussed before, new features on SMPs have been investigated in recent years.

Hence, multi-objective approaches on SMPs associated with assignment repairperson and

complex systems (k-out-of-n) should be studied because excellent insights in decision-making

processes were achieved when these aspects were separately addressed in SMPs. So, this joint

approach could result in promising outcomes through metaheuristic and matheuristic

resolutions.

The new problem proposed here can model many real applications, such as water

distribution networks (due to head loss, should exist constraints on the minimal number of

working pumps), processing plants (reliability restrictions of the management force the

system to have a minimal number of working components), multi-display on cockpit systems,

nuclear power plants (KANG and KIM, 2012), and others. In conclusion, there are some gaps

to be fulfilled by this work: a lack in SMP that tackles multi-objective, repairperson

assignment and complex systems together; exact, metaheuristic and matheuristic algorithm

investigations and comparisons; and modelling of new real situations through the proposed

problem.

1. 2 OBJECTIVES

The general objective of this dissertation is to model the bi-Objective Selective

Maintenance and Repairperson Assignment Problem on k-out-of-n Systems (bi-OSMRAP:k-

out-of-n).

About the specific objectives, one can list:

 To review the literature about SMPs, considering problem features and resolution

methods;

 To propose the new bi-OSMRAP:k-out-of-n;

 To propose new metaheuristic and matheuristic algorithms for the problem resolution,

and;

 To compare exact, metaheuristic and matheuristic algorithms results.
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1. 3 DISSERTATION STRUCTURE

The structure of this dissertation is the following: the next chapter presents the

theoretical background for this research and the literature review on SMP; chapter three

discusses the methodology used in this work, showing the bi-OSMRAP:k-out-of-n

mathematical model, and the full enumeration, metaheuristic and matheuristic algorithms; the

subsequent chapter shows the computational results and their proper discussions; and finally,

the last chapter states the dissertation’s conclusions.
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2 THEORETICAL BACKGROUND AND LITERATURE REVIEW

This chapter brings the theoretical background used in this research, besides the

literature review about the SMP, and they are separated into two sub-chapters for the best

organization. The first sub-chapter discusses some definitions about systems, components,

action features, mission features and multi-objective terms, whereas the other shows the

literature review about works on the SMP. These works were categorized according to their

characteristics.

2. 1 THEORETICAL BACKGROUND

For our understanding, De Jonge and Scarf (2020) present a good review of asset and

maintenance management terminology. Therefore, most of the terms presented here were

obtained from their work. So, system is an asset that performs an operational function, and it

is the physical goal of the maintenance management. Systems can be dismembered into minor

parts, e. g. sub-systems, units, and go on. These components or units are parts of the system

subject to maintenance actions, and they are the most essential part (cannot be subdivided).

Single-unit or single-component systems are composed of only one component, differently

from multi-unit or multi-component systems. The deterioration process of components is

governed by transitions between states from the deterioration state space. Here we are

dealing with just two-state spaces: working or failed.

Concerning actions, they can be classified into preventive (programmed) and corrective.

The preventive ones are performed before the component failure, whereas correctives are

executed after. Repairs and replacements are maintenance actions to be performed in

components, and non-repairable components are maintained only by replacement. Unlike

non-repairable components, repairs for repairable components can be perfect, returning the

component to a state as-good-as-new, or imperfect, otherwise. The minimal repair is a special

kind of imperfect action, which restores the component to its status prior to failure (as-bad-as-

old).

About mission features, according to Ciappa (2005), when an item must fulfill a specific

task during a defined time and under certain conditions, this job is called mission. The time

between two sequential missions is called maintenance break (CAO et al., 2018), and the

system probability of successfully fulfilling a specific mission with time duration t is called

system reliability for a mission of duration time t. Regarding the disposition of components,
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multi-component systems can be arranged into series, parallel, series-parallel, k-out-of-n,

among others. Specifically, k-out-of-n systems are the ones where the system works when at

least k out of n components work (YAVUZ et al., 2019). On the other hand, Repairpersons

are the people that compose the crew responsible for maintenance actions executions. Finally,

virtual and effective ages are synonymous, and they describe an essential feature in

maintenance modeling. Although the actual age of the component is different, its functional

features behave as a new component with that effective age.

According to Keller (2017), multi-objective optimization is divided into generating and

preference-based methods. The first one looks for the Pareto optimality without considering

the decision-maker’s preferences, while the other integrates the decision-maker in its

resolution. Jaimes et al. (2010) indicate that multi-objective problem resolutions are based on

Pareto dominance. Furthermore, Hwang and Masud (1979) establish that a solution is optimal

when simultaneously optimizing each objective. However, as most multi-objective problems

have conflicting objectives, there is no optimal solution. So, Pareto-optimal or nondominated

solutions are the ones in which no one objective can be improved without a simultaneous

detriment to at least one of the other objectives of the problem. The set composed of all

Pareto-optimal solutions is called Pareto Frontier.

Ideal and Nadir vectors are essential notions in multi-objective optimization. Miettinen

(1999) states that ideal vectors are the ones in which each objective is optimized, but they are

not feasible. However, they are essential references, behaving as “bounds” for the Pareto

optimal set. Nadir vectors can be feasible or not, and they are composed of the worst

objective values over the Pareto set. While Nadir points are defined on the Pareto set, ideal

points are defined over the search space.

2. 2 LITERATURE REVIEW

The SMP was initially defined by Rice (1998) on series-parallel subsystems composed

of independent and identical components governed by exponential lifetime distributions. Only

corrective actions are allowed, such that failed components should be replaced to maximize

the system’s reliability to the next mission. Extending this work, Cassady et al. (2001) also

consider independent and identical components, but now governed by Weibull lifetime

distributions. In addition, actions to be performed can be minimal repairs, replacements and

corrective actions. To the best of our knowledge, they present the first exact procedure (a full

enumeration), and this exact algorithm was incorporated into a Monte Carlo simulation for a
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25 subsequent mission solving. Iyoob et al. (2006) solve SMP on series-parallel systems with

identical components and constant failure rates through a modified enumeration procedure

from the redundancy allocation problem. They consider resource buyings, which lead to cost

and reliability improvements, and subsequent missions are resolved through a Markov chain

modeling.

Since then, many new features have been considered in SMPs. We listed two review

papers indicating recent advances in this field. Xu et al. (2015) listed 70 works between 1998

and 2014, classifying them according to problem characteristics and solution procedures. Cao

et al. (2018) do a systematic review on SMP, and they classify the works from system

configurations to working conditions. In addition, they pointed out solution methodologies

used in SMPs (full enumerations, Genetic Algorithms, Simulated Annealing, Tabu Search,

Branch and Bound algorithm, for instance). Finally, they propose a framework for Selective

Maintenance Optimization with four phases and conclude their work with a presentation of

SMP shortcomings on functional dependencies, stochastic models, working conditions

considerations and scheduled maintenance actions.

2.2.1 SMP on fleet-level

When the SMP addresses separated and identical systems responsible for fulfilling

identical missions, then the problem is defined at fleet-level. Schneider and Cassady (2004)

modeled SMP in this context with constant failure rates on components. The problem solving

is obtained by mixing a full enumeration and simulation, where decisions between two

missions are made through the full enumeration. Furthermore, the same authors study this

SMP with cost optimization and abortion mission possibility (SCHNEIDER and CASSADY,

2015). Expressly, when a mission is aborted (for all fleet components), then a penalty cost

incurs. They present three problems, and their solutions are compared for a set of instances

randomly created.

Different from these problems, bi-OSMRAP:k-out-of-n is devoted to only one system,

but extending it to tackle multiple similar systems is a not too hard task, like Schneider and

Cassady (2004) did, extending the original SMP.
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2.2.2 Exact algorithms for SMP

Because SMP is a non-linear problem, enumerations are pretty much the only exact

procedure for solving large instances. So, Rajagopalan and Cassady (2006) created an

efficient solution methodology for large instances of SMPs with series-parallel systems and

subsystems with identical components. Four improvements were proposed and compared with

the complete enumeration for 30000 instances. These strategies are based on establishing

limits for the variables and objectives for computational effort reduction. For some instances,

the computational effort was reduced by 99%, but the proposed methods are sensitive to the

number of subsystems.

Lust et al. (2009) compared heuristics/metaheuristics with exact procedures, and the

model addressed by the authors is equivalent to a non-linear and non-separable Knapsack

Problem. They propose a non-greedy heuristic based on the selection of actions with the

highest rate between the reliability increase and the time duration of the maintenance action.

On the other hand, the exact algorithm is based on the Branch-and-Bound (B&B)

methodology with time relaxations. In this implicit enumeration algorithm, its initial solution

is generated by the proposed non-greedy heuristic, which is also used in the Tabu Search

algorithm. For the tests, they considered 13 instances with a number of components between 4

and 28. The full enumeration becomes inefficient for systems with more than 20 components,

while the algorithm based on B&B reaches all optimal solutions for the tested instances. Tabu

Search had a mean relative error of 0.21%, with computational times less than 1s, and the

authors conclude that the metaheuristic is a fair competitor to the exact algorithm.

Galante and Passannanti (2009) modeled SMP on series-parallel systems subject to

perfect replacements only. The proposed algorithm is based on a modification of Kettele’s

algorithm, which determines the number of redundancy components on subsystems for

reliability maximization. They utilized two criteria for solution space reduction, based on

B&B lower and upper limits. Finally, the algorithm was tested on a naval unit with 199

components, and its execution took a short time.

In a recent work, Cao et al. (2016) consider a series-parallel system with imperfect

actions, and proposed an algorithm for solution space reduction. Firstly, one verifies whether

the maintenance scheme that makes all components available is feasible. Otherwise, schemes

are generated similarly to the B&B algorithm with depth-first-search. However, the procedure

is susceptible to the budget limit.
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Unlike bi-OSMRAP:k-out-of-n, these works are denoted for identical components

(RAJAGOPALAN and CASSADY, 2006) or they do not consider imperfect actions (LUST et

al., 2009; GALANTE and PASSANNANTI, 2009), and these exact algorithms cannot be

directly applied to the new problem proposed here. On the other hand, B&B techniques are

used in all algorithms, demonstrating to be an efficient tool to solve these problems, but

Branch-and-Cut algorithms also should be studied, for example.

2.2.3 Imperfect action models

Imperfect actions put the component in a state between as-good-as-new and as-bad-as-

old. This change is commonly described by effective age and/or hazard failure rates. Two

particular models are the age reduction coefficient of Malik (1979) and the hybrid hazard rate

of Lin et al. (2000). Both are used in many works, as Liu and Huang (2010), and these authors

were the first to deal with SMP under imperfect action utilizing Malik (1979)’s model. Their

work uses a Genetic Algorithm for the problem of coal transportation in a power station that

supplies a boiler. On the other hand, Pandey et al. (2013a) extend Lin et al. (2000)’s work,

proposing a hybrid model of age reduction and hazard adjust. A Differential Evolution

algorithm was used for SMP resolution, and they concluded that imperfect actions

considerations are crucial for the reliability increase.

2.2.4 SMP and repairperson assignment

The output from the SMP solving is the set of maintenance actions to be performed.

These actions should be executed by a maintenance crew, logically, and the dissociation of

the decisions about actions and repairpersons generates sub-optimal solutions. So, Khatab et

al. (2018) were the first to study the SMP and repairperson assignment, achieving interesting

conclusions: how higher is the inferior reliability limit, more repairpersons are hired, and

more components have actions to be performed in them; how lower is the budget, fewer

repairpersons are hired; when the budget permits, high and medium-level skilled

repairpersons are hired, otherwise medium and low-level are hired; and usually mix teams are

more beneficial than homogeneous.

Considering sustainable objectives, Khatab et al. (2019) extend Khatab et al. (2018)’s

problem using new and remanufactured spare parts. Specifically, component lifetimes are

dictated by statistically different lifetimes from the sub-populations. They conclude that
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remanufactured spare parts seem very beneficial and can offer financial advantages with

minimal budget availability.

Chaabane et al. (2020) consider multimissions, and they minimize total costs subject to

a minimal reliability between missions. They propose an Elitist Genetic Algorithm for the

problem solution and conclude that as the minimal limit of reliability decreases, fewer

repairpersons are hired, decreasing costs. Additionally, as this minimal limit increases, more

pro and regular repairpersons are hired otherwise, trainees and regular ones are hired. Mixed

teams reached better solutions regarding costs, reliability and computational complexity.

