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RESUMO

O quantitativo de dados gerados no mundo digital vem crescendo exponencialmente nos
últimos anos, tanto em relação à qualidade como à diversidade. A inteligência e a capacidade
de utilizar a informação a partir dos dados é considerado por muitos como o “novo petróleo”
da contemporaneidade. Nas indústrias, tal fato não ocorre de maneira distinta, as empresas
que sabem utilizar os dados em seu benefício possuem uma vantagem competitiva de mercado
imensa, tornando-se capazes de reduzir os custos de produção, aumentar a qualidade de seus
produtos e garantir eficiência em relação a sua segurança operacional. Diante desse cenário,
surge a indústria 4.0, baseada nas tecnologias de manufatura digital, tais como IoT, Big Data,
Cloud Computing, além de outras tecnologias emergentes. Nessa revolução, as fábricas
tornam-se cada vez mais mais inteligentes, flexíveis, dinâmicas, ágeis, integradas e capazes de
prevenir acidentes de trabalho além de paradas não planejadas ao longo do seu processo de
produção. Para que isso de fato ocorra, torna-se imprescindível detectar, diagnosticar e tratar
satisfatoriamente as falhas que ocorrem ao longo do processo produtivo. Sabe-se que uma
falha é definida como uma variabilidade não natural das variáveis de um processo em seu
estado estacionário, as quais não foram devidamente corrigidas pelo controlador. Dessa
forma, este trabalho propõe-se a realizar a detecção e o diagnóstico de falhas através de uma
análise multivariada utilizando como estudo de caso simulações obtidas do Tennessee
Eastman Process. Para a detecção, utilizou-se a técnica de PCA combinada com as estatísticas
T² e Q e posteriormente comparou-se o desempenho do modelo com a análise univariada. E
para realizar o diagnóstico das falhas, foram testado duas abordagens distintas, a primeira na
qual foi treinada e testada um modelo de rede neural recorrente em LSTM a partir de todas as
variáveis de processo normalizadas, e logo em seguida foi realizado o mesmo procedimento,
porém com uma prévia transformação linear através da PCA, considerando uma variância
acumulada de 90% das PCA’s. Estes modelos foram otimizados através de uma variação
aleatória dos seus hiperparâmetros e em seguida comparados entre si e entre outros algoritmos
de machine learning disponíveis na biblioteca scikit-time. Para a detecção, o modelo baseado
em PCA foi capaz de evidenciar, de maneira satisfatória, 13 das 20 falhas com taxas de
detecção de falhas acima de 90%, e para o diagnóstico, o modelo combinado de PCA e LSTM
foi capaz de diagnosticar, com mais de 85% de acurácia, 17 das 20 falhas, obtendo uma
acurácia global de 94%.

Palavras-chave: Inteligência Artificial; Indústria 4.0; Machine Learn; Python; PCA; LSTM;
Falhas; Indústria Petroquímica; Engenharia de processos.



ABSTRACT

The amount of estimated data in the digital world has been growing exponentially, both in
quantity and diversity. Intelligence and the ability to use information from data is considered
to be the “new oil”. In the industry this is not different, since companies can have competitive
advantage. In this context, industry 4.0 emerges, based on digital production context
technologies, such as IoT, Big Data, Cloud Computing and other emerging technologies.
These changes have made those industries increasingly intelligent, flexible, dynamic,
integrated and that must be designed to prevent work accidents and no planning process
stops. For this, it is necessary to detect, diagnose and satisfactorily treat the failures that occur
in the production process. A failure being defined as an unnatural variability in the variables
of a stationary process that has not been corrected by the controller. Thus, this work proposes
to carry out a detection and diagnosis of failures through a multivariate analysis using
Tennessee Eastman Process simulations as case studies. For detection, the combined PCA
technique and T² and Q statistics were used and the performance of the model was compared
with the univariate one. In addition, to carry out the fault diagnosis, 2 approaches were tested,
first a recurrent neural network model was trained and tested from the whole normalized
process variables, and then this procedure was done, a linear transformation was previously
performed through PCA, considering an accumulated variance of 90% of PCAs. Models were
optimized by a series of random characters from these models compared to each other and to
other machine learning models available in the scikit-time librarie. For detection, the
PCA-based model was able to satisfactorily detect 13 out of 20 faults with fault detection
above 90% and combined for diagnosis, the PCA and LSTM model was capable of diagnosis,
with more than 85% accuracy, 17 out of 20 failures, with an overall accuracy of 94%.

Keywords: Artificial intelligence; Industry 4.0; Machine Learn; Python; PCA; LSTM; faults;
Petrochemical industry;Process engineering.
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1 INTRODUÇÃO

A Primeira Revolução Industrial iniciou-se na Inglaterra, ainda na segunda metade do

século XVIII, e obteve como seu grande marco a mecanização dos processos, possibilitando o

início da produção em larga escala. Nas fábricas, as máquinas a vapor eram alimentadas por

carvão, tornando-se este o principal combustível utilizado na época. Já a Segunda Revolução

Industrial, além de consolidar a produção em larga escala, acelerou o processo de

desenvolvimento das indústrias químicas, elétricas, petróleo e aço, além de contribuir, de

maneira significativa, para que houvesse uma maior disponibilidade de meios destinados a

logística (CASTELLIS, 2007).

A Terceira Revolução Industrial teve o seu início datado em meados do século XX,

sendo caracterizada pela substituição da mecânica do estilo analógico pelo digital, além de

contar com um grande avanço no que tange a área de telecomunicações, possibilitado,

sobretudo, devido à criação da internet. Para além disso, com o fim da Segunda Guerra

Mundial e início da Guerra Fria, houve um interesse cada vez maior no ramo das pesquisas

científicas, o que possibilitou a ampliação de novas fontes de energia, a exemplo da energia

solar, eólica e nuclear (CASTELLIS, 2007).

Todo esse avanço tecnológico tornou-se essencial para o surgimento da Quarta

Revolução Industrial, que teve o seu início na Alemanha no ano de 2011, cujo objetivo

principal do país era o de fortalecer a sua indústria nacional. Pode-se afirmar que a Quarta

Revolução Industrial vem transformando, de modo significativo, a maneira como as empresas

fabricam, controlam e distribuem os seus produtos. Tecnologias como Big Data and Data

Analytics, Inteligência artificial, Internet das coisas, Machine Learning além de outras

emergentes, estão cada vez mais integradas ao chão de fábricas e na estratégia das empresas,

não apenas em relação ao seu processo produtivo, mas também na importante pauta de

relacionamento com os seus clientes. É a partir dessa ferramenta estratégica que as indústrias

tornam-se cada vez mais mais ágeis, inteligentes, flexíveis e dinâmicas na contemporaneidade

(ANNANTH; ABINASH;RAO, 2021).

O mundo tem se tornado cada vez mais digital, o comportamento dos indivíduos e a

forma como estes interagem com os diferentes produtos e serviços vêm sofrendo fortes

alterações nas últimas décadas (ANNANTH; ABINASH;RAO, 2021). É comum, por

exemplo, pequenos comércios possuírem um site próprio ou um perfil nas redes sociais

visando ampliar as suas oportunidades de vendas. Este fenômeno indica que estar conectado

na atualidade não é mais uma questão de opção, mas sim uma questão de necessidade.



12

Dessa forma, é possível constatar que a ciência dos dados vem recebendo muita

notoriedade nos últimos anos devido a capacidade de processar esses dados e transformá-los

em informação. Trata-se de um campo na ciência capaz de combinar três grandes áreas do

conhecimento, como a matemática e estatística, computação e conhecimento de negócio, além

de apresentar diversas metodologias no que tange a mineração de dados, processamento,

análise e até mesmo criação de modelos para a predição de dados (DA SILVA; SIQUEIRA,

2019).

A partir desse contexto, é possível perceber que a quantidade de dados gerados no

mundo vem crescendo exponencialmente. Estima-se que os dados gerados entre os anos de

2018 e 2015, foram maiores do que os gerados entre 1995 e 2015. Para além disso, há ainda a

previsão de que essa quantidade triplique de valor até 2025. Sendo assim, as empresas que

conseguirem gerar informação a partir desses dados, seja sobre comportamento dos seus

clientes, ou sobre o processo produtivo, terão uma imensa vantagem competitiva de mercado

(RYDNING, 2018).

Nas indústrias, especialmente as químicas, houve um grande processo de

automatização dos processos devido a redução de custos com analisadores, controladores e

com armazenamento de dados. O que por sua vez possibilitou o aumento da quantidade de

dados históricos armazenados, gerando uma maior complexidade durante a sua análise

(SOARES, 2017).

No Brasil, em 2016, 48% das indústrias utilizaram a tecnologia digital em seus

processos, já em 2021, esse número subiu para 69%, evidenciando, assim, que há uma

tendência à digitalização (PORTAL DA INDÚSTRIA, 2022). Apesar disso, essa mesma

pesquisa analisa que as empresas utilizam uma baixa quantidade de tecnologias digitais,

constatando que ainda encontram-se na fase inicial da digitalização. Torna-se possível

perceber que, a maior parte das indústrias brasileiras medem e armazenam dados sobre o

processo, mas não os utilizam de modo eficiente, ou seja, não usufruem totalmente dos

benefícios possibilitados pela indústria 4.0 (PORTAL DA INDÚSTRIA, 2022).

Desse modo, uma das tecnologias que encontra-se ainda não muito explorada pelas

indústrias brasileiras é a análise de detecção e diagnóstico de falhas que utilizam dados

históricos do processo. Trata-se de uma tarefa extremamente importante em uma indústria,

tendo em vista que esta falha pode vir a ocasionar paradas inesperadas durante o processo de

execução, refletindo em perdas na produção, redução do tempo de vida útil dos equipamentos

incluindo até mesmo acidentes de trabalho. Depender apenas do operador humano para lidar

com eventos e emergências anormais torna-se um trabalho dificultoso, devido não apenas ao
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tamanho e complexidade dos processos, como também ao amplo escopo da análise de

diagnóstico, além da dependência de conhecimento prévio especializado sobre o assunto

(GERMANO, 2017).

Nesse contexto, a análise de detecção e diagnóstico de falhas na indústria através da

construção de modelos do tipo data-driven (orientado a dados do processo) vem ganhando

bastante notoriedade ao longo dos últimos anos, uma vez que é capaz de realizar a detecção de

falhas em tempo real, além de estabelecer o diagnóstico (indicar as causas raízes) de maneira

simplificada baseada apenas em dados, ou seja, não torna-se necessário um conhecimento

prévio sobre o processo (CAPACI et al., 2019).

Para criar um modelo de detecção e diagnóstico de falhas em processos industriais é

necessário que haja um banco de dados de variáveis do processo ao longo do tempo, bem

como a resposta dessas variáveis quando submetidas a diversos tipos de falhas. Levando-se

em consideração que os dados históricos reais de indústrias não costumam ser públicos,

Downs e Vogel (1993), propuseram o problema de Tennessee Eastman Process, que trata-se

de uma planta petroquímica que simula um processo real passando a ser considerada um

benchmark em estudo de controle e simulação de processos.

Sendo assim, o objetivo deste presente trabalho é detectar e diagnosticar falhas em

processos industriais a partir das variáveis de processo, por meio de técnicas estatísticas em

conjunto a modelos de machine learning. Para isso, serão utilizados dados de simulação

adaptados do Tennessee Eastman Process (TEP) processo obtidos por Rieth et al. (2017), e

ferramentas computacionais, além da linguagem de programação Python e dos seus módulos

para machine learning e data science , como as bibliotecas Pandas, Numpy, Scikit-Learn e

pytorch.

