|| [~2
[ (=2
[ [ ==

4

‘l-;d

=l

VIRTUS IMPAVID,

L

UNIVERSIDADE FEDERAL DE PERNAMBUCO

CENTRO DE TECNOLOGIA E GEOCIENCIAS
CURSO DE ENGENHARIA QUIMICA

WESLEY MARQUES GONCALVES

DETECGAO E DIAGNOSTICO DE FALHAS EM PROCESSOS
INDUSTRIAIS BASEADO EM MODELAGEM DATA-DRIVEN SOB A OTICA DA
INDUSTRIA 4.0

Recife
2022



WESLEY MARQUES GONCALVES

DETECCAO E DIAGNOSTICO DE FALHAS EM PROCESSOS
INDUSTRIAIS BASEADO EM MODELAGEM DATA-DRIVEN SOB A
OTICA DA INDUSTRIA 4.0

Trabalho de conclusdo de curso apresentado a
Coordenacdo do Curso de Graduagdo em
Engenharia Quimica da Universidade Federal
de Pernambuco, como requisito parcial a
obtencdo do grau Bacharel em Engenharia
Quimica.

Orientador: Prof. Dr. Sérgio Lucena

Recife
2022



Ficha de identificacdo da obra elaborada pelo autor,
através do programa de geragdo automatica do SIB/UFPE

Goncalves, Wesley Marques.

Detecgdo e diagndstico de falhas em processos industriais baseado em
modelagem data-driven sob a 6tica daindustria 4.0 / Wesley Marques Gongalves.
- Recife, 2022.

64 :il., tab.

Orientador(a): Sérgio Lucena

Trabalho de Conclusdo de Curso (Graduacdo) - Universidade Federal de
Pernambuco, Centro de Tecnologia e Geociéncias, Engenharia Quimica -
Bacharelado, 2022.

1. Engenharia de processos. 2. Industria 4.0. 3. Simulagéo de processos. 4.
Machine learning. 5. Ciéncia da computacdo. |. Lucena, Sérgio. (Orientacdo). |1.
Titulo.

660 CDD (22.ed.)




WESLEY MARQUES GONCALVES

DETECGAO E DIAGNOSTICO DE FALHAS EM PROCESSOS INDUSTRIAIS
BASEADO EM MODELAGEM DATA-DRIVEN SOB A OTICA DA INDUSTRIA 4.0

Trabalho de Conclusdo de Curso
apresentado ao Curso de Graduagao em
Engenharia Quimica da Universidade
Federal de Pernambuco, como requisito
parcial para obtencdo do grau Bacharel
em Engenharia Quimica.

Aprovado em: 27/10/2022

BANCA EXAMINADORA

Documento assinado digitalmente

ﬁwb SERGIO LUCENA
g A Data: 11/11/2022 11:57:47-0300

Verifique em https://verificador.iti.br

Prof. Dr. Sérgio Lucena (Orientador)

Universidade Federal de Pernambuco

Documento assinado digitalmente

b ELIANE BEZERRA DE MORAES MEDEIROS
g L Data: 11/11/2022 12:09:49-0300
Verifique em https://verificador.iti.br

Profa. Dra. Eliane Bezerra De Moraes Medeiros (Examinadora)

Universidade Federal de Pernambuco

Documento assinado digitalmente

| ﬁb RAFAEL ARAUJO MELO
g Wl Data: 11/11/2022 11:49:33-0300

Verifique em https://verificador.iti.br

Dr. Rafael Araujo De Melo (Examinador)

Universidade Federal de Pernambuco



AGRADECIMENTOS

Agradeco, primeiramente, a Deus por me dar forgas e gragas para chegar até aqui.

Agradeco ao meu pai, Werico Gongalves da Silva, por ter me dado apoio e carinho por

todo este caminho trilhado.

Agradeco a minha mae, Sara Marques Cavalcante Gongalves, por todo o suporte e por

ter me tornado a pessoa que sou hoje.
A minha familia, por todo apoio emocional durante a minha graduacao.

Ao meu orientador Sérgio Lucena pela dedicagdo e paciéncia em me ajudar a concluir

este trabalho.

Aos meus amigos de faculdade, Maria Karolina, Joyce Amorim, José¢ Leonardo e
tantos outros da minha graduagdo que me deram suporte € tornaram minha caminhada mais

leve.

Aos docentes e funcionarios do Departamento de Engenharia Quimica, do Centro de

Tecnologia e Geociéncia e da Area 2 da UFPE, pela contribui¢io em minha formagéo.

A minha namorada Ana Clara Bione pelo grande suporte e companheirismo durante

toda a construcao deste trabalho.



RESUMO

O quantitativo de dados gerados no mundo digital vem crescendo exponencialmente nos
ultimos anos, tanto em relacdo a qualidade como a diversidade. A inteligéncia e a capacidade
de utilizar a informagao a partir dos dados ¢ considerado por muitos como o “novo petroleo”
da contemporaneidade. Nas industrias, tal fato ndo ocorre de maneira distinta, as empresas
que sabem utilizar os dados em seu beneficio possuem uma vantagem competitiva de mercado
imensa, tornando-se capazes de reduzir os custos de producdo, aumentar a qualidade de seus
produtos e garantir eficiéncia em relagao a sua seguranga operacional. Diante desse cenario,
surge a industria 4.0, baseada nas tecnologias de manufatura digital, tais como lo7, Big Data,
Cloud Computing, além de outras tecnologias emergentes. Nessa revolucao, as fabricas
tornam-se cada vez mais mais inteligentes, flexiveis, dindmicas, ageis, integradas e capazes de
prevenir acidentes de trabalho além de paradas nao planejadas ao longo do seu processo de
produgdo. Para que isso de fato ocorra, torna-se imprescindivel detectar, diagnosticar e tratar
satisfatoriamente as falhas que ocorrem ao longo do processo produtivo. Sabe-se que uma
falha ¢ definida como uma variabilidade ndo natural das varidveis de um processo em seu
estado estacionario, as quais nao foram devidamente corrigidas pelo controlador. Dessa
forma, este trabalho propde-se a realizar a detec¢do e o diagndstico de falhas através de uma
analise multivariada utilizando como estudo de caso simulagdes obtidas do Tennessee
Eastman Process. Para a deteccao, utilizou-se a técnica de PCA combinada com as estatisticas
T? e Q e posteriormente comparou-se o desempenho do modelo com a anélise univariada. E
para realizar o diagndstico das falhas, foram testado duas abordagens distintas, a primeira na
qual foi treinada e testada um modelo de rede neural recorrente em LSTM a partir de todas as
varidveis de processo normalizadas, e logo em seguida foi realizado o mesmo procedimento,
porém com uma prévia transformagao linear através da PCA, considerando uma variancia
acumulada de 90% das PCA’s. Estes modelos foram otimizados através de uma variagao
aleatoria dos seus hiperparametros e em seguida comparados entre si e entre outros algoritmos
de machine learning disponiveis na biblioteca scikit-time. Para a detecg¢do, o modelo baseado
em PCA foi capaz de evidenciar, de maneira satisfatoria, 13 das 20 falhas com taxas de
detec¢do de falhas acima de 90%, e para o diagnostico, 0 modelo combinado de PCA e LSTM
foi capaz de diagnosticar, com mais de 85% de acuracia, 17 das 20 falhas, obtendo uma
acuracia global de 94%.

Palavras-chave: Inteligéncia Artificial; Industria 4.0; Machine Learn; Python; PCA; LSTM,;
Falhas; Industria Petroquimica; Engenharia de processos.



ABSTRACT

The amount of estimated data in the digital world has been growing exponentially, both in
quantity and diversity. Intelligence and the ability to use information from data is considered
to be the “new oil”. In the industry this is not different, since companies can have competitive
advantage. In this context, industry 4.0 emerges, based on digital production context
technologies, such as IoT, Big Data, Cloud Computing and other emerging technologies.
These changes have made those industries increasingly intelligent, flexible, dynamic,
integrated and that must be designed to prevent work accidents and no planning process
stops. For this, it is necessary to detect, diagnose and satisfactorily treat the failures that occur
in the production process. A failure being defined as an unnatural variability in the variables
of a stationary process that has not been corrected by the controller. Thus, this work proposes
to carry out a detection and diagnosis of failures through a multivariate analysis using
Tennessee Eastman Process simulations as case studies. For detection, the combined PCA
technique and T? and Q statistics were used and the performance of the model was compared
with the univariate one. In addition, to carry out the fault diagnosis, 2 approaches were tested,
first a recurrent neural network model was trained and tested from the whole normalized
process variables, and then this procedure was done, a linear transformation was previously
performed through PCA, considering an accumulated variance of 90% of PCAs. Models were
optimized by a series of random characters from these models compared to each other and to
other machine learning models available in the scikit-time librarie. For detection, the
PCA-based model was able to satisfactorily detect 13 out of 20 faults with fault detection
above 90% and combined for diagnosis, the PCA and LSTM model was capable of diagnosis,
with more than 85% accuracy, 17 out of 20 failures, with an overall accuracy of 94%.

Keywords: Artificial intelligence; Industry 4.0; Machine Learn; Python; PCA; LSTM; faults;
Petrochemical industry;Process engineering.
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1 INTRODUCAO

A Primeira Revolugdo Industrial iniciou-se na Inglaterra, ainda na segunda metade do
século XVIII, e obteve como seu grande marco a mecanizagdo dos processos, possibilitando o
inicio da producdo em larga escala. Nas fabricas, as maquinas a vapor eram alimentadas por
carvao, tornando-se este o principal combustivel utilizado na época. Ja a Segunda Revolugao
Industrial, além de consolidar a produgdo em larga escala, acelerou o processo de
desenvolvimento das industrias quimicas, elétricas, petroleo e aco, além de contribuir, de
maneira significativa, para que houvesse uma maior disponibilidade de meios destinados a
logistica (CASTELLIS, 2007).

A Terceira Revolugao Industrial teve o seu inicio datado em meados do século XX,
sendo caracterizada pela substituicdo da mecanica do estilo analdgico pelo digital, além de
contar com um grande avango no que tange a area de telecomunicacdes, possibilitado,
sobretudo, devido a criagdo da internet. Para além disso, com o fim da Segunda Guerra
Mundial e inicio da Guerra Fria, houve um interesse cada vez maior no ramo das pesquisas
cientificas, o que possibilitou a ampliacdo de novas fontes de energia, a exemplo da energia
solar, eolica ¢ nuclear (CASTELLIS, 2007).

Todo esse avango tecnologico tornou-se essencial para o surgimento da Quarta
Revolugdo Industrial, que teve o seu inicio na Alemanha no ano de 2011, cujo objetivo
principal do pais era o de fortalecer a sua industria nacional. Pode-se afirmar que a Quarta
Revolucao Industrial vem transformando, de modo significativo, a maneira como as empresas
fabricam, controlam e distribuem os seus produtos. Tecnologias como Big Data and Data
Analytics, Inteligéncia artificial, Internet das coisas, Machine Learning além de outras
emergentes, estdo cada vez mais integradas ao chio de fabricas e na estratégia das empresas,
ndo apenas em relagdo ao seu processo produtivo, mas também na importante pauta de
relacionamento com os seus clientes. E a partir dessa ferramenta estratégica que as inddstrias
tornam-se cada vez mais mais ageis, inteligentes, flexiveis e dinamicas na contemporaneidade
(ANNANTH; ABINASH;RAO, 2021).