Finally, as the reliability inferior limit increases, more component replacements occur, and

highly skilled repairpersons are required.

SMP for fleet-level systems and the repairperson assignment was discussed by Khatab

et al. (2020). They transform the original problem into a binary problem by listing all pattern

schemes (combinations of maintenance actions, component states and repairpersons selected).

After this transformation, they solve the equivalent Multidimensional Knapsack Problem.

Imperfect actions avoid mission postponements and additional budget requirements, and the

algorithm reaches optimal solutions in 180 seconds for large problems.

Khatab et al. (2018) and Khatab et al. (2019) works are different from ours on the k-out-

of-n and multi-objective considerations. On the other hand, this work here do not study the

environmental advantage to use remanufactured parts. Additionally, Chaabane et al. (2020)

extend the work of Khatab et al. (2018) to consider multimissions instead only one, like in our

work here.

2.2.5 SMP with stochastic parameters

Quddoos et al. (2015) pointed out that bi-objective fuzzy SMP models are needed due to

difficulties in parameter estimations. They treat the number of failed components, available

budget and action costs as trapezoidal fuzzy numbers, and the stochastic problem is

transformed for a deterministic solving. Extending this work, Diallo et al. (2019) propose a bi-

objective binary programming model with cost and reliability goals, and they resolve it with

the weight sum method. They conclude that how higher is the importance given to the

reliability, more repairpersons are used. Additionally, for large values of the constraint of

minimal system reliability, the weight given to the reliability almost does not impact the

optimal solution.
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Certa et al. (2011) model the SMP with optimization of time and maintenance costs,

subject to a minimal system reliability. An exact approach is created for Pareto Frontier

generation through equivalence and dominance criteria usage, and an instance with 199

components in series-parallel disposition was tested. Another work in this context is of Das

Adhikary et al. (2016) that utilized the NSGA-II for availability and cost optimizations. Zhao

and Zeng (2017) tackle the SMP where break duration times are exponentially distributed

through a multi-mission approach. They solve it through an algorithm of hybrid intelligent

optimization based on empirical rules.

Some interesting works model the SMP with stochastic variables (KHATAB et al.,

2016; KHATAB et al., 2017a; KHATAB et al., 2017b). Khatab et al. (2016) evaluate

imperfect actions considering their quality factors as random variables. Illustrative examples

conclude that neglecting the stochasticity of the quality of actions leads to errors in the policy

evaluation. The deterministic model does not have feasible solutions for one tested example,

while the probabilistic proposed model produces a feasible maintenance plan.

Khatab et al. (2017a) treat break and mission duration times as random variables. Their

objective is to minimize the total maintenance time subject to constraints of minimal system

reliability and maximum budget. They conclude that without the stochasticity in models, there

is an overestimation of the system reliability. Due to the random variables, actions can be

interrupted in the breaks, so one variable was introduced to compute the proportion of

activities executed during the breaks. They found out that to neglect the stochasticity yields a

discrepancy of 4% in the reliability system. Finally, Khatab et al. (2017b) deal with the same

problem, and the authors achieved that, for symmetric distributions for the duration time of

missions, the system reliability is almost insensible to the stochasticity of the variables.

Summarizing, for some real situations, SMP parameters need to be considered as

stochastic variables to minimize mistakes in modeling and maximize the robustness of the

solution provided. Looking all previously cited works, different parameters are dealt as

random variables, but in bi-OSMRAP:k-out-of-n the problem is deterministic.

2.2.6 Special SMPs

Two papers are very special for this research because they were unique to tackle k-out-

of-n systems (DIALLO et al., 2018) and objectives distinct from the SMP literature (ZHANG

et al., 2020). They provided some interesting insights for this work about mathematical

formulations. So, Zhang et al. (2020) minimized the energy consumption, and they propose a
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reliable energy consumption model. A Gravitational Search Algorithm is used for the problem

resolution. In addition, comparisons with other algorithms are stated, and the authors achieved

an insight about the problem behavior: the energy consumption and the constraint of minimal

reliability have a non-linear relation.

About complex systems, Diallo et al. (2018) model the SMP with k-out-of-n systems. A

unique contribution of this paper is the exact approach for SMP resolution, which transforms

the non-linear problem into a binary problem (a Multidimensional Knapsack Problem). The

problem of non-linearity is eliminated by listing all patterns because their reliability

computations are part of the pre-optimization process. Therefore, the problem becomes to

select patterns that optimize the reliability, subject to resource constraints. Two non-linear

models were given, one with cost minimization and another with reliability maximization.

The exact approach reaches better results than the two discussed models, and the authors

conclude that considering the imperfect actions permits interesting optimal solutions.

The proposed problem in this work can be considered as a straight extension of the

Diallo et al. (2018)’s work, because the two problems are very similar, except by the multi-

objective approach in bi-OSMRAP:k-out-of-n.

2.2.7 SMP and maintenance dependencies

Maaroufi et al. (2013) study economical and functional dependencies through global

failure propagation and isolation effects. These effects provide isolation of the dependent

components, preventing failures. Economical dependencies occur in the breaks between

missions. The authors propose five rules for solution space reduction for large problems, and

the illustrative case shows that these rules reduce the solution space by 75%. They use a

simulation/mathematical model for problem solution providing.

In bi-OSMRAP:k-out-of-n, components are statistically independent, but there is a lot of

practical situations where components impact to each other and the original model must be

corrected.

2.2.8 SMP with multi-state systems

Most of the discussed works consider binary states for components, but it is not

reasonable to make this assumption in some cases. Pandey et al. (2013b) focus on multi-state

systems with different output rates. These performance levels are discretized, and the system
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degradation is governed by a homogeneous markovian model (continuous Markov chain),

such that the problem solving is made through an Evolutionary Algorithm. It was conducted a

sensitive analysis on the problem, and they found out some interesting conclusions: there is an

interval for the budget increasing that generates interesting reliability improvements;

imperfect actions considerations lead to the reliability increase; as more resources are

available, the components and actions to be performed are changed; and resource assignments

depend on component states and the system performance.

Dao and Zuo (2017) consider systems with a non-constant load condition governed by a

Normal distribution. In other words, the system degradation rate depends on the component

state and load. The SMP model has time and cost constraints, and a simulation approach

solves it. Chen et al. (2012) address the SMP with one model for the load distribution among

components in multi-state systems, maximizing the system reliability. Cao et al. (2017) state a

fuzzy model with uncertainty in the multi-state components’ performance capacity and state

transition intensity.

Because components in bi-OSMRAP:k-out-of-n are assumed to be in one out of two

states (operational or in failure), the problem do not consider multi-state systems. However,

for train systems for example, the system can visit different states.

2.2.9 SMP with multi-horizon planning

We could cite two papers about the horizon planning for two or more subsequent

missions. Pandey et al. (2016) applied the SMP over a finite horizon planning, where its goal

is to determine the optimal number of intervals and preventive actions for failure and total

cost minimizations. On the other hand, Maillart et al. (2009) tackle infinite and finite horizon

multi-mission planning through stochastic programs. Binary components are subject to

identical missions, and the problem program maximizes the expected total number of

successful missions. Comparing two subsequent missions and single mission approaches, they

found out that, for subsequent missions, it is optimal to “sacrifice” the reliability of the next

mission to avoid a situation in which all components are failed. In addition, comparisons

among myopic, two missions, t missions and infinite mission policies were made. For 1000

artificial instances, the myopic policy produces optimal solutions for all instances, except for

34 of them and, even when it is not optimal, it is nearly optimal.

To sum up, SMP literature has been well studied, presenting many new problems and

algorithms. However, we can see some shortcomings, such as few works modeling
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component dependencies and other important objectives, like environmental objectives. On

the other hand, repairperson assignments seem to be a solid issue in SMPs, and stochastic

SMPs have been widely argued.
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3 METHODOLOGY

This chapter presents the research featuring of this dissertation, besides the

mathematical model for the bi-OSMRAP:k-out-of-n, and the full enumeration, metaheuristic

and matheuristic algorithms.

3. 1 RESEARCH FEATURING

This research is featured as:

 Regarding nature, it is applied because it is focused on solving a specific problem;

 Regarding methodology, it is quantitative because we use analytical and approximated

models to solve the problem;

 Concerning objectives, it is exploratory since it involves a bibliographic survey, and,

descriptive because it describes a specific context, without the researcher interference;

 About the research procedure, it can be said experimental.

State-of-art on exact algorithms for mono-objective SMPs (DIALLO et al., 2018;

KHATAB et al., 2020) are based on full enumerations, where the problem non-linearity is

eliminated through SMP transformation into a Multidimensional Knapsack Problem, and this

equivalent problem is solved through a linear resolution method. As mono and bi-objective

optimizations have different output natures, it is not necessary a linear problem transformation

because we are looking for the Pareto Frontier of the problem, which is obtained with non-

dominance relations. So, we adapted this full enumeration idea for the Pareto Frontier

generation of bi-OSMRAP:k-out-of-n. Since it is NP-hard, we also propose an Adaptive

Variable Neighborhood Search (AVNS), and a matheuristic based on this algorithm and the

linear repairperson assignment model.

To summarize, this research methodology is composed of the steps shown in Figure 1.
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Figure 1- Dissertation methodology.

Source: The author (2022).

The literature review is conducted during the whole work because it is a continuous

activity. The first task is the mathematical problem statement, and then we model the Full

Enumeration Algorithm. So, metaheuristic and matheuristic are proposed, and computational

tests are conducted for all algorithms.

3.2 MATHEMATICAL MODEL

Bi-OSMARP:k-out-of-n mathematical model is supported by some assumptions:

 The system is composed of multiple, statistically independent and repairable

binary components. Statistically independent components is an assumption to neglect

dependencies on components. Also, components assume two states - failed and

operational. With this assumption, component reliability computations are made easier;

 During the break, components do not age (age only is operation-dependent). The

break duration is not sufficient for failure mode arising from the environment, thus we

consider only degradation from the operation;

 During the mission, no maintenance activity is allowed other than minimal repair

when a component is in failed state and this maintenance action has no effect on the

failure rate. Because SMP goal is the establishment of the action plan to be performed

during breaks, action executions are only permitted in the break, except minimal repairs

on components that failed during the mission;
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 Time to perform minimal repair during mission is neglectable. For the same

reason that previous assumption, time for minimal repair during mission is also

neglectable. In other words, costs incurred after the break are not counted;

 All resources are available when required. Resource unavailability should be

represented by some penalization in model parameters, which is not predicted in the

model;

 Multiple components can be worked on simultaneously without repairpersons

colliding. For many systems, e. g. multi-pump systems, production lines and navy vessels,

their components can be accessed without interference on remainder components.

Because they are large systems, different repairpersons can work on different components

without hindering costs occurrences.

This work tackles multiple k-out-of-n subsystems in series (said s subsystems, each with

si parallel components). There are n different and statistically independent components Eij

(i=1,..,s and j=1,..,si) where for each subsystem i, at least ki components must be operational

for the subsystem to be considered functional. The system just finished a mission and it is in

preparation for the next one. That is, maintenance activities will be carried out during the next

Ψ time units (break time) and the next mission lasts U time units. For each component,

variables Bij and Aij denote the effective ages of Eij components at the beginning and end of

the break, respectively. Furthermore, Xij and Yij dictate the functioning state of component Eij

at the beginning and end of the break, respectively (1 if Eij is functioning and 0 otherwise).

Component effective ages are perfectly known at the beginning and end of the break.

Concerning actions, preventive and corrective actions can be performed on system’s

components. Each failed Eij has a list of action options to be executed, composed by Lij+1

actions {0,1,...,l,...,Lij}. Actions 0, 1, l and Lij represent “Do nothing”, minimal repair (it

brings the component to an as bad as old state), an intermediate action (imperfect action) and

as good as new maintenance action, respectively. All imperfect actions lead to a quality

improvement of the component, generally given by age reduction and/or hazard failure rates

decreasing. So, utilizing the age reduction proposed by Malik (1979), corrective maintenance

level l reduces the component age by αijl\0≤αijl≤1 and takes tijlc time units. Similarly,

preventive maintenance level l is given by l∈{0,2,...,Lij}. Actions from 2 to Lij rejuvenate the

component age through reduction by a factor δijl\0≤δijl≤1 and their performing last tijlp time

units.
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Maintenance crew is responsible for action executions. So, there are r repairpersons

(r=1,...,m), which are associated parameters crf and crv to them, denoting fixed and variable

costs, respectively. Variable costs directly depend on the spent time by repairpersons.

