
Mimir - Sistema de árbitro online para estudos de
compreensão de código

Eidson Jacques Almeida de Sá

1Centro de Informática – Universidade Federal de Pernambuco (UFPE)
Recife – PE – Brasil

ejas@cin.ufpe.br

Abstract. Code comprehension is the activity in which software engineers try
to understand the behavior of a software system using its source code as the
primary reference. [Hermans 2021] estimates that half of a program’s develop-
ment time is dedicated to reading, so it’s important that this activity be done
most efficiently. Students and professionals should receive training in efficient
code reading, but there are no efficient systems to do that. Developers commonly
use online judge systems to improve their programming abilities, but the exis-
tent market tools only support code writing, not code understanding. There is no
efficient system that allows test creation where the goal is not to write an algo-
rithm, but to evaluate the user comprehension of one or more snippets of code.
Studies about code comprehension either need an implementation of a system
to conduct the test, increasing its scope and complicating its implementation,
or uses an improvised tool, that impairs the experiment’s progress because of
the lack of specific features. This article shows the creation of Mimir, an on-
line judge system for the conduction of code comprehension tests, implemented
from requirements based on a set of studies. To verify its behavior, two case stu-
dies were conducted based on previous experiments, [Gopstein et al. 2017] and
[Langhout and Aniche 2021], with students of the Informatic Center at the Fe-
deral University of Pernambuco, which showed the system’s efficacy to support
studies, either to academic or educational goals.

Resumo. Compreensão de código é a atividade na qual engenheiros de soft-
ware buscam o entendimento do comportamento de um sistema de software uti-
lizando seu codı́go fonte como referência primária. [Hermans 2021] estima
que metade do tempo de desenvolvimento de um programa é dedicado a ler,
portanto, é importante que essa atividade seja feita da maneira mais eficiente
possı́vel. Estudantes e profissionais da área devem receber treinamento na lei-
tura eficiente de código, mas não há plataformas eficientes para isso. Desenvol-
vedores frequentemente utilizam sistemas de árbitro online para aprimoramento
de habilidades de programação, mas as ferramentas existentes no mercado só
dão apoio à construção de programas e não à leitura de código. Não existe
uma plataforma eficiente que permita a criação de testes onde o objetivo não
é escrever um algoritmo, e sim avaliar o entendimento do usuário sobre um ou
mais trechos de código. Estudos envolvendo compreensão de código ou preci-
sam da implementação de um sistema para conduzir o teste, aumentando seu
escopo e dificultando sua implementação, ou utilizam um sistema improvisado,
que prejudica o andamento do experimento devido a falta de funcionalidades



especı́ficas. Este artigo mostra a criação do Mimir, um sistema de árbitro on-
line para condução de testes de compreensão de código, implementado a partir
de requisitos baseados em um conjunto de estudos da área. A fim de verificar
seu funcionamento, foram conduzidos dois estudos de caso baseados em experi-
mentos anteriores, [Gopstein et al. 2017] e [Langhout and Aniche 2021], com
estudantes do Centro de Informática da Universidade Federal de Pernambuco,
que mostraram a eficácia da plataforma em amparar estudos do tipo, seja para
fins acadêmicos ou educacionais.

1. Introdução

Sistemas de computação podem ser desenvolvidos de formas completamente diferentes e
produzir o mesmo resultado. Trechos de código de tamanhos distintos e utilizando diver-
sos tipos de ferramentas são capazes de gerar softwares com as mesmas funcionalidades,
porém, não necessariamente são igualmente legı́veis para os seus desenvolvedores. Ler
um código não é apenas a maneira principal de melhorar habilidades de programação,
mas também é uma maneira de coletar informações essenciais para completar um obje-
tivo técnico na engenharia de software [Bourque and Fairley 2014].

Compreensão de código é definido como a atividade onde engenheiros de soft-
ware buscam o entendimento do comportamento de um sistema de software utilizando
seu codı́go fonte como referência primária [Marvin Zelkowitz 2002] e pode se dar de di-
versas maneiras. A mais tradicional se trata da leitura de trechos de código, mas outras
ferramentas também podem ser utilizadas, como diagramas, vı́deos e documentações.