O mundo tem se tornado cada vez mais digital, o comportamento dos individuos e a
forma como estes interagem com os diferentes produtos e servigos vém sofrendo fortes
alteragdes nas ultimas décadas (ANNANTH; ABINASH;RAO, 2021). E comum, por
exemplo, pequenos comércios possuirem um site proprio ou um perfil nas redes sociais
visando ampliar as suas oportunidades de vendas. Este fendmeno indica que estar conectado

na atualidade nao ¢ mais uma questao de op¢ao, mas sim uma questao de necessidade.
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Dessa forma, ¢ possivel constatar que a ciéncia dos dados vem recebendo muita
notoriedade nos ultimos anos devido a capacidade de processar esses dados e transforma-los
em informacao. Trata-se de um campo na ciéncia capaz de combinar trés grandes areas do
conhecimento, como a matematica e estatistica, computa¢do e conhecimento de negdcio, além
de apresentar diversas metodologias no que tange a mineracdo de dados, processamento,
analise e até mesmo criagdo de modelos para a predi¢ao de dados (DA SILVA; SIQUEIRA,
2019).

A partir desse contexto, € possivel perceber que a quantidade de dados gerados no
mundo vem crescendo exponencialmente. Estima-se que os dados gerados entre os anos de
2018 e 2015, foram maiores do que os gerados entre 1995 e 2015. Para além disso, ha ainda a
previsdo de que essa quantidade triplique de valor até 2025. Sendo assim, as empresas que
conseguirem gerar informagdo a partir desses dados, seja sobre comportamento dos seus
clientes, ou sobre o processo produtivo, terdo uma imensa vantagem competitiva de mercado
(RYDNING, 2018).

Nas industrias, especialmente as quimicas, houve um grande processo de
automatizacdo dos processos devido a redu¢do de custos com analisadores, controladores e
com armazenamento de dados. O que por sua vez possibilitou o aumento da quantidade de
dados historicos armazenados, gerando uma maior complexidade durante a sua analise
(SOARES, 2017).

No Brasil, em 2016, 48% das industrias utilizaram a tecnologia digital em seus
processos, ja em 2021, esse nimero subiu para 69%, evidenciando, assim, que hd uma
tendéncia a digitalizagdo (PORTAL DA INDUSTRIA, 2022). Apesar disso, essa mesma
pesquisa analisa que as empresas utilizam uma baixa quantidade de tecnologias digitais,
constatando que ainda encontram-se na fase inicial da digitalizacdo. Torna-se possivel
perceber que, a maior parte das industrias brasileiras medem e armazenam dados sobre o
processo, mas ndo os utilizam de modo eficiente, ou seja, ndo usufruem totalmente dos
beneficios possibilitados pela industria 4.0 (PORTAL DA INDUSTRIA, 2022).

Desse modo, uma das tecnologias que encontra-se ainda ndo muito explorada pelas
industrias brasileiras ¢ a analise de detec¢ao e diagndstico de falhas que utilizam dados
historicos do processo. Trata-se de uma tarefa extremamente importante em uma industria,
tendo em vista que esta falha pode vir a ocasionar paradas inesperadas durante o processo de
execugao, refletindo em perdas na producdo, reducao do tempo de vida util dos equipamentos
incluindo até mesmo acidentes de trabalho. Depender apenas do operador humano para lidar

com eventos e emergéncias anormais torna-se um trabalho dificultoso, devido ndo apenas ao
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tamanho e complexidade dos processos, como também ao amplo escopo da andlise de
diagnédstico, além da dependéncia de conhecimento prévio especializado sobre o assunto
(GERMANO, 2017).

Nesse contexto, a andlise de detec¢do e diagnostico de falhas na industria através da
constru¢do de modelos do tipo data-driven (orientado a dados do processo) vem ganhando
bastante notoriedade ao longo dos ultimos anos, uma vez que ¢ capaz de realizar a deteccdo de
falhas em tempo real, além de estabelecer o diagndstico (indicar as causas raizes) de maneira
simplificada baseada apenas em dados, ou seja, ndo torna-se necessario um conhecimento
prévio sobre o processo (CAPACI et al., 2019).

Para criar um modelo de deteccao e diagndstico de falhas em processos industriais €
necessario que haja um banco de dados de varidveis do processo ao longo do tempo, bem
como a resposta dessas varidveis quando submetidas a diversos tipos de falhas. Levando-se
em consideracdo que os dados historicos reais de industrias ndo costumam ser publicos,
Downs e Vogel (1993), propuseram o problema de Tennessee Eastman Process, que trata-se
de uma planta petroquimica que simula um processo real passando a ser considerada um
benchmark em estudo de controle e simulagdo de processos.

Sendo assim, o objetivo deste presente trabalho ¢ detectar e diagnosticar falhas em
processos industriais a partir das variaveis de processo, por meio de técnicas estatisticas em
conjunto a modelos de machine learning. Para isso, serdo utilizados dados de simulacdo
adaptados do Tennessee Eastman Process (TEP) processo obtidos por Rieth er al. (2017), e
ferramentas computacionais, além da linguagem de programacao Python e dos seus mddulos
para machine learning e data science , como as bibliotecas Pandas, Numpy, Scikit-Learn e
pytorch.

Como objetivos secundarios, deseja-se comparar o desempenho entre os diversos
modelos analisados. Utilizar técnicas de pré-processamento nos dados para aumentar o
desempenho dos modelos, verificar a correlacdo entre as variaveis de entrada e as variaveis
alvo e, por fim, propor um sistema em tempo real de detec¢do e diagnostico de falhas na

industria utilizando as tecnologias apresentadas neste trabalho.
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2 FUNDAMENTACAO TEORICA
2.1  INDUSTRIA 4.0

O termo “industria 4.0” foi primeiramente mencionado na Alemanha durante a feira de
Hannover no ano de 2011 como uma iniciativa estratégica para aumentar a competitividade
das fabricas sendo definida como a transformagdo completa de toda a esfera da producao
industrial através da fusdo da tecnologia digital e da internet com a industria convencional.
Apesar do termo ser abordado inicialmente na Alemanha, espalhou-se pelo mundo todo como
uma nova tendéncia estratégica dos governos para aumentar a produtividade de suas
industrias (BORTOLINI et al., 2017).

Nesta revolucdo, as atuais tecnologias de fabricacdo sdo transformadas através de
sistemas inteligentes que integram o meio fisico e o virtual, tais como a internet das coisas,
computacdo em nuvem, machine learning e inteligéncia artificial. O conjunto dessas
tecnologias dd origem ao termo conhecido como Cyber Physical Systems (CPS) que
referem-se a sistemas conectados por meio da internet das coisas (lo7) e que interagem entre
si, analisam dados e adaptam-se as mudangas (PERES, 2020). Dessa forma, percebe-se que a
industria 4.0 combina a inteligéncia artificial, comunicagdo instantdnea, capacidade de
analisar um grande volume de dados e automacao dos processos industriais para aumentar a
performance do sistema produtivo, tendo em vista a possibilidade de tomar decisdes
inteligentes em tempo real (ANNANTH; ABINASH; RAO, 2021).

A industria 4.0 ndo se limita, apenas, aos processos produtivos, mas também ¢ capaz
de integrar a logistica com a manufatura. Conforme citado pela revista mundo logistica
(2017), o foco das empresas sera dedicado a atender as necessidades dos clientes de forma a
produzir bens cada vez mais personalizados, com o menor estoque possivel e com o menor
tempo de fabricacdo. Dessa forma, ¢ necessario que haja uma conectividade e alinhamento
entre toda a cadeia de suprimentos, o que tornou-se possivel através da interconectividade
oferecida pela indastria 4.0. E a partir disso que surge o termo Smart Factory, que refere-se a
uma fabrica que produz produtos inteligentes, utilizando toda uma cadeia de suprimentos
inteligentes, através de equipamentos que atendem as necessidades do consumidor
(MABKHOT, 2018).

Mohamed (2018) destaca os principais componentes necessarios para que haja a
industria 4.0:

e Mapeamento do processo: E necessario que haja o mapeamento do processo para

planejar a implantagao;
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e Sistemas Cyber Fisicos (CPS): Esse sistema integra o mundo fisico e o digital, ou seja,
cada etapa de produgao ¢ acompanhada por dispositivos que enviam dados para uma
unidade central. Esta unidade processa os dados de todas as etapas além de
disponibilizar e enviar essas informacdes;

e Internet das coisas (IoT): IoT faz parte dos CPS e permite a comunicagdo entre os
CPSs e entre CPSs € usuarios;

® Big Data e Analytics: Tratam-se dos avancos da eletronica no que diz respeito a
sensores € a capacidade de armazenamento de dados, em conjunto com os conceitos
da logistica 4.0 onde cada vez mais a producdo encontra-se de maneira dindmica e
orientada para as necessidades dos clientes, sdo responsaveis também por gerar um
aumento expressivo no numero de dados colhidos. Tais dados, quando bem analisados,
geram inteligéncia para o processo, e por consequéncia, vantagem ainda mais
competitivas para o mercado;

o Internet of Service (10S): E a internet das coisas (IoT) aplicada aos prestadores de
servigos, no qual as empresas podem atrelar um servigos aos seus produtos, agregando

ainda mais valor para o usudrio final.

2.1.1 Implementac¢io da industria 4.0 e seus desafios

Obitko e Jirkovsky (2015) e Silveira (2019) citam os 7 principios que devem ser
respeitados para que haja a correta implementacao da industria 4.0. Sao eles:

e C(Capacidade de operacao em tempo real: Aquisicdo e tratamento dos dados em tempo
real. Assim, os dados devem reagir instantaneamente a qualquer alteracdo no
ambiente, como ruidos e falhas, possibilitando a tomada de decisdo em tempo real;

e Virtualizacdo: A industria 4.0 deve fornecer uma copia virtual da planta industrial,
possibilitando a rastreabilidade e o seu monitoramento em tempo real, promovendo
também o uso de simulagdes;

e Descentralizacdo: A tomada de decisdo podera ser realizada pelo sistema cyber-fisico
(CPS) de acordo com as necessidades da producdo, excluindo a necessidade de
individuos destinados para esta tarefa. Assim, cada mddulo da fabrica podera trabalhar
de forma descentralizada tornando a industria ainda mais eficiente;

e Orientagdo a servigos: Utilizacdo de arquiteturas de software orientadas a servigos que

estdo aliados ao conceito de Internet of Services (1oS);
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e Modularidade: A industria ¢ orientada para a demanda e necessidades dos clientes,
proporcionando uma maior flexibilidade para as maquinas;

e Segurancga da informacdo: E a capacidade de proteger todas as informagdes que serdo
trocadas durante o processo.

Apesar dos beneficios da industria 4.0, a sua implementacao envolve muitos desafios,
tais como, tecnoldgicos, econdmicos, problemas sociais e questdes politicas, podendo levar
cerca de 10 anos para que possa ser efetivamente concluida (MOHAMED, 2018).

Dennis Kii sters et al. (2017) citam como os principais desafios para a implementacao
da industria 4.0 a falta de profissionais realmente qualificados e as poucas matérias destinadas
aos cursos de engenharia a respeito do tema, além das incertezas acerca dos beneficios
financeiros da implantagdo da industria 4.0 devido a falta de negdcios e também preocupagdes
sobre a seguran¢a dos dados através de provedores terceirizados. Ja T. Stock e G. Seliger
(2016) afirmam que os principais desafios sao a tecnologia, a readaptagdo da estrutura da

empresa face a quarta revolucao industrial bem como a seguranga da informagao.