Therefore, the decisions are about the action to be performed for each Eij and the

repairperson responsible to do it. Binary variables yijlr and zr indicate these decisions. When

yijlr=1, then maintenance level l is performed on component Eij by repairperson r, and

variables zr that indicate the repairperson hiring or not.

Now, from the effective age of component Eij immediately before the break starting (Bij),

its initial status (Xij) and maintenance level practiced (l) we can define the effective age of

component Eij after the break time (Aij) through Equation (1).

𝐴𝑖𝑗 = 𝐵𝑖𝑗 𝑋𝑖𝑗
𝑟=1

𝑚

𝑙=0,𝑙≠2

𝐿𝑖𝑗

𝛿𝑖𝑗𝑙. 𝑦𝑖𝑗𝑙𝑟෍෍ + (1 − 𝑋𝑖𝑗)

𝑟=1

𝑚

𝑙=0

𝐿𝑖𝑗

𝛼𝑖𝑗𝑙. 𝑦𝑖𝑗𝑙𝑟෍෍ . (1)

Note that the two terms in Equation (1) are mutually exclusive because each one

describes preventive and corrective maintenance in a dissociated way.

The probability of the system surviving the next mission is denoted by R. It depends on

each component’s reliability and, naturally, individual aggregation for each subsystem. The

reliability of component Eij for the next mission, when it is in working state at the ending of

the break, is Rijc(U|Aij). This conditional probability depends on mission duration (U) and the

effective age at the beginning of the mission (Aij). Applying Bayes’ theorem, 𝑅𝑖𝑗
𝑐 (𝑈|𝐴𝑖𝑗) =

𝑅𝑖𝑗(𝐴𝑖𝑗+𝑈)

𝑅𝑖𝑗(𝐴𝑖𝑗)
, where Rij(t) is the unconditional probability of surviving a mission which lasts t time

units. Here we are considering lifetime distributions dictated by Weibull distributions with

shape and scale parameters βij and ηij, respectively. That is, 𝑅𝑖𝑗(𝑡) = 𝑒𝑥𝑝 −
𝑡

𝜂𝑖𝑗

𝛽𝑖𝑗

.

Therefore, the reliabilities for each subsystem (Ri) and the whole system (R) are:

𝑅𝑖 =

𝑗𝑘𝑖=1

𝑠𝑖

𝑗𝑘𝑖−1=1

𝑗𝑘𝑖−1

. . .෍

𝑗1=1

𝑗2−1

𝑣=𝑗1

𝑗𝑘𝑖

𝑅𝑖𝑣
𝑐ෑ෍

𝑢=1,𝑢≠𝑗1,...,𝑗𝑘𝑖

𝑗𝑘𝑖

(1 − 𝑅𝑖𝑢
𝑐 ).ෑ 𝑌𝑖𝑗෍ , (2)

𝑅 =

𝑖=1

𝑠

𝑅𝑖
𝑠ෑ =

𝑖=1

𝑠

𝑗𝑘𝑖=1

𝑠𝑖

𝑗𝑘𝑖−1=1

𝑗𝑘𝑖−1

. . .෍

𝑗1=1

𝑗2−1

𝑣=𝑗1

𝑗𝑘𝑖

𝑅𝑖𝑣
𝑐ෑ෍

𝑢=1,𝑢≠𝑗1,...,𝑗𝑘𝑖

𝑗𝑘𝑖

(1 − 𝑅𝑖𝑢
𝑐 ). 𝑌𝑖𝑗ෑ෍ෑ . (3)

This reliability computation is not straight because it requires a series of computations

with mutually exclusive events, i. e. a full enumeration (ARULMOZHI, 2002). For instance,

the reliability to survive the next mission for an 1-out-of-3 subsystem (parallel subsystem) is
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the sum of probabilities of: all three components may be functioning, any two of three

components may be functioning and remaining one failed and any one of three components

may be functioning and remaining two failed. Taking the last event as an example and

assuming Reli the surviving reliability of component i, then this event is described by: Rel1.(1-

Rel2).(1-Rel3)+Rel2(1-Rel1).(1-Rel3)+Rel3(1-Rel1).(1-Rel2). All possibilities of one component

to be operational and the other two failed are modeled in this equation.

On the other hand, costs involved in maintenance actions executions are let by C, which

is denoted by:

𝐶 =

𝑖=1

𝑠

𝑗=1

𝑠𝑖

𝑟=1

𝑚

𝑐𝑟
𝑓
. 𝑧𝑟 + (1 − 𝑋𝑖𝑗)

𝑙=0

𝐿𝑖𝑗

𝑐𝑟
𝑣. 𝑡𝑖𝑗𝑙

𝑐 . 𝑦𝑖𝑗𝑙𝑟෍ + 𝑋𝑖𝑗
𝑙=0,𝑙≠1

𝐿𝑖𝑗

𝑐𝑟
𝑣. 𝑡𝑖𝑗𝑙

𝑝
. 𝑦𝑖𝑗𝑙𝑟෍෍෍෍ , (4)

where each term represents, in sequence, hiring costs, corrective costs and preventive

costs. Similarly, the time spent on these actions for each repairperson r is given by Tr:

𝑇𝑟 =

𝑖=1

𝑠

𝑗=1

𝑠𝑖

(1 − 𝑋𝑖𝑗)

𝑙=0

𝐿𝑖𝑗

𝑡𝑖𝑗𝑙
𝑐 . 𝑦𝑖𝑗𝑙𝑟෍ + 𝑋𝑖𝑗

𝑙=0,𝑙≠1

𝐿𝑖𝑗

𝑡𝑖𝑗𝑙
𝑝
. 𝑦𝑖𝑗𝑙𝑟෍෍෍ . (5)

The non-linear binary program that models bi-OSMRAP:k-out-of-n is indicated below.

𝑀𝑎𝑥 𝑅 =

𝑖=1

𝑠

𝑗𝑘𝑖=1

𝑠𝑖

𝑗𝑘𝑖−1=1

𝑗𝑘𝑖−1

. . .෍

𝑗1=1

𝑗2−1

𝑣=𝑗1

𝑗𝑘𝑖

𝑅𝑖𝑣
𝑐ෑ෍

𝑢=1,𝑢≠𝑗1,...,𝑗𝑘𝑖

𝑗𝑘𝑖

(1 − 𝑅𝑖𝑢
𝑐 )ෑ෍ .𝑌𝑖𝑗ෑ (6)

𝑀𝑖𝑛 𝐶 =

𝑖=1

𝑠

𝑗=1

𝑠𝑖

𝑟=1

𝑚

𝑐𝑟
𝑓
. 𝑧𝑟 + (1 − 𝑋𝑖𝑗)

𝑙=0

𝐿𝑖𝑗

𝑐𝑟
𝑣. 𝑡𝑖𝑗𝑙

𝑐 . 𝑦𝑖𝑗𝑙𝑟෍ + 𝑋𝑖𝑗
𝑙=0,𝑙≠1

𝐿𝑖𝑗

𝑐𝑟
𝑣. 𝑡𝑖𝑗𝑙

𝑝
. 𝑦𝑖𝑗𝑙𝑟෍෍෍෍ (7)

Subject to:

𝑗=1

𝑠𝑖

𝑌𝑖𝑗 ≥ 𝑘𝑖෍ , ∀𝑖 ∈ {1, . . . , 𝑠}
(8)

𝑖=1

𝑠

𝑗=1

𝑠𝑖

(1 − 𝑋𝑖𝑗)

𝑙=0

𝐿𝑖𝑗

𝑡𝑖𝑗𝑙
𝑐 . 𝑦𝑖𝑗𝑙𝑟෍ + 𝑋𝑖𝑗

𝑙=0,𝑙≠1

𝐿𝑖𝑗

𝑡𝑖𝑗𝑙
𝑝
. 𝑦𝑖𝑗𝑙𝑟෍෍෍ ≤ 𝛹𝑧𝑟, ∀ 𝑟 ∈ {1, . . . , 𝑚} (9)

𝑖=1

𝑠

𝑗=1

𝑠𝑖

(1 − 𝑋𝑖𝑗)

𝑙=1

𝐿𝑖𝑗

𝑦𝑖𝑗𝑙𝑟෍ + 𝑋𝑖𝑗
𝑙=2

𝐿𝑖𝑗

𝑦𝑖𝑗𝑙𝑟෍෍෍ ≥ 𝑧𝑟, ∀ 𝑟 ∈ {1, . . . , 𝑚} (10)

𝑟=1

𝑚

𝑙=0

𝐿𝑖𝑗

(1 − 𝑋𝑖𝑗). 𝑦𝑖𝑗𝑙𝑟෍ +

𝑙=0,𝑙≠1

𝐿𝑖𝑗

𝑋𝑖𝑗. 𝑦𝑖𝑗𝑙𝑟෍ = 1෍ , ∀ 𝑖 ∈ {1, . . . , 𝑠} 𝑎𝑛𝑑 𝑗

∈ {1, . . . , 𝑠𝑖}

(11)
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𝑦𝑖𝑗1𝑟 ≤ 1 − 𝑋𝑖𝑗, ∀ 𝑖 ∈ {1, . . . , 𝑠}, 𝑗 ∈ {1, . . . , 𝑠𝑖} 𝑎𝑛𝑑 𝑟 ∈ {1, . . . , 𝑚} (12)

𝑌𝑖𝑗 = 𝑋𝑖𝑗 +

𝑟=1

𝑚

𝑙=1

𝐿𝑖𝑗

(1 − 𝑋𝑖𝑗). 𝑦𝑖𝑗𝑙𝑟෍෍ . 𝑧𝑟, ∀ 𝑖 ∈ {1, . . . , 𝑠} 𝑎𝑛𝑑 𝑗 ∈ {1, . . . , 𝑠𝑖} (13)

𝐴𝑖𝑗 = 𝐵𝑖𝑗 𝑋𝑖𝑗
𝑟=1

𝑚

𝑙=0,𝑙≠1

𝐿𝑖𝑗

𝛿𝑖𝑗𝑙. 𝑦𝑖𝑗𝑙𝑟෍෍ + (1 − 𝑋𝑖𝑗)

𝑟=1

𝑚

𝑙=0

𝐿𝑖𝑗

𝛼𝑖𝑗𝑙. 𝑦𝑖𝑗𝑙𝑟෍෍ , ∀ 𝑖

∈ {1, . . . , 𝑠} 𝑎𝑛𝑑 𝑗 ∈ {1, . . . , 𝑠𝑖}

(14)

𝑅𝑖𝑗
𝑐 (𝑈|𝐴𝑖𝑗) =

𝑅𝑖𝑗(𝐴𝑖𝑗 + 𝑈)

𝑅𝑖𝑗(𝐴𝑖𝑗)
, ∀ 𝑖 ∈ {1, . . . , 𝑠} 𝑎𝑛𝑑 𝑗 ∈ {1, . . . , 𝑠𝑖}

(15)

𝑦𝑖𝑗𝑙𝑟, 𝑧𝑟 = {0,1}, 0 ≤ 𝑅𝑖𝑗
𝑐 (𝑈|𝐴𝑖𝑗) ≤ 1, ∀ 𝑖 ∈ {1, . . . , 𝑠}, 𝑗 ∈ {1, . . . , 𝑠𝑖} 𝑙

∈ {1, . . . , 𝐿𝑖𝑗} 𝑎𝑛𝑑 𝑟 ∈ {1, . . . , 𝑚}.

(16)

Equations (6) and (7) state the bi-objective problem feature, which maximizes the

system reliability and minimizes maintenance actions costs. Constraints (8) indicates the k-

out-of-n feature for each subsystem. Equations (9) force hired repairperson r to perform

actions without exceeding the break duration time and Equations (10) that he/she is hired

before any action execution, excluding “Do-nothing” and minimal repairs for working

components. Restrictions (11) guarantee that only one maintenance action can be carried out

on component Eij. Equations (12) establish that minimal repairs are possible only on failed

components, while Constraints (13), (14) and (15) update the working states, effective ages of

components and compute conditional probabilities, respectively. Finally, restrictions (16)

state natural constraints on decision variables (binary decisions) and the interval of

conditional probabilities.

