| [~
e
e~

®!

e

UNIVERSIDADE FEDERAL DE PERNAMBUCO
CENTRO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FILIPE MARQUES CHAVES DE ARRUDA

A Formal Approach to Test Automation based on Requirements, Domain Model,
and Test Cases written in Natural Language

Recife
2022

FILIPE MARQUES CHAVES DE ARRUDA

A Formal Approach to Test Automation based on Requirements, Domain Maodel,
and Test Cases written in Natural Language

Tese apresentada ao Programa de Pos-
Graduagao em Ciéncias da Computacao da
Universidade Federal de Pernambuco, como
requisito parcial para a obtencao do titulo
de Doutor em Ciéncias da Computacao.

Area de Concentragio: Engenharia de
Software e Linguagens de Programacao.

Orientador: Augusto Cezar Alves Sampaio

Coorientadora: Fléavia de Almeida Barros

Recife
2022

Catalogacdo na fonte
Bibliotecaria Luiza Maria Pereira de Oliveira, CRB4-1316

A773f Arruda, Filipe Marques Chaves de
A Formal approach to test automation based on requirements, domain model,

and test cases written in natural language /Filipe Marques Chaves de Arruda. —2022.
134 f.: il fig., tab.

Orientador: Augusto Cezar Alves Sampaio.
Coorientadora: Flavia de Almeida Barros

Tese (Doutorado) — Universidade Federal de Pernambuco. CIN, Ciéncia da
Computagdo, Recife, 2022.

Inclui referéncias.
1. Automagao de testes. 2. Analise de consisténcia. 3. Linguagem natural controlada. 4.
Csp. 5.Alloy. 6. Modelo de dominio I. Sampaio, Augusto Cezar Alves (orientador). II.

Barros, Flavia de Almeida (coorientadora). III. Titulo.

005.1 CDD (23.ed.) UFPE - CCEN 2022- 174

Filipe Marques Chaves de Arruda

“A Formal Approach to Test Automation based on Requirements,
Domain Model, and Test Cases written in Natural Language”

Tese de Doutorado apresentada ao Programa
de Pos-Graduagdo em Ciéncia da
Computagdo da Universidade Federal de
Pernambuco, como requisito parcial para a
obtencao do titulo de Doutor em Ciéncia da
Computagio. Area de Concentragdo:
Engenharia de Software e Linguagens de
Programagao.

Aprovado em: 26/09/2022.

Orientador: Prof. Dr. Augusto Cezar Alves Sampaio

BANCA EXAMINADORA

Prof. Dr. Juliano Manabu Iyoda
Centro de Informatica / UFPE

Prof. Dr. Leopoldo Motta Teixeira
Centro de Informatica / UFPE

Prof. Dr. Breno Alexandro Ferreira de Miranda
Centro de Informatica / UFPE

Prof. Dr. Tiago Lima Masssoni
Departamento de Sistemas e Computacao / UFCG

Prof. Dr. Méarcio Eduardo Delamaro
Instituto de Ciéncias Matematicas e de Computagao / USP

I dedicate this thesis to my mother, father, and wife.

ACKNOWLEDGEMENTS

Seria absurdo insinuar que a conclusdo desse trabalho ¢ um mérito exclusivamente
meu. De forma geral, compartilho igualmente as honras conquistadas com todos que
contribuiram direta ou indiretamente na minha vida e carreira. Foi a partir da colaboracao
de todos, conhecidos ou nao, que tive o privilégio de dedicar-me a pesquisa. Porém, como
sou conhecido por ser esquecido, adianto que a lista de agradecimentos a seguir nao é,
nem de perto, completa. Espero que as pessoas que nao estejam aqui nomeadas sintam-se
também reconhecidas — obrigado pelo apoio!

Comeco agradecendo a Deus, a quem geralmente expresso minha gratidao discreta-
mente mas com franqueza. Também aos meus pais, Isabel e Nilton, os quais dedicam
suas vidas ao trabalho arduo que permitiu os privilégios que hoje tenho. Suas crencas
na educacao como forca transformadora me trouxeram até aqui. A minha esposa, Raine,
companheira por mais de uma década, pelo apoio incondicional até nos momentos mais
apreensivos. Ao meu orientador, Augusto Sampaio, o qual admiro tanto como cientista
como ser humano, pela atencao, apoio, e ensinamentos que influenciaram minha trajetoria.
A minha coorientadora, Flavia Barros, pelos comentérios e revisdes valiosas. Ao professor
Alexandre Mota pelo apoio na concretizagao dos projetos. Também ao professor Gustavo
Carvalho pela ajuda com o processamento de linguagem natural e pelos feedbacks sobre
o trabalho.

A todos que contribuiram com o desenvolvimento das ferramentas e/ou experimentos:
Marlom Jobsom, Gabriel Schneider, Rafael Rofner, Fabiana Almeida, Viviana Toledo,
Andre Bazante, Samir Ferreira e Audir Filho.

A Sergio Soares e Waldemar Neto pelo apoio com a formatacao do plano dos exper-
imentos, e aos membros da banca da qualificacao — Leopoldo Teixeira, Tiago Massoni e
Breno Miranda — pelos comentdrios pertinentes que contribuiram para a construcao da
versao final da tese.

Ao IFPE — em especial a Marco Eugénio, Italo Lemos, Rodrigo Folha, Marlus Barbosa,
Cleber Silva e Renata Andrade — por permitir concluir a pesquisa.

Por fim, agradego a Motorola (a Lenovo Company) pela longa parceria e suporte

financeiro.

“..it is well known that a vital ingredient of success is not knowing that what you’re
attempting can’t be done.” (PRATCHETT, 2009, p. 119).

ABSTRACT

Software testing is a costly and time-consuming activity. For this reason, there is a
substantial effort both in the academy and industry to automate it as much as possible.
There are several test generation strategies and theories based on formal specifications.
Formalisms such as process algebra, transition systems, and so forth, allow a precise defi-
nition of the semantics of system requirements, which one can leverage to verify essential
properties, such as soundness, and derive test cases automatically. In an industrial con-
text, however, ad-hoc/manual strategies are far more common due to their convenience
since natural language descriptions are, more likely, easier to understand. Still, the lack of
formal rigor can generate inaccurate tests, as there is no verification mechanism to ensure
relevant properties. Also, requirements specified by product owners tend to be abstract by
design, and should not be changed by other stakeholders, such as test engineers down the
line. Then, it is a challenge to generate concrete test cases while still guaranteeing that the
original behavior is preserved. Thus, in this work, we promote the use of natural language
descriptions with rigorously defined underlying semantics (transparent to the user). Re-
garding the scope of this work, we cover the entire traditional (direct engineering) testing
process and artifacts, from requirements to automation scripts generated automatically.
Requirements written in a controlled natural language are parsed, and their semantics are
automatically modeled using the CSP process algebra. To deal with different abstraction
levels, from requirements to concrete tests, we formalize the concept of a domain model,
in which additional information (such as dependencies, compositions, etc.), also written
in natural language, can be combined with the requirements while preserving the original
behavior. Then, by considering the domain model, sound and consistent test cases are
generated from the discovered scenarios using the cspio conformance relation. These test
cases can then be linearized back to natural language to allow manual execution or di-
rectly translated into test scripts for automated execution. On the other hand, we should
not ignore a recurring scenario in which there is a large number of test cases already gen-
erated by hand, potentially created with ad-hoc techniques, without using requirements
as input to the generation process. Hence, we also provide assistance to automate and
make legacy test cases consistent. Custom tools for test generation, consistency analysis,
and automation, were developed to mechanize the entire process, and evaluated in the
real-world setting of a partnership with Motorola, a Lenovo Company. As a result, we not
only generated and automated the same test cases that were described by hand in retro-
spect from old requirements (with more than 90% precision and 80% text size reduction)
but also discovered new scenarios and created, from new features, test cases approved
to be used in production. The efficiency of the consistency analysis, carried out through
the Alloy Analyzer, was also evaluated for real test cases. Although most analyses took

less than 10 (ten) seconds, we developed an alternative implementation that exhibited a

massive decrease in the analysis time.

Keywords: test automation; consistency analysis; controlled natural language; csp; alloy;

domain model.

RESUMO

Teste de software é uma atividade que demanda tempo e custos significativos. Por
este motivo, existe um consideravel esfor¢o tanto na academia como na industria para
automatizar o maximo possivel desse processo. Existem estratégias e teorias de geracao
automatica de testes baseadas em especificagoes formais. Formalismos como &dlgebras de
processo, maquinas de estado, entre outros, possibilitam uma defini¢do precisa da seman-
tica dos requisitos, permitindo que propriedades importantes, como soundness (consistén-
cia), sejam verificadas mecanicamente e que casos de testes sejam derivados. No contexto
industrial, entretanto, estratégias de geracao manual ou ad-hoc sdo comuns por serem
mais acessiveis, ja que artefatos descritos em linguagem natural sao, potencialmente,
mais facilmente entendidos por stakeholders. Mas a falta de rigor formal pode gerar testes
imprecisos, pois nao ha mecanismos de verificacdo de propriedades como, por exemplo,
soundness. Além disso, requisitos especificados por product owners tendem a ser inerente-
mente abstratos e nao devem ser modificados por outros stakeholders, como engenheiros
de testes, em etapas posteriores. Entao, torna-se um desafio gerar casos de teste con-
cretos e garantir ao mesmo tempo que o comportamento original da especificacao seja
preservado. Dessa forma, este trabalho promove o uso de linguagem natural na descri¢ao
dos artefatos, mas com uma semantica subjacente, transparente ao usuario, rigorosamente
definida. Todo o processo de engenharia direta de casos de teste é explorado, dos requisitos
até scripts de automagao gerados automaticamente. Requisitos sao analisados sintatica-
mente, e uma semantica é automaticamente gerada na algebra de processos CSP. Para
lidar com as diferentes granularidades de abstracao, formalizamos o conceito de modelo
de dominio, no qual informagoes adicionais (como dependéncias, composigoes, etc.), tam-
bém descritas em linguagem natural, possam ser combinadas com os requisitos originais.
Entao, considerando o modelo de dominio, sao gerados casos de teste consistentes e con-
solidados a partir dos cendrios encontrados utilizando a relagdo de conformidade cspio.
Esses casos de teste podem ser, entao, linearizados em linguagem natural, permitindo
execucao manual, ou traduzidos diretamente para scripts, possibilitando uma execugao
automatica. Por outro lado, na pratica, ha uma grande quantidade de casos de teste ja ger-
ados manualmente, possivelmente de uma forma ad-hoc, sem utilizar requisitos no processo
de geracao. Por isso, a estratégia também prevé suporte para automatizar e consolidar
casos de teste legados. Ferramentas para geracao de testes, andlise de consisténcia e au-
tomacao foram desenvolvidas para mecanizar todo o processo, sendo avaliadas no cenario
real de uma parceria com a Motorola, a Lenovo Company. Como resultado, nao somente
foram gerados e automatizados os mesmos casos de teste, em retrospectiva, que foram
criados manualmente a partir de requisitos pré-existentes, mas também novos cenarios
foram descobertos. Além disso, novos casos de teste, para novas features, foram gerados
e formalmente aprovados pela empresa para serem usados em producao. A eficiéncia da

andlise de consisténcia, implementada utilizando o Alloy Analyzer, também é avaliada

para casos de testes reais. Apesar das analises, majoritariamente, demorarem menos de
10 (dez) segundos, nés desenvolvemos uma implementagao alternativa que diminuiu mas-

sivamente o tempo de analise.

Palavras-chave: automacao de testes; analise de consisténcia; linguagem natural contro-

lada; csp; alloy; modelo de dominio.

LIST OF FIGURES

Figure 1 — Distribution of inferred issue categories over the years 22
Figure 2 — Processtasks 27
Figure 3 — Overall architecture 0. 28
Figure 4 — Process Task: Controlled Natural Language (CNL) Parsing 33
Figure 5 — NL processing tasks L 46
Figure 6 — Process Task: Formal Semantic Interpretation 48
Figure 7 — Domain model example 57
Figure 8 — Consistency choice oo 61
Figure 9 — Process Task: TC Generation 64
Figure 10 — LTS -ioco o 66
Figure 11 — Alternating input and output events 73
Figure 12 — Sample IOLTS specification 75
Figure 13 — Process Task: TC Automation 76
Figure 14 — Test case automation using hierarchical test actions 7
Figure 15 — Matching processo 84
Figure 16 — Alloy Analyzer output - Counterexample found 86
Figure 17 — Overall Consistency Analysis for Legacy Test Case (TC)s modeled us-

ing BPMN 94
Figure 18 — Frame consistency analysis modeled using BPMN 95
Figure 19 — Sequence consistency analysis modeled using BPMN 96

Figure 20 — Alloy analyzer illustrating the model found for a valid sequence of States 98

Figure 21 — SmarTest interface Lo 101
Figure 22 — SmarTest - Text excerpt containing domain details 101
Figure 23 — SmarTest - Test generation output 102
Figure 24 — Reusing test methods by text similarity 104
Figure 25 — Tool activities in the perspective of theuser 105
Figure 26 — Example of user-defined frames 105
Figure 27 — Defining associations between frames via tool interface 106
Figure 28 — Syntax suggestions oL 106
Figure 29 — Suggestions made after the dependency analysis 107

Figure 30 — Mismatched method calls or arguments x Matching inferred method calls109
Figure 31 — Mismatching causes 109
Figure 32 — Text size reduction 111

Figure 33 — Histogram: Time spent 115

Figure 34 — Histogram: Steps o 116
Figure 35 — Box plot: Time x Number of Steps 117
Figure 36 — Max execution time: Alloy vs Clingo implementation 119

Figure 37 — Round-trip engineering: Integrated Framework 128

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

LIST OF TABLES

Frame exampleo 35
CSPy handbook 51
Sample consistent test case 78
Dynamically rearranging test cases executions 99
Environment specifications oo 0L 117

Related work: comparison 124

LIST OF ABBREVIATIONS AND ACRONYMS

BNF Backus-Naur Form

C&R Capture-and-Replay

CNL Controlled Natural Language
CSP Communicating sequential processes
cspio CSP Input-Output Conformance
CSPm Machine readable syntax for CSP
EBNF Extended Backus-Naur Form
FSM Finite-State Machine

GF Grammatical Framework

GUI Graphical User Interface

IOLTS Input-Output LTS

IuT Implementation Under Test

LTS Labelled Transition System
MBT Model-Based Testing

NLP Natural Language Processing
SUT System Under Test

TC Test Case

1.1
1.1.1
1.1.2
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.4
15

2.1
2.2
2.3
2.3.1
2.4
241
24.2
243
2.5

3.1
3.2
3.2.1
3.2.2
3.2.3
3.3
3.3.1

4.1

CONTENTS

INTRODUCTION e e e e e e e e e e 18
IMMERSION IN SOFTWARE TESTING INDUSTRY 20
Automation Team: Participant Observation 20
Further Direct Observations 22
A FORMAL YET ACCESSIBLE APPROACH 23
RESEARCH QUESTION AND OVERALL STRATEGY 24
Scenarios. 26
Artifacts 26
Test Case Generation 29
Test Case Automation 30
CONTRIBUTIONS 31
DOCUMENT ORGANIZATION 31
PARSING CNL-COMPLIANT REQUIREMENTS 32
GENERAL REQUIREMENTS FORACNL 33
FRAME STRUCTURE 34
SYNTAX . o 35
Building a Frameo 38
CNL IMPLEMENTATION 38
Grammatical Framework L. 38
Dynamic lexicon 44
Processing and Optimizations 45
FINAL REMARKS 47

CSP . 48
SEMANTICS OF REQUIREMENTS 52
Actions to Input/Output Events 52
Denotational semantics 52
Example 55
SEMANTICS OF DOMAIN MODELS 56
Example 62

SOUND AND CONSISTENT TC GENERATION AND AUTOMA-
TION . . e e e e e e e e 64
TEST GENERATION o 65

41.1
41.1.1
4.1.2
4121
4122
4.1.2.3
4.1.3
4.1.4
4.1.5
4.2
4.2.1

5.1
5.2

53
5.3.1
5.3.2
53.21
53.2.2
5.4

5.4.1
5.4.2
5.4.3

6.1
6.1.1
6.1.2
6.1.2.1
6.1.2.2
6.2
6.2.1
6.2.2
6.2.3

7.1
7.2

Testing Theory and Conformance Relations 65
CSP Input-Output Conformance (cspio) Conformance Relation 67
Abstract Test Generator 67
Test Scenario 67
Test Purpose 68
Test Case e 69
Consistency Analysiso 70
Generation Mechanismo 74
Remarks on finding scenarios 75
TEST CASE AUTOMATION 76
Composite Actions 77
AUTOMATION OF LEGACY TEST CASES 82
ACTION REPRESENTATION FOR FREESTYLE TEST CASES 82
MATCHING AND REUSE 83
CONSISTENCY ANALYSIS OF LEGACY TEST CASES 84
Alloy and the Alloy Analyzer 85
Detailed semanticso 86
Well-formedness Conditions 88
Semantic Rules 88
THE OVERALL CONSISTENCY ANALYSIS PROCESS FOR LEGACY TEST

CASES 94
Splitthetestcase 94
Frame consistency 94
Sequence Consistency 95
TOOLS, AND EVALUATIONS oo i i e 100
TOOLS e 100
SmarTest: Generation and Automation from Features 100
Automation of Legacy TCs 102
Force IDE: Automation with reusable indexed scripts 103
Kaki: CNL and Consistency Analysis and Solving 104
EVALUATIONS 107
SmarTest: From Requirements to Scripts 107
SmarTest: Additional Contexts 112
Kaki: Scalability Evaluation 114
RELATED WORK e e e et e 120

TEST GENERATION FROM NATURAL LANGUAGE DESCRIPTIONS . . 120
TEST AUTOMATION 121

7.2.1
7.2.1.1
7.2.1.2
7.2.2
7.3

Ad-hoc Test Automation 121

Coding e 121
Capture & Replay 122
Script Generationo 123
FINAL REMARKS 124
CONCLUSIONS e e e e e e e e e e e e 126
ONGOING AND FUTUREWORK 127

REFERENCES e e e e e e 130

18

1 INTRODUCTION

Test artifacts may include features, plan, use cases, test cases, traceability information,
and reports. Typically, to automate Test Case (TC) execution, test scripts are used. They
are important resources to verify whether an implementation conforms to the system re-
quirements. According to the literature and practitioners, the adoption of test automation
tools or techniques reduces the cost of test cycles (RAFI et al., 2012). However, despite this
global reduction, the initial cost for test design is higher with the use of automation prac-
tices and the maintenance can be problematic. Therefore, test scripts should be designed
in a way to encourage reuse, being easier to maintain and to remain functional despite
the constant changes on the System Under Test (SUT). This way, automation turns out
to be a productive solution (GRECHANIK; XIE; FU, 2009).

Considering the particular context of mobile devices development, which is the appli-
cation domain we focus on in this work, test script generation tends to be more complex
than in the case of traditional systems. Note that, in this context, scripts are executed on
less stable platforms/environments that suffer from other variable conditions, such as dy-
namic localization, sensors, distinct network providers, and heavy hardware dependency
(CHANDRA et al., 2014). This increasing complexity, in addition to the lack of standard-
ization and mechanized generation/analysis, raises issues on various artifacts created by
different stakeholders in the testing process. We catalog next the main issues we identified

as a result of a broad investigation on traditional software testing automation.

Abstraction gap and traceability — The traditional testing process produces and con-
sumes different artifacts, such as Requirements, Use Cases, Test Cases, Test Scripts, etc.
These artifacts have multiple abstraction levels and are, in general, handled by people
with different roles with different technical backgrounds. Keeping trace of these artifacts,
and how they relate when a change is made, is a hard task, both for time constraints
and for the lack of cascading updates in the artifacts. Test automation strategies, in par-
ticular, are generally focused in low-level system instructions, which creates a gap for
flexible/high-level strategies (ALEGROTH; NASS; OLSSON, 2013).

Additionally, most projects require that details are added in later stages. Therefore, a
viable strategy should allow partially executable models. Besides, keeping implementation

details from the abstract model helps to break down complexity.

Heterogeneous notations — The multiple abstraction levels usually have different no-
tations that require different expertise in order to add information or make changes. For
instance, use cases may be described in UML while test cases are described in natural lan-
guage using a tabular format. Likewise, test objectives can be defined in a different formal
notation from the one used to model the specification (UTTING; PRETSCHNER; LEGEARD,

19

2012). The lack of a unified (homogeneous) language contributes to the problem of con-
sistently maintaining and updating the artifacts. There must be a compromise between
flexibility /expressiveness and maintainability /readability, all considering the consistency

of artifacts described in (possibly different) notations.

Inconsistency — Abstract requirements may lead to inconsistent tests. These underspec-
ified tests, with respect to missing dependencies or the lack of input/output mapping to
the implementation, hinder an effective automated execution, causing unexpected errors
or invalid results. For instance, to automate the action of sending an email, one should
make sure that the SUT is currently connected to the internet. If this required state is
not verified, the execution might produce inconsistent results (depending on whether the
internet connection was activated by unrelated actions beforehand). Additionally, incon-

sistent results may arise due to duplicate mappings to scripts for the same actions.

Execution time — A trivial strategy to guarantee that test scripts start their execution
on a valid system state is to make them self-contained. In other words, each script executes
all required setup methods (always assuming that the SUT is in the initial state). However,
in doing so, the execution time of a test plan might be infeasible since the system must
be reset for each test case. Lengthy execution times can defeat the purpose of regression
suites since running them takes so much time that it is not feasible to execute them
during regular development (TILLEY; PARVEEN, 2012). The correct system state should
be ensured by using more efficient strategies, like, for instance, the execution of a test
suite in such an order that a test cases benefits from the setup established by previous

ones in the sequence.

Internationalization — Considering globalization, nowadays most companies have sites
in different countries that do not share the same mother tongue. Specifications can al-
ready be ambiguous, especially when there must be off-site translations, contributing to
misinterpretations. Mahmood and Ajila (2013) even find results showing that using native

language to specify the system improves the correctness of the modeling.

Technology lock-in — Frameworks, platforms, and programming languages are in con-
stant change, as well as business requirements. Tying a testing process to a specific tech-
nology might make the entire process obsolete before the effort to build it pays out. For
instance, technology lock-in poses a critical threat to testing solutions in the cloud since
a provider can suddenly increase prices or show technical issues (OLIVEIRA; MARTINS;
SIMAO, 2017). A sustainable strategy should be portable and consider only open, accessi-

ble, and stable languages/frameworks.

Legibility — This concern can fall into the “Heterogeneous notations” issue, since novice
testers might not be familiar with unusual complex notations. Therefore, an accessible

language must be adopted to reduce ambiguity and allow non-experts to be productive.

20

However, even though a poor readability of TCs make the task of evolving or maintaining
them harder, the readability is often neglected (GRANO et al., 2018).

Duplicate artifacts — One of the side-effects of not having efficient traceability is to
end up finding duplicate artifacts across the project. Multiple strategies were proposed to
mitigate or minimize this issue, but a formal strategy should envision this problem in a

constructive way, aiming to avoid these duplications.

Regardless of the test automation strategy adopted, these are some of the issues that
can hinder maintenance and productivity when dealing with test cases generated by hand
from experience and intuition. The lack of a standardized automation process, in which
every aspect of testing could be machine-readable, contributes to the emergence of these
problems. To validate whether these maintenance and productivity problems can also be
observed within an industrial context, we present and discuss next a participant observa-

tion.

1.1 IMMERSION IN SOFTWARE TESTING INDUSTRY

For several years we were involved in several testing activities performed in partnership
with Motorola, a Lenovo Company. We not only had access to the artifacts, both used or
created, but also participated in loco in multiple teams responsible for distinct steps of the
testing process. This immersion helped us to understand the improvement opportunities
in each step and how they are interconnected. It also served as an important input to
formulate our research question, as well as for the design of the tools and experiments
presented later. Next we briefly discuss our observations related to: test automation;

manual execution; test generation; feature analysis; and, finally, feature definition.

1.1.1 Automation Team: Participant Observation

One of the main priorities in the testing process is to obtain fast software quality re-
ports. Therefore, when a TC is often executed and is viable for mechanization, it becomes
a prioritized candidate to be automated. However, there are always development and
maintenance constraints. At first, teams focused solely on automating new TCs as much
as possible. Developers were hired and automation frameworks were built to make the
automation process faster, but it resulted in growing script errors due to different envi-
ronment conditions and rapidly changing requirements. In this light, the teams adapted
design patterns such as Page Objects (LEOTTA et al., 2013b) and dependency resolution
to organize its codebase, resulting in a significantly better success rate. However, every
change would now require meticulous reviews since there is no automatic traceability to
the original requirement. Therefore, even a single change can cause errors in multiple TCs

across different teams.

21

The main goals of this observation are to: 1) Be acquainted with the everyday tasks
of an automation team; 2) Gather and document pain points; 3) Read documents and
training resources; 4) Execute daily tasks; and 5) Get insights on where and how to apply
potential solutions.

The chosen team was responsible for automating the sanity suite, which is a small
set of tests frequently executed to report critical errors as quickly as possible. The team

members were working at the site localized at CIn-UFPE, Recife, Brazil.

Observations and Discussions

1. There is a considerable learning curve for newcomer developers: they face a large
amount of concepts and frameworks to become familiar with, even before automating

a simple scenario. A lot of time was spent reading manuals for the multiple libraries.

2. The most time-consuming activity is to analyze suite executions: the auto pass rate

is always less than the final pass rate (after revisions).

3. There is no mapping between errors and fixes on the codebase: this lack of trace-

ability hinders automatic solutions for maintenance.

4. No timesharing data about the time spent automating new TCs versus maintaining

old ones.

5. Team members are overloaded with maintaining the current test scripts. Thus, they

have difficulties meeting the demand for creating new test scripts.

In an attempt to quantitatively validate the team members’ narrative, we have col-
lected data from internal projects about 1) the tasks created and resolved over the years;
2) the auto and final pass rates from official test execution results. Regarding the first
topic, we have extracted all tasks associated with an issue in the management tool. The
chosen projects were suggested by the team members because they are related to test au-
tomation. Figure 1 shows the distribution of the issue types over the years. The inferred
issue categories (maintenance and new) are derived from the original issue types. Each
project has different custom types, but even the same issue type can mean a different cat-
egory in a different context. To infer the categories, we recurred to the team experience.
For instance, issues marked as “Story” were put in the “New” category, while “Defect”
issues were considered as “Maintenance”.

In Figure 1 we can notice that the number of issues related to automating new TCs
has been shrinking over the years in comparison to the total of maintenance-related issues,
corroborating the team report.

Regarding the information about pass rates, we have extracted the results from an

internal and custom tool that stores the results from all test executions that use the

22

Figure 1 — Distribution of inferred issue categories over the years

210 201 79 54 1,499 1,094
100 % . 100 %
80% |- N 80% n
60% 7 60 % |- a
53 343 824
40% 65 N 40% n
126
20% | 588 85 | 20% |- 441 738 504 B
0% 0%
A > S Q Y A >) Q N
S S \ O U S S > O
R S N LA T ST S A
‘ OMaintenance M New ‘ OMaintenance B New
(a) Team A (b) Team B

Source: The author (2022)

internal test framework. From all these results, we have filtered only the ones marked as
official and belonging to the test suite developed by the team we have observed. After
processing the data, we discovered that, on average, the auto pass rate stands at 76%
while the final pass rate at 82%. Thus, maintenance still is a staling issue, as reported by
multiple developers. Some teams consider no longer automating new TCs since they can
only afford to maintain the already automated ones. Although we analyzed a relatively
small population (only one team) and might have an imprecise inference of the issues
categories, the evidence from the team feedback and the issue management system ratify

each other.

1.1.2 Further Direct Observations

Manual Execution The testing process still heavily relies on manual execution, since
a large number of TCs are not feasible for automated testing. This decision considers
technical and cost constraints but also a business choice. In some scenarios, an actual
human interaction with the SUT gives more confidence to the test result. For instance,
when one needs to test a GPS, the test has more credibility when actually driving around
than manipulating the device sensors to simulate a trajectory. Because such tests need to
be executed by human testers, TCs describe all required procedures and information in
plain natural language. Additionally, there is no standard for the different teams across
the globe to write them besides the basic structure (summary, setup, steps and expected
results). This scenario leads to: 1) Different granularity: some tests describe step by step
each screen interaction to get the test done, while others only have one step with the gen-
eral idea for what should be tested; 2) Ambiguity: this is usually expected in descriptions
written in plain natural language, but it is augmented both by the granularity issue and
by the ambiguity inherited from the requirements. It also leads to wrong test results and

slow execution by newcomer testers.

23

Test Generation TCs are usually generated from requirements or bug reports. Require-
ments could be extracted from internal documents or external sources. Assuming that all
required information is gathered and understood, there are different ad-hoc strategies to
create new TCs, but all of them are solely based on the test engineer’s experience. The
general idea is to find the relevant scenarios that should be tested and describe them
in a spreadsheet, allowing the test steps to be further detailed. This spreadsheet is then
uploaded to the actual tool in which the TCs are stored. This approach might lead to
missing relevant test scenarios but, most importantly, it hinders test case maintenance.
Since there is no traceability between requirements and TCs, it is hard to know which TCs
are affected by a future update and it is even harder to know how to fix them. Because

of that, all TCs must be thoroughly reviewed and updated accordingly.

Feature Analysis Feature analysis encompasses the process of analyzing a set of re-
quirements regarding specific SUT and software versions. When an analysis is requested
from a team, it must consider whether the test scenarios must be covered by the team
and, in that case, if new tests must be created. Based on internal reports, information can
spread across different documents and often requires tacit knowledge to understand it. It
was not uncommon for engineers to search for the meaning of some requirements both in

internal and external search engines.