2.2 MACHINE LEARNING

Machine Learn ¢ definida como a ciéncia que da aos computadores a capacidade de
aprendizado sem necessariamente serem programados, ou seja, as maquinas sdo capazes de
lidar com dados de maneira eficiente e fazer excelentes previsdes a partir deles. Para realizar
esta operagdo, os modelos matemadticos e estatisticos sdo implementados a partir de uma
linguagem de programagao, e recebem como entrada as varidveis do sistema, que sdo
previamente escolhidas a partir de técnicas estatisticas, retornando as variaveis de saida ou
agrupando as variaveis, que sdo a previsdo do modelo. Sendo assim, o objetivo da machine
learning ¢ proporcionar a maquina o aprendizado através dos dados (MAHESH, 2020).

Para aplicar o aprendizado de maquina, existem diversos tipos de modelo, ndo sendo
possivel identificar um unico modelo que se aplique de modo melhor para todos os
problemas. Sendo assim, os modelos de machine learning sdo divididos em 3 grande classes:
Modelos de aprendizagem supervisionada, ndo supervisionados e semi supervisionados

(SANCHES, 2003).
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2.2.1 Modelo Supervisionado

Os modelos supervisionados sao baseados nos pares de entradas-saidas onde se busca
uma fung¢do capaz de relacionar as varidveis de entrada e saida. Essa funcdo ¢ construida a
partir de modelos matematicos e estatisticos, em que os parametros desses modelos sdo
ajustados de modo a reduzir o erro relativo entre o valor previsto e o valor real (ALPAYDIN,
2021).

Os dados histdricos sdo divididos, geralmente, de maneira aleatéria em dois tipos: os
de treino e os de teste. Os dados de treino possuem varidveis de saida que devem ser
classificadas ou previstas a partir das variaveis de entrada, enquanto que os dados de teste sdo
utilizados para validar o modelo a partir de parametros estatisticos (ALPAYDIN, 2021). O

fluxograma de funcionamento de um modelo supervisionado ¢ evidenciado na Figura 1.

Figura 1 — Fluxograma de um modelo supervisionado.
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Fonte — Adaptado de Mahesh (2020).

2.2.2 Modelo nao Supervisionado

Os modelos ndo supervisionados ndo possuem uma variavel de saida correta, dessa
forma, ndo ¢ possivel treinar o modelo a partir do ajuste dos pardmetros. Logo, os modelos
tentam agrupar os dados a partir de padrdoes de similaridades, ou seja, caracteristicas em
comum. Assim, os modelos ndo supervisionados aprendem as caracteristicas dos dados e os
agrupam dessa maneira, o que ¢ conhecido como clustering. Quando um novo dado ¢
introduzido, o modelo percebe suas caracteristicas e as utiliza para agrupa-las pelos atributos
ja aprendidos (ALPAYDIN, 2021).

Esse tipo de modelo ¢ bastante utilizado para agrupamento de atributos e também para
reduzir varidveis. Possuem aplicacdes em sistemas de recomendag¢do de produtos ou para
detectar spams em e-mail (ALPAYDIN, 2021). O fluxograma de um modelo nao

supervisionado ¢ apresentado na Figura 2 a seguir.
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Figura 2 — Fluxograma de um modelo ndo supervisionado.
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2.2.3 Modelo Semi Supervisionado

Nesse tipo de modelo, hd um conjunto de dados de treinamento e dados ndo rotulados
que também estdo disponiveis para treinamento. Dessa forma, admite-se o treinamento do
modelo com dados ndo rotulados que esta disponivel, junto aos ja rotulados. A motivagado da
existéncia desse modelo ¢ que para muitos casos ha menos dados rotulados ou disponiveis em
comparagao aos ndo rotulados. Um outro motivo ¢ que os dados nao rotulados sdo mais faceis
de serem adquiridos, pois ndo necessitam da intervencdo humana ou de outros modelos de

classificagdo para a sua rotulagdo (SANCHES, 2003).

2.3 TENNESSEE EASTMAN PROCESS

A melhor forma de aplicar as principais técnicas de detec¢ao e diagnostico de falhas ¢
através dos dados especificos relacionados a diversos tipos de falhas em uma industria real,
porém esses dados ndo costumam estar disponiveis de maneira publica (DOS SANTOS,
2018). E nesse contexto que o Tennessee Eastman Processs (TEP) foi desenvolvido pela
Eastman Chemical Company com o intuito de simular falhas em processos industriais
(DOWNS; VOGEL, 1993). Mesmo sendo criado em 1993, esse modelo se mostra
extremamente importante para comparar modelos de deteccdo de falhas, uma vez que
apresentam caracteristicas de dados da industria, como sistemas multicomponentes
complexos, varidveis multicolineares e ndo lineares.

O TEP consiste em um processo continuo com 5 principais componentes: um reator,
um separador liquido-vapor, uma coluna de destilagdo, um compressor de reciclo e um
condensador de produtos, conforme mostrado na Figura 3, possuindo 4 reagentes gasosos
como entrada, A, C, D ¢ E e um inerte identificado na entrada B, formando dois produtos

liquidos na entrada G ¢ H e um subproduto na F, como evidenciado nas reacdes que vai da
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etapa 1 at¢ a4 (DOWNS; VOGEL, 1993):

Figura 3 - Fluxograma do Tennessee Eastman Process (TEP).
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Em suma, os reagentes A,C, D, E e o inerte B formam uma corrente de entrada gasosa
no reator, que em seguida reagem no reator, com auxilio de um catalisador ndo volatil e a
reagdo, por ser exotérmica, ¢ resfriada por meio de uma serpentina que circula dgua. Em
seguida, o produto dessa reacdo, ainda na forma gasosa, segue para o condensador em que a
corrente ¢ resfriada e parte desta ¢ condensada. Essa corrente por sua vez ¢ transportada para
um separador liquido-gasoso que retira o produto gasoso ndo condensado € o envia como
refluxo, através de um compressor, em direcdo ao reator. Parte dessa corrente ainda sofre

purga, justamente para evitar o acimulo de subproduto inerte e para que se evite também a
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diminui¢do da eficiéncia do processo. O produto condensado ¢ enviado para a coluna de
destilagdo, responsavel por retirar o reagente que ainda permanece na corrente por meio da
adicao do reagente C. Finalmente, os produtos G e H sdo retirados da coluna de destilagdo e
seguem para um processo de separa¢do, que ndo estdo incluidos nesta planta (DOWNS;
VOGEL, 1993).

Quanto as reagdes que ocorrem no processo, estas sdo consideradas irreversiveis,
exotérmicas e aproximadamente de primeira ordem em relagdo a concentracao dos reagentes.
Além disso, as constantes cinéticas se relacionam com a temperatura por meio da funcao de
Arrhenius, em que a reagcdo de formagdo de G tem uma energia de ativagdo superior a de H,
resultando em uma maior sensibilidade a temperatura (DOWNS; VOGEL, 1993).

Os dados de simulacdo do TEP permitem analisar o comportamento do processo
quando submetido a diversos tipos de falhas. Ao todo, sdo analisadas 20 tipos de falhas
através da manipulacdo de 12 variaveis e da observacdo de 41 varidveis de processos

(DOWNS; VOGEL, 1993).

2.4 FALHAS EM PROCESSOS INDUSTRIAIS

Devido a competitividade no mercado, a necessidade de aumento de seguranga
operacional, regras ambientais, aumento da qualidade dos produtos e reducao dos custos com
manutencdo, os processos industriais se tornaram cada vez mais complexos e dificeis de
serem analisados manualmente. Diante deste cendrio, para manter a competitividade, muitas
empresas recorrem as tecnologias da industria 4.0, o que tem aumentado significamente a
quantidade de dados coletados, os quais sdo analisados em tempo real por operadores, ¢ a
maior parte encontram-se armazenados em uma base de dados (LOMOV et al., 2021).

Contudo, com o nivel de complexidade do processo e a quantidade enorme de dados
sendo gerados, torna-se cada vez mais dificil para o operador, analisar todas as variaveis do
processo e agir da maneira mais eficiente frente as anomalias (LOMOV et al., 2021).

Sendo assim, com o intuito de controlar as varidveis, os processos industriais operam
em malha fechada, ou seja, uma série de conjunto de controladores sdo utilizados para manter
as variaveis do processo em niveis aceitaveis, compensando erros considerados aleatérios
durante o processo. Porém, naturalmente ocorrem mudangas onde os controladores nao
conseguem agir da maneira mais adequada, as quais sdo denominadas de falhas de processos
(GERMANO, 2017).

A ocorréncia de falhas gera uma grande quantidade de riscos operacionais, que podem
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ocasionar perdas econdmicas, danos a infraestrutura e sangdes legais para uma empresa, além
da possibilidade de incidentes ou acidentes catastroficos, riscos para trabalhadores, clientes e
também para o meio-ambiente (FRANK, 2009). Dessa forma, nota-se a importancia de
evitar-se as falhas internas em uma empresa, porém, quando esta ocorre, torna-se
imprescindivel a rapida detec¢ao de sua origem.

As falhas de processo continuo podem ser classificadas quanto a sua forma de
ocorréncia em trés tipos, sao elas: falhas abruptas, incipientes e intermitentes. As falhas
abruptas ocorrem em um pequeno intervalo de tempo e sdo responsaveis por um grande
impacto durante o processo produtivo. Ja as falhas incipientes ocorrem de maneira gradual e
sdo bastante dificeis de serem detectadas pois normalmente sio mascaradas pela a¢do de
controladores. Por fim, as falhas intermitentes ocorrem de maneira repetida ao longo do
processo, sendo caracterizadas por perturbagdes periddicas (SIMONI; FANTUZZI; ATTON,
2003).

Quanto as abordagens realizadas para que haja o devido monitoramento das falhas
durante o processo produtivo, Chiang, et al., (2000) citam 4 etapas basilares para
soluciona-las:

e Deteccdo de falhas: Determina a ocorréncia de uma falha a partir de alguma
variabilidade anormal acerca de uma varidvel de processo;

e Identificacdo de falhas: Determinagdo do tamanho e do comportamento, no tempo
correto, de uma falha. Essa etapa ocorre apds a isolacao (ou isolamento) da falha;

e Diagnostico da falha: Determina quando, onde, qual a intensidade e qual a falha
0COITEeU NO Processo;

e Recuperacdo do processo: Refere-se ao tratamento propriamente dito dos efeitos da
falha.

A Figura 4, por sua vez, esquematiza de maneira resumida as importantes etapas desse

ciclo:

Figura 4 - Ciclo de monitoramento de falhas em processos industriais.
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Fonte: Adaptado de CHIANG, ef al. (2000).
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2.5 METODOS DE DETECCAO E DIAGNOSTICO DE FALHAS EM PROCESSOS
INDUSTRIAIS

Foram desenvolvidas vérias formas de detectar e diagnosticar falhas durante o
processo industrial. Venkatasubramanian et al. (2003), classificaram os métodos de detecg¢ao
de falhas em: M¢étodos quantitativos baseados em modelos fisicos, métodos qualitativos
baseado em modelos e métodos baseados em historico do processo, cuja classificagdao

encontra-se esquematizada na Figura 5.

Figura 5 - Classificacdo dos métodos de deteccao e diagndstico de falhas.

