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RESUMO

Vasos de pressao sdao equipamentos de alto custo extensivamente utilizados na industria para
armazenamento e processamento de substancias. Mesmo seguindo normas que regulam o
projeto e a fabricagdo desses vasos, como a ASME B&PVC, defeitos gerados no processo de
fabricagdo ou em servi¢o podem ocorrer no material do vaso, comprometendo a sua integridade
mecanica. Por essa razdo, existem normas que fornecem procedimentos baseados na Mecanica
da Fratura para avaliar e determinar a aceitabilidade desses defeitos. A Mecanica da Fratura
representa, portanto, uma ferramenta importante na andlise da integridade estrutural de
equipamentos industriais criticos. Em termos praticos, o objetivo dessa ferramenta € obter um
parametro que caracterize a gravidade do defeito analisado. Um dos parametros que podem ser
utilizados ¢ o Fator de Intensidade de Tensdes (FIT). A maioria dos defeitos tipo trinca reais
pode ser modelada pela geometria de uma elipse ou semi elipse, e o problema de calcular os
FITs dessas trincas em configuragdes complexas pode ser abordado com auxilio do Método dos
Elementos Finitos (MEF). No presente trabalho, os FITs do Modo I de carregamento de trincas
semielipticas internas orientadas longitudinalmente em vasos de pressao cilindricos de parede
espessa sdo calculados de forma analitica e computacional, com simulagdes via software de
Elementos Finitos. Os célculos analiticos sao realizados utilizando dois conjuntos de equacdes
obtidos da literatura especifica. Ao final, verifica-se que os resultados dos caminhos analitico e
computacional possuem comportamento semelhante. Verifica-se, também, que os valores dos
resultados computacionais associados aos vasos com razdo R/t = 4 apresentam diferengas
consideraveis (erros relativos entre 11,84% e 25,59%) com relagdo aos valores das equagoes.

Japara R/t = 10, essas diferencas sdo menores, com erros relativos entre 3,75% e 15,38%.

Palavras-chave: Mecanica da fratura. Trincas semielipticas. Fatores de intensidade de tensao.
Vasos de pressao de parede espessa. Método dos elementos finitos.



ABSTRACT

Pressure vessels are equipment with elevated cost and extensively used in the industry for
storage and processing of substances. Even following standards which regulate the design and
construction of vessels, such as the ASME Boiler and Pressure Vessel Code, flaws generated
by the manufacturing process or during service can occur in the material, compromising its
structural integrity. Because of this, there are standards that provide Fracture Mechanics based
procedures to assess and determine the acceptability of such flaws. Fracture Mechanics
therefore represents an important tool for the analysis of structural integrity of critical industrial
equipment. In practical terms, the aim of this tool is to evaluate a parameter which characterizes
the gravity of the analyzed flaw. One of the parameters used with this purpose is the Stress
Intensity Factor (SIF). Most crack-like flaws encountered in practice can be modeled by the
geometry of an ellipse or semi-ellipse, in the case of a surface crack, and the problem of
calculating the SIFs of these cracks in complex configurations may be approached with aid
from the Finite Element Method (FEM). In the present work, the Mode I SIFs of semi-elliptical
internal cracks, oriented longitudinally in thick-walled cylindrical pressure vessels are
calculated using an analytical approach and a computational one, which employs simulations
with a Finite Element Method software. The analytical calculations are carried with two sets of
equations obtained in literature. At the end, it is verified that the analytical and computational
results exhibit similar behavior. It is also verified that the absolute values of the computational
results associated with R/t = 4 present substantial differences (errors ranging from 11,84% to
25,59%) with respect to the values from the equations. As for R/t = 10, these differences are

smaller, with errors ranging from 3,75% to 15,38%.

Keywords: Fracture mechanics. Semi-elliptical cracks. Stress intensity factors. Thick-walled
pressure vessels. Finite element method.
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1 INTRODUCAO

Vasos de pressdo (VP) sdo muito utilizados na industria para armazenar fluidos a
pressoes diferentes da pressdo atmosférica local. Sdo equipamentos de alto custo, podem
armazenar fluidos perigosos e geralmente sao submetidos a altas solicitagdes mecanicas e
condig¢des severas de operacdo. Essas caracteristicas traduzem grande risco de perda material e
humana. Portanto, vasos de pressdo devem ser projetados e construidos de acordo com normas
internacionalmente reconhecidas como a americana ASME Boiler and Pressure Vessel Code
(B&PVC), a britanica British Standard (BS) 5500, entre outras. No entanto, mesmo seguindo
as regras desses codigos, defeitos provocados pelos processos de fabricagdo podem ocorrer no

material do vaso, comprometendo a sua integridade mecanica.

Um aspecto comum a maioria dos acidentes recentes envolvendo VPs e tubulagdes ¢ o
local de origem dos defeitos que levaram a falha: cordao de solda e zonas termicamente afetadas
(ZTA) pelo processo de soldagem. Estudos mostram que essas regides sdo mais suscetiveis a
formagdo e ao crescimento de trincas, representando pontos criticos da estrutura. Isso ocorre,
pois, a aplicacdo de elevada energia térmica na junta soldada resulta em heterogeneidades

mecanicas e metalurgicas no material (KHATTAK et al., 2016).

No trabalho de Challenger et al. (1995), foi realizado o estudo de oito falhas que
ocorreram na industria, na segunda metade do século XX, envolvendo fratura em vasos de
pressdo. Os defeitos do tipo trinca considerados iniciadores das falhas foram caracterizados e
avaliados segundo a norma BS 7910 (até entdo chamada PD 6493). Sete dos oito acidentes
estudados foram ligados a trincas superficiais, que sao as mais comuns em estruturas de

engenharia.

A maioria das trincas reais pode ser modelada pela geometria de uma elipse e, por isso,
as trincas elipticas e semielipticas receberam muita atengdo de pesquisadores, como Kobayashi
et al. (1974), Newman e Raju (1980, 1984) e, Zheng et al. (1995, 1997) e, mais recentemente,
Atroshchenko (2010), que trabalharam para a obtengdo dos Fatores de Intensidade de Tensao

(FIT) dessas trincas utilizando métodos computacionais € matematicos.

O FIT ¢ o parametro central da Mecanica da Fratura Linear Elastica (MFLE) e determina
o nivel das tensdes nas proximidades da ponta de uma trinca presente em uma estrutura de
material com comportamento linear eldstico submetido a uma condi¢do particular de

carregamento. Valores exatos desse parametro requerem a solugdo exata do problema de
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Elasticidade especifico para a estrutura trincada. Na maioria dos casos, essa solu¢do ¢ muito
dificil ou quase impossivel de se obter, sendo necessario recorrer a um método alternativo

(CHAN et al., 1970).

O M¢étodo dos Elementos Finitos (MEF) ¢ um método numérico utilizado para a solugao
de problemas formulados em termos de equagdes diferenciais parciais e condi¢des de contorno,
como geralmente sdo os problemas de engenharia. O MEF pode ser empregado com o objetivo
de calcular os FITs em configuragdes geométricas e condigdes de contorno e de carregamento

relativamente complexas, para as quais nao existem solugdes exatas simples.

No presente trabalho, os FITs de trincas semielipticas internas em vasos de pressao
cilindricos de parede espessa com diferentes razdes raio interno/espessura R/t, sdo calculados
por duas abordagens: (1) célculos analiticos com expressdes dadas na literatura, e (2)

simula¢des computacionais utilizando o software ANSYS® comercial de Elementos Finitos.
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1.1 Objetivos

1.1.1 Objetivo Geral

Calcular o Fator de Intensidade de Tensdes de trincas semielipticas internas em vasos
de pressao de parede espessa através de equagdes analiticas e via simulagdo computacional em

software de Elementos Finitos.

1.1.2 Objetivos Especificos

e Selecionar da literatura cientifica as expressoes analiticas para o calculo do FIT
em trincas semielipticas internas;

e Verificar a aplicabilidade das equacdes escolhidas para avaliagao de trincas em
vasos de pressdo de parede espessa;

e (Calcular analiticamente os FIT para diferentes razdes raio interno/espessura da
parede do vaso;

e (Calcular os FIT para diferentes razdes raio interno/espessura da parede do vaso
via simulagdo numérica com software de Elementos Finitos;

e Organizar e confrontar os resultados obtidos;

e Validar a metodologia computacional empregada.
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2 FUNDAMENTACAO TEORICA E REVISAO BIBLIOGRAFICA

2.1 Vasos de Pressao

Vaso de pressdo ¢ todo recipiente estanque, de qualquer tipo, dimensao, formato e com
qualquer finalidade, capaz de conter um fluido pressurizado (TELLES, 2007). Podem ser
classificados como: Nao Sujeitos a Chama e Sujeitos a Chama. Dentre os Nao Sujeitos a
Chama, destacamos: trocadores de calor, torres de destilagdo de petroleo, reatores, vasos de
armazenamento, etc. J4 os classificados como Sujeitos a Chama s3o os fornos e as caldeiras. A

Figura 1 mostra exemplos tipicos de vasos de pressao.

Figura 1 - Exemplos de vasos de pressdo (a) cilindricos e (b) esféricos.

Fonte: Adaptado de Beer et al. (2011).

2.1.1 Formas Tipicas de Vasos de Pressdo

As paredes dos vasos de pressao sao compostas do casco (shell) e dos tampos (heads).
A maioria dos vasos de pressdao tem o casco em uma das trés formas mais basicas: cilindrica,
conica ou esférica. Podem existir, também, combinagdes dessas formas. Com relagdo a posicao,
podemos ter vasos verticais, horizontais ou inclinados. Na Figura 2 podemos ver diferentes
formas e posicoes de vasos de pressao.

As dimensdes que caracterizam um vaso de pressdo sdo o didmetro interno € o
comprimento entre tangentes. O didmetro interno ¢ o didmetro medido pela face interna da
parede e aplica-se a qualquer forma de vaso. O comprimento entre tangentes aplica-se somente
a vasos com corpos cilindricos ou cilindricos compostos € ¢ o comprimento total do corpo

cilindrico, ou a soma dos comprimentos dos corpos cilindricos € conicos sucessivos. As linhas
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que limitam o comprimento entre tangentes sdo as linhas tragadas na tangéncia entre o corpo

cilindrico e os tampos de fechamento. (TELLES, 2007)

Figura 2 - Diferentes tipos de vasos de pressao.

N

(|
1

N— ]

— 0 = =] =]

Fonte: Adaptado de Telles (2007).

Os tampos sdo as pegas de fechamento dos cascos cilindricos. Eles podem ter varios
formatos, sendo os mais comuns o eliptico, toriesférico, hemisférico, entre outros. As

geometrias dos trés formatos citados sdo mostradas na Figura 3.

Figura 3 - Alguns tipos de tampos de vasos de pressao.

e — 5l
(a) Ellipsoidal (b) Spherically Dished
(Torispherical)

(c) Hemispherical

Fonte: ASME 2015 Boiler and Pressure Vessel Code, Section VIII, Division 1 (2015).

Todo vaso de pressdo precisa ter algum tipo de abertura, e aberturas representam locais
com elevado grau de concentracao de tensdes, efeito que também ¢ verificado na regido de
concordancia entre as geometrias do casco e dos tampos. Acessérios como anéis de reforgo,
reforgos de aberturas, suportes e flanges sdo soldados ao vaso, formando ZTAs. As proprias
chapas de aco que compdem o costado sdo soldadas umas as outras. Vasos de pressao
apresentam, portanto, muitas regides com descontinuidades geométricas e metalirgicas em sua

estrutura.
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2.1.2 Tensoes em Vasos de Pressdo

Para analisarmos as tensdes em vasos de pressao devemos primeiramente determinar as
solicitagdes que serdo consideradas. Segundo Bednar (1986), as cargas principais a serem
consideradas no projeto de vasos de pressao sao:

e Pressdo interna ou externa;
e Peso do vaso e do fluido contido;
e (argas eolicas;
e (argas sismicas;
e (Cargas térmicas;
e (Cargas devidas a tubulagdes;
e (Cargas de impacto;
e (argas ciclicas.
Para um vaso cilindrico com raio interno R, espessura t, sob pressao interna p, em que

arelacdo R/t > 10 ¢ cumprida, as tensdes circunferencial e longitudinal sdo dadas por:

PR

oo =2E 1)
PR

Oc = ZO_L (3)

Como nao temos tensdes cisalhantes, as tensdes circunferencial e longitudinal sdo as
tensdes principais primdria e secundaria, respectivamente.

