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RESUMO 

 

Vasos de pressão são equipamentos de alto custo extensivamente utilizados na indústria para 

armazenamento e processamento de substâncias. Mesmo seguindo normas que regulam o 

projeto e a fabricação desses vasos, como a ASME B&PVC, defeitos gerados no processo de 

fabricação ou em serviço podem ocorrer no material do vaso, comprometendo a sua integridade 

mecânica. Por essa razão, existem normas que fornecem procedimentos baseados na Mecânica 

da Fratura para avaliar e determinar a aceitabilidade desses defeitos. A Mecânica da Fratura 

representa, portanto, uma ferramenta importante na análise da integridade estrutural de 

equipamentos industriais críticos. Em termos práticos, o objetivo dessa ferramenta é obter um 

parâmetro que caracterize a gravidade do defeito analisado. Um dos parâmetros que podem ser 

utilizados é o Fator de Intensidade de Tensões (FIT). A maioria dos defeitos tipo trinca reais 

pode ser modelada pela geometria de uma elipse ou semi elipse, e o problema de calcular os 

FITs dessas trincas em configurações complexas pode ser abordado com auxílio do Método dos 

Elementos Finitos (MEF). No presente trabalho, os FITs do Modo I de carregamento de trincas 

semielípticas internas orientadas longitudinalmente em vasos de pressão cilíndricos de parede 

espessa são calculados de forma analítica e computacional, com simulações via software de 

Elementos Finitos. Os cálculos analíticos são realizados utilizando dois conjuntos de equações 

obtidos da literatura específica. Ao final, verifica-se que os resultados dos caminhos analítico e 

computacional possuem comportamento semelhante. Verifica-se, também, que os valores dos 

resultados computacionais associados aos vasos com razão 𝑅/𝑡 = 4 apresentam diferenças 

consideráveis (erros relativos entre 11,84% e 25,59%) com relação aos valores das equações. 

Já para 𝑅/𝑡 = 10, essas diferenças são menores, com erros relativos entre 3,75% e 15,38%. 

 

Palavras-chave: Mecânica da fratura. Trincas semielípticas. Fatores de intensidade de tensão. 
Vasos de pressão de parede espessa. Método dos elementos finitos. 



 

ABSTRACT 

 

Pressure vessels are equipment with elevated cost and extensively used in the industry for 

storage and processing of substances. Even following standards which regulate the design and 

construction of vessels, such as the ASME Boiler and Pressure Vessel Code, flaws generated 

by the manufacturing process or during service can occur in the material, compromising its 

structural integrity. Because of this, there are standards that provide Fracture Mechanics based 

procedures to assess and determine the acceptability of such flaws. Fracture Mechanics 

therefore represents an important tool for the analysis of structural integrity of critical industrial 

equipment. In practical terms, the aim of this tool is to evaluate a parameter which characterizes 

the gravity of the analyzed flaw. One of the parameters used with this purpose is the Stress 

Intensity Factor (SIF). Most crack-like flaws encountered in practice can be modeled by the 

geometry of an ellipse or semi-ellipse, in the case of a surface crack, and the problem of 

calculating the SIFs of these cracks in complex configurations may be approached with aid 

from the Finite Element Method (FEM). In the present work, the Mode I SIFs of semi-elliptical 

internal cracks, oriented longitudinally in thick-walled cylindrical pressure vessels are 

calculated using an analytical approach and a computational one, which employs simulations 

with a Finite Element Method software. The analytical calculations are carried with two sets of 

equations obtained in literature. At the end, it is verified that the analytical and computational 

results exhibit similar behavior. It is also verified that the absolute values of the computational 

results associated with 𝑅/𝑡 = 4 present substantial differences (errors ranging from 11,84% to 

25,59%) with respect to the values from the equations. As for 𝑅/𝑡 = 10, these differences are 

smaller, with errors ranging from 3,75% to 15,38%. 

 

Keywords: Fracture mechanics. Semi-elliptical cracks. Stress intensity factors. Thick-walled 
pressure vessels. Finite element method. 
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1  INTRODUÇÃO 
 

Vasos de pressão (VP) são muito utilizados na indústria para armazenar fluidos a 

pressões diferentes da pressão atmosférica local. São equipamentos de alto custo, podem 

armazenar fluidos perigosos e geralmente são submetidos a altas solicitações mecânicas e 

condições severas de operação. Essas características traduzem grande risco de perda material e 

humana. Portanto, vasos de pressão devem ser projetados e construídos de acordo com normas 

internacionalmente reconhecidas como a americana ASME Boiler and Pressure Vessel Code 

(B&PVC), a britânica British Standard (BS) 5500, entre outras. No entanto, mesmo seguindo 

as regras desses códigos, defeitos provocados pelos processos de fabricação podem ocorrer no 

material do vaso, comprometendo a sua integridade mecânica. 

Um aspecto comum à maioria dos acidentes recentes envolvendo VPs e tubulações é o 

local de origem dos defeitos que levaram à falha: cordão de solda e zonas termicamente afetadas 

(ZTA) pelo processo de soldagem. Estudos mostram que essas regiões são mais suscetíveis à 

formação e ao crescimento de trincas, representando pontos críticos da estrutura. Isso ocorre, 

pois, a aplicação de elevada energia térmica na junta soldada resulta em heterogeneidades 

mecânicas e metalúrgicas no material (KHATTAK et al., 2016). 

No trabalho de Challenger et al. (1995), foi realizado o estudo de oito falhas que 

ocorreram na indústria, na segunda metade do século XX, envolvendo fratura em vasos de 

pressão. Os defeitos do tipo trinca considerados iniciadores das falhas foram caracterizados e 

avaliados segundo a norma BS 7910 (até então chamada PD 6493). Sete dos oito acidentes 

estudados foram ligados a trincas superficiais, que são as mais comuns em estruturas de 

engenharia. 

A maioria das trincas reais pode ser modelada pela geometria de uma elipse e, por isso, 

as trincas elípticas e semielípticas receberam muita atenção de pesquisadores, como Kobayashi 

et al. (1974), Newman e Raju (1980, 1984) e, Zheng et al. (1995, 1997) e, mais recentemente, 

Atroshchenko (2010), que trabalharam para a obtenção dos Fatores de Intensidade de Tensão 

(FIT) dessas trincas utilizando métodos computacionais e matemáticos. 

 O FIT é o parâmetro central da Mecânica da Fratura Linear Elástica (MFLE) e determina 

o nível das tensões nas proximidades da ponta de uma trinca presente em uma estrutura de 

material com comportamento linear elástico submetido a uma condição particular de 

carregamento. Valores exatos desse parâmetro requerem a solução exata do problema de 
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Elasticidade específico para a estrutura trincada. Na maioria dos casos, essa solução é muito 

difícil ou quase impossível de se obter, sendo necessário recorrer a um método alternativo 

(CHAN et al., 1970). 

O Método dos Elementos Finitos (MEF) é um método numérico utilizado para a solução 

de problemas formulados em termos de equações diferenciais parciais e condições de contorno, 

como geralmente são os problemas de engenharia. O MEF pode ser empregado com o objetivo 

de calcular os FITs em configurações geométricas e condições de contorno e de carregamento 

relativamente complexas, para as quais não existem soluções exatas simples. 

No presente trabalho, os FITs de trincas semielípticas internas em vasos de pressão 

cilíndricos de parede espessa com diferentes razões raio interno/espessura 𝑅/𝑡, são calculados 

por duas abordagens: (1) cálculos analíticos com expressões dadas na literatura, e (2) 

simulações computacionais utilizando o software ANSYS® comercial de Elementos Finitos. 
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1.1 Objetivos 
 

1.1.1 Objetivo Geral 
 

Calcular o Fator de Intensidade de Tensões de trincas semielípticas internas em vasos 

de pressão de parede espessa através de equações analíticas e via simulação computacional em 

software de Elementos Finitos. 

 

1.1.2 Objetivos Específicos 
 

 Selecionar da literatura científica as expressões analíticas para o cálculo do FIT 

em trincas semielípticas internas; 

 Verificar a aplicabilidade das equações escolhidas para avaliação de trincas em 

vasos de pressão de parede espessa; 

 Calcular analiticamente os FIT para diferentes razões raio interno/espessura da 

parede do vaso; 

 Calcular os FIT para diferentes razões raio interno/espessura da parede do vaso 

via simulação numérica com software de Elementos Finitos; 

 Organizar e confrontar os resultados obtidos; 

 Validar a metodologia computacional empregada. 
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2 FUNDAMENTAÇÃO TEÓRICA E REVISÃO BIBLIOGRÁFICA 
 

2.1 Vasos de Pressão 
 

Vaso de pressão é todo recipiente estanque, de qualquer tipo, dimensão, formato e com 

qualquer finalidade, capaz de conter um fluido pressurizado (TELLES, 2007). Podem ser 

classificados como: Não Sujeitos a Chama e Sujeitos a Chama. Dentre os Não Sujeitos a 

Chama, destacamos: trocadores de calor, torres de destilação de petróleo, reatores, vasos de 

armazenamento, etc. Já os classificados como Sujeitos a Chama são os fornos e as caldeiras. A 

Figura 1 mostra exemplos típicos de vasos de pressão. 

 

Figura 1 - Exemplos de vasos de pressão (a) cilíndricos e (b) esféricos. 

  
(a)                               (b) 

Fonte: Adaptado de Beer et al. (2011). 

 

2.1.1 Formas Típicas de Vasos de Pressão 
 

As paredes dos vasos de pressão são compostas do casco (shell) e dos tampos (heads). 

A maioria dos vasos de pressão tem o casco em uma das três formas mais básicas: cilíndrica, 

cônica ou esférica. Podem existir, também, combinações dessas formas. Com relação à posição, 

podemos ter vasos verticais, horizontais ou inclinados. Na Figura 2 podemos ver diferentes 

formas e posições de vasos de pressão. 

As dimensões que caracterizam um vaso de pressão são o diâmetro interno e o 

comprimento entre tangentes. O diâmetro interno é o diâmetro medido pela face interna da 

parede e aplica-se a qualquer forma de vaso. O comprimento entre tangentes aplica-se somente 

a vasos com corpos cilíndricos ou cilíndricos compostos e é o comprimento total do corpo 

cilíndrico, ou a soma dos comprimentos dos corpos cilíndricos e cônicos sucessivos. As linhas 



20 
 

 

que limitam o comprimento entre tangentes são as linhas traçadas na tangência entre o corpo 

cilíndrico e os tampos de fechamento. (TELLES, 2007) 

 

Figura 2 - Diferentes tipos de vasos de pressão. 

 
Fonte: Adaptado de Telles (2007). 

 

Os tampos são as peças de fechamento dos cascos cilíndricos. Eles podem ter vários 

formatos, sendo os mais comuns o elíptico, toriesférico, hemisférico, entre outros. As 

geometrias dos três formatos citados são mostradas na Figura 3. 

 

Figura 3 - Alguns tipos de tampos de vasos de pressão. 

 
Fonte: ASME 2015 Boiler and Pressure Vessel Code, Section VIII, Division 1 (2015). 

 

Todo vaso de pressão precisa ter algum tipo de abertura, e aberturas representam locais 

com elevado grau de concentração de tensões, efeito que também é verificado na região de 

concordância entre as geometrias do casco e dos tampos. Acessórios como anéis de reforço, 

reforços de aberturas, suportes e flanges são soldados ao vaso, formando ZTAs. As próprias 

chapas de aço que compõem o costado são soldadas umas às outras. Vasos de pressão 

apresentam, portanto, muitas regiões com descontinuidades geométricas e metalúrgicas em sua 

estrutura. 
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2.1.2 Tensões em Vasos de Pressão 
 

Para analisarmos as tensões em vasos de pressão devemos primeiramente determinar as 

solicitações que serão consideradas. Segundo Bednar (1986), as cargas principais a serem 

consideradas no projeto de vasos de pressão são:  

 Pressão interna ou externa; 

 Peso do vaso e do fluido contido; 

 Cargas eólicas; 

 Cargas sísmicas; 

 Cargas térmicas; 

 Cargas devidas a tubulações; 

 Cargas de impacto; 

 Cargas cíclicas. 

Para um vaso cilíndrico com raio interno 𝑅, espessura 𝑡, sob pressão interna 𝑝, em que 

a relação 𝑅/𝑡 ≥ 10 é cumprida, as tensões circunferencial e longitudinal são dadas por: 

𝜎஼ =
𝑝𝑅

𝑡
 (1) 

𝜎௅ =
𝑝𝑅

2𝑡
 (2) 

𝜎஼ = 2𝜎௅ (3) 

Como não temos tensões cisalhantes, as tensões circunferencial e longitudinal são as 

tensões principais primária e secundária, respectivamente. 

Se a espessura é comparável ao raio interno do casco (𝑅/𝑡 < 10), as tensões não podem 

ser consideradas uniformes na espessura e as Equações (1) e (2) não são aplicáveis. Nesse caso 

devem ser usadas equações para cascas grossas, chamadas equações de Lamé. As tensões 

circunferencial e longitudinal têm a forma: 

𝜎஼ =
𝑝𝑅ଶ

(𝑅௢
ଶ − 𝑅ଶ)

ቊ1 + ൬
𝑅௢

𝑟
൰

ଶ

ቋ (4) 

𝜎௅ =
𝑝𝑅ଶ

(𝑅௢
ଶ − 𝑅ଶ)

 (5) 

  
Logo: 
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𝜎஼ = 𝜎௅ ቊ1 + ൬
𝑅௢

𝑟
൰

ଶ

ቋ (6) 

 

Onde 𝑅௢ e 𝑅 são os raios externo e interno, respectivamente, e 𝑟 é a coordenada radial 

(𝑅 ≤ 𝑟 ≤ 𝑅௢). Assim como no caso onde 𝑅/𝑡 > 10, a tensão circunferencial é a tensão crítica. 