Feature definition We also participated in the process of defining new functionalities.
Because of its inherent creative nature, it is out of the scope of our work. During the
discussions, different artifacts were created such as slides, prototypes, etc. Once the re-
quirements are decided, however, they can be rewritten in compliance with any proposed

standard to be used as input to the testing process.

1.2 A FORMAL YET ACCESSIBLE APPROACH

The apparently unrelated issues listed at the beginning of this chapter were observed in
the immersion and can all be traced back to the lack of a mechanized analysis using precise
notations and formal strategies to test case generation and automation. The seminal work
of Gaudel (1995) argues that testing can be formal, too. From this perspective, there
are several test generation strategies and theories based on formal specifications, such as
ioco (TRETMANS, 1996) and conf (BRINKSMA, 1988). Formalisms such as process algebra,
transition systems, etc., can precisely define the semantics of system requirements, which
allows one to verify essential properties and derive test cases automatically. Closely related
work, such as TaRGeT (FERREIRA et al., 2010) and NAT2TEST (CARVALHO et al., 2014),
leverages formal languages and verification tools to mechanize the analysis. However, even
when we have a rigorous formal approach, some maintenance issues still arise such as, for

instance, execution inconsistencies and over-detailed models that need to be updated in

24

every development iteration. As an illustration, consider some examples and how they are

tackled both in practical and formal approaches.

o When a screen element changes in a GUI-based application, the related test artifacts
should be changed too. In most ad-hoc strategies, developers can adopt design pat-
terns, such as Page Objects, to improve traceability, but the update is still mostly
manual (which can be imprecise). When using formal models, the change is au-
tomatic. However, understanding the model and finding the correct component to
update is complex for non-expert users. Besides, there are additional difficulties

when different models are used for development and testing.

o It is common to have different notations for each step of a test automation pro-
cess. Ad-hoc and formal strategies can use quite different languages, diagrams and
logic. Thus, it is hard to make changes that deal with varied abstraction levels and

notations.

o Most strategies are dependent on specialized tools or standalone solutions. This can

be onerous when the underlying technology must be replaced.

In this light, this work pursues a strategy for the industrial context, particularly fo-
cused on the mobile device application domain, in a partership with Motorola, a Lenovo
Company, that promotes the use of accessible notations, such as natural language de-
scriptions, without giving up a formal theory. The entire traditional (direct engineering)
testing process is covered, from requirements to automated scripts. To deal with different
abstraction levels, the concept of a domain model arises, in which additional information
(such as dependencies, cancellations, compositions, and instantiations) can be combined
with the requirements to generate concrete scripts. On the other hand, the large number
of test cases already generated by hand, possibly without using requirements as reference,
should not be ignored. Hence, aside from supporting the test generation and automation
from new requirements, we should also assist in the automation and consistency analysis
of legacy test cases. Ultimately, by following this formal approach adapted to an industrial
context, we provide evidence from evaluations and experiments that the above-mentioned

problems can be minimized.

1.3 RESEARCH QUESTION AND OVERALL STRATEGY

As discussed in the previous sections, many issues in a testing process can arise from
the lack of standardization, which hinders the automation of the entire process. Even
though many strategies in the literature formalize the test generation process, they use
notations that require specialized training or do not cover script generation for automated
execution. Considering this context, the leading question that guides our research is the

following:

25

How to generate sound, consistent and executable test scripts based on requirements

written in natural language?

To answer this question we first discuss some related challenges such as 1) How to process
natural language descriptions; 2) How to verify the soundness of derived test cases, and
3) What practical strategy can be used to generate tests that can be interpreted directly
by a test driver without demanding over-detailed requirements. The proposed solutions

for these challenges are listed next:

1. The input to the overall process is restricted to sentences that comply with a Con-
trolled Natural Language (CNL), with a well-defined syntax and precise semantics
interpretation; this allows development of deterministic parsing as well as a formal

(semantic) model generation.

2. The Implementation Under Test (IUT) can be modelled by a Communicating se-
quential processes (CSP) process to use a conformance relation, CSP Input-Output
Conformance (cspio) (NOGUEIRA; SAMPAIO; MOTA, 2014), for soundness verifica-

tion.

3. The domain model, which must also comply with a Controlled Natural Language
(CNL), can progressively describe test actions and dependencies that can be inter-

preted by a test driver, while not changing the original expected behavior.

Considering our industrial context, however, we cannot ignore the large number of
test cases already generated by hand, potentially created with ad-hoc techniques. The
dichotomy between the literature’s best practices and the industry reality is also what

drives this work. Therefore, we also try to answer the follow-up research question:

How to generate consistent and executable test scripts based on legacy test cases written

in natural language?

An expected challenge is that legacy test cases might have no associated requirements
and even have imprecise setups. Thus, soundness cannot be verified, but we can still
address consistency via a domain model. Because these legacy TCs are not standardized,

we proposed the following solution:

4. Freestyle natural language descriptions from legacy test cases can be matched by

similarity with CNL descriptions.

Each of the previous challenges, in addition to their corresponding solutions and how
they relate to each other, is discussed in Section 1.3.1. We briefly disclose our overall
approach for test automation by the standardization of natural language descriptions

with mechanized generation and analysis of the underlying semantics. First, we introduce

26

the major scenarios in which we apply our strategy (Section 1.3.1). Then, we present
the main used artifacts (Section 1.3.2). After that, we show an overview of the test case
generation process (Section 1.3.3). Lastly, we present how test automation can be carried

out after a mechanized, sound, and consistent test generation (Section 1.3.4).

1.3.1 Scenarios

Particularly, we concentrate on UI/functional test cases, since the practical context of
this work is mobile device testing with no access to the source code (black-box testing),
involving a partnership with Motorola Mobility, a Lenovo company. To align with the
industrial demand, we have considered two major scenarios.

The first scenario is a traditional direct test case engineering process, in which we
parse the CNL requirements specifications and generate intermediate artifacts until we
have the corresponding test scripts. This scenario assumes that all requirements are doc-
umented, accessible, and in compliance with our CNL. The other scenario deals with a
more challeging context of legacy test cases manually generated in an ad-hoc way, without
following a standard or without coming from explicitly defined requirements. In this case,
because there might be no requirements from which to infer the expected behavior, it is
not possible to reason about relevant properties such as soundness. However, since both
scenarios can be observed in an industrial context, we address both of them: the first with
a more rigorously defined strategy than the second. Figure 2 illustrates these scenarios.

As seen in Figure 2a, we deal with the direct engineering scenario of automating test
cases generated automatically from requirements written in compliance with a proposed
CNL. The requirements in natural language are parsed to obtain the syntactic tree, which
is used to define the underlying semantics in CSP process algebra. Then, the CSP model
is used to generate sound and consistent test cases in compliance with the proposed CNL
which can be, in turn, mapped to automation scripts automatically. Each task is discussed
in the corresponding dedicated chapter, as detailed in Section 1.5.

The second scenario is illustrated in Figure 2b, in which test cases were already created
in the past by hand (hence “legacy”). In this scenario, the test step descriptions are
either matched using text similarity to CNL-sentences or they are defined on-the-fly, via
a capture procedure. Then, an equivalent consistency analysis to that of direct engineering
is carried out. Because there are no associated requirements, soundness is not addressed

and only consistency is verified.

1.3.2 Artifacts

In a traditional software testing process, there are many artifacts involved. In most cases,
software behavior is defined by a set of functionalities, each one having its own descrip-
tion. In our context, this description is part of a document named Feature. Each feature

has a list of relevant requirements, which can be clearly described or scattered over many

27

Figure 2 — Process tasks

CNL-compliant Syntactic

requirements CNL Tree
() Parsing

Formal Semantic
Interpretation

Consistent and Sound Consistent
Test Cases TC Test Scripts
»

" Automation

TC
Generation

(a) Automation Process

NL
Matching

Legacy Test
Test Cases Scripts

(b) Automation of Legacy Test Cases

Consistent
Test Scripts

Consistency
Analysis

Source: The author (2022)

attachments with no clear distinction. From these descriptions, using their own inter-
pretation, analysts prepare artifacts to test the SUT behavior. While some test analysts
create use cases to ease the process of finding relevant scenarios, others may write test

cases directly from the feature descriptions with no intermediate artifact.

Features

A feature describes, in our context, a system functionality. It may comprise multiple
related requirements distributed over a dozen attached documents (such as slides, manuals
and prototypes). Features are the origin for the development and testing processes because
they hold all information about the software expected behavior. Because they are the
main source of information, there are also additional annotations that help to categorize
them. For instance, one may indicate the affected products, supported versions, product
owner and other tags. Each feature can contain a limited number of requirements which,
in composition, describes the SUT behavior. These requirements can be scattered over

different related files, such as presentations, manuals, spreadsheets etc.

28

Requirements

The description of a feature may not be written in a standardized template. It is typically
described in freestyle natural language with the help of figures, slides, and mockups.
To keep the process simple, we manually obtain a list of individual requirements. Each
requirement must be written using a single sentence. The composition of these sentences is
what characterizes the expected feature behavior, and is the input for the test generation
and automation strategy we propose. Evidently, there are some automatic strategies to
scrap textual descriptions to extract the requirements and convert the language. However,

these tasks are beyond our current scope, and thus they will be indicated as future work.

Test Cases

Test cases may be presented in different templates, but they usually have the same basic
fields: initial setup, test steps and expected results. TCs are supposed to provide instruc-
tions, by interpreting the requirements, on how to check a given scenario. When a TC
is written in natural language by hand, issues regarding ambiguity and imprecision often

arise.

Test Actions

Test actions provide a suitable representation for the underlying abstractions of NL de-
scriptions; they can be represented as recursive structures, inspired by the composite
design pattern (GAMMA, 1995) illustrated in Figure 3 (a). They support abstraction lay-
ers that allow one to represent atomic operations, test steps, TCs or even test suites
using the same structure. The relationship notation used in Figure 3 is based on UML
relationships (PILONE; PITMAN, 2005).

Figure 3 — Overall architecture

create
o
/ L\ UIAutomatorInterp M UiAutomatorCmd ‘

—> Test Actions

Atomic

.~ Composition

>

‘ MonkeyTalkInterp

MonkeyTalkCmd ‘

(a) Composite Pattern (b) Factory for interpreters

Source: The author (2020)

29

Since our focus is on Graphical User Interface (GUI)-based test case automation, it is
worth mentioning that the high-level descriptions of atomic operations are automatically
derived from screen interactions, while in composite test actions these NL descriptions are
TC titles or step descriptions, among others. Only atomic operations (that are predefined)
are mapped into code-level scripts. Here we use an interpreter to a specific framework
(Figure 3 (b)), which can be dynamically instantiated using the factory method pattern
(GAMMA, 1995). To illustrate the framework agnosticism of our proposal, we consider
two different frameworks (see Figure 3 (b)): UIAutomator and MonkeyTalk, with their

respective interpreters.

Domain Model

Many issues arise from the abstraction gap between requirements and executable test
scripts. Different roles in the testing process are involved on the tasks of providing details
to abstract behavior descriptions. In practice, there is no single artifact or role responsible
for describing the software behavior thoroughly and exaustively. Any Model-Based Testing
(MBT) strategy may be destined for failure if it tries to encompass the entirety of a feature
in a single artifact or by a single person. For this reason, we propose the adoption of a
domain model: a live document in which further details and constraints about the SUT
can be added without modifying the original behavior described by the requirements.
The advantage is that a formal domain model can be used to generate executable test
scripts and to execute verifications automatically, while the actual dynamics of who are
able to edit this model and what details should be inserted can be freely defined by team
conventions. To preserve the original behavior described by the requirements, there are
restrictions on the type of information that can be added. The domain model can only
express associations, i.e., relations that link actions to each other, such as dependencies,

cancellations, composition, among others.

1.3.3 Test Case Generation

Instead of creating ad-hoc algorithms to generate test cases from the specification artifacts,
we define formal semantics for these artifacts in the CSP process algebra, and reason about
them using well-established techniques and tools. To reason about relevant properties that
TCs should have, we use a testing theory for CSP models (NOGUEIRA; SAMPAIO; MOTA,

2014) and an associated conformance relation denoted cspio.

Notation

Typical MBT approaches rely on using a formal model to generate test cases. Therefore, in
practice, testing teams that use these approaches usually have two different specification

sources: the one written in natural language by the product owner; and a formal model

30

manually derived from it. This situation leads to inconsistencies in the testing process,
specially when the specification changes, increasing maintenance costs and escaped de-
fects. To avoid this problem, we propose an approach to derive a CSP model automatically
from requirements written in the CNL we propose. This approach is based on extracting
circumstances from the subordinate clauses found in the requirements and then creating
test scenarios for each circumstance mutation, that are further translated into a formal
model to generate intelligible and/or automated test cases. The generated CSP model is

actually a formal semantics for the input requirements.

Consistency Analysis

Test scripts always depend on some conditions to execute properly. These conditions are
present in different artifacts: environment configuration, test case setup and even test step
preconditions. Regardless of the language or method used to define these conditions, there
must be a resolution mechanism to interpret them and find a valid and optimal sequence
of steps to be executed. In practice, those mechanisms are often ad-hoc implementations
based on topological sorting that cannot solve specific dependency relations for testing
and do not guarantee optimal solutions. We then propose a formal dependency solver
that handles regular dependencies in addition to other useful relations for testing, such

as cancellation, instantiation and consistency choice.

1.3.4 Test Case Automation

Test automation becomes a potentially easier task when tests are consistent and the
domain model is complete. Basically, the strategy should match atomic actions to their
corresponding execution script in a given test driver. Because all other actions are just a
composition of more concrete ones, then each one is automatically implemented via its
basic actions.

When dealing with legacy test cases, however, those premises cannot be assured. We
can identify in the related literature several strategies to automate already created test
cases, such as coding and Capture & Replay (Capture-and-Replay (C&R)). While TC
automation via coding is slow and forces developers to acquire in-depth knowledge, C&R
approaches are usually faster, but suffer from high maintenance costs later on due to poor
reuse, as noted in a previously conducted empirical assessment (LEOTTA et al., 2013a).
These drawbacks, associated with the use of an ambiguous language to specify require-
ments, negatively affect a direct mapping from test descriptions to scripts, demanding
from testers the creation of a structured representation to enable an automatic and ef-
ficient mapping (OSTRAND; BALCER, 1988). On the other hand, practical experiences in
testing have shown that forcing programmers to adopt new notations is not the best op-
tion, reinforcing the use of well-known notations and environments (BERTOLINO, 2007;

GRIESKAMP, 2006). In this light, we offer strategies to improve automation speed and

31

minimize maintenance problems by improving reuse and by adopting a declarative ap-
proach for execution dependencies with the help of the domain model (delegating to an

automatic analysis mechanism instead of manually creating test setups, for instance).

1.4 CONTRIBUTIONS

The main contributions of this work are the following:

A single CNL to describe requirements, domain model and test cases.

A denotational semantics in Machine readable syntax for CSP (CSPm) for require-

ments and domain model written in compliance with our CNL.

o A formal support for further specification, via domain model, aside from the original

requirements, while preserving the underlying behavior.

o A formal definition for test consistency, a property that ensures that test cases, for-
merly abstract, can be directly executed in an implementation without inconclusive

or inconsistent results.

« A flexible strategy for consistent test automation that accepts both CNL-compliant

and legacy test cases written in natural language.

« Tools implementing both the direct engineering from requirements (SmarTest) and

the automation of legacy test cases (Force IDE and Kaki).

o Empirical evidence, through experiments and evaluations, demonstrating the prac-

tical application of our approach in an industrial context.

1.5 DOCUMENT ORGANIZATION

In the following chapter, we propose a CNL and present its grammar, parsing rules, and
the framework chosen for implementation. Chapter 3 introduces CSP and the semantic
rules for translating a syntactic tree, obtained after parsing requirements and domain
model that comply with the CNL, into a CSP model. In Chapter 4, we introduce the
ioco testing theory, together with its CSP adaptation (cspio). Then, we discuss how to
generate sound and consistent test cases by means of CSP refinement assertions. With the
resulting traces, we show how to linearize them back to natural language and how to map
them into automated scripts. In addition, we also present in Chapter 5 how to automate
legacy test cases while still making sure that the resulting test scripts are consistent.
Chapter 6 presents the tools built to implement our strategy and provides some evidence
(observations and experiments) of their efficacy. Finally, Chapter 7 discusses related work,

while Chapter 8 presents our conclusions, summarizes the work and discusses next steps.

32

2 PARSING CNL-COMPLIANT REQUIREMENTS

The pursuit of an integrated testing process eventually has to face the following question:
which notation should be adopted? As it is further discussed in Chapter 7, there are several
proposed frameworks which adopt ad-hoc notations to represent the requirements and the
generated artifacts. However, one major downfall of adopting such notations is to find (or
train) specialists. Thus, the answer to our initial question may indicate the use of a widely
known notation: our written natural language. It is ubiquitous and expressive, allowing to:
refer to other entities for further description (Abstraction gap and traceability); express
all kinds of artifacts (Heterogeneous notations); use mature mechanisms for translation
(Internationalization); be easily interpreted by humans (Legibility).

Yet, because of their ambiguous nature, natural languages may not be always deter-
ministically interpreted by an algorithm. Then, there is no straightforward way to define
a meaningful mapping between textual descriptions and their semantic representations.
This lack of precision typically leads to, for instance, an abstract gap between sentences
and the actual corresponding execution code — for example, different test engineers may
describe the same action using different sentences (regarding vocabulary and syntactic
structure). Considering the simple act of downloading an e-mail attachment, some writ-

ing alternatives are as follows:

o Tap on attachment icon at the header portion of the message.
e The user should tap on the icon at the header.

o Step: Tap icon; Container: header; Actor: User.

Besides the ambiguities that may arise, which cripples the sentence interpretation by
a human tester, it becomes difficult for any strategy to find an accurate and deterministic
match. The NL flexibility may result in different stored actions that convey the same
meaning, hindering the potential reuse, impairing maintenance and providing wrong test
results.

In this light, we propose the use of an CNL, allowing the users to write artifacts
in English while certifying that a standard is being followed, leading to a deterministic
machine interpretation. Figure 4 presents the process task (extracted from Section 1.3.1)
that is detailed in this chapter.

In what follows, we discuss the aspects considered when building the CNL and how
it was implemented. Section 2.1 shows the main requirements that a CNL must comply
with to provide concise writing and reading. In Section 2.2 we briefly discuss the frame
theory used as inspiration to model both grammar and semantic representation. In Sec-

tion 2.3 we present the syntax of our CNL together with some sample statements. Then,

33

Figure 4 — Process Task: CNL Parsing

CNL-compliant Syntactic Tree
requirements CNL (Actions)

\
’| Parsing

Source: The author (2022)

v

Section 2.4 introduces the framework used to implement our strategy and discusses some

implementation details. Finally, Section 2.5 presents some final remarks.

2.1 GENERAL REQUIREMENTS FOR A CNL

By observing a large number of requirements, test cases and their corresponding test steps
in our industrial context, it was possible to formulate a writing pattern which covers the
different writing styles found. From this pattern we created a standard (CNL), which is
summarized in Section 2.3. However, to elaborate a concise CNL there are some concerns
that must be assessed. Even though CNLs are known to be easier to understand, users
may find hard to write statements that comply with the syntactic restrictions. According

to Kuhn (2013), there are some approaches that could be taken to ease this task:

Error messages - It consists of a basic and straightforward approach, however it does

not always provide useful messages for most users (DIMITROVA et al., 2008).

Conceptual authoring - It consists of providing to the user menu operations or well-
formed sentences with some gaps to fulfill (HALLETT; SCOTT; POWER, 2007).

Predictive editors - It shows all possibilities of fulfilling a sentence while it is being
built, allowing a natural and guided writing (BERNSTEIN; KAUFMANN, 2006).

In our work, predictive editor (along with error messages) is the most fitting approach
since users are familiar with search engines and IDEs that provide this functionality. How-
ever, to allow an efficient implementation of this approach, some grammar requirements

must be met (KUHN, 2013):

Concreteness - Sentences that comply with a CNL should be concretely read and inter-
preted by computer programs, with syntax trees being automatically built and ambiguities

spotted and mitigated beforehand.

Declarativeness - A given CNL grammar should be declarative in the sense that it does
not depend upon a specific modus operandi. It should keep a clear separation between its

syntax and the parser algorithms that process it.

Lookahead Features - The design/construction of CNLs should consider their effi-
ciency when implementing lookahead features. Whenever an unfinished sentence is given,

the CNL should allow the retrieval of multiple valid endings.

34

Anaphoric References and Scoping - CNLs should support expressions that refer to
previously mentioned entities (such as “it”), besides defining their scope. Even though
this problem is treated by semantic and discourse analysis interpreters, it should also be

regarded syntactically.

Dynamic lexicon - It should be possible to change or extend the dictionary dynamically

with no programming intervention.

The fulfilling of these requirements are pursued and discussed in the next sections.
While some of them are solved by the adopted semantic foundation, others were out-
sourced to an specialized framework for natural language design and parsing (Grammat-

ical Framework - Section 2.4.1)

2.2 FRAME STRUCTURE

To deal with the Concreteness and Declarativeness requirements, we adopted a framework
for knowledge representation that allows computer interpretation. The chosen schema is
heavily built upon the concept of a frame, which is a structure to store data about a

previously known situation, as defined in (MINSKY, 1975):

“A frame is a data-structure for representing a stereotyped situation [...] We
can think of a frame as a network of nodes and relations. The ‘top levels’ of
a frame are fixed and represent things that are always true about the sup-
posed situation. The lower levels have many terminals—‘slots’ that must be
filled by specific instances or data. Each terminal can specify conditions its
assignments must meet. (The assignments themselves are usually smaller ‘sub-
frames’.) Simple conditions are specified by markers that might require a ter-
minal assignment to be a person, an object of sufficient value, or a pointer to
a sub-frame of a certain type |...].”

These frames contain prefixed slots that, when filled, represent an instance of a specific
situation. Each slot holds a different purpose. Consequently, there can be a specific rule
(or set of rules) for filling each slot. As an example, a rule can be a restriction on a specific
set of elements (enumeration), a regular expression, among others. For instance, a slot
related to birthday information can only be filled by a valid date. Furthermore, each slot
must have an associated default value, which is used when not all slots of a frame can be
filled by the available information. In practical terms, we can think of a pre-filled frame
whose slots content is overridden by concrete instances, when available.

Our work was also inspired by the linguistic approach to semantic representation
known as Case Frames (FILLMORE, 1968), which center around the verb. Each verb defines

its own frame, since verbs complements may vary (e.g., intransitive verbs do not require

35

any complement, differently from transitive verbs). Yet, as this theory aims to provide
semantic interpretation, the slots do not represent syntactic classes (such as subject and
object). Instead, each slot holds some information about the action represented by the
verb. In the simplest case, the verb indicates an action performed by an agent towards a
patient. For instance, John (agent) bought (verb) a book (patient).

Because our purpose is to ultimately represent test actions, our frames should convey
elements that resemble test steps. In our context, the “agent” slot defaults to the user,
since our frames aim to describe how a user (tester) can interact with the SUT. The
verb slot is named as ‘operation’, and its immediate complement is always the ‘patient’
(see Table 1).

Table 1 — Frame example

Required (Static) Extra (Dynamic)
Agent Operation Patient Sender Receiver Title
(User) Send Email Message | fmca@cin.ufpe.br acas@cin.ufpe.br Smartest

Source: The author (2022)

In our scenario, in which test case automation is a primary goal, we adapted the Frame
theory by dividing the slots into two categories: Required and Extra. The former must
be present in every frame, acting as a unique identifier, being static in the sense that
it cannot be changed without changing the intention of an action. The latter, instead,
does not define the action intention, but all other dynamic properties and modifiers of a
situation. This separation allows us to use the required slots as unique identifiers (when

mapping to script methods) and pass the dynamic slot values as arguments.

2.3 SYNTAX

Our main goal when designing the CNL was to be able to write any test artifact using
the same subset of natural language and following the same rules. This decision has the
advantage of: facilitating the communication among stakeholders, since they already know
the universal notation; and bypass the need for converting the test case descriptions once
they are generated from the requirements. To provide a general idea of which sentences
comply with our CNL, we present in Listing 2.1 an overview of the grammar (excerpt)
using the Extended Backus-Naur Form (EBNF') notation.

36

Listing 2.1 — Grammar syntax using the EBNF notation

(Sentence) = (Circumstance)? (Statement) (2.1)
(Circumstance) |= (SingleEvent)? | (Recurrence) | (Conditional) (2.2)
(Statement) = (Task)(SimultaneousTask)? (2.3)
(SimultaneousTask) = at the same time (Task) (2.4)
(Task) = (Action)(Modifier)x | (Conjunction) | (Disjunction)(2.5)
(Modifier) = (Destination) | (Sender) | (Iterable) (2.6)
KeyValueModifier) | [...]
(KeyValueModifier) =with | using “(SlotValue)” as (SlotKey) (2.7)
(Action) = (Agent)?(Modality)?(Polarity)? (2.8)
(Operation) (Patient) (PredicativeQualifier) ?
(Actor) = (Agent) (2.9)
(Patient) = (Reference) (2.10)
| (Quantifier)?(AttributiveQualifier)?(Object)
| (PatientConjunction) | (PatientDisjunction)
(Qualifier) = (AttributiveQualifier) | (PredicativeQualifier) (2.11)
(PatientConjunction) = and (ListPatient) (2.12)
(PatientConjunction) = or (ListPatient) (2.13)
(ListPatient) |= (Patient) | (Patient)(ListPatient) (2.14)
(Conjunction) = (Action) and (Action) (2.15)
(Disjunction) = (ExclusiveDisjunction) | (InclusiveDisjunction) (2.16)
(ExclusiveDisjunction) = (Action) either (Action) (2.17)
(InclusiveDisjunction) = (Action) or (Action) (2.18)
(SingleEvent) = (when | after) (Condition) (2.19)
(Recurrence) = (PreRepetition) | (PostRepetition) (2.20)
(PostRepetition) = (until | till) (Condition) (2.21)
(PreRepetition) = while (Condition) (2.22)
(Conditional) = (if | in case | given) (Action) (2.23)
(Modality) = (RequiredModality) | (AbilityModality) (2.24)

To simplify the presentation of the grammar, we begin by illustrating simpler sentences
that comply with intermediate production rules. From these, we add more complex config-
urations until we reach the starter symbol. For instance, consider the production rule 2.8.
It states that an action is required to have an Operation and a Patient. Thus, the following

basic sentence would be successfully recognized:

37

A message is sent.

The word “message” would be the Patient while “send” would be the Operation.
Additionally, an action can have Agent, Modality, Polarity and a Predicative Qualifier.

To illustrate a sentence with all these slots, we have:
The user must not send a message early.

In this case, we incremented the initial sentence by adding the “user” as Agent, a
Required Modality (represented by the modal verb “must”), the Negative Polarity and a
Predicative Qualifier (adjective “early”). Also, the patient slot can be further incremented
by using one of the rules in 2.10. For instance, we could add an anaphoric reference by
replacing “message” for the pronoun “it”. Also, we could add an attributive adjective for
the object in question, or even a quantifier. Finally, we could use coordinating conjunc-
tions to join two patients and form a more complex one (noun phrase coordination). We

illustrate these possibilities in the following sentence:
Two notifications and a small message are sent.

In this example, we have a coordinate patient by the coordination of two other patients.
Since they are linked by an “and”, then we consider this as a conjunction (instead of
disjunction). In the first element of the conjunction, we have “two” as the number of
messages (quantifier). The second element has an attributive qualifier associated to it
(adjective “small”).

When observing the initial production rule 2.1, we highlight that all sentences must
have a statement, which eventually is described by an action or coordinating actions. The
statement is, in practical terms, the task that should be performed. When parsing test
cases, each sentence represents a step that should be executed on the SUT. When the
sentence is a requirement, it usually describes what must be the observable behaviour of
the SUT after receiving an input or when a condition is met. This way, sentences can
have a Circumstance, which can be a Single (or recurrent) Event or a Condition. Each
Circumstance has a corresponding preceding conjunction, namely “when”, “if” and “until”

(and their synonyms). For instance, the following sentence has a circumstance:
When the button is pressed then a message is sent.

Ultimately, both Circumstances and Statements are described by means of Actions,
allowing us to use a single structure for conditions and tasks, which is easier for the user
to grasp. Additionally, since conditions must be transformed into actions to be executed
(to ensure, in test cases, that the conditions are met), this unified solution is fit for that

purpose. In this particular example, we have a Circumstance, namely a Single Event,

38

represented by the Action “button is pressed”. The statement is described by the Action
“message is sent”, as previously discussed.

More complex configurations can be found by exploring the other production rules,
but the above examples represent the core language we defined. Implementation details

will be discussed in Section 2.4).

2.3.1 Building a Frame

We use the parsed data to fill out the required and build the extra slots of a frame, as
discussed in Section 2.2. The production rule 2.5 contains all information needed to fill
out the frame slots. The first non-terminal leads to the production rule 2.8, in which the
Agent, Operation, and Patient slots are extracted. Then, from the rule 2.6, all extra slots
are progressively filled out. It is worth mentioning that the extra slots are not restricted
to the ones already established in the grammar, such as “Sender”, “Destination” etc. For

instance, consider the following sentence:
Send a message using “Thesis” as Title and “high” as Priority.

The new slots “Title” and “Priority” were created and filled out on-the-fly, similarly

to variable naming in programming languages.

2.4 CNL IMPLEMENTATION

The CNL requirements and Backus-Naur Form (BNF) both give an idea of what sentences
comply with our standard. However, other technical and functional issues arise when
implementing these constraints. The following sections present our implementation choices
and how these issues were solved. First, we introduce the framework used to define the
grammar. Then, we show how we use its API for parsing and linearization. Finally, we
discuss the pre- and post-processing tasks, besides optimization techniques adopted to

improve performance.