Se a espessura é comparavel ao raio interno do casco (R/t < 10), as tensdes ndo podem
ser consideradas uniformes na espessura e as Equacoes (1) e (2) nao sdo aplicaveis. Nesse caso
devem ser usadas equagdes para cascas grossas, chamadas equacdes de Lamé. As tensdes

circunferencial e longitudinal tém a forma:

pR? Ro\’
c=m-r' " ) ()
pR?
%= R - R )

Logo:
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Oc = 0y, {1 + (%)2} (6)

Onde R, e R sdo os raios externo e interno, respectivamente, e r ¢ a coordenada radial

(R <1 £ R,). Assim como no caso onde R/t > 10, a tensdo circunferencial ¢ a tensdo critica.

2.1.3 Falhas em Vasos de Pressao

O potencial oferecido pelo vapor foi a forca motriz da Primeira Revolugao Industrial no
século XVIII. Com essa nova tecnologia, explosdes de caldeiras tornaram-se comuns e 0s
mecanismos de falha associados ndo eram entendidos. A engenharia e a produgdo de caldeiras
ultrapassaram a ciéncia que determinava a seguranga no projeto € na operagdo. A taxa de
acidentes envolvendo caldeiras continuou a crescer até que duas grandes explosdes no inicio
do século XX deram inicio a0 movimento para a criacdo da primeira edi¢cdo do Boiler Code da
ASME que evoluiu continuamente e hoje ¢ chamado de Boiler and Pressure Vessel Code
(THOMSON, 2015).

Vasos de pressao ainda representam grande potencial de perda material e humana, mas
as normas de fabricacdo e de seguranca objetivam a minimizacdo da probabilidade de falha
desses equipamentos. Eles fazem parte de uma classe de componentes que requer alto nivel de
integridade, devido aos perigos associados a muitos processos industriais combinados a um alto
custo de fabricacdo. As falhas desses equipamentos tém potencial para causar muitos danos a
planta, levando a explosdes e incéndios. Muitas dessas falhas sdo causadas por fratura fragil,
caso no qual a energia armazenada pode levar a fragmentacao do vaso e a partes sendo lancadas
a altas velocidades (CHALLENGER et al., 1995).

Viérios estudos mostraram que trincas foram encontradas em diferentes posi¢cdes da
solda com diferentes orientagdes, como trincas centrais no cordao de solda (CS), transversais ¢
micro trincas no CS e na ZTA subjacentes (KHATTAK et al., 2016).

Para se ter uma visao das falhas que ocorrem na industria e dos defeitos iniciadores, foi
feita uma sintese do trabalho de CHALLENGER (1995). O Quadro 1 ¢ uma tradugao livre
adaptada do quadro mostrado pelo autor e apresenta informacdes gerais sobre as falhas. Ja o
Quadro 2, fornece as seguintes informagdes: equipamento que falhou, tipo, local e dimensdes
do defeito (quando aplicavel).

Destaca-se que todos os defeitos estavam localizados em regides soldadas ou

termicamente afetadas. Além disso, verifica-se a ocorréncia de processos como Corrosdo Sob
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Tensdo (Stress Corrosion Cracking, SCC), Fratura Assistida por Hidrogénio (Hydrogen
Assisted Cracking, HAC) e fluéncia. Metade das falhas estudadas ocorreu durante o teste
hidrostatico e apenas uma delas ocorreu em condi¢ao de operagao menos severa que a condigao

normal de operacao.

Quadro 1 - Descrigdo geral dos acidentes estudados por Challenger et al. (1995).

CONDICAO DE
OPERACAO NO
N FALHA DEFEITO INICIADOR | CAUSAS DA FALHA MOMENTO DA
FALHA
_ [
Trincas no casco do VP ~ S Stan~d by - 75% d?
VP Exxon - Port Jerome . Tensoes residuais na | pressdao de operagao
1 na raiz da solda de e
(1981) g solda e fragilizagdo a temperatura
acessorio .
ambiente
Absorvedor de amina da Hy {Zrogen Assisted .Fragilllzac;ao por Operagdo Normal
2 . . Cracking (HAC) na ZTA hidrogénio e tensdes
Union Oil (1984) S (ON)
de solda de reparo residuais

Tensoes residuais altas e
baixa Tenacidade a
Fratura dos materiais da | Teste Hidrostatico

Trinca originada por

Torre vertical de fragilizagdo a frio em

3 refinaria (1981) sqlda transver.sal junta soldada na (TH)
crescimento da trinca por
A temperatura do Teste
fluéncia . e
Hidrostatico

Tratamento Térmico

Defeito de fabricagéo (TT) pos soldagem

Resfriador de amonia da estendido por Stress . . ~
4 . . . insuficiente. Tensoes ON
Typpi Oil (1970) Corrosion Cracking . .
(SCC) residuais altas e baixa
Tenacidade a Fratura
. . Trinca na solda de um Grande defeito iniciador
Caldeira da Cockenzie bocal presente antes de
5 , . em concentrador de TH
(1966) TT pods soldagem - origem ~
. tensdo
desconhecida
TT pods soldagem

Trinca originada por . . ~
g P insuficiente - tensdes

6 | John Thompson (1965) | efeito de hidrogénio na . . TH
7TA remdugls altas e baixa
Tenacidade a Fratura
Trinca originada por
. fragilizagdo a quente Baixa Tenacidade a
7| Robert Jenkins (1970) ester%didai)or HCIIAC sob Fratura e altas tensoes TH
altas tensdes residuais
Trincas originadas por
3 Catchpot de amoénia efeito de hidrogénio em Tenacidade a Fratura Em servigo
(1982) solda do tipo fillet na muito baixa

parede interna de VP
Fonte: Adaptado de Challenger et al. (1995).
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Quadro 2 - Informagdes complementares dos acidentes estudados por Challenger ef al. (1995).

EQUIPAMENTO TIPO DE DEFEITO LOCAL DO DEFEITO | PIMENSOES DO
DEFEITO
Profundidade (a):
VP Esférico - 20 3mm

anos

Trinca superficial

Solda de um acessorio

Comprimento (2c):
ndo conhecido

Trinca superficial que se

Solda de reparo nas

Torre cilindrica fornou passante paredes do VP 2c¢: 800mm
e . . Solda entre tampo e pogo a: 38mm
Torre cilindrica Trinca superficial de dreno na vase do VP ¢ 51mm
. L Solda do tampo forjado a: Smm
Trocador de calor Trinca superficial interna do trocador de calor ¢ 70mm
. . C Proximo a uma abertura e a: 89mm
Caldeira Trinca superficial interna .
a um acessorio soldado 2c¢: 330mm
VP de paredes Trincas pequenas, ZTA de uma unido a: 8,3mm
grossas transversais e embedded soldada 2c¢: 9,5mm
VP cilindrico de Trinca superficial externa Solda de um acessorio a: 12,2mm
paredes finas 2c: 114,3mm
;];Ziecz;hnr((i)rslsc;s (-1616 Trincas superficiais Toe de solda tipo fillet na a: 4mm
p agnos p parede interna do VP 2¢: 30-40mm

Fonte: Criado pelo autor baseado em Challenger et al. (1995).
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2.2 Mecanica da Fratura

A Segunda Guerra Mundial representa um momento na histéria no qual a falta de
entendimento de mecanismos de fratura levou a falhas notaveis em estruturas. No comeco da
Guerra, os Estados Unidos forneciam navios e avides a Gra-Bretanha. Henry Kaiser, engenheiro
que trabalhou na constru¢do da Barragem Hoover, nos EUA, ajudou a desenvolver um
procedimento revolucionario para a producdo de navios de forma rdpida. Esses navios, que
ficaram conhecidos como navios Liberty, tinham o casco inteiramente soldado, em contraste ao
método tradicional da época, que utilizava rebites.

Em 1943 um dos navios partiu-se completamente em dois enquanto navegava entre a
Sibéria e o Alaska. Muitos outros também sofreram algum tipo de fratura e cerca de 10 deles
também partiram ao meio. Investigagdes identificaram as causas das falhas e corregdes foram
realizadas aos navios remanescentes para prevenir fraturas mais sérias. O episddio dos navios
Liberty levou um grupo de pesquisadores do Naval Research Laboratory, em Washington, a
estudar o problema da fratura de forma mais aprofundada. Assim deu-se inicio aos estudos da
Mecanica da Fratura (ANDERSON, 2005).

A Mecanica da Fratura (MF) possibilita o entendimento do comportamento de materiais
que apresentam defeitos do tipo trinca e baseia-se em trés varidveis: carregamento,
caracteristicas do material e caracteristicas do defeito existente. A Resisténcia dos Materiais,
baseada na Teoria da Elasticidade, considera somente duas dessas variaveis: o carregamento e
as caracteristicas do material livre de defeitos. A variavel adicional presente na analise da MF
representa a possibilidade de obtencdo de resultados mais realistas com relagdo a falha dos
materiais.

A Mecénica da Fratura ¢ dividida em duas areas:

. Mecanica da Fratura Linear Elastica (MFLE);
. Mecanica da Fratura Elasto-plastica (MFEP).

As duas éareas, de um modo geral, preocupam-se quem avaliar um parametro (k) que
caracteriza as condi¢des do defeito, e compard-lo a um valor critico (k-) que representa a
resisténcia a fratura do material, ou a Tenacidade a Fratura. Assim, o critério de falha na MF ¢
dado por:

k >k (7)
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2.2.1 A Mecanica da Fratura Linear Elastica

A MFLE aplica-se quando os materiais estudados sdo frageis ou apresentam
plastificagdo em pequena escala na ponta da trinca antes da fratura. Desde 1960, teorias da MF
foram desenvolvidas para considerar varios tipos de comportamento nao linear dos materiais
(plasticidade e viscoelasticidade, por exemplo), assim como efeitos dinamicos. Todos os
resultados mais recentes, no entanto, sdo extensdes da Mecanica da Fratura Linear Elastica.
Portanto, apesar da restricdo de aplicabilidade, a MFLE ¢ essencial para o entendimento dos

conceitos mais avangados da Mecanica da Fratura (ANDERSON, 2005).

2.2.2 Abordagem Energética da Propagacdo de Trincas

Griffith em 1920 reconheceu que para ocorrer um incremento no tamanho da trinca, o
decréscimo na energia potencial elastica do solido devido a destrui¢do das ligagdes atdmicas
deve ser pelo menos igual a energia necessaria para a criacdo de novas superficies da trinca.
Expressamos a energia total do so6lido como

U=U,+U, +U, (8)

Onde o U, representa a energia do sdlido sem a presenca da trinca, U, representa a

energia de superficie associada as superficies da trinca e U, representa o decréscimo de energia
ocasionado pela ‘introducao’ da trinca e ¢ dado por
ma’c’B

Uy = _—E B ©)

Onde B = 1 para Estado Plano de Tensdes (EPT) ou f = 1 — v para Estado Plano de
Deformacdes e v € o coeficiente de Poisson.
Desejamos obter a variagdo da energia total causada por um incremento no tamanho da

trinca mostrada na Figura 4.
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Figura 4 - Trinca considerada para a abordagem energética de Griffith.

Fonte: Anderson (2005).

Derivamos com relagdo a area da trinca (area projetada A; = 2aB, que ¢ a metade da

area de superficie Ag)
ou ou, au,

= + 10
0A, 0A, O0A4; (10)

E como A; = 2aB, ficamos com
U 1 0 ( ma’c’B N 10 (4aBy,) = mac? o "
94,  2Bda g P )t opaq 4By = m—p— B+ 2y (10

Onde y; ¢ a densidade superficial de energia associada a trinca.