Fonte: Germano (2017).

Os métodos baseados em modelos fisicos requerem um conhecimento prévio acerca
do processo a ser analisado, podendo ser expressado através de equacdes matemadticas que
representam as relagdes de entrada e saida do processo. Essas relagdes podem ser tanto a nivel
quantitativo como também expressas através das funcdes qualitativas. J& os métodos que se
baseiam no histérico do processo, necessitam apenas da analise e estudo historico das
varidveis de processo, dispensando um conhecimento prévio aprofundado acerca do tema
(VENKATASUBRAMANIAN et al., 2003).

Em processos ditos mais complexos, que sdo mais comuns em processos industriais, a
deteccao de falhas baseadas em modelos fisicos tornam-se cada vez menos viaveis, devido a
quantidade de varidveis, a multicolinearidade das varidveis e imprevisibilidade do sistema.
Sendo assim, modelos baseados em dados historicos vém se destacando cada vez mais, pois
utiliza-se das técnicas de estatistica, matemadtica e machine learning tornando-se capaz de

gerar modelos para sistemas extremamente complexos € com inimeras variaveis (CAPACI, et
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al.,2019).

Modelos Data Driven para a detec¢do de falhas podem ser divididos em dois tipos:
aprendizado supervisionado e ndo supervisionado. Modelos de aprendizado supervisionado
incluem as redes neurais artificiais (SUN et al., 2020);(SHENFIELD E HOWARTH, 2020),
support vector machine (ONEL, CHRIS A; PISTIKOPOULOS, 2019) e redes bayesianas
(BN) (CHEN; KHER; SOMANI, 2006). E modelos nao supervisionados, incluem a analise de
componentes principais (PCA) (AMIN; IMTIAZ; KHAN, 2018), analise dos minimos
quadrados (PLS) (BOTRE, 2017) e andlise de componentes independentes (ICA) (CHEN,
2016).

Os modelos do tipo Data Driven para diagnostico de falhas sdo utilizados em uma
etapa posterior a analise de deteccao de falhas. Sendo assim, uma vez detectada a falha, esses
modelos sdo acionados para indicar o tipo exato da falha que esta ocorrendo. Sdo catalogados
como modelos do tipo de aprendizagem supervisionada nos quais os algoritmos sdo treinados
a partir de séries temporais multivariadas do processo. Dentre os algoritmos mais utilizados,

incluem-se SVM, Arvores de decisio e KNN (TAQVI et al., 2021).

2.6 METODOS DE DETECCAO DE FALHAS APLICADAS AO TEP
2.6.1 Controle estatistico univariado do processo

O controle estatistico de processo ou CEP surgiu para monitorar a variabilidade do
processo, de modo a torna-lo estavel e repetitivo. Logo, um dos principais objetivos da CEP ¢
detectar a ocorréncia de anomalias que causam uma alteragdo consideravel nas varidveis de
processo. Para que ocorra essa acdo sdo utilizadas as cartas de controle, que tratam-se de
graficos que exibem a evolugdo de um processo ao longo do tempo, onde ¢ determinado um
limite para o qual se define uma faixa considerada aceitavel (SUMAN; PRAJAPATI, 2018).

A Figura 6 evidencia uma tipica carta de controle em que a linha central representa a
média da variavel analisada quando o processo esta controlado, ou seja, dentro dos limites
aceitaveis. J& as outras 2 linhas horizontais representam o limite superior e inferior de
controle. Medic¢des acima ou abaixo desses limites indicam que determinada amostra est4 fora
da normalidade e deve ser verificada as possiveis causas dessa variabilidade (OLIVEIRA;

ANUNCIACAO; LOPES, 2018).
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Figura 6 - Carta de controle para um processo controlado.
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Fonte: Oliveira, Anunciagdo e Lopes (2018).

Na carta de controle padrdo de Shewhart admite-se que uma varidvel encontra-se
devidamente controlada quando ela esta dentro do limite de p + 30, sendo |, a média das
observagdes e 0, o desvio padrao das observacdes. Dessa forma, admite-se um risco de 0,27%
para um alarme falso, ou seja, quando uma amostra dentro dos limites ¢ considerada fora de
controle, considera-se também que 99,73% das amostras encontram-se em torno da variagao
da média (OLIVEIRA; ANUNCIACAO; LOPES, 2018).

As cartas de controle sdo uteis quando o processo € mais simples ou deseja-se avaliar
poucas caracteristicas do processo. Porém, como ¢ gerado uma carta de controle para cada
variavel, quando o numero de varidveis a serem monitoradas aumenta, fica ainda mais
complicado monitorar e gerir o processo. Além disso, as cartas de controle monitoram as
variaveis de modo individual, portanto, ndo avaliam a relag@o entre as proprias variaveis. Para
contornar essas problemadticas opta-se pela andlise multivariada do processo (MEHMOOQOD,

2022).

2.6.2 Controle estatistico multivariado do processo
2.6.2.1 PCA

A técnica de PCA (Analise de Componentes Principais) € uma técnica de analise
exploratoria de dados que se aplica as mais diversas areas de pesquisa e busca identificar
tendéncias entre os dados através da redugdo do numero de varidveis, sem que haja uma
grande perda de informacao, ou seja, de variancia. Para além disso, uma caracteristica muito

importante da técnica de PCA ¢ que ela ajuda a visualizar agrupamentos entre as amostras,
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visto que reduzem a dimensionalidade do conjunto original de variaveis, tornando-se mais
facil plotar os graficos com duas ou trés dimensdes sem perda significativa de informacao
(FERREIRA et al., 2017).

A técnica de PCA aplica uma transformagao linear no conjunto original dos dados,

conforme evidenciado pela Equacao 5 (SHLENS, 2014).

T =YP (5)

Assim, para um conjunto de dados Y € R™ | sendo n, o nimero de linhas e m, a
quantidade de colunas, aplica-se uma mudanga de base a partir da matriz P € R™
conhecida como matriz de componentes principais, sendo ainda caracterizada como uma
matriz de varidncia e covariancia, na qual a diagonal principal representa a variancia e o

restante da matriz, e a covariancia entre cada varidvel, conforme mostrado pela Equagdo 6

(SHLENS, 2014).

[cov(alal) cov(al, a2)...... cov(al,am) |
[cov(a2al) cov(a2, a2)..... cov(a2,am) ] (6)
[cov(amal) cov(an, a2)........ cov(am, am)]

As colunas de T & R~ representam as variaveis latentes e sdo projecoes das
colunas de Y na base P, ou seja, nos eixos de componentes principais que sao
ortogonais entre si e normalizadas, logo linearmente independentes e possuem o
mesmo mddulo (SHLENS, 2014).

Dado que hajam, “m” variaveis no conjunto de dados originais, serdo
produzidas “m” PCAs, porém, essas PCAs sdo ordenadas de modo a tragar a maior
variabilidade entre os dados. Logo, a primeira PCA possui a direcdo de maior
variancia dos dados, a segunda PCA apresenta a segunda maior dire¢do com maior
variancia entre os dados e assim por diante. Sendo assim, ¢ possivel escolher um
numero de PCAs que represente uma porcentagem, em geral determinada como 90%,
de variabilidade acumulada dos dados, possibilitando uma simplificagdo no conjunto
de dados (SHLENS, 2014).

Dessa forma, com o intuito de reduzir a dimensionalidade, é selecionada uma
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quantidade “a” de componentes principais que d4 origem a uma matriz P reduzida
denominada de P, que aplicada ao conjunto original de dados forma a matriz de

variaveis latentes T, (SHLENS, 2014), conforme mostra a Equagao 7 abaixo:

Ta = yPa (7)

Como as varidveis mais importantes sdo aquelas que mais variam, a matriz T,
representa de maneira mais eficiente ¢ adequada a relagdo entre os dados, pois nao contém as
variaveis com as menores variancias, que correspondem em geral ao ruido da medicdo. Essa
matriz pode ser projetada na matriz original gerando uma matriz reconstruida ¥ com uma

quantidade de a variaveis (SHLENS, 2014). Essa reconstrucdo ¢ mostrada a seguir na

Equagao 8.
Y = TaPa’ = Y(PaPa) (8)
A diferenca entre Y e Y ¢ a matriz residual E, dada por:
E=Y - Y ©)

Enquanto a matriz Y contém a variabilidade escolhida pelo modelo PCA, E contém a
variabilidade ndo capturada do modelo. Assim o subespago vetorial gerado por Y ¢
considerado o espaco principal e o gerado por E, é considerado o espaco residual (SHLENS,
2014).

Porém, para para o uso da técnica de PCA, ¢ necessario que os dados originais
cumpram 4 pré-requisitos basicos, sao eles: (SHLENS, 2014).

e Linearidade: Os dados devem possuir relagdes lineares de modo que as variaveis
latentes possam ser geradas a partir da transformagao linear da matriz original;

e Redundancia ou multicolinearidade: Devem estd presentes relagdes de redundancia
entre as variaveis, pois na auséncia, a transformagao linear nao faria efeito;

e Alto razdo de sinal/ruido: Essa hipotese deve ser respeitada para que se considere que

variancias grandes representam informagdes uteis e ndo apenas ruidos;
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e Conjunto de dados centralizados: De forma que a média de Y e 7 sejam nulas, quando

aplicada a normalizagao.

2.6.2.2 Controle estatistico multivariado com PCA

Utiliza-se a técnica de PCA para analise multivariada dindmica do processo através de
estatisticas, ¢ também utilizada para analisar séries temporais, como a exemplo dos casos que
ocorrem em processos industriais. Ainda assim, € necessario duas condigdes adicionais além

das hipoteses enumeradas para o uso da técnica de PCA, sdo elas: que o processo esteja na
condig¢do estacionaria e que siga uma distribui¢cao normal (PARK; FAN; HSU, 2020).

Com tais pré requisitos sendo atendidos, o monitoramento do processo industrial se da
em duas etapas: (PARK; FAN; HSU, 2020)

1. Na etapa de treino, utiliza-se os dados em operacao normal da fabrica, o que implica
em calcular as matrizes de projecdo de Y em P,. Assim, supde-se que o modelo ¢
capaz de explicar a variabilidade nas condi¢des normais de operagao;

2. Na etapa de teste, os novos registros sdo avaliados se estdo conforme o modelo.
Assim, caso as observagdes ndo se enquadrem como o modelo prever para as
condigdes normais de processo, o processo sai do comportamento considerado normal
e pode ser classificado como uma falha.

Dessa forma, de acordo com a dinamica do modelo, ele ¢ classificado como nao
supervisionado, pois sua fungdo ¢ detectar clusters de variaveis latentes que nao estdo de
acordo com a normalidade do processo.

Como o PCA separa o espaco original dos dados em 2 subespagos, o principal, gerado
por Y ¢ o residual, gerado por E, torna-se util para monitorar mudangas em ambos. O modo de
monitoramento desses subespacos € a partir das estatisticas T? e Q, e quando essas estatisticas

ultrapassam o limite de deteccdo € acionado um alarme, que indica uma possivel falha no
processo (PARK; FAN; HSU, 2020).

A estatistica T> monitora o subespaco vetorial principal e sdo aplicadas as variaveis
latentes, que sdo as projecdes de Y nos primeiros a componentes principais, de acordo com

equagao abaixo:

re = e (10
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Em que t, representa a variavel latente, A a variancia explicada.
a

Para Kundu e Damarla (2017) a estatistica T? indica a variancia global explicada pelo
modelo no espacgo principal para as a varidveis, associadas ao processo. O aumento do valor
de T? sugere algum tipo de falha da mesma natureza que as variaveis escolhidas pelo modelo
PCA. Desse modo, delimitar um limite de controle para T? significa demarcar uma regido de
hiper elipse no subespago vetorial das varidveis latentes.