2.4.1 Grammatical Framework

The Grammatical Framework (GF) is not only a theoretical framework but also a special-
purpose programming language for the description of natural languages (ANGELOV, 2011).
It was designed to have an out-of-the-box support for the complexities found in natural
languages (RANTA, 2011). While it provides the special tools for the design and imple-
mentations of such languages, it also incorporates computational resources created by a
wide range of experts for 26 (twenty-six) languages, including complete morphology and
grammar rules for more than 20 (twenty) languages (ANGELOV, 2011).

Every GF grammar is composed by one abstract syntax and one or more concrete

syntaxes. Abstract syntaxes model a specific application domain (similarly to ontologies),

39

whereas concrete syntaxes are language-dependent and thus the latter encode a particular
idiom. Because there is a separation between the syntaxes, the abstract one can be used
as interlingua between multiple concrete languages (ANGELOV, 2011). This notion of
abstract and concrete syntaxes is similar to the concept of deep and surface structures
from Chomsky (1971) in which deep structures are underlying constructs that unify the
surface forms. We can also build upon this linguistic theory to unify the different ways of

describing an interaction (for instance, active or passive voice) with a single frame.

Building the CNL Grammar

We start by enumerating the abstract types that constitute a Sentence. These types
correspond to the Frame slots previously defined, and they are expressed as categories in

the GF. For instance, we can have the following categories:
cat Sentence; Operation; Object; Patient;

Following, it is possible to enumerate the elements of each category as a parameterless
function. Each function is a placeholder that can be concretized later. To illustrate, we

list below some operations.
fun Press, Hold, DoubleClick: Operation;

Objects can also be defined as functions with zero arity. An Object differs from a Patient

only to reflect the nuances of natural language, such as inflections.
fun Widget, Button, Notification: Object;

Once we enumerate the Objects, we need a function that transforms them into a Patient.
Below we present an example of grammar rule for nouns number inflection (single or

multiple). Remind that nouns are Object slots in our Frames.
fun Single, Multi : Object — Patient;

Finally, we define a function that joins Operation and Patient to get a complete Sentence.

This function must also be implemented by the concrete grammar.
fun Action: Operation — Patient — Sentence

Once we have the function “Action” defined, it can be called by passing the requirement
parameters, similarly as in any other programming language. For instance, to build a

sentence with the “Press” operation and multiple “Button” objects, we have:

Action Press (Multi Button)

40

So far, we have defined only the abstract grammar, similar to method signatures and class
definitions in object-oriented programming. In order to provide a mapping between these
concepts and actual strings, we must tell GF how to linearize them. We must define how

a category must be represented internally and, then, how each function is concretized:

lincat Operation = {s: Str};

lin Press = {s = “pressed”};

lin Hold = {s = “held”};

lin DoubleClick = {s = “double clicked”};

Since Object linearization must be in the plural form when they are multiple, the definition
considers a parameter “Number” (singular or plural), which can be used to change the

string based on the number of objects:

param Number = Sg | Pl;

lincat Object = Number => Str;

lin Widget = table {Sg => “widget”; P1 => “widgets”; };
lin Button = table {Sg => “button”; Pl => “buttons”; };

lin Notification = table {Sg => “notification”; Pl => “notifications”; };

Finally, we linearize the function that builds a sentence. To keep it simple, we illustrate

here only sentences with passive voice with the modal verb “must”.

lincat Sentence = {s: Str};

lin Action op pat = {s = “the” ++ pat.s ++ “must be” ++ op.s};

Two files must be created so GF can compile the grammar. Next we show the abstract
grammar file (Listing 2.2) and the concrete grammar file (Listing 2.3) by putting together

all previous excerpts.

Listing 2.2 — Abstract grammar — simple example

abstract Smartest = {
cat Sentence; Operation; Object; Patient;
flags startcat = Sentence;

fun Press, Hold, DoubleClick: Operation;

fun Widget, Button, Notification: Object;
fun Single, Multi : Object -> Patient;

fun Action: Operation -> Patient -> Sentence;

41

Listing 2.3 — Concrete grammar — simple example

concrete SmartestEng of Smartest = {
param Number = Sg | Pl;

lincat Operation = {s: Str};

lin Press = {s = "pressed"};

lin Hold = {s = "held"};

lin DoubleClick = {s = "double clicked"};

lincat Object = Number => Str;

lin Widget = table { Sg => "widget"”; Pl => "widgets" };

lin Button = table { Sg => "button”; Pl => "buttons” };

lin Notification = table { Sg =>"notification"”; Pl => "notifications” };

lincat Patient = {s: Str};
lin Single obj = {s = obj!Sg};
lin Multi obj = {s = obj!Pl};
lincat Sentence = {s: Str};

lin Action op pat = {s = "the” ++ pat.s ++ "must be” ++ op.s};

After joining all definitions and rules in the GF files, we can then call the GF command

line to compile them.

$ gf SmartestEng.gf

- compiling Smartest.gf... write file Smartest.gfo
- compiling SmartestEng.gf... write file SmartestEng.gfo
linking ... OK

Languages: SmartestEng
Smartest>

Once the files are compiled, GF provides a command-line interface to interact with the
defined CNL. For instance, we can ask to generate a random tree in the current abstract
syntax:

Smartest> gr
Action Hold (Single Button)

The output (abstract function) can then be linearized into a string (following the rules

we implemented earlier):

Smartest> 1 Action Hold (Single Button)
the button must be held

Not only an abstract tree can be linearized into a string, but the opposite can be achieved

by parsing an enquoted string.

Smartest> p "the button must be held”
Action Hold (Single Button)

42

Resource Grammar Library

The mechanism of decoupling the nuances of a language from its abstraction allows us to
have a common abstract syntax as interlingua. Then, each concrete grammar can define
how each of these abstract elements are written, and even add specific categories. In
addition to having a declarative style, writting multilingual grammars turned out to be
possible (RANTA, 2009).

The development of domain specific application grammars, such as the one defined in
this work, usually reuses a subset of the natural language syntax and lexicon to reduce
ambiguity. To ease this burden, GF provides a Resource Grammar Library (RGL), which
covers comprehensive morphologies and syntactic structures from more than 20 languages
(GRUZITIS; PATKENS; BARZDINS, 2012). In this light, instead of defining from scratch the
inner workings of a natural language, we can reuse the mature syntactic and morphologic
paradigms, detailed by specialists, already present in the RGL.

For instance, to create a full-fledged sentence using RGL, we could use the mkS func-

tion with the following signature:

mkS (Tense) — (Ant) — (Pol) — Cl — S

Source: The author (2022)

This function must receive a tense (conditional, future, past or present), an anteriority
(anterior or simultaneous), polarity (positive or negative), and a declarative clause to be
adapted. Below we have an example of use:

RGL> 1 mkS conditionalTense anteriorAnt negativePol (mkCl she_NP sleep_V)
"she wouldn't have slept”

A clause, in turn, also has an overloaded function called mkCl which usually receives a
noun phrase and a verb (in addition to other complements, such as adverbs and adjec-

tives):

mkCl NP — V3 = NP —- NP — (I

Source: The author (2022)

We can illustrate the use of this function with the following example, which uses a three

place verb:

RGL> 1 mkCl she_NP send_V3 it_NP he_NP
"she sends it to him"

43

Finally, we can refactor the concrete grammar presented in Listing 2.3 by reusing
the RGL elements now presented. Listing 2.4 shows the linearizations by means of RGL
syntactic elements. The abstract types, such as Operations and Patients, can be directly
mapped to verbs and noun phrases, respectively. The functions borrowed from RGL (mkS,

mkCl, etc.) handle the morphological inflections and additional details.

Listing 2.4 — Grammar refactored using RGL

concrete SmartestEng of Smartest = {

lincat Sentence = S, Operation = V, Object N, Patient = NP;

lin Press = press_V, Hold = hold_V, Widget = widget_N, Button = button_N,
Notification = notification_N;

lin Single obj = mkNP a_Det obj;
lin Multi obj = mkNP the_Det obj;

lin Action op pat = mkS presentTense positivePol (mkCl pat must_VV (passiveVP
mkV2 op))

API

In the previous section we discussed how to define our grammar using GF. To actually
embed this gramar into a tool, we used its API through the available Java binding to the C
runtime. After all sources are compiled successfully, a PGF (Portable Grammar Format)
file, which is a machine readable format for GF, is created (GF, 2022). Listing 2.5 shows
how to read this file programatically and how to access the previously defined concrete

language.

Listing 2.5 — Reading a PGF file using the GF Java Binding
PGF pgf = PGF.readPGF ("Smartest.pgf”);
Concr smartestEng = pgf.getLanguages().get("SmartestEng")
Having access to the concrete language, we can use it to parse or linearize expressions.
For instance, Listing 2.6 illustrates how to parse a sentence and access the syntactic tree.
First, the sentence is provided as a string, together with the start category defined in
the grammar. Then, a list of all possible abstract trees are returned, sorted by decreasing
probability, since a single sentence can be parsed in multiple ways. The parser implemen-
tation is lazy, returning each tree as soon as it is ready, instead of executing a full seacrh.
(GF, 2022).

Listing 2.6 — Parsing a sentence using the GF Java Binding

Iterable<ExprProb> iterable = smartestEng.parse(pgf.getStartCat(), "a message must
be sent");
ExprProb exprProb = iterable.next();

44

System.out.println(ep.getExpr());

// Sent_Stmt (Stmt_All Positive (Action_noAgent (Modal_Required Must) Send_CatOp (
Pat_Obj UndefinedDeterminerSingular Message_CatObj)))

When an action is identified at the syntax tree provided by GF, an analysis process is

executed, and the action is converted back to a text. This is achieved by passing the same

expression to the linearization function of the concrete language, as in Listing 2.7.

Listing 2.7 — Linearizing a expression using the GF Java Binding

String exprStr = "Sent_Stmt (Stmt_All Positive (Action_noAgent (Modal_Required Must)

Send_CatOp (Pat_Obj UndefinedDeterminerSingular Message_CatObj)))"
Expr expr = Expr.readExpr (exprStr);
System.out.println(smartestEng.linearize(expr));
// a message must be sent
In our scenario, not only we need to parse a sentence but also to manipulate the parse
tree in order to linearize it in different ways. For instance, a test step must always be in
the imperative mood, while requirements may be presented in the indicative mood. Even
though the action (identified by its frame slots) remains the same, its linearization may
differ depending on the artifact. A simple mechanism for manipulating the expressions is
detailed in Listing 2.8. In short, we change only the leading functions, while maintaining

the original elements, to linearize the parse tree in a different tense.

Listing 2.8 — Manipulating the abstract tree output by GF

n

String impExprStr = exprStr.replace(”Sent_Stmt"”, "Sent_Imp").replace(”Stmt_All",
ImpStmt")

// Sent_Imp (ImpStmt Positive (Action_noAgent (Modal_Required Must) Send_CatOp (
Pat_Obj UndefinedDeterminerSingular Message_Cat0Obj)))

Expr impExpr = Expr.readExpr (impExprStr);
System.out.println(smartestEng.linearize(impExpr));
// send a message

2.4.2 Dynamic lexicon

Because the native GF API does not allow dynamic types, in the sense of creating new
categories on-the-fly, we had to create an external mechanism to dinamically extend the
initial vocabulary. We considered creating a comprehensive and fixed grammar to avoid
dinamically updating the lexicon, but this option was not feasible due to performance
bottlenecks while parsing.

The implemented external mechanism was based on a template engine: we render a
new grammar file (source code) by passing the new identified terms as input data. We
defined the rules on how the output file should be generated based on these parameters.
Listing 2.9 shows a code snippet using the syntax of the Freemarker template engine
(APACHE, 2022). It receives all identified operations on the parameter “operations” and,

following, each operation “op” is rendered as an “Operation”.

45

Listing 2.9 — Template for the grammar

<#ftl encoding="utf—8" auto_esc=false>
abstract Smartest = {

[

cat <#list operations as op>${op.getCatld ()}<#sep>, </#list> : Operation;

[

Listing 2.10 provides a sample output generated from the template above, assuming
that three operations were identified (Send, Press and Check). To give sample output
that could be generated from the template above and assuming that three operations
were identified (Send, Press and Check), we can check the Operations, patients, qualifiers
and other elements are dynamically generated using this method. It allow users to extend

the dictionary without recompiling the tool as a whole.

Listing 2.10 — Sample output based on the grammar template

abstract Smartest = {

[.]

cat Send_Op, Press_ Op, Check Op: Operation;

[..]

2.4.3 Processing and Optimizations

When dealing with entire text documents as input, there are some functionalities that are
not covered by GF. Since GF deals mostly with sentences, we created our own document
structure to define how the sentences are interconnected. Besides the general structure,
we also created a pipeline of pre- and post-processing to modify the sentences supplied to
or from GF.

We already have a minimal and fixed dictionary to recognize the most common op-
erations and patients for toy examples. However, real world examples will contain words
that are not covered by this basic dictionary. For this reason, we implemented a mecha-
nism to automatically identify the vocabulary from the given sentences without human
intervention. All these processing tasks are illustrated in Figure 5 and discussed further.

First, the requirements document is split into sentences, which is an easy task, since
these documents are divided into sections that, in turn, contain bullet lists. There is a main
section named “Requirements”, in which each requirement is specified using a single sen-
tence in each bullet item. Next, each sentence is preprocessed: captions, annotations and
quote marks are replaced by placeholders that are later overwritten at the post-processing
step. Following, each sentence is tokenized and its words are individually analyzed. From
here, the processing is split in two parallel flows: the first tries to determine the syntactic
categories while the latter adds all already known categories associated to each word. The
first flow is carried out by CoreNLP (MANNING et al., 2014) and the inferred vocabulary

is stored (1). The second flow is a simple lookup for all syntactic categories associated to

46

Figure 5 — NL processing tasks

C Split requirements Preprocess
document sentence

POS Parse Syntactic
taggingH Dependencies HAdd fo vocabulary (1)

Merge
Vocabularies

=[Add to vocabulary (2)

Tod Analyze and T: P

pdate Generate Tests* mearlze ostprocess

Grammar * sentence sentence
(*External)

Source: The author (2022)

a given word in the WordNet lexical database (MILLER, 1998), also storing the extracted
vocabulary (2). This supposedly “redundant” strategy creates a vocabulary with not only
the traditional categories associated to the word, but also the unusual ones that only
make sense when occurring in a odd phrase. Because our domain deals with acronyms
and idiosyncratic terms, human intervention was reduced.

Then, the vocabularies (1) (2) are merged, which triggers a grammar update to in-
clude the new frame slots (nouns as patients and verbs as operations, for instance). With
the updated grammar, then a sentence can be parsed. The intermediate representation
obtained after parsing is used in the semantic analysis and test generation (both described
in later chapters). When this representation is required to be read in English (e.g., test
steps for manual TCs), it is linearized back to natural language using the GF framework
(as previously shown). Finally, annotations that were extracted at the preprocessing stage
are written back, when required.

This is a cumbersome pipeline and it affects the time to parse the dozens of sen-
tences usually present in a requirement document. To minimize this impact, two points of
caching were created: 1) before the vocabulary identification; and 2) before updating the

grammar. It is common to analyze the requirement documents multiple times while it is

47

being written. Thus, instead of processing the same sentences again, only the new require-
ments are actually handled. Since the vocabulary identification (specially by CoreNLP) is
demanding, this alone already gives a performance boost. Another demanding step is the
GF grammar update. Because GF has no native support for dynamic lexicon, the entire
grammar must be compiled after each change. In this light, this compilation is triggered
only when the vocabulary has been de facto changed from the previous analysis of the

current user / feature.

2.5 FINAL REMARKS

The Lookahead requirement discussed in Section 2.1 was outsourced to Grammatical
Framework, which allowed us to use its API to develop a linear algorithm (on top of
the existing ones) to suggest sentences. A polynomial parsing complexity can be achieved
when a subclass context-free GF is used (LJUNGLOF, 2004). The requirement related to
Anaphoric reference and scoping is partially managed as a structural concern when con-
verting the frames into test actions. Here, the scopes are defined by the composite pattern,
and references are implicitly linked by their semantic interpretation within the current
context (discussed in the following chapters). Finally, the Dynamic lexicon requirement
is resolved, as discussed in Section 2.4.2, since the lexicon can be actively changed by the

user, which triggers a full grammar update in background.

48

3 FORMAL SEMANTICS FOR CNL-COMPLIANT SPECIFICATIONS

In this chapter, we define a precise behaviour for CNL-compliant requirement models
via mapping into CSP models. More specifically, we map actions and circumstances into
CSP events and processes. This approach leverages model checking to automate the con-
formance verification and TC generation, without requiring the development of ad-hoc
algorithms (NOGUEIRA; SAMPAIO; MOTA, 2014). Also, it is easier to reuse and extend
previous work by means of process composition. Figure 6 illustrates the input/output

transformation detailed in the next sections.
Figure 6 — Process Task: Formal Semantic Interpretation

Syntactic Tree

(Actions) Formal Semantic | CSP Model
_ .
Interpretation

Source: The author (2022)

First, in Section 3.1 we introduce the basics of the CSP algebra and its machine-
readable language for automated verification using the FDR tool'. Then, in Section 3.2,
we present the denotational semantics of the requirements written in natural language
(represented by a syntactic tree, at this point) as CSP events and processes. Finally, in

Section 3.3 we present the domain model elements and their semantics.

3.1 CSP

Communicating Sequential Processes (CSP) is a formal notation used to model concur-
rent systems using algebraic, denotational and operational approaches to reason about
their behaviors. The core abstractions of this notation are processes and events. An event
is the basic element of the modelling: it represents the occurrence of any given situa-
tion. For instance, the action of sending a message can be represented by a single event
send.message. Of course, this action could be represented by a more detailed sequence of
events, as discussed later. The chosen abstraction level depends on what behavior is rele-
vant to model. The other basic elements of CSP are the fundamental processes Stop and
Skip, which model the absence of communication (deadlock) and sucessful termination,
respectively.

In addition to those core elements, one can use a rich repertoire of algebraic operators
to model the system behavior. Prefix is a simple but important operator: it takes an event

and a process, yielding a new process such as, for example:

send.message — Skip

L https://cocotec.io/fdr/

49

The resulting process communicates the event send.message and, then, behaves as
Skip. As discussed before, we could also represent the action of sending a message by de-
scribing more detailed events, such as the sequence: open.app, write.message, press.button.

In this case, we could model this sequence with the following process:
P = open.app — write.message — press.button — Skip

It means that P communicates open.app and then behaves as the unnamed process
write.message — press.button — Skip, and so on. We define a process P2, which is equiv-
alent to P, by splitting those steps into separate processes, and then cobine them together

using the sequential composition operator (;), as in:

S1 = open.app — write.message — Skip
S2 = press.button — Skip
P2 =51; 52

Processes can also have distinct execution flows by synchronizing on the event that
the environment chooses to communicate. For instance, a system may allow a user to
submit a message by pressing a button or making a swipe gesture. This behavior may be

described by the following process:
P = open.app — write.message — (press.button — Skip O swipe.right — Skip)

The external choice operator (O) gives opportunity for the environment to communi-
cate either event (press.button or swipe.right). Then, P synchronizes with the chosen event,
resolving the choice deterministically. On the other hand, the internal choice operator (1)

does not allow the environment to control which event will be communicated.
P = send.message — (messagesent — Skip M dataerror — Stop)

In this example, the choice decision is internal to the process. Because of this unpred-
icatable behavior, the choice is said to be resolved nondeterministically.

For two processes to run concurrently, there are some operators that can be used. The
interleaving operator, for instance, is used for concurrent tasks that do not communicate

with each other.

Pl @

These processes run independently from each other. Meanwhile, when two processes
need to communicate (i.e. synchronize), one can use the parallel operator (P |[X]| Q),
where X is a set of events in which P and Q synchronize. For instance, we model a user

and a device using two communicating processes that synchronize on key events.

50

USER = look — mouse.down — mouse.up — USER
DEVICFE = mouse.down — enable.effect — mouse.up — disable.effect — DEVICE
USER |[mouse.down, mouse.up || DEVICE

The processes USER and DEVICE run independently until one of the specified events
in the synchronization set is reached. Then, only when the same event is also reached by
the other process, they synchronize and continue their independent behaviors.

CSP also offers the standard if then else operator, as in the example below:

COND(action, Allowed) =
if (action € Allowed)
then
action — Skip
else
Stop

Another useful operator is hiding, which hides events to avoid synchronization from
other processes, preventing the environment from influencing the events behaviors. For

instance, by hiding the events open_app and send_message:

P = open_app — send_message — Skip
Q = P\ {open_app, send_message}

The process Q will behave, from the perspective of other processes, exactly as the process
Skip.

Machine Readable CSP

In order to allow the formal notation to be interpreted by automated tools, CSP offers
an alternative machine readable notation. This specific version of the language is known
as CSPy;. The most popular tool that analyses models in this language is FDR (Failures
and Divergences Refinement). This is the tool that we use in the next sections to reason
about our modelling and verify the refinement assertions. For future reference, Table 2
shows the equivalent operators of CSP in CSPy;.

Another subtle difference is that, in CSPy;, events are created through channels that
must be explicitly declared, possibly with the corresponding types of the communicated

values. For instance:

channel send_message, open_app
channel delete_id : Int

Typeless channels define a single event, while the typed ones define collections of
events. In this case, each event of the delete_id channel transmits an Int value. The
enumeration of all those events can be represented by the following set EVENTS, which

can also be represented by the expansion {| delete_id |}:

o1

Table 2 — CSPy; handbook

CSP syntax | CSPy; syntax
— ->
O [
M |~|
il]
S]] [IS[]
\ \

Source: The author (2022)

EVENTS = {delete_id.1, delete_id.2, ...}

Finally, CSPy; also offers indexed (replicated) versions of some operators that gen-
eralise the binary form to allow the composition of an arbitrary number of processes
combined using a same operator. For instance, ||| =z : {1..3} e P(z) is equivalent to
P(1) ||| P(2) ||| P(3). These replicated operators are generally disposed on the for-
mat op (statements) e P, in which op is the operator, statements the list of statements
and P the process being defined by means of the statements. Another indexed opera-

tor we use in our work is the replicated external choice operator. An example would be

Ny :{a,b,c} e Q(y) which is equivalent to Q(a)[]Q(b)[]Q(c).

CSP semantics and refinements

Refinement relations are used to formally verify whether an implementation is correct re-
garding to a specification, i.e, one can prove that an implementation satisfies the specifica-
tion properties if the given implementation is a refinement of the corresponding specifica-
tion. To establish refinement relations between processes, CSP offers three well-established
semantic models: traces, failures, and failures-divergences (CAVALCANTT; GAUDEL, 2007).

The traces model denotes a process P by the sequence of events it may perform.
traces(P) is a subset of the reflexive transitive closure of P U {v'}, where aP is the
alphabet of P (set of events that P can communicate), and v is a special event that

indicates that a process has sucessfully terminated. For instance, the process P
P =a— Skip 0 b— Skip

has the corresponding set traces(P) = {(), (a), (a,v'), (b), (b,v')}. This means that,
initially, P has not comunnicated any event (({)), and then it can communicate either a
or b and terminate. Analyzing a similar process () = a — Skip M b — Skip, we would
verify that @ is a refinement of P (P C¢ @), since traces(Q) C traces(P). This happens

52

because the traces model is not capable of differentiating an external from an internal
choice, since they produce the same sequence of events.

The failures model is more elaborate in the sense that it is able to distinguish between
internal and external choice, and can be used to check for deadlock. The intuition is that
it identifies the sequence of events a process can communicate but also the refusals at
each point of execution. Furthermore, the failures-divergences model includes the charac-
teristics of both traces and failures, but also identifies livelocks. Considering the context
of our work, however, traces is enough as a semantic model, since we are only concerned

with sequences of events of a process that compose the test scenarios of interest.

3.2 SEMANTICS OF REQUIREMENTS

Because we aim to define a formal semantics for the proposed CNL requirements in CSP, in
order to be able to reason about soundness and consistency we must adopt an appropriate
mapping that reflects the dynamics of interacting with a SUT to observe its responses. In
this light, we represent the requirements in terms of input and output events. A proper

testing theory is discussed in detail in Chapter 4.

3.2.1 Actions to Input/Qutput Events

Test actions are the building blocks of test steps, domain models and requirements. Then,
since all artifacts are just different kinds of compositions of these actions, we need to pro-
vide a mapping between the test action elements and CSP processes. Due to the testing
theory we adopt, there must be a distinction between input and output events in a spec-
ification. Test actions alone, without context, have not a direct mapping: only when con-
sidering a requirement they can be accurately interpreted. The intuition for interpreting
a requirement is simple: every action from a requirement circumstance (see Equation 2.2)
is mapped to an input event, while the actions within a statement (Equation 2.3) are
translated into outputs. The reasoning behind this is that we must interact with the sys-
tem to fulfill the circumstance and, then, we must check whether the actions specified in
the statement clause happened. There are, however, some exceptions to this rule that are

discussed in the next sections.

3.2.2 Denotational semantics

Here we present the semantic rules that translate the specifications into CSP processes
and events. It is worth mentioning that, for simplicity, we assume that all necessary
channels and auxiliar sets are declared. The initial and more abstract artifact is the
feature document, in which the requirements are listed. Each requirement, in turn, can
be represented by one or more normalized sentences. The metalanguage expressions used

to define the semantic rules are underlined and highlighted with a different color (gray).

53

We also use meta keywords to define auxiliary and local functions (let...within) and other

variables (where). The symbol £ denotes a function definition.

Rule 1. Feature | feature: Feature | =

A~

let list(current, remaining)

if #.remaining = 0

[current]
else

[current | [+ current N Qhead remaining +] list(head remaining, tail remaining)

within
REQ = list(head sentences, tail sentences)

where

sentences = normalize(feature.sentences)

Rule 1 shows that a feature is composed by a sequence of sentences. Each sentence
is then semantically interpreted as described in Rule 2. Finally, the final specification,
called RE(Q), is defined by using the synchronizing external choice operator between all
individual sentences. Each sentence usually represents a single requirement, but there are
cases that it can represent more than one. This is why we have to normalize them by
searching the sentence for disjunctions. For instance, the sentence “The message must be
sent or the popup should be shown after the button is pressed” would be broken down
and combined together into two separated normalized sentences: “The message must be
sent after the button is pressed” and “The popup should be shown after the button is

pressed”. Then, each individual (now normalized) sentence can be semantically defined.

Rule 2. Normalized Sentence | sentence: Sentence | =

let

convert(elements) =

join(map(elements, A elem: [elem]|), —) within

convert(sentence.circumstances) — convert(sentence.statements) — Skip

Rule 2 details the semantics of a sentence. The event sequence for these processes will
be obtained by converting the circumstances and, then, the actions to events (all prefix for
the Skip process). The convert function maps all elements (Circumstances or Statements)

into their semantic representations and, then, joins them together using — as separator.

54

Rule 3. Circumstance | circumstance: Circumstance | =

convertAction(circumstance.task.action, Input)

Rule 3 and Rule 4 both access the corresponding (annotated) action and pass it as
argument to the convertAction function defined in Rule 5. The only difference is that
circumstance actions will be marked as inputs while statements will be converted to

outputs.

Rule 4. Statement | stmt: Statement | =

convertAction(stmt.task.action, Output)

We already mentioned in Section 2.2 that the static part of the action frame is used
as a unique identifier. In this light, every action is translated to an event using the rule
defined next.

Rule 5. Action convertAction(action: Action, type: Input|Output): event =

let
prefix(type: Input|Output)

if type is Input then i_ else o_

getld(action: Action) =

action.operationld ™ action.patientld ™ action.modifierlds

within

prefix(type) getld(action)

Rule 5 describes a semantic function that translates any given Action into a CSP event
depending on the additional parameter “type” that determines whether the resulting event
should be an input or an output. As discussed in the previous section, this partitioning
is appropriate for the kind of GUI testing of our application domain. If an action should
be an input, it will have the prefix i_, otherwise it will be marked as an output with o_.
The getld is a function that gives a unique identifier for the action by concatenating its

slot values.

95

3.2.3 Example

To illustrate the semantic rules presented in the previous section, we show some concrete
examples of how natural language sentences are translated into CSP processes and events.

First, consider the feature below:

A message must be sent after the option is enabled

When the option is enabled the main screen should be shown

This feature contains two requirements, each being a separate sentence. After parsing

the sentences, we have the syntactic tree represented as the following structured data:

sentence; = { circumstances : [{ operation : enable, patient : option}],

statements : [{operation : send, patient : message}]}

sentencey = { circumstances : [{ operation : enable, patient : option}],

statements : [{ operation : show, patient : mainscreen}|}

By applying Rule 1, assuming that sentences = [sentence;, sentences], we have the partial

REQ) process as below:

REQ = [sentencer] [+ Qentence; N Qsentence, +] [sentences]

The semantics of each sentence is obtained by applying Rule 2, which calls the function

convert from Rules 3 and 4, as below:

REQ = convert(sentence,.circumstances) — convert(sentence, .statements) — Skip

[+ (}'5971,/,677,061 m(}'sﬁn,/ﬂﬂ,(’f}_} +]
convert(sentencey.circumstances) — convert(sentence,.statements) — Skip

Then, each sentence is translated into a separate CSP process. The last step is to resolve

the intersection between the alphabet of events for both sentences, as illustrated next:

REQ = i_enableoption — o_sendmessage — Skip
[+ (\"S(:’IL[,('ill(i('il N (l'w(:n[(—:rz(:(—:g +]
i_enableoption — o_showmainscreen — Skip

Finally, REQ is defined as the resulting process of applying the synchronizing external

choice operator over both processes, as shown below:

REQ = i_enableoption — o_sendmessage — Skip
[+ {i_enableoption} +]

i_enableoption — o_showmainscreen — Skip

56

It is worth mentioning that disjunctions may be present in the sentences. As discussed
in Rule 2, disjunctions must be identified, separated and then combined into different
requirements but reusing the parts in common. The following sentence illustrates a case

in which a disjunction is present.