No caso limite, ou seja, em que o aumento do tamanho da trinca ocorre sob condi¢des
de equilibrio, a energia total do s6lido nao varia com o aumento do tamanho da trinca e a
equacdo anterior resulta em

nac?
E

B = 2y; (12)

A tensdo minima que causara fratura of € dada por

2y.E
f naf (13)

A equagdo obtida por Griffith ¢ valida somente para materiais frageis. Irwin e Orowan
de forma independente modificaram a equacao de Griffith adicionando um termo que representa

o comportamento plastico de materiais ducteis.
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2.2.3 A Forga Motriz de Trincamento G

Irwin, em 1956, propds uma abordagem ao problema da fratura similar a de Griffith.
Ele definiu o parametro G, a Taxa de Liberacdo de Energia, que pode ser entendida como a

energia disponivel para um incremento no tamanho da trinca

I 14
g__d_At (14)
_azna (15)
g = E B

Como G ¢ uma derivada de um potencial, também ¢ chamado de Forga Motriz de
Trincamento.

Na situacao de equilibrio tratada anteriormente, no qual temos o crescimento da trinca,
G atinge um valor critico G, que ¢ uma medida, em termos energéticos, da resisténcia a fratura

do material, e ¢ dado por

Gc = 2y; (16)

2.2.4 O Fator de Intensidade de Tensdes

A aplicagdo da Mecanica da Fratura consiste em computar parametros de interesse para
a analise de estruturas trincadas. Na Mecanica da Fratura Linear Elastica (MFLE), o parametro
utilizado € o Fator de Intensidade de Tensoes, K.

Existem trés possiveis modos de carregamento que uma trinca pode sofrer, mostrados

na Figura 5.

Figura 5 - Tipos de carregamento que uma trinca pode sofrer.

— >

Fonte: Adaptado de Anderson (2005).
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O modo I ¢ chamado também de modo de abertura e € o que recebe maior aten¢ao na
literatura. Os modos II e III s3o chamados de modo de cisalhamento no plano e fora do plano,
respectivamente. Em casos de carregamentos combinados, devem ser considerados todos os
modos de carregamento envolvidos € os campos de tensao sao obtidos com a sobreposi¢ao das
solucdes correspondentes a cada modo. No caso especial de uma trinca obliqua, por exemplo,
os modos de carregamento associados sdo o modo I e o modo II.

Na MFLE, aos modos I, II e III, correspondem os Fatores de Intensidade de Tensdo K;,
K;; e K;p, respectivamente.

O campo de tensdes nas proximidades da ponta de uma trinca afiada sob Modo I de
carregamento em uma placa infinita de material linear elastico (Figura 6), desprezando termos

de ordem superior, ¢ dado por

B[t -sn(R)en(7)] 7
Oxx = — cos > sen > sen > (17)
@[t +sen(g)oen(7)] A
Oyy = — cos > sen sen > (18)
36

Toy cos( )sen( )cos( 2) (19)

0, para EPT

= 2vK 0
Ozz v(axx + ayy) = \/?ﬂ;cos (5), para EPD (20)
Tz = Tyz = 0 (21)

Com

K, = oma (22)

Onde agora g, ¢ a tensdo remota e a ¢ o tamanho da trinca.
O FIT ¢, portanto, um parametro que descreve o nivel, a intensidade, das tensdes nas

proximidades da ponta da trinca, podendo ser expresso na forma

K, = Li_r)r(}\/an 0yy (1,6 = 0) (23)

Westergaard (1939), Irwin, Sneddon e Williams foram alguns dos primeiros a publicar
essas solucdes. Detalhamento a respeito da formulagdo dos problemas de contorno da MF pode

ser encontrado em Pastoukhov (1995) e Perez (2004).
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Figura 6 - Geometria da ponta da trinca e pardmetros geométricos.

Ty

a
Crack -

Fonte: Anderson (2005).

Por causa do termo 1/+/7 presente nas expressdes acima, quando tomamos o limite r —
0, ou seja, nos aproximamos da ponta da trinca, as tensdes tendem a valores infinitos,
independentemente da tensdo remota atuante. Essa ¢ uma particularidade semelhante a
encontrada por Inglis.

O critério de falha da Eq. (7) na MFLE ¢ estabelecido quando definimos k = K, o Fator
de Intensidade de Tensdes, e k. = K. (em Estado Plano de Tensodes) ou k. = K;. (em Estado
Plano de Deformagdes), a medida tensional da Tenacidade a Fratura do material, obtida a partir
de experimentos.

Aqui podemos obter uma relacdo de extrema importancia para a MF entre G ¢ K.
Observando as expressoes que definem esses dois parametros, Equacdes (15) e (22), obtemos

G =8 @4)

Apesar do caso restrito para o qual essa expressdo foi obtida (trinca afiada em placa
infinita), [rwin demonstrou que ela se aplica a qualquer configuracao (ANDERSON, 2005).
Para o calculo do FIT considerando as dimensodes finitas do solido, utiliza-se um fator

geométrico Y™ que ¢ dado na literatura para diferentes configuragdes, nos dando

K; =Y o,Nma (25)

Quando temos trincas semielipticas e geometrias mais complexas, como as de um VP,
mais fatores de correcdo devem ser empregados.
Como a For¢a Motriz de Trincamento ¢ uma quantidade escalar, quando os trés modos

de carregamento estdo presentes, as contribui¢cdes de cada modo sdo aditivas e ficamos com
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KIZ KIZI KIZII
_ Lo g B 26
G Eﬁ+Eﬁ+ZG (26)

Onde G é o M6dulo de Cisalhamento do material.

2.2.5 Trincas Semielipticas em Vasos de Pressao

Trincas superficiais sdo as mais comuns em estruturas reais de engenharia e podem ser
modeladas pela geometria de uma meia elipse. O modelo considerado para a estimativa dos
FITs de trincas em VPs cilindricos ¢ o de uma casca cilindrica pressurizada de raio interno R e
espessura t (Figura 7). Os dois conjuntos de equagdes que serdo utilizados para o calculo dos
FITs no Modo I de carregamento dessas trincas, localizadas na superficie interna de cascas
cilindricas (Figura 8) serdo apresentados aqui com uma sintese dos trabalhos de Newman e Raju

(1980) e de Zheng et al. (1995, 1997).

Figura 7 - Geometria da casca cilindrica considerada.

Fonte: Adaptado de Chen e Pan (2013).
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Figura 8 - Geometria de trinca semieliptica interna na parede de casca cilindrica.

Fonte: Adaptado de Zheng et al. (1995).

2.2.5.1 Newman e Raju (1980)

Newman e Raju (1980) propuseram a seguinte expressao para o calculo dos FITs ao
longo da frente da trinca:
K_pR naF<aaR ) 27)
Tt Jo \c't't 3

Onde Q ¢ o fator de forma para a trinca eliptica, dado em forma aproximada por:
- 1,65
0 =1+1,464 (—) (28)
c
As razdes a/c e a/t sao chamadas de razdo de aspecto e profundidade relativa,
respectivamente. Em conjunto com a razao entre o raio interno e a espessura da casca cilindrica,
R/t, a configuragdo do problema é completamente determinada.
E F ¢ o fator de correcdo, dependente das caracteristicas geométricas da trinca, de
algumas dimensdes da casca cilindrica, e do angulo ¢, obtido com auxilio do Método dos

Elementos Finitos e procedimentos de ajuste de curvas:

F =097 [Ml + M, (%)2 + Ms (%)4] 9fof: (292)
M, = 1,13 — 0,09% (29b)
M, = —0,54 + 0’89a (29¢)
02+32
1 a 24
My =0,5— . +14(1--) (29d)

/N

g=1+ [0,1 +0,35 %)2] (1 — seng)? (29¢)
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1
fo = [senqu + (%)2 cos? ¢ ]4 (299)

_R§+R2+1 OS\/at 29

Essa solu¢ao nos da o FIT ao longo de toda a frente da trinca (de ¢ = 0 a ¢p = m).

2.2.5.2 Zheng et al. (1995, 1997)

Utilizando o método da fungdo peso (weight function method), os autores obtiveram a
solugdo dos FITs em cascas cilindricas com razdo R/t = 4 somente. O método consiste em
integrar o produto o (x)m(x, a) ao longo da profundidade da trinca, onde a(x) ¢é a distribuicdo
de tensdes sobre o plano da trinca e m(x, a) é a chamada fungéo peso (FP), que ¢é definida para

cada configuracdo de trinca. Assim, temos:
a
K, = j o(x)m(x,a) dx (30)
0

Glinka e Shen (1991a) obtiveram a forma geral da FP para o ponto mais profundo (A)

e para o ponto superficial (B) de uma trinca semieliptica.

) 1 . 3
mu(x, a) = N TCET) 1+ My, (1 - g)z + M,, (1 - g) +M,, (1 - 2)2] G1)
1 3
mg(x,a) = \/% 1+ Mg (g)z + M,p (2)1 + Mg (2)2 (32)

Os fatores M; 4 p) adequados sdo mostrados no Apéndice A. Aqui serd omitido o
detalhamento a respeito do procedimento necessario para obté-los, sendo possivel consultar
Shen e Glinka (1991b) para melhor entendimento.

A solugdo de interesse deve considerar a distribuicdo de tensdes circunferencial na
parede de VPs parede espessa (solugdo de Lamé), levando em conta a pressao interna atuando

nas faces da trinca (Figura 9):

2

R+t\°
1+m[1+( )l},RSX<R+a (33)

o(x) =0,(x) = P{ Rt

Essa expressao pode ser obtida diretamente da Eq. (4) explicitando R, = R + t, fazendo

a substitui¢do 7 = R + x e somando o termo referente a pressao atuando nas faces da trinca.
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Figura 9 - Distribui¢@o de tensdes na espessura de um vaso de pressdo de parede espessa.

oc(x)

Fonte: Adaptado de Zheng et al. (1995).

Note que as fungdes my(x,a) e mg(x,a) carregam a informagdo da configuragdo
geométrica da trinca (no s6lido mais simples: uma placa plana) e a distribui¢do de tensdes
introduz a informacao referente a configuragdo geométrica do so6lido de base.

Combinando essa distribuicao de tensdes com as FPs, e integrando segundo a Eq. (30),

¢ possivel chegar a (ZHENG et al., 1995, 1997):

Kia J2Q

szq:T[AMlA-I_BMZA-I_CMsA-I_D] (34)

L z/e [AM,5 + GMyg + HMp + 1] (35)
P\/ma/Q T
Onde, novamente, Q ¢ o fator de forma da trinca eliptica (Eq. 28) e A,B,C,D,G,H e |
sdo dados em termos dos parametros geométricos da configuracdo da trinca e também podem
ser encontrados no Anexo A.

E importante destacar que a solugdo completa ¢ valida somente para a R/t = 4. Isso é
devido ao fato de que os termos que compdem os fatores M;(, p) representam ajustes dos dados
de uma tabela de Mettu et al. (1992) (mostrada no Anexo B) para R/t = 4 somente. Os
coeficientes A,B,C,D,G,H e I, por sua vez, sdo resultados da integracdo em x, tomando os
M;4,5) como constantes.

Os mesmos autores publicaram outro trabalho, em 1997, no qual empregaram o mesmo
método para obter o K; de trincas em cascas cilindricas com R/t = 2, utilizando os fatores M;

adequados. O titulo desta se¢do faz referéncia a ambos os trabalhos pois as equacdes do Anexo
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A usadas para o célculo dos M;(, gy sdo as do trabalho de 1995 (adequadas para R/t = 4),
enquanto que as equagoes para o calculo de A4,B,C,D, G, H ¢ 1, sdo as do trabalho de 1997.
Isso foi feito por conta de dificuldades encontradas com a solugdo completa dada no
artigo de 1995. Nota-se que ndo ha um problema em fazer isso, pois os termos resultantes da
integracdo segundo a Eq. (28), devem possuir a mesma forma (para um mesmo o(x)),
independentemente da razdo R/t escolhida para realizar o ajuste dos dados de referéncia. Isso

ndo implica, no entanto, que estes termos nao dependam de R /t, como pode ser visto no Anexo

A.