Como objetivos secundários, deseja-se comparar o desempenho entre os diversos

modelos analisados. Utilizar técnicas de pré-processamento nos dados para aumentar o

desempenho dos modelos, verificar a correlação entre as variáveis de entrada e as variáveis

alvo e, por fim, propor um sistema em tempo real de detecção e diagnóstico de falhas na

indústria utilizando as tecnologias apresentadas neste trabalho.
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2 FUNDAMENTAÇÃO TEÓRICA

2.1 INDÚSTRIA 4.0

O termo “indústria 4.0” foi primeiramente mencionado na Alemanha durante a feira de

Hannover no ano de 2011 como uma iniciativa estratégica para aumentar a competitividade

das fábricas sendo definida como a transformação completa de toda a esfera da produção

industrial através da fusão da tecnologia digital e da internet com a indústria convencional.

Apesar do termo ser abordado inicialmente na Alemanha, espalhou-se pelo mundo todo como

uma nova tendência estratégica dos governos para aumentar a produtividade de suas

indústrias (BORTOLINI et al., 2017).

Nesta revolução, as atuais tecnologias de fabricação são transformadas através de

sistemas inteligentes que integram o meio físico e o virtual, tais como a internet das coisas,

computação em nuvem, machine learning e inteligência artificial. O conjunto dessas

tecnologias dá origem ao termo conhecido como Cyber Physical Systems (CPS) que

referem-se a sistemas conectados por meio da internet das coisas (IoT) e que interagem entre

si, analisam dados e adaptam-se às mudanças (PERES, 2020). Dessa forma, percebe-se que a

indústria 4.0 combina a inteligência artificial, comunicação instantânea, capacidade de

analisar um grande volume de dados e automação dos processos industriais para aumentar a

performance do sistema produtivo, tendo em vista a possibilidade de tomar decisões

inteligentes em tempo real (ANNANTH; ABINASH; RAO, 2021).

A indústria 4.0 não se limita, apenas, aos processos produtivos, mas também é capaz

de integrar a logística com a manufatura. Conforme citado pela revista mundo logística

(2017), o foco das empresas será dedicado a atender as necessidades dos clientes de forma a

produzir bens cada vez mais personalizados, com o menor estoque possível e com o menor

tempo de fabricação. Dessa forma, é necessário que haja uma conectividade e alinhamento

entre toda a cadeia de suprimentos, o que tornou-se possível através da interconectividade

oferecida pela indústria 4.0. É a partir disso que surge o termo Smart Factory, que refere-se a

uma fábrica que produz produtos inteligentes, utilizando toda uma cadeia de suprimentos

inteligentes, através de equipamentos que atendem às necessidades do consumidor

(MABKHOT, 2018).

Mohamed (2018) destaca os principais componentes necessários para que haja a

indústria 4.0:

● Mapeamento do processo: É necessário que haja o mapeamento do processo para

planejar a implantação;
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● Sistemas Cyber Físicos (CPS): Esse sistema integra o mundo físico e o digital, ou seja,

cada etapa de produção é acompanhada por dispositivos que enviam dados para uma

unidade central. Esta unidade processa os dados de todas as etapas além de

disponibilizar e enviar essas informações;

● Internet das coisas (IoT): IoT faz parte dos CPS e permite a comunicação entre os

CPSs e entre CPSs e usuários;

● Big Data e Analytics: Tratam-se dos avanços da eletrônica no que diz respeito a

sensores e a capacidade de armazenamento de dados, em conjunto com os conceitos

da logística 4.0 onde cada vez mais a produção encontra-se de maneira dinâmica e

orientada para as necessidades dos clientes, são responsáveis também por gerar um

aumento expressivo no número de dados colhidos. Tais dados, quando bem analisados,

geram inteligência para o processo, e por consequência, vantagem ainda mais

competitivas para o mercado;

● Internet of Service (IoS): É a internet das coisas (IoT) aplicada aos prestadores de

serviços, no qual as empresas podem atrelar um serviços aos seus produtos, agregando

ainda mais valor para o usuário final.

2.1.1 Implementação da indústria 4.0 e seus desafios

Obitko e Jirkovsky (2015) e Silveira (2019) citam os 7 princípios que devem ser

respeitados para que haja a correta implementação da indústria 4.0. São eles:

● Capacidade de operação em tempo real: Aquisição e tratamento dos dados em tempo

real. Assim, os dados devem reagir instantaneamente a qualquer alteração no

ambiente, como ruídos e falhas, possibilitando a tomada de decisão em tempo real;

● Virtualização: A indústria 4.0 deve fornecer uma cópia virtual da planta industrial,

possibilitando a rastreabilidade e o seu monitoramento em tempo real, promovendo

também o uso de simulações;

● Descentralização: A tomada de decisão poderá ser realizada pelo sistema cyber-físico

(CPS) de acordo com as necessidades da produção, excluindo a necessidade de

indivíduos destinados para esta tarefa. Assim, cada módulo da fábrica poderá trabalhar

de forma descentralizada tornando a indústria ainda mais eficiente;

● Orientação à serviços: Utilização de arquiteturas de software orientadas a serviços que

estão aliados ao conceito de Internet of Services (IoS);
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● Modularidade: A indústria é orientada para a demanda e necessidades dos clientes,

proporcionando uma maior flexibilidade para as máquinas;

● Segurança da informação: É a capacidade de proteger todas as informações que serão

trocadas durante o processo.

Apesar dos benefícios da indústria 4.0, a sua implementação envolve muitos desafios,

tais como, tecnológicos, econômicos, problemas sociais e questões políticas, podendo levar

cerca de 10 anos para que possa ser efetivamente concluída (MOHAMED, 2018).

Dennis Kü sters et al. (2017) citam como os principais desafios para a implementação

da indústria 4.0 a falta de profissionais realmente qualificados e as poucas matérias destinadas

aos cursos de engenharia a respeito do tema, além das incertezas acerca dos benefícios

financeiros da implantação da indústria 4.0 devido a falta de negócios e também preocupações

sobre a segurança dos dados através de provedores terceirizados. Já T. Stock e G. Seliger

(2016) afirmam que os principais desafios são a tecnologia, a readaptação da estrutura da

empresa face à quarta revolução industrial bem como a segurança da informação.

2.2 MACHINE LEARNING

Machine Learn é definida como a ciência que dá aos computadores a capacidade de

aprendizado sem necessariamente serem programados, ou seja, as máquinas são capazes de

lidar com dados de maneira eficiente e fazer excelentes previsões a partir deles. Para realizar

esta operação, os modelos matemáticos e estatísticos são implementados a partir de uma

linguagem de programação, e recebem como entrada as variáveis do sistema, que são

previamente escolhidas a partir de técnicas estatísticas, retornando as variáveis de saída ou

agrupando as variáveis, que são a previsão do modelo. Sendo assim, o objetivo da machine

learning é proporcionar à máquina o aprendizado através dos dados (MAHESH, 2020).

Para aplicar o aprendizado de máquina, existem diversos tipos de modelo, não sendo

possível identificar um único modelo que se aplique de modo melhor para todos os

problemas. Sendo assim, os modelos de machine learning são divididos em 3 grande classes:

Modelos de aprendizagem supervisionada, não supervisionados e semi supervisionados

(SANCHES, 2003).
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2.2.1 Modelo Supervisionado

Os modelos supervisionados são baseados nos pares de entradas-saídas onde se busca

uma função capaz de relacionar as variáveis de entrada e saída. Essa função é construída a

partir de modelos matemáticos e estatísticos, em que os parâmetros desses modelos são

ajustados de modo a reduzir o erro relativo entre o valor previsto e o valor real (ALPAYDIN,

2021).

Os dados históricos são divididos, geralmente, de maneira aleatória em dois tipos: os

de treino e os de teste. Os dados de treino possuem variáveis de saída que devem ser

classificadas ou previstas a partir das variáveis de entrada, enquanto que os dados de teste são

utilizados para validar o modelo a partir de parâmetros estatísticos (ALPAYDIN, 2021). O

fluxograma de funcionamento de um modelo supervisionado é evidenciado na Figura 1.

Figura 1 – Fluxograma de um modelo supervisionado.

Fonte – Adaptado de Mahesh (2020).

2.2.2 Modelo não Supervisionado

Os modelos não supervisionados não possuem uma variável de saída correta, dessa

forma, não é possível treinar o modelo a partir do ajuste dos parâmetros. Logo, os modelos

tentam agrupar os dados a partir de padrões de similaridades, ou seja, características em

comum. Assim, os modelos não supervisionados aprendem as características dos dados e os

agrupam dessa maneira, o que é conhecido como clustering. Quando um novo dado é

introduzido, o modelo percebe suas características e as utiliza para agrupá-las pelos atributos

já aprendidos (ALPAYDIN, 2021).

Esse tipo de modelo é bastante utilizado para agrupamento de atributos e também para

reduzir variáveis. Possuem aplicações em sistemas de recomendação de produtos ou para

detectar spams em e-mail (ALPAYDIN, 2021). O fluxograma de um modelo não

supervisionado é apresentado na Figura 2 a seguir.
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Figura 2 – Fluxograma de um modelo não supervisionado.

Fonte – Adaptado de Mahesh (2020).

2.2.3 Modelo Semi Supervisionado

Nesse tipo de modelo, há um conjunto de dados de treinamento e dados não rotulados

que também estão disponíveis para treinamento. Dessa forma, admite-se o treinamento do

modelo com dados não rotulados que está disponível, junto aos já rotulados. A motivação da

existência desse modelo é que para muitos casos há menos dados rotulados ou disponíveis em

comparação aos não rotulados. Um outro motivo é que os dados não rotulados são mais fáceis

de serem adquiridos, pois não necessitam da intervenção humana ou de outros modelos de

classificação para a sua rotulação (SANCHES, 2003).

2.3 TENNESSEE EASTMAN PROCESS

A melhor forma de aplicar as principais técnicas de detecção e diagnóstico de falhas é

através dos dados específicos relacionados a diversos tipos de falhas em uma indústria real,

porém esses dados não costumam estar disponíveis de maneira pública (DOS SANTOS,

2018). É nesse contexto que o Tennessee Eastman Processs (TEP) foi desenvolvido pela

Eastman Chemical Company com o intuito de simular falhas em processos industriais

(DOWNS; VOGEL, 1993). Mesmo sendo criado em 1993, esse modelo se mostra

extremamente importante para comparar modelos de detecção de falhas, uma vez que

apresentam características de dados da indústria, como sistemas multicomponentes

complexos, variáveis multicolineares e não lineares.

O TEP consiste em um processo contínuo com 5 principais componentes: um reator,

um separador líquido-vapor, uma coluna de destilação, um compressor de reciclo e um

condensador de produtos, conforme mostrado na Figura 3, possuindo 4 reagentes gasosos

como entrada, A, C, D e E e um inerte identificado na entrada B, formando dois produtos

líquidos na entrada G e H e um subproduto na F, como evidenciado nas reações que vai da
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etapa 1 até a 4 (DOWNS; VOGEL, 1993):

Figura 3 - Fluxograma do Tennessee Eastman Process (TEP).

Fonte: Downs e Vogel (1993).