When the message is sent then the main screen should be shown or a network error

should be shown

Since this requirement includes a disjunction, we remove it by normalizing the sentence

into two separate ones, as shown below:

When the message is sent then the main screen should be shown

When the message is sent then a network error should be shown

normalizedSentence; = i_sendmessage — o_showmainscreen — Skip
normalizedSentencey, = i_sendmessage — o_shownetworkerror — Skip

REQ = normalizedSentence, [+{i_sendmessage}+|normalizedSentencey

Because the disjunction is present only in the statement part, then the extra requirement
has the same circumstances (hence i_sendmessage in both requirements). The final REQ
process is described as a synchronized external choice between these two generated require-
ment processes. The resulting process accepts the event i_sendmessage and then presents a
choice between the events o_showmainscreen and o_shownetworkerror, which is equivalent
to REQ = i_sendmessage — (o_shownetworkerror — Skip O o_shownetworkerror — Skip)

using the traces semantics.

3.3 SEMANTICS OF DOMAIN MODELS

While requirements describe what should be implemented and tested, domain models give
details on how. It is especially relevant for test engineers to give concrete implementation
details when creating test cases so manual testers and the automation team can exe-
cute the tests without guessing undocumented behaviors. These concrete details can be
expressed through associations between actions which together form a domain model. Fig-
ure 7 illustrates a sample domain model which describes associations related to “Sending a
message”. The dependency between “Send a message” and “Activate a connection” means
that one must make sure that the connection was activated before sending a message.
On the other side, “Activating the Airplane Mode” cancels any action of “Activating a
connection”. Thus, if airplane mode was activated after activating a connection, one must
activate a connection again before trying to send a message. The instantiation relation
represents concrete and alternative ways to execute an action. For instance, to “Activate

a connection”, one can “Activate the WiFi” or “Activate the 4G”. Finally, “Open the

o7

PYEN14

app”, “Write a message”, and “Submit the message” describe the ordered steps to “Send

a message”. It is worth mentioning that these actions, in turn, can also be further detailed.

Figure 7 — Domain model example

‘ Enable Airplane Mode

canjcels

depends on
*------- Send a Message

Activate WiFi Activate 4G —» Open the app
»

>

‘ Activate a Connection

instaptiates instantiates

Submit the message

Source: The author (2022)

In spite of being an informal common practice, formalizing the domain model is new
and allows an automated verification to check that additional details do not change the
intended behavior described by the requirements. Taking into account that the require-
ments are already semantically defined in CSP, we also model the domain in terms of
CSP events and processes. The obvious advantage is to analyze them both in a uniform
way using a single language and tool. Next, we present the semantic rules for the domain
model.

Rule 6 gives an overview of the main events and processes used to model the domain.
We define the DOMAIN process that uses a replicated external choice operator over all
main inputs, followed by a recursive call. domain_main_inputs includes only the main
inputs, i.e., the first (source) input event of a relation. For instance, by envisioning the
domain model as a graph, a dependency between two actions could be represented by the
edge i_sendmessage — i_turnwifion (“send message” depends on “turning the wifi on”),

in which the first node would be the main input.

Rule 6. Domain | domain: Domain | =

DOMAIN = [Jmain_input : domain_main_inputs ¢ EXECUTE (main_input); DOMAIN
EXECUTE(z) = (INJECT(z)| NOTINJECT (z)); CANCELS(z)

INJECT (z) = DEP(z); COMPOSITE(z); INJECTED(z)

COMPOSITE(z) = execute.x— > INSTANTIATE(z); z— > exvecuted.x— > SKIP

[domain.dependencies]

o8

[domain.cancellations]
[domain.details]

[domain.instantiations |
[

domain.consistencyChoices |

Then, we have the definition of EXFCUTEFE which, in words, describes the steps of how
to consistently execute an action by considering its details. Its definition begins by present-
ing a choice between two distinct parameterized processes INJECT and NOTINJECT.
It introduces the possibility of modelling what happens when the execution is consistent
and when it is not (Rule 11). The latter is specially important when testing for setup error
scenarios. By diving on the INJECT definition, we identify a sequential composition of
DEP, COMPOSITE and INJECTED. The processes DEP and INJECTED are place-
holders for describing what should be executed before and after any given action. DEP is
only defined for actions that have dependencies. In its definition, discussed in Rule 7, the
actions that should be executed before x will be declared. COMPOSITE is a process for
detailing on how to execute the input z. Its definition shows the auxiliar events ezecute
and ezecuted, to mark exactly before and after the action execution. Other processes can
add events related to the execution of x by synchronizing with these auxiliar marks. If z is
an abstract input, for instance, the concrete actions will be recursively listed as presented
in Rule 9. It is worth mentioning that, between these auxiliar events, instead of just syn-
chronizing with z we call the process INSTANTIATE (Rule 10), which is a placeholder
for the cases when an abstract action can be executed in different but equivalent ways.

After the definition of these core processes, we have the characterization of all actual
dependencies, cancellations, details, instantiations and consistency choices. Starting with
the dependencies, Rule 7 shows that, for all dependencies present on the domain model, we
define an “instance” of DEP, pattern matching with the given event main. The definition
of DEP shows that there are two alternatives: the setup is already executed or it should
be executed. We rely on the FDR analysis mechanism to give the shortest trace, thus
not including re-execution of dependencies when it is not necessary. The VERIF'Y _DEP
makes clear that if the dependency was already executed (via EXECUTE) then it will
synchronize with the auxiliar event isexecuted. Finally, DEP(_) is defined for all the other

cases when an action does not have dependencies.

Rule 7. Dependencies | dependencies: Dependencylist | =

for main, deps @ dependencies
DEP(main.id) = for dep in deps
(VERIFY_DEP(dep.id) []| EXECUTE(dep.id));
DEP(_) = SKIP

99

VERIFY_DEP(x) = isexecuted.x -> SKIP

Cancellations on the other hand, as defined in Rule 8, describe which events should be
re-executed when the given main is executed. This is specially important for incompatible
actions. For instance, when an account is logged out, then we can not send any message
until we log in again. Thus, i_logout cancels the previous action i_login. In order to actu-
ally instruct the consistency analyzer to re-execute cancelled actions, the parameterized
event cancels synchronizes with another process (detailed in Chapter 4) that keeps record

of the active actions.

Rule 8. Cancellations | cancellations: CancellationList | =

for main, canceled_events in cancellations
CANCELS(main.id) = for cancel_evt in canceled_events
cancels.cancel_evt.id ->
SKIP
CANCELS(-) = SKIP

Expressing the concrete steps to execute an action can be done by defining its details,
as in Rule 9. The intuition is to convey an abstract action by the sequential composition
of its steps which, in turn, are also actions (or inputs) that can be further detailed too.
The inspiration for this interpretation is the composite design pattern. The DETAILS
process is instantiated for each composition described in the domain model and there is

a base case for the actions that are already concrete.

Rule 9. Details [details: DetailsList | =

for main, composition in details
DETAILS(main.id) = for detail_evt in composition
EXECUTE (detail_evt.id);
DETAILS(_) = SKIP

Instantiations are similar to details, but they define an action in terms of choices
instead of a sequence of steps. It is important in particular for defining equivalent ways of
executing a procedure. For instance, when asked to activate an internet connection, you

may turn on the wifi or activate the cellular data. In the case of the cellular data being

60

already active because of previous steps, we can procede to the next action. However, if we
have depended directly on turning the wifi on, instead of depending on the more abstract
action of activating the internet connection, we would have turned it on unnecessarily.
The Rule 10 shows the process INSTANTIATE that is defined by means of an replicated
external choice between the equivalent events. In the case of an action not having different
instances, it defaults to the DETAILS process defined above.

Rule 10. Instantiations [instantiations: InstantiationList | =

for main, instances in instantiations
INSTANTIATE(main.id) = [] instance: instances @ EXECUTE(instance.id)
INSTANTIATE(x) = DETAILS(x)

Lastly, we can model consistency choices. These alternatives allow us to model not only
the success scenarios (in which all setups were correctly executed) but also what should
happen when there is a consistency problem. Additionally, this mechanism can allow us to
minimize the number of inconclusive results by modelling explicit prefixes on previously
nondeterministic processes. Figure 8 illustrates an specification with nondeterministic
traces (a) and the same specification with the consistency marker to make it clear that a
popup should be shown only when the execution of sending a message is consistent.

Rule 11 first shows the declaration of the consistent channel that receives as parame-
ter all events with consistency choices. The auxiliar set consistency_success_events only
holds all possible events from this channel for later analysis. Then, for each consistency
choice we define the NOTINJECT and INJECT processes. The former does nothing
but synchronizes with the plain execution of the given main. The latter “overrides” the
INJECTED process to add the auxiliar event consistent!main to mark a consistent exe-
cution (since the INJECTED process will be executed only when the INJECT process is
chosen). Additionally, we define the indexed process CHOICE that identifies which event
should be executed when the consistency is honored. Finally, the CHOICES process list
all indexed choices with an external choice operator. It will later be put in parallel with

the requirement process to supplement the additional info.

Figure 8 — Consistency choice

i_sendmessage

i_sendmessage

o_showpopup | o_shownothing

consistent.i_sendmessage

o_shownothing | o_showpopup

Source: The author (2022)

61

Rule 11. Consistency Choices [consistencyChoices: ConsistencyChoicelist | =

channel consistent: {list(getMainList(consistencyChoices))}

consistency_success_events = |consistent|

for main, choice in consistencyChoices
NOTINJECT (main.id) = SYNC(main.id)
NOTINJECT(z) = INJECT (z)
SYNC(z) = execute.t— > z— > executed.z— > SKIP
main, choice @ consistencyChoices
INJECTED(main.id) = consistent!main.id — > SKIP
CHOICEindex = main.id -> consistent!main.id -> choice.id -> SKIP
CHOICES = for main, choice in consistencyChoices CHOICFEindex |]

62

3.3.1 Example

To illustrate the semantic rules for domain models presented above, we show a concrete
example of how a structured text can be parsed into a domain model. Listing 3.1 shows
the same domain model illustrated in Figure 7 but described via structured text divided
into sections (one section for each association type), in which every sentence complies

with our CNL.

Listing 3.1 — Domain model example in structured text

Details
* Send a Message
* Open email app
* Write a new message
* Submit the message
Dependencies
* Send a Message
* Activate a Connection
Cancellations
* Enable Airplane Mode
* Activate a Connection
Instantiations
* Activate a Connection
* Activate WiFi
* Activate 4G

Then, each sentence is parsed to obtain the syntactic tree and the corresponding
frame slots. Using these slots, we infer an identifier used later to generate CSP events.
For simplicity, we illustrate below how the previous domain model can be parsed in terms

of their inferred identifiers.

details = {i_sendmessage : [{id : i_openapp},
{id : i_writemessage}, {id : i_submitemessage}|}
dependencies = [{source : {id : i_sendmessage},
target : {id : i_activateconnection}}]
cancellations = [{source : {id : i_airplanemode},
target : {id : i_activateconnection}}]

instantiations = {i_activateconnection :

[{id : i_activatewifi}, {id : i_activatefourg}]}

63

By applying Rules 7-10, we get the partial CSP model as follows:

DEP(i_sendmessage) = (VERIFY _DEP(i_activatedata)[| EXECUTE (i—activatedata))
DEP(_) = Skip
CANCELS (i_activateairplanemode) = cancels.i_activateconnection — Skip
CANCELS(_) = Skip
DETAILS (i_sendmessage) = EXECUTE((i_openapp); EXECUTE((i_writemessage);
EXECUTE((i_submitmessage)

DETAILS(_) = Skip
INSTANTIATE((i_activateconnection) = EXECUTE(i_activatewifi)

[|EXECUTE (i—activatefourg)
INSTANTIATE(z) = DETAILS(z)

Since the domain model and requirements are defined in terms of CSP processes, we
can now leverage generation mechanisms built upon refinement checkers to generate sound

and consistent tests. A fitting generation mechanism is discussed in the next chapter.

64

4 SOUND AND CONSISTENT TC GENERATION AND AUTOMATION

When generating test cases and their corresponding scripts, one must ensure that both
artifacts actually produce reliable results regarding the system conformance to the re-
quirements. Because test completeness is not feasible, we can not assume that a System
Under Test (SUT) is correct only because some test cases passed. However, if we guar-
antee that whenever a test fails, then the SUT is not conformant to the requirements,
we say that this particular test is sound. In other words, there can be false negatives,
but we can prevent false positives by creating sound test cases. The approach to generate
sound test cases is to define a formal conformance relation between implementation and
specification, from which we derive valid test cases.

Furthermore, the level of abstraction present in these generated test cases is directly
related to the one from the specification. Because useful specifications rarely have imple-
mentation details, derived test cases are abstract and cannot be directly executed on an
implementation. In this light, to allow the generation of executable scripts, we adopt do-
main models as means to add execution details without changing the core behavior from
the specification. Domain models, combined with requirements, allow the generation of
consistent test cases. Consistent test cases can be executed as-is by a test driver because
their dependencies and details are in accordance with the corresponding domain model.

The task of generating test cases from a Communicating sequential processes (CSP)
model, as presentend in the previous chapter, is illustrated in Figure 9. Because the CSP
Model also includes a domain model, a consistency analysis can be performed, ensuring
that the generated test cases are consistent. By using an already established test gener-
ation strategy, we map CSP traces into legible test cases for automation. Also, a formal

notion of conformance, based on traces refinement, ensures sound test cases.

Figure 9 — Process Task: TC Generation

Consistent and Sound Consistent

CSP Model) Test Cases) Test Scripts
TC Generation ¥ TC Automation >

Source: The author (2022)

This chapter is structured as follows. Section 4.1 presents some background on the
approach we adopt for sound test case generation, starting with Section 4.1.1, on testing
theory and conformance verifications regarding model based testing. After discussing the
ioco and CSP Input-Output Conformance (cspio) relations, Section 4.1.2 introduces the
Abstract Test Generator (ATG) and its strategy to generate sound test cases. In Sec-
tion 4.1.3 we show how to combine the requirements with the domain model to ensure

consistent test cases. Section 4.1.4 presents the refinement assertions to find traces that

65

will be converted into test cases. Finally, Section 4.2 shows how to automate the output
test cases: mapping consistent test cases into scripts by annotating atomic actions in code

with Controlled Natural Language (CNL)-compliant descriptions.

4.1 TEST GENERATION

In this section, we cover the steps involved in generating test cases. First, we present the
strategy from Nogueira, Sampaio and Mota (2014) that allows one to create sound test
cases from counterexamples of refinement verifications considering the cspio conformance
relation. Then, we discuss how to check for consistency by considering the requirements
model combined with the domain model, both in CSP. Finally, after showing how to ex-
tract sound and consistent test cases from the requirements and domain model, we discuss
how to linearize (translate) these test cases back to English. They can then be subjected
to manual execution or automatically translated into scripts to automated execution, as

presented in Line 4.2.1.

4.1.1 Testing Theory and Conformance Relations

Since we aim to generate sound test cases, we adopted a model-based strategy to auto-
mate the process of test case generation from requirements models. Concerning a formal
account of MBT, conformance testing has the objective of checking whether an Imple-
mentation Under Test (IUT) satisfies its specification according to some defined relation
(conformance relation). An inherent assumption is that the IUT can be modeled in a
known formalism (testing hypothesis). There are several conformance relations (TRET-
MANS, 1996) mainly based on formal notations like Finite State Machines (Finite-State
Machine (FSM)) and Labelled Transition Systems (Labelled Transition System (LTS)),
but also on more abstract notations like the process algebra CSP (SAMPAIO; NOGUEIRA;
MOTA, 2009).

Based on a conformance relation, test cases can be automatically generated from the
input test model using algorithms which ensure that the generated tests satisfy relevant
properties, such as soundness. Informally, soundness means that if an IUT fails a test
case, then the IUT does not conform to the model from which the test was generated.

The doco (Input-Output Conformance) (TRETMANS, 1996) is one of the most widely
used conformance relations. It is based on Input-Output LTS (IOLTS) that in turn are
a special class of LTS. IOLTS events, unlike LTS, are partitioned into input and output
events. Taking into account the hypothesis that an implementation can be modelled using
an IOLTS, another constraint must hold: all inputs must be enabled for all states in
the implementation. This property is known as input completeness. Since the test case
interacts with the implementation, the latter should be able to handle any input in order

to always reach a verdict, avoiding unwanted deadlock.

66

Figure 10 — LTS - ioco

] i_send
i_send

0_popup

i_send i—send i—send
(a) ioltsl (b) iolts2
Source: The author (2022)

Figure 10 shows two IOLTS, 7olts! and iolts2, both modelling different device behav-
iors. Because the events are partitioned into inputs and outputs, we adopt i_ for rep-
resenting inputs and o_ for outputs. Considering that the topmost node in both graphs
is the start node, we can interpret that in ¢olts1, after performing the input i_send, we
should observe a o_dialog or a o_popup. While in dolts2, after the same input, we expect
only the output o_popup. It is worth mentioning that the input is always enabled in all
states, illustrated by self-pointing arrows in all nodes (i_send). In order to reason whether

they conform to each other, we must formally describe the relation:

Definition 4.1.1 (ioco). i ioco s =V o € straces(s) ® out(A;,0) C out(Ay,0)
where

out(X,0) ={e: Os | o™ (e) € straces(X)}

Definition 4.1.1 states that an implementation ¢ conforms to a given specification A
when the set of observed outputs after “performing” any suspension trace (o) in 7 is a sub-
set of the observed outputs after the same trace (o) in Ag. Suspension traces, in addition
to the original concept of traces, include the observation of quiescence (CAVALCANTT et al.,
2016). The symbol A,, where z is any LTS, represents x behavior after adding § in every
state that manifests quiescence. Likewise, the symbol § annotated on the set O indicates
that it includes quiescence. Quiescence represents the lack of observable behavior, as in
deadlocks, livelocks, and output locks. Considering this definition, we can establish that
tolts2 ioco iolts1 but the opposite is not true, since o_dialog is not an output observable
in iolts2 after the trace (i_send): out(ioltsl, (i_send)) € out(iolts2, (i_send))

To allow an automated conformance verification and further test case generation via
model checking, without relying on ad-hoc algorithms, we will use a process algebraic

characterization of the ioco relation in CSP called cspio.

67

4.1.1.1 cspio Conformance Relation

In this section we present a formal definition in CSP of a conformance relation cspio,
which is based on ioco. This new relation also assumes that the events are partitioned
into inputs and outputs and that the IUT can be modelled as a CSP process. Similar to
toco, any given IUT conforms to a specification S if, after performing the same available
traces, the outputs from IUT are a subset of the S outputs. To automate the verification

of this conformance relation, it is encoded as the following CSP refinement check:
Definition 4.1.2 (cspio verification). S Cr (S A ANY (34,, Stop)) |[o)| IUT

The intuition of the right-hand side of the refinement check (Definition 4.1.2) is to
offer all possible specification traces for the implementation to synchronize and verify
the outputs. The direct comparison between S and IUT would not work, since IUT can
have, by definition, traces not present in S, because it can accept extra inputs or offer
additional outputs after a trace that does not belong to S (CAVALCANTI et al., 2016).
Then, (S A ANY (X, Stop)) || X7]| IUT masks [UT traces that should not be verified
by espio. It blocks inputs not accepted by S, and the interruption of S on ANY (X, Stop)
allows synchronization of output events from [UT that S does not produce, terminating
the process. If this interruption happens, then the refinement would be false, as expected.
If the resulting process does not produce different outputs from the same inputs, then the

refinement is valid and IUT cspio S.

4.1.2 Abstract Test Generator

There is a well-established approach, implemented by the tool called Abstract Test Gen-
erator (ATG), which provides a guided test generation based on the cspio conformance
relation (NOGUEIRA; SAMPAIO; MOTA, 2014) and CSP traces semantics. The general idea
is to exercise the specification, obtain relevant scenarios as counterexamples of refinement
verification, and generate sound test cases from them. In the next subsections, we briefly

present the core elements of this strategy: test scenario, test purpose and test case.

4121 Test Scenario

From any specification S we can exercise its paths to obtain traces that satisfy a given
property, which can be, for instance, a successful termination. These properties can even
depict selection criteria, which can guide the generation to search only for relevant sce-
narios. These criteria can be described as test purposes (Section 4.1.2.2). Regardless of
the criteria, the scenarios are generated from counterexamples of refinement assertions.
To demonstrate the approach, consider MARK = {accept.n} with n € N the set of all
possible mark events that can be used to indicate a target that must be reached when

searching for scenarios. The idea is to create a new process S’ by adding these mark events

68

on the original model S. Then, by using the mechanism of refinement checking, we can
obtain the scenarios from the counterexamples of S T+ S’, which does not hold since there
should be no trace ts € traces(S) and marker m € MARK in which ts ™ (m) € traces(S).
Then, all counterexamples should be in the format ts™ (m), with ts being the test scenario
we want by placing the marker m.

For instance, considering the following specification:
S = i_turnon — o_turnon — i_send — (o_message — Skip O o_popup — Skip)

We can add a marker accept.l after o_popup if we are interested in testing only when a

popup is shown. Then, we have the following annotated specification:

S" = i_turnon — o_turnon — i_send —

(o_message — Skip O o_popup — accept.l — Skip)

By checking the refinement S C; S’ we get as counterexample the trace:
(i_turnon, o_turnon, i_send, o_popup, accept.l)

This is a valid path for testing. More generally, the generation is guided by the concept
of test purpose, which provides auxiliary functions to mechanize the task of adding the
mark events. Nevertheless, it is worth mentioning that scenarios are not test cases. In
this example, even though we want to test only when a popup is shown (o_popup), if we
eventually observe the output o_message when executing the test on the IUT, it should
not be considered a failure. To generate a test case, one needs to consider the verdict,
which, in the example considered above, is inconclusive, since o_message is an allowed

output of the specification in this context. This will be further discussed in Section 4.1.2.3.

4.1.2.2 Test Purpose

Even though successful termination is a relevant criteria when searching for scenarios, as
discussed before, there must be a more robust way to indicate more complex selection
criteria. In this light, Nogueira, Sampaio and Mota (2014) adopt the concept of test
purpose, which is a partial specification that describes the desired aspects for the generated
tests. Because it is also defined as a CSP process, it actually denotes the traces that the

scenarios must include. Definition 4.1.3 formalizes the concept:

Definition 4.1.3 (Test Purpose). With TP standing for test purpose and S for specifi-
cation, both being CSP processes:
V't e traces(TP) e (t € RUN(ag)) V (t=t"(m) A m € ayarx Nt' € RUN(ag))

A test purpose defines a trace that is present on the specification, besides allowing

extra mark events.

69

There are some auxiliary processes that can help build test purposes. These processes
have the prefix ATG, which indicates that they are part of the corresponding module. The
process ATG::ANY (evtset, next) offers any event present in the set evset and behaves as
next when it synchronizes. The definition is ATG::ANY (evset, next) = O evt : evtset ®
evt — next. On the other hand, the process ATG::UNTIL(«, evtset, next) synchronizes
with any event from « until an event from evtset is communicated, which will make the
process behave as nezt. It is defined as follows: ATG:: UNTIL(«, evtset, next) = RUN (ag—
evtset) AN ATG:ANY (evtset, next). Finally, ATG::ACCEPT({n}) = accept.n — Stop
simply adds a marker with the given natural number n. To illustrate their use, consider

the following test purpose:
TP = UNTIL(ags,{o_popup}, ACCEPT(1))

When analyzing S |[Xg; U Xg, || TP, with S from Section 4.1.2.1, we get an identical
process to S’, which provides the same scenario as counterexample for the refinement

verification: (i_turnon, o_turnon,i_send, o_popup, accept.l).

4.1.2.3 Test Case

A test case is a process that interacts with the implementation and communicates an event
representing the verdict for whether the implementation conforms to the specification
(regarding the cspio conformance relation). In CSP terms, this interaction/execution is
characterized by the parallel composition EXEC = IUT |[£},,, U X0,,,]| TC, being IUT
the process that represents the implementation while T'C' the process that describes the
test case.

TC has in its alphabet a new event type v € VER e VER = {pass, fail, inco}, which
represents that a test passed, failed or was inconclusive, respectively. It is worth men-
tioning that, by definition, test outputs in fact stimulates the implementation, while the
response from the implementation is input for the test case. In this sense, the alphabet
of T'C' is dual to the one from IUT, in the sense that T'C' outputs are inputs to /UT and
test outputs are inputs to the implementation.

To check the result of a test execution over an implementation, we only need to
verify which verdict is present. This check can be done with the refinement EXEC \
(X1, UX0,57) E1r v — Stop. In other words, by executing the test case and hiding the
inputs and outputs, the only events left are verdicts. Thus, when the refinement holds,
then t ™ (v) € traces(EXEC'), which means that v is a possible verdict.

An important property that should be pursued when generating test cases is that
these Test Case (TC)s should not generate false fails. This property, known as soundness,
guarantees that when a test execution reaches a fail verdict then the implementation, for
sure, does not conform to the specification. The Definition 4.1.4 formally defines a sound
test case in CSP:

70

Definition 4.1.4 (Soundness). (fail) € traces(EXEC \ (X1,,,UX0,,,)) = —(IUT cspio S)

To actually build a sound test case from a test scenario, we have to make sure that
it records all output events that the specification communicates at each step of the given
scenario. The process of building the sound test case is iterative and begins with a default
annotated trace atrace with the format ((ev;, out;) ™ (accept.n,{})) @ 1 <= i <= #ts
where ev; is the i element of ts and out; the corresponding set of output events after
performing the trace until ev; ;. The actual function ATG::TC_BUILDER is defined in
Listing 4.1.

Listing 4.1 — ATG Test case builder

channel pass, fail, inconclusive -- not in Alfa
FAIL = fail — Stop

PASS = pass — Stop

INCO = inconclusive — Stop

TC_BUILDER(ialfa,ocalfa,<(accept.i,{})>) = PASS
TC_BUILDER(ialfa,ocalfa,s) = SUBTC(ialfa,oalfa,head(s));TC_BUILDER(ialfa,ocalfa,
tail(s))
SUBTC (ia,oa,(ev,outs)) =
if(member (ev,ia)) then
ev — Skip
else
ev — Skip
L]
ANY (diff (outs,{ev}), INCO)
L]
NOT (oa,union(outs,{ev}), FAIL)

Listing 4.1 first declares the verdict events and auxiliary processes PASS, FAIL and
INCO. TC_BUILDER has a base case for when the atrace’s last element is reached, which
yields the pass verdict. Until then, it recursively calls SUBTC for each element. Then, if
the current event is an input, it just communicates the event — and it is guaranteed to
synchronize, since the implementation is input enabled. On the other hand, if the event
is an output, it offers three choices: a) communicates the event, which will synchronize if
the IUT yields the expected output; b) communicates any event from the set outs, except
the current one, and mark as inconclusive; and ¢) for the case when none of the previous
events synchronize, it communicates all other possible outputs and marks as FAIL if any
synchronizes. After building the T'C' process with TC_BUILDER and evaluating EXEC
(assuming the trivial implementation being S itself) following Definition 4.1.4, if we get
a counterexample, then we add the event to the corresponding out; set and rebuild the

test case until it is sound.

4.1.3 Consistency Analysis

The domain is modeled with CSP events and processes as described in Section 3.3. How-

ever, the actual processes that carry out the consistency analysis are discussed next. The

71

general idea is to combine the original requirements in parallel with the domain to build
a more detailed specification, which is then used to generate test cases that are consistent
in that there are no missing steps necessary for their executions by a test driver.

For a test case to be consistent, all rules expressed in the associated domain model must
be satisfied. As presented in the previous chapter, these rules can encompass dependencies,

compositions, and other relations. For instance, consider the following requirement:
REQ = i_activatedata — i_sendmessage — o_showpopup — Skip

It defines a new requirement describing that a popup should be shown when a message
is sent with the data activated beforehand. For the purpose of this demonstration, assume
that i_activatedata and o_showpopup are atomic actions interpreted by a test driver.
To make the tests (derived from this specification) executable, then one can define the

following domain rules for i_sendmessage:

DETAILS (i_sendmessage) = i_openemail — i_writemessage — i_submitmessage —
Skip

DEP(i_submitmessage) = i_activatedata

The first rule defines that i_sendmessage is composed of, in this case, three atomic ac-
tions. The composition resolution is performed by the process EXECUTE (i_sendmessage),
which is defined for any action present in the domain model (Section 3.3). The second
rule establishes that each time i_submitmessage is executed, i_activatedata must be also
executed before and it is still active. To keep track of which actions are active at each
step, we define the process EXECUTION_HISTORY . The intuition is that other pro-
cesses can try to synchronize with it to check whether an input is active at the moment.
For instance, when evaluating the dependencies of i_submitmessage in this case, it would
detect that i_activatedata was already executed and, thus, there is no need to execute it
again.

The EXECUTION_HISTORY process described in Listing 4.2 applies the replicated
interleave operator that parametrises the process LOOP with all events that occur in
the domain model. The LOOP process is responsible to keep track of which actions were
already executed. When an input event is performed on the RE(Q process or by the
DOMALIN itself, then it synchronizes with the markers execute and executed. When it oc-
curs, it allows other processes to also synchronize with the marker isezecuted (LOOPEXECUTED),
in order to avoid re-executing an action unecessarily. Finally, LOOPCANCEL allows pro-
cesses to synchronize with cancels event if the given action was cancelled. In this case, it
recurses back to the process LOOP which enforces processes to execute the action again,

if needed, since the event iserecuted is not available anymore.