2.2.6 A Mecanica da Fratura Elasto-Plastica

A MFEP, aplicavel quando materiais apresentam deformacdes plasticas em grande
escala na frente da ponta da trinca, tem a Integral J e o CTOD (d), como parametros principais.
Ambos descrevem as condi¢des na ponta da trinca e podem ser usados como critério de fratura.
Valores criticos desses parametros representam medidas da Tenacidade a Fratura do material
(ANDERSON, 2005).

Os limites de aplicabilidade de J e §, e, portanto, da MFEP, sdo muito menos restritivos
do que os da MFLE (ANDERSON, 2005). Apresentaremos somente a Integral J, por possuir

papel importante na obtencao do Fator de Intensidade de Tensdes de forma computacional.

2.2.6.1 A Integral J

Rice (1968) introduziu a Integral J como um parametro da Mecanica da Fratura, que ¢
de grande importancia para a disciplina. Ele mostrou que o valor numérico dessa integral de
contorno ¢ igual a Taxa de Liberacdo de Energia (ou For¢ca Motriz de Trincamento) em um
material de comportamento elastico nao linear contendo uma trinca. De forma semelhante ao
caso da MFLE, temos:

Jd= _d_At (36)

E possivel mostrar que J nada mais é do que uma generalizagio da Forga Motriz de

Trincamento. Logo, no regime linear elastico, temos:

Jd=g (37)

Portanto, para uma combinagdo entre os trés Modos de carregamento:
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_ KI2 III 38
J=—B+ B (38)
E
Considerando uma trinca no plano (Figura 10), J na forma integral ¢ dado como:
J= f dedy T — dsl (39)

Onde I' ¢ um contorno arbitrario que engloba a ponta da trinca, w, ¢ a densidade de

energia de deformagio, T ¢é o vetor de tensdes de tra¢do na dire¢do normal ao contorno, U é o
vetor de deslocamento, € ds € o elemento infinitesimal de comprimento na direcao do contorno

em cada ponto do mesmo.

Figura 10 - Trinca no plano e contorno I', englobando a ponta da trinca.

Fonte: Anderson (2005).

Rice mostrou também que o valor de J ¢ independente do caminho de integracdo em
torno da trinca e, portanto, se trata de uma integral independente de trajetéria (path
independente integral). Essa caracteristica implica em J ser nula para qualquer contorno I'

fechado.

2.3 O Método dos Elementos Finitos

O Meétodo dos Elementos Finitos ¢ um método numérico utilizado para resolver
problemas de fisica e engenharia, que sdo geralmente formulados em termos de equagdes
diferenciais parciais. O método consiste em discretizar o dominio continuo da solugdo do
problema, i.e., subdividi-lo em um numero finito de partes menores, chamados elementos
finitos, e resolver as equagdes em todos esses elementos, para obter uma solugdo aproximada
do problema global, ou continuo. O processo de discretizagdo do problema transforma a
equagdao diferencial parcial original em um sistema de equagdes algébricas que,

operacionalmente, sao mais simples de se resolver.
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Algumas areas de aplicacdo do método sdo: analise estrutural, mecéanica dos fluidos,
transmissdo de calor e eletromagnetismo. Na analise estrutural, onde os temas deste trabalho se
enquadram, o objetivo do MEF ¢ a obtencao de deslocamentos, tensdes e deformagdes que
ocorrem nos soélidos em resposta as solicitagdes. O dominio nesse caso ¢ a geometria da
estrutura e a discretizacdo € realizada no espago, gerando a malha.

Até onde se tem conhecimento, o0 método data do ano de 1943, quando o matematico
Courant publicou um artigo sobre a analise de tor¢do utilizando um método que hoje ¢é
conhecido como o MEF (HOLLAND, 1974). De forma geral, os matematicos desenvolveram
técnicas de discretizagdo aplicaveis a equagdes diferenciais como o método das diferencas
finitas, técnicas aproximadas para determinar o estaciondrio de funcionais especificos, entre
outras. J& os engenheiros que trabalharam no desenvolvimento do método, abordaram os
problemas de forma mais intuitiva, criando analogias entre elementos discretos e partes finitas
de um dominio continuo. O MEF em sua forma atual ¢ o resultado de muitos anos de trabalho
de estudiosos de ambas as areas.

Na Mecanica dos Solidos, Hrenikoff (1941), McHenry (1943), Southwell (1946) e
Newmark (1949) mostraram, na década de 1940, que boas solugdes para problemas num meio
elastico continuo podiam ser obtidas substituindo pequenas partes do continuo por um conjunto
finito de barras eldsticas simples. Foi da analogia dos engenheiros que o termo ‘elemento finito’
surgiu, sendo Clough o primeiro a usa-lo. Hoje as abordagens “dos matematicos” e “dos

engenheiros” estdo completamente conciliadas (ZIENKIEWICZ, 2005).

2.3.1 O Método dos Elementos Finitos na Mecanica da Fratura

De um ponto de vista pratico, a MFLE funciona da seguinte forma. Para uma
determinada trinca, e um modo de carregamento, um Fator de Intensidade de Tensdes teorico ¢
calculado. Para o material em questdo, o valor critico do FIT (Kjc) ¢ determinado por
experimentos. Se o FIT calculado for menor que o K;-, com uma margem de seguranca, o
defeito ¢ aceitavel, caso contrario, algo deve ser feito para evitar a falha (CHAN et al., 1970).

Valores exatos do FIT requerem a solugdo exata do problema de Elasticidade formulado
para a estrutura trincada. Na maioria dos casos, essa solu¢ao ¢ muito dificil ou quase impossivel
de se obter (CHAN et al., 1970). Com isso, fica evidente que se faz necessario o uso de um
método numérico para estimar o parametro, e 0 MEF ¢ um dos métodos que podem ser usados

com esse objetivo.
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2.3.2 Elementos Utilizados para Simulagdes de Fratura

E importante destacar que, por ser uma regido critica, devem ser utilizados elementos
especificos na ponta da trinca, ao realizar uma simulagdo de fratura linear eléstica. Esses
elementos devem possibilitar que seja introduzida a singularidade 1/+/7 na ponta da trinca,
caracteristica dos campos de tensdo da MF. Um deles ¢ o elemento Quarter Point (Quarter
Point Element, QPE), mostrado na Figura 11, que ¢ o mais usado, devido a sua simplicidade e
bons resultados (STAMENKOVIC, 2006).

Os QPE sao elementos isoparamétricos que tiveram os nds intermedidrios deslocados

para um ponto cuja distancia do n6 posicionado na ponta da trinca ¢ de 1/4 do lado do elemento,
como mostra a Figura 12. Henshell (1975) mostrou que a singularidade \/i? ocorre nesses

elementos e que eles permitem a obtencao da intensidade de tensdes na ponta de uma trinca.

Eles podem ser quadrilaterais ou triangulares.

Figura 11 - Elementos Quarter Point triangulares na ponta de uma trinca.
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}
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2a

Fonte: Stamenkovic (2006).

Figura 12- Detalhe dos Elementos Quarter Point quadrilaterais e triangulares.

Quadrilateral Q8 Triangular T6

ponta da
rinca
U;ll 3L/4 {

3L/ | L/%

Fonte: Silva (2017).
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Além dos elementos planos mostrados, temos os elementos Quarter Point
Tridimensionais, que sdo obtidos naturalmente estendendo-se o conceito do QPE 2D para
problemas de trincas 3D. Isso ¢ feito expandindo os elementos 2D ao longo da frente da trinca

(KUNA, 2013). A Figura 13 mostra diferentes QPE tridimensionais.

Figura 13 - Elementos Quarter Point tridimensionais.

o L0

Fonte: Kuna (2013).

2.3.3 Célculo do Fator de Intensidade de Tensoes através do MEF

Utilizando os elementos adequados para o emprego do MEF voltado para o fendmeno
da fratura, o FIT pode ser calculado por diferentes técnicas como, por exemplo, o Método dos

Deslocamentos e também através do calculo da Integral J.

2.3.3.1 Meétodo dos Deslocamentos

O Método dos Deslocamentos pode ser utilizado para estimar o FIT em uma analise
linear eléstica através dos deslocamentos nodais nas regides proximas a ponta da trinca. Os
deslocamentos verdadeiros na ponta de uma trinca presente em um material eléstico,

desprezando termos de ordem superior, sao dados por (ANSYS Inc., 1999)

K, [T 0 30\ K, [T 0 36
u=— |[—| 2k —1)cos=—cos— | —— |—| 2k + 3) sen—+ sen— (40a)
2 2r 2 2

4G\ 2m 2 4G
_ K [T @ ) 0 360 K;; , T (2K +3) 6 N 360 40b
v—4G o K sen2 sen2 G2 K cos2 cos2 (40b)
K T 0
w=2—2 |— sen= (40c)

G N2rm 2
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Onde u, v e w s20 os deslocamentos reais nas dire¢des X, y e z, respectivamente, G € o
modulo de cisalhamento do material e k = 3 — 4v para EPD e k = i;—: para EPT. A Figura 14

mostra os sistemas de coordenadas cartesiano e cilindrico considerados.

Figura 14 - Coordenadas locais na ponta de uma trinca tridimensional.

crack front

Fonte: ANSYS Inc. (2004).

A partir das Egs. (40), podemos estimar K;, K;; e K;;; como:

_ 1 -
K K+1v(7”,7'[)
K = ym P51, 41
K” _1+Vrl—r>% T }c+1u(r'ﬂ) (41)
11
i ZW'(T,TL’) ]

Onde u’, v' e w’ sdo os deslocamentos aproximados dos no6s da malha na regido da

ponta da trinca, calculados com a aplicagdo do MEF.

2.3.3.2 Calculo da Integral J pelo MEF

No caso de uma geometria discretizada, o contorno I ¢ particionado em pequenos
trechos I, (Figura 15). O método mais comum consiste em posicionar I' de forma que ele passe
por ndés da malha do sdélido. Isso proporciona uma vantagem visto que os deslocamentos e as
tensdes aproximados geralmente sdo conhecidos nesses pontos, como resultado da aplicagdo do

MEF, nos dando maior precisdo no resultado final. A Integral J serd, portanto:

Ne
J = Z g@© (42)
e=1
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Onde o sobrescrito (e) indica o calculo da integral no trecho I, e N, ¢ o nimero de

subdivisdes do contorno I.

Figura 15 - Regido da frente de uma trinca no plano e contorno particionado na malha gerada.

Fonte: Kuna (2013).

Com o valor de J, utilizamos as Egs. (24) e (37) para obter o FIT do Modo I de
carregamento:

K =JJE/B (43)

Para trincas em sdlidos tridimensionais, o calculo de J deve ser adequadamente

generalizado para o caso 3D. Kikuchi ef al. (1979) apresentam uma forma de realizar essa

generalizacdo focando em trincas superficiais semielipticas em vasos de pressao.
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O fluxograma da Figura 16 apresenta uma visdo geral da metodologia que serad

empregada.

CALCULOS
ANALITICOS

Figura 16

Equacdes de
Newman e Raju
(1980)

- Metodologia empregada para o trabalho.

Implementagéo

Equagdes de
Zheng et al.
(1995, 1997)

SIMULAGCOES
COMPUTACIONAIS

Simula¢des com o
ANSYS

| com o software
Octave

Y

Obtencéo dos
resultados para
todas as trincas

Preparagdo

»| especifica do
problema

Obtengéo dos
resultados para
todas as trincas

Fonte: Criado pelo autor.

A

Comparacéo dos
resultados

O procedimento utilizado, via célculos analiticos ou simulagdo computacional, para

calcular o Fator de Intensidade de Tensdes de trincas internas semielipticas presentes em vasos

de pressao de parede espessa, requer que sejam definidas previamente:

- Caracteristicas geométricas do vaso de pressao.

- Cargas que serdo consideradas nos célculos analiticos e nas simulagdes.

- Caracteristicas geométricas e localizagdo da trinca na parede do vaso.

Serao simulados dois vasos de pressdao de mesmo comprimento e didmetro interno, com

espessura de parede diferente. Nas simulagdes serdo representados por cascas cilindricas com

raios internos e espessuras correspondentes, submetidas as mesmas cargas, com as

extremidades fixas. O comprimento longitudinal dos vasos ndo ¢ relevante para o célculo dos

FITs.