A(g)+C(g)+D(g)→G(liq) (1)

A(g)+C(g)+E(g)→H(liq) (2)

A(g)+E(g)→F(liq) (3)

3D(g)→2F(liq) (4)

Em suma, os reagentes A,C, D, E e o inerte B formam uma corrente de entrada gasosa

no reator, que em seguida reagem no reator, com auxílio de um catalisador não volátil e a

reação, por ser exotérmica, é resfriada por meio de uma serpentina que circula água. Em

seguida, o produto dessa reação, ainda na forma gasosa, segue para o condensador em que a

corrente é resfriada e parte desta é condensada. Essa corrente por sua vez é transportada para

um separador líquido-gasoso que retira o produto gasoso não condensado e o envia como

refluxo, através de um compressor, em direção ao reator. Parte dessa corrente ainda sofre

purga, justamente para evitar o acúmulo de subproduto inerte e para que se evite também a
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diminuição da eficiência do processo. O produto condensado é enviado para a coluna de

destilação, responsável por retirar o reagente que ainda permanece na corrente por meio da

adição do reagente C. Finalmente, os produtos G e H são retirados da coluna de destilação e

seguem para um processo de separação, que não estão incluídos nesta planta (DOWNS;

VOGEL, 1993).

Quanto às reações que ocorrem no processo, estas são consideradas irreversíveis,

exotérmicas e aproximadamente de primeira ordem em relação à concentração dos reagentes.

Além disso, as constantes cinéticas se relacionam com a temperatura por meio da função de

Arrhenius, em que a reação de formação de G tem uma energia de ativação superior a de H,

resultando em uma maior sensibilidade à temperatura (DOWNS; VOGEL, 1993).

Os dados de simulação do TEP permitem analisar o comportamento do processo

quando submetido a diversos tipos de falhas. Ao todo, são analisadas 20 tipos de falhas

através da manipulação de 12 variáveis e da observação de 41 variáveis de processos

(DOWNS; VOGEL, 1993).

2.4 FALHAS EM PROCESSOS INDUSTRIAIS

Devido a competitividade no mercado, a necessidade de aumento de segurança

operacional, regras ambientais, aumento da qualidade dos produtos e redução dos custos com

manutenção, os processos industriais se tornaram cada vez mais complexos e difíceis de

serem analisados manualmente. Diante deste cenário, para manter a competitividade, muitas

empresas recorrem às tecnologias da indústria 4.0, o que tem aumentado significamente a

quantidade de dados coletados, os quais são analisados em tempo real por operadores, e a

maior parte encontram-se armazenados em uma base de dados (LOMOV et al., 2021).

Contudo, com o nível de complexidade do processo e a quantidade enorme de dados

sendo gerados, torna-se cada vez mais difícil para o operador, analisar todas as variáveis do

processo e agir da maneira mais eficiente frente às anomalias (LOMOV et al., 2021).

Sendo assim, com o intuito de controlar as variáveis, os processos industriais operam

em malha fechada, ou seja, uma série de conjunto de controladores são utilizados para manter

as variáveis do processo em níveis aceitáveis, compensando erros considerados aleatórios

durante o processo. Porém, naturalmente ocorrem mudanças onde os controladores não

conseguem agir da maneira mais adequada, as quais são denominadas de falhas de processos

(GERMANO, 2017).

A ocorrência de falhas gera uma grande quantidade de riscos operacionais, que podem
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ocasionar perdas econômicas, danos à infraestrutura e sanções legais para uma empresa, além

da possibilidade de incidentes ou acidentes catastróficos, riscos para trabalhadores, clientes e

também para o meio-ambiente (FRANK, 2009). Dessa forma, nota-se a importância de

evitar-se as falhas internas em uma empresa, porém, quando esta ocorre, torna-se

imprescindível a rápida detecção de sua origem.

As falhas de processo contínuo podem ser classificadas quanto a sua forma de

ocorrência em três tipos, são elas: falhas abruptas, incipientes e intermitentes. As falhas

abruptas ocorrem em um pequeno intervalo de tempo e são responsáveis por um grande

impacto durante o processo produtivo. Já as falhas incipientes ocorrem de maneira gradual e

são bastante difíceis de serem detectadas pois normalmente são mascaradas pela ação de

controladores. Por fim, as falhas intermitentes ocorrem de maneira repetida ao longo do

processo, sendo caracterizadas por perturbações periódicas (SIMONI; FANTUZZI; ATTON,

2003).

Quanto às abordagens realizadas para que haja o devido monitoramento das falhas

durante o processo produtivo, Chiang, et al., (2000) citam 4 etapas basilares para

solucioná-las:

● Detecção de falhas: Determina a ocorrência de uma falha a partir de alguma

variabilidade anormal acerca de uma variável de processo;

● Identificação de falhas: Determinação do tamanho e do comportamento, no tempo

correto, de uma falha. Essa etapa ocorre após a isolação (ou isolamento) da falha;

● Diagnóstico da falha: Determina quando, onde, qual a intensidade e qual a falha

ocorreu no processo;

● Recuperação do processo: Refere-se ao tratamento propriamente dito dos efeitos da

falha.

A Figura 4, por sua vez, esquematiza de maneira resumida as importantes etapas desse

ciclo:

Figura 4 - Ciclo de monitoramento de falhas em processos industriais.

Fonte: Adaptado de CHIANG, et al. (2000).
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2.5 MÉTODOS DE DETECÇÃO E DIAGNÓSTICO DE FALHAS EM PROCESSOS
INDUSTRIAIS

Foram desenvolvidas várias formas de detectar e diagnosticar falhas durante o

processo industrial. Venkatasubramanian et al. (2003), classificaram os métodos de detecção

de falhas em: Métodos quantitativos baseados em modelos físicos, métodos qualitativos

baseado em modelos e métodos baseados em histórico do processo, cuja classificação

encontra-se esquematizada na Figura 5.

Figura 5 - Classificação dos métodos de detecção e diagnóstico de falhas.

Fonte: Germano (2017).

Os métodos baseados em modelos físicos requerem um conhecimento prévio acerca

do processo a ser analisado, podendo ser expressado através de equações matemáticas que

representam as relações de entrada e saída do processo. Essas relações podem ser tanto a nível

quantitativo como também expressas através das funções qualitativas. Já os métodos que se

baseiam no histórico do processo, necessitam apenas da análise e estudo histórico das

variáveis de processo, dispensando um conhecimento prévio aprofundado acerca do tema

(VENKATASUBRAMANIAN et al., 2003).

Em processos ditos mais complexos, que são mais comuns em processos industriais, a

detecção de falhas baseadas em modelos físicos tornam-se cada vez menos viáveis, devido à

quantidade de variáveis, a multicolinearidade das variáveis e imprevisibilidade do sistema.

Sendo assim, modelos baseados em dados históricos vêm se destacando cada vez mais, pois

utiliza-se das técnicas de estatística, matemática e machine learning tornando-se capaz de

gerar modelos para sistemas extremamente complexos e com inúmeras variáveis (CAPACI, et
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al., 2019).

Modelos Data Driven para a detecção de falhas podem ser divididos em dois tipos:

aprendizado supervisionado e não supervisionado. Modelos de aprendizado supervisionado

incluem as redes neurais artificiais (SUN et al., 2020);(SHENFIELD E HOWARTH, 2020),

support vector machine (ONEL, CHRIS A; PISTIKOPOULOS, 2019) e redes bayesianas

(BN) (CHEN; KHER; SOMANI, 2006). E modelos não supervisionados, incluem a análise de

componentes principais (PCA) (AMIN; IMTIAZ; KHAN, 2018), análise dos mínimos

quadrados (PLS) (BOTRE, 2017) e análise de componentes independentes (ICA) (CHEN,

2016).

Os modelos do tipo Data Driven para diagnóstico de falhas são utilizados em uma

etapa posterior à análise de detecção de falhas. Sendo assim, uma vez detectada a falha, esses

modelos são acionados para indicar o tipo exato da falha que está ocorrendo. São catalogados

como modelos do tipo de aprendizagem supervisionada nos quais os algoritmos são treinados

a partir de séries temporais multivariadas do processo. Dentre os algoritmos mais utilizados,

incluem-se SVM, Árvores de decisão e KNN (TAQVI et al., 2021).

2.6 MÉTODOS DE DETECÇÃO DE FALHAS APLICADAS AO TEP

2.6.1 Controle estatístico univariado do processo

O controle estatístico de processo ou CEP surgiu para monitorar a variabilidade do

processo, de modo a torná-lo estável e repetitivo. Logo, um dos principais objetivos da CEP é

detectar a ocorrência de anomalias que causam uma alteração considerável nas variáveis de

processo. Para que ocorra essa ação são utilizadas as cartas de controle, que tratam-se de

gráficos que exibem a evolução de um processo ao longo do tempo, onde é determinado um

limite para o qual se define uma faixa considerada aceitável (SUMAN; PRAJAPATI, 2018).

A Figura 6 evidencia uma típica carta de controle em que a linha central representa a

média da variável analisada quando o processo está controlado, ou seja, dentro dos limites

aceitáveis. Já as outras 2 linhas horizontais representam o limite superior e inferior de

controle. Medições acima ou abaixo desses limites indicam que determinada amostra está fora

da normalidade e deve ser verificada as possíveis causas dessa variabilidade (OLIVEIRA;

ANUNCIAÇÃO; LOPES, 2018).
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Figura 6 - Carta de controle para um processo controlado.

Fonte: Oliveira, Anunciação e Lopes (2018).

Na carta de controle padrão de Shewhart admite-se que uma variável encontra-se

devidamente controlada quando ela está dentro do limite de ± 3𝛔, sendo , a média dasµ µ

observações e 𝛔, o desvio padrão das observações. Dessa forma, admite-se um risco de 0,27%

para um alarme falso, ou seja, quando uma amostra dentro dos limites é considerada fora de

controle, considera-se também que 99,73% das amostras encontram-se em torno da variação

da média (OLIVEIRA; ANUNCIAÇÃO; LOPES, 2018).

As cartas de controle são úteis quando o processo é mais simples ou deseja-se avaliar

poucas características do processo. Porém, como é gerado uma carta de controle para cada

variável, quando o número de variáveis a serem monitoradas aumenta, fica ainda mais

complicado monitorar e gerir o processo. Além disso, as cartas de controle monitoram as

variáveis de modo individual, portanto, não avaliam a relação entre as próprias variáveis. Para

contornar essas problemáticas opta-se pela análise multivariada do processo (MEHMOOD,

2022).

2.6.2 Controle estatístico multivariado do processo

2.6.2.1 PCA

A técnica de PCA (Análise de Componentes Principais) é uma técnica de análise

exploratória de dados que se aplica às mais diversas áreas de pesquisa e busca identificar

tendências entre os dados através da redução do número de variáveis, sem que haja uma

grande perda de informação, ou seja, de variância. Para além disso, uma característica muito

importante da técnica de PCA é que ela ajuda a visualizar agrupamentos entre as amostras,
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visto que reduzem a dimensionalidade do conjunto original de variáveis, tornando-se mais

fácil plotar os gráficos com duas ou três dimensões sem perda significativa de informação

(FERREIRA et al., 2017).

A técnica de PCA aplica uma transformação linear no conjunto original dos dados,

conforme evidenciado pela Equação 5 (SHLENS, 2014).

𝑇 =  𝑌𝑃 (5)

Assim, para um conjunto de dados Y ∈ Rn×m , sendo n , o número de linhas e m, a

quantidade de colunas, aplica-se uma mudança de base a partir da matriz P ∈ Rm×m

conhecida como matriz de componentes principais, sendo ainda caracterizada como uma

matriz de variância e covariância, na qual a diagonal principal representa a variância e o

restante da matriz, e a covariância entre cada variável, conforme mostrado pela Equação 6

(SHLENS, 2014).