Um limite de controle muito utilizado ¢ evidenciado através da Equagdo 11

(GARCIA-ALVAREZ, et al., 2009 ). Sendo T%;,, o limite de controle, ¢ F

a(an—a)
distribuicdo de Fisher-Snedecor com graus de liberdade c e n — a.
TZ — a!n2—1! F (11)

lim n(n—a) = a(an—a)

J& a estatistica Q monitora o subespaco residual e s3o definidas como a distancia
euclidiana de um registro em Y e sua respectiva projecdo no espago vetorial Y, conforme

mostrado abaixo na Equagdo 12:

Q =1y -9 (12)

Sendo assim, por monitorar o subespaco residual, a estatistica Q traduz a variabilidade
global ndo detectada pelo modelo PCA associadas a variagdes ndo explicadas pelo processo.
Portanto, ao monitorar Q, quando seu valor aumenta em novas observagdes, sugere-se uma
mudanga nas relagdes entre as varidveis que foram treinadas no modelo de PCA, ou seja, o
modelo descrito pela PCA nao inclui a dire¢do dessa falha (KUNDU; KUNDU; DAMARLA ,
2017). Para Li e Qui (2018), delimitar um limite de controle para a estatistica Q significa

demarcar uma hiperesfera no subconjunto residual. Um limite de controle muito utilizado para

a estatistica Q ¢ mostrado na Equacao 13 (KOTZ; JOHNSON; BOYD, 1967).
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hc 26 O.h (h—1) (13)
_ 0 a 2 2 0~ 0 0
Q. = 84l 0, +1+ 0.’
Sendo:

L] 61: Z mJZa-HXU 5
20 6

— J— 1 3 .
° hO—l ( 37, );

°* C ¢ o valor critico do percentil 1—a da distribui¢do gaussiana.

2.7 METODOS DE DIAGNOSTICO DE FALHAS APLICADAS AO TEP

Diagnosticar uma falha significa indicar qual falha ocorreu no processo, além da sua
extensdo e localizagdo, pois tratam-se de informacgdes cruciais para agir corretivamente e
propor métodos de prevencdo efetivos. Dessa forma, percebe-se que o diagnostico de falhas ¢
considerado um problema de multi classificagdo. Para os métodos de diagnostico de falhas em
plantas industriais, a maioria das aplicagdes encontra-se baseada em séries histéricas do
processo (LAMEDA, 2015).

Sendo assim, os principais métodos de diagnoéstico de falhas sao multi classificadores
que aplicam aprendizagem supervisionada baseadas em séries historicas. Dentre esses
algoritmos, as redes neurais vém recebendo um enorme destaque, devido a sua capacidade de
aprendizagem e adaptagdo, até mesmo para sistemas dindmicos e complexos (TAQVI et al.,

2021).

2.7.1 Redes neurais

Ao longo do tempo, os cientistas vém estudando o cérebro humano para descobrir
como funciona o raciocinio, as sensacdes € a nossa capacidade de se relacionar com outros
individuos. A partir desse contexto, passou-se a analisar os neurénios € como eles transmitem
informagdes entre si. A replicagdo desse estudo para os computadores deu origem ao modelo
conhecido como rede neural. Sendo assim, essa tecnologia, inspirada no cérebro humano, ¢é
capaz de analisar uma grande quantidade de dados para descobrir padrdes sem que haja uma
interferéncia humana (BINI, 2018).

A arquitetura de uma rede neural ¢ formada por neurénios que se distribuem em uma

camada de entrada, uma camada de saida e varias camadas intermediarias. A camada de
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entrada ¢ responsavel pela captagdo dos sinais ou das varidveis de entrada, as camadas
intermediarias s3o chamadas de ocultas. A camada oculta ¢ responsavel por atribuir pesos aos
sinais de entrada, assim, cada neurénio pode tratar o impulso de maneira diferente, podendo
esses pesos ser negativos ou positivos. Além disso, ha uma fun¢do de ativagdo que soma
todos os pesos € que tem como objetivo limitar a saida e atribuir uma nao linearidade ao
modelo. Por fim, hd uma ou mais saidas que podem classificar ou prever algum resultado. Um
exemplo da arquitetura de uma rede neural convencional ¢ mostrado a seguir na Figura 7

(ABIODUN, 2018).

Figura 7 - Arquitetura de uma rede neural convencional.
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Fonte — Bianchini (2001).

Quando uma rede neural possui mais de uma camada oculta, podendo chegar a casa
dos milhdes, o treinamento do modelo tende a ficar mais custoso, atribuindo-se o nome de
deep learning. Assim, pode-se afirmar que o deep learning ¢ uma ferramenta bastante
poderosa que complementa modelos tradicionais de machine learning em alguns casos.
Possuem aplicagdes tanto nas areas de processamento de linguagem natural como visdo
computacional, analise de big data, deteccdo de anomalias entre outros (CHEN;RAN, 2019).

Treinar um modelo de deep learning ¢ computacionalmente custoso e requer uma
grande memoria do computador, tendo em vista os milhdes de parametros que sdo iterados até
estarem refinados o suficiente. Apesar disso, modelos de deep learning conseguem acuracias
bastante altas e ja superaram métodos tradicionais no que diz respeito ao reconhecimento de

imagem (CHEN; RAN, 2019).
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Uma evolugdo do modelo classico de redes neurais artificiais para a aplicagdo em
séries temporais sdo as redes neurais recorrentes (RNN), visto que, diferentemente das redes
neurais convencionais (MLP) que transportam a informacao em apenas uma dire¢ao, as RNNs
trocam informacdes através da realimentacdo das saidas de um ou mais neuronio. Desta
forma, os pesos serdo alterados tanto por novas entradas, como também ponderando seus
valores através dos estados passados, configurando uma espécie memoria na rede neural

(STAUDEMEYER; MORRIS, 2019). Um exemplo de rede neural recorrente simples ¢

mostrado na Figura 8. Cada neurdnio da camada interna possui seu sinal de entrada e saida

externo e, para além disso, recebem como entrada outros neurdnios adjacentes.

Figura 8§ - Arquitetura de uma rede neural recorrente.
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Fonte — Adaptado de Staudemeyer e Morris (2019).

Assim, as redes neurais recorrentes armazenam eventos recentes da entrada de outros
neurdnios, o que recebe o nome de memoria de curto prazo. Para aplicacdes que ndo
necessitam de uma influéncia muito grande de eventos passados essa técnica € muito 1til,
todavia, existem aplica¢des que necessitam de uma memoria mais extensa, € para suprir essa
necessidade, foram desenvolvidos algoritmos mais complexos capazes de armazenar uma

maior quantidade de eventos. Entretanto, ¢ importante citar que esses algoritmos mais

complexos tornam o aprendizado mais lento (STAUDEMEYER; MORRIS, 2019). Existe,
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portanto, o trade-off entre a capacidade de memorizagdo da rede neural recorrente e a maior
necessidade de capacidade computacional.

Para solucionar esse problema, foi proposta a LSTM (Long Short-Term Memory) que
retém as informagdes de uma maior quantidade de entradas passadas, enquanto mantém a
relevancia de eventos recentes como maior. Para fazer isso, a LSTM faz uso dos estados
denominados cell state e hidden state que sdo responsaveis pelo transporte de informagdes

entre os neurdnios das redes, como mostrado na Figura 9 (OLIVEIRA, 2020).

Figura 9 - Representagdo de uma célula LSTM.
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Fonte — Oliveira (2020).
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3 MATERIAIS E METODOS
3.1  SOFTWARES

O ambiente utilizado para desenvolver o modelo foi o jupyter notebook, pois ¢ uma
IDE open source, ferramenta gratis que possui as principais bibliotecas utilizadas na ciéncia
dos dados, a partir dele também ¢ possivel compilar trechos de coédigo e inserir textos,
facilitando, assim, a compreensdo do codigo. Com essa ferramenta torna-se possivel também
plotar e visualizar tanto graficos como tabelas.

Ja a linguagem de programacao utilizada foi o Python na versao 3.10.2, devido a sua
facilidade de tratar, analisar ¢ modelar os dados. As principais bibliotecas utilizadas neste
trabalho foram a biblioteca Pandas na versao 1.2.4 ¢ Numpy na versao 1.20.1 foram utilizadas
para importar, manipular, tratar e realizar analise de dados. A biblioteca Matplotlib na versao
3.3.4 ¢ Seaborn na versdo 0.11.1 foram utilizadas para visualizar os dados através de graficos
e tabelas. Ja a biblioteca Scikit-Learn na versao 0.24.1, Scikit-Time na versao 0.13.4 e pytorch

na versao 1.7.7 serviram para criar, treinar ¢ validar os modelos.

3.2 CONJUNTO DE DADOS

Os dados aplicados neste trabalho foram retirados de Rieth ez al. (2017) e representam
500 simulagdes em diversas condigdes operacionais de uma planta petroquimica, chamada de
Tennessee Eastman Process utilizados para produzir dois produtos, denotados genericamente
por G e H.

Os dados foram divididos em treino e teste pelos autores Rieth et al. (2017). Sendo os
dados de treino, o conjunto de amostras em operacao normal da planta industrial, ou seja, nao
submetido a falhas, e os dados de teste, o conjunto de amostras submetidas a algum tipo de
falha.

Ao todo, o processo apresenta 41 variaveis medidas, denotadas por XMEAS e
mostradas na Tabelas 1 e 2 as quais trazem as varidveis continuas e as medidas por
amostragem, respectivamente, ¢ 12 manipuladas, denotadas por XMV e apresentadas na

Tabela 3. Os tempos de amostragem variam entre 3, 6 e 15 minutos.



Tabela 1 - Variaveis medidas de forma continuada no Tennessee Eastman.

