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ABSTRACT

Simulation is fundamental to the management of subsurface oil reservoirs. The ability to

predict the behaviour of multiphase flow in highly heterogeneous porous media allows

to optimise recovery rates and maximize profits. Techniques such as history matching

and optimisation make extensive use of simulations to better understand and predict the

different scenarios and their respective impacts on production curves. However, recent

advances in geological characterization have made it possible to integrate petrophysical

data at a scale orders of magnitude higher than the feasible scale of standard petroleum

reservoir simulators can handle. To deal with this discrepancy between scales, the

family of approximate and conservative Multiscale Finite Volume (MsFV) methods

was developed. These methods project the fine-scale system of equations onto a coarse

space where it is solved and projected back. In this way, the high-resolution data is

integrated into the simulator model, allowing fast and robust solutions at the price of a

small loss of accuracy. Nonetheless, the MsFV family is not suitable for simulations on

non-k-orthogonal grids. In this work, techniques for generalising methods of the finite

volume and multiscale finite volume families have been investigated and developed in

order to extend their applications to general unstructured grids. To this end, we have

investigated the three main problems that prevent standard MSFV methods from being

compatible with unstructured grids: 1) the lack of a consistent flux approximation for

general grids, 2) the lack of a definition of multiscale units, and 3) the development of

multiscale operators for unstructured grids. As a result, we developed the Algebraic

Multiscale Solver for Unstructured Grids by proposing a new approach to create primal

and dual coarse grids, developing a novel technique to avoid basis function leakage, and

coupling the Algebraic Multiscale Solver (AMS) with a Multipoint Flux Approximation

with a Diamond Stencil (MPFA-D). Another product of this work is the Flux Limited

Splitting method, a novel repair technique that splits the flux of MPFA methods in

terms of TPFA and Cross Diffusion Terms (CDT), where the letter is bounded by a

relaxation parameter that is calculated nonlinearly to obtain a solution that satisfies the

Discrete Maximum Principle (DMP).

Keywords: MsFV; finite Volume, unstructured grids, AMS-U; petroleum reservoir

simulation.



RESUMO

A simulação é fundamental para o gerenciamento de reservatórios de petróleo subterrâ-

neos. A capacidade de prever o comportamento do fluxo multifásico em meios porosos

altamente heterogêneos permite otimizar as taxas de recuperação e maximizar os lucros.

Técnicas como ajuste histórico e otimização fazem uso extensivo de simulações para

melhor entender e prever os diferentes cenários e seus respectivos impactos nas curvas

de produção. No entanto, avanços recentes na caracterização geológica tornaram pos-

sível integrar dados petrofísicos em uma escala de ordem de magnitude maior do que a

escala suportada pelos simuladores de reservatórios de petróleo padrão.Para lidar com

essa discrepância entre escalas, foi desenvolvida a família de métodos conservativos

e aproximados Multiscale Finite Volume (MsFV). Esses métodos projetam o sistema

de equações de uma escala de maior resolução no espaço de uma malha de menor

resolução onde ele é então resolvido e projetado de volta. Desta forma, os dados de

alta resolução são integrados ao modelo do simulador, permitindo soluções rápidas e

robustas ao preço de uma pequena perda de precisão. No entanto, a família MsFV não é

adequada para simulações em malhas não k-ortogonais. Neste trabalho investigamos

e desenvolvemos técnicas para generalizar métodos das famílias de volumes finitos e

de volumes finitos multiescala (MsFV) para malhas gerais não estruturadas. Para isso,

investigamos os três principais problemas que impedem que os métodos padrão MSFV

sejam compatíveis com grades não estruturadas: 1) a falta de uma aproximação consis-

tente de fluxo para malhas não estruturadas em geral, 2) a falta de uma definição das

entidades multiescala e 3) o desenvolvimento de operadores multiescala para malhas

não estruturadas. Como resultado, desenvolvemos o Algebraic Multiscale Solver for

Unstructured Grids, propondo uma nova abordagem para criar as malhas primais e

duais, desenvolvendo uma nova técnica para evitar vazamento de função de base e

acoplando o Algebraic Multiscale Solver (AMS) com uma aproximação de fluxo do tipo

Multipoint Flux Approximation com estêncil Diamante (MPFA-D). Outro produto deste

trabalho é o Flux Limited Splitting, uma nova técnica de reparo que divide a expressão

da vazão de métodos MPFA linear em termos de TPFA e Cross Diffusion Terms (CDT),

em que ela é limitada por um parâmetro de relaxação que é calculado de forma não

linear para obter uma solução que satisfaça o Princípio do Máximo Discreto (DMP).

Palavras-chave: MsFV; volumes finitos, malhas não estruturadas; AMS-U; simulação de

reservatórios.
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1 MOTIVATION AND GENERAL CONSIDERATIONS

Simulations play a crucial role in the management of subsurface oil reservoirs.

Simulators are used to predict complex fluid flow fields in highly heterogeneous porous

media and to optimise production rates in accordance with economic requirements.

Optimisation and history matching techniques make extensive use of simulations to

better understand and predict different scenarios and their impact on production curves

depending on the given flow conditions at injection and production wells. Recent

advances in characterisation have made it possible to integrate petrophysical data

at a scale orders of magnitude higher than standard petroleum reservoir simulators

(ZHOU; TCHELEPI, 2008; LUNATI; JENNY, 2006; LUNATI; JENNY, 2008; LUNATI;

TYAGI; LEE, 2011; MOYNER; LIE, 2015). Furthermore, the convoluted geometry and

large heterogeneity in unconventional reservoirs add a new level of complexity to

simulations, making them more computationally intensive. This severely limits the

use of high-resolution geological models, which in turn limits the accuracy of the

simulations (SOUZA et al., 2020).

To circumvent the computational constraints and take advantage of the high-

resolution scale, the Multiscale Finite Volume (MsFV) method was developed (JENNY;

LEE; TCHELEPI, 2003; JENNY; LEE; TCHELEPI, 2006; ZHOU; TCHELEPI, 2008). These

schemes generate sets of basis functions that are used to project the high-resolution

system of equations onto a low-resolution space. The new system is solved and later pro-

jected back onto the high-resolution grid to compute a reasonably accurate conservative

solution (JENNY; LEE; TCHELEPI, 2003; JENNY; LEE; TCHELEPI, 2006; SOUZA et al.,

2020). The idea behind this and other related multiscale methods is that solving a set

of localised high-resolution systems together with a global problem at the coarse scale

(LUNATI; TYAGI; LEE, 2011) is computationally less expensive than direct simulation

at the high-resolution scale.

The success of the MsFV method in representing fluid flow in homogeneous and

mildly heterogeneous porous media has led to the development of new studies aimed

at improving various aspects of the original method. Some authors focused on the con-

struction of multiscale well models (WOLFSTEINER; LEE; TCHELEPI, 2006; JENNY;

LUNATI, 2009); the study of techniques to incorporate more complex physical condi-

tions into the reservoir model (LUNATI; JENNY, 2008; LUNATI; JENNY, 2006; LEE;

WOLFSTEINER; TCHELEPI, 2008; HAJIBEYGI; JENNY, 2009; HAJIBEYGI; TCHELEPI,

2014), and the improvement of the boundary conditions of the localised problems

(WANG; HAJIBEYGI; TCHELEPI, 2015). Moreover, inspired by multigrid methods,

Zhou & Tchelepi (2008) developed a matrix representation of the prolongation and
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restriction steps devising what has become the standard notation of the MsFV. In this

method, the multiscale procedures are written as a series of simple matrix operations

using the newly developed operators. Despite all these efforts, the standard Multiscale

Finite Volume family still struggles to simulate highly heterogeneous and anisotropic

reservoirs (HAJIBEYGI et al., 2008). To deal with this issue, iterative methods have been

developed to ensure that the multiscale solution converges to the fine-scale solution

within a certain tolerance (HAJIBEYGI et al., 2008; HAJIBEYGI; JENNY, 2011a; LUNATI;

TYAGI; LEE, 2011).

The Algebraic Multiscale Solver (AMS) (ZHOU; TCHELEPI, 2011; WANG; HA-

JIBEYGI; TCHELEPI, 2014) generalised the classic Multiscale Finite Volume method

and became its modern successor. In this method, a simple matrix notation allows the

computation of the multiscale prolongation operators and a set of correction functions

as a set of straightforward algebraic operations performed on the fine-scale discrete

system. Combined with an iterative multiscale stage, this method has been shown to be

efficient and robust, with results comparable to multigrid methods (WANG; HAJIBEYGI;

TCHELEPI, 2014). Several authors have successfully modified the AMS to incorporate

new features such as embedded fracture models (ŢENE; KOBAISI; HAJIBEYGI, 2016),

more complex physics (ŢENE; WANG; HAJIBEYGI, 2015), multiscale multilevel simula-

tions (CUSINI et al., 2018; HAJIBEYGI et al., 2020) and to provide a general framework

that allows the integration of new models in a unified way (CORTINOVIS; JENNY,

2017).

Nevertheless,the methods referred above are not generally applicable on un-

structured grids. There are three reasons for this limitation: the standard Two-Point

Flux Approximation (TPFA) used in these methods is consistent only consistent for

k-orthogonal grids, i.e. when the faces Γ of the volumes are aligned with the principal

directions of the permeability tensor (AAVATSMARK et al., 1998) , the difficulties in

generalising the multiscale geometric entities such as the primal and dual coarse grids,

and a proper definition of the multiscale operators for this type of grid (SOUZA et al.,

2020). The work of Moyner & Lie (2013) addressed this second issue and developed a

generalisation of the MsFV for working with unstructured coarse grids. Moyner & Lie

(2015) went further and redesigned the multiscale geometric entities and the multiscale

operators and created the Multiscale Restriction-Smoothed Basis (MsRSB), which is

only consistent on unstructured coarse grids. Bosma et al. (2017) have worked on the

extension of the multiscale entities, and on creating a prolongation operator for unstruc-

tured grids by rescaling the MsFV basis functions. Mehrdoost (2019) and Mehrdoost

(2021) have studied techniques to create adaptive primal and dual unstructured coarse

grids.

Despite these significant contributions, these methods lack a generally con-
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sistent flux approximation for anisotropic problems on unstructured grids. As for

the flow equation approximation, great efforts have been made to develop consistent

flux approximations, called Control Volume Distributed Multipoint Flux Approxima-

tions (CVD-MPFA), which overcome the limitations of TPFA (CRUMPTON; SHAW;

WARE, 1995; AAVATSMARK et al., 1998; EDWARDS; ROGERS, 1998; CARVALHO;

WILLMERSDORF; LYRA, 2007a; EDWARDS; ZHENG, 2008; CHEN et al., 2008; ED-

WARDS; ZHENG, 2010; GAO; WU, 2010; FRIIS; EDWARDS, 2011; CONTRERAS et al.,

2016; CONTRERAS; LYRA; CARVALHO, 2019).

Monotonicity is an important property sought by authors devising numerical

schemes. In the context of highly anisotropic petroleum reservoirs, the loss of mono-

tonicity may lead to solutions that violate entropy constraints (YUAN; SHENG, 2008),

causing oil to flow from regions with low pressure towards higher pressures. In media

with high anisotropy ratios and permeability variations, monotonicity loss can also lead

to the occurrence of negative absolute pressures, for instance. However, monotonicity is

not sufficient to ensure that a discrete solution does not have spurious oscillations. In

contrast, a method with a local discrete Maximum Principle (DMP) yields a discrete

solution that is free of this non-physical oscillations, and if a method has an M-matrix,

then this ensures that the solution has a local DMP (EDWARDS; ZHENG, 2010). The

standard TPFA method applied to the pressure equation has an M-matrix and therefore

the resulting discrete solutions are free of spurious oscillations. However, the method

is inconsistent if the grid is not k-orthogonal, which occurs when full tensor fields are

present.

We note that both the more recent CVD-MPFA methods with full pressure

support (FPS) e.g. (EDWARDS; ZHENG, 2010; GAO; WU, 2010) and the earlier methods

with triangular pressure support (TPS) CVD-MPFA have a conditional M-matrix and

local DMP. For some test cases with strongly anisotropic full tensors, both CVD-MPFA

formulations (FPS and TPS) have no local DMP, yet only the earlier TPS methods induce

severe spurious oscillations. This is because TPS has a limited quadrature range, shown

to be decoupled when strong full-tensors are present.

This behaviour is shown to be due to decoupling of the domain. (EDWARDS;

ZHENG, 2008; EDWARDS; ZHENG, 2010) analyse and explain this phenomenon. It

is shown that the FPS formulations do not suffer from decoupling and can compute

solutions free of severe unphysical oscillations at the lattice level, despite the lack of a

formal local DMP in such cases.

The first work coupling MsFV with CVD-MPFA to create a consistent multi-

scale method applicable to non k-orthogonal and unstructured grids is presented in

Parramore et al. (2016). However, this method requires that a MsFV fine-scale grid to

be defined by refining an unstructured coarse grid. The work of Souza et al. (2020)
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coupled the Multipoint Flux Approximation using a Diamond Stencil (MPFA-D) with

the MsRSB, creating a consistent framework for Multiscale Control Volume (MsCV)

on unstructured grids. Recently, Bosma et al. (2020) developed a filtering strategy to

improve the MsRSB method by enforcing M-matrix properties.

1.1 Research Objectives

In this context, the general objective of this work is to investigate and develop

conservative multiscale schemes for 2-D, extensible to 3-D, simulation of multiphase

flows in heterogeneous and anisotropic porous media using non-k-orthogonal meshes.

Specific Objectives

1. To investigate and develop algorithms for the creation of multiscale geometric

entities in 2-D, extensible to 3-D.

2. To implement linear and non-linear flux approximation schemes for the discreti-

sation of the pressure equation.

3. To investigate and develop a multiscale scheme for the simulation of multi-phase

flows in highly heterogeneous and anisotropic petroleum reservoirs consistent in

general unstructured grids, at all scales.

1.2 Articles published in journals, conferences and congresses

As a direct result of our research, we have written the following articles that

have been published in international journals, congresses and conferences:

Articles published in peer reviewed scientific journals

• SOUZA, A. C. R. de; BARBOSA, L. M. C.; CONTRERAS, F. R. L.; LYRA, P. R. M.;

CARVALHO, D. K. E. de. A Multiscale Control Volume framework using the

Multiscale Restriction Smooth Basis and a non-orthodox Multi-Point Flux Ap-

proximation for the simulation of two-phase flows on truly unstructured grids.

Journal of Petroleum Science and Engineering, Elsevier BV, v. 188, p. 106851, may

2020. Available on: <https://doi.org/10.1016/j.petrol.2019.106851>.

• SOUZA, A. C. R. de; CARVALHO, D. K. E. de; SANTOS, J. C. A. dos; WILLMERS-

DORF, R. B.; LYRA, P. R. M.; EDWARDS, M. G. An algebraic multiscale solver

for the simulation of two-phase flow in heterogeneous and anisotropic porous

media using general unstructured grids (AMS-U). Applied Mathematical Modelling,

https://doi.org/10.1016/j.petrol.2019.106851
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Elsevier BV, v. 103, p. 792–823, mar 2022. Available on: <https://doi.org/10.

1016/j.apm.2021.11.017>.

• SANTOS, J. C. A. dos; LYRA, P. R. M.; ANDRADE, J. P. R. de; SOUZA, A. C. R. de;

FILHO, R. J. M. de L.; CARVALHO, D. K. E. de. An Algebraic Dynamic Multilevel

and Multiscale Method with Non-Uniform Mesh Resolution and Adaptive Alge-

braic Multiscale Solver operator for the simulation of two-phase flows in highly

heterogeneous petroleum reservoirs. Journal of Computational Physics, p. 111174,

2022.

Articles published in congresses and conferences

• SOUZA, A. C. R. de; CAVALCANTE de T. M.; CARVALHO, D. K. E. de; EDWARDS,

M. G.; LYRA, P. R. M. Numerical simulation of the diffusion equation via a Non-

linear Flux Splitting technique with the Multi-Point Flux Approximation method

with a Diamond stencil satisfying the Discrete Maximum Principle using 2-D

unstructured meshes. Proceedings of the 26th International Congress of Mechanical
Engineering, 2021.

• SILVA, R. N. T.; MATOS, G. M.; SOUZA, A. C. R. de; FILHO, R. J. M. L.; CAR-

VALHO, D. K. E. de; LYRA, P. R. M. Some results on the accuracy of a classical

upscaling technique using an Intuitive Multilevel Preprocessor for Smart Simu-

lation. Proceedings of Ibero-Latin American Congress on Computational Methods in
Engineering (CILAMCE 2020), 2020.

• JUVITO, L.; RAMIREZ, G. G.; SOUZA, A. C. R. de; CARVALHO, D. K. E. de;

LYRA, P. R. M. An iterative MsCV method coupled to the high-resolution CPR

approach via different solution smoothers for the simulation of oil-water flows

in 2-D petroleum reservoirs on unstructured grids. Proceedings of Ibero-Latin
American Congress on Computational Methods in Engineering (CILAMCE 2020),
2020.

• SANTOS, J. C. A.; ANDRADE, J. P. R.; SOUZA, A. C. R.; FILHO, R. J. M. L.;

CARVALHO, D. K. E.; LYRA, P. R. M. An Adaptive Algebraic Dynamic Multilevel

(A-ADM) and Multiscale Method with Enriched Basis Functions for the simulation

of two-phase flows in highly heterogeneous petroleum reservoirs. Proceedings of
Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE
2020), 2020.

https://doi.org/10.1016/j.apm.2021.11.017
https://doi.org/10.1016/j.apm.2021.11.017
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1.3 Thesis Organisation

This thesis has been divided into 5 different chapters dealing with different

topics. The first chapter consists of the introduction, which gives a brief overview of the

topics covered in this thesis. The second chapter deals with the mathematical model

describing the physical phenomena governing the single-phase and two-phase flow in

porous media. The third chapter is a description of the fine-scale flux approximation and

includes a subsection on the MultiPoint Flux Approximation with a Diamond Stencil

and where we introduce the Flux Limited Splitting technique to recover a solution that

complies with DMP. In the fourth chapter we give a brief overview of multiscale finite

volume methods, including a section on the standard Multiscale Finite Volume and

Algebraic Multiscale Solver methods, and introduce the Algebraic Multiscale Solver for

Unstructured Grids. The fifth chapter of this thesis is devoted to the results, where we

test our formulations on some benchmark cases. Finally, the last chapter consists of the

conclusions and suggestions for future work. Moreover, we dedicated the appendix of

the thesis to the background grid strategy and the preprocessing algorithms used to

create the multiscale entities for unstructured grids.
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2 GOVERNING EQUATIONS

The main idea of this chapter is to briefly discuss the mathematical model that

governs the two-phase flow of water-oil in porous media. Since this topic has already

been the subject of extensive studies by our research group and other authors (SOUZA,

2018; CARVALHO, 2005; SOUZA, 2015; CONTRERAS, 2017; AZIZ; SETTARI, 1979),

the focus here is solely on explaining the models and the partial differential equation

(PDE) describing the model. To find the following equations, we manipulate the mass

conservation law along with Darcy’s law for fluid flow in porous media fully saturated

porous media assuming an immiscible, incompressible, isothermal Newtonian fluid

through a fully saturated medium with negligible compressibility. Furthermore, thermal

capillarity effects and chemical reactions between phases are not taken into account.

Finally, we neglect dispersion and adsorption effects. The resulting mathematical model

describes a two-phase flow, water-oil, using two different PDE, an elliptic (pressure)

and a hyperbolic (saturation) equation.

2.1 Mass Conservation Equation and Darcy’s Law

The mass conservation law on porous media for two-phase flow, water (w) - oil

(o), defined over a physical domain Ω× [0, t] is given by (CHEN; HUAN; MA, 2006):

∂(φρiSi)
∂t

= −∇ · (ρi v⃗i) + qi in Ω× [0, t] where i = water (w), oil (o) (2.1)

where φ represents the porosity of the medium, t the time, qi the source/sink term of

the phase that in this context may represent the injection and production wells, Si is the

phase i saturation, v⃗i phase velocity and ρi the density of the phase. The assumption of

a fully saturated media gives the following closing equation:

So + Sw = 1 (2.2)

Darcy’s law, originally discovered by Henry Darcy, is a volume averaging exper-

imental equation that later turned out to be an approximation to the Navier-Stokes

equation, (EWING, 1983)using the smallest possible scale but large enough to capture

the heterogeneity of a porous medium as given by:

v⃗i = −λiK(∇⃗pi − ρi g⃗) with λi = kri/µi (2.3)

where λi , kri , µi , and pi represent respectively mobility , relative permeability, viscosity,

and pressure of the phase i, and where g⃗ represents the gravity.
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The two-dimensional (R2) Cartesian absolute permeability tensor K˜ is defined

as:

K(x⃗) =

kxx kxy
kyx kyy

 ∀x⃗ ∈R2 where x⃗ = (x,y) (2.4)

The absolute permeability K˜ is a rock property that measures the capacity of a

medium to allow flow. The relative permeability kri , in turn, is a dimensionless measure

of the effective permeability of a given phase.

It is also necessary to have an equation that describes the influence of one phase

flow over the other phases. In this work, we employ the Brooks and Corey model, an

experimental constitutive equation (HELMIG, 1997) defined as:

krw =
(

Sw − Swi
1− Swi − Sor

)nw
and kro =

(
1− Sw − Sor
1− Swi − Sor

)no
(2.5)

where Si denotes the fraction of the pore volume occupied by a phase i = o,w, Swi and

Sor represents the residual saturation of the water and oil phases, and nw and no assume

different values (CHEN; HUAN; MA, 2006; AZIZ; SETTARI, 1979).

2.2 Elliptic Pressure Equation

By combining and manipulating equations (2.1) to (2.3), we derive the pressure

equation (HELMIG, 1997; CARVALHO, 2005; CHEN; HUAN; MA, 2006; EWING,

1983, 1983) expressed as it follows:

∇⃗ · v⃗ = Q with v⃗ = −λK(∇⃗p − ρavgg⃗) in Ω (2.6)

where v⃗ = v⃗w + v⃗o denotes the total velocity of the fluid, ∇p represents the pressure

gradient and Q = Qw +Qo is the sum of the volumetric source and sink terms of each

phase divided by the respective density, Qi = qi/ρi . We define the average density ρavg

as mobility weighted average of the phases density (HURTADO, 2011) as:

ρavg =
λoρo +λwρw

λ
with λ = λo +λw (2.7)

where λo , λi , λ represent respectively the mobility of the oil phase, the mobility of the

water phase and the total mobility.

By neglecting the gravity term on the Darcy’s velocity equation (2.6), we find a

simpler form for the total velocity:

v⃗ = −λK∇⃗p (2.8)

By inserting this simplified velocity (2.8) inside (2.6), we obtain the global

pressure equation for two-phase flow:

−∇⃗ · (λK∇⃗p) = Q (2.9)
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For single-phase flow, if we set λ = 1, we have:

−∇⃗ · (K∇⃗p) = Q (2.10)

2.3 Hyperbolic Saturation Equation

Another product of the manipulation of the mass conservation equation (2.1)

is the saturation equation, a hyperbolic non-linear PDE that describes how one of the

phases is transported across the porous medium. We define the resulting equations for

water phase as:

φ
∂Sw
∂t

= −∇⃗ · F⃗(Sw) +Qw for Ω× [0, t] (2.11)

where F⃗(Sw) is defined as:

F⃗(Sw) = fw(Sw)v⃗ with fw = λw/λ (2.12)

The fractional flux fw(Sw) is an expression that describes the fraction of water

transported with the total flow. Since the fractional flux depends on the saturation,

it represents a non-linear term on the equation. Moreover, it is worth noting that the

mobilities are a function of the saturation field, while Darcy’s velocity is a function of

the pressure field. Therefore, these terms couple the elliptic pressure and hyperbolic

saturation equation.

2.4 Initial and Boundary Conditions

The mathematical model described by equations (2.6) and (2.11) requires a

combination of initial and boundary conditions (BC). Apart from the classical Dirichlet

and Neumann Boundary conditions, we define a special subset of these BC to represent

the interaction between the wells and the porous medium (See Figure 1). Thus, we

define the usual boundary conditions as:

Figure 1 – BC of a physical domain Ω: Dirichlet BC ∂ΩD , Neumann BC ∂ΩN , produc-
tion ∂ΩP and injection ∂ΩI wells BC.