É utilizada frequentemente no contexto de code reviews, onde desenvolvedores
de um time analisam o código de outros desenvolvedores a fim de descobrir problemas
de performance e aumentar a qualidade do código. O repositório do Visual Studio Code
[https://github.com/microsoft/vscode], um dos maiores editores de código do mercado,
por exemplo, tem seu código aberto e possui mais de 15000 pull requests, onde usuários
precisam ter seus códigos revisados antes de aprovados.

Tal atividade tem sido alvo de diversos estudos na área de computação. A busca
pelo termo code comprehension retorna 3.630 resultados no Google Scholar e a Internati-
onal Conference on Program Comprehension [Serebrenik and Sharma 2021], o principal
fórum cientı́fico da área de compreensão de programas, teve sua 29ª edição no ano de
2021. Grande parte dos estudos da área envolvem surveys ou formulários de diversas
formas para analisar a legibilidade de um código. Aproximadamente 74% deles pedem
que o usuário provenha alguma informação sobre o código: explicar o funcionamento
do código; responder perguntas sobre caracterı́sticas do código; lembrar parte do código
[Oliveira et al. 2020].

Além disso, formulários do tipo também são utilizados para fins acadêmicos, para
estudos ou avaliações de cursos que demandam a compreensão de código dos alunos.
Todavia, esses estudos são feitos em ferramentas improvisadas, como o Google Forms,
que possuem limitações especı́ficas para esses casos de uso, como a impossibilidade de
verificar se o usuário saiu da tela com o teste aberto, o não armazenamento do tempo
de duração do teste e falta de definição de questões similares que deveriam ter a maior
distância possı́vel, mesmo com uma ordenação aleátoria.



A fim de ter uma melhor opção de sistema de formulários para testes de com-
prensão de código, foi implementado uma plataforma com funcionalidades especı́ficas
para experimentos do tipo. Este trabalho discute os fundamentos e motivações que servi-
ram de base para a criação do Mimir, um sistema de árbitro online criado para condução
de testes de compreensão de código. São mostrados os requisitos iniciais e o funciona-
mento do sistema. Além disso, é exibida a condução de dois estudoe de caso construı́do
a partir de experimentos anteriores, demonstrando a usabilidade do sistema, que mesmo
tendo um viés mais tecnológico, serve como amparo para estudos de pesquisa. Também
serão exibidos futuros trabalhos que podem dar continuidade a este projeto e um apanhado
geral do seu desenvolvimento.

2. Fundamentos
Um sistema de árbitro online é uma plataforma na internet completamente automatizada
que verifica um código provido de um usuário em tempo real [Wasik et al. 2018]. As
questões apresentam uma descrição, um modelo de entrada e um modelo de saı́da, e o
usuário deve prover um algoritmo que dada qualquer entrada nesse estilo, retorne a saı́da
esperada.

Possuem geralmente um Oráculo, capaz de mostrar a saı́da esperada dada deter-
minada entrada, e exemplos de entrada/ saı́da para auxiliarem o usuário. Sistemas do tipo
são utilizados para uma avaliação confiável do código fonte de um algoritmo, que são
compilados e testados em um ambiente homogêneo. Seu objetivo geral é uma avaliação
segura, confiável, contı́nua e baseada em nuvem de algoritmos submetidos por usuários
[Wasik et al. 2018]. Todavia, esses sistemas tem seu escopo fechado e não permitem sua
utilização para outros tipos de avaliações que não se tratem da construção de um novo
trecho de código.

Existem três tipos de dificuldades que ocorrem ao ler um código [Hermans 2021]:
Falta de conhecimento, falta de informação e falta de poder de processamento. Essas difi-
culdades acontecem devido as diferenças de conceitos e funcionalidades utilizadas, e as-
sim, trechos de códigos que fornecem uma mesma saı́da podem ter diferenter percepções
de diferentes usuários. Para testes que envolvem compreensão de código, as questões
precisam do trecho do código no enunciado para colher determinado tipo de dado, como
os estudos a seguir:

Em Understanding Misunderstandings in Source Code [Gopstein et al. 2017], foi
proposto um estudo para identificar pequenos trechos (átomos) de código que causam
confusão no usuário que está lendo. Para isso, foi conduzido um teste onde usuários liam
trechos de código com mesmas saı́das (espaçados entre outros trechos de código), mas de
forma obfuscada e transformada, permitindo analisar se determinado átomo de confusão
dificultaria a leitura do usuário.