Variavel Descriciao Unidade
XMEAS(1) Entrada de A (corrente 1) kscmh
XMEAS(2) Entrada de D (corrente 2) kg.h
XMEAS(3) Entrada de E (corrente 3) kg.h!
XMEAS(4) Entrada de total (corrente 4) kscmh
XMEAS(5) Corrente de reciclo (corrente §) kscmh
XMEAS(6) Entrada do reator (corrente 6) kscmh
XMEAS(7)  Pressao do reator kpa
XMEAS(8) Nivel do reator % %
XMEAS(9) Temperatura do reator °C
XMEAS(10) Vazao de purga (corrente 9) kscmh
XMEAS(11) Temperatura do separador 0C °C
XMEAS(12) Nivel do separador % %
XMEAS(13) Pressao do separador kPa kPa
XMEAS(14) Corrente de fundo do separador (corrente 10) kg.h™
XMEAS(15) Nivel do stripper %
XMEAS(16) Pressdo do stripper kPa
XMEAS(17) Vazao de fundo do stripper m?3.h!
XMEAS(18) Temparatura do stripper °C
XMEAS(19) Vazao de vapor do stripper kg.h
XMEAS(20) Trabalho do compressor kw

Temperatura da saida da dgua de
resfriamento do
XMEAS(21) reator °C
Temperatura da saida da dgua de
resfriamento do
XMEAS(22) condensador °C

Fonte: Adaptado de Rieth ef al. (2017).
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Tabela 2 - Varidveis medidas da composi¢do de cada substiancia no Tennessee Eastman

Intervalo de

amostragem
Variavel Descricao Corrente (min) Unidade

XMEAS(23) Componente A 6 6 % molar
XMEAS(24) Componente B 6 6 % molar
XMEAS(25) Componente C 6 6 % molar
XMEAS(26) Componente D 6 6 % molar
XMEAS(27) Componente E 6 6 % molar
XMEAS(28) Componente F 6 6 % molar
XMEAS(29) Componente A 9 6 % molar
XMEAS(30) Componente B 9 6 % molar
XMEAS(31) Componente C 9 6 % molar
XMEAS@32) Componente D 9 6 % molar
XMEAS(33) Componente E 9 6 % mola

XMEAS(34) Componente F 9 6 % molar
XMEAS(35) Componente G 9 6 % mola

XMEAS(36) Componente H 9 6 % molar
XMEAS(37) Componente D 11 15 % molar
XMEAS38) Componente E 11 15 % molar
XMEAS39) Componente F 11 15 % molar
XMEAS(40) Componente G 11 15 % molar
XMEAS(41) Componente H 11 15 % molar

Fonte: Adaptado de Rieth et al. (2017).
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Tabela 3 - Varidveis manipuladas do Tennessee Eastman

Variavel Descriciao Unidade
XMV(1)  Vazio de entrada de D (corrente 2) kg.h!
XMV(2)  Vazio de entrada de E (corrente 3) kg.h
XMV (3)  Vazdo de entrada de A (corrente 1) kscmh
XMV (4)  Vazao de entrada de total (corrente 4) kscmh
XMV(5)  Valvula de reciclo do compressor %
XMV(6)  Valvula de purga (corrente 9) %

Vazao de saida de liquido do separador
XMV(7)  (corrente 10) m3.h!
XMV(8)  Saida de liquido do stripper (corrente 11) m?3.h’!
XMV(9)  Valvula do vapor do stripper %

XMV(10) Vazao da agua de resfriamento do reator m?3.h!

Vazao da agua de resfriamento do
XMV(11) condensador m3.h!

XMV(12) Velocidade do agitador rpm

Fonte: Adaptado de Rieth ez al. (2017).

Além disso, o processo foi submetido a 20 tipos de falhas que se diferenciam entre
aumento de variabilidade das variaveis de processo por meio de perturbagao do tipo degrau e
randomica, agarramento de valvulas, variacdo na cinética do processo incluindo algumas
falhas desconhecidas. As variaveis, a descri¢dao da falha e o tipo da falha foram evidenciadas

na Tabela 4.



Tabela 4 - Descricao das falhas a que o processo foi submetido.

Falha Descriciao Tipo

Razao de entrada A/C composic¢ao de B

IDV(1) constante (corrente 4) Degrau
Composic¢ao de B, razdo A/C constante

IDV(2) (corrente 4) Degrau

IDV(3) Temperatura de entrada de D (corrente 2) Degrau
Temperatura de entrada da dgua de

IDV(4) resfriamento do reator Degrau
Temperatura de entrada da dgua de

IDV(5) resfriamento do condensador Degrau

IDV(6) Perda de entrada de A (corrente 1) Degrau
Queda de pressao de C, disponibilidade

IDV(7) reduzida (corrente 4) Degrau
Composi¢do da entrada de A, Be C Variacao

IDV(8) (corrente 4) randomica

Variagao
IDV(9) Temperatura de entrada de D (corrente 2) randomica
Variagao

IDV(10) Temperatura de entrada de C (corrente 4) randomica
Temperatura de entrada da 4gua de Variagao

IDV(11) resfriamento do reator randomica
Temperatura de entrada da 4gua de Variagao

IDV(12) resfriamento do condensador randomica

IDV(13) Cinética da reacao Desvio lento

IDV(14) Vilvula de 4gua de resfriamento do reator ~ Agarramento
Valvula de 4gua de resfriamento do

IDV(15) condensador Agarramento

IDV(16) Desconhecido

IDV(17) Desconhecido

IDV(18) Desconhecido

IDV(19) Desconhecido

IDV(20) Desconhecido

Fonte: Adaptado de Rieth ef al. (2017).
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33 METODOLOGIA
3.3.1 Fluxograma do trabalho

O fluxograma geral de como ocorreu o presente trabalho se encontra na Figura 10, no

qual serdo explicados com mais detalhes nos itens seguintes.

Figura 10 — Fluxograma do trabalho.
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Fonte: o Autor.
3.3.2 Limpeza e tratamento dos dados

Nessa etapa, os dados foram importados por meio da biblioteca pandas e foram
armazenados em um objeto chamado DataFrame, que ¢ bastante similar a uma planilha do
MS Excel com suas linhas e colunas.

Para evitar erros durante a modelagem, foi verificada a existéncia de dados duplicados,
nulos ou faltantes. E uma vez que eles existam, estes serdo apagados, pois nao possuem
informacodes relevantes para a analise do modelo.

Além disso, como os dados possuem dimensdes diferentes, fez-se necessario a
padronizagdo dos dados para evitar efeitos de escala antes de inseri-los no modelo. Esse

processo ocorreu conforme mostrado na equagao abaixo.

z = X4 (14)

o

Sendo Z a medida padronizada, X um valor qualquer de determinada varidvel, p e o, a

média e o desvio padrao do conjunto, respectivamente.
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3.3.3 Analise dos dados

A fim de compreender melhor os dados, foram realizadas as suas analises descritivas
de modo a determinar o tamanho do seus conjunto, como eles sdo classificados em rela¢do ao
seu tipo (numero inteiro, nimero real, texto e etc.), e as principais medidas estatisticas como
média, mediana, desvio padrao, quartis, minimo e maximo. Além disso, foram realizadas
outras 2 analises de modo a determinar o tipo de distribui¢do (isolada) do conjunto € como
eles se relacionam (correlagao entre os dados).

Na analise isolada, foi plotado a distribuicdo dos dados de modo a comparar os
intervalos e a distribuicdo de grupos numéricos. Ja para a analise relacional, foi determinada a
correlagdo de Pearson entre as varidveis, isto €, um teste que mede a correlagdo linear
estatistica entre duas variaveis continuas e varia de -1, para variaveis muito correlacionadas
de forma inversamente proporcional, e +1, para varidveis muito correlacionadas diretamente

proporcional. Essa analise foi visualizada a partir de um grafico em estilo de mapa de calor.

3.3.4 Cartas de controle

Foram plotadas 53 cartas de controle, uma para cada variavel, de modo se fazer a
andlise univariada do processo e verificar se 0 mesmo encontra-se devidamente controlado.
Para isso, definiu-se a linha central como sendo a média p do conjunto, com o processo
controlado, ou seja, sem falhas e, também, definiu-se o limite superior de controle como
sendo 1 + 30 e o limite inferior de controle como sendo p — 30, sendo p a média e o o
desvio padrao.

Para observar o efeito das falhas no processo, foram plotadas, também, as 53 cartas de
controle quando o processo foi submetido a uma falha do tipo perturbacao do tipo randomica

nas composigdes das substancias A, B e C na corrente 4.

3.3.5 Modelagem
3.3.5.1 Deteccao de Falhas

De inicio, foi verificado se as hipoteses para a aplicagcdo da técnica de PCA foram
cumpridas. Apds isso, os dados foram divididos de operagdo normal da planta em treino e
teste, de modo que foram usadas as simulagdes de 1 a 4 para treino do modelo PCA ¢ as
simulacdes 6 a 9 para o teste do modelo ndo submetido a falhas. Para o teste do modelo

submetido a falhas de processo, foi filtrado a simulagdo de numero 1 para as 20 falhas.
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De posse desses dados, foi realizada uma transformagdo dos dados de treino, sob o
comportamento natural do processo, ou seja, sem falhas, para o dominio das componentes
principais, de modo a representar 90% da variancia do conjunto de dados original.

Para a deteccao de falhas, uma vez construido o modelo de estatistico multivariado, foi
possivel acompanhar o comportamento das amostras a partir das estatisticas T? e Q, em que o
limite de deteccdo para T?> e Q s3o dados pelas equagdes 11 e 13, respectivamente,
considerando um limite de confianca de 99%. E importante salientar que pontos que
ultrapassem o limite de controle sdo considerados como falhas do processo pelo modelo.

O monitoramento das falhas foi verificado no conjunto de dados em operagao normal
da planta, para examinar a taxa de falsos alarmes, assim como para a operacdo da planta
industrial submetida a falhas, de modo a se examinar a taxa de alarmes positivos.

De modo a verificar quais variaveis sofreram mais alteragdes quando submetidos a
uma falha, foi construido um gréafico do tipo “mapa de calor” para mostrar as contribuicdes de
cada variavel para o aumento da estatistica Q.

Para acompanhar o desempenho do modelo como um todo na detec¢ao das falhas, foi
definida uma métrica chamada de taxa de detec¢ao de falhas, que indica a quantidade de

observagdes que sao falhas e que de fato foram detectadas como falhas pelo modelo.

Falhas Previstas (15)
Falhas Totais

tx

3.3.5.2 Diagnoéstico de falhas
3.3.5.2.1 Demais modelos

Para a criagdo dos modelos de diagnostico de falhas, foram utilizados os dados
relacionados a operagdo industrial submetidos aos 20 tipos de falhas. Devido ao poder
computacional limitado disponivel para a constru¢do dos modelos, foram considerados 200
simulagdes como um todo, sendo 140 simulac¢des utilizadas para o treino e 60 para o teste,
sendo estas divididas aleatoriamente, mas fixando o parametro random_state = 20, para
manter a reprodutibilidade.

Antes de serem utilizados para treinar o modelo, os dados também foram submetidos a
uma padronizacdo, conforme mostrado na equagao 14.

Além disso, por se tratar de modelos de classificagdo para séries historicas, os dados

foram agrupados a partir de cada simulagdo, pois cada simula¢do representa uma série
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historica. Assim, de inicio, foram treinados e testados os seguintes modelos extraidos da
biblioteca  Scikit-Time, considerando seus hiperparametros padrdo, os modelos:
RocketClassifier, Arsenal, BossEmsemble, ContractableBoss e o MUSE.

As métricas de avaliagdao consideradas foram a acuracia média, precisao média, recall
médio e fl-score médio. Foi considerada a média dessas métricas, pois o modelo ¢ de multi
classificagdo, ou seja, classifica 20 tipos de falhas e cada tipo de classificagdo possui sua

propria métrica.

3.3.5.2.2 Rede Neural LSTM

A rede neural LSTM (Long Short-Term Memory) foi construida e testada utilizando o
framework pytorch. Para a construgdo do modelo, foram utilizadas duas abordagens. A
primeira sendo a entrada de dados considerada igual a escolhida para o desenvolvimento dos
demais modelos, mas que encontrava-se convertida em tensores (estrutura de dados
multidimensionais), que configura o formato de dado aceito pela biblioteca. J4 na segunda os
dados foram submetidos a uma transformacdo linear através da PCA, considerando uma
quantidade de PCA’s que representassem 90% da variancia dos dados.

A otimizagdo da rede neural foi realizada selecionando a combinag¢do de diversos
parametros para as duas abordagens, de modo a obter o valor maximo para a acuracia de teste,
além disso, também foi monitorado as demais métricas, como ja citadas no item 3.3.5.2.1. Os
hiperpardmetros ajustados identificados foram:

e Numero de camadas;
e Numero de neuronios;
e Taxa de crescimento;
e Numero de épocas.