Listing 4.2 — Domain model - execution tracking

72

EXECUTION_HISTORY = ||| in : domain_events @ LOOP(in)

LOOP(x) = execute.x -> executed.x -> LOOPEXECUTED(x) [] LOOPCANCEL (x)
LOOPEXECUTED(x) = isexecuted.x -> LOOPEXECUTED(x) [J] LOOP(x) [l LOOPCANCEL (x)
LOOPCANCEL (x) = cancels.x -> LOOP(x)

Listing 4.3 presents the augmented specification that is used to generate concrete
test cases: the resulting process of putting the requirements, domain model and execu-
tion history together. The first process, CONSISTENCY _ANALYZER, is the result of
combining the DOMAIN from Section 3.3 with the EXECUTION_HISTORY process
discussed above. With this process it is possible to reason about consistency since we
combine the effects of the rules from the domain model with the expected execution
progress. REQ_MARKED, in turn, is another intermediate process that adds informa-
tion about consistency choices directly on the original requirements. Finally, SPEC is
the process used later as the specification for test case generation. Instead of capturing
only the original and abstract requirements, it now holds more detailed events to generate

concrete and consistent test cases.

Listing 4.3 — Consistent specification

CONSISTENCY_ANALYZER = DOMAIN [|aux_domain_events|] EXECUTION_HISTORY
REQ_MARKED = REQ [+ inter(reqg_events, choice_events) +] CHOICES
SPEC = (REQ_MARKED [|Junion(inter(req_events, domain_events),

consistency_success_events)|] CONSISTENCY_ANALYZER) \ all_aux_events

Because we actually add behavior to the initial requirements, we must ensure, however,
that the original behavior is preserved. It is important to have a guarantee that any
information about the domain does not interfere with the core behavior. While it could
be valuable for other scenarios, it is important in our industrial context to ensure that
any information added by test analysts (or any other stakeholders) does not tamper with,
for instance, third party requirements or critical functionalities. Listing 4.4 requires not
only that the new specification be a refinement of the original requirement, but also that
they are in fact equivalent. The refinement, in both directions, is checked after hiding the

extra and auxiliary events from both processes.

Listing 4.4 — Check for behavior changes

SPEC_SIMPLE = SPEC \ domain_only_events \ details_events \ instantiations_events \

consistency_success_events
REQ_SIMPLE = REQ \ all_aux_events \ consistency_success_events
assert REQ_SIMPLE [T= SPEC_SIMPLE
assert SPEC_SIMPLE [T= REQ_SIMPLE

The cspio conformance relation assumes that an implementation always accepts any
input (from its alphabet) and an output can always be observed after the input. Because
of this input and output-enabledness constraint, we must guarantee that the process
that models the system requirements meets this constraint. The MEALY process from
Listing 4.5 when put in parallel with the specification process, enables the alternation of

inputs and outputs.

73

Listing 4.5 — Forcing alternation between inputs and outputs

ANY_IO = [] x: union(reqg_events, domain_events) @ x -> (OUT(x) []1 ATG::ANY(
reg_outputs, SKIP))
2 MEALY = ANY_IO; MEALY

4 for input in alllnputs
OUT (input) = getOutputFrom(input) -> SKIP

OUT(_) = SKIP

Figure 11 — Alternating input and output events

o)
@ i_activatedata
i_activatedata (2)
<1> o_activatedata
i_sendmessage (3)
<3> i_sendmessage
o_showpopup <1)
@ o_showpopup

(a) SPEC_EXECUTABLE
©)

(b) SPEC_EXECUTABLE_MEALY

Source: The author (2022)

The MEALY process is defined as a sequential composition, beginning with the process
ANY _IO, which in turn offers any event for synchronization and then communicates a
corresponding trivial output for any input z having an associated OUT(z) definition.
OUT(z) is dynamically generated for any input, providing an alternation between inputs
and outputs before deriving tests. The intuition is that, when one makes an action, say
“Send a message”, the trivial output is that the “Message was sent”. So, there should
be an OUT process for each input of the specification or the domain model. In general

terms, only the prefix i_ is replaced by o_. The MEALY process can be recursively called

74

until an output from the original requirements is reached. When reached, the process may
stop, as stated by ATG::ANY (req_outputs, STOP).

The result of the parallel composition of MEALY with a process that captures a
fragment of a requirements model is illustrated in Figure 11. SPEC_EXECUTABLE from
Figure 11a has two consecutive inputs, which is not a proper specification. To ensure
that there is an alternation between inputs and outputs, we add trivial responses for
every input after its execution, by applying a parallel composition between processes
SPEC_EXECUTABLE and MFEALY | resulting in SPEC_EXECUTABLE_MFEALY ;| as
shown in Figure 11b.

These processes are also exemplified in Listing 4.6. In Line 1, SPEC_EXECUTABLE
is created by hiding the events that were, in any way, modified by the domain model.
For instance, if the input i_sendmessage is detailed by the sequence (i_write, i_submit),
then the abstract action i_sendmessage should be ignored and must not appear in the
traces. Line 2 defines the process SPEC_EXECUTABLE_MFEALY yielded by the parallel
composition of the previous SPEC_EXECUTABLE with the MEALY process. To avoid
an unnecessary output o_sendmessage to be added when there is already an expected
output (o_showpopup) from the requirements, we use the prioritise operator defined as
prioritise(P, (S, ..., Sp)). The resulting process behaves similarly to P but prevents any
event present in S; ¢ 1 < ¢ <= n from communicating when any event from S; e j < 7 is
possible. Thus, when the parallel composition is passed as a parameter to this prioritise
operator, the original outputs from the requirements are chosen over the extra outputs,

thus avoiding unnecessary auxiliary outputs.

Listing 4.6 - MEALY

1 SPEC_EXECUTABLE = SPEC \ detailed_events \ instantiated_events \ all_aux_events
SPEC_EXECUTABLE_MEALY =
3 prioritise (SPEC_EXECUTABLE [|union(req_events, domain_events)|] MEALY,
<reg_outputs, diff(all_outputs, req_outputs)>)

4.1.4 Generation Mechanism

The generation of test cases follows the rules described in Section 4.1.2.3 with some
modifications on the elements but not in the strategy itself. Listing 4.7 describes the
steps of finding test scenarios. First, at Line 1, we create the test purpose TP1 which
matches any event until actionOQutput is reached. In our context, the generation is per-
formed for each action of all requirements. Then, a test purpose is defined for each of
these actions (which are converted to output as in Rule 4), supplied as the parameter

actionOutput. Finally, we perform the refinement check in Line 2 to find a scenario from
SPEC_EXECUTABLE_MFEALY that fulfills TP1.

Listing 4.7 — Finding scenarios

TP1 = ATG::UNTIL(req_events, {actionOutput}, ATG::ACCEPT({1}))
2 assert SPEC_EXECUTABLE_MEALY [T= SPEC_EXECUTABLE_MEALY [|req_events|] TPI1

75

A test scenario is built from the counterexample found by the assertion in Line 2. The
scenario is then annotated to include all possible outputs for each step. This annotation is
important to mark inconclusive results, i.e., outputs that are not relevant for the current
scenario, but are possible outcomes defined in the specification (SAMPAIO et al., 2014).

For instance, consider a specification illustrated in Figure 12 and a given scenario sce; =

((i—send, D), (o_popup,D)).

Figure 12 — Sample IOLTS specification

i_send

o_dialog 0_popup

Source: The author (2022)

An annotated trace atrace; must cover the possibility in which an IUT outputs o_dialog
during execution. Then, atrace; = ((i_send,), (o_popup, {o_dialog})). Details on how
to obtain an annotated trace are shown in (NOGUEIRA; SAMPAIO; MOTA, 2014). The
annotated trace is then supplied to TC_BUILDER, already discussed in Section 4.1.2.3,

to build a sound test case as illustrated in Listing 4.8.

Listing 4.8 — Building the test case

TC = ATG::TC_BUILDER(input_events, all_outputs, atrace)

Since the process TC_BUILDER is sound, as proved in Sampaio et al. (2014), the
resulting test case is always sound and can then be linearized back to natural language.
Each input event becomes a test step, while the corresponding output event is the expected
result. Inconclusive outputs can be annotated in the comments. As we have seen in Rule 5,
we can trace back the action (and its syntactic tree) using the id from the trace. With
its syntactic structure, we can linearize the action back to English, as seen in Chapter 2.
We can also control the mood and tense of the sentences: test steps are in imperative
mood while expected results are linearized using the indicative form and past tense. In
the sequel we present an example and discuss how to automate these sound and consistent

test cases in natural language.

4.1.5 Remarks on finding scenarios

As discussed in Sections 4.1.2.1 and 4.1.2.2, test cases are created based on the premise

of reaching the expected outputs described in the requirements. To achieve this goal,

76

we define the Statement extracted from the sentence as a relevant test purpose for each
requirement in a feature. Consequently, each requirement has, in the end, only one cor-
responding test case. The advantage is that it proved to be more intuitive for the test
analyst when debugging the generation process. The evident disadvantage, however, is
that it may not cover the “negative” scenarios, in which one should test things that

should not happen. For instance, consider the following requirement:

Only when data is active and the button is pressed then a success message should be shown

Applying the proposed generation strategy, we would only get a single scenario (i_activatedata, o_a
because it is the only scenario clearly described in the requirement. However, in many
cases, when the condition is not met, the action in the statement should not happen. Thus,
we allow the generation of these additional scenarios when the requirement describes a
necessary condition or event, i.e., “only if” or “only when”. Considering the requirement

above, we would get three implicit requirements in addition to the original one:

When data is active and the button is pressed then a success message should be shown
When data is not active and the button is pressed then a success message should not be shown
When data is active and the button is not pressed then a success message should not be shown

When data is not active and the button is not pressed then a success message should not be shown

The total number of scenarios depends on the number of circumstances in the orig-

inal requirement. It can be calculated by the combination (Z

circumstances and k = 2, since a circumstance has only two states: it either happens or

) with n as the number of

it does not. There are some cases in which the additional requirements are too obvious
or trivial, or even do not make sense. In these cases, the analysts can remove the test
cases from the selection after generation. More on test case selection and prioritization is

discussed in Section &.1.

42 TEST CASE AUTOMATION

In this section we cover the task of automating test cases. Figure 13 illustrates the task in
which test cases passed as input are mapped into test scripts, for the purpose of automated

execution.

Figure 13 — Process Task: TC Automation

Test Cases (ﬁ Test Scripts

Source: The author (2022)

~

Besides receiving sound, consistent, and CNL-compliant test cases, we also deal with
a more uncontrolled scenario in which legacy test cases, written in freestyle natural lan-

guage, are passed as input for automation (as previously illustrated in Figure 2b). Since

7

it is a business decision to: a) convert legacy requirements to use the new CNL or b)
automate them as is, we designed two approaches (for the team to choose) to produce
test scripts. In this light, the remainder of this section presents a strategy that can be
used to automate test cases that are already sound and consistent with an annotated
codebase, while Chapter 5 shows an alternative approach that maps freestyle descriptions
into consistent test scripts in order to minimize the effort to automate legacy test cases

or reuse legacy code.

4.2.1 Composite Actions

One must create a mapping between frames and concrete instructions to allow test drivers
to interpret sentences as executable scripts. The mapping size should be kept at a min-
imum to reduce maintenance and to support fast transitions when adopting new frame-
works and programming languages.

For that matter, we can leverage the compositionality of test actions, as introduced in
Section 1.3.2, to map only a small number of (atomic) actions to scripts, and define other
actions as a composition of those atomic actions. For instance, consider the TC illustrated
in Line 14 (a) to check whether an e-mail can be sent. The test action representing this
TC can be structured as a composition of other test actions (each representing a step).
Each step, in turn, could also be composed of several screen interactions (expressed as
atomic test actions), as presented in Line 14 (b). We potentialize the reuse possibilities

and provide the code script by only interpreting the atomic actions, as seen in Line 14
(c).

Figure 14 — Test case automation using hierarchical test actions

TC - Check if email

can be sent Launch Home Screen

// - Press “Home” Button \\ld. pressHome () ;
1 - Launch
Home Screen,; /
2 - Open Email Open Email App
App; IEIR
Open Apps Tray —1d.findObject (By.
[...] . - description (
- Press “Apps” View "Apps")) . click () ;
- Press “Email” View \, d.findObject (By. text
("Email"))
-] .click ()
(a) Test case written in CNL (b) Test action structure (c) Coded atomic actions

Source: The author (2022)

As discussed in the previous chapter, the output of the proposed test generation strat-

egy are sound and consistent test cases that comply with our CNL. Because these test

78

cases are already consistent, there is no need to insert supplementary setup or reorganize
the script since all dependencies and details defined in the domain model are already
resolved. Only the mapping to execution methods (which the test adapter recognizes) is
lacking. For this matter, we present here a straightforward strategy: direct code mapping.
Table 3 illustrates a sample consistent test case and it will serve as reference input for the
remainder of this section. It represents a single test case with 2 (two) setup actions and

4 (four) test steps with their corresponding expected results.

Table 3 — Sample consistent test case

Setup Step description Expected results

* Deactivate wifi
o ~ | Open email app Email app was opened
* Email is logged in

Write a new message | Message was written

Submit a message Message was submitted

Check the popup e popup is shown wi

‘Wifi is deactivated’ as message
Source: The author (2022)

CNL-based Code Annotations

This straightforward strategy consists in mapping CNL-compliant sentences into the cor-
responding scripts. This direct association is possible due to the action representation
parsed from the sentence. Following the frame theory described in Section 2.2, we can
assign a unique identifier to the fixed frame slots (such as operation and patient) and
then map each singular frame to the corresponding script method. We implemented this
mapping mechanism using a proprietary framework adopted within the industrial con-
text of our research. Because it is not publicly available, we instead present an analogous
implementation using the Java programming language and the UTAutomator framework
(ANDROID, 2015) for Android UI Testing. Listing 4.9 shows an example of this sentence-

to-script mapping.

79

Listing 4.9 — Sample Java script mapping

@Smartest("press a button”)
2 public void pressButton(String identifier, String description, String text) {

4 UiSelector selector = new UiSelector().className("”android.widget.Button");
6 if (identifier != null) {
selector = selector.resourceld(identifier);
8 }
if (description != null) {
10 selector = selector.description(description);
}
12 if (text != null) {
selector = selector.text(text);
14 3}
16 UiDevice mDevice = UiDevice.getInstance(getInstrumentation());

mDevice.findObject(selector).click();
18 3

In Listing 4.9, Line 2, we have a method declaration that is mapped to a sentence by
the annotation in Line 1. The parameters have the same name as the slots the associated
frame can have. Line 17 shows a method call on the variable mDeuvice that holds the
APT access to functions related to user interactions with the connected device. The API
for the interaction with a device may differ from one automation framework to another.
Listing 4.10 illustrates the different ways to reference the method declared above. Each
leading line shows the sentence that must be executed and the following line displays the

corresponding method found for the given sentence.

Listing 4.10 — Sample script executions
> execute("Press a button")
pressButton(null, null, null)
> execute("The button must be pressed with 'Apps' as description”)
pressButton(null, "Apps”, null)
> execute("Press the button using 'Send' as text and 's_btn' as identifier”)
pressButton(”"s_btn”, null, "Send")

Because the sentences are CNL-compliant, it does not matter how it was written since
they will always be mapped to their corresponding method and the arguments. This
mapping must be made for all atomic actions. Since all other actions are compositions
of these basic actions, the automation effort is kept at a minimum. The choice of which
actions should be atomic is entirely dictated by the team. In our scenario, there is a 1:1
mapping from each API native method available to a single action described in text. For
instance, Listing 4.11 illustrates the definition of action composition whose atomic actions
must be executed to perform the composite action. The indentation means that the action

is a step of the parent action and so forth.

11

13

15

17

19

80

Listing 4.11 — Domain model example for action details

Details
* Open email app
* press the button with 'Apps' as text
* press the button with 'Email' as text
* Write a new message
* press the button with 'Compose' as description
* write keyboard message with 'foobar' as text
* Submit the message
* press the button with 'Send' as description

Then, assuming that the atomic actions are mapped considering the domain model
described above, we can generate a code script that, when executed, gives a pass/fail
result. A sample generation is shown in Listing 4.12. Analyzing the script, Line 5 defines
an annotation that holds the test case identification for reporting. Line 6 shows another
annotation that gives a concise description about what is being tested to help debugging.
Lines 7 and 8 declare the dependencies needed to be executed beforehand. This mechanism
must be implemented by the test driver. The method calls inside the method declaration
correspond to the atomic actions that must be executed. For instance, lines 11 and 12
represent the atomic actions that compose the action of opening an email, as detailed in
Listing 4.11.

Listing 4.12 — Sample TC script

@Inject SmartestDriver smartest;

@Test
@Tc ("TCID-1234")
@Summary ("Email message can't be sent when wifi is deactivated”)
@Dependency ("Wifi is deactivated”)
@Dependency ("Email is logged in")
public void testCasel1234()({
// Open email app
smartest.execute("press the button with 'Apps' as text")
smartest.execute("press the button with 'Email' as text"”)
// Write a new message
smartest.execute("press the button with 'Compose' as description”)
smartest.execute("write keyboard message with 'foobar' as text")
// Submit the message
smartest.execute("press the button with 'Send' as description”)
smartest.execute(”"check the popup with 'Wifi is deactivated' as text")

This direct mapping works well when the code is already annotated with CNL-compliant
sentences. However, in projects that have a massive legacy code base, from which we can
only extract the method name and associated comments, we must adopt a more flexible
strategy of text-to-code mapping. This mapping can be done with search by text similarity
and is the subject of the next chapter.

Even though finding test cases that describe inconclusive results is unusual in our

81

industrial context, we detail how the code mapping can handle this kind of verdict. Since
the generation strategy annotates the inconclusive results, we only need to define how to
implement the verification. The intuition is to execute the step, and if it fails and there
is an annotated inconclusive result, the raised exception is caught and the action that
represents the other possible event is performed. Then, the final verdict depends on the
result of this last action: if the action fails and there is no other possible event, then
the whole test fails; else, the test is marked as inconclusive. Listing 4.13 shows a sample

implementation of an inconclusive verdict verification.

Listing 4.13 — Implementation of inconclusive verdict verifications

//
public void testCase3456()({

//

try{
smartest.execute(”check the popup with 'Message was sent' as text”);

} catch (AssertionError | UiObjectNotFoundException e) {
smartest.execute(”check the popup with 'No credit available' as text");
Assumptions.assumeTrue(false, "An inconclusive verdict was found”);

3

}

Assuming a test case step such as (..., (o_sendmessage, { o_nocredit})), we first map
the output o_sendmessage to code in Line 5. Then, in case its execution fails during
verification, we test the other possible event (o_nocredit) of the current step in Line 7. If
the corresponding action executes properly, it is a valid result but not the one we expect.

In this case, we set the status as inconclusive in Line 8.

82

5 AUTOMATION OF LEGACY TEST CASES

As mentioned in Chapter 1, we also tackle a challenging industrial testing scenario in
which the textual documents provided as input are test cases written in freestyle natural
language. Since, in such cases, there are no requirements to rely on, it is not possible to
verify whether the legacy tests are sound. Nevertheless, we can still verify consistency,
given a domain model.

Additionally, because there is no standard to write these test cases, it is not possible,
in general, to define a meaningful mapping between textual descriptions and automation
code scripts. Due to the natural language imprecision, typically there is an abstraction gap
between the NL test steps and the interface provided by automation frameworks. Thus,
code scripts become scattered because there are no straightforward means to match and
reuse test cases already automated.

We address this problem by applying the notion of Test Action, as discussed in the
previous chapter. Because an abstract action is composed of progressively more concrete
ones, it increases the chance of finding already automated actions, thus improving reuse.
However, since there is no guarantee that the corresponding description complies with
our CNL, reuse and mapping are performed by text similarity instead of frame structure

Correspondence.

5.1 ACTION REPRESENTATION FOR FREESTYLE TEST CASES

Legacy test cases often contain conditional expressions used for controlling the execution
flow. Because these legacy TCs were created by hand with no consistency analysis, they
usually have to check for multiple conditions to assert their execution is in the right
state before verifying the verdict. To allow for a conditional control flow, we extend the
behavior of test actions by allowing one extra interpretation: ordered choice. In most
cases, to execute a test action, an interpreter executes all its subactions consecutively.
However, if a test action is marked as an OR Action, then its subactions are treated as an
ordered choice: the first one with precondition true is executed, and the other subactions
are ignored. Thus, an Or Action allows some flexibility in the execution flow according to
a given condition, such as different platforms and application versions.

For instance, there are different approaches to viewing the phone applications that
were recently opened, depending on the platform. In some platforms, there is a specific
button to accomplish this task. However, there are platforms in which it is necessary to
press the home button twice. Considering this scenario, we can capture the flow of the
Open Recent Applications action as an OR Action. The action itself would be composed

of two different actions: Press the Recent Apps Button and Open Recent Apps with Home

83

Button. Because their parent is an OR Action, instead of executing both of them, the
interpreter sequentially evaluates their preconditions and then call the first action whose
precondition is true. Preconditions could check the presence of a specific button or analyze
the current platform.

It is worth mentioning that, although actions can have an additional interpretation for
freestyle test cases, it retains its structure introduced in Section 4.2.1. Another inherited

property is that each action still has an associated frame.

5.2 MATCHING AND REUSE

At the very beginning of an automation process, there are no previously created TCs,
so there is no opportunity for reuse. However, as TCs are progressively being automated
(either manually or via Capture-and-Replay (C&R)), test actions are gradually stored in
a database and can be retrieved and reused in automating new TCs. Therefore, instead
of capturing interactions all over again for every new TC, we employ an algorithm to
match test steps written in freestyle English with the stored test actions, mitigating C&R
issues regarding reuse—as noted in the empirical assessment conducted in Leotta et al.
(2013a). These test actions may be organized and composed in any order to create yet
more complex ones.

The matching process, detailed in Arruda, Sampaio and Barros (2016), is divided into
three main operations: sentence tokenization; synonyms retrieval from a lexical database
(currently, we use WordNet® Miller (1995)); and finally ranking of the test actions using
synonym equivalence and string proximity.

The latter operation is executed for all stored action textual descriptions, to find
the best similarity level. Finally, if no test action found is similar enough (for a given
threshold), the user must implement a specific test action for the test step being processed.
For instance, the matching process for the TC step “Open Email App” is illustrated
in Figure 15.

In the tool that implements the overall C&R process, detailed in Section 6.1.2, the
default matching score threshold is 50% but the user can use a different setting. Of
course, there might always be a risk that the user considers a matching unsuccessful
and eventually includes new sentences in the database that convey the same meaning
as existing sentences. The evaluation of the tool, mentioned in Section 6.1.2, presents
a significant result in terms of test actions reuse, and implementation effort. Even with
these results, we still faced some problems regarding TC’s dependency management and
consistency due to ambiguous descriptions. This is one of the motivations for adopting
a CNL for the descriptions of the stored actions. In this light, even though legacy TC
descriptions are not standardized, we can match these descriptions via text similarity
and require stored action descriptions to be written in compliance with our CNL. For

the CNL semantics, we developed a consistency and dependency-checking strategy to

84

Figure 15 — Matching process

Ty

[Open 1 [Launch | ‘x/
) Start 0% -+~ Turn on WiFi
Email, App "33 ‘Change email
N Y, D DR A - R - _> 5
l Mail] 100% ‘LaCCOEn’E '
Email | oo - ‘Launch mai
Lexical [“- 9 % ag)plication.’
Database *~+4 ‘Change ori-
App entation’
Application

Source: The author (2020)

represent the test cases as valid test action sequences, according to these notions, as
presented in previous chapters. Since there is no guarantee that these legacy TCs have
associated requirements, we cannot verify soundness. However, given a domain model,

one can ensure consistency, as detailed in the next section.

5.3 CONSISTENCY ANALYSIS OF LEGACY TEST CASES

When dealing with legacy test cases, it is difficult to verify whether the sentences define
consistent artifacts without a proper semantic analysis mechanism. Such a mechanism
should map them into an intermediate formalism to reason about context-sensitive prop-
erties, such as the consistency of a sequence of test actions.

As discussed in chapters 3 and 4, we encoded consistency analysis together with a con-
formance relation using a process algebra (CSP). However, unlike the generated tests from
the previous chapter, legacy test cases have no associated formal semantics. Thus, sound-
ness cannot be stated, let alone verified. Additionally, because the consistency analysis
was performed at the specification level, it does not apply to legacy test cases directly.

In this light, we provide another encoding for domain models to perform consistency
analysis for legacy test cases. Model finders are good candidates for semantic analyzers
because they can point out inconsistencies and suggest valid alternative configurations.
In our context, a model finder would serve different purposes, being of great value. When
a test case is inconsistent because, for instance, some actions are missing, a model finder
would be able to both identify the problem and also produce configurations that include
the missing actions. Thus, a model finder has an enormous practical impact, as incon-
sistent test cases are not only identified but automatically made consistent. A notorious
model finder is the Alloy Analyzer (JACKSON, 2012), which uses the Alloy modeling lan-
guage.

Several other alternatives could be used for this purpose, including a process algebra

85

such as CSP and refinement verifications to implement the consistency analysis. The same
can be done using theorem provers for model-based languages like Z (WOODCOCK; DAVIES,
1996) and B (SCHNEIDER, 2001). Although solvers other than Alloy are also possible
alternatives, we decided to use Alloy for its simplicity and expressiveness. Particularly
its modeling language allows specifying action hierarchies; this significantly simplifies
the representation of the domain model, as we illustrate in the next section. Another
important aspect is the bounded verification, which allows us to easily restrict the scope

size of the analysis, thus mitigating state explosion when reordering tests.

5.3.1 Alloy and the Alloy Analyzer

Alloy (JACKSON, 2002) is a declarative modeling language. It was inspired by other formal
notations, such as Z (SPIVEY; ABRIAL, 1992), VDM (JONES, 1990), and OCL (RICHTERS;
GOGOLLA, 1998), and provides ways to describe models succinctly, in terms of sets

and relations. Listing 5.1 presents a snippet that describes a simple model in Alloy.

Listing 5.1 — Alloy Model - Example

sig NaturalNumber {succ: one NaturalNumber,

2 predc: lone NaturalNumber?
4| assert PeanoAxiomAdapted {

V x,y,z: NaturalNumber e

6 x in y.*predc and y in z."“predc = z in x.”"succ

check PeanoAxiomAdapted

Lines 1 - 2 A signature has a similar meaning as types/classes in Object-Oriented
Programming. However, a signature defines a set; in this example, a set named
NaturalNumber has “fields”, which are actually relations to sets. The field succ and
its quantifier one indicate that a NaturalNumber has only one successor; lone predc

defines that it can have zero or one predecessor.

Lines 4-7 An assertion is defined to verify the described property in the given model.
In this case, an adaption of a well-known Peano’s axiom for arithmetic: Vz,y, 2z €
Nz<yhy<z=uz<2z).

Line 9 Checks the assertion by considering a default finite scope of 3 (three) elements.
That is, Alloy will examine all examples that have up to 3 (three) natural numbers.
In this case, there is a counterexample illustrated in Figure 16. It shows the graphic
visualization provided by the Alloy Analyzer for the analysis output. The atoms

are represented as rectangles, and the relations among them are displayed as line

86
connectors. A NaturalNumber that is not the predecessor of its successor may seem
counterintuitive, but it is precisely to find these non-obvious modeling issues that

Alloy is useful.

Figure 16 — Alloy Analyzer output - Counterexample found

prede: 1
succ: 2

MNaturalMumberd rede
($PeanofxiomAdapted_x, fPeanofxiomAdapted_y, $PeanofAxiomAdapted_z) prede

MaturalMumberd

Source: The author (2020)

To resolve this modeling problem, we present the Listing 5.2, which provides an extra

predicate and a fact for the model shown in Listing 5.1.

Listing 5.2 — Alloy Model - Fixing the model incrementally

L...]
pred Ordering (x,y: NaturalNumber) {

[\

X.succ =y = y.predc = X
4|3
fact {

V x,y: NaturalNumber e Ordering[x,y]

[=>]

Lines 2-4 The predicate holds if the parameters x and y satisfy the constraints listed in
the body. It says that if a given NaturalNumber x has a successor y, then x should

be the predecessor of y.

Lines 5-7 The fact construct behaves as an invariant: for all pairs of natural numbers,

the Ordering predicate applies.

With these additions, the check command of the previous model presents no coun-
terexample.
5.3.2 Detailed semantics

Before presenting the predicates that capture the semantic mechanism to ensure test case

consistency, we define, via semantics in Alloy, key concepts that so far have been only

87

discussed in conjunction with requirements. These concepts are presented through top-
down definitions of the syntactic elements, rules that define their semantics in Alloy, and
some examples.

A domain model includes the relevant actions, frames, and how they relate to each
other. As already explained, an action can be either atomic or composite. An atomic
action is an abstraction of a concrete instruction (an implementation) to be directly
executed on an SUT.

A composite action is a procedure abstraction, formed of test actions (atomic or com-
posite); it is recursively interpreted and evaluated on an SUT. The elements of a composite

action are as follows.

P,. isthe action precondition; it consists of the set of basic actions (P, C AtomicAction)
used to check on-the-fly whether the composite action can be successfully executed

(the focus here is on automation/execution rather than on specification);

sequence is a sequence of actions, sequence € seq Action, which defines the composite

action; and

P,s is the composite action postcondition; it is a set of basic actions (P, C AtomicAction)
used to check whether the desired effect is achieved after the execution, in which

case the composite action is marked as passed.

Note that, for composite actions, the notion of pre- and postcondition is expressed as
(executable) basic actions, rather than as the more usual logical style expressed in terms
of propositional or predicate calculus. Particularly, only atomic actions that do not modify
the state of the system and return a boolean value can be used in pre- and postconditions.

A frame, derived from a sentence in natural language, represents a specific situation,
as discussed in Chapter 2. The definition of frames uses some additional sets: Operation
is the set of all possible operations, Patient is the set of all possible patients, and Fxtra
is the set of all extra slots. These sets correspond to the same notion in the frame theory
presented in previous sections.