In conclusion, bi-OSMRAP:k-out-of-n maximizes the system reliability while

minimizing maintenance actions costs for a set of k-out-of-n subsystems connected in a series

way. There is a set of repairpersons capable of executing the maintenance actions with

different performances and costs. Specifically, its objective is to find the Pareto Frontier (PF)

by selecting the: set of components to be maintained, set of maintenance levels to be practiced

on each selected component, number of repairpersons to be hired and assignments these

repairpersons to each maintenance level.

3. 3 FULL ENUMERATION ALGORITHM
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Figure 2 shows the pseudo-code for exact Pareto Frontier generation for bi-

OSMRAP:k-out-of-n through full enumeration (FEA). This algorithm is presented in the work

of Lima et al. (2021).

Figure 2- Pseudo-code of the Full Enumeration Algorithm for bi-OSMRAP:k-out-of-n.

Source: The author (2022).

In pseudo-code above, we generated all feasible combinations of maintenance actions,

such that k-out-of-n constraints are satisfied (line 2). Because subsystem reliabilities depend

only on performed actions (it does not matter which repairperson will perform the action),

these reliabilities can be computed without the repairperson assignments (line 4). Then, all

possible repairperson assignments are generated for every maintenance combination, meeting

the time restrictions in Equation (9) (line 5). Now, cost computations can be realized (line 7),

and non-dominance relations are investigated. So, a list of the current non-dominated

solutions is initialized (line 11), and for each solution (combination of maintenance action and

repairperson assignment), we compare it to every solution in the non-dominated solution list.

This solution is discarded (line 15), takes out one solution in NDS (line 17) or is put into the

list (line 20).
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If we consider that all components have the same list of actions ( 𝐿 = 𝐿𝑖𝑗, ∀ 𝑖 ∈

{1, . . . , 𝑠} 𝑎𝑛𝑑 𝑗 ∈ {1, . . . , 𝑠𝑖}) and the worst instance case, i. e. when k-out-of-n restrictions are

relaxed (𝑘𝑖 = 0, ∀ 𝑖 ∈ {1, . . . , 𝑠}), all components are failed (𝑋𝑖 = 0, ∀ 𝑖 ∈ {1, . . . , 𝑠}) and the

break time is too long compared to maintenance actions, then there are
𝑖=0
𝑛 𝑚𝑖. (|𝐿| −∑

1)𝑖 .
𝑛

𝑖
possible solutions. In this equation, i indicates the number of components without

“Do-nothing” actions assigned to them. For example, i=0 describes the case where all

components have maintenance actions different from “Do-nothing” assigned to them. As

actions different from “Do-nothing” will be performed on i components, then there are (|𝐿| −

1)𝑖 possible actions to be performed on all components. Because each one of the i

components could perform |𝐿| − 1 actions, for all i components, there is
𝑛

𝑖
possibilities of

action combinations on the components. Finally, for each action different from “Do-nothing”,

all repairpersons can be assigned, and therefore it is multiplied by𝑚𝑖.

This previous equation for the number of possible solutions is more sensitive to the

number of components than maintenance levels and repairpersons. It has n-th exponential

dependency and a combination of n factorial dependencies. However, on the computational

view, a simple combination plays an exponential complexity in the worst case (when i=n/2).

Therefore the algorithm has an exponential dependence on n in worst-case because the

remaining variables have minor computational impacts.

3. 4 METAHEURISTIC ALGORITHM

This sub-chapter discusses the metaheuristic algorithm development, which is based on

the Multi-Start and Adaptive Variable Neighborhood Search (AVNS). The solution

representation is given by a n-th dimensional two-array, where one of them says which

maintenance level should be practiced in each component, while the other states which

repairperson is responsible for executing the action on the corresponding component. For

example, a generic solution for the bi-OSMRAP:k-out-of-n of the system in Figure 3 is

represented in Figure 4.
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Figure 3- Fictitious problem.

Source: The author (2022).

Figure 4- Solution representation.

Source: The author (2022).

In Figure 3, a “Do-nothing” action is assigned to component 1 from subsystem 1 (1,1)

and, therefore, none repairperson is assigned to this component (“-” in the array of

repairpersons). Additionally, repairperson 1 is responsible for performing maintenance levels

1 and 3 on components 1,2 and 2,1, respectively, and repairperson 2 executes maintenance

level 1 on component 2,2.

3.4.1 Initial Solution Construction

Searches in AVNS are performed from an initial solution using destroying and repair

operators. So, we used a rustic Multi-Start method to created the initial PF. The number of

iterations (Δi,met), a greedy factor (τi,met) and the probability of finishing the solution

construction when it is already feasible (ρ) are input parameters. Figure 5 shows the pseudo-

code for Multi-Start procedure.
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Figure 5- Multi-Start algorithm for Initial Pareto Frontier.

Source: The author (2022).

Because we have two objectives to optimize, probabilities in line 7 from Figure 5

consider reliabilities and costs. Actions and repairpersons are selected for each subsystem to

make it k-out-of-n feasible (lines 11-21). So with certain probability, new actions and

repairpersons are added to the solution (line 25). Otherwise, the solution construction for this

subsystem is finished and then the next subsystem is taken (line 27). “Do-nothing” actions are

allowed in lines 22-29 because the solution already is k-out-of-n feasible. Finally, we compute

the reliability and cost for the solution and non-dominance relations are performed (line 33).
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3.4.2 Adaptive Variable Neighborhood Search Algorithm

Variable Neighborhood Search (VNS) is a metaheuristic proposed by Mladenović and

Hansen (1997). VNS’s framework consists of the successive application of neighborhood

structures and one local search until there is no improvement in the incumbent solution. That

is, there is a predetermined sequence of applying of the neighborhood structures, and this

chain of structures is constantly repeated until there is no improvement in the current solution.

Many variants have been proposed for Variable Neighborhood Search. One of them, the

Adaptive Variable Neighborhood Search (ANVS), has been studied in some multiobjective

problems, like Facility Layout Problem (RIPON et al., 2013), Node Placement

(ABDELKHALEK et al., 2015), Reentrant Flow Shop Scheduling (RIFAI et al., 2016).

AVNS operates through the selection of one neighborhood structure, among many, and the

selection probability is dynamically changed based on the neighborhood operator

performance during the algorithm execution.

On the other hand, Das (1999) states that for multiobjective problems, the decision-

makers usually pick one solution from the PF that “bulges out the most”. It can be named as

the point that achieves maximum “simultaneous improvement on the multiple objectives” and,

therefore, has the highest value in terms of the marginal rate of the objective. So, during

algorithm execution, we need to focus more on that region for the best exploration.

Operators in our metaheuristic are used to destroy and repair one solution from the PF,

trying to find new good solutions. So, when one destroying operator is used, it removes an

action/repairperson from the solution, and this solution is ”fixed” by a repair operator. Figure

6 shows the scheme for the AVNS, where for every iteration, a new single solution might be

found through the using of two out of six operators for actions or repairpersons. Operators for

action and repairpersons are very similar. From the six operators for each variable (actions

and repairpersons), three of them are devoted to removing and the other half to repair, totaling

twelve neighborhood operators.

Each one of these three kinds of operators have different rules for decision: greedy,

pseudo-random or completely random. Specifically, for the greedy decision, the operator

selects the action or repairperson with the lowest rate between reliability and cost. The

pseudo-random operator computes probabilities through the rate between reliability and cost

and power them to a greedy factor to take a pseudo-randomly decision. Finally, the last kind

of operator takes a random feasible decision. For repairperson operators we just use the cost
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instead the rate between the objectives, and when “Do-nothing” actions are considered, then

we calculate the rate with the current reliability of the component and a mean cost defined.

Figure 6- AVNS operation.

Source: The author (2022).

In pseudo-code above, input data are the number of iterations (Δo,met), the greedy factor

for pseudo-random decisions (τo,met), the maximum number of action or repairperson removals

in one iteration (μmet), the mean for Poisson distribution for the number of removals at the

beginning and end (λinit,met and λend,met), and the powering factor to focus on knee region of the

PF (κinit,met and κend,met). Parameters (λ’s and κ’s) are linearized according to the number of

iterations executed. Line 2 initializes the weights for each operator, making them equal to one.

These weights carry the historical success of each operator, and operators with better

historical are most likely chosen.

In every iteration of the AVNS, one solution from the current PF is taken and it is

changed by the operators to get a new better solution. As previously said, the knee region of
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the PF is important for decision-makers. Therefore, to focus on this area, we develop a rule to

explore solutions from this region at the algorithm ending, whereas at the beginning, searches

in whole solution space are encouraged. The rule is following: we calculate selecting

probabilities for each solution belonging to the approximated PF, and these probabilities are

computed according to the distance from the Ideal Point (line 5). This point is composed of

perfect objective values, named 100% of reliability and 0 cost. To focus dynamically on the

knee region, we power the selecting probabilities to a greedy parameter. This parameter

should have low and high values at the algorithm beginning (κinit,met) and ending (κend,met),

respectively. Finally, the powering parameter is linearized between these two values for the

remaining iterations.

Nevertheless, selecting one solution from the knee region is not sufficient to guarantee

that the searches will focus on this area. As more changes in solution are made (operators

used), there is a natural trend to visit more distant regions. Therefore, we also proposed a rule

to prevent many changes in the solution at the algorithm beginning and hence, the exploring

of distant areas from the knee region. Thus, the number of removals is governed by a Poisson

distribution with a mean between [λinit,met, λend,met]. We discretized the number of removals

from 2 to µmet, such that 2 ≤ µmet ≤ n. So, for every iteration, probabilities of removing 2, 3, . . .

or µmet are computed by the Poisson distribution. The mean is linearized between the initial

and ending limits (line 7).

Action and repairperson operators are selected according to their weights. Destroying

operators can remove “Do-nothing” actions too, but in this case, when we are rebuilding the

solution, we must decide about the action and repairperson jointly. Thus, all feasible

combinations of actions and repairpersons are considered.

Line 12 performs a local search with the new solution obtained. The local search is

applied for each variable (actions and repairpersons) in different ways. Figure 3 shows the

procedure when we considered the example from Figure 3 with 2 repairpersons and 4

maintenance levels. Components 1,2 and 2,2 are failed, while 1,1 and 1,2 are in working

states.
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Figure 7- Local search.

Source: The author (2022).
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In Figure 7, the local search is divided into two, for actions (a) and repairpersons (b).

For actions, two subsequent actions are investigated for each component since the original

action is not a “Do-nothing” action. Using component 1,1 as an example, “Do-nothing” and

level 3 actions were analyzed because component 1,1 is operational. Concerning

repairpersons, each component with an action different from “Do-nothing” has all

repairpersons analyzed. All components are analyzed in the local search for each decision,

and every solution obtained from the local search is compared to the current approximated PF.

Multi-objective solutions are challenging to analyze because we cannot unify their

behavior into one metric, like mono-objective problems. For example, Laszczyk and

Myszkowski (2019) extensively review quality metrics for multi-objective problems. One of

the most popular metric is the hypervolume, which is a metric for convergence, uniformity,

and spread that computes the volume of the hypercube defined by the PF and Nadir Point.

Therefore, the operators’ weights used are updated based on the improvement, or not, of the

hypervolume (line 13). The updating rule is: if the hypervolume does not change, the weights

are decreased in one unit for each operator according to how many times it was used. If the

hypervolume increased, the weights are increased according to the size of the change, always

rounding up. For instance, if there were a 2.8% increase in hypervolume, we increase the

weights in 3 units for each used operator how many times it was used.