Uma vez criado e otimizado o modelo, ele foi utilizado para predizer as falhas do
conjunto de testes, sendo construida também uma matriz de confusdo que compara o valor

real da falha e o valor previsto.

3.3.6 Sistema de monitoramento em tempo real de falhas na industria

Por fim, foi proposto um sistema de monitoramento de falha em tempo real baseado

nas tecnologias utilizadas neste trabalho.
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A Figura 11 mostra uma visualizacdo de parte dos dados de operacdo normal da

fabrica. Esses dados foram armazenados em tipo especifico de objeto da biblioteca pandas,

chamado de DataFrame, que pode conter diversos tipos de dados e tem aspecto parecido com

uma tabela de dados do MS Excel. Nota-se, também, que a primeira coluna ¢ a numeragdo de

dados por linha, facilitando o indexamento dos dados na tabela, e nas demais colunas

encontram-se os dados principais.

Figura 11 — Visualizacao de parte dos dados nao submetidos a falhas.

faultNumber simulationRun sample xmeas_1 xmeas_2 xmeas_3 xmeas_4 xmeas_5 xmeas_6 xmeas_7 .. xmv_2 xmv_3 xmv_4 xmv_5 xmv_6

0 0 1 1 0.25038 3674.0 4529.0 9.2320 26.889 42.402 27043 .. 53.744 24657 62544 22.137 39.935

1 0 1 2 0.25109 3659.4 4556.6 9.4264 26.721 42.576 2705.0 .. 53.414 24588 59.259 22.084 40.176

2 0 1 3 0.25038 3660.3 4477.8 9.4426 26.875 42.070 2706.2 .. 54.357 24.666 61.275 22.380 40.244

3 0 1 4 0.24977 3661.3 4512.1 9.4776 26.758 42.063 2707.2 .. 53.946 24.725 59.856 22.277 40.257

4 0 1 5  0.29405 3679.0 4497.0 9.3381 26.889 42.650 27051 ... 53.658 28.797 60.717 21.947 39.144
249995 0 500 496  0.29325 3640.1 4473.0 9.1949 26.867 42.379 2700.2 .. 53.429 29.249 60.773 21.532 40.451
249996 0 500 497 0.29134 3625.7 4506.2 9.2109 26.889 42.291 2700.6 .. 53.830 28.975 61.517 21.750 42.762
249997 0 500 498  0.29438 3600.2 4478.3 9.1957 26.820 42.448 2700.3 .. 54163 28.676 61.656 21.487 42.109
249998 0 500 499  0.25269 3683.5 4486.4 9.2832 27.188 42.757 26974 .. 53.453 24889 61.564 21.392 39.334
249999 0 500 500 0.25214 3648.2 4467.8 9.1344 26.886 42.534 26951 .. b53.676 24943 61.254 21.208 38.991

250000 rows x 55 columns

Fonte: o Autor.

Ja os dados de operagdo da planta submetidos a falhas foram obtidos a partir de 500

simulagdes para os 20 cenarios de falhas, com 960 pontos de amostragens para as 53 variaveis

de processo, totalizando 9.600.000 registros, conforme evidenciado na Figura 12.



Figura 12 — Visualizag@o de parte dos dados submetido a falhas
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faultNumber simulationRun sample xmeas_1 xmeas_2 xmeas_3 xmeas_4 xmeas_5 xmeas_6 xmeas_7 xmv_2 xmv_3 xmv_4 xmv_5 )
0 1 1 1 025171 3672.4 4466.3 9.5122 27.057 42473 2705.6 54.494 24.527 59.710 22.357
1 1 1 2 0.25234 3642.2 4568.7 9.4145 26.999 42.586 2705.2 53.269 24.485 60.466 22413
2 1 1 3 0.24840 3643.1 4507.5 9.2901 26.927 42.278 2703.5 54.000 24.860 60.642 22.199
3 1 1 4 0.25153 3628.3 4519.3 9.3347 26.999 42.330 2703.9 53.860 24.553 61.908 21.981
4 1 1 5 0.21763 3655.8 4571.0 9.3087 26.901 42402 2707.7 53.307 21.775 61.891 22412
9599995 20 500 956  0.26494 3719.6 4536.7 9.2265 26.875 42.401 2708.3 54.382 26.018 62.068 20.708
9599996 20 500 957  0.25252 3724.0 4494.3 9.1873 27.221 41.999 2706.0 54.236 25.098 61.557 20.655 -«
9599997 20 500 958 0.25164 3700.8 4537.3 9.2514 26.659 42.180 2704.7 53.722 25.185 61.169 20.650
9599998 20 500 959  0.29097 3641.8 4525.2 9.3053 26.823 42.234 2705.0 54185 28.771 61.140 20.323
9599999 20 500 960  0.29359 3622.2 4485.1 9.3070 26.922 42610 2704.8 54.665 28.513 £59.399 20.145

9600000 rows x 55 columns

Fonte: o Autor.

O conjunto de dados também ndo possui amostras com valores nulos ou duplicados

que precisam ser removidos do conjunto. Também foi avaliado a distribuicdo dos dados ao

longo do conjunto de treino, conforme mostrado na Figura 13.

Figura 13 - Distribuicao das variaveis de processo sob a condi¢do normal.

Fonte: o Autor.
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Notou-se que os dados seguem uma distribuicdo normal, o que ja era esperado, pois,
segundo o teorema do limite central, quando o tamanho da amostra aumenta, a distribui¢ao
amostral de sua média aproxima-se cada vez mais de uma distribui¢ao normal. Além disso,
foi verificado um baixo desvio padrao na distribui¢do dos dados, o que também ¢ esperado

visto que o processo atua em uma malha fechada em um processo estacionario.

Figura 14 - Correlagao entre os dados de treino.
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De acordo com o gréfico acima, nota-se:
e As variaveis de processo XM39, XM40 e XM41 nao possuem correlagdo linear
nenhuma com as outras;
e A maior parte das varidveis possuem uma correlagao, em modulo, alta entre si;
Tais informagdes evidenciam que as variaveis tém impacto significativo nas demais.
Portanto, uma andlise univariada, em que hé o desprezo das relagdes entre as variaveis, nao
sera a mais adequada, sendo necessario métodos de analise multivariada para monitorar essas

variaveis.

42  CONTROLE ESTATISTICO UNIVARIADO DO PROCESSO

A partir da analise de correlagdo, notamos que a analise univariada do processo ndo ¢
o método mais adequado, porém, ele sera analisado visto a simplicidade do método e por ser
ainda bastante utilizado nas industrias (Miranda et al., 2019).

De inicio, foram analisadas as cartas de controle para todas as varidveis de processo.
De acordo com a Figura 15, nota-se que a maior parte das varidveis se mantém no mesmo
nivel, havendo variagcdes com pouca amplitude que pode ser explicada devido ao ruido do
equipamento de medicao. Entretanto, algumas outras, possuem um carater dindmico, havendo
uma oscilagdo em torno da média, como em XMEAS 18 e XMEAS 19.

No geral, nota-se que o processo estd bem controlado, pois a maior parte dos dados

estdo concentrados entre os limites inferiores e superiores.



Figura 15 - Cartas de controle para o processo ndo submetido a falhas.
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Fonte: o Autor.
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No entanto, quando ocorre uma falha no processo, espera-se que haja uma perturbagao
na estabilidade do processo. Para ilustrar, nesse processo, foi realizada a simulagdo com uma
perturbagdo do tipo randémica nas composi¢des das substancias A, B e C na corrente 4, falha
IDV (8). Esse tipo de falha no processo o altera como um todo, pois modifica o seu balanco

de massa. Tal fato fica evidente nas cartas de controle evidenciadas abaixo.

Figura 16 - Cartas de controle para o processo submetida a um erro do tipo randéomico na
composicao das substancias A, B e C no corrente 4.
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Fonte: o Autor.



48

Embora as cartas de controle gerassem um alarme de modo satisfatorio, a quantidade
de graficos a serem analisados ¢ bastante grande, tornando inviavel gerir o processo dessa
maneira, principalmente quando o numero de variaveis a serem analisadas aumentam com o
tempo. Além disso, as cartas de controle nao sao capazes de analisar as relagdes entre as

variaveis, evidenciando de maneira clara os alarmes falsos negativos.

43  CONTROLE ESTATI{STICO MULTIVARIADO DO PROCESSO A PARTIR DO
MODELO DE DPCA

De inicio, foi verificado se as hipdteses para a aplicacio do modelo DPCA foram
atendidas:

e Linearidade: E possivel observar relacdes lineares a partir da anélise de correlacio de
Poisson, mostrado na Figura 14;

e Redundancia ou multicolinearidade: Também presente a multicolinearidade, conforme
mostrado na Figura 14;

e Alto razdo de sinal/ruido: Para uma parte das variaveis, a razao sinal/ruido ¢ alta,
porém para outras, o ruido ¢ predominantemente. Isso pode ser observado na Figura
15. Assim, isso pode vir a ser um problema na modelagem.

e Conjunto de dados centralizados: Todas as variaveis seguem uma distribui¢do normal,
com a maior parte dos dados se concentrando na média. E possivel observar isso
analisando a Figura 13;

e Processo em estado estacionario: O processo se encontra no estado estacionario;

e Dados seguem uma distribuicdo normal: Também seguem uma distribuigdo normal,
conforme mostrado na Figura 13.

Com as hipoteses sendo atendidas, inicia-se a constru¢do do modelo. Assim, Para
realizar o controle estatistico do processo, os dados da planta sob opera¢dao normal, ou seja,
nao submetido a falhas, foram submetidos a uma transformagao linear por meio da PCA. Os
componentes principais sdo ordenados a partir da variancia explicada. A porcentagem de
variancia explicada por cada PCA, bem como a variancia acumulada das PCAs sdo mostradas

na Figura 17.
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Figura 17 — Variancia explicada por cada componente.
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Fonte: o Autor.

De acordo com o grafico acima, nota-se que poucas combinagdes lineares das
variaveis sdo suficientes para explicar boa parte da variabilidade do processo. Por exemplo, as
10 primeiras PCAs ja explicam mais de 50% de toda a variancia. Isso ja era esperado, uma
vez que boa parte dos dados estdo correlacionados entre si, como pode ser observado na
Figura 14.

Para capturar 90% da variancia dos dados, serdo necessarios 30 componentes. Assim ,
das 53 variaveis originais, 30 serdo utilizadas para modelar o subespaco principal e 23, para
modelar o subespaco residual.

Para verificar a taxa de falsos alarmes no processo, foi plotado as cartas de controle

para a operacdo normal da planta. O resultado é mostrado na Figura 18.

Figura 18 — Estatisticas T? e Q para o processo nao submetido a falhas.
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Fonte: o Autor.
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A taxa de alarmes falsos foi de 0,85% monitorando a estatistica T? e 2,7% para a
estatistica Q. O limite de confianga nos dois casos ¢ de 99% para o limite de controle, ou seja,
espera-se uma taxa de alarmes falsos de no méaximo 1%. A taxa de alarmes falsos ficou abaixo
do esperado para a estatistica T> e um pouco acima do esperado para a estatistica Q.