Source: Author.
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p(x⃗, t) = gD on ∂ΩD × [0, t]

v⃗ · n⃗ = gN on ∂ΩN × [0, t]

p(x⃗, t) = Qinj on ∂ΩI × [0, t]

v⃗ · n⃗ = Pprod on ∂ΩP × [0, t]

(2.13)

where gD and gN stand for the prescribed pressure and prescribed flux; Qinj, Pprod the

prescribed pressure and flux,respectively, defined at the injection and production wells,

and where n⃗ is unit normal vector.

We define the boundary conditions ∂Ω of the domain Ω as a disjoint set of the

different conditions presented on the previous equation:

∂Ω = ∂ΩD ∪∂ΩN ∪∂ΩI ∪∂ΩP (2.14)

Finally, the boundary and initial conditions of the saturation equation are given by:

Sw(x⃗, t) = S̄I on ∂ΩI × [0, t]

Sw(x⃗,0) = S̄o
w on Ω

(2.15)

where S̄o
w is the initial saturation field, and S̄I the water saturation of the injected fluid.

2.5 Continuous Maximum Principle

Let u be the solution of the second order diffusion equation subjected to Dirichlet

or a combination of boundary conditions, such as the one found defined for equations

(2.6):  −∇⃗ · (D∇⃗u) = b in Ω

u = gD on ∂Ω
(2.16)

where D is the symmetric and uniformly positive diffusive tensor, and b a representation

of the source and sink terms.

Theorem 2.5.1. (KUZMIN; SHASHKOV; SVYATSKIY, 2009) The solution u attains its
maxima or (minima) on the boundary of ∂Ω if b is non-positive (non-negative) in Ω.

b ≤ 0 −→max
x∈Ω

u(x) = max
x∈∂Ω

gD(x)

b ≥ 0 −→min
x∈Ω

u(x) = min
x∈∂Ω

gD(x)
(2.17)

Theorem 2.5.1 is often referred as the Maximum Principle or Continuous Maxi-

mum Principle (CMP) no matter the sign of b.

Corollary 2.5.1.1. If b = 0, then the solution u is bounded by the Dirichlet boundary
conditions.

b = 0 −→ min
x∈∂Ω

gD(x) ≤ u(x) ≤max
x∈∂Ω

gD(x) (2.18)
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Corollary 2.5.1.2. The solution u preservers the sign of the boundary values, if b and gD are
non-positive (non-negative) in Ω.

b ≤ 0, gD ≤ 0 −→ u ≤ 0 in Ω

b ≥ 0, gD ≥ 0 −→ u ≥ 0 in Ω
(2.19)

The above corollary is often referred as the positive or negative preservation

property. Please, check (KUZMIN; SHASHKOV; SVYATSKIY, 2009) for more details

and the proof of Theorem 2.5.1.
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3 FINITE VOLUME FORMULATION

The set of partial derivative equations described in the previous chapter govern

the behaviour of fluid flow in the rock reservoir. As with most physical phenomena, the

complexity of these equations either admits an analytical solution with some simplifying

conditions, or they do not have known solutions at all. In this way, numerical schemes

become a viable alternative as they allow us to obtain approximate solutions within

a certain desired tolerance. Therefore, standard petroleum reservoir simulators are a

key tool for the management of subsurface oil reservoirs. Techniques such as history

matching, uncertainty quantification-propagation and optimization make extensive use

of simulations.

At the heart of these simulators is the Finite Volume (FV), a locally conservative

flux-continuous family of methods whose best-known member is the Two-Point Flux

Approximation (TPFA) scheme. The main advantages that make TPFA so appealing over

other flux approximation methods are its efficiency, simplicity, and the guarantee of

solutions that are free of spurious oscillations because this scheme satisfies the Discrete

Maximum Principle (DMP). This is the case because methods capable of generating

an M-matrix, such as the TPFA, are guaranteed to yield solutions with local DMP

(EDWARDS; ZHENG, 2010). However, this scheme fail to produce consistent solution

for non-k-orthogonal grids and for media with full permeability tensors.

These difficulties were first overcome when two groups of authors (EDWARDS;

ROGERS, 1998; AAVATSMARK et al., 1998) , separately, generalised the work of Crump-

ton, Shaw & Ware (1995) and created the modern Control Volume Distributed (CVD)

family, also known as MultiPoint Flux Approximation (MPFA), to work on general

unstructured grids. With the success of this new branch of the family of linear finite

volume methods, several authors have dedicated to improving these classical CVD-

MPFA formulations (EDWARDS; ZHENG, 2008; CHEN et al., 2008; GAO; WU, 2010;

CONTRERAS et al., 2016; CONTRERAS; LYRA; CARVALHO, 2019). Nevertheless, any

linear scheme that is more than first-order accurate may lead to local extrema according

to Godunov’s theorem, i.e., these methods cannot satisfy the DMP. In the subsurface

petroleum reservoir simulation context, the spurious oscillations caused by the inabil-

ity to comply the DMP may lead to the appearance of virtual gas pockets when the

pressure drops below the bubble point and oil to flow from low to high pressure zones

(QUEIROZ et al., 2013). It is worth noting that modern CVD-MPFA schemes with full

pressure support (FPS) e.g. (EDWARDS; ZHENG, 2010; GAO; WU, 2010) and earlier

triangular pressure support (TPS) have a conditional M-Matrix and thus a local DMP.

Ergo, media with strong anisotropic full tensors with abrupt permeability variations
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can cause these methods to lose the DMP. As a result for some test cases with strong

anisotropic full tensors, both formulations of CVD-MPFA (FPS and TPS) have no local

DMP, yet only the earlier TPS methods induce severe spurious oscillations for most of

the cases.

In this chapter, we present the schemes of cell-centred finite volume employed

on this work to approximate the solution of aforementioned PDEs.

3.1 Cell Centred Finite Volume Methods for the Pressure Equation

Two important features distinguish the cell-centred family of Finite Volume

methods. The first is the partitioning of the physical domain into smaller volumes with

an unknown associated with CVs of that grid, while the second is the integral or conser-

vative form of the equations. (SHENG; YUAN, 2015; WU; GAO, 2014; CONTRERAS,

2017). Before moving on to the definitions of the flux approximation, it is important to

formally define some terms that will be used extensively in this work.

Mesh or Grid (Ωf or Ω): The mesh is a discretization of the physical domain Ω. See

Figure 2. For the sake of simplicity Ω and ∂Ω is also used to denote computational

domain, and its boundaries.

Volume (Ωk): The computational domain is subdivided in a set of {Ωk}
nv
k=1 of nv vol-

umes or control volumes.

Face or Surface (Γj): The set of non overlapping faces is defined such that {Γj}
nf
j=1 =

∂Ωi ∩∂Ωj ∀Ωi ,Ωj ∈Ω with i , j and Γj , ∅.

Volume Boundaries (∂Ωk): The boundaries of a volume Ωk is a set defined as ∂Ωk =

{Γj ∈Ωk} ∀Ωi ,Ωj ∈Ω with i , j and Γi , ∅.

Figure 2 – Representation of a physical domain and its discretization.

(a) Physical domain Ω. (b) General Control Volume Ωk (light blue)
in discrete representation of th Ω .

Source: Author.



Chapter 3. Finite Volume Formulation 32

Let us start by integrating equation (2.6) over the domain Ω. This leaves us with:∫
Ω

∇⃗ · v⃗dV =
∫
Ω

QdV (3.1)

By definition, the domain Ω is discretized in nv control volumes. This allow us

to write equation (3.1) as:

nv∑∫
Ωk

∇⃗ · v⃗dV =
nv∑∫

Ωk

QdV (3.2)

Therefore, the conservation form also holds for a single general control volume

Ωk : ∫
Ωk

∇⃗ · v⃗dV =
∫
Ωk

QdV (3.3)

Note that equations (3.2) and (3.3) state that by definition Cell Centred Finite

Volume methods are, respectively, globally and locally conservative. If we apply the

Divergence Theorem to the LHS of equation (3.3), we obtain:∫
∂Ωk

v⃗ · n⃗dA =
∫
Ωk

QdV (3.4)

If we apply the Mean Value Theorem to the LHS and RHS of equation (3.4), we

obtain: ∫
∂Ωk

v⃗ · n⃗dA =
∑

Γj∈∂Ωk

(v⃗ · N⃗ )Γk (3.5)

where v⃗Γk stands for the mean velocity approximated on an arbitrary face Γk and the

respective N⃗Γk
the normal area vector in ∂Ωk, and:

∫
Ωk

QdV = Q̄kΩk (3.6)

where Q̄k represent the mean value of the source/sink term.

By substituting equations (3.5) and (3.6), we rewrite equation (3.4) to formaly

define the concept of mass conservation.

Definition 3.1.1. A numerical scheme is conservative if:∑
Γj∈∂Ωk

(v⃗ · N⃗ )Γj = Q̂kΩk ∀Ωk ∈Ω (3.7)

where the discrete Darcy’s flux calculated for the control volumes to the left L and to

the right R of Γj obey the following relation:

(v⃗ · N⃗ )LΓj + (v⃗ · N⃗ )RΓj = 0 ∀Γj ∈ Γ (3.8)
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Note that, since the computational domain is discretized using a set of convex

polygons equation (3.7) is an exact form of equation (3.4).

3.1.1 Mobility Approximation

The approximation of the relative permeability krw in equation (2.5) relies on the

saturations, that in a cell centred finite volume scheme are calculated on the volumes

of the discrete domain. Thus, the relative permeability krw and the mobility λ are also

computed on the control volumes. However, both TPFA and MPFA-D flux expressions

require the mobility to be projected on an arbitrary face Γj . Friis & Evje (2012) suggests

the follow approximation to compute the face mobility λΓj
.

λΓj
=
λI +λJ

2
(3.9)

where the nodal mobilities λI and λJ are approximated by the weighted average of the

mobilities around a given node:

λi =

ni∑
k=1

λkΩk

ni∑
k=1

Ωk

(3.10)

where i = I, J and ni is number of control volumes around node i.

3.1.2 Matrix form of the Pressure Equation

Once a proper discrete flux approximation is defined, we can use equation (3.7)

to assemble a linear system of equations that represents the discrete form of the mass

balance equation, as it follows:

Mipi = Qi (3.11)

where Mi denotes the transmissiblity matrix, pi the pressure vector, Qi the source and

sink term vector, and where the subscript i represents the flux approximation scheme

used such i = TPFA, MPFA-D, etc.

3.1.3 Linear Two-Point Flux Approximation

The Two-Point Flux Approximation on its linear form is based on two hypotheses.

The first is that fluxes across the faces are unique by definition. The second is that the

fluxes in each control volume are piecewise linear. Let us consider a section of a k-

orthogonal two-dimensional mesh as shown in Figure 3. Assuming that a control

volume Ωk is subjected to a pressure gradient along the x and y-axes, we can calculate

the fluxes at its boundaries ∂Ωk with no loss of generality. The flux across a face Γj shared

by two adjacent control volumes on the left L and on the right R, with corresponding
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Figure 3 – Geometric entities used to derive the TPFA across the boundaries ∂Ωj (blue)
of a an arbitrary control volume Ωk (light blue) in a 2-D domain.

Source: Author

centroids represented by L̂, and R̂ is calculated using an auxiliary point, the centre of

the face Γ j .

We can write the Darcy’s flow expression, i.e., Darcy’s velocity multiplied by the

cross-sectional area, from the centre of left control volume L̂ to centre of the shared

face Γ j , and an expression from the centre of the shared face Γ j to the centre of right

control volume R̂ :

(v⃗ · N⃗ )LΓj = −λΓj
KLss |Γj |

pΓ̄j − pL̂∆sL̂
2


(v⃗ · N⃗ )RΓj = −λΓj

KRss
|Γj |

pL̂ − pΓ̄j∆sR̂
2


(3.12)

where p is the pressure, |Γj | the cross-sectional area, s = x or y depending on the

orientation of the analysed face Γj , Kiss represents the component of the permeability

tensor i = L,R of the left and right volumes aligned with the principal direction s, and

∆s represents the length of the volume with respect to s.

The definition of continuity across the face Γj gives us the following equation:

(v⃗ · N⃗ )LΓj + (v⃗ · N⃗ )RΓj = 0 (3.13)

By replacing equation (3.12) in (3.13), we obtain an expression for the pressure

calculated on the centre of the shared face pΓ̄j .

pΓ̄j =

pL̂KLss
∆sL̂

+
pR̂KRss
∆sR̂

KLss
∆sL̂

+
KRss
∆sR̂

(3.14)
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We can finally define a unique flux expression by replacing equation (3.14) in

either one of the equations (3.12).

(v⃗ · N⃗ )Γj = −
2λΓj

KLssKRss

KLss∆sR̂ +KRss
∆sL̂
|Γj |(pR̂ − pL̂) (3.15)

The Two-Point Flux Approximation scheme was named because the discrete

flux expression in equation (3.12) relies exclusively on information of the two adjacent

volumes sharing the face Γj . It should also be emphasised that this approximation is

only consistent for k-orthogonal grids. This happens because the tangential components

of the permeability tensor are neglected. Thus, if K is not aligned with the main axis,

information is lost on the process. This may lead to first order errors O(1) that do not

disappear when the mesh is refined (EDWARDS; ZHENG, 2008).

3.1.4 Multi-Point Flux Approximation with a Diamond Stencil

The Multi-Point Flux Approximation with a Diamond stencil is a non-orthodox

member of the family of CVD-MPFA schemes. It was first developed by Gao & Wu

(2010) and brought to the multiphase flow context by Contreras et al. (2016). Like

other methods in the MPFA family, the MPFA-D was devised to tackle limitations

of the standard Two-Point Flux Approximation (TPFA). Similar to MPFA-FPS (FRIIS;

EDWARDS, 2011), the diamond employs a full pressure support for each subcell of the

discrete domain. Hence, this scheme does not suffer from decoupled solution modes

and can produce well-behaved and consistent solutions with significantly less visible

spurious oscillations compared to the earlier CVD-MPFA methods. Before proceeding,

let us define a lemma to compute the pressure gradient within a given triangle using

the information about its geometry and the pressure values defined on its vertices:

Lemma 3.1.1. (GAO; WU, 2010) Let △OPQ be a triangle with vertices O,P ,Q ordered
counterclockwise. The pressure gradient ∇⃗p inside this triangle is defined as:

∇⃗p ≃
pq − pp
|PQ|2

P Q⃗+
RP Q⃗
|PQ|2

[(pp − po)cot∠PQO+ (pq − po)cot∠OPQ] (3.16)

where R is a two-dimensional 90° clockwise rotation matrix.

The MPFA-D is also derived based on the same two hypotheses: Fluxes are

continuous, and piecewise linear across different control volumes. Let us consider a

fragment of a non k-orthogonal two-dimensional mesh as illustrated in Figure 4. The

diamond region is formed by connecting the centroids of two adjacent control volumes

to the nodes I and J that comprise a shared face Γj creating two triangles. If we apply

Lemma 3.1.1 to the left triangle △IJL̂, we obtain:
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Figure 4 – Diamond stencil (light blue region) of the MPFA-D is created by connecting
the centroids of two adjacent control volumes L̂ and R̂ with the nodes I and
J that comprise a shared face Γj (dark blue).

Source: Adapted from (SOUZA et al., 2022).

∇⃗p ≃
pI − pJ
|IJ |2

I J⃗ +
RI J⃗
|IJ |2

[(pI − pL̂)cot∠IJL̂+ (pJ − pL̂)cot∠L̂IJ] (3.17)

The permeability tensor K can be decomposed in terms of the tangential and

normal permeabilities components, as it follows:

KΓj (i)
= K t

Γj (i)

Γ⃗i

|⃗Γi |
+Kn

Γj (i)

N⃗Γj

|⃗Γi |
(3.18)

where Γ⃗i = I J⃗ , the superscript t and n denote the tangential and normal components,

the subscript (i) = L, R, and N⃗Γj
=RΓ⃗i .

We find an expression for the normal and tangential permeabilities by manipu-

lating equation (3.18):

Kn
Γj (i)

=
N⃗T

Γj
KΓj (i)

N⃗Γj

|Γj |2
(3.19)

K t
Γj (i)

=
N⃗T

Γj
KΓj (i)

Γ⃗j

|Γj |2
(3.20)

where the superscript T represent the transpose operation.

Based on the geometry of the diamond stencil illustrated in Figure 4, we can

write the following expressions for the cotangent of the angles ∠IJL̂ and ∠L̂IJ .

cot∠IJL̂ =
JL⃗̂ · (−Γ⃗j)

|Γj |hL̂Γj
(3.21)
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cot∠L̂IJ =
I L⃗̂ · Γ⃗j
|Γj |hL̂Γj

(3.22)

If we substitute equations (3.19) and (3.20) in (3.18), and the resulting expression in

(2.8), we find a discrete form of the Darcy’s velocity for the left volume. If we multiply

it by vector area N⃗ of Γj , we find the Darcy’s flow :

(v⃗ · N⃗ )
L

Γj
≃ −λΓj

[Kn
Γj (L̂)

(
(pI − pL̂)cot∠IJL̂+ (pJ − pL̂)cot∠L̂IJ

)
−K t

Γj (L̂)
(pI − pJ )] (3.23)

where λΓj
is the face mobility calculated for the left triangle. In this work we use the

approximation defined by equation (3.9).

If we substitute equations (3.19) to (3.22) in the previous equation and manipu-

late the resulting expression, we obtain:

hL̂
Γj

λΓj
Kn
Γj (L̂)

(v⃗ · N⃗ )
L

Γj
≃ − 1
|Γj |

(pI − pL̂)
JL⃗̂ · (−Γ⃗j)
|Γj |

+ (pJ − pL̂)
I L⃗̂ · Γ⃗j
|Γj |

− (pI − pJ )hL̂Γj

K t
Γj (L̂)

Kn
Γj (L̂)

(3.24)

We can repeat this process and write a similar expression for the right triangle

△IR̂J :

hR̂
Γj

λΓj
Kn
Γj (R̂)

(v⃗ · N⃗ )
R

Γj
≃ − 1
|Γj |

(
(pJ − pR̂)

JR⃗̂ · J I⃗
|Γj |

+ (pI − pR̂)
I R⃗̂ · I J⃗
|Γj |

)
− (pI − pJ )hR̂Γj

K t
Γj (R)

Kn
Γj (R)

(3.25)

By definition, a finite volume approximation is only consistent if the flux is

unique and continuous across Γj . Therefore, we can write:

−(v⃗ · N⃗ )LΓj = (v⃗ · N⃗ )RΓj = (v⃗ · N⃗ )Γj (3.26)

If we subtract the equations (3.25) from (3.24) and use the resulting expression

in (3.26), we can manipulate the outcome as follows to define the unique MPFA-D flux

over any surface Γj :

(v⃗ · N⃗ )Γj ≃ τΓj [pR̂ − pL̂ − νΓj (pJ − pI )] (3.27)

The scalar transmissibility coefficient τΓj and the non-dimensional tangential

component νΓj of the flux in equation (3.27) are defined as:

τΓj = −λΓj
|Γj |

Kn
Γj (L)

Kn
Γj (R)

Kn
Γj (L)

hR̂
Γj

+Kn
Γj (R)

hL̂
Γj

(3.28)

νΓj =
Γ⃗j ·

#  »

L̂R̂

|Γj |2
− 1
|Γj |


K t
Γj (L)

Kn
Γj (L)

hL̂Γj +
K t
Γj (R)

Kn
Γj (R)

hR̂Γj

 (3.29)
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Figure 5 – Diamond stencil (light blue region) of the MPFA-D on k-orthogonal grid, Γ⃗j
and L̂R⃗̂ are perpendicular.

Source: Author.

It is worth noting that on a k-orthogonal grid, such as the one in Figure 5, the

permeability tensor principle axes are aligned, Γj ⊥
#  »

L̂R̂ leading to Γ⃗j ·
#  »

L̂R̂ = 0 in equations

(3.21), (3.22). As a consequence the non-dimensional tangential νΓj component in

equation (3.29) is also zero, reducing the MPFA-D to the standard TPFA as defined by

equation (3.15).

3.1.4.1 Multi-Point Flux Approximation Boundary Conditions

The MPFA-D flux for a control volume subjected to Dirichlet boundary condi-

tions is a direct consequence of the flux expression given in equation (3.24):

(v⃗ · N⃗ )Γj ≃ −
λΓj

Kn
Γj

hL̂
Γj
|Γj |

[
(−
−→
JL̂ · Γ⃗j)gD(I) +

−→
IL̂ · Γ⃗jgD(J)− pL̂|IL|

2
]

−K t
Γj

(gD(J)− gD(I))

(3.30)

where gD(I) and gD(J) are prescribed pressures on node I and J , respectively.

The flux expression for control volumes subjected to Neumann boundary condi-

tions is defined as:

(v⃗ · N⃗ )Γj = gD |Γj | (3.31)

where gD represents the prescribed flux over Γj .

3.1.4.2 Interpolation of the Pressure Computed on Auxiliary Nodes

To obtain a consistent cell-centred finite volume approximation, the pressure

must be calculated at the centres of the control volumes, which in most cases is the

centre of mass of the CV. However, the MPFA-D discretisation of the Darcy flow in

equation (3.27) relies on pressure values calculated at the auxiliary nodes I and J that



Chapter 3. Finite Volume Formulation 39

comprise the analysed face Γj . To overcome this problem, we define the pressure at

these nodes as a linear combination of the pressure at the control volumes around these

nodes. It follows:

pI =
nI∑
k=1

wkpk (3.32)

where nI is the number of volumes around I and wk is the weight attributed to pressure

pk.

In this work we employ the Linearity-Preserving Explicit Weighted interpolation,

which has been shown to be robust for simulations in anisotropic and heterogeneous

media (CONTRERAS et al., 2016). The details of the derivation of these weights can be

found in the appendix of this thesis.

3.1.5 Discrete Maximum Principle

Let us consider Mp = Q a linear system of equations obtained from an arbitrary

flux discretization. It is possible to number the elements of this system, such that the

the Dirichlet boundary ∂ΩD and internal volumes Ω are combined together as:

 MΩΩ MΩ∂ΩD

M∂ΩDΩ
M∂ΩD∂ΩD

 pΩ
p∂ΩD

 =

 QΩ

Q∂ΩD

 (3.33)

The solution for internal control volumes pΩ of the resulting block matrix system

of equations (3.33) is defined as:

pΩ = M−1
ΩΩ(QΩ −MΩ∂ΩD

p∂ΩD
) (3.34)

It is often convenient to highlight in the system of equations the Dirichlet

boundaries. With no loss of generalization we can represent the new system Mp = Q,

as: MΩΩ MΩ∂ΩD

0 I

 pΩ
p∂ΩD

 =

QΩ

gD

 (3.35)

The inverse of M in equation (3.35) can be written as:

M−1 =

M−1
ΩΩ

−M−1
ΩΩ

MΩ∂ΩD

0 I

 (3.36)

Before introducing the definition of the Discrete Maximum Principle (DMP)

henceforth, a matrix inequality refers to an element-wise operation where all matrix

entries hold the inequality unless explicitly stated otherwise.

Definition 3.1.2. (PRICE, 1968) A non-singular square matrix M is said to be monotone

if for any vector x, Mx ≥ 0 implies in x ≥ 0. In other words, a matrix is monotone if

M−1 ≥ 0.
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From equation (3.36), we can infer that if M−1 is monotone, M−1
ΩΩ

> 0, and

MΩ∂ΩD
< 0.

Definition 3.1.3. (EDWARDS; ZHENG, 2008; KUZMIN; SHASHKOV; SVYATSKIY,

2009) A monotone matrix M is called an M-matrix, if it obeys the following relations:

mi,i > 0 ∀i

mi,j ≤ 0 ∀i, j i , j∑
j

mi,j > 0 ∀i
(3.37)

Definition 3.1.4. A matrix M is irreducible, if there are no permutation matrix P such

that:

P TMP =

M1,1 M1,2

0 M2,2

 (3.38)

where M1,1,M1,2 and M2,2 are square matrices.