 

2.1.3 Falhas em Vasos de Pressão 
 

O potencial oferecido pelo vapor foi a força motriz da Primeira Revolução Industrial no 

século XVIII. Com essa nova tecnologia, explosões de caldeiras tornaram-se comuns e os 

mecanismos de falha associados não eram entendidos. A engenharia e a produção de caldeiras 

ultrapassaram a ciência que determinava a segurança no projeto e na operação. A taxa de 

acidentes envolvendo caldeiras continuou a crescer até que duas grandes explosões no início 

do século XX deram início ao movimento para a criação da primeira edição do Boiler Code da 

ASME que evoluiu continuamente e hoje é chamado de Boiler and Pressure Vessel Code 

(THOMSON, 2015). 

Vasos de pressão ainda representam grande potencial de perda material e humana, mas 

as normas de fabricação e de segurança objetivam a minimização da probabilidade de falha 

desses equipamentos. Eles fazem parte de uma classe de componentes que requer alto nível de 

integridade, devido aos perigos associados a muitos processos industriais combinados a um alto 

custo de fabricação. As falhas desses equipamentos têm potencial para causar muitos danos à 

planta, levando a explosões e incêndios. Muitas dessas falhas são causadas por fratura frágil, 

caso no qual a energia armazenada pode levar à fragmentação do vaso e a partes sendo lançadas 

a altas velocidades (CHALLENGER et al., 1995). 

Vários estudos mostraram que trincas foram encontradas em diferentes posições da 

solda com diferentes orientações, como trincas centrais no cordão de solda (CS), transversais e 

micro trincas no CS e na ZTA subjacentes (KHATTAK et al., 2016). 

Para se ter uma visão das falhas que ocorrem na indústria e dos defeitos iniciadores, foi 

feita uma síntese do trabalho de CHALLENGER (1995). O Quadro 1 é uma tradução livre 

adaptada do quadro mostrado pelo autor e apresenta informações gerais sobre as falhas. Já o 

Quadro 2, fornece as seguintes informações: equipamento que falhou, tipo, local e dimensões 

do defeito (quando aplicável). 

Destaca-se que todos os defeitos estavam localizados em regiões soldadas ou 

termicamente afetadas. Além disso, verifica-se a ocorrência de processos como Corrosão Sob 
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Tensão (Stress Corrosion Cracking, SCC), Fratura Assistida por Hidrogênio (Hydrogen 

Assisted Cracking, HAC) e fluência. Metade das falhas estudadas ocorreu durante o teste 

hidrostático e apenas uma delas ocorreu em condição de operação menos severa que a condição 

normal de operação. 

 

Quadro 1 - Descrição geral dos acidentes estudados por Challenger et al. (1995). 

N FALHA DEFEITO INICIADOR CAUSAS DA FALHA 

CONDIÇÃO DE 
OPERAÇÃO NO 
MOMENTO DA 

FALHA 

1 
VP Exxon - Port Jerome 

(1981) 

Trincas no casco do VP 
na raiz da solda de 

acessório 

Tensões residuais na 
solda e fragilização 

Standby - 75% da 
pressão de operação 

a temperatura 
ambiente 

2 
Absorvedor de amina da 

Union Oil (1984) 

Hydrogen Assisted 
Cracking (HAC) na ZTA 

de solda de reparo 

Fragilização por 
hidrogênio e tensões 

residuais 

Operação Normal 
(ON) 

3 
Torre vertical de 
refinaria (1981) 

Trinca originada por 
fragilização a frio em 

solda transversal - 
crescimento da trinca por 

fluência 

Tensões residuais altas e 
baixa Tenacidade à 

Fratura dos materiais da 
junta soldada na 

temperatura do Teste 
Hidrostático 

Teste Hidrostático 
(TH) 

4 
Resfriador de amônia da 

Typpi Oil (1970) 

Defeito de fabricação 
estendido por Stress 
Corrosion Cracking 

(SCC) 

Tratamento Térmico 
(TT) pós soldagem 

insuficiente. Tensões 
residuais altas e baixa 
Tenacidade à Fratura 

ON 

5 
Caldeira da Cockenzie 

(1966) 

Trinca na solda de um 
bocal presente antes de 

TT pós soldagem - origem 
desconhecida 

Grande defeito iniciador 
em concentrador de 

tensão 
TH 

6 John Thompson (1965) 
Trinca originada por 

efeito de hidrogênio na 
ZTA 

TT pós soldagem 
insuficiente - tensões 
residuais altas e baixa 
Tenacidade à Fratura 

TH 

7 Robert Jenkins (1970) 

Trinca originada por 
fragilização a quente 

estendida por HAC sob 
altas tensões residuais 

Baixa Tenacidade à 
Fratura e altas tensões 

TH 

8 
Catchpot de amônia 

(1982) 

Trincas originadas por 
efeito de hidrogênio em 

solda do tipo fillet na 
parede interna de VP 

Tenacidade à Fratura 
muito baixa 

Em serviço 

Fonte: Adaptado de Challenger et al. (1995). 
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Quadro 2 - Informações complementares dos acidentes estudados por Challenger et al. (1995). 

N EQUIPAMENTO TIPO DE DEFEITO LOCAL DO DEFEITO 
DIMENSÕES DO 

DEFEITO 

1 
VP Esférico - 20 

anos 
Trinca superficial Solda de um acessório 

Profundidade (a): 
3mm  

Comprimento (2c): 
não conhecido 

2 Torre cilíndrica 
Trinca superficial que se 

tornou passante 
Solda de reparo nas 

paredes do VP 
2c: 800mm  

3 Torre cilíndrica Trinca superficial 
Solda entre tampo e poço 
de dreno na vase do VP 

a: 38mm 
2c: 51mm 

4 Trocador de calor Trinca superficial interna 
Solda do tampo forjado 

do trocador de calor 
a: 5mm 

2c: 70mm 

5 Caldeira Trinca superficial interna 
Próximo a uma abertura e 

a um acessório soldado 
a: 89mm 

2c: 330mm 

6 
VP de paredes 

grossas 
Trincas pequenas, 

transversais e embedded 
ZTA de uma união 

soldada 
a: 8,3mm 
2c: 9,5mm 

7 
VP cilíndrico de 

paredes finas 
Trinca superficial externa Solda de um acessório 

a: 12,2mm 
2c: 114,3mm 

8 
VP cilíndrico de 

paredes grossas - 16 
anos 

Trincas superficiais 
Toe de solda tipo fillet na 

parede interna do VP 
a: 4mm 

2c: 30-40mm 

Fonte: Criado pelo autor baseado em Challenger et al. (1995). 
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2.2 Mecânica da Fratura 
 

A Segunda Guerra Mundial representa um momento na história no qual a falta de 

entendimento de mecanismos de fratura levou a falhas notáveis em estruturas. No começo da 

Guerra, os Estados Unidos forneciam navios e aviões à Grã-Bretanha. Henry Kaiser, engenheiro 

que trabalhou na construção da Barragem Hoover, nos EUA, ajudou a desenvolver um 

procedimento revolucionário para a produção de navios de forma rápida. Esses navios, que 

ficaram conhecidos como navios Liberty, tinham o casco inteiramente soldado, em contraste ao 

método tradicional da época, que utilizava rebites. 

Em 1943 um dos navios partiu-se completamente em dois enquanto navegava entre a 

Sibéria e o Alaska. Muitos outros também sofreram algum tipo de fratura e cerca de 10 deles 

também partiram ao meio. Investigações identificaram as causas das falhas e correções foram 

realizadas aos navios remanescentes para prevenir fraturas mais sérias. O episódio dos navios 

Liberty levou um grupo de pesquisadores do Naval Research Laboratory, em Washington, a 

estudar o problema da fratura de forma mais aprofundada. Assim deu-se início aos estudos da 

Mecânica da Fratura (ANDERSON, 2005). 

A Mecânica da Fratura (MF) possibilita o entendimento do comportamento de materiais 

que apresentam defeitos do tipo trinca e baseia-se em três variáveis: carregamento, 

características do material e características do defeito existente. A Resistência dos Materiais, 

baseada na Teoria da Elasticidade, considera somente duas dessas variáveis: o carregamento e 

as características do material livre de defeitos. A variável adicional presente na análise da MF 

representa a possibilidade de obtenção de resultados mais realistas com relação à falha dos 

materiais. 

A Mecânica da Fratura é dividida em duas áreas: 

 Mecânica da Fratura Linear Elástica (MFLE); 

 Mecânica da Fratura Elasto-plástica (MFEP). 

As duas áreas, de um modo geral, preocupam-se quem avaliar um parâmetro (𝑘) que 

caracteriza as condições do defeito, e compará-lo a um valor crítico (𝑘஼) que representa a 

resistência à fratura do material, ou a Tenacidade à Fratura. Assim, o critério de falha na MF é 

dado por: 

𝑘 ≥ 𝑘஼  (7) 
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2.2.1 A Mecânica da Fratura Linear Elástica 
 

A MFLE aplica-se quando os materiais estudados são frágeis ou apresentam 

plastificação em pequena escala na ponta da trinca antes da fratura. Desde 1960, teorias da MF 

foram desenvolvidas para considerar vários tipos de comportamento não linear dos materiais 

(plasticidade e viscoelasticidade, por exemplo), assim como efeitos dinâmicos. Todos os 

resultados mais recentes, no entanto, são extensões da Mecânica da Fratura Linear Elástica. 

Portanto, apesar da restrição de aplicabilidade, a MFLE é essencial para o entendimento dos 

conceitos mais avançados da Mecânica da Fratura (ANDERSON, 2005). 

 

2.2.2 Abordagem Energética da Propagação de Trincas 
 

Griffith em 1920 reconheceu que para ocorrer um incremento no tamanho da trinca, o 

decréscimo na energia potencial elástica do sólido devido à destruição das ligações atômicas 

deve ser pelo menos igual à energia necessária para a criação de novas superfícies da trinca. 

Expressamos a energia total do sólido como 

𝑈 = 𝑈௢ + 𝑈௧ + 𝑈ఊ (8) 

Onde o 𝑈௢ representa a energia do sólido sem a presença da trinca, 𝑈ఊ representa a 

energia de superfície associada às superfícies da trinca e 𝑈௧ representa o decréscimo de energia 

ocasionado pela ‘introdução’ da trinca e é dado por 

𝑈௧ =  −
𝜋𝑎ଶ𝜎ଶ𝐵

𝐸
𝛽 (9) 

Onde 𝛽 = 1 para Estado Plano de Tensões (EPT) ou 𝛽 = 1 − 𝜈ଶ para Estado Plano de 

Deformações e 𝜈 é o coeficiente de Poisson. 

Desejamos obter a variação da energia total causada por um incremento no tamanho da 

trinca mostrada na Figura 4. 
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Figura 4 - Trinca considerada para a abordagem energética de Griffith. 

 
Fonte: Anderson (2005). 

 

Derivamos com relação à área da trinca (área projetada 𝐴௧ = 2𝑎𝐵, que é a metade da 

área de superfície 𝐴௦) 

𝜕𝑈

𝜕𝐴௧
=

𝜕𝑈௧

𝜕𝐴௧
+

𝜕𝑈ఊ

𝜕𝐴௧
 (10) 

E como 𝐴௧ = 2𝑎𝐵, ficamos com 

𝜕𝑈

𝜕𝐴௧
=

1

2𝐵

𝜕

𝜕𝑎
ቆ−

𝜋𝑎ଶ𝜎ଶ𝐵

𝐸
𝛽ቇ +

1

2𝐵

𝜕

𝜕𝑎
(4𝑎𝐵𝛾௦) = −

𝜋𝑎𝜎ଶ

𝐸
𝛽 + 2𝛾௦ (11) 

Onde 𝛾௦ é a densidade superficial de energia associada à trinca. 

No caso limite, ou seja, em que o aumento do tamanho da trinca ocorre sob condições 

de equilíbrio, a energia total do sólido não varia com o aumento do tamanho da trinca e a 

equação anterior resulta em 

𝜋𝑎𝜎ଶ

𝐸
𝛽 = 2𝛾௦ (12) 

A tensão mínima que causará fratura 𝜎௙ é dada por 

𝜎௙ = ඨ
2𝛾௦𝐸

𝜋𝑎𝛽
 (13) 

A equação obtida por Griffith é válida somente para materiais frágeis. Irwin e Orowan 

de forma independente modificaram a equação de Griffith adicionando um termo que representa 

o comportamento plástico de materiais dúcteis. 
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2.2.3 A Força Motriz de Trincamento 𝒢  
 

Irwin, em 1956, propôs uma abordagem ao problema da fratura similar à de Griffith. 