3. 5 MATHEURISTIC ALGORITHM

Matheuristic algorithm is the same as the previous discussed, but now, every solution in

the approximated PF is guaranteed to be cost-optimal. In other words, a linear program for

repairperson assignment is solved for each new solution in the current PF. This model starts

from a k-out-of-n feasible solution with actions assigned to the components. The cost optimal

repairperson assignment is achieved through solving the following model:

𝑀𝑖𝑛 𝐶 =

𝑖=1

𝑚

𝑧𝑖𝑐𝑖
𝑓
+෍

𝑖=1

𝑚

𝑗=1

𝑛

𝑥𝑖𝑗𝑐𝑖𝑗
𝑣෍෍

(17)

Subject to:

𝑖=1

𝑚

𝑥𝑖𝑗 = 𝑊𝐶𝑗෍ ,∀𝑗 ∈ {1, . . . , 𝑛} (18)

𝑗=1

𝑛

𝑡𝑖𝑗𝑥𝑖𝑗෍ ≤ 𝛹𝑧𝑟, ∀ 𝑖 ∈ {1, . . . , 𝑚} (19)
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𝑥𝑖𝑗 = {0,1}, 𝑧𝑖 = {0,1}, ∀ 𝑖 ∈ {1, . . . , 𝑚}, 𝑗 ∈ {1, . . . , 𝑛}. (20)

In the model, z variables are the same as those from bi-OSMRAP:k-out-of-n. Variables

x indicate repairperson i executes the action of component j if its value is 1. cif’s are fixed

costs of repairperson hiring, like in bi-OSMRAP:k-out-of-n, and cijv’s are costs of repairperson

i to execute the action assigned to component j. WCj are binary values that indicate if

component j has an action different from “Do-nothing”, i. e. if WCj=1, then there is an action

different from “Do-nothing” in component j. tij are parameters that describe the time for

repairperson i to perform the action in component j. Case WRj=0, then tij=0 for all i ∈ r.

Logically, cijv’s, WCj’s and tij’s depend on the set of actions selected for each component.

The objective function minimizes the costs for that solution. Constraints (18) indicate

that when an action is different from “Do-nothing”, one repairperson should be assigned to

that action. Otherwise, no repairperson is assigned. Restrictions (19) impose that each

repairperson must not exceed the break intermission time, and these restrictions are similar to

(9) in bi-OMSRAP:k-out-of-n model.

So, the linear repairperson assignment model above is executed for each approximated

solution in the PF. Therefore, the PF is guaranteed to be cost-optimal at the end of the

algorithm execution. It is important to note that the model above is the same that models the

Single-Source Capacitated Facility Location Problem.
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4 COMPUTATIONAL RESULTS AND DISCUSSIONS

This chapter discusses the numerical experiments conducted, and we divided it into four

sub-chapters. The first one (4.1) discusses an illustrative example of the new proposed

problem. The second one (4.2) brings a sensitive analysis of the illustrative example. We

show how the new problem behaves regarding changes in break intermission time,

repairperson crew composition, imperfect action existence, quality parameters of the

maintenance levels, the length of the next mission, k-out-of-n subsystems, lifetime

distribution and cost parameters. The third sub-chapter (4.3) presents the metaheuristic and

matheuristic resolutions of the illustrative example, besides the performance evaluation of the

approximated PFs provided and the exact PF. Finally, the last one (4.4) resolves a variation of

Liu and Huang (2010)’s instance, which is a moderately large instance and we can see the

algorithm performances for a real size instance.

We evaluated the problem behavior on a small instance because we can know the exact

PF through the FEA. Then, we compared the approximated PFs generated by the proposed

algorithms to the exact PF. On the other hand, the PF providing for a moderately large

instance requires a big computational effort. All computational tests were executed in a

personal computer with an Intel i5 1.7GHz processor with 8GB RAM and 64bits operational

system. All algorithms were implemented in Python language, specifically in IDE Spyder,

while the repairperson assignment model in 3.3 was solved with Cplex.

4. 1 ILLUSTRATIVE EXAMPLE

We created an illustrative example to analyze the problem features. The system has 2

subsystems with 3 components each (Figure 8).
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Figure 8- Illustrative example.

Source: The author (2022).

They are 2-out-of-3 and 1-out-of-3 subsystems, respectively. The second subsystem acts

as a parallel system because the whole subsystem works when at least one component is

operational. The break time (Ψ) is equal to 15 time units, while the next mission length (U) is

50. Table 1 shows the parameters for each component.

Table 1- Component parameters for the illustrative example.

Components η β X B
E11 150 1.5 0 60
E12 228 2.4 1 70
E13 168 1.6 0 50
E21 240 2.6 0 65
E22 168 1.8 0 80
E23 204 2.4 0 40

Source: The author (2022).

η and B are given in time units. Concerning the repairperson crew, we consider three

action executioners named as trainee, regular and expert. Their fixed and variable costs are in

Table 2.

Table 2- Repairperson crew costs.

Repairperson cf cv

Trainee 6 2

Regular 13 4

Expert 25 8

Source: The author (2022).

We considered four maintenance levels for this illustrative example. In other words,

only one imperfect action is considered (the remaining are “Do-nothing”, minimal repair and

perfect replacements). All components have the same list of actions and age reduction factors

are in Table 3.
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Table 3- Age reduction factors.

Maintenance Level α δ

“Do-nothing” 1 1

Minimal Repair 1 -

Imperfect Replacement 0.5 0.3

Perfect Replacement 0 0

Source: The author (2022).

Table 4 brings the time to perform actions, according to the nature of the action.

Table 4- Times to perform the maintenance actions for each repairperson.

Maintenance Level
tc tp

Trainee Regular Expert Trainee Regular Expert

“Do-nothing” 0 0 0 0 0 0

Minimal Repair 1.6 1.2 0.8 - - -

Imperfect Replacement 3.2 2.4 1.6 2.0 1.5 1.0

Perfect Replacement 10.4 7.8 5.2 4.4 3.3 2.2

Source: The author (2022).

Therefore, we run the illustrative example with the FEA from sub-chapter 3.2. Figure 9

shows the exact PF and the running time was 160 seconds.
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Figure 9- Exact Pareto Frontier of illustrative example.

Source: The author (2022).

To understand the FEA complexity, we created 5 random instances with only one

subsystem and Table 5 shows their features.
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Table 5- Instance features for FEA performance evaluating.

Feature
Instance

1 2 3 4 5

n 3 4 5 6 7

[ηminij,ηmaxij] [15,20] [15,20] [150,240] [150,240] [150,240]

[βminij,βmaxij] [1.5,3] [1.5,3] [1.5,2.6] [1.5,2.6] [1.5,2.6]

B [8,20] [8,20] [20,45] [20,45] [20,45]

k 2 3 3 4 4

𝑖=1

𝑛

𝑋𝑖෍ 1 2 1 2 3

𝛹 8 19 15 15 15

U 10 10 50 50 50

|L| 3 4 4 4 3

[tc,minij,tc,maxij] [0.9,9] [0.7,9] [0.8,10.4] [0.8,10.4] [0.8,10.4]

[tp,minij,tp,maxij] [2,3] [1.5,3] [1.6,4.4] [1.6,4.4] [2.2,4.4]

m 2 3 3 3 3

[crf,min,crf,max] [50,60] [50,70] [6,25] [6,25] [6,25]

[crv,min,crv,max] [2,4] [2,4,5] [2,8] [2,8] [2,8]

Source: The author (2022).

In Table 5, the intervals indicate the amplitude of parameters in each instance. To

evaluate the FEA difficulty to solve the instances, we gather the computational times for each

instance into Figure 10. Instance 5 was run in 465.2 seconds representing a reduction of

43.92% compared to instance 4. Despite having more components, instance 5 is less difficult

to resolve. For this context, imperfect action dismissing is more impacting than a marginal

increase in n.
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Figure 10- Computational times for the random instances.

Source: The author (2022).

Figure 10 has a substantial jump in execution time from instance 3 to 4. If we apply a

potential regression fitting on Figure 10, we will obtain a correlation degree equal to 0.99875,

and if we try to predict the computational time for an instance with 7 components, the

expected time will be equal to 6246s or 1.735h. The required time will be far from acceptable

for systems with more components, and therefore, approximated algorithms are necessary.

4. 2 SENSITIVE ANALYSIS

From the illustrative example, we introduce some single changes in parameters of the

problem from 4.1 to understand the problem behavior. In subsequent figures, each legend and

its meaning is showed in Table 6.
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Table 6- Legend meanings.

Instance Meaning

NM The original instance

150%Ψ 50% increase in the break maintenance time

50%Ψ 50% decrease in the break maintenance time

TC Homogeneous crew with trainee repairpersons

RC Homogeneous crew with regular repairpersons

EC Homogeneous crew with expert repairpersons

WIA The original instance without the imperfect action

150%AF 50% increase in age factors for the imperfect action

50%AF 50% decrease in age factos for the imperfect action

U=10 Mission length equal to 10 units

k=1,1 1-out-of-3 and 1-out-of-3 subsystems (both parallel subsystems)

k=3,2 3-out-of-3 and 2-out-of-3 subsystems

k=3,3 3-out-of-3 and 3-out-of-3 subsystems (both series subsystems)

150%β 50% increase in shape parameters of the components’ Weibull lifetime distribution

50%β 50% decrease in shape parameters of the components’ Weibull lifetime distribution

150%η 50% increase in scale parameters of the components’ Weibull lifetime distribution

50%η 50% decrease in scale parameters of the components’ Weibull lifetime distribution

150%cf 50% increase in fixed costs for the repairpersons

50%cf 50% decrease in fixed costs for the repairpersons

150%cv 50% increase in variable costs for the repairpersons

50%cv 50% decrease in variable costs for the repairpersons

Source: The author (2022).

Firstly, changes in shape parameters are exciting because how lowest they are, lifetime

distributions follow an exponential distribution, and how greater they are, the distribution acts

as a normal distribution. On the other hand, changes in k-out-of-n restrictions are important

because the nature of the subsystem is changed. For example, k=1,1 expresses two

subsystems with components in a parallel disposition, whereas k=3,3 denotes a system with

all components in series. Running times for all “new” instances are in Table 7.
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Table 7- Running times for instances from the sensitive analysis.

Instance Running time (s)

NM 160

150%Ψ 175

50%Ψ 123

TC 432

RC 583

EC 323

WIA 17

150%AF 163

50%AF 162

U=10 158

k=1,1 162

k=3,2 112

k=3,3 78

150%β 160

50%β 137

150%η 161

50%η 166

150%cf 166

50%cf 159

150%cv 162

50%cv 160

Source: The author (2022).

Comparing 150%Ψ and 50%Ψ with NM, there is an increase and decrease in running

times, respectively. This behavior was expected because with more time to perform

maintenance actions, solutions that were time unfeasible are now feasible, and more solutions

are analyzed in FEA. Regarding homogeneous repairperson crews, all of them have increases

in their execution times, meeting Chaabane et al. (2020) and Khatab et al. (2018)

achievements, although they deal with different problems. Additionally, the imperfect action

dismissing changes the execution time a lot, and as expected, changes in effective age factors

and the next mission length do not significantly impact the execution time. On the other hand,

we get some interesting conclusions about the changes in k-out-of-n constraints. With ki’s

closer to si’s (k=3,3 and k=3,2), we observe an easiness to provide the solution. This easiness

was expected because, in these cases, the reliability computations evaluate fewer events. On

the other hand, we do not see significant impacts on running times for the changes in lifetime
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distribution parameters, except for 50%β, but there is no straight explanation for this. Finally,

changes in fixed and variable costs do not impact the running times in a significant way.

Figure 11 shows the PFs for each “new” instance of the sensitive analysis. Because the

evaluation of PFs is not a straightful task, we got some metrics from Laszczyk and

Myszkowski (2019) to evaluate these solutions. We picked the hypervolume, Inverted

Generational Distance (IGD), and ε metrics. IGD is an average distance from the points in

true PF to the closest point in the approximated solution. On the other hand, ε measures the

minimal distance required to move every point from the approximated solution so that every

point in true PF is dominated. These indicators were originally designed to evaluate

approximated PFs. However, all solutions are exact in this analysis, and we considered the PF

of the original instance (NM) as the “true” PF and the instances from the sensitive analysis as

“approximated”. Finally, we calculated the percentage of the number of single solutions from

the “approximated” PF that belong to the “true” PF (Ratio).

Metrics based on distances were computed with the normalized data using the Nadir

Point. For fair analyses, for different cases of the sensitive analysis we considered different

Nadir Points. So, Figures 11.a, 11.b, 11.c, 11.d and 11.e use the Nadir Point on 56.67% and

300.6 cost units. Figure 11.f uses 22.06% and 300.6, whereas 11.07% and 197.6 for 11.g and

11.h. Finally, the Nadir Point for Figures 11.i and 11.j was 56.67% and 351.2. Table 8 shows

all indicators.
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Figure 11- Sensitive analysis solutions.

Source: The author (2022).
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Table 8- Metrics for each sensitive analysis solution.