Theorem 3.1.2. (VARGA, 2009; KUZMIN; SHASHKOV; SVYATSKIY, 2009) If M is an
irreducible diagonally dominant matrix then M > 0.

mi,i > 0 ∀i

mi,j ≤ 0 ∀i, j i , j
(3.39)

A consequence of the definition (3.1.3) is that if M is a M-Matrix, by definition

is monotone as well. The M-matrix is a desirable property because it ensures fast

convergence of iterative solvers (EDWARDS, 2000; KUZMIN; SHASHKOV; SVYATSKIY,

2009; VARGA, 2009).

The Discrete Maximum Principle refers to any analogous definition of the con-

tinuous maximum principle for a discrete system.

Definition 3.1.5. (KUZMIN; SHASHKOV; SVYATSKIY, 2009) The linear system of

equations (3.35) holds the DMP if:

Q ≥ 0 −→ p ≥ 0 (3.40)

while a positive maxima is attained on the boundaries for QΩ ≤ 0:

max
k

pk ≤max
j
{0, gDj} (3.41)

or a positive minima is attained on the boundaries for QΩ ≥ 0:

min
k

pk ≥min
j
{0, gDj} (3.42)

and if there are not source and sink terms QΩ = 0, i.e.

min
j
{0, gDj} ≤min

k
pk ≤max

j
{0, gDj} (3.43)
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The Discrete Maximum Principle is also interchangeably used to refer to the

discrete maximum and minimum principles. More details on the definition and the

proofs of the theorems above are found in (KUZMIN; SHASHKOV; SVYATSKIY, 2009;

VARGA, 2009). It should be noted that DMP conditions are defined globally, i.e. where

the maximum/minimum values are at the boundary. However, in (EDWARDS; ZHENG,

2008; EDWARDS; ZHENG, 2010) it is shown that the M-matrix conditions ensure that

each solution value is a convex average of its neighbours, which is consistent with the

solution having no local spurious extrema. This property became known as local DMP

(LDMP) because it ensures that each solution value is a convex average of its neighbours

consistent with the solution having no local spurious extrema. Note that LDMP does

not follow from global DMP.

3.1.6 M-Matrix Flux Splitting

The M-Matrix Flux Splitting is a technique proposed by (EDWARDS, 2000) for

CVD-MPFA formulations that splits the CVD-MPFA matrix in terms of TPFA and

cross-diffusion terms (CDT) flux producing an iterative semi-implicit scheme driven by

the TPFA matrix and ensuring mass conservation at each iteration level. In the Finite

Volume context, diagonally dominant M-matrices are obtained with the most common

and basic discrete operator, the TPFA. Nevertheless, most problems related to petroleum

reservoirs require a flux approximation that is consistent for anisotropic media that are

not aligned with the principal axes of the mesh (EDWARDS; ZHENG, 2010). The main

idea of the M-Matrix Flux Splitting method is to create a semi-implicit scheme that

exploits the fast convergence feature of the M-Matrix property of TPFA, where the only

matrix to be inverted is a symmetric positive definite M-matrix, even on unstructured

grids. In addition a key motivation is to enable standard simulators to include full-tensor

problems with the standard TPFA method solver. The resulting framework produced

results comparable to those of full matrix inversion, and eliminated O(1) errors in

the flow caused by the standard diagonal tensor formulation commonly employed at

that time in many existing simulators at the time (EDWARDS, 2000). To summarise

this technique, let us define a linear system of equations obtained with an arbitrary

CVD-MPFA.

MMPFAp = QMPFA (3.44)

With no loss of generality, we can split MMPFA in equation (3.44) in terms of

MTPFA and MCDT:

MTPFAp+MCDTp = QTPFA+QCDT where MCDT = MMPFA−MTPFA, QCDT = QMPFA−QTPFA

(3.45)

To derive the semi-implicit scheme, the pressure associate with MMPFA and MCDT
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are put at different iteration level, resulting on the following reoccurrence law:

MTPFAp
n+1 = QCDT +QTPFA −MCDTp

n (3.46)

The convergence of the method is discussed (EDWARDS, 2000), and the method

is stable if:

||I −M−1
TPFAMMPFA||∞ ≤ 1 (3.47)

where I stands for the identity matrix and the subscript∞ represents the infinity norm.

Note that the algebraic nature of the equation allows this method to be employed

in 3-D as in 2-D. The only requirement for the recurrence law is to provide a trans-

missibility matrix MMPFA assembled using a consistent flux approximation. Another

major advantage of this technique is the ability to generate conservative solutions

at each iteration level. In other words, it is possible to obtain approximate solutions

within a given tolerance in a few steps, capturing off-diagonal effects while ensuring

conservation of mass. Later, Pal & Edwards (2006), Pal & Edwards (2011) developed a

non-linear version of this scheme by developing a pressure limiter that modifies the

pressure solution to mitigate the loss of monotonicity of the original method.

3.1.7 Non-Linear Flux Limited Splitting

The Flux Limited Splitting (FLS) is a non-linear generalization of the work of

(EDWARDS; ZHENG, 2010; PAL; EDWARDS, 2006; PAL; EDWARDS, 2011). The idea

was to devise a general repair technique for linear CVD-MPFA based on the M-Matrix

Flux Splitting but limiting the amount of cross-diffusion of the original CVD technique

to improve or restore the DMP whilst maintaining mass conservation.

3.1.7.1 Divergence Operator and the Face Transmissibility Matrix

The motivation to design the Divergent Operator comes from the need to find

a matrix form of the mass conservation equation as a function of a matrix expression

of the fluxes. This allows the standard transmissibility matrix in equation (3.11) to be

written in terms of multiplication of the divergent operator by a face transmissibility

matrix.

We start by applying the Divergence theorem to a discrete control volume Ωj in

Ω. By definition, we have: ∑
Γj∈∂Ωk

N⃗j = 0⃗ ∀Ωk ∈Ω (3.48)
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To generalise this idea, we define N as a vector containing the nf area normal

vectors associated with every face in Γj ∈Ω, as:

N = [N⃗j]nf ×1 =


N⃗1

N⃗2

. . .

N⃗nf

 (3.49)

Note that N⃗j has no particular orientation in regard to any specific control

volumes.

The idea is to define a discrete operator D that performs the divergence theorem

in all control volumes of Ω. Since no orientation is established in N , D needs to be

defined taking into consideration this information, such that:

DN = 0⃗ (3.50)

Thus, we define the Discrete Divergence Operator D as:

D = (dkj)nv×nf such as dkj =

0 Γj <Ωk

γ(k, j) Γj ∈Ωk

where γ(k, j) =

1 N⃗j ·
−−→
L̂R̂ > 0

−1 otherwise
(3.51)

where
−−→
L̂R̂ is a vector that connects the centroids of the control volumes to the left and

to the right of the face Γj .

Using a similar notation, we can define an array containing any vector property

X⃗ interpolated on a face and oriented in accordance with the orientation of the area

vectors in N as:

X = [X⃗i]nf ×1 =


X⃗1

X⃗2

. . .

X⃗nf

 (3.52)

We define the operation ⊙ as the element-wise inner product between two vector

arrays X and Y, such that:

X⊙Y = [X⃗j · Y⃗j] (3.53)

We can use these definitions to write a matrix form of the flux expression:

V⊙N = [(v⃗ · N⃗ )j] (3.54)

We can interpret the previous flux expression, as the following matrix operation:

(V⊙N)FA = TFAp −FFA (3.55)
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where T represents the face transmissibility matrix, a nf ×nv sparse matrix that stores

the coefficients of a flux approximation giving by the subscript (FA = TPFA, MPFA),

and where FFA represents boundary conditions terms that are later added to the RHS.

By applying the Discrete Divergence Operator on equation (3.54), and by ex-

panding, we can write a generalization for the mass conservation equation, as:

D(V⊙N) =

 ∑
Γj∈∂Ωk

(v⃗ · N⃗ )j


nv

= [Qk]nv = Qs (3.56)

where Qs represents the wells source and sink term.

Using the previous definitions we can write the discrete form of the mass conser-

vation equation as it follows:

MFAp = QFA with MFA = DTFA QFA = Qs +DFFA (3.57)

Therefore, the linear system of equations can be written as:

DTFAp = Qs + DFFA = QFA (3.58)

3.1.7.2 Flux Limited Splitting Formulation

Let us define the flux array expression of a MPFA in terms of the TPFA and the

CDT components, similar to the M-Matrix Flux Splitting (EDWARDS, 2000) :

(V⊙N)MPFA = (V⊙N)TPFA + (V⊙N)CDT (3.59)

By replacing Equations (3.55) written for the TPFA and MPFA in (3.59), we can

define the flux of CDT as:

(V⊙N)CDT = TCDTp −FCDT with TCDT = TMPFA − TTPFA, FCDT = FMPFA −FTPFA (3.60)

As the TPFA is known for respecting the DMP, the idea behind our technique is

to create a parameter that limits the cross diffusion terms. Therefore, a Flux Limited

Splitting (FLS) expression is written as:

(V⊙N)FLS = (V⊙N)TPFA +B(V⊙N)CDT with B =
[
β1 . . . βnf

]T
I (3.61)

To ensure that (V ⊙N)FLS is the convex combination of the TPFA and MPFA

solutions, βj needs to be bounded as:

0 ≤ βj ≤ 1 (3.62)
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If we apply the Discrete Divergence Operator on equation (3.61) and add the

source and sink terms, we obtain the discrete mass conservation equation as:

D(V⊙N)FLS = D(V⊙N)TPFA +DB(V⊙N)CDT = Qs (3.63)

Using flux definitions of the TPFA and CDT face transmissibility, we have:

DTFLSp = DTTPFAp+DBTCDTp −DFTPFA −DBFCDT = Qs (3.64)

We can finally derive the Flux Limited Splitting recurrence law:

DTTPFAp
n+1 = Qs +DFTPFA +DBnFCDT −DBnTCDTp

n (3.65)

It is also possible to write equation (3.65) as:

MTPFAp
n+1 = QTPFA +Qn

LCDT −Mn
LCDTp

n (3.66)

where subscript LCDT stands for limited cross diffusion terms, and where:

QTPFA = Qs +DFTPFA, Qn
LCDT = DBnFCDT and Mn

LCDT = DBnTCDT (3.67)

3.1.7.3 Relaxation of the Cross Diffusion Terms

At this point, we still need to define an algorithm to compute a relaxation of

the cross diffusion terms.The best scenario is to find a Bn for each iteration n level that

maximizes the amount of cross diffusion and mitigates the spurious oscillations of the

MPFA solution. By premultiplying equation (3.66) by M−1
TPFA, we can isolate pn+1:

pn+1 = pTPFA +AM−1
TPFA(Qn

CDT −Mn
LCDTp

n) where pTPFA = M−1
TPFAQTPFA (3.68)

To do so, let us suppose that instead of limiting the flux, the limitation was

imposed at the volume level, on the balance cross diffusion terms. Therefore, we could

write equation (3.68) as:

pn+1 = pTPFA+M−1
TPFA(Qn

CDT−Mn
LCDTp

n) where A =
[
α1 . . . αnv

]T
I where 0 ≤ αn ≤ 1

(3.69)

As a result of the the Local Discrete Maximum Principle (EDWARDS; ZHENG,

2008; EDWARDS; ZHENG, 2010) between two distinct iteration levels n and n+ 1, the

following inequality must also hold:

min(pnk ) ≤ pn+1
k ≤max(pnk ) (3.70)

where min(pnk ) and max(pnk ) represent, respectively, the minimum and the maximum

pressure values of any volume that shares a node with an element k.



Chapter 3. Finite Volume Formulation 46

We can expand pn+1 using the definition given in equation (3.68):

min(pnk ) ≤ pTPFAk +αkWk ≤max(pnk ) with Wk = [M−1
TPFA(Qn

LCDT −Mn
LCDTp

n)]|k (3.71)

After some algebraic manipulation, we obtain the following interval in which αk

ensures that pnk satisfies the DMP:

Lk :


[
min(pnk )− pTPFAk

]/
Wk ≤ αk ≤

[
max(pnk )− pTPFAk

]/
Wk Wk > 0[

max(pnk )− pTPFAk

]/
Wk ≤ αk ≤

[
min(pnk )− pTPFAk

]/
Wk Wk < 0

(3.72)

To avoid extrapolation, we limit each interval with:

Kk : Lk ∩ [0,1] (3.73)

We define the relaxation parameter associated with the balance of the cross diffusion

terms as:

αk =

max(Nk) Kk , ∅

1 Kk = ∅

(3.74)

At this point, the limitation factor is computed for each control volume. To

obtain a relaxation parameter for a face Γj , we use the following relation:

βj = min(αL,αR) (3.75)

where L and R represent respectively, the control volumes neighbours to the left and

right of the face j.

Note that solving Bn = B(pn), and pn(Bn) is a non-linear optimization procedure

that maximises B within a fixed interval while ensuring that p is constrained by the

DMP.

3.1.7.4 Stability

Unlike the work of (EDWARDS, 2000) that computes the solution of the MPFA

system of equations using the semi-implicit relation in equation (3.46), the FLS system

of equation is modified at every iteration according to equation (3.64). Therefore, it is

natural to study the stability of each iteration n.

Let pH be the exact solution of the implicit FLS system of equations, such that:

DT n
FLSpH = DTTPFApH +DBnTCDTpH −DFTPFA −DBnFCDT = Qs (3.76)

If we subtract equation (3.76) from the semi-implicit law of recurrence of the

FLS in Equation (3.65), we have:

DTTPFAe
n+1 +DBkTCDTe

n = 0 (3.77)
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with the relative discrete solution error en+1 = pn+1 − pH and en = pn − pH .

If we solve equation (3.77) row-wise affter some algebraic manipulation, we

have:

en+1 = M−1
TPFAM

n
CDTe

n with Mn
CDT = DBnTCDT (3.78)

A method is known to be stable if its spectral radius is bounded by unity

(HIRSCH, 2002; EDWARDS, 2000), which follows:

||M−1
TPFAM

n
CDT||γ = ||I −M−1

TPFAM
n
FLS||γ ≤ 1 with Mn

CDT = Mn
FLS −MTPFA (3.79)

calculated using a γ norm.

The constrains imposed on β ensure that Mn
FLS is always bounded by Mn

MPFA and

Mn
TPFA. This way, as we update B, the restrictions on the cross diffusion terms increase

the overall stability of FLS as Mn
FLS becomes closer to Mn

TPFA. This increases the stability

of the M-Matrix Flux Splitting, allowing our formulation to converge even in cases the

original flux splitting did not.

3.1.7.5 Flux Limited Splitting Algorithm

After extensively testing the formulation presented in the previous subsections,

we developed the following algorithm, which is shown in three flowcharts. The main

algorithm, depicted in Flowchart 1, consists of three fundamental steps. The first is

the preprocessing stage, where the divergent operator, face transmissibility, and other

auxiliary entities are calculated. The second step is the heart of the FLS method, the Flux

Limitation algorithm, a set of routines described by the flowchart in Figure 2 that limit

the cross-diffusion terms to mitigate the unphysical oscillations. It is worth noting that

in this step the pressure solution is calculated within a tolerance large enough to capture

the violations of the DMP, but not too small to allow p to converge. The third and final

step is the solver itself. In this step, an arbitrary solver is used. For iterative solvers,

it is good practise to use the unconverged pressure solution as the initial estimate.

In this work, the standard M-Matrix Flux splitting is used as the iterative solver in

all the cases tested. The Flux Limitation, described in Flowchart 2, again consists of

several different subroutines. In particular, the functions FindAlpha and FindBeta are

an implementation of the cross-diffusion relaxation algorithm described in subsection

3.1.7.3. The function p_init, depicted on its own Flowchart 3, describes the warm start

procedure we developed, which gave the best results in all cases studied. Roughly

speaking, within the first lim WS the flux limitation allows the solution to iterate freely

to bring pTPFA closer to pMPFA. After that, the flux limitation starts and if the oscillations

keep the algorithm in a loop or if the tolerance is not reached after a certain number

of iterations the tolerance is not reached, another cycle starts using Bk and the initial
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pressure solution defined by p_init. Note that tol1 and tol2 represent the tolerances of

the iterative procedure and the tolerance of the DMP test.

Flowchart 1 – Flux Limiting Splitting main algorithm.

Source: Author.
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Flowchart 2 – Flux Limitation algorithm: Flux Limitation

Source: Author.
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Flowchart 3 – Pressure initialization algorithm: p_int.

Source: Author.

3.2 Cell Centred Finite Volume Discretization of the Saturation Equation

To derive a discrete form of the saturation equation, the same assumptions used

to obtain (3.7) are employed. We integrate equation (2.11) over the time interval to to t

and over the physical domain Ω. It follows:∫ t

to

∫
Ω

∂Sw
∂t

dΩdt = −
∫ t

to

∫
Ω

1
φ
∇⃗ · F⃗(Sw)dΩdt +

∫ t

to

∫
Ω

1
φ
QwdΩdt (3.80)

By definition, the discrete domain is an approximation of the physical domain.

Therefore, the space integral represents the summation of integrals over all control

volumes Ωk in Ω. If we apply the Gauss Theorem in the first integral on the RHS

equation (3.80), we obtain:∫ t

to

∑
Ωk∈Ω

∫
Ωk

∂Sw
∂t

dΩdt = −
∫ t

to

∑
Ωk∈Ω

∫
∂Ωk

1
φk

F⃗(Sw) · n⃗∂Ωdt +
∫ t

to

∑
Ωk∈Ω

∫
Ωk

1
φk

QwdΩdt

(3.81)

where φk represents the porosity of Ωk.

Since Finite Volume methods are locally conservative by construction, equation
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(3.81) is valid for a single control volume Ωk, i.e.:∫ t

to

∫
Ωk

∂Sw
∂t

dΩdt = − 1
φk

∫ t

to

∫
∂Ωk

F⃗(Sw) · n⃗d∂Ωdt +
1
φk

∫ t

to

∫
Ωk

QwdΩdt (3.82)

We can use the mean value theorem to approximate the following integrals:

1
φk

∫
∂Ωk

F⃗(Sw) · n⃗d∂Ωdt ≃ 1
φk

∑
Γj∈∂Ωk

[
F⃗(Sw) · N⃗

]
Γj

(3.83)

1
φk

∫ t

to

∫
Ωk

QwdΩ ≃
1
φk

Q̄w (3.84)

and ∫
Ωk

∂Sw
∂t

dΩ ≃ ∂S̄w
∂t

Ωk (3.85)

where Q̄w denotes the average water source or sink term integrated over time and space.

By substituting (3.83) to (3.85) in (3.82), we have the semi-discrete form of the

saturation equation:∫ t

to

∂Sw
∂t

dt = − 1
φΩk

Ωk

∫ t

to

∑
Γj∈∂Ωk

[
F⃗(Sw) · N⃗

]
Γj
dt +

Qw

φkΩk
(3.86)

For the sake of simplicity, the overbar notation is dropped henceforward.

3.2.1 Space Discretization

The space component of the saturation equation is discretized using the standard

First Order Upwind (FOU). It follows:

[
F⃗(Sw) · N⃗

]
Γj

= fw
(
v⃗ · N⃗

)
Γj

=


f L
w

(
v⃗ · N⃗

)
Γj

χΓj
≥ 0

f R
w

(
v⃗ · N⃗

)
Γj

otherwise
(3.87)

where f L
w , and f R

w represent the fractional flows of the CV to the left and to the right of

Γj , and χΓj
is defined as:

χΓj
=

(
v⃗ · N⃗

)
Γj

∂fw
∂Sw

∣∣∣∣∣
Γj

(3.88)

3.2.2 Temporal Discretization

The discretization of time component term in the saturation equation is done

using Backward Euler Method. It follows:∫ t

to

∂Sw
∂t

dt = Sn+1
w,k − S

n
w,k (3.89)
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where Sn+1
w,k and Sn

w,k are, respectively, the water saturation on Ωk at the time level n,

and n+ 1.

By replacing (3.89) in (3.86), manipulating and integrating over time, we obtain

the discrete saturation equation:

Sn+1
w,k = Sn

w,k −

 ∆t
φkΩk

∑
Γj∈∂Ωk

[
F⃗(Sw) · N⃗

]
Γj

+
∆tQw

φkΩk


n+1

(3.90)

where the time step ∆t = tn+1 − tn represents the time integration.

3.2.3 Implicit Saturation Equation

The discretization of the saturation equation using the Euler Forward introduced

a non-linear term in equation (3.90) that needs a proper treatment. Therefore, we

employ the Newton-Raphson method (BURDEN; FAIRES, 2011) to solve the non-linear

system of equations to handle the fractional flow f n+1
w = fw(Sn+1

w ). Hence, it is convenient

to write the saturation equation in a matrix function form, highlighting the non-linear

term f n+1
w :

H(Sn+1
w ) = Sn

w +∆tGnfn+1
w −Sn+1

w (3.91)

where H(Sn+1
w ) is a multi-variable function written in terms of Sn+1

w , an array containing

the saturation Sn+1
w,k of all control volumes; Sn

w and fn+1
w are similarly defined arrays for

respectively Sn
w,k, and f n+1

w,k ; and where Gn is defined as:

Gn = (gkl)nv×nv with gnkl =


1

φkΩk

[
Qk −

∑
Γj∈∂Ωk

ηk,j(v⃗ · N⃗ )n
Γj

]
k = l

(1− ηl,j)
(v⃗·N⃗ )n

Γj

φkΩk
k , l, Γj = ∂Ωk ∩∂Ωl

0 k , l, Γj = ∅
(3.92)

where ηk,j is defined as:

ηi,j =

1 if Ωi is upwind to (v⃗ · N⃗ )n
Γj

0 otherwise
(3.93)

The goal of the Newtown-Raphson method is to find H(Sn+1
w ) = 0. To do so, we

use the Taylor series to expand H(Sn+1
w ), up to the first order, around an approximation

of its roots S̃n+1
w :

H(Sn+1
w ) = 0 ≈H(S̃n+1

w ) +
∂H

∂Sn+1
w

∣∣∣∣∣
S̃n+1

w

(Sn+1
w − S̃n+1

w ) (3.94)
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By definition, the derivative of H(Sn+1
w ) is the Jacobian matrix, defined as:

∂H
∂Sn+1

w

∣∣∣∣∣
S̃n+1

w

= J(S̃n+1
w ) = ∆tGn ∂fn+1

w

∂Sn+1
w

∣∣∣∣∣∣
Sn+1

w

− I (3.95)

where I is the identity matrix with the same size as Gn.

By setting the saturations S̃n+1
w = Sn+1,γ

w and Sn+1
w = Sn+1,γ+1

w in equation (3.94),

computed in reference to the γ iteration level of the Newton-Raphson method, we

obtain :

H(Sn+1,γ
w ) + J(Sn+1,γ

w )(Sn+1,γ+1
w −Sn+1,γ

w ) ≈ 0 (3.96)

We find the Newton-Raphson recurrence law (BURDEN; FAIRES, 2011) by

rearranging, and premultiplying by J−1(Sn+1,γ
w ) the previous equation:

Sn+1,γ+1
w = Sn+1,γ

w + J−1(Sn+1,γ
w )rγ (3.97)

where the residue rγ is defined as:

rγ = H(Sn+1,γ
w ) = Sn

w +∆tGnfn+1,γ
w −Sn+1,γ

w (3.98)

and where:

J(Sn+1,γ
w ) = ∆tGn ∂fn+1,γ

w

∂Sn+1
w

∣∣∣∣∣∣∣
Sn+1,γ

w

− I (3.99)

with the convergence criterion for a given tolerance tol defined as:

max(rγ ) ≤ tol (3.100)

3.3 Coupling Strategy

Once the discretisations of the pressure and saturation equations are defined,

it is essential to define the coupling strategy for the simulation of two-phase flows,

which determines how these equations are connected. We use a segregated formulation

in which the saturation equations are solved implicitly. While the pressure equation

is solved using one of the schemes defined on subsection 3.1, the saturation equation

always uses the strategy on subsection 3.2. Figure 6 is a flowchart describing the

coupling strategy. First, the initial saturation field is used to calculate the total mobility,

solve the numerical pressure equation and calculate the Darcy’s flow. We use this

velocity field as input to solve the transport equation to update the saturation field.