Ele definiu o parâmetro 𝒢, a Taxa de Liberação de Energia, que pode ser entendida como a 

energia disponível para um incremento no tamanho da trinca 

𝒢 = −
𝑑𝑈௧

𝑑𝐴௧
 (14) 

𝒢 =
𝜎ଶ𝜋𝑎

𝐸
𝛽 (15) 

Como 𝒢 é uma derivada de um potencial, também é chamado de Força Motriz de 

Trincamento. 

Na situação de equilíbrio tratada anteriormente, no qual temos o crescimento da trinca, 

𝒢 atinge um valor crítico 𝒢௖, que é uma medida, em termos energéticos, da resistência à fratura 

do material, e é dado por 

𝒢௖ = 2𝛾௦ (16) 

 

2.2.4 O Fator de Intensidade de Tensões 
 

A aplicação da Mecânica da Fratura consiste em computar parâmetros de interesse para 

a análise de estruturas trincadas. Na Mecânica da Fratura Linear Elástica (MFLE), o parâmetro 

utilizado é o Fator de Intensidade de Tensões, 𝐾. 

Existem três possíveis modos de carregamento que uma trinca pode sofrer, mostrados 

na Figura 5. 

 

Figura 5 - Tipos de carregamento que uma trinca pode sofrer. 

 
Fonte: Adaptado de Anderson (2005). 
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O modo I é chamado também de modo de abertura e é o que recebe maior atenção na 

literatura. Os modos II e III são chamados de modo de cisalhamento no plano e fora do plano, 

respectivamente. Em casos de carregamentos combinados, devem ser considerados todos os 

modos de carregamento envolvidos e os campos de tensão são obtidos com a sobreposição das 

soluções correspondentes a cada modo. No caso especial de uma trinca oblíqua, por exemplo, 

os modos de carregamento associados são o modo I e o modo II. 

Na MFLE, aos modos I, II e III, correspondem os Fatores de Intensidade de Tensão 𝐾ூ, 

𝐾ூூ e 𝐾ூூூ, respectivamente. 

O campo de tensões nas proximidades da ponta de uma trinca afiada sob Modo I de 

carregamento em uma placa infinita de material linear elástico (Figura 6), desprezando termos 

de ordem superior, é dado por 

 

𝜎௫௫ =
𝐾ூ

√2𝜋𝑟
𝑐𝑜𝑠 ൬

𝜃

2
൰ ൤1 − 𝑠𝑒𝑛 ൬

𝜃

2
൰ 𝑠𝑒𝑛 ൬

3𝜃

2
൰൨ (17) 

𝜎௬௬ =
𝐾ூ

√2𝜋𝑟
𝑐𝑜𝑠 ൬

𝜃

2
൰ ൤1 + 𝑠𝑒𝑛 ൬

𝜃

2
൰ 𝑠𝑒𝑛 ൬

3𝜃

2
൰൨ (18) 

𝜏௫௬ =
𝐾ூ

√2𝜋𝑟
𝑐𝑜𝑠 ൬

𝜃

2
൰ 𝑠𝑒𝑛 ൬

𝜃

2
൰ 𝑐𝑜𝑠 ൬

3𝜃

2
൰ (19) 

𝜎௭௭ = ቐ

0,   𝑝𝑎𝑟𝑎 𝐸𝑃𝑇

𝜈൫𝜎௫௫ + 𝜎௬௬൯ =
2𝜈𝐾ூ

√2𝜋𝑟
𝑐𝑜𝑠 ൬

𝜃

2
൰ ,   𝑝𝑎𝑟𝑎 𝐸𝑃𝐷

 (20) 

𝜏௫௭ = 𝜏௬௭ = 0 (21) 

Com 

𝐾ூ = 𝜎௢√𝜋𝑎 (22) 

Onde agora 𝜎௢ é a tensão remota e 𝑎 é o tamanho da trinca. 

O FIT é, portanto, um parâmetro que descreve o nível, a intensidade, das tensões nas 

proximidades da ponta da trinca, podendo ser expresso na forma 

𝐾ூ = 𝑙𝑖𝑚
௥→଴

√2𝜋𝑟 𝜎௬௬(𝑟, 𝜃 = 0) (23) 

Westergaard (1939), Irwin, Sneddon e Williams foram alguns dos primeiros a publicar 

essas soluções. Detalhamento a respeito da formulação dos problemas de contorno da MF pode 

ser encontrado em Pastoukhov (1995) e Perez (2004). 
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Figura 6 - Geometria da ponta da trinca e parâmetros geométricos. 

 
Fonte: Anderson (2005). 

 

Por causa do termo 1/√𝑟 presente nas expressões acima, quando tomamos o limite 𝑟 →

0, ou seja, nos aproximamos da ponta da trinca, as tensões tendem a valores infinitos, 

independentemente da tensão remota atuante. Essa é uma particularidade semelhante à 

encontrada por Inglis. 

O critério de falha da Eq. (7) na MFLE é estabelecido quando definimos 𝑘 = 𝐾, o Fator 

de Intensidade de Tensões, e 𝑘஼ = 𝐾஼  (em Estado Plano de Tensões) ou 𝑘஼ = 𝐾ூ஼ (em Estado 

Plano de Deformações), a medida tensional da Tenacidade à Fratura do material, obtida a partir 

de experimentos. 

Aqui podemos obter uma relação de extrema importância para a MF entre 𝒢 e 𝐾. 

Observando as expressões que definem esses dois parâmetros, Equações (15) e (22), obtemos 

𝒢ூ =
𝐾ூ

ଶ

𝐸
𝛽 (24) 

Apesar do caso restrito para o qual essa expressão foi obtida (trinca afiada em placa 

infinita), Irwin demonstrou que ela se aplica a qualquer configuração (ANDERSON, 2005). 

Para o cálculo do FIT considerando as dimensões finitas do sólido, utiliza-se um fator 

geométrico 𝑌∗ que é dado na literatura para diferentes configurações, nos dando 

𝐾ூ = 𝑌∗𝜎௢√𝜋𝑎 (25) 

Quando temos trincas semielípticas e geometrias mais complexas, como as de um VP, 

mais fatores de correção devem ser empregados. 

Como a Força Motriz de Trincamento é uma quantidade escalar, quando os três modos 

de carregamento estão presentes, as contribuições de cada modo são aditivas e ficamos com 
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𝒢 =
𝐾ூ

ଶ

𝐸
𝛽 +

𝐾ூூ
ଶ

𝐸
𝛽 +

𝐾ூூூ
ଶ

2𝐺
 (26) 

Onde 𝐺 é o Módulo de Cisalhamento do material. 

2.2.5 Trincas Semielípticas em Vasos de Pressão 
 

Trincas superficiais são as mais comuns em estruturas reais de engenharia e podem ser 

modeladas pela geometria de uma meia elipse. O modelo considerado para a estimativa dos 

FITs de trincas em VPs cilíndricos é o de uma casca cilíndrica pressurizada de raio interno 𝑅 e 

espessura 𝑡 (Figura 7). Os dois conjuntos de equações que serão utilizados para o cálculo dos 

FITs no Modo I de carregamento dessas trincas, localizadas na superfície interna de cascas 

cilíndricas (Figura 8) serão apresentados aqui com uma síntese dos trabalhos de Newman e Raju 

(1980) e de Zheng et al. (1995, 1997). 

 

Figura 7 - Geometria da casca cilíndrica considerada. 

 
Fonte: Adaptado de Chen e Pan (2013). 
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Figura 8 - Geometria de trinca semielíptica interna na parede de casca cilíndrica. 

 

Fonte: Adaptado de Zheng et al. (1995). 

2.2.5.1 Newman e Raju (1980) 
 

Newman e Raju (1980) propuseram a seguinte expressão para o cálculo dos FITs ao 

longo da frente da trinca: 

𝐾ூ =
𝑝𝑅

𝑡
ඨ

𝜋𝑎

𝑄
 𝐹 ൬

𝑎

𝑐
,
𝑎

𝑡
,
𝑅

𝑡
, 𝜙൰ (27) 

Onde 𝑄 é o fator de forma para a trinca elíptica, dado em forma aproximada por: 

𝑄 = 1 + 1,464 ቀ
𝑎

𝑐
ቁ

ଵ,଺ହ

 (28) 

As razões 𝑎/𝑐 e 𝑎/𝑡 são chamadas de razão de aspecto e profundidade relativa, 

respectivamente. Em conjunto com a razão entre o raio interno e a espessura da casca cilíndrica, 

𝑅/𝑡, a configuração do problema é completamente determinada. 

E 𝐹 é o fator de correção, dependente das características geométricas da trinca, de 

algumas dimensões da casca cilíndrica, e do ângulo 𝜙, obtido com auxílio do Método dos 

Elementos Finitos e procedimentos de ajuste de curvas: 

𝐹 = 0,97 ൤𝑀ଵ + 𝑀ଶ ቀ
𝑎

𝑡
ቁ

ଶ

+ 𝑀ଷ ቀ
𝑎

𝑡
ቁ

ସ

൨ 𝑔𝑓థ𝑓௖ (29a) 

𝑀ଵ = 1,13 − 0,09
𝑎

𝑐
 (29b) 

𝑀ଶ = −0,54 +
0,89

0,2 +
𝑎
𝑐

 (29c) 

𝑀ଷ = 0,5 −
1

0,65 +
𝑎
𝑐

+ 14 ቀ1 −
𝑎

𝑐
ቁ

ଶସ

 (29d) 

𝑔 = 1 + ൤0,1 + 0,35 ቀ
𝑎

𝑡
ቁ

ଶ

൨ (1 − 𝑠𝑒𝑛𝜙)ଶ (29e) 
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𝑓థ = ൤𝑠𝑒𝑛ଶ𝜙 + ቀ
𝑎

𝑐
ቁ

ଶ

𝑐𝑜𝑠ଶ 𝜙 ൨

ଵ
ସ
 (29f) 

𝑓௖ = ቈ
𝑅௢

ଶ + 𝑅ଶ

𝑅௢
ଶ − 𝑅ଶ

+ 1 − 0,5 ට
𝑎

𝑡
቉

𝑡

𝑅
 (29g) 

Essa solução nos dá o FIT ao longo de toda a frente da trinca (de 𝜙 = 0 a 𝜙 = π). 

 

2.2.5.2 Zheng et al. (1995, 1997) 
 

Utilizando o método da função peso (weight function method), os autores obtiveram a 

solução dos FITs em cascas cilíndricas com razão 𝑅/𝑡 = 4 somente. O método consiste em 

integrar o produto 𝜎(𝑥)𝑚(𝑥, 𝑎) ao longo da profundidade da trinca, onde 𝜎(𝑥) é a distribuição 

de tensões sobre o plano da trinca e 𝑚(𝑥, 𝑎) é a chamada função peso (FP), que é definida para 

cada configuração de trinca. Assim, temos: 

𝐾ூ = න 𝜎(𝑥)𝑚(𝑥, 𝑎) 𝑑𝑥
௔

଴

 (30) 

Glinka e Shen (1991a) obtiveram a forma geral da FP para o ponto mais profundo (A) 

e para o ponto superficial (B) de uma trinca semielíptica. 

𝑚஺(𝑥, 𝑎) =
2

ඥ2𝜋(𝑎 − 𝑥)
൥1 + 𝑀ଵ஺ ቀ1 −

𝑥

𝑎
ቁ

ଵ
ଶ

+ 𝑀ଶ஺ ቀ1 −
𝑥

𝑎
ቁ

ଵ

+𝑀ଷ஺ ቀ1 −
𝑥

𝑎
ቁ

ଷ
ଶ

൩ (31) 

𝑚஻(𝑥, 𝑎) =
2

√2𝜋𝑥
൥1 + 𝑀ଵ஻ ቀ

𝑥

𝑎
ቁ

ଵ
ଶ

+ 𝑀ଶ஻ ቀ
𝑥

𝑎
ቁ

ଵ

+ 𝑀ଷ஻ ቀ
𝑥

𝑎
ቁ

ଷ
ଶ

൩ (32) 

Os fatores 𝑀௜,(஺,஻) adequados são mostrados no Apêndice A. Aqui será omitido o 

detalhamento a respeito do procedimento necessário para obtê-los, sendo possível consultar 

Shen e Glinka (1991b) para melhor entendimento. 

A solução de interesse deve considerar a distribuição de tensões circunferencial na 

parede de VPs parede espessa (solução de Lamé), levando em conta a pressão interna atuando 

nas faces da trinca (Figura 9): 

𝜎(𝑥) = 𝜎஼(𝑥) = 𝑃 ቊ1 +
𝑅ଶ

(2𝑅 + 𝑡)𝑡
ቈ1 + ൬

𝑅 + 𝑡

𝑅 + 𝑥
൰

ଶ

቉ቋ   ,   𝑅 ≤ 𝑥 < 𝑅 + 𝑎 (33) 

Essa expressão pode ser obtida diretamente da Eq. (4) explicitando 𝑅௢ = 𝑅 + 𝑡, fazendo 

a substituição 𝑟 = 𝑅 + 𝑥 e somando o termo referente à pressão atuando nas faces da trinca. 
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Figura 9 - Distribuição de tensões na espessura de um vaso de pressão de parede espessa. 

 
Fonte: Adaptado de Zheng et al. (1995). 

 

Note que as funções 𝑚஺(𝑥, 𝑎) e 𝑚஻(𝑥, 𝑎) carregam a informação da configuração 

geométrica da trinca (no sólido mais simples: uma placa plana) e a distribuição de tensões 

introduz a informação referente à configuração geométrica do sólido de base. 