𝑐𝑜𝑣(𝑎1𝑎1) 𝑐𝑜𝑣(𝑎1, 𝑎2)......... 𝑐𝑜𝑣(𝑎1, 𝑎𝑚)  [ ]

(6)𝑐𝑜𝑣(𝑎2𝑎1) 𝑐𝑜𝑣(𝑎2, 𝑎2)......... 𝑐𝑜𝑣(𝑎2, 𝑎𝑚)  [ ]

𝑐𝑜𝑣(𝑎𝑚𝑎1) 𝑐𝑜𝑣(𝑎𝑛, 𝑎2)......... 𝑐𝑜𝑣(𝑎𝑚, 𝑎𝑚)[ ]

As colunas de T ∈ Rn×m representam as variáveis latentes e são projeções das

colunas de Y na base P, ou seja, nos eixos de componentes principais que são

ortogonais entre si e normalizadas, logo linearmente independentes e possuem o

mesmo módulo (SHLENS, 2014).

Dado que hajam, “m” variáveis no conjunto de dados originais, serão

produzidas “m” PCAs, porém, essas PCAs são ordenadas de modo a traçar a maior

variabilidade entre os dados. Logo, a primeira PCA possui a direção de maior

variância dos dados, a segunda PCA apresenta a segunda maior direção com maior

variância entre os dados e assim por diante. Sendo assim, é possível escolher um

número de PCAs que represente uma porcentagem, em geral determinada como 90%,

de variabilidade acumulada dos dados, possibilitando uma simplificação no conjunto

de dados (SHLENS, 2014).

Dessa forma, com o intuito de reduzir a dimensionalidade, é selecionada uma
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quantidade “a” de componentes principais que dá origem a uma matriz P reduzida

denominada de Pa que aplicada ao conjunto original de dados forma a matriz de

variáveis latentes Ta (SHLENS, 2014), conforme mostra a Equação 7 abaixo:

𝑇𝑎 =  𝑦𝑃𝑎 (7)

Como as variáveis mais importantes são aquelas que mais variam, a matriz Ta

representa de maneira mais eficiente e adequada a relação entre os dados, pois não contém as

variáveis com as menores variâncias, que correspondem em geral ao ruído da medição. Essa

matriz pode ser projetada na matriz original gerando uma matriz reconstruída ŷ com uma

quantidade de a variáveis (SHLENS, 2014). Essa reconstrução é mostrada a seguir na

Equação 8.

’Ŷ =  𝑇𝑎𝑃𝑎’ =  𝑌(𝑃𝑎𝑃𝑎) (8)

A diferença entre Y e é a matriz residual E, dada por:Ŷ

𝐸 = 𝑌 −  Ŷ (9)

Enquanto a matriz contém a variabilidade escolhida pelo modelo PCA, E contém aŶ

variabilidade não capturada do modelo. Assim o subespaço vetorial gerado por éŶ

considerado o espaço principal e o gerado por E, é considerado o espaço residual (SHLENS,

2014).

Porém, para para o uso da técnica de PCA, é necessário que os dados originais

cumpram 4 pré-requisitos básicos, são eles: (SHLENS, 2014).

● Linearidade: Os dados devem possuir relações lineares de modo que as variáveis

latentes possam ser geradas a partir da transformação linear da matriz original;

● Redundância ou multicolinearidade: Devem está presentes relações de redundância

entre as variáveis, pois na ausência, a transformação linear não faria efeito;

● Alto razão de sinal/ruído: Essa hipótese deve ser respeitada para que se considere que

variâncias grandes representam informações úteis e não apenas ruídos;
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● Conjunto de dados centralizados: De forma que a média de e T sejam nulas, quando𝑌

aplicada a normalização.

2.6.2.2 Controle estatístico multivariado com PCA

Utiliza-se a técnica de PCA para análise multivariada dinâmica do processo através de

estatísticas, é também utilizada para analisar séries temporais, como a exemplo dos casos que

ocorrem em processos industriais. Ainda assim, é necessário duas condições adicionais além

das hipóteses enumeradas para o uso da técnica de PCA, são elas: que o processo esteja na

condição estacionária e que siga uma distribuição normal (PARK; FAN; HSU, 2020).

Com tais pré requisitos sendo atendidos, o monitoramento do processo industrial se dá

em duas etapas: (PARK; FAN; HSU, 2020)

1. Na etapa de treino, utiliza-se os dados em operação normal da fábrica, o que implica

em calcular as matrizes de projeção de Y em Pa. Assim, supõe-se que o modelo é

capaz de explicar a variabilidade nas condições normais de operação;

2. Na etapa de teste, os novos registros são avaliados se estão conforme o modelo.

Assim, caso as observações não se enquadrem como o modelo prever para as

condições normais de processo, o processo sai do comportamento considerado normal

e pode ser classificado como uma falha.

Dessa forma, de acordo com a dinâmica do modelo, ele é classificado como não

supervisionado, pois sua função é detectar clusters de variáveis latentes que não estão de

acordo com a normalidade do processo.

Como o PCA separa o espaço original dos dados em 2 subespaços, o principal, gerado

por e o residual, gerado por E, torna-se útil para monitorar mudanças em ambos. O modo deŶ

monitoramento desses subespaços é a partir das estatísticas T² e Q, e quando essas estatísticas

ultrapassam o limite de detecção é acionado um alarme, que indica uma possível falha no

processo (PARK; FAN; HSU, 2020).

A estatística T² monitora o subespaço vetorial principal e são aplicadas às variáveis

latentes, que são as projeções de Y nos primeiros a componentes principais, de acordo com

equação abaixo:

𝑇² = 𝑡
𝑎
'Λ

𝑎
−1𝑡

𝑎
(10)
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Em que t, representa a variável latente, a variância explicada.Λ
𝑎

Para Kundu e Damarla (2017) a estatística T² indica a variância global explicada pelo

modelo no espaço principal para as a variáveis, associadas ao processo. O aumento do valor

de T² sugere algum tipo de falha da mesma natureza que as variáveis escolhidas pelo modelo

PCA. Desse modo, delimitar um limite de controle para T² significa demarcar uma região de

hiper elipse no subespaço vetorial das variáveis latentes.

Um limite de controle muito utilizado é evidenciado através da Equação 11

(GARCIA-ALVAREZ, et al., 2009 ). Sendo T²lim o limite de controle, e a𝐹
α(𝑎,𝑛−𝑎)

distribuição de Fisher-Snedecor com graus de liberdade e .α 𝑛 − 𝑎

𝑇²
𝑙𝑖𝑚

 =  𝑎(𝑛2−1)
𝑛(𝑛−𝑎) 𝐹

α(𝑎,𝑛−𝑎)
(11)

Já a estatística Q monitora o subespaço residual e são definidas como a distância

euclidiana de um registro em Y e sua respectiva projeção no espaço vetorial , conformeŶ

mostrado abaixo na Equação 12:

𝑄 = | 𝑦 − ŷ|² (12)

Sendo assim, por monitorar o subespaço residual, a estatística Q traduz a variabilidade

global não detectada pelo modelo PCA associadas a variações não explicadas pelo processo.

Portanto, ao monitorar Q, quando seu valor aumenta em novas observações, sugere-se uma

mudança nas relações entre as variáveis que foram treinadas no modelo de PCA, ou seja, o

modelo descrito pela PCA não inclui a direção dessa falha (KUNDU; KUNDU; DAMARLA ,

2017). Para Li e Qui (2018), delimitar um limite de controle para a estatística Q significa

demarcar uma hiperesfera no subconjunto residual. Um limite de controle muito utilizado para

a estatística Q é mostrado na Equação 13 (KOTZ; JOHNSON; BOYD, 1967).



29

𝑄
𝑙𝑖𝑚

 = θ
1
[

ℎ
0
𝑐

α
√2θ

2

θ
1

+ 1 +
θ

2
ℎ

0
(ℎ

0
−1)

θ
1
² ]

1
ℎ

0  
(13)

Sendo:

● = ∑ mj=a+1λij ;θ
1

● =1−( );ℎ
0

2θ
1
θ

3

3θ²
2

● é o valor crítico do percentil  1− α  da distribuição gaussiana.𝑐
α

2.7 MÉTODOS DE DIAGNÓSTICO DE FALHAS APLICADAS AO TEP

Diagnosticar uma falha significa indicar qual falha ocorreu no processo, além da sua

extensão e localização, pois tratam-se de informações cruciais para agir corretivamente e

propor métodos de prevenção efetivos. Dessa forma, percebe-se que o diagnóstico de falhas é

considerado um problema de multi classificação. Para os métodos de diagnóstico de falhas em

plantas industriais, a maioria das aplicações encontra-se baseada em séries históricas do

processo (LAMEDA, 2015).

Sendo assim, os principais métodos de diagnóstico de falhas são multi classificadores

que aplicam aprendizagem supervisionada baseadas em séries históricas. Dentre esses

algoritmos, as redes neurais vêm recebendo um enorme destaque, devido a sua capacidade de

aprendizagem e adaptação, até mesmo para sistemas dinâmicos e complexos (TAQVI et al.,

2021).

2.7.1 Redes neurais

Ao longo do tempo, os cientistas vêm estudando o cérebro humano para descobrir

como funciona o raciocínio, as sensações e a nossa capacidade de se relacionar com outros

indivíduos. A partir desse contexto, passou-se a analisar os neurônios e como eles transmitem

informações entre si. A replicação desse estudo para os computadores deu origem ao modelo

conhecido como rede neural. Sendo assim, essa tecnologia, inspirada no cérebro humano, é

capaz de analisar uma grande quantidade de dados para descobrir padrões sem que haja uma

interferência humana (BINI, 2018).

A arquitetura de uma rede neural é formada por neurônios que se distribuem em uma

camada de entrada, uma camada de saída e várias camadas intermediárias. A camada de
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entrada é responsável pela captação dos sinais ou das variáveis de entrada, as camadas

intermediárias são chamadas de ocultas. A camada oculta é responsável por atribuir pesos aos

sinais de entrada, assim, cada neurônio pode tratar o impulso de maneira diferente, podendo

esses pesos ser negativos ou positivos. Além disso, há uma função de ativação que soma

todos os pesos e que tem como objetivo limitar a saída e atribuir uma não linearidade ao

modelo. Por fim, há uma ou mais saídas que podem classificar ou prever algum resultado. Um

exemplo da arquitetura de uma rede neural convencional é mostrado a seguir na Figura 7

(ABIODUN, 2018).

Figura 7 - Arquitetura de uma rede neural convencional.

Fonte –  Bianchini (2001).

Quando uma rede neural possui mais de uma camada oculta, podendo chegar à casa

dos milhões, o treinamento do modelo tende a ficar mais custoso, atribuindo-se o nome de

deep learning. Assim, pode-se afirmar que o deep learning é uma ferramenta bastante

poderosa que complementa modelos tradicionais de machine learning em alguns casos.

Possuem aplicações tanto nas áreas de processamento de linguagem natural como visão

computacional, análise de big data, detecção de anomalias entre outros (CHEN;RAN, 2019).

Treinar um modelo de deep learning é computacionalmente custoso e requer uma

grande memória do computador, tendo em vista os milhões de parâmetros que são iterados até

estarem refinados o suficiente. Apesar disso, modelos de deep learning conseguem acurácias

bastante altas e já superaram métodos tradicionais no que diz respeito ao reconhecimento de

imagem (CHEN; RAN, 2019).
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Uma evolução do modelo clássico de redes neurais artificiais para a aplicação em

séries temporais são as redes neurais recorrentes (RNN), visto que, diferentemente das redes

neurais convencionais (MLP) que transportam a informação em apenas uma direção, as RNNs

trocam informações através da realimentação das saídas de um ou mais neurônio. Desta

forma, os pesos serão alterados tanto por novas entradas, como também ponderando seus

valores através dos estados passados, configurando uma espécie memória na rede neural

(STAUDEMEYER; MORRIS, 2019). Um exemplo de rede neural recorrente simples é

mostrado na Figura 8. Cada neurônio da camada interna possui seu sinal de entrada e saída

externo e, para além disso, recebem como entrada outros neurônios adjacentes.