Como carga atuante, sera considerada somente a pressdo interna, que ¢ uma

simplificagdo da situacdo real, na qual temos diversas cargas atuando sobre o vaso, mas ¢

adequada para os objetivos do presente estudo. A consideracdo das outras cargas destacadas

por Bednar (1986), como cargas eolicas e cargas térmicas, por exemplo, devem ser consideradas

num estudo maior dos defeitos de um vaso de pressao.
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A Tabela 1 apresenta as informagdes dos vasos.

Tabela 1 - Caracteristicas relevantes dos vasos de pressao e cargas atuantes.

Vaso Raio Interno (mm) Espessura (mm) R/t Carga Atuante
1 1000 250 4 Pressdo Interna de 5 MPa
2 1000 100 10 Pressdo Interna de 5 MPa

Fonte: Criado pelo autor.

Todas as trincas serdo posicionadas a meia distancia longitudinal do vaso. Serdo
simuladas 16 trincas no Vaso 1, e 9 trincas no Vaso 2. As caracteristicas geométricas das trincas

do Vaso 1 e do Vaso 2 sdo mostradas nas Tabelas 2 e 3, respectivamente.

Tabela 2 - Informagdes das trincas do Vaso 1.

83.333
0,6 0,4 100 166.667
0,6 0,6 150 250
0,6 0,8 200 | 333.333
0,8 0,2 50 62.5
0,8 0,4 100 125
0,8 0,6 150 187.5
0,8 0,8 200 250

Fonte: Criado pelo autor.

Tabela 3 - Informagdes das trincas do Vaso 2.

0,2 0,2 20 100
0,2 0,5 50 250
0,2 0,8 80 400
0,4 0,2 20 50
0,4 0,5 50 125
0,4 0,8 80 200
1,0 0,2 20 20
1,0 0,5 50 50
1,0 0,8 80 50

Fonte: Criado pelo autor.
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No caso do Vaso 1, as razdes a/c e a/c foram escolhidas entre 0 e 1 de forma a obter
um conjunto uniformemente distribuido de pontos para criagdo de curvas comparativas de

resultados, como ¢ feito nos trabalhos de Zheng et al. (1995, 1997).

Ja no caso do Vaso 2, ha um outro motivo para os valores escolhidos das razdes. Nao
podemos usar as mesmas equagdes para os termos Yy, Yy, Fy € F; dos M;(, gy (fornecidas no
Anexo A) da solugdo de Zheng et al., pois elas sdo ajustes dos dados da tabela de Mettu et al.
(1992) para a razdo R/t = 4 somente. Podemos, no entanto, utilizar as Equagdes (34) e (35),
com os Yy 1 e Fy, tomados diretamente dessa tabela (encontrada no Anexo B) para as razdes

a/c e a/t nela contidas.

Nao foram consideradas trincas com a/t = 0 e a/t = 1, que representam as situagdes
limite: uma trinca com profundidade desprezivel com relagdo a espessura, e uma trinca que se
tornou uma passante, respectivamente. Da forma que as simulagdes sdo estruturadas nesse
trabalho, no primeiro caso, o software assumiria que ndo hé uma trinca, e no segundo, teriamos

problemas relacionados a malha.

Algumas trincas possuem o valor de semieixo maior, ¢, bastante elevado. No caso das
Trincas 3 e 4, destacadas, temos comprimentos longitudinais 2¢ de 1,5m e 2m, respectivamente.
Notamos que a maior das trincas reais estudadas por Challenger et al. (1995) (Quadro 2) possuia
800mm de comprimento longitudinal total, numa analise pds-falha. Por esse motivo, os FITs
das Trincas 3 e 4 serdo calculados somente com o intuito de construir a amostra uniforme de

resultados.

3.1 Calculos Analiticos

Para os calculos analiticos, optou-se por trabalhar com o Octave, um software gratuito
desenvolvido principalmente para computacdo matematica. A linguagem Octave une as
vantagens de comandos que flexibilizam operagdes envolvendo vetores e matrizes de dados, e

das ferramentas para criagao de graficos que atendem as necessidades do presente trabalho.

As rotinas criadas com o Octave (ndo contidas neste documento) possibilitaram o
calculo dos FITs de um grande niimero de trincas em um tempo habil, permitindo, também, a

reunido e armazenamento dos dados de todas as fontes de resultados.
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3.2 Simulac¢des Computacionais

Para as simulagdes computacionais foi escolhido o software comercial ANSYS versao
estudantil, dado que o mesmo possui o0 Mddulo de Fratura, que ndo ¢ o caso de todos os
softwares de andlise estrutural. A metodologia empregada para a obtengdo de resultados do

problema especifico esta descrita no fluxograma da Figura 17.

Figura 17 — Metodologia para realizacao das simula¢des computacionais.

Malha Satisfatoria? Ingoduzir-Trinca
Importar Geometria : Semi Eliptica Resolver
(Fracture Tool)
7 i \ ¥ 1
Definir Material e e Atiallzar) <J Gerar (Atualizar) Definir as Solugiies
. Malha de Base do s . .
Propriedades R Malha da Trinca Desejadas (Solver)
Solido
v ) Y N [}

Iniciar Analise Iniciar ANSYS
Estrutural Estitica Mechanical

Definir Condiges
de Contorno

o 1

Malha da Trinca
Satisfatéria?

Fonte: Criado pelo autor.

3.2.1 Propriedades do Material

Nao foram considerados aspectos relacionados ao material utilizado, visto que as
equacdes para K; utilizadas — Egs. (27), (34) e (35) — levam em conta somente as geometrias
do casco e da trinca. Os trabalhos originais nem mesmo fazem referéncia ao material utilizado.

O material empregado foi o Ago Estrutural padrdo do ANSYS, cujas propriedades

mecanicas estdo listadas na Tabela 4, abaixo. O valor da Tenacidade a Fratura ndo é fornecido.
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Tabela 4 - Propriedades mecanicas do aco estrutural do ANSYS.

PROPRIEDADE (SIMBOLO) VALOR UN.

Modulo de Young (E) 200 GPa

Modulo de Cisalhamento (G) 76,9 GPa

Modulo Volumétrico (K) 166,67 GPa

Limite de Escoamento a Tragdo (oysg) 250 MPa

Limite de Escoamento a Compressio (0yg) 250 MPa

Limite de Resisténcia a Tragdo (oy) 460 MPa
Coeficiente de Poisson (v) 0,3 -

Fonte: Criado pelo autor.

3.2.2 Malha

Primeiramente, a malha do solido deve ser gerada. Ela ¢ tratada de forma independente
da malha da trinca. A malha do sélido foi gerada utilizando elementos tetraédricos e o tamanho
desses elementos foi escolhido de forma que a mudanga de tamanho dos elementos do s6lido
para os elementos da trinca se desse de forma suave. Existem ferramentas que permitem a
adequacdo da malha no que diz respeito a questdo de transi¢do do tamanho dos elementos. Com
a defini¢do do tipo e do tamanho dos elementos, a malha inicial ¢ gerada.

A Figura 18 mostra a malha tetraédrica gerada para um dos casos estudados.

Figura 18 - Malha com elementos tetraédricos da casca cilindrica.

S
\VAVAVAY
S ANAYAVAVATAVA S

Xk
TAVAVAVAY

N SRR AR

VAVAV%VAVAVA

v,
ARG

3000,00 (mm)

750,00 225000

Fonte: Criado pelo autor utilizando o sofiware ANSYS.

Na sequéncia, ¢ gerada a malha da trinca, utilizando a ferramenta Semi-Elliptical Crack
do ANSYS, que requer somente que sejam inseridos os parametros geométricos da trinca

(semieixos maior e menor) e alguns parametros de malha. Os parametros de malha sdo definidos
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na Figura 19. O software emprega elementos voltados para analise de fratura nas regides

necessarias de forma automatica.

Figura 19 - Parametros da malha da trinca.

Crack Front Divisions = 12

Circumferential
Divisions = 16

Fonte: Fracture Mechanics Using Workbench v14.5 (2018).

Ao final do processo de geracdo, obtém-se uma malha como a mostrada na Figura 20.

Figura 20 - Malha da trinca. (a) corte da casca cilindrica. (b) vista aproximada na regido de transi¢do de
malha. (c) vista aproximada na malha da trinca.

00 100000 200000 (mm)
— —
500,00 150000

(b (c

Fonte: Criado pelo autor utilizando o sofiware ANSYS.

3.2.3 Condig¢des de Contorno

As condigdes de contorno do problema sao: extremidades fixas e pressdao interna. A
Figura 21 mostra o s6lido com as condigdes impostas e uma legenda indicando as superficies

de aplicagao.
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Figura 21 - Condigdes de contorno e respectivas superficies de aplicagdo: suportes fixos nas
extremidades e pressdo interna de SMPa na superficie interna, como exemplo.

Fonte: Criado pelo autor utilizando o sofiware ANSYS.

3.2.4 Solucao

Por fim, determina-se as respostas que o programa deve obter. O ANSYS nos permite
calcular o FIT dos trés modos de carregamento, a Integral J, e outros parametros como o T
Stress e a Integral C, que sao utilizados em aplicagdes mais especificas. Solicitamos somente o
calculo dos Fatores de Intensidade de Tensao do Modo I de carregamento (SIFS [K1]).

Ao findar do tempo necessario para a solugdo, podemos visualizar o corpo deformado e
verificar as tensoes, deformagdes e deslocamentos em todo sélido, e os FITs ao longo da frente
da trinca semieliptica.

Em alguns casos, dependendo da configuragcdo geométrica da parede do vaso e da trinca,
fez-se necessario realizar um refino adicional da malha em torno da regido da trinca, com o
objetivo de possibilitar a geracdo da malha, ou eliminar irregularidades excessivas nos

resultados.
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4 RESULTADOS E DISCUSSOES

Primeiramente serdo apresentados resultados de forma a validar a implementacao das
equagoes. Na sequéncia, serdo apresentados os resultados especificos, analiticos e
computacionais das trincas dos Vasos 1 e 2. Por fim, sera possivel verificar como os resultados
computacionais obtidos com a metodologia empregada se relacionam com os resultados

analiticos, para os casos especificos.

4.1 Validacao dos Calculos Analiticos

Aqui serdo apresentados resultados da abordagem analitica, comparando-os com o0s
resultados publicados pelos autores, mostrados nos Anexos C e D, com o objetivo de validar a

implementagao das equagdes.

4.1.1 Equagdo de Newman e Raju (1980)

A Figura 22 mostra o fator de corre¢ao F de trincas com a/c = 0,2. Lembramos que a
expressdo para o célculo de F, a Eq. (27), representa um ajuste dos resultados obtidos pelos

autores, mostrados no Anexo C para comparacao.

Figura 22 - Fator de correcdo F de trincas semielipticas com a/c = 0,2 calculados pelas Equacdes de
Newman e Raju.
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= =Rt=4,2at=08 -
Rit=10,att =02 -

= =R/it=10,at=08 -

|
-
- -

e
-

0.5

20/

Fonte: Criado pelo autor.
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Essas curvas sdo sempre simétricas e, por isso, podem ser mostradas no intervalo 0 <

¢ < m, também.
Um fendmeno que deve ser destacado € o da transi¢ao do ponto da frente da trinca com

valor maximo de K;. Ele pode ser o ponto central (A, ¢ = m/2) ou o ponto superficial (B, ¢ =
0, ), dependendo da razdo a/c da trinca. A Figura 23 ilustra esse efeito em detalhe: para a/c =
0,75, o ponto critico esta em 2¢p/m = 1; e para a/c = 0.85, o ponto critico passou a se

encontrar em 2¢p/m = 0.

Figura 23 - Efeito de transi¢do do valor maximo de K; com a variagdo da razdo a/c.

310

K [MPa-mm”0.5]

n
@
S

270
0 0.2 0.4 0.6 0.8 1

20/m

Fonte: Criado pelo autor.