Combinando essa distribuição de tensões com as FPs, e integrando segundo a Eq. (30), 

é possível chegar a (ZHENG et al., 1995, 1997): 

𝐾ூ,஺

𝑃ඥ𝜋𝑎/𝑄 
= 𝑌஺ =

ඥ2𝑄

𝜋
[𝐴𝑀ଵ஺ + 𝐵𝑀ଶ஺ + 𝐶𝑀ଷ஺ + 𝐷] (34) 

𝐾ூ,஻

𝑃ඥ𝜋𝑎/𝑄 
= 𝑌஻ =

2ඥ𝑄

𝜋
[𝐴𝑀ଵ஻ + 𝐺𝑀ଶ஻ + 𝐻𝑀ଷ஻ + 𝐼] (35) 

Onde, novamente, 𝑄 é o fator de forma da trinca elíptica (Eq. 28) e 𝐴, 𝐵, 𝐶, 𝐷, 𝐺, 𝐻 e 𝐼 

são dados em termos dos parâmetros geométricos da configuração da trinca e também podem 

ser encontrados no Anexo A. 

É importante destacar que a solução completa é válida somente para a 𝑅/𝑡 = 4. Isso é 

devido ao fato de que os termos que compõem os fatores 𝑀௜(஺,஻) representam ajustes dos dados 

de uma tabela de Mettu et al. (1992) (mostrada no Anexo B) para 𝑅/𝑡 = 4 somente. Os 

coeficientes 𝐴, 𝐵, 𝐶, 𝐷, 𝐺, H e 𝐼, por sua vez, são resultados da integração em 𝑥, tomando os 

𝑀௜(஺,஻) como constantes. 

Os mesmos autores publicaram outro trabalho, em 1997, no qual empregaram o mesmo 

método para obter o 𝐾ூ de trincas em cascas cilíndricas com 𝑅/𝑡 = 2, utilizando os fatores 𝑀௜ 

adequados. O título desta seção faz referência a ambos os trabalhos pois as equações do Anexo 
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A usadas para o cálculo dos 𝑀௜(஺,஻) são as do trabalho de 1995 (adequadas para 𝑅/𝑡 = 4), 

enquanto que as equações para o cálculo de 𝐴, 𝐵, 𝐶, 𝐷, 𝐺, 𝐻 e 𝐼, são as do trabalho de 1997. 

Isso foi feito por conta de dificuldades encontradas com a solução completa dada no 

artigo de 1995. Nota-se que não há um problema em fazer isso, pois os termos resultantes da 

integração segundo a Eq. (28), devem possuir a mesma forma (para um mesmo 𝜎(𝑥)), 

independentemente da razão 𝑅/𝑡 escolhida para realizar o ajuste dos dados de referência. Isso 

não implica, no entanto, que estes termos não dependam de 𝑅/𝑡, como pode ser visto no Anexo 

A. 

 

2.2.6 A Mecânica da Fratura Elasto-Plástica  
 

A MFEP, aplicável quando materiais apresentam deformações plásticas em grande 

escala na frente da ponta da trinca, tem a Integral J e o CTOD (𝛿), como parâmetros principais. 

Ambos descrevem as condições na ponta da trinca e podem ser usados como critério de fratura. 

Valores críticos desses parâmetros representam medidas da Tenacidade à Fratura do material 

(ANDERSON, 2005). 

Os limites de aplicabilidade de J e 𝛿, e, portanto, da MFEP, são muito menos restritivos 

do que os da MFLE (ANDERSON, 2005). Apresentaremos somente a Integral J, por possuir 

papel importante na obtenção do Fator de Intensidade de Tensões de forma computacional. 

 

2.2.6.1 A Integral J 
 

Rice (1968) introduziu a Integral J como um parâmetro da Mecânica da Fratura, que é 

de grande importância para a disciplina. Ele mostrou que o valor numérico dessa integral de 

contorno é igual à Taxa de Liberação de Energia (ou Força Motriz de Trincamento) em um 

material de comportamento elástico não linear contendo uma trinca. De forma semelhante ao 

caso da MFLE, temos: 

𝒥 = −
𝑑𝑈௧

𝑑𝐴௧
 (36) 

É possível mostrar que 𝒥 nada mais é do que uma generalização da Força Motriz de 

Trincamento. Logo, no regime linear elástico, temos: 

𝒥 = 𝒢 (37) 

Portanto, para uma combinação entre os três Modos de carregamento: 



36 
 

 

𝒥 =
K୍

ଶ

E
β +

K୍୍
ଶ

E
β +

K୍୍୍
ଶ

2G
 (38) 

Considerando uma trinca no plano (Figura 10), 𝒥 na forma integral é dado como: 

𝒥 = න ቈ𝑤ௗ𝑑𝑦 − 𝑇ሬ⃗ ∙
𝜕𝑢ሬ⃗

𝜕𝑥
 𝑑𝑠቉

 

୻

 (39) 

Onde Γ é um contorno arbitrário que engloba a ponta da trinca, 𝑤ௗ é a densidade de 

energia de deformação, 𝑇ሬ⃗  é o vetor de tensões de tração na direção normal ao contorno, 𝑢ሬ⃗  é o 

vetor de deslocamento, e 𝑑𝑠 é o elemento infinitesimal de comprimento na direção do contorno 

em cada ponto do mesmo. 

 

Figura 10 - Trinca no plano e contorno Γ, englobando a ponta da trinca. 

 
Fonte: Anderson (2005). 

 

Rice mostrou também que o valor de 𝒥 é independente do caminho de integração em 

torno da trinca e, portanto, se trata de uma integral independente de trajetória (path 

independente integral). Essa característica implica em 𝒥 ser nula para qualquer contorno Γ 

fechado. 

 

2.3 O Método dos Elementos Finitos 
 

O Método dos Elementos Finitos é um método numérico utilizado para resolver 

problemas de física e engenharia, que são geralmente formulados em termos de equações 

diferenciais parciais. O método consiste em discretizar o domínio contínuo da solução do 

problema, i.e., subdividi-lo em um número finito de partes menores, chamados elementos 

finitos, e resolver as equações em todos esses elementos, para obter uma solução aproximada 

do problema global, ou contínuo. O processo de discretização do problema transforma a 

equação diferencial parcial original em um sistema de equações algébricas que, 

operacionalmente, são mais simples de se resolver. 
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Algumas áreas de aplicação do método são: análise estrutural, mecânica dos fluidos, 

transmissão de calor e eletromagnetismo. Na análise estrutural, onde os temas deste trabalho se 

enquadram, o objetivo do MEF é a obtenção de deslocamentos, tensões e deformações que 

ocorrem nos sólidos em resposta às solicitações. O domínio nesse caso é a geometria da 

estrutura e a discretização é realizada no espaço, gerando a malha. 

Até onde se tem conhecimento, o método data do ano de 1943, quando o matemático 

Courant publicou um artigo sobre a análise de torção utilizando um método que hoje é 

conhecido como o MEF (HOLLAND, 1974). De forma geral, os matemáticos desenvolveram 

técnicas de discretização aplicáveis a equações diferenciais como o método das diferenças 

finitas, técnicas aproximadas para determinar o estacionário de funcionais específicos, entre 

outras. Já os engenheiros que trabalharam no desenvolvimento do método, abordaram os 

problemas de forma mais intuitiva, criando analogias entre elementos discretos e partes finitas 

de um domínio contínuo. O MEF em sua forma atual é o resultado de muitos anos de trabalho 

de estudiosos de ambas as áreas. 

Na Mecânica dos Sólidos, Hrenikoff (1941), McHenry (1943), Southwell (1946) e 

Newmark (1949) mostraram, na década de 1940, que boas soluções para problemas num meio 

elástico contínuo podiam ser obtidas substituindo pequenas partes do contínuo por um conjunto 

finito de barras elásticas simples. Foi da analogia dos engenheiros que o termo ‘elemento finito’ 

surgiu, sendo Clough o primeiro a usá-lo. Hoje as abordagens “dos matemáticos” e “dos 

engenheiros” estão completamente conciliadas (ZIENKIEWICZ, 2005). 

 

2.3.1 O Método dos Elementos Finitos na Mecânica da Fratura 
  

 De um ponto de vista prático, a MFLE funciona da seguinte forma. Para uma 

determinada trinca, e um modo de carregamento, um Fator de Intensidade de Tensões teórico é 

calculado. Para o material em questão, o valor crítico do FIT (K୍େ) é determinado por 

experimentos. Se o FIT calculado for menor que o 𝐾ூ஼, com uma margem de segurança, o 

defeito é aceitável, caso contrário, algo deve ser feito para evitar a falha (CHAN et al., 1970). 

Valores exatos do FIT requerem a solução exata do problema de Elasticidade formulado 

para a estrutura trincada. Na maioria dos casos, essa solução é muito difícil ou quase impossível 

de se obter (CHAN et al., 1970). Com isso, fica evidente que se faz necessário o uso de um 

método numérico para estimar o parâmetro, e o MEF é um dos métodos que podem ser usados 

com esse objetivo. 
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2.3.2 Elementos Utilizados para Simulações de Fratura 
 

É importante destacar que, por ser uma região crítica, devem ser utilizados elementos 

específicos na ponta da trinca, ao realizar uma simulação de fratura linear elástica. Esses 

elementos devem possibilitar que seja introduzida a singularidade 1/√𝑟 na ponta da trinca, 

característica dos campos de tensão da MF. Um deles é o elemento Quarter Point (Quarter 

Point Element, QPE), mostrado na Figura 11, que é o mais usado, devido à sua simplicidade e 

bons resultados (STAMENKOVIC, 2006). 

Os QPE são elementos isoparamétricos que tiveram os nós intermediários deslocados 

para um ponto cuja distância do nó posicionado na ponta da trinca é de 1/4 do lado do elemento, 

como mostra a Figura 12. Henshell (1975) mostrou que a singularidade 
ଵ

√௥
 ocorre nesses 

elementos e que eles permitem a obtenção da intensidade de tensões na ponta de uma trinca. 

Eles podem ser quadrilaterais ou triangulares. 

 

Figura 11 - Elementos Quarter Point triangulares na ponta de uma trinca. 

 
Fonte: Stamenkovic (2006). 

 

Figura 12- Detalhe dos Elementos Quarter Point quadrilaterais e triangulares. 

 

Fonte: Silva (2017). 
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Além dos elementos planos mostrados, temos os elementos Quarter Point 

Tridimensionais, que são obtidos naturalmente estendendo-se o conceito do QPE 2D para 

problemas de trincas 3D. Isso é feito expandindo os elementos 2D ao longo da frente da trinca 

(KUNA, 2013). A Figura 13 mostra diferentes QPE tridimensionais. 

 

Figura 13 - Elementos Quarter Point tridimensionais. 

 

Fonte: Kuna (2013). 

  

2.3.3 Cálculo do Fator de Intensidade de Tensões através do MEF 

 

Utilizando os elementos adequados para o emprego do MEF voltado para o fenômeno 

da fratura, o FIT pode ser calculado por diferentes técnicas como, por exemplo, o Método dos 

Deslocamentos e também através do cálculo da Integral J. 

 

2.3.3.1 Método dos Deslocamentos 
 

 O Método dos Deslocamentos pode ser utilizado para estimar o FIT em uma análise 

linear elástica através dos deslocamentos nodais nas regiões próximas à ponta da trinca. Os 

deslocamentos verdadeiros na ponta de uma trinca presente em um material elástico, 

desprezando termos de ordem superior, são dados por (ANSYS Inc., 1999) 

𝑢 =
𝐾ூ
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𝑟
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Onde 𝑢, 𝑣 e w são os deslocamentos reais nas direções 𝑥, 𝑦 e 𝑧, respectivamente, 𝐺 é o 

módulo de cisalhamento do material e 𝜅 = 3 − 4𝜈 para EPD e 𝜅 =
ଷିఔ

ଵାఔ
 para EPT. A Figura 14 

mostra os sistemas de coordenadas cartesiano e cilíndrico considerados. 

 

Figura 14 - Coordenadas locais na ponta de uma trinca tridimensional. 

 
Fonte: ANSYS Inc. (2004). 

 

 A partir das Eqs. (40), podemos estimar 𝐾ூ, 𝐾ூூ e 𝐾ூூூ como: 

൥
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𝐾ூூ
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⎥
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 (41) 

 Onde 𝑢ᇱ, 𝑣ᇱ e wᇱ são os deslocamentos aproximados dos nós da malha na região da 

ponta da trinca, calculados com a aplicação do MEF. 

  

2.3.3.2 Cálculo da Integral J pelo MEF 
 

No caso de uma geometria discretizada, o contorno 𝛤 é particionado em pequenos 

trechos 𝛤௘ (Figura 15). O método mais comum consiste em posicionar 𝛤 de forma que ele passe 

por nós da malha do sólido. Isso proporciona uma vantagem visto que os deslocamentos e as 

tensões aproximados geralmente são conhecidos nesses pontos, como resultado da aplicação do 

MEF, nos dando maior precisão no resultado final. A Integral J será, portanto: 

𝒥 = ෍ 𝒥(௘)

ே೐

௘ୀଵ

 (42) 
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Onde o sobrescrito (𝑒) indica o cálculo da integral no trecho 𝛤௘ e 𝑁௘ é o número de 

subdivisões do contorno 𝛤. 