If a time-dependent condition is met, the simulation comes to an end. Otherwise, the

process is restarted using the new saturation as the initial condition. The coupling

strategy for the simulation of two-phase flows with the multiscale methods described

in the next chapter is defined similarly. The only difference is that in these methods the
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pressure field and the Darcy’s flows are computed with an approximate multiscale field

obtained after a step to reimpose mass conservation.

Figure 6 – Diagram depicting the coupling between the pressure equation and satura-
tion equation solvers.

Source: Adapted from (SOUZA, 2018).

3.4 Approximation Errors

In order to assess the robustness and quality of the solution of the numerical

schemes developed in this section, we need to define the associated approximation

errors. For this purpose, we calculate the errors with respect to the reference solution.

We use the analytical solution of the same problem unless explicitly stated otherwise.

We define the (L2) and (L∞) norms of the error of a variable X⃗ as:

||X⃗ref − X⃗ ||2 =

√√√√∑
Ωi∈ΩΩi |x

ref
i − xi |2∑

Ωi∈Ω |x
ref
i |2

and ||X⃗ref − X⃗ ||∞ = max
Ωi∈Ω

Ωi |x
ref
i − xi | (3.101)

where X⃗ref and X⃗ represent an array containing the reference and the numerical

solutions, respectively; where x
ref
i represents the reference solution calculated at the

centre of the CV Ωi , and xi represents its numerical counterpart.
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4 MULTISCALE FINITE VOLUME FORMULATION

Multiscale methods are a family of approximate scale-transferring solvers that

allow the use of high-resolution geological grids in standard reservoir simulations.

Unlike upscaling techniques, where information is transferred from a high-resolution

scale and remains in the low-resolution scale, multiscale methods create a set of op-

erators to project the fine-scale system of equations onto the space of a coarse-scale

grid. The new system is then solved and later projected back onto the space of the

high resolution mesh to compute a reasonably accurate conservative solution (ZHOU;

TCHELEPI, 2008). The idea behind this and other related multiscale methods is that

solving a set of localised high-resolution systems together with a global problem at

the coarse scale (LUNATI; TYAGI; LEE, 2011) is cheaper than a direct simulation at

the high-resolution scale. The Multiscale Finite Volume (MsFV) methods are a sub-

set of the multiscale family, capable of generating mass-conservative solutions at any

simulation scale(LUNATI; JENNY, 2006; ZHOU; TCHELEPI, 2008; JENNY; LUNATI,

2009; LUNATI; JENNY, 2008; LEE; WOLFSTEINER; TCHELEPI, 2008). Moreover, the

iterative multiscale family is able to converge the multiscale solution to the fine scale

solution(HAJIBEYGI et al., 2008; HAJIBEYGI; JENNY, 2011a; LUNATI; TYAGI; LEE,

2011). In this way, multiscale methods can be applied in three different ways: i) as

a robust upscaling technique, ii) as an approximate fine-scale solver that produces

conservative solutions, and iii) as an initial guess in an iterative procedure that ensures

that the multiscale solution converges within a certain tolerance to the fine-scale sim-

ulation results (ZHOU; TCHELEPI, 2008; SOUZA et al., 2020). This chapter presents

the formulation and associated methods used to develop the multiscale formulation

devised in this thesis. The multiscale preprocessing algorithms have a chapter apart in

the appendix A where the Background grid strategy is introduced.

4.1 Multiscale Finite Volume Method

Before presenting the multiscale formulation developed in this thesis, it is nec-

essary to define the notation and discuss common aspects inherent in the Multiscale

Finite Volume family. To this end, we will review the original Multiscale Finite Volume

method (JENNY; LEE; TCHELEPI, 2003; JENNY; LEE; TCHELEPI, 2006) using the ma-

trix notation developed by Zhou & Tchelepi (2008), which has become the standard for

representing multiscale methods. We begin with an introduction to the basic concepts

of the multiscale finite volume formulation.
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Figure 7 – Illustration of the multiscale entities for methods in the MsFV family on
structured and unstructured grids: Fine-scale Mesh Ω (light grey), Primal
Coarse Grid Ωp(solid black lines), Dual Coarse Grid Ωd elements and their
wirebasket hierarchical classification: Primal Coarse Volumes Centres xp

or Nodes (yellow) , Dual Coarse Boundaries or Edges (red), Dual Coarse
Volumes or Internals (white).

(a) Structured grid with quadrilateral fine-
scale volumes.

(b) Unstructured grid with triangular fine-
scale volumes.

Source: (SOUZA et al., 2022)

Fine-scale Mesh (Ωf or Ω): The fine-scale mesh is simply a mesh that represents the

higher resolution grid used in a simulation. For this reason, the fine-scale mesh is

also represented by the mesh notation given in section 3.1. It is often the same

grid in which the petrophysical properties are estimated. In Figure 7a this grid is

shown in light grey.

Primal Coarse Mesh (Ωp): The primal coarse mesh is a low-resolution grid generated

by the agglomeration of all fine-scale volumes into primal coarse volumes. It is

represented by the solid black lines in the Figures 7a and 7b.

Primal Coarse Volume (Ωp
k): A primal coarse volume or simply coarse volume is a set

of face-connected fine-scale volumes such that no coarse volume shares the same

fine-scale volume. In other words, it consists in another subdivision of Ω in a set

of {Ωp
k }

n
p
v

k=1 of ncv volumes such that
{
Ωi ∈Ω

p
k |Ωi ∩Ω

p
k −Ωi = S

}
where S =

{
Ωp

}np
p=1

with n(S) > 0.

Primal Coarse Volume Boundaries (∂Ωp
k): The boundaries of a coarse volume Ωk is a

set defined as ∂Ωp
k = {Γ pj ∈Ω

p
k }

Primal Coarse Volume Face or Surface (Γ pj ): A coarse volume face or surface is a set

fine-scale faces such that {Γ pj }
n
p
f

j=1 = ∂Ω
p
i ∩∂Ω

p
j ∀Ω

p
i ,Ω

p
j ∈Ω

p with i , j and Γj , ∅.
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Figure 8 – Illustration of a primal coarse mesh Ωp with 9 primal coarse volumes (npv = 9)
and 24 primal coarse faces (npf = 24). The boundary of the central primal

coarse volume ∂Ω
p
5 (dark blue) whose centre x

p
5 (yellow fine-scale volume) is

comprised by the primal coarse faces {Γ p15,Γ
p
19,Γ

p
21,Γ

p
21} whose primal coarse

faces centres are {yp15, y
p
19, y

p
21, yp21} (fine-scale face in red) respectively.

Source: Author

Primal Coarse Centre (xpk): The primal coarse centre of a coarse volume Ω
p
k is a fine-

scale volume that represent the centre and eventually the primal coarse volume

itself. Standard multiscale methods often rely on using the fine-scale volume

closest to centroid of a coarse volume, while multiscale schemes that work with

general unstructured grids employ special routines to determine the coarse vol-

ume centres as the coarse cells are not necessarily convex (MOYNER; LIE, 2015;

SOUZA et al., 2020). The centres are illustrated by the yellow fine-scale volumes

in Figure 7. In the wirebasket ordering of the dual-coarse mesh, the primal coarse

centres are also referred as the nodes or node group. Check Section 4.2 for an

explanation of the wirebasket classification.

Primal Coarse Face Centre (ypj ): The primal face centre of a primal coarse face Γ
p
j a

fine-scale face that represent the centre of the primal coarse face itself.
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Dual Coarse Mesh (Ωd
c or Ωd): The dual coarse mesh is a low-resolution auxiliary

mesh used to ensure mass conservation at the boundaries of the primal coarse vol-

umes and later used by the flux reconstruction algorithm to retrieve local conserva-

tive fluxes. In the standard Muiltiscale Finite Volume method that uses structured

grids, the centres of the coarse volumes are connected to other coarse volumes that

share a common primal coarse face. This creates a set of face-connected fine-scale

volumes that form the boundaries of the dual coarse volume. Note that primal

coarse volumes are excluded from this group. The fine-scale volumes inside this

boundaries are referred as dual coarse volume internal cells.

Prolongation Operator (P op) and Restriction Operators (Rop): The Prolongation and

Restriction operators are at the core of all multiscale schemes in general. These

operators were developed to project the fine-scale system of equations onto the

coarse-scale space, where a solution is obtained, which is then projected back

onto the high-resolution space (ZHOU; TCHELEPI, 2008; SOUZA et al., 2020).

The multiscale solution at the fine scale is written as a convex combination of the

pressures in the coarse-scale space weighted by sets of basis functions. These sets

of basis functions, arranged in a matrix form, are called the Prolongation operator.

Therefore, by definition, the Prolongation operator projects the coarse solution

onto the fine-scale mesh. The restriction operator, in turn, maps the influence of

the fine-scale source and sink terms to the coarse scale.

Support Region of a Primal Coarse Volume (Ik): The Support Region of a Primal Coarse

Volume Ik represents a set of fine-scale volumes that form the area of influence of

a primal coarse volume Ω
p
k . In standard multiscale methods, Ik consists of all dual

coarse volumes that share xPk . By definition, the support area of a primal coarse

volume Ω
p
k is the influence area of xpk , where:

(P op)k,i , 0 ∀Ωi ∈ Ii (4.1)

Boundaries of a Support Region of a Primal Coarse Volume (∂Ik): The Boundaries of

a Support Region of a Primal Coarse Volume ∂Ik represents a set of fine-scale

volumes that share at least one node with a control volume in Ik. By definition,

they are outside the Ik.

Multiscale Errors: Multiscale methods can be used to efficiently approximate the nu-

merical solution at the fine-scale. Therefore, the reference solution used to evaluate

the multiscale errors is obtained by direct simulation at the fine scale. Thus, the
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Euclidean norm (L2) and the infinity norm (L∞) of a variable X⃗ are defined as:

||X⃗ref − X⃗ms||2 =

√√√√√√√√√√√√ ∑
Ωi∈Ωf

|xrefi − x
ms
i |2∑

Ωi∈Ωf

|xrefi |2
and ||X⃗ref − X⃗ms||∞ = max

Ωi∈Ωf
|xrefi − x

ms
i |

(4.2)

where the superscripts ms and ref represent the multiscale and reference ap-

proximations, respectively; and where xi represents the x values associated with

Ωi .

4.1.1 Multiscale Finite Volume Algebraic Notation

As we mentioned earlier, the following notation developed by Zhou & Tchelepi

(2008) allows us to interpret the Multiscale Finite Volume Method as a series of sim-

ple matrix multiplications. Let us start by defining the fine-scale system of equation

similarly to (3.11).

Mf pf = Qf (4.3)

where Mf is the transmissibility matrix of the fine-scale system, Qf is the correspond-

ing volumetric source and sink terms, and pf is the fine-scale pressure solution. Mf

represents the TPFA matrix for most methods in the MsFV family.

By definition, the prolongation operator projects the coarse-scale pressure solu-

tion onto the fine-scale space. For this purpose, the prolongation operator P op is then

defined as follows:

pf ≃ pms = P oppc (4.4)

where pf is the fine-scale pressure solution, pms is the fine-scale multiscale pressure

solution and pc is the coarse-scale multiscale pressure solution.

The restriction operator, in turn, is an operator that transfer the influence of the

of source and sink terms to the coarse volumes. As a result, we define the source and

sink terms on the coarse scale Qc as:

Qc = RopQf (4.5)

If we premultiply equation (4.15) by Rop and approximate pf with the definition

of pms in equation (4.4), we find:

RopMf P oppc = RopQf (4.6)

We can thus interpret the equation (4.6) as a projection of the fine-scale system

of equations onto the coarse-scale space. It follows that:

Mcpc = Qc (4.7)
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where Qc is defined by equation (4.5) and Mc is:

Mc = RopMf P op (4.8)

By solving equation (4.7), we find:

pc = M−1
c Qc (4.9)

With P op we can project pc back to the fine scale and obtain the multiscale

solution pms:

pms = P oppc = P opM
−1
c Qc = P op(RopMf P op)−1RopQf (4.10)

4.1.2 Definition of the Multisale Operator

Having defined the algebraic notation, we still lack a definition for P op and Rop

to formally define the MsFV method. On this method, the basis functions φi associated

with each coarse volume Ωc
i are computed by solving a normalized version of the

pressure equation (2.9) subjected to specific Dirichlet boundary conditions (HAJIBEYGI

et al., 2008) designed to decouple the associated support region Ii from the rest of the

computational domain.
−∇⃗ · (−λK∇⃗φi) = 0 G1 : Ωk ∈ Ii ∩∂It ∀Ω

p
t ∈Ωc

φi = 1 G2 : Ωf
k = x

p
i

φi = 0 G3 : Ωf
k < Ii

After solving φ in G1 ∪G2 ∪G3, we still need to compute the basis function on

the rest of the support region. To do so, we solve the following problem:
−∇⃗ · (−λK∇⃗φi) = 0 Ii −G1 ∪G2 ∪G3

φi = φΩk
Ωk ∈ G1 ∪G2 ∪G3

The basis function φi
k which represents the influence of the coarse volume Ω

p
i

on the fine-scale volume Ω
f
k is stored on the prolongation operator as follows:

P opk,i
= φi

k (4.11)

The MsFV restriction operator Rop (JENNY; LEE; TCHELEPI, 2003; JENNY; LEE;

TCHELEPI, 2006; ZHOU; TCHELEPI, 2008) is simply a switch that maps the fine-scale

source and sink terms on the primal to coarse volume as follows:

Rop(k, i) =

1 se Ω
f
k ⊂ Ωc

i

0 otherwise
(4.12)



Chapter 4. Multiscale Finite Volume Formulation 61

4.1.3 Flux Reconstruction Algorithm

By definition, for a method to belong to the Finite Volume family it needs to be

mass conservative at all scales. However, the velocity field obtained using the pressure

field of the Multiscale Finite Volume family (JENNY; LEE; TCHELEPI, 2003; JENNY;

LEE; TCHELEPI, 2006; ZHOU; TCHELEPI, 2008) is mass conservative at the coarse-

scale level only. This is due to the boundary conditions used to constrain the influence

of the basis functions that destroy the mass conservation outside the support region

at the fine-scale level, as they neglect the influence of the external control volumes.

Nevertheless, the dual coarse mesh ensures that the solution is mass conservative at

the coarse scale. We can take advantage of this property to reimpose mass conservation

at all scales. In the following, we describe the flux reconstruction procedure (JENNY;

LEE; TCHELEPI, 2003; JENNY; LEE; TCHELEPI, 2006) used in this work. First, we

use the multiscale pressure solution to calculate a mass-conservative flux field at the

coarse scale. These fluxes become Neumann boundary conditions to solve the pressure

equation over the uncoupled primal coarse volumes. To make the problem well posed,

we use the multiscale pressure solution in xP as a Dirichlet boundary for the primal

coarse volumes that do not contain other Dirichlet boundary conditions (SOUZA et al.,

2020). See Figure 9. In mathematical terms, this means solving the following problem:
−∇⃗ · (−λK∇⃗pn) = qf inside Ω

p
i

− ∂
∂xn

(
−λK ∂

∂xn
pn

)
= (v⃗ · N⃗ )ms on ∂Ω

p
i

pn = pms in x
p
i if Ω

p
i does not contain Dirichlet BC

(4.13)

where xn is the normal direction to the boundary of the primal coarse volumes, pms

is the multiscale pressure field calculated using equation (4.31), and (v⃗ · N⃗ )ms is the

flux field calculated using pms, and where pn is the pressure solution of the Neumman

problem.

The reconstructed flux is composed of the fluxes used as Neumann boundary

condition on the surfaces of each primal coarse volume and the fluxes obtained after

solving the uncoupled pressure equation problem given in equation (4.13), as it follows:

(v⃗ · N⃗ )conservative =

−λK∇⃗pn inside Ω
p
i

−λK∇⃗pms on ∂Ω
p
i

∀Ωp
i ∈Ω

p (4.14)
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Figure 9 – Illustration of flux reconstruction algorithm. The dual coarse mesh ensures
that the solution is mass conservative at the boundaries of the coarse-scale
volume.

Source: Adapted from (SOUZA et al., 2020)

4.2 Algebraic Multiscale Solver

The Algebraic Multiscale Solver (AMS) (WANG; HAJIBEYGI; TCHELEPI, 2014)

is a state-of-the-art method that emerged from the generalisation of the standard Multi-

scale Finite Volume method (JENNY; LEE; TCHELEPI, 2003; JENNY; LEE; TCHELEPI,

2006; ZHOU; TCHELEPI, 2008). The simple matrix notation allows the prolongation

operator and a set of correction functions to be computed as a set of straightforward

algebraic operations performed on the discrete system at a fine scale. Combined with

an iterative multiscale stage, this method proves to be efficient and robust with results

comparable to multigrid methods (WANG; HAJIBEYGI; TCHELEPI, 2014). In this sub-

section we review the standard Algebraic Multiscale Solver (AMS) (WANG; HAJIBEYGI;

TCHELEPI, 2014) and consider the extension to general unstructured grids.

Wirebasket Classification The wirebasket classification is at the core (ZHOU; TCHELEPI,

2011; WANG; HAJIBEYGI; TCHELEPI, 2014; ŢENE; KOBAISI; HAJIBEYGI, 2016)

of the AMS method. It consists of grouping fine-scale volumes into different

categories: Nodes (xp), Edges (∂Ii∀Ω
p
i ∈Ω

p) and Internals (see figure 7), where

Internals refers to the centres of the fine-scale cells enclosed by the (red) edges.

4.2.1 Algebraic Multiscale Solver Formulation

Let us imagine a fine-scale discretisation of the elliptic pressure equation as

shown in equation (4.15):

Mf pf = Qf (4.15)
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Let G be a permutation matrix that sorts a vector according to wirebasket

segregation.

X̃f =


xi
xe
xn

 = GXf (4.16)

where the subscripts n, e,and i stand for all groups of the wirebasket segregation: nodes,

edges and internals.

Let the wirebasket matrix be the transmissibility matrix permuted to combine

the wirebasket categories together, i.e.:

Ã =


Ãii Ãie Ãin

Ãei Ãee Ãen

Ãni Ãne Ãnn

 = GMfG
T (4.17)

where the block matrix Ãαβ denotes the influence of α upon β, where α and β represent

respective groups of the wirebasket hierarchy, and where the superscript T represents

the transpose of a matrix.

The reordered linear system of equations is then written as:

Ãp̃f = Q̃f (4.18)

The AMS method forms an upper triangular matrix by neglecting the influence

of block matrices below the main diagonal (WANG; HAJIBEYGI; TCHELEPI, 2014),

resulting in a wirebasket matrix hierarchy where the volumes belonging to one group

only have influence on other volumes of the same or higher dimensional categories. The

resulting AMS system is written as follows:

M =


Ãii Ãie Ãin

0 Mee Ãen

0 0 Mc

 (4.19)

where M is a permuted and modified version of Mf , Mc is approximated by the trans-

missibility matrix onto the coarse-scale, and Mee receives the redistributed influence of

Ãei as defined by the following equation:

Mee = Ãee + diag

 e∑
k

Ãki

 (4.20)

The modified system of equations is written as:

Mpms = Q̃ =


Q̃i

Q̃e

Qc

 (4.21)
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where the multiscale solution pms is an approximation of p̃f . It should be pointed out

that the last line on the RHS in equation (4.21) represents the primal coarse scale source

and sink terms Qc and not not Q̃n. Therefore, Q̃ is the modified source and sink terms.

Let us assume that M−1 can be split such that:

M−1 =



0 0 a

0 0 b

0 0 c

M−1
nn +


d g 0

e h 0

f i 0


 (4.22)

Since MM−1 = I , and M has an upper triangular form, M−1 is found by backward

substitution (WANG; HAJIBEYGI; TCHELEPI, 2014).

M−1 = (PM−1
c +C) (4.23)

where:

P =


0 0 Ã−1

ii (ÃieM
−1
ee Ãen − Ãin)

0 0 −M−1
ee Ãen

0 0 Inn

 (4.24)

where:

C =


Ã−1
ii −Ã−1

ii ÃieM
−1
ee 0

0 M−1
ee 0

0 0 0

 (4.25)

Note that by definition, the last row in C is null. Therefore, the following equality

holds true:

CQ̃ = CQ̃f (4.26)

By premultiplying Equation (4.21) by (4.23), we find:

p̃f ≃ pms = (PM−1
c +C)Q̃ (4.27)

p̃f is often written as:

p̃f ≃ pms = PM−1
c Qc +CQ̃ (4.28)

where P op is defined removing the two empty columns:

P =


Ã−1
ii (ÃieM

−1
ee Ãen − Ãin)

−M−1
ee Ãen

Inn

 (4.29)

The pressure on the coarse scale is defined by:

pc = M−1
c Qc (4.30)
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Hence, we use this definition to rewrite Equation (4.27) as:

pms = P pc +CQ̃ (4.31)

As P projects the coarse-scale pressure solution on to the high-resolution grid, it

is referred to as the Prolongation Operator denoted by P op. In addition C known as the

Correction Function captures complex well behaviour and other phenomena included

in the fine-scale RHS and not explicitly expressed by the Prolongation Operator (WANG;

HAJIBEYGI; TCHELEPI, 2014). Thus, we can rewrite Equation (4.31) as:

pms = P opM
−1
c Qc +CQ̃f (4.32)

Using the Finite Volume restriction operator Rop defined in equation (4.12), we

can find the projection of the fine-scale system of equations onto the coarse scale. To

do this, we substitute the equation (4.31) into (4.18) and pre-multiply the result by the

restriction operator to obtain:

RopÃ(P oppc +CQ̃f ) = RopQ̃f (4.33)

By expanding and manipulating the result, we find:

RopÃP oppc = RopQ̃f −RopÃCQ̃f (4.34)

Note that equation (4.34) represents the fine-scale system of equations projected

on the coarse-scale, i.e.:

Mcpc = Qc (4.35)

where:

Mc = RopÃP op and Qc = RopQ̃f −RopÃCQ̃f (4.36)

Thus, the multiscale solution can be obtained by solving Equation (4.35) and

substituting the result into (4.27) resulting in:

p̃f ≃ pms = P op(RopÃP op)−1Qc +CQ̃f (4.37)

By definition, we find pf by sorting it back to its original form:

pf = GT p̃f (4.38)

The flux reconstruction algorithm defined on section 4.1.3 is used to ensure a

locally conservative solution.
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4.2.2 AMS on structured grids using the Two Point Flux Approximation

If the entries a,b and b,a in the transmissibility matrix Mf are non-zero, two

fine-scale volumes a and b are said to be connected. Connections can be asserted in a

standard TPFA when two volumes share an edge in 2D or a face in 3D. Since multiple

entries in the wirebasket matrix are zero, there is also a natural decoupling between the

categories internals and nodes, which further simplifies the computation of P op and C.

As a result, we can rewrite equation (4.17) for the TPFA method (WANG; HAJIBEYGI;

TCHELEPI, 2014) as follows:

ÃTPFA =


Ãii Ãie 0

Ãei Ãee Ãen

0 Ãne Ãnn

 (4.39)

In turn, this leads to P op and C being defined as:

P op =


0 0 Ã−1

ii ÃieM
−1
ee Ãen

0 0 −M−1
ee Ãen

0 0 Inn

 (4.40)

and where:

C =


Ã−1
ii −Ã−1

ii ÃieM
−1
ee 0

0 M−1
ee 0

0 0 0

 (4.41)

An ideal permutation matrix G would take advantage of this natural uncoupling that

arises from the reordering of the internal and edge volumes, so that each dual cell and

each sub-edge are separate. The sparsity representation of this resulting wirebasket

matrix ÃTPFA is shown in Figure 10. Note that Ãii and Ãee / Mee consist of several

independent block matrices that are perfectly split. From a computational point of view,

finding M−1
ee and Ã−1

ii becomes a set of simple and small parallelizable problems. Similar

to the original MsFV, the AMS solves the uncoupled basis functions hierarchically at

the edges by using normalised Dirichlet boundary conditions at the nodes ensuring

partition of unity. The basis functions at the edges are later used to calculate the value

of the internal basis functions. Partition of unity is achieved because the sub-edges

neither intersect nor connect. This in turn leads to the calculation of the prolongation

operator P op that converges to the standard MsFV (ZHOU; TCHELEPI, 2008; JENNY;

LEE; TCHELEPI, 2003; JENNY; LEE; TCHELEPI, 2006). Therefore, it is possible to find

a permutation matrix G on structured meshes that guarantees that sub-edges and dual

cells can generate disconnected block matrices.