Destaca-se que essa transi¢ao nao ocorre de forma ‘continua’, isto ¢, o ponto de maximo
ndo se desloca continuamente ao longo da frente da trinca do ponto A ao ponto B. O que ocorre,
na verdade, ¢ que a curva se modifica continuamente até o momento em que, subitamente, K;p
se torna maior que Kj 4.

Podemos apresentar dados de multiplas trincas em dois graficos, um para o ponto A e

outro para o ponto B, tomando somente os FITs adimensionais nesses pontos:

_Ka _y =5F(¢=E) 44
pyma/Q "t 2 49
KIB R
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Essa defini¢ao do FIT adimensional é para concordar com a defini¢do utilizada com o
outro conjunto de equacdes empregado no trabalho. Os graficos das Figuras 24 e 25 mostram a
variagdo do FIT adimensional nos pontos A e B, em fun¢do da profundidade relativa a/t, para

trincas com a/c = 0,2; 0,4 e 1, obtidos com a equacdo de Newman e Raju.

Figura 24 - FITs adimensionais do ponto A calculados com a equagdo de Newman e Raju para R/t = 4.

10 T T

T
—$—alc=0.2
—©—alc=04
—®—alc=1

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
a/t

Fonte: Criado pelo autor.

Figura 25 - FITs adimensionais do ponto B calculados com a equagao de Newman e Raju para R/t = 4.

8 T T T T
—$—alc=02

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
alt

Fonte: Criado pelo autor.
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Vale notar que cada ponto dessas curvas representa um valor (Y, ou Y3) associado a uma
trinca distinta (diferentes a/c e a/t), em contraste as curvas em func¢do da coordenada angular,
nas quais todos os valores de uma curva sao referentes a uma tnica trinca.

Quando desejarmos sintetizar informag¢des de vérias trincas, usaremos esse tipo de
disposicao visual de resultados.

Com esse tipo de grafico, o efeito de transicdo ndo ¢ imediatamente verificavel.
Podemos visualizar o efeito da seguinte forma: tomando um valor de a/t, digamos, a/t = 0,5:
paraa/c = 0,2temos Y, > Yg;paraa/c = 0,4 temos Y, > Yp; agora, paraa/c = 1 temos Y, <
Yg. A transicdo ocorre, portanto, entre a/c = 0,4 e a/c = 1. E claro que necessitariamos de

mais dados para ter uma melhor estimativa da razao na qual o efeito ocorre.

4.1.2 Equagoes de Zheng et al. (1995, 1997)

Utilizando as Equagdes (34) e (35) de Zheng et al., com os termos dados no Anexo A,
podemos plotar Y, e Yz, obtendo curvas como as mostradas nas Figuras 26 e 27,

respectivamente. Essas equacdes nos ddo uma curva continua.

Figura 26 - FITs adimensionais do ponto A calculados com as equagdes de Zheng et al. para R/t = 4.

10 T T
=—galc =02

=—a/c=04

—alc=1

0 0.2 0.4 0.6 0.8
alt

Fonte: Criado pelo autor.
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Figura 27 - FITs adimensionais do ponto B calculados com as equac¢des de Zheng ef al. para R/t = 4.

8 T T
=——ga/c=02

—a/c=04

—alc=1

3 L 1 L
0 0.2 0.4 06 0.8

alt

Fonte: Criado pelo autor.

Nota-se, imediatamente, a semelhanga com as Figuras 24 e 25, o que indica que as duas
equagoes estdo em correspondéncia. O efeito da transicao ¢ verificado da mesma forma nas
Figuras 26 e 27: comparando os valores para um a/t fixo com a/c aumentando.

Os graficos de Zheng et al. (1995) para mesma configuracao de vaso e para 0s mesmos

a/c sdo mostrados no Anexo D.

4.2 Resultados Computacionais e Comparac¢io com Resultados Analiticos

As simulacdes para todos os casos especificos foram realizadas representando o vaso
por uma casca cilindrica de parede espessa, com as mesmas caracteristicas geométricas do vaso.
Em todos os casos, foram utilizados cerca de 75.000 elementos e 200.000 n6s. As condig¢des de
contorno empregadas em todos os casos foram: pressdo aplicada na parede interna do vaso, €
extremidades fixas.

A ferramenta Semi-Elliptical Crack, utilizada para a introducao das trincas, ¢ uma opgao
default, que ndo proporciona muita liberdade no que diz respeito ao tipo e nimero de elementos
da malha e, inclusive, realiza mudangas em certos parametros quando ¢ necessario para se

chegar a uma solugao.
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A Figura 28 mostra o vaso de pressdo sob a¢do da pressao interna de apds o tempo de
solugdo do ANSYS de um caso de exemplo, e distribuicdo de tensdes (tensdo equivalente de

Von Mises).

Figura 28 - Vaso ap0s solug@o e distribui¢do de tensdes. R/t = 10. Marcadores indicam valores locais
de tensao.

Fonte: Criado pelo autor utilizando o sofiware ANSYS.

Notamos que ao longo de praticamente toda a extensdo da casca, a tensdo se encontra
em niveis baixos. A regido de tensdes elevadas ¢, como esperado, a regido da trinca, como pode
ser visto na Figura 29. A Figura 30 mostra a trinca aberta sob o carregamento imposto e a Figura

31 mostra os valores do FIT na frente da trinca.
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Figura 29 - Parte interna do vaso. Marcador vermelho indica ponto de méxima tensao.

0,00 1500,00 3000,00 (mm) Z
" E—

750,00 2250,00

Fonte: Criado pelo autor.

Figura 30 - Trinca no Modo I de carregamento. Marcador vermelho indica ponto de maxima tensao.

Fonte: Criado pelo autor utilizando o software ANSYS.
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Figura 31 - Fatores de Intensidade de Tens&o ao longo da frente da trinca.

Fonte: Criado pelo autor utilizando o software ANSYS.

Os FITs podem ser visualizados em um grafico criado automaticamente, que apresenta
os valores em funcdo do comprimento ao longo da frente da trinca (iniciando no ponto 1 da
trinca e indo até o ponto 2, na Figura 31), e ndo em fungdo da coordenada angular da semi
elipse. A Figura 32 mostra o grafico gerado pelo sofiware para o caso R/t =4, a/c=0,4 ¢
a/t =0,6.

Figura 32 - FITs calculados pelo ANSYS. R/t =4,a/c =0,4,a/t =0,6.
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Fonte: Gerado pelo software ANSYS.

A seguir mostramos os resultados das abordagens analitica ¢ computacional, obtidos
para as Trincas 1-25.
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42.1Vasol-R/t=4

4.2.1.1 Equagdo de Newman e Raju

Com a Eq. (27), obtemos os FITs em funcao da coordenada angular para as Trincas 1-

16, mostrados nas Figuras 33, 34, 35 e 36.

Figura 33 - FITs calculados com a Equag@o de Newman e Raju para a/c = 0,2. (a) Trinca 1 (b) Trinca 2 (c)
Trinca 3 (d) Trinca 4.
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Fonte: Criado pelo autor.
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Figura 34 - FITs calculados com a Equag@o de Newman e Raju para a/c = 0,4. (a) Trinca 5 (b) Trinca 6 (c)
Trinca 7 (d) Trinca 8.

(@

©

8

K [MPa-mm*0.5]
2 B g 8

°
&

700

g

K [MPa-mm*0.5]
g & 2
K [MPa-mm*0.5]
3 3 8

450

FIT-a/c=04,a/t=02

FIT-a/c = 0.4, a/t=06

°
&

(b)

d

FIT-a/c=0.4,at=04

500

K [MPa-mm*"0.5]
g & §

300
0

&

FIT-a/c=0.4,a/t=0.8

850

Fonte: Criado pelo autor.

Figura 35 - FITs calculados com a Equag@o de Newman e Raju para a/c = 0,6. (a) Trinca 9 (b) Trinca 10 (c)
Trinca 11 (d) Trinca 12.
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Fonte: Criado pelo autor.
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Figura 36 - FITs calculados com a Equacdo de Newman e Raju para a/c = 0,8. (a) Trinca 13 (b) Trinca 14 (c)
Trinca 15 (d) Trinca 16.

FIT-a/c = 0.8, a/t=0.2 FIT-a/c=08,at=04

K [MPa-mm*0.5]
K [MPa-mm*0.5]

(a) Oim (b) o/m

FIT-a/c=0.8, a/t=06 FIT-a/c=08,at=08

K [MPa-mm"0.5]
&
K [MPa-mm*0.5]

© T T @ oin

Fonte: Criado pelo autor.

4.2.1.2 Equacgoes de Zheng et al.

Agora, com as Equagdes (31) e (32), obtemos os FITs do ponto A e B, respectivamente,
de trincas com a/c = 0,2; 0,4; 0,6 ¢ 0,8, no Vaso 1 (R/t = 4) para todas as razdes a/t entre
0 e 0,8, mostrados nas Figuras 37 e 38. Os pontos especificos das Trincas 1-16 estdo contidos

nestas curvas continuas nos a/t correspondentes.



Figura 37 - FITs do ponto A de trincas com razdes a/c = 0,2; 0,4; 0,6 e 0,8 no Vaso 1 calculados com as

Equacgdes de Zheng et al.
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Fonte: Criado pelo autor.

Figura 38 - FITs do ponto B de trincas com razées a/c = 0,2; 0,4; 0,6 ¢ 0,8 no Vaso 1 calculados com as
Equacdes de Zheng et al.
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Fonte: Criado pelo autor.
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4.2.1.3 Simulagoes Computacionais

As Figuras 39, 40, 41 e 42 mostram os resultados obtidos com as simulac¢des das

Trincas 1-16.

Figura 39 - FITs calculados com o0 ANSYS para a/c = 0,2. (a) Trinca 1 (b) Trinca 2 (c) Trinca 3 (d) Trinca 4.
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Fonte: Criado pelo autor.
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Figura 40 - FITs calculados com 0 ANSYS para a/c = 0,4. (a) Trinca 5 (b) Trinca 6 (c) Trinca 7 (d) Trinca 8.
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Fonte: Criado pelo autor.

Figura 41 - FITs calculados com o ANSYS para a/c = 0,6. (a) Trinca 9 (b) Trinca 10 (c) Trinca 11 (d) Trinca

(@)

©

alc=0.6,at=02

Kl [MPa-mm*0.5]

50 100 50 210
Gomprimenro ao longo da semielipse [mm]

alc=0.6,at =06

KI [MPa-mm~0.5]

o o
solgBie © 8

o 100 200 00 <0 500 00
Comprimenro ao longo da semielipse [mm]

12.

(b)

d

alc=06,at=04

350 o
20
o
o
£ o
£ o
& °
o o
S0l o
g |= a
9 o
a o
290 4
- ' . . n
0 100 200 300 100 500
Gomprimenro ao longo da semielipse [mm]
alc=06,2a/t=0.8
560
o
b o
si0
°
u—? o
e
t o o
E s a
CL'V 520
o o
I .
< ° o
o o
sof o o
o o
o °
W
0 f . . .

200 ann 500 800
Comprimenro ao longo da semielipse [mm]

Fonte: Criado pelo autor.

1000



63

Figura 42 - FITs calculados com o ANSY'S para a/c = 0,8. (a) Trinca 13 (b) Trinca 14 (c) Trinca 15 (d) Trinca
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Fonte: Criado pelo autor.

Nota-se que em alguns casos temos assimetrias e irregularidades, razao pela qual foram

apresentados os graficos para todo o comprimento da semielipse.

No caso das Trincas 6, 9, 10, 13, 14 e 15, os valores extremos diferem em muito dos
valores vizinhos. Nao foi possivel explicar a razao de isso acontecer. Assumiremos que se trata

de uma questao numérica e desconsideraremos esses valores.

4.2.1.4 Comparagao

Tomando somente os FITs adimensionais dos pontos A e B, obtidos pela divisao de K;4

e K;p de cada trinca pelo fator P /ma/Q correspondente, podemos sobrepor os resultados e

chegar uma comparagdo mais clara. As Figuras 43 e 44 mostram o comparativo final dos

resultados.



64

Figura 43 - FITs adimensionais do ponto A das trincas do Vaso 1.
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Fonte: Criado pelo autor.