 

Figura 15 - Região da frente de uma trinca no plano e contorno particionado na malha gerada. 

 

Fonte: Kuna (2013). 

 

Com o valor de 𝒥, utilizamos as Eqs. (24) e (37) para obter o FIT do Modo I de 

carregamento: 

𝐾ூ = ඥ𝒥𝐸/𝛽  (43) 

Para trincas em sólidos tridimensionais, o cálculo de 𝒥 deve ser adequadamente 

generalizado para o caso 3D. Kikuchi et al. (1979) apresentam uma forma de realizar essa 

generalização focando em trincas superficiais semielípticas em vasos de pressão. 
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3 METODOLOGIA 
 

O fluxograma da Figura 16 apresenta uma visão geral da metodologia que será 

empregada. 

 

Figura 16 - Metodologia empregada para o trabalho. 

 
Fonte: Criado pelo autor. 

  

 O procedimento utilizado, via cálculos analíticos ou simulação computacional, para 

calcular o Fator de Intensidade de Tensões de trincas internas semielípticas presentes em vasos 

de pressão de parede espessa, requer que sejam definidas previamente: 

 - Características geométricas do vaso de pressão. 

 - Cargas que serão consideradas nos cálculos analíticos e nas simulações. 

 - Características geométricas e localização da trinca na parede do vaso. 

 Serão simulados dois vasos de pressão de mesmo comprimento e diâmetro interno, com 

espessura de parede diferente. Nas simulações serão representados por cascas cilíndricas com 

raios internos e espessuras correspondentes, submetidas às mesmas cargas, com as 

extremidades fixas. O comprimento longitudinal dos vasos não é relevante para o cálculo dos 

FITs. 

Como carga atuante, será considerada somente a pressão interna, que é uma 

simplificação da situação real, na qual temos diversas cargas atuando sobre o vaso, mas é 

adequada para os objetivos do presente estudo. A consideração das outras cargas destacadas 

por Bednar (1986), como cargas eólicas e cargas térmicas, por exemplo, devem ser consideradas 

num estudo maior dos defeitos de um vaso de pressão. 
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A Tabela 1 apresenta as informações dos vasos. 

 

Tabela 1 - Características relevantes dos vasos de pressão e cargas atuantes. 

Vaso Raio Interno (mm) Espessura (mm) R/t Carga Atuante 

1 1000 250 4 Pressão Interna de 5 MPa 

2 1000 100 10 Pressão Interna de 5 MPa 

Fonte: Criado pelo autor. 

  

Todas as trincas serão posicionadas à meia distância longitudinal do vaso. Serão 

simuladas 16 trincas no Vaso 1, e 9 trincas no Vaso 2. As características geométricas das trincas 

do Vaso 1 e do Vaso 2 são mostradas nas Tabelas 2 e 3, respectivamente. 

 

Tabela 2 - Informações das trincas do Vaso 1. 

 

 

 

 

Fonte: Criado pelo autor. 

 

Tabela 3 - Informações das trincas do Vaso 2. 

Trinca a/c a/t a (mm) c (mm) 
17 0,2 0,2 20 100 
18 0,2 0,5 50 250 
19 0,2 0,8 80 400 
20 0,4 0,2 20 50 
21 0,4 0,5 50 125 
22 0,4 0,8 80 200 
23 1,0 0,2 20 20 
24 1,0 0,5 50 50 
25 1,0 0,8 80 50 

Fonte: Criado pelo autor. 

 

Trinca a/c a/t a (mm) c (mm) Trinca a/c a/t a (mm) c(mm) 
1 0,2 0,2 50 250 9 0,6 0,2 50 83.333 
2 0,2 0,4 100 500 10 0,6 0,4 100 166.667 
3 0,2 0,6 150 750 11 0,6 0,6 150 250 
4 0,2 0,8 200 1000 12 0,6 0,8 200 333.333 
5 0,4 0,2 50 125 13 0,8 0,2 50 62.5 
6 0,4 0,4 100 250 14 0,8 0,4 100 125 
7 0,4 0,6 150 375 15 0,8 0,6 150 187.5 
8 0,4 0,8 200 500 16 0,8 0,8 200 250 
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No caso do Vaso 1, as razões 𝑎/𝑐 e 𝑎/𝑐 foram escolhidas entre 0 e 1 de forma a obter 

um conjunto uniformemente distribuído de pontos para criação de curvas comparativas de 

resultados, como é feito nos trabalhos de Zheng et al. (1995, 1997). 

Já no caso do Vaso 2, há um outro motivo para os valores escolhidos das razões. Não 

podemos usar as mesmas equações para os termos 𝑌଴, 𝑌ଵ, 𝐹଴ e 𝐹ଵ dos 𝑀௜(஺,஻) (fornecidas no 

Anexo A) da solução de Zheng et al., pois elas são ajustes dos dados da tabela de Mettu et al. 

(1992) para a razão 𝑅/𝑡 = 4 somente. Podemos, no entanto, utilizar as Equações (34) e (35), 

com os 𝑌଴,ଵ e F଴,ଵ tomados diretamente dessa tabela (encontrada no Anexo B) para as razões 

𝑎/𝑐 e 𝑎/𝑡 nela contidas. 

Não foram consideradas trincas com 𝑎/𝑡 = 0 e 𝑎/𝑡 = 1, que representam as situações 

limite: uma trinca com profundidade desprezível com relação à espessura, e uma trinca que se 

tornou uma passante, respectivamente. Da forma que as simulações são estruturadas nesse 

trabalho, no primeiro caso, o software assumiria que não há uma trinca, e no segundo, teríamos 

problemas relacionados à malha. 

Algumas trincas possuem o valor de semieixo maior, 𝑐, bastante elevado. No caso das 

Trincas 3 e 4, destacadas, temos comprimentos longitudinais 2𝑐 de 1,5m e 2m, respectivamente. 

Notamos que a maior das trincas reais estudadas por Challenger et al. (1995) (Quadro 2) possuía 

800mm de comprimento longitudinal total, numa análise pós-falha. Por esse motivo, os FITs 

das Trincas 3 e 4 serão calculados somente com o intuito de construir a amostra uniforme de 

resultados. 

 

3.1 Cálculos Analíticos 

 

Para os cálculos analíticos, optou-se por trabalhar com o Octave, um software gratuito 

desenvolvido principalmente para computação matemática. A linguagem Octave une as 

vantagens de comandos que flexibilizam operações envolvendo vetores e matrizes de dados, e 

das ferramentas para criação de gráficos que atendem às necessidades do presente trabalho. 

As rotinas criadas com o Octave (não contidas neste documento) possibilitaram o 

cálculo dos FITs de um grande número de trincas em um tempo hábil, permitindo, também, a 

reunião e armazenamento dos dados de todas as fontes de resultados. 
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3.2 Simulações Computacionais 

 

Para as simulações computacionais foi escolhido o software comercial ANSYS versão 

estudantil, dado que o mesmo possui o Módulo de Fratura, que não é o caso de todos os 

softwares de análise estrutural. A metodologia empregada para a obtenção de resultados do 

problema específico está descrita no fluxograma da Figura 17. 

 

Figura 17 – Metodologia para realização das simulações computacionais. 

 

Fonte: Criado pelo autor. 

 

3.2.1 Propriedades do Material 

  

Não foram considerados aspectos relacionados ao material utilizado, visto que as 

equações para 𝐾ூ utilizadas – Eqs. (27), (34) e (35) – levam em conta somente as geometrias 

do casco e da trinca. Os trabalhos originais nem mesmo fazem referência ao material utilizado. 

O material empregado foi o Aço Estrutural padrão do ANSYS, cujas propriedades 

mecânicas estão listadas na Tabela 4, abaixo. O valor da Tenacidade à Fratura não é fornecido. 
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Tabela 4 - Propriedades mecânicas do aço estrutural do ANSYS. 

PROPRIEDADE (SÍMBOLO) VALOR UN. 
Módulo de Young (E) 200 GPa 

Módulo de Cisalhamento (G) 76,9 GPa 
Módulo Volumétrico (K) 166,67 GPa 

Limite de Escoamento a Tração (σଢ଼ୗ) 250 MPa 
Limite de Escoamento a Compressão (σଢ଼ୗ

ୡ ) 250 MPa 
Limite de Resistência à Tração (σ୙) 460 MPa 

Coeficiente de Poisson (ν) 0,3  - 
Fonte: Criado pelo autor. 

 

3.2.2 Malha 
 

Primeiramente, a malha do sólido deve ser gerada. Ela é tratada de forma independente 

da malha da trinca. A malha do sólido foi gerada utilizando elementos tetraédricos e o tamanho 

desses elementos foi escolhido de forma que a mudança de tamanho dos elementos do sólido 

para os elementos da trinca se desse de forma suave. Existem ferramentas que permitem a 

adequação da malha no que diz respeito à questão de transição do tamanho dos elementos. Com 

a definição do tipo e do tamanho dos elementos, a malha inicial é gerada. 

A Figura 18 mostra a malha tetraédrica gerada para um dos casos estudados. 

 

Figura 18 - Malha com elementos tetraédricos da casca cilíndrica. 

 
Fonte: Criado pelo autor utilizando o software ANSYS. 

 

Na sequência, é gerada a malha da trinca, utilizando a ferramenta Semi-Elliptical Crack 

do ANSYS, que requer somente que sejam inseridos os parâmetros geométricos da trinca 

(semieixos maior e menor) e alguns parâmetros de malha. Os parâmetros de malha são definidos 
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na Figura 19. O software emprega elementos voltados para análise de fratura nas regiões 

necessárias de forma automática. 

 

Figura 19 - Parâmetros da malha da trinca. 

 
Fonte: Fracture Mechanics Using Workbench v14.5 (2018). 

 

 Ao final do processo de geração, obtém-se uma malha como a mostrada na Figura 20. 

 

Figura 20 - Malha da trinca. (a) corte da casca cilíndrica. (b) vista aproximada na região de transição de 
malha. (c) vista aproximada na malha da trinca. 

(a)  

(b)  (c)  

Fonte: Criado pelo autor utilizando o software ANSYS. 

 

3.2.3 Condições de Contorno 
 

As condições de contorno do problema são: extremidades fixas e pressão interna. A 

Figura 21 mostra o sólido com as condições impostas e uma legenda indicando as superfícies 

de aplicação. 
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Figura 21 - Condições de contorno e respectivas superfícies de aplicação: suportes fixos nas 
extremidades e pressão interna de 5MPa na superfície interna, como exemplo. 

 
Fonte: Criado pelo autor utilizando o software ANSYS. 

 

3.2.4 Solução 
 

 Por fim, determina-se as respostas que o programa deve obter. O ANSYS nos permite 

calcular o FIT dos três modos de carregamento, a Integral J, e outros parâmetros como o T 

Stress e a Integral C, que são utilizados em aplicações mais específicas. Solicitamos somente o 

cálculo dos Fatores de Intensidade de Tensão do Modo I de carregamento (SIFS [K1]). 

Ao findar do tempo necessário para a solução, podemos visualizar o corpo deformado e 

verificar as tensões, deformações e deslocamentos em todo sólido, e os FITs ao longo da frente 

da trinca semielíptica. 

Em alguns casos, dependendo da configuração geométrica da parede do vaso e da trinca, 

fez-se necessário realizar um refino adicional da malha em torno da região da trinca, com o 

objetivo de possibilitar a geração da malha, ou eliminar irregularidades excessivas nos 

resultados. 
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4 RESULTADOS E DISCUSSÕES 
 

Primeiramente serão apresentados resultados de forma a validar a implementação das 

equações. Na sequência, serão apresentados os resultados específicos, analíticos e 

computacionais das trincas dos Vasos 1 e 2. Por fim, será possível verificar como os resultados 

computacionais obtidos com a metodologia empregada se relacionam com os resultados 

analíticos, para os casos específicos. 

 

4.1 Validação dos Cálculos Analíticos 
 

Aqui serão apresentados resultados da abordagem analítica, comparando-os com os 

resultados publicados pelos autores, mostrados nos Anexos C e D, com o objetivo de validar a 

implementação das equações. 

 

4.1.1 Equação de Newman e Raju (1980) 
  

A Figura 22 mostra o fator de correção 𝐹 de trincas com 𝑎/𝑐 = 0,2. Lembramos que a 

expressão para o cálculo de 𝐹, a Eq. (27), representa um ajuste dos resultados obtidos pelos 

autores, mostrados no Anexo C para comparação. 

 

Figura 22 - Fator de correção F de trincas semielípticas com 𝑎/𝑐 = 0,2 calculados pelas Equações de 
Newman e Raju. 

 
Fonte: Criado pelo autor. 



50 
 

 

 

Essas curvas são sempre simétricas e, por isso, podem ser mostradas no intervalo 0 <

𝜙 < 𝜋, também. 

Um fenômeno que deve ser destacado é o da transição do ponto da frente da trinca com 

valor máximo de 𝐾ூ. Ele pode ser o ponto central (A, 𝜙 = 𝜋/2) ou o ponto superficial (B, 𝜙 =

0, 𝜋), dependendo da razão 𝑎/𝑐 da trinca. A Figura 23 ilustra esse efeito em detalhe: para 𝑎/𝑐 =

0,75, o ponto crítico está em 2𝜙/𝜋 = 1; e para 𝑎/𝑐 = 0.85, o ponto crítico passou a se 

encontrar em 2𝜙/𝜋 = 0. 