[Ajami et al. 2017] conduziram um experimento com profissionais da área para
verificar quais estruturas de código são consideradas mais difı́ceis, ou seja, demoram mais
para ser entendidas e/ou produzem mais erros. Em Recursion vs. iteration: An empirical
study of comprehension [Benander et al. 1996], foi feito um estudo com estudantes de
ciência da computação para analisar se códigos com mesma finalidade, mas utilizando
recursão ou iteração, teriam percepções diferentes sobre sua saı́da.

Em The impact of identifier style on effort and comprehension



[Binkley et al. 2013], foi conduzido um estudo para analisar o impacto de estilos
diferentes de identificadores na velocidade e na acurácia da compreensão de código.
[Miara et al. 1983] promoveu um teste para verificar se identações diferentes prejudica-
riam a compreensão de usuários sobre um mesmo trecho de código.

Todos esses estudos tiveram como objetivo analisar a compreensão de usuários so-
bre trechos de código sob diferentes perspectivas, e todos eles possuı́am trechos de código
como parte do enunciado e perguntas objetivas sobre seu funcionamento para coleta das
respostas. Esse formato é padrão em quase todos os experimentos de compreensão de
código e é utilizado de diversas formas.

3. Motivações

Para condução desses estudos, foram utilizadas diversas ferramentas de formulários, se-
jam elas existentes no mercado, criadas exclusivamente para cada estudo, ou até mesmo
ferramentas para exibição de trechos de código que são utilizadas em entrevistas presen-
ciais.

A falta de uma ferramenta que sirva para condução desses estudos aumenta a
complexidade dos mesmos, já que, além da condução do estudo, também entra no escopo
a criação de uma ferramenta especı́fica para coleta de respostas do usuário com a junção
de diversas funcionalidades.

Existem ferramentas de formulários no mercado, como o Google Forms e o Sur-
veyMonkey, mas são plataformas desenvolvidas para perguntas e exercı́cios básicos e aca-
bam por não possuı́rem todas as ferramentas necessárias para um estudo mais especı́fico
sobre compreensão de código.

Nessas plataformas, não há personalização de formatação e de linguagem, sendo
utilizadas, geralmente, capturas de tela com trechos de código, o que dificulta a criação e
a manutenção dessas questões. Além disso, dados importantes como duração por questão
e verificação se o usuário saiu do formulário não são possı́veis em ambas as plataformas.

Ferramentas mais complexas e especı́ficas que são bastante utilizadas também
seriam necessárias, como a definição de questões similares (como as obfuscadas e as
transformadas em [Gopstein et al. 2017]) que necessitam de certa distância durante o for-
mulário para não impactar nas respostas dos usuários.

São plataformas que são utilizadas de forma improvisada, e a falta de uma fer-
ramenta que cumpra com os requisitos especı́ficos para a condução de estudos do tipo
acrescenta uma complexidade a mais para estes projetos. O Mimir surge como uma pro-
posta de plataforma que auxilie esses estudos, visando fortificar a área de compreensão
de código.

4. Requisitos

Para elicitação dos requisitos do projeto, foi conduzida uma reunião com o stakeholder
Fernando Castor, professor que já conduziu diversos experimentos do tipo, de aproxima-
damente 1 hora no dia 25 de Julho de 2022. As perguntas já haviam sido formuladas
após reuniões anteriores, e com essa reunião as dúvidas restantes foram tiradas para que
o projeto pudesse ser implementado.



O formato de acesso definido foi Autenticação com o Google, e que apenas os
condutores de testes / criadores de questões precisariam ser autenticados. Usuários que
respondem os testes deveriam ser capazes de fazer Submissões sem autenticação

A Criação de questões deveria ser feita pelos usuários de maneira personali-
zada com tı́tulo, um ou mais trechos de código, pergunta, resposta esperada e se será
utilizado algum tipo de destaque nos trechos de código, de acordo com a linguagem de
programação utilizada. Além disso, essas questões podem ser Privadas ou não, o que
define se os outros usuários do sistema serão capazes de ver determinada questão.