4.2.3 Algebraic Multiscale Solver for MultiPoint Flux Approximation schemes

In Control Volume Distributed MultiPoint Flux Approximation schemes, a com-

mon vertex is sufficient to establish a connection between two fine-scale control volumes.
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Figure 10 – Sparsity pattern representation of a TPFA wirebasket matrix for a 2D struc-
tured mesh: The natural uncoupling of the dual grid and the sub-edges is
reflected in the wirebasket matrix creating independent block matrices for
each of these regions (red).

(a) ÃTPFA (b) Ãee and Mee

Source: (SOUZA et al., 2022).

Figure 11 – Sparsity pattern representation of a MPFA wirebasket matrix for the same
2D structured mesh as Figure 10: The natural uncoupling of the dual grid
and sub-edges is lost as the block matrices (red) of wirebasket matrix remain
intertwined.

(a) ÃMPFA (b) Ãee and Mee

Source: (SOUZA et al., 2022).

Figure 11 illustrates the sparsity pattern of the wirebasket MPFA matrix ÃMPFA assem-

bled for the same problem used to illustrate the TPFA pattern in Figure 11. We note that

the natural decoupling of the matrices Mee and Ãee is lost since the sub-edges remain

connected by the common nodes.

The problem worsens when we apply the AMS method to unstructured grids in
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Figure 12 – Sparsity pattern representation of a MPFA wirebasket matrix for 2D un-
structured fine and coarse scale meshes: The natural uncoupling of the
standard AMS is broken as sub-edges and dual grid volumes block matrices
(red) are indivisible and deeply connected.

(a) ÃMPFA (b) Ãee and Mee

Source: (SOUZA et al., 2022).

general. The irregular nature of the underlying fine-scale mesh makes it impossible to

guarantee that all sub-edges neither intersect nor connect. For example, for a quadrilat-

eral background grid with an underlying unstructured triangular mesh, as shown in

Figure 7b, each coarse cell centre must be connected to four different sub-grids. This

forces the sub-edges to have at least one common fine volume. Thus, if the number

of faces of the coarse cell centre is less than the number of faces of a corresponding

background grid cell, the resulting sub-grids will be connected.

This phenomenon is reflected in the sparsity pattern of the wirebasket matrix

illustrated in Figure 12. We note that even in a simple case, multiple sub-edges are

clustered together to form large block matrices. This in turn this has two important

consequences for the AMS solution introduced by the MPFA formulation. First, the

clustering together of multiple sub-edges leads to the leakage of the basis functions

outside the corresponding support region of each primal coarse volume. In other words,

the connections among sub-edges create paths that allow the local basis function to

propagate outside the region to which the reduced boundary conditions are applied.

Secondly, the loss of partition of unity as the shared fine-scale volumes are subject to

different boundary conditions on each edge.

4.2.4 Algebraic Multiscale Solver for Unstructured grids

To develop a consistent multiscale scheme on general unstructured grids, two

conditions must be met: a more robust flux approximation must be used and a suitable

multiscale solver must be employed (SOUZA et al., 2020). The first problem is solved
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by using the CVD-MPFA presented in section 3.1.4 , i.e. the MPFA-D method. In this

section, we address the second problem by developing an algorithm that prevents the

leakage of basis functions while preserving the partition of unity and partially restoring

the uncoupled nature of the AMS. Note that our method is a generalisation of the AMS

for general linear flux approximation schemes and therefore other methods could be

used. Hencefoward, we refer to AMS on unstructured grids with MPFA-D as AMS-U.

The idea is to analyse the second line P en of the prolongation operator P op

defined by equation (4.24):

P en = −M−1
ee Ãen (4.42)

Mathematically, computing P en is equivalent to solve:

MeeP en = −Ãen (4.43)

This in turn is equivalent to solving the Mee system of equations of the edges

restricted for all the n coarse volumes. As we know, the support region of a coarse

volume is the subset of a domain that contains only non-zero elements.

In the context of multiscale problems, the support region of a basis function of

the coarse volume i consists of the dual coarse volumes sharing the node i excluding

the boundaries of this region.

On structured grids, sub-edges of the boundaries and the support region have no

intersection. Therefore, the edges basis functions of a given support region (see Figure

13a) are computed on the entire extent of the sub-edges within the corresponding

support region.

In contrast, for unstructured grids, the sub-edges (see figure 13b) within the

support region may share a common volume with the sub-edges from the boundary of

the support region (see figure 13c). As a result, the sub-edges within the support region

are solved in a smaller domain (see Figure 13d), limiting the reach of a basis function

and its ability to capture the underlying physics.

To solve this problem, we propose to solve the edges basis function on an ex-

tended support region, i.e., to use the support region Ik and the boundaries of the

support region ∂Ik. Instead of solving the equation (4.43), we reformulate the problem

as follows:

MeiP ei i = −Ãei i (4.44)

where i represents one of the n nodes, and ei stands for the edges included in the

extended support region i.

Therefore, for each i, we solve the problem restricted to the support region and

the boundaries of the support region of the coarse volume i. Consequently, we explicitly
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Figure 13 – Illustration of the problem risen from the intersection between the sub-
edges belonging to the boundaries of the support region and those inside
the support region.

(a) Boundary of
Support Region
(blue) and
Edges in the
Support Region
(red) on a
structured grid.

(b) Sub-edges
(pink) con-
necting coarse
cell centres xP

(yellow) with
its background
grid neigh-
bours.

(c) Boundary of
Support Region
(blue) and
Edges in the
Support Region
(red).

(d) Edges in the
Support Region
(red).

Souce: (SOUZA et al., 2022).

restrict the influence of the edges to these regions, preventing the leakage of the basis

function. Nevertheless, the value of the basis functions at the edges of the support

regions is by definition zero. As soon as P ei i is calculated, the values at the boundaries

of this support region are set to zero:

P eti = 0 ∀t ∈ boundary of the support region of i (4.45)

The superposition between the sub-edges of the dual coarse mesh and equation

(4.45) breaks the partition of unity of the basis functions. We deal with this problem by

using the idea proposed by Moyner & Lie (2015) to explicitly normalise P en:

P cor
en =

P en
n∑

k=1

P ek

(4.46)

where P cor
en stands for the corrected basis functions .

Figure 14 illustrates the basis functions computed for the original support region

(14a) and the extended support region (14b) on a homogeneous isotropic domain. Note

that the basis function in the latter case has a better distribution within the support

region. In our experience, this extended basis function has given better results in all the

examples presented in the next chapter.



Chapter 4. Multiscale Finite Volume Formulation 71

Figure 14 – Comparison between the basis function calculated on the support and
extended support region. The boundaries of the support region and the
coarse cell centres, respectively in light blue and yellow are represented to
highlight the region where the basis functions are being calculated.

(a) Basis function calcu-
lated exclusively on
the support region.

(b) Basis function calcu-
lated on the extended
support region.

(c) Difference between
the basis function
calculated on the
support region and
the extended support
region.

Source: (SOUZA et al., 2022).

4.2.5 Algebraic Multiscale Solver Prolongation Operator and Correction Functions

Once P cor
en is properly defined, we can redefine equation (4.24) to find the cor-

rected Prolongation Operator P cor
op for the AMS-U as:

P cor
op =


0 0 −Ã−1

ii (ÃieP
cor
en + Ãin)

0 0 P cor
en

0 0 Inn

 (4.47)

Lastly, we need to define a modified correction function Ccor taking into account

the modifications to compute P cor
op . By assuming that P cor

en and Ãen are known, we

substitute them in Equation (4.43) to find a suitable approximation for M−1
ee , thus:

P cor
en = −(Mcor

ee )−1Ãen (4.48)

By isolating (Mcor
ee )−1, we have:

M−1
ee = −P cor

en /Ãen (4.49)

where equation (4.43) is now redefined as:

Ccor =


Ã−1
ii −Ã−1

ii ÃseM−1
ee 0

0 (Mcor
ee )−1 0

0 0 0

 (4.50)
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4.2.6 Multiscale Iterative Procedures

The iterative procedure used to converge the AMS-U pressure field to the fine-

scale reference solution within a given tolerance is a variation of the iterative scheme

used by several authors (MOYNER; LIE, 2015; ŢENE; KOBAISI; HAJIBEYGI, 2016;

BOSMA et al., 2017). In this scheme, successive multiscale and smoothing steps are

employed to reduce the error to the desired tolerance, as described in algorithm 1.

Note that the second step uses the ILU(0) decomposition (SAAD, 2003) of Mf and the

biconjugate gradient stabilised method (BiCGSTAB) (VORST, 1992) to approximate the

smoothing operator M−1
s .

Algorithm 1: Multiscale Iterative Procedure
Input: Mf , Qf , pms, P op and Rop

Output: iterative pressure solution, pit.

pn← pms

rn←Qf −Mf p
n

do
δpn+1/2← P op(RopMf P op)−1Ropr

n

rn+1/2← rn −Mf δp
n+1/2

δpn+2/2←M−1
s rn+1/2

pn+1← δpn+1/2 + δpn+2/2

rn←Qf −Mf p
n+1

pn← pn+1

while rn < ϵ
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5 RESULTS

In this chapter we present the results of the formulations described in the

previous chapters. To this end, we use these numerical methods to simulate several

benchmark problems from the literature adapted to the context of unstructured grids.

Both of these formulations were coded using an in-house preprocessor and simulators

using Matlab R2020b.

5.1 Flux Limited Splitting

In the first section, we present the results of flux limmited splitting coupled

with MPFA-D for simulating single-phase flows in highly heterogeneous and anistropic

media. Before continuing, it is worth remembering the notation used for the FLS

initialization parameters. First, tol1 and tol2 represent the tolerance of a cycle and

for the DMP test as described on the Flowchart 2, limWS is the number of iterations

required to start the limiting procedure and tol3 is the tolerance of the final solver in

Flowchart 1.

5.1.1 Fluid flow in a domain with a square hole in an heterogeneous and extremely
anisotropic medium

This first example was originally devised by Queiroz et al. (2013) to study the

loss of monotonicity in CVD-MPFA schemes. In this problem, the analysed domain is

in the form of a square Ω = [0,1]2 with a concentric opening that is also in the form of a

square Ω = [4/9,5/9]2. Dirichlet boundary conditions are applied to the boundaries of

the domain, with the outer boundaries set as g1
D = 0 at ∂Ω1 and the inner boundaries

set as g2
D = 2 at ∂Ω2. The diffusion tensor is strongly anisotropic and discontinuous, as

given by:

K(x,y) =



cos(π/2) −sin(π/2)

sin(π/2) cos(π/2)


100 0

0 0.01


 cos(π/2) sin(π/2)

−sin(π/2) cos(π/2)

 K1 : x ≤ 0.5 (y + ϵ)2 + δ(x+ ϵ)2 −(1− δ)(y + ϵ)(x+ ϵ)

−(1− δ)(y + ϵ)(x+ ϵ) (x+ ϵ)2 + δ(y + ϵ)2

 K2 : x > 0.5

(5.1)

with ϵ = 10−3.

The physical domain is discretised with three different unstructured grids. The

first is a coarser grid with 1,280 quadrilateral slightly distorted elements, the second

is a medium-fine grid with 2,678 uniform isotropic triangular elements and the last

is an extremely fine grid with 10,712 triangular elements. For comparison, we ran
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Table 1 – Initialization parameters for the fluid flow in a domain with a square hole in
an heterogeneous and extremely anisotropic medium example

Initialization Parameters tol1 tol2 tol3 limWS # CVs

Coarse grid with quadrilateral CVs 5.00E-04 5.00E-04 1.00E-12 3 1,280
Intermediate grid with triangular CVs 5.00E-04 5.00E-04 1.00E-12 3 2,678
Refined grid with triangular CVs 5.00E-04 5.00E-04 1.00E-12 3 10,712

Source: Author.

a simulation for each of these grids with four different schemes, the Flux Limited

Splitting, the MPFA-D, a positive-preserving monotone nonlinear TPFA (CONTRERAS,

2017) and the standard linear TPFA. The initializations parameter for the FLS algorithm

can be found at table 1.

On the first grid analysed, the coarser grid, one can already see the advantages of

the Flux Limited Splitting in comparison to the other methods. See Figure 15. While the

MPFA-D had qualitatively a good solution, the method produced a strong undershoot

and a small overshoot as shown in Table 2. The TPFA solution produced a result that

is consistent with the Discrete Maximum Principle, but is quite diffuse and does not

represent the physics of the problem. The pressure field of the nonlinear TPFA complied

with the DMP as expected, without the large amounts of diffusion that occur in the

linear TPFA. This pattern of linear TPFA is observed throughout all the examples in this

work. The Flux Limited Splitting solution, in turn, fixes the overshoot and undershoot

problems of the MPFA-D solution. It is possible to see the similarity between the NL-

TPFA and the FLS solution, despite two main differences. The first main difference is the

discontinuity on the left side of the inner boundary. While the MPFA-D, the NL-TPFA

and the linear TPFA produce solutions with a smooth pressure distribution, the FLS

solution produces an area of near zero pressure in this part of the region. The second

difference is seen in the pressure distribution next to the upper right corner, where

NL-TPFA produces a region resembling a channel with high permeability. This pattern

could not be observed with the MPFA-D and Flux-Splitting solutions.

On the medium and finer grids we analysed, the FLS behaved similarly, using

the triangular grids and despite of the huge undershoot of the MPFA-D solutions as

shown in Figures 16 and 17 . For both grids, the approximation NL-TPFA has either not

converged or converged to a solution violating the DMP even after several iterations.

The zero pressure region next to the left inner boundary also appeared with the FLS

solution in both grids.

It is also interesting to see how the Flux Limitation Algorithm influence the

maximum and minimum pressure values for each iteration. In Figure 18 it can be seen

that the FLS approaches the DMP as the method limits the cross diffusion terms. At the
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Table 2 – Maximum pressure, pmaxand minimum pressure, pminfor the fluid flow in a
heterogenous domain with a square hole in a extremely anisotropic media
example.

TPFA MPFA-D FLS Nonlinear TPFA

pmin pmax pmin pmax pmin pmax pmin pmax

Coarse grid with
quadrilateral CVs

0.005 1.837 -1.711E-01 2.039 6.810E-04 1.902 7.286E-07 1.927

Intermediate grid
with triangular CVs

8.432E-05 1.985 -1.139 2.099 2.330E-06 1.977 2.871-12 2.151

Refined grid with
triangular CVs

4.192E-05 1.986 0.324 2.214 1.228E-06 2.198 0.000 3.137

Source: Author.

beginning of the simulation, an increase in overshoot or undershoot can be observed.

This is due to the warm start described in the flowchart given in Figure 3, which shifts

the start of the limiting algorithm. On the intermediate grid and the refined grid, this

drove the solution to move away from the bounding pressure values. The oscillating

behaviour occurs every time the algorithm restarts the outer loop using the initial

solution of the warm start. The idea behind this is that the FLS algorithm can detect

and capture and limit different frequency errors in each loop. The FLS was able to

produce a DMP-compliant solution despite the large number of iterations. In terms of

computational cost, the FLS takes about 7 times more time than the a simulation with

he MPFA-D, including preprocessing costs.

5.1.2 Fluid Flow in a Highly Anisotropic and Heterogeneous Reservoir

The next example was originally proposed by Yuan & Sheng (2008) to evaluate

the loss of monotonicity in nonlinear positive preserving methods. The problem consists

of a unitary quadratic domain Ω = [0,1]2 whose boundaries are subject to a prescribed

pressure (p = 0), and into which a unitary source term is injected in a concentric square

as defined by :

f (x,y) =

1 (x,y) ∈
[

3
8

5
8

]2
;

0, (x,y) <
[

3
8

5
8

]2 (5.2)

The permeability field of the media is highly heterogeneous and anisotropic,

defined as it follows:

K˜ =

 y2 + ϵx2 −(1− ϵ)xy

−(1− ϵ)xy ϵy2 + x2

 , ϵ = 5x10−2 (5.3)
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Figure 15 – Fluid flow in a domain with a square hole in an heterogeneous and ex-
tremely anisotropic medium using a coarse grid with 1,280 quadrilateral
elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA converged with 36
iterations.

(d) TPFA solution.

Source: Author

Table 3 – Initialization parameter for the fluid flow in a highly anisotropic and hetero-
geneous reservoir example.

Initialization Parameters tol1 tol2 tol3 limWS # CVs

Structured Grid 5.00E-04 5.00E-03 1.00E-12 4 1024
Distorted Grid 5.00E-04 5.00E-03 1.00E-12 4 1024
Unstructured Grid 1.00E-04 5.00E-04 1.00E-12 4 4791

Source: Author.

In this example, the physical domain is also discretised for comparison purposes

by using three different configurations of quadrilateral grids. The first grid consists of a

structured grid with 1,024 elements Yuan & Sheng (2008), the second grid is obtained by

randomly distorting the elements of the first grid, and the last is an unstructured grid

with 4,791 elements. Again, the results are compared using the Flux Limited Splitting

technique, the MPFA-D, a nonlinear TPFA (CONTRERAS et al., 2021) and the standard

linear TPFA are compared. The initializations parameter for the FLS algorithm can be

found at table 3.

First of all, it is important to note that, in contrast to the previous example,
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Figure 16 – Fluid flow in a domain with a square hole in an heterogeneous and ex-
tremely anisotropic medium using an intermediate grid with 2,678 triangu-
lar elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA failed to converge:
Pressure solution with 2,000 itera-
tions.

(d) TPFA solution.

Source: Author

all methods are qualitatively quite close to each other, the exception of the linear

TPFA, which once again produced a DMP-satisfying, non-physical solution, with a

large amount of diffusion. On the three grids used for this example, the MPFA-D

proved to be robust, as all solutions were quite close to NL-TPFA and FLS, despite a

minor undershooting. See Table 4. On the first grid analysed, the structured grid on

Figure 19, the MPFA-D and FLS solution are qualitatively almost identical. In turn, the

NL-TPFA appears to have produced a slightly more elongated pressure distribution

with less diffusion. While the maximum and minimum pressure values of MPFA-D

and FLS remained very close, with the FLS compensating for the loss of positivity of

the MPFA-D solution, the spread between these values on NL-TPFA is considerably

larger. On the distorted mesh in Figure 20, contrary to expectation, the perturbations

actually helped the MPFA-D solution perform better and reduce undershoot. In turn,

the FLS solution and the solutions from NL-TPFA repeated the pattern observed on the

structured grid with similar solutions. Finally, on the third and finer grid, shown in

Figure 21, the pattern seen on the other two grids seems to be reinforced. The NL-TPFA

solution appears more stretched and with a larger difference between the maximum
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Figure 17 – Fluid flow in a domain with a square hole in an heterogeneous and ex-
tremely anisotropic medium using a more refined grid with 10,712 triangu-
lar elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA converged wit 111
iterations.

(d) TPFA solution.

Source: Author

Table 4 – Maximum pmaxand minimum pminpressure for the fluid flow in a highly
anisotropic and heterogeneous reservoir example.

TPFA MPFA-D FLS Nonlinear TPFA
pmin pmax pmin pmax pmin pmax pmin pmax

Structured
grid

0.001 1.147 -1.033E-04 1.638 1.065E-05 1.601 8.919E-12 1.863

Distorted
grid

4.908E-04 1.189 -9.389E-05 1.665 7.125E-0.6 1.633 1.437E-19 1.854

Unstructured
grid

4.473E-05 1.270 -2.776E-07 1.677 2.618E-06 1.636 4.714E-16 1.945

Source: Author.

and minimum pressures. Despite the differences in the meshes and the distortions,

the FLS was able to repair the MPFA-D solution in all cases to ensure that it remained

positive. The limiting algorithm described in Figure 22 shows that undershoot appears

to appear towards the beginning of the iterative limiting procedure. With reasonable

cost, the FLS was able to eliminate the spurious oscillations of the MPFA-D formulation.

In terms of computational cost, the FLS took about 1 to 2 times more time than the

MPFA-D counterpart, including pre-processing costs.
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Figure 18 – Flux Limitation: Maximum and minimum pressure - pmaxand pminon the
example fluid flow in a domain with a square hole in an heterogeneous and
extremely anisotropic medium.

(a) Coarse Grid.

(b) Intermediate Grid.

(c) Refined Grid.

Source: Author

5.1.3 Two Wells with an Anisotropic and Rotated Permeability Tensor

The third example is the simplest, but also the most difficult. It consists of a

homogeneous and anisotropic medium in a uniform square domain Ω = [0,1]2 subjected

to zero flux along its boundaries. The permeability tensor with an anisotropy ratio of

1.000 is rotated counterclockwise 3π/8 as described in equation (5.4). This problem was

proposed by (AAVATSMARK et al., 2008; TEREKHOV; MALLISON; TCHELEPI, 2017)
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Figure 19 – Fluid flow in a highly anisotropic and heterogeneous reservoir using a
structured grid with 1,024 quadrilateral elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA converged with 36
iterations.

(d) TPFA solution.

Source: Author

to study the loss of monotonicity in cell-centred finite volume methods using an 11 x

11 structured grid. Originally, the two wells were placed in specific control volumes

with prescribed pressure , pA = 0, pB = 1. To adapt it to the context of the unstructured

grid, we use the two wells whose control volume centroids are closest to the centroids

of the original control volumes, as shown in Figure 23.

K =

cos(3π/8) −sin(3π/8)

sin(3π/8) cos(3π/8)

1 0

0 103

 cos(3π/8) sin(3π/8)

−sin(3π/8) cos(3π/8)

 (5.4)

For the sake of comparison, we use four different grids in this problem. The first is

the original grid (AAVATSMARK et al., 2008; TEREKHOV; MALLISON; TCHELEPI,

2017), an 11x11 structured grid, the second is a randomly distorted version of the first

grid, we also use an intermediate unstructured grid with 5,156 triangular elements

and the last grid used is a refined unstructured grid with 20,582 triangular elements.

Again, for each of these grids we compare the solutions using the Flux Limited Splitting

technique, the MPFA-D, a nonlinear TPFA (CONTRERAS et al., 2021) and the standard

linear TPFA. The initializations parameter for the FLS algorithm can be found at table

5.

The first noticeable difference between this problem and the previous ones is
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Figure 20 – Fluid flow in a highly anisotropic and heterogeneous reservoir using a
distorted quadrilateral mesh with 1,024 elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA converged with 42
iterations.

(d) TPFA solution.

Source: Author

Table 5 – Initialization parameter for the two wells with an anisotropic and rotated
permeability tensor example.

Initialization Parameters tol1 tol2 tol3 limWS # CVs

Structured Grid 1.00E-04 5.00E-05 1.00E-12 0 121
Distorted Grid 5.00E-05 5.00E-03 1.00E-12 4 121
Unstructured Grid 5.00E-04 5.00E-04 1.00E-12 1 5,156
Refined Unstructured Grids 5.00E-04 5.00E-04 1.00E-12 1 20,582

Source: Author.

the fact that each method produces a particularly different solution with some very

distinguishable features. As expected, the linear TPFA solution satisfied the Discrete

Maximum Principle, but with excess of artificial diffusion. In turn, the nonlinear TPFA

solution performed qualitatively well on the structured and random distorted mesh

in Figures 24 and 25, however, the method did not converge on the intermediate and

refined triangular meshes on Figures 26 and 27, see Table 6. It is interesting to note

that the NL-TPFA produced a solution complying with the DMP for the distorted mesh,

but not for the structured grid mesh. The MPFA-D also struggles with the structured

mesh with spurious oscillations, with the results being the worst with significant
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Figure 21 – Fluid Flow in a Highly Anisotropic and Heterogeneous Reservoir using a
refined quadrilateral mesh with 4,791 elements

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA converged with 47
iterations.

(d) TPFA solution.