 

Figura 23 - Efeito de transição do valor máximo de 𝐾ூ  com a variação da razão 𝑎/𝑐. 

 
Fonte: Criado pelo autor. 

 

Destaca-se que essa transição não ocorre de forma ‘contínua’, isto é, o ponto de máximo 

não se desloca continuamente ao longo da frente da trinca do ponto A ao ponto B. O que ocorre, 

na verdade, é que a curva se modifica continuamente até o momento em que, subitamente, 𝐾ூ஻ 

se torna maior que 𝐾ூ஺. 

Podemos apresentar dados de múltiplas trincas em dois gráficos, um para o ponto A e 

outro para o ponto B, tomando somente os FITs adimensionais nesses pontos: 

𝐾ூ஺

𝑝ඥ𝜋𝑎/𝑄
= 𝑌஺ =

𝑅

𝑡
𝐹 ቀ𝜙 =

𝜋

2
ቁ (44) 

𝐾ூ஻

𝑝ඥ𝜋𝑎/𝑄
= 𝑌஻ =

𝑅

𝑡
𝐹(𝜙 = 0) (45) 
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Essa definição do FIT adimensional é para concordar com a definição utilizada com o 

outro conjunto de equações empregado no trabalho. Os gráficos das Figuras 24 e 25 mostram a 

variação do FIT adimensional nos pontos A e B, em função da profundidade relativa 𝑎/𝑡, para 

trincas com 𝑎/𝑐 = 0,2; 0,4 e 1, obtidos com a equação de Newman e Raju. 

 

Figura 24 - FITs adimensionais do ponto A calculados com a equação de Newman e Raju para 𝑅/𝑡 = 4. 

 
Fonte: Criado pelo autor. 

 

Figura 25 - FITs adimensionais do ponto B calculados com a equação de Newman e Raju para 𝑅/𝑡 = 4. 

 
Fonte: Criado pelo autor. 
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Vale notar que cada ponto dessas curvas representa um valor (𝑌஺ ou 𝑌஻) associado a uma 

trinca distinta (diferentes 𝑎/𝑐 e 𝑎/𝑡), em contraste às curvas em função da coordenada angular, 

nas quais todos os valores de uma curva são referentes a uma única trinca. 

Quando desejarmos sintetizar informações de várias trincas, usaremos esse tipo de 

disposição visual de resultados. 

Com esse tipo de gráfico, o efeito de transição não é imediatamente verificável. 

Podemos visualizar o efeito da seguinte forma: tomando um valor de 𝑎/𝑡, digamos, 𝑎/𝑡 = 0,5: 

para 𝑎/𝑐 = 0,2 temos 𝑌஺ > 𝑌஻; para 𝑎/𝑐 = 0,4 temos 𝑌஺ > 𝑌஻; agora, para 𝑎/𝑐 = 1 temos 𝑌஺ <

𝑌஻. A transição ocorre, portanto, entre 𝑎/𝑐 = 0,4 e 𝑎/𝑐 = 1. É claro que necessitaríamos de 

mais dados para ter uma melhor estimativa da razão na qual o efeito ocorre. 

 

4.1.2 Equações de Zheng et al. (1995, 1997) 

 

Utilizando as Equações (34) e (35) de Zheng et al., com os termos dados no Anexo A, 

podemos plotar 𝑌஺ e 𝑌஻, obtendo curvas como as mostradas nas Figuras 26 e 27, 

respectivamente. Essas equações nos dão uma curva contínua. 

 

Figura 26 - FITs adimensionais do ponto A calculados com as equações de Zheng et al. para 𝑅/𝑡 = 4. 

 
Fonte: Criado pelo autor. 
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Figura 27 - FITs adimensionais do ponto B calculados com as equações de Zheng et al. para 𝑅/𝑡 = 4. 

 
Fonte: Criado pelo autor. 

 

Nota-se, imediatamente, a semelhança com as Figuras 24 e 25, o que indica que as duas 

equações estão em correspondência. O efeito da transição é verificado da mesma forma nas 

Figuras 26 e 27: comparando os valores para um 𝑎/𝑡 fixo com 𝑎/𝑐 aumentando. 

Os gráficos de Zheng et al. (1995) para mesma configuração de vaso e para os mesmos 

𝑎/𝑐 são mostrados no Anexo D. 

 

4.2 Resultados Computacionais e Comparação com Resultados Analíticos 
 

As simulações para todos os casos específicos foram realizadas representando o vaso 

por uma casca cilíndrica de parede espessa, com as mesmas características geométricas do vaso. 

Em todos os casos, foram utilizados cerca de 75.000 elementos e 200.000 nós. As condições de 

contorno empregadas em todos os casos foram: pressão aplicada na parede interna do vaso, e 

extremidades fixas. 

A ferramenta Semi-Elliptical Crack, utilizada para a introdução das trincas, é uma opção 

default, que não proporciona muita liberdade no que diz respeito ao tipo e número de elementos 

da malha e, inclusive, realiza mudanças em certos parâmetros quando é necessário para se 

chegar a uma solução. 
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A Figura 28 mostra o vaso de pressão sob ação da pressão interna de após o tempo de 

solução do ANSYS de um caso de exemplo, e distribuição de tensões (tensão equivalente de 

Von Mises). 

 

Figura 28 - Vaso após solução e distribuição de tensões. 𝑅/𝑡 = 10. Marcadores indicam valores locais 
de tensão. 

 
Fonte: Criado pelo autor utilizando o software ANSYS. 

  

 Notamos que ao longo de praticamente toda a extensão da casca, a tensão se encontra 

em níveis baixos. A região de tensões elevadas é, como esperado, a região da trinca, como pode 

ser visto na Figura 29. A Figura 30 mostra a trinca aberta sob o carregamento imposto e a Figura 

31 mostra os valores do FIT na frente da trinca. 
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Figura 29 - Parte interna do vaso. Marcador vermelho indica ponto de máxima tensão. 

 

Fonte: Criado pelo autor. 

 

Figura 30 - Trinca no Modo I de carregamento. Marcador vermelho indica ponto de máxima tensão. 

 

Fonte: Criado pelo autor utilizando o software ANSYS. 

 



56 
 

 

Figura 31 - Fatores de Intensidade de Tensão ao longo da frente da trinca. 

 
Fonte: Criado pelo autor utilizando o software ANSYS. 

 

Os FITs podem ser visualizados em um gráfico criado automaticamente, que apresenta 

os valores em função do comprimento ao longo da frente da trinca (iniciando no ponto 1 da 

trinca e indo até o ponto 2, na Figura 31), e não em função da coordenada angular da semi 

elipse. A Figura 32 mostra o gráfico gerado pelo software para o caso 𝑅/𝑡 = 4, 𝑎/𝑐 = 0,4 e 

𝑎/𝑡 = 0,6. 

 

Figura 32 - FITs calculados pelo ANSYS. 𝑅/𝑡 = 4, 𝑎/𝑐 = 0,4, 𝑎/𝑡 = 0,6. 

 
Fonte: Gerado pelo software ANSYS. 

  
 A seguir mostramos os resultados das abordagens analítica e computacional, obtidos 
para as Trincas 1-25. 
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4.2.1 Vaso 1 – 𝑅/𝑡 = 4 
  

4.2.1.1 Equação de Newman e Raju 
 

Com a Eq. (27), obtemos os FITs em função da coordenada angular para as Trincas 1-

16, mostrados nas Figuras 33, 34, 35 e 36. 

 

Figura 33 - FITs calculados com a Equação de Newman e Raju para 𝑎/𝑐 = 0,2. (a) Trinca 1 (b) Trinca 2 (c) 
Trinca 3 (d) Trinca 4. 

(a) (b)  

(c) (d)  

Fonte: Criado pelo autor. 
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Figura 34 - FITs calculados com a Equação de Newman e Raju para 𝑎/𝑐 = 0,4. (a) Trinca 5 (b) Trinca 6 (c) 
Trinca 7 (d) Trinca 8. 

(a) (b)  

(c) (d)  

Fonte: Criado pelo autor. 

 

Figura 35 - FITs calculados com a Equação de Newman e Raju para 𝑎/𝑐 = 0,6. (a) Trinca 9 (b) Trinca 10 (c) 
Trinca 11 (d) Trinca 12. 

(a) (b)  

(c) (d)  

Fonte: Criado pelo autor. 
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Figura 36 - FITs calculados com a Equação de Newman e Raju para 𝑎/𝑐 = 0,8. (a) Trinca 13 (b) Trinca 14 (c) 
Trinca 15 (d) Trinca 16. 

(a) (b)  

(c) (d)  

Fonte: Criado pelo autor. 

 

4.2.1.2 Equações de Zheng et al. 
 

Agora, com as Equações (31) e (32), obtemos os FITs do ponto A e B, respectivamente, 

de trincas com 𝑎/𝑐 = 0,2; 0,4; 0,6 e 0,8, no Vaso 1 (𝑅/𝑡 = 4) para todas as razões 𝑎/𝑡 entre 

0 e 0,8, mostrados nas Figuras 37 e 38. Os pontos específicos das Trincas 1-16 estão contidos 

nestas curvas contínuas nos 𝑎/𝑡 correspondentes. 
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Figura 37 - FITs do ponto A de trincas com razões 𝑎/𝑐 =  0,2;  0,4;  0,6 e 0,8 no Vaso 1 calculados com as 
Equações de Zheng et al. 

 

Fonte: Criado pelo autor. 

 

Figura 38 - FITs do ponto B de trincas com razões 𝑎/𝑐 = 0,2; 0,4; 0,6 e 0,8 no Vaso 1 calculados com as 
Equações de Zheng et al. 

 

Fonte: Criado pelo autor. 
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4.2.1.3 Simulações Computacionais 
 

As Figuras 39, 40, 41 e 42 mostram os resultados obtidos com as simulações das 

Trincas 1-16. 

 

Figura 39 - FITs calculados com o ANSYS para 𝑎/𝑐 = 0,2. (a) Trinca 1 (b) Trinca 2 (c) Trinca 3 (d) Trinca 4. 

(a) (b)  

(c) (d)  

Fonte: Criado pelo autor. 
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Figura 40 - FITs calculados com o ANSYS para 𝑎/𝑐 = 0,4. (a) Trinca 5 (b) Trinca 6 (c) Trinca 7 (d) Trinca 8. 

(a) (b)  

(c) (d)  

Fonte: Criado pelo autor. 

 

Figura 41 - FITs calculados com o ANSYS para 𝑎/𝑐 = 0,6. (a) Trinca 9 (b) Trinca 10 (c) Trinca 11 (d) Trinca 
12. 

(a) (b)  

(c) (d)  

Fonte: Criado pelo autor. 
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Figura 42 - FITs calculados com o ANSYS para 𝑎/𝑐 = 0,8. (a) Trinca 13 (b) Trinca 14 (c) Trinca 15 (d) Trinca 
16. 

(a) (b)  

(c) (d)  

Fonte: Criado pelo autor. 

 

 Nota-se que em alguns casos temos assimetrias e irregularidades, razão pela qual foram 

apresentados os gráficos para todo o comprimento da semielipse. 

 No caso das Trincas 6, 9, 10, 13, 14 e 15, os valores extremos diferem em muito dos 

valores vizinhos. Não foi possível explicar a razão de isso acontecer. Assumiremos que se trata 

de uma questão numérica e desconsideraremos esses valores. 

 

4.2.1.4 Comparação 
 

 Tomando somente os FITs adimensionais dos pontos A e B, obtidos pela divisão de 𝐾ூ஺ 

e 𝐾ூ஻ de cada trinca pelo fator 𝑃ඥ𝜋𝑎/𝑄 correspondente, podemos sobrepor os resultados e 

chegar uma comparação mais clara. As Figuras 43 e 44 mostram o comparativo final dos 

resultados. 

 

 



64 
 

 

Figura 43 - FITs adimensionais do ponto A das trincas do Vaso 1. 

 
Fonte: Criado pelo autor. 

 
Figura 44 - FITs adimensionais do ponto B das trincas do Vaso 1. 

 
Fonte: Criado pelo autor. 

 

O comportamento das curvas resultantes é muito semelhante. No entanto, todos os 

resultados das simulações estão consideravelmente abaixo dos resultados de ambas as equações 

utilizadas. Isso indica, num primeiro momento, que os resultados computacionais são menos 
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conservativos, possivelmente representando situações mais próximas do real, para as 

configurações consideradas. No entanto, deve-se ter um melhor entendimento das 

aproximações feitas pelo software para determinar o motivo dessas diferenças. As Tabelas 5 e 

6 mostram os valores numéricos dos pontos associados às Trincas 1-16 das Figuras 43 e 44. 

 

Tabela 5 - FITs adimensionais do ponto A, 𝑌஺, das Trincas 1-16. 