Instance Hypervolume Ratio Normalized IGD Normalized ε

NM 112.97 / 214.58 / 153.80 / 131.16 - - -

150%Ψ 113.57 0.3000 0.01725 0.08186

50%Ψ 107.78 0.1000 0.05992 0.11214

TC 113.59 0.3000 0.06876 0.03938

RC 107.35 0.0000 0.03558 0.11032

EC 99.44 0.0000 0.05059 0.32648

WIA 111.61 0.2333 0.02036 0.02964

150%AF 112.24 0.8333 0.00498 0.01562

50%AF 114.06 0.6000 0.00753 0.02220

U=10 126.73 0.8666 0.06544 0.10019

k=1,1 229.10 0.1333 0.05188 0.08054

k=3,2 118.07 0.3333 0.32571 0.34971

k=3,3 63.69 0.0333 0.52010 0.51001

150%β 160.35 0.5667 0.03672 0.08778

50%β 139.78 0.0333 0.16517 0.06691

150%η 161.21 0.8000 0.04352 0.06830

50%η 100.21 0.5666 0.25986 0.45610

150%cf 129.64 0.9000 0.01760 0.10018

50%cf 132.69 1.0000 0.02145 0.11134

150%cv 124.01 1.0000 0.02613 0.43736

50%cv 134.74 0.9000 0.07096 0.06177

Source: The author (2022).

In Table 8, NM instance has different values for the hypervolume, as previously

indicated, where the values are denoted to Figures 11.a, 11.b, 11.c, 11.d and 11.e; to 11.g; to

11.g and to 11.h; and to 11.i and 11.j, in sequence. Concerning the changes in break time and

looking into Figure 11.a and Table 10, we can see that any 50% change in the break time

significantly affects the solution. Specifically, the 50% decrease (50%Ψ) is six times more

impacting than the 50% increase if we look the hypervolumes. We can also see this

significant impact if we look at the ϵ metric because it presents a higher value to move the PF

to make it equally non-dominated, and Ratio values are very low. To understand the IGD

metric values, we need to have an idea of distances in the graphs. For example, the distance

between the two subsequent solutions on the left tail of the original instance is equal to

0.19937. Therefore, IGD for 50% decrease have a significant value.

Regarding the impact of the crew composition (Figure 11.b), if we look the

hypervolumes, we can note that cohort composed of experts decreases the hypervolume,
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showing a worsening of the PF quality. This quality deterioration is seen because experts are

more expensive, but the PF for this case has a wide range of solutions, because with this kind

of repairperson more top-level actions can be performed. For example, if we change expert’s

costs to make them equal to trainee’s, then the hypervolume is equal to 117.37. Looking at the

Ratio metrics, PFs are very different, but 30% of the TC solution is equal to NM, which

indirectly indicates a majority use of trainees in NM. IGDs and ϵ’s are not so high, indicating

that the PFs are not so distant, except for EC. Therefore, since it is possible, the decision-

maker should choose a homogeneous crew with trainee repairpersons instead of a

heterogeneous with all kinds of repairpersons.

Figure 11.c and Figure 11.d analyze the impact of the imperfect action existence and the

quality of this action. The imperfect action dismissing does not have a significant impact on

the solution, as we can see in the hypervolume and looking at Figure 11.c. Further, if we

observe Ratio, IGD and epsilon metrics, we see an evident similarity between WIA and NM

solutions. The more significant difference between these the two solutions is the cardinality of

the PFs because WIA has fewer single solutions. For changes in the quality of the imperfect

action, one can note that the solutions are very similar, and these similarities can be seen with

Ratio, IGD and epsilon metrics values and in a visual diagnostic of Figure 11.d.

Specifically for Figure 11.e, it is evident that a decrease in mission length will push the

whole PF to the right because the same solutions will have higher reliabilities. However, from

the point of view of the change in PF, we expected that the same single solutions belong to

both PFs, but we noted a difference of 13.3%. Logically, the new solution will have better

hypervolume and considerable IGD and epsilon metrics. In Figure 11.f we can see noticeable

differences for k-out-of-n restrictions, and these changes provide some exciting insights. If we

increase the k values in those restrictions, we need to have more operational components, and

this should increase the system’s reliability at the first moment, but this is not the behavior

described by the figure. For example, taking a solution that belongs to NM and k=3,3, this

solution satisfies both 3-out-of-3 restrictions in the two instances. Therefore, their costs are

equal, but their reliabilities are not because the concept of the mission success was changed.

Now, the subsystems are successful if all components survive until the finishing of the

mission. This change in the concept of mission success is a significant difference. Therefore,

when these constraints are tight, the reliability drops. Additionally, any change in this

subsystem feature significantly impacts the PF composition, although PFs for NM and k=1,1

are similar, as indicated by low IGD and epsilon metrics values. These two metrics have high

values for the remainder of the instances, indicating that both PFs are very distant.
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When lifetime distributions are similar to an exponential function (50%β), the quality of

the PF drops a lot, whereas that for normal distributions (150%β) there is an improvement

(Figure 11.g). This behavior is expected because exponential distributions are too much

disperse around the mean, while normal distributions are more centered. However, 50%β

solution is not robust (low Ratio metrics), while 150%β has 40% of equal to solutions to those

in NM. In other words, both 150%β and 50%β yield significant different PFs, justified by big

IGD values. On the other hand, the problem is more robust regarding scale parameters

changes (Figure 11.h). Analyzing the hypervolumes, the PF for 150%η is better than NM and

80% of the solutions are equal, while that for 50%η there is a significant deterioration of the

PF. Concerning the solution composition of the PF, we see an interesting behavior. IGD and ϵ

metrics are low for 150%η, supporting the similarity between the two PFs, whereas for 50%η

they are greater, and the solutions are significantly different. In conclusion, if managers are

reluctant about the scale parameters of the lifetime distributions and think that these

parameters are superestimated, they should be concerned because the optimal PF should

present different single solutions.

Finally, Figures 11.i and 11.j discuss the data for variations in cost parameters. For fixed

and variable costs changes, all PFs are similar, presenting hypervolumes close to each other

and low IGD and epsilon metrics values. Additionally, the problem is robust in relation to

these cost parameters because with significant changes in their values (50% for more or less),

at least 90% of the original PF remains optimal.

Also, we need to understand the crew composition for every solution in PFs and how

these cohorts are modified when we introduced the changes on the sensitive analysis.

Therefore, for each “new” problem created, we counted the percentile of each crew cohort

composition when one and two repairpersons were used, besides the number of single

solutions that used one (1Rep), two (2Rep) and all three repairpersons (OVNG), and these

data are shown in Table 9.
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Table 9- Percentiles of each cohort scheme.

Instance/Percentil Trainee Regular Expert Trainee and

Regular

Trainee and

Expert

Regular and

Expert

1Rep 2Rep OVNG

NM 100% 0% 0% 100% 0% 0% 9 16 30

150%Ψ 100% 0% 0% 100% 0% 0% 15 14 30

50%Ψ 100% 0% 0% 64% 36% 0% 3 11 19

WIA 100% 0% 0% 80% 20% 0% 6 5 13

150%AF 100% 0% 0% 100% 0% 0% 10 17 32

50%AF 100% 0% 0% 100% 0% 0% 10 17 31

U=10 100% 0% 0% 100% 0% 0% 10 15 30

k=1,1 100% 0% 0% 100% 0% 0% 10 11 26

k=3,2 100% 0% 0% 100% 0% 0% 8 18 31

k=3,3 100% 0% 0% 100% 0% 0% 8 14 28

150%β 100% 0% 0% 100% 0% 0% 10 16 31

50%β 100% 0% 0% 100% 0% 0% 9 1 10

150%η 100% 0% 0% 100% 0% 0% 11 16 32

50%η 100% 0% 0% 93% 7% 0% 12 14 31

150%cf 100% 0% 0% 84% 16% 0% 9 19 30

50%cf 100% 0% 0% 100% 0% 0% 9 16 30

150%cv 100% 0% 0% 100% 0% 0% 9 16 30

50%cv 100% 0% 0% 84% 16% 0% 9 19 30

Source: The author (2022).

Data from the second to fourth columns are denoted when one repairperson is hired,

while from the fifth to seventh two repairpersons are used. In Table 9, we can see that trainees

are used most of the time for almost all cases. When two of them are used, trainee and regular

repairpersons are practically always used, except for some changes (50%Ψ, WIA, 50%η,

150%cf and 50%cv). This behavior is expected for the break time decrease, for example,

because in this case, actions must be executed quickly, and the expert is faster than regular.

On the other hand, for the imperfect action dismissing, without an intermediary action, perfect

replacements are performed and they need to be quickle executed to leave time to perform

other actions.

Table 9 indicates that trainees are mainly used. Therefore, it is interesting to define

ranges for cost parameters to make the regular and expert preferable instead trainees. Thus,

Table 10 shows some values for the costs and maintenance crew’s composition.
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Table 10- Percentiles of each cohort scheme according to costs parameters.

Instance/Percentil Trainee Regular Expert Trainee and

Regular

Trainee and

Expert

Regular and

Expert

1Rep 2Rep OVNG

NM 100% 0% 0% 100% 0% 0% 9 16 30

𝑐2
𝑓=1 78% 22% 0% 100% 0% 0% 9 16 30

𝑐3
𝑓=6 100% 0% 0% 69% 31% 0% 9 16 30

𝑐2
𝑓=1 and 𝑐3

𝑓=6 78% 22% 0% 100% 0% 0% 9 16 30

𝑐2
𝑣=2 67% 33% 0% 100% 0% 0% 12 13 30

𝑐2
𝑣=1 20% 80% 0% 100% 0% 0% 12 13 30

𝑐3
𝑣=4 53% 0% 47% 30% 70% 0% 17 10 29

𝑐2
𝑣=1 and 𝑐3

𝑣=4 17% 83% 0% 81% 0% 19% 12 16 30

Source: The author (2022).

In Table 12, we can see that even significant changes in fixed costs for regular

repairperson (c2f=1) lead to just minor changes in the trainee usage when only one

repairperson is used. On the other hand, the decrease in expert’s fixed cost (c3f=6) provides no

change in crew cohort when one repairperson is used, but when two of them are used, there is

a substantial change. When both changes are made jointly, the result is similar to when c2f=1.

Unlike fixed cost, variable costs changes presented more significant impacts. For example,

when c2v=1, regular repairperson is mostly used, and when c3v=4, trainee and expert have

practically the same utilization. Finally, doing c2v=1 and c3v=4 at the same time, the schemes

change a lot in comparison with NM, and we see a majority use of the regular repairperson. In

conclusion, decreasing the fixed cost for regular and expert repairpersons forces them to be

hired. On the other hand, variable costs changes are much more impacting, not only hiring

more repairpersons, but also changing the hierarchy of use of the repairpersons.

To sum up, we can conclude that the break time, crew composition, and lifetime

distribution’s parameters play the most significant impacts on PFs. On the other hand, the

imperfect action’s existence and quality do not. Additionally, it seems that exists an interval

in which the gain from the marginal increase begins to be ineffective for the break time. In

other words, there is a point in which the decision-maker should stop investing in the break

time increase to maximize his/her gain. K-out-of-n constraints noticeably impact the PF, and

they need to be delicately modeled as well as the lifetime distributions. Thus, if the decision-

maker has available resources to increase the solution quality, he/she should allocate them in

crew composition, break time (if it is not reached the clímax) and the exchange of the

components by others with “better” lifetime distributions.
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4. 3 METAHEURISTIC AND MATHEURISTIC PERFORMANCE EVALUATIONS

Now we will evaluate the metaheuristic and matheuristic performances from chapter 3

for the illustrative example.

Before the running of the algorithms, we need to set the parameters. So, the calibration

process rule was: we took each parameter once and varied it in a reasonable interval, keeping

the remaining constant. The value with the best behavior is set. Table 11 shows the parameter

values.

Table 11- Algorithm parameters after the calibration process for the illustrative example.

Parameter Value

Δi,met 1000

τi,met 2

ρmet 0.7

Δo,met 10000

τo,met 0.5

μmet 2

λinit,met 0.5

λend,met 0.1

κinit,met 0.05

κend,met 0.5

Δi,math 1000

τi,math 2

ρmath 0.7

Δo,math 2000

τo,math 0.5

μmath 2

λinit,math 0.5

λend,math 0.1

κinit,math 0.05

κend,math 0.5

Source: The author (2022).