Para verificar se o modelo irda alarmar corretamente, foi verificado as cartas de
controle multivariada, tanto para a estatistica T2, como para a estatistica Q, quando o sistema
foi afetado pela falha IDV(1), perturbacdo degrau na razdo de alimentacdo A/C na corrente 4.
Além disso, foi plotado os graficos de contribui¢des parciais para a estatistica Q, de modo a

identificar as variaveis mais afetadas pelas falhas.

Figura 19 — Estatisticas T? e Q para o processo submetido a uma falha do tipo perturbagdo
degrau na razdo de alimentacdo A/C na corrente 4, falha IDV(1).
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Fonte: o Autor.

Figura 20 — Contribuicdes de cada varidvel para a estatistica Q submetidas a falha IDV(1).
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De inicio, percebe-se uma vantagem muito positiva em analisar as cartas de controle
multivariadas em relagdo as cartas de controle univariadas, visto que houve a sintese das
informacdes em apenas 2 cartas.

Para a falha IDV(1), espera-se que a alimentacdo de A, na corrente de reciclo 5,
reduza, e a propria malha de controle ajuste a alimentacdo de reciclo. O que, em geral, ira
afetar boa parte das variaveis do processo, como ¢ possivel verificar na Figura 20. Portanto,
esta falha ¢ considerada de facil deteccao pelo modelo.

No entanto, para a falha IDV(4), torna-se mais dificil a deteccao da falha, pois ela
representa uma perturbacdo degrau positiva na temperatura da agua de resfriamento do reator,

0 que tem um alcance mais restrito ao longo do processo.

Figura 21 — Estatisticas T e Q para o processo submetido a uma falha do tipo perturbacao
degrau na temperatura de entrada da dgua de resfriamento do reator, falha IDV(4).
Carta de Controle T2 IDv4) Carta de Controle Q
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Fonte: o Autor.

Como ¢ possivel observar na Figura acima, apenas a estatistica Q (Subespaco residual)
foi capaz de detectar eficientemente a falha. Dessa forma, como a deteccdo da falha se
encontrou no espago residual, a falha nao foi detectada pelas PCAs, mas sim por outras
diregdes ndo identificadas pelo modelo PCA. Por isso, a importancia de se avaliar o

subespaco tanto principal como o residual.
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Figura 22 — Contribuicdes de cada varidvel para a estatistica Q submetidas a falha IDV(4).
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Fonte: o Autor.

Como era esperado, a partir da analise da Figura 22, a extensao da falha encontrou-se
restrita na varidvel de XMV 10 que representa a vazao de dgua de resfriamento do reator e foi
utilizada pela malha fechada para amenizar os efeitos das falhas.

Por fim, foi verificada a taxa de alarmes quando o processo foi submetido a todas as
falhas. Da analise da Figura 23, verifica-se que, quando combinada a analise a partir das
cartas de controle estatisticas T? ¢ Q, o modelo detectou satisfatoriamente 13 das 20 falhas

apresentadas.
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Figura 23 — Taxas de detec¢do para todas as falhas do processo.

Falha Taxa de Detec¢do de Falha T2 Taxa de Detecgdo de Falha Q

1DWV(1) 0.99375 0.99730
IDV(2) 0.98750 0.98375
IDW(3) 0.00875 0.02750
1IDW(4) 0.31000 1.00000
IDWV(5) 017000 0.14000
IDV(5) 0.99125 1.00000
IDV(7) 1.00000 1.00000
IDWV(8) 0.92125 0.86750
IDWV(9) 0.01375 0.03250
IDWV(10) 0.07875 0.22875
IDWV(11) 0.48375 0.71125
IDV{12) 0.98750 0.95730
IDW(13) 0.90000 0.91500
IDW(14) 0.99125 0.99750
IDW(15) 0.00250 0.027350
IDV(16) 0.05125 0.28125
IDV{17) 0.79375 0.96875
IDW(18) 0.95625 0.96125
IDWV(19) 0.10250 0.11125
IDW(20) 0.30625 0.55875

Fonte: o Autor.
4.4 MODELOS PARA A PREVISAO DE DIAGNOSTICO DE FALHAS

Para obter um benchmark, com o modelo de rede neural, foram treinados e testados
modelos disponiveis na biblioteca sktime, utilizando os hiperparametros padrdes de cada
algoritmo. E importante destacar que todos os modelos se caracterizam como sendo do tipo
classificadores de séries historicas. Assim, a entrada dos modelos caracteriza simulagdes com

500 amostras das 53 varidveis de processo, e saida como do tipo de falha a ser detectada. As
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métricas de avaliagdo dos modelos baseados nos dados de teste estio mostrados na Figura

abaixo.

Figura 24 — Métricas dos modelos de Machine Learning importados da biblioteca sktime.

Modelos Precisdao Acuracia Media Recall Médio f1-score Medio

RocketClassifier 0.59 0.57 0.53 0.54
Arsenal 0.60 0.60 0.55 0.56
BOSSEnsemble 0.64 0.59 0.54 0.57
ContractableBOSS 0.52 0.4& 0.50 0.55
MUSE 0.60 0.57 0.56 0.58

Fonte: o Autor.

De acordo com a Figura 24 acima, os 5 tipos de modelos ndo se ajustaram tao bem aos
dados de teste, pois a acuracia média variou entre 0.46 e 0.60. Sendo assim, foi necessario
utilizar um modelo mais robusto e com melhores opgdes de ajuste de hiperparametros. Para
isso, foi utilizado o modelo de rede neural recorrente LSTM.

Para esse modelo, utilizou-se duas abordagens. A primeira, o tipo de entrada e saida
dos dados foram os mesmos utilizados para os modelos passados, visto que eles possuem as
caracteristicas de classificacdo para séries temporais. J4 na segunda, esses dados foram
submetidos a uma transformacdo linear através da técnica de PCA, considerando uma
variancia acumulada de 90%, totalizando PCA’s. Os modelos LSTM foram treinados variando
seus hiperparametros de modo a otimizar a acuricia para o teste, conforme evidencia a Tabela

5 abaixo:
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Tabela 5 - Hiperparametros em que foi treinado a rede neural LSTM.

Parametro Valores
N_epochs 10, 100, 150, 250,500
learning_rate 0.001, 0.0001
n_layers 3,4
n_hidden 32, 64,128
batch_size 20
dropout 0.1

Fonte: o Autor.

O melhor conjunto de hiperparametros foi obtido para n_layers = 3, n_hidden = 64,
dropout = 0.1, batch_size = 20, learning rate = 0.001 e N _epochs=500 para ambos o0s
cenarios. As métricas de classificagdo para cada falha, bem como a média geral das métricas
para ambos cendrios estdo mostradas na Figura 25 e a comparacgdo entre a falha real e a falha

prevista estdo evidenciados na Figura 26.
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Figura 25 — Métricas dos modelos LSTM. Modelo LSTM com a entrada dos dados padrdo (a),

Modelo LSTM para os dados que sofreram uma transformagao por meio da PCA (b).
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Figura 26 — Previsdes dos modelos LSTM. Modelo LSTM com a entrada dos dados padrao

(a), Modelo LSTM para os dados que sofreram uma transformagao por meio da PCA (b).
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Em comparagdo aos modelos mais simples, extraidos da biblioteca sktime, ambos os
modelos de rede neural obtiveram um desempenho bastante superior. Isso pode ser explicado
devido a capacidade de personalizacao do modelo, uma vez que devido a quantidade de dados
e pela complexidade destes, ¢ necessario testar um niimero grande de hiperparametros para se
alcangar o modelo ideal.

Quando comparado o desempenho dos modelos LSTM, com e sem PCA, a
combina¢cdo dos modelos PCA e LSTM conseguiu uma acuracia global 6,8% maior,
predizendo satisfatoriamente, com uma acuracia acima de 85%, 17 das 20 falhas. Inclusive, o
modelo PCA combinado com LSTM aumentou a acurécia consideravelmente nas falhas mais
dificeis de serem diagnosticadas apenas pelo modelo LSTM, que foram as falhas 9 e 15.

Tal fato pode ser explicado devido a técnica de PCA, que funcionou com uma espécie
de feature selection, pois foi capaz de reduzir a dimensionalidade de 53 variaveis de processo
para 30 componentes principais, o que tornou mais facil o processo de aprendizagem da rede

neural e aumentou a sua capacidade de generalizagao.

4.5 SISTEMA PROPOSTO PARA MONITORAMENTO DE FALHAS EM TEMPO
REAL

No sistema proposto, os dados da industria sdo adquiridos de diversas formas e sdo
armazenados em tempo real na nuvem. Essas informagdes sofrem uma transformagao linear
para o dominio das PCAs e sdo monitoradas através das 2 cartas de controle multivariadas sob
a Otica da estatistica T? e Q. Uma vez detectada a falha, o sistema aciona um alarme e a série
historica desses dados ¢ enviada para o modelo LSTM, que realiza as transformagdes
necessarias e indica o tipo provavel de falha que ocorreu. Todo esse processo ¢ mostrado na

Figura 27.

Figura 27 — Sistema proposto para monitoramento em tempo real de falhas na indistria.
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Uma vez que ¢ detectada e diagnosticada essa falha atrativa e o desenvolvimento de
métodos de prevengdo se tornam mais eficientes, uma vez que todo o processo acontece em
tempo real e ocorre a analise de todas as variaveis, ou seja, ha uma analise global de toda a

manufatura produtiva.
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5 CONCLUSOES

A industria 4.0 vem transformando rapidamente o processo de automacgao, troca de
informagdes, modelos de negocio e a produtividade das industrias, uma vez que ela ¢
responsavel pelo aumento da eficiéncia no uso dos recursos no contexto industrial. Diante
desse contexto, foram aplicados conceitos da industria 4.0 para propor uma solugdo comum
em engenharia de processos, a deteccdo e o diagnostico de falhas na industria.

Uma falha ocorre quando um controlador ndo consegue manter os niveis aceitaveis de
uma variavel, gerando uma anomalia no processo, que pode afetar as varidveis locais, bem
como o processo como um todo. Inimeras industrias sofrem anualmente com gastos
decorrentes de falhas que ndo foram detectadas no tempo correto.

Do ponto de vista operacional, a detec¢do e diagndstico de falhas torna-se cada vez
mais complexa nas industrias, tendo em vista a quantidade de varidveis a serem monitoradas
ao longo do processo. Tal fator torna inviavel a analise univariada do processo pelo proprio
individuo. Sendo assim, este trabalho recorreu-se a técnicas de machine learning para
monitorar o processo, objetivando detectar e diagnosticar falhas de modo mais eficiente.

Para detectar as falhas, foi treinado um modelo de PCA que realizou uma
transformagao linear para um novo dominio ordenado pela variancia dos dados. Desse modo,
90% da variancia dos dados foi explicada por 30 componentes principais, reduzindo, assim, a
complexidade da analise. Apos isso, o processo foi monitorado através das cartas de controle
utilizando as estatisticas T?> e Q. Através desse mecanismo, 13 das 20 falhas foram
monitoradas corretamente, com taxas de detec¢ao positivas acima de 90%.

Para diagnosticar as falhas, observou-se que o modelo de rede neural LSTM,
combinado a técnica de PCA, obteve o melhor desempenho, com uma acuracia média de 0.94,
conseguindo diagnosticar satisfatoriamente 17 das 20 falhas apresentadas. Por fim, foi
proposto um sistema de monitoramento em tempo real do processo, responsavel por integrar

as tecnologias de detec¢do e diagndstico de falhas utilizadas neste trabalho.
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