Source: Author

overshoot and undershoot. Nonetheless, when the mesh was distorted and refined,

these oscillations decreased. The FLS was by far the most coherent method. The FLS

solutions produced a low and a high plateau, each with a peak and a valley bounded

by the Dirichlet pressures. Once Again, the FLS was capable of repairing the MPFA-D

solution by reintroducing the DMP. It is interesting to note that throughout limitation

procedure showed in Figure 28, unlike the previous examples, the DMP was observed

during all iterations, except for the intermediate grid, which showed undershooting in

the first few iterations. Although there are no analytical solutions to this problem, the

FLS produced results that are more coherent than the other attempted methods.
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Figure 22 – Flux Limitation: Maximum and minimum pressure values - pmaxand pminon
the example fluid flow in a highly anisotropic and heterogeneous reservoir.

(a) Structured grid.

(b) Randomly distorted grid.

(c) Refined grid.

Source: Author
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Figure 23 – Domain of the example: two wells with a anisotropic and rotated perme-
ability tensor .

Source: Author

Table 6 – Maximum pmax and minimum pmin pressures for the two wells with an aniso-
tropic and rotated permeability tensor example.

TPFA MPFA-D FLS Nonlinear TPFA

pmin pmax pmin pmax pmin pmax pmin pmax

Structured Grid 0.000 1.000 -1.133E+00 2.133 0.000E+00 1.000 0.000E+00 1.642

Distorted Grid 0.000E+00 1.000 -9.137E-01 1.282 0.000E+00 1.000 0.000E+00 1.000

Unstructured Grid 0.000E+00 1.000 -2.508E-01 1.237 0.000E+00 1.000 Not converged

Refined Unstructured
Grid

0 1.000 -1.347E-01 1.030 0.000E+00 1.000 Not Converged

Source: Author.
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Figure 24 – Two wells with an anisotropic and rotated permeability tensor using a
structured quadrilateral mesh with 11x11 elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA converge with iter-
ations.

(d) TPFA solution.

Source: Author
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Figure 25 – Two wells with an anisotropic and rotated permeability tensor using a
randomly distorted quadrilateral mesh with 11x11 elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA converged with
192 iterations.

(d) TPFA solution.

Source: Author



Chapter 5. Results 87

Figure 26 – Two wells with an anisotropic and rotated permeability tensor using an
intermediate unstructured mesh with 5,156 triangular elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA diverged: Pressure
solution after 1,000 iterations.

(d) TPFA solution.

Source: Author
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Figure 27 – Two wells with an anisotropic and rotated permeability tensor using a
refined unstructured mesh with 20,582 triangular elements.

(a) Flux Limited Splitting solution. (b) MPFA-D solution.

(c) Nonlinear TPFA diverged: Pressure
solution after 1,000 iterations.

(d) TPFA solution.

Source: Author
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Figure 28 – Flux Limitation: Maximum and minimum pressure pmaxand pminon the
example two wells with a anisotropic and rotated permeability tensors.

(a) Structured grid.

(b) Randomly distorted grid.

(c) Intermediate grid.

(d) Refined grid.

Source: Author
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5.2 Algebraic Multiscale Solver for Unstructured Grids

In this second section, we present the results of the Algebraic Multiscale Solver

for Unstructured Grids coupled with the MPFA-D for simulating single-phase and

two-phase flow on highly heterogeneous and anistropic media.

5.2.1 Single-phase flow simulation in a fractured reservoir (Maltese cross)

In the first example of the AMS-U section, we simulate an incompressible single-

phase flow subject to a quarter of five spot boundary condition. Here we use a unitary

domain Ω = [0,1] × [0,1] with zero normal flux conditions at the boundaries and

prescribed flux (Qinj = 1) and a prescribed pressure (ppro = 1) in the injection well in

the lower left corner and the production well in the upper right corner, respectively.

The permeability field shown in Figure 29a describes a homogeneous domain

in red (K1) with a fault in the form of a Maltese cross, developed to test the ability of

AMS-U to handle this problem. We simulate flow with two different permeability field

configurations, a channel (K3) and a barrier (K2). Two dual coarse meshes were created

from two different background meshes: a simple structured 4x4 mesh that avoids the

permeability contrast, and an unstructured mesh created specifically to fit the Maltese

cross (see Figures 29b, 29c, and 29d). The simulations were performed on a fine-scale

mesh with 2,276 quadrilateral elements. The permeability tensors used are given by:

K1 =

1 0

0 1

 , K2 =

 1
1,000 0

0 1
1,000

 , K3 =

1,000 0

0 1,000

 (5.5)

Figure 29 – Permeability field and multiscale entities used on the Example 5.2.1.

(a) Fault Perme-
ability Field:
Red K1 White:
K2 and K3.

(b) Primal and
Dual Mesh cre-
ated from a 4x4
background
grid.

(c) Background
grid capturing
important
features of the
domain.

(d) Primal and
Dual-grid cre-
ated from the
background
grid given in
Figure 29c.

Source: Author

The multiscale solution for the channel configuration shown in Figure 31 demon-

strates that AMS-U is able to reproduce the underlying high-resolution physics of the
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Table 7 – Table with the ||p||2 and ||p||∞ errors of Example 5.2.1.

4x4 Background Grid Unstructured Background Grid
Channel Barrier Channel Barrier

Errors (%) pit pms pit pms pit pms pit pms

||p||2 5.60E-3 9.832 0.159 7.063 8.000E-4 9.611 9.500 E-3 9.053
||p||∞ 3.91E-2 1.082E+2 2.423 1.102E+2 1.01E-2 1.061E+2 1.217E-2 1.368E+2

Smoothing 143 - 44 - 55 - 44 -

Source: Author.

problem. For both the 4x4 background grid (see Figure 31b ) and the unstructured

background grid (see Figure 31c), the computed multiscale solution remains qualita-

tively very close to the converged solution. The errors presented in table 7 confirm this

last claim. The error norm indicates that the multiscale solution remains very close

to the fine-scale solution despite relatively high errors in L∞. In this case, the L2 and

L∞ norms of the errors were approximately 9.7% and 107%, respectively. Note that

the 4x4 background grid produces only 2% higher L∞ errors than the unstructured

grid counterpart, while the difference in L2 remains below 0.25 %. Nevertheless, the

multiscale solution computed on the unstructured background grid converged with

almost two-thirds fewer smoothing steps than the 4x4 background grid.

For the barrier configuration, a similar pattern emerges for multiscale errors

with small errors in the L2 norm and larger errors in the L∞ norm. Again, the multiscale

solution for both grids remains qualitatively very close to the fine-scale solution illus-

trated on Figure 30. This time, however, Table 7 has shown that the 4x4 background

grid produces more accurate results with about 7% and 110% for the L2 and L∞ error

norms, respectively. We note that smaller errors in the non-iterative multiscale solution

do not lead to fewer iteration steps. In this case, 44 smoothing steps were sufficient to

drop the L2 below 0.01% for the unstructured background grid solution.

The non-iterative AMS-U solution is able to adequately reproduce the physics of

the problem at a fine scale, despite some local errors. Moreover, a few smoothing steps

were able to significantly reduce the multiscale errors, except for the simulation of a

4x4 background grid with one channel configuration.

5.2.2 Single-phase flow simulation in a reservoir with a strong permeability con-
trast

In the second example, we simulate an incompressible single-phase flow in a

rectangular domain Ω = [0,1.5]× [0,1]. Concentric to the boundaries a diamond-shaped

region with diagonals of 1.2 and 0.75, where the main diagonal lies on the xaxis. While

the upper and lower sides of the physical domain are subjected to zero normal flow

conditions, the left and right boundaries are subjected to the prescribed pressure p = 1

and p = 0, respectively. Also, a concentric circle with radius (R = 0.2) is removed from



Chapter 5. Results 92

Figure 30 – Solution of the Example 5.2.1 under a barrier configuration.

(a) Fine-scale solution. (b) Multiscale solution
using a 4x4 back-
ground grid.

(c) Multiscale solution
using an unstruc-
tured background
grid adapted to the
permeability field.

Source: Author

Figure 31 – Pressure solution of the Example 5.2.1 under a channel configuration.

(a) Fine-scale solution. (b) Multiscale solution
using a 4x4 back-
ground grid.

(c) Multiscale solution
using an unstruc-
tured background
grid adapted to the
permeability field.

Source: Author

the domain and this new boundaries are subjected to prescribed pressure (p = 0.5).

The reservoir is depicted on Figure 32. Again, the example is simulated twice, with a

channel (K2) and a barrier (K3) configuration for the diamond part of the domain, with

(K1) for the green part of the domain, as defined in equation (5.5).

The use of schemes capable of handling flexible meshes offers several advantages

over formulations restricted to structured meshes. In particular, we highlight the

ability to create an accurate model with complex wells and geologic structures such

as sealing faults, channels, and oblique stratified layers (CARVALHO et al., 2005;

CARVALHO; WILLMERSDORF; LYRA, 2007b). The AMS-U was devised to take full

advantage of unstructured grids. The background grid strategy generates the primal

and dual coarse meshes accordingly and provides a unified method for generating all
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Figure 32 – Permeability field shaped as the Brazilian Flag: Green Rectangle K1 (Sides:
1.5 × 1), Yellow Diamond: K2 / K3 (Diagonals: 1.2 × 0.75, check Equation
5.5) and Blue Circle (R = 0.2): Hole.

Source: Author

Table 8 – Table with the ||p||2 and ||p||∞ errors of Example 5.2.2.

Coarser Unstructured Background Grid 1 Refined unstructured Background Grid 2
Channel Barrier Channel Barrier

Errors (%) pit pms pit pms pit pms pit pms

||p||2 7E-4 5.761 5.5E-3 4.375 1.6E-3 6.383 3.24 E-2 3.708
||p||∞ 1.3E-3 15.826 1.29E-2 12.378 2.3E-3 15.982 5.83E-2 9.602

Smoothing 32 - 26 - 34 - 22 -

Source: Author.

multiscale entities. Therefore, the only requirement for the background grid procedure

is a coarse background grid based solely on physical domain information. For the sake

of comparison, in this example we use two unstructured background grids, as shown in

Figure 33, with an underlying triangular fine-scale mesh with 9,252 elements.

In this example, for all proposed permeability fields, the AMS-U is able to accu-

rately capture the physics at high resolution, as shown in Figures 34 and 35. Both the

channel and barrier configurations presented solutions that are qualitatively similar

to the converged solution. The measured errors presented in Table 8 corroborate this

assertion. However, intrinsic oscillations at the boundaries of primal coarse volumes are

imprinted on the multiscale solution. For the barrier configuration, the finer unstruc-

tured grid yields better solutions with L2 and L∞ norms of the errors of approximately

3.7% and 9.6%, respectively. The counterpart with the coarser background grid pro-

duced slightly higher errors of approximately 4.4% and 12.4%, using the L2 and L∞
norms, respectively. The errors for the channel configuration were slightly higher, with

the coarser background grid being mildly more accurate than the refined unstructured
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Figure 33 – Multiscale entities used on the Example 5.2.2.

(a) Coarser unstructured back-
ground grid 1.

(b) Dual Coarse Mesh created us-
ing background grid 1.

(c) More refined unstructured
background grid 2.

(d) Dual Coarse Mesh created us-
ing background grid 2.

Source: Author

grid with L2 and L∞ errors of about 5.8% and 15.8%, respectively. Possibly due to the

good quality of the multiscale solution, the effects of the iterative smoothing stage

were very effective. We attribute these small errors to two different factors. The first

is the quality of the background grids generated and the resulting multiscale entities.

While simulating the flow in a physical domain with a hole is a challenging task for

formulations that rely on structured grids, the background grid strategy has no diffi-

culty in satisfying all geometric requirements. The second aspect is the quality of the

prolongation operator and the correction functions and their interaction in the con-

struction of the multiscale solution. Figures 36 and 37 illustrate how the non-iterative

multiscale solution is composed on the refined background grid. The low-resolution

pressures projected onto the fine-scale system (see Figures 36b and 37b) are added to

the correction functions (see Figures 36c and 37c), resulting in the multiscale solution

(see Figures 36a and 37a). In the MPFA-D, the prescribed pressures on the nodes are

part of the RHS of the discrete linear system. Since the boundary conditions are the

same in both cases, the AMS-U correction functions remain identical. We note that

the valleys in the projected coarse pressure solutions perfectly match the peaks of

the correction function terms. Therefore, the AMS-U has no difficulty producing an

overall good iterative and non-iterative multiscale solutions, despite the challenges of

the physical domain.
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Figure 34 – Pressure solution of the Example 5.2.2 under a barrier configuration.

(a) Fine-scale solution. (b) Coarser
unstructured
background grid 1.

(c) Refined
unstructured
background grid 2.

Source: Author

Figure 35 – Pressure solution of the Example 5.2.2 under a channel configuration.

(a) Fine-scale solution. (b) Coarser
unstructured
background grid 1.

(c) Refined
unstructured
background grid 2.

Source: Author

5.2.3 Single-phase flow simulation in a highly heterogeneous and anisotropic
reservoir.

The following example was originally designed by Yuan & Sheng (2008) to

compare their monotone non-linear finite-volume formulations, and for that we have

already used it to test the FLS on section 5.1.2.

In the context of the multiscale methods, this example is used to evaluate the

monotonicity of the AMS-U solution and compare it with the standard AMS. Both meth-
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Figure 36 – Multiscale solution, multiscale solution without the corrections functions,
and correction terms of the refined unstructured background grid 2 under
a barrier configuration.

(a) pms (b) P oppc (c) CF̃

Source: Author

Figure 37 – Multiscale solution, solution without the corrections functions, and correc-
tion terms of the refined unstructured background grid 2 under a channel
configuration.

(a) pms (b) P oppc (c) CF̃

Source: Author

ods are applied to a 4x4 background grid and an unstructured adaptive background

grid, as shown in Figure 39, using a fine-scale mesh comprised of 2,932 triangular

elements. Although the analytical solution to this problem is not known, the solution is

non-negative (PROTTER; WEINBERGER, 1984) according to the maximum principle.

Qualitatively, the noniterative AMS-U solution shown in Figures 40b and 40c

is not as good as in the previous examples. It is clear that the AMS-U solution is not

monotonic and also does not respect the DMP, since the two background grids chosen

lead to undershoots (pink cells) in the multiscale solution. It is also possible to see

overshoots (black cells) on the 4x4 background grid, where the spurious oscillations

appear stronger on this grid.
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However, the errors presented in Table 9 show that the AMS-U with an adequate

grid strategy is able to achieve significantly better results compared to AMS with a

non-adaptive grid. In all tests, AMS-U outperformed classical AMS, and the adaptive

unstructured background grid outperformed a more standard 4x4 dual grid. When

these strategies are combined, the L2 and L∞ norms of the multiscale errors are about

27.5% and 48.4%, respectively. In contrast, the worst configuration takes place when

the standard AMS is used with the 4x4 grid. In this case, the errors exceed 1.000%

on both the L2 and L∞ norms. We note that the analytic solution to this problem is

unknown, but again the solution is non-negative (PROTTER; WEINBERGER, 1984) by

the maximum principle.

However, even the fine-scale solution shown in Figure 40a produces negative

pressures. A direct consequence of the loss of monotonicity due to the fine-scale flux

approximation scheme used by the multiscale method is that it is not possible to

guarantee the positivity of the basis functions nor DMP. Figures 41a and 41b illustrate

the loss of monotonicity and the emergence of negative values in two-basis functions of

the AMS-U.

While MPFA-D is known to significantly reduce problems with spurious oscilla-

tions in cases where earlier CVD-MPFA methods (using TPS) would struggle (SOUZA et

al., 2020; CONTRERAS et al., 2016; GAO; WU, 2010), as a linear CVD-MPFA -scheme,

it can still be subjected to eventual loss of monotonicity, depending on the problem.

Furthermore, we know that regardless of the underlying fine-scale flux approximation,

projecting the high-resolution system of equations onto the low-resolution grid using

the multiscale operators produces a coarse-scale system with an MPFA-type approxima-

tion. Therefore, we attribute the loss of monotonicity of our multiscale method to these

two key factors.

In conclusion, we note that no other multiscale method based on TPFA or CVD-

MPFA without full pressure support can handle the simulation of this problem. The

relatively good quality of the AMS-U solution allowed the iterative smoothing step to

converge with few iterations. Even though the converged solution has some undesirable

oscillations, the results are comparable to those computed with nonlinear schemes

(YUAN; SHENG, 2008).

Table 9 – Table with the ||p||2 and ||p||∞ errors of Example 5.2.3.

4x4 Structured Background Grid Best Unstructured Background Grid
AMS AMS-U AMS AMS-U

Errors (%) pit pms pit pms pit pms pit pms

||p||2 5.8 E-3 1.063E3 2.273E-2 63.955 7 E-3 32.400 1.08E3 27.417
||p||∞ 2.65x10−2 5.208x103 0.2301 5.202E2 1.580 E-2 1.1723E2 1.81E-2 48.4624

Smoothing 41 - 24 - 28 - 24 -

Source: Author.
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Figure 38 – Permeability representation of the highly heterogeneous and anisotropic
reservoir of the Example 5.2.3.

(a) kxx/kxy (b) kyy/kxy

Source: Author

Figure 39 – Multiscale entities used on the simulation of single-phase flow simulation
on a highly heterogeneous and anisotropic reservoir.

(a) Primal and dual mesh
created from a 4x4 struc-
tured background grid.

(b) Unstructured back-
ground grid meshed
in accordance with the
physical domain.

(c) Primal and dual-grid
created from the back-
ground grid in Figure
39b.

Source: Author

5.2.4 Two-phase flow in a heterogeneous reservoir with a discontinuous full tensor
and high anisotropy ratios

In this example, we simulate water-oil flow in a heterogeneous reservoir with a

discontinuous full tensor with high anisotropy ratio, proposed by Contreras et al. (2016)

and tested by Souza et al. (2020) in the multiscale context. The reservoir consists of a

unitary domain Ω = [0,1]× [0,1] with 4 layer discontinuous anisotropic permeability

tensors, each representing the same anisotropic tensor in different rotations, as shown

in Figure 42 and Equation 42. The problem is simulated under 1/4 of five spot config-

uration with null normal flow conditions along its boundaries, Qinj = 1 and Sw = 1 at
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Figure 40 – Control volumes in which occur over and undershoots in black and pink,
respectively, using the 4x4 structured background grid coarse mesh (40b)
and the best background grid (40c).

(a) Converged iterative
solution.

(b) 4x4 structured
background grid.

(c) Best unstructured
background grid.

Source: Author

Figure 41 – Basis functions of the AMS-U used on Example 5.2.3: Overshooting and
undershooting cells in black and pink, respectively.

(a) 4x4 structured
background grid.

(b) Best unstructured
background grid.

Source: Author

the injection well in the lower left corner and the production well located at the upper

right corner with prescribed pressure (ppro = 0). The reservoir is initially fully saturated

with oil (S̄o
w = 0).

K1 =

505 495

495 505

 , K2 =

1,000 0

0 100

 , K3 =

100 0

0 1,000

 (5.6)

Originally, this example was used to evaluate the relative accuracy of the CVD-

MPFA-D formulation compared to the standard TPFA (CONTRERAS et al., 2016). The

effects of a highly anisotropic permeability field are poorly captured by the TPFA

formulation on both unstructured and structured grids, making this example a bench-

mark case that demonstrates the advantages of a consistent MPFA formulation. High

anisotropy ratios are a challenge for multiscale methods in the MsFV family in general

(HAJIBEYGI et al., 2008; HAJIBEYGI; JENNY, 2009; BARBOSA et al., 2018; SOUZA et
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Figure 42 – Permeability representations heterogeneous reservoir with a discontinuous
full tensor with high anisotropy ratio (see Equation 42).

Source: Author

Figure 43 – Multiscale entities used to simulate oil and water flow in a heterogeneous
reservoir with a discontinuous full tensor and high anisotropy ratio.

(a) Primal and Dual Mesh
created from a 4x4
background grid: Mesh
1 with 2,328 triangular
fine-scale elements.

(b) Primal and Dual Mesh
created from a 4x4 back-
ground grid: Mesh 2 with
2,496 quadrilateral fine-
scale elements.

(c) Primal and Dual Mesh
created from a 3x3 back-
ground grid: Mesh 3 with
4,890 quadrilateral fine-
scale elements.

al., 2020; JENNY; LUNATI, 2009; HAJIBEYGI; JENNY, 2011b; JENNY; LEE; TCHELEPI,

2003; JENNY; LEE; TCHELEPI, 2006).

To evaluate the AMS-U formulation, the problem is simulated using three differ-

ent fine-scale grids and the respective primal, dual, and background grids, as shown in

Figure 43. In addition to the fine-scale solution using the MPFA-D, we also compare the

AMS-U formulation with TPFA simulated on each grid. For the iterative procedure, the

tolerance for the smoothing step is set to 10−6 for multiscale simulations.

First, a fine-scale unstructured grid with 2,328 triangular elements (see Figure

43a) is used. The primal and dual coarse grids were created based on a structured 4x4

background grid. For this grid, Figure 44 shows that the multiscale formulation of the

AMS-U is able to qualitatively reproduce the most important aspects of the underlying

high-resolution physics. For PVI=0.02 and PVI=0.07, the largest difference is seen as

the saturation front appears more smeared. With time, the difference becomes less
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Figure 44 – Oil and water flow in a heterogeneous reservoir with a discontinuous full
tensor and high anisotropy ratios using mesh 1. a) to d) fine-scale solution
using the MPFA-D; e) to h) fine scale solution using the TPFA method; i) to
l) AMS-U + MPFA-D solution.

(a) PVI - 0.02 (b) PVI - 0.07 (c) PVI - 0.12 (d) PVI - 0.17

(e) PVI - 0.02 (f) PVI - 0.07 (g) PVI - 0.12 (h) PVI - 0.17

(i) PVI - 0.02 (j) PVI - 0.07 (k) PVI - 0.12 (l) PVI - 0.19

Source: Author

visible as the saturation front almost exactly replicates the MPFA-D fine scale solution.

In contrast, the TPFA saturation solution shows no similarity to the MPFA-D solution.

The second fine-scale mesh used consists of a distorted unstructured grid with

2,496 quadrilateral elements, as shown in Figure 43b. Once more, the primal and

dual coarse grids were created using a structured 4x4 background grid. Note that the

saturation field of the fine-scale solution using the MPFA-D is affected by the grid

orientation. In this case, the saturation front looks more diffusive and the breakthrough

is delayed. The AMS-U multiscale solution also repeats this pattern, but with additional
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Figure 45 – Oil and water flow in a heterogeneous reservoir with a discontinuous full
tensor and high anisotropy ratios using mesh 2. a) to d) fine-scale solution
using the MPFA-D; e) to h) fine scale solution using the TPFA method; i) to
l) AMS-U + MPFA-D solution.

(a) PVI - 0.02 (b) PVI - 0.07 (c) PVI - 0.12 (d) PVI - 0.17

(e) PVI - 0.02 (f) PVI - 0.07 (g) PVI - 0.12 (h) PVI - 0.17

(i) PVI - 0.02 (j) PVI - 0.07 (k) PVI - 0.12 (l) PVI - 0.19

Source: Author

errors along the saturation front. In addition, the errors appear to decrease qualitatively

with time. The TPFA fine-scale solution, in turn, is unable to capture the physics of the

problem, indicating that the TPFA solution is extremely mesh dependent

The third mesh used is the finest mesh with 4,890 unstructured quadrilateral

elements. This mesh is almost twice the size of the other meshes studied, as shown

in Figure 43b. The primal and dual coarse grids were created using a structured 3x3

background grid. We note that the AMS-U saturation field is able to preserve the most

important aspects of the high-resolution physics using the MPFA-D, see Figure 46.
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Figure 46 – Oil and water flow in a heterogeneous reservoir with a discontinuous full
tensor and high anisotropy ratios using mesh 3. a) to d) fine-scale solution
using the MPFA-D; e) to h) fine scale solution using the TPFA method; i) to
l) AMS-U + MPFA-D solution..