Figura 8 - Arquitetura de uma rede neural recorrente.

Fonte –  Adaptado de Staudemeyer e Morris (2019).

Assim, as redes neurais recorrentes armazenam eventos recentes da entrada de outros

neurônios, o que recebe o nome de memória de curto prazo. Para aplicações que não

necessitam de uma influência muito grande de eventos passados essa técnica é muito útil,

todavia, existem aplicações que necessitam de uma memória mais extensa, e para suprir essa

necessidade, foram desenvolvidos algoritmos mais complexos capazes de armazenar uma

maior quantidade de eventos. Entretanto, é importante citar que esses algoritmos mais

complexos tornam o aprendizado mais lento (STAUDEMEYER; MORRIS, 2019). Existe,
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portanto, o trade-off entre a capacidade de memorização da rede neural recorrente e a maior

necessidade de capacidade computacional.

Para solucionar esse problema, foi proposta a LSTM (Long Short-Term Memory) que

retém as informações de uma maior quantidade de entradas passadas, enquanto mantém a

relevância de eventos recentes como maior. Para fazer isso, a LSTM faz uso dos estados

denominados cell state e hidden state que são responsáveis pelo transporte de informações

entre os neurônios das redes, como mostrado na Figura 9 (OLIVEIRA, 2020).

Figura 9 - Representação de uma célula LSTM.

Fonte –  Oliveira (2020).
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3 MATERIAIS E MÉTODOS

3.1 SOFTWARES

O ambiente utilizado para desenvolver o modelo foi o jupyter notebook, pois é uma

IDE open source, ferramenta grátis que possui as principais bibliotecas utilizadas na ciência

dos dados, a partir dele também é possível compilar trechos de código e inserir textos,

facilitando, assim, a compreensão do código. Com essa ferramenta torna-se possível também

plotar e visualizar tanto gráficos como tabelas.

Já a linguagem de programação utilizada foi o Python na versão 3.10.2, devido a sua

facilidade de tratar, analisar e modelar os dados. As principais bibliotecas utilizadas neste

trabalho foram a biblioteca Pandas na versão 1.2.4 e Numpy na versão 1.20.1 foram utilizadas

para importar, manipular, tratar e realizar análise de dados. A biblioteca Matplotlib na versão

3.3.4 e Seaborn na versão 0.11.1 foram utilizadas para visualizar os dados através de gráficos

e tabelas. Já a biblioteca Scikit-Learn na versão 0.24.1, Scikit-Time na versão 0.13.4 e pytorch

na versão 1.7.7 serviram para criar, treinar e validar os modelos.

3.2 CONJUNTO DE DADOS

Os dados aplicados neste trabalho foram retirados de Rieth et al. (2017) e representam

500 simulações em diversas condições operacionais de uma planta petroquímica, chamada de

Tennessee Eastman Process utilizados para produzir dois produtos, denotados genericamente

por G e H.

Os dados foram divididos em treino e teste pelos autores Rieth et al. (2017). Sendo os

dados de treino, o conjunto de amostras em operação normal da planta industrial, ou seja, não

submetido a falhas, e os dados de teste, o conjunto de amostras submetidas a algum tipo de

falha.

Ao todo, o processo apresenta 41 variáveis medidas, denotadas por XMEAS e

mostradas na Tabelas 1 e 2 as quais trazem as variáveis contínuas e as medidas por

amostragem, respectivamente, e 12 manipuladas, denotadas por XMV e apresentadas na

Tabela 3. Os tempos de amostragem variam entre 3, 6 e 15 minutos.
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Tabela 1 - Variáveis medidas de forma continuada no Tennessee Eastman.
Variável Descrição Unidade

XMEAS(1) Entrada de A (corrente 1) kscmh

XMEAS(2) Entrada de D (corrente 2) kg.h-¹

XMEAS(3) Entrada de E (corrente 3) kg.h-¹

XMEAS(4) Entrada de total (corrente 4) kscmh

XMEAS(5) Corrente de reciclo (corrente 8) kscmh

XMEAS(6) Entrada do reator (corrente 6) kscmh

XMEAS(7) Pressão do reator kpa

XMEAS(8) Nível do reator % %

XMEAS(9) Temperatura do reator °C

XMEAS(10) Vazão de purga (corrente 9) kscmh

XMEAS(11) Temperatura do separador 0C °C

XMEAS(12) Nível do separador % %

XMEAS(13) Pressão do separador kPa kPa

XMEAS(14) Corrente de fundo do separador (corrente 10) kg.h-¹

XMEAS(15) Nível do stripper %

XMEAS(16) Pressão do stripper kPa

XMEAS(17) Vazão de fundo do stripper m³.h-¹

XMEAS(18) Temparatura do stripper °C

XMEAS(19) Vazão de vapor do stripper kg.h-¹

XMEAS(20) Trabalho do compressor kw

XMEAS(21)

Temperatura da saída da água de
resfriamento do
reator °C

XMEAS(22)

Temperatura da saída da água de
resfriamento do
condensador °C

Fonte: Adaptado de Rieth et al. (2017).
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Tabela 2 - Variáveis medidas da composição de cada substância no Tennessee Eastman

Variável Descrição Corrente

Intervalo de
amostragem

(min) Unidade

XMEAS(23) Componente A 6 6 % molar

XMEAS(24) Componente B 6 6 % molar

XMEAS(25) Componente C 6 6 % molar

XMEAS(26) Componente D 6 6 % molar

XMEAS(27) Componente E 6 6 % molar

XMEAS(28) Componente F 6 6 % molar

XMEAS(29) Componente A 9 6 % molar

XMEAS(30) Componente B 9 6 % molar

XMEAS(31) Componente C 9 6 % molar

XMEAS(32) Componente D 9 6 % molar

XMEAS(33) Componente E 9 6 % mola

XMEAS(34) Componente F 9 6 % molar

XMEAS(35) Componente G 9 6 % mola

XMEAS(36) Componente H 9 6 % molar

XMEAS(37) Componente D 11 15 % molar

XMEAS(38) Componente E 11 15 % molar

XMEAS(39) Componente F 11 15 % molar

XMEAS(40) Componente G 11 15 % molar

XMEAS(41) Componente H 11 15 % molar

Fonte: Adaptado de Rieth et al. (2017).
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Tabela 3 - Variáveis manipuladas do Tennessee Eastman
Variável Descrição Unidade

XMV(1) Vazão de entrada de D (corrente 2) kg.h-¹

XMV(2) Vazão de entrada de E (corrente 3) kg.h-¹

XMV(3) Vazão de entrada de A (corrente 1) kscmh

XMV(4) Vazão de entrada de total (corrente 4) kscmh

XMV(5) Válvula de reciclo do compressor %

XMV(6) Válvula de purga (corrente 9) %

XMV(7)
Vazão de saída de líquido do separador
(corrente 10) m³.h-¹

XMV(8) Saída de líquido do stripper (corrente 11) m³.h-¹

XMV(9) Válvula do vapor do stripper %

XMV(10) Vazão da água de resfriamento do reator m³.h-¹

XMV(11)
Vazão da água de resfriamento do
condensador m³.h-¹

XMV(12) Velocidade do agitador rpm

Fonte: Adaptado de Rieth et al. (2017).

Além disso, o processo foi submetido a 20 tipos de falhas que se diferenciam entre

aumento de variabilidade das variáveis de processo por meio de perturbação do tipo degrau e

randômica, agarramento de válvulas, variação na cinética do processo incluindo algumas

falhas desconhecidas. As variáveis, a descrição da falha e o tipo da falha foram evidenciadas

na Tabela 4.
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Tabela 4 - Descrição das falhas a que o processo foi submetido.
Falha Descrição Tipo

IDV(1)
Razão de entrada A/C composição de B
constante (corrente 4) Degrau

IDV(2)
Composição de B, razão A/C constante
(corrente 4) Degrau

IDV(3) Temperatura de entrada de D (corrente 2) Degrau

IDV(4)
Temperatura de entrada da água de
resfriamento do reator Degrau

IDV(5)
Temperatura de entrada da água de
resfriamento do condensador Degrau

IDV(6) Perda de entrada de A (corrente 1) Degrau

IDV(7)
Queda de pressão de C, disponibilidade
reduzida (corrente 4) Degrau

IDV(8)
Composição da entrada de A, B e C
(corrente 4)

Variação
randômica

IDV(9) Temperatura de entrada de D (corrente 2)
Variação
randômica

IDV(10) Temperatura de entrada de C (corrente 4)
Variação
randômica

IDV(11)
Temperatura de entrada da água de
resfriamento do reator

Variação
randômica

IDV(12)
Temperatura de entrada da água de
resfriamento do condensador

Variação
randômica

IDV(13) Cinética da reação Desvio lento

IDV(14) Válvula de água de resfriamento do reator Agarramento

IDV(15)
Válvula de água de resfriamento do
condensador Agarramento

IDV(16) Desconhecido

IDV(17) Desconhecido

IDV(18) Desconhecido

IDV(19) Desconhecido

IDV(20) Desconhecido
Fonte: Adaptado de Rieth et al. (2017).
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3.3 METODOLOGIA

3.3.1 Fluxograma do trabalho

O fluxograma geral de como ocorreu o presente trabalho se encontra na Figura 10, no

qual serão explicados com mais detalhes nos itens seguintes.

Figura 10 – Fluxograma do trabalho.

Fonte: o Autor.

3.3.2 Limpeza e tratamento dos dados

Nessa etapa, os dados foram importados por meio da biblioteca pandas e foram

armazenados em um objeto chamado DataFrame, que é bastante similar a uma planilha do

MS Excel com suas linhas e colunas.

Para evitar erros durante a modelagem, foi verificada a existência de dados duplicados,

nulos ou faltantes. E uma vez que eles existam, estes serão apagados, pois não possuem

informações relevantes para a análise do modelo.

Além disso, como os dados possuem dimensões diferentes, fez-se necessário a

padronização dos dados para evitar efeitos de escala antes de inseri-los no modelo. Esse

processo ocorreu conforme mostrado na equação abaixo.

 𝑧 =  𝑋 − µ
σ  (14)

Sendo Z a medida padronizada, X um valor qualquer de determinada variável, e , aµ σ

média e o desvio padrão do conjunto, respectivamente.
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3.3.3 Análise dos dados

A fim de compreender melhor os dados, foram realizadas as suas análises descritivas

de modo a determinar o tamanho do seus conjunto, como eles são classificados em relação ao

seu tipo (número inteiro, número real, texto e etc.), e as principais medidas estatísticas como

média, mediana, desvio padrão, quartis, mínimo e máximo. Além disso, foram realizadas

outras 2 análises de modo a determinar o tipo de distribuição (isolada) do conjunto e como

eles se relacionam (correlação entre os dados).

Na análise isolada, foi plotado a distribuição dos dados de modo a comparar os

intervalos e a distribuição de grupos numéricos. Já para a análise relacional, foi determinada a

correlação de Pearson entre as variáveis, isto é, um teste que mede a correlação linear

estatística entre duas variáveis contínuas e varia de -1, para variáveis muito correlacionadas

de forma inversamente proporcional, e +1, para variáveis muito correlacionadas diretamente

proporcional. Essa análise foi visualizada a partir de um gráfico em estilo de mapa de calor.