Além disso, a Criação de testes deveria ser feita de maneira personalizada com
tı́tulo, página de instruções, questões demográficas opcionais e a escolha das questões
a serem utilizadas. A Ordem das questões deve ser randomizada quando forem ser
respondidas, mas o usuário, ao criar o teste, pode definir questões similares que deverão
ter a maior distância possı́vel em qualquer ordem sorteada.

Na Tela Inicial, as questões e os testes devem aparecerão para os usuários, e
deverão ter telas únicas onde os usuários poderão ver os seus dados e serem capazes de
editá-los. Na Visualização de Teste, o usuário poderá coletar o link que será utilizado
para respondê-lo, e Exportar as Respostas obtidas até então em um arquivo .csv.

Para Submeter Respostas, os usuários deverão acessar um link obtido pelo con-
dutor do teste e assim terão acesso ao formulário. A tela inicial mostrará a página de
instruções, seguida das questões demográficas em uma tela e as questões definidas pelo
condutor, uma por vez. Após todas as questões serem respondidas, o usuário que está
respondendo deve ver uma tela final e a submissão será enviada para o sistema.

5. Sistema
A tela de autenticação do sistema é uma tela branca com a logo do Mimir e um botão
simples para login com o Google, como pode ser visto na Figura 1.

Figura 1. Tela de autenticação

Ao efetuar o login, o usuário encontra uma tela com 2 tabelas: Questões e testes,
como mostrado na Figura 2. Essas tabelas estão paginadas em ordem alfabética e, ao
clicar nas setas de alguma das opções, abrirá a tela da questão ou teste. Na tabela de
questões só aparecem as questões criadas pelo usuário e as questões que não são privadas.

Na Figura 3 está a tela com o formulário que aparecerá ao clicar no botão de criar
questão. O usuário deve digitar tı́tulo, um ou mais trechos de código, pergunta, resposta
esperada e se o trecho deverá estar destacado de acordo com a linguagem. As linguagens
suportadas atualmente são C, Java e Python, e também há a opção de não destacar o
trecho.



Figura 2. Tela inicial

Figura 3. Tela de Criação de Questões

A tela com os dados de uma questão é aberta após ela ser criada ou ao clicar na sua
respectiva seta em alguma das tabelas de questões. Essa tela possui os dados da questão
e um botão para editá-la. Um exemplo de uma questão chamada Game of Thrones com 2
trechos de código aparece na Figura 4.

Figura 4. Tela especı́fica de uma Questão

O formulário de criar testes, presente na Figura 5, precisa de um tı́tulo e uma
página de instruções, que já possui um texto padrão. O usuário pode colocar várias
questões demográficas, que aparecem antes do teste para o usuário, e selecionar as



questões do sistema que ele deseja utilizar. Também pode selecionar quais questões fun-
cionam como pares e devem ser espaçadas da melhor maneira possı́vel.

Figura 5. Tela de Criação de Testes

Na figura 6 está a tela com os dados de teste possui uma tabela com as questões
escolhidas, mostra a página de instruções e as questões demográficas. Também mostra um
botão que copia o link que deve ser utilizado para responder o teste, um botão para editar
o teste, e se já houver alguma resposta para o teste em questão, um botão que exporta as
submissões em .csv.

Figura 6. Tela especı́fica de um Teste

Para responder algum teste, a tela inicial é a tela com as intruções definidas pelo
criador do teste (Figura 7). A segunda tela são as questões demográficas (Figura 8) e as
seguintes são as questões em ordem aleatória e seguindo o algoritmo de separação entre
questões similares, como exemplificado na Figura 9.

6. Estudos de caso
Para validação da plataforma, foram conduzidos 2 testes no Mimir, a fim de verificar se o
sistema seria capaz de ser utilizado em experimentos que envolvem testes de compreensão
de código, como os mostrados na seção de Fundamentos.