Looking into Table 11, practically all parameters, except the number of iterations, have

the same values, and therefore, the following analyses are devoted for both. The initial

solution greedy parameter is more than 1, indicating that for the initial PF creation, greedy

decisions are beneficial. The same conclusion cannot be stated for AVNS searches because
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τo’s are 0.5, indicating that the best decisions are taken when non-greedy decisions are made.

ρ’s values indicate that additional components are selected before the solution finishing. The

maximum number of action/repairperson removals in one iteration is 4, because µ′s=2. In

other words, 4/12 of the solution is subject to change. Finally, about the dynamic parameters κ,

they are less than 1, indicating that the searches are always diversified, giving more attention

to solutions distant from the Ideal Point. Because the solution space is small, the algorithm

searches in all PF regions without special attention on the knee region. Finally, λ’s plays as

expected, decreasing the changes at the ending.

To solve the illustrative example, we run each algorithm 30 times because they are

stochastics, and examples of PFs generated are shown in Figure 12.

Figure 12- Examples of metaheuristic and matheuristic solutions for the illustrative example.

Source: The author (2022).

If we look into Figures 12 and 9, we can note that they are very similar. For the best

evaluation, Table 12 shows the algorithm metrics for the 30 runs. We presented them on their

average and standard deviations.
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Table 12- Metaheuristic and matheuristic metrics for the illustrative example.

Metric Metaheuristic Matheuristic

Running Time (s) 39.62±1.14 59.81±31.05

Hypervolume 112.97±0.00 112.92±0.08

OVNG 30.00±0.00 32.37±2.28

Ratio 1.00±0.00 0.957±0.036

Normalized IGD 0.0000±0.0000 0.0049±0.0051

Normalized ε 0.0000±0.0000 0.0053±0.0108

Source: The author (2022).

We see that matheuristic has high running times because of the linear models running

for the repairperson assignments. Metaheuristic has an outstanding behavior achieving the

true PF for all runs, while that matheuristic was not always perfect, but reached a very good

behavior, finding 95.7% of the true PF in average. We suspect that the matheuristic was not so

good as the metaheuristic because the metaheuristic evaluate many solutions in a minor

computational time, while for each new solution of the matheuristic, the linear model is run,

consuming much time. With the metrics, we can conclude that the algorithms provide

excellent approximations in a reasonable time compared to the FEA. Still, we need to test the

algorithms for a moderately large problem to validate their performances.

4. 4 LIU AND HUANG INSTANCE

To test metaheuristic and matheuristic algorithms performances, we solved the bi-

OSMRAP:k-out-of-n on the coal transportation system in a plant supplying a boiler from Liu

and Huang (2010), with 5 subsystems and 14 components in total. Because we are dealing

with a new problem, the original Liu and Huang (2010)’s instance was modified to introduce

the k-out-of-n features. System disposition for the original Liu and Huang (2010)’s instance is

shown in Figure 13.



61

Figure 13- Liu and Huang (2010)’s instance.

Source: The author (2022).

Above, we considered that the subsystems are: 2-out-of-3, 1-out-of-2, 2-out-of-3, 2-out-

of-2 and 2-out-of-4. Specifically, subsystems 2 and 4 operate as parallel and series subsystems,

respectively. Table 13 shows the parameters of each component in this system.

Table 13- Component parameters of Liu and Huang (2010)’s instance.

Components η β X B
E11 250 1.5 0 110
E12 380 2.4 1 150
E13 280 1.6 0 170
E21 400 2.6 1 120
E22 280 1.5 0 180
E31 340 2.4 0 100
E32 260 2.5 0 130
E33 280 2.0 1 170
E41 260 1.2 1 150
E42 350 1.4 0 120
E51 400 2.8 0 180
E52 350 1.5 1 130
E53 300 2.4 0 100
E54 450 2.2 0 150

Source: The author (2022).

5 repairpersons were available for the repairperson crew, named 1 trainee, 2 regulars

and 2 experts. Their fixed and variable costs are in Table 14.
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Table 14- Repairperson crew costs for Liu and Huang (2010)’s instance.

Repairperson cf cv

Trainee 15 12

Regular 20 15

Expert 25 20

Source: The author (2022).

In the original instance were considered five maintenance levels, i. e., two kinds of

imperfect actions are considered. All components have the same list of actions and the age

reduction factors are in Table 15.

Table 15- Age reduction factors for Liu and Huang (2010)’s instance.

Maintenance Level α δ

“Do-nothing” 1 1

Minimal Repair 1 -

Imperfect Replacement 1 0.4 0.2

Imperfect Replacement 2 0.2 0.1

Perfect Replacement 0 0

Source: The author (2022).

Table 16 brings the time to perform actions, according to the nature of the action.

Table 16- Times to perform the maintenance actions for each repairperson for Liu and Huang (2010)’s instance.

Maintenance Level tc tp

Trainee Regular Expert Trainee Regular Expert

“Do-nothing” 0 0 0 0 0 0

Minimal Repair 4 3 2 - - -

Imperfect Replacement 1 6 5 2.5 3 2.5 1.25

Imperfect Replacement 2 7 6 3 3.5 3 1.5

Perfect Replacement 8 7 4 4 3.5 2

Source: The author (2022).

The break time and next length mission are equals to 12 and 100 time units. The

calibration process was executed for this instance, and the algorithm parameters are in Table

17.
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Table 17- Algorithm parameters after the calibration process for Liu and Huang (2010)’s instance.

Parameter Value

Δi,met 3000

τi,met 0.5

ρmet 0.6

Δo,met 15000

τo,met 1

μmet 2

λinit,met 1.0

λend,met 0.5

κinit,met 1.0

κend,met 2.0

Δi,math 3000

τi,math 2

ρmath 0.8

Δo,math 10000

τo,math 1.0

μmath 2

λinit,math 1.0

λend,math 0.5

κinit,math 1.0

κend,math 2.0

Source: The author (2022).

We can see an interesting behavior on initial greedy parameters. For the metaheuristic,

non-greedy decisions are made, whereas the otherwise occurs in matheuristic. Besides that,

the matheuristic begins with single solutions with more actions on components because ρ has

a considerable value. Looking into µ, we can see that a few components are removed and

repaired because just 4/28 of the solution is subjected to change. The κ’s have the same values

for both algorithms, and differently from the illustrative example, now the algorithms

dynamically focus on the knee region. Finally, λ’s describe a similar behavior to the

illustrative example.

We run each algorithm 30 times, because they are stochastic algorithms. Examples of

PF generated are shown in Figure 14.
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Figure 14- Examples of metaheuristic and matheuristic solutions for Liu and Huang (2010)’s instance.

Source: The author (2022).

Table 18 shows the algorithm metrics for the 30 runs. Unlike the illustrative example,

now we do not know the exact PF or the Nadir Point. So, we set this point with the worst

values found in the preliminary tests (0.0% and 1100.0 cost units). Because we do not know

the exact solution, IGD, epsilon and Ratio metrics used before cannot be used now, and we

introduce the Hole Relative Size (HRS). This metric computes the biggest gap in the

approximated solutions’ distribution (LASZCZYK and MYSZKOWSKI, 2019). It takes the

maximum spacing between two single solutions from the approximated PF and divides it by

the average spacing between the two subsequent solutions.

Table 18- Metrics for metaheuristic and matheuristic performances on Liu and Huang (2010)’s instance.

Metric Metaheuristic Matheuristic

Running Time 187.82±4.06 456.52±44.98

Hypervolume 383.416±0.392 383.712±0.057

OVNG 141.31±4.72 132.931±5.18

HRS 5.7530±0.3173 5.7807±0.3250

Source: The author (2022).

Matheuristic running times are about 1.4 times slower than metaheuristic. Furthermore,

its standard deviation is 3.6 times higher than for metaheuristic. Both algorithms achieve

interesting values for hypervolumes, but the matheuristic is more robust than the

metaheuristic. Metaheuristic has a better average and standard deviation in OVNG, but

matheuristic also has a good behavior. Finally, HRS metrics are very similar and indicate a

good output, with single solutions very close to each other.
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Therefore, both algorithms achieve reasonable solutions, although the metaheuristisc is

faster than matheuristic. This higher running time is the price paid to guarantee the cost

optimality. However, metaheuristic solutions seem to reach this condition, even without a

mathematical model inside it. In other words, the metaheuristic provides a fast PF with

solutions that are equally good to those from matheuristic.
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5 CONCLUSIONS

This dissertation dealt with the bi-Objective Selective Maintenance and Repairperson

Assignment Problem on k-out-of-n systems (bi-OSMRAP:k-out-of-n), a new problem in

Selective Maintenance field. This new problem addresses a multi-component system which

will undergo maintenance actions for the preparation for the next mission. Different from

other problems in Selective Maintenance, this one considers bi-objective optimization,

multiple repairpersons and k-out-of-n subsystems. Additionally, real situations found in

processing plants, display cockpit, multi-pumps systems and nuclear plants can be solved with

this new problem.

To support the decision-maker, the mathematical non-linear model, exact, and two

approximated algorithms were proposed. Both approximated algorithms are based on the

Adaptive Variable Neighborhood Search. In addition, we proposed specific rules inside these

algorithms to focus on the knee region of the Pareto Frontier. Two instances were resolved, an

illustrative example and a modified instance from Liu and Huang (2010)’s work. Also, we did

a sensitive analysis on some instance parameters for the first instance and validated the

metaheuristic and matheuristic. Finally, we got some exciting achievements: to maximize the

PF quality, the decision-maker should put their resources on the crew composition, break time

increase, hiring more efficient repairpersons or replace components by new ones with “better”

lifetime distributions. On the other hand, imperfect action existence and its quality do not

improve the solution.

We can list some future works from this research, for example, the problem can also

consider the environmental impact of the maintenance decisions. Furthermore, large and real

instances should be modeled with bi-OSMRAP:k-out-of-n. In the computational results, we

noticed an interval for decision-makers to pay for specific improvements in the number of

resources. However, we need to extensively study this behavior to provide more insightful

ideas. Also, it is common to see situations where there are economic agreements between

suppliers and companies. In this case, some actions should have specific repairpersons to be

assigned, or some repairpersons should have a minimal usage restriction. Furthermore, the

study about the hard-constraint for the break time is necessary because associated gains with

the increase in time to perform actions were exciting. Changing it to a soft-constraint with a

penalty cost dynamics is an excellent way to understand this behavior. Last but not least,

access dependencies on components should be studied too. For example, for some systems,

components are accessed through the dismembering of the whole subsystem. In this case,
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actions on these hard-to-access components create an opportunity to reduce the cost in those

components with easier access.



68

REFERENCES

ABDELKHALEK, O.; MASRI, H.; KRICHEN, S. An adaptive variable neighborhood search
for solving the multi-objective node placement problem. Electronic Notes in Discrete
Mathematics, v. 47, p. 189-196, 2015.

ARULMOZHI, G. Exact equation and an algorithm for reliability evaluation of K-out-of-N:G
system. Reliability Engineering and System Safety, v. 78, p. 87-91, 2002.

BARLOW, R.; HUNTER, L. Optimum Preventive Maintenance Policies. Operations
Research, v. 8, n. 1, p. 90-100, 1960.

BARLOW, R.; HUNTER, L.; PROSCHAN, F. Optimum checking procedures. Journal of the
Society for Industrial and Applied Mathematics, v. 11, n. 4, p. 1078-1095, 1963.

BEVILACQUA, M.; BRAGLIA, M. The analytic hierarchy process applied to maintenance
strategy selection. Reliability Engineering and System Safety, v. 70, n. 1, p. 71-83, 2000.

CAO, W.; JIA, X.; HU, Q. Selective maintenance optimizationfor multi-state systems subject
to common cause failures. Acta Aeronautica ET Astronautica Sinica, v. 39, n. 2, DOI:
10.7527/S1000-6893.2017.221556, 2017.

CAO, W.; JIA, X.; HU, Q.; ZHAO, J.; WU, Y. A literature review on selective maintenance
for multi-unit systems. Quality and Reliability Engineering International, v. 34, n. 5, p. 824-
845, 2018.

CAO, W.; SONG, W.; HU, Q.; DU, Y. An Exact Method for Solving Selective Maintenance
Problems Considering Imperfect Maintenance. In: International Conference on Intelligent
Networking and Collaborative Systems, Ostrawva, p. 522-526, 2016.