3.3.4 Cartas de controle

Foram plotadas 53 cartas de controle, uma para cada variável, de modo se fazer a

análise univariada do processo e verificar se o mesmo encontra-se devidamente controlado.

Para isso, definiu-se a linha central como sendo a média do conjunto, com o processoµ

controlado, ou seja, sem falhas e, também, definiu-se o limite superior de controle como

sendo e o limite inferior de controle como sendo , sendo a média e oµ +  3σ µ −  3σ µ σ

desvio padrão.

Para observar o efeito das falhas no processo, foram plotadas, também, as 53 cartas de

controle quando o processo foi submetido a uma falha do tipo perturbação do tipo randômica

nas composições das substâncias A, B e C na corrente 4.

3.3.5    Modelagem

3.3.5.1 Detecção de Falhas

De início, foi verificado se as hipóteses para a aplicação da técnica de PCA foram

cumpridas. Após isso, os dados foram divididos de operação normal da planta em treino e

teste, de modo que foram usadas as simulações de 1 a 4 para treino do modelo PCA e as

simulações 6 a 9 para o teste do modelo não submetido a falhas. Para o teste do modelo

submetido a falhas de processo, foi filtrado a simulação de número 1 para as 20 falhas.
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De posse desses dados, foi realizada uma transformação dos dados de treino, sob o

comportamento natural do processo, ou seja, sem falhas, para o domínio das componentes

principais, de modo a representar 90% da variância do conjunto de dados original.

Para a detecção de falhas, uma vez construído o modelo de estatístico multivariado, foi

possível acompanhar o comportamento das amostras a partir das estatísticas T² e Q, em que o

limite de detecção para T² e Q são dados pelas equações 11 e 13, respectivamente,

considerando um limite de confiança de 99%. É importante salientar que pontos que

ultrapassem o limite de controle são considerados como falhas do processo pelo modelo.

O monitoramento das falhas foi verificado no conjunto de dados em operação normal

da planta, para examinar a taxa de falsos alarmes, assim como para a operação da planta

industrial submetida a falhas, de modo a se examinar a taxa de alarmes positivos.

De modo a verificar quais variáveis sofreram mais alterações quando submetidos a

uma falha, foi construído um gráfico do tipo “mapa de calor” para mostrar as contribuições de

cada variável para o aumento da estatística Q.

Para acompanhar o desempenho do modelo como um todo na detecção das falhas, foi

definida uma métrica chamada de taxa de detecção de falhas, que indica a quantidade de

observações que são falhas e que de fato foram detectadas como falhas pelo modelo.

𝑡𝑥 =  𝐹𝑎𝑙ℎ𝑎𝑠 𝑃𝑟𝑒𝑣𝑖𝑠𝑡𝑎𝑠
𝐹𝑎𝑙ℎ𝑎𝑠 𝑇𝑜𝑡𝑎𝑖𝑠   (15)

3.3.5.2 Diagnóstico de falhas

3.3.5.2.1 Demais modelos

Para a criação dos modelos de diagnóstico de falhas, foram utilizados os dados

relacionados à operação industrial submetidos aos 20 tipos de falhas. Devido ao poder

computacional limitado disponível para a construção dos modelos, foram considerados 200

simulações como um todo, sendo 140 simulações utilizadas para o treino e 60 para o teste,

sendo estas divididas aleatoriamente, mas fixando o parâmetro random_state = 20, para

manter a reprodutibilidade.

Antes de serem utilizados para treinar o modelo, os dados também foram submetidos a

uma padronização, conforme mostrado na equação 14.

Além disso, por se tratar de modelos de classificação para séries históricas, os dados

foram agrupados a partir de cada simulação, pois cada simulação representa uma série
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histórica. Assim, de início, foram treinados e testados os seguintes modelos extraídos da

biblioteca Scikit-Time, considerando seus hiperparâmetros padrão, os modelos:

RocketClassifier, Arsenal, BossEmsemble, ContractableBoss e o MUSE.

As métricas de avaliação consideradas foram a acurácia média, precisão média, recall

médio e f1-score médio. Foi considerada a média dessas métricas, pois o modelo é de multi

classificação, ou seja, classifica 20 tipos de falhas e cada tipo de classificação possui sua

própria métrica.

3.3.5.2.2 Rede Neural LSTM

A rede neural LSTM (Long Short-Term Memory) foi construída e testada utilizando o

framework pytorch. Para a construção do modelo, foram utilizadas duas abordagens. A

primeira sendo a entrada de dados considerada igual a escolhida para o desenvolvimento dos

demais modelos, mas que encontrava-se convertida em tensores (estrutura de dados

multidimensionais), que configura o formato de dado aceito pela biblioteca. Já na segunda os

dados foram submetidos a uma transformação linear através da PCA, considerando uma

quantidade de PCA’s que representassem 90% da variância dos dados.

A otimização da rede neural foi realizada selecionando a combinação de diversos

parâmetros para as duas abordagens, de modo a obter o valor máximo para a acurácia de teste,

além disso, também foi monitorado as demais métricas, como já citadas no item 3.3.5.2.1. Os

hiperparâmetros ajustados identificados foram:

● Número de camadas;

● Número de neurônios;

● Taxa de crescimento;

● Número de épocas.

Uma vez criado e otimizado o modelo, ele foi utilizado para predizer as falhas do

conjunto de testes, sendo construída também uma matriz de confusão que compara o valor

real da falha e o valor previsto.

3.3.6 Sistema de monitoramento em tempo real de falhas na indústria

Por fim, foi proposto um sistema de monitoramento de falha em tempo real baseado

nas tecnologias utilizadas neste trabalho.



42

4       RESULTADOS E DISCUSSÃO

4.1     ANÁLISE E TRATAMENTO DE DADOS

A Figura 11 mostra uma visualização de parte dos dados de operação normal da

fábrica. Esses dados foram armazenados em tipo específico de objeto da biblioteca pandas,

chamado de DataFrame, que pode conter diversos tipos de dados e tem aspecto parecido com

uma tabela de dados do MS Excel. Nota-se, também, que a primeira coluna é a numeração de

dados por linha, facilitando o indexamento dos dados na tabela, e nas demais colunas

encontram-se os dados principais.

Figura 11 – Visualização de parte dos dados não submetidos a falhas.

Fonte: o Autor.

Já os dados de operação da planta submetidos a falhas foram obtidos a partir de 500

simulações para os 20 cenários de falhas, com 960 pontos de amostragens para as 53 variáveis

de processo, totalizando 9.600.000 registros, conforme evidenciado na Figura 12.
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Figura 12 – Visualização de parte dos dados submetido a falhas

Fonte: o Autor.

O conjunto de dados também não possui amostras com valores nulos ou duplicados

que precisam ser removidos do conjunto. Também foi avaliado a distribuição dos dados ao

longo do conjunto de treino, conforme mostrado na Figura 13.

Figura 13 - Distribuição das variáveis de processo sob a condição normal.

Fonte: o Autor.
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Notou-se que os dados seguem uma distribuição normal, o que já era esperado, pois,

segundo o teorema do limite central, quando o tamanho da amostra aumenta, a distribuição

amostral de sua média aproxima-se cada vez mais de uma distribuição normal. Além disso,

foi verificado um baixo desvio padrão na distribuição dos dados, o que também é esperado

visto que o processo atua em uma malha fechada em um processo estacionário.

Figura 14 - Correlação entre os dados de treino.

Fonte: o Autor.
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De acordo com o gráfico acima, nota-se:

● As variáveis de processo XM39, XM40 e XM41 não possuem correlação linear

nenhuma com as outras;

● A maior parte das variáveis possuem uma correlação, em módulo, alta entre si;

Tais informações evidenciam que as variáveis têm impacto significativo nas demais.

Portanto, uma análise univariada, em que há o desprezo das relações entre as variáveis, não

será a mais adequada, sendo necessário métodos de análise multivariada para monitorar essas

variáveis.

4.2      CONTROLE ESTATÍSTICO UNIVARIADO DO PROCESSO

A partir da análise de correlação, notamos que a análise univariada do processo não é

o método mais adequado, porém, ele será analisado visto a simplicidade do método e por ser

ainda bastante utilizado nas indústrias (Miranda et al., 2019).

De início, foram analisadas as cartas de controle para todas as variáveis de processo.

De acordo com a Figura 15, nota-se que a maior parte das variáveis se mantém no mesmo

nível, havendo variações com pouca amplitude que pode ser explicada devido ao ruído do

equipamento de medição. Entretanto, algumas outras, possuem um caráter dinâmico, havendo

uma oscilação em torno da média, como em XMEAS_18 e XMEAS_19.

No geral, nota-se que o processo está bem controlado, pois a maior parte dos dados

estão concentrados entre os limites inferiores e superiores.
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Figura 15 - Cartas de controle para o processo não submetido a falhas.

Fonte: o Autor.
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No entanto, quando ocorre uma falha no processo, espera-se que haja uma perturbação

na estabilidade do processo. Para ilustrar, nesse processo, foi realizada a simulação com uma

perturbação do tipo randômica nas composições das substâncias A, B e C na corrente 4, falha

IDV (8). Esse tipo de falha no processo o altera como um todo, pois modifica o seu balanço

de massa. Tal fato fica evidente nas cartas de controle evidenciadas abaixo.

Figura 16 - Cartas de controle para o processo submetida a um erro do tipo randômico na
composição das substâncias A, B e C no corrente 4.

Fonte: o Autor.
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Embora as cartas de controle gerassem um alarme de modo satisfatório, a quantidade

de gráficos a serem analisados é bastante grande, tornando inviável gerir o processo dessa

maneira, principalmente quando o número de variáveis a serem analisadas aumentam com o

tempo. Além disso, as cartas de controle não são capazes de analisar as relações entre as

variáveis, evidenciando de maneira clara os alarmes falsos negativos.

4.3      CONTROLE ESTATÍSTICO MULTIVARIADO DO PROCESSO A PARTIR DO
MODELO DE DPCA

De início, foi verificado se as hipóteses para a aplicação do modelo DPCA foram

atendidas:

● Linearidade: É possível observar relações lineares a partir da análise de correlação de

Poisson, mostrado na Figura 14;

● Redundância ou multicolinearidade: Também presente a multicolinearidade, conforme

mostrado na Figura 14;

● Alto razão de sinal/ruído: Para uma parte das variáveis, a razão sinal/ruído é alta,

porém para outras, o ruído é predominantemente. Isso pode ser observado na Figura

15. Assim, isso pode vir a ser um problema na modelagem.

● Conjunto de dados centralizados: Todas as variáveis seguem uma distribuição normal,

com a maior parte dos dados se concentrando na média. É possível observar isso

analisando a Figura 13;

● Processo em estado estacionário: O processo se encontra no estado estacionário;

● Dados seguem uma distribuição normal: Também seguem uma distribuição normal,

conforme mostrado na Figura 13.

Com as hipóteses sendo atendidas, inicia-se a construção do modelo. Assim, Para

realizar o controle estatístico do processo, os dados da planta sob operação normal, ou seja,

não submetido a falhas, foram submetidos a uma transformação linear por meio da PCA. Os

componentes principais são ordenados a partir da variância explicada. A porcentagem de

variância explicada por cada PCA, bem como a variância acumulada das PCAs são mostradas

na Figura 17.
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Figura 17 – Variância explicada por cada componente.

Fonte: o Autor.

De acordo com o gráfico acima, nota-se que poucas combinações lineares das

variáveis são suficientes para explicar boa parte da variabilidade do processo. Por exemplo, as

10 primeiras PCAs já explicam mais de 50% de toda a variância. Isso já era esperado, uma

vez que boa parte dos dados estão correlacionados entre si, como pode ser observado na

Figura 14.