O primeiro foi um experimento baseado em [Gopstein et al. 2017] e está na Figura
10. Foram utilizadas 6 questões retiradas do experimento original, utilizando as versões
obfuscadas e transformadas dos átomos Implicite Predicate, Infix Operator Precedence
e Post-Increment. Essas questões foram marcadas como questões similares e apareciam
sempre com o maior espacamento possı́vel.



Figura 7. Tela de página de instruções

Figura 8. Tela de questões demográficas

Figura 9. Tela com uma questão

O teste foi enviado para estudantes de Engenharia da Computação da Universidade
Federal de Pernambuco que responderam e enviaram suas submissões. A plataforma
funcionou corretamente em todas as respostas, e os dados puderam ser exportados para
um .csv como planejado.

Na Figura 11 está o segundo teste, que foi feito baseado em
[Langhout and Aniche 2021], tendo o objetivo de achar átomos de confusão em
Java. Também foram utilizadas 6 questões retiradas do experimento original, utilizando
as versões obfuscadas e transformadas dos átomos Change of Literal Encoding, Type
Conversion e Repurposed Variables. Essas questões foram marcadas como questões
similares e apareciam sempre com o maior espacamento possı́vel.



Figura 10. Tela do teste de Átomos de Confusão em C

O teste foi enviado para estudantes de Ciência da Computação da Universidade
Federal de Pernambuco que responderam e enviaram suas submissões. A plataforma
também funcionou corretamente em todos os casos, e os dados das submissões puderam
ser exportados para um .csv.

Figura 11. Tela do teste de Átomos de Confusão em Java

Ao final dos experimentos, feedbacks foram coletados com os usuários respon-
dentes por meio de entrevistas. O único feedback coletado acerca da plataforma foi sobre
as questões demograficas, segundo as quais usuários disseram que questões do tipo funci-
onam melhor com alternativas prontas, para definir tempo de experiência, perı́odo e idade
de maneira menos abstrata.

7. Conclusão
Na mitologia nórdica, Mimir é conhecido por ser deus mais sábio de Asgard, devido ao
seu poço, Mı́misburnnr, onde bebe de sua água todos os dias para obter mais sabedoria.
Assim surge a plataforma Mimir, construı́da para ajudar usuários a conduzirem estudos
de compreensão de código e auxiliar a academia a obter melhores resultados no desenvol-
vimento de software.

O Mimir foi feito de maneira escalável e facilmente expansı́vel, levando em conta
que trabalhos diferentes na área precisam de funcionalidades diferentes, e a ferramenta
precisa ser facilmente adaptável e capaz de receber melhorias. Para isso, a ferramenta está



disponı́vel em código aberto [https://github.com/eidsonsa/mimir/] Há diversos trabalhos
futuros mapeados para aprimorar a plataforma:

Autenticação para respondentes Usuários que não pretendem criar questões ou testes,
mas que os respondem com frequência e desejam guardar um histórico de suas
submissões.

Autenticação com outras plataformas Utilização de outros sistemas de autenticação
além do Google, como o Facebook, Github e autenticação própria com email e
senha.

Tipos diferentes de questões Implementação de mais tipos de questões, como questões
de múltipla escolha ou que demandam a escrita de algum trecho de código

Mais linguagens de programação Atualmente, o Mimir só suporta destaque de códigos
em C, Java e Python, o que pode ser aumentado no futuro

Exportação em outros tipos O Mimir exporta as submissões em csv, mas pode vir a
exportar também em outros tipos, como pdf e parqueet.

Adaptação de Javascript para Typescript O projeto tem seu código feito em Javas-
cript, e pode ser alterado para Typescript afim de melhorar sua legibilidade

Versão Mobile O sistema pode ser utilizado em dispositivos móveis, mas precisa de uma
versão que funcione de maneira melhor nesses sistemas

Melhora de UI Com a maior utilização do sistema, feedbacks devem ser colhidos para
atualizações no design da plataforma, de forma que a aplicação fique mais prática
e intuitiva para os usuários

O objetivo do desenvolvimento do Mimir de criar uma plataforma que permitisse
a realização de testes envolvendo compreensão de código, seja para auxiliar atividades
educacionais ou para fortificar a área acadêmica, foi alcançado e funcionou como espe-
rado. A utilização do sistema foi feita de maneira simples e usuários conseguem criar
questões e testes de maneira bastante intuitiva. Os dados conseguiram ser exportados
para um arquivo .csv em um formato capaz de fazer análises, como mostrado na Tabela 1.