Figura 44 - FITs adimensionais do ponto B das trincas do Vaso 1.
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Fonte: Criado pelo autor.

O comportamento das curvas resultantes ¢ muito semelhante. No entanto, todos os
resultados das simulagdes estdo consideravelmente abaixo dos resultados de ambas as equagdes

utilizadas. Isso indica, num primeiro momento, que os resultados computacionais s3o menos
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conservativos, possivelmente representando situagdes mais proximas do real, para as
configuracdes consideradas. No entanto, deve-se ter um melhor entendimento das
aproximacoes feitas pelo software para determinar o motivo dessas diferencas. As Tabelas 5 e

6 mostram os valores numéricos dos pontos associados as Trincas 1-16 das Figuras 43 e 44.

Tabela 5 - FITs adimensionais do ponto A, Y,, das Trincas 1-16.

Trinca | Newman e Raju | Zheng et al. ANSYS
1 6,09 5,86 4,94
2 6,94 6,69 5,54
3 8,22 8,09 6,65
4 9,61 9,99 8,07
5 5,85 5,64 4,72
6 6,27 5,95 4,88
7 6,89 6,52 5,27
8 7,49 7,29 5,84
9 5,68 5,55 4,61
10 5,89 5,63 4,61
11 6,23 5,80 4,74
12 6,54 6,07 4,99
13 5,54 5,51 4,53
14 5,64 5,47 4,46
15 5,81 5,49 4,48
16 5,97 5,57 4,59

Fonte: Criado pelo autor.
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Tabela 6 - FITs adimensionais do ponto B, Y5, das Trincas 1-16.

Trinca | Newman e Raju | Zheng et al. ANSYS
1 3,04 3,33 2,68
2 3,59 3,90 3,09
3 4,51 4,92 3,79
4 5,69 6,41 4,77
5 4,12 4,24 3,57
6 4,58 4,69 3,92
7 5,34 5,45 4,57
8 6,28 6,52 5,46
9 4,90 4,96 4,22
10 5,28 5,22 4,45
11 5,92 5,74 4,94
12 6,70 6,66 5,62
13 5,52 5,51 4,74
14 5,83 5,66 4,88
15 6,37 6,06 5,26
16 7,07 6,84 5,76

Fonte: Criado pelo autor.

422 Vaso2-R/t=10

4.2.2.1 Equagdo de Newman e Raju

As Figuras 45, 46 e 47 mostram os graficos obtidos com a equagdo de Newman e Raju

para as mesmas trincas.
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Figura 45 - FITs calculados com a equacdo de Newman e Raju para a/c = 0,2. (a) Trinca 17 (b) Trinca 18 (c)
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Figura 46 - FITs calculados com a equacdo de Newman e Raju para a/c = 0,4. (a) Trinca 20 (b) Trinca 21 (c)
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Figura 47 - FITs calculados com a equacdo de Newman e Raju para a/c = 1. (a) Trinca 23 (b) Trinca 24 (c)
Trinca 25.

FIT-alc=1,alt=05

FIT-alc=1,at=0.2

K [MPa-mm~0.5]
2 @ @

8

3

460
0

(a) ofx (b) o/n

]

FIT-alc=1,a/t=0.8

K [MPa-mm"0.5]

(C) o/n

Fonte: Criado pelo autor.

4.2.2.2 Equacgoes de Zheng et al.

Agora, utilizando as equacoes de Zheng et al., com atencao ao que foi dito anteriormente

com relacdo aos valores de Yy, Y3, Fy e F;, obtemos os FITs dos pontos A e B das trincas 17-

25, mostrados nas Figuras 48 e 49.



Figura 48 - FITs do ponto A das Trincas 17-25 calculados com as equacgdes de Zheng et al.
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Figura 49 - FITs do ponto B das Trincas 17-25 calculados com as equagdes de Zheng ef al.
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Fonte: Criado pelo autor.

4.2.2.3 Simulagoes Computacionais

As Figuras 50, 51 e 52 mostram os resultados das simulagdes das Trincas 17-25.
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Figura 50 - FITs calculados com o ANSYS para a/c = 0,2. (a) Trinca 17 (b) Trinca 18 (c¢) Trinca 19
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Fonte: Criado pelo autor.

Figura 51 - FITs calculados com o ANSYS para a/c = 0,4. (a) Trinca 20 (b) Trinca 21 (c¢) Trinca 22.
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Figura 52 - FITs calculados com o ANSY'S para a/c = 1. (a) Trinca 23 (b) Trinca 24 (c) Trinca 25.
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Fonte: Criado pelo autor.

Notamos algumas irregularidades mais acentuadas nos graficos das Trincas 3 e 6. Nao

foi possivel eliminé-las com refinamento adicional da malha.

Novamente, os pontos extremos que se distanciaram muito dos pontos vizinhos, serdo

desconsiderados. Isso ocorreu com as Trincas 20, 23 e 24.

4.2.2.4 Comparagdo

Tomando agora os FITs adimensionais dos pontos A e B, obtidos pela divisao dos FITs

de K;, e K;p pelo fator P /ma/Q correspondente, podemos sobrepor os resultados e chegar a

uma comparagao mais clara. As Figuras 53 e 54 mostram o comparativo final dos resultados.



22

Figura 53 - FITs adimensionais do ponto A das trincas do Vaso 2.
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Figura 54 - FITs adimensionais do ponto B das trincas do Vaso 2.
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Nota-se, claramente, que todas as curvas associadas as mesmas razdes a/c (curvas de
mesma cor), obtidas pelas equacdes e pelas simulagdes tém comportamentos muito
semelhantes. Os dois conjuntos equagdes empregados concordam muito bem. Novamente ¢
possivel verificar que os resultados das simulagdes apresentam magnitudes que se distanciam

dos resultados analiticos, mas essa diferenca ¢ menor que a verificada no caso do Vaso 1.

As Tabelas 7 e 8 mostram os valores numéricos dos pontos associados as Trincas 17-25

das Figuras 53 ¢ 54.

Tabela 7 - FITs adimensionais do ponto A, Yy, das Trincas 17-25.

Trinca | Newman e Raju Zheng et al. ANSYS
17 12,92 12,7 11,72
18 16,2 16,02 13,94
19 20,85 20,76 17,58
20 12,4 12,2 11,33
21 14,1 13,63 12,46
22 16,25 15,37 13,75
23 11,49 11,54 10,71
24 11,74 11,7 10,76
25 12,1 11,92 10,72

Fonte: Criado pelo autor.

Tabela 8 - FITs adimensionais do ponto B, Y5, das Trincas 17-25.

Trinca | Newman e Raju Zheng et al. ANSYS
17 6,44 6,98 6,19
18 8,6 9,04 7,78
19 12,34 13,36 11,6
20 8,73 8,93 8,4
21 10,59 10,69 10,03
22 13,61 13,82 13,1
23 12,8 13,09 12,21
24 13,94 13,92 12,97
25 16,01 15,31 14,4

Fonte: Criado pelo autor.

Resultados da literatura foram reproduzidos com éxito, € o objetivo de validar a

implementa¢ao das equacdes foi cumprido. Foi verificado que as simulagdes conseguem
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mostrar a transicdo do ponto de maximo K;, prevista pela equacde de Newman e Raju. Na
sequéncia, resultados computacionais foram apresentados para as diversas configuragdes de
trinca estudadas. Adicionalmente, parte das equagdes de Zheng et al. (1995, 1997) foi utilizada
em conjunto com dados numéricos da tabela de Mettu et al. (1992) para obter os FITs de trincas

semielipticas internas em um VP com R/t = 10, submetido a tensdo circunferencial de Lamé.

As Tabelas 9 e 10 mostram os erros relativos entre os resultados computacionais e

analiticos. Esses erros foram calculados da seguinte forma:

Y, p(analitico) — Y, p(computacional
err = Hant )~ Yap(comp ) 100% (45)
Y, p(analitico)

Tabela 9 - Erros relativos entre resultados computacionais e analiticos.

ANSYS - Newman e Raju ANSYS - Zheng et al.
Trinca R/t YA YB YA YB
1 4 18,88% 11,84% 15,70% 19,52%
2 4 20,17% 13,93% 17,19% 20,77%
3 4 19,10% 15,96% 17,80% 22,97%
4 4 16,02% 16,17% 19,22% 25,59%
5 4 19,32% 13,35% 16,31% 15,80%
6 4 22,17% 14,41% 17,98% 16,42%
7 4 23,51% 14,42% 19,17% 16,15%
8 4 22,03% 13,06% 19,89% 16,26%
9 4 18,84% 13,88% 16,94% 14,92%
10 4 21,73% 15,72% 18,12% 14,75%
11 4 23,92% 16,55% 18,28% 13,94%
12 4 23,70% 16,12% 17,79% 15,62%
13 4 18,23% 14,13% 17,79% 13,97%
14 4 20,92% 16,30% 18,46% 13,78%
15 4 22,89% 17,43% 18,40% 13,20%
16 4 23,12% 18,53% 17,59% 15,79%
17 10 9,29% 3,88% 7,72% 11,32%
18 10 13,95% 9,53% 12,98% 13,94%
19 10 15,68% 6,00% 15,32% 13,17%
20 10 8,63% 3,78% 7,13% 5,94%
21 10 11,63% 5,29% 8,58% 6,17%
22 10 15,38% 3,75% 10,54% 5,21%
23 10 6,79% 4,61% 7,19% 6,72%
24 10 8,35% 6,96% 8,03% 6,82%
25 10 11,40% 10,06% 10,07% 5,94%

Fonte: Criado pelo autor.
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Essa tabela confirma a informacao visual: os erros associados ao Vaso 1, sdo bastante
superiores aos erros associados ao Vaso 2. O erro méaximo (destacado) ¢ de 25,59%, associado
ao ponto superficial da Trinca 4 (Vaso 1), entre os resultados do ANSYS e das equagdes de

Zheng et al.

A Tabela 10, por sua vez, mostra os erros relativos entre os resultados analiticos.

Tabela 10 - Erros relativos entre resultados analiticos.

Trinca YA YB
1 3,78% 9,54%
2 3,60% 8,64%
3 1,58% 9,09%
4 3,95% 12,65%
5 3,59% 2.91%
6 5,10% 2,40%
7 5,37% 2,06%
8 2,67% 3,82%
9 2,29% 1,22%
10 4.41% 1,14%
11 6,90% 3,04%
12 7,19% 0,60%
13 0,54% 0,18%
14 3,01% 2,92%
15 5,51% 4,.87%
16 6,70% 3,25%
17 1,70% 8,39%
18 1,11% 5,12%
19 0,43% 8,27%
20 1,61% 2,29%
21 3,33% 0,94%
22 5,42% 1,54%
23 0,44% 2.27%
24 0,34% 0,14%
25 1,49% 4.37%

Fonte: Criado pelo autor.

Nota-se erros baixos, como € o caso das Trincas 13 e 24, que possuem erros abaixo de
1% tanto para Y, como para Yz. O maior erro ¢ de 12,65%, associado ao valor de Y da Trinca

4.
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Com relagdo aos resultados computacionais, reitera-se que o Método dos Elementos
Finitos ¢ uma ferramenta poderosa, encontrando iniimeras aplicagdes em muitas areas da
engenharia. No entanto, essa ferramenta deve ser sempre utilizada com cautela, principalmente

quando a experiéncia € pouca.

A interpretacdo de resultados computacionais ¢ sempre um ponto delicado de qualquer
estudo, ndo sendo diferente no caso deste trabalho. Com o estudo que precedeu a execugdo do
trabalho, nao foi possivel encontrar informagdes que descrevessem de forma simples e
acessivel, como o ANSYS calcula o FIT. Com isso, considera-se que uma andlise mais
cuidadosa deve ser feita para entender os pontos que podem ter motivado as diferencas

verificadas.

A concordancia entre os resultados analiticos ¢ esperada, visto que tanto os resultados
de Newman e Raju, como a técnica das Fung¢des Peso, estao presentes em inimeros trabalhos

da literatura da Mecéanica da Fratura desde que foram desenvolvidos.