In the current context, we associate an action directly with a frame. Thus, our frames
are a semantic representation of the sentence associated with the action; the actual ele-
ments of the action are not represented in the frame. The semantic reasoning considers
well-formedness and associations among frames, representing a linguistic perspective that
is not action-dependent.

With frames, we can define the well-formedness of individual actions as well as establish
relationships among these actions. We are able to guarantee, for instance, that a sequence
of test actions is consistent in the sense that it is self-contained and can be successfully
executed without any missing actions. As already discussed in Chapter 3, a domain model

describes these relations. In this context, we only consider two kinds of relationships: an

88

action can depend on another action (for instance, the action Send Message depends on a
previous occurrence of Activate Connection), and an action can cancel another action (for
example, the action Activate AirPlaneMode cancels the effect of Activate Connection).
Therefore, an association is a relation between frames whose semantics is distinct
in case it characterizes a dependency (an action requires another action to be executed
beforehand) or a cancellation (the current action cancels the effect of another action
executed before). The first frame characterizes the source frame of the relation. The type
establishes the association type (dependency or cancellation). Lastly, the second frame

determines the target frame of the relation.

5.3.2.1 Well-formedness Conditions

The metamodel described previously is able to generate invalid models, as it captures
only context-free structures. Therefore, we present some well-formedness conditions that
specify which models are valid.

Considering a given generated model dm : DomainModel, F,.; C dm.frames, Asz; C
dm.associations, Acses € dm.actions, then we have the following well-formedness condi-

tions:

L. vflan : mee; t: Type | (f17 taf?) C Asset .f17f2 g Fset
2. Vfi,fo: Frame | fo C fi.dependencies ® —=(f; C fo.” dependencies)
3. Vf:Frame | f C Fy @ f.action C Acse

4. Y a: Action | a C Acge ® {a.pre + a.sequence + a.post} C Acge

The first condition determines that all frames from a given association must also
be present in the domain model. The second condition dictates that there must not be
circular dependencies in a valid domain model. The third condition enforces that every
action mapped from a frame must also be listed in the domain model. The last condition
determines that every action that composes another action must be in the domain model

too.

5.3.2.2 Semantic Rules

The semantics is inductively defined on the structure of a domain model. Each rule has
the form [s :< SyntacticElement >] : AlloyModel, where [.] is the semantic function. In
general, the body of each rule includes Alloy elements and meta notation used to structure
the semantic definition. The meta notation is underlined.

The first rule defines the semantics of a domain model using functions to handle its

actions, frames, and associations. Each of these functions is defined by specific rules.

89

Rule 12. Domain Model | domain: DomainModel |: AlloyModel =

actionSequence(domain.actions)

frameSequence(domain.frames)

defineAssociations(domain.associations)

Rule 13 defines the abstract signatures for action elements and uses a recursive function

to define all individual actions.

Rule 13. Action Sequence actionSequence(actions: Seq(Action)): AlloyModel =

abstract sig Action {

pre: set Condition,
sequence: seq Action
post: set Condition

}

abstract sig CompositeAction extends Action {
sequence: seq Action

}

sig Id, Variable, Slot extends String {}

sig Value in String + Int {}

abstract sig AtomicAction extends Action {
parameters: set Variable -> Value,
device: one Device

}

defineActions(actions)

where
defineActions(actions: Seq(Action)): AlloyModel =
if #actions > 0 then
[head actions |
defineActions(tail actions)

Rule 14 verifies first whether the action is atomic or composite. In case it is atomic,

it also defines:

parameters is a set of input variables for the chosen command;

device is the destination target where the atomic action must be executed.

When it is a composite action, the function lists its properties

90

Rule 14. Action [action: Action |: AlloyModel =

if action.isAtomic
then

abstract sig Actionaction.name extends AtomicAction {} {

parameters = { join(map(params, A param: param.var -> param.value, ,) }

device = action.device
}
else
one sig Action action.name extends CompositeAction {} {
pre = {listA(action.pre)}
sequence = {listA(action.subactions)}
post = {listA(action.post)}
I
where
listA(elements: Seq(Action)): AlloyModel =

join(map(elements, A elem: Actionelement.name, ,)

Regarding atomic actions, an example is given in Listing 5.3. The signature name
identifies the command to be executed (in this case, Click on a view with a given de-
scription), and the relevant input variable is the DescriptionValue and the device with
SystemUnderTestOne as reference.

We also provide an example of a composite action (see Listing 5.4): Send Email Message
has the goal of opening the e-mail application. It first ensures, via its precondition, that
the current layout has a button with the description Apps. The sequence of actions that
defines the action behavior includes a composite action that opens the app tray and an
atomic action. Finally, the postcondition contains an atomic action that checks if the

email was sent.

Listing 5.3 — Example of an atomic action in Alloy

sig ClickOnDescription extends AtomicAction {} {

N

parameters = Description -> Value

device = SystemUnderTestOne

Listing 5.4 — Example of a composite action in Alloy

91

one sig OpenGmailApp, WriteAnEmail

2 extends CompositeAction{}

sig PressButton extends AtomicAction {}

4|sig Description, Title, Text extends Variable {}
sig GMail, HelloWorld, Send extends Value {}

6| L.

glone sig PressSendButton extends ClickOnDescription{} {
parameters = { Description -> Send }

10}

12/one sig SendEmailMessage extends CompositeAction {} {
pre = IsInAppsTray

14 post = EmailMessageSent

sequence = { @ -> OpenGmailApp +

16 1 -> WriteAnEmail +

2 -> PressSendButton }

18| }

In the previous example, the first action that composes Send Email Message is also a

composite action Open Gmail App, whose details we omit here. It illustrates the composite

pattern discussed in Section 1.3.2. The atomic action Press Send Button extends the one

defined previously.

Composite actions can be parametrized by variables instantiated within the set Variable.

However, instead of a direct specification, they are inferred from the atomic actions that

compose them.

Rule 15 defines the abstract signature for frames and calls the recursive function to

list each one.

Rule 15. Frame Sequence frameSequence(frames: Seq(Frame)): AlloyModel =

abstract sig Frame {
operation: one Operation,
patient: one Patient,
extra: set Slot,
action: one Action,

}

defineFrames(frames)

where

defineFrames(frames: Seq(Frame)): AlloyModel =
if #frames > 0

92

then
[head frames]

defineFrames(tail frames)

Rule 16 defines each individual frame and its properties in Alloy.

Rule 16. Frame | frame: Frame |: AlloyModel =

one sig Frameframe.name extends Frame {

operation: Operation frame.operation.name

patient: Patient frame.patient.name

slots: {join(map(slots, A slot: Slotslot.name, ,)}

})

Rule 17 defines an abstract signature for all associations and two sub-signatures to
represent the type: dependency or cancellation. Then, it uses a recursive function to define

each association individually.

Rule 17. Association Sequence associationSequence(associations: Seq(Association)): AlloyModel =

abstract sig Association {
source: Frame,
target: Frame
} abstract sig Dependency, Cancellation extends Association {}

defineAssociations(associations: Seq(Association))

where

defineAssociations(associations: Seq(Association)): AlloyModel =

if #associations > 0] then

[head associations]

defineAssociations(tail associations)

Rule 18 verifies whether an association is a dependency or cancellation to extend the

corresponding signature.

Rule 18. Association | association: Association |: AlloyModel =

one sig relName(association.type) sourceld + targetld extends relName(association.type) {}{

source in Framesourceld
target in Frametargetld

if #association.matching > 0 then

93

matching = {join(map(association.matching, A match: match.source — match.target), +)}

}

where

sourceld = association.source.id

targetld = association.target.id

relName(type): String =

if type == cancellation: Cancellation

else if type == dependency: Dependency

We developed a strategy to automatically check the well-formedness of the actions
as well as their dependencies, in order to provide a coherent (and possibly optimal) exe-
cution order. These dependencies are represented in terms of signatures that extend the
base Association. For instance, Listing 5.5 shows some examples of associations among
frames that are used to check the consistency of an action sequence. By inspecting the
DeletionNeedsCreation signature, we notice that in order to erase a message, first a mes-
sage must have been sent. Additionally, the matching rules must apply: the author, title,
and recipient of the message to be erased must correspond to the sender, title and receiver

specified when the message was sent.

Listing 5.5 — Associations in Alloy

one sig MessageNeedsConnection extends Dependency {} {
2 source in SendMessageFrame

target in ActivateConnectionFrame

one sig DeletionNeedsCreation extends Dependency {} {
6 source in EraseMessageFrame

target in SendMessageFrame

8 matching = { (Author -> Sender)
+ (Title -> Title)
10 + (Recipient -> Receiver) }
}

12/ one sig AirplaneCancelsConnection
extends Cancellation {} {

14 source in ActivateAirplaneModeFrame
target in ActivateConnectionFrame

16| }

94

The automatic generation of the predicates to carry out model finding using the Alloy

Analyzer is captured by three additional rules; this is addressed next.

5.4 THE OVERALL CONSISTENCY ANALYSIS PROCESS FOR LEGACY TEST CASES

The consistency analysis strategy involves defining: (1) which actions are individually valid
by evaluating the associated frames; (2) what are their dependencies and cancellations;
and (3) how to correctly order actions or which actions can be inserted to allow the
execution of a set of test cases. The valid actions and their associations are represented
as a domain model. Then, for every execution request, a predicate is evaluated to find a

valid sequence of test actions. The systematic process is shown in Figure 17 and is detailed

next.
Figure 17 — Overall Consistency Analysis for Legacy TCs modeled using BPMN
Error Message
_8 Split the Test No
= Case Success
(Check Frame Se(l:rli?‘ukce
Consistency Are the test steps q t All the
individually consency dependencies are

E consistent? satisfiable within
< a given scope?

Source: The author (2020)

The next two sections detail the verification of frame consistency and frame sequence

consistency.

5.4.1 Split the test case

A test case is itself a composite action. The consistency analysis works by checking consis-
tency for the associated frame (via the domain model mapping) of each action and then

proceeds recursively, considering its direct children.

5.4.2 Frame consistency

The frame consistency analysis detailed in Figure 18, covers two stages: (1) Syntax parsing;
and (2) Frame validation. They are detailed next using the definitions from the previous

section.

95

Figure 18 — Frame consistency analysis modeled using BPMN

Tool

Syntax Parsing

Frame
Validation

Check Frame Consistency

Alloy

Source: The author (2020)

Syntax parsing

To obtain the frames, each test step description—that complies with our CNL—is parsed
and represented as a frame instance. It is also worth mentioning that, because the parser
is dynamic, they automatically change when there are new grammar entries, avoiding

developer intervention or unavailability due to parser generation.

Frame Validation

We use frames, as defined in Section 2.2, to represent knowledge extracted from sentences
that comply with our controlled natural language. These frames can be dynamically de-
fined by a user, filling the operation, patient, and the extra slots that together represent
a valid and consistent frame. To check consistency, the tool verifies whether the extracted
frame is present in the domain model which is dynamically generated as an Alloy module
(see Section 5.3.2.2).

5.4.3 Sequence Consistency

The sequence consistency analysis, which evaluates whether the associated sequence of
actions can actually be executed, consists of three activities (assuming an initial scope):
(1) Generate a model with a given scope; (2) Increase scope; and (3) Parse the valid

sequence of frames. These activities, also illustrated in Figure 19, are detailed next.

Defining an initial scope

Scope definition in Alloy means the number of instances of each signature used in the
bounded verification. When generating an instance from a model, it is necessary to define
a scope for limiting the analysis. The scope should start small because each interaction

might significantly increase the time to find a satisfiable solution. Therefore, the first

96

Figure 19 — Sequence consistency analysis modeled using BPMN

Yes

ol !
c o .
z = Parse the valid
@ X Increase scope sequence of
8 actions
@ Limit reached? Success
(5]
5 No
=
o
@
0]
=
[5]
£ . Generate a Yes
© 2 model with a

< given scope

Satisfiable?

Source: The author (2020)

scope defaults to the number of test steps analyzed, to check if they can be executed

without introducing any extra action.

Generate a model with a given scope

Assuming that each step is individually consistent, the tool has to analyze the depen-
dencies and reorganize or even introduce other frames to ensure global consistency. The
model generation follows a similar principle to that of the previous step: dependencies and
cancellations are defined by a user, which serves as input for the Alloy model generation.
The following rules show how we generate not only the semantics of the domain model

(Section 5.3.2.2) but also the predicates and necessary elements to carry out the analysis.

Rule 19. Program | program: Program |: AlloyModel =

open util/ordering[State]
sig State {
conditions: set Action,
currentAction: one Action

}

[program.domain |

generatePred icates(program.steps, program .strategy)

modelFinding(program.strategy)

Rule 20. Generate Predicates generatePredicates(steps: Seq(Action)): AlloyModel =

pred valid(s: State) {

let 8" = s.next | {

97

some s’ implies s’.conditions = s.conditions + s.currentAction - cancellations[s.currentAction]
all d:Dependency | {

d.source = s.currentAction implies d.target in s.conditions

}

fun cancellations(a: Action): set Action {
{ cancels: Action | {
all c:Cancellation {

c.target in cancels iff a in c.source

}
3

}
pred find {

first.conditions = none
all s:State | valid]s]

{for action in steps {

some s:State | {

s.currentAction = Actionaction.id

}

}
pred inject {
first.conditions = none
all s:State | valid(s]

some join(map(steps, A action: saction.id ,): State | {

for action in steps {

saction.id.currentAction = Actionaction.id

let previous = before(action, steps) in

if previous then

saction.id in sprevious.fiext

Rule 21. Model Finding modelFinding(strategy: Strategy): AlloyModel =

run strategy.name for exactly strategy.scope State

For instance, to Send an Email Message, first one has to Login in that email ac-

count, so the sender and the logged account should match—or when the user activates

98

the Airplane Mode, all conditions from any action that activates a connection must be
discarded. Rule 20 generates three predicates and a function that are used to analyze the
dependencies and cancellations of a given frame from the defined associations.

Nevertheless, the model still lacks the notion of a sequence of steps. We then modeled
the execution flow as a sequence of State, each one associated with the activated condi-
tions, besides the frame whose associated action is currently being performed. In Rule 20,
there is a predicate valid in which each state transfers its conditions and the current frame
to the next state, but removing frames that are canceled by the current one.

To find a valid sequence of States, a corresponding predicate is generated. For in-
stance, considering the predicate find shown in Rule 20 and a frame “Sending an Email
message” with a title slot “sbmf”, then values for the sender and the message body could
be arbitrarily chosen since the predicate does not fix this.

In this case, an example of the Alloy output after running the predicate (see Rule 21)
is illustrated in Figure 20, in which the last State (of a scope of three States) is projected.
The current frame is shown in the pink color (Send an Email Message); ActivateConnec-
tion and LoginEmail are represented as conditions inherited from previous States that

are necessary to execute the current action.

Figure 20 — Alloy analyzer illustrating the model found for a valid sequence of States

($findDependencies_title_)

ln'alue

"example@ecin.ufpe. br "shmf"

Source: The author (2020)

Another interesting application of frame sequence consistency is to optimize a test
suite, possibly merging test cases. For example, Table 4 summarizes how our tool takes
two test cases as input and gives another consistent sequence, but is more efficient in

terms of the total number of steps. Not only does it recognizes that some actions inherit

99

behavior from others, but it also takes advantage of the matching behaviors to optimize

the suite by merging some steps.

Table 4 — Dynamically rearranging test cases executions

Step Normal Merged TC

1 TC1 - Activate Connection Activate [WiFi]

2 TC1 - Login into Email Account Login into Email Account

3 TC1 - Send email Send email [with attachment] [to yourself]
4 TC1 - Check sent messages Check sent messages

5 TC2 - Activate WiFi Download attachment

6 TC2 - Login into Email Account Check downloaded attachment

7 TC2 - Send email with attachment to yourself

8 TC2 - Download attachment

9 TC2 - Check if it has been downloaded

Source: The author (2022)

Increase Scope

If it is not possible to find a solution, then the scope is gradually increased until a given

limit (because it becomes costly, timewise, to carry on).

Parse the valid sequence of frames

To interpret the results generated by the Alloy Analyzer, the tool retrieves the XML file
and parses it into an object that is expected by the consolidation function. The process
involves getting the information via XPath queries and transforming them into a JSON
object. Then, the consolidated results can be shown to the user as natural language
descriptions or in a structured form.

In summary, a dependency analysis can both detect inconsistent sequences, as well as
automatically insert actions to turn an inconsistent sequence into a consistent one. The

main challenge here is scalability, which is addressed in the next chapter.

100

6 TOOLS, AND EVALUATIONS

In this chapter, we discuss the practical aspects of our work by employing custom tools
in an industrial context. These tools were developed and evaluated within an industrial
context of a partnership with Motorola Mobility. We also present the results of evaluating
the strategy via these tools. Section 6.1 shows an overview of each tool and some imple-
mentation details. Then, Section 6.2 presents the conducted experiments, including their

corresponding research questions, design, and results.

6.1 TOOLS

In this section, we present the tools that implement our strategy. As we address the
complete process from requirements specification in a CNL to test script generation,
and also consider legacy test cases, we created several tools for different tasks, which
complement each other. First, we present SmarTest in Section 6.1.1 which is responsible
for the test generation from features that comply with our CNL. Then, in Section 6.1.2
we discuss the different tools implemented to deal with legacy test cases with freestyle

natural language descriptions.

6.1.1 SmarTest: Generation and Automation from Features

SmarTest is a web-based tool in which test architects and analysts can input the relevant
requirements, in compliance with our CNL, and get automatically generated test cases
from them. Because we wanted to reduce friction in order to increase user adoption, the
tool was developed to run in the browser and with a familiar interface. The interface was
designed to look like a text editor (frequently used in our context to write requirements and
comments) and to keep the same naming convention the users use in their daily activities
and artifacts. Because most software systems in our context are web-based, the tool also
runs in a browser to ease the user adoption. Regarding the techonology stack, the tool
backend is implemented in Java, because both GF and FDR have official Java libraries
for their APIs, using the Spring Framework®. The frontend, in turn, is implemented in
Javascript and Vue?.

Figure 21 shows the latest user interface of SmarTest. In the left panel there is a text
area in which the requirements and domain model are written. For better organization,
we use one document for each feature by convention. The feature document in the tool is

structured following Markdown?® rules. The first section, with the header “Requirements”,

https://spring.io/
https://vuejs.org/
https://daringfireball.net /projects/markdown/

2
3

101

should contain one or more sentences representing each requirement. All sentences must
be items of an unordered list, which in Markdown are denoted preceding the sentence

with an asterisk, plus sign, or hyphen.

Figure 21 — SmarTest interface

SmarTest fmarques | v0.1

EDITOR TEST CASES DEBUG

H = + » Sections

+ Requirements
Requirements + Initial Setup

+ Details
* when each SIM card is inserted then a SMS message can be sent + Types

+ Dependencies
Types + New terms

Dalek fields

* SIM card

+ Requirements Traceability
* CarrierA

+ Component
+ Labels

* CarrierB

* CarrierC

* CarrierD + Primary domain

+ Secondary domain
+ Comments

Source: The author (2022)

The right panel contains suggested sections that can be inserted into the document.
The first category of sections is used to fill out the specification, including the domain
model. The second category represents sections from which their values will be directly
mapped to fields of external test management tools. Figure 22 shows another excerpt of

the feature document that comprises the domain model.

Figure 22 — SmarTest - Text excerpt containing domain details

SmarTest fmarques | v0.1

Details

* send a SMS message

* open application Sections

*write a new message + Requirements
* submit message + Initial Setup

* write a new message + Details
*tap on button with "Start chat” for text + Types

* select a contact + Dependencies

* write a text + New terms

. Dalek fields
Initial Setup
+ Requirements Traceability
* the latest build is flashed + Component
* rocarrier is set to foobar + Labels
+ Primary domain
Requirements Traceability + Secondary domain

+ Comments
* FEATURE-0001

Source: The author (2022)

The domain model can be represented by declaring a section for each association type.
For instance, Figure 22 shows how to model the “Details”, i.e., the sequence of concrete
actions that represent a given abstract action. Each leading sentence is the main element

or source (see Section 3.3), and the sub-elements are the targets. This figure also shows

102

how errors are reported. For instance, because the “foobar” is not a valid word in this
domain, it is highlighted in red. When editing, the tool can also autocomplete sentences
based on the grammar defined in Chapter 2. After inserting the requirements, domain
model, and extra fields (including a vocabulary for new terms), the user can then ask the
tool to generate the test cases by pressing the “play” button on the toolbar above the

text area. The test cases are shown on the “Test Cases” tab, as seen in Figure 23.

Figure 23 — SmarTest - Test generation output

SmarTest fmarques | v0.1

EDITOR TEST CASES DEBUG

Summary Issue Type Labels CompcRequir Initial Setup Test Step Description Expected Results Comments

Step 1 insert CarrierA
Step 2 open application *Step 1* CarrierA was inserted
Step 3 tap on button with Start *Step 2* application was opened

verify if an SMS smart: chat for text *Step 3* button was tapped on hletes Jisome.lir
1 message is sent - Test Case carriel Carriel FEATL ﬂasn me latest build *Step 4* select a contact *Step 4* a contact was selected forpmore .
insert CarrierA set rocarrier to foobar *Step 5* write a text *Step 5* a text was written details
Step 6 submit message *Step 6* message was submitted
Step 7 verify if an SMS *Step 7* an SMS message could be sent
message is sent
Step 1 insert CarrierB
Step 2 open application *Step 1* CarrierB was inserted
Step 3 tap on button with Start *Slep 2* application was opened See
verify if an SMS smart: chat for text *Step 3* button was tapped on https:/some.lir
2 message is sent - Test Case carriet Carriel FEATU Flash Ihe latest build *Step 4* select a contact *Step 4* a contact was selected forpmble .
insert CarrierB set rocarrier to foobar *Step 5* write a text *Step 5* a text was written details
Step 6 submit message *Step 6* message was submitted
Step 7 verify if an SMS *Step 7* an SMS message could be sent
message is sent
Step 1 insert CarrierC
Step 2 open application *Step 1* CarrierC was inserted
Step 3 tap on button with Start *Step 2* application was opened See
verify if an SMS smarts chat for text *Step 3* button was tapped on https://some.lir
3 message is sent - Test Case carrier Carriel FEATUL ﬂash Ihe latest build *Step 4* select a contact *Step 4* a contact was selected forpmme .
insert CarrierC set rocarrier to foobar *Step 5* write a text *Step 5* a text was written details
Step 6 submit message *Step 6* message was submitted
*Step 7% venfy if an SMS *Step 7* an SMS message could be sent

message is sent
*Sten 1% insert CarrierD

Source: The author (2022)

The output test cases are presented within an editable spreadsheet using a template
that can be parsed by external tools. Users might decide to keep only some test cases.
They are also allowed to edit any field before exporting to csv. It is worth mentioning that
our tool also provides an autocomplete mechanism (backed by Grammatical Framework
(GF)) to help writing the specification and even show inline errors.

The design of the tool is modular, which allows interchangeable generation mecha-
nisms. Even though we have implemented the mechanism presented in Chapter 4, FDR
(used for automated refinement verification) cannot be used in production without fur-
ther licensing. For this reason, another module that uses a version of the TaRGeT tool
was implemented (which does not use FDR) together with Kaki, described in the next

section, to generate tests and make them consistent, respectively.

6.1.2 Automation of Legacy TCs

In this section we briefly describe some tools that compose our strategy to automate
legacy TCs written in freestyle natural language, as well as some assessment of their use.
These TCs do not necessarily have associated requirements to rely upon, so our fully
automatic strategy (from requirements to scripts) is not feasible. The first tool, Force
IDE, is an evolution of a previously developed tool (ARRUDA; SAMPAIO; BARROS, 2016)

with different requirements from our industry partner to enable testers and developers to

103

share test scripts. The original tool allowed testers to capture interactions with a mobile
device and associate them with natural language descriptions that are used later on to
match with similar sentences from other test cases, improving reuse. With the current
evolution, scripts made by developers are also associated with natural language sentences
and indexed for reuse.

The other tool, Kaki, was developed (ARRUDA, 2017) to waive the final user from
manually performing the consistency analysis discussed in Chapter 3. In this work, we
contribute in three additional aspects. First, a rigorous semantic definition(Section 5.3.2).
Second, a performance evaluation of Kaki concerning the time spent to check frame con-
sistency of test cases from, this time, a real repository. Finally, motivated by the feedback
regarding dependency analysis response time in Section 1.1, even though the performance
was acceptable, we still pursued near real-time response. Thus, we present another version
focused on performance by using a different modeling approach (Section 6.2.3).

As discussed in Chapter 5, there are many TCs already created using ad-hoc strategies
without any standardization. To support their automation, the general idea is to match
test step descriptions with existing test actions via text similarity and to allow testers to
create new test actions by using C&R. Next, we present Force IDE, which implements

this strategy.

6.1.2.1 Force IDE: Automation with reusable indexed scripts

Our industry partner requested that testers should reuse scripts automated by developers
and also contribute to the code repository. This is a different strategy from AutoMano
(ARRUDA; SAMPAIO; BARROS, 2016), since the end users were only testers. Also, the
commands were sent to an interpreter and not translated into plain code. Then, Force
IDE began as an internal hard fork of AutoMano, but with different execution methods
and codebase. Still, it remains a web-based tool. The backend was implemented in Java,
and uses external dependencies such as Wordnet (MILLER, 1995) for searching synonyms
and Solr * for indexing the actions descriptions. The frontend was implemented as a single
page application using Javascript and Angular °.

The overall idea is that the existing test script codebase, made by developers, is in-
dexed, and all testing methods (we call controller actions) converted into test actions.
Then, the tester can reuse scripts made by developers transparently. All test cases auto-
mated by the testers can also be merged back into the codebase since there is a code gen-
erator plugged in. Figure 24 illustrates a test script that was imported from the codebase.
The second action with the “Force” tag is originally a test method. Its text description,
“start call using...”, is derived from the method signature start_call(number, sim, skipsimgelector),

while the parameters are automatically extracted as variables.

https://solr.apache.org/

> https://angular.io/

104

Figure 24 — Reusing test methods by text similarity

Capture f

TC ID Comments +
Eeen
Steps (2)
0. Write a SMS and Check text Sp X
1. [FI} [Force] start call using number= , Sim= . skip_sim_sele%ior
Crifux

Q, Reuse Action 0 Aux Command - & Add Check

Source: The author (2022)

A user can follow the simplest path to automate a test case: capture the actions and
then save the test case locally. It is also possible to reuse the controller actions, since they
were indexed and converted into test actions. However, instead of only saving locally,
the user can generate new code that can be refactored by experienced developers and
merged back into the codebase. Then, the codebase is indexed again, and the action is
available for reuse. This tool provides a way for developers and testers to share test actions
transparently. The data extracted from real-world use confirmed that, with just one-day
training, novice testers automated more than what was expected. Also, the tool is being

used to train new contractors since it has a shallow learning curve.

6.1.2.2 Kaki: CNL and Consistency Analysis and Solving

There is a more disciplined scenario where we can use TC written according to a CNL
as input. It is a plausible scenario because we observed in practice that hundreds of TCs
were manually rewritten to match a specific language format (to improve test automation).
Based on this possibility and assuming a standardization of the test step descriptions, we
implemented a tool that executes a consistency analysis, similar to what is detailed in
Chapter 3, using Alloy or Clingo instead of Machine readable syntax for CSP (CSPm).
The tool we have developed to check the consistency of test cases (Kaki) has two
main facets: (1) build the domain model; and (2) suggest a valid execution sequence that
makes a test case consistent in an optimal order. Figure 25 presents an overview of the
interaction with the tool from the user perspective. Each of the steps is detailed next.

To check consistency and suggest a valid sequence, a test engineer should first define

105

Figure 25 — Tool activities in the perspective of the user

(Build the Domain Model)

Define the Define the

Frames Associations

Check TCs consistency

Check
Write the TC consistency and Submit TC —DO
inject missing

steps

D J

Source: The author (2020)

the domain model. The valid frames, for the domain model, are dynamically defined via
the tool interface. Figure 26 illustrates the definition of a frame by filling the operation,

patient and the extras slots that together represent a valid and consistent frame.

Figure 26 — Example of user-defined frames

Kaki Editor Frames Associations Slots Fillers

New 4
¥ send &) message i["sender", "receiver", "title"]lﬂl
k activate &) connection i}
¥ login & email i["account"] o
k activate 0 airplanemode o

Source: The author (2020)

Dependencies and cancellations are also defined via the user interface, as shown in
Figure 27. The matching rules can also be set. For instance, to send an email message,
the “sender” value must match the “account” logged in. Then, the Alloy code for the

domain model can be dynamically generated on-the-fly from the user input.

106

Figure 27 — Defining associations between frames via tool interface

Kaki Editor Frames Associations Slots Fillers

8} Dependencies @ Cancellations + Add
Action Depends on Matching Action Cancels Matching
login - email activate - o activate - activate - o
connection airplanemode connection
send - login - email sender = o
emailmessage account

Source: The author (2020)

Figure 28 shows how to enter the steps of a test case. The tool helps the user by
auto-completing the sentence and, finally, marking the sentence green if it complies with
the CNL.

Figure 28 — Syntax suggestions

Kaki Editor Frames Associations Slots Fillers
Steps
Send an Email Message | N

Send an Email Message 'using’
Send an Email Message ‘with'
Send an Email Message from default@gmail.com

Send an Email Message to Filipe

Suggest

Source: The author (2020)

With test steps that comply with the CNL, the user can ask for a valid execution
sequence. Figure 29 shows a valid sequence of frames that are required to send an email
message from the “Augusto” account. It is worth mentioning, one can modify the slot

values (in the sentences) and the tool adjusts the dependencies accordingly.