Perı́odo Experiência Idade O2 O1 T2 T1 elapsedTime exitScreen
5º 1,5 anos 21 true false true false 610.098 true
4 1 ano e meio 20 false true true false 135.556 false
5° 2 anos 20 true false false false 270.203 true

Tabela 1. Exemplo de arquivo .csv gerado pelo Mimir

Os experimentos conduzidos na seção anterior foram completados de maneira efi-
ciente e sem dificuldades. A plataforma se mostrou pronta para auxiliar estudos do tipo e
permite ao usuário condutor personalizá-lo e coletar dados de maneira fácil, apenas com-
partilhando o link com as pessoas que irão respondê-la. Sem a necessidade de criação de
plataformas especı́ficas ou a utilização de sistemas improvisados,espera-se que os estu-
dos posteriores na área de compreensão de código sejam feitos de maneira mais simples
e rápida, reduzindo uma parte essencial do seu escopo.

A plataforma também foi feita de maneira que pode ser utilizada para fins educa-
cionais. Com o salvamento do tempo decorrido e sabendo se o respondente saiu da tela,
professores podem utilizar o Mimir para conduzir provas, servindo como um facilitador
para exercı́cios de cursos que demandam a leitura de determinado trecho de código.



A ferramenta cumpre os requisitos estabelecidos e de maneira escalável, tendo
como objetivo servir como um auxı́lio para a comunidade, que ainda pode melhorar o
projeto e adicionar novas funcionalidades para ele, devido a sua distribuição em código
aberto. É esperado que o Mimir fique cada vez mais completo e ajude a melhorar a
comunidade de computação cada vez mais.

Referências
Ajami, S., Woodbridge, Y., and Feitelson, D. G. (2017). Syntax, predicates, idioms - what

really affects code complexity? In 2017 IEEE/ACM 25th International Conference on
Program Comprehension (ICPC), pages 66–76.

Benander, A. C., Benander, B. A., and Pu, H. (1996). Recursion vs. iteration: An empiri-
cal study of comprehension. Journal of Systems and Software, 32(1):73–82.

Binkley, D., Davis, M., Lawrie, D., Maletic, J. I., Morrell, C., and Sharif, B. (2013).
The impact of identifier style on effort and comprehension. Empirical Softw. Engg.,
18(2):219–276.

Bourque, P. and Fairley, R. E., editors (2014). SWEBOK: Guide to the Software Engi-
neering Body of Knowledge. IEEE Computer Society, Los Alamitos, CA, version 3.0
edition.

Gopstein, D., Iannacone, J., Yan, Y., DeLong, L., Zhuang, Y., Yeh, M. K.-C., and Cappos,
J. (2017). Understanding misunderstandings in source code. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017,
page 129–139, New York, NY, USA. Association for Computing Machinery.

Hermans, F. (2021). The programmer’s brain: What every programmer needs to know
about cognition. Manning publications Co.

Langhout, C. and Aniche, M. F. (2021). Atoms of confusion in java. CoRR,
abs/2103.05424.

Marvin Zelkowitz, P. (2002). Advances in Computers. Number v. 56 in Advances in
Computers. Elsevier Science.

Miara, R. J., Musselman, J. A., Navarro, J. A., and Shneiderman, B. (1983). Program
indentation and comprehensibility. Commun. ACM, 26(11):861–867.

Oliveira, D., Bruno, R., Madeiral, F., and Castor, F. (2020). Evaluating code readability
and legibility: An examination of human-centric studies. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 348–359.

Serebrenik, A. and Sharma, A., editors (2021). 29th IEEE/ACM International Conference
on Program Comprehension, ICPC 2021, Madrid, Spain, May 20-21, 2021. IEEE.

Wasik, S., Antczak, M., Badura, J., Laskowski, A., and Sternal, T. (2018). A survey on
online judge systems and their applications. ACM Comput. Surv., 51(1).