CASSADY, C.; MURDOCK, W.; POHL, E. Selective maintenance for support equipment
involving multiple maintenance actions. European Journal of Operational Research, v. 129, n.
2, p. 252-258, 2001.

CERTA, A.; GALANTE, G.; LUPO, T.; PASSANNANTI, G. Determination of Pareto
frontier in multi-objective maintenance optimization. Reliability Engineering and System
Safety, v. 96, n. 7, p. 861-867, 2011.

CHAABANE, K.; KHATAB, A.; DIALLO, C.; AGHEZZAF, E.; VENKATADRI, U.
Integrated imperfect multimission selective maintenance and repairpersons assignment
problem. Reliability Engineering and System Safety, v. 199, p. 106895, 2020.

CHEN, C.; LIU, Y.; HUANG, H. -Z. Optimal load distribution for multi-state systems under
selective maintenance strategy. In: 2012 International Conference on Quality, Reliability,
Risk, Maintenance, and Safety Engineering, Chengdu, p. 436-442, 2012.

CIAPPA, M. Lifetime prediction on the base of mission profiles. Microeletronics Reliability,
v. 45, n. 9-11, p. 1293-1298, 2005.



69

DAO, C.; ZUO, M. Optimal selective maintenance for multi‐state systems in variable loading
conditions. Reliability Engineering and System Safety, v. 166, p. 171-180, 2017.

DAS, I. On characterizing the "knee" of the Pareto curve based on Normal-Boundary
Intersection. Structural Optimization, v. 18, p. 107-115, 1999.

DAS ADHIKARY, D.; BOSE, G.; JANA, D.; BOSE, D.; MITRA, S. Availability and cost-
centered preventive maintenance scheduling of continuous operating series systems using
multi-objective genetic algorithm: A case study. Quality Engineering, v. 28, n. 3, p. 352-357,
2016.

DE JONGE, B.; SCARF, P. A review on maintenance optimization. European Journal of
Operational Research, v. 285, n. 3, p. 805-824, 2020.

DIALLO, C.; KHATAB, A.; VENKATADRI, U. Developing a bi-objective imperfect
selective maintenance optimization model for multicomponent systems. IFAC-PapersOnLine,
v. 52, n. 13, p. 1079-1084, 2019.

DIALLO, C.; VENKATADRI, U.; KHATAB, A.; LIU, Z. Optimal selective maintenance
decisions for large serial k-out-of-n: G systems under imperfect maintenance. Reliability
Engineering and System Safety, v. 22, p. 234-245, 2018.

FISCHETTI, M.; FISCHETTI, M. Matheuristics. In: MARTÍ, R.; PARDALOS, P.;
RESENDE, M. ed. Handbook of Heuristics. Cham, Springer, 2018, cap. 5, p. 121-155.

GALANTE, G.; PASSANNANTI, G. An exact algorithm for preventive maintenance
planning of series–parallel systems. Reliability Engineering and System Safety, v. 94, n. 10, p.
1517-1525, 2009.

HWANG, C. -L.; MASUD, A. Multiple Objective Decision Making - Methods and
Applications. In: BECKMANN, M.; KUNZI, H. ed. Lecture Notes in Economics and
Mathematical Systems. New York, Spinger-Verlag, 1979, cap. 1, p. 1-20.

IYOOB, I.; CASSADY, C.; POHL, E. Establishing Maintenance Resource Levels Using
Selective Maintenance. The Engineering Economist, v. 51, n. 2, p. 99-114, 2006.

JAIMES, A.; MARTINEZ, S.; COELLO COELLO, C. AN INTRODUCTION TO
MULTIOBJECTIVE OPTIMIZATION TECHNIQUES. In: GASPAR-CUNHA, A.; COVAS,
J. ed. Optimization in Polymer Processing. New York, Nova Science Publishers, 2010, cap 1,
p. 1-29.

KAIO, N.; OSAKI, S. Optimal inspection policies: A review and comparison. Journal of
Mathematical Analysis and Applications, v. 119, n. 1-2, p. 3-20, 1986.

KANG, H. G.; KIM, H. E. Unavailability and spurious operation probability of k-out-of-n
reactor protection systems in consideration of CCF. Annals of Nuclear Energy, v. 49, p. 102-
108, 2012.

KANG, J.; GUEDES SOARES, C. An opportunistic maintenance policy for offshore wind
farms. Ocean Engineering, v. 216, p. 108075, 2020.



70

KELLER, A. Multi-Objective Optimization in Theory and Practice I: Classical Methods.
Sharjah: Bentham eBooks, 2017.

KHATAB, A.; AGHEZZAF, E.; DIALLO, C.; DJELLOUL, I. Selective maintenance
optimization for series–parallel systems alternating missions and scheduled breaks with
stochastic durations. International Journal of Production Research, v. 55, n. 10, p. 3008-3024,
2017a.

KHATAB, A.; AGHEZZAF, E.; DJELLOUL, I.; SARI, Z. Selective maintenance
optimization for systems operating missions and scheduled breaks with stochastic durations.
Journal of Manufacturing Systems, v. 43, Part 1, p. 168-177, 2017b.

KHATAB, A.; AGHEZZAF, E.-H. Selective maintenance optimization when quality of
imperfect maintenance actions are stochastic. Reliability Engineering and System Safety, v.
150, p. 182-189, 2016.

KHATAB, A.; DIALLO, C.; AGHEZZAF, E.; VENKATADRI, U. Joint optimization of the
selective maintenance and repairperson assignment problem when using new and
remanufactured spare parts. IFAC-PapersOnLine, v. 52, n. 13, p. 1063-1068, 2019.

KHATAB, A.; DIALLO, C.; AGHEZZAF, E.-H.; VENKATADRI, U. Optimization of the
integrated fleet-level imperfect selective maintenance and repairpersons assignment problem.
Journal of Intelligent Manufacturing, DOI: 10.1007/s10845-020-01672-0, 2020.

KHATAB, A.; DIALLO, C.; VENKATADRI, U.; LIU, Z.; AGHEZZAF, E. Optimization of
the joint selective maintenance and repairperson assignment problem under imperfect
maintenance. Computer and Industrial Engineering, v. 125, p. 413-422, 2018.

LASZCZYK, M.; MYSZKOWSKI, P. Survey of quality measures for multi-objective
optimization: Construction of complementary set of multi-objective quality measures. Swarm
and Evolutionary Computation, v. 48, p. 109-133, 2019.

LIN, D.; ZUO, M.; YAM, R. General sequential imperfect preventive maintenance models.
International Journal of Reliability, Quality and Safety Engineering, v. 7, n. 3, p. 253-266,
2000.

LIMA, V. H. R.; CAVALCANTE, C. A. V.; KRAMER, R. Problema de Manutenção Seletiva
e Designação de Mantenedores com Ações Imperfeitas em Sistemas k-out-of-n. LIII Simpósio
Brasileiro de Pesquisa Operacional, 2021.

LIU, L.; HUANG, H. Optimal Selective Maintenance Strategy for Multi-State Systems Under
Imperfect Maintenance. IEEE Transactions on Reliability, v. 59, n. 2, p. 356-367, 2010.

LUST, T.; ROUX, O.; RIANE, F. Exact and heuristic methods for the selective maintenance
problem. European Journal of Operational Research, v. 197, n. 3, p. 1166-1177, 2009.

MAAROUFI, G.; CHELBI, A.; REZG, N. Optimal selective renewal policy for systems
subject to propagated failures with global effect and failure isolation phenomena. Reliability
Engineering and System Safety, v. 114, p. 61-70, 2013.



71

MAILLART, L.; CASSADY, C.; RAINWATER, C.; SCHNEIDER, K. Selective
Maintenance Decision-Making Over Extended Planning Horizons. IEEE Transactions on
Reliability, v. 58, n. 3, p. 462-469, 2009.

MALIK, M. Reliable Preventive Maintenance Scheduling. AIIE Transactions, v. 11, n. 3, p.
221-228, 1979.

MIETTINEN, K. NONLINEAR MULTIOBJECTIVE OPTIMIZATION. New York: Springer
Science+Business Media, 1999.

MLADENOVIĆ, N.; HANSEN, P. Variable Neighborhood Search. Computers & Operations
Research, v. 24, n.1, p. 1097-1100, 1997.

PANDEY, M.; ZUO, M.; MOGHADDASS, R. Selective maintenance modeling for a
multistate system with multistate components under imperfect maintenance. IISE
Transactions, v. 45, n. 11, p. 1221-1234, 2013b.

PANDEY, M.; ZUO, M.; MOGHADDASS, R. Selective maintenance scheduling over a finite
planning horizon. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of
Risk and Reliability, v. 230, n. 2, p. 162-177, 2016.

PANDEY, M.; ZUO, M.; MOGHADDASS, R.; TIWARI, M. Selective maintenance for
binary systems under imperfect repair. Reliability Engineering and System Safety, v. 113, p.
42-51, 2013a.

PINJALA, S.; PINTELON, L.; VEREECKE, A. An empirical investigation on the
relationship between business and maintenance strategies. International Journal of
Production Economics, v. 104, n. 1, p. 214-229, 2006.

QUDDOOS, A.; ALI, I.; MASOOD KHALID, M. Bi-Objective Fuzzy Selective Maintenance
Allocation Problem. American Journal of Mathematical and Management Sciences, v. 34, n.
4, p. 289-308, 2015.

RAJAGOPALAN, R.; CASSADY, C. An improved selective maintenance solution approach.
Journal of Quality in Maintenance Engineering, v. 12, n. 2, p. 172-185, 2006.

RICE, W.; CASSADY, C.; NACHLAS, J. Optimal Maintenance Plans under Limited
Maintenance Time. In: Proceedings of the 7th Industrial Engineering Research Conference,
Banff, 1998.

RICE, W.Optimal selective maintenance decisions for series systems. Starkville, 1999. PhD
thesis. Mississippi State University, Department of Industrial Engineering.

RIFAI, A.; NGUYEN, H-T.; DAWAL, S. Multi-objective adaptive large neighborhood search
for distributed reentrant permutation flow shop scheduling. Applied Soft Computing, v. 40, p.
42-57, 2016.

RIPON, K.; GLETTE, K.; KHAN, K.; HOVIN, M.; TORRESEN, J. Adaptive variable
neighborhood search for solving multi-objective facility layout problems with unequal area
facilities. Swarm and Evolutionary Computation, v. 8, p. 1-12, 2013.



72

SCHNEIDER, K.; CASSADY, C. Evaluation and comparison of alternative fleet-level
selective maintenance models. Reliability Engineering and System Safety, v. 134, p. 178-187,
2015.

SCHNEIDER, K.; CASSADY, C. Fleet performance under selective maintenance. In: Annual
Symposium Reliability and Maintainability, Los Angeles , p. 571-576, 2004.

WAEYENBERGH, G.; PINTELON, L. A framework for maintenance concept development.
International Journal of Production Economics, v. 77, n. 3, p. 299-313, 2002.

WAEYENBERGH, G.; PINTELON, L. Maintenance concept development: A case study.
International Journal of Production Economics, v. 89, n. 3, p. 395-405, 2004.

XU, Q.; GUO, L.; WANG, N.; FEI, R. Recent advances in selective maintenance from 1998
to 2014. Journal of Donghua University (English Edition), v. 32, n. 6, p. 986-994, 2015.

YAVUZ, T.; KUNDAKCIOGLU, O.; ÜNLÜYURT, T. Exact and heuristic approaches to
detect failures in failed k-out-of-n systems. Computers and Operation Research, v. 112, p.
104752, 2019.

ZHANG, L.; ZHANG, L.; SHAN, H.; SHAN, H. Selective maintenance process optimization
based on an improved gravitational search algorithm, from the perspective of energy
consumption. Engineering Optimization, v. 52, n. 8, p. 1401-1420, 2020.

ZHAO, J.; ZENG, J. Maintenance strategy for stochastic selective maintenance of a two-state
system. International Journal of Wireless and Mobile Computing, v. 11, n. 4, p. 302-308,
2016.

ZHAO, X.; AL-KHALIFA, K.; HAMOUDA, A.; NAKAGAWA, T. Age replacement models:
A summary with new perspectives and methods. Reliability Engineering and System Safety, v.
161, p. 95-105, 2017.

ZIO, E.; COMPARE, M. Evaluating maintenance policies by quantitative modeling and
analysis. Reliability Engineering and System Safety, v. 109, p. 53-65, 2013.