107

Figure 29 — Suggestions made after the dependency analysis

Suggested Toggle Debug

operation patient account receiver title sender
activate wifi

login email Augusto

send emailmessage default@default.com sbmf Augusto

Source: The author (2020)

6.2 EVALUATIONS

6.2.1 SmarTest: From Requirements to Scripts

To quantitatively assess the feasibility of automating the generation and automation pro-
cess by using our tool, we compared the scripts generated automatically from requirements

versus scripts based on test cases created by hand from the same requirements.

Goal, Research Questions and Metrics

We structured this evaluation by using the GQM (Goal, Question, Metric) approach (CALDIERA;
ROMBACH, 1994) as detailed next.

Goal Analyze our formal approach for the purpose of evaluating the test generation and
automation with respect to improving the process from the viewpoint of the test engineers

in the context of a direct-engineering testing process.

[RQ1] Research Question Can our approach generate test cases that encompass the

ones created manually by specialists?

Metric Automation scripts matches, i.e., the percentage of method calls and arguments

inferred from the same TCs that were identical (automatic versus manual generation).

[RQ2] Research Question How much effort can be saved when generating test cases

from a feature using our strategy?

Metric 1 Size of the required text, i.e., the number of words/sentences needed to generate

the same artifacts.

Metric 2 Number of changes needed to update the test cases.

108

RQ1 - Design and Execution

To achieve the evaluation objective and analyze the metric described before, three stages
are required: (1) obtain the legacy data; (2) generate new artifacts; (3) apply the
same automation strategy in both artifacts. First, we investigated which TCs would be
appropriate candidates for this evaluation. Because there is already an initiative (within
Motorola, a Lenovo Company) to make test steps clearer and ready for automation, we
only considered these refactored TCs as the main criteria in our search, which left us with
more than 200 TCs. From these, we only considered the ones that reference the feature
they were based upon and, additionally, features that have more than 10 and less than 20
associated TCs to discard either too simple or too complex features. Using these filters, we
queried 2 features (and the corresponding 24 TCs) from the global database and exported
the results to a file in a compatible format for the automation strategy.

Then, we reverse engineered the relevant requirements and domain model based on
each TC’s summary and test steps. Each scenario became a single sentence in compliance
with our CNL that defines a requirement. Each requirement was further described by
detailed substeps in the domain model. It is worth mentioning that additional information,
such as labels and identifiers, was also defined in the input document for our tool. Then,
the text was processed, and the test cases were reported in a compatible format for the
next evaluation step. It is worth mentioning that we generated the same number of TCs
because the tool was configured to derive only trivial scenarios and ignore additional
scenarios (see Section 4.1.5).

Finally, we applied the mechanized automation strategy (already being used internally)
to create scripts from the input sentences in English. This strategy relies on matching an
input sentence with a method already present in the company codebase for test scripts.
The goal is not to compare the English texts directly but use the associated code, as

shown in Listing 6.1, to “semantically” compare them.

Listing 6.1 — Inferred code from an English sentence

Step: go to home screen
main_device.launcher3.launcher.navigate ()

RQ1 - Results and Discussion

To compute the similarity of the code generated from both strategies, we used a diff
mechanism similar to the one implemented by the git tool®, where we compare two files
line-by-line. In that case, we consider a match only if the lines from the two corresponding
source codes are identical. That means that not only the method signatures must be the
same, but also all arguments must match. Since the tool used to infer these method

calls produces a source code with additional information such as comments and import

6 https://git-scm.com/docs/git-difftool

109

statements, we had to post-process the output to ignore these lines. Only lines that
contained methods were preserved. This was a fairly simple filter, since the tool always
generate the source code using a single template.

The results shown in Figure 30 illustrate the distribution of method call matches — and
mismatches — when comparing the output of the inference mechanism from both legacy
test cases and the ones generated automatically by our tool. For instance, in Figure 30a,
from 90 (ninety) inferred method calls, we only observed 7 (seven) mismatches. The next
feature produced, as illustrated in Figure 30b, from 180 (one hundred and eighty) method
calls, only 18 (eighteen) mismatches. These data exhibit a consolidated result of more

than 90% (ninety percent) of matching precision.

Figure 30 — Mismatched method calls or arguments x Matching inferred method calls

Matches Matches

I Mismatches E Mismatches

(a) Feature 6813 (b) Feature 7163
Source: The author (2022)

The mismatches causes are illustrated in Figure 31, in which we notice three causes:

Figure 31 — Mismatching causes

Additional last step

Different but Equivalent a

Source: The author (2022)

Additional setup

Additional last step This happens because the original TCs have different writing
styles. In some cases, their last test step does not mandate verifying the postcondition —
instead, the test case goal is inserted in the expected result of the previous step. There-
fore, because our strategy always generates a “verify condition” as the last step by default,

then we can have a mismatch (or more precisely a virtual additional step) in some cases.

Additional setup Similar to the previous cause, our strategy can sometimes generate

an additional setup as the first test step. This arises from the fact that our tool generates,

110

by default, a shared setup for all TCs in the same feature. We assume that if a setup
must be executed only in a particular scenario, then it must be part of the test steps

themselves. That being said, this mismatch (or misplaced) setup can occur.

Different but equivalent Because the sentences of the legacy test cases may not always
comply with our CNL, then it is reasonable that some sentences must be written differ-
ently. Because all machine-learning algorithms are prone to inaccurate classification, then
it is natural that the inferred method calls from similar texts may differ. However, after
further manual investigation, we noticed that despite the code mismatches, the sentences

have the same semantics in English.

RQ1 - Threats to Validity

We discuss here the threats to the validity of the evaluation of RQ1.

Conclusion Validity The discussion claims a high precision match. Because the domain
model and requirements, rewritten in compliance with CNL, were based on the legacy test
cases, the generation was biased by this reverse-engineering. However, we do not claim
to always generate identical tests. The goal is to assess whether the tool can generate
the same TCs, i.e., has the same expressiveness. Then, it is reasonable to say that this
high precision match translates into equivalent expressiveness. Furthermore, it may be
relevant to compare two third-parties generating test cases (each with a different strategy)

simultaneously, with none having previous knowledge about the feature.

The absence of a statistical test is due to the 100% semantics matching after reviewing the
syntactic mismatch causes (outliers) in the data points. There is no fundamental change
(as expected) in the results of the proposed automatic approach when compared to the

traditional approach.

Internal Validity Within Motorola, a Lenovo Company there are many teams with
different inputs, strategies, writing styles, and contexts. We have chosen only a subset
of features in which their corresponding test cases were refactored. However, since all
teams use the same management tool and, despite having different inputs, one can always
rewrite the artifacts in compliance with our CNL, then it may be representative enough.
Furthermore, we plan to execute more quantitative experiments with other teams, besides

the already positive feedback we have received.

External Validity We assumed an industrial scenario in which functional requirements
are described in reference documents, and test cases are generated from them based on a
well-established template. It does not represent all use cases in the industry, especially the
ones that do not have specifications written in natural language. However, since Motorola,
a Lenovo Company is a global reference in its market, then this result should apply to

similar scenarios.

111

RQ2 - Design and Execution

To assess the potential effort minimization of our approach, we used as evidence the size
of the text (Metric 1) handled as input to generate the same test cases (from the same
features seen in RQ1) in comparison to the traditional approach of writing every test
case by hand. As ‘text’, for the traditional approach, we consider every word present
in the “Step”, “Summary”, and “Expected Results” columns of the respective TCs. To
make a fair comparison, in our approach, we considered the words present both in the
requirements and the corresponding domain model. We do not consider the original fea-
ture document in the word count of the traditional approach since it is only a reference
document. Regarding the number of sentences: in the traditional approach, each “Step”,
“Summary”, and “Expected Results” is counted as one sentence; while in our approach
we consider each requirement and entry in the domain model as a sentence. Regarding the
number of changes needed to update the test cases (Metric 2), we tracked a real update

made by a test engineer directly on the affected TCs.

RQ2 - Results and Discussion

As seen in Figure 32, there is a drastic text size reduction after adopting our strategy
when we compare the number of words and the number of sentences to create the same
test cases. The reduction proportion was similar in both features analyzed, demonstrating
that it may not be an isolated case. It is worth noting that the reduction of the number
of sentences accompanied the reduction of words, which demonstrates that we create

sentences with the same size (or word count) as the testers are used to create by hand.

Figure 32 — Text size reduction

250 7,201
T.I87 :
1,200 - - .

1 2,000 L 7400
Looo} 200 . 2,

J <4300 ¢
800 L 150

-200

number of words
number of sentences
number of words
—
Ut
o
o
T
number of sentences

. 100
600 1000 |

6 0 4100
400 + 750

J If{A SmarTest JH‘? A SmarTest
(a) Feature 6813 (b) Feature 7163

Source: The author (2022)

Concerning Metric 2, the test engineer made the change in a specific step that was
shared by all test cases from Feature 7163. Since we modeled this test step in our domain
model as a substep (i.e., detail of an abstract action), any change to this substep would

update all references to it accordingly. That being said, while this specific change needed

112

16 (sixteen) separate updates in the traditional approach, it would require only 1 (one)

update by using our solution.

RQ2 - Threats to Validity

We discuss here the threats to the validity of the evaluation of RQ2.

Conclusion Validity The discussion claims that the proposed approach minimizes the
effort for generating and especially maintaining test cases. For this claim, we considered
text size as a proxy measure. Of course, when one reads an artifact to understand or
modify its text, it is always better to have a smaller and abstract piece of text (with
further details provided when needed). However, the effort to write the requirements in
compliance with our CNL (and not simply writing in freestyle natural language) was
not quantified. The intuition is that, despite the theoretical drawback of a constrained

specification, the long-term advantages outweigh this initial inconvenience.

Internal Validity In fact, all evaluations (quantified or not) demonstrated a consider-
able reduction of text size and changes needed to update the test cases. It may not present
such a drastic reduction in particular cases, in which only a single and simple scenario
should be tested.

External Validity As discussed in RQ1, it may not represent all use cases in the in-
dustry, especially the ones that do not have specifications written in natural language.
However, since Motorola, a Lenovo Company is a global reference in its market, then this

result should apply to similar scenarios.

6.2.2 SmarTest: Additional Contexts

The quantitative evaluation tackled features from a single team and similar product func-
tionalities. This threat to validity was also discussed in detail in the previous section. To
mitigate this situation, we promoted the tool to teams across different company sites and

projects to analyze whether the tool is applicable in other contexts.

[RQ3] Research Question Is our approach applicable to other teams and projects?

Metric Number of features/inputs that could not be covered

RQ3 - Design and Execution

We had to survey managers that have experience in test generation to suggest focal points
that could use the tool and provide feedback. The tool was used to write features and
generate test cases in English for 3 (three) Motorola sites in Brazil. To diversify the

input types, we also considered the ones that have never been analyzed before, including:

113

manuals, slides, and even bug reports. Each focal point suggested a representative feature

to be rewritten and analyzed using the tool.

RQ3 - Results and Discussion

After initial meetings with the focal points, they presented the chosen requirements to be
rewritten while they provided feedback. We analyzed three features (A, B, and C) and

generated their respective test cases.

Feature A was described in presentation slides, from which we extracted and rewritten
some sentences that described the relevant scenarios (guided by the focal point). Then,
step details were incrementally added to reduce ambiguity. According to the focal point,

the generated test cases by the tool were sufficiently similar to the legacy test cases.

Feature B had an associated feature document from which we could extract the require-
ments. Without even writing the domain model, the focal point mentioned that the tool
covered the same test scenarios and even ones that he did not think of before. The final

feedback was that this was already useful enough for him to use the tool.

Feature C had as input a comprehensive manual specifying every functionality to be
tested. This feature, in particular, had no prior associated TCs, so the ones generated by
the tool would be used in production, in case they were approved. We built the domain
model from the details that the focal point knew by experience on how to execute some
abstract steps. Then, after adding information such as labels and custom fields, the gen-
erated tests were analyzed and finally approved to be used in production without further

human intervention.

In this light, we noticed that all features could be analyzed by the tool without sig-
nificant changes in the tool. We assume, after all feedbacks, that the tool could be used

in any team or project within the scope of Motorola, a Lenovo Company.

RQ3 - Threats to Validity

Conclusion Validity The assumption that the tool could be used by any team is based
on the the fact that any requirement could be rewritten in compliance with our CNL. We
failed to determine if technical specs that require, for instance, time or arithmetics could

be properly specified and tested.

Internal Validity Asin RQ2, there is a wide range of teams across different sites. Even

though we analyzed more teams, it is still a small proportion.

External Validity We have only considered black-box testing. That being said, writing

requirements in natural language may not be enough for every use case.

114

6.2.3 Kaki: Scalability Evaluation

As discussed in Chapter 5 and Section 6.1.2, we also deal with a scenario in which test
cases are already generated with no standard whatsoever. That being said, a mechanism
to allow a consistency analysis without the requirements was developed. The consistency
of a single test step can be checked by only analyzing whether it fits in any frame (syntax
parsing). Therefore, the main concern regarding performance is the response time of the
semantic mechanism to check the consistency of a sequence of frames considering their
associations. The response time is particularly relevant because the test engineer should
check the TC consistency on-demand while she is submitting it to the test management

tool.

Goal, Research Questions and Metrics

Goal Analyze the Kaki tool for the purpose of evaluating the consistency analysis mech-
anism with respect to its performance from the viewpoint of the test engineer in the

context of dependency analysis of real TCs.

[RQ4] Research Question Does our approach provide an acceptable feedback delay

when checking the consistency and dependencies of a test case?

Metric Response time in seconds, i.e., the delay between the test steps input and the

tool response for the consistency and dependency checking.

RQ4 - Design and Execution

To accomplish the evaluation objective, three stages are required: (1) Extract and prepare
information to build the chosen domain model; (2) Obtain the test cases that will be
checked against consistency issues; and (3) Perform the consistency check for each test
case and gather the result and the time elapsed.

First, structured information describing paths among mobile applications was ex-
tracted from a Motorola code repository annotated by experts. These artifacts can be
categorized into components, which can be used to identify applications or distinctive fea-
tures. Then, after data selection (chosen components), cleaning, and integration (among
components), a directed graph was inferred from which we derived a domain model.

More than 200 (two hundred) real TCs from 4 (four) different components were avail-
able for the evaluation, and all of them were UI/functional tests. These TCs also have
associated execution scripts, so we could extract exactly which actions were coded to per-
form the TC. This way, the (screen) paths among these Ul actions were to be discovered
after our dependency check/injection mechanism. In this evaluation, these paths describe

how to reach the screen whose actions must be executed upon.

115

To automate the execution of the evaluation, we developed a script that, for each
test case: (a) selects a subgraph from the domain model baseline, considering only the
features pertinent for the particular TC; (b) executes our consistency mechanism over the
test steps to inject the missing dependencies when applied; and (c) collects and stores the

results into different data formats (text logs, csv, etc.).

RQ4 - Results and Discussion

The results automatically gathered by the evaluation script are summarized in Figure 33
and Figure 34. In these figures, two fundamental vectors are shown: the time spent to
check the consistency and inject the missing dependencies, and the corresponding number

of steps.

Figure 33 — Histogram: Time spent

Quantity:
189
80 % | 8
60 % | :
40% | .
20% | .
0% | —

T
0 50 100 150 200 250
Time (s)

Source: The author (2022)

116

Figure 34 — Histogram: Steps

80 % [a

60 % |-

40 %

20% |-

0% |

T T
0 10 20 30 40
Number of steps

Source: The author (2022)

As can be seen in Figure 33, for the vast majority of TCs evaluated, the consistency
analysis took less than 10 (ten) seconds to give the best global solution. There are also
outliers, taking more than 200 (two hundred) seconds to respond. Also, observing Fig-
ure 34, there are some test cases with more than 40 (forty) steps. These unlikely scenarios
contributed to raising the time spent with the analysis of the outliers. It is also worth
mentioning that 18% of the test case analyses timed out (300 seconds limit). This draw-
back was already expected from a tool that relies upon model finding. However, since the
analysis finds optimal solutions to problems that include generalization/data dependency
resolution (not quite well handled by other algorithms), we consider this timeout ratio
acceptable.

Figure 35 shows an overview of the relationship between the number of steps and the
time spent as a box plot. It displays the spread and skewness of the analysis time for
each group/class through their quartiles. Although classes have, usually and preferably,
fixed width, we chose this range of values to avoid an unbalanced frequency distribution,
as illustrated in Figure 34. From this box plot, we can deduce that, for most cases, the
analysis time increases proportionally to the number of steps (steadily). However, for each
group, there are outliers with significantly higher time duration. By sampling analysis,
we correlate these outliers to the size of the corresponding domain model (too many
dependencies or large hierarchy trees).

Concerning the environment configuration to carry out the evaluation, Table 5 details
hardware specifications and software configurations.

Considering the results shown, it becomes easy to perceive that the tool can provide
fast feedback regarding dependencies when considering each TC at a time. We argue that
it is unlikely for a given frame or test case to have so many dependencies that it becomes

infeasible to make a bounded verification in Alloy. For larger scopes (bounds), the process

117

Figure 35 — Box plot: Time x Number of Steps

seal H]
= 57 I]
-

RS | |
Zg 27\ m—{ | | | | | | | | \7

—20 0 20 40 60 80 100 120 140 160 180 200 220 240 260
Time(s)

Source: The author (2022)

Table 5 — Environment specifications

Environment Spec Value

Memory 8003 MiB

Processor Intel(R) Core(TM) i5-6600K
Alloy Version 4.2

SAT Solver ~ MiniSAT
Source: The author (2022)

Hardware

Software

becomes too expensive (timewise), as seen in the results for the timeouts. However, since
we found out that test cases have — on average — 4 (four) test steps in our scenario, it
is acceptable to analyze and make consistent not only one by one but even multiple test

cases handles at once.

Threats to Validity

We discuss here the threats to the validity of our evaluation.

Conclusion Validity The discussion in the evaluation claims that the response time is
enough since it is less than 300 seconds in extreme cases, and even less in most cases, con-
sidering an intermediary processor. However, a qualitative study to find the test engineer

perception of this delay, in a wider context, was not performed.

Internal Validity There are two variants that may influence different results in subse-
quent evaluations: (1) the test cases used in this round might not be representative, since
we had limited access to automated scripts in a given set of components/features; (2) the
hardware used have reasonable processing specifications, but they might not be enough
for multiple users at real time, which could demand a dedicated high-end server or a

different architecture.

External Validity The number of test steps could also vary for different applications,

platforms, and companies — which could negatively affect the response time. However,

118

because an action supports any abstraction level (test steps, test cases or even entire
suits), it is possible to apply a strategy to consolidate a set of actions in a more abstract
one. In this way, even if the test case has a high number of test steps, we can reduce it by
building one or more abstraction layers. In other words, instead of having a flat sequence,
we can transform it into a nested sequence by using the test action structure and analyze

each associated frame at a time.

Scalable Implementation

We presented our semantic prototype implementation in Alloy, in which the semantics of
a domain model, and all its elements, are formally defined; Alloy was used to rigorously
perform the consistency analysis. However, even with the performance improvements, it
is yet not ideal for industrial use because of its runtime overhead.

Due to this performance bottleneck that may prevent the adoption of our strategy
in practice, we decided to make an alternative implementation based on the same re-
quirements and definitions. Still, we chose declarative programming because it is more
adequate for the purpose of our work. Answer Set Programming (ASP) is a particular
form of declarative programming that uses non monotonic reasoning over knowledge rep-
resentations. The syntax is somewhat similar to Prolog, but with different techniques
that allow fast SAT solvers Lifschitz (2019). One mature ASP system is called clingo that
comprises a grounder gringo and a solver clasp Gebser et al. (2014).

Although Alloy allows more abstract modelling and is easier to understand, clingo
is faster because of its stable model semantics but is harder to encode complex prob-
lems. That is why we chose to make this alternative implementation just for the sake of
performance; a formal translation from Alloy to clingo is out of the scope of our work.

The Listing 6.2 illustrates a simplified way to encode our dependency analysis. First,
in Line 1, we declare all possible actions via the predicate action/1 (arity 1). We use
the character ;" only as a syntactic sugar to action(wifi)., action(send)., and so on.
Then, we define which actions should be performed before others (dependency) and also
dictate action hierarchy. These facts are denoted by using the predicates before/2 and
sub/2, respectively, in lines 2-5. We also define, in Line 6, the root action which should
be performed first. In Lines 7-10, we define the inference rules to discover a consistent
sequence of actions. These rules are encoded using the predicate next/2 and variables
(uppercase letters) to define which step transitions are allowed. Finally, in Line 11, we

restrict the output to show only the relevant predicate.

119

Listing 6.2 — Dependency analysis using clingo

action(wifi;g;send;login;press;swipe;conn;root).
2 before(send, conn).

before(send, login).
4 before(login, conn).

sub(conn, g); sub(conn, wifi).
6 next(root, send).

next(root, X) : action(X) :- next(X, _).
8 next(X, Z) :- next(X, Y), next(Y, Z).

next (Y, X) :- before(X, Y), not sub(Y, _).
10 next(C, A) :- before(A, B), sub(B, C).

#show next/2.

Considering the same TCs, our strategy using clingo achieved 1ms of max execution
time, even in the same cases in which the Alloy implementation times out, as illustrated

in Figure 36.

Figure 36 — Max execution time: Alloy vs Clingo implementation

2.43 -10°
0O 02 04 06 08 1 12 14 16 18 2 22 24 2
execution time in ms .10°

Source: The author (2022)

120

7 RELATED WORK

7.1 TEST GENERATION FROM NATURAL LANGUAGE DESCRIPTIONS

As previously discussed, imposing on users the adoption of unfamiliar notations is often
time-consuming and inefficient. This statement holds for testers that do not have any
programming background and need to create or maintain code scripts, as well as for
developers that commonly have little or no experience with formal methods to build and
maintain an abstract model model of the SUT expected behaviour. This scenario has
motivated the use, by several companies, of test artifacts written in natural language.
However, because of N ambiguous nature, it is hard to systematically verify consistency
and even harder to define a mapping between the descriptions and the corresponding
automation framework scripts without human intervention.

The search for an optimal mapping between NL descriptions and executable tests
has been an active research area. Cucumber (WYNNE; HELLESOY, 2012), for instance,
assists users on writing acceptance tests in a behavior-driven development environment:
parameterized scenarios are written in natural language and semi-automatically mapped
to a source code or stub, in order to provide a better tracking. Fach scenario is a list of
steps that must follow some basic syntactic rules defined by a grammar called Gherkin.

DASE (WONG et al., 2015), Document-Assisted Symbolic Execution, is an approach
that uses NL processing and heuristics to inspect the code’s textual documentation and
automatically extracts input constraints to improve symbolic execution for test generation.
The textual documents used as input are manual pages and code comments through which
the tool identifies grammar relationships that define input constraints, enabling DASE to
perform a symbolic execution.

TaRGeT (FERREIRA et al., 2010) relies on the concept of user view templates, which
capture user interactions with the system through sentences used to describe user actions,
system states and system responses. This template is the input to the tool (MACHADO;
SAMPAIO, 2010; FERREIRA et al., 2010), whose purpose is to mechanize a test case genera-
tion strategy. The tool generates test cases (for manual execution) which include the test
procedure, description, and related use cases. Moreover, the tool can generate a traceabil-
ity matrix relating test cases, use cases and requirements. There is also an extension of
the tool that adopts an CNL (ucsCNL) (BARROS et al., 2011) to reduce ambiguity, but it
only provides syntactic assistance, which does not influence the inferred semantics model.

UMTG (WANG et al., 2015) also deals with the generation of TCs from use cases.
The overall approach is similar to TaRGeT (NOGUEIRA; SAMPAIO; MOTA, 2014), however
UMTG adopts a different natural language parsing strategy, extracts the data from a
particular use case format (RUCM), and employs a solver for OCL (Object Constraint

121

Language) constraints manually written in order to enable TC and input generation.

Following a similar approach, NAT2TEST (CARVALHO et al., 2014) generates TCs from
textual descriptions, but the inputs are system requirements rather than use cases. To
minimize NL ambiguity, requirements are written according to a specific controlled natu-
ral language named SysReq-CNL. The syntactic requirements are mapped into semantic
representations, so that specifications in several target formalisms can be derived, from
which test cases are generated. NAT2TEST focuses on reactive systems, having been suc-
cessfully used in the Avionics and Automotive application domains. A test case in this
context is a vector with values for input and output variables, and associated time spans,
rather than a sequence of test steps, as in the previous approaches.

Still regarding TC generation from requirements, the RT'CM (YUE; ALI; ZHANG, 2015)
framework uses the RUCM use case format and OCL constraints, as in UMTG (WANG et
al., 2015). However, RTCM goes a step further and generates executable scripts (via aTou-
candTest (YUE; ALI; ZHANG, 2015)) by embedding function calls into the specifications.

A more detailed comparison is presented in Section 7.3.

7.2 TEST AUTOMATION

7.2.1 Ad-hoc Test Automation

The simplest, ad hoc, form to execute Graphical User Interface (GUI)-based test cases
is to interpret the description and manually interact with the system to perform the
corresponding actions. However, to reduce costs and meet deadlines, companies seek to
automate the execution of these test cases by converting them into test scripts. Different
approaches are described and analyzed next. Due to the vast literature on test automation,
however, we focus here on approaches that are closely related to our work and specifically
to the Android platform.

7.2.1.1 Coding

Since executable test scripts are simply code snippets, a straightforward approach is to
count on developers to interpret the tests descriptions and code them using an automation
framework.

As an example, we highlight UTAutomator!, which is a framework developed by Google
to allow test automation through coding (see Listing 7.1) based on atomic actions such as:
click on a button with a given text; swipe operations; rotate screen; and check if a given
element exists. UTAutomator is a Java library with APIs to create customized functional
Ul tests for Android, and it has an engine to automate and run the tests (ANDROID, 2015).

Besides being officially supported, one of its main advantages is the available functionality

L http://developer.android.com/intl/en-us/tools/testing-support-library

122

Listing 7.1 — UTAutomator code example — Opening the Email application by pressing its launcher button

[...]
UiObject2 emailBtn =

device.findObject (By.description("Email"))
emailBtn.click ()

to test multiple user/system apps and their interactions without even having their source
codes, since it is Ul-focused.

As another example, Selendroid? is a test automation framework for Android native
and hybrid applications. It uses the Android instrumentation framework and tests one
app at a time. Because tests are written using the Selenium Webdriver client API, it may
be fully integrated to existing Selenium frameworks.

Despite the facilities provided, the use of these frameworks demands specialized knowl-
edge from the developer. Moreover, the automated TCs are framework dependent and may
become outdated when they use features that have been discontinued/deprecated after a

framework or system update, requiring significant code refactoring.

7.2.1.2 Capture & Replay

Automation based on the C&R approach, on the other hand, does not require prior
knowledge of an automation framework, and tends to be comparatively faster (LEOTTA
et al., 2013a). However, the created test scripts are typically linear, in the sense that they
do not embody alternative paths, serving only the purpose of pure playback.

RERAN (GOMEZ et al., 2013) is a C&R tool that focuses on the accurate reproduction
of gestures and actions performed in Android smartphones. Challenges such as complex
gestures, precise timing, and input from multiple sensors are dealt with by listening and
parsing low-level events from the stream. They are accurately reproduced by sending the
same event inputs with the original delay from each other, as they were captured.

Robotium Recorder (ROBOTIUM, 2013) is also a C&R tool, which transforms user
interactions into code scripts compatible with the Robotium automation framework. The
scripts can be later executed, refactored or changed by developers.

There are also hybrid approaches that mix C&R with a strategy to capture keywords
from the GUI to compose test actions. The test actions are stored as a script to be repro-
duced later. MonkeyTalk (CLOUDMONKEY, 2013) and Robotium Recorder™ (ROBOTIUM,
2013) are examples of frameworks that support C&R of keywords from applications built
on Android or IOS platforms. Although they are well-consolidated commercial tools, they
do not link test actions with TC descriptions (which is an important link we explore to

ease the process of designing and reusing TCs).

2 http://selendroid.io/ - Accessed 06/29/2017

123

Our work was also inspired by an empirical analysis presented in (LEOTTA et al., 2013a),
which shows that a test suite development requires more time when testing approaches
based on coding are adopted (between 32% and 112%) compared to C&R approaches. On
the other hand, the benefits of coding (concerning time saved) increase over successive
releases, because code is easier to maintain by specialists. Although these results were
obtained in a different context (Web), we observed that they are similar or even more
prominent in the mobile context. The absence of a reuse strategy for C&R artifacts is
expected to be directly related to high maintenance effort, while coded tests benefit from
design patterns such as Page Objects, as noted in (LEOTTA et al., 2013a). In our approach,
we combine the advantages of both approaches, by conceiving an elaborate reuse strategy

for C&R based on test actions expressed in natural language.

7.2.2 Script Generation

In the literature, we can identify several strategies which generate scripts from specifica-
tions. These specifications, however, are often detailed at a similar abstraction level to
the IUT, and use formal notations. Next, we discuss some of these related strategies.

Copstein and Oliveira (2005), for instance, proposes a strategy to automate script
design for statistical testing. The authors use a stochastic automata network (SAN) for
the specification and an Interface Event-State Model as an intermediate model (which
maps abstract models into implementation elements). Although an intermediate model is
used, the strategy uses a notation that requires specialized training and does not allow
multiple or composite model details. Besides, the generation is ad-hoc and, thus, there is
no established conformance relation to allow performing soundness or consistency analysis.

Balcer, Hasling and Ostrand (1989) creates a language (TSL) for writing formal test
specifications. In TSL, environment conditions, parameters and result verifications can
be encoded. In our work, however, because dependencies and instantiations are already
encoded within the domain model, generated test cases are directly mapped into scripts
without additional intermediate representations, while still being framework-agnostic.

Silveira et al. (2011) proposes a strategy for generating scripts based on UML (Unified
Modeling Language) models. The general idea is to annotate the model with custom
stereotypes and tags. Then, to automate the test execution, these tagged stereotypes
have a direct mapping to test code. This work, besides using a specialized notation to
derive tests from, requires adding execution details to the abstract specification.