(a) PVI - 0.02 (b) PVI - 0.07 (c) PVI - 0.12 (d) PVI - 0.17

(e) PVI - 0.02 (f) PVI - 0.07 (g) PVI - 0.12 (h) PVI - 0.17

(i) PVI - 0.02 (j) PVI - 0.07 (k) PVI - 0.12 (l) PVI - 0.19

Source:Author

Note that both the fine-scale and multiscale solutions in this example are similar to

the solution obtained with mesh 01. Qualitatively, the differences between the AMS-U

and the MPFA-D solutions are small but not imperceptible. In particular, the saturation

front for PVI=0.07 appears to cross a bottleneck, while the saturation front for PVI=0.17

looks smeared with more diffusion. Note that the bottleneck observed for PVI=0.07

was also obtained in simulations with different background grids. Finally, the TPFA

fine-scale solution is again unable to resolve the physics of the problem, leading to a

grid-dependent solution that is not consistent.
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Figure 47 – Productions curves for all meshes simulating oil and water flow in a het-
erogeneous reservoir with a discontinuous full tensor and high anisotropy
ratios.

(a) 4x4 background grid with a fine-scale mesh with 2,328 triangular elements.

(b) 4x4 background grid with a fine-scale mesh with 2,496 quadrilateral elements.

(c) 3x3 background grid with a fine-scale mesh with 4,890 quadrilateral elements.

Regarding the productions curves presented in Figure 47, we note the MPFA-D

and the AMS-U and oil recovery curves for mesh 1 and 3 remain extremely close to one

another despite the number of elements of the mesh. The production curve of mesh 2, in

turn, shows a late breakthrough as observed qualitatively in the saturation fields. In all

analysed grids, the AMS-U curves remained quite close to the corresponding MPFA-D

fine-cale solution. Finally, for this problem, it is clear that the use of the classical linear

TPFA method is unable to produce physical meaningful solutions even using the fine

scale mesh.

The norm of the errors shown in Figure 48 evaluates how close the TPFA and

AMS-U solutions coupled with an MPFA-D solution remain to the corresponding MPFA-

D solution. As expected, the L2 and L∞ norms of the errors were higher for the TPFA

saturation solution were higher in comparison with the others. The AMS-U replicated

the MPFA-D solution for all meshes with good accuracy. Note that AMS-U depends on

the accuracy of the MPFA-D fine-scale solution. The distortion of mesh 2 caused the
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Figure 48 – L2 and L∞ norms of the saturation field obtained by simulating oil and
Water flow in a heterogeneous reservoir with a discontinuous full tensor
and high anisotropy ratios.

Source: Author

MPFA-D formulation to lose some of the physics of the problem. On the other hand,

the best solution that multiscale methods based on TPFA can achieve is the fine-scale

TPFA solution itself.

5.2.5 Two-phase flow of oil and water in a reservoir with a random permeability
field

The last example consists of a two-phase flow of oil and water in a reservoir

with a random isotropic permeability tensor adapted from Chueh et al. (2010) with

two injections and one production well, as illustrated in Figure 49. Zero normal flow

conditions are applied along the reservoir boundaries. Water is injected with Qinj = 1

and Sw = 1 at the injection wells. At the single production well, the pressure is set to

ppro = 0. Again, the reservoir is assumed to be fully saturated with oil initially (S̄o
w = 0).

An unstructured grid with 2,396 quadrilateral elements is used as the fine mesh, which

was further refined around the production and injection wells. The tolerance of the

iterative smoothing stage is again set to 10−6.
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Figure 49 – Representation of the log of the permeability field used for the two-phase
flow of oil and water in a reservoir with a random permeability field. In-
jection wells, and the production well represented by red and white dots,
respectively.

Source:Author

While most multiscale methods would struggle to define the primal and dual

meshes for a curved geologic formation such as the one presented on Figure 49, the

background grid strategy makes the process extremely straight forward. For this case,

we have chosen an unstructured background grid with 19 quadrilateral elements as

illustrated by Figure 50a. The corresponding primal and dual coarse grids are shown in

Figure 50b.

The saturation profile presented in Figure 51 indicates that the AMS-U + MPFA-

D qualitatively converge to the MPFA-D fine-scale solution for this configuration, with

the largest difference between the saturation profiles occurring at the beginning of the

simulation near PVI=0.045. It is possible to observe multiple saturation fronts moving

from the two injection wells toward the production well. Despite small differences, the

AMS-U in conjunction with the MPFA-D is able to accurately capture these details. In

addition, the differences between the multiscale and MPFA fine-scale solutions become

less visible over time. With the exception of a few cells on the saturation front, no

significant difference is seen at PVI=0.26 and PVI=0.545. The norms of the errors of the

saturation field shown in Figure 52 support the idea, also observed in the last example,

that the error of the AMS-U solution tends to decrease with time. Note that around

PVI=0.05 larger errors occur and around PVI=0.6 at the end of the simulation the L2

norm of the error is close to 1 %, while the L∞.

Finally, by observing the production curves in Figure 53, we find that the AMS-U

formulation converges to the fine-scale solution. The oil production, cumulative oil and

water cut curves remain virtually identical, demonstrating the robustness and accuracy

of our formulation.
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Figure 50 – Multiscale entities used for the two-phase flow of oil and water in a reservoir
with a random permeability fieldd using a unstructured quadrilateral fine-
scale mesh with 2,396 control volumes.

(a) Background grid adapting to the curved shaped reservoir.

(b) Primal and dual grid also adapting to the curved shaped reservoir.

Source: Author
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Figure 51 – Water-oil flow on a curved shaped reservoir with random permeability field:
Reference, and multiscale solution on a rectangular grid and multiscale
solution presented on the top and bottom row respectively.

(a) PVI - 0.045 (b) PVI - 0.26

(c) PVI - 0.545

(d) PVI - 0.045 (e) PVI - 0.26

(f) PVI - 0.545

Source: Author
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Figure 52 – L2 and L∞ norms of the saturation field obtained by water-oil flow on a
curved shaped reservoir with random permeability field.

Source: Author

Figure 53 – Comparison of the production curves for the two-phase flow of oil and
water in a reservoir with a random permeability field using the AMS-U +
MPFA-D and the reference solution obtained using the MPFA-D directly in
the fine mesh.

Source: Author
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6 CONCLUSIONS

In the present work, we have investigated and developed formulations in the

family of cell-centred finite volume methods. For this purpose, we have divided our

work into two different groups of schemes developed for unstructured grids: the study of

consistent flux approximations respecting the DMP and the study of mass-conservative

multiscale methods. Both resulting formulations have been used to solve single-phase

problems of incompressible flows in highly heterogeneous and anisotropic media, but

for the latter we have also tested two-phase flow problems in equally challenging

domains. On this case, we have used a sequential implicit strategy in which the pressure

solution and the saturation equations are solved separately.

The first part of the work was concerned with the investigation and study of

nonlinear flow approximation techniques consistent on general unstructured grids. We

have successfully developed a novel repair technique for linear MPFA methods based

on the M-Matrix Flux Splitting (EDWARDS, 2000) and the flux limitation concept in

(KUZMIN; SHASHKOV; SVYATSKIY, 2009) that is able to convert these schemes into

nonlinear methods that comply with the Discrete Maximum Principle. This strategy

was tested using the MPFA-D for unstructured 2D grids with the conservative LPEW2

interpolation. The resulting framework was tested on benchmark problems for single-

phase flows, which pushed the original MPFA-D to its limits. Nevertheless, our method

was able to produce solutions that qualitatively reproduced the quality of the MPFA

formulation while respecting the DMP. However, in some examples, it was observed

that our method added more artificial diffusion for this purpose. The method was

developed using a mathematical operator we developed that allows the transmissibility

matrix to be written as a matrix multiplication between the divergent operator and the

face transmissibility matrix. In this way, the mass balance is performed on a matrix.

This operator allowed the vectorisation of the code, which increases the performance

of our method. The results of our formulation were comparable to state-of-the-art

nonlinear TPFA methods but with the computational costs to more extreme cases are

still prohibitive.

As for the second part of this work, we have investigated and developed schemes

and the associated algorithms necessary for the simulation of multiscale methods

in the MsFV framework on unstructured grids. In particular, we have developed a

generalisation of the state-of-the-art Algebraic Multiscale Solver (WANG; HAJIBEYGI;

TCHELEPI, 2014) to unstructured grids. This was done by developing the background

grid strategy, a novel technique that uses an additional grid to support the creation of

the multiscale entities in 2-D and extendible to 3-D by using an MPFA for the fine-scale,
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and by modifying the multiscale operators of the standard AMS to ensure that the

basis functions are restricted to their respective support regions. Combined with an

iterative smoothing stage, the resulting framework has been shown to be consistent

even in highly heterogeneous and anisotropic media. Moreover, our method is the very

flexible formulation in terms of creating the multiscale meshes, as it is able to make

full use of unstructured meshes to create primal and dual coarse meshes that adapt he

geometric features of convoluted physical domains.

Finally, the positive results obtained with the developed formulations motivate

further research to improve and extend them to more general problems. In particular,

the algorithms of both formulations have been developed in such a way that they can be

easily extended to 3-D. Therefore, we can cite as possible future extensions of our work:

1. Extending the Flux Limited Splitting to 3-D.

2. Investigation of new algorithms for limiting the cross diffusion terms.

3. Create strategies to acelerate the FLS method.

4. Investigation and comparison of the FLS formulation with other robust flux

approximation methods for unstructured grids such as the MPFA-H, FPS etc.

5. Extension of the background grid strategy to automatically adapt to the perme-

ability field of the media to improve the multiscale solution.

6. Coupling the FLS strategy with multiscale schemes to create methods that comply

with the DMP.

7. Extension of the AMS-U for 3-D.

8. Extend AMS-U to incorporate Non-Uniform ADM in unstructured grid enviro-

ment.

9. Develop fracture models for the AMS-U.
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APPENDIX A – PREPROCESSING ALGORITHMS

Generalising the preprocessing phase of multiscale methods is one of the ma-

jor challenges to be overcome in order to extend these methods for unstructured

grids. The non-iterative multiscale solution strongly depends on the quality of the

primary and dual coarse grid as well as on the multiscale operators (SOUZA et al.,

2020; MEHRDOOST, 2019; MOYNER; LIE, 2015). On the other hand, the right choice

of preprocessing algorithm can significantly reduce the number of steps an iterative

multiscale solution needs to converge.

Several studies have addressed the development of preprocessing algorithms

for multiscale methods using different strategies (MOYNER; LIE, 2013; MOYNER;

LIE, 2015; BOSMA et al., 2017; MEHRDOOST, 2019; SOUZA et al., 2020). So far,

agglomeration methods, as used in parallel programming load distribuitiong in parallel

programming have often been chosen to define the primal coarse grid (BOSMA et al.,

2017; MOYNER; LIE, 2015; MEHRDOOST, 2019). Another recurrent choice is to use

geometry-dependent algorithms to find a pseudo-similar structured primal coarse grid

(SOUZA et al., 2020; MOYNER; LIE, 2013). Both of these strategies have advantages

and disadvantages. While the former approach is better suited for discretising physical

domains with complex geological formations, the generated partitions are based solely

on parallel computer metrics, which in turn can lead to oscillations in the multiscale

solution. The latter geometric approach simplifies the calculation of multiscale entities.

However, its application is limited compared to the first approach.

Various authors have attempted to extend the MsFV definition for dual coarse

grids to extend its application to general grids i.e. unstructured grids at the coarse and

fine-scale (SOUZA et al., 2020; MOYNER; LIE, 2013; BOSMA et al., 2017; MOYNER;

LIE, 2015; MEHRDOOST, 2019). For simplicity, we combine the different techniques

into a global macro-algorithm described as follows:

1. Define the Primal Coarse Volume Centres xpk , ∀Ωc
k ∈Ω

c.

2. Define the Primal Coarse Face Centres ypj , ∀Γ cj ∈Ω
c .

3. Create the sub-edges: Find a path that connects xpk to y
p
j ∀Γ

c
j ∈ ∂Ω

c
k ensuring face

connectivities.

4. Create the edges and dual coarse internals.

5. Define the Support Regions Ik, xpk ∀Ω
c
k ∈Ω

c .



APPENDIX A. Preprocessing Algorithms 120

Apart from the MsRSB (MOYNER; LIE, 2015) and the MsCV (SOUZA et al.,

2020), which tackle the definition Support Region before the creation of the sub-edges

and edges, the main difference between the strategies is the algorithm used in each

step of the procedure. While most authors have relied on algorithms that depend on

geometry (SOUZA et al., 2020; MOYNER; LIE, 2015; MOYNER; LIE, 2013; BOSMA et al.,

2017), more recent work has used a topologically based approach (MEHRDOOST, 2019;

MEHRDOOST, 2021). The primal and dual coarse grids are inherently interdependent.

Therefore, the choice of the primal coarse grid directly affects the construction and

quality of the dual coarse grid. On the other hand, not all algorithms used to construct

the dual coarse grid are suitable for every coarse grid definition. Consequently, it is

difficult to assess the quality of the primary coarse grid without considering the impact

of the strategy used to create the dual coarse grid and vice versa. Therefore, it makes

sense to develop an unified strategy to create the prima and dual coarse grids together.

A.1 Unstructured Grids and Graphs

We note that unstructured grids by definition require special data structures to

describe the elements, connectivities and other features of the grid. The nature and

complexity of these data structures depends on the application and the numerical

scheme chosen (LHNER, 2008; CAO, 2002). Standard cell-centred finite volume meth-

ods and other schemes that project the discrete fluxes onto faces (or edges in 2D) rely

on a specific data structure to define the connectivities of the faces. The structure maps

each face in the discrete domain to the neighbouring elements that share that face.

Essentially, this construction is a representation of an undirected sparse graph using an

adjacency list, where the nodes and edges of the graph represent the control volumes

and the faces of the grid, respectively, as shown in Figure (54).

Understanding the nature of unstructured grids allow us to use various topolog-

ical algorithms based on graphs that can be used to construct multiscale entities. In this

context, we would like to highlight Dijkstra’s algorithm (DIJKSTRA, 1959; CORMEN,

2009), which computes the shortest path between two nodes in an undirected graph

with positively weighted edges, i.e. a graph like the one in Figure 54, where the edges

are weighted, in this case by the distance between each control volume. See algorithm 2

for a description of Dijkstra’s algorithm.

Putting this algorithm in the context of unstructured grids, different choices for

the weights of the graph edges give rise to different interpretations. For example, if

we set all the weights to 1, this routine finds the shortest topological distance, while if

the weights take the value of the distance between the volume centroids, the algorithm

finds the geometrically shortest distance. In all cases, we are able to find paths that

ensure the connectivity of the faces.
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Figure 54 – An illustration of a graph representation of a unstructured grid and its
corresponding adjacency-list.

Adjacency List of Graph

Neighbour
1

Neighbour
2

1 2
1 6
2 3
2 5
3 4
4 5
5 6

Source: (SOUZA et al., 2022).

Algorithm 2: Dijkstra’s Weighted Shortest Path Algorithm
Input: A positive weighted undirected graph G , a source and target nodes
Output: A list L with sorted nodes containing the shortest distance from source

to target in G
create set of nodes N
foreach node i in G do

dist[i]←∞
prev[i]← NaN
add i to N

dist[source]← 0
while N is not empty do

u← node in N with minimum dist[u]
remove u from N
foreach neighbour i of u do

tdist← dist[u] + length(u, i)
if condition then

dist[i]← tdist
dprev[i]← u

L← create list
i ← target
if prev[i] , NaN or source = i then

while i , NaN do
place i at the start of L
i ← prev[i]
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A.2 The Background Grid Framework

The Background Grid Framework consists of a set of routines for creating multi-

scale entities such as the primal coarse grid, the primal coarse volume centres, the dual

coarse grid and other related entities. This strategy is named after the auxiliary coarse

grid, the background grid, which geometrically and topologically guides the creation of

the primal and dual coarse grids. By using this auxiliary grid, we are essentially able to

tackle the design of the primary and dual coarse grids simultaneously. The procedure is

designed to satisfy three basic assumptions. First, we assume that the fine-scale grid

is derived from a given geological grid. Therefore, the primal and dual coarse meshes

must be adapted to the fine scale and not vice versa. Secondly, the primal coarse grids

must take into account the complex geological features of the petroleum reservoirs, as

must the fine-scale grids. Finally, as far as possible, the algorithm must create grids that

can be used in upscaling. Hence, strongly non-convex volumes should be avoided.

We illustrate how the background grid framework creates the primal and dual

coarse grids by using an example of a physical domain shaped like the Chinese and

Japanese character for friend,友. The following procedure, shown in Figure 55, sum-

marises the strategy:

1. First we create the background grid. This additional coarse grid is obtained

by meshing the geometry of the formation with a conventional grid generator

(GEUZAINE; REMACLE, 2009), disregarding the high-resolution grid (Figure

55a). This means that the background grid framework allows the boundaries of

the volumes of the background grid to cross the surfaces of the fine-scale elements

if necessary (see 55b).

2. The second step is to map the volumes of the fine-scale to the background grid

by checking which centroids of the fine-scale are contained in each volume of

the background grid (see figure). In some cases, as shown in Figure 55d, the

centroid of some volumes of the fine-scale may lie outside the boundaries of the

background grid. At this point, the resulting distribution does not guarantee

face-connectivity among fine-scale elements contained in each volume of the

background grid.

3. To solve these problems, the algorithms 3 and 4 are used. The former adds un-

mapped fine-scale volumes to the group of mapped volumes closest to them.

The second algorithm evaluates and moves fine-scale volumes to ensure that

the resulting mapped groups have face-connectivities (see figure 55e). The new

derived regions are defined as a primal-coarse grid (see Figure 55f). Note that

these algorithms introduced connectivities among the primal coarse volumes that

were not present in the background grid (see Figure 55g).
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4. For most multiscale schemes, computing the centres of the primal volumes xp and

faces yp is challenging. To solve this problem, we use the geometry and topology

of the background grid. First, the primal coarse centres are calculated by simply

finding the fine-scale volumes whose centroid is closest to the centroid of the

background volume (see Figure 55h). It is possible to move the centres of the

primal coarse volumes adjacent to ∂Ω to a fine-scale volume closest to the centre

of the primal coarse face Γj∀Ωj ∈ ∂Ω (BARBOSA et al., 2018). The centres of the

primal coarse faces are then computed by finding a fine-scale face in a given primal

coarse face Γj that is closest to the corresponding centroid of the background grid

face. Note that the centre of primal coarse faces and subsequent entities that

depend on them are not computed if an associated face on the background grid

does not exist, such as the face highlighted in the figure (55g).

5. The next step is to find all the sub-edges that make up the multiscale edges. The

sub-edges are a set of face-connected fine-scale volumes that connect the centre

of a coarse primal coarse volume to the centre of a coarse primal face. This is

done by iterating over the faces of each primal coarse volume, as described in the

algorithm 5. The edges group is the union of all sub-edges. Finally, we define the

internal volumes by obtaining the fine-scale elements that are neither edges nor

nodes. The resulting dual coarse grid is shown in Figure 55i.

We are currently developing a 3-D version of the background grid strategy. In

2D, the background grid strategy has already dealt with how to find nodes, edges and

internal volumes. In 3-D, the biggest challenge we have encountered so far is finding a

strategy for calculating the surfaces elements of the wirebasket classification ensuring

face-connectivity while respecting the hierarchy of the AMS is respected, i.e. a clear

separation between nodes, edges, surfaces and internals.

Algorithm 3: Primal Coarse Growth Algorithm
Input: an incomplete localization array L that maps fine-scale volumes to the

containing primal coarse grid
Output: L modified to cover all fine-scale volumes iterative pressure solution,

pit.
create empty list of fine-scale volumes V
while any elements in L are equal to NaN do

foreach coarse volume c in Ωp do
find the fine-scale volumes U which L[c] = NaN
H ← fine-scale volumes neighbours with Ω

p
c

F←U ∩H
L[F] = c
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Figure 55 – Construction of the primal and dual coarse mesh using a background grid.

(a) Fine-scale discretization of
the physical domain.

(b) Background grid over the
high resolution discretiza-
tion of the physical do-
main.

(c) Primal coarse grid candi-
date obtained locating fine-
scale centroids inside each
background grid cell.

(d) Primal coarse candidate
does not ensure that all
fine-scale cells belong to
a coarse volume nor face
connectivities among fine-
scales inside the same
coarse volume.

(e) Algorithm 3 and 4 fixes
the aforementioned prob-
lems by relocating fine-
scale cells among primal
coarse-volumes.

(f) The primal coarse grid can-
didate becomes the primal
coarse mesh.

(g) The primal coarse grid
introduce coarse-scale
face connectivities not
presented among the
background grid cells.

(h) Primal coarse cell centres
are calculated using the
background grid centroids.

(i) Dual coarse grid is defined
ignoring primal coarse
face connectivities not pre-
sented on the background
grid.

Source: (SOUZA et al., 2022).
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Algorithm 4: Primal Coarse Growth Algorithm
Input: a localization array L that maps all fine-scale volumes to the containing

primal coarse volumes
Output: L modified to ensures all fine-scale volumes share at least a common

surface.
create empty list of fine-scale volumes V
foreach tag c in L do

create a graph Gc where the nodes are the fine-scale volumes in ΩP
c and the

edges the face neighbours connectivities.
split Gc into unconnected sub-graphs H
F← sub-graphs in H except the one with the highest cardinality
add fine-scale volumes in F to V

L[V]← NaN
foreach tag c in L do

n← face neighbours of i
L[i]←mode(L[n])

Algorithm 5: Dual Grid Generation
Input: primal coarse mesh Ωp, fine-scale mesh Ω, background grid
Output: edges of the multiscale dual-grid Ωd

create an array ω containing the distance between each face connected volume
in Ω

foreach coarse volume Ω
p
k in Ωp do

create a graph Gc with graph nodes (∀Ωm ∈Ω
p
k ) and the graph edges (Ωr , Ωs

| Γj = Ωr ∩Ωs, ∀Γj ∈Ω
p
k )

get distance ωc
k among all fine-scale volumes in Ωc

k from ω
targets← fine-scale volumes neighbours to interfaces centres of the
background grid and inside c

source← x
p
c

foreach target in targets do
sub-edge← Dijkstra(source,target, Gc, wc)
add sub-edge to edges
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APPENDIX B – RESUMO EXPANDIDO

Métodos Conservativos Multescala para o escoamento Multifásico em Reservatórios
Petrolíferos Altamente Heterogéneos usando malhas não estruturadas

B.1 Introdução

As simulações computacionais desempenham um papel crucial no gerencia-

mento de reservatórios de petróleo em subsuperfície. Com o uso de simuladores é

possível prever o complexo comportamento do escoamento do petróleo mesmo em

meios porosos altamente anisotrópicos e heterogêneos com o intuito de otimizar as

taxas de produção de maneira a maximizar o retorno econômico. Técnicas de otimiza-

ção e ajuste histórico fazem uso extensivo de simulações para melhor compreender e

antecipar diferentes cenários e o seu impacto associado as curvas de produção, que são

extremamente dependentes das condições de fluxo dadas nos poços de injeção e produ-

ção. Por outro lado, os avanços recentes no campo de caracterização tornaram possível a

integração de dados petrofísicos em escalas com ordens de magnitude superior a escala

utilizada por simuladores de reservatórios de petróleo comerciais (ZHOU; TCHELEPI,

2008; LUNATI; JENNY, 2006; LUNATI; JENNY, 2008; LUNATI; TYAGI; LEE, 2011;

MOYNER; LIE, 2015). Além disso, a geometria complicada e a grande heterogeneidade

intrínseca a reservatórios não convencionais adicionam um novo grau de complexidade

às simulações, tornando-as mais intensas do ponto de vista computacional. Isso limita

severamente o uso de modelos geológicos de alta resolução, o que por sua vez limita a

precisão das simulações (SOUZA et al., 2020).

Para contornar estas restrições e para usufruir da escala de alta resolução, o

método Multiscale Finite Volume (MsFV) foi desenvolvido (JENNY; LEE; TCHELEPI,

2003; JENNY; LEE; TCHELEPI, 2006; ZHOU; TCHELEPI, 2008). Esses esquemas geram

conjuntos de funções base que são usadas para projetar o sistema de equações associado

a escala de alta resolução no espaço de baixa resolução. O novo sistema é resolvido e

depois projetado de volta na malha de alta resolução, calculando assim uma solução

conservativa razoavelmente precisa (SOUZA et al., 2020). A ideia por trás deste e de

outros métodos multiescala é que resolver um conjunto de sistemas localizados de alta

resolução junto com um problema global em escala baixa resolução (LUNATI; TYAGI;

LEE, 2011) é mais barato do que simulação direta na escala de alta resolução.