Destaca-se que a Norma BS 7910 (2013), empregada para avaliacdo de integridade de
estruturas trincadas, utiliza em seus calculos, termos da equagdo de Newman e Raju (com
modificagdes em certos casos) para a estimativa dos FITs dos defeitos analisados em vasos de
pressdo, e também em outras geometrias. Adicionalmente, décadas apods as publicacdes, os
trabalhos sdo referenciados em inumeras outras pesquisas, como fonte consolidada de

resultados.

Por outro lado, a técnica das Fungdes Peso, que nos fornece um conjunto de equagdes
drasticamente mais trabalhoso de se implementar, possui uma vantagem muito importante. A
equacdo de Newman e Raju aqui utilizada, mais simples e compacta, contempla somente o
efeito da pressdo interna atuando no vaso. E possivel, em principio, utilizando as Fun¢des Peso,
obter os FITs dos pontos criticos da trinca para qualquer distribui¢ao de tensoes, descrita por
fungdes matematicas conhecidas, que represente uma situagdo fisica real. Nabavi e Shahani
(2006, 2007), por exemplo, utilizam o método para obter os FITs de trincas semielipticas em
vasos de pressdo submetidos a tensdes térmicas, que influenciam em muito a operacao de

equipamentos industriais.
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5 CONCLUSOES

Os Fatores de Intensidade de Tensao para o Modo I de carregamento de trincas
semielipticas internas orientadas longitudinalmente em vasos de pressao de parede espessa com

razdo R/t = 4 e 10, foram calculados utilizando:

(i) simula¢des computacionais via MEF com o ANSYS;
(ii) a equacao de Newman e Raju (1980);
(iii)  as equagoes de Zheng et al. (1995, 1997).

No total, foram estudadas 25 trincas. Dezesseis delas contidas no Vaso de Pressdo 1,
com razdo R/t = 4, e as outras nove contidas no Vaso de Pressdo 2, com razao R/t = 10.

Ambos os vasos com um interno de 1000mm e submetidos a uma pressdo interna de SMPa.

E importante destacar que as equacdes empregadas ndo sio encontradas na literatura
classica de Mecanica da Fratura e foram desenvolvidas por métodos distintos: a equagao de
Newman e Raju (1980) veio de ajustes diretos de resultados do MEF, enquanto as equacdes de
Zheng et al. (1995, 1997) sdo obtidas com o emprego da técnica matematica das Fungdes Peso
da Mecanica da Fratura, que utiliza resultados do MEF como dados de referéncia. Com isso em

mente, hd uma motivacao adicional para a comparacao realizada.
Com a analise dos resultados finais, ¢ verificado que:

- As equagdes selecionadas e as simulagdes computacionais dao resultados com

comportamento muito semelhante;

- Os resultados analiticos dos dois conjuntos de equagdes utilizados concordam muito

bem entre si;

- Os resultados das simulagdes possuem valores absolutos inferiores e apresentam
diferengas notaveis em relacdo aos resultados analiticos, com erros relativos em torno
de 17% para o Vaso 1, e 9% para o Vaso 2. No caso do Vaso 1 (R/t = 4), temos o erro

maximo de 25,59%.
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6 TRABALHOS FUTUROS

Trabalhos futuros recomendados na area sdo:

- Realizar comparagdes semelhantes utilizando a ferramenta Pre-Meshed Crack do

ANSYS, e verificar quais as diferengas com os resultados atuais;
- Validar os resultados obtidos neste trabalho para o vaso com R/t = 10;

- Realizar o ajuste dos dados de Mettu et al. (1992) para R/t = 10, para se obter uma
solucao completa de K;4 e K;5 em cascas cilindricas com essa razao entre o raio interno

€ espessura;

- Utilizar as Fungdes Peso para estudar o efeito de cargas de outra natureza, como cargas
térmicas e as originadas de momentos fletores, sobre os Fatores de Intensidade de

Tensao de trincas semielipticas;

- Considerar os Fatores de Concentragdo de Tensdes associados as irregularidades

geométricas encontradas em vasos de pressdo reais;

- Estudar trincas em orientagdes diferentes da longitudinal como, por exemplo, trincas

transversais e obliquas;
- Estudar trincas com razao de aspecto maior que 1 (a/c > 1);

- Realizar uma comparagdao com procedimentos de normas FFS, como a BS 7910.
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ANEXO A - SOLUCOES COMPLETAS DE K, e K;; DE ZHENG ET AL. (1995, 1997)

K J2
— My, = yv2Q [AM,, + BM,, + CMs, + D] (A1)
P\/ma/Q T
Lzyzﬂ[/w + GM,p + HMsp + 1] (A2)
Pm B T 1B 2B 3B
Onde:
2m 24
14 = \/T_Q (Yo +31) — = (A3)
My, =3 (A4)
6n 8
M3y = \/T_Q(YO —-20) + < (A5)
3n
Mg = \/_E(ZFO —5F) -8 (A6)
157
3w
M3p = —=(3F, — 10F;) — 8 (A8)
Jeo
Os Y e F, por sua vez, tém a forma:
a a2 a4
a a2 ay*
o= o+ (5) + 42 (5) +45(5) (A10)
F, = [C +6(3)+c (a)z +C (aﬂa (A1)
0 — 0 1 t 2 t 3 t c
a a2 a\*1a
Com
Ay = —5,944e70012(a/9) 4 ¢ 594 (A13)
A = —0,436e78063(a/¢) _ 0,136 (A14)
A, = 0,787e~4562(a/¢) 1 0,269 (A15)

Az = —1,53800434(a/¢) 4 1 552 (A16)



By = 0,0998e~1315(a/¢) + 1,010
B; = 0,366e31:17(a/9) 4 0,055
B, = 3,269e~385%(a/¢) — 0,057
B; = 0,061e1354(@/¢) — 0,149

2 3 4

Cy = 5,566 — 19,583 (%) + 37,335 (%) — 33,705 (%) + 11,507 (%)

2 3 4

C, =—-1,75+9,514 (%) ~ 16,618 (%) + 10,44 (%) ~ 1,616 (%)

C, = 12,497 — 49,067 (%) + 72,59 (%)2 — 45216 (%)3 +9,55 (%)4
a 2 3 a4
¢

C; = —3,486 — 29,49 (=) + 83,789 (%) — 93,289 (%) + 35,507 (Z)

Dy = 0,486 — 0,879 (%) +1,161 (%)2 ~ 0,793 (%)3 +0,212 (%)4

D, = —0,533 + 2,626 (%) — 3,412 (%)2 + 0,999 (%)3 + 0,333 (%)4

2 3 4

D, = 4,166 — 15,985 (%) +22,358 (%) ~ 12,235 (%) +1,826 (%)

2 3 4

D; = 0,569 — 6,605 (%) +21,548 (%) ~ 26,37 (%) +10,853 (%)

Os termos resultantes da integragdo em x, que multiplicam os M; (4 gy sdo:

F
“®out”
Fw Fin(R/t) F 2
= 2@ T 2@ Y (@R 3E
Fin(u) F Fin(R/t) 1
T T @o®D T @o? 2
Fw F FIn(R/t)

+ 2F

b= 2u3/2(a/t)1/2 + (R/Ou  2u32(a/t)1/?

_ Farctan[(a/R)"/?] F 2 g
T @OTRIOVE  (@ju 3
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(A17)
(A18)
(A19)
(A20)
(A21)
(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)



Onde:

F FIn(1+a/R) E

_ Farctan[(a/R)"?] F )
= @O E®R/DTE T ®Riou T

B (R/t)?
E=1+ 1+ 2R/t

_ (R/D)*(1 + R/t)?
B 1+ 2R/t

w = In[u + (a/t) + 2u*/?(a/t)*/?]
u=(R/t) + (a/t)

T T@ou T @2 2

E
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(A34)

(A35)

(A36)

(A37)

(A38)
(A39)
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Tabela B — Fatores de correcdo dos FITs de trincas semielipticas em cascas cilindricas submetidas a distribuigdes

de tensdo constante € linear.

TABLE 1-SIF Correction Factors F, for Internal Cracks

afe=0.2 afc=04 afc=1.0

a/t =0 2 5 8 1.0 0 2 5 8 1.0 0 2 .5 8 1.0
R/t

c-tip, Uniform Loading(n = 0)

1.0 0.608 0.615 0.871 1.554 2.277 0.740 0.745 0.916 1.334 1.752 1.044 1.080 1.116 1.132 1.131
2.0 0.600 0.614 0.817 1.300 1.783 0.730 0.760 0.919 1.231 1.519 1.132 1.113 1.155 1.286 1.416
4.0 0.577 0.606 0.797 1.201 1.586 0.737 0.770 0.924 1.219 1.487 1.119 1.128 1.191 1.316 1.428
10.0  0.579 0.607 0.791 1.179 1.548 0.733 0.777 0.936 1.219 1.469 1.114 1.140 1.219 1.348 1.456
300.0 0.582 0.613 0.790 1.148 1.482 0.721 0.782 0.946 1.201 1.413 1.133 1.154 1.239 1.389 1.520
c-tip, Linear Loading(n = 1.0)

1.0 0.083 0.085 0.171 0.363 0.544 0.112 0.119 0.181 0.307 0.421 0.169 0.182 0.200 0.218 0.229
2.0 0.078 0.083 0.150 0.291 0.421 0.072 0.122 0.197 0.271 0.317 0.192 0.190 0.207 0.247 0.285
4.0 0.070 0.079 0.141 0.262 0.370 0.110 0.123 0.174 0.263 0.339 0.188 0.194 0.214 0.248 0.277
10.0 0.070 0.079 0.138 0.253 0.356 0.109 0.125 0.176 0.259 0.328 0.187 0.197 0.221 0.255 0.282
300.0 0.068 0.081 0.138 0.239 0.328 0.103 0.127 0.180 0.253 0.310 0.189 0.201 0.227 0.265 0.294
a-tip, Uniform Loading(n = 0)

1.0 1.076 1.056 1.395 2.530 3.846 1.051 1.011 1.149 1.600 2.087 0.992 0.987 1.010 1.070 1.128
2.0 1.049 1.091 1.384 2.059 2.739 1.075 1.045 1.160 1.510 1.876 1.037 1.003 1.023 1.129 1.242
4.0 1.003 1.097 1.405 1.959 2.461 1.024 1.057 1.193 1.443 1.665 1.005 1.009 1.041 1.103 1.162
10.0  0.973 1.115 1.427 1.872 2.230 0.992 1.072 1.217 1.393 1.521 0.994 1.015 1.050 1.090 1.118
300.0 0.936 1.145 1.459 1.774 1.974 0.982 1.095 1.244 1.370 1.438 1.002 1.026 1.058 1.085 1.099
a-tip, Linear Loading(n = 1.0)

1.0 0.693 0.647 0.767 1.174 1.615 0.689 0.646 0.694 0.889 1.093 0.704 0.701 0.709 0.730 0.750
2.0 0.673 0.661 0.764 1.033 1.301 0.674 0.659 0.710 0.854 0.995 0.732 0.707 0.714 0.774 0.840
4.0 0.649 0.666 0.776 0.996 1.197 0.668 0.666 0.715 0.828 0.934 0.720 0.713 0.726 0.768 0.810
10.0 0.635 0.673 0.783 0.960 1.108 0.656 0.672 0.723 0.806 0.875 0.715 0.715 0.729 0.760 0.788
300.0 0.620 0.681 0.790 0.917 1.008 0.651 0.677 0.727 0.791 0.838 0.716 0.715 0.726 0.751 0.775

Fonte: Mettu et al. (1992).
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ANEXO C - RESULTADOS DE NEWMAN E RAJU (1980)

Figura C1 — Fatores de corregdo F para trincas com a/c = 0,2.

alc = 0,2

Fonte: Newman e Raju (1980).



ANEXO D - RESULTADOS DE ZHENG ET AL. (1995)

Stress Intensity Factor K,/p(ma/Q)/?

Stress Intensity Factor Ka/p(ma/Q)"*

Figura D1 — FITs adimensionais do ponto A. R/t = 4.
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Fonte: Zheng et al., 1995.

Figura D2 - FITs adimensionais do ponto B. R/t = 4.
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Fonte: Zheng et al. (1995).
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