A recent work (LI, 2022) leverages pre-trained Natural Language Processing (NLP)
models to generate test scripts by matching natural language descriptions with test meth-
ods that locate GUI elements. Because a pre-trained NLP model is applied, there is a
considerable error rate while matching, even though only simple and atomic descriptions

are used. In our context, using a CNL for requirements and domain model allows us

124

to create accurate matches, define abstract actions on-the-fly, and ensure soundness and

consistency because of the formal semantics.

7.3 FINAL REMARKS

Although the related work presented here share some features with ours, particularly
considering that the inputs are textual documents in natural language, they do have

some fundamental differences that are summarized Table 6.

Table 6 — Related work: comparison

Smartest + ForceIDE + Kaki NAT2TEST TaRGeT UTMG RTCM Cucumber
CNL Y Y (y)
Free-Style NL
Formal Semantics
Flexible Abstraction Levels
Reuse
Test Automation (Coding or C&R)
Consistency Analysis
Test Input Data Y Y Y (v)

Time

T T

=~

Parametrized by Generation Mechanism Y

Y - Supported / (y) - Partially Supported
Source: The author (2022)

In general, the related work suffer from one or more of the following limitations:

o Cucumber, NAT2TEST, UMTG, and RTCM restrict the input to a given subset of
natural language that must obey a particular standard and do not present alterna-
tives to deal with legacy /freestyle NL inputs. In our approach, we consider both the

case of freestyle and a CNL textual document as input.

o« DASE, NAT2TEST, TaRGeT, UMTG, and RTCM provide no reuse of specifica-
tion/test artifacts. Cucumber allows a simple form of reuse when the step is shared
among test scenarios. Our work, instead, addresses reuse to a much larger extent.
For instance, in our approach, a test case can be a step of a more elaborate test

case, whereas a scenario is not qualified as a possible step for reuse in Cucumber.

o The aforementioned strategies that generate test scripts adopt specifications that
either match the implementation abstraction level or annotate the abstract model
with low-level details. Because our strategy proposes a compositional domain model,
details can be further added according to the organization’s roles and processes.
Besides, because the semantics are formally defined to the atomic level, generated

test scripts are verified to be sound and consistent.

e Most of the above-mentioned approaches focus on generation instead of automa-

tion of existing test cases. These approaches rely on formal and well-documented

125

requirements from which they can generate TCs. Unfortunately, up-to-date require-
ments are seldom available in the non-critical software industry. In addition, to
allow a fully mechanized generation of automated test cases, the requirements need
to be specified at a lower level of abstraction. None of these approaches provide a
(bottom-up) alternative to building a domain model from manually generated TCs

and allow consistency checks as we propose here.

o None of the cited approaches address test step sequence consistency and depen-
dency notions, with an associated verification mechanism; this is a distinguishing

contribution of our approach.

Despite the large scope of our work, we do not support some elements featured in other
tools/strategies. For instance, even though we support passing data though parameters,
we do not generate test input data. We also do not model timed-based behaviors. Finally,
the generation mechanism is tied to the cspio relation and cannot be instantiated in other

formalisms as easily as in NAT2TEST, which has an intermediate and hidden formalism.

126

8 CONCLUSIONS

In this work, we present a strategy to generate and automate test cases from require-
ments written in natural language. Through some immersion activities in the context of
our industrial partner, Motorola Mobility—a Lenovo company, we were able to identify
and deal with several issues that come with testing software in large scale with no formal
requirements. However, based on previous experience, imposing the adoption of a formal
notation or a rigid process was infeasible. In this light, our main contribution is to allow
testing teams, that are also involved in a similar industrial perspective, to generate sound
and consistent test cases automatically while still writing specifications in natural lan-
guage (whose meaning is automatically obtained using an underlying, and hidden, formal
semantics in CSP). Additionally, with the help of a dynamically evolving domain model,
the test teams are not compelled to specify the entire functionality in a single take, al-
lowing them to postpone more concrete descriptions for other roles down the line or when
the feature is mature enough to be tested. Evidence from the experiments showed that
our strategy has more than 90% precision (same test scripts were generated) and 80%
text size reduction when compared with the artifacts generated manually.

Regarding legacy test cases, we also implemented a strategy to deal with steps written
in freestyle natural language, which have no requirement to rely upon. For this scenario,
our strategy translates a derived domain model into Alloy micro-models to allow the
verification of consistency. Even with the Alloy bounded verification, however, we observed
that testers wanted a faster response. Hence, we have implemented another consistency
analysis mechanism using Clingo, which turned out to be much faster. While most analyses
using Alloy took approximately 2-10 seconds, the Clingo alternative spent 1ms for the
same analyses. The proposed approach to the direct engineering of test script generation
from requirements written in a CNL, combined with the strategy to automatically generate
scripts for legacy test cases, has proved promising in the particular industrial partnership
with Motorola Mobility, but seems also useful to support mechanized test case generation
in other contexts, as the issues and improvement opportunities are similar.

In summary, the scope of this work encompasses requirement and domain model spec-
ifications, and the generation of test scripts, including the necessary artifacts in between.
Specification, verification, and generation are supported by custom tools tailored for this
strategy. Because the semantics are formally defined and mechanically verified by cus-
tom tools, we ensure two important properties automatically: soundness and consistency.
While the former property is well-known and regarded in the literature for test generation,
the latter is a major contribution of our work, which ensures that the generated test cases
can be executed on a concrete implementation. This consistency notion is derived from

the information present in the domain model (dependencies, cancellations, details, etc.)

127

while the generation mechanism ensures that these relations do not change the behavior
specified by the requirements. Another major contribution is the definition of a CNL —
flexible enough for describing both requirements and the corresponding test cases — and
an implementation that allows extending the CNL itself while writing the specification.
These contributions were tested against an industrial context through experiments and
evaluations, which demonstrated the practical application of our approach. In addition to
generating and automating test cases that are equivalent to the ones described by hand,
we also discovered new scenarios and created, from new features, test cases approved to
be used in production. Although the strategy is evaluated within an industrial context,
we can argue that, in principle, it is suitable for any functional, GUI-based, black-box
testing automation process in which the CNL can be applied or adapted.

It is worth mentioning that the main issues on traditional software testing automation
mentioned in Chapter 1 were all addressed by using our approach. The controlled natural
language is expressive enough to allow references to other entities (using frame equiva-
lence) for further description (Abstraction gap and traceability); to express all kinds of
artifacts (Heterogeneous notations); to use mature mechanisms for automatic translation
(Internationalization); and to be easily interpreted by humans (Legibility). Additionally,
the definition of a domain model allows continuous addition of concrete details to abstract
requirements while maintaining traceability (Duplicate artifacts), verifying consistency
(Inconsistency), and avoiding duplicate mappings to concrete actions (Abstraction gap
and traceability), which can also reduce the maintenance effort. The adoption of test ac-
tions as an intermediate structure allows for the representation of any test artifact with
a single notation (Abstraction gap and traceability) as well as being framework agnostic
(Technology lock-in). Finally, with the help of a domain model, the generation mechanism
can create tests that leverage the system state from previous steps, avoiding repeating

unnecessary actions (Execution time).

8.1 ONGOING AND FUTURE WORK

It is not uncommon to find teams that do not follow the traditional specification phase
and skip it until they need to write test cases. Because of that, there are no requirements
to rely on, blocking test design teams from using established strategies that generate
test cases while ensuring soundness. In this situation, the only relevant artifacts are the
existing test cases or scripts. So a possible alternative is to apply a reverse engineering
process: the existing scripts can be used to abstract test case descriptions in a CNL, from
which use cases can also be derived. Figure 37 illustrates a possible reverse engineering
process from executable test scripts. The overall idea is to convert them into test actions,
and by extracting associated metadata (method name and documentation), generate high-
level descriptions that match our CNL. Then, the next step is to abstract each set of TCs

into use cases and, finally, into high-level requirements. Considering the newly extracted

128

requirements, we could use direct engineering strategy (also captured in Figure 37) and
presented in this work, to generate new test cases and, finally, automate them into scripts.

In general terms, the teams describe the tests directly in an executable manner (scripts)
or step-by-step in natural language (test cases). For both situations, we can associate a
sentence in compliance with our CNL to the artifact. When all artifacts are annotated
we can build abstractions over it (reverse engineering) and take advantage of the already

established techniques to generate and automate more test cases.

Figure 37 — Round-trip engineering: Integrated Framework

Requirements (CML)

Synthesis

¢ 3\ Use Cases (CNL)

Formalization Translation

e
|y

P -
080

]
]

]

]

]

]

]

]

]

]

]

]

]

]

]
<> R
]

Reuse"

]

- Retrieve-m :
]

]

]

]

]

]

]

]

]

]

Y

Test Cases

Formal Model (Actions)

I

[}

[}

[}

[}

[}

[}

I Consistency Analysis
: & Concretization
[}

[}

[}

[}

]

n

Generation

/>

Executable Scripis

Source: The author (2020)

Unified Semantics

Because our strategy encompasses two scenarios (direct engineering and legacy test cases)
with different inputs and challenges, we chose distinct languages and paradigms to for-

mally define the semantics for soundness and consistency analysis. Although these multiple

129

semantic definitions are contributions of our work, we should benefit from a single and

unified semantics for future contributions to consistency analysis.

Natural Language Processing

The use of a CNL allows us to precisely define parsing rules and its formal semantics.
Nevertheless, writing the requirements in compliance with these rules is not as simple
as test engineers are accustomed to. Despite the fact that our editor is able to point
out errors and help the user by autocompleting the sentences, some users are still re-
luctant to adopt the approach. In this light, we investigate the possibility of annotating
a corpus of requirements and use machine-learning algorithms to map freestyle natural
descriptions into frames. While there is no guarantee to achieve an unambiguous match-
ing, the automatic mapping would improve the productivity significantly, besides lowering
the adoption barrier. Furthermore, with this automatic mapping, all legacy descriptions
could be parsed, allowing both reverse and direct (round-trip) engineering as previously

discussed.

Parallelization of test scripts

Execution time can be a critical factor, especially in regression and smoke test suites that
need to be run multiple times for each software update. In the case that test scripts are
configured to be executed in sequence, there might be a considerable overhead. Then,
we propose a strategy to optimally break the test suite into multiple smaller ones to be
executed in parallel, so it should execute faster. To be able to achieve this, there must
be a consistency analysis (dependency resolution), specifically to break these tests in an
optimal way that minimizes the need for setup steps in each independent SUT. This has
also been explored by other researchers (BERTOLINO et al., 2018) and is regarded as an

important research opportunity.

Test Selection and Prioritization

Generating test cases automatically from features can sometimes uncover scenarios that
can be either too trivial or unreasonable, as previously discussed in Section 4.1.5. Thus,
analysts usually discard those scenarios. While they are able to delete each scenario man-
ually, ideally the tool should offer additional filters in a mechanized fashion, such as
similarity and coverage (as in Ferreira et al. (2010)). Additionally, regarding regression
testing, retesting all cases is often expensive. Thus, selection and prioritization can be
used to reduce the suite. The consistency analysis can also help optimize the suite by
reducing redundant or duplicate steps. We can leverage the FDR analysis mechanism to
give the shortest trace, thus not including the re-execution of dependencies or auxiliary

steps when it is not necessary.

130

REFERENCES

ALEGROTH, E.; NASS, M.; OLSSON, H. H. Jautomate: A tool for system-and
acceptance-test automation. In: IEEE. 2013 IEEE Sizth International Conference on
Software Testing, Verification and Validation. [S.1.], 2013. p. 439-446.

ANDROID. Android UlAutomator description. 2015. <http://developer.android.com/
tools/help /uiautomator/index.html>. Visited on 2015-03-25.

ANGELOV, K. The mechanics of the Grammatical Framework. [S.1.]: Chalmers Tekniska
Hogskola (Sweden), 2011.

APACHE. FreeMarker Java Template Engine. 2022. Available at: <https://freemarker.
apache.org/>.

ARRUDA, F.; SAMPAIO, A.; BARROS, F. Capture and replay with text-based reuse
and framework agnosticism. In: Proceedings of the 28th International Conference on
Software Engineering and Knowledge Engineering. KSI Research Inc., 2016. Available at:
<http://dx.doi.org/10.18293 /SEKE2016-228>.

ARRUDA, F. M. C. d. Test automation from natural language with reusable capture
€ replay and consistency analysis. Master’s Thesis (Master’s Thesis) — Universidade
Federal de Pernambuco, 2017.

BALCER, M.; HASLING, W.; OSTRAND, T. Automatic generation of test scripts from
formal test specifications. In: . New York, NY, USA: ACM, 1989. v. 14, n. 8, p. 210-218.
ISSN 0163-5948. Available at: <http://doi.acm.org/10.1145/75309.75332>.

BARROS, F. A.; NEVES, L.; HORI, E.; TORRES, D. The ucsCNL: A controlled natural
language for use case specifications. In: SEKE. [S.1.: s.n.], 2011. p. 250-253.

BERNSTEIN, A.; KAUFMANN, E. GINO — a guided input natural language ontology
editor. In: Proceedings of the 5th International Conference on The Semantic Web.
Berlin, Heidelberg: Springer-Verlag, 2006. (ISWC’06), p. 144-157. ISBN 3-540-49029-9,
978-3-540-49029-6.

BERTOLINO, A. Software testing research: Achievements, challenges, dreams.
In: 2007 Future of Software Engineering. Washington, DC, USA: IEEE Computer
Society, 2007. (FOSE ’07), p. 85-103. ISBN 0-7695-2829-5. Available at: <http:
//dx.doi.org/10.1109/FOSE.2007.25> .

BERTOLINO, A.; CALABRO, A.; ANGELIS, G. D.; GALLEGO, M.; GARCIA, B.;
GORTAZAR, F. When the testing gets tough, the tough get ElasTest. In: IEEE.
2018 IEEE/ACM 40th International Conference on Software Engineering: Companion
(ICSE-Companion). [S.1.], 2018. p. 17-20.

BRINKSMA, E. A theory for the derivation of tests. In: NORTH-HOLLAND. Proc. 8th
Int. Conf. Protocol Specification, Testing and Verification. [S.1.], 1988. p. 63-74.

CALDIERA, V.; ROMBACH, H. D. The goal question metric approach. Encyclopedia of
software engineering, v. 2, n. 1994, p. 528-532, 1994.

http://developer.android.com/tools/help/uiautomator/index.html
http://developer.android.com/tools/help/uiautomator/index.html
https://freemarker.apache.org/
https://freemarker.apache.org/
http://dx.doi.org/10.18293/SEKE2016-228
http://doi.acm.org/10.1145/75309.75332
http://dx.doi.org/10.1109/FOSE.2007.25
http://dx.doi.org/10.1109/FOSE.2007.25

131

CARVALHO, G.; FALCAO, D.; BARROS, F.; SAMPAIO, A.; MOTA, A.; MOTTA,
L.; BLACKBURN, M. NAT2TESTSCR: Test case generation from natural language

requirements based on SCR specifications. Science of Computer Programming, Elsevier,
v. 95, p. 275-297, 2014.

CAVALCANTI, A.; GAUDEL, M.-C. Testing for refinement in CSP. In: SPRINGER.
International Conference on Formal Engineering Methods. [S.1.], 2007. p. 151-170.

CAVALCANTI, A.; HIERONS, R. M.; NOGUEIRA, S.; SAMPAIO, A. A suspension-
trace semantics for CSP. In: 10th International Symposium on Theoretical Aspects of
Software Engineering, TASE 2016, Shanghai, China, July 17-19, 2016. [s.n.], 2016. p.
3-13. Available at: <http://dx.doi.org/10.1109/TASE.2016.9>.

CHANDRA, R.; KARLSSON, B. F.; LANE, N.; LIANG, C.-J. M.; NATH, S.; PADHYE,
J.; RAVINDRANATH, L.; ZHAO, F. Towards Scalable Automated Mobile App Testing.
[S.1], 2014.

CHOMSKY, N. Deep structure, surface structure, and semantic interpretation.
Semantics, Cambridge University Press Cambridge, p. 183-216, 1971.

CLOUDMONKEY. MonkeyTalk. 2013. <https://www.cloudmonkeymobile.com/
monkeytalk>. Visited on 2015-05-25.

COPSTEIN, B.; OLIVEIRA, F. Automated test script generation for model-based
testing. In: SBC. Anais do IV Simpdsio Brasileiro de Qualidade de Software. [S.1.], 2005.
p. 248-260.

DIMITROVA, V.; DENAUX, R.; HART, G.; DOLBEAR, C.; HOLT, I.; COHN, A. G.
Involving domain experts in authoring OWL ontologies. In: The Semantic Web - ISWC
2008: Tth International Semantic Web Conference, ISWC 2008, Karlsruhe, Germany,
October 26-30, 2008. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008.
p. 1-16. ISBN 978-3-540-88564-1.

FERREIRA, F.; NEVES, L.; SILVA, M.; BORBA, P. Target: a model based product
line testing tool. Tools Session of CBSoft, 2010.

FILLMORE, C. J. The case for case’in bach & harms (eds.) universals in linguistic
theory. Holt, Rinehart, and Winston, 1968.

GAMMA, E. Design patterns: elements of reusable object-oriented software. [S.1]:
Pearson Education India, 1995.

GAUDEL, M.-C. Testing can be formal, too. In: SPRINGER. Colloquium on Trees in
Algebra and Programming. [S.1.], 1995. p. 82-96.

GEBSER, M.; KAMINSKI, R.; KAUFMANN, B.; SCHAUB, T. Clingo= ASP+ control:
Preliminary report. arXiv preprint arXiv:1405.3694, 2014.

GF. Using the Java binding to the C runtime. 2022. Available at: <https:
//www.grammaticalframework.org/doc/runtime-api.html#java>.

http://dx.doi.org/10.1109/TASE.2016.9
https://www.cloudmonkeymobile.com/ monkeytalk
https://www.cloudmonkeymobile.com/ monkeytalk
https://www.grammaticalframework.org/doc/runtime-api.html#java
https://www.grammaticalframework.org/doc/runtime-api.html#java

132

GOMEZ, L.; NEAMTIU, I.; AZIM, T.; MILLSTEIN, T. RERAN: Timing-
and touch-sensitive record and replay for android. In: Proceedings of the 2013
International Conference on Software Engineering. Piscataway, NJ, USA: IEEE
Press, 2013. (ICSE °13), p. 72-81. ISBN 978-1-4673-3076-3. Available at: <http:
//dl.acm.org/citation.cfm?id=2486788.2486799> .

GRANO, G.; SCALABRINO, S.; GALL, H. C.; OLIVETO, R. An empirical investigation
on the readability of manual and generated test cases. In: IEEE. 2018 IEEE/ACM 26th
International Conference on Program Comprehension (ICPC). [S.1.], 2018. p. 348-3483.

GRECHANIK, M.; XIE, Q.; FU, C. Maintaining and evolving GUI-directed test
scripts. In: Proceedings of the 31st International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2009. (ICSE ’09), p. 408-418. ISBN
978-1-4244-3453-4. Available at: <http://dx.doi.org/10.1109/ICSE.2009.5070540>.

GRIESKAMP, W. Multi-paradigmatic model-based testing. In: Proceedings of the First
Combined International Conference on Formal Approaches to Software Testing and
Runtime Verification. Berlin, Heidelberg: Springer-Verlag, 2006, (FATES’06/RV’06). p.
1-19. ISBN 3-540-49699-8, 978-3-540-49699-1.

GRUZITIS, N.; PAIKENS, P.; BARZDINS, G. Framenet resource grammar library for
GF. In: SPRINGER. International Workshop on Controlled Natural Language. [S.1],
2012. p. 121-137.

HALLETT, C.; SCOTT, D.; POWER, R. Composing questions through conceptual
authoring. Computational Linguistics, MIT Press, v. 33, n. 1, p. 105-133, 2007.

JACKSON, D. Alloy: a lightweight object modelling notation. ACM Transactions on
Software Engineering and Methodology (TOSEM), ACM, v. 11, n. 2, p. 256-290, 2002.

JACKSON, D. Software Abstractions: logic, language, and analysis. [S.1.]: MIT press,
2012.

JONES, C. B. Systematic software development using VDM. [S.1.]: Prentice Hall
Englewood Cliffs, 1990.

KUHN, T. A principled approach to grammars for controlled natural languages and
predictive editors. Journal of Logic, Language and Information, Springer, v. 22, n. 1, p.
33-70, 2013.

LEOTTA, M.; CLERISSI, D.; RICCA, F.; TONELLA, P. Capture-replay vs.
programmable web testing: An empirical assessment during test case evolution. In:
Reverse Engineering (WCRE), 2013 20th Working Conference on. [S.1.: s.n.], 2013. p.
272-281.

LEOTTA, M.; CLERISSI, D.; RICCA, F.; SPADARO, C. Improving test suites
maintainability with the page object pattern: An industrial case study. In: IEEE. 2013
IEEFE Sizth International Conference on Software Testing, Verification and Validation
Workshops. [S.1.], 2013. p. 108-113.

LI, C. Mobile GUI test script generation from natural language descriptions using
pre-trained model. In: IEEE. 2022 IEEE/ACM 9th International Conference on Mobile
Software Engineering and Systems (MobileSoft). [S.1.], 2022. p. 112-113.

http://dl.acm.org/citation.cfm?id=2486788.2486799
http://dl.acm.org/citation.cfm?id=2486788.2486799
http://dx.doi.org/10.1109/ICSE.2009.5070540

133

LIFSCHITZ, V. Answer set programming. [S.1.]: Springer International Publishing, 2019.
LJUNGLOF, P. Expressivity and complexity of the grammatical framework. 2004.

MACHADO, P.; SAMPAIO, A. Automatic test-case generation. In: Testing Techniques
in Software Engineering, Second Pernambuco Summer School on Software Engineering,
PSSE, Recife, Brazil. [S.].: s.n.], 2010. p. 59-103.

MAHMOOD, S.; AJILA, S. A. Software requirements elicitation—a controlled experiment
to measure the impact of a native natural language. In: IEEE. 2013 IEEE 37th Annual
Computer Software and Applications Conference. [S.1.], 2013. p. 437-442.

MANNING, C. D.; SURDEANU, M.; BAUER, J.; FINKEL, J. R.; BETHARD, S.;
MCCLOSKY, D. The Stanford CoreNLP natural language processing toolkit. In:
Proceedings of 52nd annual meeting of the association for computational linguistics:
system demonstrations. [S.l.: s.n.], 2014. p. 55-60.

MILLER, G. A. WordNet: a lexical database for English. Communications of the ACM,
ACM, v. 38, n. 11, p. 39-41, 1995.

MILLER, G. A. WordNet: An electronic lexical database. [S.1.]: MIT press, 1998.

MINSKY, M. A framework for representing knowledge. The Psychology of Computer
Vision, MIT Press, 1975.

NOGUEIRA, S.; SAMPAIO, A.; MOTA, A. Test generation from state based use
case models. Formal Asp. Comput., v. 26, n. 3, p. 441-490, 2014. Available at:
<http://dx.doi.org/10.1007 /s00165-012-0258-z>.

OLIVEIRA, R. R. D.; MARTINS, R. M.; SIMAO, A. D. S. Impact of the vendor lock-in
problem on testing as a service (taas). In: IEEE. 2017 IEEE International Conference
on Cloud Engineering (IC2E). [S.1.], 2017. p. 190-196.

OSTRAND, T. J.; BALCER, M. J. The category-partition method for specifying and
generating fuctional tests. Communications of the ACM, ACM, v. 31, n. 6, p. 676686,
1988.

PILONE, D.; PITMAN, N. UML 2.0 in a Nutshell. [S.1.]: O’Reilly Media, Inc., 2005.
PRATCHETT, T. Equal rites. [S.1.]: HarperCollins, 2009.

RAFI, D. M.; MOSES, K. R. K.; PETERSEN, K.; MANTYLA, M. V. Benefits and
limitations of automated software testing: Systematic literature review and practitioner
survey. In: IEEE. 2012 7th International Workshop on Automation of Software Test
(AST). [S.1], 2012. p. 36-42.

RANTA, A. The GF resource grammar library. Linguistic Issues in Language Technology,
v. 2, 2009.

RANTA, A. Grammatical framework: Programming with multilingual grammars. [S.1.]:
CSLI Publications, Center for the Study of Language and Information Stanford, 2011.

RICHTERS, M.; GOGOLLA, M. On formalizing the UML object constraint language
OCL. ER, Springer, v. 98, p. 449-464, 1998.

http://dx.doi.org/10.1007/s00165-012-0258-z

134

ROBOTIUM. Robotium Recorder™. 2013. Visited on 2015-05-25. Available at:
<http://robotium.com/>.

SAMPAIO, A.; NOGUEIRA, S.; MOTA, A. Compositional verification of input-output
conformance via csp refinement checking. In: SPRINGER. International Conference on
Formal Engineering Methods. [S.1.], 2009. p. 20-48.

SAMPAIO, A.; NOGUEIRA, S.; MOTA, A.; ISOBE, Y. Sound and mechanised
compositional verification of input-output conformance. Softw. Test., Verif. Reliab.,
v. 24, n. 4, p. 289-319, 2014. Available at: <http://dx.doi.org/10.1002/stvr.1498>.

SCHNEIDER, S. The B-method: An introduction. [S.1.]: Palgrave, 2001.

SILVEIRA, M. B. da; RODRIGUES, E. M.; ZORZO, A. F.; COSTA, L. T.; VIEIRA,
H. V.; OLIVEIRA, F. M. de. Generation of scripts for performance testing based on
UML models. In: CITESEER. SEKE. [S.1.], 2011. p. 258-263.

SPIVEY, J. M.; ABRIAL, J. The Z notation. [S.L]: Prentice Hall Hemel Hempstead,
1992.

TILLEY, S.; PARVEEN, T. Software testing in the cloud: migration and execution. [S.1]:
Springer Science & Business Media, 2012.

TRETMANS, J. Test generation with inputs, outputs and repetitive quiescence. Software
- Concepts and Tools, v. 17, n. 3, p. 103-120, 1996.

UTTING, M.; PRETSCHNER, A.; LEGEARD, B. A taxonomy of model-based testing
approaches. Software testing, verification and reliability, Wiley Online Library, v. 22,
n. 5, p. 297-312, 2012.

WANG, C.; PASTORE, F.; GOKNIL, A.; BRIAND, L. C.; IQBAL, Z. UMTG: A toolset
to automatically generate system test cases from use case specifications. In: Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. New York, NY,
USA: ACM, 2015. (ESEC/FSE 2015), p. 942-945. ISBN 978-1-4503-3675-8. Available at:
<http://doi.acm.org/10.1145/2786805.2803187>.

WONG, E.; ZHANG, L.; WANG, S.; LIU, T.; TAN, L. Dase: Document-assisted symbolic
execution for improving automated software testing. In: IEEE. 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering. [S.1.], 2015. v. 1, p. 620-631.

WOODCOCK, J.; DAVIES, J. Using Z: Specification, Refinement, and Proof. [S.1]:
Prentice Hall International, 1996.

WYNNE, M.; HELLESOY, A. The cucumber book: behaviour-driven development for
testers and developers. [S.1.]: Pragmatic Bookshelf, 2012.

YUE, T.; ALI, S.; ZHANG, M. Rtem: A natural language based, automated, and
practical test case generation framework. In: Proceedings of the 2015 International
Symposium on Software Testing and Analysis. New York, NY, USA: ACM,
2015. (ISSTA 2015), p. 397—408. ISBN 978-1-4503-3620-8. Available at: <http:
//doi.acm.org/10.1145/2771783.2771799>.

http://robotium.com/
http://dx.doi.org/10.1002/stvr.1498
http://doi.acm.org/10.1145/2786805.2803187
http://doi.acm.org/10.1145/2771783.2771799
http://doi.acm.org/10.1145/2771783.2771799

	Title page
	
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Immersion in Software Testing Industry
	Automation Team: Participant Observation
	Further Direct Observations

	A Formal yet Accessible Approach
	Research Question and Overall Strategy
	Scenarios
	Artifacts
	Test Case Generation
	Test Case Automation

	Contributions
	Document Organization

	Parsing CNL-compliant Requirements
	General Requirements for a CNL
	Frame Structure
	Syntax
	Building a Frame

	CNL Implementation
	Grammatical Framework
	Dynamic lexicon
	Processing and Optimizations

	Final Remarks

	Formal Semantics for CNL-compliant Specifications
	CSP
	Semantics of Requirements
	Actions to Input/Output Events
	Denotational semantics
	Example

	Semantics of Domain Models
	Example

	Sound and Consistent TC Generation and Automation
	Test Generation
	Testing Theory and Conformance Relations
	cspio Conformance Relation

	Abstract Test Generator
	Test Scenario
	Test Purpose
	Test Case

	Consistency Analysis
	Generation Mechanism
	Remarks on finding scenarios

	Test Case Automation
	Composite Actions

	Automation of Legacy Test Cases
	Action Representation for Freestyle Test Cases
	Matching and Reuse
	Consistency Analysis of Legacy Test Cases
	Alloy and the Alloy Analyzer
	Detailed semantics
	Well-formedness Conditions
	Semantic Rules

	The overall consistency analysis process for legacy test cases
	Split the test case
	Frame consistency
	Sequence Consistency

	Tools, and Evaluations
	Tools
	SmarTest: Generation and Automation from Features
	Automation of Legacy tcs
	Force IDE: Automation with reusable indexed scripts
	Kaki: cnl and Consistency Analysis and Solving

	Evaluations
	SmarTest: From Requirements to Scripts
	SmarTest: Additional Contexts
	Kaki: Scalability Evaluation

	Related Work
	Test Generation from Natural Language Descriptions
	Test Automation
	Ad-hoc Test Automation
	Coding
	Capture & Replay

	Script Generation

	Final Remarks

	Conclusions
	Ongoing and Future Work

	References