O sucesso do método MsFV na representação do fluxo de fluidos em meios

porosos homogêneos e levemente heterogêneos levou ao desenvolvimento de novos

estudos visando aprimorar vários aspectos do método original. Alguns autores focaram
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na construção de modelos de poços multiescala (WOLFSTEINER; LEE; TCHELEPI, 2006;

JENNY; LUNATI, 2009); outros no estudo de técnicas para incorporar modelos físicos

mais complexas ao modelo de reservatório (LUNATI; JENNY, 2008; LUNATI; JENNY,

2006; LEE; WOLFSTEINER; TCHELEPI, 2008; HAJIBEYGI; JENNY, 2009; HAJIBEYGI;

TCHELEPI, 2014), assim como na melhoria das condições de contorno dos problemas

localizados (WANG; HAJIBEYGI; TCHELEPI, 2015). Além disso, inspirado por métodos

multigrid, Zhou & Tchelepi (2008) desenvolveu uma descrição matricial para o estágio

de prolongamento e restrição, criando o que se tornou a notação padrão do MsFV. Neste

método, os algoritmos multiescala são escritos como uma série de operações matriciais

simples utilizando estes operadores.

Apesar de todos esses esforços, a família de métodos Multiscale Finite Volume

padrão ainda sofre com problemas ao simular reservatórios altamente heterogêneos e

anisotrópicos (HAJIBEYGI et al., 2008). Para garantir que a solução multiescala convirja

para a solução de escala fina dentro de uma certa tolerância, desenvolveu-se uma família

de métodos iterativos (HAJIBEYGI et al., 2008; HAJIBEYGI; JENNY, 2011a; LUNATI;

TYAGI; LEE, 2011).

O Algebraic Multiscale Solver (AMS) (ZHOU; TCHELEPI, 2011; WANG; HA-

JIBEYGI; TCHELEPI, 2014) generalizou o esquema clássico Multiscale Finite Volume

e tornou-se seu sucessor moderno. Neste método, a partir de uma simples notação

matricial é possível calcular os operadores de prolongamento multiescala e um conjunto

de funções de correção através uma série de operações algébricas diretas realizadas

no sistema de equações discreto da malha de maior resolução. Combinado a um mé-

todo multiescala iterativo, este método mostrou-se eficiente e robusto, com resultados

comparáveis aos métodos multigrid (WANG; HAJIBEYGI; TCHELEPI, 2014). Vários

autores modificaram com sucesso o AMS para incorporar novos recursos, como modelos

de fraturas incorporados (ŢENE; KOBAISI; HAJIBEYGI, 2016), física mais complexa

(ŢENE; WANG; HAJIBEYGI, 2015), simulações multiníveis multiescala (CUSINI et al.,

2018; HAJIBEYGI et al., 2020) e fornecer uma estrutura geral parar permitir a integração

de novos modelos de forma unificada (CORTINOVIS; JENNY, 2017).

No entanto, estes métodos não são compatíveis a malhas não estruturadas. Isso

ocorre devido a três fatores: a Two-Point Flux Approximaton (TPFA), aproximação

de fluxo de dois pontos, padrão nesses métodos é consistente apenas em malhas k-

ortogonais; as dificuldades em generalizar os algoritmos de criação das entidades

multiescala, como as malhas grosserias primais e duais, e a falta da definição adequada

dos operadores multiescala para este tipo de malha (SOUZA et al., 2020).

O trabalho de Moyner & Lie (2013) abordou este segundo tópico e desenvolveu

uma generalização do MsFV para lidar com malhas multiescala de baixa resolução não

estruturadas. Moyner & Lie (2015) foi além e desenvolveu novos algoritmos para defini-
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ção das malhas multiescala assim como um novo operador de prolongamento criando

portanto o Multiscale Restriction-Smoothed Basis (MsRSB), que é consistente apenas em

malhas grosseiras não estruturadas. Bosma et al. (2017) trabalhou na extensão do multis-

cale as entidades multiscale, e desenvolveu um operador de prolongamento para malhas

não estruturados com rescaling. Já Mehrdoost (2019) e Mehrdoost (2021) estudaram

técnicas para criar malhas grosserias duais e primais adaptáveis e não estruturadas.

Apesar de contribuições significativas, esses métodos carecem de uma aproxi-

mação de fluxo realmente consistente para problemas anisotrópicos em malhas não

estruturadas quaisquer. Neste contexto, vários autores tem se dedicado a construir

novas aproximações de fluxo, chamadas de Control Volume Distributed Multipoint Flux

Approximations (CVD-MPFA), para super as limitações do TPFA (CRUMPTON; SHAW;

WARE, 1995; AAVATSMARK et al., 1998; EDWARDS; ROGERS, 1998; CARVALHO;

WILLMERSDORF; LYRA, 2007a; EDWARDS; ZHENG, 2008; CHEN et al., 2008; GAO;

WU, 2010; FRIIS; EDWARDS, 2011; CONTRERAS et al., 2016; CONTRERAS; LYRA;

CARVALHO, 2019; EDWARDS; ZHENG, 2010). A monotonicidade é uma propriedade

importante desejada por autores de métodos numéricos. Em reservatórios de petróleo

altamente anisotrópicos, a perda de monotonicidade pode levar a soluções que violem

as restrições de entropia (YUAN; SHENG, 2008), fazendo com que o óleo flua de regiões

de baixa pressão para pressões mais altas. Em meios com altas taxas de anisotropia e

variações de permeabilidade, a perda de monotonicidade também pode levar à ocor-

rência de pressões absolutas negativas. No entanto, a monotonicidade não é suficiente

para garantir que uma solução discreta não tenha oscilações espúrias. Em contraste,

métodos que obedecem ao Princípio do Máximo Discreto (PMD) produzem soluções

discretas livres dessas oscilações indesejadas. Para isso, se um método numérico linear

tem uma matriz do tipo M-Matrix, então isso seria condição suficiente para garantir que

a solução tenha um PMD local (EDWARDS; ZHENG, 2010). O método TPFA clássico

aplicado à equação de pressão produz uma M-Matrix e como consequência tem soluções

discretas livres de oscilações espúrias. No entanto, o método é inconsistente em malhas

não K-ortogonais, o que ocorre quando campos tensores completos ou malhas não

estruturadas são utilizadas.

Já os métodos CVD-MPFA mais recentes com Full Pressure Support (FPS) e.g.

(EDWARDS; ZHENG, 2010; GAO; WU, 2010) e os métodos anteriores com Triangular

Pressure Support (TPS) CVD-MPFA têm DMP e M-Matrix condicionais. Para alguns

casos de teste cujos tensores de permeabilidade são altamente anisotrópicos e cheios, to-

das as formulações de CVDM-MPFA não têm DMP local. Entretanto apenas os métodos

do tipo TPS e anteriores induzem oscilações espúrias graves. Este comportamento é atri-

buído ao desacoplamento (EDWARDS; ZHENG, 2008; EDWARDS; ZHENG, 2010) onde

foi feita uma análise para explicar este fenômeno e demonstrado que as formulações

FPS não sofrem deste desacoplamento podendo calcular soluções livres das oscilações
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não físicas a nível da malha, apesar da falta de um DMP local formal em tais casos.

B.1.1 Objetivos Principais

Neste contexto, o objetivo geral deste trabalho é investigar e desenvolver esque-

mas multiescala conservativos para simulação 2-D e 3-D de escoamentos multifásicos

em meios porosos heterogêneos e anisotrópicos utilizando malhas não k-ortogonais.

Objetivos Específicos

1. Investigar e desenvolver algoritmos para a criação de entidades geométricas mul-

tiescala em 2-D e 3-D.

2. Implementar esquemas de aproximação de fluxo linear e não linear para a discre-

tização da equação de pressão.

3. Investigar e desenvolver um esquema multiescala para simulação de escoamentos

multifásicos em reservatórios de petróleo altamente heterogêneos e anisotrópicos

consistentes em malhas gerais não estruturadas.

B.2 Equações Governantes

A ideia principal deste capítulo é discutir brevemente o modelo matemático

que governa o escoamento bifásico água-óleo em meios porosos. Como este tema já foi

objeto de extensos estudos por nosso grupo de pesquisa e outros autores (SOUZA, 2018;

CARVALHO, 2005; SOUZA, 2015; CONTRERAS, 2017; AZIZ; SETTARI, 1979), o foco

aqui é apenas explicar os modelos e as equações diferenciais parciais (EDPs) que descre-

vem este modelo. Para encontrar as equações a seguir, manipula-se a lei de conservação

de massa juntamente com a lei de Darcy para o escoamento de fluido em meios porosos

totalmente saturados, assumindo que o petróleo é um fluido newtoniano imiscível,

incompressível e isotérmico escoando através de um meio totalmente saturado com

compressibilidade desprezível. Além disso, efeitos térmicos, de capilaridade e reações

químicas entre fases não são levados em consideração. Por fim, desprezamos os efeitos

de dispersão e adsorção. O modelo matemático resultante descreve um escoamento

bifásico, água-óleo, usando duas EDPs diferentes, uma equação elíptica (pressão) e uma

hiperbólica (saturação).

B.3 Formução de Volumes Finitos

O conjunto de EDPs descrito no capítulo anterior governa o comportamento

do escoamento de fluidos em reservatórios porosos. No entanto, assim como acon-

tece com a maioria dos fenômenos, a complexidade das equações diferenciais faz com
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que soluções analíticas sejam possíveis apenas com várias condições simplificadoras,

ou atualmente impossíveis de serem resolvidas. Desta forma, os métodos numéricos

aparecem como uma alternativa viável, pois permitem obter soluções aproximadas

dentro de uma certa tolerância desejada. Nesse contexto, simuladores de reservatórios

de petróleo são uma ferramenta fundamental para o gerenciamento de reservatórios

de petróleo subterrâneos. A peça fundamental desses simuladores são os método do

tipo Volumes Finitos (VF) ou Finite Volumes (FV), em inglês, uma família de esquemas

localmente conservativos, cujo membro mais conhecido é o esquema TwoPoint Flux

(TPFA). As principais vantagens do TPFA em relação a outros métodos são sua eficiência,

simplicidade e a garantia de soluções livres de oscilações espúrias, pois este esquema

satisfaz o Princípio do Máximo Discreto (PMD). Isso acontece porque métodos capazes

de gerar uma matriz do tipo M-Matrix, como o TPFA, garantem soluções com PMD

local (EDWARDS; ZHENG, 2010). No entanto, este esquema falha em produzir uma

solução consistente para malhas não k-ortogonais e para meios com tensores de permea-

bilidade total. Esses problemas foram superados pela primeira vez quando dois grupos

de autores (EDWARDS; ROGERS, 1998; AAVATSMARK et al., 1998) , separadamente,

generalizaram o trabalho de Crumpton, Shaw & Ware (1995) e criaram a família Control

Volume Distributed (CVD), também conhecida como MultiPoint Flux Approximation

(MPFA), para trabalhar em malhas não estruturadas. Com o sucesso deste novo ramo

de métodos lineares de volumes finitos, vários autores se dedicaram a melhorar e criar

novos métodos do tipo CVD-MPFA (EDWARDS; ZHENG, 2008; CHEN et al., 2008;

GAO; WU, 2010; CONTRERAS et al., 2016; CONTRERAS; LYRA; CARVALHO, 2019).

No entanto, qualquer esquema linear que seja mais acurado que um esquema com

aproximação de primeira ordem pode levar a extremos locais de acordo com o teorema

de Godunov. Isto é, esses métodos não garantem o PMD. No contexto de simulação

de reservatórios subterrâneos de petróleo, as oscilações espúrias causadas pela perda

de PMD podem levar ao aparecimento de bolsões virtuais de gás quando a pressão

cai abaixo do ponto de bolha levando o óleo a fluir de zonas de baixa para alta pres-

são(QUEIROZ et al., 2013). Vale a pena notar que os esquemas CVD-MPFA modernos

com suporte de pressão total, por exemplo, (EDWARDS; ZHENG, 2010; GAO; WU,

2010) e suporte de pressão triangular anterior conseguem gerar M-Matrix sob determi-

nadas condições e, portanto, PMD local condicionado. Ainda assim, meios com tensores

completos, anisotropia e fortes variações no campo de permeabilidade podem fazer com

que esses métodos percam o PMD. Neste capítulo, apresentamos os esquemas membros

da família de volumes finitos centrados na célula e empregados neste trabalho para

aproximar a solução das PDEs mencionadas. Neste capitulo, descrevemos brevemente

os tópicos utilizado nesta tese. Primeiramente, começamos apresentando os aspectos

comuns dos esquemas de Volume Finito (FV), descrevemos posteriormente os métodos

TPFA e a MPFA com um estêncil Diamante (CVD-MPFA-D), apresentamos o esquema
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semi-implícito M-Matrix Flux Splitting (EDWARDS, 2000) e por fim apresentamos a

nossa formulação Flux Limited Splitting.

B.3.1 MPFA-D com estêncil Diamante

A aproximação de fluxo por múltiplos pontos com estêncil diamante (MPFA) é

um método não ortodoxo membro da família CVD-MPFA. Ele foi desenvolvido origi-

nalmente por Gao & Wu (2010) e trazido para o contexto de escoamento multifásico

por Contreras et al. (2016). Assim como outros métodos da família MPFA, o MPFA-D

foi desenvolvido para lidar com as limitações TPFA clássico. Semelhante ao MPFA-FPS

(FRIIS; EDWARDS, 2011), o diamante possui suporte de pressão total para cada subcé-

lula do domínio discreto. Como consequência, este método não sofre tão severamente

com desacoplamento. Assim, as suas soluções são bem comportadas e consistentes com

oscilações espúrias significativamente menos visíveis em comparação com os métodos

CVD-MPFA anteriores.

B.3.2 M-Matrix Flux Splitting

O M-Matrix Flux Splitting é uma técnica proposta por (EDWARDS, 2000) para

formulações CVD-MPFA que divide a matriz CVD-MPFA em termos do fluxo TPFA e do

fluxo dos termos de difusão cruzada (TDC) dando origem a um esquema iterativo semi-

implícito que garante a conservação de massa a cada iteração. No contexto de Volume

Finito, M-Matrix diagonalmente dominantes são obtidas com o operador discreto mais

comum, o TPFA. No entanto, a maioria dos problemas relacionados a reservatórios de

petróleo requerem uma aproximação de fluxo consistente para meios anisotrópicos que

geralmente não estão alinhados com os eixos principais da malha (EDWARDS; ZHENG,

2010). A ideia principal do método M-Matrix Flux Splitting é criar um esquema semi-

implícito que explore o recurso de convergência rápida da propriedade M-Matrix do

TPFA, onde a única matriz a ser invertida é uma matriz M definida positiva simétrica,

mesmo em malhas não estruturadas.

B.3.3 Flux Limited Splitting não linear

O Flux Limited Splitting (FLS) é uma generalização não linear do método de

(EDWARDS; ZHENG, 2010; PAL; EDWARDS, 2006; PAL; EDWARDS, 2011) proposta

por nós. A ideia deste método é desenvolver uma técnica geral de reparo para métodos

lineares do tipo CVD-MPFA com base no M-Matrix Flux Splitting, mas limitando a

quantidade de difusão cruzada do método MPFA original de forma a melhorar ou

restaurar o DMP, sem perder a conservação de massa
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B.4 Formução Multiescala

Os métodos multiescala são uma família de métodos aproximados baseados em

técnicas de transferência de escala que permitem o uso de malhas de alta resolução

mesmo em simulações de reservatórios comerciais. Ao contrário das técnicas de upsca-

ling que transfere informação de uma escala de alta resolução e permanece na escala de

baixa resolução, os métodos multiescala criam um conjunto de operadores para projetar

o sistema de equações de escala fina no espaço da malha de escala grosseira. O novo

sistema é então resolvido e posteriormente, se necessário, projetado de volta no espaço

da malha de alta resolução para calcular uma solução conservativa razoavelmente pre-

cisa (SOUZA et al., 2020). A ideia por trás deste e de outros métodos multiescala é

que resolver uma série de sistemas locais de alta resolução com um problema global

em escala de menor resolução (LUNATI; TYAGI; LEE, 2011) é mais barato do que uma

simulação direta na escala de alta resolução. Os métodos do tipo Multiscale Finite

Volume (MsFV) são um subconjunto dos métodos multiescala com graus de liberdade

centrados nas células, capazes de gerar soluções conservativas em qualquer escala da

simulação(LUNATI; JENNY, 2006; ZHOU; TCHELEPI, 2008; JENNY; LUNATI, 2009;

LUNATI; JENNY, 2008; LEE; WOLFSTEINER; TCHELEPI, 2008). Além disso, a família

multiescala iterativa é capaz de fazer a solução multiescala aproximada convergir para

a solução a solução da escala fina(HAJIBEYGI et al., 2008; HAJIBEYGI; JENNY, 2011a;

LUNATI; TYAGI; LEE, 2011). Dessa forma, os métodos multiescala podem ser aplicados

de três maneiras diferentes: i) como uma técnica robusta de upscaling, ii) como um

método para aproximar a solução de escala fina e iii) como uma solução inicial de um

método procedimento iterativo de maneira a garantir que a solução multiescala convirja

dentro de uma certa tolerância para a solução da simulação em escala fina (ZHOU;

TCHELEPI, 2008; SOUZA et al., 2020). Esta seção apresenta a formulação e os métodos

associados usados para derivar o Algebraic Multiscale Solver for Unstructured grids

(AMS-U), formulação multiescala desenvolvida por nós nesta tese. Os algoritmos de

pré-processamento multiescala são apresentados nos apêndices onde apresentamos a

estratégia Background Grid desenvolvida por nós para construção e preprocessamento

das malhas primais e duais multiescala.

B.5 AMS-U

O Algebraic Multiscale Solver (AMS) (WANG; HAJIBEYGI; TCHELEPI, 2014) é

um método moderno que surgiu da generalização do método Multiscale Finite Volume

(JENNY; LEE; TCHELEPI, 2003; JENNY; LEE; TCHELEPI, 2006; ZHOU; TCHELEPI,

2008). A notação matricial simples permite que o operador de prolongamento e um

conjunto de funções de correção sejam calculados através de uma série de operações

algébricas diretas executadas nas matrizes do sistema de equações para a malha de
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alta resolução. Combinando esta técnica a uma método multiescala iterativo, temos

um esquema numérico eficiente e robusto com resultados comparáveis aos métodos

multigrid (WANG; HAJIBEYGI; TCHELEPI, 2014). Nesta seção, derivamos o Algebraic

Multiscale Solver for Unstructured Grids (AMS-U), uma generalização do AMS para a

simulação de escoamento multifásico em meios porosos heterogêneos e anisotrópicos

em malhas não estruturadas. O método resolve os três problemas principais necessários

para simulação multiescala em malhas não estruturadas: i) a técnica do Background

grid é utilizada para construção da malha primal e dual multiescala, ii) utlizamos a

aproximação de fluxo do tipo MPFA-D; e iii) generalizamos os operadores do AMS e

os modificamos para evitar o vazamento das funções de base fora de suas respectivas

regiões de suporte. Por fim, adaptamos procedimentos iterativos (ŢENE; KOBAISI;

HAJIBEYGI, 2016; BOSMA et al., 2017; MOYNER; LIE, 2015) e usamos para melhorar a

qualidade da solução multiescala diminuindo os erros de alta frequência.

B.6 Resultados

Esta seção é dedicada a testar as formulações desenvolvidas por nós nos capítulos

anteriores. Para isso, diversos problemas de referência da literatura foram adaptados

para o contexto de malhas não estruturadas com intuito de testar os métodos numéricos

desenvolvidos por nós. Na primeira seção, apresentamos os resultados do Flux Limited

Splitting acoplado ao MPFA-D para simulação de fluxo monofásico em meios altamente

heterogêneos e anistrópicos. Na seção seguinte apresentamos os resultados do Algebraic

Multiscale Solver for Unstructured Grids para escoamentos monofásicos e bifásicos do

tipo água-oleo.

B.7 Conclusões

No presente trabalho, investigamos e desenvolvemos formulações do tipo volu-

mes finitos centrados na célula células. Nosso trabalho foi dividido em dois grupos: o

estudo de aproximações de fluxo consistentes em malhas não estruturadas que respei-

tam o PMD e o estudo de métodos multiescala conservativos. Ambas as formulações

resultantes foram usadas para resolver problemas monofásicos de escoamentos incom-

pressíveis em meios altamente heterogêneos e anisotrópicos, mas a última também

foi testado para problemas de escoamento bifásico em domínios desafiadores. Neste

caso, usamos uma estratégia implícita sequencial na qual a solução de pressão e as

equações de saturação são resolvidas separadamente. No primeiro grupo, investigamos

e estudamos técnicas de aproximação de fluxo não lineares consistentes em malhas não

estruturadas. Desenvolvemos com sucesso uma nova técnica de reparo para métodos

lineares MPFA baseados no M-Matrix Flux Splitting (EDWARDS, 2000) que é capaz

de converter esses esquemas em métodos não lineares que obedecem ao Princípio do
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Máximo Discreto. Esta estratégia foi testada usando o MPFA-D para malhas 2D não

estruturadas com a interpolação LPEW2. O método foi testada em problemas bench-

mark levando o MPFA-D original ao seu limite. Nosso método foi capaz de produzir

soluções que reproduziram qualitativamente a qualidade da formulação do MPFA mas

respeitando o PMD. No entanto, em alguns exemplos, observou-se que nosso método

adicionou mais difusão artificial para isso. Vale salientar, que nosso método foi desen-

volvido usando um operador matemático criado por nós que permite que a matriz de

transmissibilidade seja escrita como uma multiplicação da matriz do nosso operador e

a matriz de transmissibilidade de face. Desta forma, o balanço de massa é realizado de

maneira inteiramente matricial. Este operador permitiu a vetorização do código, o que

aumenta o desempenho do nosso método. Os resultados de nossa formulação foram

comparáveis aos métodos TPFA não lineares de última geração.

Quanto ao segundo grupo, investigamos e desenvolvemos métodos e algoritmos

necessários para a simulação de métodos multiescala da tipo MsFV em malhas não

estruturadas. Em particular, desenvolvemos uma generalização do Algebraic Multiscale

Solver (WANG; HAJIBEYGI; TCHELEPI, 2014) para malhas não estruturadas. Isso foi

feito desenvolvendo a Background Grid strategy, uma nova técnica que usa uma malha

adicional para ajudar na criação das malhas multiescala em 2-D e 3-D, usando um

MPFA para a escala fina e modificando os operadores do AMS clássico para garantir que

as funções bases sejam restritas às suas respectivas regiões de suporte. Combinado com

um estágio de suavização iterativo, nosso método mostrou-se ser consistente mesmo

em meios altamente heterogêneos e anisotrópicos. Além disso, nossa formulação é a

técnica mais flexível para criação de malhas multiescala, pois é capaz de fazer uso

de malhas não estruturadas que adaptam as características geométricas de domínios

físicos complexos. Por fim, os resultados positivos obtidos nos motivam a realizar novas

pesquisas para aprimorar e estender as formulações para problemas mais gerais. Em

particular, os algoritmos de ambos métodos construídos foram desenvolvidos de tal

forma que podem ser facilmente estendidos para 3-D. Citamos assim como possíveis

extensões futuras de nosso trabalho:

1. Estender o FLS para 3-D.

2. Investigar novos algoritmos para limitar os termos de difusão cruzada.

3. Investigar e comparar formulação FLS com outros métodos robustos de aproxima-

ção de fluxo capazes de lidar com malhas não estruturadas como MPFA-H, FPS

etc.

4. Estender a estratégia background grid para se adaptar automaticamente ao campo

de permeabilidade do meio de maneira a melhorar a solução multiescala.
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5. Acoplar a estratégia FLS com esquemas multiescala criando assim métodos que

multiescala que respeitem o PMD.

6. Estender o AMS-U para 3-D.
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