Trinca Newman e Raju Zheng et al. ANSYS 
1 6,09 5,86 4,94 
2 6,94 6,69 5,54 
3 8,22 8,09 6,65 
4 9,61 9,99 8,07 
5 5,85 5,64 4,72 
6 6,27 5,95 4,88 
7 6,89 6,52 5,27 
8 7,49 7,29 5,84 
9 5,68 5,55 4,61 
10 5,89 5,63 4,61 
11 6,23 5,80 4,74 
12 6,54 6,07 4,99 

13 5,54 5,51 4,53 

14 5,64 5,47 4,46 

15 5,81 5,49 4,48 

16 5,97 5,57 4,59 
Fonte: Criado pelo autor. 
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Tabela 6 - FITs adimensionais do ponto B, 𝑌஻, das Trincas 1-16. 

Trinca Newman e Raju Zheng et al. ANSYS 
1 3,04 3,33 2,68 
2 3,59 3,90 3,09 
3 4,51 4,92 3,79 
4 5,69 6,41 4,77 
5 4,12 4,24 3,57 
6 4,58 4,69 3,92 
7 5,34 5,45 4,57 
8 6,28 6,52 5,46 
9 4,90 4,96 4,22 
10 5,28 5,22 4,45 
11 5,92 5,74 4,94 
12 6,70 6,66 5,62 

13 5,52 5,51 4,74 

14 5,83 5,66 4,88 

15 6,37 6,06 5,26 

16 7,07 6,84 5,76 
Fonte: Criado pelo autor. 

4.2.2 Vaso 2 – 𝑅/𝑡 = 10 
 

4.2.2.1 Equação de Newman e Raju 
 

As Figuras 45, 46 e 47 mostram os gráficos obtidos com a equação de Newman e Raju 

para as mesmas trincas. 
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Figura 45 - FITs calculados com a equação de Newman e Raju para 𝑎/𝑐 = 0,2. (a) Trinca 17 (b) Trinca 18 (c) 
Trinca 19. 

(a) (b)  

(c)  

Fonte: Criado pelo autor. 

 

Figura 46 - FITs calculados com a equação de Newman e Raju para 𝑎/𝑐 = 0,4. (a) Trinca 20 (b) Trinca 21 (c) 
Trinca 22. 

(a) (b)  

(c)  

Fonte: Criado pelo autor. 
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Figura 47 - FITs calculados com a equação de Newman e Raju para 𝑎/𝑐 = 1. (a) Trinca 23 (b) Trinca 24 (c) 
Trinca 25. 

(a) (b)  

(c)  

Fonte: Criado pelo autor. 

4.2.2.2 Equações de Zheng et al. 
 

Agora, utilizando as equações de Zheng et al., com atenção ao que foi dito anteriormente 

com relação aos valores de 𝑌଴, 𝑌ଵ, 𝐹଴ e 𝐹ଵ, obtemos os FITs dos pontos A e B das trincas 17-

25, mostrados nas Figuras 48 e 49. 
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Figura 48 - FITs do ponto A das Trincas 17-25 calculados com as equações de Zheng et al. 

 

Fonte: Criado pelo autor. 

 

Figura 49 - FITs do ponto B das Trincas 17-25 calculados com as equações de Zheng et al. 

 

Fonte: Criado pelo autor. 

4.2.2.3 Simulações Computacionais 
 

 As Figuras 50, 51 e 52 mostram os resultados das simulações das Trincas 17-25. 
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Figura 50 - FITs calculados com o ANSYS para 𝑎/𝑐 = 0,2. (a) Trinca 17 (b) Trinca 18 (c) Trinca 19. 

(a) (b)  

(c)  

Fonte: Criado pelo autor. 

 

Figura 51 - FITs calculados com o ANSYS para 𝑎/𝑐 = 0,4. (a) Trinca 20 (b) Trinca 21 (c) Trinca 22. 

(a) (b)  

(c)  

Fonte: Criado pelo autor. 
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Figura 52 - FITs calculados com o ANSYS para 𝑎/𝑐 = 1. (a) Trinca 23 (b) Trinca 24 (c) Trinca 25. 

(a) (b)  

(c)  

Fonte: Criado pelo autor. 

  

 Notamos algumas irregularidades mais acentuadas nos gráficos das Trincas 3 e 6. Não 

foi possível eliminá-las com refinamento adicional da malha. 

 Novamente, os pontos extremos que se distanciaram muito dos pontos vizinhos, serão 

desconsiderados. Isso ocorreu com as Trincas 20, 23 e 24. 

 

4.2.2.4 Comparação 
 

 Tomando agora os FITs adimensionais dos pontos A e B, obtidos pela divisão dos FITs 

de 𝐾ூ஺ e 𝐾ூ஻ pelo fator 𝑃ඥ𝜋𝑎/𝑄 correspondente, podemos sobrepor os resultados e chegar a 

uma comparação mais clara. As Figuras 53 e 54 mostram o comparativo final dos resultados. 
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Figura 53 - FITs adimensionais do ponto A das trincas do Vaso 2. 

 
Fonte: Criado pelo autor. 

 

Figura 54 - FITs adimensionais do ponto B das trincas do Vaso 2. 

 
Fonte: Criado pelo autor. 
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Nota-se, claramente, que todas as curvas associadas às mesmas razões 𝑎/𝑐 (curvas de 

mesma cor), obtidas pelas equações e pelas simulações têm comportamentos muito 

semelhantes. Os dois conjuntos equações empregados concordam muito bem. Novamente é 

possível verificar que os resultados das simulações apresentam magnitudes que se distanciam 

dos resultados analíticos, mas essa diferença é menor que a verificada no caso do Vaso 1. 

As Tabelas 7 e 8 mostram os valores numéricos dos pontos associados às Trincas 17-25 

das Figuras 53 e 54. 

 

Tabela 7 - FITs adimensionais do ponto A, 𝑌஺, das Trincas 17-25. 

Trinca Newman e Raju Zheng et al. ANSYS 
17 12,92 12,7 11,72 
18 16,2 16,02 13,94 
19 20,85 20,76 17,58 
20 12,4 12,2 11,33 
21 14,1 13,63 12,46 
22 16,25 15,37 13,75 
23 11,49 11,54 10,71 
24 11,74 11,7 10,76 
25 12,1 11,92 10,72 

Fonte: Criado pelo autor. 

 

Tabela 8 - FITs adimensionais do ponto B, 𝑌஻, das Trincas 17-25. 

Trinca Newman e Raju Zheng et al. ANSYS 
17 6,44 6,98 6,19 
18 8,6 9,04 7,78 
19 12,34 13,36 11,6 
20 8,73 8,93 8,4 
21 10,59 10,69 10,03 
22 13,61 13,82 13,1 
23 12,8 13,09 12,21 
24 13,94 13,92 12,97 
25 16,01 15,31 14,4 

Fonte: Criado pelo autor. 

 

Resultados da literatura foram reproduzidos com êxito, e o objetivo de validar a 

implementação das equações foi cumprido. Foi verificado que as simulações conseguem 
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mostrar a transição do ponto de máximo 𝐾ூ, prevista pela equaçõe de Newman e Raju. Na 

sequência, resultados computacionais foram apresentados para as diversas configurações de 

trinca estudadas. Adicionalmente, parte das equações de Zheng et al. (1995, 1997) foi utilizada 

em conjunto com dados numéricos da tabela de Mettu et al. (1992) para obter os FITs de trincas 

semielípticas internas em um VP com 𝑅/𝑡 = 10, submetido à tensão circunferencial de Lamé. 

As Tabelas 9 e 10 mostram os erros relativos entre os resultados computacionais e 

analíticos. Esses erros foram calculados da seguinte forma: 

𝑒𝑟𝑟 =
|𝑌஺,஻(𝑎𝑛𝑎𝑙í𝑡𝑖𝑐𝑜) − 𝑌஺,஻(𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑐𝑖𝑜𝑛𝑎𝑙)|

𝑌஺,஻(𝑎𝑛𝑎𝑙í𝑡𝑖𝑐𝑜)
× 100% (45) 

Tabela 9 - Erros relativos entre resultados computacionais e analíticos. 

   ANSYS - Newman e Raju ANSYS - Zheng et al. 
Trinca R/t YA YB YA YB 

1 4 18,88% 11,84% 15,70% 19,52% 
2 4 20,17% 13,93% 17,19% 20,77% 
3 4 19,10% 15,96% 17,80% 22,97% 
4 4 16,02% 16,17% 19,22% 25,59% 
5 4 19,32% 13,35% 16,31% 15,80% 
6 4 22,17% 14,41% 17,98% 16,42% 
7 4 23,51% 14,42% 19,17% 16,15% 
8 4 22,03% 13,06% 19,89% 16,26% 
9 4 18,84% 13,88% 16,94% 14,92% 
10 4 21,73% 15,72% 18,12% 14,75% 
11 4 23,92% 16,55% 18,28% 13,94% 
12 4 23,70% 16,12% 17,79% 15,62% 
13 4 18,23% 14,13% 17,79% 13,97% 
14 4 20,92% 16,30% 18,46% 13,78% 
15 4 22,89% 17,43% 18,40% 13,20% 
16 4 23,12% 18,53% 17,59% 15,79% 

17 10 9,29% 3,88% 7,72% 11,32% 
18 10 13,95% 9,53% 12,98% 13,94% 
19 10 15,68% 6,00% 15,32% 13,17% 
20 10 8,63% 3,78% 7,13% 5,94% 
21 10 11,63% 5,29% 8,58% 6,17% 
22 10 15,38% 3,75% 10,54% 5,21% 
23 10 6,79% 4,61% 7,19% 6,72% 
24 10 8,35% 6,96% 8,03% 6,82% 
25 10 11,40% 10,06% 10,07% 5,94% 

Fonte: Criado pelo autor. 

 



75 
 

 

Essa tabela confirma a informação visual: os erros associados ao Vaso 1, são bastante 

superiores aos erros associados ao Vaso 2. O erro máximo (destacado) é de 25,59%, associado 

ao ponto superficial da Trinca 4 (Vaso 1), entre os resultados do ANSYS e das equações de 

Zheng et al. 

A Tabela 10, por sua vez, mostra os erros relativos entre os resultados analíticos. 

 

Tabela 10 - Erros relativos entre resultados analíticos. 

Trinca YA YB 
1 3,78% 9,54% 
2 3,60% 8,64% 
3 1,58% 9,09% 
4 3,95% 12,65% 
5 3,59% 2,91% 
6 5,10% 2,40% 
7 5,37% 2,06% 
8 2,67% 3,82% 
9 2,29% 1,22% 
10 4,41% 1,14% 
11 6,90% 3,04% 
12 7,19% 0,60% 
13 0,54% 0,18% 
14 3,01% 2,92% 
15 5,51% 4,87% 
16 6,70% 3,25% 

17 1,70% 8,39% 
18 1,11% 5,12% 
19 0,43% 8,27% 
20 1,61% 2,29% 
21 3,33% 0,94% 
22 5,42% 1,54% 
23 0,44% 2,27% 
24 0,34% 0,14% 
25 1,49% 4,37% 

Fonte: Criado pelo autor. 

 

Nota-se erros baixos, como é o caso das Trincas 13 e 24, que possuem erros abaixo de 

1% tanto para 𝑌஺ como para 𝑌஻. O maior erro é de 12,65%, associado ao valor de 𝑌஻ da Trinca 

4. 
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Com relação aos resultados computacionais, reitera-se que o Método dos Elementos 

Finitos é uma ferramenta poderosa, encontrando inúmeras aplicações em muitas áreas da 

engenharia. No entanto, essa ferramenta deve ser sempre utilizada com cautela, principalmente 

quando a experiência é pouca. 

A interpretação de resultados computacionais é sempre um ponto delicado de qualquer 

estudo, não sendo diferente no caso deste trabalho. Com o estudo que precedeu a execução do 

trabalho, não foi possível encontrar informações que descrevessem de forma simples e 

acessível, como o ANSYS calcula o FIT. Com isso, considera-se que uma análise mais 

cuidadosa deve ser feita para entender os pontos que podem ter motivado as diferenças 

verificadas. 

A concordância entre os resultados analíticos é esperada, visto que tanto os resultados 

de Newman e Raju, como a técnica das Funções Peso, estão presentes em inúmeros trabalhos 

da literatura da Mecânica da Fratura desde que foram desenvolvidos. 

Destaca-se que a Norma BS 7910 (2013), empregada para avaliação de integridade de 

estruturas trincadas, utiliza em seus cálculos, termos da equação de Newman e Raju (com 

modificações em certos casos) para a estimativa dos FITs dos defeitos analisados em vasos de 

pressão, e também em outras geometrias. Adicionalmente, décadas após as publicações, os 

trabalhos são referenciados em inúmeras outras pesquisas, como fonte consolidada de 

resultados. 

 Por outro lado, a técnica das Funções Peso, que nos fornece um conjunto de equações 

drasticamente mais trabalhoso de se implementar, possui uma vantagem muito importante. A 

equação de Newman e Raju aqui utilizada, mais simples e compacta, contempla somente o 

efeito da pressão interna atuando no vaso. É possível, em princípio, utilizando as Funções Peso, 

obter os FITs dos pontos críticos da trinca para qualquer distribuição de tensões, descrita por 

funções matemáticas conhecidas, que represente uma situação física real. Nabavi e Shahani 

(2006, 2007), por exemplo, utilizam o método para obter os FITs de trincas semielípticas em 

vasos de pressão submetidos a tensões térmicas, que influenciam em muito a operação de 

equipamentos industriais. 
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5  CONCLUSÕES 

 

Os Fatores de Intensidade de Tensão para o Modo I de carregamento de trincas 

semielípticas internas orientadas longitudinalmente em vasos de pressão de parede espessa com 

razão 𝑅/𝑡 = 4 e 10, foram calculados utilizando: 

(i) simulações computacionais via MEF com o ANSYS; 

(ii) a equação de Newman e Raju (1980); 

(iii) as equações de Zheng et al. (1995, 1997). 