Para capturar 90% da variância dos dados, serão necessários 30 componentes. Assim ,

das 53 variáveis originais, 30 serão utilizadas para modelar o subespaço principal e 23, para

modelar o subespaço residual.

Para verificar a taxa de falsos alarmes no processo, foi plotado as cartas de controle

para a operação normal da planta. O resultado é mostrado na Figura 18.

Figura 18 – Estatísticas T² e Q para o processo não submetido à falhas.

Fonte: o Autor.
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A taxa de alarmes falsos foi de 0,85% monitorando a estatística T² e 2,7% para a

estatística Q. O limite de confiança nos dois casos é de 99% para o limite de controle, ou seja,

espera-se uma taxa de alarmes falsos de no máximo 1%. A taxa de alarmes falsos ficou abaixo

do esperado para a estatística T² e um pouco acima do esperado para a estatística Q.

Para verificar se o modelo irá alarmar corretamente, foi verificado as cartas de

controle multivariada, tanto para a estatística T², como para a estatística Q, quando o sistema

foi afetado pela falha IDV(1), perturbação degrau na razão de alimentação A/C na corrente 4.

Além disso, foi plotado os gráficos de contribuições parciais para a estatística Q, de modo a

identificar as variáveis mais afetadas pelas falhas.

Figura 19 – Estatísticas T² e Q para o processo submetido a uma falha do tipo perturbação
degrau na razão de alimentação A/C na corrente 4, falha IDV(1).

Fonte: o Autor.

Figura 20 – Contribuições de cada variável para a estatística Q submetidas a falha IDV(1).

Fonte: o Autor.
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De início, percebe-se uma vantagem muito positiva em analisar as cartas de controle

multivariadas em relação às cartas de controle univariadas, visto que houve a síntese das

informações em apenas 2 cartas.

Para a falha IDV(1), espera-se que a alimentação de A, na corrente de reciclo 5,

reduza, e a própria malha de controle ajuste a alimentação de reciclo. O que, em geral, irá

afetar boa parte das variáveis do processo, como é possível verificar na Figura 20. Portanto,

esta falha é considerada de fácil detecção pelo modelo.

No entanto, para a falha IDV(4), torna-se mais difícil a detecção da falha, pois ela

representa uma perturbação degrau positiva na temperatura da água de resfriamento do reator,

o que tem um alcance mais restrito ao longo do processo.

Figura 21 – Estatísticas T e Q para o processo submetido a uma falha do tipo perturbação
degrau na temperatura de entrada da água de resfriamento do reator, falha IDV(4).

Fonte: o Autor.

Como é possível observar na Figura acima, apenas a estatística Q (Subespaço residual)

foi capaz de detectar eficientemente a falha. Dessa forma, como a detecção da falha se

encontrou no espaço residual, a falha não foi detectada pelas PCAs, mas sim por outras

direções não identificadas pelo modelo PCA. Por isso, a importância de se avaliar o

subespaço tanto principal como o residual.
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Figura 22 – Contribuições de cada variável para a estatística Q submetidas a falha IDV(4).

Fonte: o Autor.

Como era esperado, a partir da análise da Figura 22, a extensão da falha encontrou-se

restrita na variável de XMV_10 que representa a vazão de água de resfriamento do reator e foi

utilizada pela malha fechada para amenizar os efeitos das falhas.

Por fim, foi verificada a taxa de alarmes quando o processo foi submetido a todas as

falhas. Da análise da Figura 23, verifica-se que, quando combinada a análise a partir das

cartas de controle estatísticas T² e Q, o modelo detectou satisfatoriamente 13 das 20 falhas

apresentadas.
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Figura 23 – Taxas de detecção para todas as falhas do processo.

Fonte: o Autor.

4.4      MODELOS PARA A PREVISÃO DE DIAGNÓSTICO DE FALHAS

Para obter um benchmark, com o modelo de rede neural, foram treinados e testados

modelos disponíveis na biblioteca sktime, utilizando os hiperparâmetros padrões de cada

algoritmo. É importante destacar que todos os modelos se caracterizam como sendo do tipo

classificadores de séries históricas. Assim, a entrada dos modelos caracteriza simulações com

500 amostras das 53 variáveis de processo, e saída como do tipo de falha a ser detectada. As
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métricas de avaliação dos modelos baseados nos dados de teste estão mostrados na Figura

abaixo.

Figura 24 – Métricas dos modelos de Machine Learning importados da biblioteca sktime.

Fonte: o Autor.

De acordo com a Figura 24 acima, os 5 tipos de modelos não se ajustaram tão bem aos

dados de teste, pois a acurácia média variou entre 0.46 e 0.60. Sendo assim, foi necessário

utilizar um modelo mais robusto e com melhores opções de ajuste de hiperparâmetros. Para

isso, foi utilizado o modelo de rede neural recorrente LSTM.

Para esse modelo, utilizou-se duas abordagens. A primeira, o tipo de entrada e saída

dos dados foram os mesmos utilizados para os modelos passados, visto que eles possuem as

características de classificação para séries temporais. Já na segunda, esses dados foram

submetidos a uma transformação linear através da técnica de PCA, considerando uma

variância acumulada de 90%, totalizando PCA’s. Os modelos LSTM foram treinados variando

seus hiperparâmetros de modo a otimizar a acurácia para o teste, conforme evidencia a Tabela

5 abaixo:



55

Tabela 5 - Hiperparâmetros em que foi treinado a rede neural LSTM.
Parâmetro Valores

N_epochs 10, 100, 150, 250,500

learning_rate 0.001, 0.0001

n_layers 3, 4

n_hidden 32, 64 ,128

batch_size 20

dropout 0.1

Fonte: o Autor.

O melhor conjunto de hiperparâmetros foi obtido para n_layers = 3, n_hidden = 64,

dropout = 0.1, batch_size = 20, learning_rate = 0.001 e N_epochs=500 para ambos os

cenários. As métricas de classificação para cada falha, bem como a média geral das métricas

para ambos cenários estão mostradas na Figura 25 e a comparação entre a falha real e a falha

prevista estão evidenciados na Figura 26.
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Figura 25 – Métricas dos modelos LSTM. Modelo LSTM com a entrada dos dados padrão (a),
Modelo LSTM para os dados que sofreram uma transformação por meio da PCA (b).

(a)                                                                                (b)

Fonte: o Autor.
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Figura 26 – Previsões dos modelos LSTM. Modelo LSTM com a entrada dos dados padrão
(a), Modelo LSTM para os dados que sofreram uma transformação por meio da PCA (b).

(a)

(b)

Fonte: o Autor.
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Em comparação aos modelos mais simples, extraídos da biblioteca sktime, ambos os

modelos de rede neural obtiveram um desempenho bastante superior. Isso pode ser explicado

devido à capacidade de personalização do modelo, uma vez que devido à quantidade de dados

e pela complexidade destes, é necessário testar um número grande de hiperparâmetros para se

alcançar o modelo ideal.

Quando comparado o desempenho dos modelos LSTM, com e sem PCA, a

combinação dos modelos PCA e LSTM conseguiu uma acurácia global 6,8% maior,

predizendo satisfatoriamente, com uma acurácia acima de 85%, 17 das 20 falhas. Inclusive, o

modelo PCA combinado com LSTM aumentou a acurácia consideravelmente nas falhas mais

difíceis de serem diagnosticadas apenas pelo modelo LSTM, que foram as falhas 9 e 15.

Tal fato pode ser explicado devido a técnica de PCA, que funcionou com uma espécie

de feature selection, pois foi capaz de reduzir a dimensionalidade de 53 variáveis de processo

para 30 componentes principais, o que tornou mais fácil o processo de aprendizagem da rede

neural e aumentou a sua capacidade de generalização.

4.5     SISTEMA PROPOSTO PARA MONITORAMENTO DE FALHAS EM TEMPO
REAL

No sistema proposto, os dados da indústria são adquiridos de diversas formas e são

armazenados em tempo real na nuvem. Essas informações sofrem uma transformação linear

para o domínio das PCAs e são monitoradas através das 2 cartas de controle multivariadas sob

a ótica da estatística T² e Q. Uma vez detectada a falha, o sistema aciona um alarme e a série

histórica desses dados é enviada para o modelo LSTM, que realiza as transformações

necessárias e indica o tipo provável de falha que ocorreu. Todo esse processo é mostrado na

Figura 27.

Figura 27 – Sistema proposto para monitoramento em tempo real de falhas na indústria.

Fonte: o Autor.
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Uma vez que é detectada e diagnosticada essa falha atrativa e o desenvolvimento de

métodos de prevenção se tornam mais eficientes, uma vez que todo o processo acontece em

tempo real e ocorre a análise de todas as variáveis, ou seja, há uma análise global de toda a

manufatura produtiva.
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5       CONCLUSÕES

A indústria 4.0 vem transformando rapidamente o processo de automação, troca de

informações, modelos de negócio e a produtividade das indústrias, uma vez que ela é

responsável pelo aumento da eficiência no uso dos recursos no contexto industrial. Diante

desse contexto, foram aplicados conceitos da indústria 4.0 para propor uma solução comum

em engenharia de processos, a detecção e o diagnóstico de falhas na indústria.

Uma falha ocorre quando um controlador não consegue manter os níveis aceitáveis de

uma variável, gerando uma anomalia no processo, que pode afetar as variáveis locais, bem

como o processo como um todo. Inúmeras indústrias sofrem anualmente com gastos

decorrentes de falhas que não foram detectadas no tempo correto.

Do ponto de vista operacional, a detecção e diagnóstico de falhas torna-se cada vez

mais complexa nas indústrias, tendo em vista a quantidade de variáveis a serem monitoradas

ao longo do processo. Tal fator torna inviável a análise univariada do processo pelo próprio

indivíduo. Sendo assim, este trabalho recorreu-se a técnicas de machine learning para

monitorar o processo, objetivando detectar e diagnosticar falhas de modo mais eficiente.

Para detectar as falhas, foi treinado um modelo de PCA que realizou uma

transformação linear para um novo domínio ordenado pela variância dos dados. Desse modo,

90% da variância dos dados foi explicada por 30 componentes principais, reduzindo, assim, a

complexidade da análise. Após isso, o processo foi monitorado através das cartas de controle

utilizando as estatísticas T² e Q. Através desse mecanismo, 13 das 20 falhas foram

monitoradas corretamente, com taxas de detecção positivas acima de 90%.

Para diagnosticar as falhas, observou-se que o modelo de rede neural LSTM,

combinado à técnica de PCA, obteve o melhor desempenho, com uma acurácia média de 0.94,

conseguindo diagnosticar satisfatoriamente 17 das 20 falhas apresentadas. Por fim, foi

proposto um sistema de monitoramento em tempo real do processo, responsável por integrar

as tecnologias de detecção e diagnóstico de falhas utilizadas neste trabalho.



61

REFERÊNCIAS

ABIODUN, Oludare Isaac; JANTAN, Aman; OMOLARA, Abiodun Esther; DADA, Kemi
Victoria; MOHAMED, Nachaat Abd Elatif; ARSHAD, Humaira. State-of-the-art in artificial
neural network applications: A survey. Heliyon, v. 4, n. 11, p. e00938, 2018.

ALPAYDIN, Ethem. Machine learning. MIT Press, 2021.259 p.

AMIN, Md Tanjin; IMTIAZ, Syed; KHAN, Faisal. Process system fault detection and
diagnosis using a hybrid technique. Chemical Engineering Science, v. 189, p. 191-211,
2018.