No total, foram estudadas 25 trincas. Dezesseis delas contidas no Vaso de Pressão 1, 

com razão 𝑅/𝑡 = 4, e as outras nove contidas no Vaso de Pressão 2, com razão 𝑅/𝑡 = 10. 

Ambos os vasos com um interno de 1000mm e submetidos a uma pressão interna de 5MPa. 

É importante destacar que as equações empregadas não são encontradas na literatura 

clássica de Mecânica da Fratura e foram desenvolvidas por métodos distintos: a equação de 

Newman e Raju (1980) veio de ajustes diretos de resultados do MEF, enquanto as equações de 

Zheng et al. (1995, 1997) são obtidas com o emprego da técnica matemática das Funções Peso 

da Mecânica da Fratura, que utiliza resultados do MEF como dados de referência. Com isso em 

mente, há uma motivação adicional para a comparação realizada. 

Com a análise dos resultados finais, é verificado que: 

- As equações selecionadas e as simulações computacionais dão resultados com 

comportamento muito semelhante; 

- Os resultados analíticos dos dois conjuntos de equações utilizados concordam muito 

bem entre si; 

- Os resultados das simulações possuem valores absolutos inferiores e apresentam 

diferenças notáveis em relação aos resultados analíticos, com erros relativos em torno 

de 17% para o Vaso 1, e 9% para o Vaso 2. No caso do Vaso 1 (𝑅/𝑡 = 4), temos o erro 

máximo de 25,59%. 
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6  TRABALHOS FUTUROS 
 

Trabalhos futuros recomendados na área são: 

- Realizar comparações semelhantes utilizando a ferramenta Pre-Meshed Crack do 

ANSYS, e verificar quais as diferenças com os resultados atuais; 

- Validar os resultados obtidos neste trabalho para o vaso com 𝑅/𝑡 = 10; 

- Realizar o ajuste dos dados de Mettu et al. (1992) para 𝑅/𝑡 = 10, para se obter uma 

solução completa de 𝐾ூ஺ e 𝐾ூ஻ em cascas cilíndricas com essa razão entre o raio interno 

e espessura; 

- Utilizar as Funções Peso para estudar o efeito de cargas de outra natureza, como cargas 

térmicas e as originadas de momentos fletores, sobre os Fatores de Intensidade de 

Tensão de trincas semielípticas; 

- Considerar os Fatores de Concentração de Tensões associados às irregularidades 

geométricas encontradas em vasos de pressão reais; 

- Estudar trincas em orientações diferentes da longitudinal como, por exemplo, trincas 

transversais e oblíquas; 

- Estudar trincas com razão de aspecto maior que 1 (𝑎/𝑐 > 1); 

- Realizar uma comparação com procedimentos de normas FFS, como a BS 7910. 
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ANEXO A – SOLUÇÕES COMPLETAS DE 𝑲𝑰𝑨 e 𝑲𝑰𝑩 DE ZHENG ET AL. (1995, 1997) 
 

𝐾ூ,஺

𝑃ඥ𝜋𝑎/𝑄 
= 𝑌஺ =

ඥ2𝑄

𝜋
[𝐴𝑀ଵ஺ + 𝐵𝑀ଶ஺ + 𝐶𝑀ଷ஺ + 𝐷] (A1) 

𝐾ூ,஻

𝑃ඥ𝜋𝑎/𝑄 
= 𝑌஻ =

2ඥ𝑄

𝜋
[𝐴𝑀ଵ஻ + 𝐺𝑀ଶ஻ + 𝐻𝑀ଷ஻ + 𝐼] (A2) 

 Onde: 

𝑀ଵ஺ =
2𝜋

ඥ2𝑄
(−𝑌଴ + 3𝑌ଵ) −

24

5
 (A3) 

𝑀ଶ஺ = 3 (A4) 

𝑀ଷ஺ =
6𝜋

ඥ2𝑄
(𝑌଴ − 2𝑌ଵ) +

8

5
 (A5) 

  

𝑀ଵ஻ =
3𝜋

ඥ𝑄
(2𝐹଴ − 5𝐹ଵ) − 8 (A6) 

𝑀ଶ஻ =
15𝜋

ඥ𝑄
(−𝐹଴ + 3𝐹ଵ) + 15 (A7) 

𝑀ଷ஻ =
3𝜋

ඥ𝑄
(3𝐹଴ − 10𝐹ଵ) − 8 (A8) 

 Os 𝑌 e 𝐹, por sua vez, têm a forma: 

𝑌଴ = 𝐵଴ + 𝐵ଵ ቀ
𝑎

𝑡
ቁ + 𝐵ଶ ቀ

𝑎

𝑡
ቁ

ଶ

+ 𝐵ଷ ቀ
𝑎

𝑡
ቁ

ସ

 (A9) 

𝑌ଵ = 𝐴଴ + 𝐴ଵ ቀ
𝑎

𝑡
ቁ + 𝐴ଶ ቀ

𝑎

𝑡
ቁ

ଶ

+ 𝐴ଷ ቀ
𝑎

𝑡
ቁ

ସ

 (A10) 

  

𝐹଴ = ൤𝐶଴ + 𝐶ଵ ቀ
𝑎

𝑡
ቁ + 𝐶ଶ ቀ

𝑎

𝑡
ቁ

ଶ

+ 𝐶ଷ ቀ
𝑎

𝑡
ቁ

ସ

൨
𝑎

𝑐
 (A11) 

𝐹ଵ = ൤𝐷଴ + 𝐷ଵ ቀ
𝑎

𝑡
ቁ + 𝐷ଶ ቀ

𝑎

𝑡
ቁ

ଶ

+ 𝐷ଷ ቀ
𝑎

𝑡
ቁ

ସ

൨
𝑎

𝑐
 (A12) 

 Com 

 

𝐴଴ = −5,944𝑒ି଴,଴ଵଶ(௔/௖) + 6,594 (A13) 

𝐴ଵ = −0,436𝑒ି଼,଺଺ଷ(௔/௖) − 0,136 (A14) 

𝐴ଶ = 0,787𝑒ିସ,ହ଺ଶ(௔/௖) + 0,269 (A15) 

𝐴ଷ = −1,538𝑒଴,଴ସଷସ(௔/௖) + 1,552 (A16) 
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𝐵଴ = 0,0998𝑒ିଵଷ,ଵହ(௔/௖) + 1,010 (A17) 

𝐵ଵ = 0,366𝑒ିଷଵ,ଵ଻(௔/௖) + 0,055 (A18) 

𝐵ଶ = 3,269𝑒ିଷ,଼ହଽ(௔/௖) − 0,057 (A19) 

𝐵ଷ = 0,061𝑒ଵ,ଷହସ(௔/௖) − 0,149 (A20) 

  

𝐶଴ = 5,566 − 19,583 ቀ
𝑎

𝑐
ቁ + 37,335 ቀ

𝑎

𝑐
ቁ

ଶ

− 33,705 ቀ
𝑎

𝑐
ቁ

ଷ

+ 11,507 ቀ
𝑎

𝑐
ቁ

ସ

 (A21) 

𝐶ଵ = −1,75 + 9,514 ቀ
𝑎

𝑐
ቁ − 16,618 ቀ

𝑎

𝑐
ቁ

ଶ

+ 10,44 ቀ
𝑎

𝑐
ቁ

ଷ

− 1,616 ቀ
𝑎

𝑐
ቁ

ସ

 (A22) 

𝐶ଶ = 12,497 − 49,067 ቀ
𝑎

𝑐
ቁ + 72,59 ቀ

𝑎

𝑐
ቁ

ଶ

− 45,216 ቀ
𝑎

𝑐
ቁ

ଷ

+ 9,55 ቀ
𝑎

𝑐
ቁ

ସ

 (A23) 

𝐶ଷ = −3,486 − 29,49 ቀ
𝑎

𝑐
ቁ + 83,789 ቀ

𝑎

𝑐
ቁ

ଶ

− 93,289 ቀ
𝑎

𝑐
ቁ

ଷ

+ 35,507 ቀ
𝑎

𝑐
ቁ

ସ

 (A24) 

  

𝐷଴ = 0,486 − 0,879 ቀ
𝑎

𝑐
ቁ + 1,161 ቀ

𝑎

𝑐
ቁ

ଶ

− 0,793 ቀ
𝑎

𝑐
ቁ

ଷ

+ 0,212 ቀ
𝑎

𝑐
ቁ

ସ

 (A25) 

𝐷ଵ = −0,533 + 2,626 ቀ
𝑎

𝑐
ቁ − 3,412 ቀ

𝑎

𝑐
ቁ

ଶ

+ 0,999 ቀ
𝑎

𝑐
ቁ

ଷ

+ 0,333 ቀ
𝑎

𝑐
ቁ

ସ

 (A26) 

𝐷ଶ = 4,166 − 15,985 ቀ
𝑎

𝑐
ቁ + 22,358 ቀ

𝑎

𝑐
ቁ

ଶ

− 12,235 ቀ
𝑎

𝑐
ቁ

ଷ

+ 1,826 ቀ
𝑎

𝑐
ቁ

ସ

 (A27) 

𝐷ଷ = 0,569 − 6,605 ቀ
𝑎

𝑐
ቁ + 21,548 ቀ

𝑎

𝑐
ቁ

ଶ

− 26,37 ቀ
𝑎

𝑐
ቁ

ଷ

+ 10,853 ቀ
𝑎

𝑐
ቁ

ସ

 (A28) 

 

 Os termos resultantes da integração em 𝑥, que multiplicam os 𝑀௜,(஺,஻) são: 

 

𝐴 =
𝐹

(𝑅/𝑡)𝑢
+ 𝐸 (A29) 

𝐵 = −
𝐹𝑤

2(𝑎/𝑡)ଷ/ଶ𝑢ଵ/ଶ 
+

𝐹𝑙𝑛(𝑅/𝑡)

2(𝑎/𝑡)ଷ/ଶ𝑢ଵ/ଶ  
+

𝐹

(𝑎/𝑡)(𝑅/𝑡)
+

2

3
𝐸 (A30) 

𝐶 = −
𝐹𝑙𝑛(𝑢)

(𝑎/𝑡)ଶ
+

𝐹

(𝑎/𝑡)(𝑅/𝑡)
+

𝐹𝑙𝑛(𝑅/𝑡)

(𝑎/𝑡)ଶ
+

1

2
𝐸 (A31) 

𝐷 =
𝐹𝑤

2𝑢ଷ/ଶ(𝑎/𝑡)ଵ/ଶ
+

𝐹

(𝑅/𝑡)𝑢
−

𝐹𝑙𝑛(𝑅/𝑡)

2𝑢ଷ/ଶ(𝑎/𝑡)ଵ/ଶ
+ 2𝐸 (A32) 

𝐺 =
𝐹 arctan [(𝑎/𝑅)ଵ/ଶ ]

(𝑎/𝑡)ଷ/ଶ(𝑅/𝑡)ଵ/ଶ 
−

𝐹

(𝑎/𝑡)𝑢
 +

2

3
𝐸 (A33) 
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𝐻 = −
𝐹

(𝑎/𝑡)𝑢
 +

𝐹 ln (1 + 𝑎/𝑅)

(𝑎/𝑡)ଶ
+

𝐸

2
 (A34) 

𝐼 =
𝐹 arctan[(𝑎/𝑅)ଵ/ଶ]

(𝑎/𝑡)ଵ/ଶ(𝑅/𝑡)ଷ/ଶ
+

𝐹

(𝑅/𝑡)𝑢
 + 2𝐸 (A35) 

 Onde: 

𝐸 = 1 +
(𝑅/𝑡)ଶ

1 + 2𝑅/𝑡
 (A36) 

𝐹 =
(𝑅/𝑡)ଶ(1 + 𝑅/𝑡)ଶ

1 + 2𝑅/𝑡
 (A37) 

𝑤 = ln[𝑢 + (𝑎/𝑡) + 2𝑢ଵ/ଶ(𝑎/𝑡)ଵ/ଶ] (A38) 

𝑢 = (𝑅/𝑡) + (𝑎/𝑡) (A39) 
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ANEXO B – TABELA DE METTU ET AL. (1992) 
 

Tabela B – Fatores de correção dos FITs de trincas semielípticas em cascas cilíndricas submetidas a distribuições 

de tensão constante e linear. 

 

Fonte: Mettu et al. (1992). 
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ANEXO C – RESULTADOS DE NEWMAN E RAJU (1980) 
  

Figura C1 – Fatores de correção 𝐹 para trincas com 𝑎/𝑐 = 0,2. 

 

Fonte: Newman e Raju (1980).  
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ANEXO D – RESULTADOS DE ZHENG ET AL. (1995) 
 

Figura D1 – FITs adimensionais do ponto A. 𝑅/𝑡 = 4. 

 

Fonte: Zheng et al., 1995. 

 

Figura D2 - FITs adimensionais do ponto B. 𝑅/𝑡 = 4. 

 

Fonte: Zheng et al. (1995). 

 