ANNANTH, V. Kishorre; ABINASH, M.; RAO, Lokavarapu Bhaskara. Intelligent
manufacturing in the context of industry 4.0: A case study of siemens industry. In: Journal of
Physics: Conference Series. IOP Publishing, 2021. p. 012019.

BATHELT, Andreas; RICKER, N. Lawrence; JELALI, Mohieddine. Revision of the
Tennessee Eastman process model. IFAC-PapersOnLine, v. 48, n. 8, p. 309-314, 2015.

BIANCHINI, Ângelo Rodrigo. Arquitetura de redes neurais para o reconhecimento facial
baseado no neocognitron. 2001.

BINI, Stefano A. Artificial intelligence, machine learning, deep learning, and cognitive
computing: what do these terms mean and how will they impact health care?. The Journal of
arthroplasty, v. 33, n. 8, p. 2358-2361, 2018.

BORTOLINI, Marco; FERRARI,Emili; GAMBERI, Mauro; PILATI, Francesco;
FACCIO,Maurizio. Assembly system design in the Industry 4.0 era: a general framework.
IFAC-PapersOnLine, v. 50, n. 1, p. 5700-5705, 2017.

BOTRE, Chiranjivi; MANSOURI, Majdi; KARIM, M. Nazmul; NOUNOU, Hazem;
NOUNOU, Mohamed. Multiscale PLS-based GLRT for fault detection of chemical processes.
Journal of Loss Prevention in the Process Industries, v. 46, p. 143-153, 2017.

CAPACI, Francesca; VANHATALO, Erik; KULAHCI, Murat; BERGQUIST, Bjarne. The
revised Tennessee Eastman process simulator as testbed for SPC and DoE methods. Quality
Engineering, v. 31, n. 2, p. 212-229, 2019.

CASTELLS, Manuel; ESPANHA, Rita. A era da informação: economia, sociedade e
cultura. Fundação Calouste Gulbenkian. Serviço de Educação e Bolsas, 2007.

CHEN, Jiasi; RAN, Xukan. Deep learning with edge computing: A review. Proceedings of
the IEEE, v. 107, n. 8, p. 1655-1674, 2019.

CHEN, Jinran; KHER, Shubha; SOMANI, Arun. Distributed fault detection of wireless
sensor networks. In: Proceedings of the 2006 workshop on Dependability issues in
wireless ad hoc networks and sensor networks. 2006. p. 65-72.



62

CHEN, Mu-Chen; HSU, Chun Chin; MALHOTRA, Bharat; TIWARI, Manoj Kumar. An
efficient ICA-DW-SVDD fault detection and diagnosis method for non-Gaussian processes.
International Journal of Production Research, v. 54, n. 17, p. 5208-5218, 2016.

CHIANG, Leo H.; RUSSELL, Evan L.; BRAATZ, Richard D. Fault detection and diagnosis
in industrial systems. Springer Science & Business Media, 2000.

DA SILVA, Fernanda Aparecida Rocha; SIQUEIRA, Regiane Máximo. Mineração de
processos aplicada à gestão de negócios: um mapeamento sistemático. Bauru: 08 nov. 2019.

DOWNS, James J.; VOGEL, Ernest F. A plant-wide industrial process control problem.
Computers & chemical engineering, v. 17, n. 3, p. 245-255, 1993.

DOS SANTOS, Brunno Ferreira. Uso de modelos de redes neurais artificiais para detecção
de falhas no processo Tennessee Eastman. 2018. Tese de Doutorado. PUC-Rio.

FERREIRA, K. B.; OLIVEIRA, A. G.G.; GONÇALVES, A. S.; GOMES, J. A.. Evaluation of
hyperspectral imaging visible/near infrared spectroscopy as a forensic tool for automotive
paint distinction. Forensic Chemistry, v. 5, p. 46-52, 2017.

FRANK, Paul M. Fault diagnosis for linear systems. Control Systems, Robotics and
AutomatioN–Volume XVI: Fault Analysis and Control, p. 29, 2009.

GARCIA-ALVAREZ, Diego; FUENTE, M. J.; VEGA, P.; SAINZ, G.. Fault Detection and
Diagnosis using Multivariate Statistical Techniques in a Wastewater Treatment Plant. IFAC
Proceedings Volumes, v. 42, n. 11, p. 952-957, 2009.

GERMANO, Amanda Lucena. Análise de desempenho de abordagens orientadas a fluxo
de dados aplicadas à detecção de falhas de processos industriais. 2017. Dissertação de
Mestrado. Brasil.

PORTAL DA INDÚSTRIA. Indústria 4.0: Entenda seus conceitos e fundamentos.
Disponível em: http://www.portaldaindustria.com.br/industria-de-a-z/industria-4-0/. Acesso
em: 09 ago. 2022.

KOTZ, Samuel; JOHNSON, Norman L.; BOYD, D. W. Series representations of distributions
of quadratic forms in normal variables. I. Central case. The Annals of Mathematical
Statistics, v. 38, n. 3, p. 823-837, 1967.

KUNDU, Madhusree; KUNDU, Palash Kumar; DAMARLA, Seshu Kumar. Chemometric
Monitoring: Product Quality Assessment, Process Fault Detection, and Applications .
CRC Press, 2017.

LAMEDA, Carlos. Métodos relacionados con diagnósticos de fallas con síntomas imprecisos
mediante comparación de casos. Revista Digital de Investigación y Postgrado, v. 5, n. 3, p.
3, 2015.

LI, Gang; QIN, S. Joe. Comparative study on monitoring schemes for non-Gaussian
distributed processes. Journal of Process Control, v. 67, p. 69-82, 2018.



63

LOMOV, Ildar; LYUBIMOV, Mark; MAKAROV, Ilya; ZHUKOV, Leonid E.. Fault detection
in Tennessee Eastman process with temporal deep learning models. Journal of Industrial
Information Integration, v. 23, p. 100216, 2021.

MABKHOT, Mohammed M.; AL-AHMARI, Abdulrahman M.; SALAH, Bashir;
ALKHALEFAH, Hisham. Requirements of the smart factory system: A survey and
perspective. Machines, v. 6, n. 2, p. 23, 2018.

MAHESH, Batta. Machine learning algorithms-a review. International Journal of Science
and Research (IJSR).[Internet], v. 9, p. 381-386, 2020.

MEHMOOD, Rashid; RIAZ, Muhammad; LEE, Muhammad Hisyam; ALI, Iftikhar;
GHARIB, Mona. Exact computational methods for univariate and multivariate control charts
under runs rules. Computers & Industrial Engineering, v. 163, p. 107821, 2022.

MIRANDA, Ana Cláudia Leite; ALVES, Alessandro Ferreira; GOMES, Celso Augusto dos
Santos; MOREIRA, Alessandro Messias; SILVA, Nancy Christiane Ferreira; MELO, Carina
Adriele Duarte de; CUNHA, Alberane Lúcio Thiago da . O controle estatístico de processos
no monitoramento da fabricação em uma empresa no ramo colchoeiro. Brazilian Journal of
Development, v. 5, n. 12, p. 29165-29185, 2019.

MOHAMED, Mamad. Challenges and benefits of Industry 4.0: an overview. International
Journal of Supply and Operations Management, v. 5, n. 3, p. 256-265, 2018.

OLIVEIRA, Emerson Vilar de. Análise de desempenho de método baseado em rede LSTM
para classificação de falhas em um processo de controle de nível. 2020. Dissertação de
Mestrado. Universidade Federal do Rio Grande do Norte.

OLIVEIRA, Herbert Pereira de; ANUNCIAÇÃO, Wellington Ramos da; LOPES, Maria de
Fátima Dos Santos. PROPOSTA DE MODELO SIMPLIFICADO PARA
IMPLEMENTAÇÃO DO CONTROLE ESTATÍSTICO DE PROCESSO (CEP) NA
INDÚSTRIA QUÍMICA/PETROQUÍMICA DE PROCESSO CONTÍNUO. REVISTA DE
TRABALHOS ACADÊMICOS-UNIVERSO SALVADOR, v. 1, n. 5, 2018.

ONEL, Melis; KIESLICH, Chris A.; PISTIKOPOULOS, Efstratios N. A nonlinear support
vector machine‐based feature selection approach for fault detection and diagnosis:
Application to the Tennessee Eastman process. AIChE Journal, v. 65, n. 3, p. 992-1005,
2019.

PARK, You-Jin; FAN, Shu-Kai S.; HSU, Chia-Yu. A review on fault detection and process
diagnostics in industrial processes. Processes, v. 8, n. 9, p. 1123, 2020.

PERES, Ricardo Silva; JIA, Xiaodong; LEE, Jay; SUN, Keyi; COLOMBO, Armando Walter;
BARATA, Jose. Industrial artificial intelligence in industry 4.0-systematic review, challenges
and outlook. IEEE Access, v. 8, p. 220121-220139, 2020.

RIETH, Cory A.; Amsel, Ben D.; Tran, Randy; Cook, Maia B., 2017, "Additional Tennessee
Eastman Process Simulation Data for Anomaly Detection Evaluation",
https://doi.org/10.7910/DVN/6C3JR1, Harvard Dataverse, V1.



64

RYDNING, David Reinsel-John Gantz-John. The digitization of the world from edge to core.
Framingham: International Data Corporation, p. 16, 2018.

SANCHES, Marcelo Kaminski. Aprendizado de máquina semi-supervisionado: proposta
de um algoritmo para rotular exemplos a partir de poucos exemplos rotulados. 2003.
Tese de Doutorado. Universidade de São Paulo.

SHENFIELD, Alex; HOWARTH, Martin. A novel deep learning model for the detection and
identification of rolling element-bearing faults. Sensors, v. 20, n. 18, p. 5112, 2020.

SHLENS, Jonathon. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014.

SIMANI, Silvio; FANTUZZI, Cesare; PATTON, Ronald Jon. Model-based fault diagnosis
techniques. In: Model-based Fault Diagnosis in Dynamic Systems Using Identification
Techniques. Springer, London, 2003. p. 19-60.

SOARES, Felipo Doval Rojas. Técnicas de Machine Learning Aplicadas a Inferência e
Detecção e Diagnóstico de Falhas de Processos Químicos Industriais em Contexto Big
Data. Universidade Federal do Rio de Janeiro, 2017. Tese (Mestrado).

STAUDEMEYER, Ralf C.; MORRIS, Eric Rothstein. Understanding LSTM--a tutorial into
long short-term memory recurrent neural networks. arXiv preprint arXiv:1909.09586, 2019.

SUMAN, Gaurav; PRAJAPATI, DeoRaj. Control chart applications in healthcare: a literature
review. International Journal of Metrology and Quality Engineering, v. 9, p. 5, 2018.

SUN, Weike; PAIVA, Antonio R.C.; XU, Peng; SUNDARAM, Anantha; BRAATZ, Richard
D.. Fault detection and identification using Bayesian recurrent neural networks. Computers
& Chemical Engineering, v. 141, p. 106991, 2020.

TAQVI, Syed Ali Ammar; ZABIRI, Haslinda; TUFA, Lemma Dendena; UDDIN, Fahim;
FATIMA, Syeda Anmol; MAULUD, Abdulhalim Shah. A review on data‐driven learning
approaches for fault detection and diagnosis in chemical processes. ChemBioEng Reviews, v.
8, n. 3, p. 239-259, 2021.

VENKATASUBRAMANIAN, Venkat; RENGASWAMY, Raghunathan; YIN, Kewen;
KAVURI, Surya N.. A review of process fault detection and diagnosis: Part I: Quantitative
model-based methods. Computers & chemical engineering, v. 27, n. 3, p. 293-311, 2003.


